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Objective: To examine the effect of plyometric jump training on skeletal muscle
hypertrophy in healthy individuals.

Methods: A systematic literature search was conducted in the databases PubMed,
SPORTDiscus, Web of Science, and Cochrane Library up to September 2021.

Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes
across 15 clusters median = 2, range = 1–15 effects per cluster) indicated that plyometric
jump training had small to moderate effects [standardised mean difference (SMD) = 0.47
(95% CIs = 0.23–0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for
training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95% CIs =
0.18–0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95% CIs =
0.16–0.51); p = 0.001]. Regardingmuscle groups, results showedmoderate effects for the
knee extensors [SMD = 0.72 (95% CIs = 0.66–0.78), p < 0.001] and equivocal effects for
the plantar flexors [SMD = 0.65 (95% CIs = −0.25–1.55); p = 0.143]. As to the assessment
methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for
prediction equations [SMD = 0.29 (95% CIs = 0.16–0.42); p < 0.001] and moderate-to-
large effects for ultrasound imaging [SMD = 0.74 (95%CIs = 0.59–0.89); p < 0.001]. Meta-
regression analysis indicated that the weekly session frequency moderates the effect of
plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session
frequency inducing larger hypertrophic gains [β = 0.3233 (95% CIs = 0.2041–0.4425); p <
0.001]. We found no clear evidence that age, sex, total training period, single session
duration, or the number of jumps per week moderate the effect of plyometric jump training
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on skeletal muscle hypertrophy [β = −0.0133 to 0.0433 (95% CIs = −0.0387 to 0.1215);
p = 0.101–0.751].

Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless
of age and sex. There is evidence for relatively larger effects in non-athletes compared with
athletes. Further, the weekly session frequency seems to moderate the effect of plyometric
jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric
jump training sessions elicit larger hypertrophic adaptations.

Keywords: muscle tissue, muscle strength, stretch shortening cycle exercise, muscle growth, human physical
conditioning, youth sports, aged

1 INTRODUCTION

Plyometric jump training is a popular form of physical
conditioning in both general (Moran et al., 2018; Izquierdo
et al., 2021) and athletic populations (Ramirez-Campillo et al.,
2018; Ramirez-Campillo et al., 2020b). It constitutes a suitable
training option in a resource-constrained setting as it can be
carried out without the need for equipment. Plyometric exercises
involve the physiological phenomenon called the “stretch-
shortening cycle” (Ishikawa and Komi, 2008; Taube et al.,
2012), which consists of a rapid eccentric action of the
agonistic muscle-tendon unit immediately followed by rapid
concentric action of that same muscle-tendon unit (Komi,
1984; Taube et al., 2012). The main advantage of the stretch-
shortening cycle compared with isolated concentric or eccentric
muscle actions is the storage and subsequent release of kinetic
energy eliciting greater power production (Dietz et al., 1979;
Voigt et al., 1998). Generally, the efficiency of the stretch-
shortening cycle is underpinned by a complex interaction of
multiple hierarchical levels of the central nervous system
including the coordination of anticipated (feedforward) and
reflex (feedback) mechanisms [for more insights see Taube
et al. (2012)].

There is persuasive evidence on the effectiveness of plyometric
jump training on a wide range of measures of physical fitness
(e.g., muscle strength, muscle power, sprint speed, and balance)
regardless of age, sex, and training experience (Bedoya et al., 2015;
Ramírez-Campillo et al., 2015; Chaabene andNegra, 2017; Moran
et al., 2018; Chaabene et al., 2019; Vetrovsky et al., 2019; Ramirez-
Campillo et al., 2020a; Ramirez-Campillo et al., 2021a; Ramirez-
Campillo et al., 2021b). Additionally, plyometric jump training
benefits many parameters of health (e.g., bone mineral density,
injury prevention, and fall prevention) (Markovic and Mikulic,
2010; Kish et al., 2015; Gómez-Bruton et al., 2017; Vlachopoulos
et al., 2018; Vetrovsky et al., 2019; Bull et al., 2020; Huang et al.,
2020). The benefits of plyometric jump training are mainly
attributable to an increased neural drive to the active muscles
(Häkkinen et al., 1985; Häkkinen et al., 1990; Chimera et al., 2004;
Kyröläinen et al., 2005; Fouré et al., 2012; Suchomel et al., 2018).
More specifically, the increase in muscle strength and power
following plyometric jump training has usually been attributed to
increased neuromuscular activation (e.g., motor unit recruitment,
firing frequency, synchronization, etc.) and better inter-muscular
coordination (e.g., decreased co-activation of the antagonist).

Unlike traditional resistance training, the effects of plyometric
jump training on skeletal muscle hypertrophy have received little
attention in the literature. Skeletal muscle hypertrophy can be
defined as an increase in muscle mass and cross-sectional area
(CSA) at the level of the entire muscle as well as individual muscle
fibers (Russell et al., 2000; Schoenfeld et al., 2021). It can be
directly measured using macroscopic [e.g., B-mode ultrasound,
magnetic resonance imaging (MRI)] or microscopic (e.g., biopsy)
assessment methods (Haun et al., 2019). Additionally, an indirect
method has also been developed and applied using a prediction
equation to assess muscle volume and CSA (Chelly et al., 2006).
Of note, the effects of plyometric jump training on skeletal muscle
hypertrophy seem to be equivocal in the existing literature. For
instance, Kyröläinen et al. (2005) examined the effects of
plyometric jump training on fiber CSA of the lateral
gastrocnemius muscle in recreationally active males aged
24 years and reported no changes after 15 weeks of training.
Likewise, Fouré et al. (2012) studied the effects of 14 weeks of
plyometric jump training on the CSA of the gastrocnemius
muscles in healthy active males aged 20 years and revealed no
significant changes after training. In contrast, Kubo et al. (2007)
reported a significant increase in plantar flexor muscle volume
(~5%) following 12 weeks of plyometric jump training in healthy
untrained males aged 22 years. Additionally, Malisoux et al.
(2006b) examined the effects of 8 weeks of plyometric jump
training on single fiber CSA in recreationally active males aged
23 years. These authors revealed a significant increase in the CSA
of type I (+23%), type IIa (+22%), and type IIa/IIx fibers (+30%)
in the vastus lateralis muscle. Markovic and Mikulic (2010)
conducted a comprehensive review of the effects of plyometric
jump training on neuromuscular and performance outcomes and
concluded that plyometric jump training has the potential to
enhance skeletal muscle hypertrophy but to a lesser extent
compared with traditional resistance training. Recently,
Ramírez-delaCruz et al. (2022) conducted a systematic review
and meta-analysis on the effects of plyometric jump training on
lower body muscle architecture in healthy adults (≥18 years). The
authors revealed that plyometric jump training is an effective
method to increase muscle thickness of the vastus lateralis, vastus
medialis, rectus femoris, and triceps surae. They additionally
concluded that plyometric jump training is effective in
increasing fascicle length of the vastus lateralis and rectus
femoris muscles, and pennation angle of the rectus femoris
muscle. However, the study suffers from several
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methodological flaws pertaining to the included studies, which
would lead to biased outcomes. For example, some studies have
used plyometric jump training with increased or reduced body
mass (Hirayama et al., 2017; Ullrich et al., 2018; Stien et al., 2020),
others used a combination of plyometric jump training with
traditional resistance training (Hunter and Marshall, 2002;
Kijowksi et al., 2015) and some of the included studies
actually did not use plyometric training at all (Helland et al.,
2017; Horwath et al., 2019; Kudo et al., 2020; van der Zwaard
et al., 2021). Additionally, the authors calculated within-group
pre-post effect size (Ramírez-delaCruz et al., 2022). Of note, such
an approach has been criticized as it results in biased outcomes
(Cuijpers et al., 2017).

Given the inconsistent outcomes as to the effects of plyometric
jump training on skeletal muscle hypertrophy from individual

studies and the methodological shortcomings in a recent meta-
analysis (Ramírez-delaCruz et al., 2022), there is a need to
systematically summarize the literature and aggregate data
from the available studies to draw more conclusive evidence
(Higgins, 2011). Additionally, factors such as age, sex, and
training experience as well as different training variables like
weekly session frequency, number of jumps per session, and
training duration appear to moderate the effects of plyometric
jump training on measures of physical fitness (de Villarreal et al.,
2009; Sáez-Sáez de Villarreal et al., 2010; Asadi et al., 2016), yet
are not well elucidated for skeletal muscle hypertrophy.
Therefore, the primary aim of this systematic review with
multilevel meta-analysis was to examine the effect of
plyometric jump training on skeletal muscle hypertrophy in
healthy individuals. The secondary objective was to identify

TABLE 1 | Characteristics of the population and assessment methods of included studies.

Author Population Assessment method

N Percent
female
(%)

Mean
age

(years)

Training
experience

Outcome Tool Muscle group

Allison et al. (2018) int [20]/
con [15]

0 72.5 Non-athletes Muscle
thickness

B-mode
ultrasound

plantar flexor [gastrocnemius]

Chelly et al. (2010) int [12]/
con [11]

0 19 Athletes CSA Prediction
equation

Unspecified

Muscle volume Prediction
equation

Unspecified

Chelly et al. (2014) int [12]/
con [11]

0 17.4 Athletes Muscle volume Prediction
equation

Unspecified

Chelly et al. (2015) int [14]/
con [13]

0 11.9 Athletes CSA Prediction
equation

Unspecified

Muscle volume Prediction
equation

Unspecified

Cherni et al. (2020) int [15]/
con [12]

100 21 Athletes CSA Prediction
equation

Unspecified

Muscle volume Prediction
equation

Unspecified

Correa et al. (2012) int [14]/
con [17]

0 67 Non-athletes Muscle
thickness

B-mode
ultrasound

Knee extensor [vastus lateralis]

Earp et al. (2015) int [9]/con [9] 0 26.5 Non-athletes CSA Ultrasound Knee extensor [vastus
medialis]

Fathi et al. (2019) int [20]/
con [20]

0 14.6 Athletes Muscle volume Prediction
equation

Knee extensor [rectus femoris]

Fouré et al. (2011) int [9]/con [10] 0 18.8 Non-athletes CSA Ultrasound Knee extensor [quadriceps
femoris]

Fouré et al. (2012) int [9]/con [10] 0 20.9 Non-athletes CSA Ultrasound Knee extensor [vastus lateralis]
Herrero et al. (2006) int [9]/con [10] 0 20.1 Non-athletes CSA Prediction

equation
Knee extensor [vastus
intermedialis]

Kyröläinen et al. (2005) int [13]/
con [10]

0 24.4 Non-athletes Fiber size I Biopsy Knee extensor [vastus
medialis]

Fiber size IIA Biopsy Knee extensor [rectus femoris]
Fiber size IIAX Biopsy Unspecified
Fiber size IIX Biopsy Plantar flexor [triceps surae]

Marković et al. (2005) int [50]/
con [51]

0 21 Non-athletes Calf girth Tape Plantar flexor [gastrocnemius]
Thigh girth Tape Unspecified

McKinlay et al. (2018) int [13]/
con [14]

0 12 Non-athletes Muscle
thickness

B-mode
ultrasound

Plantar flexor [gastrocnemius]

Skurvydas and Brazaitis,
(2010)

int [13]/
con [10]

0 10.3 Non-athletes Muscle
thickness

Ultrasound Plantar flexor [gastrocnemius]

56.52 10.3 Non-athletes Muscle
thickness

Ultrasound Knee extensor [quadriceps]

int, intervention; con, control condition; PJT, plyometric jump training; CSA, cross-sectional area.
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the factors (i.e., age, sex, and training experience) and plyometric
jump training variables (i.e., total training period, weekly session
frequency, single session duration, and number of jumps per
week) that potentially moderate the effect on skeletal muscle
hypertrophy to help guide training prescription.

2 MATERIALS AND METHODS

This systematic review was conducted per the Preferred
Reporting Items for Systematic Review and Meta-analysis
(PRISMA) statements (Page et al., 2021). The current study
was pre-registered in the International Prospective Register of
Systematic Reviews (PROSPERO) on 13 August 2021 under the
registration number “CRD42021265213.”

2.1 Search Strategy
A literature search was performed separately and independently
by two of the coauthors (AF and CH) in PubMed, SPORTDiscus,
Web of Science, and Cochrane Library databases up to September
2021. The search was conducted using a Boolean search strategy

with the operators “AND” and “OR” and a combination of the
following keywords: (“plyometric” OR “stretch-shortening cycle”
OR “stretch shortening cycle*” OR “jump training” OR jump)
AND (“hypertrophy” OR “muscle size” OR “muscle mass” OR
“muscle fiber” OR “muscle fibre” OR “lean body mass” OR “fat-
free mass” OR “cross-sectional area” OR “quadriceps size” OR
“circumference”). Keywords were determined through expert
opinion, literature review, and controlled vocabulary (e.g.,
Medical Subject Headings). In addition, corresponding meta-
analyses, as well as studies that were eligible for inclusion, were
searched for additional publications in so-called “snowball”
searches (Greenhalgh and Peacock, 2005). Only peer-reviewed
studies written in English were considered for inclusion.

2.2 Inclusion and Exclusion Criteria (Study
Selection)
We used the PICOS (Population, Intervention, Comparison,
Outcome, Study Design) approach to identify eligible studies
(Moher et al., 2009). The following inclusion criteria were defined
a priori: 1) Population: a cohort of healthy participants with no

TABLE 2 | Characteristics of the plyometric jump training interventions of included studies.

Author Intervention characteristics

Intervention Control Total
training
period
(weeks)

Session
duration
(mins)

Weekly
Session
frequency
(mean)

Jumps per
week
(mean)

Total
number
of jumps

Allison et al. (2018) PJT [unilateral; OLH] Regular
training

26 5 7 350 9,100

Chelly et al. (2010) PJT [bilateral; DJ/HJ] Regular
training

8 30 2 107.5 860

Chelly et al. (2014) PJT [bilateral; DJ/HJ] Regular
training

8 30 2 107.5 860

Chelly et al. (2015) PJT [bilateral; DJ/HJ] Regular
training

10 20 2 120 1,200

Cherni et al. (2020) PJT [bilateral; DJ/HJ] Regular
training

8 17.25 2 199.5 1,596

Correa et al. (2012) PJT [bilateral; LBJ] Regular
training

6 NA NA NA NA

Earp et al. (2015) PJT [bilateral; SJ] Regular
training

8 NA 3 99 792

Fathi et al. (2019) PJT [bilateral; DJ/HJ] Regular
training

16 NA 2 74 1,184

Fouré et al. (2011) PJT [bilateral; CMJ/DJ/HJ/SJ] Regular
training

14 60 2.43 486 6,804

Fouré et al. (2012) PJT [bilateral; CMJ/DJ/HJ/SJ] Regular
training

14 60 2.43 486 6,804

Herrero et al. (2006) PJT [bilateral; DJ/HoJ] Regular
training

4 25 2 195 780

Kyröläinen et al. (2005) PJT [bilateral; DJ/HJ/OLH/SJ/TLH] Regular
training

15 NA 2 NA NA

Marković et al. (2005) PJT [bilateral; DJ/HJ] Regular
training

10 60 3 180 1800

McKinlay et al. (2018) PJT [bilateral; CMJ/KCJ/DJ/HoJ/
OLH/TLH/other]

Regular
training

8 30 3 519.75 4,158

Skurvydas and Brazaitis,
(2010)

PJT [bilateral; CMJ] Regular
training

8 NA 2 60 480

PJT, plyometric jump training; OLH, one leg hopping; HJ, hurdle jump; DJ, drop jump; LBJ, lateral box jump; SJ, squat jump; CMJ, countermovement jump; HoJ, horizontal jump; KTJ,
knee to chest jump.
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restriction related to age, sex, or training experience, 2)
Intervention: plyometric jump training (i.e., jump exercises
soliciting the stretch-shortening cycle), with a minimum
duration of 4 weeks (Monti et al., 2020), 3) Comparison:
active/passive control group, 4) Outcome: at least one measure
of skeletal muscle hypertrophy (e.g., muscle/single fiber cross-
sectional area, muscle thickness, lean body mass, muscle
circumference), and 5) Study design: (randomized) controlled
trials with baseline and follow up measures. We excluded studies
involving individuals with pre-existing health problems (e.g.,
diabetes, hypertension, and asthma), an absence of a passive/
active control group, plyometric jump training interventions in
combination with additional interventions (e.g., nutrition), and/
or lack of baseline and follow-up data.

2.3 Data Extraction
The first author (AF) extracted the data from the included studies
in a standardised template created withMicrosoft Excel. A second
author (MA) cross-verified the extracted data. In case of
disagreement pertaining data extraction or study eligibility, co-
author CH was consulted for clarification.

Of note, we included data for all skeletal muscle hypertrophy
measures reported in the studies and for all time points at which
they were measured. More specifically, if a study reported
multiple skeletal muscle hypertrophy measures, they were all
included, and if a study reported measurements during and after
the training period, they were all included as well (dependence
between effect sizes was handled using a multilevel robust
variance estimation approach—see statistical analyses). If data
were not reported in a way that was conducive to extraction for
our analysis, we contacted the respective authors to request
appropriate data [i.e., mean ± standard deviation (SD), raw
data]. When multiple studies were published using the same

data set (Skurvydas and Brazaitis, 2010; Skurvydas et al., 2010),
only one study was considered (Skurvydas and Brazaitis, 2010). In
cases where the authors did not respond to our request for raw
data, we used WebPlotDigitizer (v4.3, Ankit Rohatgi; https://
apps.automeris.io/wpd/) to extract relevant data in studies that
only reported graphical data (Drevon et al., 2017).

From all included studies, we extracted 1) author and year of
publication; 2) mean age of participants; 3) percentage of females
in the sample; 4) training experience [i.e., athlete vs. non-athlete
(see footnote1)], 5) muscle group investigated [i.e., knee extensors
(e.g., vastus medialis and rectus femoris) vs., plantar flexors (e.g.,
gastrocnemius)], 6) assessment method (i.e., ultrasound and
prediction equation), 7) total training period (weeks), 8)
weekly session frequency, 9) single session duration, 10) total
number of jumps per week, and 11) type of jumping. The
characteristics of the included studies are displayed in Tables 1, 2.

2.4 The Methodological Quality of the
Included Studies
The Physiotherapy Evidence Database (PEDro) scale was used to
evaluate the methodological quality of the included studies. The
validity and reliability of the PEDro scale have been established in
previous studies (Maher et al., 2003; de Morton, 2009).
Additionally, its agreement with other assessment tools such
as the Cochrane risk of bias tool has been established
(Moseley et al., 2019). As blinding of participants and
investigators is not feasible in exercise interventions and
blinding of assessors is rarely implemented, items 5–7 were
removed from the scale consistent with previous systematic
reviews (Grgic et al., 2017; Schoenfeld et al., 2017). Hence the
methodological quality of the included studies was rated on a
scale from 0 to 7. In accordance with previous systematic reviews
(Kümmel et al., 2016; Schoenfeld et al., 2017), the quality of the
included studies was categorized as “poor” = 0–3, “moderate” = 4,
“good” = 5, and “excellent” = 6–7 (Table 3). Additionally, to
visually estimate publication bias, a contour-enhanced funnel
plot was used (Harrer et al., 2019).

2.5 Synthesis and Analyses
The meta-analysis was performed using the “metafor”
(Viechtbauer, 2010) and “tidyverse” (Wickham et al., 2019)
packages in R (v 4.0.2; R Core Team, https://www.r-project.
org/). All analyses are available in the supplementary
documentation (https://osf.io/bf478/). The standardised
mean difference (SMD) was calculated by subtracting the
standardised mean change of the intervention group minus
the standardised mean change of the control group. The
respective variance was calculated by pooling the pre-test

TABLE 3 | Modified Physiotherapy Evidence Database (PEDro) scores of the
reviewed studies.

Author 1* 2 3 4 8 9 10 11 Score

Allison et al. (2018) + − − + − + + + 4
Chelly et al. (2010) − + − + + + + + 6
Chelly et al. (2014) − + − + + + + + 6
Chelly et al. (2015) + + − + + + + + 6
Cherni et al. (2020) + − − + + + + + 5
Correa et al. (2012) + + − + + + + + 6
Earp et al. (2015) + + − + + + + + 6
Fathi et al. (2019) + + − + + + + + 6
Fouré et al. (2011) − + − + + + + + 6
Fouré et al. (2012) − − − + + + + + 5
Herrero et al. (2006) + + − + + + + + 6
Kyröläinen et al. (2005) − + − + + + + + 6
Marković et al. (2005) + + − + + + + + 6
McKinlay et al. (2018) + − − + + + + + 5
Skurvydas and Brazaitis, (2010) + − − − + + + + 4
Median 6

*The first criterion was excluded for the calculation of the PEDro score; + indicates a “yes”
score; − indicates a “no” score.
Because blinding of participants and investigators is impossible in supervised exercise
interventions and blinding of assessors is rarely implemented, items 5–7 were removed
from the scale.

1Training experience was determined with regard to the context from which
participants were recruited. Athletes were recruited from specific sport settings
(e.g., sports clubs or teams) and were actively participating in competitive events
while non-athletes were recruited outside this setting [e.g., educational institutions
(school, university) or rural/urban communities] and were not actively
participating in sports competition (Araújo and Scharhag, 2016).
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standard deviations of both groups, an approach deemed
appropriate to provide a comparatively unbiased estimate of
the population effect size (Morris, 2008). The magnitude of
standardised effect sizes was interpreted in accordance with
Cohen’s thresholds (Cohen, 1988): trivial (< 0.2), small (0.2 to
0.5), moderate (0.5 to 0.8), and large (≥ 0.8).

Due to the nested structure of the calculated effect sizes
(i.e., effects nested within groups nested within studies),
multilevel mixed-effects meta-analyses with study and intra-study
groups as random effects were calculated to examine the effect of
plyometric jump training on skeletal muscle hypertrophy. Further,
cluster robust point estimates using 95% compatibility (confidence)
intervals (CIs) were calculated (Hedges et al., 2010) and weighted by
inverse sampling variance to account for the within- and between-
study variance (tau-squared). Restricted maximal likelihood
estimation was applied in all models. A main model was created
containing all effect sizes. Additional exploratory subgroup
comparisons and meta-regression analyses of moderator variables
were performed, including mean age, proportion of females per
group, training experience, and muscle group studied, as well as
training characteristics such as total training period, training
frequency, session duration, and number of jumps per week. For
training experience and muscle group examined, multilevel models

with subgroups were calculated and robust estimates were produced.
Meta-regressions were calculated for mean age,
proportion of females per study, and the aforementioned training
characteristics.

To avoid dichotomizing the existence of an effect in our
models, we reported absolute p-values but did not employ
traditional null hypothesis significance testing (Amrhein
et al., 2019a; Amrhein et al., 2019b; McShane et al., 2019).
We also focused on the point estimate in the interpretation
with the greatest emphasis on the effects from the lower to the
upper limit of the interval estimates (Nakagawa and Cuthill,
2007; Lee, 2016; Van Calster et al., 2018). The risk of small
study bias was visualised through contour-enhanced funnel
plots. Further, Q and I2 statistics were produced and reported
(Higgins et al., 2003). A significant Q statistic is usually taken
as an indicator that the effects are unlikely to come from a
common population. I2 values indicate the degree of
heterogeneity of effects as follows: 0%–40% indicates no
heterogeneity, 30%–60% moderate heterogeneity, 50%–90%
substantial heterogeneity, and 75%–100% considerable
heterogeneity (Higgins et al., 2019). For within-participant
effects, pre-post correlations for measures have rarely been
reported; therefore, we adopted a range of values for

FIGURE 1 | Flow chart illustrating the different stages of search and study selection.
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correlation coefficients (r = 0.5, 0.7, and 0.9) and examined
the sensitivity of the results to each of these values. Since the
overall results were relatively insensitive to this range, we
reported the results for r = 0.7 here and included the results
for the other assumed correlation coefficients in the
Supplementary Material is available on the following link:
(https://osf.io/bf478/).

3 RESULTS

3.1 Study Characteristics
After initial searches and screening, nine studies were identified
that met inclusion criteria. Supplementary search approaches
identified six additional eligible studies. Thus, a total of 15 studies
were ultimately included for analysis. All studies included active

FIGURE 2 | Ordered caterpillar plot of all effects.

FIGURE 3 | Contour enhanced funnel plot for all effects.
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control groups. Details of the search and inclusion process are
shown in the flow chart (Figure 1; https://osf.io/3u567/). The
total number of participants across the included studies is 478
(range = 18–101; median = 23), comprising 245 INT (range =
9–50, median = 13) and 233 CON (range = 5–51, median = 11).
The majority of the studies used different types of jumps in their
training programmes (e.g., bilateral/unilateral vertical and
horizontal jumps) (Kyröläinen et al., 2005; Marković et al.,
2005; Herrero et al., 2006; Chelly et al., 2010; Fouré et al.,
2011; Fouré et al., 2012; Chelly et al., 2014; Chelly et al., 2015;
McKinlay et al., 2018; Fathi et al., 2019; Cherni et al., 2020). Four
studies used one single type of jump such as bilateral
countermovemt jump or lateral box jump (Skurvydas and
Brazaitis, 2010; Correa et al., 2012; Earp et al., 2015; Allison
et al., 2018). The mean age across studies ranged from 10.3 to
72.5 years with a median of 20.1 years. Two studies examined
the effects of plyometric jump training on hypertrophy in
female participants (Correa et al., 2012; Cherni et al., 2020),
while one study included a mixed intervention group but used
a male-only control group (Skurvydas and Brazaitis, 2010).
The remaining twelve studies included male participants. Two
studies included older adults (Correa et al., 2012; Allison et al.,
2018). As to training experience, five studies recruited athletes
(Chelly et al., 2010; Chelly et al., 2014; Chelly et al., 2015; Fathi
et al., 2019; Cherni et al., 2020), while ten studies investigated
the effects of plyometric jump training on skeletal muscle
hypertrophy in non-athletes (Kyröläinen et al., 2005;

Marković et al., 2005; Herrero et al., 2006; Skurvydas and
Brazaitis, 2010; Fouré et al., 2011; Fouré et al., 2012; Correa
et al., 2012; Earp et al., 2015; Allison et al., 2018; McKinlay
et al., 2018). Regarding the muscle group investigated, four
studies examined hypertrophy in the knee extensors
(Skurvydas and Brazaitis, 2010; Correa et al., 2012; Earp
et al., 2015; McKinlay et al., 2018) and four in the plantar
flexor (Kyröläinen et al., 2005; Fouré et al., 2011; Fouré et al.,
2012; Allison et al., 2018). In the seven remaining studies, the
muscle group investigated was not specified (e.g., assessment
of thigh muscle volume or thigh/calf girth) (Marković et al.,
2005; Herrero et al., 2006; Chelly et al., 2010; Chelly et al., 2014;
Chelly et al., 2015; Fathi et al., 2019; Cherni et al., 2020). Seven
studies used ultrasound imaging technique (Skurvydas and
Brazaitis, 2010; Fouré et al., 2011; Fouré et al., 2012; Correa
et al., 2012; Earp et al., 2015; Allison et al., 2018; McKinlay
et al., 2018), while six studies used a prediction equation to
assess muscle hypertrophy (Herrero et al., 2006; Chelly et al.,
2010; Chelly et al., 2014; Chelly et al., 2015; Fathi et al., 2019;
Cherni et al., 2020). One study assessed muscle hypertrophy
using muscle biopsy (Kyröläinen et al., 2005) and one study
used tape (Marković et al., 2005). The median duration of
plyometric jump training was 8 weeks (range from 4–26) and
the median weekly session frequency was two (range from
2–7). The median session duration was 30 min and ranged
from 5 to 60 min. However, session duration was not reported
in two studies (Kyröläinen et al., 2005; Correa et al., 2012).

FIGURE 4 | Point-range plots of categorical subgroups on skeletal muscle hypertrophy.
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The median of the number of jumps performed per week was
230 (range = 60–520). Full details of all included studies can
be seen in Tables 1, 2. Regarding the methodological quality
of the included studies, the PEDro scores ranged from 4 to 6
with a median score of 6 (Table 3).

3.2 Main Model—All Effects
The main model (44 effect sizes across 15 clusters median = 2,
range = 1–15 effects per cluster) yielded small to moderate effects
with a small point estimate [SMD = 0.47 (95% CIs = 0.23–0.71);
p < 0.001] and moderate to substantial heterogeneity (I2 =
57.53%). All effect sizes and interval estimates are presented in
an ordered caterpillar plot (Figure 2; https://osf.io/csnrq/). The
visual inspection of the funnel plot indicated a seemingly
symmetrical distribution pattern of the effects that might be
reflective of an apparently absence of publication bias
(Figure 3; https://osf.io/gv7xq/).

3.3 Subgroup and Meta-Regression
Analyses
3.3.1 Muscle Group
Subgroup models showed moderate effects for the knee extensors
with a moderate point estimate [SMD = 0.72 (95% CIs = 0.66–0.78);
p < 0.001] and an equivocal effect for the plantar flexors with a
moderate point estimate [SMD= 0.64 (95% CIs = −0.25 to 1.55); p =
0.142]. Additionally, trivial to moderate effects with a small point
estimate were observed for unspecified muscle groups [SMD = 0.23
(95% CIs = 0.04–0.43); p = 0.024]. The difference between sub-
groups was notable (p = 0.001). The level of heterogeneity was
moderate (I2 = 48.25%). This subgroup analysis is presented in a
point-range plot in Figure 4 (https://osf.io/wn2xv/).

3.3.2 Training Experience
Subgroup models indicated trivial to moderate effects with a
small point estimate for athletes [SMD = 0.33 (95% CIs =

FIGURE 5 | Meta-analytic plots of continuous subgroups on skeletal muscle hypertrophy.
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0.16–0.51); p = 0.001] and trivial to large effects with a moderate
point estimate for non-athletes [SMD = 0.55 (95% CIs =
0.18–0.93); p = 0.007] with no differences between subgroups
(p = 0.270). The level of heterogeneity was substantial (I2 =
58.84%). The subgroup analysis is presented in a point-range plot
in Figure 4 (https://osf.io/wn2xv/).

3.3.3 Assessment Method
Subgroup models revealed trivial to small effects with a small
point estimate for prediction equations [SMD = 0.29 (95%
CIs = 0.16–0.42); p < 0.001] and moderate to large effects
with a moderate point estimate for ultrasound imaging
[SMD = 0.74 (95% CIs = 0.59–0.89); p < 0.001] with a
clear difference between subgroups (p < 0.001). Analysis
further revealed no heterogeneity (I2 = 0%). The subgroup
analysis is presented in a point-range plot in Figure 4
(https://osf.io/wn2xv/).

3.3.4 Mean Age of Participants
Meta-regression analyses did not indicate clear evidence that age
moderates skeletal muscle hypertrophy adaptations in response
to plyometric jump training [β = 0.0149 (95% CIs = −0.0033 to
0.0332); p = 0.101]. The level of heterogeneity was moderate (I2 =
46.90%). The regression analysis is depicted in a meta-analytic
plot in Figure 5 (https://osf.io/g8aet/).

3.3.5 Percentage of Females in the Sample
Meta-regression analyses did not detect clear evidence that the
percentage of females in the sample moderates the effects of
plyometric jump training on skeletal muscle hypertrophy [β =
0.0006 (95% CIs = −0.0036 to 0.0049); p = 0.751]. The level of
heterogeneity was substantial (I2 = 60.43%). The subgroup
analysis is presented in a meta-analytic plot in Figure 5
(https://osf.io/g8aet/).

3.3.6 Total Training Period
Meta-regression analyses did not indicate clear evidence that total
training period moderates the effect of plyometric jump
training on skeletal muscle hypertrophy [β = 0.0433 (95%
CIs = −0.0347 to 0.1215); p = 0.253). The level of heterogeneity
was moderate to substantial (I2 = 56.78%). The subgroup
analysis is illustrated in a meta-analytic plot in Figure 5
(https://osf.io/g8aet/).

3.3.7 Weekly Session Frequency
Meta-regression analyses showed that the weekly session
frequency moderates the effect of plyometric jump training on
skeletal muscle hypertrophy, with more sessions per week
inducing larger gains in hypertrophy [β = 0.3233 (95% Cis =
0.2040–0.4425); p < 0.001]. The analysis further revealed no to
moderate heterogeneity (I2 = 38.63%). The subgroup analysis is
presented in a meta-analytic plot in Figure 5 (https://osf.io/
g8aet/).

3.3.8 Single Session Duration
Meta-regression analyses revealed no clear evidence that single
session duration moderates the effects of plyometric jump

training on skeletal muscle hypertrophy [β = −0.0133 (95%
CIs = −0.0387 to 0.0120); p = 0.261). The analysis further
revealed substantial heterogeneity (I2 = 70.36%). The subgroup
analysis is depicted in a meta-analytic plot in Figure 5 (https://
osf.io/g8aet/).

3.3.9 Number of Jumps Per Week
Meta-regression analyses revealed no clear evidence that the
number of jumps per week moderates the effects of plyometric
jump training on skeletal muscle hypertrophy [β = 0.0009 (95%
CIs = −0.0006 to 0.0025) p = 0.214]. The analysis showed
substantial heterogeneity (I2 = 60.57%). The subgroup analysis
is presented in a meta-analytic plot in Figure 5 (https://osf.io/
g8aet/).

4 DISCUSSION

This systematic review with multilevel meta-analysis aimed to 1)
examine the effects of plyometric jump training on skeletal
muscle hypertrophy in healthy individuals across different age
ranges and 2) identify potentially important plyometric jump
training variables relevant for promoting hypertrophic
adaptations to help guide training prescription. The main
findings indicated that plyometric jump training elicits small
to moderate effects on skeletal muscle hypertrophy, regardless of
sex, age, or training experience. Additionally, subgroup analyses
showed relatively larger effects in non-athletes compared
with athletes, and moderate effects for the knee extensors
with an equivocal effect for the plantar flexors. Moreover, we
found no clear evidence that age or sex moderated the effects
of plyometric jump training on skeletal muscle hypertrophy.
Furthermore, meta-regression analyses suggested that the
effects on skeletal muscle hypertrophy were moderated by
the weekly session frequency, with more frequent weekly
plyometric jump training sessions resulting in larger
hypertrophic adaptations. We found no clear evidence
that total training period, single session duration, or the
number of jumps per week moderate the effects of
plyometric jump training on skeletal muscle hypertrophy.

4.1 Main Effect
The main findings of the present meta-analysis indicated small to
moderate effects of plyometric jump training on skeletal muscle
hypertrophy [SMD = 0.47 (95% CIs = 0.23–0.71)], regardless of
sex, age, and training experience. The current outcomes
corroborate the results of a recently published systematic
review with meta-analysis where authors reported a moderate
effect of plyometric jump training on muscle thickness (SMD =
0.59) and fascicle length (SMD = 0.51) in healthy adults
(Ramírez-delaCruz et al., 2022). However, our results are
relatively more conservative, which we attribute to our more
stringent inclusion criteria for plyometric jump training as well as
the comparison of the plyometric jump training to an active/
passive control group. In sum, the findings of the current study as
well as those of recent ones (Grgic et al., 2020; Ramírez-delaCruz
et al., 2022) question the common belief, indicating that
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plyometric jump training can indeed increase not only the motor
drive to the active muscles but also skeletal muscle hypertrophy.

The previously claimed limited potential for plyometric jump
training-related hypertrophic adaptations has been attributed to
the relatively short time under tension during the jumps and,
therefore, a reduced mechanical stimulus for muscle protein
synthesis (Schoenfeld, 2010; Wackerhage et al., 2019). In
addition, some researchers have proposed that the inability to
continually provide an overload stimulus during plyometric jump
training is another potential limitation from a hypertrophy
standpoint (Suchomel et al., 2018). In this context, while extra
loads additional to body mass may be used with plyometric jump
exercises (e.g., weighted vests) (Negra et al., 2020), caution must
be taken given that heavier loads may result in greater impact
forces and delay the transition time between eccentric and
concentric muscle actions, which could harm the overall
training stimulus (Suchomel et al., 2018). However, our
findings seem to refute these claims. Indeed, the small to
moderate effects of plyometric jump training on skeletal
muscle hypertrophy observed in this study indicate that the
high contraction velocity seems to contribute to skeletal
muscle hypertrophy.

Earlier studies showed that high-velocity lengthening actions
(i.e., rapid eccentric phase during movements under the stretch-
shortening cycle) tend to hypertrophy type II compared with type
I muscle fibers (Potteiger et al., 1999; Shepstone et al., 2005;
Malisoux et al., 2006b). For example, Shepstone et al. (2005)
studied the effects of two modes of resistance training
programmes, fast vs. slow isokinetic lengthening action of
the elbow flexors, on muscle fiber hypertrophy in healthy
untrained individuals aged 24 years. The results of the study
demonstrated greater hypertrophy in type IIa muscle fibers
following fast (+13%) compared with slow muscle lengthening
(+3%). Authors further demonstrated greater (+185%) Z-line
disruption following fast compared with slow muscle
lengthening. It should be noted that Z-line disruption is
considered a prominent marker of muscle protein
remodeling (Yu and Thornell, 2002; Yu et al., 2004).
Additionally, there is direct evidence based on muscle
biopsy that a single bout of plyometric exercise induces
preferential damage (e.g., loss in dystrophin staining, Z-line
disruption) to type II muscle fibers (Macaluso et al., 2012). Of
note, exercise-induced damage to muscle tissues is discussed as
a potential mechanism for skeletal muscle hypertrophy,
perhaps mediated by stimulating satellite cell activity
(Vierck et al., 2000; Schoenfeld, 2010; Schoenfeld, 2012). In
fact, satellite cells represent the resident stem cells of skeletal
muscle (Scharner and Zammit, 2011) and lead to increased
muscle regeneration (Barton-Davis et al., 1999). Existing
evidence indicated larger satellite cell activation and
proliferation after exercise that induced muscle damage
(Crameri et al., 2007).

Exercise training needs to cause positive net protein balance to
induce skeletal muscle hypertrophy. To our knowledge, muscle
protein synthetic responses to plyometric jump training in
humans have never been examined in the literature (Grgic
et al., 2020). Relevant outcomes from an animal study

indicated that rats exposed to plyometric jump training
showed a positive net protein balance compared with a
control condition (Watt et al., 1982). Lim et al. (2017)
examined the effects of one bout of single-mode traditional
resistance training vs. one bout of combined traditional
resistance training and plyometric jump training on satellite
cell activity and anabolic signaling in elite male weightlifters.
Their results revealed an increase in satellite cell activation and
myofibrillar protein synthesis following both exercise modes.
However, the same authors reported that single-mode
traditional resistance training resulted in higher satellite cell
activity with a tendency for higher expression of mTOR
(mammalian target of rapamycin) and p70S6K (ribosomal
protein S6 kinase) compared with combined traditional
resistance training and plyometric jump training (Lim et al.,
2017). Despite these intriguing results, this study does not
provide insights into the effects of single-mode plyometric
jump training on the anabolic signaling pathway. Therefore,
researchers should seek to fill this gap in the literature. Overall,
contrary to the previous speculation, plyometric jump training
appears to contribute to skeletal muscle hypertrophy,
regardless of sex, age, and training experience. These
findings have both important scientific and practical
implications.

4.2 Moderating Variables
Our findings indicate moderate effects of plyometric jump
training on knee extensor hypertrophy [SMD = 0.72 (95% CIs
= 0.66–0.78)]. However, the heterogeneity of the outcomes
across studies yielded an equivocal effect of plyometric jump
training on plantar flexor hypertrophy (SMD = 0.64; 95% CIs =
−0.25 to 1.55). It has been shown that jumping exercises
principally solicit activation of the knee extensors
(i.e., quadriceps) and plantar flexors (e.g., gastrocnemius)
but not hamstrings (Ebben et al., 2008). As such, we would
expect larger hypertrophic adaptations in these muscles. Monti
et al. (2020) investigated the effects of 6 weeks of plyometric
jump training on knee extensor muscle mass in healthy males
aged 25 years. They demonstrated increased knee extensor
power (+19.7%), which was accompanied by increases in
quadriceps femoris (+5.8%) and vastus lateralis (+9.6%)
volume as well as mean CSA of the quadriceps femoris
(+5.8%) after plyometric jump training. The same authors
reported significant positive correlations between mean CSA
and volume of quadriceps femoris and muscle power (R2 = 0.46
and 0.44, respectively). Additionally, McKinlay et al. (2018)
examined the effects of 8 weeks of plyometric jump training on
knee extensor hypertrophy and found an 8.1% post-study
increase in vastus lateralis muscle thickness in adolescent
soccer players aged 11–13 years. Furthermore, Váczi et al.
(2014) indicated a 20.5% increase in quadriceps CSA
measured via MRI in older adults following 10 weeks of
plyometric jump training. In sum, plyometric jump training
appears to be an effective means to improve knee extensor
hypertrophy. Conversely, our findings do not support
consistent hypertrophic effects in the plantar flexors. This
could be due to the different mechanical properties between
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the patellar tendon and Achilles tendon, resulting in different
hypertrophic effects on the quadriceps (knee extensor) and
gastrocnemius (plantar flexor). In fact, the patellar tendon has
been shown to be stiffer and, therefore, mechanically better
suited to effectively transmit muscle force compared with the
Achilles tendon (Wiesinger et al., 2016). Nevertheless, given
the relative paucity of research, future studies should be
further redirected towards the assessment of plyometric
jump training on plantar flexor hypertrophy to achieve
more conclusive inferences.

In regard to training experience, results showed a relatively
larger effects for non-athletes [0.55 (95% CIs = 0.18–0.93)]
compared with athletes [0.33 (95% CIs = 0.16–0.51)], with a
substantial degree of heterogeneity observed across studies. It
is well-established that previous training history moderates
adaptations to further training interventions (Faigenbaum,
2000; Rhea et al., 2003; Harries et al., 2015; Figueiredo
et al., 2018; Suchomel et al., 2018). Indeed, a larger
magnitude of adaptation to training would be expected in
individuals with less, compared with more, training experience
(Faigenbaum, 2000; Suchomel et al., 2018). In this context,
earlier studies (Rhea et al., 2003; Figueiredo et al., 2018)
demonstrated that adaptations to traditional resistance
training are moderated by the magnitude of adaptation that
has already been achieved by the individual, implying that the
so-called “ceiling effect” attenuates continued adaptations. To
the authors’ knowledge, none of the available studies have
contrasted the effects of plyometric jump training on skeletal
muscle hypertrophy of athletes vs. non-athletes, highlighting a
void in the current literature. Nevertheless, results from
separate studies indicate large effects of plyometric jump
training on skeletal muscle hypertrophy (11.5%–18.8%
increase of quadriceps femoris CSA) in non-athletes (Earp
et al., 2015) but only a relatively small effect in athletes (9.9%
increase in thigh CSA) (Cherni et al., 2020). This is in
agreement with the findings of the present study, given that
trivial to large effects were observed for non-athletes and
trivial to moderate effects were noted for athletes. This
suggests that to achieve comparable or larger gains,
individuals with greater training experience may need to
increase their training volume/intensity to a level that
exceeds those who are less experienced and/or fit (Suchomel
et al., 2018; Chaabene et al., 2020). In summary, plyometric
jump training appears to be more effective to improve skeletal
muscle hypertrophy in non-athletes compared with athletes.
Future studies should seek to explore the specific mechanisms
that facilitate larger gains in non-athletes compared with
athletes.

For the assessment methods of skeletal muscle hypertrophy,
results show larger effects for ultrasound imaging [SMD = 0.74
(95% CIs = 0.59–0.89)] compared with prediction equation
[SMD = 0.29 (95% CIs = 0.16–0.42)] with a clear difference
between subgroups. Ultrasound is an easy, non-invasive, and
rapid tool to assess muscle thickness, which in turn informs
about skeletal muscle hypertrophy (Haun et al., 2019). Muscle
thickness evaluated using ultrasound is highly reliable in a
range of muscles (Thoirs and English, 2009). However, the

prediction equation represents a valid tool that affords a crude
estimate of skeletal muscle hypertrophy (Chelly et al., 2006).
The major drawback of the prediction equation though is that
it does not allow for the differentiation between muscle tissue,
fat tissue, and bone (Chelly et al., 2006; Grgic et al., 2019). For
the reasons above, it is advisable to favor using ultrasound over
the prediction equation to provide more accurate insights
about skeletal muscle hypertrophy. Nevertheless, the
affordability of the prediction equation could make it
further useful, when equipment such as ultrasound is not
available. Furthermore, the hypertrophic improvement
following plyometric jump training seems to be stable
across other assessment methods such as biopsies or MRI.
For example, Malisoux et al. (2006a) studied the effects of
plyometric jump training on single muscle fiber diameters of
the vastus lateralis measured using biopsies in healthy active
males aged 23 years. Participants demonstrated a significant
increase in type I (+11%), type IIa (+10%), and type IIa/IIx
(+15%) fibers following training. The same authors reported
that fiber force increased for all fiber types, in part due to
increased fiber diameter (Malisoux et al., 2006a). Furthermore,
Vissing et al. (2008) compared the effects of plyometric jump
training vs. traditional resistance training on skeletal muscle
hypertrophy via MRI in untrained males aged 25 years and
revealed an increase in the CSA of the quadriceps, hamstrings,
and adductor muscles (+7%–10%).

Regarding training frequency, our findings indicate that the effects
of plyometric jump training on skeletal muscle hypertrophy were
moderated by the weekly session frequency [β = 0.3233 (95% CIs =
0.2040–0.4425)] with a higher weekly session frequency inducing
larger hypertrophic gains. Of note, most of the included studies used
biweekly or triweekly plyometric jump training sessions. Specifically,
three sessions of plyometric jump training per week showed large
increases in skeletal muscle hypertrophy (12.8%–25.8% increase in
vastus lateralis CSA) (Earp et al., 2015) compared with smaller gains
following two weekly sessions (14% increase in thighmuscle volume)
(Fathi et al., 2019). This is in agreement with the literature about
traditional resistance training (Wernbom et al., 2007; Schoenfeld
et al., 2019; Schoenfeld et al., 2021). More specifically, in a systematic
review with meta-analysis of the effects of traditional resistance
training frequency on skeletal muscle hypertrophy in healthy
individuals, Schoenfeld et al. (2019) reported a slightly larger effect
of higher compared with lower frequencies of training on
hypertrophic outcomes when training volume was not equated
between conditions. However, under equated-volume conditions,
no additional effects of higher compared with lower frequencies of
training were reported (Schoenfeld et al., 2019). The same conclusion
was made in a recent consensus review in that a higher number of
traditional resistance training sessions per week (e.g., 3 sessions vs. 1
session) is recommended to gainmoremusclemass (Schoenfeld et al.,
2021). The same authors attributed the larger benefits of
manipulating training frequency to its potential effect on the
distribution of the weekly training volume (Schoenfeld et al.,
2021). Future studies should endeavor to better understand the
interaction between plyometric jump training frequency and
hypertrophic adaptations, particularly in context with alterations
in volume and intensity.
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With respect to age, the positive point estimate suggests that older
participants tend to achieve larger hypertrophic adaptations
(Figure 5; https://osf.io/g8aet/). The same observation was noted
for total training period (Figure 5; https://osf.io/g8aet/), with longer
exposure to plyometric jump training appearing to induce larger
hypertrophic gains. However, for a single session duration (Figure 5;
https://osf.io/g8aet/), there is a tendency for shorter sessions to induce
larger hypertrophic gains. It should be noted though that these
observations are not conclusive and hence need to be confirmed
in future studies.

4.3 Limitations
Some limitations of this meta-analysis need to be acknowledged.
The lack of a standardised method to assess skeletal muscle
hypertrophy can constitute a limitation given that different
assessment techniques may disagree with one another (e.g.,
macroscopic vs. microscopic) (Haun et al., 2019). Indeed,
studies included in this analysis have used a wide range of
methods to assess skeletal muscle hypertrophy. More
specifically, the included studies relied upon macroscopic
assessment methods (e.g., B-mode ultrasound) (Skurvydas and
Brazaitis, 2010; Fouré et al., 2011; Fouré et al., 2012; Correa et al.,
2012; Earp et al., 2015; Allison et al., 2018; McKinlay et al., 2018),
microscopic methods (e.g., biopsy) (Kyröläinen et al., 2005), and
a prediction equation to assess muscle volume and CSA (Chelly
et al., 2010; Chelly et al., 2014; Chelly et al., 2015; Fathi et al.,
2019). In fact, the prediction equation represents an indirect tool
that provides a crude estimate of skeletal muscle hypertrophy and
does not allow for the differentiation between muscle tissue, fat
tissue, and bone (Chelly et al., 2006; Grgic et al., 2019).
Additionally, although skeletal muscle hypertrophy was a
primary outcome in most of the included studies
(Kyröläinen et al., 2005; Marković et al., 2005; Herrero
et al., 2006; Correa et al., 2012; Chelly et al., 2014; Chelly
et al., 2015; Earp et al., 2015; Allison et al., 2018), it was in
some other studies (Chelly et al., 2010; Skurvydas and
Brazaitis, 2010; Fouré et al., 2011; Fouré et al., 2012;
McKinlay et al., 2018; Fathi et al., 2019; Cherni et al.,
2020) a secondary outcome. As such, caution must be taken
when interpreting the present findings. Furthermore,
moderator analyses were computed independently, ignoring
any potential interdependency (interaction) between variables.
Therefore, the results of univariate analyses must be
interpreted with caution. Finally, although we have included
studies that used athletic samples, the resistance training
expertise of these participants is generally not clear. Thus,
results cannot necessarily be generalized to well-trained
individuals. Further studies are warranted to determine the
effects of plyometric jump training on skeletal muscle
hypertrophy in those with significant resistance training
experience.

5 CONCLUSION

Contrary to common belief, plyometric jump training seems to
induce skeletal muscle hypertrophy, albeit to a small to

moderate magnitude. Such an effect appears to be
consistent across different ages, sexes, and training
experiences. Furthermore, there is evidence of relatively
larger hypertrophic adaptations in non-athletes compared
with athletes, with no clear evidence that either age or sex
moderated the effects of plyometric jump training on skeletal
muscle hypertrophy. Regarding the assessment methods, it is
advisable to favor the use of ultrasound and other validated
site-specific imaging modalities over the prediction equation
to provide more accurate insights into skeletal muscle
hypertrophy. Moreover, meta-regression analyses suggest
that the effects on skeletal muscle hypertrophy are
moderated by the weekly session frequency with higher
frequencies inducing larger gains in skeletal muscle
hypertrophy. However, there is no clear evidence that total
training period, single session duration, and the number of
jumps per week moderated the effects of plyometric jump
training on skeletal muscle hypertrophy.

6 FUTURE RESEARCH PERSPECTIVES

Given that skeletal muscle hypertrophy was a secondary outcome
in many of the included studies, future investigations of high
methodological quality (e.g., randomized-controlled trials) where
skeletal muscle hypertrophy is the primary endpoint are required
to substantiate the present findings. In addition, the effects of
plyometric jump training on muscle protein synthesis are still
unknown. Therefore, future research should explore the
mechanisms by which plyometric jump training induces skeletal
muscle hypertrophy. That said, researchers’ attention should be
redirected toward the effects of single-mode plyometric jump
training on the anabolic signaling pathway. Such studies will
provide novel insights into the mechanisms of plyometric jump
training-related hypertrophic adaptations in humans. Further,
there is a need for future longitudinal studies to compare and
contrast the effects of different plyometric jump training volumes,
frequencies, and intensities on skeletal muscle hypertrophy. Also,
we were able to locate only three studies that included female
participants (Skurvydas and Brazaitis, 2010; Correa et al., 2012;
Cherni et al., 2020) and only two studies that included older adults
(Correa et al., 2012; Allison et al., 2018). Therefore, future
investigations should recruit females as well as older adults to
fill this gap in the literature. Furthermore, the effects of plyometric
jump training vs. traditional resistance training on skeletal muscle
hypertrophy have never been meta-analyzed. Of note, there is only
one previous review on the topic, but it is descriptive and included
only six studies (Grgic et al., 2020), limiting the veracity of its main
findings. As such, there is a need to aggregate data from the
available literature to draw statistical inferences on the effects of
plyometric jump training vs. traditional resistance training on
skeletal muscle hypertrophy when there are a sufficient number
of studies on the topic. Moreover, given that the combination
between plyometric jump training and traditional resistance
training favors an anabolic hormonal milieu (Beaven et al.,
2011; Ali et al., 2019), it would be relevant to determine
optimal combination strategies between plyometric jump
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training and traditional resistance training to maximize skeletal
muscle hypertrophy.
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