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1 | INTRODUCTION

Low-temperature thermochronological data coupled to struc-
tural data can provide constraints on the structural evolution
and long-term exhumation history of relatively shallow (2-5 km
deep) crustal levels. Therefore, previous thermochronological
and magnetostratigraphic studies of the Subhimalaya have used
Neogene foreland strata to examine the Cenozoic deformational
history (e.g. Burbank et al., 1996; Gavillot et al., 2018; van der
Beek et al., 2006). However, limited or non-existent exposure of
Palaeozoic-Mesozoic bedrock strata in the Indian and Nepalese
Subhimalaya has precluded robust constraints on the regional
pre-collisional history and possible influence of structural inherit-
ance on the Cenozoic history. The Palaeozoic to Mesozoic strata
exposed in the Salt Range (SR; Figure 1) has the potential to record

pre-Cenozoic thermal and cooling events from low-temperature

| Edward R. Sobel' | Gerold Zeilinger! | Johannes Glodny? |

The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping
along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and
Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-
temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission
track dating. We combine cooling ages from different samples located along the
thrust front of the SRT into a thermal model that shows two major cooling events
associated with rifting and regional erosion in the Late Palaeozoic and SRT activity
since the Pliocene. Our results suggest that the SRT maintained a long-term average

shortening rate of ~5-6 mm/yr and a high exhumation rate above the SRT ramp since

exhumation, fault bend fold, ramp, Salt Range

thermochronometers because of limited (~2-5 km) burial beneath
Cenozoic foreland sediment.

We present here the first low-temperature thermochronological
dataset from samples collected along the strike of the SR. Structural,
stratigraphic and bedrock detrital cooling data from each sample were
combined within a single thermal model to extract quantitative ther-
mal history constraints. The thermal model and structural reconstruc-
tions are used to document the Palaeozoic deformational event and
long-term thermotectonic evolution of the Salt Range thrust (SRT).

2 | TECTONIC FRAMEWORK AND
STRATIGRAPHY

The Pakistan Subhimalaya is defined by the Kohat and Potwar
(Figure 1). These are bounded to the north by the Main Boundary
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Thrust (MBT), which formed at around ~10 Ma (Brozovic &
Burbank, 2000; Meigs et al., 1995; Turab et al., 2017). At the south-
ern border of the Potwar, the SRT lifts up Precambrian to Pliocene
strata above the SRT ramp and exposes them in a fault bend fold
above Quaternary sediments of the Punjab Plain (Figure 1; Baker
et al., 1988; Ghani et al., 2018). The stratigraphy in the SR is sub-
divided into three major units: (a) Late Neoproterozoic to Lower
Cambrian evaporites, (b) Cambrian to Eocene siliciclastic and carbon-
ate sequences, and (c) Miocene to Pliocene foreland strata derived
from erosion of the Himalayan orogen (Gee & Gee, 1989; Figure 2,

Supplementary material section 1).

3 | THERMOCHRONOLOGICAL RESULTS,
ANALYSIS AND THERMAL HISTORY
CONSTRAINTS

Samples were collected from Cambrian, Permian, Mesozoic and
Miocene strata exposed in four transects along the hanging wall of
the SRT (Figures 1 and 2). The Khewra, Karoli and Pail transects are
located along the thrust front of the SRT; the Western SR is located
along the lateral ramp of the SRT. Apatite (U-Th-Sm)/He (AHe) dat-
ing was performed on 16 samples. A total of 61 single-grain AHe
cooling ages are dispersed between 0.8 and 136 Ma; the majority
are <10 Ma (Figure 2). Fifteen samples were used for apatite fission
track (AFT) dating; 11 yielded confined track lengths (TL; Tables 1
and 2). Mean TL range from 9 to 12.8um. The AFT central ages of
Cambrian and Permian samples from the Khewra, Karoli and Pail
transects span from 205 + 9 to 249 + 13 Ma, except for a gran-
ite clast (sample TgKr) that has the oldest age of 355 + 15 Ma. In
the Western SR, AFT central ages of Permian samples span from
3.7 + 0.7 to 238 + 15 Ma. The two Miocene age samples KmPa
and KmKTr are located ~15 km north of the thrust front. Six single-
grain AHe ages from these samples are around ~2 Ma; a single grain
is ~7 Ma. Only sample KmPa was used for AFT analysis, yielding a
central age of 28 + 2 Ma. The AHe and AFT methods are sensitive
to temperatures of ~40-80°C (the apatite helium partial retention
zone, AHePRZ) and 60-120°C (the apatite partial annealing zone,
APAZ) respectively (Farley, 2000, 2002; Gallagher et al., 1998).
Details about dating methods, AFT age population analysis and the
calculation of AFT central ages are provided in supplementary mate-
rial section 2.

The Palaeozoic-Cenozoic stratigraphic wedge thickness above
the Salt Range Formation increases northward from ~2.5 km along
the SRT range front to ~5 km, where the northernmost sample TbDk
was collected (Figure 2). The large AFT age dispersion (~4-355 Ma) is
related to the estimated thickness of the stratigraphic overburden at
each sample location prior to Late-Cenozoic exhumation (Figure 2;
Table 3). Approximately 3 km of Cenozoic strata exposed above

Statement of Significance

This study presents the first thermochronological dataset
from the Palaeozoic rocks of the Subhimalaya. In order
to understand the in-situ basin thermal history, we have
adopted a new thermal modelling approach based on
joint modelling of different stratigraphic age samples col-
lected from multiple, structurally similar transects in the
Salt Range. The thermal models show that the Salt Range
area experienced a major exhumation event in the Late
Palaeozoic before Cenozoic formation of the Salt Range,
part of the Himalayan range front. The results of this study
provide new constraints on rates of shortening and exhu-
mation for the Salt Range Thrust.

the SRT ramp suggest that the Cambrian and Permian samples in
the Khewra, Karoli and Pail transects along the thrust front were
subjected to roughly equal stratigraphic burial before exhumation.
Assuming a ~20°C surface temperature and a geothermal gradient
of ~25°C/km (Gavillot et al., 2018; Kadri, 1995; Khan & Raza, 1986),
the estimated Cenozoic burial temperature for these samples ranges
between 70 and 95°C, implying that AFT ages are partially reset
and AHe ages are partially to fully reset (Figure 2). The samples in
the Western SR have northward-younging AFT ages and decreas-
ing TL from the Ghundi lobe (Figures 1 and 2), implying significant
post-depositional heating and subsequent exhumation. The north-
ernmost sample TbDk is estimated to have been buried ~5 km be-
neath Mesozoic and Cenozoic sediment prior to exhumation; this
depth implies palaeotemperatures of 120-145°C, sufficient to fully
reset AFT and AHe ages. The Miocene samples were estimated to
have been buried to ~3 km beneath foreland strata, implying a pa-
laeotemperature of ~95°C, sufficient to fully reset AHe ages but not
AFT ages.

4 | THERMAL MODELLING APPROACH
AND RESULTS

We used the QTQt program (Gallagher, 2012) for inverse modelling
of low-temperature thermochronological data to find possible time-
temperature histories of the samples. Four parameters from each
sample (if available) were used: AFT central (population) age, C-axis
projected TL, Dpar and single-grain AHe ages (Table 4). Cambrian,
Permian, Palaeogene and Miocene stratigraphic succession were
used as geological constraints in the Khewra, Karoli and Pail tran-
sects, assuming that samples were close (0-30°C) to the surface
temperatures during these periods of sedimentation.

FIGURE 1 (a) Structural map of the Salt Range and its surrounding regions (modified after Gee & Gee, 1989; Ghani et al., 2018). The inset
shows Pakistan and its neighbouring countries. (b) Generalised stratigraphy of the Salt Range and stratigraphic location of the samples. (c)
Geographic location of the samples [Colour figure can be viewed at wileyonlinelibrary.com]
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We used three different modelling approaches (M1, M2, M3). In
M1, we model data from individual samples from different transects,
assuming that samples have experienced different burial depths, and
therefore do not share a similar thermal history (Figure 3). Because
KhKg and the Karoli and Pail transects have similar palaeotem-
perature constraints, we modelled KhKg using M1 to compare the
M1 and M2 results. In M2, we combined data from Cambrian and
Permian depositional-age samples from the same stratigraphic tran-
sect into a single thermal model for the Karoli and Pail transects and
from two Western SR Permian samples (TbSw and WrSw; Figure 3).
Our second approach is based on the assumption that, although the
samples have different stratigraphic ages, they experienced a similar
post-depositional thermal history.

In M3, we combined all Cambrian and Permian deposition-
al-age sample data from the Khewra, Karoli and Pail transects into
one single pseudo-stratigraphic transect for thermal modelling
(Figure 4). The sampled locations can be combined because they
share similar structural positions along the strike of the SRT and
stratigraphic overburden (~3 km) beneath foreland strata, and as
shown by the models obtained in the first two approaches, experi-
enced similar thermal histories (Figures 2 and 3). Samples from the
Western SR were not included in this joint model because they are
located on the lateral ramp of the SRT and were buried to differ-
ent depths (Figure 2). Similarly, samples KmPa and KmKr were not
included in the model because they are located ~20 km north of
modelled samples on the SRT ramp and have experienced different
burial depths.

The thermal model results for M3 (Figure 4) suggest that
Cambrian samples were heated up to ~75 to ~100°C between ~500

FIGURE 2 (a) Geological block diagram
showing the geometry of the stratigraphic
wedge, surficial geology, sample locations
and their respective AHe and AFT ages in
the Salt Range. Thicknesses of different
stratigraphic units in the block diagram
beneath the map are estimated from map
relationships and cross-sections (Gee &
Gee, 1989; Ghani et al., 2018). Note that
the scale on the age axis is not linear;

but selected to better show the spatial
distribution of AFT and AHe ages [Colour
figure can be viewed at wileyonlinelibrary.
com]

and ~370 Ma, partially resetting the AFT ages. Cooling commenced
in Late Devonian time and persisted to Permian time. The samples
remained colder than ~70°C from Permian to Miocene time. The
final heating, up to ~80 to ~105°C, occurred in the Middle to Late
Miocene, totally resetting the majority of the AHe ages, partially
resetting all AFT ages, and moderately annealing track lengths.
Final rapid cooling occurred from ~4 to ~3 Ma; afterwards, samples
cooled very slowly to surface temperature.

Modelling results in Figure 4 show the single paths (maximum
likelihood) for each sample that best fit the observed data and the
average paths (expected) of all acceptable paths of the thermal
model. The maximum likelihood path is ~10°C hotter in Middle-to-
Late Devonian time than the expected path and stays up to ~30°C
colder from the Permian to the Miocene. The maximum likelihood
path fits almost all AFT and TL data compared to the poorer fit of
the expected model; however, both models only fit young (<5 Ma)
AHe ages (Figure 4b).

5 | THERMAL MODEL GEOLOGICAL
INTERPRETATION AND DISCUSSION

5.1 | Cambrian to Permian basin history

Shallow-marine Cambrian clastic sediments were deposited on top
of Late Neo-Proterozoic-Lower Cambrian Salt (Hughes et al., 2019,
and references therein). The thermal models of all Cambrian samples
suggest that the AFT system in SR Cambrian strata must have been

heated and partially reset during the early Palaeozoic (Figures 3
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Minimum stratigraphic

Stratigraphic age overburden

Sample (Ma) (m)

KhKg 500-550 2,500-3,000
KhKr 500-550 2,500-3,000
KuKr 500-550 2,500-3,000
TgKr 300-250 2,500-3,000
DaKr 300-250 2,500-3,000
WrKr 300-250 2,500-3,000
KmKr 16-18 2,500-3,000
KuPa 500-550 2,500-3,000
BgPa 500-550 2,500-3,000
DaPa 300-250 2,500-3,000
WrPa 300-250 2,500-3,000
KmPa 16-18 2,500-3,000
TbSw 300-250 2,500-3,000
WrSw 300-250 2,500-3,000
WrNm 300-250 3,000-3,500
WrZa 300-250 3,500-4,000
TbDk 300-250 4,000-5,000

TABLE 3 Stratigraphic overburden and
palaeotemperature estimates of samples

Temperature Range .
p = from the Salt Range, Pakistan

(min-max)
82-95
82-95
82-95
82-95
82-95
82-95
82-95
82-95
82-95
82-95
82-95
82-95
82-95
82-95
95-108
108-120
120-145

Note.: Stratigraphic thickness is estimated from the structural cross section in Figure 6 and
published studies (Gee & Gee, 1989; Ghani et al., 2018; Qayyum et al., 2015). Palaeotemperature
range is estimated using ~ 20 °C surface temperature and the geothermal gradient ~25°C/km.

and 4), most likely due to stratigraphic burial. About 2 km of Late
Cambrian to Devonian strata are exposed in the adjacent Peshawar
and Hazara Basins (Hughes et al, 2019; Pogue et al., 1992b).
Therefore, we suggest that Ordovician to Devonian strata were pre-
sent in the SR and buried the Cambrian strata before exhumation
(Figure 5). The unconformity between Cambrian and Permian strata
in the SR (Figures 1 and 2) was previously considered to be a depo-
sitional hiatus (Gee & Gee, 1989; Pogue et al., 1992b). Our thermal
model suggests that this unconformity may be related to a significant
cooling phase during Late Devonian to Permian time (Figures 3 and
4). This cooling event was likely associated with a period of exhuma-
tion and erosion that coincided with the postulated timing of Late
Palaeozoic rifting and Carboniferous-Permian regional glacial ero-
sion, which are documented in the stratigraphic successions of both
the Peshawar Basin in Pakistan and the Kashmir and Zanskar area in
India (Garzanti et al., 1996; Pogue et al., 1992a). Published seismic
data and stratigraphic relationships in the SR suggest the presence
of vertical normal faults in the Indian crystalline basement (Baker
et al.,, 1988; Qayyum et al., 2015). In the Eastern and Central SR,
Permian strata lie on top of Cambrian strata, forming a gently dip-
ping (<2°) angular unconformity (Figure 2); however, in the Western
SR, Cambrian strata are not preserved and Permian strata lie directly
on top of the Neoproterozoic Salt Range Formation (Figure 5). We
propose that normal faulting observed in published seismic data
formed half graben structures that, in combination with regional
erosion, could explain the Late Palaeozoic cooling recorded by our

samples and formation of the unconformity in the SR (Figure 5).

5.2 | Pliocene development of the SRT

Himalayan foreland sedimentation (~18-5 Ma) buried the
Precambrian-Eocene strata beneath 2-5 km of sediments in the SR
(Johnson et al., 1985; Najman et al., 2003). Thermal models of the
Khewra, Karoli and Pail transects show that final cooling was under-
way by 4-7 Ma (Figure 4c), while thermal models of the Western SR,
located above a lateral ramp of the SRT, show that cooling started
at 4-9 Ma (Figure 3). We favour our model results for the thrust
front (Figure 4a), which combine 10 Cambrian to Permian samples
from the three transects, indicating that most of the cooling associ-
ated with the SRT occurred after ~4 Ma. The most likely reasons
why some AHe grains have 210 Ma cooling ages are either because
not all grains are completely reset due to variable inherited radiation
damage or because there was also a small cooling event at 10 Ma
(Grelaud et al., 2002; Qayyum et al., 2015).

The joint thermal model M3 (Figure 4a), when interpreted along
with the structural cross-section (Figure 6) shows that significant
cooling of the Cambrian-Permian samples occurred between ~4 and
~3 Ma, when samples were exhumed above the SRT ramp due to re-
moval of foreland strata. Since ~3 Ma, the samples have remained es-
sentially above the AHePRZ, consistent with samples translating along
the hanging wall flat of the SRT. The Miocene AHe samples (KmKr,
KmPa), located 15-20 km north of the thrust front, are interpreted
to have cooled through the AHePRZ due to rock uplift above the
SRT ramp since ~2 Ma. We suggest that clastic foreland strata were

mostly eroded as the thrust sheet was translated across the SRT ramp,
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FIGURE 3 Thermal history modelling results for the Khewra, Karoli, Pail and Western Salt Range transects. Thermal modelling of
individual samples (M1) and multiple samples from the same transect (M2) are shown separately. Grey shaded areas represent elevated path
probability and thick lines represent average model path (expected model) for the samples. The green boxes show depositional constraints.
AHePRZ = Apatite helium partial retention zone, APAZ = Apatite partial annealing zone. Further details about modelling results are provided
in the supplementary material section 3 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Thermal history modelling

Time (Ma)
results performed using modelling 0

600 . 400 . 200 . 0
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samples from the Khewra, Karoli and
Pail transects were combined in a single
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modelling. (a) Grey shaded area represents E
elevated path probability and thick lines 2
represent average model path (expected g
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and five Permian samples (blue lines). 'a_>1°°'

Thick dashed lines represent best fit
paths (maximum likelihood model) to

the observed data for the Cambrian
150

@ Thermal Modelling approach 3

Burial beneath
ambrian to .
Devonian Strata__

‘\/
APAZ ‘\<§:

CNe
(S
,,6“0 Late Palaeon A
ot Rifting

...... Maximum likelihood model
Expected model Permian Samples
Expected model Cambrian

and Permian samples. The green boxes

show depositional constraints. Red box
extract shows thermal model for the last
20 myr. (b) Plot summarizing observed
versus model (expected and maximum
likelihood) predicted AHe, AFT ages and
track lengths. (c) Comparison of Khewra,

Prediction

Expected model
Prediction

MTL projected

Karoli, Pail and combined thermal models AFT age °bs;"'ed
for the last 18 Ma shows the range of AHe age predicted

the onset of exhumation. Further details

. . . AHe age observed
about modelling results are provided in A
the supplementary material section 3.
AHePRZ = Apatite helium partial

Maximum likelihood model

Color fill in the observed AHe, AFT 150+
age and Track Length symbols
indicate sample stratigraphic age

T_ime (Ma) 1.5 . 5

Burial beneath
Neogene foreland

above SRT ramp X

Temperature (°C)

retention zone, APAZ = Apatite partial

b) A M
annealing zone [Colour figure can be (b) ge (Ma)

200 400 ©

viewed at wileyonlinelibrary.com] 400

Elevation (m)

i
b
T‘ <« KuKr
?
4

o
>

|

R , Granite

%

<«—>BgPa<«——
<«—> KhKr «<—> 150°C

4% >KhKge

Time (Ma) 10

Lo

Combined

l I —
77*}“

Clast l

\

b{/ 100°C

50°C+

/

Mean Track Length (um) 10 12

exposing Eocene carbonate rocks at the surface (Figure 6b). Since the
Pliocene, the Pakistan Subhimalaya apparently had a semiarid climate
(e.g. Dennell et al., 2006). In such conditions, the Eocene carbonate
would be expected to experience limited erosion, thereby providing
a resistant cap-rock protecting the underlying Cambrian-Palaeocene
strata. The continued thrust sheet translation along the SRT hanging
wall flat and exhumation of Cambrian-Eocene strata above the SRT
ramp (Figure 6) is consistent with fault bend fold exhumation models
(Baker et al., 1988; Burbank & Beck, 1989; Lock & Willett, 2008).
Based on our thermal model (Figure 4), we calculate a maximum
exhumation rate of ~2.4-3.2 mm/yr between 3 and 4 Ma and al-

most negligible exhumation of our samples since 3 Ma. A minimum

exhumation rate of ~0.6-0.8 mm/yr is calculated for the entire time
span from 4 Ma to present. These calculations are based on the time
when the Cambrian-Permian samples cooled below ~80-100°C,
using a 25°C/km geothermal gradient and 20°C surface tempera-
ture. Combining the minimum shortening of 22 + 2 km based on
the restored schematic cross-section (Figure 6) and our ~ 4 Ma pre-
ferred onset for the SRT yields a minimum average shortening rate
of 5-6 mm/yr, similar to the present-day shortening rate of ~5 mm/
yr for the SRT in the Central SR (Jouanne et al., 2014). The timing and
shortening rates of the SRT coincide with the 4-6 mm/yr shortening
rate for frontal folds present on the eastern side of the Kashmir syn-
taxis (Gavillot et al., 2016, 2018).
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Eroded

Cambrian- Devonian N

strata \

Unconformity

Unconformity/y

Normal Fault
(a) (b) (c)

Cambrian Normal Fault

FIGURE 5 Schematic block diagram showing the Palaeozoic history of the Salt Range. (a) Cambrian-Devonian stratigraphy of the Salt
Range. (b) Late Palaeozoic rifting and erosion of the Cambrian-Devonian strata. (c) Deposition of Permian strata unconformably above
Cambrian and Neoproterozoic strata [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 (a-c). Temporal
development and exhumation pattern
related to the SRT during the past 4 myr.
(a) Undeformed cross-section showing the
pre-existing normal fault in the basement.
(b) Neogene foreland strata are removed
from the thrust sheet as it passes over

the SRT ramp between 4 and 3 Ma. (c)

NwW — Salt Range——  SE

Continuous exhumation g6 erosion of carbonate rocks

on the SRT ramp translated above SRT upper flat SRT)
AccumulationofSalt N\ _— \

Present

22 km

Basement

(C) Rapid erosion of clastic sedimentary rocks
uplifted above the SRT ramp

=" O Translation of the SR thrust sheet towards
ﬂ» _O the south above the SRT, forming a fault
Easement bend fold. The structural evolution model
(b) (sKam,,.es g:z’l’éﬁn Wrkr, DaPa, WrPa) is based on MOVE m?delling b.y Ghani
mKr, KmPa) (KhKg, KkKr, KuKr, KuPa, BgPa) et al. (2018) and previous studies by Baker
~4 Ma _—» Initiation of SRT | et al. (1988). Horizontal and vertical scales
%\?7: ﬁ are equal in the cross sections [Colour
C . _ Basement 10 km figure can be viewed at wileyonlinelibrary.
@ 0N W [ ] ™™™ el com

Neoproterozoic Cambrian Permian
(Salt Range Formation)

6 | CONCLUSIONS

The spatial distribution of cooling ages is controlled by their burial
beneath foreland strata prior to exhumation. Thermal modelling of
Cambrian-Permian samples shows that the present-day SR was af-
fected by deformation associated with Late Palaeozoic rifting and
regional erosion that resulted in the formation of a major unconform-
ity. The SRT has been active since at least ~4 Ma with exhumation
mainly focused above the SRT ramp. The comparable exhumation
and shortening rates calculated for the SRT and the frontal fold
structures of the Kashmir Himalaya highlight the contemporaneous

evolution of structures on both sides of the Kashmir syntaxis.
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