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Abstract: Intelligence, as well as working memory and attention, affect the acquisition of mathemati-
cal competencies. This paper aimed to examine the influence of working memory and attention when
taking different mathematical skills into account as a function of children’s intellectual ability. Overall,
intelligence, working memory, attention and numerical skills were assessed twice in 1868 German
pre-school children (t1, t2) and again at 2nd grade (t3). We defined three intellectual ability groups
based on the results of intellectual assessment at t1 and t2. Group comparisons revealed significant
differences between the three intellectual ability groups. Over time, children with low intellectual
ability showed the lowest achievement in domain-general and numerical and mathematical skills
compared to children of average intellectual ability. The highest achievement on the aforementioned
variables was found for children of high intellectual ability. Additionally, path modelling revealed
that, depending on the intellectual ability, different models of varying complexity could be generated.
These models differed with regard to the relevance of the predictors (t2) and the future mathematical
skills (t3). Causes and conclusions of these findings are discussed.

Keywords: intellectual ability; intelligence; pre-school; mathematical precursor; mathematical devel-
opment; school mathematics; longitudinal; numerical skills; working memory; attention

1. Introduction

Learning is the most powerful mechanism of cognitive development. This statement
is universally valid for gifted children as well as for less proficient students. High in-
telligence may only lead to benefits if it is translated into domain-specific knowledge
beforehand (Weinert 2001). Knowledge may compensate for a lack of intelligence, whereas
high levels of intelligence cannot make up for insufficient knowledge (Schneider et al. 1989).
The common understanding is that the combination of domain-general abilities such as
intelligence and working memory as well as domain-specific knowledge contributes to
academic and professional learning (e.g., Geary et al. 2017; Ferrer and McArdle 2004; Von
Aster and Shalev 2007). However, the relative contribution to learning provided by these
abilities is a debatable issue, as is the question of whether these contributions change over
time or depend on the level of expertise.

1.1. The Influence of Domain-General Abilities and Domain-Specific Knowledge on Mathematics
Achievement Depending on Developmental Changes and Age

Intelligence influences our abilities on every level of cognitive tasks. Generally, we
associate good performance in mathematics with a high intelligence. However, several
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studies have found that someone with a moderate intelligence level can show great mathe-
matic skills (e.g., Murayama et al. 2012; Saß et al. 2017). In line with this, Rajkumar and
Hema (2018) have found that mathematics achievement correlates positively with intelli-
gence. Nonetheless, the majority of assessed undergraduate students (n = 310) showed
a moderate level of general intelligence. This raises the question of which abilities may
predict mathematics achievement.

Domain-general predictors, intelligence and working memory components (Badde-
ley and Hitch 1974; Baddeley 1986, 2012) are the most commonly studied factors of the
development of mathematical competences (e.g., Fuchs et al. 2016; Geary 2011; Lee and
Bull 2016). For linguistic competences (Watts et al. 2014), intelligence and working memory
abilities are the most consistent factors of short- as well as long-term influences (Friso-van
den Bos et al. 2013; Gathercole et al. 2005; Geary 2011; Lee and Bull 2016; Mazzocco and
Kover 2007; Siegler et al. 2012; Toll et al. 2011). However, research results disagree on how
the influence of domain-general abilities and domain-specific knowledge on mathematical
performance may change depending on a learner’s development (e.g., Geary et al. 2017;
Ferrer and McArdle 2004; Von Aster and Shalev 2007).

These changes appear to depend on the use of varying domain-general and domain-
specific factors, the assessed age groups as well as different empirical analytical methods.
For example, intelligence measured two years prior influences academic achievement (Fer-
rer and McArdle 2004), whereas the intelligence of grade six students, who are merely two
years older, cannot predict an increase of academic abilities until ninth grade and beyond
the influence of their past abilities (Gustafsson and Undheim 1992). Using autoregressive
cross-lagged models, Lee and Bull (2016) found a stable inter-year influence of working
memory on mathematics achievement in the following year. In the process, the relevance of
previous performance in mathematics increased across all grades. Children with a higher
capacity of working memory or updating reached higher achievements in mathematics.
Modeling the latent increase shows that higher capacities of working memory or updating
in kindergarten predict greater increases for mathematics when averaged across all ages.
However, the increase of working memory and updating capacity is invariant across differ-
ent grades. Neither kindergarteners’ gender nor sex, but rather their socioeconomic status,
explain the variance of capacity.

Moreover, the predictive influence of various working memory components at dif-
ferent ages remains unclear. A recent study by Liang et al. (2022, Jun) shows that verbal
working memory predicts fifth graders’, but not first graders’, mathematic performance.
Nonetheless, the visual-spatial working memory plays a vital role for both age groups.
According to McKenzie et al. (2003), children of different ages employ different strategies
for simple mental arithmetic tasks: younger children almost exclusively use visual-spatial
strategies, whereas older children apply a combination of phonological and visual-spatial
strategies. Allen et al. (2020) have found an age-dependent relationship with an increasing
influence of visual-spatial components as children get older. Allen et al. (2020) elaborate
that for children of school age, the link between working memory and mathematics is
essentially positive. However, the type of relationship as well as the cumulative acquisition
of mathematic skills vary by age (Li and Geary 2013; Soltanlou et al. 2015; Van de Weijer-
Bergsma et al. 2015). As demonstrated by Schneider (2008), Allen et al. (2020) summarize
that the age of the assessed children and adolescents is relevant for the expected extent
of involvement of the particular components. Additionally, mathematical knowledge is
acquired in relation to the individual mathematical domains and their related strategies.
Consequently, the patterns of involvement of the different working memory components
vary depending on students’ age and mathematical domains (Friso-van den Bos et al. 2013).
In a meta-analysis, Friso-van den Bos et al. (2013) have detected a link between working
memory and mathematics for 4- to 12-year-olds. Although the correlation between working
memory and mathematic abilities is stronger for younger children, the influence of verbal
working memory increases with age. The visual-spatial working memory’s relevance has
also been identified in other studies: deficits of the visual-spatial component have even
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proven to be relevant to the development of dyscalculia (Mammarella et al. 2018; Szűcs
et al. 2013). However, the relationship between the central executive and mathematics
differs. According to Imbo and Vandierendonck (2007), school children draw on resources
of their working memory to solve simple arithmetic tasks. This load on their executive
working memory resources resulted in worse performance while calculating. Imbo and
Vandierendonck (2007) have found that this strain on their central executive leads to similar
consequences for recollection abilities of children and adults. Thus, working memory
resources are needed to recall information stored in the long-term memory.

Previous research revealed a relationship between the domain-general ability attention
and mathematical skills. Shalev et al. (1995) have found that children with dyscalculia show
significantly more attention problems than their averagely performing peers. Attention
deficit/hyperactivity disorder and mathematics disorders occur comorbidly in school age
with a prevalence of 18.1% (Capano et al. 2008). In addition, inconsistent response times
and commission errors (incorrectly marked non-target letters) in a continuous attention
performance test were found to predict math performance (Lindsay et al. 2001). In particular,
visual attention in kindergarten was found to be a good predictor of later mathematical
ability. Results of Poltz et al. (2022) show that domain-general cognitive abilities (non-
verbal intelligence, visuospatial working memory and visual attention) explain a small but
significant proportion of children’s tendencies to spontaneously focus on numerosity.

Likewise, the type of instrument chosen for assessing working memory performance
appears to influence the predictive relevance of measurement models. Researchers may
distinguish between simple and complex span measures (see Engle 2010) or they may follow
requirements of the dual-task paradigm. As span measures are the preferred method when
examining children (Allen et al. 2020), they were used in the present study.

1.2. The Influence of Domain-General Abilities and Domain-Specific Knowledge Depending on the
Different Specific Mathematics Achievements

The description of the interaction between domain-general and domain-specific per-
formance seems to be interesting. The strength of the influence varies depending on the
sample’s age as well as the complexity of the mathematical demands (e.g., Fuchs et al.
2010; Lee and Bull 2016). Corresponding with the longitudinal study conducted by Geary
et al. (2017), the relevance of past mathematical abilities for following mathematical com-
petences increases with age. Numerical knowledge and arithmetic abilities are crucial for
all ages, whereas fractional knowledge is defining for older grades. For younger grades,
compared to older age groups, domain-general abilities are more important than domain-
specific knowledge. On the other hand, domain-general abilities and domain-specific
knowledge are equally relevant for older grades. With a particular focus on the visual
working memory, Wang et al. (2022) demonstrate that the spatial working memory is
involved in different ways depending on the degree of difficulty of open mathematical
problems. Whereas the spatial working memory is rather associated with solving simple
open mathematical problems, spatial visualization is linked to the solving of more dif-
ficult open mathematical problems. Earlier studies have already indicated the varying
correlation of spatial working memory with simple and difficult mathematical tasks for
closed(-ended) mathematical problems. Increasing difficulty of mathematical problems
increases the demand of spatial visualization abilities (Manger and Eikeland 1998; Penner
2003). Similarly, depending on the specific mathematical branch that is being assessed,
Liang et al. (2022) have found differing influences of the verbal and visual-spatial working
memory on elementary school children’s mathematical abilities.

According to Raghubar et al. (2010), existing inconsistencies tend to be explained by
features of the specific task and constructs of the working memory component. Assess-
ing the link between different mathematical problems and the executive function, Best
et al. (2011) interpret that solving problems depends on the students’ choice and appli-
cation of a strategy as well as their self-monitoring. Calculating requires less executive
control because, as Best et al. (2011) suggest, it rather relates to the retrieval of factual
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information. The result that the performance given in different developmental stages
relates differently to executive function is addressed and assessed in several studies (Imbo
and Vandierendonck 2007; McKenzie et al. 2003; Rasmussen and Bisanz 2005). It becomes
evident that children’s age relativizes this connection. This permits the assumption that
younger children access their working memory more strongly than older children when
solving mathematical problems. Therefore, the sample’s age appears to play a significant
role for the explanation of inconsistencies in the findings.

1.3. Predictive Links between Working Memory and Mathematical Processing

Before having a look at the links between working memory and mathematical process-
ing, we will summarize results that highlight the connection between working memory and
so-called elementary cognitive tasks (Carroll 1993). These tasks are referred to as “elemen-
tary” because they merely require basal cognitive processes instead of specific knowledge,
such as mathematic knowledge, or prior experience. The assumption is that everyone
should be able to solve elementary cognitive tasks successfully, provided they have enough
time. Only a small number of mental processes have to be performed in order to reach the
correct solution (Goecke et al. 2021). Nonetheless, as Goecke et al. (2021) list, different cog-
nitive processes are involved: (sustained) attention, initial perception of stimuli, encoding,
coding, updating and retrieval from working memory, reaction setup and execution of a
motoric reaction (Ackerman and Kyllonen 1991; Kyllonen and Christal 1990).

Regarding working memory, all theories assume that there is a limited capacity to the
working memory. In other words, the possible amount of information that can be stored
and processed by the working memory is limited (Baddeley 2012; Conway et al. 2008;
Cowan 2005). This limitation is reflected in the working memory’s capacity, which is used
to explain individual differences (Cowan 2010). Limits of this capacity are assumed to be
the cause of low performance in cognitive tasks such as reasoning and decision-making.
Wilhelm et al. (2013) show that people with a lower capacity are surpassed by those with a
higher capacity in those tasks. It has been determined that working memory capacity is
strongly linked to reasoning abilities (Kane et al. 2005; Kyllonen and Christal 1990; Ober-
auer et al. 2005) and is thus the core of reasoning abilities (Kyllonen and Christal 1990). As
the complexity of elementary cognitive tasks increases, so do the demands on the working
memory. Demands on working memory capacity in complex elementary cognitive tasks
are presumed to be a causal factor which incrementally contributes to the relationship to
cognitive ability. Mathematical demands may be understood as elementary cognitive tasks
or complex elementary tasks that require mathematical knowledge. Accordingly, differ-
ences in processing mathematical demands need to be attributable to different working
memory capacities.

A connection between working memory and processing of mathematical demands has
long been assumed, but the evidence has yet to be supported by sufficient data. Automa-
tized mathematical knowledge is advantageous in its quick availability and because it binds
little to no cognitive resources. Thus, the automatization of mathematical knowledge is
indicative of elaborated and processed knowledge. For only knowledge that is understood
is sustainable and therefore retrievable in the long run. It becomes apparent that adults
are more proficient at solving simple arithmetic tasks than children. Since children are not
equipped with the same mathematical knowledge as adults, they require more time to
solve the tasks and they employ less elaborated strategies such as counting, e.g., counting
the smaller summand (e.g., Ashcraft 1992; Siegler 1988). As they age, children begin to use
more efficient strategies to solve arithmetic problems. Imbo and Vandierendonck (2007)
demonstrate that 10- to 12-year-old children need their working memory for strategies
relating to retrieval, transformation and counting and that the ratio of available working
memory resources and demands of the arithmetic tasks varied in the course of the chil-
dren’s development. This change has also been demonstrated in various neuroscientific
studies. Children activate more domain-general brain areas, which are associated with
increased performance in attention and working memory. Adults, on the other hand,
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who can rely more on efficient solving strategies, such as the recall of numerical factual
knowledge, show a focused neuronal activity of more specific areas for computation and
memory (e.g., Kucian et al. 2008). A frequent use of retrieval, efficient memory recall and
efficient counting processes reduces the demands on working memory. However, this
also means that people, especially children, with less strong working memory functions
have more difficulties acquiring and automatizing mathematical knowledge. For that
purpose, Maehler and Schuchardt (2009) have assessed three groups with 27 children
each, one group consisting of children with a normal IQ and learning disabilities (ICD-10:
mixed disorders of scholastic skills), another of those with learning difficulties and a low
IQ (intellectual disability) and a control group that is made up of children with an average
development, normal performance in school and a normal IQ. Both groups with learning
disabilities had an overall deficit in working memory. In a meta-analysis of 21 studies,
Chen and Bailey (2021) investigated the consequences of conducting dual-task experiments.
During these experiments, people have to solve two tasks at the same time, in this case a
working memory task and a mathematical demand. If the working memory is involved
with solving the arithmetic task, this will consequently lead to a reduction of working
memory capacity. The results indicate that a higher load on the working memory results
in a slower calculation of the arithmetic tasks. It is evident that the type of load on the
working memory is the most substantial moderator. Load on the central executive slows
down the performance the most.

1.4. Research Questions

The literature has shown that working memory influences mathematical compe-
tences (Friso-van den Bos et al. 2013; Gallit et al. 2018; Gathercole et al. 2005; Geary 2011;
Lee and Bull 2016; Mazzocco and Kover 2007; Siegler et al. 2012; Toll et al. 2011), but
that the type of prediction is age-dependent (Li and Geary 2013; Soltanlou et al. 2015;
Van de Weijer-Bergsma et al. 2015). Moreover, previous findings indicate that the influ-
ence of domain-general skills depends on the specificity of mathematical performance
itself (Ashcraft 1992; Chen and Bailey 2021; Imbo and Vandierendonck 2007; Siegler 1988).
Additionally, there is evidence which highlights the relevance of cognitive performance
for the resources available in different working memory components (Kane et al. 2005;
Kyllonen and Christal 1990; Oberauer et al. 2005).

Based on these findings, the present study investigates the following research questions
considering pre-school children’s intellectual abilities

1. Do the domain-general and domain-specific achievements differ according to the
pre-school intellectual abilities?

2. Is there a difference in mathematical achievement between different intellectual ability
groups in 2nd grade?

3. Which pre-school abilities predict mathematical achievement in 2nd grade within
each group?

4. How do the different domain-general and domain-specific variables at pre-school
predict mathematics at 2nd grade within each group?

2. Design, Materials and Methods
2.1. Design

In order to gain in-depth insights into the relationship between intelligence, working
memory and mathematical performance, groups of intellectual abilities are formed. These
groups are examined in a longitudinal design throughout several times of measurement,
starting in pre-school. This design aims to examine the development of children with low,
average and high intellectual abilities.

2.2. Participants

Within the German SCHUES-project (“Schulbezogene Umschriebene Entwicklungsstörun-
gen (SCHUES)—Prävention und Therapie unter Einbezug neuronaler Korrelate und des
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Entwicklungsverlaufs”), a study funded by the Federal Ministry of Education and Research,
1868 children (908 girls and 960 boys) attending their second of three years of kindergarten
were recruited. The study was approved by the Ethical Committee of University of Pots-
dam (approval number: 9/29). All parents gave written informed consent before data
collection. At t1, children were tested in their second year at a local German kindergarten.
The mean age of children was 63.0 months (SD = 4.4, range 49–81). On average nine months
later (SD = 1.8, range 4–15), children were tested again in their final year of kindergarten
with a mean age of 72.4 months (SD = 4.2, range 60–89). At the end of 2nd grade, which
was attended by the children on average 24 months later (SD = 4.3, range 18–49), children
were tested again. Some children stayed in kindergarten for an additional year or repeated
1st grade and therefore attended 2nd grade one year (n = 132) or two years (n = 5) later than
the majority of the children (n = 1197). The mean age was 96.1 months (SD = 5.2, range
87–131). Most of the children (91.1%) spoke monolingual German at home.

2.3. Procedure

Children were tested individually in a quiet room at their kindergarten (t1 and t2) or
their school (t3). The experimenters received comprehensive training delivered by senior
project members. This included a two-day workshop, a videotaped testing session with
a child as well as one supervised testing session at kindergarten or at school within the
experimenter’s first week of testing. The videotaped trial testing and the supervised testing
session were evaluated individually by a senior project member.

2.4. Tasks
2.4.1. Numerical and Mathematical Skills (t1 and t2)

Numerical and mathematical precursor skills at t1 and t2 were assessed using a
modified version of the neuropsychological test battery ZAREKI-K (Von Aster et al. 2009).
The domain Counting maps the child’s ability to recite and apply the number word series.
In terms of content, it is to be separated from the domain Number Knowledge, which
summarizes the child’s ability to grasp a visual representation of numbers and to assign
a quantity-related meaning to them. The domain Magnitude Estimation/Calculation
describes the child’s ability to grasp quantities quickly and to compare them with one
another. The task descriptions, the number of items and the maximum score of each subtest
as well as results of confirmational factor analysis were described by Poltz et al. (2022). The
T-values of the three math-related domains Counting, Number Knowledge and Magnitude
Estimation/Calculation were added, standardized and transformed into T-values. We
found a reliability coefficient of .88 for t1 and .80 for t2.

2.4.2. Mathematical Abilities (t3)

To assess children’s abilities to solve written addition and written subtraction problems,
we used the subtests addition (Cronbach’s Alpha: .75) and subtraction (Cronbach’s Alpha:
.68) of the standardized German mathematics test DEMAT 2+ (Krajewski et al. 2004). Both
subtests contain written problems on a sheet of paper. Children received one point for
a correct answer. We decided to sort item “?−19 = 15” to the scale addition because the
problem is solved by using addition instead of subtraction. Therefore, the maximum scores
were five points for addition and three points for subtraction.

To assess children’s abilities to solve addition and subtraction problems in applied
contexts, we used a selection of items of the subtest Calculation of the BUEGA (Esser et al.
2008). BUEGA is a German test battery to assess children’s performances relevant in school
and to identify children with specific learning and developmental disorders in primary
school. The subtest Calculation assesses a wide range of numerical and mathematical
skills, e.g., counting, number knowledge and orally presented problems in applied contexts
concerning basic mathematical operations. The material of the subtest calculation consists
of a picture block. Every item is accompanied by a drawing. We selected items which
assess applied contextual problems. Due to the mathematical curriculum of 2nd grade in
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Germany, we limited the selection to tasks that can be solved by addition and subtraction.
The scale applied contextual problems consists of five items (e.g., “Julia counts her 50 Cents
coins. How many coins does she need to buy an ice cream for 2 euros?”).

Confirmatory factor analysis confirmed the three mathematical scales (addition, sub-
traction, and applied contextual problems). Results are displayed in Table 1. To evaluate the
three-factor-solution, two alternative models were calculated: a two-factor-solution (factor
1: addition and subtraction, factor 2: applied contextual problems) and a one-factor-solution.
Results of the alternative models as well as AIC and BIC are displayed in Table 1. The
three-factor model showed the lowest values of AIC and BIC and thus favors this model.
AIC and BIC take into account the model fit as well as the model economy (Geiser 2011).
Cronbach’s alpha in this study is .73 for addition, .75 for subtraction (n = 1337) and .69 for
applied contextual problems (n = 1350).

Table 1. Results of confirmatory factor analyses of the three mathematical scales at t3 (n = 1350).

Model χ2 (df ), p RMSEA (90% CI: Lower/Upper) CFI AIC BIC

3-factor 214.45 (62), <0.001 0.04 (0.04/0.05) 0.96 16,617 16,836
2-factor 663.76 (64), <0.001 0.08 (0.08/0.09) 0.85 17,062 17,270
1-factor 826.94 (65), <0.001 0.09 (0.09/0.10) 0.81 17,223 17,426

AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion.

2.4.3. Visuospatial Sketchpad

A Corsi-Block task (Milner 1971) was used to assess children’s performance of the
visuospatial sketchpad. Behavioral and neuropsychological evidence demonstrated cor-
respondence between spatial short-term memory and performance in the Corsi-Block
task (for a review, see Baddeley 2002). Previous studies demonstrated the applicability
of the Corsi-Block task for children aged four or older (e.g., Bull et al. 2008; Passolunghi
and Cornoldi 2008; Rasmussen and Bisanz 2005; Roebers and Zoelch 2005; Schmid et al.
2008). Six red wooden blocks were nailed on a wooden board (Roebers and Zoelch 2005;
Schmid et al. 2008). The experimenter pointed to a sequence of two blocks. The child
was instructed to point to the same two blocks in the same order. For each span, the
experimenter showed two simple and two complex sequences before progressing to a
span of three. The maximum span was five blocks. The child got one point for showing a
correct sequence. The task was terminated after the child failed four consecutive trials. The
maximum score was 16 points. Cronbach’s alpha in the present study is .83 (n = 1820) for t1
and .80 (n = 1652) for t2. The Corsi-Block task was found to correlate with Matrices (r = .50,
p < .01) and hand movements (r = .71, p < .01), but not with the phonological loop (Schmid
et al. 2008). Schmid et al. (2008) found a retest reliability (three weeks) of rtt = .61.

2.4.4. Phonological Loop

To assess children’s performance of the phonological loop, a shortened version of the
subtest Phonological Working Memory for Artificial Words of the SETK 3-5 (Grimm 2001)
was used. The recitation of artificial words is considered a pure method and is therefore
often used to assess the phonological short-term memory (De Smedt et al. 2009; Schmid et al.
2008). Since unknown phonological sequences are used here, supporting representations of
the long-term memory are reduced (cf., De Smedt et al. 2009). Children were asked to recall
fantasy characters by repeating their names (artificial words) which the experimenter had
read aloud once. Children received one point for correctly reproducing the artificial word.
The maximum score is ten. Cronbach’s alpha in the present study was .70 (n = 1820) for t1
and .65 (n = 1651) for t2. The subtest was found to correlate r = .49 (p < .01) with Number
Span and r = .65 (p < .01) with Word Span (Schmid et al. 2008).

2.4.5. Central Executive

A dual-task (or complex span task) was used to assess children’s performance of the
central executive (see, Schmid et al. 2008). Dual-tasks have a processing component that
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addresses executive control functions. Typically, auditory span or number span backwards
are used. Auditory span tasks have already been used when examining children (e.g.,
Fuchs et al. 2010; Passolunghi 2011; Pickering and Gathercole 2001). Schmid et al. (2008)
developed an auditory span task for pre-school children based on a simple perceptual
judgment. For the present study, the task, originally developed for the use at a computer,
was adapted into a paper-pencil version. Here, children were presented with two drawings
of a two-syllable object for 1.5 s each. The objects were colored either blue or red. Children
were asked to immediately point to a color card to indicate into which “color bucket” the
object had fallen. After two objects, children were asked to repeat the names of the objects.
After four items with two objects, four items consisting of three objects each and four items
consisting of four items each were presented. The task was terminated when three wrong
answers were given within a span. Children received one point for pointing to the correct
color card and recalling the objects’ names correctly. This procedure deviates from Schmid
et al. (2008). It had become apparent that some children refrained from the perceptual
judgment or always randomly pointed to the color cards. These children only repeated
the object names immediately after the end of the sequence. Since no central executive,
but only phonological processes, were involved in these cases, only items that indicated
both a perceptual judgment as well as a memory performance were judged to be correct.
The order in which the object names were recalled was not relevant. The maximum score
was 12. Cronbach’s alpha was .72 (n = 1809) and .72 (n = 1652). Retest reliability with an
interval of three weeks was rtt = .80 (p < .01; Schmid et al. 2008). Auditory span did not
correlate with color span backwards. In addition, factor analysis did not reveal a third
factor. Auditory span loaded equally high on the phonological tasks and tasks addressing
visuo-spatial working memory (Schmid et al. 2008).

We ran a confirmatory factor analysis to confirm a three-factor-structure of the three
working memory tasks. The model of t1 as well as t2 fitted the data well. Results are
displayed in Table 2. To evaluate the three-factor structure, an alternative model was
calculated. A one-factor solution seemed plausible. Results of the alternative model at t1
and t2 as well AIC and BIC are displayed in Table 2. The three-factor models showed the
lowest values of AIC and BIC and thus favor these models.

Table 2. Results of confirmatory factor analyses of the three working memory tasks at t1 (n = 1825)
and t2 (n = 1655).

Model χ2 (df ), p RMSEA (90% CI: Lower/Upper) CFI AIC BIC

t1
3-factor 2003.73 (662), <0.001 0.03 (0.03/0.03) 0.89 48,635 49,280
1-factor 4983.99 (665), <0.001 0.06 (0.06/0.06) 0.60 51,609 52,238

t2
3-factor 1288.93 (662); <0.001 0.02 (0.02/0.03) 0.92 50,313 50,946
1-factor 3717.60 (665), <0.001 0.05 (0.05/0.05) 0.61 52,736 53,353

AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion.

2.4.6. General Intelligence

The subtests Nonverbal Intelligence and Verbal Intelligence of the BUEVA-III (Esser
and Wyschkon 2016) were used to assess children’s general intelligence. The BUEVA-III is
a German test battery to assess children’s stages of development and to identify children at
risk for later developmental disorders before school entry.

The subtest Nonverbal Intelligence assesses children’s ability of reasoning by analogy
and logical thinking. Children have to identify the odd picture out of a set of pictures. With
one point for each correct answer, the maximum score is 25 for four-year-olds and 28 for
children aged five years and older. Cronbach’s Alpha is .87 (Esser and Wyschkon 2016).
Children’s performance in the subtest Nonverbal Intelligence has been shown to correlate
r = .54 (p < .001) with their performance in the Coloured Progressive Matrices (Bulheller
and Häcker 2002).

The subtest Verbal Intelligence assesses children’s ability of verbal reasoning by creat-
ing analogies. Children are asked to complete orally presented sentences. With one point
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for each correct answer, the maximum score is 19 for four-year-olds and 23 for children
aged five years and older. Cronbach’s Alpha is .87 (Esser and Wyschkon 2016). The subtest
Verbal Intelligence has been found to correlate r = .71 (p ≤ .001) with the subtest Identify
Terms of the HAWIVA-III (Ricken et al. 2007).

To identify three intellectual ability groups, we used one standard deviation as cut-
off-criteria. Children were assigned to one ability group if they met the criteria on both
occasions. We identified children as having low intellectual ability if they scored below a
T-value 40 in general intelligence at t1 and t2. We identified children as having average
intellectual ability if they showed T-values between 40 and 59 at t1 and t2, and children
as having high intellectual ability if they showed a T-value of 60 or higher (see Esser
et al. 2008 for interpretation guidelines). Hence, analyses regarding intellectual ability
groups are based on 1209 children (614 boys, 595 girls). A number of 166 children had
to be excluded as there was only one value of intellectual ability. Another 493 children
were excluded because they did not fall into the same intellectual ability group at both
time points. Drop-out analysis with all variables showed a very small, but significant
difference (Bonferoni corrected at p < .002) in children’s general intelligence at t2 (t(841.93)
= 5.97, p < .001, r = .04), indicating a higher intelligence of children excluded (M = 53.0,
SD = 10.33) from further analyses than children included (M = 49.78, SD = 9.34). No other
differences could be found.

2.4.7. Visual Attention

The subtest Attention of the BUEVA-III (Esser and Wyschkon 2016) was used to assess
children’s ability of visual attention. The subtest Attention aims to evaluate children’s
ability to maintain visual attention by assessing the speed and accuracy with which they
can identify two target pictures from a range of different pictures. Children were asked
to go through the pictures, line by line, and mark every picture that depicted the target
images (dog or elephant). After 90 s, the test was terminated. A score for Visual Attention
was computed by subtracting the total number of wrong answers from the number of
correct answers. Split-half reliability is .88 (Esser and Wyschkon 2016).

2.5. Data Analysis

Correlational analyses were conducted using SPSS version 28. Path analysis with
manifest variables was used to analyze our theoretical models. This was done using the
full maximum likelihood method (FIML) in MPLUS 7.1 (Muthèn and Muthèn 2013). FIML
estimates missing values directly without imputing them for each individual parame-
ter (Enders 2001). A basic model was analyzed and all relevant parameters were estimated.
Non-significant paths were removed step by step.

3. Results

Descriptive statistics of each tested variable for the total sample are presented in
Table 3. All skewness scores were within an acceptable range (Miles and Shevlin 2001).
However, the distribution of addition at t3 shows a floor effect.

Table 3. Descriptive Statistics.

n M SD Range Skewness

Total

t1
Age (months) 1868 62.98 4.35 49–81 0.42
Intelligence 1866 49.15 10.08 19–69 −0.07
Attention 1856 48.19 9.13 20–60 −0.56

Phonological Loop 1823 49.19 8.57 23–60 −0.54
Visuospatial sketchpad 1821 49.75 9.88 21–81 0.05

Central executive 1809 50.05 9.74 28–81 0.17
Mathem./numerical precursor skills 1808 49.91 10.01 17–84 0.01
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Table 3. Cont.

n M SD Range Skewness

Total

t2
Age (months) 1705 72.36 4.20 60–89 0.41
Intelligence 1704 50.70 9.74 15–69 −0.25
Attention 1698 49.73 8.63 20–60 −0.67

Phonological Loop 1651 49.15 8.71 19–60 −0.69
Visuospatial sketchpad 1655 50.38 9.86 19–78 −0.07

Central executive 1652 49.94 9.70 24–74 −0.01
Mathem./numerical precursor skills 1647 49.87 10.03 18–80 −0.05

t3
Age (months) 1348 94.79 4.08 79–111 0.35

Addition 1337 0.00 1.00 −0.81–2.75 1.17
Subtraction 1337 0.00 1.00 −1.26–1.21 −0.07

Applied contextual problems 1350 0.00 1.00 −1.22–2.11 0.38
Variables of t1 and t2 were reported in T-values. Variables of t3 were reported in z-scores.

3.1. Correlational Analyses

Due to the large number of variables in this study, we split the intercorrelations into
two tables. Firstly, Table 4 presents intercorrelations between the variables at t1 and t2 only.
Intercorrelations of variables at t1 are displayed below the diagonal and the intercorrelations
between variables at t2 above the diagonal. Results showed a strong relationship between
intelligence and mathematical/numerical precursor skills at both time points before school.
Furthermore, there were moderate relationships between intelligence and the three working
memory components as well as attention. The weakest relationship was found between the
two domain-general skills, phonological loop and attention.

Table 4. Intercorrelations (Pearson) between variables t1 (below diagonal) and between variables
t2 (above diagonal) (n).

1 2 3 4 5 6

1 IQ - 0.40 (1696) 0.39 (1649) 0.24 (1653) 0.42 (1650) 0.50 (1645)
2 Attention 0.46 (1855) - 0.21 (1648) 0.30 (1652) 0.29 (1650) 0.37 (1646)
3 Phonological loop 0.40 (1822) 0.21 (1814) - 0.22 (1651) 0.40 (1648) 0.39 (1642)
4 Visuospatial sketchpad 0.31 (1821) 0.31 (1814) 0.24 (1819) - 0.28 (1652) 0.36 (1646)
5 Central executive 0.41 (1809) 0.29 (1803) 0.35 (1807) 0.31 (1808) - 0.43 (1644)
6 Math./Numeric. precursor skills 0.57 (1807) 0.42 (1802) 0.40 (1806) 0.43 (1807) 0.43 (1800) -

All correlations were significant (p ≤ 0.001). Numbers of cases are in parentheses.

Secondly, Table 5 presents correlations between variables across the three time points.
Results indicated a high stability of intelligence and mathematical/numerical precursor skills
from t1 to t2. Domain-general skills demonstrated a medium to high stability before school.

Table 5. Pearson Correlations across the three time points: t1, t2 and t3 (n).

t2 t3

1 2 3 4 5 6 7 8 9

t1

1 IQ 0.71 (1702) 0.40 (1696) 0.39 (1649) 0.24 (1653) 0.42 (1650) 0.50 (1645) 0.20 (1337) 0.23 (1337) 0.42 (1350)
2 Attention 0.46 (1855) 0.52 (1690) 0.22 (1644) 0.29 (1647) 0.28 (1644) 0.36 (1641) 0.14 (1334) 0.19 (1334) 0.23 (1347)
3 Phonological loop 0.40 (1822) 0.18 (1666) 0.48 (1624) 0.13 (1627) 0.34 (1624) 0.31 (1619) 0.08 (1304) 0.08 (1304) 0.23 (1317)
4 Visuospatial sketchpad 0.31 (1821) 0.30 (1664) 0.24 (1819) 0.34 (1624) 0.29 (1621) 0.35 (1618) 0.20 (1305) 0.13 (1305) 0.24 (1318)
5 Central executive 0.41 (1809) 0.24 (1657) 0.17 (1621) 0.22 (1616) 0.53 (1614) 0.36 (1611) 0.14 (1297) 0.16 (1297) 0.26 (1310)

6 Math./Numeric.
precursor skills 0.57 (1807) 0.38 (1657) 0.34 (1613) 0.38 (1616) 0.46 (1614) 0.74 (1611) 0.35 (1297) 0.32 (1297) 0.48 (1310)

t3
7 Addition 0.24 (1274) 0.15 (1271) 0.15 (1239) 0.15 (1241) 0.21 (1240) 0.37 (1237) - 0.45 (1337) 0.52 (1337)
8 Subtraction 0.24 (1274) 0.20 (1271) 0.15 (1239) 0.20 (1241) 0.20 (1240) 0.32 (1237) - 0.43 (1337)

9 Applied contextual
problems 0.42 (1286) 0.19 (1283) 0.29 (1251) 0.20 (1253) 0.37 (1252) 0.49 (1249) -

All correlations were significant (p ≤ 0.001). Numbers of cases are in parentheses.
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What was already evident cross-sectionally could also be found across time points:
There was a strong relationship between intelligence and mathematical/numerical precur-
sor skills across t1 and t2.

Furthermore, we found a moderate relationship between mathematical/numerical
precursor skills at pre-school (t1 and t2) and the three mathematical tasks at t3. Among the
pre-school domain-general skills, intelligence (t1 and t2) showed the highest correlations
with mathematical/numerical precursor skills at t1 and t2 as well as with the mathematical
tasks at t3.

Interestingly, relationships between pre-school variables and applied contextual prob-
lems were consistently higher than relationships between pre-school variables and addition
and subtraction. Thus, pre-school domain-general and domain-specific skills seem to be of
different significance depending on the type of mathematical tasks solved at school.

3.2. Comparison of Performance between Intellectual Ability Groups

To answer the question if children’s (1.), pre-school domain-general and domain-
specific achievements and (2.), mathematical achievement in 2nd grade differ according
to their pre-school intellectual abilities, a one-way independent ANOVA was conducted.
Results showed significant differences in all variables at t1, t2 and t3 between the three
intellectual ability groups (see Table 6). Cohen’s (1988) conventions were used to evaluate
the effect sizes (.01 = low effect, .06 = medium effect, .14 = large effect).

Table 6. Mean and standard deviation of tested variables of the three intellectual ability groups, as
well as results of one-way ANOVA and effect size (η2).

Low Intellectual
Ability

Average Intellectual
Ability

High Intellectual
Ability

M SD M SD M SD F(df, df ) η2

t1 (n) n = 135–148 n = 910–923 n = 135–138
Age (months) 1 64.62 5.06 62.91 4.19 62.15 4.04 10.84 (2, 236) * .02
Intelligence 1 32.59 4.68 49.29 5.28 65.40 3.47 2371.03 (2, 276) * .72
Attention 1 39.92 8.83 48.36 8.74 54.80 5.63 150.54 (2, 264) * .16

Phonological Loop 1 41.92 9.15 49.44 8.24 54.24 6.41 86.09 (2, 245) * .12
Visuospatial sketchpad 43.93 9.43 49.76 9.47 55.87 9.93 54.54 (2, 1185) * .08

Central executive 42.24 8.20 50.31 9.01 57.73 9.91 100.29 (2, 1185) * .15
Mathematical/numerical

precursor skills 37.87 8.19 50.14 8.36 59.88 8.30 237.61 (2, 1178) * .29

t2 (n) n = 137–145 n = 895–922 n = 135–138
Age (months) 1 73.91 5.00 72.39 4.02 71.26 3.80 12.80 (2, 236) * .02
Intelligence 1 32.93 4.83 50.14 5.21 65.33 3.32 2319.51 (2, 276) * .72
Attention 1 40.99 8.93 50.03 8.02 55.11 5.96 123.79 (2, 252) * .17

Phonological Loop 1 39.87 9.53 49.48 8.05 53.78 6.74 97.71 (2, 234) * .16
Visuospatial sketchpad 44.36 8.24 50.00 9.70 55.81 9.33 50.15 (2, 1169) * .08

Central executive 40.07 8.14 49.86 8.95 57.16 8.71 131.44 (2, 1166) * .18
Mathematical/numerical

precursor skills 37.69 9.35 49.76 8.54 58.72 8.39 206.06 (2, 1164) * .26

t3 (n) n = 68–69 n = 708–711 n = 123–127
Age (months) 97.13 4.57 94.80 3.98 93.88 3.76 14.89 (2, 903)* .03

Addition 1 −0.49 0.72 −0.04 0.96 0.45 1.17 23.71 (2, 147)* .05
Subtraction 1 −0.61 0.91 −0.01 1.00 0.32 0.94 22.18 (2, 145)* .04

Applied contextual problems 1 −0.85 0.62 −0.08 0.96 0.71 0.97 94.31 (2, 162) * .13

Variables of t1 and t2 were reported in T-values. Variables of t3 were reported in z-scores. * p ≤ 0.001; 1 Significant
differences between variances were detected (Levene test of homogeneity). In these cases, the more robust Welch’s
F was calculated, and Welch’s F and adjusted degrees of freedom were reported instead.

(1) There was a high main effect of group on mathematical/numerical precursor skills
(domain-specific) at t1 and t2 (see Figure 1). Post-hoc tests (Hochberg) revealed sig-
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nificant differences (p < 0.001) between the three intellectual ability groups at t1
and t2. Children with low intellectual ability showed lower scores on mathemati-
cal/numerical precursor skills than children of average intellectual ability, who in
turn scored lower than children of the high intellectual ability group. Furthermore, we
found medium to high effect sizes for all domain-general skills at t1 and t2. Post-hoc
tests (Hochberg and Games-Howell respectively) revealed the lowest achievement
scores in all domain-general skills for children of the low intellectual ability group,
followed by children of the average intellectual ability group. The highest scores in all
domain-general skills were achieved by children of the high intellectual ability group.
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Figure 1. Comparison of achievements in variables t1 and t2 between low, average and high intellec-
tual achievement groups. p ≤ 0.001 for all comparisons between groups.

We found an overly high drop-out in the low intellectual ability group at t3. More
than half of the children with low intellectual ability could not be tested again at t3. Drop-
out analyses with variables at t1 in this group only revealed significant lower general
intelligence of children who could not be tested (M = 31.88, SD = 4.60, n = 80) than children
who could be tested at t3 (M = 33.44, SD = 4.67, n = 68; t(146) = -2.05, p = .042, r = .17).

(2) There were low (addition and subtraction) to medium effects (applied contextual
problems) on the mathematical achievements in 2nd grade (see Figure 2). Post-hoc
tests (Games-Howell) revealed that children of the low intellectual ability group scored
lower on three mathematical tasks than children of the average intellectual ability
group, who in turn scored lower than children of the high intellectual ability group.
The differences between the three intellectual ability groups in addition (p < .001),
subtraction (p < .01) and applied contextual problems (p < .001) were significant.

(3) A look at Figure 2 revealed that the three mathematical tasks seem to be differentially
demanding for the three intellectual ability groups. Children of the low intellec-
tual ability group showed the lowest achievement in applied contextual problems.
This performance was significantly lower than that in written addition (t(67) = 6.159,
p < .001) and in written subtraction (t(67) = 2.588, p = .012). No difference was found
between children’s performance in written subtraction and addition (t(67) = 1.190,
p = .238). In contrast, children of the high intellectual ability group showed the highest
performance in applied contextual problems. This performance was significantly
higher than that in written subtraction (t(122) = −3.547, p < .001) or written addi-
tion (t(122) = −2.534, p = .013). Again, no difference was found between written
subtraction and addition (t(122) = 1.280, p = .203). Regarding the performance of
children in the average intellectual ability group, the lowest performance was found
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in applied contextual problems. This performance was marginally significantly lower
than their performance in written subtraction (t(707) = 7.873, p = .062) and slightly
but not significantly lower than their performance in written addition (t(707) = 1.386,
p = .166). Again, we could not find differences in the achievement between written
addition and subtraction (t(707) = −0.609, p = .542).
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Figure 2. Comparison of achievements in mathematical tasks at t3 between low, average and high
intellectual achievement groups. p ≤ 0.01 for all comparisons between groups.

3.3. Path Analyses

To answer the question (3.), which pre-school abilities predict mathematical achieve-
ment in 2nd grade, and question (4.), how the different domain-general and domain-specific
variables at pre-school predict mathematics in 2nd grade, path analyses were calculated for
each intellectual ability group separately.

3.3.1. Low Intellectual Ability Group

Figure 3 shows the estimates of the final path model. The model showed an acceptable
data fit (χ2 (3) = 6.02, p = .111, CFI = .99, RMSEA = 0.088, SRMR = .041). Nevertheless,
all domain-general skills had to be removed from the final model due to non-significant
paths. Hence, for children of the low intellectual ability group, only domain-specific
skills were able to predict later mathematical/numerical skills and explained 56% of vari-
ances. Only mathematical/numerical precursor skills accounted for variances of three
mathematical scales in 2nd grade. Applied contextual problems were most dependent of
mathematical/numerical precursor skills (R2 = 35%), followed by subtraction (R2 = 29%)
and addition (R2 = 18%). Compared to the models of the average and high intellectual abil-
ity groups, mathematical/numerical precursor skills accounted for the highest explanation
of variance.
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3.3.2. Average Intellectual Ability Group

Figure 4 shows the estimates of the final path model of the average intellectual ability
group. This more complex model fitted the data well (χ2 (51) = 267.52, p < .001, CFI = .89,
RMSEA = .068, SRMR = .072). Mathematical/numerical precursor skills at t2 of children
with average intellectual ability could be explained mainly by mathematical/numerical
precursor skills one year before. In addition, central executive (β = .06) and attention (β = .56)
could explain a very small but significant amount of variance of mathematical/numerical
precursor skills at t2. Overall, a total of R2 = 44% could be explained. Regarding 2nd grade,
mathematical/numerical precursor skills were consistently the best predictors of later
mathematical achievements at t3. Interestingly, the involvement of domain-general skills
varied among the different mathematical tasks. Achievement in addition did not depend
on previous domain-general skills (R2 = 12%). Visuospatial sketchpad and attention were
additional predictors of subtraction. But, taken together, domain-general and domain-
specific skills could explain only a very small amount of variances (R2 = 8%). In contrast,
applied contextual problems were predicted by phonological loop and central executive in
addition to domain-specific skills (R2 = 15%).
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(n = 908).

3.3.3. High Intellectual Ability Group

Figure 5 shows the estimates of the final path model of the high intellectual ability
group. Again, the model showed an acceptable data fit (χ2 (4) = 6.43, p = .169, CFI = .98,
RMSEA = .067, SRMR = .066). Similar to the estimated model of the low intellectual
ability group, all domain-general skills had to be removed from the final model due to
non-significant paths. Hence, only domain-specific skills were able to predict later mathe-
matical/numerical skills (R2 = 29%). However, the explained variance was much lower than
for children with low intellectual ability. Only addition (R2 = 6%) and applied contextual
problems (R2 = 24%) could be predicted by previous mathematical/numerical precur-
sor skills. Neither domain-general nor domain-specific skills were capable of predicting
subtraction.
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3.3.4. Summary of Findings

Overall, domain-specific skills influenced later mathematical skills, independent of
children’s intellectual ability group. However, only children with average intellectual
ability additionally relied on cognitive resources of domain-general skills. Here, the rela-
tionships between different domain-general abilities and later mathematical achievement
were affected by the type of mathematical task.

4. Discussion

This study investigated the influence of pre-school domain-general predictors (i.e., dif-
ferent components of working memory and attention) on domain-specific performances (i.e.,
mathematical achievement) while controlling for cognitive performances by examining
three different intellectual ability groups.

4.1. Children’s Domain-General and Domain-Specific Achievement Differs according to Their
Intellectual Ability Group

The results showed that children with diverse intellectual abilities (low—average—
high) already started with significant differences in their domain-general achievement
one year before entering school. Thus, different predictive strengths of influence already
existed before school entry. Children with low intellectual abilities showed the lowest
achievements in all domain-general predictors as well as domain-specific numerical and
mathematical tasks. Children of average intellectual ability performed significantly better in
all areas compared to their peers with lower intellectual ability. Children of high intellectual
abilities demonstrated significantly higher performance than the average group in both
domain-general and domain-specific tasks. The literature revealed that the capacity of
working memory and cognitive abilities are closely related (Kyllonen and Christal 1990).
Furthermore, previous research suggested that limitations of working memory capacity led
to limitations of achievements in cognitive tasks (Kane et al. 2005; Kyllonen and Christal
1990; Oberauer et al. 2005). The results of our study extend these findings. Accordingly,
children with different intellectual abilities showed significantly different performance of
working memory. Moreover, in line with the literature (Friso-van den Bos et al. 2013; Gallit
et al. 2018; Gathercole et al. 2005; Geary 2011; Lee and Bull 2016; Mazzocco and Kover 2007;
Siegler et al. 2012; Toll et al. 2011), we already found significantly different mathematical
performances one year before school entry. Thus, children’s intellectual ability group
was closely related to their level of working memory and mathematical performance,
e.g., children with low intellectual ability were particularly weak in domain-general and
domain-specific abilities.

Results of previous longitudinal studies support the assumption of differing math-
ematical achievement in 2nd grade between children with different intellectual abilities
assessed in pre-school (Friso-van den Bos et al. 2013; Gallit et al. 2018; Gathercole et al. 2005;
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Geary 2011; Lee and Bull 2016; Mazzocco and Kover 2007; Siegler et al. 2012; Toll et al. 2011).
We found significant differences regarding children’s mathematical skills approximately 3
years after the first assessment. Children with low intellectual abilities demonstrated the
weakest mathematical performance in 2nd grade. They were followed by children with
average intellectual abilities, who scored significantly better in the administered mathemat-
ical tasks. The significantly highest mathematical achievement was reached by children
with high intellectual abilities. This highlights, firstly, that we were already able to assign
children to differing intellectual ability groups in pre-school. Children with differing intel-
lectual abilities showed different domain-general skills before school entry and therefore
did have different prerequisites for acquiring school-relevant skills. Secondly, differences
in domain-specific skills, here mathematical skills, still existed after three years. This raises
the question if children with differing intellectual abilities rely on different domain-general
skills to solve mathematical problems.

4.2. The Relevance of Domain-General Abilities to Predict School Mathematics Changes according
to Children’s Intellectual Ability

Results of path analyses revealed that the relevance of pre-school predictors changes
depending on children’s intellectual ability. The path models of the intellectually weakest
and strongest groups showed rather simple predictive structures. In contrast, a more
complex predictive model was found for the average intellectual ability group. Comparing
the explained variances between the three ability groups in 2nd grade, the model of the
low intellectual ability group could explain up to 35% of the variance by only one predictor:
numerical and mathematical skills in pre-school. Domain-general and domain-specific
pre-school variables explained a much smaller amount of up to 15% of the variance of
mathematical domains for the average intellectual ability group in 2nd grade. Nonetheless,
all mathematical domains were predicted here as well. Furthermore, up to 14% of the
variance was explained for children with high intellectual ability, but only for two out of
three mathematical domains.

The third research question focused primarily on domain-general and domain-specific
predictors for children with different intellectual abilities. Results showed that different
intellectual ability groups were found to demonstrate a different predictive pattern. The
most complex model held for the average intellectual ability group, with all pre-school
variables playing a significant role in predicting 2nd grade math achievement. The simplest
models were established by the low and high intellectual ability groups. Although the
exclusive predictive effect derived from pre-school numerical skills in both models, the
origin of this predictive association needs to be interpreted differently. Comparisons of
children’s domain-general and domain-specific achievements showed that the two groups
were fundamentally different. Already at t1, children with low intellectual abilities showed
a significantly weaker performance of up to 1.5 standard deviations in domain-general
predictors compared to children with high intellectual abilities. However, the literature
revealed that younger children mainly use working memory to solve mathematical prob-
lems (Friso-van den Bos et al. 2013). Since both groups of children were of the same age and
each worked on identical mathematical tasks, this raises the question of why both groups
showed relatively similar models in spite of their different initial levels of domain-general
resources. We assume that children’s weak pre-school domain-general resources at t1 could
already explain why there were no predictive effects of any working memory task, nor
of attention. As a result, these very weak domain-general capacities could not be used to
solve mathematical tasks. Lee and Bull (2016) emphasized that early numerical skills are an
important predictor as well. Children with insufficient domain-general resources only have
the possibility to rely on already acquired numerical and mathematical competencies in
order to cope with mathematical problems later on in their development. Likewise, Lee and
Bull (2016) described that higher working memory capacities in pre-school predict higher
rates of growth in mathematics. The present study did not examine the effect on the growth
rate of mathematics achievement. However, comparing the mathematical competencies
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in 2nd grade revealed that the achieved mathematical performances differed between the
low and high intellectual ability group by about 1 to 1.5 standard deviations. Thus, very
different mathematical performance levels were reached.

Children with high intellectual abilities also demonstrated a very simple predictive
model, although these children had been able to rely on very good domain-general re-
sources throughout their development, i.e., for at least one year before school entry. As
described previously by Lee and Bull (2016), there is a stable effect of working memory
across grades on mathematical performance. As a result, the relevance of past mathematical
performance increases over the years. Following this line of argumentation, children with
higher capacity of working memory would be able to acquire more mathematical skills
than children with lower domain-general resources. This means that, although children
with high intellectual abilities naturally had these resources available in 2nd grade, this
group no longer had to rely on them. It seems that the mathematical competencies already
acquired are sufficient to enable this group to cope with the mathematical tasks in 2nd
grade. However, this assumption needs to be verified in further studies starting much
earlier in children’s development.

A complex predictive model was found for children with average intellectual abilities.
Based on the literature, we expected this complexity regarding the influence of domain-
general predictors on mathematical achievement. All components of working memory
as well as attention were found to affect later mathematical performance in 2nd grade.
However, even here, the influence of earlier numerical and mathematical skills on later
mathematical achievement appeared to be rather high. This became very obvious between
the first two measurement points in pre-school. The same was true for pre-school to 2nd
grade. Thus, the present study supports the assumption that domain-general predictors,
here especially working memory, play a rather important role in the mastery of mathemat-
ical tasks. However, previously acquired mathematical skills and thus domain-specific
predictors are even more relevant. This is in line with previous longitudinal studies high-
lighting the importance of early numerical skills for the development of arithmetical skills
in school (e.g., Aunio and Niemivirta 2010; Fritz et al. 2013, 2018; Gallit et al. 2018; Poltz
et al. 2022; Toll et al. 2016).

The literature indicated that younger children rely more strongly on working memory
resources than older children when solving mathematical problems (Friso-van den Bos et al.
2013). According to the present study, this statement held true for children with average
intellectual ability. These children were performing mathematical demands of 2nd grade
by using their average domain-general skills in addition to their mathematical knowledge.
The assumption did not apply to intellectually low-performing children who did not have
sufficient working memory and attention resources. Likewise, the assumption did not apply
to intellectually high-achieving children who demonstrated very good domain-general
resources but who had additionally acquired very good mathematical knowledge early on
that could be built upon sufficiently. Hence, it appears that, in addition to children’s age, it
is primarily children’s cognitive performance that affects the structure of predictive models.

There were interrelations between children’s intellectual abilities on the one hand and
working memory and attention on the other. Accordingly, predictive models of mathemati-
cal skills could not be interpreted without considering children’s levels of intellectual ability.
Therefore, future studies should always consider children’s intellectual abilities, especially
of those performing below and above average. This would only be possible with larger
samples. If the sample size does not allow a distinction between intellectual levels, then the
interpretations of such models will primarily apply to children with average intellectual
abilities. Interpretations for all children, including the cognitive extreme groups, should
not be drawn from this.

4.3. Different Mathematical Tasks Require Different Domain-General Resources

The last research question brought the 2nd graders’ mathematical achievements and
the respective predictors into focus. The underlying assumption was that increasing
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complexity of the tasks would increase working memory demands (see Goecke et al. 2021).
Accordingly, not only (complex) elementary cognitive tasks, but also more demanding
mathematical tasks should be predicted more strongly by the working memory than less
demanding mathematical tasks.

Results of the confirmatory factor analysis confirmed that addition, subtraction and
applied contextual problems represented three differing mathematical tasks. Furthermore,
results indicated that the mathematical tasks were differentially demanding for children
with different intellectual abilities. For children with high intellectual abilities, solving
applied contextual problems seemed to be less demanding than solving addition and
subtraction tasks. In contrast, for children with low intellectual abilities, applied contextual
problems seemed to be more demanding than addition and subtraction. A similar but
only marginally significant effect was found for the average intellectual ability group. Path
analyses revealed that for children with average intellectual ability, pre-school numerical
and mathematical skills were apparently not sufficient to solve applied contextual problems,
which seemed to be more demanding for this group. Solving applied contextual problems
was supported by the central executive as well as the phonological loop. In contrast,
solving subtraction and addition tasks seemed to be less demanding for children with
average intellectual abilities. Support from the central executive and phonological loop was
no longer required. Only the working memory subsystem of the visuospatial sketchpad
was needed for subtraction tasks. Accordingly, our findings for children with average
intellectual abilities support prior findings that more demanding mathematical tasks require
more working memory resources and less demanding tasks require less working memory
resources (see Goecke et al. 2021). However, whether mathematical tasks were demanding
for children depended on children’s mathematical abilities. This means that children with
high mathematical abilities need other tasks adapted to their mathematical abilities to be
demanding than children with low mathematical abilities.

A look at mathematical achievements between intellectual ability groups revealed
that children with high intellectual ability scored up to one standard deviation above
children with low intellectual ability. We can assume that for children with high intellectual
ability, the three types of mathematical tasks used in this study were not very demanding
and therefore did not require support from working memory. Consequently, pre-school
numerical and mathematical skills adopted the predicting role and prepared children for
solving these tasks. For children with low intellectual abilities, applied contextual problems
seemed to be the most demanding mathematical tasks. However, compared to children
with average and high intellectual abilities, these children seemed to struggle with addition
and subtraction too. Unlike children with average intellectual abilities, no support from
their working memory nor attention was evident.

Accordingly, the load caused by the mathematical task was not the same for every
child of a specific age. Depending on their intellectual abilities, children developed different
mathematical proficiency, with children of the high intellectual ability group displaying
the highest mathematical achievement. In other words, children with high intellectual
ability exhibited the highest degree of mathematical proficiency. As a result, depending
on the degree of children’s mathematical proficiency, mathematical tasks would be of
varying demands (Fritz et al. 2013). This, in turn, influenced the model of predictors.
This is of high interest for future research. Intellectual abilities determine domain-general
resources (such as working memory and attention) as well as domain-specific resources and
as a result the developmental trajectories of mathematical skills. Along with the degree of
mathematical proficiency, the difficulties of these tasks experienced by groups with different
mathematical abilities and the resulting load vary. Children with high mathematical skills
display a lower load when working on identical tasks compared to children with rather
average mathematical skills. This, in turn, influences the relevance of pre-school domain-
general skills to predict later mathematical skills. Looking at the results of the present study,
children with higher mathematical skills drew on their working memory less than children
with average mathematical skills when solving identical tasks.
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4.4. Limitations

General intelligence showed a high stability rate in pre-school. Nevertheless, we
decided on using children’s results of intelligence testing of both time points in pre-school
to control for testing effects. Thus, 35% of participants could not be assigned to a particular
intellectual ability group and were not included in further analyses. However, drop-out
analyses revealed only a very low difference in children’s general intelligence at t2, indicat-
ing a higher intelligence of excluded children. However, there is no reason to assume that
the conducted analyses were affected by this small effect.

Furthermore, we found a considerable drop-out-rate in the low intellectual ability
group over the three-year course. Drop-out-analyses of variables at t1 revealed general
intelligence as a differing variable. Children who dropped out were found to have lower
general intelligence. The reason may be that especially children with very low intelligence
were not able to reach 2nd grade during the time the study was running, that means
even after a one-year delay. Thus, analyses of children’s achievement in 2nd grade lacked
children with very low intellectual abilities. It had to be assumed that the low to medium
effects between the three intellectual ability groups would have been much higher if we
had been able to consider children who dropped out as well.

Using one standard deviation to identify three sampling groups causes a reduced
variance in both extreme intellectual ability groups. Nonetheless, these samples are still
sufficiently large and stable enough to allow corresponding models to be calculated. In
addition, this could be an interesting approach for further research. We assume that a com-
parison of the models with mathematical demands of varying difficulty (e.g., tasks that are
too easy, appropriate, and too difficult for high-achieving children) should lead to compa-
rable results found for children with low, average, and high intellectual ability in this study.
This would open up a possibility to prove if the influence of the predictors was primarily
determined by content-related mathematical demands and less by statistical variance.

The achievement in the three working memory domains was measured by using one
task for each domain. Because of the comprehensive study design, a much broader capture
of working memory performance was not possible. The selection of the respective tasks was
based on intensive research of available tests and examination of their reliability and overall
goodness criteria with regard to the planned age group. Nonetheless, this might have led
to a low reliability and impurity of each working memory domain. In addition, Miyake
et al. (2000) already emphasized the importance of looking at both unity and diversity
of cognitive functions. Their analyses suggested that latent variables might be a useful
approach to examine the relevance of cognitive functions. This implies for future studies
to have a special focus on the role of cognitive performance. In addition, however, these
cognitive performances should be measured extensively enough to be able to form latent
variables and use them in models.

To identify three intellectual ability groups, we used one standard deviation as the
cut-off criteria. This resulted in a bigger sample of children with average intellectual
abilities than children with low or high intellectual abilities. The more complex model
of the average ability group found in this study could be the result of these sampling
size differences. Therefore, we randomly reduced the sample of the average intellectual
ability group by approximately 80%. We reran the analysis and could replicate the finding
that children with average intellectual ability not only rely on previous numerical and
mathematical abilities but on domain-general abilities as well.

Lastly, we found a small effect of age between the three intellectual ability groups.
Children of low intellectual ability were found to be the oldest. This may be due to the
age-groups used for the standardized tests for assigning T-values to children’s raw scores.

5. Conclusions

Depending on their intellectual abilities, children showed different domain-specific
and domain-general abilities in pre-school as well as different mathematical achievement
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in 2nd grade. Interestingly, the three mathematical tasks were differentially demanding
depending on children’s intellectual ability.

Our findings should have consequences for teaching mathematics at school. In order
to challenge children with high intellectual abilities, those children need mathematical
tasks suitable to their abilities. We assume that only then do children need to draw on
their cognitive resources, which enables them to train them. The same is true for children
with low intellectual abilities and hence low working memory resources. If the tasks were
too difficult, it is assumed that those children would not be able to access their resources.
It would have to be examined in follow-up studies how children with low performance
draw on their working memory resources when confronted with mathematical demands
that require mathematical competences at their average level of abilities. We expect these
children to use their working memory resources again once the tasks that they are presented
with make suitable mathematical demands. This would, in turn, have the effect that the
children would train their domain-general resources by using them. However, this link is
merely a speculation and would thus need to be verified.

Furthermore, in studies where the developmental trajectories of mathematical skills are
examined, it is important to make detailed observations and especially consider children’s
intellectual abilities. Intellectual abilities determine how children perform in working
memory, which in turn determines how children develop mathematical skills. Whether a
mathematical task is demanding for an individual child depends on the developmental
level of mathematical competence.
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