Hasso Plattner Institute
University Potsdam, Germany
Information Systems Group

Discovering Metadata in Data Files

Dissertation
zur Erlangung des akademischen Grades
“Doktor der Naturwissenschaften”
(Dr. rer. nat.)
in der Wissenschaftsdisziplin “Informationssysteme”

eingereicht an der
Fakultat Digital Engineering
der Universitat Potsdam

von
Lan Jiang

Dissertation, Universitat Potsdam, 2021

http://www.uni-potsdam.de
https://hpi.de/naumann/home.html
mailto:lan.jiang@hpi.de

ii

AWVEIsyx.
SIS,

. HASSO PLATTNER INSTITUTE Hasso
. @ﬁﬁ UNIVERSITY OF POTSDAM Plattner
5 D . .
%, Information Systems Group Institut

. Q’am
. . Digital Engineering + Universitat Potsdam

Discovering Metadata in Data Files

Dissertation
zur Erlangung des akademischen Grades
“Doktor der Naturwissenschaften”
(Dr. rer. nat.)
in der Wissenschaftsdisziplin “Informationssysteme”

eingereicht an der
Fakult”at Digital Engineering
der Universit“at Potsdam

von
Lan Jiang

Potsdam, den 14. Dezember 2021

mailto:lan.jiang@hpi.uni-potsdam.de

ii

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.

This does not apply to quoted content and works based on other permissions.

To view a copy of this licence visit:

https://creativecommons.org/licenses/by /4.0

Reviewers

Prof. Dr. Felix Naumann
Hasso Plattner Institute, University of Potsdam

Prof. Dr. Bernhard Mitschang
Institute of Parallel and Distributed Systems, University of Stuttgart

Prof. Dr. Renée Miller
Khoury College of Computer Sciences, Northeastern University

Published online on the

Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-56620
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-566204

iv

Abstract

It is estimated that data scientists spend up to 80% of the time exploring,
cleaning, and transforming their data. A major reason for that expenditure
is the lack of knowledge about the used data, which are often from different
sources and have heterogeneous structures. As a means to describe various
properties of data, metadata can help data scientists understand and prepare
their data, saving time for innovative and valuable data analytics. However,
metadata do not always exist: some data file formats are not capable of stor-
ing them; metadata were deleted for privacy concerns; legacy data may have
been produced by systems that were not designed to store and handle meta-
data. As data are being produced at an unprecedentedly fast pace and stored
in diverse formats, manually creating metadata is not only impractical but
also error-prone, demanding automatic approaches for metadata detection.

In this thesis, we are focused on detecting metadata in CSV files — a type
of plain-text file that, similar to spreadsheets, may contain different types of
content at arbitrary positions. We propose a taxonomy of metadata in CSV
files and specifically address the discovery of three different metadata: line
and cell type, aggregations, and primary keys and foreign keys.

Data are organized in an ad-hoc manner in CSV files, and do not follow a fixed
structure, which is assumed by common data processing tools. Detecting the
structure of such files is a prerequisite of extracting information from them,
which can be addressed by detecting the semantic type, such as header, data,
derived, or footnote, of each line or each cell. We propose the supervised-
learning approach STRUDEL to detect the type of lines and cells. CSV files
may also include aggregations. An aggregation represents the arithmetic
relationship between a numeric cell and a set of other numeric cells. Our
proposed AGGRECOL algorithm is capable of detecting aggregations of five
arithmetic functions in CSV files. Note that stylistic features, such as font
style and cell background color, do not exist in CSV files. Our proposed
algorithms address the respective problems by using only content, contextual,
and computational features.

Storing a relational table is also a common usage of CSV files. Primary
keys and foreign keys are important metadata for relational databases, which
are usually not present for database instances dumped as plain-text files.
We propose the HOPF algorithm to holistically detect both constraints in
relational databases. Our approach is capable of distinguishing true primary
and foreign keys from a great amount of spurious unique column combinations
and inclusion dependencies, which can be detected by state-of-the-art data
profiling algorithms.

vi

Zusammenfassung

Schitzungen zufolge verbringen Datenwissenschaftler bis zu 80% ihrer Zeit
mit der Erkundung, Bereinigung und Umwandlung ihrer Daten. Ein Haupt-
grund fiir diesen Aufwand ist das fehlende Wissen iiber die verwendeten Da-
ten, die oft aus unterschiedlichen Quellen stammen und heterogene Struktu-
ren aufweisen. Als Mittel zur Beschreibung verschiedener Dateneigenschaften
konnen Metadaten Datenwissenschaftlern dabei helfen, ihre Daten zu verste-
hen und aufzubereiten, und so wertvolle Zeit die Datenanalysen selbst sparen.
Metadaten sind jedoch nicht immer vorhanden: Zum Beispiel sind einige Da-
teiformate nicht in der Lage, sie zu speichern; Metadaten kénnen aus Daten-
schutzgriinden geldscht worden sein; oder <ere Daten wurden moglicherweise
von Systemen erzeugt, die nicht fiir die Speicherung und Verarbeitung von
Metadaten konzipiert waren. Da Daten in einem noch nie dagewesenen Tem-
po produziert und in verschiedenen Formaten gespeichert werden, ist die ma-
nuelle Erstellung von Metadaten nicht nur unpraktisch, sondern auch feh-
leranfillig, so dass automatische Anséitze zur Metadatenerkennung erforder-
lich sind.

In dieser Arbeit konzentrieren wir uns auf die Erkennung von Metadaten in
CSV-Dateien - einer Art von Klartextdateien, die, &hnlich wie Tabellenkalku-
lationen, verschiedene Arten von Inhalten an beliebigen Positionen enthalten
konnen. Wir schlagen eine Taxonomie der Metadaten in CSV-Dateien vor
und befassen uns speziell mit der Erkennung von drei verschiedenen Metada-
ten: Zeile und Zellensemantischer Typ, Aggregationen sowie Primdrschlissel
und Fremdschliissel.

Die Daten sind in CSV-Dateien ad-hoc organisiert und folgen keiner festen
Struktur, wie sie von gingigen Datenverarbeitungsprogrammen angenommen
wird. Die Erkennung der Struktur solcher Dateien ist eine Voraussetzung fiir
die Extraktion von Informationen aus ihnen, die durch die Erkennung des
semantischen Typs jeder Zeile oder jeder Zelle, wie z. B. Kopfzeile, Daten,
abgeleitete Daten oder Fufinote, angegangen werden kann. Wir schlagen den
Ansatz des iiberwachten Lernens, genannt “STRUDEL” vor, um den struktu-
rellen Typ von Zeilen und Zellen zu klassifizieren. CSV-Dateien kénnen auch
Aggregationen enthalten. Eine Aggregation stellt die arithmetische Bezie-
hung zwischen einer numerischen Zelle und einer Reihe anderer numerischer
Zellen dar. Der von uns vorgeschlagene “AGGRECOL”-Algorithmus ist in der
Lage, Aggregationen von fiinf arithmetischen Funktionen in CSV-Dateien zu
erkennen. Da stilistische Merkmale wie Schriftart und Zellhintergrundfarbe
in CSV-Dateien nicht vorhanden sind, die von uns vorgeschlagenen Algo-
rithmen die entsprechenden Probleme, indem sie nur die Merkmale Inhalt,
Kontext und Berechnungen verwenden.

Die Speicherung einer relationalen Tabelle ist ebenfalls eine hidufige Verwen-
dung von CSV-Dateien. Primér- und Fremdschliissel sind wichtige Metada-
ten fiir relationale Datenbanken, die bei Datenbankinstanzen, die als reine
Textdateien gespeichert werden, normalerweise nicht vorhanden sind. Wir
schlagen den “HOPF”-Algorithmus vor, um beide Constraints in relationalen
Datenbanken ganzheitlich zu erkennen. Unser Ansatz ist in der Lage, echte
Primér- und Fremdschliissel von einer groflen Menge an falschen eindeuti-
gen Spaltenkombinationen und Finschlussabhdngigkeiten zu unterscheiden,
die von modernen Data-Profiling-Algorithmen erkannt werden kénnen.

Acknowledgments

Acquiring a Ph.D. title is by no means easy. It is a task that I could not
have finished by myself without the supports and help from many others.
Cordially, I would like to express my gratitude to all those that care about
me. The very first person I want to thank is my doctoral advisor Prof. Dr.
Felix Naumann who constantly supports me with my study and work. His
profound knowledge in this discipline and honest attitude towards science
have taught me a lot from thinking deep and performing rigorous research to
writing down precise sentences in papers, and from holding a critical mindset
to communicating and collaborating with others. These skills I learned from
working with him have become treasures to me, and give me greater confi-
dence to deal with new challenges in my future works. I would also like to
thank all the teachers and professors who passed on knowledge to me.

I also want to thank all the excellent colleagues that have worked with me
during my Ph.D. journey. I am grateful for their selfless efforts to support
me. I want to especially thank the data preparation team. That we collab-
orated with and learned from each other are an unforgettable and valuable
experience to me. May all my colleagues have a great and bright future.

Finally, I want to thank my friends and family, who always stood by my side
to support and encourage me in every way possible, even though they are
scattered all over the world. Their help and upholding let me make it through
all the difficult time, especially during the lockdown time. Especially, thanks
to my parents who have spent so many efforts raising me up and shaping me
into a good person, and thanks to Tim Felgentreff and Felicia Flemming who
helped me settle down in Germany and get used to living here.

Jumping out of the comfort zone needs courage, especially when it is about
starting a Ph.D. in a new environment. Looking back to the past years as
a doctoral student, I am very happy that I made this decision and proud of
myself to get through it. This experience is certainly a highlight of my life.
Again, thanks to all that care about and support me.

Contents

Metadata in Data Files

1.1 A Metadata Taxonomy
1.2 Challenges for metadata detection
1.3 Structure and contributionso

Structure Detection in Verbose CSV Files

2.1 Structure detection
2.2 Line Classification
2.3 Cell Classification
2.4 Evaluation e
2.5 Related Work
2.6 Conclusions

Aggregation Detection in Verbose CSV Files

3.1 Aggregation detection
3.2 Preliminaries Lo
3.3 The AGGRECOL Approach
3.4 Experimental Evaluation oo
3.5 Related work
3.6 Conclusion and Future Work

Holistic Primary Key and Foreign Key Detection

4.1 Structuring Schemata oL
4.2 Related Worko
4.3 Features for Primary Key and Foreign Key Discovery
4.4 Pruning PK and FK candidates
4.5 Holistic algorithm HoPF
4.6 Experiments and Analysis
4.7 Conclusions

11
12
17
18
24
37
39

41
42
44
48
56
69
70

CONTENTS

5 Conclusion and Outlook 103

References 107

ii

Chapter 1

Metadata in Data Files

Data are being rapidly generated over the past years. It is estimated that the amount of
new data created will reach 180 zettabytes (1.8x 123 bytes) in 2025, almost three times the
volume of that in 2020 [Holst, 2021]. The COVID-19 pandemic has propelled the growth
of new data produced due to home office and homeschooling, which have become a new
routine to many more people since the initial outbreak of the disease. There is no doubt
that the abundance of data could bring great opportunities to reinforce the productivity
of various jobs, or to spark new technologies, such as assisting doctors in personalizing
healthcare solutions to their patients [Ahuja, 2019; Dimitrov, 2016] and fighting global
pandemic [Islam et al., 2020], supporting business decisions [Fountaine et al., 2019], new
drug discovery [Chan et al., 2019; Smalley, 2017], urban traffic monitoring [Jain et al.,
2019; Mandal et al., 2020], or autonomous driving [Yurtsever et al., 2020]. The frequently
quoted phrase “data is the new oil” [Bhageshpur, 2019; Economist, 2017; Palmer, 2006]
has revealed the ambitions of exploiting data in a great deal of scenarios.

This metaphor, however, also implies the challenge of consuming data. Just like oil
is not useful until it is refined and transformed into various kinds of fuels, data them-
selves laying in the hardware are not valuable until they are refined, or more specifically,
cleaned, processed, and transformed into proper digital assets. The necessity to refine
data comes from the fact that said data are often unstructured, faulty, inconsistent, and
heterogeneous [Oliveira et al., 2005; Rahm and Do, 2000]. Being usually not ready for
consumption by downstream analytics, data need to be prepared first. Data preparation
is by no means a trivial task. In reality, it is estimated that data scientists spend in
their day-to-day work 50% to 80% of the time only on preparing their data [Dasu and
Johnson, 2003; Kandel et al., 2012; Press, 2016], which typically includes gathering, load-
ing, cleaning, and transforming data. Preparing data is not only time-consuming, but
also unpleasant: according to a survey by Forbes, 76% of 80 interviewed data scientists
considered data preparation as the least enjoyable part of their work [Press, 2016].

That data scientists spend a good deal of time preparing data is attributed largely to
the lack of knowledge about data. Collecting, loading, cleaning, transforming, and visu-
alizing data are all based on understanding the involved data. The data lake techniques
rapidly developed in recent years [Giebler et al., 2019] enable access to a wide variety of
data that are, however, often subject to a particular schema and stored in heterogeneous
formats. Without domain-specific knowledge for comprehension, data scientists are often

1. METADATA IN DATA FILES

reluctant to use, or not able to fully exploit the data [Foshay et al., 2007]. To prevent
letting a data lake from becoming a data swamp, we must be able to describe the char-
acteristics of data stored in it [Eichler et al., 2021; Halevy et al., 2016; Nargesian et al.,
2019]. A great number of properties about data can help data scientists understand
their data, e.g., the size, format, provenance of data files, the structure and semantic
of content, the constraints on content, and the relationships amongst different pieces of
data. These properties about data are commonly referred to as metadata. The amount
and type of metadata can develop far beyond those introduced above. There may also
be metadata specific to file format or data domain. Having the knowledge of metadata,
data scientists can leverage particular tools or develop unique scripts to further process,
visualize, and analyze their data.

Metadata are useful information throughout a data science lifecycle. Figure 1.1
demonstrates a typical workflow for data science projects. Given a dataset collected
from for example a data lake, a data scientist first explores it with data exploration
tools, such as Power BI and Tableau for tabular data, to gain an understanding of or
spot errors in the dataset. With the knowledge of data characteristics and quality, the
data scientist further prepares the dataset, aligning it to the models they want to build
for particular applications. After that, they build and validate models based on the pre-
pared data. With new data problems discovered during this phase, the data scientist may
return to data exploration to gain more knowledge about the data, or data preparation
to further polish the data, before serving the prepared data to the models again. All
above operations require comprehending the data, which can be facilitated with various
metadata.

Dataset

Explore data Prepare data Build, validate, Visualize and report

ﬂ deploy model
J

e
NN

7o
5

Detect metadata

Figure 1.1: A typical workflow for data science projects.

Despite their usefulness, metadata are often not attached to the data they describe
due to four main reasons. One reason is the inability of some file formats to hold meta-
data. For example, the widely used CSV format, according to RFC 4180 [Shafranovich,
2005], is designed to hold only tabular data. As a consequence, either there are no
metadata to describe the data in such a file, or metadata are deposited in a separated
file that is often not bundled with the data file. The second reason is the unavailability
of metadata due to operational factors. For example, deleting complex metadata may
reduce the size of data significantly, and therefore enable data loading on machines with
limited hardware resources. Also, some legacy data may be produced by systems that
were initially not designed to handle and store metadata. Last but not least, collecting

metadata is usually not a trivial task. On the one hand, some metadata are not obvious.
For example, in a spreadsheet file with many tables scattered all over the place, counting
the number of tables, recognizing the boundary of each table, and distinguishing among
the different types of content in tables are all challenging tasks. On the other hand,
the efforts to recognize metadata in one dataset may not always be useful to extract
metadata from another dataset, where data may be organized in a different way. Data
scientists often need to create a specific data process workflow to identify per-dataset
metadata. As a consequence, manually scrutinizing and creating these metadata are not
only time-consuming but also error-prone. The ever-growing amount of data aggravates
the difficulty of the metadata extraction problem. Data files stored in heterogeneous for-
mats are stored in different platforms, such as open-data portals, companies’ on-premises
data lakes. In practice, data scientists often need to query various sources to obtain data
relevant to their analytics tasks. The volume of available data may be so large that
manually gathering metadata of individual data files is not feasible.

While metadata detection is a general research problem for any type of data files, in
this thesis, we focus on verbose CSV files — a type of plain-text data files that store semi-
structured data. Different from a standard CSV file that, according to RFC 4180 [Shafra-
novich, 2005], contains an optional header line at the beginning of the file followed by
a number of data lines, a verbose CSV file may include cells of heterogeneous classes,
possibly with empty visual separators. Standard CSV files are a special case of verbose
CSV files. The formal definition of verbose CSV files will be presented in Section 2.1.1.
As of now, we demonstrate a typical real-world verbose CSV file with Figure 1.2, which
includes three tables at different positions. A collection of metadata that can be derived
from this file are marked in the figure.

1997 Paper & Paperboard “Header” cells
1 e e O R (Unittons, %)
| Grades Production Total shipment Domestic shipment Exports Inventories
Compared to 1996 Compared to 1996 Compared to 1996 Compared to 1996
| Newsprint 3,192,351 101.7 3,186,836 101.6 3,160,888 101.8 25,948 89 307,158 h .
Printing & Comm 11,112,090 102.8 11,037,490 102.9 10,550,579 101.3 486,911 ; ull representation
Packaging & Wre 1,107,898 102 1,101,357 102.2 1,080,374 101.9 20,983 123, 107,325 un
Sanitary Tissue 1,715,055 104.1 1,704,841 104.1 1,704,687 104.1 154 - 60,133
Miscellaneous 1,140,110 105.4 1,136,291 104.6 1,125,539 104.4 10752 "~ _1301J 85413
Paper,Total 18,267,504 1028 18,166,815 1029 17,622,067 101.9 544,748 147.2 1,370,793 Moy
Containerboard 9,424,750 104.2 9,338,680 103.5 9,239,950 102.9 98,730 2241 460,549
Table Boxboard 2,236,294 104 2,219,576 102.8 2,024,677 1025 194,899 1054 138,554
position |Miceliancous 1,085,787 103.6 1,076,596 103.2 1,076,317 103.2 279 74.4 81,799
Paperboard,Tota 12,746,831 104.1 12,634,852 1033 12,340,944 102.9 293,908 128.1 680,902
Paper & Paperte 31014335 1033 _ 30801667 ___ 1031 _ 20063011 ___ 1023 83865 1399 _ 2051695
1997 Pulp
|_ _________________ (Lmonm) 1
“ »» | Grades Production Captive use Shipment Inventories
Preamble Compared to 1996 Compared to 1996 Compared to 1996 |
cells BKP 7,852,798 104.4 7,475,829 1047 390,366 105.5 123,891 | "Aggregate" cell
UKP 1,623,245 100.5 1,348,836 100.7 274,066 100.2 24,491
| Paper grades pu 11,364,715 1028 10,685,899 103 691,508 103.3 153,078
————— T Y
— (Unitm3, %)
| Wood type Receipts Consumption Inventories |
Compared to 1996 Compared to 1996
|s<mwooas Domestic 8,659,028 95.2 8,731,700 . 987 . 558.107
| Imported 7,416,159 1047 7,399,045[1032 655,625/ Number format
Total 16,075,187 99.8 16,130,745 ™ ~GR.6T "TZ13; « "
Hardwoods ~ Domestic 3,997,551 97.9 4,020,670 97.7 165,796' XK XXX, XXX XX
[Imported 18,053,586 102.8 18,231,333 105.4 1,225,103
Total 22,051,137 1019 22,252,003 103.9 1,390,899|
| Grand total 38,126,324 1008 38,382,748 102.1 2,604,631

“Group header” cell

Figure 1.2: A real-world verbose CSV file that includes three tables. Samples of
metadata are displayed.

1. METADATA IN DATA FILES

Many more different types of metadata can be created for verbose CSV files. In the
next section, we first introduce our proposed taxonomy of metadata in verbose CSV files
and give several metadata examples. After that, we introduce the research challenges for
metadata detection in data files and conclude this chapter by presenting the structure
of the following chapters.

1.1 A Metadata Taxonomy

There are many ways to classify metadata that can be extracted from data files [Bilalli
et al., 2016; Foshay et al., 2007; Varga et al., 2014]. In the context of verbose CSV files,
we categorize metadata into six groups according to their purpose: (i) utility metadata,
(ii) cell metadata; (iii) column metadata; (iv) row metadata; (v) table metadata; (vi) file
metadata. The rest of this section elaborates on these categories.

Utility metadata describe the form characters leveraged to interpret the structure of
content, whereas the other five types of metadata (content metadata) depict properties of
characters with real meaning in verbose CSV files, according to their scope. We discuss
the five types of content metadata in both verbose CSV files with arbitrary layouts (e.g.,
Figure 1.2) and the ones following the RFC 4180 standard (e.g., Figure 1.3).

Figure 1.4 demonstrates our proposed metadata taxonomy and some examples in
each group. In the following, we provide a detailed explanation of these six types along
with the concrete metadata that fall into either group.

1.1.1 Utility metadata

Utility metadata describe how to interpret the structure of data files. In verbose CSV
files, there are two types of characters: (i) wtility characters that serve functional pur-
poses to enable interpreting the structure of the content in files; (ii) content characters
that represent the content with real meaning in data. Utility characters are a set of
syntactic metadata that carry no real meaning, and should not be considered when de-
picting the content. Typical utility metadata in verbose CSV files include file encoding,
delimiter, quotation characters of fields, escape characters, line-break characters, and so
on. Figure 1.5 shows an example of three utility metadata used for the lines three to six
in the file of Figure 1.2.

Detecting utility metadata is obviously the prerequisite of identifying the other five
types of metadata in verbose CSV files, because utility metadata provide a way to sep-
arate characters with real meaning into correct fields. Utility metadata detection in
verbose CSV files itself is an interesting and also challenging research problem. We
have witnessed several research efforts to recognize the aforementioned utility meta-
data [Déhmen et al., 2017; Ge et al., 2019; Li and Momoi, 2001; Pinkas, 2014; van den
Burg et al., 2019]. In this thesis, our focus is on identifying metadata about content, i.e.,
those of the other five types. Therefore, we do not address the utility metadata detection
problem. Instead, we assume that these metadata have been correctly identified, and
content in raw data files have been properly placed into respective cells.

1.1 A Metadata Taxonomy

Foreign key, I I I
Inclusion dependency i

I— Value distribution Column type: float
N o
Prades IType INumber (tons) ICompared to 1996 (%)
EKP Production 7,852,798 104 .4
KP Production I 1,623,245 I 100.5
|3aper grades pulp IProduction I 11,364,715 | 102.8
EKP ICaptive use | 7,475,829 104.7
KP |(C)aptive use 1,348,836 | 100.7
IDaper grades pulp 'Captive use I 10,685,899| 103
IBKP IShipment | 390,366 | 105.5
LJKP hipment 274,066 100.2
aper grades pulp Shipment I 691,508| 103.3
KP Inventories I 123,891
KP |inventories | 24,491
aper grades pulp JInventories 153,078| T
S S E— Y —
% .
Primary key Unique column combination Null Representation

Figure 1.3: The relational table obtained by generating relational tuples from the
content of the table in the middle in Figure 1.2. We define the primary key and a
foreign key in this table for demonstration purposes. The foreign key shall reference
the primary key of another table that is omitted.

1.1.2 Cell metadata

Cell metadata describe properties of cells — the smallest units — in verbose CSV files.
Example cell metadata are cell length (the number of characters in the value of a cell), cell
data type (e.g., integer, float, date, or string), date/number format (the pattern of the
cell value that represents a date/number), cell type (e.g., preamble, header, aggregation,
or footnote). Figure 1.2 demonstrates several cell metadata. Because verbose CSV
files do not always follow a fixed row-wise or column-wise structure, cell-level metadata
provide fine-grained details about the data, which could help recognize the presence of
errors in data. Individual cell metadata may also be used to construct other types of
content metadata. For example, the boundary of a table in a verbose CSV file may be
determined by the positions of the data and header cells in it.

1.1.3 Column metadata

Column metadata depict characteristics of individual table columns in verbose CSV
files. As a special case of verbose CSV files, standard CSV files contain one and only one

1. METADATA IN DATA FILES

Metadata

| | | | | |
Utility Cell Column Row Table File
metadata metadata metadata metadata metadata metadata

Delimiter Table row header NuII—vaIug
representation

Value length } Date type «{ Table count

Quotation

H r
character CEED

Row structural
type

«{Header hierarchy

|
|
{ Unique column } { File template
|
|

Data type «{ Table location

Non-empty cells
(%)

combination
Functional
dependency

Non-empty cells} { Primary key

(%)
Aggregation

Figure 1.4: A taxonomy of metadata in verbose CSV files.

Inclusion

alue distribution
dependency

«{Escape character}

Line-break
character

Cell structural
type

{
{
{
{

. _J _J C_J)

{
{
{
{

Number format }

{ Foreign key

Quotatiorl character Delimiter character
T
st {Unit:tons, %)",\r\n
Grades,Production,,Total shipment,,Domestic shipment,,Exports |_,:,Inventories\r\r_1 _ Line-break
,,Compared to 1996,,Compared to 1996,,Compared to 1996,,Compared to 1996,&r\n | - e-brea

Newsprint,"3,192,351",101.7,"3,186,836",101.6,"3,160,888",101.8,"25,948" 89.0,"307,158"\r\n | character

Figure 1.5: The raw character sequences of lines 3-6 in the verbose CSV file shown
in Figure 1.2 with three utility metadata: comma as the delimiter, double-quote as
the quotation character, and “\r\n” as the line-break character.

relational table. Therefore, a column therein includes all cells in the same vertical line. A
number of column metadata can be extracted from standard CSV files, e.g., the column
data type, format of its values, header of the column, percentage of unique values, and
value distribution. In the case of verbose CSV files, such as those in Figure 1.2, columns
may have a flexible arrangement of cells with different purposes, instead of an optional
header cell at the top plus a set of data cells following. There are two types of column
metadata in verbose CSV files: (i) file column metadata that describe the properties of
all cells in the same vertical line of the file, such as the percentage of non-empty cells;
(ii) table column metadata that depict the characteristics of all cells in one table of a
presumable multi-table file, such as the scope of header/data, and the value distribution
of the data part. Several previous works can be applied to verbose CSV files to determine
the scope of tables, and the range of header and data parts in tables [Christodoulakis
et al., 2020; Embley et al., 2016; Koci et al., 2017; Vitagliano et al., 2021], based on
which we can identify table column metadata.

1.1 A Metadata Taxonomy

1.1.4 Row metadata

Similar to column metadata, we can divide row metadata into two groups: (i) file row
metadata; (ii) table row metadata. A file row in a verbose CSV file is the set of cells in
the same horizontal line. An example of row metadata about a file is the percentage of
non-empty cells in a row. Another example row metadata is the row structural type, e.g.,
a data row, or a header row of a table, or a footnote row about a table. For individual
tables, one example of row metadata is the table row header: tables in verbose CSV
files may include row headers for all data cells in the whole row. For example, each cell
in the first “Grades” column in the top table of Figure 1.2 is the row header for the
corresponding table row. Other table row metadata include the number of header cells
in a row, the data type of cells, and value distribution of cells in the data part, etc.

1.1.5 Table metadata

Table metadata depict the properties of a table in a data file. Such a table can either
be with an arbitrary shape or a relational table following the RFC 4180 standard. A
verbose CSV file may include multiple tables, for each we can derive different metadata.
Examples of table metadata are the table-level Null-value representation [Qahtan et al.,
2018], date/number value format, header hierarchy for tables with multi-layer headers,
aggregations that correlate a numeric cell with a set of other numeric cells through an
arithmetic relationship [Jiang et al., 2022]. For relational tables in standard CSV files,
we may generate various profiling metadata, such as unique column combinations, denial
constraints, and functional dependencies [Abedjan et al., 2015], and database constraints,
such as primary keys [Jiang and Naumann, 2020].

1.1.6 File metadata

File metadata describes properties of a data file from the file level, e.g., the number of
tables (table count) and their locations (table locations) in a single file. What is more, we
may also define metadata across different files, e.g., the template used to create content
in different files (file template [Vitagliano et al., 2021]). For relational tables in multiple
standard CSV files, we may derive inclusion dependencies and foreign keys.

With the knowledge of various metadata, data scientists could understand their data
more deeply, and conduct data preparation or data exploration more efficiently. For
example, they may realize format inconsistency by checking the date format of all cells,
or determine how to transform header regions of a table with the knowledge of header
hierarchy, realize the structure of a file with the cell type, or understand the relationships
amongst relational table columns with the foreign key metadata.

In the above, we present a taxonomy of six metadata types for verbose CSV files,
and only several examples in each group. Note that the taxonomy is certainly not com-
plete. It could be extended both horizontally to include more categories and vertically
to incorporate more metadata. Given the uniqueness and complexity of file structure,
detecting metadata in verbose CSV files is a valuable yet challenging task.

1. METADATA IN DATA FILES

1.2 Challenges for metadata detection

While metadata are very useful information about data files, algorithms that automat-
ically detect them have not been completely studied, leaving room for further research
efforts. In this section, we present three major challenges about metadata detection in
verbose CSV files, which we address in our works in the following chapters:

(1) How to effectively detect line/cell types, aggregations, and PKs/FKs?

Detecting the types of lines and cells, aggregations, and primary keys/foreign keys are
all non-trivial tasks. Verbose CSV files have ad-hoc shapes and forms, and do not follow
a fixed structure. Therefore, each line or cell may have a unique type. An effective
approach to identify the type of each line/cell correctly must be able to handle all file
structures. To detect aggregations, it must identify not only the cell whose value is
derived from other cells, but also the said other cells and the used arithmetic function.
As the set may have an arbitrary number of cells and multiple functions must be verified,
the search space of aggregations can grow very large due to combinatorial explosion.
Therefore, the key problem is to skip as many candidates as possible without losing true
aggregations. Having a huge search space is also the issue for primary key and foreign key
detection: many unique column combinations and inclusion dependencies — candidates
of PKs and FKs — may exist even in a database of few tables with few columns.

(2) How to detect metadata in data files without using stylistic features?

Previous works about detecting line and cell types all focus on spreadsheets or web
tables, where various stylistic features are available. However, being home to many
valuable data, plain-text files, such as CSV files, cannot possess stylistic features, which
have been proven in previous works to be very effective in classifying lines and cells.
In order to achieve on-par or better detection performance than previous approaches,
a challenge is to design an algorithm that relies only on characters in and positions of
cells. The same issue applies to aggregation detection: only values and the arithmetic
relationships amongst numeric cells are usable.

(3) How to improve metadata detection with already detected metadata?

Metadata often do not exist separately: The presence of one metadata may hint at or
exclude that of another. For example, the detected type of a line in a verbose CSV file
implies the type of the cells in the line; Having a relational table column predicted as the
primary key, those inclusion dependencies that reference another column in this table
cannot be valid foreign keys, because a foreign key must be definition reference a primary
key. Previous works usually focus on the discovery of a single type of metadata, e.g., the
type of lines, or cells. However, the quality performance of a discovery algorithm may
be improved if the metadata it detects can be used to revamp the results of other types
of metadata.

Besides the above major challenges, there are also others on detecting metadata, e.g.,
how can we create distributed algorithms and enable scalable metadata detection? How
to identify metadata from data files with errors? How to improve discovery performance
with human feedback? While these are all interesting questions amongst many others,
our attention in this thesis is focused on the above three main challenges.

1.3 Structure and contributions

1.3 Structure and contributions

In previous sections, we have introduced the problem of metadata detection in data files
and discussed the usefulness of metadata in exploring and preparing data, and build-
ing data-driven models in typical data science workflows. The following three chapters
introduce our main contributions on detecting three types of metadata in verbose CSV
files, which are abstracted in the following.

STRUDEL: Line and cell classification in verbose CSV files

In Chapter 2, we present our project STRUDEL, which detects the structure in verbose
CSV files, and is based on our publication [Jiang et al., 2021]. The structure of a
file is represented by the type of each line and cell therein. STRUDEL is based on a
supervised-learning classifier that leverages a collection of useful features. Previous line
or cell classification approaches all rely on stylistic features: information such as the font
of values, the background color of cells, and thickness of cell frames. Therefore these
approaches work only for spreadsheets or web tables from which such information can
be extracted. Our algorithm drops the assumptions that input files are stylistic, and
is capable of handling a more general data file format: CSV files. STRUDEL resorts to
three types of non-stylistic features: (i) content features that describe the metadata of
values in individual cells; (ii) contextual features that inspect individual lines or cells
in the context of its neighbouring ones; (iii) computational features that indicate if the
value of a numeric cell may be derived arithmetically from other cells. Additionally,
the predicted types of lines are also encoded as a feature to serve the cell classification
task. Our experiment results show that STRUDEL outperforms state-of-the-art line or cell
classification tasks when no stylistic features are available. STRUDEL has been developed
by Jiang, while Vitagliano and Naumann contributed valuable discussions.

AGGRECOL: Aggregation detection in verbose CSV files

STRUDEL utilizes computational features to help determine lines or cells of the aggre-
gation type, which has been proven effective. However, the features consider only two
types of aggregation functions: sum and average. In reality, data scientists summarize
their data with a wide variety of functions. Additionally, STRUDEL assumes that cells
can aggregate only adjacent cells in the same row or column. In fact, cells whose values
are used to build an aggregation may appear at any arbitrary position in a file. To
relax the aforementioned two constraints, we propose the AGGRECOL algorithm to de-
tect aggregations of five different functions in verbose CSV files, which is based on our
publication [Jiang et al., 2022] and presented in Chapter 3. AGGRECOL is a three-staged
rule-based approach that is able to recognize aggregations of sum, difference, average,
division, and relative changes. Our algorithm can detect not only the cell whose value is
the aggregated value (aggregate), but also the cells whose values are used to calculate the
aggregate value (ranges). AGGRECOL drops the assumption that the range of an aggrega-
tion must be adjacent to the corresponding aggregate. In other words, any numeric cells
in the same row or column as the aggregate may be part of the range. Our experiment re-
sults demonstrate that the per-function precision scores of detected aggregations surpass
those of an eager baseline approach, which iterates over range candidates of all possible
cell combinations. In addition, having replaced the original aggregation detection tech-
nique used by STRUDEL with AGGRECOL, we have confirmed the improvement on the

1. METADATA IN DATA FILES

cell classification task brought by using AGGRECOL. Jiang developed the AGGRECOL
system, while Vitagliano, Hameed, and Naumann contributed valuable discussions.

HoPF: Primary key and foreign key detection in relational tables

Having recognized the type of each cell in a verbose CSV file, data scientists may trans-
form the content of the tables in the file into relational tables that can be used for
SQL-based queries [Barowy et al., 2015; Cafarella et al., 2008]. However, these “raw” re-
lational tables lack primary keys and foreign keys, which are critical RDBMS constraints
in various aspects, such as guaranteeing entity integrity and referential integrity, allow-
ing for index creation, and enabling table joins. Previous works detect either primary
keys or foreign keys. In contrast to that, Chapter 4 introduces our proposed algorithm
HoPF to detect both primary keys and foreign keys in a collection of relational tables in
a holistic manner, which is based on our publication [Jiang and Naumann, 2020]. HOPF
takes unique column combinations (UCC) and inclusion dependencies (IND), for which
primary keys and foreign keys are the respective special cases, as input. UCCs and INDs
are well-known metadata that can be readily detected by previous data profiling algo-
rithms [Abedjan et al., 2015], and therefore can be reasonably used as prepared input
data. HOPF holistically selects a subset of UCCs and INDs as the predicted primary
keys and foreign keys, according to their overall score w.r.t. a set of features. We prove
the effectiveness of HOPF via a set of qualitative experiments on five relational data-
base instances. Additionally, the comparison against two state-of-the-art approaches
shows the superiority of our algorithm. HOPF was developed by Jiang, while Naumann
contributed valuable discussions.

Finally, we summarize our work about detecting metadata in verbose CSV files in
Chapter 5, based on which we suggest future directions for metadata detection with
regards to both research and practical aspects. Putting all the works in a broader context
of data preparation, we reason about the necessity of detecting various metadata for the
success of automatic data preparation and self-service data preparation.

10

Chapter 2

Structure Detection in Verbose
CSV Files

Data may be stored in a wide variety of file formats. While some data are persisted in
well-defined formats, such as relational tables or as key-value pairs, that can be readily
parsed by dedicated tools, a large quantity of other data are stored in documents with
possibly unique structures, e.g., CSV files. CSV files are character-separated values doc-
uments that serve as data sources for various research and industrial problems, such as
data profiling [Abedjan et al., 2015; Consonni et al., 2019; Schirmer et al., 2019], data cu-
ration [Nargesian et al., 2018; Thirumuruganathan et al., 2020; Zhang and Chakrabarti,
2013], data cleaning [Mahdavi et al., 2019; Rekatsinas et al., 2017], and information ex-
traction [Chu et al., 2015; Gatterbauer et al., 2007]. Despite the broad usage of CSV files,
the RFC 4180 CSV standard [Shafranovich, 2005] to depict a canonical way of persisting
tabular data with such file format has not been proposed until 2005, 33 years after this
format was first used to carry data by IBM [IBM Corporation, 1972]. What is more,
this standard is not enforced on CSV files, leading data scientists and practitioners to
frequently produce files with very unique structures, e.g., verbose CSV files. We give the
formal definition of verbose CSV files in Section 2.1.1. In short, a verbose CSV file may
include content serving different purposes, such as table header, aggregate, or footnotes,
in different positions.

A significant amount of CSV files are verbose. Researchers have found that only
22% of 200 randomly selected spreadsheets — a common source of verbose CSV files—
can be directly converted to relational tables [Chen et al., 2013], meaning that 78%
of them are verbose to some extent. A similar observation by Dong et al. states that
less than 3% of spreadsheet tables are “machine-friendly” [Dong et al., 2019]. Note that
spreadsheets are not the only source for verbose CSV files. Based on our own observation
on a dataset crawled from the Mendeley data portal', in a random selection of 13,917
plain-text files that contain tables, 4,459 are verbose, accounting for around 32% of all
inspected files. These verbose plain-text files can be easily transformed into CSV files
by applying file-specific delimiters.

On the one hand, content in verbose CSV files is arranged to facilitate readability
and understandability for humans. On the other hand, machines are designed to process

"https://data.mendeley.com

11

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

files with a certain data structure or schema, and can hardly handle these files that each
may have a unique structure. To understand and extract information from verbose CSV
files, an important preliminary task is structure detection, in particular classifying lines
or cells by their purpose. As manual efforts are infeasible and error-prone for large files
or large sets of files, automatic approaches are desirable.

File structure is a piece of important metadata in verbose CSV files for various
applications, e.g., locating tables [Coletta et al., 2012; Dong et al., 2019; Vitagliano
et al., 2021], removing the non-tabular parts of files, or cutting out redundant information
serving as aggregates of other numeric data in tables. The structure of tables may also
be used to compare files and discover file templates [Vitagliano et al., 2021] that guide
the production of the same kinds of files.

This chapter introduces our approach STRUDEL for Structure Detection in Verbose
CSV Files. Specifically, STRUDEL addresses both the line and the cell classification
problems on verbose CSV files, based on our publication [Jiang et al., 2021]. In a
nutshell, STRUDEL is a supervised learning approach built on a random forest classifier.
By using a set of novel features, STRUDEL is capable of classifying lines and cells as one
of six types: metadata, header, group header, data, aggregate, and notes.

The contributions of this work are summarized as follows:

(i) A supervised learning approach with three kinds of novel features to address the
structure detection problem, namely line and cell classification problems, for ver-
bose CSV files.

(ii) Two datasets with more than 101K annotated lines in 426 files, reforged labels of
another three datasets with 936 files from related work based on our perspective
on cell classes, and a dataset with 62 files transformed from plain-text files.

(iii) A series of qualitative experimental evaluations on the STRUDEL approach, and a
comparison of our approach with baseline and state-of-the-art approaches.

The rest of this chapter is organized as follows: Section 2.1 first formally defines
verbose CSV files, and presents the taxonomy of line and cell classes. Then, we highlight
the difficulty of classifying lines and cells with a set of verbose CSV files with diverse
structures. This section ends with the formal problem statement and a brief introduction
of our proposed approach. Sections 2.2 and 2.3 describe the core idea of STRUDEL,
followed by Section 2.4, where we present the results and analysis of our experiments.
Section 2.5 summarizes the related work about line and cell classification tasks and other
relevant areas. We conclude this work in Section 2.6.

2.1 Structure detection

In this section, we first introduce the formal definition of verbose CSV files and propose a
taxonomy of six different classes for lines and cells. Then, we give the formal statement of
the structure detection problem with regard to line and cell classification. After that, we
present a gallery of eight randomly selected verbose CSV files to highlight the difficulty
of detecting structures therein. Finally, we present the architecture of our STRUDEL
approach.

12

2.1 Structure detection

Line class
metadata | jAirest Table 1
metadata | |Arrests for Drug Abuse Violations | metadata
metadata | |Percent Distribution by Region, 2007 I header
header IDrvg abuse violations i Unit Northea Midwes, Sou
aggregate | Totall |__ aggregate 100 100 100
aggregate | Sale/Manufacturing: Jotal 17.5 22.5 18.3
data group header {Heroin or cocaine
and their derivatives 7.9 14.2 6.2
data data IMarijuana 53 5.7 7.7
Synthetic or
data manufactured drugs 1.5 1.1 1.1
data Other dangerous
.onnarcoticdrugs _ _ _ 28 _ _ _L6_ _ _33_ _
_____________ st e s o e o B
aggregate lpossession: Total 82.5 77.5aggregave
data group header [Heroin or cocaine
| and their derivatives 21.5 22.3 14.7
data | Marijuana 421 44.2 53.1
I Synthetic or
data | manufactured drugs 3.3 2.3 3.2
data notes | Other dangerous
—— Inonnarcoticdrugs _ _ _ 156 _ _86 _ _ 107 _ |
1 Because of rounding, the percentages | data
notes |

Figure 2.1: Excerpt of a real-world verbose CSV file with different cell-level and
line-level content classes. Here, the class of each line is determined by the majority
of its cell classes.

2.1.1 Verbose CSV file

A standard CSV file, according to RFC 4180, contains an optional header line at the
beginning of the file, followed by a number of data lines. In contrast, a verbose CSV
file may include elements of heterogeneous classes (introduced in Section 2.1.2), possibly
with empty visual separators. Here, an element is either a non-empty cell or a line that
includes at least one non-empty cell.

Definition 1 (Verbose CSV file). A wverbose CSV file is a character-separated values
file with values including one or more of metadata, header, group, data, aggregate, and
notes at arbitrary positions. Each line of the file may be composed of cells of one or
more classes. Empty cells may represent either missing values or serve layout purposes.

While a standard CSV file stores a single table that can be consumed by RDBMS or
other tabular data processing systems, a verbose CSV file resembles a spreadsheet file
that may include multiple tables, and make use of empty cells and cell types to improve
human readability. An example of a real-world verbose CSV file from the “Crime In
the US” (CIUS) dataset is shown in Figure 2.1, where cells with different purposes are
highlighted. Information of different kinds may be organized as connected clusters of cells
throughout the file: each such cluster may include information of a single type, such as
data, metadata, or aggregate, and a table may be divided by blank visual separators into
several table fractions.

13

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

2.1.2 Class taxonomy

We present a taxonomy that includes six classes, similar to that of [Adelfio and Samet,
2013], which addressed the line classification problem on web tables and spreadsheets.
While in principle content of any class may appear at any location in a verbose CSV
file, we enforce a few practical constraints on their possible position, reflecting the usual
reading convention: from left to right and from top to bottom, assuming that tables are
stacked only vertically. The following list describes each class in detail.

e metadata. Metadata are the descriptive text above a table. Such text may include the
title of a table or additional information on the content of the table. A metadata area
may span across one or more lines and columns.

e header. Headers are the column labels in the top area of a table (or table fraction).
Headers may span multiple cells. In our definition, the header elements are located
above the data area, and below any metadata block of the table.

e group. In verbose CSV files, tables are often split into several parts, each including
data of a particular group. A group (a.k.a. group header) element serves as the label
of such a part. Based on our observations on our datasets, group elements can appear
both above and below header areas. Therefore, we allow both cases in our definition.
Group cells may also serve as the leftmost string cells in an aggregate line, which will
be described below.

e data. Data elements are the content of a table that cannot be derived from any other
elements. Because they constitute the main body of a table, data elements of a section
of a table are always below the header and group elements that indicate this section.

e aggregate® An aggregate cell can derive its values by applying a specific arithmetic
function on the values of some other numeric cells in the same table. In verbose CSV
files, aggregate cells are often organized as the top- or bottom-most lines, or the left-
or right-most columns of the data area of a table.

e notes. Notes are descriptive text that follows a table. They may give explanations of
particular parts of a table, explain the meaning of marks used in the table, or indicate
the data source origin.

Any line or cell in a verbose CSV file can be associated with exactly one of the
classes introduced above. The file in Figure 2.1 cannot be directly ingested by common
RDBMS tools as it contains much additional information, aside from a table with its
header and data rows, and its content with an ad-hoc layout does not follow a relational
table schema.

2.1.3 Problem statement

With the above two concepts, we aim at structure detection in verbose CSV files by means
of classifying file content in two granularities: lines and cells. Specifically, given a verbose
CSV file and the group of possible element classes, how can we determine the classes of all
elements? We consider elements of two natures addressing two sub-problems under the
same problem definition: lines [Adelfio and Samet, 2013; Christodoulakis et al., 2020]
that reflect the common top-down content arrangement within a file, and cells [Gol

2This class is named “derived” in the original paper. Here we rename it to “aggregate” so that it is
consistent with the same concept used in Chapter 3.

14

2.1 Structure detection

et al., 2019; Koci et al., 2016], as the most fine-grained element of a structured file. The
structure of a file is often reflected in the sequence of line classes, as data organized in
verbose CSV files usually conform to the common top-to-bottom data presentation logic.
For example, consider the line class labels of the example file in Figure 2.1. These classes
show a natural logic of organizing information: metadata, such as captions, come first,
followed by the main body of a table incorporating table headers, aggregate lines, and
data lines, and finally, a few footnote lines conclude the file.

2.1.4 Challenges

The wide diversity of content layouts is an obvious challenge for detecting structures in
verbose CSV files. While non-verbose CSV files all organize data in a relational table,
verbose ones present content with unique structures that may be largely different from
one another. Figure 2.2 demonstrates the thumbnails of eight verbose CSV files randomly
selected from our datasets, where background colors indicate the content classes. This
set of files adequately demonstrates the file structure diversity. For example, the size of
metadata regions (purple) differ from one another; table headers (red) may span different
numbers of rows; aggregate regions (blue) can be either below, or above, or in-between
data regions (green). For STRUDEL, we propose a set of general features that aim at
capturing different content layouts.

. 9| e

st vt o 5 —_—

e s s

Figure 2.2: Thumbnails of eight verbose CSV files that are randomly selected from
our datasets. Background colors of the regions indicate the classes of content. Specif-
ically, purple/red/green/orange/blue/grey represent metadata/header/data/group/
aggregate/notes regions, respectively.

Another challenge to identifying file structures comes from the lack of rich-text in-
formation. Verbose CSV files are favored to exchange data due to their generality over
those with proprietary file types, such as spreadsheets, that are used by specific pro-
grams. However, as plain-text files, verbose CSV files are not able to preserve stylistic
features, such as the font style of text, background colors of cells, or border style of
a table, etc, which have been proven very useful features to classify lines and cells in
spreadsheets and web tables by previous works [Adelfio and Samet, 2013; Dong et al.,

15

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

-

v

——) Dialect detectionj

-
R T TR EEEE
Text file (" N
Line classification >
- J

v

Cell classificationj

Figure 2.3: Architecture of the STRUDEL algorithm.

2019; Gol et al., 2019]. As for verbose CSV files, only the characters, and positions of
lines or cells can be used for the tasks.

Obtaining datasets with line and cell annotations to evaluate an approach for the
structure detection problem is not trivial, as ascertaining these classes in a verbose CSV
file is a difficult task even for experienced practitioners. In our study, human annotators
(i) took on average of two minutes to label the lines in a single file, because they needed to
spend a lot of time understanding the unique structure of each file; (ii) at times disagreed
with each other on the annotations of individual lines. We implemented a line and cell
type annotation tool with a sophisticated graphical interface, which is introduced in
Section 2.4, to support the manual labeling task.

2.1.5 Architecture of STRUDEL

To address the line and cell classification problems, we propose the STRUDEL approach,
which is grounded on a multi-class random forest classifier. Figure 2.3 shows the archi-
tecture of the approach. Cells of different types are distinguished by colors. STRUDEL
first detects the dialect of a text file, and creates a verbose CSV file from it, based on
the dialect. Dialect detection is done using the approach proposed by van den Burg et
al. [van den Burg et al., 2019]. In the next steps, STRUDEL first classifies lines and then
cells in the files with the suggested feature sets. Section 2.2 and 2.3 describe STRUDEL’s
features for line and cell classification tasks, respectively. The features can be categorized
into three groups: (i) content features that parse the values of lines or cells, such as the
number of words and cell length; (ii) contextual features that compare the inspected line
or cell with its neighboring ones regarding the properties such as the similarity of data
types between lines and cells; (iii) computational features that seek to connect lines/cells
with each other by inspecting arithmetic correlations between them.

16

2.2 Line Classification

2.2 Line Classification

In this section, we describe STRUDELY — the STRUDEL approach to address the line
classification problem. STRUDEL” is based on a multi-class random forest classifier. Its
input includes a set of features extracted from the two-dimensional tabular data.

Various kinds of features have been proposed by previous works to address the line
classification problem, including content features, contextual features, spreadsheet for-
mula features, and stylistic features [Adelfio and Samet, 2013; Koci et al., 2016]. In our
case, formula and stylistic features are not applicable, as CSV files do not preserve these
rich-text information. Instead, we design a set of content features, contextual features,
as well as novel computational features. We build the features of STRUDEL" on top of
the applicable features from a previous work [Adelfio and Samet, 2013]. Table 2.1 lists
our complete set of features, divided into three groups. The context features can include
information from both the line above and the line below. Thus, the features marked by
a star are applied twice — once for the line above and once for the line below. To distin-
guish aggregate cells from data cells, we propose novel computational features that check
whether the value of a numerical cell can be calculated by applying a specific aggregation
function on the numbers in the vicinity, i.e., the cells in the same row or column.

Table 2.1: Line classification features: ‘x’ marks the contextual features applied
to both lines above and below the inspected line; ‘t’ marks the features adapted
from [Adelfio and Samet, 2013].

Category Feature Value
EmptyCellRatiof [0.0, 1.0]
DiscountedCumulativeGain [0.0, 1.0]
AggregationWordt 0/1

Content WordAmount [0.0, 1.0]
NumericalCellRatiof} [0.0, 1.0]
StringCellRatiof [0.0, 1.0]
LinePositiont [0.0, 1.0]
DataTypeMatching* [0.0, 1.0]

Contextual EmptyNeighboringLines* [0.0, 1.0]
CellLengthDifference* [0.0, 1.0]

Computational AggregateCoverage [0.0, 1.0]

Here, we describe and explain only the novel features used in our approach and refer
to related work for the others.

e DiscountedCumulativeGain (DCG) calculates the discounted cumulative gain on a vec-
tor created from the cells of a line. The vector has the same length as the number of
cells in a line. An element is set to ‘1’ if the corresponding cell in the line is non-empty,
or ‘0’ otherwise. This feature is used to model the pattern of empty cells. DCG gives
more weight to left-more positions than to right-more positions, modeling typical user
behavior that lays out data from left to right.

o AggregationWord checks whether a line contains any word that belongs to a pre-made

17

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

dictionary of terms associated with aggregation in tables (case-insensitive): total,
all, sum, average, avg, and mean. The existence of any keyword gives ‘1’ to this
feature, otherwise ‘0’. Using a dictionary of such kinds of keywords proves to be
effective [Koci et al., 2016].

e WordAmount calculates the number of words in all cells of a line. A word is a sequence
of alphanumeric characters. The feature values are normalized per file by using a
min-max normalization strategy.

e DataTypeMatching calculates the percentage of cells in a line whose data types match
with those of the adjacent line (above or below). Note that some files insert an empty
line between every pair of non-empty lines to visually highlight the content. However,
comparing the data type of a line with an empty adjacent line does not carry much
information. Therefore, an adjacent line refers to the closest non-empty line. Data
and aggregate lines tend to have numerical cells while header lines usually contain
alphanumeric values. Other functional lines, such as metadata, notes, and group lines
tend to have many empty cells, because only the left-most cell in the line is usually
non-empty.

e EmptyNeighboringLines calculates the percentage of empty lines in the five lines above
or below the inspected line. Empty lines are often used as visual separators in verbose
CSV files. Using such a separator between data lines within a table is uncommon, but
placing them between two classes of lines, such as header-data and aggregate-notes is
more comimon.

e CellLengthDifference calculates the cell value length difference between two adjacent
lines by calculating the Bhattacharyya histogram difference [Bhattacharyya, 1946] on
the sequences of cell value lengths of the two lines. When computing this feature,
we compare only a line with its closest non-empty neighboring line, similar to that
applied for the DataTypeMatching feature. While data lines tend to have similar cell-
wise value lengths, as they usually describe the same property and thus draw values
from the same domain and range, non-data lines may have values in natural language
that are arbitrary long.

o AggregateCoverage counts the number of numeric cells recognized as aggregate cells
by the aggregate cell detection algorithm introduced in Section 2.3. The feature is
normalized by the number of numeric cells in this line.

Note that these are all local line classification features, i.e., they describe the charac-
teristics of individual lines. We have tested a few global features that reflect properties
of the entire file, e.g., percentage of empty lines in a file, width and length of a file, and
the number of empty line blocks in a file. However, in our experiments, these features
do not show a positive impact on the classification problem.

All features are normalized and passed to a random forest classifier that predicts one
class for each line. When used as the LineClassProbability feature in the cell classifier
of STRUDEL (Section 2.3.4), the output is a set of vectors, each of which stands for a
probability vector of all classes for a line.

2.3 Cell Classification

Our cell classification approach STRUDELC is, like STRUDELY, based on a multi-class

random forest classifier. For the input of this classification task, we have again con-

18

2.3 Cell Classification

structed a set of features that include both the effective ones from previous works and
novel ones. The predictions for line classes are used as a set of features in STRUDEL® .
Therefore, the STRUDEL” approach is executed beforehand to obtain the line prediction
probabilities that are then transformed into the features of STRUDELY. We leave the

detailed description to Section 2.3.4.

2.3.1 Feature extraction

Previous works have proven the effectiveness of content features, stylistic features, spread-
sheet formula features, and contextual features [Gol et al., 2019; Koci et al., 2016]. We
ignore spreadsheet-specific formula features and stylistic features, as they cannot be con-
structed from verbose CSV files. Table 2.2 lists all features involved in our approach,
which also fall into three groups: content, contextual, and computational features.

Table 2.2: Cell classification features; ‘*” marks contextual features applied to each
of the eight surrounding cells of the inspected cell; ‘7" marks features from related
work.

Category Feature Value
ValuelLengtht [0.0, 1.0]
DataTypef [0..4]
HasAggregateKeywordst 0/1
RowHasAggregateKeywordsf 0/1
Content ColumnHasAggregateKeywordst 0;1
RowPositiont [0.0, 1.0]
ColumnPositiont [0.0, 1.0]
LineClassProbability (p1, -+, P6)
IsEmptyRowBefore 0/1
IsEmptyRowAfter 0/1
IsEmptyColumnLeft 0/1
IsEmptyColumnRight 0/1
Contextual RowEmptyCellRatiof [0.0, 1.0]
ColumnEmptyCellRatiof [0.0, 1.0]
BlockSize [0.0, 1.0]
NeighborValueLength* [0.0, 1.0]
NeighborDataType* [0..5]
Computational IsAggregate 0/1

The features marked with ‘4’ in Table 2.2 are based on those used in [Gol et al.,
2019; Koci et al., 2016]. Some of the original features are integrated into our feature set
without modification, such as ValueLength and DataType, while others are adapted to a
certain extent. For instance, a Boolean feature used to mark the existence of aggregate
cell keywords is extended to a row or a column (RowHasAggregateKeywords and Column-
HasAggregateKeywords), i.e., whether the row or the column that contains the inspected
cell contains any aggregate cell keywords. ValueLength counts the number of characters

19

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

in the value of a cell. DataType in this work has four possible values, corresponding to
four data types: int, float, string, and date. Features without ‘i’ are new. In the follow-
ing, we explain the intuition and implementation of the five most sophisticated features,
i.e., BlockSize, NeighborValuelLength, NeighborDataType, LineClassProbability, and IsAg-
gregation.

2.3.2 Block size

A verbose CSV file may contain multiple tables in various positions, rather than a single
relational table. Apart from tables, a verbose CSV file may contain non-data regions
composed of aggregate, notes, or metadata cells. In our datasets, non-data regions are
usually spanned across several consecutive lines, each has few non-empty cells. Such
lines as a whole often serve as metadata or footnotes of the tables after or before them.
These non-data regions are usually smaller than tables.

To model this phenomenon, we create for each non-empty cell a BlockSize feature,
which is calculated as the size of the connected component that contains this cell. A
connected component is composed of a group of connected, non-empty cells. Two cells
are connected if they are either vertically or horizontally adjacent to each other, or there
is at least one connective path between them. Algorithm 1 describes how the value of this
feature is calculated for each cell in a given verbose CSV file. It takes all non-empty cells
in a table as input and outputs key-value pairs where keys are these non-empty cells and
values are their respective block sizes. To obtain the block size for all non-empty cells,
the algorithm employs a depth-first search strategy to iterate over all of them in a given
file. It starts from a single cell block (lines 4-7), and continuously adds adjacent cells to
expand the block until no more non-empty adjacent cells can be found (lines 8-13). The
block size is normalized to [0, 1] by the size of the file (line 14). The algorithm terminates
once all cells have been processed.

Regarding the complexity of this algorithm, assume there are n non-empty cells in a
verbose CSV file. On the one hand, each cell will be visited once and only once, resulting
in a O(n) complexity. On the other hand, each of the 4-connected neighboring cells of
a cell is checked once the cell is visited, leading to a O(4n) complexity. Therefore, the
overall algorithm complexity is O(n) + O(4n) = O(n).

2.3.3 Neighbor profile

Cells of some classes may be likely to have particular kinds of neighboring cells. For
example, to highlight group cells, users often separate them from other cells with empty
cells, or they lay aggregate cells at the margin of a table, as a way to summarize data,
or they place headers above data cells, which follows the top-to-bottom reading habit.
These observations bring our focus to the adjacency context of a cell: for each cell, we
gather the data types and value lengths of all 8-connected neighboring cells and present
each as a single feature in the feature vector. The neighbor profile of a cell includes all
these NeighborValueLength and NeighborDataType features. For the cells on the margins
of a file, some adjacent cells do not exist. We set a default value for these non-existent
adjacent cells, i.e., —1 for value length and data type.

20

2.3 Cell Classification

Algorithm 1: Block size calculation

Input: The set of non-empty cells in a table C

Output: The set of key-value pairs B.S from cells to block size
1 BS + {};
2 V< {} // visited cells;
3 while C —V # () do

4 ¢ < random cell in C' — V;
5 bs + 1;
6 V—VUcg
7 B + {c};
8 while there exist cells in C' —V adjacent to B do
9 Cqdj < an adjacent cell in C;
10 bs < bs + 1;
11 V VU cqgj;
12 B < B U {cuqj};
13 end
14 bs < normalize(bs);
15 foreach c € B do
16 ‘ BS <+~ BSU{c: bs};
17 end
18 end

19 return BS

Table 2.3: Percentage of lines under different diversity degrees.

Diversity degree
1 2 3 4 5

SAUS 86.3% 13.7% 0% 0% 0%
CIUS 88.7% 11.2% 0.1% 0% 0%
DeEx 95.3% 4.6% 01% 0% 0%

Dataset

2.3.4 Line class probability

Despite the possible flexible layout, verbose CSV files are usually organized in some
structurally meaningful way. Lines tend to organize mostly homogeneous types of cells
to ease human understanding. For example, a data line contains mostly data cells, while
a header line contains mostly header cells. Table 2.3 displays statistics about the cell
class diversity degree of all lines in our datasets. The cell class diversity degree of a
line is its number of distinct non-empty cell classes. We observe that most lines have
a diversity degree of one: all cells in these lines are associated with the same class. In
other words, for the cells in these lines, their classes can be trivially determined by the
class of the line. Therefore, when determining the class of a cell, the class of the line it
is located in is likely a useful feature. In fact, we use this feature alone as one of our
baselines (denoted as LINEC in Section 2.4).

To obtain the line class information, we first run STRUDEL” to obtain the predicted

21

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

class for each line. The result of this execution is, however, a probability vector of all
classes, instead of a single predicted class. We interpret this probability vector as the
classifier’s confidence for these classes. Each element of the 6-dimensional vector accounts
for a feature in the cell classification feature set.

2.3.5 Aggregate cell detection

If a cell is indeed a aggregate cell, it should be possible to generate its value by aggregating
values of some other cells via a particular function. This fact has not been considered
by previous work, possibly due to computational cost. We propose an aggregate cell
detection algorithm that seeks to identify cells of such type by arithmetically correlating
their values with other numeric cells. We made four observations while investigating
the datasets: (i) an aggregate cell usually aggregates the values of cells from either its
own row or its own column; (ii) an aggregate cell tends to aggregate values close to it;
(iii) sum and average are the two most common aggregation functions used in verbose
CSV files; (iv) indicative keywords such as “total” are likely to appear in a cell either
in the same row or in the same column as an aggregate cell. We integrate these insights
into Algorithm 2 that determines for each numeric cell in a file, if it is a sum or average
of some other adjacent cells. For conciseness, the pseudo-code shows only the approach
for sum cell detection.

The algorithm takes as input a file as a two-dimensional array, the aggregate keyword
dictionary to look for anchoring cells, an aggregation delta § to give some slack to ag-
gregation results, and a coverage threshold ¢ that controls the generality of aggregation
results. Executing the algorithm produces all detected aggregate cells.

For each numeric cell, any combination of other numeric cells is a candidate to cal-
culate its value. Therefore, the combinatorial explosion leads it prohibitively expensive
to traverse all aggregate cell candidates. Our algorithm applies a heuristic approach to
skip most spurious candidates, according to the observation (iv) above. We mark those
cells with any of our aggregate keywords (introduced in Section 2.2) as anchoring cells
(line 2). Only numeric cells either in the same row or in the same column as an anchoring
cell are treated as aggregate cell candidates (lines 6-8).

For the candidates in the same row as the anchoring cell, the algorithm looks both
upwards and downwards for possible aggregating relationships (lines 9-19), whereas for
the candidates in the same column as the anchoring cell, the algorithm looks leftwards
and rightwards (lines 20-30). When looking upwards, the algorithm adds numeric values
of a row each time to the sum vector correspondingly and inspects whether the current
sum vector is element-wise close enough (according to ¢) to the candidates. If the
coverage of the close enough elements in the sum vector surpasses c¢, the candidate
is treated as an aggregate cell (lines 14-17). Due to our second observation, a row closer
to the row where the candidates are is inspected earlier than a row farther away.

The proposed aggregate cell detection algorithm plays an important role in distin-
guishing aggregate cells from other types of cells, shown by the feature importance exper-
iments in Section 2.4.3. Yet, it assumes the aggregate cells can be either sum or average
of their adjacent cells, possibly limiting its generalizability. Sum and average may not
always be the most common functions in general: an investigation into two datasets not
considered during the algorithm design shows that both division and relative change

22

2.3 Cell Classification

Algorithm 2: Aggregate cell detection

Input: File F', keywords K, aggregation delta §, coverage ¢
Output: All detected aggregate cell Cp

1 Cp + {},

2 A +getAnchoringCells(F, K);

3 if A is empty then

4 ‘ return Cp;
s foreach a in A do
6 la, Ja < row index of a, column index of a;
7 CR, cCing < the list of numeric cells in row i, and their column indices;
8 Ceo,1rCing < the list of numeric cells in column j, and their row indices;
/* line 9-19 for upwards detection */
9 sum < (0...0);
10 for i =1 to co do
11 if i, —i < 0 then
12 | break;
13 else
14 v, < numeric values at ccjpqg in row (i, — 1);
15 SUM <— SuUmM + vVy;
16 if coverage of (Cr — sum < §) > ¢ then
17 ‘ Cp + CpUCRr
18 end
19 end
/* repeat lines 9-19 for downwards detection */
/* line 20-30 for leftwards detection */
20 sum < (0...0);
21 for i =1 to oo do
22 if j, —i < 0 then
23 ‘ break;
24 else
25 v, < numeric values at r¢;,q in column (j, — 7);
26 SUm < sum —+ vy}
27 if coverage of (Co — sum < &) > ¢ then
28 ‘ CD — OD] CC
29 end
30 end
/* repeat lines 20-30 for rightwards detection */
31 end

32 return Cp;

were used in more than 5% of the files (Section 3.2.1). Additionally, our error analy-
sis in Section 2.4.3 indicates that values of aggregate cells are not always calculated by
adjacent cells. In light of the new observations, we propose a more advanced algorithm
AGGRECOL introduced in Chapter 3 to detect not only each aggregate cell in a file, but
also the set of other cells that calculate its value and the applied function.

23

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

2.4 Evaluation

In this section, we first introduce the datasets, our annotation tool, and all algorithms
used in our experiments. After that, we present our experimental evaluation on STRUDEL,
including its comparison with the referenced approaches, the performance of STRUDEL
on an unseen dataset and a plain-text file dataset, analysis of feature importance, and
an error study for both line and cell classification tasks.

2.4.1 Annotation, datasets, and experimental setup

In this section, we first describe the annotation method and the tool we designed to
label our datasets. After that, we list the datasets used in our evaluations, and the
preprocessing steps applied thereon. In practice, verbose CSV files may have unique
dialects. The dialect of a file specifies the delimiter, the quoting character, and the
escape character, which enable parsing the lines and cells correctly. Therefore, as a
general preprocessing, we first applied dialect detection on each file with the approach
of van den Burg et al. [van den Burg et al., 2019], which takes a text file as input, and
produces its detected dialect. This approach manages to discover the correct dialects
of all files in all datasets except for one that includes plain-text files. We discuss the
handling of this exceptional dataset while describing it below. We applied the detected
dialect to each file and determined the scope of each cell or line thereby. The third part
of this section describes the list of baseline and competing approaches, our STRUDEL
approach, and their respective configurations for evaluation.

Annotation tool

While a great number of verbose CSV files are accessible thanks to various open data
portals?, line and cell labels for those files, which are indispensable for structure detection
approach evaluation, are scarce. Due to widely different structures of verbose CSV files,
annotating lines and cells relies on manual efforts that are inefficient without a proper
annotation tool. Therefore, we implemented a competent tool that allows data scientists
to efficiently label line and cell classes in verbose CSV files. Our tool provides separate
modules for both line and cell annotation tasks. The operations of the two modules are
similar. In the following, we describe only the one for cell annotation for conciseness.

Figure 2.4 shows a screenshot of our running cell annotation tool, which was imple-
mented in Java 8 with the Swing GUI framework. After a file is loaded into the tool, its
cell values and positions are rendered in the bottom window. Data scientists can simply
click a cell or a block of cells, and assign them a class label. Annotated cells are presented
with the corresponding background color. Annotations can be overwritten by following
the above process. Empty cells are by default not labeled even if they are included in a
selected area. Nevertheless, holding the “shift” key during an annotation process allows
to label the empty cells in the selected region. By selecting the “Line Type Annotation”
tab at the top of the interface, one can switch to annotate lines, which follows a similar
procedure as the cell annotation module.

3https://data.gov.uk/, https://www.govdata.de/, https://data.europa.eu/euodp/en/data/

24

https://data.gov.uk/
https://www.govdata.de/
https://data.europa.eu/euodp/en/data/

2.4 Evaluation

(]) Verbose CSV File Annotation Tool
Line Type Multitable i Aggregation Type Annotation
Block selection —————————— etagatarig) Verbose CSV File Selection View
Top left cell n/a 10s1351.xIs@Data.csv
Bottom right cell n/a LCey) 1051353 xis@Data.csv
1051360.xIs@Data.csv
Start Annotation Submit all Results EENRTEE W e b)
Statistic: ® 1051365.xIs@2006.csv
. 1051366.xIs@Data.csv
(Nt @ L s & — 1051369.xIs@Data.csv
Number of Columns 6 Group header (G) 1051369.xIs@2003-2005.csv
n/a
1051365.xIs@Data.csv
2 3 4 5 6
1 Table 1365. Development Assistance, b...
2
3 Seenotes
4
5 Country Official Development Aid (ODA) Multilateral aid Grants by Non-governmental organiz
6 Million U.S. dollars Percent of Gross National Income \2 Percent of total Development Assistance ... Percent of Official Development Assistance Percent of Gross National Income
7 2007 \1 2006.0
8 Australia 2470.89 0.2087033713978076 2.3816693324686584 15.408671734441088 0.08551276032413603
9 Austria 1797.95 0.48711450134411305 1.7330283324275966 27.149082706566205 0.03712617439101262
10 Belgium 1953.17 0.42653155230017314 1.8826435373884751 31.370556322397 0.06339860143250937
11 Canada 3921.92 0.278723 3. 4574 31.296348573848274 0.08773521118784852
12 Denmark 2563.02 0.8073641621184667 2.4704726363795313 34.53347763089638 0.026000566700984273
13 Finland 973.48 0.39508160175337853 0.9383288862602501 45.51653883029722 0.011898763159626416
14 France 9940.19 0. 9.58126 25.203120477256455 (NA)
15 Germany 12290.7 o. 6647 11 32.590243617277174 0.04597751647547293
16 Greece 500.82 0.16238881528147428 0.4827360323960004 55.373947498761765 0.003937030843107607
17 ireland 1189.79 0.5420278032806124 1.1468282097049585 38.11150480590412 0.17922798764621833
18 taly 3928.64 0.1878953029106071 3.7867818503898065 45.04597536994518 0.006671883933347068
19 japan 7690.69 0.169994665763057 7.412989051930027 34.62908518495013 0.007029153497165032
20 Luxembourg 364.66 0.8951079573933914 0.3514925952907742 29.527708025179734 0.02369675742658966
21 Netherlands 62153 0.8067300388830302 5.990873491775211 21.45176201272259 0.040945800512882276
22 New Zealand 315.46 0.2669522642368758 0.30406914416285746 21.59675 0. 11
23 Norway 3727.05 0.9499295947729136 3.59247100663215 25.607208988216335 (NA)
24 Pportugal 470.54 0.21960443013457784 0.45354940434410373 46.69357890753122 0.0019127835868635364
25 Spain 5133.51 0.36661117459534837 4.9745430062383456 45.14548977756334 (NA)
26 sweden 4334.08 0.9336708474629946 4.177581932204899 27.8908004126464 0.0031275724899138377
27 switzerland 1680.27 0.3654151274125022 1.6195976062338315 23.837491800490756 0.09542098942589147
28 United Kingdom 9920.65 0.36005159723957236 9.562428057564357 30.02980972821297 0.022389488191822633
29 United States 21752.83 0.157130484404571 20.967363219489418 10.071417219173437 0.06815285183146177
30 EU-15\5 61576.5 0.4 ¥ 31.3915635589 0.02300947500873069
31 Development Assistance Committee \3 t... 103135.61 0.28 100.0 26.29838623410604 0.042864637569354776

33 Source: Organization for Economic Coop...
34 (copyright).

Figure 2.4: Screenshot of the cell annotation module of our annotation tool.

Provided with our annotation tool that has a concise graphical interface and easy-to-
operate functions, we observed that human labelers took on average only two minutes
to label all cells in one verbose CSV file, leading it realistic to annotate massive files for
our evaluation. In addition, the visual annotation outcomes on the GUI make it easy to
spot annotation mistakes and improve annotation quality.

Datasets

Our datasets of verbose CSV files come from various sources. Table 2.4 shows some
statistics of the datasets. Only non-empty lines and cells are counted. The content of
files in our datasets is in the English language and follows a top-bottom / left-right organ-
isation. Non-Western verbose CSV files may organize the content in a different fashion,
and an exploration on classifying lines and cells in such files would be an interesting
future work.

The GovUK dataset was created from all data files in Microsoft Excel format (both in
xls and .xlsx) we crawled from the open data portal of the government of the UK*. We
randomly selected a subset of 300 files from the entire crawled file set and transformed
them into corresponding CSV format with the Apache POI library®. When converting
them to CSV files, we omitted the files that contain macros, were not otherwise process-
able by the library, or empty sheets. A set of 226 files were left after the filtering, for
which we created a line-level ground truth. Each line of each file in the created dataset

‘https://data.gov.uk/, last crawled on 13. August, 2019
http://poi.apache.org/index.html

25

https://data.gov.uk/
http://poi.apache.org/index.html

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

was annotated by three human experts. In case of disagreement, which affected only
1% of the annotated lines, we used majority-vote to determine the annotation. For the
lines with complete disagreement (fewer than 250 lines in our dataset), we employed an
independent fourth annotator to determine the final label. In the end, we obtained the
ground truth for in total more than 95K annotated lines.

Table 2.4: The dataset overview.

Dataset # files # lines # cells

GovUK 226 97,212 1,382,704
SAUS 223 11,598 157,767
CIUS 269 34,556 367,172
DeEx 444 77,852 784,229
Mendeley 62 195,598 1,359,810
Troy 200 4,348 23,077

Three other datasets, SAUS, CIUS, and DeEx, were created and annotated by Gol et
al. for cell classification on spreadsheets and web tables [Gol et al., 2019]. The first
two are administrative datasets, while the last one is a business dataset. More detailed
descriptions of each dataset can be found in their original paper. The datasets were
annotated by the original authors with a slightly different taxonomy. To reconcile their
annotations to ours, we re-annotated their labels. In summary, they annotated all left-
most headers of a table as attributes, while we consider them as data of their columns. In
the example of Figure 2.1, they treat the cells that indicate the drug types in the second
column as attributes, while we annotate them as data, as we model them as a data
column of the table without a header. We also note that some obvious aggregate cells
were marked as data: understandable errors due to their similarity, which we corrected.
In many cases, aggregate cells form an entire line, with the exception of the leading cell,
which is usually textual. This textual cell often includes keywords, such as ‘Total’, and
is neither an aggregate cell nor a header cell. We treat it as a group cell in our system,
because an aggregate line often serves as a section separator in a table. Table 2.5 presents
the class distribution of these three datasets with the reforged annotations.

Our Mendeley data is a set of plain-text files collected from Mendeley’s data-sharing
platform® of experimental data. These data are stored in research projects that use
them. We crawled all 2,214 projects whose data are stored on Mendeley’s own server
and that contain at least one plain-text file, i.e., whose MIME type is “text/*”. This
MIME type corresponds to a wide variety of actual file formats: not only files with table
structures and verbose information, such as verbose CSV files, but also programming
scripts, HTML pages, etc. We randomly selected 100 projects that include at least one
verbose text file with at least one table, and obtain one such file from each project.

Given the intricate dialects of these plain-text files, the dialect detection approach
of [van den Burg et al., 2019] cannot reliably discover the correct dialect for all files. A
file is parse-able if the dialect for the table region (including header, data, group, and
aggregate) is correct. For our experiments, we kept the 62 parse-able verbose CSV files.

Shttps://data.mendeley.com/, last crawled on 3. August 2020

26

2.4 Evaluation

Table 2.5: The number of lines or cells per class in the dataset SAUS, CIUS, and DeEx
as a whole.

class # lines # cells avg. # cells per line
metadata 2,213 2,479 1.12
header 2,232 19,047 8.53
group 1,767 6,143 3.48
data 114,354 1,202,058 10.51
aggregate 1,406 76,996 54.76
notes 2,036 2,445 1.20
Overall 124,006 1,309,168 10.56

Note that this dataset is used only to verify the performance of our approach on verbose
plain-text files and is not part of the training set. We observe a high line-to-file and
cell-to-file ratio, because the files of this dataset are mostly used to store data, e.g.,
experimental results, which are often very long, rather than presenting statistical tables.

The last dataset, Troy, contains 200 CSV files collected between 2009 and 2010 from
various international statistic data portals, such as Statistics Finland and The World
Bank [Nagy, 2010]. Embley et al. used this dataset in their work to convert different
statistical tables to relational tuples [Embley et al., 2016]. The original data were stored
in HTML and converted by the authors via Excel to verbose CSV files. We kept the
dataset unseen during the design of STRUDEL to test the out-of-domain generalizability
of our approach with this dataset.

In our data preparation process, we cropped each file by removing the marginal empty
lines or columns, as some of our features are sensitive to the number of empty cells in the
lines, and leading/trailing empty lines are trivial cases. Values of spanning cells in original
spreadsheets are copied only to the top-left cell in the CSV file, instead of to all covered
cells for two reasons: (i) the top-left is well-defined for all shapes of spanning cells and
(ii) copying the values to all covered cells creates too many repeated characters, confusing
the models that cause unnecessary over-fittings towards these values. To encourage future

study on this topic, we publish all datasets and their annotations’.

Setup of experiments

The list below contains all algorithms used in the evaluation, along with their corre-
sponding configurations. All algorithms were implemented in Python 3.7.7. We used the
random forest classifier in the scikit-learn library [Pedregosa et al., 2011] for STRUDEL.

The superscript in the name of an algorithm indicates the type of elements detected by

this algorithm, i.e., ‘L’ and ‘C” represent line and cell classification, respectively.

e CRF” is a conditional random field-based learning approach dedicated to line classi-
fication from Adelfio et al. [Adelfio and Samet, 2013] as the current state-of-the-art.
We applied this approach with the logarithmic binning technique introduced by the
authors, as this setting was reported to gain the best performance there.

"https://hpi.de/naumann/projects/data-preparation

27

https://hpi.de/naumann/projects/data-preparation

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

e PyTHEAS” is a rule-based approach that discovers the locations of tables, and further
classifies the lines in CSV files [Christodoulakis et al., 2020]. We use the parameter
values introduced in the original paper for our experiments.

e STRUDEL” is our proposed approach for line classification. The underlying random
forest classifier used the default settings in the scikit-learn library.

e LINEC is a baseline approach for cell classification. This approach simply extends the
predicted class of a line from the result of a STRUDELY run to each non-empty cell in
this line.

e RNNC is based on the state-of-the-art approach by Gol et al., which classifies cell types
with a recursive neural network using pre-trained cell embeddings [Gol et al., 2019].
For our experiment, we used the same settings as introduced in the original paper.

e STRUDEL® is our approach for cell classification. Again, we used the default settings
of the random forest classifier in the scikit-learn library. In our experiment, we do not
observe a substantial difference in the result with different values of the aggregation
delta d and coverage c. We set them to 0.1 and 0.5, respectively.

Apart from using content and spatial features, both original CRFY and RNNC applied
stylistic or spreadsheet formula features. Because the input data in our use-case are style-
less verbose CSV files, we leave out all stylistic features from the two approaches so as
to conduct fair comparisons. Each algorithm is evaluated using group 10-fold cross-
validation: when creating the folds, our process ensures that all elements from a single
file appear in either the training or the test set. We repeat the cross-validation process
ten times to reduce bias leaning to particular fold splits. The results of all repetitions
are averaged to obtain the final score.

We have tested several classification algorithms for STRUDEL, including Naive Bayes,
KNN, SVM, and random forest. Random forest consistently outperformed the other
candidate algorithms on our datasets for both classification tasks. Therefore, we chose
it as the backbone algorithm of STRUDEL. The advantage of random forest over the
other algorithms is that it reduces the risk of over-fitting by considering the results from
multiple base classifiers, which is important for imbalanced datasets, such as types of
lines and cells in verbose CSV files.

2.4.2 Comparative evaluation

This section presents the comparative evaluation results between STRUDEL and the ref-
erenced approaches on both line and cell classification tasks. We use the F1 measure
to evaluate the classification correctness of each approach. When comparing the overall
results amongst algorithms, we focus on the macro-average, which does not weigh the
score of individual classes with the support (the number of instances) of these classes.
Using macro-average avoids the bias from the number of per-class instances, which re-
veals the performance of an approach on minority classes better than the micro-average
(weighted average).

Line classification

We compared STRUDEL” with CRFY and PyTHEAS”. CRF” uses a set of features, in-
cluding content features, contextual features, and stylistic features to train a conditional

28

2.4 Evaluation

random field based classifier on web tables and spreadsheets. PYTHEAS” uses a number
of weighted rules to decide whether a line is data or non-data. The binary results are
used to draw the table top/bottom boundaries, on top of which the approach utilizes
some additional rules to determine the classes of lines.

Table 2.5 (top) reports the per-class and macro-average F1 scores, and accuracy
for the three approaches. Note that PyTHEASY can classify a line as one of only five
classes that correspond respectively to ours, missing the aggregate class. Therefore, when
calculating the measurements for this approach, we leave out the aggregate lines from our
datasets. Overall, our approach leads on macro-average for all datasets. PYTHEASY does
not perform well in general on the minority classes in all but the SAUS datasets, as its
proposed rules are not suitable for these datasets: they produce poor results already for
the binary data/non-data classification, which disrupts the subsequent table discovery
and line classification. Group lines are particularly difficult for PYTHEASY: the scope
of group lines is constrained to lines between data lines and has only the leftmost cell
non-empty. While the group lines in SAUS mostly follow this definition, those in the other
datasets do not. Most header lines in both SAUS and CIUS are across few lines and with
simple structures. Therefore, recognizing the headers correctly in these two datasets is
simpler than those in GovUK and DeEx. Since the rule used to determine metadata lines
is dependent only on the positions of headers, it is also easier to recognize metadata in
these two datasets.

STRUDEL’ outperforms CRF” for almost all classes across datasets. Both algorithms
perform better on the CIUS dataset than on the other datasets, because many files in
this dataset are essentially the reports from different years on the same themes with the
same templates — the file structure diversity is small. Both approaches do not work well
on aggregate lines in SAUS, because the dataset has many unanchored aggregate cells, i.e.,
headers of the rows or columns with aggregate cells often have no indicative keywords.
GovUK and DeEx are difficult to both approaches.

In summary, STRUDEL” outperforms CRF” without using its stylistic features on our
datasets, showing that our approach is more effective when fewer assumptions can be
made about the input. STRUDEL” is also more flexible than rule-based approaches, such
as PyTHEAS”, in predicting cases that are not covered by the given rule set.

Cell classification

For the cell classification task, we compare STRUDEL® with two aforementioned algo-

rithms: (i) LINEC that provides a reasonable baseline, as most lines have homogeneous
cells; (i) RNNY that is based on an advanced deep learning architecture. The authors of
RNNC evaluated their approach also without stylistic features, which allows a fair com-
parison to STRUDELY. We compared the Fl-scores obtained by our re-implementation
of their approach against the numbers reported in their paper and found that, for the
three classes whose labels had not been revised by us, i.e., metadata, header, and notes,
our results are very similar to theirs. The F1-scores on aggregate cells obtained by our
implementation for all datasets are much lower than their reported ones, partly because
our reforged annotations include more aggregate cells that were previously labeled as data
cells — the difficult ones that cannot be easily found. Table 2.5 (bottom) summarizes
the comparative result in terms of the per-class and macro-average Fl-score, and accu-

29

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

racy. STRUDEL® surpasses both competitors. Meanwhile, the macro-average of RNNC

shows an advantage against the baseline approach, although the per-class scores of the
two approaches are on par with each other. Even though cell classification is a more
imbalanced task than line classification, the performance of our STRUDEL® approach is
comparable to its line counterpart.

Classifying group cells correctly is challenging for all approaches, as cells of this class
are particularly rare. However, unlike other rare classes, such as metadata and notes,
group cells are more likely to co-occur in the same line with data cells. LINE® reported a
low F1-score particularly on group and aggregate cells across datasets. In fact, both group
and aggregate cells often co-occur with other types in the same lines: some tables contain
a group cell in a line with several aggregate cells; other tables have aggregate columns
rather than lines, therefore causing the few aggregate cells in the lines with multiple data
cells. Group and aggregate cells usually account for a minor amount in these cases.

LINE® applies a majority-take-all strategy to extend the line prediction result of a
line to all its non-empty cells and therefore causes false negatives for group and aggregate
cells in the above two cases. RNNC shows a low Fl-score on the group class, which is
not a class considered in the original paper [Gol et al., 2019], showing that the approach
cannot be directly adapted to this class. The set of the reforged aggregate cells, many
of which were misplaced in the original annotations from Gol et al., is also troublesome
for RNN®, which does not involve value calculation mechanisms to detect them.

2.4.3 STRUDEL performance evaluation

In this section, we present experimental results to gain insights on the following questions:
(i) When does STRUDEL mis-classify an instance of a particular class, and which class
is most likely to be considered? (ii) Do our approaches generalize to plain-text files
that do not stem from spreadsheets? (iii) How do our used features affect performance?
(iv) What are the typical reasons that cause these incorrect predictions?

Line classification

Table 2.5 has shown the per-class and overall F1 results of STRUDEL”. In this section, we
present our analysis of the classification results by using the confusion matrix. Figure 2.6
(top) shows the confusion matrix on executing STRUDEL” per dataset. The numbers
in each confusion matrix are normalized row-wise to show the percentage of per-class
instances misclassified as other classes. We leave out the confusion matrix for SAUS,
which shows very similar results as that for GovUK. To create a confusion matrix with
the repeated 10-fold cross-validation setting, we concatenate for each line in the files
the predictions of all repetitions and construct an ensemble prediction for it with the
majority voting strategy. To resolve possible ties, we stipulate that the fewer instances
of a class included in the dataset, the more prior the class is.

Correctly identifying aggregate lines is the most challenging task across all datasets.
These lines are mostly misclassified as data. The two main reasons for this are the lack
of aggregate line training instances and the high similarity between aggregate and data
lines, w.r.t. value types, and contextual characteristics. Around 11.4% of the aggregate
lines are treated as headers for GovUK. We observed this to happen in many tables where

30

2.4 Evaluation

- - 9L0‘T §13°18 £07°67L 91g‘1 rigor SL6 S1120 #
00L’ LL6G" 86G° €89° 886" 1448 108" 689" HTHANILS Xo
664° 0€6° SV yve 456} LVE cLL £C9’ ANNY
8¢4° GG6° 0cs” 8G¢” 186 qqr GcY’ 0€9° HUNIT
- - 7.9 sro'Ly res018 85 Y 868°¢ G80°T $1192 #
¥88° G68° 686" Qov° a6’ 916° €66° €66° HTHANYLS
az8’ 068’ £96° ey F06 6L9 9.6 186 _NNY SIIO
QoL 1433 L66° 9¢T” 6¢6° 19¢° €L6° 166" HINTT
- - G669 80L°8 108°GrT Ge8 69L°T 697 51192 #
068" 896° LS96° 689" €86° GGL” cL6® L86° HTHANYLS
2oL 616 206 ape’ 96 99" 926 LL6° _NNY S0VS
€qL 06 888’ et 0L6° 11574 16 €96 HANIT
SAe-oxoewn Aoeanooe sajou 97e30a33e 7 ejep dnoa3 Japeay 7 ejepelowW 7
- - GIL S§LI9 9IL‘tL L0Y 665°T 0IL soul #
OTL’ 9.6° T9.L° |8¥¢” 686" LG¢" 08" L6L° 7 1ddNdLs
(44 186" 13574 - 086" LET 907" 794 4SVAHLA XHo(
QLY [449) 087 e 0,6 Lc0’ €Le €GL 748D
- - 7L9 6t 06808 7L0°T 794 760°1 souY #
096° £€66° 8L6° 7€8” 966" 786" GL6’ 766" 7 THANALS
69’ &ve” LE9" - 0L6 000 L9% 886" ZSVEHLA SNID
LV6° 66’ 886" 6v.L 966° ¢66° 196" 766" 718D
- - 059 6LG 9766 686 5989 697 souy) #
668’ 9.6° ¥86° 66¢S° L86° 44 096° 786" L THANYLS
968” V6 VI8 - €L6 1§73 89.L° 788" £SVEHLA] SNVS
L6L° 166 086 LLV €96 LIS 169 €68’ 718D
- - 91L 99 r85°€6 058 616 8.8 sou] #
TGL” 8L6° L6L° 19¢° 686" 616" VLL 0L9° 7 1ddNELS
ST¢” 0,6 5 - 986 CLT 444 a4 4SVAHLAL MNA0DH
€eL’ 6.L6° 493 6€¢” 166° 868" 6LE" 68L° 748D
Sae-ommew | Aoemndoe | sejou | oyeSeaSSe | eyep | dnoa§ | iepeay | ejepejowr ||

"uoryeoyIsse[d (wo1joq) 7722 pue (doj) auz) 10J joseIRp YOS UO 9I00S-T, PUR ADRINDIOR [[RISAO PUR ‘9I0DS-T] SSR[D-I8J :G'g oINSIq

31

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

aggregate lines are between header and data areas and separated from these two areas
by empty lines. Note that when a line of a minority (non-data) class is misclassified,
the wrong prediction tends to be data, which has much more instances than any other
class. Apart from aggregate lines, header, group, and notes lines in DeEx also incorrectly
lean towards the data class, because this dataset contains many tables of complicated
structures. We discuss the kinds of mistakes in these categories in Section 2.4.3.

GovUK Clus DeEx
0.009 0034 0000 0044 0.997 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.017 |:

1.0

metadata
038

@ header 0.035 0015 0100 0013 0004 0.000 0000 0009 0000 0000 0.011 0016 0030 0016 0000
g goup 0029 0022 0029 0000 0016 0.003 0.000 0.003 0000 0.005 0.007 0028 0.038 0.000 0024 06
§ data 0.008 0.000 0.000 0.006 0.002 0.000 0.000 0.000 [eXEEM 0001 0.000 0.000 0.001 0.006 0.006 0.002 -04
g aggregate 0.002 0114 0002 | 0.368 Flii! 0.000 0000 0.000 0000 0203 0.000 0000 0036 0000 | 0466 8 0.000

-02
notes 0054 0006 0006 0028 0000 0013 0000 0000 0.001 0005 0000 0011 0018 0000

metadata header group data aggregate notes metadata header group data aggregate notes metadata header group data aggregate notes
Predicted Class Predicted Class Predicted Class

-0.0

SAUS clus DeEx
0.002 0000 0.000 0.015 0.996 0.000 0.000 0000 0.003 DIGTFE 0089 0029 0156 0001 0048 [

10
metadata

0002 0022 0006 0.000 0.000 0000 0.002 0000 0.000 0.005 WFGLUN 0008 0224 0000 0003 05

0290 0020 0.006 0.000 0.000 0.000 0.000 0037 0084 0400 0449 0007 0022 06
0.000 0.000 0.000 0000 [ekciye 0013 0.000 0.000 0003 0000 gEcEY 0005 0.000 -04
0.000 0.000 0.000 BeEEFE 0343 0.000 0.000 0.001 0.001 ' 0333 EUGEEN 0.000 _02
0012 0000 0000 0001 0.000 0036 0024 0018 039 0008

metadata header group data aggregate notes metadata header group data aggregate notes metadata header group data aggregate notes
Predicted Class Predicted Class Predicted Class

header 0.001 [NUEIE]
group 0.000 0.030
data 0.000 0001 0001
aggregate 0.000 0.017 0.000 | 0.388
notes 0001 0000 0006 0071

0.144

Actual Class

L

Figure 2.6: Confusion matrices to describe the pair-wise performance of STRUDEL
(top) and STRUDELS (bottom) on individual datasets. The numbers are normalized
by the number of instances per class.

Cell classification

Figure 2.6 (bottom) depicts the per-dataset confusion matrix on executing STRUDELC .

To create it, we applied the same procedure used to create the confusion matrix for
STRUDEL”.

Compared to the confusion matrix of STRUDELY, more classes have a higher mis-
classification ratio for all three datasets, showing that cell classification is a more chal-
lenging task than its line counterpart. On the one hand, the tendency to mark the
instances of the minority classes as data is still prevalent. On the other hand, as the com-
plexity of the problem increases, we do not observe many classification errors between
two non-data classes, showing the effectiveness of our approach to distinguish between
pairs of elements belonging to minority classes. About two-thirds of the aggregate cells
are treated as data for CIUS. This is because a number of files share a fixed table schema
that uses no keywords to indicate aggregate columns. Therefore, they are ignored by the
aggregate cell detection component. For the other two datasets, around one-third of the
aggregate cells are predicted as data. Overall, classifying aggregate cells correctly is not
trivial. In the following, we discuss the reasons for such type of mis-classifications.

Out-of-domain classification performance

To test the out-of-domain classification performance of STRUDEL, we kept the Troy
dataset unseen during the algorithm design. We used a model trained on the collection
of SAUS, CIUS, DeEx datasets to predict the classes of lines and cells in each file in the

32

2.4 Evaluation

Troy dataset.

The results in Table 2.6 show that, similar to the other datasets, group and aggregate
cells are challenging for STRUDEL. After scrutinizing the input files, we found out that
most of the aggregate cells lay in the lines that do not contain any indicative keywords,
such as ‘total’, which determine the anchoring cells and therefore the aggregate cell
candidates. A typical aggregate line contains few group cells (usually the left-most) and
a number of numerical aggregate cells. Many of these aggregate lines are mis-classified
as data, leading to the group cells therein also being mistaken.

Table 2.6: Per-class and overall F1-score on the Troy dataset.

STRUDELY # lines STRUDELC # cells

metadata .935 317 .921 321
header .798 278 .840 1,341
group .667 42 232 294
data .937 2,898 936 18,600
aggregate .070 239 .216 1,935
notes 971 575 .952 592
macro-avg,/num. .730 4,349 .683 23,083

Feature analysis

To understand which features exert more influence than others on particular classes, we
calculated the feature importance for both STRUDELY and STRUDELY models. The mean
decrease in the impurity mechanism [Dalton, 1920] has been used to calculate feature
importance in the original random forest algorithm. However, this metric prefers contin-
uous features and high-cardinality categorical features [Strobl et al., 2007, 2008]. There
are a number of alternative techniques to calculate feature importance [Chandrashekar
and Sahin, 2014]. Because many of our features are low-cardinality categorical features,
we leveraged permutation feature importance, which has also been discussed by the
original authors of the random forest algorithm [Breiman, 2001]. Permutation feature
importance indicates the ability of one feature to distinguish instances of one class from
those of another in a binary classification scenario. To adapt this metric to our multi-
class classification problem, we trained a model for each class in a one-vs.-rest fashion,
and use the permutation feature importance of each such binary classifier to represent
the ability of our model to detect instances of that particular one class. The permutation
of each feature was repeated five times and averaged.

Figure 2.7 illustrates the per-class feature importance for STRUDEL? (top) and
STRUDELY (bottom) with 100% stacked bars. The models are trained on the collection of
SAUS, CIUS, and DeEx datasets. We grouped all neighbor profile features (Section 2.3.3)
into neighbor value length and neighbor data type to reduce the complexity of the figure,
because each individual feature has little importance on the cell classification task. Up
to five most important features whose proportions are higher than 10% are highlighted.

The line type probability feature is the most important feature for notes, metadata,
and header classes. The percentage of empty cells in the row is also quite useful for

33

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

Aujigeqold e pesH |
uwnjojoney|adAdwim
JayymoyArdwim

%001 %06 %08 %0L

yisuaianjeploqysiaN AMjigeqoiddnoln

Ajigeqoiddnoiom
moyoney||edAdwim
2J0jogMmoyArdwm

Ayjigeqoidereq

91e82488ys|

eqo.idelepelainl

AnjiqeqoadsaloN

uol}isodaulT |
aJo5egA1dwIim
JaMyssauyolenadA | ereq

%00T %06 %08 %0L

oney|[3)oLAWNN

uonisodaur

Jayviiayaduat|e)

oney||33au3WNN

oney|[eauWNN

oney|aJdLBWNN

uwnjo)pJomAsyaiesaissy m

331e82488ys|

210J99}J1qy3dua1||a)

uolHsodaur]

uonisodaun

"POYYSIYSIY oIe SSed [ord I10J SoINnjed] jue)Iodwlil JSOU [BIOADS
‘XgeQ pue ‘SNID ‘SAVS JO UOIDL[[0D dY) UO paurel) (wo3joq) H»1ddN¥LS pue (doy) L THANYLS Jo oouejtoduwr amnyed :L°g oINS

adAjeleqgioqySioN m
A1lj1geqoida1esa.38y

yi3uaienjepdoqydion |
Ayljigeqoideieq m
aurpiomAayaiesa.8Sy m
yi3uaionep m

£Q0JdS910N W
91e82.88vs| m
WySiyuwnjodArdwim

uolsoquwnjo) m

%09 %09 %07 %0¢€ %0¢ %0T

adA]eieq

uwnjojoney|@dAidw3z uwnjo)piomAayaiesas8sy

uwnjojoney|@dAidwy uwnjoypiomAayaiedalsdy

uopIsoguwin|o)

Aungeqoidereq

l moyoney|edAidwy

oney||ad3uis |

9.043g4)1qy13ua||aD | Jayviayidua|ieo m

uolsoquwn|o)

Aljiqeqoidelepelsin B
9z1$300|gpazijew.IoN M
yaquwnjodAdwIm

uoljIsogmoy |
%0

elep

91e32.433e

dnoud
B epesy

ejepelawl

sajou

olney|[@)doUawnN |

opey|edAdwim

JayvAdwim uleHIAIIE| NWINDPAIUNOISI] M 2J0j9gssauydie|padAleieq m
1unojpJionaSetany m 92Ud3SIXIPJOANDAIIRDIpUUOIIESaISSY I 93esan0)91e82433y m
%09 %09 %01 %0€ %0¢ %01 %0
a.0jagssauydieyadA Le: I elep
a1ojagssauydieinadA | ele 91e80438e
oneyj@oidwi a10agssauydienadA ey dnoig
a10jogArdwiz Jopeay
2.0§39431qY3duat|I3) ejepelsw
Jayvy1ayi8uat|2d juno)piomasesany sajou

34

2.4 Evaluation

notes and metadata. The percentage of empty cells in a column is most important to
discover group cells: many group cells are in the left-most column (also indicated by the
importance of the column position feature) of a file and span multiple rows. Neighbor
profile features are useful for discovering group cells, proving that group cells tend to
locate in specific places.

The novel feature signifying whether the value of a cell is the aggregation of other
cells in the same line or column plays a great role in detecting aggregate cells, proving
its effectiveness. Besides that, the existence of aggregate keywords in the same column
is also important, indicating that users tend to use these words to mark the aggregate
columns. However, the existence of aggregate keywords in the same line shows quite
limited importance in our experiment, although we expected similar importance of it as
its column counterpart.

Performance on plain-text files

To test the performance of our STRUDEL algorithms on plain-text files that do not stem
from spreadsheets, we tested the STRUDEL algorithm on the Mendeley dataset. We
trained a model of our algorithm on the collection of SAUS, CIUS, and DeEx datasets, and
used the whole Mendeley dataset for testing.

Table 2.7 displays the per-class and overall Fl-score for this experiment. As men-
tioned above, files of the Mendeley dataset are mostly used to store (tabular) data.
Therefore, the minority classes in the Mendeley dataset have very few instances.

While the overall Fl-scores in this experiment are inferior to the respective ones
shown in Table 2.5, they do show that even for such difficult files our approaches are well
able to distinguish data from non-data. The values in Mendeley’s plain-text files show
properties different from traditional spreadsheets, e.g., the length of metadata and notes
areas, the width of files. The second reason is that no data from Mendeley was included
in the training phase. Therefore, dataset-specific properties are not learned properly by
the classifiers. Also, different areas in a plain-text file might have their own delimiters.
As the delimiter of the table areas is used across the file, it is possible to destroy the
intrinsic structures of other areas, e.g., when using the comma character as the delimiter,
the value of a note line is split across multiple cells.

Regarding the results of individual classes, our model treats quite a few metadata
lines as data, as the delimiter of metadata and data areas are often different. At times,
the delimiter dilemma also confuses our model of header lines in files where these lines
are not split correctly. Out of the few aggregate cells, most are located in a single file,
where the aggregate cells form a table by themselves, and aggregate on the values from
another table, which is not recognizable by our model.

As the Mendeley dataset holds the biggest files across all our datasets, we also tested
the scalability of our approach. The overall runtime on classifying cells of a file includes
that for dialect detection, feature creation, and cell class prediction. Our experiments
show that the overall runtime is linear to the number of non-empty cells. For a file of
around 10MB, the whole procedure takes around 256s on a 1.4 GHz MacBook Pro with
16GB RAM. Most of the time is spent on creating the feature vectors. While we have
few big files of such size, most files are only several kilobytes, probably because files with

35

2.

STRUCTURE DETECTION IN VERBOSE CSV FILES

verbose information are usually used to show limited information to readers, rather than
store a big amount of data.

Table 2.7: Per-class and overall F1-score on the Mendeley dataset.

STRUDELY # lines STRUDEL® # cells
metadata 623 604 .245 2,152
header .406 86 .629 769
group .263 27 303 44
data 1999 194,786 999 1,356,635
aggregate .364 9 .051 99
notes 448 86 .380 111
macro-avg,/num. 517 195,598 435 1,359810

Analysis of difficult cases

The confusion matrices shed light on which classes are most commonly mis-predicted for
each class, either in the line or in the cell classification task. Here, we identify typical
causes of those errors. The list below describes the pairs of common mis-classification
cases (with > 10% incorrect classification in the class), e.g., mis-classifying ‘aggregate as
data’, each followed by an error analysis based on our manual inspection of the results.

Aggregate as data. In addition to the missing keywords introduced above, another
reason that causes this type of mistakes is that some aggregate cells aggregate values
from non-consecutive adjacent cells, which are ignored by our aggregate cell detection
algorithm that assumes the value of an aggregate cell is calculated only by the values
of the cells adjacent to it.

Header as data. We found also two major reasons for this type of error: (i) a header
line with a number of non-textual values adjacent to a data line may be mis-classified
as part of the data area. Examples include numeric headers, such as year and date;
(ii) in files with multiple vertically-stacked tables, headers of the tables towards the
bottom of the stack have unusual line positions.

Notes as data. First, tabular structures sometimes appear in notes lines, particularly
in the DeEx dataset. Therefore, these tables of notes are likely to be treated as data.
In some cases, authors place notes to the right of a table. Therefore, they are likely to
be treated as data areas during cell classification.

Group as data. One reason for this type of error is that some files have multi-level
group columns, e.g., ‘country-state-city’, to the left of a table, followed by a number
of data columns to the right of the table. As most tables have few group columns,
the classifier may mis-interpret these rare cases as data. Another reason is that these
group cells lay in the same lines as those aggregate cells, who are not captured by the
aggregate cell detection algorithm, because there is no keyword in the same row or
column. Therefore, the model tends to treat the whole row as a set of data cells.
Metadata as data. Similar to the case in notes lines, metadata area may contain
small tabular structures. Due to the tabular features of these metadata tables, STRU-
DEL tends to interpret them as data cells.

36

2.5 Related Work

In summary, there are three aspects that mainly affect the correctness of our ap-
proach: (i) the geographical characteristic of vertically stacked multi-table files; (ii) the
arithmetic calculation method for aggregate lines; (iii) the similarity between numeric
header lines and data lines. These facts offer directions for improving our approach in
future work. In Chapter 3, we present our work on an advanced aggregate cell detection
algorithm AGGRECOL, which covers the sum and average functions. There, we present
the improved results of STRUDEL by filling the IsAggregate feature values with the results
of the AGGRECOL approach.

2.5 Related Work

Extracting information from semi-structured documents, such as verbose CSV files,
spreadsheets, or web tables, has been a growing research topic in recent years. Relevant
research questions include (i) how to locate tabular content in documents, such as PDF
files [Liu et al., 2008], spreadsheets [Dong et al., 2019], or verbose CSV files [Vitagliano
et al., 2021]; (ii) how to distinguish relational tables from non-relational tables [Cafarella
et al., 2008; Wang and Hu, 2002]; (iii) how to extract relational tables from heteroge-
neous sources [Chen and Cafarella, 2013; Eberius et al., 2013; Elmeleegy et al., 2009;
Shigarov and Mikhailov, 2017].

Prior to extracting information from a semi-structured document, understanding its
structure is necessary. Some techniques have been proposed to address the structure
detection problem on various types of documents, such as web tables and spreadsheets,
which include tabular material and have a flexible layout. We summarize these works fo-
cusing on structure detection by classifying lines or cells, respectively. Image documents,
such as PDF files and scanned documents, also commonly organize information with an
arbitrary structure. A collection of research efforts have been made to extract informa-
tion of different types from such files [Katti et al., 2018; Sarkhel and Nandi, 2019; Tata
et al., 2021; Xu et al., 2020]. Due to the significant file format difference between verbose
CSV files and image documents, we do not compare our work against these approaches.
At the end of this section, we outline some works on converting tables with arbitrary
shapes and forms into relational tables.

2.5.1 Line classification

Pinto et al. suggested a conditional random field (CRF) learning approach to predict
the label for each line in plain-text documents crawled from a open data portal [Pinto
et al., 2003]. For each document, a sequence of features is computed for its lines. The se-
quences of all documents are used by the CRF classifier to infer the label. This approach
was later adopted to infer spreadsheet table schemata [Wachtel et al., 2016] and extract
relational data from spreadsheets [Chen and Cafarella, 2013]. Moreover, it was extended
by Adelfio et al. to recognize line classes in web tables and spreadsheets [Adelfio and
Samet, 2013], which we marked as CRF” in our comparison. The authors suggested fea-
ture binning to generalize the training data and show the effectiveness of their approach
on recognizing line classes in both HTML tables and spreadsheets crawled from several
open data portals. However, the approach assumes the presence of stylistic features,
such as font style, cell background color, or built-in spreadsheet formula features, which

37

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

are not available in verbose CSV files.

A recent work has proposed the rule-based approach Pytheas for CSV file line clas-
sification [Christodoulakis et al., 2020], marked as PYTHEASY in our comparative ex-
periment. To classify lines in a CSV file, the approach first determines for each line
whether it is data or non-data with a set of fuzzy rules, whose weights have been learned
beforehand with a training dataset. These binary results are then used to determine the
top and bottom borders of tables in the file. Finally, the approach leverages additional
class-specific rules on the discovered table/non-table areas to further ascertain the class
of each line. The core of this approach is the design of the fuzzy rule set, which impacts
the consequences of table border discovery, and also further line classification. However,
such a fixed set of rules might fail to generalize to new circumstances in unseen data.

2.5.2 Cell classification

Finer-grained cell classification in data files has been the subject of academic research
in recent years. Abraham et al. developed the UCheck framework that includes a com-
ponent to detect “cell roles”, such as header and data, in spreadsheets using several
heuristics [Abraham and Erwig, 2007]. Cell roles are then used by the system to detect
spreadsheet errors. The goal of their approach is to correlate cells in a table with their
corresponding headers, thus they assume spreadsheets with only table regions as input
data.

Gol et al. suggested a recursive neural network (RNN) architecture on two separately
trained cell embeddings that capture the contextual and the stylistic semantics of cells,
respectively [Gol et al., 2019]. We compared STRUDEL against this approach, which was
marked as RNN in our experiment. Even though the authors mentioned the contextual
impact on a cell from both neighboring and distant cells, they considered only the former
ones in their approach. They built the stylistic features upon those suggested by [Koci
et al., 2016], which we dropped in our experiments for a fair comparison.

To discover the content layout in spreadsheets, Koci et al. proposed a supervised
learning approach to classify cells, which employs a collection of features that fall into
five types: content, cell style, font, reference, and spatial. The authors applied a post-
processing component to repair classification errors [Koci et al., 2016]. The authors
introduced five mis-classification patterns and suggested that the occurrence of them in
the results hints at a mis-classification. Gol et al. have shown in their experiments that
their RNN approach outperforms this algorithm w.r.t. Fl-score. Therefore, we do not
compare against this approach by Koci et al.

Chen et al. integrated an active learning technique into their spreadsheet cell clas-
sification approach [Chen et al., 2017]. In their iterative algorithm, a sheet selector
presents the most uncertain spreadsheet to human labelers. The sheet is then labeled
and included in a training set that is used to train a spreadsheet property classifier.

The above-introduced works all make use of stylistic features of their input. However,
no such information can be obtained in verbose CSV files. In this work, we compare our
approach only with the RNN-based approach of [Gol et al., 2019], as it was reported
to outperform the other ones. In spite of using stylistic features to solve the task, the
authors of the RNN® also reported the performance of their algorithm without their

38

2.6 Conclusions

usage, enabling a direct comparison to our approach.

Converting data in a table with an arbitrary shape into a relational table allows uti-
lizing information in such ad-hoc tables with common query tools, such as SQL. Having
associated a set of transformation rules with specific cell classes, Shigarov et al. pro-
posed a rule-based approach to extract information from arbitrary tables into relational
tables [Shigarov and Mikhailov, 2017]. FlashRelate addresses this problem with the
programming-by-example technique [Barowy et al., 2015]. This approach accepts a few
output relational tuple examples from users and constructs a program in its underlying
language to obtain such output from the given table. With the assumption that tables
are composed of top header rows, left header columns, and data regions, another type of
works first recognizes the hierarchies of header rows and columns, and then allocate the
headers for each cell in the data region of the table [Chen and Cafarella, 2013; Embley
et al., 2011, 2016].

2.6 Conclusions

Often, valuable data are stored in semi-structured documents, such as verbose CSV files
and spreadsheets, and cannot be directly extracted by common data management tools.
Prior to extracting information from these files, it is necessary to understand their struc-
ture, by means of element classification, at either line or cell level. Previous works have
addressed the line or cell classification problem for style-enriched documents, such as
web tables or spreadsheets, making use of their stylistic features, such as font style, cell
background color, cell margin style, and spreadsheet formulas. In this work, we pro-
posed the STRUDEL approach to handle both tasks on verbose CSV files that, similar to
spreadsheets, organize data in a flexible layout, yet lack stylistic features. We addressed
the two classification problems separately and designed a set of features for each of them,
including syntactic content features, contextual features, and computational features.

Our experimental results have shown that STRUDEL is able to achieve macro-average
F1-scores that range from 0.71 to 0.96 on line classification for different datasets. For
cell classification, the achieved Fl-scores range from 0.70 to 0.89. These results were
obtained across all semantic classes without using stylistic features. To conduct a fair
comparison between STRUDEL and related work, we used only the non-stylistic features.
We summarized reasons that cause common mis-classification cases, and recognized the
effectiveness of computational features that are neglected by former studies, drawing key
insights for further structure understanding research: (i) how to improve the prediction
quality with semantic features; (ii) how can we extend the aggregate cell detection al-
gorithm by recognizing more aggregation functions; (iii) whether column classification
can help improve the classification quality. In the next chapter, we explore an advanced
aggregate cell detection approach AGGRECOL. By replacing the values of the compu-
tational features used in this work with the results of AGGRECOL, we can improve the
overall performance of the STRUDEL approach.

39

2. STRUCTURE DETECTION IN VERBOSE CSV FILES

40

Chapter 3

Aggregation Detection in Verbose
CSV VFiles

An aggregation represents an arithmetic relationship between a set of numbers and a
single number: the latter (aggregate) can be calculated by applying an aggregation func-
tion on the former (range). A broad collection of functions can be used for arithmetic
calculation, e.g., sum, difference, average, division, etc. Recall from Chapter 2 that ta-
bles in verbose CSV files often include aggregations to summarize data therein. There,
we introduce the STRUDEL approach to classify each cell as one of six classes, including
the “aggregate” type. STRUDEL makes two assumptions: (i) indicative keywords, such
as “total” and “average”, appear in some cells in the same line (either the same row or
the same column) as an aggregate cell; (ii) the value of an aggregate cell must be derived
from the same-line consecutive cells adjacent to them. According to the error analysis
on the results of the STRUDEL approach, we found that neither of the assumptions is
perfectly true. In fact, only around 60% of the sum aggregate cells in our datasets are
in lines with indicative keywords. Also, the pattern of range described in (ii) above
is just one of three possible cases summarized in Section 3.2.2 below. To obtain more
correct aggregate detection results, and further improve the qualitative performance of
STRUDEL or other cell classification approaches [Adelfio and Samet, 2013; Koci et al.,
2016; Nargesian et al., 2018], a more advanced aggregate detection approach is needed.
What is more, detected aggregations can also be used for enriching files with metadata,
detecting and cleaning numeric errors, and serving as input for formula smell detection
approaches, which we discuss in detail in Section 3.1.

In this chapter, we present our three-stage approach AGGRECOL to identify aggrega-
tions of five types, i.e., sum, difference, average, division, and relative change, in verbose
CSV files. This work is based on our publication [Jiang et al., 2022]. The goal is to
detect not only the aggregate cells, but also the set of cells to calculate these aggregates.
In short, the first stage discovers aggregations of each function individually. The sec-
ond stage collects the individual detection results and removes the spurious aggregations
with a set of pruning rules. The last stage aims at recognizing non-adjacent aggrega-
tions by skipping the aggregates of detected aggregations. We evaluated our approach
with two manually annotated datasets, showing that AGGRECOL is capable of achieving
0.95 precision and recall for 91.1% and 86.3% of the files, respectively. We obtained

41

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

similar results on an unseen test dataset, showing the generalizability of our proposed
techniques.

Overall, this work makes the following contributions:

(i) We formalize the aggregation detection problem for verbose CSV files, and propose
the three-stage approach AGGRECOL to address it for five aggregation functions.
(ii) We annotated two datasets that comprise 466 verbose CSV files of various domains,
which include more than 26K aggregations, published on our website!.
(iii) We conducted a series of comparative experiments to evaluate the effectiveness of
AcGrRECOL. Also, we verified that STRUDEL can achieve better cell classification
performance using the results of AGGRECOL.

We organize the rest of this chapter as follows: we first discuss the need to identify
aggregations with three typical use cases, and the demand for automated approaches in
Section 3.1. In Section 3.2, we formalize the definitions of the used terms, and possible
aggregation patterns, followed by the formal problem statement. After that, Section 3.3
describes the technical details of our approach. The experimental results along with a
detection error analysis are presented in Section 3.4. Section 3.5 briefly discusses the
related work. As a conclusion, we summarize this work and envision future work in
Section 3.6.

3.1 Aggregation detection

As a useful tool to summarize data, aggregations are implemented as operators in many
data analytics tools. For example, relational database systems support a collection of
aggregation operators based on the underlying relational algebra, such as sum, average,
count, and minimum/maximum, to enable data analysis on relational tables. Spread-
sheet programs provide an extensive set of formulas to compute aggregations on values
of arbitrary cells [Rahman et al., 2020]. Popular data analytic libraries, such as Pan-
das [development team, 2020] in Python and Apache Spark [Zaharia et al., 2016], also
provide aggregation calculations on DataFrames. Various business intelligence and data
analytics platforms, such as Tableau? and Trifacta®, integrate aggregation calculation in
their toolkits. Data scientists and practitioners frequently implement pipelines to pre-
pare data or carry out data analytic tasks with the aforementioned tools. While building
these pipelines, they often acquire insights on how to process or analyze data in the next
step by looking up various kinds of aggregations amongst numbers. A common function
shared by these tools is “Export to CSV”, which produces plain-text CSV files that can
be processed by a wide variety of applications. Many verbose CSV files with aggregations
have been created with this function.

While aggregations are prevalent in verbose CSV files, locations of them (the aggre-
gate and range cells) are not always obvious. One reason is the lack of proper metadata
to describe aggregations. Because verbose CSV files cannot preserve any metadata, an
aggregate appears to be just a normal numeric cell similar to any other numeric data

"https://hpi.de/naumann/projects/data-preparation/aggregation-detection-in-verbose-cs
v-files.html

’https://www.tableau.com/

Shttps://www.trifacta.com/

42

https://hpi.de/naumann/projects/data-preparation/aggregation-detection-in-verbose-csv-files.html
https://hpi.de/naumann/projects/data-preparation/aggregation-detection-in-verbose-csv-files.html
https://www.tableau.com/
https://www.trifacta.com/

3.1 Aggregation detection

0 1 2 3 4 5 6 7
0 Population by age 1875-2009

1 Year Population Age 0-14 Age 15-64 Age 65+ 0-14 % 15-64 % 65+ %

2 1875 1912 647 659 267 1178113 75 267 34,5 61,6 3,9
3 1900 2655 900 930 900 1583 300 141700 35,1 59,6 53
4 1925 3322100 1031700 2090 000 200 400 31,1 62,9 6,0
5 1950 4029 803 1208 799 2554354 266 650 30,0 63,4 6,6
6 1975 4720 492 1030544 3181376 508 572 21,8 67,4 10,8
7 2000 5181115 936 333 3467 584 777 198 18,1 66,9 15,0
8 2009 5351427 888 323 3552663 910 441 16,6 66,4 17,0
9

10 | Source: Population Structure 2009, Statistics Finland
11 | Inquiries: Markus Rapo (09) 1734 3238, vaesto.tilasto@stat.fi

12 | Director in charge: Jari Tarkoma

Figure 3.1: A real-world verbose CSV file that contains two types of aggregations:
sum (green) and division (blue).

cell in a table. Figure 3.1 illustrates a real-world verbose CSV file from the Troy data-
set. Besides the title and footnotes at the top and bottom left, the file contains a table
that clarifies the overall and per age-group population for several years in Finland. The
headers contain no indicative keywords to hint at the presence of the aggregations. The
three right-most columns account for the proportion of the per-group population against
the total. However, Neither the total nor the single group population is adjacent to the
corresponding ratio cell. As some verbose CSV files are exported from spreadsheet files,
one might refer to the original spreadsheets, if available, which might contain the actual
aggregation function as metadata. However, these metadata are not always present,
even in spreadsheets, where users can copy and paste only the values derived by a for-
mula. Based on our observation on the spreadsheet version of the Troy dataset, 150 of
the 200 spreadsheet files have at least one aggregation, while none of them include the
corresponding formulas.

With the lack of aggregation metadata in verbose CSV files, discovering them is
beneficial for several downstream applications:

Enriching files with metadata. Metadata, despite being useful information to help
understand data, cannot be embedded into the vanilla CSV file format that is commonly
used to store data. Specifically, locations of aggregation cells can reveal the arithmetic
relationships between numeric cells. In addition, detected aggregations can be used to
improve cell classification algorithms that usually treat “aggregate” as a cell type [Gol
et al., 2019; Jiang et al., 2021; Koci et al., 2016]. In Section 3.4.6, we show the im-
provement gain of our STRUDEL approach on cell classification by using the results of
our aggregation detection algorithm proposed in this chapter to fill a binary feature that
represents whether a cell is an aggregate or not.

Numeric error detection and cleaning. Aggregations in verbose CSV files often

43

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

include errors: the number in the aggregate cell does not precisely calculate the numbers
in the cells of the range. A major reason is that numbers are rounded to preserve a
certain amount of decimal digits. The calculated aggregation of a group of rounded
numbers may deviate from the intended aggregate value — an effect we have observed
in around 29% of the real-world aggregations, as described in Section 3.4.1. With our
advanced approach to detect aggregations with an error, data scientists may realize the
numeric data errors and mend them accordingly.

Serving as input for formula smell detection. Many verbose CSV files are exported
from spreadsheets where the aggregations have been created via formulas. However, man-
ual mis-operations may cause the absence or incorrectness of formulas in spreadsheets.
For example, in a row of numeric cells that represent the per-column sum of numbers
in other rows, the formula of one cell is missing, which can be identified by various
“formula smell” detection approaches [Dou et al., 2014; Jansen and Hermans, 2015].
However, these approaches all assume the existence of some surrounding formulas, e.g.,
the other cells in the row with the sum formula in the above case. Detected aggregations
can serve as the input for those formula smell detection approaches to recognize more
smelly formulas.

With the usefulness of knowledge about aggregations and the lack of such information
in verbose CSV files, being able to detect them is important. Manual work is infeasible, as
locations of aggregations are not always apparent: any numeric cell could aggregate any
set of other cells. When dealing with a large table, manual checking is error-prone and
time-consuming due to many aggregation candidates. The existence of specific keywords
in a cell, such as ‘total’ and ‘average’, might indicate the presence of aggregates in the
same row or column. However, such a keyword-based approach could be unreliable, as
keyword dictionaries can hardly cover all aggregations. In the table of Figure 3.1, for
example, none of the aggregation cells can be identified by their headers. An investigation
into our dataset shows that we could retrieve only 60.0% of the real sum aggregates
by using a set of keywords including ‘total’, ‘all’, ’sum’, ’subtotal’, and ‘overall’. In
Section 3.4.4, we elaborate on the results of this keyword-based approach. In light
of these challenges, automated aggregation detection approaches without relying on a
limited set of indicative keywords are desirable.

3.2 Preliminaries

In the first part of this section, we provide definitions of all necessary concepts, including
tables in verbose CSV files, the components of an aggregation (aggregate, range, and
aggregation function), and the error level. In the next parts, we summarize the three
observed aggregation patterns and give the formal problem statement.

3.2.1 Definitions

Recall that a file dialect incorporates all utility characters used to interpret its structure,
such as field delimiter, quotation character. While comma and double-quote charac-
ters are widely used, no mandatory requirements are enforced for their selection. To
interpret a file as a verbose CSV file, the corresponding file dialect must be recognized

44

3.2 Preliminaries

first [Dohmen et al., 2017; Ge et al., 2019; van den Burg et al., 2019]. Here, we assume
verbose CSV file dialects have been correctly detected, and the input files are delimited
accordingly. As verbose CSV files allow a loose content layout, tables therein may have
unique structures.

Definition 2 (Table). A table in a verbose CSV file is a group of cells that can form
any shape. Each cell carries information of a particular purpose, such as data, row or
column header, group header, aggregate, or empty visual separator. A table contains
structured information about entities of a common type.

Stemming from spreadsheets, tables in verbose CSV files often contain sets of numbers
and calculated statistics about them. The verbose CSV file in Figure 3.1 includes a table
that spans rows 1 to 8, and columns 0 to 7. This table includes cells that serve as row
header, column header, data, or aggregate. Tables of verbose CSV files often express the
numeric value zero with an empty table cell. We follow this interpretation in this work.

An aggregation in a verbose CSV file describes an arithmetic relationship between a
numeric cell and a set of other numeric cells in the same table. We refer to the former
numeric cell as the aggregate and the latter numeric cell set as the range. We refer each
component in a range as a range element. A table may include multiple aggregations.

Definition 3 (Aggregate and Range). An aggregate r = ¢;, j., where i, =0,...,M — 1
and j. =0,..., N —1, is a numeric cell whose value can be derived by applying a specific
arithmetic function on a set of other numeric cells £ = {¢;;li = 0,...,M —1,j =
0,...,N — 1}, referred to as a range. We represent the list of row and column indices of
the elements in £ with ig and jg.

Definition 4 (Aggregation function). An aggregation function f is an arithmetic oper-
ator that can be applied to the values of the elements in a range to determine the value
of an aggregate.

While many different aggregation functions can be applied to numeric values, only
few appear frequently in verbose CSV files based on our annotation of 385 files. Fig-
ure 3.2 illustrates the occurrence distribution of aggregation functions. In this work,
we cover the aggregation functions that appear in more than 5% of the files, i.e., sum,
difference, average, division, and relative change. Table 3.1 displays the specifications of
these aggregation functions. For example, a sum function requires no less than one ele-
ment in the range, and is a cumulative function, which means an aggregator derived by
applying this function can be further used as a range element in other aggregations. In
contrast, average is non-cumulative: averaging numbers that are themselves averages is
not arithmetically meaningful. In fact, calculating the average over a collection of mean
values based on sets of numbers should take the cardinality of each set into account,
which cannot be uncovered only from these mean values. Relative change describes the
change from B to C' normalized by B, which is commonly used to show changes across
a certain time period.

In this work, we treat only single-function aggregations, although we observe that
a few real-world aggregations involve multiple aggregation functions. For example, the
percentage of a population holding at least a university degree is the sum of populations
with bachelor, master, and doctorate degrees divided by the total population. Detecting
multi-function aggregations would be interesting future work.

45

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

Sum 82.08%
Difference

Division

Average 7.01%
Relative change
Max/Min}|1.04%
Count|0.52%
Standard Dev.|0.52%
Median{0.00%

'0.0 01 02 03 04 05 06 07 08 09 10
Percentage of files #

Figure 3.2: Percentage of 385 files that contain the individual aggregation functions.

Table 3.1: Overview of the supported aggregation functions.

Aggregation # Range

. Formula Cumulative
function elements
Sum >1 A=%" B; Yes
Difference =2 A=B-C Yes
Average >1 A= (" ,Bi)/n No
Division =2 A=B/C No
Relative change =2 A=(C—-B)/B No

Having defined all components of an aggregation, we can formalize the definition of
the aggregation as follows.

Definition 5 (Aggregation). An aggregation a is a tuple (r « E, f), where r ¢ E and
the value of the cell r can be derived by applying the arithmetic function f on all values
in F.

In principle, the value of r should equal precisely the value calculated by applying
f on E. However in practice, this is often not true as numbers displayed in cells can
be rounded. In fact, we observed that around 30% of all aggregations in our manually
annotated files contain such errors. Numbers can be rounded to different significant
figures, leading to a wide variety of error margins. As verbose CSV files do not preserve
the metadata on how numbers were rounded, we model such a calculation deviation with
an error level and detect aggregations for different levels.

Definition 6 (Error level). Given an aggregation a (r < E, f), where r is the observed
aggregate value, and r’ the value determined by applying f on E, the error level e of a
describes the deviation factor from r to r': e = |(r' — 1) /r|

We calculate the error level with the normalized absolute difference, because numeric

46

3.2 Preliminaries

values of aggregates vary in their order of magnitude. Based on this formula, the highest
observed error for a true aggregation was 37.5%. The error level is undefined if » = 0.
Note that for the few such cases in our dataset, we calculate the error level as the absolute
difference between r and r’. We extend the notation of an aggregation to include the
error level: a (r « E, f, e).

While in principle both r and E can be located at any arbitrary position in a verbose
CSV file, in practice, most aggregations organize r and E in the same row (row-wise) or
column (column-wise). We make this same-line aggregation assumption, because almost
all single-function aggregations of the addressed function type follow this assumption ac-
cording to our observation. Discovering non-same line aggregations can be an interesting
extension, but is likely to be fraught with many false positive cases.

To express a row-wise aggregation, we use a slightly modified notation (row:i, j, «
je, f,€e), where i is the row index of all cells; j, and jg are column indices of the aggre-
gate and the range, respectively; f is the aggregation function; e is the observed error
level. For example, the green-shaded sum aggregation in Figure 3.1 can be represented
as (row:2,1 « {2,3,4}, Sum,0). We call j, « jg the pattern of the aggregation that
indicates the scope of the aggregate and the range. Column-wise aggregations can be
represented analogously. For example, (column:j,i, < ig, f,e) states that in column j,
the number in the cell with row index i, is calculated by applying f on the numbers in
the cells with row indices ig.

3.2.2 Taxonomy of aggregation patterns

Given a row-wise or column-wise aggregation, range elements can be any subset of the
numeric cells in the same column or same row. However, we observe that range elements
are usually not randomly distributed. Authors of verbose CSV files tend to place ag-
gregates close to their corresponding ranges. We summarize three aggregation patterns,
shown in Figure 3.3, based on our examination of our dataset that includes 385 verbose

CSV files.

38 35 (7] 37
12 5 22 (= 8
6 16 9
-
3 3 7
2 | 3
2 13 |« 10 | <
10 10
3 | 3 11 | <
(a) Adjacent (b) Cumulative (c) Interrupt

Figure 3.3: Aggregate-range patterns of three different aggregations (Blue and green
cells are sum and average of the corresponding orange cells).

47

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

The simplest and the most common pattern is adjacent, where the contiguous range
is next to the corresponding aggregate. Empty cells are allowed to appear in-between
range elements without breaking the contiguity. Out of the examined verbose CSV files,
77.9% include adjacent aggregations. The high ratio is likely due to localized reading
habits: humans tend to find the summary of a group of numbers in its direct proximity.

The second pattern is cumulative. As shown in Figure 3.3b, the value 35 is the sum
of 22 and 13, which is not an adjacent aggregation. However, the latter two numbers are
themselves aggregates of two different adjacent aggregations. For example, the global
population equals to the sum of populations of northern and southern hemispheres,
which, in turn, equals those of a number of countries therein. We have observed such a
pattern in around 20% of the files. Note that to obtain a cumulative aggregation, the
intermediate aggregates (22 and 13 in the figure) must be of cumulative nature: for the
aggregations considered in this study, only sum and difference can behave cumulatively.

Lastly, 14.8% of our verbose CSV files contained interrupt aggregations. The range
elements in an interrupt aggregation are scattered in the row or column. Interrupt aggre-
gation happens when, for example, it is blocked by another non-cumulative aggregation
(green shaded cell in Figure 3.3c is the average of the next two cells), an intermediate
aggregation is actually not satisfied, or rows and columns are simply not organized in a
localized manner.

3.2.3 Problem statement

The aforementioned three patterns summarize the appearance of aggregations, and
helped shape our approach. We can now formally define the problem of aggregation
detection in verbose CSV files: given a verbose CSV file V = {¢; ;|i =0,...,M —1,j =
0,...,N — 1}, a set of functions F', a given error level threshold ¢/, find all aggregations
in V using F presented in Table 3.1. Each aggregation satisfies the same-line aggre-
gation assumption, and has the appropriate number of range elements, according to
Table 3.1, i.e., each detected aggregation a (r « E, f, e) must satisfy the following four
requirements:

(i) fer;

(i) e < ¢

(iii) either Ve; 5 € E i =1, or Ve € E, j = jp;

(iv) |E| > 11if f € {sum, average}, or

|E| = 2 if f € {difference, division, relative change}.

3.3 The AGGRECOL Approach

In this section, we present the methods used by our three-stage algorithm AGGRECOL
to detect aggregations in verbose CSV files. We start by describing the overall workflow
of our approach, and then elaborate on the individual, collective, and supplemental
aggregation detection stages in Sections 3.3.1-3.3.3.

Figure 3.4 illustrates the overview of AGGRECOL. Given a verbose CSV file, AG-
GRECOL first detects aggregations of different aggregation functions separately. Because
some results of this step might be incidental, the results are then passed to the collec-

48

3.3 The AcGrRECOL Approach

—
= D »
Adjacent list =
—
Sum Avg — Pruning rules File constructing rules
N\ = l ‘ =
=]
o A — - —_— A -—
» Sliding window j q ~ » NG I » -—
Verbose Diff C—J] Detectt.ed
CSV File Combined Aggregations

aggregations Reconstructed files

Individual aggregation detection | Collective aggregation detection | Supplemental aggregation detection

‘ (] Aggregation detector % Detected aggregations ‘

Figure 3.4: Overall workflow of our three-stage AGGRECOL approach. Round-
cornered rectangles represent detectors for individual aggregation functions. The
terms “Sum/Avg/Diff/Div/RC” stand for “Sum/Average/Difference/Division/Rel-
ative change”, respectively. Each function is associated with a unique color.

tive aggregation detection stage, where we consider the results of all individual detectors
as a whole and remove spurious aggregations with a set of pruning rules. To specifi-
cally handle interrupt aggregations as defined in Section 3.2.2, we introduce a final stage
that constructs new files from the original verbose CSV file, on which we re-apply the
individual aggregation detectors. The third stage outputs the final results.

According to the same-line aggregation assumption, the aggregate and the range of
an aggregation are either in the same row or the same column. Our approach handles
row-wise and column-wise aggregations equivalently in two respective passes over the
data. Without loss of generality, the examples and terminology used in the rest of this
section are focused on row-wise aggregation detection.

3.3.1 Individual aggregation detection

AGGRECOL expects a verbose CSV file as input. Prior to detecting individual aggrega-
tions, we must first understand how values in numeric cells in a file are formatted. Each
file may use a unique number format. For example, one file may use dot as thousands
separator and comma as decimal separator, while another may use space and comma
for them, respectively. The interpretation of numbers may affect the results of aggrega-
tion detection. Section 3.4.2 clarifies our method to recognize the number format and
interpret the underlying numbers in the file.

AGGRECOL detects aggregations of each aggregation function separately. Algo-
rithm 3 outlines the procedure of the individual aggregation detection algorithm. It
takes as input a verbose CSV file V', the function f it detects aggregations of, the max-
imum tolerable error level ¢/, and the minimum coverage cov of aggregates in a row or
column. To help understand the procedure, we use Figure 3.5 as a working example: it
shows a table with four row-wise aggregations whose formulas are shown below the table.
Numbers in the table are modified to fit the example. We set ¢/ = 0, and cov = 0.7.

The individual aggregation detection algorithm starts by recognizing, within each
row, the aggregations whose range is adjacent to its aggregate (lines 4-7). This phase
employs either an adjacency list strategy or a sliding window one, depending on whether

49

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

o
[EEy
N
w
D
wv
[e)}
~
oo
Vo)
[EEN
o
(=Y
[EEN
[B=Y
N

u

> — © © oo

[} © © = .o c

- Q c 8 s 2 00 c S g o v T ®©
(4]) © c © =} © — (o) — -

0 Q o oo € — + ~ < = < o ©
|5 35 £ 5| 5§ §|%5 ¢ 5|6 L
w @ w o o a g &)

8

o . . [EY
o Kenyain Africalw
(=Y

11201313703 215| 9301278 1216 62 2 64 58 6| 128 3395
2 1201414038 546 959|1145 1388 -243| 243, 22 6 16 78| 4138 027
320153900 307 736|15731263| 90| -69 23 6| 17| 123 4046 026
42016 4830 279/1176|1683| 1351548 9| 19 10 9 197 sgae 0.53
52017 4944 378 1669|2897 -305| 228 77 21 8 14 4965 038
6 /12018 5791 900|2583|1148 1127 21 13 34 21 12 5825 0.62
7 20198266 364 4155 3550| 164| 22| 11| 33 14| 19 8299 0.42
a;: €1 =C2+C3+C4+C5+Cg+Cy; az: Cg= Cq+ Cyqp;
az: €12 =C1+Cg+ Cqy; ay: Cy13=0C9/Cg

Figure 3.5: Excerpt of a table that contains three sum (in green) and one division
(in blue) aggregations. C; represents the ith column.

the applied aggregation function is commutative. The two strategies are explained in
the following.

Adjacency list strategy. This strategy recognizes an aggregation only if the set of
all numeric elements in its range is adjacent to the aggregate, e.g., a; and ay in Fig-
ure 3.5. We employ this strategy for aggregation functions that are commutative. The
commutative property guarantees that changing the order of the elements in a range has
no impact on the aggregated result. For the functions addressed in this work, sum and
average hold such property. The commutative property allows us to resort to a greedy
approach: for each aggregate candidate ¢; ; and the numeric cells E = {c; x|k > j} in its
row, the approach iteratively moves the numeric cell in E that is column-wise closest to
¢ij into an adjacency list L. After each move, it checks if the error level between ¢; ; and
the value calculated by applying f on L is smaller than the given €’. If such a list L can
be found, ¢; ; and L compose a detected aggregation. The same process is applied also
to the numeric cells E = {c¢; x|k < j} to detect possible aggregations at the other side
of the aggregate candidate. Although the range of a sum or average aggregation may
have only one element, such single range element cases rarely appear in our datasets.
However, allowing the detection of such aggregations would include massive false positive
cases in the results, especially for files with many cells of identical numbers. Therefore,
our approach requires at least two range elements for these two functions.

Sliding window strategy. For non-commutative aggregation functions, the order of
range elements has an impact on the result. As the greedy adjacency list strategy is not
applicable, we use a window to generate range candidates. For each aggregate candidate
¢ij, the approach creates one aggregation candidate for each permutation of size n in
the set of w numeric cells that are closest to ¢;;, where n is the number of possible
range elements of the function specified in Table 3.1. Then, the approach checks every

50

3.3 The AGGRECOL Approach

Algorithm 3: Individual aggregation detection (row-wise)

Input: Verbose CSV file V, aggregation function f, error level €/, line
aggregation coverage threshold cov
Output: A set of row-wise aggregations D
1D« {}
2 while true do
3 m < length(V);
foreach i in {0,...,m} do
D,,, + DETECTADJACENTAGGREGATIONS(V,,, €');
D'+~ D'UD,,
end
D’ + MENDAGGREGATIONS(D');
if D' =0 then
10 ‘ break;
11 D’ + PRUNE(D', cov);
12 D+ DUD;

© 0 N o otk

13 if fis not cumulative then
14 ‘ break;

15 V < REMOVECOLUMNS(V);
16 end

17 return D

aggregation candidate. Similar to the adjacency list strategy, this process is also applied
to both sides of ¢;; separately. We employ this strategy when detecting difference,
division, and relative change aggregations.

Applying the greedy adjacency list strategy may yield incorrect aggregations in par-
ticular situations. For example, (row:2,1 < {2,3,4,5,6,7}, Sum,0) cannot be retrieved,
as a previously detected aggregation with a shorter range (row:2,1 < {2,3,4,5}, Sum,0)
terminates the search for this aggregate candidate. However, the detected aggregation is
in fact not a true one. It occurs because the sum of ¢z 6 and c2 7 happens to be zero. We
assume that, although such patterns might appear in few rows due to a computational co-
incidence, it is very unlikely that they repeat across all rows in the table. To discover the
above true aggregation and also drop the spurious one, AGGRECOL mends the detected
aggregations by checking whether candidates with the same patterns as the detected
aggregations across rows are also valid aggregations (line 8). In the case of Figure 3.5, as
(row:3,1 « {2,3,4,5,6,7}, Sum,0) is a valid aggregation, we check the candidates with
the same pattern in the other rows and validate the candidates for rows 2 and 5. These
two candidates could not be retrieved, because an aggregation with a shorter range in
the respective row was detected. However, (row:1,1 < {2,3,4,5}, Sum,0) is not valid,
even though it shares the same pattern as the detected (row:2,1 < {2,3,4,5}, Sum,0).
Table 3.2 lists the detected aggregations with no errors after mending for the example
in Figure 3.5.

Note that some rows are not compliant with specific column patterns. For example,
(row:6,1 « {2,3,4,5,6,7}, Sum,0) cannot be detected as the numbers in columns 2-7 in
row 6 add up to 5792, deviating slightly from the aggregate value “5791” in column 1.

o1

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

Table 3.2: Detected row-wise sum aggregations after mending grouped by column
patterns (¢/ = 0).

Column pattern Compliant rows
1 1+{2,3,4,5,6,7} 1,2,3,4,57
2 4+« {56} 1,2,3,4,6
3 8« {6,7} 1,2,6,7
4 8+« {9,10} 1,2,3,5,6,7

If there are no detected aggregations in any row, the entire process is terminated
(line 10). Otherwise, the algorithm removes spurious detected aggregations with a prun-
ing step (line 11).

To perform the pruning step, all aggregations are first grouped by their patterns.
Any group possessing an insufficient amount of aggregations is discarded. The suffi-
ciency score is calculated as the number of aggregations in the group normalized by the
number of numeric cells in the same row. Additionally, for all groups sharing the same
aggregate, only the one with the highest sufficiency score is preserved. The same process
is conducted also for the same-range groups. The surviving groups are organized in a
ranked list, where a group with a higher rank has (i) the more detected aggregations;
(ii) the smaller average actual error level of the aggregations. After that, AGGRECOL
iterates over the list and prunes the lower-ranked groups whose patterns cannot co-exist
with the pattern of the currently inspected group, according to the following three rules.

Directional disagreement. Two aggregation candidates may share the same ag-
gregate, yet develop their ranges in the two different directions, e.g., (row:3,4 <«
{5,6,7}, Sum,0) and (row:3,4 < {2,3}, Sum,0). If such two candidates use the same
aggregation function, we allow their ranges to reside only at the same side of the aggre-
gate, reflecting the typical structure of spreadsheets.

Complete inclusion. For two aggregation candidates, a complete inclusion scenario
appears if both the aggregate and part of the range elements of one aggregation are
contained in the range of the other aggregation. For example, (row:1,4 « {5,6}, Sum,0)
and (row:1,3 « {4,5,6, 7}, Sum, 0) form a complete inclusion, because the aggregate and
range elements of the former are included in the range of the latter. As all elements
in a range should represent entities of the same semantic level, e.g., the average sales
of all departments or the population of all states, any one of them cannot serve as an
aggregate of any of its fellows.

Mutual inclusion. Two aggregation candidates are mutually included when the aggre-
gate of each is included in the range of the other. For example, (row:1,4 « {5,6}, Sum,0)
and (row:1,5 < {3,4}, Sum,0) are mutually inclusive. If one of them, say the former, is
a true aggregation, then c; 5 is part of the range elements that add up to c; 4. Then,
c1,5 should not be the aggregate that sums up numbers including c¢; 4. Two mutually
included candidates cause circular calculations, which should not be correct semantically.

Given these pruning rules, in the example of Table 3.2, only the aggregations with
the 1st and 4th column patterns are preserved. Six of the seven numeric rows, which is
more than 0.7 given as the cov parameter, are compliant rows in both cases. Therefore,

52

3.3 The AGGRECOL Approach

all aggregations in these rows that have one of the patterns are included in the output
of this phase.

Non-cumulative aggregation functions, according to Table 3.1, need no more iter-
ations, because the detected aggregates cannot be used as ranges anymore (line 14 of
Algorithm 3). For cumulative functions, the detected range columns are ignored in the
next iteration (line 15), because they cannot be used as aggregates or ranges by any
other aggregations that will be detected in the following iterations.

The individual aggregation detection phase outputs a set of row-wise and column-wise
aggregation candidates for each aggregation function. The sets of results are consumed
by the next phase that removes spurious candidates.

3.3.2 Collective aggregation detection

The previous phase identifies aggregations of individual functions with the three pruning
rules. However, there might be a number of false positive results — mathematically correct
but coincidental aggregations, which cannot be removed by the individual aggregation
detection phase. Figure 3.6 demonstrates a fictitious example that has a true aggregation
summing up the cost of heating, water, electricity, garbage disposal cost to the total
cost. However, this table also includes a spurious average aggregation candidate, which
calculates garbage disposal cost by taking the mean cost of the other three individual
items. The coverage of this pattern is 3 of 4 (indicated by the orange shaded cells in the
“Garbage disposal” column), surpassing the cov parameter. Therefore, the aggregation
candidates with this pattern cannot be removed by the previous phase.

Total cost Heating Water Electricity gii)b:s‘gj
Household A 280 110 30 70 70
Household B 320 120 45 75 80
Household C 200 74 35 58 50
Household D 240 75 33 72 60

Figure 3.6: A fictitious example table with true sum aggregates (green solid fill) and
spurious average aggregates (orange diagonal strip fill).

To remove the spurious candidates as such, we introduce the collective aggregation
detection phase. By using pruning rules on the collection of results from all individual
detectors of the previous stage, we refine these results: similar to the pruning step in
the first phase, aggregation candidates with a particular pattern cannot co-exist with
those of another particular pattern in the final results. However, in the first phase each
detector refines the detected aggregations of its own function, whereas in this phase,
AGGRECOL performs the refinement across all functions.

Specifically, the algorithm first groups the accepted aggregations from all individual
detectors by their column patterns, similar to the process in the first phase, and ranks

93

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

the aggregation groups by two criteria: (i) the number of range elements in the group of
a column pattern; (ii) the number of detected aggregations in a group. As the primary
criterion, the more elements a range comprises, the higher the group’s priority is, because
we believe that an aggregation with fewer range elements is more likely to be a false
positive. For the secondary criterion, we favor column patterns induced by a greater
number of detected aggregations. For the case in Figure 3.6, the sum pattern has a
higher score regarding both the above criteria than the average pattern, making the
former a preferred choice by AGGRECOL.

Once AGGRECOL has ranked aggregation groups, it filters out groups contradicting
the ones that have been validated, according to the complete inclusion and mutual inclu-
sion rules suggested in Section 3.3.1. Besides that, AGGRECOL discards an aggregation
group if the aggregate in its pattern is the same as that of a previously validated group,
and the ranges of the two groups overlap: if a cell is the aggregate of a particular aggrega-
tion function, it should not act as the aggregate of another function while using (partly)
the range of the former one. However, it is valid for a cell to serve as the aggregate for
two aggregations with disjoint ranges. For example, the yearly net income of a company
that equals the difference between the gross income and the expense can simultaneously
be the sum of the net income of all quarters.

These rules are not applicable to the division function, because division aggregations
can always be included in the final result. For example, given that as in Figure 3.5 is
validated, it is still reasonable to justify a4, even though these two aggregations contradict
each other according to the complete inclusion rule. This division records the percentage
that a part (column 8) accounts for in the entirety (column 7) — a frequent kind of
division usage in our observations.

3.3.3 Supplemental aggregation detection

While the collective aggregation detection phase can eliminate many spurious aggrega-
tions with the proposed pruning rules, difficult cases, such as interrupt aggregations, still
cannot be retrieved. Take the interrupt aggregation shown in Figure 3.3c as an example:
only the average aggregation can be retrieved by applying the first two phases. Because
the sum detector in Phase 1 can identify only adjacent aggregations, it cannot recognize
the interrupt sum aggregation in this case. We introduce the supplemental aggregation
detection phase to detect such interrupt aggregations.

The general idea is to apply individual detectors proposed in Section 3.3.1 on a set
of constructed verbose CSV files derived from the original file. Each of the new files is
built by systematically removing certain aggregate cells that have been detected in the
previous steps. As such “blocking” aggregates are removed from the file, some interrupt
aggregations become detectable using the original individual detectors. Algorithm 4
describes the supplemental aggregation detection approach. It takes the original file V,
the aggregation functions F', the detected aggregations A from the previous phase, the
error level threshold €', and the aggregation row coverage threshold cov as input, and
outputs a set of detected aggregations.

First, individual detectors of all aggregation functions F' are pushed to a queue
(line 2), so that each will be executed at least once. The algorithm constructs a set
of files based on the original file V' by removing specific columns from V' (line 6). On

54

3.3 The AGGRECOL Approach

Algorithm 4: Supplemental aggregation detection (row-wise)
Input: Verbose CSV file V', aggregation functions F', detected aggregations A,
error level ¢/, line aggregation coverage cov
Output: A set of row-wise supplemental aggregations D
1 detectors < {ds|f € F};
2 q < detectors // a queue to store detectors to be executed in the following;

3 D« {}

4 while ¢ # () do

5 | d< pop(q);

6 VS < CONSTRUCTFILES(V, D);
7 res < {};

8 foreach V’in VS do

9 ‘ res < resUd(V', €, cov);
10 end
11 if res # () then

12 D < DU res;

13 q < {detectors\ d}U g;
14 end

15 D < PRUNE(D, cov);
16 return D

the one hand, all aggregate columns of detected non-cumulative aggregations should be
excluded from the constructed files when detecting interrupt aggregations, because they
cannot be used as range elements. On the other hand, each aggregate column of detected
cumulative aggregations can be either excluded from or included in the constructed files,
leading to multiple configurations to construct files. The algorithm constructs one file
for each configuration and applies the individual detectors d on all these files to recognize
more aggregations (lines 7-10).

The approach runs sequentially: individual detectors are executed one after another.
Once a detector discovers new aggregations, the queue reloads detectors of other aggrega-
tion functions that have already been processed (line 13). Newly detected aggregations
may expose interrupt ones, leading to the necessity to re-check the other functions.
Therefore, some detectors might be executed multiple times. The whole process termi-
nates when no aggregation detector reports new aggregations. Finally, the algorithm
applies the pruning rules used in the individual aggregation detection phase again to
filter out spurious supplemental aggregations (line 15).

To summarize AGGRECOL, this approach employs a three-stage approach to detect
aggregations, where the first stage recognizes simple and cumulative occurrences of indi-
vidual aggregation functions. The second stage combines individual aggregation results
into one collection and aims at removing spurious ones. To extend the ability of AG-
GRECOL on discovering interrupt aggregations, we apply the third stage that utilizes the
individual detectors from the first phase on a set of reconstructed files.

95

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

3.4 Experimental Evaluation

This section includes the description of our evaluation datasets and the results of our
in-depth qualitative evaluation of AGGRECOL including a comparison with a baseline
and a detailed error analysis. Also, we present the improvement gain on cell classification
after replacing STRUDEL’s vanilla aggregate detection algorithm with AGGRECOL.

3.4.1 Datasets

We used real-world verbose CSV files from a variety of sources and constructed two
datasets from them to evaluate our approach on detecting aggregations in verbose CSV
files. Most tables in these files have fewer than 100 rows and 50 columns, whereas the
longest and the widest tables contain 601 rows and 97 columns, respectively.

The first dataset combines files from Troy and EUSES. The Troy dataset [Nagy, 2010]
with 200 verbose CSV files has been used in Chapter 2 to evaluate line and cell classifi-
cation approaches. The EUSES dataset [Fisher and Rothermel, 2005] includes a collection
of 1,352 spreadsheet files from diverse domains, such as data management, education,
and finance. The dataset is widely used [Abraham and Erwig, 2007; Gonsior et al., 2020;
Hofer et al., 2013] for spreadsheet cell classification, error detection, etc. We randomly
sampled 200 files from this dataset and converted them to CSV format with the Apache
POI library*. Dropping the files that could not be processed by the library left us with
185 verbose CSV files. As both datasets incorporate files from diverse domains, we
merged them into a single dataset referred to as Validation, as we used it to validate
the effectiveness of AGGRECOL while designing our approach.

The second dataset comprises verbose CSV files from three different datasets: the
Statistical Abstract of the United States (SAUS), the Criminal In the US (CIUS), and
the administrative spreadsheet files on an open data portal of the UK. These datasets
include in total 3,053 files and have been used by related works in classifying lines or
cells [Gol et al., 2019; Jiang et al., 2021]. We randomly sampled and annotated 100
files and created our Unseen dataset with those 81 files that contain aggregations. This
dataset served purely as an unseen test set to assess the generalizability of our approach.

Naturally, verbose CSV files do not contain aggregation information. We use the
“Aggregation Annotation” module in the annotation tool introduced in Section 2.4 to
label our datasets. According to Definition 5, a valid aggregation annotation must include
all the following three components: a single cell that acts as the aggregate, a set of
other cells as the range, and the aggregation function. We have published the tool with
detailed instruction to help researchers or data scientists annotate aggregations in their
own datasets®.

We annotated all aggregations regardless of their shapes in files: apart from the
typical purely numeric aggregations, we observed that verbose CSV files may include
aggregations that comprise non-numeric cells. A typical example is the usage of ‘x’ or
‘.’ in cells to represent zero. Another unusual case represents the number ‘1.4’ with the
string ‘+1.4 Points’. Our annotations cover all cases as such, to better reflect the true

‘https://poi.apache.org/
Shttps://hpi.de/naumann/projects/data-preparation.html

56

https://poi.apache.org/
https://hpi.de/naumann/projects/data-preparation.html

3.4 Experimental Evaluation

Table 3.3: Statistics of datasets.

Observations Dataset
Validation Unseen
Number of files with 385 81
No aggregations 50 0
Aggregations of one type 259 62
Aggregations of two types 71 17
Aggregations of three types 5 2
Aggregations of all types 0 0
Number of aggregations 20,280 5,854
Sum 14,070 4,399
Average 858 33
Division 4,800 1,097
Relative change 552 325
Number of aggregations with 20,280 5,854
error = 0 14,479 4,020
error > 0 5,801 1,834
Min. per-file aggregation count 1 1
Max. per-file aggregation count 1,651 490

aggregations in the datasets, whereas our AGGRECOL approach is not designed to handle
numbers represented in such unusual ways, which we deem as an interesting extension.
Note that aggregations may be subject to rounding errors. Even when an aggregate
could not be precisely derived from its range, we labeled an aggregation based only on
its semantics as indicated context, including file and column names, surrounding cell
value, and our general understanding of the respective domain.

Table 3.3 displays some basic statistics of our datasets showing the high complexity of
aggregations in data files. Around 20% of the files in both datasets include aggregations
of more than one type. Sum is the most frequently used aggregation function, accounting
for about 70% aggregations in both datasets. Aggregations in real-world data files often
have errors — their aggregate does not precisely aggregate the range. This is the case for
about 29% of all aggregations in our datasets.

3.4.2 Number format transformation

Numbers can be formatted in different ways: the decimal separator may vary depending
on the cultural background of file authors, and a thousand separator can differ or be
absent entirely. One file may use ‘12 345,67" and another ‘12,345.67° to represent the
same underlying number ‘12345.67’. Cell values in verbose CSV files commonly preserve
these formats of numbers. As for aggregations, an incorrect interpretation of the numbers
in a file might cause incorrect calculation results. For instance, ‘1.000’ may or may not
be a correct aggregate for 700 + 300 if the thousands separator character is treated as

o7

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

Table 3.4: Overview of valid number formats and their respective occurrence in the
200 files from Troy.

Digit group Decimal

Example Occurrences
separator separator

Space Comma 12 345,67 24.5%
Space Dot 12 345.67 6%

Comma Dot 12,345.67 66.5%
None Comma 12345,67 1.5%
None Dot 12345.67 1.5%

the decimal separator.

Before detecting aggregations in verbose CSV files, we first apply a pre-processing
step to identify and normalize the number format. An investigation into the Troy dataset
indicates five valid number formats, shown in Table 3.4. We propose a number format
transformer that converts values of numeric cells in a file into a normalized format. A
normalized format uses no thousands separator and the dot as the decimal separator.
We created a regular expression for each valid number format. For each cell in the file,
we tried to match it with every regular expression. As a consequence, numeric cells
might be matched to one or multiple number formats, while non-numeric cells do not
match any. We selected the number format that matches most cells in the file and
performed the appropriate transformation. In case of ties, we chose the number format
that has a higher occurrence ratio according to Table 3.4. For all files in our datasets,
this process misjudges the number format of only eight files. These files all use 4-digit
year strings in table headers, leading number patterns using no digit group separator
to match more cells than the respective correct number patterns. With the incorrectly
normalized numbers, AGGRECOL misses the true aggregations in these files.

3.4.3 Quality evaluation

We conducted a series of qualitative experiments to test the ability of AGGRECOL on
recognizing aggregations with a variety of patterns in the datasets. First, we introduce
the metrics used in our experiments. Then, we present the evaluation results on the
Validation dataset at both aggregation- and file-level. After that, we investigate the
generalizability of AGGRECOL by applying it to the Unseen dataset that remained unseen
while designing the approach.

Metrics

According to Definition 5, two aggregations match only if their respective aggregates,
ranges, and aggregation functions all match. We refer to a detected aggregation as correct
if it matches some true aggregation in the ground truth, and incorrect if not. A true
aggregation in the ground truth is missed if no detected aggregation matches it. With
these interpretations, we apply the commonly used precision (P) and recall (R) metrics

58

3.4 Experimental Evaluation

to measure the detection quality of our approach:

|correct| B |correct]

|correct + incorrect| |correct + missed)

Precision counts the number of correctly detected aggregations amongst all detected
ones, while recall counts the number of correctly detected aggregations amongst all in
the ground truth. The F1-score is the harmonic mean of these two measures. Note that
precision is undefined when no result is returned by an approach, similarly for recall if a
dataset contains no true aggregations. As usual, we set the score to 1 in both cases.

Aggregation-level effectiveness

The first experiment evaluates the effectiveness of AGGRECOL at the aggregation level,
considering all aggregations from all verbose CSV files in a dataset equally, regardless of
the files they belong to.

Three parameters have an impact on the performance of our approach: (i) the given
error level parameter €', which specifies how much calculation error does AGGRECOL
tolerate; (ii) the line aggregation coverage cov, which indicates the minimum percentage
of numeric cells in a row or column recognized as aggregates of aggregations with the
same pattern; (iii) the window size used by the sliding window strategy, which specifies
how many numeric cells in the proximity of an aggregate candidate should be checked.

Here, we fix the window size at 10 to cover the majority of the difference, division,
and relative change aggregations, and set the coverage value cov = 0.7, because our
experiment shows that the average F1-score across aggregation functions is highest with
this value. Then, we select the best error level for each function with the results of
individual detectors proposed in Section 3.3.1. Figure 3.7 illustrates the precision, re-
call, and F1l-score our approach achieves for individual aggregation functions with the
aforementioned parameter setting, under different error levels. Note that a difference
aggregation can be trivially transformed to a sum aggregation by moving the minuend
to the aggregate side. Therefore, we merge the ground truth of sum and difference, and
the evaluations on them as well.

We observed a common trend of the change of F1-score against the increasing error
level: it first increases as small increments of the error level allow more true positives to
be retrieved and are still not large enough to include many spurious cases. As the error
level becomes sufficiently large, e.g., 5% for division, the Fl-score starts to decrease,
because the algorithm incorporates many occasional false positive cases in the prediction
and sharply decreases the precision.

While precision keeps decreasing with the rise of error level as expected, recall may not
keep increasing with the error level, which we explain with the fictitious file in Figure 3.8.
The left-most table shows four true aggregations with the pattern F' « {A, B,C, D, E}
based on the semantics of the table, although some of them are actually subject to an
error. When setting the error level as zero, three column-wise aggregations are detected:
two with the pattern F' < {A, B,C, D, E} and the other with the pattern D « {A, B,C},
shown in green in the middle table. The one with the latter pattern is filtered out as
its pattern contradicts the one used by the other two, leading to a recall of 0.5. As
a higher error level is used, six aggregations can be detected. Four have the pattern

29

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

Error level (%)

Sum

Recall Precision

F1

Ple ©
ol|lo

0.5
0.0

0.862

0.731

0.785

Average

Precision

Recall

F1

1.0

0.5

=
o

Ple ©
olo wn

0.5
0.0

0.818

0.538

0.637

Division

Precision

Recall

1.0

1.0

0.5
0.0

0.872

0.881

F1

1.0

0.5
0.0

0.860

Relative
change

Precision

1.0

0.5
0.0

0.786

Recall

1.0

0.5
0.0

0.848

F1

1.0

0.5
0.0

0.765

0 0.001 0.005 0.01 0.05 01 0.5 1 5

Figure 3.7: Per-function recall and F1-scores under different error levels. Line ag-
gregation coverage is set as 0.7.

60

3.4 Experimental Evaluation

A 20 30 25 40 A 20 30 25 40 A 20 30 25 40
B 60 60 50 15 B 60 60 50 15 B 60 60 50 15
C 70 40 25 55 C 55 C
D 151 | 130 | 101 | 109 D 109 D
E 24 19 10 21 E 21 E
Error level: 0 Error level: 1
Precision = 2/3 =0.67 Precision=0/4=0
Recall=2/4=0.5 Recall=0/4=0

Figure 3.8: Example on how recall could decrease with increasing error level. The
file on the left shows four aggregations. While the two files in the middle and on the
right show the detected results under different error levels.

D « {A, B,C}, while the other two have the pattern F' « {4, B,C,D,E}. AGGRECOL
chooses the four candidates with the former pattern, because there are more candidates
with this pattern, and therefore prunes the two predictions with the other pattern,
leading no true positive cases to be retrieved. This usually happens under large error
levels, and therefore many spurious candidates are generated.

Overall, the Fl-score reaches its maximum at different error levels for different ag-
gregation functions. We identify and select the respective optimal error levels for the
aggregation functions for the following experiments.

Given the selected values for both per-function error level and line aggregation cov-
erage parameters, we explored the effectiveness of different stages of AGGRECOL. Fig-
ure 3.9 demonstrates the precision, recall, and F1-scores for each aggregation function.
The letters ‘T" ‘C’, and ‘S’ in the x-axis represent the individual, collective, and supple-
mental aggregation detection stages, respectively. As each stage depends on the result of
the previous stage, the metric score of a particular stage indicates the results obtained
by applying AGGRECOL until this stage.

On the one hand, applying the collective aggregation detection stage increases pre-
cision across all aggregation functions, because this stage removes spurious candidates
detected in the first stage with a set of pruning rules. Although the pruning could also
drop some correct candidates, our experiment shows no or only a very minor drop of
recall. On the other hand, adding a supplemental aggregation detection phase to the
workflow achieves better recall, as expected. An investigation into the results indeed
shows the detection of some interrupt aggregations. Overall, employing all phases yields
a better Fl-score across all aggregation functions.

File-level effectiveness

Verbose CSV files may have different numbers of aggregations: the file with most aggre-
gations contains 1,651 cases, while the one with fewest only one case in the Validation
dataset. The aggregation-level results of the previous section may be biased in favor of
long and wide files with many aggregations. To deal with this bias, we conducted an
additional file-level evaluation on the Validation dataset. For each verbose CSV file, we

61

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

Precision Recall F1
1.0 0.885 0.885 0.843

0.8

0.6
Sum

0.4

0.2

1.0 o.872 0.881 0.887

0.8

0.6
Average

0.4

0.2

1.0 0.895 0.895 0.895

0.8

C . 0.6
Division

0.4

0.2

0.790 0.788 0.782

1T I I I

0.650 0.652 0-690

1 i I I I

0.779 0.779 0.779 0833 0833 0833

Score ¥

Score %

Score %

;-: 0.770 o582 Do 0770 0770 0770 o770 0822 0823
, 0
Relative £ 0.6
change @& 04
| C s | C s | C s

Figure 3.9: Precision, recall, and F1-scores for each aggregation function obtained by
AGGRECOL at different stages. The individual, collective, and supplemental stages
are indicated as “I”, “C”, and “S” in the x-axis.

compared the entire set of aggregations detected by our approach against the collection of
real aggregations in it and determined which percentage of files meets certain minimum
precision and recall values. Figure 3.10 presents the results, where the y-axis represents
the percentage of the files on which AGGRECOL achieves the score in the range given by
the x-axis. The score range between zero and one is divided into 20 bins, each spanning
0.05. As AGGRECOL achieves medium-range precision or recall (between 0.05 and 0.95)
on very few files, we group the bins in this scope into three larger groups, each stretching
over 0.3 on the score.

At file-level, AGGRECOL achieves greater than 0.95 precision and recall for more than

62

3.4 Experimental Evaluation

iz Sum I Average W= Division E== RelativeChange == All
<
3 583
o 1.0 ~NR S O
< m
S g S 3
= 0.8 3
c
o 061
(@)}
3
qc) 0.4+
S . B, 5 R g
1 O -
&7 88853 28gg2 288388 2828%
200 5 23552952 59353 /O.O.O_E
0.0 SR S oo o8 mmo o sl S o o | |
0=P=<0.05 0.05<P=0.35 0.35<P=0.65 0.65<P=0.95 0.95<P=1
Precision
m -
S 288
S 1.01 S 2o
o
(<]
S 61 = &
Q : o
(@)}
S04l
qc) 0.4 . =
o o
%02' gkomoo2 (o} —~ Q § :@@-—cg
: < m m m o - o
= S23F ©S£8888 28285 reEss
0.0- SIS e.c s 5.8 S oS .o =M= ||
' 0=R=0.05 0.05<R=0.35 0.35<R=<0.65 0.65<R=<0.95 0.95<R=1

Recall

Figure 3.10: File-level precision and recall obtained by AGGRECOL on the
Validation dataset.

90% of the files with regard to average, division, and relative change. The corresponding
scores for aggregation-level results are all below 0.9, and even below 0.6 for the recall of
average detection, indicating that most false negative and false positive aggregations are
concentrated in few files. Compared to recognizing the above three aggregation func-
tions, correctly detecting sum aggregations is more challenging — our approach achieves
more than 0.95 precision and recall for 79.2% and 61.6% of the files, respectively. As
around 70% of the aggregations in our ground truth are sum, each file includes on av-
erage more sum aggregations than other types, increasing the difficulty to discover all
of them correctly. The grey bars demonstrate the overall precision and recall across all
aggregation functions. For some cases, it is lower than the precision or recall of any
single function, due to undefined precision or recall values that are adjusted to 1.

Overall, the file-level evaluation results indicate that false negative and false positive
cases yielded by our approach tend to occur only in few files.

63

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

Test on an unseen dataset

Due to ad-hoc shapes and forms of verbose CSV files, a set of 385 files can hardly cover
all aggregation patterns. Therefore, we tested the generalizability of our approach with
a second dataset after completing the algorithm design. Figure 3.11 demonstrates the
file-level precision and recall achieved by AGGRECOL on this dataset.

mZ Sum I Average == Division E=== RelativeChange == All
&
3 [ﬁ
X 1.0 S & 2
~ <)
0
= 28] 2 o
u— © 3
© 0.6 J S
00
(@)}
S
% 0.4
© m m
v © © x m ~ ~
—_ o N o —
@ 0.21 S ~nowod Mo No® SoNoo SoNog
o S833s 28382 #8588 7888%
0.0 o re S.S Skl SRR SSS
0=P=0.05 0.05<P=0.35 0.35<P=0.65 0.65<P=0.95 0.95<P=<1
Precision
m m
3 g, 8
X 1.01 S oS
~ [ee)
$ <)
—= 0.81
- 2
Y— n [te)
o : o
0.6 =] n
> / o
S 04
o @
(] O
o A - T 2 i
o 0-21 oMggg Bomog Qo Qoo gogﬂo
o 0235 53828 S.828 Soo.;l:
0.0 &,IO"|’ - o'.‘?.o'\:t S .$.o S oSS
0=R=0.05 0.05<R=0.35 0.35<R=0.65 0.65<R=0.95 0.95<R=1
Recall

Figure 3.11: File-level precision and recall obtained by AGGRECOL on the Unseen
dataset.

Similar to our approach’s performance on the Validation dataset, precision and
recall are higher than 0.95 for the majority of the files, and sum detection is the most
challenging task on this dataset as well. The similar results on the two datasets indicate
that our solution is not tailored for the Validation dataset, but, rather, can perform
well on general verbose CSV files. A noticeable difference of sum detection precision in
the results of the two datasets appears in the right-most group (0.95 < P < 1), where our
approach obtains only 0.630 on the Unseen dataset. One reason for it is the prevalence
of zero-valued cells in the many unseen files.

64

3.4 Experimental Evaluation

3.4.4 Comparison to baseline

There is no previous work specifically to detect and specify aggregations in verbose CSV
files automatically. Therefore, we compared AGGRECOL with a baseline approach that
eagerly checks all possible range element combinations: for each numeric cell in a verbose
CSV file, the baseline traverses the permutations of all numeric cells in the same row or
column, treating each permutation as a range candidate. Given a verbose CSV file with
n columns, the complexity of the traversal is in O(n*2"~!) for aggregation functions that
involve at least two range elements, and O(n?) for those having only two range elements.
The computational burden is thus infeasible in general, and we set a 5-minute timeout for
each file. Within that limit, this approach managed to process only 202, 203, 379, and
380 files regarding sum, average, division, and relative change detection, respectively,
out of 385 verbose CSV files in the Validation dataset. The baseline was run on a
Mac Pro 2019 using 4 cores. We also tested AGGRECOL on the same hardware with the
same time limit. Our proposed approach is able to finish within 5 minutes per-file for
381 files, which cover all those that can be handled by the baseline. Therefore, only the
baseline processable files are used for the following analysis. Note that even with a 20
minutes time limit, the baseline still cannot finish all files. In contrast, the longest time
taken by AGGRECOL for any single file is about 599 seconds. Because the individual
detectors of AGGRECOL process each aggregation candidate independently, they can be
easily implemented in parallel to improve efficiency. Phase 3 costs on average 85% of the
runtime in the entire workflow.

Not only is the baseline very time-consuming, but this approach also achieves poorer
results than AGGRECOL. Figure 3.12 demonstrates the precision, recall, and F1l-score
achieved by AGGRECOL and the baseline approach. To obtain fair comparisons, we use

Sum Average Division Relative change
s 10 0.862 1.000 0.904 0.931
8
[
o 05
=1
0.002 0.000 0.000 0.000
1.0 0.89% 0.872 0.890 0.833
E
g 05 0.414
- 0.103
. .87
1.0 0.774 0.772 0.875
L
L 0.5
0.188
0.004 0000 [| 0.000 0.000
Baseline AggreCol|Baseline AggreCol | Baseline AggreCol|Baseline AggreCol

Figure 3.12: Precision, recall, and F-1 score comparison between the eager baseline
approach and AGGRECOL. The baseline approach achieves very low precision and
F-1 scores.

65

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

the same error level setting suggested in Section 3.4.3 for both. The baseline approach
retrieves more correct aggregations than AGGRECOL, as expected, because for each ag-
gregate candidate, it checks every possible range element permutation. However, this
approach achieves this recall at the cost of almost zero precision, due to the huge amount
of spurious detected aggregations in few files. For example, a file with many zeros or
ones includes many false positive sum cases.

To further explore the comparison between the baseline and AGGRECOL on individual
files, we present the file-level F-1 score obtained by the two approaches in Figure 3.13.
For all functions, AGGRECOL achieves more than 0.95 on F-1 for more than 60% of the
files, whereas the baseline obtains such an F-1 score for only up to 35% of the files. For
the majority of the files, the baseline achieves less than 0.05 on F-1, which is caused
mainly due to poor precision of the baseline. Overall, the eager baseline approach is not
an ideal solution to obtain high F-1 scores.

Table headers in verbose CSV files could indicate the presence of aggregates in the
same row or column. For example, if a header cell includes the word ‘total’, it might

75 Sum W Average [min Division === RelativeChange

X 1.0

0

2 0.8

U

‘c

o 061

(@]

8

60.4— .

o 5 3 g

o O. o 0 © : © — ©

g TEEE TR c888
00 /LSSs ERR VS8

0=F=0.05 0.05<F=0.35 0.35<F=0.65 0.65<F=0.95 0.95<F=1
Eager baseline

X 1.0

o

— 0.81

L

‘c

o 061

()]

8 04l

2 0.

(0] 3 <

et 0.2 — P X

o V4] O n — o — 3 0 ©

& 8o 3 $888 383§ EEE
0oL Zoliee ssss SS33 SSS

' 0=F=0.05 0.05<F=0.35 0.35<F=0.65 0.65<F=0.95 0.95<F=1

AggreCol

Figure 3.13: File-level Fl-score comparison between the baseline approach and Ac-
GRECOL.

66

3.4 Experimental Evaluation

imply that the numeric cells in its row or column might be the sum of several other
numeric cells. However, our investigation into the Validation dataset shows that only
60.0% of the real sum aggregates use one of the keywords ‘total’, ‘all’, ’sum’, ’subtotal’,
and ‘overall’ in their header. The corresponding ratios for average, division, and relative
change are 86.6%, 53.1%, and 92.4%, with a unique keyword dictionary for the respective
aggregation functions. What is more, these keywords are often used in rows or columns
without aggregates. Our experiments show that the precision scores of detecting aggre-
gates are 0.565, 0.256, 0.458, and 0.038 for sum, average, division, and relative change,
respectively.

3.4.5 Analysis of detection errors

Depending on how the authors organize their data, aggregations in verbose CSV files
have all sorts of patterns. Due to this diversity, recognizing aggregations in all possible
situations is challenging. Here, we analyze the mistakes produced by AGGRECOL on the
dataset and summarize the major causes that lead to false positive and false negative
cases.

A general reason that causes both false positive and false negative cases is the selection
of €. As we used a fixed error level for each function determined by the aggregation-level
Fl-score in our experiment, it may not be resilient to different orders of magnitude of
aggregate values. A difference between r and v’ normalized by a smaller r is larger than
one normalized by a larger r according to Definition 6. Therefore, the fixed error level
might be either too large for big aggregate numbers or too small for small numbers. The
former case yields incorrect results, while the latter causes missed cases.

False positive cases

A particular reason that causes many of the false sum predictions is the small number of
different numbers in table cells. For example, when marking absence as ‘0’ and presence
as ‘1’, a table for the student roster of a course might include only these two numbers.
Therefore, it is very likely that many spurious sum candidates, such as ‘1 = 0+ 1’ are
generated. In our experiment, most mistakes involved many ‘0’-valued cells. We make
similar observations for the division detection results that involve many ‘1’-valued cells.

Empty or almost empty lines and columns can be misinterpreted as contributing
the number zero to the range. We observe such effects in only very few cases and a
corresponding preprocessing might lead to more false negatives.

False negative cases

We have recognized five major reasons that cause false negative cases. First, AGGRECOL
cannot recognize aggregations upon incorrectly formatted numbers, which involves the
cells in only eight of 466 files in our experiments. Second, ranges of some aggregations in
the ground truth are both of the interrupt kind and not in the proximity of their aggre-
gates. Although the supplemental aggregation detection phase retrieves some interrupt
aggregations, it cannot deal with cases whose ranges are not interrupted by aggregates
of other detected aggregations. For example, consider a table that has columns for trade

67

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

volume, import volume, and export volume of a country with other countries in a whole
year and for every month. The aggregation that sums up the per-month import volume
to the yearly one cannot be detected, because the per-month export volume columns,
which are not detected aggregates, cannot be removed when constructing files in the
third phase. The third reason is the inflexibility of a fixed window size, which cannot
cover the whole ground truth. Additionally, we observed that very few pairs of true
aggregations break the ‘directional agreement’ rule proposed in Section 3.3.1. However,
our approach could retrieve these cases by dismissing this rule at the cost of introducing
many false positives into the results. Finally, ranges whose last cells are ‘0’-valued could
be missed when detecting sum, because our adjacency list strategy stops when encoun-
tering zeros. If every sum with the same pattern has the same number of tailing zero
cells, an aggregation with fewer range elements is detected, rather than the true one.

We tested our approach with different error levels, yet none of them can completely
eliminate detection errors caused by the selection of this parameter value. We did not use
particular techniques tailored to address the aforementioned special cases, as they appear
in only few files. Resolving them could lead to many more detection errors overall.

3.4.6 Cell classification improvement

Cell classification aims at classifying each cell in a CSV file as one of several pre-defined
semantic types, among which “aggregation” is a common one [Gol et al., 2019; Jiang
et al., 2021]. AGGRECOL can contribute to the improvement of overall cell classification
performance, as we show for one example: our supervised-learning based cell classification
approach STRUDEL uses a binary feature to represent whether a cell is an aggregate (sum
or average) [Jiang et al., 2021]. Recall from Chapter 2 that STRUDEL uses an approach
similar to the adjacency list strategy of AGGRECOL on detecting aggregates in CSV files.
We replaced the values of that feature with the results of AGGRECOL on the SAUS and
Troy datasets® used there and conducted the same cross-validation experiments described
in that work. Table 3.5 shows the per-type Fl-score of the original Strudel algorithm
and the version using AGGRECOL’s results.

Table 3.5: Per-type Fl-score of the cell classification approach Strudel by using its
original aggregation cell detection approach (Strudel®) or AGGRECOL (Strudel?).

SAUS Troy
Cell type Strudel® Strudel” Strudel® Strudel”
metadata 0.987 0.989 0.975 0.976
header 0.976 0.978 0.959 0.963
group 0.731 0.806 0.638 0.740
data 0.967 0.976 0.950 0.962
aggregate 0.677 0.786 0.615 0.740
notes 0.957 0.956 0.968 0.966

For both datasets, the F1l-score of the aggregation type increases significantly, as ex-

6 Annotations have been revised due to some label errors.

68

3.5 Related work

pected. When using AGGRECOL’s output in the feature of Strudel, more cells previously
classified as one of the other types are predicted correctly as aggregation, increasing the
precision score, and also the Fl-score, of most other types.

3.5 Related work

Two previous efforts have been made to directly address aggregation detection in plain-
text files such as verbose CSV files. Long et al. introduced a keyword-based approach
to recognize only summation in tables of plain-text files [Long, 2010]. They suggested
using two categories of keywords: direct aggregation keywords, such as ‘total’ and ‘sum’,
and complementary keyword pairs in two rows or columns, such as ‘student’ and ‘non-
student’. Our experiment has shown that purely using the first type of keywords is not
effective in detecting aggregations. The complementary keyword pairs used in this work
require external knowledge about the semantics of content in files, which are not available
in our input data.

Our STRUDEL approach incorporates an aggregate detection algorithm to determine
if a cell is the sum or average of numeric cells adjacent to it [Jiang et al., 2021]. The
result was then encoded in a binary feature to detect classes of lines and cells in verbose
CSV files. This approach concerned only adjacent aggregations depicted in Figure 3.3,
missing any cumulative and interrupt cases. While both works exploited keywords,
these information are not always reliable in locating aggregations. A limited number
of keywords is not general enough to cover all cases. Meanwhile, having keywords in
headers does not always imply the existence of aggregations.

After we finished this project, we realized a very recent work that addressed the
formula prediction problem on spreadsheets with a supervised learning approach [Chen
et al., 2021]. To predict the formula of a cell, this approach considers (i) the context
within a bounded range, i.e., the closest 10 rows and columns to the cell in both direc-
tions; (ii) the header row that is always the first row in the file. A BERT encoder [Devlin
et al., 2018] is used to represent the values in the context, and an LSTM decoder [Hochre-
iter and Schmidhuber, 1997] is used to generate the sketch (aggregation function) and
the range (range) in the prediction. Unlike our AGGRECOL approach, this work does
not take the arithmetic aspect into account: it does not encode the relationship between
an aggregate and its corresponding range via calculation.

Despite the lack of previous work on aggregation detection, there is related work
on downstream tasks that require aggregation information as input. In the rest of this
section, we discuss related work on these use cases.

3.5.1 Structure detection

Information in data files, such as spreadsheets and verbose CSV files, are often organized
in an ad-hoc manner: authors treat files like a canvas and drop information at arbitrary
positions therein, which makes it difficult to process data in these files automatically
by a machine. Before we can extract information from these files, it is important to
understand their overall structure (not just aggregations) by recognizing the types of
content in different regions.

69

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

Identifying types of lines or cells in data files is a typical way to tackle the structure
detection task. Various previous works have been proposed for this purpose [Adelfio
and Samet, 2013; Christodoulakis et al., 2020; Gol et al., 2019; Jiang et al., 2021; Koci
et al., 2016]. Common content types include data, header, metadata, aggregation, and
so on. Distinguishing aggregation content from data content is usually challenging, as
the content of both types are often numbers that are similar to each other. An advanced
aggregation detection approach helps locate lines or cells of this type more precisely by
resolving the above challenge and therefore can improve the structure detection perfor-
mance. Detected structures in data files can help extract and transform information
from data files [Barowy et al., 2015; Chen and Cafarella, 2013, 2014].

3.5.2 Formula smell detection and repair

Spreadsheet formulas often contain “smells”. The term formula smell is inspired by
source code smells that indicate violations of programming principles, such as mysterious
variable names and overly large classes [Fowler, 2018]. Such smells may cause poor code
readability and error-prone code refactoring. A formula smell in a spreadsheet indicates
a wide variety of poor usage of the formula functions, such as inconsistent formulas in a
single row or column, missing formulas, and complex formulas that are caused by sloppy
cell copy-and-paste, abuse of formula functions, etc. The existence of such smells may
significantly increase the difficulty of spreadsheet comprehension [Hermans et al., 2012].

Many research efforts have been dedicated to detecting and repairing smelly formulas
[Barowy et al., 2018; Dou et al., 2014, 2018; Hermans et al., 2012; Jansen and Hermans,
2015]. However, they all assume the existence of some formulas in the files. Unfortu-
nately, verbose CSV files do not preserve such information, and not every spreadsheet
keeps formulas in its cells. Aggregation detection approaches can supply the necessary
input to formula smell detection and repair tasks.

3.6 Conclusion and Future Work

Aggregations represent arithmetic relationships between a set of numbers (range) and a
single number (aggregate), and are common not only in spreadsheets but also in tables
of verbose CSV files. A variety of applications depend on the existence of aggregations.
Identifying aggregations helps understand the structure of tables and provides insights
on how raw data can be extracted from such files. In addition, data errors might be
cleaned with the knowledge of the true aggregations.

We formalize the problem of recognizing aggregations in verbose CSV files and rec-
ognize three patterns of aggregations in data files. We propose the three-stage approach
AGGRECOL to address this problem. Our approach can detect aggregations of five types
in verbose CSV files: sum, difference, average, division, and relative change. To eval-
uate the performance of our approach, we annotated 466 real-world verbose CSV files
and conducted a series of qualitative experiments to show the effectiveness of our ap-
proach. For the validation dataset encompassing 385 data files, AGGRECOL achieves
on average 0.795 Fl-score in the aggregation-level evaluation, and more than 0.8 pre-
cision and recall for 93.5% and 88.7% of the files, respectively. A test on an unseen

70

3.6 Conclusion and Future Work

test data shows similar performance. Besides that, we also compared AGGRECOL with
a brute-force baseline approach that retrieved eagerly too many spurious aggregations.
Our study reveals that real-world verbose CSV files incorporate surprisingly many errors
in aggregations. Besides that, we also compared AGGRECOL with a brute-force baseline
approach that retrieved eagerly too many spurious aggregations.

AGGRECOL does have limitations. In this work, we address aggregations whose
aggregate and range are either in the same row or in the same column, which might
not always be the case. For example, we have observed average and relative change
aggregations whose range includes cells from both the same row and the same column
of the aggregate. An extension of AGGRECOL should relax the same-line aggregation
assumption. Another observation we made is that some aggregations involve more than
one aggregation function in the calculation. For example, students’ final scores for a
course may be weighted by the importance of different modules (attendance, homework,
exams, etc.). In this case, both sum and division calculations are involved. Therefore,
another future work could support multi-functional aggregation detection.

71

3. AGGREGATION DETECTION IN VERBOSE CSV FILES

72

Chapter 4

Holistic Primary Key and Foreign
Key Detection

Primary keys (a.k.a. keys) and foreign keys are two of the most important constraints
for relational databases, indicating the entity integrity and referential integrity that
databases need to follow. Both constraints are ubiquitously used in databases. While
in principle, primary keys (PKs) and foreign keys (FKs) should be explicitly assigned
for tables by database designers, in practice, these constraints are either incomplete or
missing, making it difficult to understand the structure of the database schemata.

The reasons for the lack of primary keys and foreign keys are manifold. One major
reason is to avoid performance decline. If the primary key and foreign keys are defined on
a relational table, applying any data manipulation operation, such as insertion, deletion,
and modification, leads the database system to update the underlying key index, and re-
validate the referential integrity for the foreign keys, which might severely impair query
performance. As a consequence, a common practice is to control entity integrity and
referential integrity in the application layer, instead of defining primary and foreign keys
in the database system. Enabling to load legacy data into relational databases is another
reason to exclude primary keys and foreign keys. Legacy data might include duplicated
records that violate entity integrity, or erroneous records that violate referential integrity.
As a compromise, data practitioners need to drop the primary key and foreign key
constraints to allow data loading. Additionally, many relational tables are dumped in
plain-text files, such as CSV files, which are suitable for exchanging data across systems.
However, all constraint definitions may be lost when migrating databases, as plain-text
files usually do not carry metadata. Finally, many data are stored in verbose CSV file
tables, each of which may have its unique structure. By using the techniques outlined
in Section 2.5, we can extract relational tuples from these tables. However, relational
tables constructed from these tuples usually include no metadata.

This chapter introduces our proposed HOPF (Holistic Primary Key and Foreign Key
Detection) approach that automatically discovers both primary keys and foreign keys in
the tables of a database in a holistic manner, which is based on our publication [Jiang
and Naumann, 2020]. HOPF takes as input the sets of a database’s unique column
combinations (UCCs) and inclusion dependencies (INDs), which are the superset of the
true primary and foreign keys. The algorithm ranks all UCCs and INDs by the score

73

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

calculated from a set of proposed PK and FK features and leverages several pruning rules
to remove poor PK/FK candidates. Detected primary keys are used to reduce the search
space of foreign keys, whose detection, in turn, guides the improvement of primary key
results. In this way, HOPF addresses the detection of primary keys and foreign keys as
a whole. The algorithm outputs a refined set of UCCs and INDs as the recognized PKs
and FKs. The resulting sets include on average 88% and 91% of the true PKs and FKs
across the tested datasets.

The contributions of this chapter are the following:

(i) We present HOPF — the first algorithm to detect primary keys and foreign keys in
relational tables holistically, in particular removing the assumption that primary
keys are known and present. We propose advanced pruning rules to filter out
spurious unique column combinations and inclusion dependencies.

(ii) We conducted a series of experiments on five different datasets to show the effec-
tiveness of our holistic algorithm. Foreign keys are also generated without assigning
primary keys to show that the absence of primary keys worsens the performance
of foreign key detection.

(iii) We compared HOPF with the state-of-the-art methods for both primary key and
foreign key detection, and showed the performance of our approach is on par with
or better than the other ones for most cases.

The rest of this chapter is organized as follows: In Section 4.1 we discuss the various
applications of primary keys and foreign keys first, followed by the introduction of the
concepts INDs and UCCSs used as input of our algorithm. After that, we formalize
the primary key and foreign key detection problem. Related works are introduced in
Section 4.2. Section 4.3 lists the features used for the primary key and foreign key
detection algorithm, and Section 4.4 describes pruning strategies for primary and foreign
key candidates. The overall holistic algorithm is explained in Section 4.5. Experimental
results are shown and compared to related works in Section 4.6. Finally, we conclude
this work in Section 4.7.

4.1 Structuring Schemata

Knowledge of primary keys and foreign keys is essential for various applications, such as
data cleansing, reverse engineering, query optimization, and data integration. Although
for databases with simple schemata, missing keys and foreign keys can still be manually
labeled by domain experts, it could be excessively time-consuming or even infeasible to
do so for databases with complex schemata, e.g., databases with hundreds of tables that
have hundreds of foreign keys. Several research efforts have been made for foreign key
detection in relational tables [Rostin et al., 2009; Zhang et al., 2010], which assume the
presence of primary keys. Normally, primary keys exist for tables stored in RDBMS
platforms, because these tools explicitly request users to specify a primary key for each
table. However, this does not always apply to databases compiled from plain-text files or
web sources, because such constraint information would need to be stored in a separate
file. In our experience, such associated information is often not present. The lack of
primary keys motivates us to detect primary keys as well and design an approach to
solve the two inter-dependent problems in a holistic fashion.

74

4.1 Structuring Schemata

Primary keys and foreign keys, which in general can cover multiple attributes, are
essentially the particular cases of Unique Column Combinations (UCCs) and Inclusion
dependencies (INDs). Before formalizing the primary key and foreign key discovery
problem, we briefly introduce these two concepts based on the notations introduced
in [Papenbrock, 2017]. Let us denote a relational schema as R, which may contain
multiple relations. A relation, denoted as R, is a named non-empty set of attributes. An
attribute of a relation is denoted as A € R with its domain dom(A). The cross-product
of the domains of all attributes J ., dom(A) forms the data domain. An instance r of
the relation (a.k.a. a table) R is a set of tuples following the schema thereof. For each
attribute A, every tuple ¢ in the instance takes the value t[A] € dom(A). For a subset
X of the attributes in R, we use ¢[X] to denote the projection on X for t. and r[X] the
projection on X for all tuples in the instance of the relation.

4.1.1 Types of dependencies

There are many different dependencies to describe the characteristics of a table or re-
lationships between tables. We use only unique column combinations and inclusion
dependencies, because they are the supersets of primary keys and foreign keys, respec-
tively. We give the definitions of these dependencies and their relationships to primary
and foreign keys in the following.

Definition 1 (Unique Column Combination). Given the instance r of a relation R,
a unique column combination (UCC) is a set of attributes X C R whose projection
contains only unique, non-null value entries on r, i.e., Vt;, t; € i # j : ;[X] # t;[X]
and Vt € R, A € X :t[A] # L.

A unique column combination is minimal if none of its not-null subsets is a valid
UCC. In turn, all not-null supersets of a UCC are also valid UCCs. A UCC may
contain one or multiple columns, as primary keys can be composed of one or more
attributes. In real-world cases, database designers tend to define primary keys with
few attributes. A study on the SAP ERP system of a Fortune 500 company, which
includes 23,886 relational tables, reported that all tables have a primary key with no
more than 16 attributes. Among the primary keys, more than 95% have fewer than six
attributes [Faust et al., 2014]. Although a single instance of a database system cannot
cover the entire database universe, we believe these valuable observations can be acquired
on a considerable amount of relational database instances.

In principle, each relation R should have one and only one primary key, while in
practice, a primary key might not be definable for some tables. For example, no primary
key can be defined on a table with duplicated records. In this work, we assume that each
table is duplicate-free, and therefore at least one UCC exists.

Each table in an instance of a schema R may contain a number of UCCs. We denote
the set of UCCs in a table as U. Only at most one UCC in U is the true primary key.
Picking the true primary key from U of each table in the schema, we can constitute a
list of UCCs representing the primary keys of R and denote it with PKgr. Note that we
refer to the schema R itself, instead of any schema instance, when describing the primary
keys. This is because the primary key of every relation is instance-independent — it is
determined by the schema.

75

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

TradeType
TT_ID TT_NAME Company
TMB Market-Buy CO_ID CO_AD_ID CO_IN_ID
. TMS Market-Sell
- TSL Stop-Loss ! 2 27
TLS Limit-Sell 2 2 A
TLB Limit-Buy . . e
4 5 MG
.. b 5 6 RB
3 6 7 RL
: Trade ; - -
TID T.TITID T.CAID 3 3 v
2 TLS 4 r 3
3 TMB : 1
4 LB 6 : '
5 TSL 7 i
7 TMB 8 '
I H !

Figure 4.1: A subset of tables of the TPC-E schema. For simplicity, some columns are
omitted. True primary keys are indicated by unframed grey boxes, whereas spurious
UCCs by framed grey boxes. The true foreign key is indicated by the solid arrow,
while spurious INDS by dashed arrows.

Definition 2 (Inclusion Dependency). Given the instances r;, rj of two relations R;,
R; € R, an inclusion dependency (IND), denoted as ;| X] C r;[Y]| with X C R; and
Y C R;j, states that all the value entries in the column combination X in r; are also
contained in the column combination Y in r;, i.e., Vi, € ry, I, € v 1 £y, [X] = t,[Y].

We call the dependent part r;[X]| the left-hand side (LHS) and the referenced part
r;[Y] the right-hand side (RHS). The notation of the defined IND can be expressed as
X CY for short. Note that the definition of IND implies | X | = |Y|. When | X| = |Y| =1,
we call the IND unary, otherwise n-ary. We denote the set of INDs in an instance of
the schema R as I. A foreign key must be an IND, because by definition, each value
appearing in the LHS of a foreign key must be included in the value set of its RHS.
Similar to the primary keys, foreign keys are also independent of the instances of the
schema. We denote the set of true foreign keys of R as F Kg.

Both UCC and IND detection tasks are difficult due to the combinatorial explosion
of column combinations. Fortunately, many algorithms have been proposed in previ-
ous works [Abedjan et al., 2015] to discover these two dependencies, making them well
accessible. However, those algorithms commonly generate huge amounts of UCCs and
INDs — many more than the numbers of real primary keys and foreign keys. Therefore,
the tasks of primary key and foreign key detection are to distinguish true primary keys
and foreign keys from spurious UCCs and INDs, respectively. We present a motivating
example of three relational table excerpts in Figure 4.1 to show the difficulty of primary
key and foreign key detection.

The potentially very many unique column combinations for one table are all valid

76

4.1 Structuring Schemata

candidates for the primary key of that table. For example, both the two shown columns
{T_ID} and {T_CA_ID} in the Trade table in Figure 4.1 are unique column combinations.
While the combination of the two columns {T_ID,T_CA_ID} is also a unique column com-
bination, we regard only minimal ones for simplicity (details discussed in Section 4.1.2).
According to the schema documentation for this table, {T_ID} is the true primary key,
whereas the other one is a spurious candidate. In real-world cases, there might be many
more spurious candidates, making it challenging to recognize only the true primary keys.

Similarly, we can expect many spurious inclusion dependencies besides true foreign
keys. The IND Trade.T_TT_ID C TradeType.TT_ID in Figure 4.1, for example, is a
true foreign key, while the IND Trade.T_ID C Company.CO_ID becomes a foreign key
candidate only because the containment is satisfied. As is shown in Figure 4.1, there
may be much more spurious INDs than true foreign keys.

In other cases that are not shown in the figure, the values of two columns might be
included in one another. For example, in the TPC-E benchmark database, the column
{TD} in the table Trade and the column {SE_T_ID} in the table Settlement are the
primary keys for the respective tables, and the two columns happen to contain the same
set of values. As a consequence, both INDs Trade.T_ID C Settlement.SE_T_ID and
Settlement.SE T_ID C Trade.T_ID are valid foreign key candidates, whereas only the
latter one is a true foreign key.

By examining data, intuitive rules can be found to distinguish keys from spurious
UCCs, which makes the automatic detection of keys feasible. The selection of foreign
keys is also constrained to the predicted primary keys. For example, a foreign key
must reference a primary key according to its definition. Therefore, INDS that do not
reference detected primary keys should be excluded from the predicted foreign key set.
In Section 4.4, we describe the proposed spurious candidate pruning techniques in detail.

4.1.2 Problem statement

With all the terms defined above, we formalize the problem of detecting primary keys
and foreign keys in relational tables as follows: given a database instance with schema R,
the sets of the minimal unique column combinations U and the inclusion dependencies
I of this instance, find the set of primary keys PKgr and the set of foreign keys FKg,
where PKr C U and FKr C I.

The dependency between primary key and foreign key is obvious, because the right-
hand side of a foreign key must be a primary key. Although each table may have multiple
alternative keys, only one of them is the true PK. In this work, we use only minimal
unique column combinations for two reasons: (i) the proposed PK features (see details in
Section 4.3) always prefer the minimal UCCs than their non-minimal supersets; (ii) the
complete set of UCCs (including both minimal and non-minimal UCCs) could contain
exponentially more UCCs than only the minimal UCC set, because each superset of a
minimal unique column combination is also a valid UCC. However, we are aware of a
disadvantage of this choice: when searching for primary keys on tables where any subset
of the real primary key is also a UCC, the true primary keys will not be detected. We
discuss it further in Section 4.6.

Note that real-world data might be erroneous. Therefore, exact UCC and IND de-

7

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

tection algorithms may discover a subset of the true cases and also introduce spurious
results. Approximate detection algorithms address this issue and discover UCCs and
INDs that might contain violations [Caruccio et al., 2015; Kruse and Naumann, 2018;
Kruse et al., 2017]. In this work, we consider only exact UCCs and INDs as input and
assume the datasets do not contain errors.

4.2 Related Work

The proposed HOPF algorithm requires unique column combinations (UCCs) and inclu-
sion dependencies (INDs) as its input. We first briefly summarize the latest techniques
on unique column combination and inclusion dependency detection, even though they
are not the focus of this chapter. After that, we present a discussion of previous research
efforts on primary and foreign key discovery.

4.2.1 Metadata discovery

Efficiently discovering all UCCs and INDs for a given set of tables is a challenge due
to the combinatorial explosion of column combinations. The number of unique column
combinations candidates and inclusion dependencies grows exponentially with the num-
ber of attributes. Given a table with n attributes, there might be 2" — 1 unique column
combinations. Up to (|T‘le/|2) column combinations can be minimal UCCs [Abedjan and
Naumann, 2011]. On the other hand, the search space for n-ary inclusion dependency
candidates is 2" xn! [Liu et al., 2012]. The complexity of both detecting all minimal UCCs
and detecting all maximal n-ary INDs is NP-complete [Kantola et al., 1992; Lucchesi and
Osborn, 1978]. Fortunately, there are already quite a few algorithms designed to discover
unique column combinations and inclusion dependencies [Abedjan et al., 2015], which are
efficient in practice. However, the amount of detected UCCs or INDs can be formidable.
It is not unusual to discover hundreds or even thousands of UCCs and INDs even in
tables with only tens of columns. To enable primary key and foreign key detection with
UCCs and INDs, the challenge is to recognize the spurious candidates from such large
candidate sets.

4.2.2 Primary key and foreign key discovery

Surprisingly, not many efforts have been made for primary key detection. A set of simple
heuristic features was proposed to differentiate true primary keys from spurious unique
column combinations for the purpose of decomposing a relation into Boyce-Codd normal
form [Papenbrock and Naumann, 2017]. The authors calculate and add up scores for
their features for each UCC. Lacking a human expert to view the ranked results, the
UCC with the top score for a table is assumed to be its primary key.

In contrast to the lack of previous efforts on primary key detection, there are some
works dedicated to discovering foreign keys [Chen et al., 2014; Lopes et al., 2002; Marchi
et al., 2009; Memari et al., 2015; Rostin et al., 2009; Zhang et al., 2010]. We briefly
introduce three representative works among them. Similar to the aforementioned primary
key discovery idea, intuitive features can also be applied to foreign key detection. Rostin

78

4.3 Features for Primary Key and Foreign Key Discovery

et al. proposed ten features for machine learning methods to automatically detect foreign
keys from various datasets [Rostin et al., 2009]. However, the method detects only single-
column foreign keys. The authors list several situations in which the classifier makes
mistakes, including transitive foreign keys and one-to-one relationships. A transitive
foreign key represents the situation, where a primary key referenced by a foreign key is
also a foreign key. One-to-one relationships are paraphrased as “PK C PK” in this paper
and explained in Section 4.4.2. Overall, this machine learning-based method is not able
to address these two situations.

Assuming that the data of a foreign key should well represent a sample from the
key column it references, a state-of-art method introduces the randomness metric to
discover both single-column and multi-column foreign keys [Zhang et al., 2010]. The
authors used the earth-mover distance (EMD) to measure the data distribution similarity
between LHS and RHS of foreign key candidates: it is the minimum cost of transforming
one distribution into the other by moving counts of values among buckets within a
distribution [Rubner et al., 1998]. The data distributions are created by choosing a
fixed, same number of buckets for both LHS and RHS, and counting the number of
corresponding values for each bucket. The closer the data distributions are, the smaller
the distance is. It then ranks all foreign key candidates with regard to their earth-mover
distance and reports the performance based on the top X% of the result. This approach
is reported to outperform the one described above [Rostin et al., 2009] on both precision
and recall. Therefore, we compare HOPF only with this randomness-based approach,
referred to as RANDOMNESS in the following sections.

Chen et al. proposed to combine heuristic features with different pruning rules to
detect foreign keys, which is most similar to our algorithm [Chen et al., 2014]. However,
they assume that each table pair can hold only one foreign key, which is a too strong
restriction for real-world scenarios. We refer to this approach as FASTFK and compare
it with our HOPF approach.

We note that all the aforementioned approaches assume that primary keys are already
known and base their heuristics on them. We drop this assumption of prior knowledge
and propose an approach that is better suited for many real-world scenarios. Neverthe-
less, we compare our approach with the last two of the described works on foreign key
discovery, and our experiments show that HOPF tops these approaches in both precision
and recall in most cases.

4.3 Features for Primary Key and Foreign Key Discovery

In this section, we introduce the features used in our algorithm to score and differenti-
ate true primary keys and foreign keys from the respective spurious UCCs and INDs.
Previous works have already proposed some useful features to identify either primary
keys [Papenbrock and Naumann, 2017] or foreign keys [Rostin et al., 2009; Zhang et al.,
2010]. We adopt some of them as well as suggest new features to score each primary key
or foreign key candidate.

79

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

4.3.1 Primary key features

Several useful heuristic features have been explored to distinguish true primary keys from
spurious UCCs [Papenbrock and Naumann, 2017], including the cardinality of a UCC,
average value length, and positions of its attributes in the schema. They have been
proven by the authors to be effective in discovering primary keys for their application of
normalizing relation table schemata. We reuse the score functions for these three features
in our task. Based on our observation, in many cases, headers of primary key columns
follow a different pattern than that of spurious candidates. Therefore, we introduce an
additional name-based feature. We elaborate on the features in the following.

Cardinality. The cardinality of a UCC stands for the number of attributes therein. Be-
cause primary keys are often used as foreign keys that reference other tables, executing
join operation across tables that involve primary keys is a common practice. For main-
tainability purposes, it is common to include few attributes in primary keys. Therefore,
we prefer primary keys with smaller cardinality. We define the cardinality score as ﬁ,
where X is the column set of the UCC. That is to say, the more columns are involved
in a UCC, the lower its chance is to be a true primary key.

Value length. When performing join operation across tables, values in the joined
attributes are compared with each other. The efficiency of value comparison can be highly
dependent on the type of values. As comparing strings to one another is cumbersome,
a good practice is to join on attributes with short, integer values, such as automatically
incremented integers. Therefore, we expect columns used as primary keys to have short
value length. The score function used for this feature is (1] mlax(SIEE where | max(X)|
is the average length of the longest values of each column in X, and [represents the
parameter to penalize long values. It can be adjusted according to the datasets. In our
experiments we choose [= 8, a reasonable choice for one of the following primary key
types: (i) commonly used surrogate keys that are usually compact data type, such as
4-digits or 8-digits integers; (ii) auto-incremental integer keys that use at most eight
digits in tables with less than 100 million records; (iii) date string keys that require up
to eight characters — four for the year part, and two for the month and the day parts. In
our datasets, the primary key length of the longest table is eight. Although our choice
cannot cover all real-world primary key cases, we believe it can be useful for a great
number of tables. For multi-column UCCs, we calculate the score for each column and
use the average as its overall score.

Position. In principle, attributes are unordered in a relation, while in practice, there
is an implicit order of attribute positions when defining the schema. For single-column
primary keys, we observed that in most cases, primary keys appear in the left-most
position of the column list. A similar observation was made for web tables [Venetis
et al., 2011]. In addition, for multi-column primary keys, we expect no (or very few)
non-key columns in between the key columns, apart from that all keys should be close
to the left-most position in the column list. The column position score is calculated
as %(|left()1()|+1 + ‘betweerll(x) +7), where left(X) and between(X) represent the number of
columns left of the first coiumn of X and the number of non-key columns between the
first and last columns of X, respectively.

Name suffix. Database designers often highlight primary key columns with particular

80

4.3 Features for Primary Key and Foreign Key Discovery

suffix in the column name. We notice in all datasets used for experiments that primary
key columns are often indicated by their column suffix name, e.g., “id” and “key”. Here
we choose “id”, “key”, “nr”, and “no” as our suffix set. Clearly, this list can be extended,
for instance, to include foreign language schemata. For a given UCC, we apply the score
function as %#, while |suffiz(X)| counts the number of columns in the UCC whose
name contains either suffix mentioned above. The count is normalized by the cardinality

of the UCC.

We denote the unweighted average of the above feature scores as the primary key
candidate scores. Note that many relational database systems allow users to export tables
without column headers to plain-text files. Therefore, column headers of tables stored
in plain-text files are often missing. To test the effectiveness of our features without
knowing header names, we also perform experiments with this feature turned off.

4.3.2 Foreign key features

Rostin et al. proposed ten heuristic features to discover foreign keys among INDs [Rostin
et al., 2009]. Zhang et al. suggested a randomness feature for data value distribution that
subsumes a variety of those features except column names [Zhang et al., 2010]. However,
the computation of this feature is very time-costly. We describe in the following our
improved version, namely the data distribution feature. Column name similarity also
plays an influential role in discovering foreign keys, which is not covered by the data
distribution features. However, Rostin et al. only checked the exact match or complete
containment of each pair of column names. We propose an improved column name
feature with a fuzzy matching approach [Chaudhuri et al., 2003]. Overall, we employ
two features for foreign key discovery, which are column name and data distribution. We
elaborate on these two features in the following paragraphs.

Column Name. In many cases, for the purpose of better schema understanding and
database maintenance, database designers tend to avoid giving arbitrary names to related
tables or columns. An inclusion dependency R.A C S.B is likely to represent a true foreign
key if the names of the table R and the column combination A are similar to those of
S and B, respectively. Therefore, we present a column name feature that leverages
the string similarity between the LHS and the RHS of INDs. We tested several string
similarity functions and found the fuzzy similarity function, which has been initially
proposed to solve the fuzzy matching between records [Chaudhuri et al., 2003], to be
most suitable for our task. To calculate similarity using this metric, each string in the
labels of the components R, A, S, and B is tokenized first by delimiters. A valid delimiter
can be either “” or “-”. In the case where a label string has no delimiter characters
but is presented in camel case, we split the string at the positions before the uppercase
letters. After the tokens for each component in a foreign key candidate is generated,
we combine the token sets of table name and column name for both LHS and RHS. For
example, given an IND Trade.T_S_SYMB C LastTrade.LT_S_SYMB, the merged token set
of the LHS and the RHS are T gs = {Trade, T, S, SYMB} and Trys = {Last, Trade, LT,
S, SYMB}, respectively. To calculate the similarity between the LHS and the RHS, we
map each token in Trpg to the most similar unmapped token from Ty pg. The similarity
between two tokens is computed by the Levenshtein distance [Levenshtein et al., 1966].
Overall, the similarity of an inclusion dependency is calculated according to the following

81

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

formula [Chaudhuri et al., 2003]:

S (sim; x dn(1)
> i1 ln%

J

sim(LHS, RHS) =

where sim; is the token similarity between the jth token in Tryg and the most similar
one to it in Trgg. Note that if T g contains fewer tokens than Trgyg, some tokens in
Trps cannot find a map. For each such token j, we set the sim; as zero. f; represents
the frequency of the jth token in the collection of all table and column names. ln(f—lj)
is the weight of the token in Tgpg, which measures the rarity of the token. We prefer
rare tokens to common ones. Intuitively, a rare token is more useful to indicate the
similarity between two strings, therefore should receive a higher weight. The similarity
is asymmetric, which means that, given two INDs R.A C S.B and S.B C R.A, the
similarity of the former is different from that of the latter. This is useful to recognize
the true foreign key from two INDs whose column-set values are included in one another
and thus their data distribution scores are identical.

Data Distribution. In many cases, values in the LHS of a true foreign key approxi-
mately follow an even sampling of the values in the RHS. This approximation becomes
more precise when the number of values in the LHS increases. For example, values of
the course_id column in the table that deposits student course registration information
reference the values of the course_id column in the table that stores the information of all
courses. As the number of course registrations increases, each course tends to receive a
similar amount of registrations. Based on the aforementioned uniform sampling assump-
tion, Zhang et al. proposed to measure the similarity between the LHS and the RHS of
an IND with the data distribution similarity of the two sides, by using the earth-mover
distance [Zhang et al., 2010]. When selecting true foreign keys from all IND candidates,
they prefer those with high data distribution similarity to the ones with low.

The data distribution of the participating columns is a good indicator to distinguish
foreign keys from spurious INDs. We verify the effectiveness of this assumption while
observing the time overhead to construct this measure is large. Therefore, we propose a
simpler yet effective histogram difference to represent the cost: Given an IND r;[X] C
r;[Y], we create a set of buckets according to the value range of each column Y; in r;[Y]
and put each value into the corresponding bucket. We choose twenty as the number
of buckets by default, which is a good choice we experimentally show in Section 4.6.2.
The buckets form a histogram, which is denoted as Hist(Y;), and for each column X;
in X we place its values into the buckets created for Y;. The overall data distribution
score is the average of the histogram difference score in each dimension. While there are
some other alternatives for histogram difference calculation, such as the L; norm and
histogram intersection, we use the Bhattacharyya coefficient [Bhattacharyya, 1946] — a
known good solution to measure the similarity, thus the difference in turn, between two
histograms.

4.4 Pruning PK and FK candidates

Enumerating and scoring all combinations of UCCs and INDS in their corresponding
search space is the most naive approach to discovering PKs and FKs. However, this

82

4.4 Pruning PK and FK candidates

approach is excessively time-consuming due to the potentially exponential number of
valid candidates. Consider a schema with only 20 tables: even if each table contains
only two UCCs and the whole schema instance includes only 50 INDS, there are 22°
primary key candidate combinations and 2°° candidate combinations of foreign keys in
the search space. And in practice, tables contain many more UCCS and typical databases
contain thousands of INDS, leading the naive traversal approach impractical. Therefore,
advanced pruning techniques are needed to reduce the search space.

Note that foreign keys are defined to reference a primary key. Therefore, once the
primary key is chosen for a table, all the foreign key candidates that reference other
UCC:s in the table can be filtered out. This motivates us to combine the discovery of
primary keys and foreign keys in a two-step approach. In particular, a combination of
UCC:s is selected from the search space, each of which is considered as the predicted
primary key for the corresponding table. Thereafter, we determine the foreign keys from
the INDs whose RHS are among these primary keys. The PK’s score is summed up
with the FK’s score for this selection. After enumerating all combinations of UCCs and
their corresponding INDs, the selection of UCCS and INDs with the highest overall
score is passed to the primary key reduction process, which we describe in Section 4.5,
to improve primary key detection results with discovered foreign keys.

In order to avoid checking every UCC and IND, we suggest filtering techniques for the
detection of both primary keys and foreign keys to help the algorithm skip unnecessary
checks. These techniques include foreign key candidate prefiltering, PK C PK filtering,
primary key candidate pruning, and foreign key candidate pruning. We elaborate on
each of them in the rest of this section.

4.4.1 FK candidate prefiltering

The number of INDs typically grows quadratically with the number of tables and
columns [Tschirschnitz et al., 2017]. However, not all valid INDS are good candidates
for foreign keys. The prefiltering step, which leverages the following two rules, aims at
keeping only a small suitable portion of the INDs as foreign key candidates.

RHS Uniqueness. By definition, a primary key contains neither duplicate values nor
Null-values. As a foreign key must reference a primary key, the RHS of the foreign key
is a UCC and does not contain Null-values. Therefore, we prune all INDs whose RHS
is not a UCC, and thus not a primary key candidate.

Non-Null Column Combinations. We observed that columns with only null values
exist, especially in real-world datasets. In principle, these columns can be seen as in-
cluded in any other column. However, for the purpose of deriving foreign keys, they are
not useful and thus we ignore them.

Table 4.1 displays the number of INDS before and after prefiltering on each used
dataset. We introduce the datasets in more detail in Section 4.6.1. Applying the two
rules reduces the number of INDS to be considered in the following steps.

83

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

Table 4.1: INDs before and after FK candidate prefiltering.

Dataset Before After
TPC-H 90 33
TPC-E 511 175
Adwork 19,602 2,047
SCOP 6,450 2,062

MusicBrainz 236,151 28,722

4.4.2 PK C PK Filtering

Auto-incremented integers are often used in unary primary keys for tables. When using
such an approach, primary key values of a table often subsume those of another, when the
former table contains fewer tuples than the latter, which shapes a valid IND whose LHS
and RHS are the primary key columns of the former and the latter tables, respectively.
We denote this type of INDS as PK C PK. In the case where two tables have similar
numbers of tuples, the PK C PK IND seems a good foreign key candidate, because most
values in the LHS are covered in the value set of the RHS, and the occurrences of the
covered values are close to one another.

However, PK C PK inclusion dependencies are usually not true foreign keys. To prune
out such candidates, we propose a PK C PK filtering: given an IND A C B, we discard it
if the ordered values in A form a consecutive subsequence of the ordered values of B —
in such cases it is more likely that A is a key in its own right, and its inclusion in B is
spurious.

In the TPC-H database, for example, all tables have such an auto-incremented integer
primary key. The table REGION contains only five tuples, whose primary key values
are 1...5, whereas the NATION table contains 24 tuples, whose primary key values are
1...24. Therefore, REGION.REGIONKEY C NATION.NATIONKEY is a valid IND. However,
such a PK C PK IND is meaningless and thus should be filtered out, because the set of
ordered values in the LHS is a consecutive subsequence of that in the RHS.

The FASTFK approach [Chen et al., 2014] does not take such PK C PK candidates
into account on foreign key discovery. Motivated by the fact that many tables contain
auto-incremental integer primary keys, the RANDOMNESS approach [Zhang et al., 2010]
suggests a consecutive prefix or suffix check between LHS and RHS as a naive approach
to detect foreign keys. Our HOPF algorithm relaxes this restriction by considering any
consecutive subsequence.

4.4.3 Primary key candidate pruning

Each table may possess multiple UCCs. To obtain the optimal result, we need to consider
all valid UCC combinations, i.e., the Cartesian product of the UCCSs by the tables they
belong to. In practice, the search space is still quite large, even after we restrict only one
out of all the UCCs for each table to be considered as the primary key. For example,
we can see from Table 4.2 that for the TPC-H schema, there are more than 76 million
different PKR candidates. We denote a primary key combination candidate as PKcc.

84

4.4 Pruning PK and FK candidates

Traversing the whole PKcc search space is impractical. To reduce the number of
candidates that need to check, we first group the UCCs by the table they belong to, and
then rank them within each group in a descending order of their scores calculated based
on the primary key features mentioned in Section 4.3.1, with the goal of pruning poor
candidates that obtain low scores.

Figure 4.2 shows the score for each primary key candidate of the table Trade in the
TPC-E schema, as an example. The x-axis represents the rank of candidates with regard
to their scores, while the y-axis shows the primary key score for each candidate. The
score for the top-ranked candidate, which is the true primary key for this table, is much
higher than those of all other candidates.

Inspired by this observation, we propose a metric cliff to help select the subset
of a table’s all UCCs that is likely to include the true primary key of the table. To
calculate the cliff of a set of UCC candidates, let us denote S; as the score for the top-
ith candidate. For each pair of neighboring candidates S; and S;+1, the score-difference
equals SD; = S; — Si+1. In analogy to the notion of a knee [Terrell, 1913] for continuous
curves, we define a cliff for our discrete case:

Definition 3 (Cliff). Given the sorted score list of the primary key candidates
of a table S = {S1,S59,...,5,} and the corresponding score-difference list SD =
{SD1,S8Ds,...,SD,_1}, the cliff of the table is the pair of neighboring candidates S;
and S;+1 with the largest SD score.

The candidates of each table can be separated into two subgroups at the position
of the cliff, namely Upper, which includes all the candidates before the cliff (S1,...,S;)
including S;, and Lower, which includes the remaining candidates (S;11,...,Sy), includ-
ing S;11. For example, the cliff of the Trade table is the pair of the top two primary
key candidates due to the largest SD score between them. In this case, the upper part
contains only the top candidate, whereas the lower part contains the remaining 15 ones.

We calculated the Upper and the Lower for each table in all datasets to see into
which part the true primary keys fall. Table 4.2 shows the result. For example, 31 out
of 32 primary keys in the TPC-E database fall into the Upper part, while only 1 of 32
primary keys fall into the Lower part of the candidates for that table. The statistics
in Table 4.2 support this observation also for the other datasets. To reduce the search
space of PKp, we simply drop the Lower part from contention for the primary key, which
means the primary key of only one table in TPC-E gets lost. This shrinks the primary
key search space drastically. For instance, the search space for the TPC-E database is
reduced from 9.03 x 103 candidates to only 768, as indicated by the numbers of primary
key combination candidates before (# PKcc before) and after (# PKcc after) pruning
in Table 4.2. Reducing the primary key search space with the cliff metric loses very
few primary keys for only the TPC-E and MusicBrainz databases. We verified the
effectiveness of filtering out poor candidates with the cliff metric, by using which there
is no need to include a parameter to control the number of filtered out candidates.

4.4.4 Foreign key candidate pruning

Inclusion dependency discovery algorithms, which produce the foreign key candidates,
regard only value containment between columns. However, treating every IND as a

85

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

e
o U1 O wun
1 J

=
w
|

Primary key score
=
o
|

©
ul
|

. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
‘Rank 3.125 1.150 | 0.782 | 0.683 | 0.494 | 0.459 | 0.446 | 0.443 | 0.442 | 0.441 | 0.441 | 0.435 | 0.432 | 0.426 | 0.422 | 0.405

Primary key candidate rank

Figure 4.2: Scores of primary key candidates of tables Trade in the TPC-E database.
The candidates are ranked in descending order of their score. The green and orange
shaded regions are the Upper and Lower, respectively. The cliff appears between
the first and second candidates.

Table 4.2: Evaluation datasets with the number of primary key candidate combi-
nations before and after pruning Lower. “# PKs U” and “# PKs L” indicate the
number of true primary keys falling into Upper or Lower. Thus, “# PKs L” is the
difference of the number of tables and “# PKs U”.

Dataset # Tables # PKsU # PKsL # PKcc before # PKcc after
TPC-H 8 8 0 7.67 x 107 1
TPC-E 32 31 1 9.03 x 103 768
AdWork 27 27 0 6.23 x 10%! 256
SCOP 42 42 0 7.25 x 1011 2
MusicBrainz 124 122 2 3.73 x 10% 576

foreign key may yield a huge amount of spurious results. To reduce the size of the foreign
key candidate set, specific pruning techniques are needed. We propose two candidate
selection rules that leverage the mutual exclusive nature amongst foreign key candidates,
i.e., uniqueness of foreign keys and non-cyclic reference. Figure 4.3 visualizes the rules.

Uniqueness of foreign keys. Each foreign key can reference only one primary key
in a schema, while the values of the LHS of an IND might be contained in multiple
different RHSs. If one of these INDS is a true foreign key (shown as the solid arrow in
Figure 4.3a), it is clear that all others are spurious (shown as the dashed arrow).

Non-cyclic reference. Figure 4.3b demonstrates a situation where a set of INDs
forms a cyclic reference. If a cyclic reference exists in the schema, all the involved
column combinations contain the same values, which we consider as not semantically
meaningful. Therefore, we do not predict a foreign key that causes a cyclic reference
in the schema graph. The dashed arrow in Figure 4.3b introduces a cyclic reference
and should not be predicted as a foreign key if the other three solid arrows are already

86

4.5 Holistic algorithm HoPF

~
N
S] v
o) e) e f— ¢]
(a) Only one referenced RHS (b) Non-cyclic reference.

Figure 4.3: Dashed INDs are invalid foreign keys.

classified as foreign keys. In our datasets, it is more common that two IND candidates
form a cyclic reference, because the underlying tables have the same number of records.

To remove foreign key candidates that contradict the ones already predicted as foreign
keys, we first ranked the foreign key candidates in descending order according to their
foreign key scores calculated by the features introduced in Section 4.3.2. An empty
prediction set is created to keep all predicted foreign keys. Then, we iteratively moved
the top-ranked candidate in the ranked list to the prediction set and removed the ones in
the ranked list, which contradict this predicted foreign key according to the above rules.
We observed that there may exist still many valid foreign key candidates with low scores
after we applied the above two rules. To avoid suggesting too many false foreign keys,
our approach stops the iteration as long as the whole schema is connected. Consider
the schema as an undirected graph, where each node is a table in the schema and each
edge represents a predicted foreign key between the two connected nodes, the schema is
connected when every node is reachable from every other node. Before the graph is fully
connected, there might be multiple predicted foreign keys between a single pair of tables.
In this case, we only keep one edge between the nodes of these tables. The connectivity
of all the tables is a good indicator that the majority of true foreign keys have been
found, as shown by the recall in Figure 4.5. To this end, HOPF checks whether the
schema connectivity has been fulfilled each time a new foreign key is predicted.

4.5 Holistic algorithm HoPF

Figure 4.4 presents the overall workflow of our proposed algorithm HOPF. Given the
UCCs of individual tables, INDs across the whole database, and basic statistics of each
column, it first refines the set of UCCs and INDs, decreasing the number of primary key
and foreign key candidates needed to be processed in the next step. For all surviving
candidates, HOPF enumerates all primary key candidate sets and their corresponding
INDs, scoring each of them with regard to the features proposed in Section 4.3 and se-
lecting the proposed true primary keys and foreign keys. The special PK C PK candidates
are removed during this procedure. Conflict checking is integrated into the process of
foreign key detection to remove further spurious INDs. Before producing the final re-
sult, a primary key reduction step simplifies the predicted primary keys and amends the
corresponding foreign keys. The used candidate pruning techniques have been described
in Section 4.4.

87

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

Database Metadata (UCCs, INDs)

—

 —

FK Candidate

HoPF

Pre-filtering UCC Pruning
‘ |
PK Selection PK € PK Filtering
FK Selection Conflict Checking
PK Reduction
Discovered
PKs and FKs

Figure 4.4: Overview of the HOPF algorithm.

The general algorithm to holistically determine primary keys and foreign keys from
UCCs and INDs is displayed in Algorithm 5, which in turn calls various methods that
are shown in the following separately. In line 5.2 (line 2 of Algorithm 5), the search space
of primary key combinations is generated and saved in PKcc (Primary Key combination
candidates). The loop from line 5.3 to line 5.15 calculates the scores of these primary key
combinations along with their corresponding foreign keys, determining the one with the
highest score as the predicted primary key set and foreign key set. In line 5.4 only the
foreign key candidates that reference a predicted primary key are retained in FKCands.
We restrict the minimal number of FKs to be |PKc¢|—1 in line 5.5, otherwise it is certain
to break the rule of schema connectivity. In line 5.6 the algorithm searches for the INDs
to form the foreign keys given the detected primary key combination PKc. Here, D
represents the discarded inclusion dependencies that are used to restore some foreign
keys later in line 5.7. The lines from 5.8 to 5.13 simply select the primary keys and their
corresponding foreign keys with the highest overall score as the final prediction.

Algorithm 6 displays the procedure of finding all suitable primary key combination
candidates. It first groups all UCCs by the tables they belong to, and filters out poor
primary key candidates according to the cliff technique described in Section 4.4.3. To
compose a primary key combination, only one candidate from each table’s leftover UCC
set is selected.

Given the primary key combination, the procedure of generating detected foreign

88

4.5 Holistic algorithm HoPF

Algorithm 5: Holistic Primary Key and Foreign Key Detection (HOPF)
Input: UCC set U, IND set I, schema R
Output: Predicted primary keys P, Predicted foreign keys F

1 P+ {},F+ {},Q+0;

2 PKcc «+ GETPKCOMBINATIONS(U, R);

3 foreach PKc in PKcc do

4 FKCands < I \ PRUNECANDS(I, PKc);
5 if |FKCands| > |PKc| — 1 then
6 (FKCands, D) < GETFKCANDIDATES(FKCands);
7 (PKc, FKs) <+ PKREDUCE(PKc, FKCands, D);
8 score <— scorepg. + SCOTeFKs;
9 if @ < score then
10 P+ PKc;
11 F <+ FKs;
12 Q < score;
13 end
14 end
15 end

16 return P, F

Algorithm 6: GETPKCOMBINATIONS()
Input: UCC set U, schema R
Output: primary key combinations PKcc
PKce < {};
foreach R; in R do
g; < {ulue UN R, = R;};
CLIFFPRUNE(g;);
end
foreach PKc € g1 x ... X g|g| do
| PKcc+ PKccU {PKc};
end
return PKcc

© 0w g OO A W N

keys is shown in Algorithm 7. All input foreign key candidates are first ranked by their
score in line 7.2. In line 7.3 we initialize a graph to represent the tables of a schema
and the predicted foreign keys among them. Each node represents a single table. An
edge is added between the two corresponding nodes if there is a foreign key connecting
two tables. From line 7.4 to line 7.18, qualified INDs are greedily added to the graph as
predicted foreign keys from top to bottom with regard to their scores. Each time a new
foreign key is predicted, the algorithm checks whether the schema connectivity is met
and stops if the graph is connected. The non-cyclic reference requirement is checked in
line 7.6, followed by the PK C PK check. Candidates failing the PX C PK check are added
into the discard set D and used in the primary key reduction step. Once a foreign key is
predicted, all other candidates that share the same LHS are excluded from the existing

89

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

Algorithm 7: GETFKCCANDIDATES()
Input: Inclusion dependencies 1
Output: Foreign key candidates FKCands, Discard set D
1 FKCands < {}, D < {};
2 I’ < SORTBYSCOREDESCENDING(/);
3 G(I')«+ G(N«+T,E + {});
4 while I’ is not empty do

5 FKCand < FIRSTELEMENT(I’);
6 if FKCand causes no circle reference then
7 if FKCand is not a PK C PK then
8 FKCands <— FKCands U {FKCand};
9 E + FEU EDGE(FKCand);
10 if G(I') is connected then
11 ‘ break;
12 else
13 ‘ D + D U{FKCand};
14 end
15 end
16 end
17 FKCand" + {FKCand|LHS(FKCand’) = LHS(FKCand) A FKCand’ C I'};
18 '« I'\ FKCand";

19 end
20 return FKCands, D

foreign key candidate set (lines 7.17 and 7.18).

In principle, each table should define a primary key to keep entity integrity. In
practice, however, primary keys are not always defined, especially for so-called join tables,
which represent many-to-many relationships between two or more tables. Although an
indexed primary key helps to query more efficiently, it becomes an encumbrance under
frequent data modifications, leading schema designers to avoid defining primary keys
for such tables. We observe that the two largest datasets used in our experiments, i.e.,
SCOP and Musicbrainz both contain a few join tables without primary key definitions.
Because we leverage only minimal UCCs as input to generate primary key candidates, a
true multi-column primary key of a join table cannot be included in the candidate set if
a subset of these columns is already a UCC. If our algorithm treats the smaller UCC as
the primary key for such a table, it is a false positive. A true foreign key, whose LHS is
such a false positive primary key, may be considered as spurious IND with the PK C PK
filtering described above.

A naive solution to avoid this loss of true foreign keys is to use the set of full UCCs
as input to produce primary keys. However, this approach has two disadvantages. First,
a full set of UCCs contains exponentially more UCCs than its minimal set counterpart,
because each column combination subsuming a UCC is also a valid UCC. Second, using
the full UCC set may yield wrong primary keys that are non-minimal UCCs, while
true PKs are usually minimal ones. Therefore, this approach may predict many wrong
primary keys and further undermine the effectiveness of foreign key detection. To improve

90

4.6 Experiments and Analysis

Algorithm 8: PKREDUCE()
Input: Primary key combination PKC, Predicted foreign keys FKCands,
Discarded foreign key candidates D
Output: Updated primary keys PKC, Updated foreign keys FKs
1 FKs «+ {};

2 score <— Scorepic + SCOT€RKCands)
3 foreach PK in PKC do

4 PKC’ «+ PKC \ PK;

5 FKCands’ <— UPDATEFKCANDS(PKC’, FKCands, D);
6 if score < scorepicr + Scorepkcands’ then

7 PKC + PKC(C";

8 FKs + FKCands’;

9 score <— scorepic + SCOTepKs;

10 end

11 PKC < PKC \ P;
12 end

13 return PKC, FKs

the recall of foreign keys, we propose the primary key reduction step as a post-process
technique as shown in Algorithm 8. We observe that by removing inappropriate primary
keys from the predicted PK set, we can rediscover some true foreign keys that were
discarded when iterating the FK candidates. For each predicted PK, we exclude it from
the primary key combination and update the corresponding foreign key candidates. We
assume that a predicted PK is not true (and should be discarded) if the overall score
rises with its absence. This process consequently leads to two advantages. On the one
hand, some false positive primary keys are ultimately removed and previously discarded
PK C PK candidates referencing one of these PKs are restored, because their LHS is no
longer primary keys. On the other hand, the false positive foreign keys referencing one
of these discarded primary keys are not conceived as valid foreign keys anymore.

Finally, the HOPF algorithm selects a subset of UCCs and INDs as the predicted
primary keys and foreign keys, respectively. The result primary key and foreign key sets
have much fewer elements than the original input UCC and IND sets. Therefore, using
HOPF yields highly correct PKs and FKs yet avoids presenting users with too many
spurious ones.

4.6 Experiments and Analysis

This section demonstrates the experimental results that show the effectiveness of the
proposed HOPF' algorithm. After introducing the setup of the experiments, we first
present the qualitative evaluation results that HOPF achieves on various datasets. The
next part discusses the results of an analysis on incurred errors, including three different
types of errors, i.e., incorrect primary key, empty LHS column, and PK C PK. Next,
we explore and report the influence on Fl-score with different sizes of buckets used to
calculate the data distribution foreign key detection feature. After that, we explore the

91

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

performance of foreign key discovery without assigning primary keys, showing the neces-
sity of detecting primary keys. Finally, we conclude this section with the performance
comparison between HOPF and two state-of-the-art algorithms [Chen et al., 2014; Zhang
et al., 2010].

4.6.1 Experimental setup

Because HOPF takes UCCs and INDs as input, we assume that the datasets at hand
have already been profiled so that these dependency information are available. Given
many efficient profiling algorithms [Abedjan et al., 2015], we can readily acquire these
dependencies, making this assumption reasonable. We extracted all these metadata with
Metanome', a data profiling platform that allows executing a wide variety of algorithms
that detect different kinds of metadata, such as unique column combinations, inclusion
dependencies, function dependencies [Papenbrock et al., 2015]. We used the HyUCC [Pa-
penbrock and Naumann, 2017 and Binder [Papenbrock et al., 2015] algorithms to acquire
UCCs and INDs of our datasets, respectively.

We conducted our experiments on five different datasets, including three synthetic
ones: TPC-H and TPC-E from the TPC benchmark system?, and AdventureWorksDW? from
Microsoft’s SQL Server database sample pool, as well as two real-world datasets SCOP*
and MusicBrainz®. All datasets contain complete key and foreign key specifications,
which we used as the ground truth for the qualitative evaluation. Also, all tables in these
datasets contain header names for each column. Table 4.3 displays detailed statistics
of these datasets. As our algorithm is data-driven, we removed empty tables, which
appeared only in MusicBrainz, reducing the number of tables there from 206 to 124.
Both TPC-H and TPC-E have several parameters to control their scales. We set the same
parameter values as those in [Zhang et al., 2010].

Table 4.3: Datasets and their statistics.

Name # Tables # Columns # UCCs # PKs # INDs # FKs
TPC-H 8 61 435 8 90 8
TPC-E 32 185 167 32 411 45
AdvWorks 27 321 1,434 27 4,300 45
SCOP 65 282 120 42 5,244 90
MusicBrainz 124 682 252 124 236,151 168

The number of inclusion dependencies includes both unary and n-ary ones. HOPF
attempts to discover both single-column and multi-column foreign keys out of them,
respectively. Note that only 42 true primary keys are defined in SCOP, whereas the
schema contains 65 tables. All the tables without defined primary keys are join tables,
proving that real-world relational tables do not necessarily hold primary keys. To avoid

'www.metanome . de

2http://www.tpc.org
3https://github.com/Microsoft/sql-server-samples/releases/tag/adventurevorks
‘http://scop.berkeley.edu

Shttps://musicbrainz.org

92

www.metanome.de
http://www.tpc.org
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
http://scop.berkeley.edu
https://musicbrainz.org

4.6 Experiments and Analysis

predicting a key for such tables, we proposed a key reduction technique that attempts
to remove these from our results, which has been described in Section 4.6.2.

4.6.2 Qualitative evaluation

We present the results of qualitative evaluation on HOPF in this section. The algorithm
takes unique column combinations, inclusion dependencies, and various basic statistics of
an entire database instance R as input, and outputs PKr and F KR, a subset of UCCs
and INDs as the respective predicted primary keys and foreign keys. We compared
the output sets with the ground truth of each dataset. HOPF predicts at most one
primary key for each table. Therefore, we measure the primary key detection quality
with the number of correctly predicted primary keys in that of all keys in the ground
truth. Because a foreign key may involve two tables in a schema, we evaluated foreign
key detection results on schema-level with precision and recall. Precision is the number
of true foreign keys in the F'Kg divided by the number of predictions in F'KR, whereas
recall is the amount of true foreign keys in F'Kg divided by the number of foreign keys in
the ground truth. While we consider both precision and recall measures in our evaluation,
our focus is on recall, because we believe it is easier for users to remove false positives
from a small result than to discover false negatives in the large candidate set.

For each predicted FK, HOPF yields a score calculated as the average of the foreign
key feature scores. The higher the overall score is, the more confident HOPF is to call
this candidate a foreign key. Ideally, the true foreign keys in the predicted ones should
obtain higher scores than the spurious ones. Therefore, we ranked the list of the predicted
foreign keys in the descending order of their scores, and measure the precision and recall
for the top X predicted foreign keys, where the value of X can be between one and the
number of all predicted FKs. Figure 4.5 illustrates the precision and recall curves on
foreign key discovery for each dataset for top X predicted foreign keys. As we can see
from the figure, recall increases gradually, whereas precision does not see an apparent
drop. That is to say, for each dataset, the true foreign keys usually appear in the top
part of the predicted list, which means they have higher scores than spurious foreign key
candidates. And when checking more predicted foreign keys at more bottom positions
in the list, we see fewer true foreign keys while more spurious INDs.

Table 4.4 lists the number of true primary keys and true foreign keys discovered
by HOPF. It discovers most true primary keys for all datasets. After inspecting the sets
of predicted primary keys, we found that errors occur for two reasons. First, the primary
key features do not cover those erroneous cases well. For example, the algorithm failed to
find the true primary key for the Financial table in TPC-E, because the table contains
a three-column primary key and several spurious unary UCCSs. Second, the names of
the true primary key columns do not follow the suffix name rule we employ. These two
factors cause the missing of the primary key for this table. However, this error accounts
for only a small portion. We do not find out other missed PKs for the same reason,
indicating that the features we employ for primary key discovery are in general effective.
More errors stem from the primary key reduction step. We discuss the influence of this
strategy on the effectiveness of both PK and FK discovery below.

We also studied the actual false negative and false positive cases of predicted foreign
keys caused by HOPF, and found they fall into the following three categories:

93

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

TPC-H TPC-E
1.0 1 1.0 1
0.8 A 0.8 A
L 0.6 L 0.6
(o] (o]
[0} (9]
0 0
0.4 A 0.4 A
0.2 A 0.2 A
0.0 T T T T T T T T 0.0 T T T T T T T T T T
1 2 3 4 5 6 7 8 5 11 17 23 29 34 40 46 52 57
Top X predicted foreign keys Top X predicted foreign keys
AdventureWorksDW SCOP
1.0 4 1.0 1
0.8 A 0.8 A
L 0.6 L 0.6
(o] (o]
(9] (9]
n n
0.4+ 0.4 -
0.2 A 0.2 1
00 T T T T T T T T T T . T T T T T T T T T T
11 23 35 47 59 70 82 94 106 118 12 24 36 48 60 72 84 96 108 121
Top X predicted foreign keys Top X predicted foreign keys
MusicBrainz
1.0 1
0.8 A
L 0.6
o
(9}
0
0.4 A
0.2 A
0.0

29 59 88 118 148 177 207 236 266 296
Top X predicted foreign keys

Precision —e— Recall —eo— F-1

Figure 4.5: Effectiveness of HOPF on the five datasets. The x-axis reflects choosing
the top X predicted foreign keys.

Incorrect primary key. Because the FKs predicted by HOPF depend on the recog-
nized PKs, an incorrectly predicted primary key could hurt the foreign key discovery
results. Therefore, once HOPF obtains a false positive/negative primary key, it might
possibly predict multiple false positive/negative foreign keys. In practice, however, we
did not witness many errors caused by incorrect primary keys. After inspecting the

94

4.6 Experiments and Analysis

Table 4.4: Number of PKs and FKs in the ground truth and number of those dis-
covered by HOPF', marked as ‘true’ and ‘disc.’, respectively. ‘undoc.’ represents the
undocumented foreign keys discovered by HOPF.

Datasets true PKs disc. PKs true FKs disc. FKs undoc. FKs
TPC-H 8 8 8 7 0
TPC-E 32 27 45 42 0
AdvWorks 27 25 45 40 2
SCOP 42 35 90 88 2
MusicBrainz 124 101 168 161 0

results, we found out that the spurious primary key candidates usually have low scores.

Empty LHS column. If the left-hand side of an IND is empty, all attributes in
the LHS contain only Null-values. An IND with an empty LHS can still be a valid
foreign key, especially in real-world datasets. However, our data distribution feature
is not able to establish an evaluation of such an inclusion dependency. Therefore, our
approach filters them out in an early stage. For example, in the MusicBrainz dataset,
artist_type.parent C artist_type.id is a true foreign key that cannot be detected,
because the LHS is an empty column. We observed 24 other foreign keys with an empty
LHS only in MusicBrainz, which reduces recall on this dataset largely.

PK C PK. Although we employ the PK C PK filter in an early stage to remove these
candidates, some of them may be added back to the predicted result when the algorithm
removes redundant primary keys with primary key reduction. In MusicBrainz, for ex-
ample, place_alias type.id C label_alias_type.id is reconsidered as a foreign key
after the algorithm no longer holds {place_alias_type.id} as a primary key. Never-
theless, as we can see from Table 4.5, because primary key reduction works well in most
cases, HOPF is still able to block most PK C PK candidates.

By removing those primary keys that are referenced by some predicted foreign keys
with a low score, the discovered foreign keys receive a higher overall score. Therefore,
HOPF considers them as non-primary keys. Nevertheless, the loss of the performance of
primary key discovery improves the performance of foreign key discovery, as displayed
and explained below. It brings back a group of true foreign keys that were considered as
PK C PK in the previous step.

Table 4.5 displays the number of true primary keys and true foreign keys predicted
by HOPF with and without applying the primary key reduction technique. For example,
HOPF retrieves 35 primary keys and 88 foreign keys for SCOP with primary key reduc-
tion. The respective numbers are 41 and 77 for the same dataset without primary key
reduction. As we can see from the results, employing primary key reduction helps to
retrieve more foreign keys at the price of losing some true primary keys for all datasets,
except for AdvWorks where two more true foreign keys were removed from predictions
after primary key reduction. An inspection of the results of this dataset suggested that
primary key reduction falsely removed the true primary key of a table that has a unary
primary key, which is referenced by the two missing foreign keys. Therefore, we suggest
employing the primary key reduction strategy for datasets containing join tables without

95

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

primary key definitions. In these cases, this strategy helps discover more foreign keys at
the price of a small loss of true primary keys. We believe it is easier for users to notice the
missing primary keys compared to finding the missing foreign keys, which necessitates
collectively considering multiple tables. In our experiments, we applied the primary key
reduction technique for all datasets.

Table 4.5: True primary keys and true foreign keys predicted with and w/o primary
key reduction

Dataset # disc. PKs # disc. FKs

w/ PK redu. w/o PK redu. w/ PK redu. w/o PK redu.
TPC-H 8 8 7 7
TPC-E 27 30 42 40
AdvWorks 25 25 40 42
SCOP 35 41 88 7
MusicBrainz 93 109 161 137

We explored the impact of using different bucket sizes on our histogram difference
feature. The top figure in Figure 4.6 demonstrates the Fl-score for each dataset using
different sizes of buckets, and the bottom figure the time expenses for the different
parameter values. The Fl-scores fluctuate a little when we choose bucket sizes smaller
than 20, but stay stable in general. However, the time overhead to construct this data
structure increases significantly when using more buckets. For all participant datasets,
the optimal bucket size is between 10 and 20, and we choose 20 as our default value.

Using only minimal UCCs as the input of HOPF to produce primary key candidates
can possibly miss true n-ary primary keys, if a subset of an n-ary primary key is already
a UCC. This problem and the problem it causes on join tables has been discussed early
in the section, for which we proposed the primary key reduction strategy. In addition,
the lack of complete UCC sets also causes a similar consequence for very small datasets
with only few records per relation. In these cases, relations can more readily have unary
UCCs, thus shadowing larger UCCSs that are the true PKs as we regard only minimal
UCCs as our input.

To gauge this effect, we apply HOPF on a TPC-H database instance acquired by setting
the scale factor to 0.001. In this case, all relations in the dataset contain only dozens of
records. The result confirms our suspicion: HOPF is not able to discover the true primary
keys of table 1ineitem and partsupp who have n-ary primary keys, because both of them
also have unary UCCs that are part of the true PK. Unfortunately, our algorithm cannot
solve this very-small-table dilemma without changing the prerequisite of only consuming
minimal UCCs. As mentioned in Section 4.1.2, changing the prerequisite so as to use
also non-minimal UCCSs does not solve this dilemma, because the proposed PK features
favor UCC candidates with small cardinality, and thus HOPF is more liable to refer to
them as true primary keys.

96

4.6 Experiments and Analysis

1.0 A
)
£ 0.6
b
-
" 0.4 1
0.2 1
0.0 T T T T T T T T
5 10 20 50 100 200 500 1000
Bucket size
6000
5000 A
4000 -
)
0]
£ 3000
IS
=}
€ 2000 -
1000
0 4
5 10 20 50 100 200 500 1000
Bucket size
TPC-H —@— TPC-E AdventureWorksDW =& SCOP MusicBrainz

Figure 4.6: The F1l-score with different size of buckets and their corresponding time
expense for all datasets.

4.6.3 Foreign key detection without primary keys

Previous works all assume that primary keys are at present. However, this assumption is
too optimistic for many databases, especially for those dumped in plain-text files, where
these constraints might not be tightly attached to data themselves. In these cases, foreign
key discovery algorithms based on this assumption might break or predict possibly many
erroneous foreign keys. Here, we use HOPF to explore the influence on the quality of
discovered foreign keys without the presence of primary keys. Fortunately, even without
discovering the primary keys, our method can still rank the list of INDS by their foreign

97

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

key score. Instead of predicting primary keys holistically with foreign keys, we let HOPF
output a predicted foreign key, as long as its RHS is a UCC.

Table 4.6 displays the detected foreign keys with and without knowledge of primary
keys. Consistent with our assumption, without the primary keys, HOPF obtains fewer
true positive foreign keys even with a bigger foreign key candidate search space. For
example, if we ignore the primary keys and rank only the foreign key candidates by their
score, we obtain 141 true foreign keys out of 1079 candidates in Musicbrainz, whereas
we obtain 161 true foreign keys out of only 296 candidates if we detect the primary keys
first and use them as the input for foreign key detection.

Table 4.6: Detected foreign keys without and with knowledge of primary keys. “#
Fk cand.” is the number of INDS considered to detect foreign keys, whereas “#
disc. FKs” is the number of the detected foreign keys.

Dataset 4 FKs without PKs with PKs

disc. FKs # FK cand. # disc. FKs +# FK cand.
TPC-H 8 2 18 7 8
TPC-E 45 41 7 42 57
AdvWorks 45 39 369 40 118
SCOP 90 88 167 88 121
MusicBrainz 168 141 1,079 161 296

In general, we consider as foreign key candidates only those inclusion dependencies
whose RHS is among the primary key set. Without knowledge of primary keys, HOPF
would consider each IND whose RHS is a UCC as a foreign key candidate. This explains
why the number of foreign key candidates grows without considering primary keys; each
table typically contains many UCCs, and each of them may contribute several valid
INDs into the candidate set.

Restricted by the uniqueness of foreign key rule, a true foreign key sharing the same
LHS with another foreign key candidate is excluded if the latter one has a higher score
and is predicted as a foreign key. However, if an incorrect foreign key is predicted, adding
a true foreign key to the final result may cause a circle-reference, and thus be rejected.
This explains why fewer true positive foreign keys are acquired without the knowledge
of primary keys.

4.6.4 Undocumented foreign key discovery

In addition to discovering documented foreign keys, further potential foreign keys were
found in AdventureWorksDW and SCOP in spite of their absence in the ground truth. These
uncertain foreign keys fall into two categories: missing ones and erroneous ones. For
instance, pdb_release_author.pdb_author_id C pdb_author.id in SCOP was counted
as a false positive while we believe it is in fact a true foreign key. On the other hand,
cdd.release_id C pfam release.id is a documented foreign key while we believe it to
be incorrectly documented; the correct foreign key should likely be cdd.release_id C
cdd_release.id, which was predicted by HOPF.

98

4.7 Conclusions

We can imagine several reasons for these undocumented foreign keys, e.g., loss during
data migration or removal by schema designers for query efficiency. The number of
undocumented but true foreign keys predicted by HOPF for each dataset is shown in
the last column in Table 4.4. The discovery of undocumented foreign keys enriches this
metadata, and therefore may provide us with insight for further database application
such as data integration.

4.6.5 Comparison

We have witnessed a few previous works on detecting foreign keys in relational tables.
We re-implemented two state-of-the-art algorithms proposed in [Zhang et al., 2010] and
[Chen et al., 2014], which we dub RANDOMNESS and FASTFK, respectively, and com-
pared their performances with HOPF. As explained in more detail in Section 4.2, the
RANDOMNESS algorithm measures the data distribution between LHS and RHS with a
so-called randomness measure. FASTFK, which assumes that there exist only single-
attribute foreign keys, employs a few features to score foreign key candidates, as well as
some pruning rules to decrease the search space. For RANDOMNESS, we applied § = 0.9,
and bottom 256 sketches, 256 and 16 quantiles for unary and n-ary foreign keys can-
didates, respectively, — the sweet spots determined by the original authors. As both
previous works assume that primary keys are present and known, we provide them with
true primary keys in this experimental setting.

To improve results, the RANDOMNESS algorithm also considers column names, keep-
ing only candidates with exactly matched names. The authors apply this technique only
to TPC-H and TPC-E, relying on external documentation to guide a manual trimming of
column labels before the matching. We compared their results with HOPF and FASTFK
when switching on the column name features. We also compared the results of RAN-
DOMNESS without conducting this post-processing with the other two when switching off
the column name features. Table 4.7 displays the details of this comparison.

As seen in the table, without knowledge of column names, all three algorithms experi-
ence a drop in precision and recall, proving that column names are indicative in recogniz-
ing foreign keys. While using the column names, the performances of the three algorithms
are quite similar on synthetic datasets (TPC-H, TPC-E, and AdventureWorks), while
HoOPF outperforms the two compared approaches in the real-world datasets (SCOP and
MusicBrainz). We also notice that HOPF produces smaller predicted foreign key sets
for all the datasets compared to the other two approaches, making any post-processing
by a human expert easier.

4.7 Conclusions

Primary keys and foreign keys are important integrity constraints to keep databases
consistent. However, data stored as plain-text files or dumps do not always carry these
constraint definitions and in many cases, it is up to the user of the data to identify them
and thus understand the data better and enforce its quality. As schemata can be quite
large and complex, automatic discovery of primary and foreign keys is a relevant (and
challenging) research topic.

99

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

68¢ 9¢'0 090 8¢'0 96¢ 69°0 960 ¥S°0 ddOH
1ve ¢€'0 670 ¥eo Ive ¢€’0 670 v¢o SSUNIWOANVY 89T ZUTRIOISNN
L9€ 6€°0 ¢9°0 8C0 89¢ 9% 0 vLO €€0 MALSVH
81T IL°0 ¢80 €9°0 1¢T 780 860 €40 JddO0H
16T G0 190 9¢0 16T 9’0 190 9¢0 SSHANINOANVY (06 d0DS
6V1 99°'0 L80 €S0 6V1 120 ¥6°0 190 MALSYH
0cI 6€°0 ¢L'0 120 8TT 670 680 7€0 ddOH
¢l 1€°0 890 1¢°0 44! 960 060 I¥°0 SSANINOANVY GF SHIOMAPY
T€T L0 ¢L0 7¥¢0 T€T 670 160 ¢€0 MALSYH
LG ¢L0 ¢80 P90 LS ¢80 €60 V.0 ddOH
80¢€ 90 ¢80 LSO i ¥6°0 680 00°T SSUNINOANVY GF H-OdL
6¢ 290 8.0 6S°0 69 ¢80 96'0 ¢L0 MALSVA
8 88°0 880 88°0 8 88°0 880 88°0 ddOH
6¢ Ge'0 00T 1¢°0 8 00°'T 00°'T 00T SSUNINOANVY g H-Dd.L
91 69°0 060 940 91 690 060 960 MALSVH
SMA powIpold 14 [[e09Y UOISald SMA pewIpdld T4 [[e09Y UOISIOaId

WYILIOS[Y SYMA ondT, 19881 (]

Sotuelu UWI[OI INOoYIIMm

SOUIRU UTUN[0D [IIM

(s3] pedIpald) sAey udwio} pajorpald Jo Ioquinu o1} pue ‘0109s-T ‘() (291 ‘(J) uoismwaid :seoururiofrad oY) oImseou 0
SOLIjOW INOJ 9sn 9\ “[0T0g 'Te 20 Sueyy] Suisseoordisod e se pesn st SHY pur SHT JO SOWRU UWN[0D SUTYDIRW-TOU S[IYM dIN)ed]
Aoy USTIAI0] ' SB 19S ST 9)RPIPURD AdY USILIO] ® JO SHY Pue SH'T Usemiaq AJLIR[IWUIS SUIRU TWN[0d ‘[F10g T8 12 uay)| pue JJOH UI
‘[0T0T ‘T8 20 Sueyy F107 ‘Te 10 uey)| y10m snotadid om) I9jo pue JJOH Suoure Uor}dalep Aoy uSralo] jo uostredwoy) 1§ oIngig

100

4.7 Conclusions

Previous efforts were made to discover foreign keys and primary keys separately. In
this work, we have proposed the HOPF algorithm to integrate primary key and foreign
key detection in a holistic fashion. We employ a set of carefully designed features to score
and distinguish both the true primary keys and foreign keys from the spurious UCCs
and INDs. We employ several useful pruning rules to effectively reduce the search spaces
of both PKs and FKs.

In performance experiments on five diverse datasets, our algorithm reaches an average
recall of 88% and 91% in primary keys and foreign keys discovery, respectively. We show
with an experiment that without knowledge of primary keys (which is assumed in related
work), the performance of foreign key discovery is much worse, indicating the necessity
to discover primary keys in advance or simultaneously. We compared precision and recall
with the state-of-art algorithms.

We assume data are clean: values are well-formatted and follow the data type defined
on the column. However, this is often not true in reality. For example, for a date column
with a defined “YYYY-MM-DD” format, there might be few records with values in “DD-
MM-YYYY” format on this column. Primary keys and foreign keys are defined on the
schema regardless of the relation instances. Discovering PKs and FKs in relational tables
with data errors would be an interesting future work.

101

4. HOLISTIC PRIMARY KEY AND FOREIGN KEY DETECTION

102

Chapter 5

Conclusion and Outlook

CSV files are a type of plain-text data files that store tabular and textual data. Each
file has a unique content structure: information with particular meanings can appear in
arbitrary cells. Such files represent a great amount of data resources that are extensively
used for data analytics. Due to the ad-hoc structure of CSV files, it is usually difficult to
extract information from them. In many cases, even loading them into databases is not
trivial. Metadata are useful properties to describe CSV files, which help data scientists
to understand and process their data. Overall, the presence of metadata enables various
downstream applications, such as data cleaning [Mahdavi and Abedjan, 2020; Rekatsinas
et al., 2017], self-service data preparation [Hellerstein et al., 2018], data preparation
suggestion and automation [Guo et al., 2011; Jiang et al., 2019; Yan and He, 2020; Yang
et al., 2021], and visualization [Hansen and Johnson, 2011].

However, these meta-information are not always bundled with data or do not even
exist. The detection of metadata is an indispensable work before data preparation and
the usage of the content in these files for innovative and valuable data analytics. In
this thesis, we introduce a taxonomy of six types of metadata that can be extracted
from CSV files (Chapter 1), and describe our original algorithms for the discovery of
five specific metadata: STRUDEL for the type of lines and cells (Chapter 2), AGGRECOL
for aggregations (Chapter 3) in CSV files with unique content structure, and HOPF for
primary keys and foreign keys (Chapter 4) in CSV files containing a relational table.
CSV files often preserve data in cells similar to spreadsheet files w.r.t. the layout of
content. However, the former can keep only values and positions of data, whereas the
latter may incorporate various stylistic features, such as background color and font style
of cells, and formulas. While the usefulness of rich-text features on detecting metadata
has been proven by previous works, one of the major objectives of our algorithms is to
address the metadata detection problem without using stylistic features, and therefore
generalize metadata detection to plain-text files. Another target of most of our studies
is to explore whether the presence of some metadata may affect the discovery results
of other metadata. For example, whether we can achieve better foreign key detection
results with the knowledge of primary keys, or cell classification results with the presence
of line classes.

Besides the above major contributions to metadata detection, I have also created

103

5. CONCLUSION AND OUTLOOK

various corpora of annotated data files and publicized all the data and the code!. I have
participated in developing other related works during my Ph.D. study, which are not
presented in this thesis because of its limited scope. These works include MONDRIAN
that identifies the positions of tables and layout templates in complex multi-table data
files [Vitagliano et al., 2021], SURAGH that distinguishes ill-formed records from well-
formed ones in CSV files, and EXTRACTABLE that detects the boundaries of tables in
plain-text files [Hiibscher, 2021].

The problem of detecting metadata in data files is far from being solved. While the
discovery of each metadata introduced in our taxonomy (Chapter 1) is not trivial and
deserves dedicated research efforts, we discuss some future works that are most related
to our main contributions in the following.

Metadata detection in data with errors

The algorithms introduced in this thesis mostly assume that the used datasets are clean.
However, real-world data often have diverse quality issues. In a relational table, for
example, for a date column with a defined “YYYY-MM-DD” format, there might be
few records with values in “DD-MM-YYYY” format on this column, or the primary key
column happens to include duplicate values. Key and foreign key constraints cannot be
correctly discovered with algorithms that assume the datasets are clean. An erroneous
number may also affect the results of aggregation detection: computational features
may fail to recognize the arithmetic relationships amongst numbers. In light of the
above examples, a general interesting future work is to discover metadata from data
with quality problems. One way to cope with this type of problems could be detecting
approximate metadata that are valid on a subset of data.

Use of semantic features

Our algorithms do not leverage semantic features for the discovery of the respective
metadata. However, semantics of the content might be very useful in such tasks. Take
aggregation detection as an example, we have found that purely using keywords, such
as “total”, cannot reliably identify aggregations that do not use these keywords in table
headers: the number in a row with the header “Europe” should sum up the numbers
in the rows with the headers of individual European countries. For line and cell class
detection, a cell with only a currency symbol often indicates the unit of the numbers in
the same row or column. Such information about data should not be classified as data.
We envision that incorporating the semantic meaning of content into models is likely to
improve the metadata detection results.

Metadata-specific future work

There are also interesting future research directions for the discovery of specific meta-
data. Assuming that content is mostly organized from top to bottom in these files, our
STRUDEL approach classifies the lines in CSV data files. However, columns, i.e., vertical
lines in CSV files, may also carry useful information to help determine the class of cells.
An interesting extension of the STRUDEL algorithm should explore the impact of column
type on the cell classification task. Regarding our aggregation detection approach AG-
GRECOL, there is room for improvement by dropping the assumption, which states that
the aggregate and the range of an aggregation must be either in the same row or in the

"https://hpi.de/naumann/projects/data-preparation.html

104

https://hpi.de/naumann/projects/data-preparation.html

same column. Also, real-world aggregations may involve multiple aggregation functions,
which have not been addressed by AGGRECOL. What is more, an improved algorithm
may address more functions, such as min/max, median, and standard deviation.

Although data are being created at an unprecedentedly fast pace, many of them are
stored in formats that cannot be directly consumed by dedicated data analysis tools. As a
consequence, data preparation is a significant preceding process to enabling downstream
data analytic tasks. CSV files persist tremendous data in ad-hoc shapes and forms, which
need to be prepared first. Data preparation is notoriously known to be time-consuming,
partly because data scientists spend a lot of time comprehending and exploring their
data, which can be more efficient with the knowledge of metadata. In this thesis, we
put our efforts into discovering metadata in CSV files, which is the cornerstone of many
data-driven applications.

105

5. CONCLUSION AND OUTLOOK

106

References

1]

[12]

Ziawasch Abedjan and Felix Naumann. Advancing the discovery of unique column
combinations. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pages 1565-1570, 2011.

Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational data:
a survey. VLDB Journal, 24(4):557-581, 2015.

Robin Abraham and Martin Erwig. GoalDebug: A spreadsheet debugger for end
users. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 251-260, 2007.

Robin Abraham and Martin Erwig. UCheck: A spreadsheet type checker for end
users. Journal of Visual Languages & Computing, 18(1):71-95, 2007.

Marco D Adelfio and Hanan Samet. Schema extraction for tabular data on the
web. PVLDB, 6(6):421-432, 2013.

Abhimanyu S Ahuja. The impact of artificial intelligence in medicine on the future
role of the physician. PeerJ, 7:€7702, 2019.

Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. FlashRelate:
extracting relational data from semi-structured spreadsheets using examples. ACM
SIGPLAN Notices, 50(6):218-228, 2015.

Daniel W Barowy, Emery D Berger, and Benjamin Zorn. ExcelLint: automati-
cally finding spreadsheet formula errors. Proceedings of the ACM on Programming
Languages, 2(0O0PSLA):1-26, 2018.

Kiran Bhageshpur. Data Is The New Oil — And That’s A Good Thing. https:
//www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-ne
w-oil-and-thats-a-good-thing/?sh=591495857304, 2019. Accessed: 2021-09-
16.

Anil Bhattacharyya. On a measure of divergence between two multinomial popu-
lations. Sankhya: the Indian Journal of Statistics, pages 401-406, 1946.

Besim Bilalli, Alberto Abellé, Tomas Aluja-Banet, and Robert Wrembel. Towards
intelligent data analysis: The metadata challenge. In Proceedings of the Interna-
tional Conference on Internet of Things and Big Data, pages 331-338, 2016.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

107

https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=591495857304
https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=591495857304
https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=591495857304

REFERENCES

[13]

[14]

[15]

[16]

[21]

[22]

23]

Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
WebTables: Exploring the power of tables on the web. PVLDB, 1(1):538-549,
2008.

Michael J Cafarella, Alon Y Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene
Wu. Uncovering the relational web. In Proceedings of the ACM SIGMOD Workshop
on the Web and Databases (WebDB), 2008.

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed functional
dependencies — a survey of approaches. IEFE Transactions on Knowledge and
Data Engineering (TKDE), 28(1):147-165, 2015.

HC Stephen Chan, Hanbin Shan, Thamani Dahoun, Horst Vogel, and Shuguang
Yuan. Advancing drug discovery via artificial intelligence. Trends in Pharmaco-
logical Sciences, 40(8):592-604, 2019.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods.
Computers € FElectrical Engineering, 40(1):16-28, 2014.

Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust
and efficient fuzzy match for online data cleaning. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD), pages 313-324, 2003.

Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max
Lin, and Denny Zhou. Spreadsheetcoder: Formula prediction from semi-structured

context. In Proceedings of the International Conference on Machine Learning,
pages 1661-1672, 2021.

Zhe Chen and Michael Cafarella. Automatic web spreadsheet data extraction.
In Proceedings of the International Workshop on Semantic Search over the Web,
pages 1-8, 2013.

Zhe Chen and Michael Cafarella. Integrating spreadsheet data via accurate and
low-effort extraction. In Proceedings of the International Conference on Knowledge
discovery and data mining (SIGKDD), pages 1126-1135, 2014.

Zhe Chen, Mike Cafarella, Jun Chen, Daniel Prevo, and Junfeng Zhuang. Sen-
bazuru: A prototype spreadsheet database management system. PVLDB, 6(12):
1202-1205, 2013.

Zhe Chen, Sasha Dadiomov, Richard Wesley, Gang Xiao, Daniel Cory, Michael
Cafarella, and Jock Mackinlay. Spreadsheet property detection with rule-assisted

active learning. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pages 999-1008, 2017.

Zhimin Chen, Vivek R. Narasayya, and Surajit Chaudhuri. Fast foreign-key de-
tection in Microsoft SQL server powerpivot for excel. PVLDB, 7(13):1417-1428,
2014.

Christina Christodoulakis, Eric B Munson, Moshe Gabel, Angela Demke Brown,
and Renée J Miller. Pytheas: Pattern-based table discovery in csv files. PVLDB,
13(11):2075-2089, 2020.

108

REFERENCES

[26]

[27]

[36]

Xu Chu, Yeye He, Kaushik Chakrabarti, and Kris Ganjam. Tegra: Table extraction
by global record alignment. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 1713-1728, 2015.

Remi Coletta, Emmanuel Castanier, Patrick Valduriez, Christian Frisch, DuyHoa
Ngo, and Zohra Bellahsene. Public data integration with websmatch. In Proceed-
ings of the International Workshop on Open Data (WOD), pages 5-12, 2012.

Cristian Consonni, Paolo Sottovia, Alberto Montresor, and Yannis Velegrakis. Dis-
covering order dependencies through order compatibility. In Proceedings of the
International Conference on Extending Database Technology (EDBT), pages 409—
420, 2019.

Hugh Dalton. The measurement of the inequality of incomes. The Economic
Journal, 30(119):348-361, 1920.

Tamraparni Dasu and Theodore Johnson. Fxploratory data mining and data clean-
ing, volume 479. John Wiley & Sons, 2003.

Pandas development team. pandas-dev/pandas: Pandas, February 2020. URL
https://doi.org/10.5281/zenodo.3509134.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. 2018.

Dimiter V Dimitrov. Medical internet of things and big data in healthcare. Health-
care Informatics Research, 22(3):156-163, 2016.

Till D6hmen, Hannes Miihleisen, and Peter Boncz. Multi-hypothesis CSV pars-
ing. In Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM), pages 1-12, 2017.

Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. TableSense:
Spreadsheet table detection with convolutional neural networks. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), volume 33, pages 69-76,
2019.

Wensheng Dou, Shing-Chi Cheung, and Jun Wei. Is spreadsheet ambiguity harm-
ful? Detecting and repairing spreadsheet smells due to ambiguous computation.
In Proceedings of the International Conference on Software Engineering (ICSE),
pages 848-858, 2014.

Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. Expandable
group identification in spreadsheets. In Proceedings of the ACM/IEEE Interna-
tional Conference on Automated Software Engineering, pages 498-508, 2018.

Julian Eberius, Christoper Werner, Maik Thiele, Katrin Braunschweig, Lars Dan-
necker, and Wolfgang Lehner. DeExcelerator: a framework for extracting relational
data from partially structured documents. In Proceedings of the International Con-
ference on Information and Knowledge Management (CIKM), pages 2477—-2480,
2013.

109

https://doi.org/10.5281/zenodo.3509134

REFERENCES

[39]

[40]

The Economist. The world’s most valuable resource is no longer oil, but data.
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valua
ble-resource-is-no-longer-oil-but-data, 2017. Accessed: 2021-09-15.

Rebecca Eichler, Corinna Giebler, Christoph Groger, Holger Schwarz, and Bern-
hard Mitschang. Modeling metadata in data lakes—a generic model. Data &
Knowledge Engineering, 136:101931, 2021.

Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. Harvesting relational tables
from lists on the web. PVLDB, 2(1):1078-1089, 2009.

David W Embley, Mukkai Krishnamoorthy, George Nagy, and Sharad Seth. Factor-
ing web tables. In International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, pages 253-263, 2011.

David W Embley, Mukkai S Krishnamoorthy, George Nagy, and Sharad Seth.
Converting heterogeneous statistical tables on the web to searchable databases.
International Journal on Document Analysis and Recognition (IJDAR), 19(2):119-
138, 2016.

Martin Faust, David Schwalb, and Hasso Plattner. Composite group-keys — space-
efficient indexing of multiple columns for compressed in-memory column stores. In
Proceedings of the International Workshop on In Memory Data Management and
Analytics, IMDM, pages 139-150, 2014.

Marc Fisher and Gregg Rothermel. The EUSES spreadsheet corpus: a shared
resource for supporting experimentation with spreadsheet dependability mecha-

nisms. In Proceedings of the First Workshop on End-user Software Engineering,
pages 1-5, 2005.

Neil Foshay, Avinandan Mukherjee, and Andrew Taylor. Does data warehouse
end-user metadata add value? Communications of the ACM, 50(11):70-77, 2007.

Tim Fountaine, Brian McCarthy, and Tamim Saleh. Building the Al-powered
organization. Harvard Business Review, 97(4):62-73, 2019.

Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

Wolfgang Gatterbauer, Paul Bohunsky, Marcus Herzog, Bernhard Kriipl, and Bern-
hard Pollak. Towards domain-independent information extraction from web tables.
In Proceedings of the International World Wide Web Conference (WWW), pages
71-80, 2007.

Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Koss-
mann. Speculative distributed CSV data parsing for big data analytics. In Proceed-

ings of the International Conference on Management of Data (SIGMOD), pages
883-899, 2019.

110

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

REFERENCES

[51]

[54]

[55]

[62]

[63]

Corinna Giebler, Christoph Groger, Eva Hoos, Holger Schwarz, and Bernhard
Mitschang. Leveraging the data lake: Current state and challenges. In Interna-
tional Conference on Big Data Analytics and Knowledge Discovery, pages 179—-188.
Springer, 2019.

Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. Tabular cell classification
using pre-trained cell embeddings. In Proceedings of the International Conference
on Data Mining (ICDM), pages 230-239, 2019.

Julius Gonsior, Josephine Rehak, Maik Thiele, Elvis Koci, Michael Giinther, and
Wolfgang Lehner. Active learning for spreadsheet cell classification. In Proceedings
of the Workshop on Search, Exploration, and Analysis in Heterogeneous Datastores,
2020.

Philip J Guo, Sean Kandel, Joseph M Hellerstein, and Jeffrey Heer. Proactive
wrangling: Mixed-initiative end-user programming of data transformation scripts.
In Proceedings of the annual ACM symposium on User interface software and tech-
nology, pages 65—74, 2011.

Alon Y Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. Managing Google’s data lake:
an overview of the Goods system. IEEE Data Engineering Bulletin, 39(3):5-14,
2016.

Charles D Hansen and Chris R Johnson. Visualization handbook. Elsevier, 2011.

Joseph M Hellerstein, Jeffrey Heer, and Sean Kandel. Self-Service Data Prepara-
tion: Research to Practice. IEEE Data Engineering Bulletin, 41(2):23-34, 2018.

F Hermans, M Pinzger, and A van Deursen. Measuring spreadsheet formula under-
standability. Proceedings European Spreadsheet Risks Interest Group (EuSpRIG),
pages 77-96, 2012.

Felienne Hermans, Martin Pinzger, and Arie Van Deursen. Detecting code smells
in spreadsheet formulas. In International Conference on Software Maintenance
(ICSM), pages 409-418. IEEE, 2012.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735-1780, 1997.

Birgit Hofer, André Riboira, Franz Wotawa, Rui Abreu, and Elisabeth Getzner.
On the empirical evaluation of fault localization techniques for spreadsheets. In
International Conference on Fundamental Approaches to Software Engineering,
pages 68-82. Springer, 2013.

Arne Holst. Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2025. https://www.statista.com/statistics/871513
/worldwide-data-created/#statisticContainer, 2021. Accessed: 2021-09-12.

Leonardo Hiibscher. ExtracTable: Extracting tables from plain text, 2021.

111

https://www.statista.com/statistics/871513/worldwide-data-created/#statisticContainer
https://www.statista.com/statistics/871513/worldwide-data-created/#statisticContainer

REFERENCES

[64]

[65]

[66]

[72]

[73]

[74]

IBM Corporation. IBM FORTRAN Program Products for OS and the CMS Com-
ponent of VM /370 General Information. page 17, 1972.

Muhammad Nagzrul Islam, Toki Tahmid Inan, Suzzana Rafi, Syeda Sabrina Akter,
Igbal H Sarker, and AKM Islam. A survey on the use of Al and ML for fighting
the covid-19 pandemic. arXiv preprint arXiv:2008.07449, 2020.

Neeraj Kumar Jain, RK Saini, and Preeti Mittal. A review on traffic monitoring
system techniques. In Soft Computing: Theories and Applications, pages 569-577.
Springer, 2019.

Bas Jansen and Felienne Hermans. Code smells in spreadsheet formulas revisited
on an industrial dataset. In International Conference on Software Maintenance
and Evolution (ICSME), pages 372-380, 2015.

Lan Jiang and Felix Naumann. Holistic primary key and foreign key detection.
Journal of Intelligent Information Systems (JIIS), 54(3):439-461, 2020.

Lan Jiang, Gerardo Vitagliano, and Felix Naumann. A scoring-based approach for
data preparator suggestion. In LWDA, pages 6-9, 2019.

Lan Jiang, Gerardo Vitagliano, and Felix Naumann. Structure detection in verbose
CSV files. In Proceedings of the International Conference on Extending Database
Technology (EDBT), pages 193-204, 2021.

Lan Jiang, Gerardo Vitagliano, Mazhar Hameed, and Felix Naumann. Aggregation
detection in verbose CSV files. In Proceedings of the International Conference on
FEztending Database Technology (EDBT), 2022. (accepted).

Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. Enter-
prise data analysis and visualization: An interview study. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2917-2926, 2012.

Martti Kantola, Heikki Mannila, Kari-Jouko R&iha, and Harri Siirtola. Discovering
functional and inclusion dependencies in relational databases. International journal
of intelligent systems, 7(7):591-607, 1992.

Anoop R Katti, Christian Reisswig, Cordula Guder, Sebastian Brarda, Steffen
Bickel, Johannes Hohne, and Jean Baptiste Faddoul. Chargrid: Towards under-
standing 2d documents. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 4459-4469, 2018.

Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. Cell classifica-
tion for layout recognition in spreadsheets. In International Joint Conference
on Knowledge Discovery, Knowledge Engineering, and Knowledge Management
(IC3K), pages 78-100. Springer, 2016.

Elvis Koci, Maik Thiele, Oscar Romero Moral, and Wolfgang Lehner. A machine
learning approach for layout inference in spreadsheets. In International Joint Con-
ference on Knowledge Discovery, Knowledge Engineering, and Knowledge Manage-
ment (IC3K), pages 77-88, 2016.

112

REFERENCES

[77]

[89]

[90]

Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. Table identifica-
tion and reconstruction in spreadsheets. In International Conference on Advanced
Information Systems Engineering, pages 527-541. Springer, 2017.

Sebastian Kruse and Felix Naumann. Efficient discovery of approximate depen-
dencies. PVLDB, 11(7):759-772, 2018.

Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz Finke,
Manuel Hegner, Martin Zabel, Christian Zéllner, and Felix Naumann. Fast approx-
imate discovery of inclusion dependencies. Proceedings of the Conference Daten-
banksysteme in Biiro, Technik und Wissenschaft (BTW), 2017.

Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet Physics Doklady, volume 10, pages 707-710, 1966.

Shanjian Li and Katsuhiko Momoi. A composite approach to language/encoding
detection. In Proceedings of the International Unicode Conference, pages 1-14,
2001.

Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies
from data - A review. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 24(2):251-264, 2012.

Ying Liu, Prasenjit Mitra, and C Lee Giles. Identifying table boundaries in digital
documents via sparse line detection. In Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pages 1311-1320, 2008.

Vanessa Long. An agent-based approach to table recognition and interpretation.
PhD thesis, Macquarie University Sydney, NSW, Australia, 2010.

Stéphane Lopes, Jean-Marc Petit, and Farouk Toumani. Discovering interesting in-
clusion dependencies: application to logical database tuning. Information Systems
(1S), 27(1):1-19, 2002.

Claudio L. Lucchesi and Sylvia L. Osborn. Candidate keys for relations. Journal
of Computer and System Sciences, 17(2):270-279, 1978.

Mohammad Mahdavi and Ziawasch Abedjan. Baran: Effective error correction via
a unified context representation and transfer learning. PVLDB, 13(12):1948-1961,
2020.

Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Madden,
Mourad Ouzzani, Michael Stonebraker, and Nan Tang. Raha: A configuration-

free error detection system. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 865-882, 2019.

Vishal Mandal, Abdul Rashid Mussah, Peng Jin, Yaw Adu-Gyamfi, et al. Artificial
intelligence-enabled traffic monitoring system. Sustainability, 12(21):1-21, 2020.

Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. Unary and n-ary inclu-
sion dependency discovery in relational databases. Journal of Intelligent Informa-
tion Systems, 32(1):53-73, 2009.

113

REFERENCES

[91]

[92]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Mozhgan Memari, Sebastian Link, and Gillian Dobbie. SQL data profiling of for-
eign keys. In Proceedings of the International Conference on Conceptual Modeling
(ER), pages 229-243, 2015.

George Nagy. TANGO-DocLab web tables from international statistical sites
(Troy-200). http://tcll.cvc.uab.es/datasets/Troy_200_1, 2010. Accessed:
2021-07-20.

Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. Table union
search on open data. PVLDB, 11(7):813-825, 2018.

Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken QQ Pu, and Patricia C Aro-
cena. Data lake management: challenges and opportunities. PVLDB, 12(12):
1986-1989, 2019.

Paulo Oliveira, Fatima Rodrigues, Pedro Henriques, and Helena Galhardas. A
taxonomy of data quality problems. In International Workshop on Data and In-
formation Quality, pages 219-233, 2005.

Michael Palmer. Data is the New Oil. https://ana.blogs.com/maestros/2006/
11/data_is_the new.html, 2006. Accessed: 2021-09-16.

Thorsten Papenbrock. Data profiling - efficient discovery of dependencies. doctor-
althesis, Universitdat Potsdam, 2017.

Thorsten Papenbrock and Felix Naumann. Data-driven schema normalization.
In Proceedings of the International Conference on Ezxtending Database Technology
(EDBT), pages 342-353, 2017.

Thorsten Papenbrock and Felix Naumann. A hybrid approach for efficient unique
column combination discovery. Proceedings of the Conference Datenbanksysteme
in Biiro, Technik und Wissenschaft (BTW), 2017.

Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix
Naumann. Data profiling with metanome. PVLDB, 8(12):1860-1863, 2015.

Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix
Naumann. Divide & conquer-based inclusion dependency discovery. PVLDB, 8
(7):774-785, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

Otakar Pinkas. Automatic encoding and language detection in the GSDL. Journal
of Systems Integration, 5(4):47-57, 2014.

David Pinto, Andrew McCallum, Xing Wei, and W Bruce Croft. Table extraction
using conditional random fields. In Proceedings of the International Conference on
Information retrieval (SIGIR), pages 235242, 2003.

114

http://tc11.cvc.uab.es/datasets/Troy_200_1
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html

REFERENCES

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Gil Press. Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Sci-
ence Task, Survey Says. https://www.forbes.com/sites/gilpress/2016/03/
23/data-preparation-most-time-consuming-least-enjoyable-data-scien
ce-task-survey-says/?7sh=5cd029046£63, 2016. Accessed: 2021-06-18.

Abdulhakim A Qahtan, Ahmed Elmagarmid, Raul Castro Fernandez, Mourad Ouz-
zani, and Nan Tang. FAHES: A robust disguised missing values detector. In Pro-

ceedings of the International Conference on Knowledge discovery and data mining
(SIGKDD), pages 2100-2109, 2018.

Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches.
IEEE Data Engineering Bulletin, 23(4):3-13, 2000.

Sajjadur Rahman, Kelly Mack, Mangesh Bendre, Ruilin Zhang, Karrie Karahalios,
and Aditya Parameswaran. Benchmarking spreadsheet systems. In Proceedings of
the International Conference on Management of Data (SIGMOD), pages 1589—
1599, 2020.

Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. Holoclean:
holistic data repairs with probabilistic inference. PVLDB, 10(11):1190-1201, 2017.

Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf
Leser. A machine learning approach to foreign key discovery. In Proceedings of the
ACM SIGMOD Workshop on the Web and Databases (WebDB), 20009.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distributions
with applications to image databases. In Procedings of the International Conference
on Computer Vision (ICCV), pages 59-66, 1998.

Ritesh Sarkhel and Arnab Nandi. Visual segmentation for information extraction
from heterogeneous visually rich documents. In Proceedings of the International
Conference on Management of Data (COMAD), pages 247-262, 2019.

Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Den-
nis Hempfing, Torben Mayer, and Daniel Neuschéfer-Rube. DynFD: Functional
dependency discovery in dynamic datasets. In Proceedings of the International
Conference on Extending Database Technology (EDBT), pages 253-264, 2019.

Yakov Shafranovich. Common Format and MIME Type for Comma-Separated
Values (CSV) Files. https://rfc-editor.org/rfc/rfc4180.txt, October 2005.
Accessed: 2021-07-04.

Alexey O Shigarov and Andrey A Mikhailov. Rule-based spreadsheet data transfor-
mation from arbitrary to relational tables. Information Systems (IS), 71:123-136,
2017.

Eric Smalley. Al-powered drug discovery captures pharma interest. Nature biotech-
nology, 35(7):604-606, 2017.

Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. Bias
in random forest variable importance measures: Illustrations, sources and a solu-
tion. BMC Bioinformatics, 8(1):1-21, 2007.

115

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=5cd029046f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=5cd029046f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=5cd029046f63
https://rfc-editor.org/rfc/rfc4180.txt

REFERENCES

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and
Achim Zeileis. Conditional variable importance for random forests. BMC Bioin-
formatics, 9(1):1-11, 2008.

Sandeep Tata, Navneet Potti, James B Wendt, Lauro Beltrao Costa, Marc Na-
jork, and Beliz Gunel. Glean: Structured extractions from templatic documents.
PVLDB, 14(6):997-1005, 2021.

John Alan Terrell. An Ezperimental Investigation of a New System for Auto-
matically Regulating the Voltage of an Alternating Current Circuit. Number 9.
Rensselaer Polytechnic Institute, 1913.

Saravanan Thirumuruganathan, Nan Tang, Mourad Ouzzani, and AnHai Doan.
Data curation with deep learning. In Proceedings of the International Conference
on Extending Database Technology (EDBT), pages 277-286, 2020.

Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. Detecting inclu-
sion dependencies on very many tables. ACM Transactions on Database Systems
(TODS), 42(3):18:1-18:29, 2017.

Gerrit JJ van den Burg, Alfredo Nazabal, and Charles Sutton. Wrangling messy csv
files by detecting row and type patterns. Data Mining and Knowledge Discovery,
33(6):1799-1820, 2019.

Jovan Varga, Oscar Romero, Torben Bach Pedersen, and Christian Thomsen. To-
wards next generation BI systems: The analytical metadata challenge. In Pro-
ceedings of the International Conference on Data Warehousing and Knowledge
Discovery (DaWakK), pages 89-101, 2014.

Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen,
Fei Wu, Gengxin Miao, and Chung Wu. Recovering semantics of tables on the web.
PVLDB, 4(9):528-538, 2011.

Gerardo Vitagliano, Lan Jiang, and Felix Naumann. Detecting layout templates
in complex multiregion files. PVLDB, 2021. (accepted).

Alexander Wachtel, Michael T Franzen, and Walter F Tichy. Context detection in
spreadsheets based on automatically inferred table schema. International Journal
of Computer and Information Engineering, 10(10):1892-1899, 2016.

Yalin Wang and Jianying Hu. A machine learning based approach for table dete-
ction on the web. In Proceedings of the International World Wide Web Conference
(WWW), pages 242-250, 2002.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou.
Layoutlm: Pre-training of text and layout for document image understanding.

In Proceedings of the International Conference on Knowledge discovery and data
mining (SIGKDD), pages 1192-1200, 2020.

Cong Yan and Yeye He. Auto-suggest: Learning-to-recommend data preparation
steps using data science notebooks. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 1539-1554, 2020.

116

REFERENCES

[131]

[132]

133

[134]

[135]

Junwen Yang, Yeye He, and Surajit Chaudhuri. AutoPipeline: Synthesize data
pipelines by-target using reinforcement learning and search. PVLDB, 14(11):2563—
2575, 2021.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A sur-
vey of autonomous driving: Common practices and emerging technologies. IFEFE
access, 8:58443-58469, 2020.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J

Franklin, et al. Apache spark: a unified engine for big data processing. Communi-
cations of the ACM, 59(11):56-65, 2016.

Meihui Zhang and Kaushik Chakrabarti. InfoGather+: semantic matching and
annotation of numeric and time-varying attributes in web tables. In Proceedings of
the International Conference on Management of Data (SIGMOD), pages 145-156,
2013.

Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc, and
Divesh Srivastava. On multi-column foreign key discovery. PVLDB, 3(1-2):805—
814, 2010.

117

Selbststandigkeitserklarung

Ich erklare hiermit, dass

e ich die vorliegende Dissertationsschrift selbstandig und ohne unerlaubte
Hilfe angefertigt sowie nur die angegebene Literatur verwendet habe,

e die Dissertation keiner anderen Hochschule in gleicher
oder dhnlicher Form vorgelegt wurde,

e mir die Promotionsordnung der Digital Engineering Fakultat der
Universitat Potsdam vom 27. November 2019 bekannt ist.

Potsdam, den 14. Dezember 2021

Lan Jiang

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Metadata in Data Files
	1.1 A Metadata Taxonomy
	1.1.1 Utility metadata
	1.1.2 Cell metadata
	1.1.3 Column metadata
	1.1.4 Row metadata
	1.1.5 Table metadata
	1.1.6 File metadata

	1.2 Challenges for metadata detection
	1.3 Structure and contributions

	2 Structure Detection in Verbose CSV Files
	2.1 Structure detection
	2.1.1 Verbose CSV file
	2.1.2 Class taxonomy
	2.1.3 Problem statement
	2.1.4 Challenges
	2.1.5 Architecture of Strudel

	2.2 Line Classification
	2.3 Cell Classification
	2.3.1 Feature extraction
	2.3.2 Block size
	2.3.3 Neighbor profile
	2.3.4 Line class probability
	2.3.5 Aggregate cell detection

	2.4 Evaluation
	2.4.1 Annotation, datasets, and experimental setup
	2.4.2 Comparative evaluation
	2.4.3 Strudel performance evaluation

	2.5 Related Work
	2.5.1 Line classification
	2.5.2 Cell classification

	2.6 Conclusions

	3 Aggregation Detection in Verbose CSV Files
	3.1 Aggregation detection
	3.2 Preliminaries
	3.2.1 Definitions
	3.2.2 Taxonomy of aggregation patterns
	3.2.3 Problem statement

	3.3 The AggreCol Approach
	3.3.1 Individual aggregation detection
	3.3.2 Collective aggregation detection
	3.3.3 Supplemental aggregation detection

	3.4 Experimental Evaluation
	3.4.1 Datasets
	3.4.2 Number format transformation
	3.4.3 Quality evaluation
	3.4.4 Comparison to baseline
	3.4.5 Analysis of detection errors
	3.4.6 Cell classification improvement

	3.5 Related work
	3.5.1 Structure detection
	3.5.2 Formula smell detection and repair

	3.6 Conclusion and Future Work

	4 Holistic Primary Key and Foreign Key Detection
	4.1 Structuring Schemata
	4.1.1 Types of dependencies
	4.1.2 Problem statement

	4.2 Related Work
	4.2.1 Metadata discovery
	4.2.2 Primary key and foreign key discovery

	4.3 Features for Primary Key and Foreign Key Discovery
	4.3.1 Primary key features
	4.3.2 Foreign key features

	4.4 Pruning PK and FK candidates
	4.4.1 FK candidate prefiltering
	4.4.2 PK ⊆ PK Filtering
	4.4.3 Primary key candidate pruning
	4.4.4 Foreign key candidate pruning

	4.5 Holistic algorithm HoPF
	4.6 Experiments and Analysis
	4.6.1 Experimental setup
	4.6.2 Qualitative evaluation
	4.6.3 Foreign key detection without primary keys
	4.6.4 Undocumented foreign key discovery
	4.6.5 Comparison

	4.7 Conclusions

	5 Conclusion and Outlook
	References

