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’To see a world in a grain of sand
And a heaven in a wild flower,

Hold infinity in the palm of your hand
And eternity in an hour.’

— William Blake
(from ’Auguries of Innocence’)

For my family...





A B S T R A C T

Nature changes continuously and is only seemingly at equilibrium.
Environmental parameters like temperature, humidity or insolation
may strongly fluctuate on scales ranging from seconds to millions of
years. Being part of an ecosystem, species have to cope with these
environmental changes. For ecologists, it is of special interest how
individual responses to environmental changes affect the dynamics
of an entire population – and, if this behavior is predictable. In this
context, the demographic structure of a population plays a decisive
role since it originates from processes of growth and mortality. These
processes are fundamentally influenced by the environment. But, how
exactly does the environment influence the behavior of populations?
And what does the transient behavior look like?

As a result from environmental influences on demography, so called
cohorts form. They are age or size classes that are disproportionally
represented in the demographic distribution of a population. For
instance, if most old and young individuals die due to a cold spell, the
population finally consists of mainly middle-aged individuals. Hence,
the population got synchronized. Such a population tends to show
regular fluctuations in numbers (denoted as oscillations) since the
alternating phases of individual growth and population growth (due
to reproduction) are now performed synchronously by the majority
of the population.That is, one time the population growths, and the
other time it declines due to mortality.

Synchronous behavior is one of the most pervasive phenomena in
nature. Gravitational synchrony in the solar system; fireflies flashing
in unison; coordinate firing of pacemaker cells in the heart; electrons
in a superconductor marching in lockstep. Whatever scale one looks
at, in animate as well as inanimate systems, one is likely to encounter
synchrony. In experiments with phytoplankton populations, I could
show that this principle of synchrony (as used by physicists) could
well-explain the oscillations observed in the experiments, too. The size
of the fluctuations depended on the strength by which environmental
parameters changed as well as on the demographic state of a popula-
tion prior to this change. That is, two population living in different
habitats can be equally influenced by an environmental change, how-
ever, the resulting population dynamics may be significantly different
when both populations differed in their demographic state before.

Moreover, specific mechanisms relevant for the dynamic behavior of
populations, appear only when the environmental conditions change.
In my experiments, the population density declined by 50% after
ressource supply was doubled. This counter-intuitive behavior can be
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explained by increasing ressource consumption. The phytoplankton
cells grew larger and enhanced their individual constitution. But at
the same time, reproduction was delayed and the population density
declined due to the losses by mortality.

Environmental influences can also synchronize two or more popula-
tions over large distances, which is denoted as Moran effect. Assume
two populations living on two distant islands. Although there is
no exchange of individuals between them, both populations show
a high similarity when comparing their time series. This is because
the globally acting climate synchronizes the regionally acting weather
on both island. Since the weather fluctuations influence the popula-
tion dynamics, the Moran effect states that the synchrony between
the environment equals the one between the populations. My experi-
ments support this theory and also explain deviations arising when
accounting for differences in the populations and the habitats they
are living in. Moreover, model simulations and experiments astonish-
ingly show that the synchrony between the populations can be higher
than between the environment, when accounting for differences in the
environmental fluctuations (“noise color”).
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Z U S A M M E N FA S S U N G

Die Natur unterliegt ständigen Veränderungen und befindet sich nur
vermeintlich in einem Gleichgewicht. Umweltparameter wie Temper-
atur, Luftfeuchtigkeit oder Sonneneinstrahlung schwanken auf einer
Zeitskala von Sekunden bis Jahrmillionen und beinhalten teils be-
trächtliche Unterschiede. Mit diesen Umweltveränderungen müssen
sich Arten als Teil eines Ökosystems auseinandersetzen. Für Ökologen
ist interessant, wie sich individuelle Reaktionen auf die Umweltverän-
derungen im dynamischen Verhalten einer ganzen Population bemerk-
bar machen und ob deren Verhalten vorhersagbar ist. Der Demografie
einer Population kommt hierbei eine entscheidende Rolle zu, da sie
das Resultat von Wachstums- und Sterbeprozessen darstellt. Eben
jene Prozesse werden von der Umwelt maßgeblich beeinflusst. Doch
wie genau beeinflussen Umweltveränderungen das Verhalten ganzer
Populationen? Wie sieht das vorübergehende, transiente Verhalten
aus?

Als Resultat von Umwelteinflüssen bilden sich in Populationen
sogenannte Kohorten, hinsichtlich der Zahl an Individuen überpro-
portional stark vertretene Alters- oder Größenklassen. Sterben z.B.
aufgrund eines außergewöhnlich harten Winters, die alten und jungen
Individuen einer Population, so besteht diese anschließend hauptsäch-
lich aus Individuen mittleren Alters. Sie wurde sozusagen synchro-
nisiert. Eine solche Populationen neigt zu regelmäßigen Schwankun-
gen (Oszillationen) in ihrer Dichte, da die sich abwechselnden Phasen
der individuellen Entwicklung und der Reproduktion nun von einem
Großteil der Individuen synchron durchschritten werden. D.h., mal
wächst die Population und mal nimmt sie entsprechend der Sterblichkeit
ab. In Experimenten mit Phytoplankton-Populationen konnte ich
zeigen, dass dieses oszillierende Verhalten mit dem in der Physik ge-
bräuchlichen Konzept der Synchronisation beschrieben werden kann.
Synchrones Verhalten ist eines der verbreitetsten Phänomene in der
Natur und kann z.B. in synchron schwingenden Brücken, als auch bei
der Erzeugung von Lasern oder in Form von rhythmischem Applaus
auf einem Konzert beobachtet werden. Wie stark die Schwankungen
sind, hängt dabei sowohl von der Stärke der Umweltveränderung
als auch vom demografischen Zustand der Population vor der Verän-
derung ab. Zwei Populationen, die sich in verschiedenen Habitaten
aufhalten, können zwar gleich stark von einer Umweltveränderung
beeinflusst werden. Die Reaktionen im anschließenden Verhalten kön-
nen jedoch äußerst unterschiedlich ausfallen, wenn sich die Popula-
tionen zuvor in stark unterschiedlichen demografischen Zuständen
befanden. Darüber hinaus treten bestimmte, für das Verhalten einer
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Population relevante Mechanismen überhaupt erst in Erscheinung,
wenn sich die Umweltbedingungen ändern. So fiel in Experimenten
beispielsweise die Populationsdichte um rund 50 Prozent ab nach-
dem sich die Ressourcenverfügbarkeit verdoppelte. Der Grund für
dieses gegenintuitive Verhalten konnte mit der erhöhten Aufnahme
von Ressourcen erklärt werden. Damit verbessert eine Algenzelle zwar
die eigene Konstitution, jedoch verzögert sich dadurch die auch die
Reproduktion und die Populationsdichte nimmt gemäß ihrer Verluste
bzw. Sterblichkeit ab.

Zwei oder mehr räumlich getrennte Populationen können darüber
hinaus durch Umwelteinflüsse synchronisiert werden. Dies wird als
Moran-Effekt bezeichnet. Angenommen auf zwei weit voneinander
entfernten Inseln lebt jeweils eine Population. Zwischen beiden findet
kein Austausch statt – und doch zeigt sich beim Vergleich ihrer Zeitrei-
hen eine große Ähnlichkeit. Das überregionale Klima synchronisiert
hierbei die lokalen Umwelteinflüsse. Diese wiederum bestimmen
das Verhalten der jeweiligen Population. Der Moran-Effekt besagt
nun, dass die Ähnlichkeit zwischen den Populationen jener zwischen
den Umwelteinflüssen entspricht, oder geringer ist. Meine Ergebnisse
bestätigen dies und zeigen darüber hinaus, dass sich die Populationen
sogar ähnlicher sein können als die Umwelteinflüsse, wenn man von
unterschiedlich stark schwankenden Einflüssen ausgeht.
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Part I

G E N E R A L I N T R O D U C T I O N





1
D Y N A M I C S FA R F R O M S T E A D Y S TAT E

1.1 are populations at steady state?

A population at steady state implies a stable number of individuals
(or any other characterizing variable like its biomass) that does not
change over time and in which change in one direction is continually
balanced by change in another. That is, the gains from reproduction
and immigration into a population equal the losses due to mortality
and emigration. This implies that a population’s turn-over rate can be
high although the population density does not change at all. At steady state, the

gains equal the
losses.

Since the term “steady state” is naturally related to time, the ques-
tion whether a population is at steady state or not is always a matter of
scale. For instance, while a bacterium like Escherichia coli has fulfilled
its life cycle within 30 minutes, the life of an elephant typically has
not changed much within this time interval. Thus, the generation time
of an organism is a fundamental issue when talking about population
dynamics and steady state.

Whether a population is at steady state or not depends on its biotic
and abiotic environment that determines the gains and losses. A pop-
ulation is embedded into a trophic network and is part of the complex
biotic interactions among the participating species, e.g. predator-prey
relationships or competition for resources. This network represents
the animate part of an ecosystem and underlies its abiotic environ-
mental influences, e.g. climate fluctuations or geological processes. In
this context, it becomes clear that there are infinite ways to drive a
population away from a dynamical steady state – each acting on a
different temporal scale that determines its influence on a population.
E.g., continental drift is of no direct interest to the elephant from above Environmental

influences are always
a matter of scale.

when thinking about his life and the ones of his children and grand
children. However, he will surly be concerned about more frequent
fire events due to global climate change. In the context of this work, I
excluded biotic interactions and focused on two causations that bear
great potential to disturb the steady state of populations: demographic
structure and environmental variability.

demographic structure Any population on this planet has a
demographic structure, even the ones that elude the human eye and
are therefore readily considered unstructured. The reason for this is
the life cycle of an organism: the different life stages interact differently
with the environment. This is apparent for organisms of higher order,
especially when the developmental stages can be clearly distinguished
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4 dynamics far from steady state

Figure 1.1: A matter of scale. Whether organisms are sensitive to environ-
mental variations or not, strongly depends on their size. Here,
E. coli’s driping tap might be the elephant’s thunderstorm. (Photo
copyright: Gunnar Assmy, top left; Mark Greenwood, top right; Beverly Joubert,
bottom left; Sean Heavey, bottom right)

by morphology, e.g., in holometabolic insects. But also populations of
unicellular microorganisms show a stage structure evolving from the
distinct phases of the cell cycle (G1-, S-, G2-, and M-phase). Their life
cycle is structured according to the physiology of the cell.

To describe the demography of a population, individuals are typi-
cally classified by a characteristic developmental feature like age or
size. At steady state, the stage distribution is balanced and does notDemographic

structure implies
developmental stages

that differently
interact with the

environment.

change. That is, according to both, the progression velocity describing
maturation or somatic growth, and the mortality rate, a stable demo-
graphic structure is established being characteristic for the prevailing
environmental conditions. From a theoretical, population biological
point of view, structured populations bear much more potential to
be pushed away from steady state [140, 22]. Whenever the steady
state demography is disturbed, the ratio of gains and losses becomes
unbalanced. For instance, assume a population whose number of
individuals in the stage class with the highest productivity is dramat-
ically decreased. Since reproduction is decreased, the gains cannot
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compensate any longer the losses due to mortality and the population
density will decrease. This simple, but vivid example illustrates that
a population’s demographic structure can be easily brought out of
balance so that the population dynamics are no longer at steady state.
But it also shows that the environment has numerous potential ways
of impacting population structure.

environmental variability Whatever ecosystem one looks at,
the prevailing environmental conditions are never absolutely stable,
but rather characterized by continuous fluctuations varying in am-
plitude and frequency. Temperature, insolation, rainfall and all other
environmental parameters vary in time and space. Hence, populations
underly permanent disturbances making it hard to imagine that they
can ever reach a steady state. However, amplitude and frequency of
the environmental fluctuations are relative. Whether a population is
sensitive to changes or not, depends to a large amount on the size and
generation time of a species. In periods of minor fluctuations, popu-
lations are able to reach a steady state since their individuals are not
sufficiently affected to disturb demography. This changes again when
the fluctuations become more intense and the population dynamics
change as a response to an altered demographic structure. Environmental

fluctuations are
characterized by
their amplitude and
frequency.

The frequency by which environmental changes occur is important,
too. A population might be able to compensate a single perturbation
once in a while without any distinct changes in demography. The pic-
ture changes, however, when the perturbations become more frequent
and start leaving marks in the population structure. The frequency by
which perturbations occur is important in relation to the generation
time of an organism. Very low frequencies are practically identical to
singular events a population might respond to. Very high frequencies
in turn, might not be able to change the population structure but may
continuously alter the density. Although often acting with small ampli-
tudes, such fluctuations become important when occurring over vast
distances since they may synchronize populations that do not interact.
And a third possibility is that the frequencies of the perturbations
overlap with the frequencies by which organisms reproduce. When
such perturbations alter the demography (although only slightly), a
population responds to the subsequent perturbations with a differ-
ent structure. The resulting behavior might not only be complex but
chaotic. Here, I will investigate the impacts of long-term changes and
high-frequent perturbations, known as environmental stochasticity or
noise, respectively.

1.2 complex behavior and synchrony

The dynamic behavior in response to environmental changes can
be as diverse as the factors provoking it. Traditionally, ecological
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research addresses the stability of populations and the future steady
states after the occurrence of environmental changes. But in the last
years, transient behavior has become a focal point. It turns out that
theory of long-term dynamics or steady state theory, respectively, is
unable to explain most transient dynamics since it often lacks the
essential mechanisms [61, 62]. For example, to describe the ’dynamics’Transients describe

the population
dynamics between

steady states.

of a population at steady state one does not need to account for
demographic structure since the population is stable. However, when
the environmental conditions change and do not equally affect all
developmental stages (e.g. most juveniles die due to a cold spell),
demographic structure is essential to explain the resulting dynamics.
Further, only transient behavior reveals the mechanisms that determine
population dynamics, e.g. storage of surplus nutrients leading to
delays in the growth of phytoplankton populations [27]. Generally, to
predict future dynamics one has to study populations far from steady
state because only there they will reveal the causes underlying their
dynamics.

oscillatory dynamics Regular fluctuations or oscillations, re-
spectively, in the number of species are most often reported for
predator-prey systems and attracted notice to ecologists ever since
Elton (1924) first described the famous Hare-Lynx-cycles from a sci-
entific point of view [42]. But also single species populations are able
to exhibit oscillatory behavior that is caused by intrinsic mechanisms
related to demography. Taking the example of the population suffering
from a cold spell, the loss of juveniles synchronizes the population
since all other developmental stages are disproportionally represented
in the demographic distribution. As a result, a cohort forms that ex-
ists until the demographic structure is in balance again. The cohort
can be tracked over time as is ’travels’ along the different stages of
development. Oscillations arise when the majority of individuals findOscillations arise

from the
synchronization of

individuals within a
population.

themselves in a similar stage of development. That is, those individu-
als progress through their life cycle in lockstep. Their somatic growth
and the point in time when they reproduce is synchronized. Hence,
the population does not noticeably grow until the cohort starts repro-
ducing. As a result, periods of somatic growth and population growth
alternate according to the generation time.

Populations can be synchronized in many ways. One that is com-
monly known is the synchronization due to an external factor, denoted
as entrainment [117]. Although the term “entrainment” is commonly
not used in ecological research, ecologists are familiar with this kind
of synchronization since the restriction of population growth due to
insufficient resources is ubiquitous.

In the second and the third chapter, I demonstrate how readily
oscillations arise as transient behavior in response to environmental
changes. Especially in the second chapter, I will explicitly apply the
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physical concept of synchronization to single species populations
and explain the occurrence of self-sustained, persistent oscillations in
the experimental chemostat populations. In the third chapter, I focus
more on the strength and direction of the environmental changes.
I show that, similar to a memory effect, the demographic structure
before the environmental conditions change plays an eminent role
for the transient dynamics. Moreover, I explain why the population
density can temporarily decrease (≈ 50%!) in response to ameliorated
resource concentrations. This counter-intuitive observation represents
a prime example of a mechanism having a noticable effect only under
nonsteady-state conditions.

synchrony over large distances In ecology, synchrony plays
not only a role in single populations whose individuals are in syn-
chrony, but also in the remarkably synchronous behavior of whole pop-
ulation that are spatially disjunct. Such synchrony might be achieved
by three primary mechanisms [86]: (i) migration of individuals from
one population to another; (ii) trophic interactions with populations of
mobile species or populations that are themselves in synchrony; and
(iii) correlated environmental stochasticity (noise) which is known as
Moran effect [100, 130]. Correlated

environmental
fluctuations can
synchronize
populations over
large distances.

Assume two islands that are separated by a vast distance with one
population living on each island. Migration between the islands is not
possible nor is there a common predator or the like that the popula-
tions interact with. And anyway, when comparing the time series of
the two populations one would observe a remarkably high correlation
between them. The cause for this is the globally acting climate that
correlates the regionally acting weather on both islands. Since the
correlated environmental fluctuations determine the dynamics of both
populations, the correlation coefficient of the populations rp should
be dependent on the one of the environment r. For linear systems,
Moran pointed out that both coefficients are identical, rp = r.
In chapter four, the Moran effect was investigated in three comprehen-
sive scenarios. For this purpose, chemostat populations of C. vulgaris
experienced correlated noise realized as fluctuations of the turn-over
rate (dilution rate). I demonstrate that the Moran effect held for identi-
cal populations that experienced white noise (first scenario), meaning
rp = r. When both populations differed in carrying capacity and aver-
age turn-over rate (second scenario), rp was generally smaller than r,
rp < r (second scenario). Finally, experimental results and model sim-
ulations show that rp > r when two identical populations experience
differently autocorrelated environmental noise (third scenario).
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1.3 chemostat populations and their environment

All studies in my doctoral thesis combined theory and mathematical
modeling with chemostat experiments. In this section I will briefly
explain the experimental setup comprising much more than just the
chemostat systems. Chemostats are sophisticated experimental tools
that require profound experience, especially in this case where they are
embedded in a highly technical environment that allows for computer-
controlled changes of the dilution rate as well as automatic sampling.
This was especially required in the experiments investigating the
Moran effect.

It took nearly one year of development until all parts worked prop-
erly. Thomas Hintze from the ’Leibniz Institute of Freshwater Ecology
and Inland Fisheries’ (IGB,Berlin) was the technician responsible for
Simulink programming and the development of the light extinction
measurement device that allowed for a quasi-continuous, noninva-
sive estimation of the algal biomass. Assisted by Thomas Hintze and
Guntram Weithoff, I installed the ’hardware’ that guaranteed proper
interaction between the chemostats and the computer. All this together
made the planning and performance of these chemostat experiments
an acutely time-intense venture.

chemostat setup A chemostat is a continuous culturing system
and a powerful experimental tool not only in ecological research [108,
76]. It allows to test for specific influences on populations under well-Chemostats are

continuous-culture
devices that allow for
the testing of specific

mechanisms under
well-defined

conditions.

defined conditions. In contrast to simple batch cultures, a chemostat
is a flow-through system. By continuously supplying the population
with fresh medium and removing the chemostat content at the same
rate, it allows for the maintenance of populations over a long period
of time. Therefore, it fits perfectly to studies investigating transient
population dynamics in response to perturbations of the steady state.

The chemostat system as used in chapters two to five, basically
consisted of the chemostat vessel containing the algal population and
the medium, and three ports enabling supply with fresh medium and
air, automatic sampling of light extinction and washout by dilution
(Fig. 1.2). To analyze population structure, samples for particle counter
measurements were taken from the effluent to be noninvasive, too.

experimental model organisms In numerous pre-experiments,
I investigated the suitability of the three unicellular phytoplank-
ton species Monoraphidium minutum, Chlamydomonas reinhardtii, and
Chlorella vulgaris. Results from chemostat experiments with all species
are shown in chapter 2.Chlorella vulgaris

has short generation
times and is easy to
handle – the perfect

model organism.

I decided to use solely C. vulgaris for all other experiments whose
results are presented in chapters three and four. C. vulgaris is a coccal
green alga and is found as part of phytoplankton communities, on the
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Figure 1.2: Schematic chemostat setup as used in this work. The chemostat
vessel contains the phytoplankton population and the medium.
Dilution provides a continuous flow through the system equally
determining the rate by which fresh medium is supplied (blue tri-
angle) and all chemostat content is washed out of the system (red
triangle). Noninvasive samples for light extinction measurements
were taken at the third port (orange triangle), samples for particle
counter measurements were taken from the effluent. Fresh air en-
tered the vessel together with the supplied medium guaranteeing
both, prevention from CO2-limitation and homogeneous mixing.

bark of trees, and as symbiont in lichens, Paramecium, and Hydra. Be-
sides that, C. vulgaris is a well-known and often used model organism
in chemostat studies. Due to the short generation times and the easy
handling microorganisms like C. vulgaris allow for experiments of
general ecological relevance that would not possible to perform with
more complex organisms. Possessing a life cycle with four distinct
phases, it brings the minimum requirements to study structured pop-
ulations in continuous culture (Fig. 1.3). That is, nitrogen-dependent
cell progression in the G1-phase results in a demographic structure
that is defined by the environmental parameters of the chemostat,
namely the nitrogen concentration of the inflowing medium and the
dilution rate.

1.4 mathematical modeling

The structured population model as used in chapters two and three,
represents an extension of the Kuramoto model [82, 83], adapted to
chemostat populations. It describes a structured population of algal
cells that interacts with the ambient nitrogen in the system. All cells
start as small daughter cells and progress through their life cycle to fi-
nally become large mother cells that release new daughter again and so
on. The model distinguishes only between a nitrogen-dependent phase
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Figure 1.3: Schematic description of the life cycle of C. vulgaris. Typically for
eukaryotic organisms, the cell cycle consists of four physiologi-
cally distinct phases (G1, S, G2, and M).

(G1) and a phase in which progression is constant and independent
from the ambient nitrogen concentrations (remaining cycle) (Fig. 1.4).
The nitrogen dependency is given by a Monod-wise function with ν
being the progression velocity, νm the maximum progression velocity,
N the ambient nitrogen concentration, and KN the half-saturation
constant. This simple but effective mechanism structures the popu-
lation according to the availability of nitrogen. In the third chapter,
this model is extended by a mechanism allowing for the elongation
of the G1-phase when nitrogen concentrations are high. Although a
cell progresses faster through this phase when nitrogen is available
in excess, it takes comparably longer in the extended model since the
G1-phase is longer.

Figure 1.4: Simplified life cycle as used in in the structured population mod-
els of chapters two and three. Progression velocity is nitrogen-
dependent within the G1-phase, outside it is constant.
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The structured population model as used in chapters two and three,
describes a population of algal cells that interacts with the ambient
nitrogen in the system. Cells start as small daughter cells and progress
through their life cycle to finally become mother cells that release new
daughter again and so on. The model distinguishes only between a
nitrogen-dependent phase (G1) and a phase in which progression is
constant and independent from the ambient nitrogen concentrations
(remaining cycle) (Fig. 1.4). The nitrogen dependency is given by a
Monod-wise function with ν being the progression velocity, νm the
maximum progression velocity, N the ambient nitrogen concentra-
tion, and KN the half-saturation constant. This simple but effective
mechanism structures the population according to the availability of
nitrogen. In the third chapter, this model is extended by a mechanism
allowing for the elongation of the G1-phase when nitrogen concentra-
tions are high. Although a cell progresses faster through this phase
when nitrogen is available in excess, it takes comparably longer in the
extended model since the G1-phase is longer.

In both models, the cells develop rather continuous than in discrete
steps. Therefore, the model consists of a set of partial differential
equations (PDEs). Numerical modeling and analyses were done in
C and Matlab. Since the populations in chapter five did not require
any demographic structure to explain their dynamics, the model used
here consisted of a set of ordinary differential equations (ODEs). In
accordance to the experiments, the populations experienced stochastic
variations by changing the values of the dilution rate in discrete time
steps. Simulations and analyses were done in Matlab.
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2.1 abstract

Complex dynamics, such as population cycles, can arise when the
individual members of a population become synchronized. However,
it is an open question how readily and through which mechanisms
synchronization-driven cycles can occur in unstructured microbial
populations. In experimental chemostats we studied large populations
(> 10

9 cells) of unicellular phytoplankton that displayed regular, in-
ducible and reproducible population oscillations. Measurements of cell
size distributions revealed that progression through the mitotic cycle
was synchronized with the population cycles. A mathematical model
that accounts for both the cell cycle and population-level processes
suggests that cycles occur because individual cells become synchro-
nized by interacting with one another through their common nutrient
pool. An external perturbation by direct manipulation of the nutrient
availability resulted in phase resetting, unmasking intrinsic oscillations
and producing a transient collective cycle as the individuals gradually
drift apart. Our study indicates a strong connection between complex
within-cell processes and population dynamics, where synchronized
cell cycles of unicellular phytoplankton provide sufficient population
structure to cause small-amplitude oscillations at the population level.
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2.2 introduction

Phase synchronization is an adjustment of the rhythms of oscillat-
ing objects that can lead to the emergence of complex synchronized
behavior [136, 117, 152], such as periodic color changes of catalytic
microparticles [138], the simultaneous flashing of fireflies [17] or the
rhythmic clapping of human audiences [107]. Similarly, the densities
of many ecological populations oscillate with frequencies that cannot
be explained by diurnal, annual or other seasonal variation [37, 79, 98].
Often, such regular oscillations are caused by multi-species interac-
tions [15, 49, 7, 143]. Experiments have shown that also single-species
populations can undergo regular sustained or damped oscillations
[29, 5]. “Single-generation cycles” and “delayed-feedback cycles” [104]
are types of single-species oscillations that are known to occur when
vital rates are density-dependent. Here we are concerned with single-
species oscillations that occur when individuals synchronize the pro-
gression through their life cycles. Synchronization may be caused by
locking of individual life cycles to an external force (entrainment),
but it may also arise spontaneously through the internal interactions
among the individuals [117, 152, 138], and can occur in spatially dis-
tant populations [15, 143, 56, 91]. Populations with obvious internal
structure can easily become synchronized by environmental triggers;
for example, an insect population that loses all adults to a cold spell
before eggs are produced and needs to restart growth based on the
surviving larval fraction of the population. In contrast, little is known
about the potential for synchronized cycles in microbial populations,
despite their important role in all ecosystems across the globe.

In this study, we experimentally induced regular oscillations in
populations of unicellular algae that lack distinct life stages other than
defined by their cell cycle. The oscillations could be maintained in the
absence of external periodic rhythms and can be explained through
collective synchronization among a large population of interacting
phase oscillators, in agreement with a generalized version of the Ku-
ramoto Model [83]. Given the causal link between the cell cycle and
the cycling of the population we provide evidence for synchronization
of oscillatory dynamics across biological levels of organization. We
ran chemostat experiments with three different unicellular freshwa-
ter phytoplankton species and compared the dynamics with those
predicted by a mathematical model that allows for nitrogen availabil-
ity and the nitrogen-dependent progression of phytoplankton cells
through their cell cycle (see: supporting information (SI)). To track
phytoplankton dynamics in the chemostats we used an automated
light extinction measurement system (20, SI section 2). This allowed
us to collect measurements with a signal sensitivity and temporal
resolution (5 min intervals) that is unusually accurate for ecological
time-series experiments. In addition, we used a particle counter to
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determine cell abundance and size distribution (4 to 12 hour intervals).
We used cell volume as a proxy for the phase of the cell cycle in which
a phytoplankton cell is located.

2.3 results

We present results from two experimental scenarios, involving three
different phytoplankton species, in which we induced cell cycle syn-
chronization that led to oscillatory population dynamics. We hypothe-
size that phytoplankton cells can become synchronized by nitrogen
depletion and can remain synchronized over several generations of
population growth. Basic chemostat theory predicts that single-species
populations show sigmoid growth after inoculation and reach a steady
state. In the first scenario we tested whether characteristics of the
sigmoid growth depend on the potential degree of synchronization
among cells and started chemostats with phytoplankton cultures that
had a different history of nutrient availability: either nitrogen-limited
or not limited by nitrogen. Chemostat cultures inoculated with either
type of phytoplankton showed sigmoid growth, but we observed the
smoothly increasing curve predicted by theory only when cells had
been previously cultured under non-limiting conditions (Fig. 2.1a).
When we inoculated from a nitrogen-limited culture, however, cell
numbers did not increase monotonously but displayed oscillations to-
wards steady-state (Fig. 2.1a). These results agree with our hypothesis
that cells become synchronized when nitrogen depletion arrests cell
progression in the nitrogen-sensitive phase in their cell cycle.

In the second, more comprehensive scenario, we tested whether
oscillations can be induced in steady-state chemostat populations by
directly manipulating nitrogen availability to cells. This set up would,
in theory [112, 85, 6](and our model described further down), induce
oscillations through synchronization. We grew non-synchronized phy-
toplankton populations to steady-state and then stopped inflow into
and outflow out of the chemostat (dilution rate δ = 0 day−1) for
several days. This manipulation potentially synchronizes cells because
initially cell numbers increase (no mortality due to outflow) but, as
the remaining nutrients are being depleted (no nutrient inflow), the
cells accumulate in the nitrogen-sensitive phase of their cell cycles.
When the flow through the chemostat vessel resumes cell numbers
will decrease to previous steady-state levels. However, cell density
will now oscillate because the majority of cells enter the nitrogen-
nonsensitive phase of the cell cycle simultaneously and cell divisions
occur at approximately the same time.

In our experiments, we observed exactly the dynamical behavior pre-
dicted by theory. Small-amplitude oscillations (measured as changes in
light extinction or cell densities; Figs. 2.1b-c, 2.2, 2.3) occurred after the
“off-on” manipulation of the chemostat in separate cultures of three



20 cycles, phase synchronization, and entrainment

Figure 2.1: Oscillatory dynamics in one-species phytoplankton chemostats.
Measurements of light extinction [V] are equivalent to algal bio-
volume (see SI section 2). (a) Smooth and oscillatory increase to-
ward steady state. Chlorella vulgaris (blue) from nitrogen-sufficient
culture, δ = 0.65 day−1, Ni = 320 µmol·L−1; Monoraphidium
minutum (green) from nitrogen-limited culture, δ = 0.51 day−1,
Ni = 160 µmol·L−1. (b) Induced damped oscillations after paus-
ing of chemostat flow. C. vulgaris, δ = 0.0 day−1 from day 20 to
25, otherwise δ = 0.81 day−1, Ni = 160 µmol·L−1. (c) Induced
sustained oscillations after pausing of chemostat flow. C. vulgaris,
δ = 0.0 day−1 from day 22 to 29, otherwise δ = 0.61 day−1,
Ni = 320 µmol·L−1. Arrows indicate when chemostat flow was
switched off and back on. Insets show details of the oscillatory
part of the dynamics.
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Figure 2.2: Cell size distributions (lower panels) at consecutive phase loca-
tions of the population cycle (upper panel; detail from chemostat
trial with C. vulgaris, Fig. 2.1b). Letters (a) - (h) indicate loca-
tions in the population cycle at which cell size distributions were
measured (see text for details).

different phytoplankton species and at a variety of chemostat dilution
rates and nitrogen concentrations, Ni, of the inflowing medium (SI
section 5). The induced oscillations were damped for small values
of external nutrient concentration combined with high dilution rates
(Fig. 2.1b), however we observed sustained oscillations (up to 16 cy-
cles) when δ was lower and Ni was high (Fig. 2.1c). The oscillations
showed period lengths ranging from 1.03 to 3.5 days, thus ruling
out circadian cell culture rhythms [6, 50] as the general cause of the
oscillations. Measurements of cell size distributions provide evidence
that the phytoplankton populations periodically changed their demo-
graphic structure with the periodicity of the population oscillations.
We measured cell size distributions at distinct phase locations of the
population cycles induced by the “off-on” manipulation and found re-
curring patterns that can be linked to phases of the cell cycle (Fig. 2.2).
The cycle starts with a unimodal distribution of cell-sizes (Fig. 2.2 a, e)
around a small volume of 5 µm3, directly after division of most cells,
reminiscent to the cell size distribution in the stationary state (Fig.
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S4 SI section 4). From this point cells grow as a cohort from small to
large, which is visible as a moving peak in the cell size distribution
that shifts to the right (Fig. 2.2 a-d, e-h). As soon as the first cells of
the cohort begin to divide a second peak in the cell size distribution
at small cell sizes appears, giving rise to a distinct bimodal cell size
distribution (Fig. 2.2 c, g). Since progression through the cell cycle
is retarded in the nitrogen-dependent, pre-mitotic phase of the cell
cycle, cells entering this second peak are temporarily arrested in their
progress. Consequently, the left peak does not shift to the right but
increases in size as cells continue to divide, whereas the right peak
continues to shift and decreases in size (Fig. 2.2 d, h). When all cells of
the cohort have finished cell division and the right peak of large cells
has disappeared the cycle starts anew if sufficient nitrogen is available
(see also Fig. S5 in SI for comparison of experimental with simulated
cell size distributions).

Spectral plots of cell size distributions measured over the full length
of the chemostat experiment clearly reveal the contribution of cellu-
lar level events to the synchronization of the whole population. The
steady state population before the “off-on” manipulation was charac-
terized by a rather broad unimodal stationary cell size distribution
(see also Fig. S4, SI). Switching off flow through the chemostat led to
an extreme accumulation of small cells. After the flow had resumed
the collective development of cell cohorts is clearly visible as recurring
diagonal stripes in a phase time plot (Fig. 2.3d). These time periodic
patterns align with the oscillations of cell counts (Fig. 2.3a) and light
extinction and can be quantified by oscillations in the order parameter,
as a direct measure of the degree of synchronization among individ-
uals (Fig. 2.3b). The periodicity and intensity of oscillations in light
extinction and in cell volume distributions remained directly linked to
one another for many generations. Further, the cell size distribution
indicates ratios in cell volumes between mother and daughter cells
ranging from 3.81 to 4.29 (assuming spherical shapes), which is con-
sistent with Chlorella’s typical mode of division by splitting into four
daughter cells.

2.4 model predictions and agreement with data

A mathematical model can provide further insight into the mecha-
nisms that led to synchronization of population and cell cycles in our
experimental cultures. The model is based on the Kuramoto theory
[83] describing the collective synchronization among a large popula-
tion of all-to-all coupled oscillators, i.e. each cell adjusts its cell cycle
with that of all other cells. In the model we associate a cell’s age to
a phase variable θi ∈ [0, 2π], which may be interpreted as the cell’s
development index. For each cell this phase advances according to
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Figure 2.3: Fundamental agreement of oscillatory population behavior and
cell cycle phases between experiment and structured model sim-
ulation for a chemostat trial with C. vulgaris (cf. Fig. 2.1b). (a)
Observed dynamics (red, cell numbers) and model prediction
(blue). Inset shows detail of days 26 - 35. (b) Order parameter R as
a simple, direct measure of the degree of synchronization among
individual oscillators for the experimental populations (red) and
the simulations (blue). (c) Model prediction of cell phase distribu-
tions. For each time step color indicates the fraction of the algal
population that occupies a certain position along the cell cycle.
(d) Observed cell volume distributions as proxy for the cell phase
distributions. Color indicates the fraction of the population that
has a certain cell volume V (200 bins in 0 m3 6 V 6 4189 m3).
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its aging velocity g(N, θ) and is disturbed by independent, identically
distributed white noises ξi(t) [135, 2]:

θ̇i = g(N, θi) + ξi(t). (2.1)

Because individual organisms in the mixed culture cannot sense their
phase difference to others, in contrast to the Kuramoto model [83],
we propose that the nutrient concentration N(t) acts as a mean field
that is able to mediate interactions among the oscillators. Following
Pascual and Caswell [112] we assume that the cell progression g(θ,N)

is divided into a nutrient-sensitive and a non-sensitive phase:

g = g(θ,N) =

{
ω N
KN+N if θ ∈ [θ0, θc]

ω otherwise.
(2.2)

In the interval [θ0, θc] aging depends on the nutrient concentration
in a Monod-wise function, with half-saturation constant KN. In the
absence of nutrients (N = 0) progression in this interval becomes zero
( ˙theta = 0) and a cell stops its individual development. For the rest of
the cycle, cell phase progression g occurs with the constant maturation
velocity ω (taken to be identical for all cells). This gives rise to the
following model for the phase distribution p(θ, t) of oscillators at
phase ω (note the similarity to the McKendrick-von Foerster equation;
see e.g. ref. [37])

∂p

∂t
+
∂

∂θ
[gp] = D

∂2p

∂θ2
− δp, (2.3)

where the last term takes into account the losses by the chemostat
system with dilution rate δ and the term D > 0 derives from the noise
terms [135, 2].

Synchronization theory describes a fixed number of oscillators, but
in our case the number of oscillators is not necessarily conserved.
This leads to a system of oscillators, where each oscillator gives birth
to new ones when its phase has reached 2π and is subsequently
eliminated. Cell division enters the model in form of a boundary
condition p(0, t) = νp(2π, t), where ν is the number of daughter
cells after cell division (note that in the model the phase of a cell
is only defined in the interval 0 6 θ 6 2π). Finally, the model is
complemented by a dynamic equation for the nutrient concentration

Ṅ = δ(Ni −N) − νm
N

KN +N
P, withP(t) =

∫2π
0

p(θ, t)dθ, (2.4)

where Ni is the input nutrient concentration and P(t) the total pop-
ulation density. We fitted model parameters to one data set using
maximum likelihood estimation (Fig. 2.3, SI section 3) and used these
to independently generate simulations for the remaining data sets.
Predictions of the parameterized model are in good agreement with
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the observed dynamics (Fig. 2.3). Most notably, across all experiments
performed the observed period lengths and the equilibrium cell den-
sity agree well with those predicted by our model at different dilution
rates (Fig. 2.4). Moreover, all three major model components (“popu-
lation dynamics”, “cell cycle dynamics”, and “nutrients as common
medium”) are essential and necessary to explain the dynamics of the
phytoplankton populations. As in standard Monod-type chemostat
models, the growth of the population density P(t) depends on the
nutrient concentration. But the model also exhibits a synchronized
state in which phase-locked cell cohorts rotate and divide with a com-
mon frequency and the population density oscillates in time. These
synchronized dynamics appear as two dynamic variants. For some
parameter combinations the model exhibits a spontaneous transition
to the synchronized state where oscillations are self sustained. For
other parameters, the internal coupling is not sufficient to maintain
sustained oscillations, so that cycles are damped and decay as the
oscillators drift apart in phase. This behavior is reminiscent to the
Kuramoto theory [83, 2], where a phase transition occurs at a critical
coupling strength. When the coupling strength is below the threshold,
the system relaxes to an incoherent state (p(θ, t) = 1/2π). However,
for coupling above the threshold collective synchronization sets in
spontaneously among a fraction of oscillators which are locked in
phase.

Note that even below the synchronization threshold individual
oscillators are rotating along their cycle, but since the oscillators are
desynchronized there is no rhythm in the macroscopic average. In this
situation it is possible to unmask the intrinsic dynamics by manually
resetting the oscillators’ phase. Such an external perturbation will
establish a transient collective cycle that decays as the individuals
gradually drift apart. The generation of a collective cycle and relaxation
to an incoherent state by de-phasing has been experimentally observed
[6, 90] and theoretically described as a generalized Landau damping
with exponential decay of oscillation amplitudes at intermediate times,
but slower than exponential decay at long times [137].

Given the phase distribution p(θ, t), the degree of synchronization
or phase coherency among individual cells can be estimated by the
order parameter R =

∣∣∣∫2π0 dθeiθp(θ, t)
∣∣∣, both for the simulated and

the experimental populations (SI section 3). As expected by theory,
we observed moderate degrees of synchronization (R ≈ 0.7) prior to
dilution switch-off, increasing synchronization (R ≈ 0.9) during the
off-phase and oscillatory fading-out of synchronization after dilution
resumed (Fig. 2.3b). In some regards, these observations of our experi-
mental and simulated cell cycles differ from what would be expected
from the Kuramoto model. First, in contrast to the Kuramoto theory,
here the order parameter does not vanish in the asynchronous state
as the phase density is not uniform (see Fig. S4, SI). The reason for
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Figure 2.4: Period lengths and equilibrium densities in chemostat trials with
C. vulgaris at different dilution rates. (a) Period length of oscilla-
tions arising after “off-on” manipulation of the chemostat. Blue
symbols: Mean period length (±1 SD) of oscillations in 5 separate
chemostat trials. Red line: Values predicted by simulations of the
structured model. Nitrogen concentration of inflowing medium
Ni = 160 µmol·L−1 for all trials. (b) Equilibrium cell density
reached in 17 separate trials (blue symbols); either before “off-on”
manipulation or without such manipulation performed. Red line:
model prediction. Ni = 80 µmol·L−1 for all trials.

this is that most oscillators will be located in the nutrient sensitive
phase interval (due to the slow aging progression) and also have a
higher probability to be washed out with increasing progress in phase
(leading to a decay of phase density with θ). Second, in our system
(both theory and experiment) onset of synchronization is characterized
by oscillations of the order parameter (Fig. 2.3b). Oscillating order
parameters can arise in modified versions of the Kuramoto model, for
example in the presence of structure in the coupling topology among
the oscillators [99]. But here, the oscillations of the order parameter
after perturbation reflect the periodic changes in the shape of the
phase density, periodically shifting between unimodal and bimodal
distributions.
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2.5 discussion

Our experiments show that unicellular phytoplankton can possess
an internal population structure that is sufficient to affect population
dynamics. In the absence of periodic external forces (in particular,
under constant illumination) we observed single-species cycles that
can be understood by the interaction between the nutrient pool and
nutrient-dependent and -independent phases of the cell cycle. Such
cycles cannot occur in standard ecological models that describe un-
structured, single populations, i.e. the population behavior cannot be
reduced to that of an average cell. When we removed structure from
our mathematical model by making all phases of the cell cycle equally
nutrient-dependent, cells were unable to synchronize and unable to
oscillate in abundance.

Previous studies have established that progression through the algal
cell cycle can depend on light [50] or nutrient availability [145], that
algal populations can be entrained into periodic changes of illumina-
tion and that they, in theory, can maintain the entrained state for some
time even in the absence of the forcing stimulus [112]. Here we show
that nutrient shortage, an ecologically important condition, can lead
to the entrainment of cell cycle oscillations, and that cell cycle and
population oscillations remain frequency-locked for long periods of
time, sometimes without any apparent signs of damping. The most
likely explanation for this behavior is that the algal cells act as globally
coupled, individual oscillators that interact and become synchronized
with one another through a common extracellular field, the nitrogen
pool. Even when synchronization is transient and oscillations are
damped (Fig. 2.1b) the characteristic shape and dynamics of the phase
distribution (with periodic change between unimodal and bimodal
distributions, Fig. 2.2) provide strong evidence for an internal coupling
by the nutrient pool. In this case, coupling is not sufficiently strong to
effect sustained synchronization but it is unlikely that such phase dis-
tributions can be generated if cells simply drift apart by virtue of their
different natural frequencies. Instead, the phase distribution can only
sensibly be explained if internal coupling via the common nutrient
pool is present. Our mathematical model corroborates this conclusion.
We observed the characteristic dynamics of the phase distribution only
if we included coupling to the nutrient pool via a nutrient-sensitive
and non-sensitive phase interval. Similar types of synchronization (yet,
at much shorter period lengths of several minutes and hours) have
been observed in yeast cell cultures where glycolytic [36] or cell-cycle
dependent [92, 103] oscillations became synchronized through the con-
centration of extracellular substrates, and in nanochemostats where
bacterial cells regulated cell density through a feedback mechanism
based on quorum sensing of a signaling molecule [5].
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The distinction between steady state and cycles is a fundamen-
tal one [105, 141]. Our study reveals a mechanism by which small
amplitude oscillations can arise in phytoplankton populations that
lack obvious internal structure and that are traditionally modeled as
groups of homogeneous cells. Our concrete experimental examples
and mathematical model showed how complex processes occurring
within individual cells may have dynamical consequences at the popu-
lation level. Thereby, the interaction between within-cell processes and
population dynamics goes both ways. On the one hand, population
dynamics is able to induce synchrony in the cell-cycle of many indi-
viduals (through nutrient limitation). On the other hand, collective
cell-cycles among individual cells generate oscillations at the popu-
lation level. Because the interaction between phytoplankton and the
nutrient pool is the most basic trophic module in aquatic ecosystems
we suggest that cell-cycle-to-population synchronization is also likely
to be an important mechanism in natural communities.

2.6 methods

We used experimental populations of the three green algae Mono-
raphidium minutum, Chlorella vulgaris and Chlamydomonas reinhardtii.
We ran experiments in 0.8-liter chemostats at 23.3◦ ± 0.4◦C and con-
stant fluorescent illumination at 110 µE·m−2·s−1. Algae were cultured
in modified Woods Hole WC medium [55] at pH = 6.8. Nitrogen con-
centrations in the inflow (Ni) were adjusted to limit algal growth and
varied between 40 and 320 µmol·L−1. Peristaltic pumps transported
the sterilized medium through the chemostats with a continuous flow
δ (varying between 0.29 and 0.81 day−1 among chemostat trials) and
cultures were bubbled with sterile air. We determined algal biovolume
by quasi-continuous, non-invasive light extinction measurements [150].
Additionally, we took small (< 1 mL) samples of live phytoplankton
from the effluent of chemostats and used a CASY particle counter
(©Schärfe, Reutlingen) to measure cell size distributions as well as cell
numbers and algal biovolume.
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3.1 abstract

Changing environmental conditions alter the demographic structure
of a population and therefore its dynamics. However, the shape of the
arising transients is highly complex and its prediction challenging. In
experimental chemostats, we studied the response of phytoplankton
populations to well-defined changes in culture conditions focusing
on the interplay between stage structure and population dynamics.
Starting from a stable steady state, we doubled the concentration of
the growth-limiting resource and altered the dilution rate, respectively.
We demonstrate that, corresponding to a memory effect, the transient
behavior between two steady states crucially depended on, first, the
value and direction of the parameter changed and, second, the demo-
graphic state before it changed. Together, both parameters determined
whether the transition was rather smooth or whether the cell number,
the biomass, and the size distribution exhibited oscillatory behavior.
Further, we implemented resource-dependent cell size variability into
a stage-structured model that accounts for cell cycle and population-
level processes. Thereby, we were able to identify the key mechanisms
determining the complex response dynamics including non-intuitive
behavior, in such a way that the cell number temporarily decreased
when the resource supply was increased. Our study emphasizes the
paramount importance to identify the mechanisms mediating between

29



30 complex transient dynamics

cell cycle and population-level processes to understand the transient
dynamics originating from changes of the environment. It is of rele-
vance to all populations possessing demographic structure including
organisms of higher order which can hardly be studied with similar
precision as populations of unicellular species.

3.2 introduction

A major challenge in ecology is the identification of the critical mech-
anisms underlying population dynamics to predict the responses of
populations to environmental changes. Being scale dependent [93],
environmental changes impact the biology and the life cycle of in-
dividual organisms and cause changes in the dynamic behavior of
entire populations [149, 111]. Differences between the individual life
stages within a population result in a developmental heterogeneity
that is denoted as population structure or, more generally, demogra-
phy. This structure fundamentally determines population dynamics
since the developmental stages differently interact with the environ-
ment. Demography is ubiquitous among all species on earth. Being
instantly apparent in macroorganismal populations, also simple uni-
cellular microorganisms posses a population structure [5, 63, 26, 93]
that arises from physiologically distinct phases within a cell cycle
[145, 4, 112]. In response to changing environmental conditions, popu-
lations perform transitions in their dynamics [23, 74, 31, 91, 56]. This
transient behavior can be defined as the ’behavior that is different
from the long-term behavior’ [61] and reflects the behavior between
two population-dynamical steady states. As environmental changes,
transient population dynamics are scale dependent, too. They are
directly related to the generation time of an organism (i.e., a sequoia
is likely to respond on a broader timescale than a mayfly does) that
is defined by the life cycle encompassing all stages of ontogenetic
development.

Predicting the responses to environmental changes premises the
understanding of the mechanisms by which different the developmen-
tal stages within a population are influenced. Their number strongly
increases when stage-dependent interactions are relevant [140, 22] and
they can stabilize or destabilize population dynamics, depending on
the types of mechanisms and the given environmental conditions. One
intriguing phenomenon of structured populations is the occurrence of
regular fluctuations, denoted as oscillations [22, 79, 102]. Many natural
populations fluctuate with frequencies that cannot be explained by
diurnal, annual, or other externally forced variation. Such oscillations
are often caused by multispecies interactions like predator-prey or
host-parasite relations. But even single-species systems can exhibit os-
cillatory behavior due to inherent demographic properties: At steady
state, a population possesses a characteristic demographic distribution
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adapted to the prevailing environmental conditions. If this distribu-
tion is perturbated, a cohort forms (i.e. individuals that have shared a
particular experience during a particular life stage) which is generally
tantamount to the synchronization of a population: the higher the
degree of synchronization, the higher the contribution of the cohort
to the whole population. If the vast majority of individuals grows,
reproduces, and dies at the same time, a population starts to oscillate.
Complex dynamic behavior that results from demographic structure
has most impressively been demonstrated in populations of flour
beetles (Tribolium sp.) [66, 28, 38]. Such holometabolic insects have
well-defined and morphologically distinguishable life stages (egg,
larva, pupa, and imago) with distinct characteristics that certainly
structure a population. Contrary, the developmental stages of a vast
number of species cannot be clearly related to a morphological shape.

To investigate both, the demographic and the dynamical response
of structured populations to environmental changes, we conducted
chemostat experiments with physiologically structured populations
of the unicellular phytoplankton species Chlorella vulgaris. Since a
chemostat represents a highly controllable experimental system, it
allows testing for changes of a specific parameter and simultaneously
excludes any unwanted influences. We imposed changes of the envi-
ronment by altering the supply concentration of the growth-limiting
resource nitrogen, Ni, and the dilution rate, δ, the two basic param-
eters determining a chemostat system. By doing so, we change the
environmental conditions to observe the impacts on the populations.
This distinguishes our study from many others where the population
structure was directly manipulated by reducing the number of individ-
uals belonging to a specific developmental stage (selective harvesting)
[28, 10, 19], because our approach is closer to natural processes. In
a previous study, Massie et al. (2010) [93] synchronized C. vulgaris
populations in a chemostat by turning off the dilution for several days.
Once synchronized, the populations exhibited cyclic behavior with
periods defined by the generation time. However, such a harsh “off-
on” manipulation is rather uncommon in natural systems. Here, we
applied gradual shifts of δ as we expected the population dynamical
response to dependent on the direction of the change, the amount,
and the absolute values of δ before and after they were changed.

C. vulgaris possesses a typical eukaryotic cell cycle with four phys-
iologically distinct stages (G1-, S-, G2-, and M-phase) - from newly
released daughter cells to proliferating mother cells that typically
divide into four daughter cells. Especially the G1-phase causes a popu-
lation to exhibit demographic structure. There, all preconditions have
to be fulfilled to perform DNA synthesis and replication during the
next stage (S-phase) [101, 71]. Lacking nitrogen, for example, stops
the transition into the S-phase [145, 110, 109, 51] and prevents the cell
from entering DNA synthesis, which would not be successful without
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sufficient nitrogen accumulated to perform at least one replication.
The progression velocity for all other stages is nitrogen-independent.
Thus, nitrogen-sensitive progression velocity in one segment of the
cell cycle is a simple but effective mechanism generating a dynamic
population structure whose shape depends on the availability of an
external resource such as nitrogen.

A chemostat allows the maintenance of populations at steady state
for many generations [108, 67]. Constant population renewal is given
by the dilution which provides continuous supply with resources
and removes all chemostat content defining the mortality rate of
the algae. We applied environmental perturbations by (i) doubling
the concentration of the limiting resource in the supply medium Ni,
and (ii) by increasing or decreasing δ. A doubling of Ni allowed to
investigate the dynamic behavior in response to an ameliorate resource
availability, e.g. nutrient enrichment in aquatic systems due to global
change [120, 75]. Varying δ mimicked changes of the system’s turn-
over rate. This addresses the question how the population dynamics
respond when higher amounts of resources enter the system per unit
of time and mortality is simultaneously increased - and vice versa.

We tracked population dynamical responses by automatically mea-
suring light extinction with a high temporal resolution. This unusually
accurate time-series experiments helped identifying dynamics unlikely
to be detected by 12- or 24-h sampling intervals. Size distributions as
well as data on cell number, P, biovolume, VB, and mean cell volume,
VC, were obtained by particle counter measurements every 4-8 hours.
Size distribution measurements allowed to track cell size variability
according to the developmental stages, from small daughter to large
mother cells.

The interpretation of our experimental results is supported by a
mathematical model dividing the life cycle of the phytoplankton cells
into two stages: a first stage where progression is nitrogen-dependent
and a second one where it is not [93]. We extended the model from
Massie et al. (2010) [93] by an additional mechanism allowing the algal
cells to grow larger at high nitrogen concentrations [123, 21]. That is,
the size of a cell varies within the developmental stages, and also with
the availability of nitrogen. Under non-limiting conditions, cells in
the G1-phase can take up surplus nitrogen (exceeding the minimum
requirements to reproduce) to synthesize higher amounts of cell com-
pounds like amino acids or proteins [123, 39]. Hence, the cells grow
larger compared to growth under strongly limiting concentrations.
Further, we assume Chlorella mother cells to divide by splitting into
four small daughter cells. This value coincides with the ratio of the
volumes between large mother and small daughter cells, which was
previously found to be in a range from 3.81 to 4.29 [93]. Thus, the size
of the daughter cells is defined by the size of the mother cells; e.g., a
mother cell that is twice in size (volume) releases four daughter cells
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that are twice in size, too. Both mechanisms, synchronization due to ni-
trogen limitation and nitrogen-related cell size variability are expected
to provoke highly complex responses to changes of environmental
parameters.

Our study shows that microbial populations may exhibit complex
transient population dynamics in response to environmental changes
that are directly assigned to the demographic structure. Our chemostat
populations showed oscillatory dynamics and responded counter-
intuitively. This depended on both, the way environmental parameters
changed and the population’s demographic state before they changed.
The experimental data agree with the predictions obtained from the
mathematical model suggesting that we have identified the critical
mechanisms leading to the observed dynamics.

3.3 methods

chemostat setup We established monoclonal batch cultures of
the green algae C. vulgaris (Chlorococcales) and kept them in a cli-
mate chamber at 23.3◦ ± 0.4◦C and constant fluorescent illumination
at 110 µE·m−2·s−1 (preventing synchronization by light-dark cycles).
The batch cultures served as stock cultures for the chemostat experi-
ments. Nitrogen concentrations were adjusted to be non-limiting or
only weakly limiting. We used a sterile, modified Woodshole WC
medium after Guillard & Lorenzen (1972, pH = 6.8) [55]. Setting
Ni = 80 µmol·L−1, nitrogen concentrations were low enough to limit
algal growth. The medium contained trace metals, vitamins and other
nutrients in non-limiting concentrations. For stock cultures we used
medium containing 320 µmol nitrogen per liter. We used glass chemo-
stat vessels of 1.5 L volume and adjusted the culture volume to ap-
proximately 800 mL. To provide homogenous mixing and to prevent
CO2-limitation algal cultures were bubbled with pressurized, sterile
air.

We measured cell number, biovolume, and cell volume by using a
CASY (©Innovatis) particle counter. We used light extinction measure-
ment devices according to Walz et al. (1997) [150]. Light extinction was
measured as light transmittance (wavelength λ = 880 nm) through a
sterile syringe that pulled out and pushed back 10 mL of chemostat
content every 5 minutes being therefore a quasi-continuous, non-
invasive method. It provided the high temporal resolution necessary
to analyze population dynamics in detail. Previous investigations
of the chemostat system showed that light extinction serves as an
accurate proxy for algal biovolume [93]. Algal growth on the wall
of the syringe was prevented due to the bidirectional movement of
the syringe plunger. To automatically store the data, the extinction
measurement devices were connected to a computer. Experimental
design
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To test for the responses of a population to a changing environment
we altered the two fundamental parameters defining a chemostat
system: (a) resource influx into the system represented by the nitrogen
concentration of the supply medium Ni and (b) the system’s turn-over
rate represented by its dilution rate δ.

(a) The system’s resource influx was increased by doubling Ni from
80 to 160 µmol·L−1. This is qualitatively different from applying a
nutrient pulse. Here, the medium drips into the chemostat vessel
according to the value of δ. The surplus of nitrogen enters the sys-
tem not at once but rather gradually in time. That is, at a value of
δ = 0.5 day−1 40 µmol·L−1 more enter the chemostat within the pe-
riod of one day. In contrast, a pulse would mean that the same amount
is added instantaneously. With our setup we address the response of
natural populations that are affected by increasing resource amounts.
We focus on the transient and lasting changes that populations expe-
rience in their demographic structure and the resulting population
dynamics.

(b) The system’s turn-over was altered by manipulating δ. By do-
ing so, the populations experienced a higher mortality when δ was
increased, and vice versa. Additionally, increasing δ leads to an ame-
liorated nutrient availability per cell: directly, as the inflow of nutrient-
containing medium per unit time is higher and, indirectly, as more
cells are washed out and, hence, do not compete for nutrients anymore.
As a result, the cells remaining inside the chemostat vessel experience
better conditions for individual growth than at lower δ. The opposite
holds for a reduction of δ.

Each time we started a chemostat experiment, we first inoculated
C. vulgaris at very low densities (about 25.000 to 50.000 cells·mL−1)
and let the cultures grow till they reached steady state. Then, prior
to each perturbation, the chemostat populations were kept at steady
state for at least five days. This was done to ensure that all population-
characterizing variables (P, VB, VC, and size distributions) remained
at steady-state. Only now, changes of Ni and δ were applied.

model description and parameter fitting We used nu-
merical modeling to support our experimental findings and to explain
the interplay between cell growth, demographic structure and popula-
tion dynamics based on the chemostat model recently presented by
Massie et al. (2010) [93]. In this model, induced population synchrony
leads to sustained oscillations of cell density and demographic struc-
ture which were related to a feedback between the nitrogen-dependent
maturation velocity within the G1-phase and the nitrogen concentra-
tion of the surrounding medium. Here, we extend this model by an
additional mechanism allowing the nitrogen concentration to influ-
ence the duration of the G1-phase. That is, cells can take up surplus
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nitrogen that prolongs the G1-phase and enables them to grow larger
than the minimum size allowing reproduction.

The age of a cell is described by the phase variable θi which can
be interpreted as its development index or the position along the cell
cycle. For each cell, θi advances according to its aging velocity g(N, θi)
and is disturbed by independent, identically distributed white noises
ξi(t):

θ̇i = g(N, θi) + ξi(t) (3.1)

The cell cycle is subdivided into two basic segments: the G1-phase
where g is nitrogen-dependent, and the rest of the cycle (comprising
the S-, G2-, and M-phase) where g is constant. This results in

g = g(θ,N) =

{
ω N
KN+N if θ ∈ [θ0, θc]

ω otherwise.
(3.2)

with [θ0, θc] being the G1-phase interval, N the nutrient concentration
of the surrounding medium, KN the half-saturation constant, and
ω the constant maturation velocity. Within the G1 interval, aging
depends on the nutrient concentration in a Monod-wise function; it
becomes zero when the nutrient concentration is exploited (N = 0)
which ultimately causes the cells to cease developmental progression
( ˙theta = 0). Moreover, the length of the G1-phase can vary. At high
nutrient concentrations the length of this phase increases, causing
the cells to take up surplus nitrogen and to grow larger in size. For
the length of the G1-phase we assume an exponentially saturating
dependence on the nitrogen concentration:

θc = θ̃c +∆θc(1− e
αN). (3.3)

Thus, when nitrogen is depleted, the G1-phase has a minimal length
of θ0 + θ̃c and the nutrient independent part of the cell cycle begins
at θ̃c. At infinite nitrogen concentrations, however, the G1-phase is
elongated until the phase value θ̃c +∆θc. The parameter α character-
izes the rate of this transition with increasing nitrogen. The rest of the
cell cycle is nitrogen-independent. Therefore the length of subsequent
segments can be presented by a single parameter ∆θs and the phase of
cell division is θdiv = θc +∆θs. If the cell density at phase θ and time
t is denoted as P(θ, t), their dynamics can be represented in terms of
a reaction-diffusion-advection equation

∂P

∂t
+
∂

∂θ
[gP] =

∂

∂θ
D(g)

∂P

∂θ
− δP, (3.4)

where the last term takes into account the losses by the chemostat
system with dilution rate δ and the term D > 0 derives from the noise
terms [135, 2]. The diffusion constant is assumed to scale proportional
to the square of the maturation velocity D(g) = χg2. In this way we
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ensure that sharp peaks in the density distribution do not decay when
maturation velocity is zero. In the usual parameterization, however,
our model results are not affected by this choice of the diffusion term.
To specify the boundary condition we require that all cells at the phase
value θdiv and larger divide into n daughter cells with zero phase

p(0) = n

∫∞
θdiv

p(θ)dθ. (3.5)

Finally, the model is complemented by a dynamic equation for the
nutrient concentration

Ṅ = δ(Ni −N) − νm
N

KN +N
P, with P(t) =

∫2π
0

p(θ, t)dθ, (3.6)

where Ni is the input nutrient concentration, νm is maximal nutrient
uptake rate, and P(t) the total population density.

To fit parameters, we used the differential evolution algorithm [134].
We optimized parameters to estimate a combination of KN, ω, χ,
νm, α, and ∆θc, that minimizes the mean square deviation of the
model outcome to the chemostat cell number in experimental trials
1 and 2, simultaneously. Being fitted just for two experimental trials,
that parameter set yielded also remarkable agreement of the model
outcome to the other experimental trials 3, 4, and 5. This verified that
the qualitative model results are robust and describe the experimental
data obtained under different conditions.

3.4 results

steady state conditions The populations showed character-
istic size distributions depending on the chemostat dilution rate
at steady state with broad size distributions at high dilution rates
(Fig. 3.1). Compared to a moderate dilution rate (δ = 0.5 day1), a
higher dilution rate results in higher amounts of nitrogen available
for the phytoplankton cells since more nitrogen enters the vessel per
unit of time and more cells are washed out of it. As a result, the cells
are able to progress faster through the G1-phase and accumulate less
in it. This is shown by the size spectra (right panels of Fig. 3.1): the
frequencies of smaller cells, i.e. cells in an early developmental stage,
decrease with increasing dilution rates.

Moreover, the algal cells grew larger at higher dilution rates (Fig. 3.2a).
While the average value of the mean cell volumes VC at an average
dilution rate of δ = 0.2 day1 (VC = 11.14± 0.76 µm3, mean ± SD)
and δ = 0.50 day1 (VC = 10.14± 0.63 µm3) was approximately the
same, it clearly increased at δ = 0.81 day1 (VC = 13.31± 2.19 µm3)
and δ = 1.09 day1 (VC = 21.53± 2.14 µm3). Especially at the highest δ,
VC differed notably from cells at lower δ (being nearly twice as high).

The steady-state cell number, P∗, (Fig. 3.2b) as well as the steady-
state biovolume, V∗B, (Fig. 3.2c) showed a negative relationship with δ.
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When doubling the nitrogen concentration of the supply medium Ni,
both measures doubled, too (trial 1 and 2, dark-green dots).

Figure 3.1: Steady-state distributions of cell size in trials 1 to 3 before per-
turbations were applied. The corresponding dilution rate in trial
1 was δ = 0.48 day1 (a,b), in trial 2 it was δ = 0.82 day1 (c,d),
and in trial 3 it was δ = 1.09 day1 (e,f). Panels on the left (a,c,e)
show the average size distributions over a five day sampling
interval. Panels on the right (b,d,f) show the temporal dynam-
ics of the size distributions within this interval. The colors code
the relative frequencies from low (blue) to high values (red). In
each trial, the nitrogen concentration of the supply medium was
Ni = 80 µmol·L−1

changing the nitrogen supply concentration In the ex-
perimental trials 1 and 2 , Ni was doubled from 80 to 160 µmol·L−1

at t = 30.80 days whereas δ remained constant in each trial. This
induced transient dynamics displayed by the average population mea-
sures (Fig. 3.3 a,b) and the demographic structure (Fig. 3.3 c,d). In
both trials, the populations responded with more or less pronounced
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oscillations of P, VB, VC, and the size spectra. Damped, small ampli-
tude oscillations occurred in trial 1 (δ = 0.48 day−1, period length
T = 2.67± 0.18 days, mean ± SD) and trial 2 (δ = 0.82 day−1,T =

1.81± 0.09 days). Directly after the perturbation, VC increased by 33%
within 0.87 days and by 94% within 1.20 days, respectively, in both
trials. In trial 1, P remained at steady-state level for 1.20 days before it
started to increase. In trial 2, P first decreased by 47% before it also
increased after 1.20 days. VB evolved in time according to the product
of P and VC. For instance, after the perturbation VB in trial 2 remained
around the steady-state level for 1.20 days since the increase in VC
compensated the decrease in P.

At the lower dilution rate, the oscillations were slower and the am-
plitude was higher (Fig. 3.3 a,c vs. Fig. 3.3 b,d). The bands in the size
spectra showed how the periods of the oscillation are linked to the
generation time: a cohort repetitively consists of small daughter cells
becoming large mother cells that divide again into small daughter
cells and so on. The increase in cell number was again higher because
more cells entered mitosis at the same time compared to less synchro-
nized conditions. This led to more pronounced ups and downs in the
transient population dynamics and longer cycles. After the transient
phase, P and VB doubled approximately due to the doubling of Ni
while VC converged to the value before the change, or at least close
to it (Fig. 3.3 a,b, Fig. 3.2, Tab. 1). The size spectrum resumed the
dilution rate related characteristic shape prior to the change (Fig. 3.3
c,d, cf. Fig. 3.1). Simulation results of the mathematical model qual-
itatively corresponded to the observed behavior in trial 2 (Fig. 3.4a).
After doubling Ni, P declined remarkably to approximately 60% of
the steady-state value before. At the same time, the mean cell volume
doubled and the daughter cells were significantly larger before their
size converged to the characteristic steady-state value they showed
before.

changing the dilution rate In trials 3 to 5, δ was changed
whereas Ni was kept constant. At t = 34.00 days, δ was increased
from 0.21 to 0.51 day−1 in trial 3 and from 0.50 to 0.79 day−1 in trial
4, or reduced from 0.82 to 0.51 day−1 in trial 5 (Tab. 1). In analogy
to the first series of experiments, changing δ resulted in transient
dynamics of average population measures (Fig. 3.5) and demography
(Fig. 3.6). After a more than twofold increase of δ in trial 3, distinct
transient oscillations occurred, whereas the moderate increase of δ in
trial 4 resulted in minor oscillations. No oscillations were detected
in trial 5. In trial 3, δ was changed from a comparably low (δ =

0.21 day−1) to a moderate value (δ = 0.51 day−1). This resulted in
damped oscillations of P, VB and VC (Fig. 3.5a, T = 2.37± 0.18 days).
While P (from 5.49·106 to 4.37·106 cells·mL−1) and VB (from 5.50·107

to 4.63·107 µm3·mL−1) converged downwards to the new steady state



3.4 results 39

Figure 3.2: Steady-state values of the mean cell volume VC (a), the cell num-
ber P (b), and the biovolume VB (c) in relation to average value
of the dilution rate δ in each cluster. Green dots refer to the first
series of experiments (trial 1 and 2, doubling Ni), blue dots refer
to second series of experiments (trial 3 to 5, changing δ). The
values before the perturbation are light-colored, the ones after
the perturbation are dark-colored. The gray circles in panel a give
the average value of the mean cell volumes, error bars display the
simple standard deviation. The average values of the mean cell
volumes were calculated over 15 sampling points at steady state.
Values of the dilution rates corresponded to these time intervals.
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Figure 3.3: Panels a and b give the cell number (gray), the light extinction
(black) and the mean cell volume (blue) in chemostat trials 1 and
2 that experienced a doubling of the nitrogen concentration from
Ni = 80 µmol·L−1 to Ni = 160 µmol·L−1; panels c and d show
the corresponding size spectra and the mean cell volume (white
line). Dilution rates were δ = 0.48 day−1 (a,c) and δ = 0.82 day−1

(b,d).

level, VC oscillated approximately around the same value as before
δ was changed (≈ 10.5 µm3). The size spectrum oscillated clearly
showing repeating distinct bands from smaller to larger sized cells
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Figure 3.4: Qualitative agreement between experimental results of trial 2 and
model simulations. The cell number of trail 2 (gray, c.f. Fig. 3.3b)
was well-reproduced by simulation of the structured population
model allowing for nitrogen-dependent cell size variability (red,
a). Simulation results also confirmed the dynamic behavior of the
size spectrum and the mean cell volume (white line) in trial 2 (b,
c.f. Fig. 3.3d.

(Fig. 3.6a). Finally, it slowly converged to the shape characteristic for a
dilution rate of about δ = 0.5 day−1 (cf. Fig. 3.1a).

In trial 4, δ was changed from a moderate (δ = 0.50 day−1) to a com-
parably high value (δ = 0.79 day−1). Although δ was increased again,
the average population measures showed nearly no (P, VC) or only mi-
nor oscillations (VB, Fig. 3.5b, T = 1.52± 0.25 days). P (from 4.90·106

to 3.70·106 cells·mL−1) and VB (from 4.41·107 to 4.29·107 µm3·mL−1)
converged downwards to the new steady state level. VC increased
from 9.0± 0.3 to 11.6± 0.3 µm3. The size spectrum showed only mi-
nor oscillations and finally converged to the shape characteristic for a
dilution rate of about δ = 0.8 day−1 (Fig. 3.6b).

Trial 5 represents the opposite of trial 4: δ was changed from a com-
parably high (δ = 0.82 day−1) to a moderate value (δ = 0.51 day−1).
The average population measures (Fig. 5c) as well as the size spectrum
(Fig. 3.6c) did not show any oscillations related to the perturbation.
The oscillations occurring after t = 40.6 days are due to a malfunction
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Figure 3.5: Cell number (gray), light extinction (black) and mean cell volume
(blue) in chemostat trials 3 to 5 that experienced a change in
dilution rate δ. Dilution rates were changed from δ = 0.21 day−1

to δ = 0.51 day−1 (a), δ = 0.50 day−1 to δ = 0.79 day−1 (b) and
from δ = 0.82 day−1 to δ = 0.51 day−1 (c). The nitrogen concen-
tration of the supply medium was constant at Ni = 80 µmol·L−1.

of the pump that perturbed the population structure. Until that point
in time, P (from 2.51·106 to 4.36·106 cells·mL−1), VB (from 3.77·107

to 4.44·107 µm3·mL−1), and VC (from 15.0± 0.3 to 10.2± 0.4 µm3)
smoothly transitioned to values characteristic for a dilution rate of
about δ = 0.5 day−1 (Fig. 3.6b).
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Figure 3.6: Size distribution and mean cell volume (white) of chemostat
trials 3 to 5 that experienced a change in dilution rate δ. Dilution
rates were changed from δ = 0.21 day−1 to δ = 0.51 day−1 (a),
δ = 0.50 day−1 to δ = 0.79 day−1 (b) and from δ = 0.82 day−1

to δ = 0.51 day−1 (c). The nitrogen concentration of the supply
medium was constant at Ni = 80 µmol·L−1.

3.5 discussion

Population dynamics are determined by numerous biotic and abiotic
factors differently impacting the developmental stages of individuals
within a population. Growth and death rates originating from the
interaction between organisms and their environment are unequally
distributed over an organism’s life cycle. Hence, the environment
defines the shape of the population’s stage distribution – its demo-
graphic structure that all potential dynamics go back to. In a constant
environment, populations will adapt to the prevailing conditions to
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finally show a characteristic demographic distribution as it was also
found in our experiments (Fig. 3.1).

Resource shortage is one of the most important factors influencing
organismal processes. In our case, nitrogen was the essential resource
limiting the maturation velocity by which the Chlorella cells progress
through the first stage (G1-phase) of their life cycle. This led to the
hypothesis that the number of cells inside and outside of the G1-
phase can be predicted from the availability of nitrogen. Making the
simplistic, but reasonable assumption that developmental progression
is correlated with cell size (early developmental stages are represented
by small cell sizes and vice versa, c.f. [93]) our results accurately
match this prediction. The frequency distribution of cell volumes was
consistently closely related to the chemostat’s dilution rate δ at steady
state (e.g. Fig. 3.1, Fig. 3.3, and Fig. 3.6). While moderate values of δ
resulted in the dominance of small cells (δ = 0.49 day−1 in Fig. 3.1 a,b
and δ = 0.82 day−1 in Fig. 3.1 c,d ), distinctly less cells accumulated
in this size interval at a high value of δ (δ = 1.09 day−1 in Fig. 3.1 e,f).
That is, cells progressed comparatively slower through their life cycle
at low δ because the low ambient nitrogen concentration hampered a
transition from the G1-phase to the S-phase. The resulting formation
of a cohort (principally consisting of small daughter cells) and its size
are directly related to the degree of synchrony [93]. In addition to
the developmental stage, the cell size also varied with the availability
of nitrogen determined by δ. The mean cell volume at steady state
clearly increased with increasing δ (Fig. 3.2a) supporting the model
assumption that cells increase in size when taking up surplus nitrogen.

However, constant environmental conditions are rare in natural
systems and always a matter of scale. Thus, most natural populations
experience an environment that is characterized by fluctuations and
transitions. Here, we experimentally imposed changes of environmen-
tal conditions by altering the nitrogen supply concentration, Ni, and
δ, i.e. the parameters reflecting fundamental growth conditions of nat-
ural populations (resource supply and mortality). In four of the five
trials, oscillations in cell number P, biovolume VB, mean cell volume
VC, and size spectra characterized the transient behavior. Indepen-
dent of which parameter was altered the oscillations showed larger
amplitudes and longer periods the lower δ was before the conditions
changed. This originates from the steady-state results described above.
The frequency distributions of the size spectra revealed that in trial
1 (δ = 0.48 day−1, Fig. 3.3 a,c) more cells accumulated in the small
size range than in trial 2 (δ = 0.82 day−1, Fig. 3.3 b,d) and strong
oscillations resulted from a large cohort within the population. The
high degree of synchrony arose from the strong limitation due to low
δ. Thus, the oscillations in trial 1 were significantly stronger than in
trial 2 since the traveling cohort in trial 1 proportionally consisted of
more cells.
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The dependence of the population dynamical response on the origi-
nal environmental conditions becomes even clearer when comparing
trial 3 and 5 in the second series of experiments. Although experienc-
ing almost identical environmental conditions (δ ≈ 0.5 day−1), the
oscillations are stronger when coming from δ = 0.21 day−1 (Fig. 3.5a,
Fig. 3.6a) than when coming from δ = 0.82 day−1 (Fig. 3.5c, Fig. 3.6c).
This is again explicable by the stronger resource limitation, and thus
synchronization at lower δ. In addition, although the dilution rate
in trial 3 was increased by the same absolute value as in trial 4

(∆δ ≈ 0.30 day−1), the oscillations were distinctly stronger in trial 3

since δ was lower before it changed.
Similar processes can be found in natural populations as well. Fish-

ing, for instance, can be considered as density-independent mortality,
as imposed by δ in a chemostat. It altered the demographic structure
of fish stocks (mainly by truncating the size and age structure, [72, 88])
and thereby increased the population dynamical variability [68, 3]. In
principle, this agrees with the dynamical behavior of our experimental
Chlorella populations: altering demography led to changes in spe-
cific cohort properties and, thus generated fluctuations that increased
variability.

In addition to the transient oscillations arising from demographic
processes, counter-intuitive behavior of P was observed when Ni was
doubled. Actually, populations are supposed to grow when resource
concentrations ameliorate. This was true for VB that immediately
increased towards the new steady-state value defined by Ni (deter-
mining the carrying capacity) which is in accordance with simple,
non-structured models. Surprisingly, however, after doubling Ni in
trial 2, P decreased considerably to about 50% of the previous steady-
state value (Fig. 3.3b) and increased again after 1.2 days. In contrast,
the mean cell volume escalated to twice the value prior to the change
of Ni. This supports our hypothesis that VC increases when surplus
nitrogen is available. As Ni was doubled, more nitrogen entered the
system and the cells were able to take up the surplus nitrogen. Thus,
the majority of the cells grew in size but did not proliferate imme-
diately. That is, the time necessary to complete one cell cycle was
prolonged compared to the previous steady-state conditions causing a
decline in P due to the washout by δ. This effect was less pronounced
in trial 1 since δ was lower and comparably less nutrients per unit
time entered the chemostat. As a result, P increased in size merely by
about 30% and the cell cycle was not substantially prolonged.

An alternative explanation for the cells growing larger might be
the formation of more rather than larger daughter cells. However,
we reject it for the following reason: If more daughter cells would
have been formed, the cell size of the daughter cells should have
been at a fixed starting value. That is, the bands of the size spectra
should have always started at a cell volume of approximately 3 µm3.
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However, this is not consistent with our observations. In fact, the first
generation of daughter cells occurring directly after Ni was doubled
showed a distinctly higher cell volume (≈ 6 µm3, Fig. 3.3d). The band
was clearly shifted towards higher cell volumes. This shift lasted for
another generation before the minimum cell size converged to the
original value of 3 µm3 indicating that the released daughter cells had
again started at a volume of 3 µm3.

In addition to the different experimental findings complementing
each other, the reliability of the hypothesized mechanism is strongly
supported by the simulation results of our model. By implementing
nitrogen-dependent cell size variability into the model by Massie et al.
(2010) [93], we were able to imitate the two distinct dynamical features
in the time series of trial 2: the temporary decrease of P (Fig. 3.5a) and
the increasing size of the daughter cells (Fig. 3.5b) directly after the
doubling of Ni. We also ran simulations with a model that accounted
for division into more rather than larger daughter cells. The population
dynamics were qualitatively the same, but we rejected this mechanism
since it failed to explain the occurrence of larger daughter cells as
observed in our experiments. Here, it is worth mentioning that we
explicitly account for two reasonable mechanisms leading to a lagged
growth response instead of just implementing a time lag into the
functional response equation. Models that are solely describing overall
measures of population dynamics would not lead to an adequate
description of the processes leading to the dynamics we observed and
would also fail to explain the discrepancy in the behavior of P, VB,
and VC after Ni was doubled.

In chemostat systems, Ni represents the carrying capacity defining
the maximum biomass or number of individuals, respectively, the sys-
tem is able support. Thus, permanent changes of Ni are not equivalent
to resource pulses producing temporary perturbations as it was inves-
tigated in other studies (e.g. [20]). Rather, lasting changes of Ni alter
the long-term growth conditions populations have to cope with. In
line with our findings there is evidence that resource shortage altered
the demographic structure and synchronized plant populations also in
terrestrial systems causing oscillations in numbers after the conditions
ameliorated [56].

Transient dynamics become even more complex when other mech-
anisms come into play than those related to the shape of the demo-
graphic distribution. In our study, the Chlorella population stopped
growing when the environmental conditions ameliorated (doubling
of Ni). That is, not resource shortage but surplus amounts of it had
temporarily a negative effect on the density of the population. This
counter-intuitive effect is relevant for organisms showing plasticity in
their life cycle: the generation time is prolonged by using the resource
surplus to improve individual constitution. Synchronization leads to
a temporary delay of population growth until the individuals start



48 complex transient dynamics

reproducing again. Delaying reproduction implies the risk of mortal-
ity prior to reproduction. But at the same time, it can significantly
increase individual fitness since they are able avoid predation when
growing distinctly larger. Additionally, larger individuals will have
larger and/or more offspring and may face a lower risk of extinction
and starvation. Thus, this mechanism is a common life history feature
and therefore expected to play a critical role in the response behavior
of organisms when environmental conditions change.

Our study demonstrates the eminent influence of the environment
on a population’s demography and the consequences for the popula-
tion dynamics arising from it. We achieved a remarkable reliability in
identifying the mechanistic interplay between population dynamics
and demography using large populations (> 109 cells·L−1) of small
organisms with short generation times. Highly controllable chemostats
and advanced measurement techniques enabled an exceptional high
temporal resolution combined with mathematical modeling. Corre-
sponding to a memory effect, the future dynamics crucially depend
on the past demographic state that was determined by the environ-
ment. That is, the same future state may be approached via different
transients dependent on the demographic state in the past (cf. trial
3 and 5). The change-induced variability in the transient dynamics
was high when arising from population synchrony caused by resource
shortage at low turn-over rates. But even high-turnover rates increased
variability by significantly impacting life cycle plasticity. Thus, to
make any predictions about transient dynamics which are the rule
rather than the exception in natural populations, identifying the acting
mechanisms is a paramount requirement.
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4.1 abstract

The response of biological populations to stochastic variations in their
environment is a central issue in population ecology. Spatial correla-
tions in environmental stochasticity can synchronise populations over
wide areas, a fact that is known as Moran effect. Field observations
and theoretical investigations suggest that the correlations of the pop-
ulations must remain smaller than that of the stochastic fluctuations.
However, not much is known about the Moran effect when the en-
vironmental variations are temporally correlated. Here, we perform
chemostat experiments to investigate the response of phytoplankton
populations to autocorrelated stochastic influcence. We show that, in
contrast to naïve expectation, two uncoupled populations can be more
strongly correlated than their common stochastic forcing, if the two
noises differ in noise colour. Using linear theory we are able to provide
analytical estimates for this correlation enhancement. Our numerical
simulations show that this pattern is robust to variations in population
dynamics and noise spectra. Our findings suggest that noise induced
synchrony (i.e., the Moran effect) may play a larger role for population
dynamics than previously thought.

49



50 enhanced moran-effect

4.2 introduction

For long times ecologists have been interested in studying population
fluctuations and their remarkable synchronization over wide geograph-
ical areas [69, 12, 18, 86]. Understanding the causes and mechanisms
underlying spatial synchrony has become a key issue in population
ecology, not least because of its intimate relation to the extinction
risk in meta-populations [59, 65, 115, 40, 43]. Several mechanisms
for explaining population synchrony have been put forward [12, 86],
such as dispersal between populations [121, 15] or spatially extended
trophic interaction (e.g., mobile predators of widespread range) [106].
However these explanations are not applicable in situations where
dispersal is excluded, such as for Soay sheep populations on sepa-
rate islands [54, 14]. Another explanation, which does not require
direct interactions by dispersal, is synchronization through spatially
correlated environmental influences (Moran effect) [100, 130]. Moran
(1953) [100] suggested that spatially separated populations, which
are regulated by the same density-dependent structure, will tend to
fluctuate in synchrony if they are exposed to similar environmental
variation. In particular, Moran pointed out that in the special case of
linear density-dependence the cross-correlation r between the regional
populations will be identical to that of the environment, r = rp. This
statement came to be known as Moran theorem [130]. Given that cli-
matic fluctuations can be spatially correlated over large distances, the
Moran effect has found a growing recognition as a major driver for
generating population synchrony.

The Moran effect has been confirmed in field observations [54, 119,
47, 77, 147, 23, 81, 45] and in laboratory experiments [8, 9, 46, 143].
The Moran theorem also received considerable theoretical attention
and was generalised to include nonlinear density dependence [122, 54,
14, 52, 44, 131, 1], non-identical populations [113, 125, 44, 131, 70], the
influence of dispersal [124, 80, 113, 1], cyclic populations [11, 24, 13,
143, 84], species interactions [128, 143]?, and various combinations of
these factors. In all these theoretical, experimental, and field studies it
was found that the correlation of independent populations that are not
coupled by dispersal remains bound by the environmental correlation,
r 6 rp, which potentially set limits to the role of the Moran effect as a
driver of population synchrony.

In this Letter we show that the correlation between two non-interacting
populations can exceed that of their environmental forcing, if the fluc-
tuations of the environment are differently auto-correlated in time.
Temporal autocorrelation refers to the relationship between successive
observations in a time series and it is often referred to by its effect on
the noise colour (i.e., the frequency composition in the power spectrum
of a time-series) [57]. A noisy signal is said to be ‘white’ if it has a
flat spectrum so that no frequency dominates. In this case, successive
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noise values are unrelated. In contrast, red noise indicates positive
temporal autocorrelation, that is successive noise values are more sim-
ilar than expected by chance. Time series with positive autocorrelation
are dominated by low-frequency fluctuations, and are referred to as
‘red’ noise by analogy to the frequency composition of red light.

Temporally autocorrelated (‘coloured’) noise is increasingly recog-
nised as an important characteristics of environmental variability
[133, 126, 73, 144]. Many signals in nature, such as climate variables
or population densities [118], are known to exhibit positive autocor-
relations. The exact nature of the environmental noise is important
for population dynamics [114] and can be crucial for population per-
sistence [127, 115, 64, 32, 151]. However, the effect of coloured noise
on population synchrony has only been rarely addressed. The Moran
effect and population synchrony of under the influence of autocorre-
lated noise was investigated [64, 142, 87]. It was found that the noise
colour has a major influence on population synchrony. In particular,
reddened environmental noise is able to intensify spatial synchrony
in spatially heterogeneous populations.

These few studies on the Moran effect with autocorrelated noise
considered identical noise colours in the two populations. The au-
tocorrelation parameters can vary between different measured data
sources and geographic location [34, 48]. Steele suggested in 1985

that terrestrial noise should be white, while marine noise should be
reddened [133]. Here we show that the Moran effect is enhanced if
the noise colour between the two population differs. In this case it
is possible that the cross-correlation between the two noises can be
enhanced by the population dynamics. Thus our major finding is
the counter-intuitive result that in auto-correlated environments, the
correlation between the populations can be larger than that of the
environment.

To test these ideas in experiments with living organisms under well
defined conditions we performed experiments with chemostat systems
containing isolated populations of the green algae Chlorella vulgaris
(Chlorococcales). We investigated the population dynamics of two
uncoupled isolated populations, A and B, that experience correlated
environmental stochasticity (Fig. 4.1). We imposed environmental
variation on chemostat populations by altering the dilution rates, δA(t),
δB(t). Dilution rates changed in defined intervals (∆t) of one or two
hours and were cross-correlated by r = C(δA, δB). This stochastically
correlated forcing was the only way in which the two systems were
coupled. Using light extinction as a proxy of algal biomass [93] allowed
us to measure population densities with an unusually high temporal
resolution of five minute intervals. As shown in Fig. 4.1, the two
populations responded to the stochastic forcing with fluctations that
were cross-correlated by r = C(δA, δB). This population correlation,
in general, was different to the correlation of the input signals. Thus,
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Figure 4.1: Noise induced synchronization in two independent populations.
a, Experimental set-up to explore the response of two popu-
lations A and B to correlated stochastic forcing, realized as
chemostat systems of Chlorella vulgaris. The two systems are cou-
pled only by their correlated noise input, which is generated by
data-preprocessing. For each system, Gaussian distributed white
noises, ξA(t) and ξB(t), are generated that are cross-correlated
by ρ = C(ξA, ξB). To implement temporal structure, the generat-
ing noises are filtered through an autoregressive AR(1) process
with autocorrelation parameters α and β, respectively. The result-
ing time series determine the experimental dilution rates (δA(t),
δB(t)) in defined time intervals ∆t and are cross-correlated by
r = C(δA, δB). The correlation between chemostat population
densities NA(t) and NB(t) is then measured by rp = C(NA,NB).
b-eTypical population response (here shown for the case of two
identical populations and white noise, α = β = 0). b, Normal-
ized dilution rates δA(t) and δB(t) and d, normalized population
densities NA(t) and NB(t) of system A (blue) and system B (red).
Circles indicate the respective values at the time instances when
dilution rates were set to a new value. Further shown is the pair-
wise correlation (black circles) and the regression line (green) of
normalized dilution rates r = 0.80 c) and population densities
rp = 0.71 e). For illustration the diagonal is indicated as black
line.
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the experimental set-up allowed us to test the Moran effect in a well-
controlled laboratory system.

4.3 results

We present results from three different experimental scenarios, where
we investigated the response of uncoupled populations to correlated
stochastic forcing. In the first scenario we tested whether identical
populations would follow the behaviour as expected from the Moran
theorem. For this we parameterised both chemostat systems to be
identical, i.e., the average dilution rates 〈δA〉 = 〈δB〉 = 0.75 day−1 and
the nitrogen supply concentrations NA = NB = 80 µmol·L−1 were
chosen to have the same value for both systems (parameter values are
shown in Table 1). In six consecutive runs, the population experienced
white noise with standard deviation σ = 0.2 that was cross-correlated
between the two populations with coefficients r of approximately 0.8,
0.2, 0.6, 0.0, 0.4 and 1.0 (for exact values see Table 1). The popula-
tions responded to the stochastic forcing with correlated population
dynamics, with cross-correlations that correspond to that of the envi-
ronmental forcing, rp ≈ r (see Fig. 4.2a, and Fig. 2.1, Appendix). These
results agree with the prediction from the Moran theorem and confirm
the hypothesis that correlated stochastic forcing can synchronise the
dynamics of non-interacting populations.

In the second scenario we tested whether stochastic forcing is able to
synchronise populations that differ in key ecological properties, such
as turn-over rate (dilution) and carrying capacity (nitrogen supply).
For this we adjusted the two systems to differ in average dilution
rate 〈δA〉 = 0.75 day−1, 〈δB〉 = 0.40 day−1 and nitrogen supply con-
centration Ni = 80 µmol·L−1, Ni = 40 µmol·L−1. Additionally, we
reduced the standard deviation of the input noises in both systems
to σ = 0.15, to avoid negative values of dilution rates. Again, the
cross-correlation coefficients were approximately 0.8, 0.2, 0.6, 0.0, 0.4
and 1.0 (for exact values see Table. 3). In our experiments we observed
that stochastic forcing is able to synchronise even populations with
non-identical population parameters (Fig. 4.2b, Fig. 2.1, Appendix).
However, the cross-correlation of population density, was systemat-
ically smaller than that of the environmental driving, rp < r. This
finding confirms results from field-studies [113], and theoretical stud-
ies [125, 44, 131, 70].

In the third scenario we tested the response of two identical pop-
ulations under the influence of differently autocorrelated noise. In
theory (see methods) this would allow for an enhancement of the
input noise correlations. We performed experiments, where the two
populations were adjusted to have identical conditions, with average
dilution rates 〈δA〉 = 〈δB〉 = 0.75 day−1 and nitrogen supply con-
centrations NA = 80 µmol·L−1. However, in contrast to the previous
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Figure 4.2: Moran effect in different experimental treatments. Population
correlation rp in dependence of the environmental correlation r
(black circles). a, Identical systems, white noise: the correlation
of the population equals that of the environment rp = r (Moran
theorem). b, Non-identical systems, white noise: the population
correlation is smaller than the environmental correlation rp 6 r.
c, Identical populations, differently autocorrelated noise: Even
though the two populations are non-interacting, the correlation
of the populations exceeds that of the environment rp > r (corre-
lation enhancement). Error bars show 95% confidence intervals
from a sample of 10, 000 noise replicates (r), and from resam-
pling measured correlations by bootstrapping (rp). The black
lines indicate the expected outcome of the Moran theorem rp = r.

scenarios, we implemented temporal autocorrelations (noise color) in
the time series of dilution rates (see methods). We performed a series
of 15 experimental runs, each representing a combination of differing
autocorrelation parameters α and β roughly adjusted within the range
[0, 0.9] (see Table 2.3).

In our experiments we observed that in autocorrelated environ-
ments the correlation of the populations can significantly exceed that
of the environmental shocks (Fig. 4.2c). To compare this experimental
finding with theoretical expectations in Fig. 4.3 we plot the correlation
enhancement factor rp/r as a function of the realised noise correlation
r and the difference in autocorrelation parameters α − β. A value
of rp/r = 1 (solid line in Fig. 4.3) would correspond to the expec-
tation from the Moran theorem. However the experimental findings
demonstrate that, in contrast to the naïve expectation, the input corre-
lation of the environmental fluctuations is amplified by the population
dynamics, with a factor of more than 300% for large difference in
autocorrelation parameters.

This finding is confirmed by theoretical analysis. Linear theory (see
methods) allows to calculate the correlation enhancement for linear
population demography (Eq. 4.1). Expansion of this result for small
values of a and differences in autocorrelation |β−α| yields

rp

r
≈ 1+ 1

2
a2(β−α)2 . (4.1)
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Figure 4.3: Correlation enhancement in differently autocorrelated environ-
ments. Correlation enhancement factor rp/r (black circles) as a
function of (a) the environmental correlation r(α,β) and (b) the
difference in autocorrelation parameters |α−β|. Red circles show
the theoretically expected enhancement factor (Eq. 4.1) for the re-
spective, experimentally realized parameter combination (r,α,β).
Grey dots show simulated enhancement factors for 20, 000 ran-
domly chosen autocorrelation parameters α and β, taken from
a uniform distribution in the range [0, 1]. Error bars show 95%
confidence intervals from a sample of 10, 000 noise replicates
(r, and |α− β|), and from resampling measured correlations by
bootstrapping (rp/r). The horizontal lines rp/r = 1 indicate the
expected outcome according to the Moran theorem.

The amplification factor rp/r scales quadratically with both the dif-
ference α− β of the autocorrelation parameters and the population
dynamics parameter a. Thus, in identical linear systems the corre-
lation of the population can be larger than that of the oscillations,
rp > r. Correlation enhancement arises if the noise colour differs
between the two populations. If both autocorrelation parameters are
equal, α = β, the Moran effect rp = r is reproduced. Further, the
correlation enhancement is most pronounced for more unstable sys-
tems a ≈ 1. These results are confirmed by the experimental findings
(Fig. 4.3). Interestingly, in general the experiments showed even larger
correlation enhancement than predicted from linear theory. Numerical
simulations showed that these results are robust.

4.4 discussion

How can this counter-intuitive behaviour be explained? Based on
fundamental information theoretic concepts the mutual information
between two non-interacting systems cannot increase. Thus, the mu-
tual information between the population densities {NA(t),NB(t)}
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cannot exceed the mutual information between the driving signals
{δA(t), δB(t)}. However this does not apply to the linear (Pearson)
cross-correlations coefficient, which does not capture the full statistical
interdependence of two signals. The common praxis in ecological
field studies is to investigate the cross-correlation coefficients, which
thus yields a restricted insight into time series. The cross-correlation
coefficient evaluates the signal values in both systems at the same
times, while the full linear relationship between two signals is coded
in the cross-correlation function, or equivalently the cross-spectrum
[25]. In autocorrelated signals with α 6= β the cross-correlation is
distributed differently in the frequency components of the noises.
In other words, some mutual interdependence that is implemented
in the signals can not be detected by means of the cross-correlation
coefficient. This is evident, for example, in the reduced correlation
r of autocorrelated dilution rates compared to the larger correlation
of the white generating noises, ρ (Fig. 4.1a). This hidden correlation
can however be unmasked, when it is imposed on a population that
effectively responds as a low-pass filter (see appendix) which finally
leads to the correlation enhancement.

Our findings may have widespread importance for the investigation
of field data, where autocorrelated time series are abundant. Finally,
the reported mechanism is not restricted to ecology. Similar correlation
enhancement should play an important role also in other systems, such
as correlated firing in populations of neurons [35].

4.5 methods

data analysis Population synchrony is measured as Pearson’s
correlation coefficient

r = C(x(t),y(t)) =
〈x(t)y(t)〉− 〈x(t)〉〈y(t)〉√

〈x(t)2〉− 〈x(t)〉2
√
〈y(t)2〉− 〈y(t)〉2

.

noise generation We generate spatially and temporally corre-
lated noise using a two-step data preprocessing (see Fig. 4.1). First,
we implement generating noises ξA(t) and ξB(t) at discrete times
t = 0, . . . n. They are drawn from a bivariate Gaussian distribution
with correlation coefficient C(ξA(t), ξB(t)) = ρ, zero mean and vari-
ance σ2. This is realised as a linear superposition ξA(t) = σζ(t) and
ξB(t) = ρξA(t) + σ

√
(1 − ρ2)ζ ′(t) of independent Gaussian white

noise sources ζ(t) and ζ ′(t). Note, that the generating noises are intro-
duced for computational convenience and bear no ecological meaning.

Next, we introduce temporal structure into the cross-correlated
generating noises to generate the actual environmental noise that is
acting on the two populations, δA(t) and δB(t). Several approaches
have been put forward how autocorrelated time series can be modeled
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[130, 126, 32, 125, 25, 151, 53]. Here, we use a first-order autoregressive
AR(1) process with autocorrelation parameters α,β < 1

δA(t+ 1) = α δA(t) + ξA(t), (4.2)

δB(t+ 1) = βδB(t) + ξB(t).

Assuming stationarity, δA(t) and δB(t) are correlated by [18, 125, 70,
131]

r = C(δA(t), δB(t)) = ρ

√
1−β2

√
1−α2

1−αβ
. (4.3)

Note, that the correlation of the environmental processes will always
be smaller than or equal to the correlation of the generating noise,
r 6 ρ. In experiments without autocorrelation we set α = β = 0 so
that r = ρ.

moran effect We model the population dynamics of population
densities by an AR(1) process

NA(t+ 1) = aNA(t) + δA(t)

NB(t+ 1) = aNB(t) + δB(t) , (4.4)

where NA(t),NB(t) are the population densities at time t and the
noise terms δA(t), δB(t) are taken from Eq. (4.2) and |a| < 1 so that
the process (4.4) is stationary. The variance and the first joint moment
of the two AR(1) processes can be calculated [126, 125, 128]

〈NA(t)2〉 =
(1+ aα)

(1− a2)(1− aα)
〈δA(t)2〉,

〈NA(t)NB(t)〉 =
(1− a2αβ)

(1− a2)(1− aβ)(1− aα)
〈δA(t)δB(t)〉.

Assuming stationarity, the correlation coefficient of two AR(1) pro-
cesses computes to

rp = r
1− a2αβ√

(1− a2β2)(1− a2α2)
. (4.5)

If the autocorrelation parameters differ, α 6= β, the correlation
between the two uncoupled populations is always larger than the cor-
relation of the noise inputs rp > r, while for identical autocorrelation
α = β the Moran theorem is reproduced, rp = r.

chemostat setup We established monoclonal batch cultures of
the green algae C. vulgaris (Chlorococcales) that were kept in a cli-
mate chamber at 23.3◦± 0.4◦C and constant fluorescent illumination at
110 µE·m−2·s−1 (preventing synchronization by light-dark cycles). The
batch cultures served as stock cultures for the chemostat experiments.
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Nitrogen concentrations were adjusted to be non-limiting or only
weakly limiting. We used sterile, modified Woodshole WC medium af-
ter Guillard & Lorenzen (1972, pH = 6.8) [55]. Nitrogen concentrations
were sufficiently low to limit algal growth and were set to 80 µ·L-1

(phosphorus to nitrogen ratio P/N80 = 1/1.6) by adjusting the amount
of NaNO3. The medium contained trace metals, vitamins and other
nutrients in non-limiting concentrations. For stock cultures we used
medium containing 320 µmol·L−1. We used glass chemostat vessels of
1.5 L volume and adjusted the culture volume to approximately 800
mL. To provide homogeneous mixing and to prevent CO2-limitation
algal cultures were bubbled with pressurised, sterile air.

We used light extinction measurement devices according to [150].
Previous investigations of the chemostat system showed that light
extinction is an accurate proxy for algal biovolume [93]. Light ex-
tinction was measured as light transmittance (wavelength = 880 nm)
through a sterile syringe that pulled out and pushed back 10 mL of
chemostat content every 5 minutes being therefore a quasi-continuous,
non-invasive method. It provided the high resolution of population
dynamics necessary to analyse correlations between chemostat sys-
tems. Algal growth on the wall of the syringe was prevented due to
the bidirectional movement of the syringe plunger. To automatically
store the data, the extinction measurement devices were connected to
a computer. The computer also controlled the peristaltic pumps by
which noise applied.

experimental procedure The experimental set-up consisted
of two uncoupled chemostats, A and B (see Fig. 4.1a). Prior to each
experimental run we let the phytoplankton populations first grow
towards steady-state before disturbance of the dilution rate were
initiated. In the experimental runs, subsequent values of correlation
coefficients were chosen not to be in ascending or descending order
to avoid systematic errors. Number of data points to calculate rp was
reduced to match the number of data points when δ was changed.
Every experimental run took 5 days in which correlated noise was
applied to the chemostat populations. This is, with an interval length
of two hours this allowed for a total number of n = 60 random shocks
in experiments where the interval length was ∆t = 2h, and n = 120

random shocks for ∆t = 1h.
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5
P O P U L AT I O N D Y N A M I C S & S Y N C H R O N I Z AT I O N

5.1 synchronization in single populations

My doctoral thesis addresses the dynamic behavior of populations
that are far from steady state. Generally, nature is complex and un-
stable, and environmental variability influences organisms and their
populations on many scales. Thus, it is only natural that populations
vary in time and space according to the prevailing environmental
conditions. But not only extrinsic factors but also intrinsic mecha- Extrinsic and

intrinsic factors
determine the
dynamics of a
population.

nisms provoke nonsteady-state dynamics. These originate either from
the interactions between populations, like predator-prey interactions
[129, 94] or competition for resources [89, 139]. Or they are the result
of the interactions between the individuals within a single population.

Variability in single-species populations originating from intrinsic
processes is most often explained by density regulation according
to discrete logistic growth. The theory of logistic growth goes way
back to the middle of the nineteenth century [146]. It was intensively
studied since the 1970s and has not lost its attraction in the analyses
of population dynamics to date. The simple logistic equation explains
cyclic as well as chaotic behavior depending on the growth rate of
a population [95, 96, 60]. However, most dynamical features of the
logistic difference equation disappear when dealing with populations
having over-lapping generations. Then, the logistic differential equa-
tion replaces the difference equation since reproduction does not occur
in discrete steps but is rather continuous. Nevertheless, cyclic dynam-
ics in single-species populations are possible due to time delays that
often originate from demographic structure [97, 33].

entrained phytoplankton populations The oscillations de-
scribed in chapters two and three are the result of extrinsic and in-
trinsic processes. In both studies, environmental influences caused
alternations in the structure of the populations that led to oscillatory
behavior. To be more precise, the populations were entrained by re-
source shortage and accumulated in a specific stage of their life cycle
since individual development was temporarily ceased (Fig. 5.1). Espe-
cially in chapter two, when applying a strict “off-on” manipulation of
the dilution rate, a high degree of synchrony was achieved. In these
strongly synchronized populations the vast majority of the individuals
(forming a cohort) reproduces at the same point in time. Therefore,
periods of somatic growth and population growth alternated and
caused the populations to increase and decrease in accordance to the
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generation time. This means, that the dynamics of a population in
perfect synchrony can be described in analogy to the discrete logistic
equation.

Figure 5.1: Schematic description of entrainment. C. vulgaris cells growing
under non-limiting nitrogen concentrations are distributed all
over their life cycle (left cycle). If all nitrogen in the medium
is depleted (N = 0), the cells accumulate in the G1-phase since
progression in this phase becomes zero, ν = 0 (right cycle).

Moreover, the study is the first that clearly demonstrates in theory
(model simulations) and experiments that single-species oscillations
can be described in terms of phases-coupled oscillators [135, 152, 117].
From the interaction between cells and nitrogen arose a mean field
that coupled the cells and synchronized their phases. Once phase-Synchronized cells

could be described in
terms of phase-locked

oscillators.

locked, the cells progressed through their life cycles in lockstep which
led to sustained oscillations in population density. Since the dilution
rate determined the amount of nitrogen in the medium (at constant
supply concentration), it also determined the degree of synchrony and,
hence, amplitude and frequency of the oscillations. The relationship
the between dilution rate and the intensity of the oscillations can
be described by the following cascade: low dilution rate → strong
nitrogen-limitation→ high degree of synchronization→ large ampli-
tude and long periods. The long periods are caused by long generation
times due to slow cell cycle progression in the G1-phase when nitrogen
concentrations are low.

environmental impacts on demography A harsh off-on ma-
nipulation as performed in chapter two does not apply to most natural
systems where rather gradual changes are the rule. Against this back-
ground, the focus in chapter three laid on the transient behavior in
response to a series of complementary changes. Therefore, populations
that were previously at steady state experienced changes of resource
supply and turn-over rate differing in direction and value. By directly
changing the environmental conditions, this study is fundamentally
different from others investigating environmental effects by harvesting
of specific developmental stages [28, 38]. Moreover, measuring the
size spectra in comparably small intervals (4-8 hours) gave a temporal
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record of the demographic structure with unusual high resolution.
This allowed for the detailed analysis of the processes underlying the
population dynamics. Transient population

dynamics depended
on the kind of
perturbation and the
demographic state
before it occurred.

The transient behavior was again characterized by oscillations re-
sulting from an unbalanced demographic structure and the formation
of a cohort. The intensity of the oscillations crucially depended on the
demographic steady state before environmental changes were applied.
That is, to predict the future population dynamics after changes of
the environment, it is of prime importance not only to know how a
population is affected, but also in which demographic state. Here, it
was made clear that (i) although the environmental conditions after
having changed in two habitats are identical and (ii) although the
changes occurred with identical direction and value, the transient
dynamics towards the new steady state can vary significantly when
the steady-state demography of the populations differed before.

The study also showed that knowledge of the critical mechanisms
underlying population dynamics is paramount. Here, cell size was
not only related to the developmental stage, but varied with the avail-
ability of nitrogen. When available in excess, cells are able to take up
surplus nitrogen that is used in various cell compounds and enables a
cell to grow larger than compared to strongly limited conditions. On
the one hand, by growing larger cells might be able to avoid predation
[78]. On the other hand, larger mother cells might produce more or An important

mechanism
underlying
population dynamics
was revealed only
through transient
behavior.

larger daughter cells, respectively. Either way, increasing body size
might significantly increase the fitness of a species. Therefore, this
mechanisms is not only relevant for C. vulgaris populations, but for
all species that posses sufficient plasticity in their life cycle to show
resource-dependent variability in size and reproduction.

Chapters two and three emphasized the important role of synchro-
nization for single-species population dynamics. Originating from
demographic processes, synchrony is likely be an important feature in
the dynamics of any population. However, both chapters also show
that synchrony among individuals within a population is more than
just simultaneous development. It implies coupling between the indi-
viduals and the potential for phase-locking leading to self-sustained
oscillations.

5.2 synchronization among various populations

Populations can be synchronized across large distances in space. In the
absence of migration or trophic interactions, environmental stochastic-
ity is likely to cause the high coherence observed in many populations,
commonly denoted as Moran effect. The best example for the Moran
effect in natural populations are the feral sheep on the St. Kilda
archipelago of the Outer Hebrides, Scotland (Fig. 5.2) [54, 14, 30]. The
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correlation between the populations rp reached nearly 0.7. The prob-
lem in natural systems, however, is that one cannot exactly determine
the influence of the environment as there is no single environmental
parameter determining alone the time series of a population. Esti-
mating the environmental correlation r necessary to cause a specific
value of rp is problematic since natural time series often lack a critical
number of data points to obtain reliable values of r [14].

Figure 5.2: The feral Soay sheep living on the islands of the St. Kilda
archipelago (Outer Hebrides, Scotland) are probably the best
system to study the Moran effect in field populations. (Photo copy-
right: Bill Lockhart, top; Emily Brown, bottom)

Laboratory experiments provide a solution to this problem. Un-
der well-controlled conditions, one can investigate the Moran effect
by altering a specific parameter that alone determines population
growth. However, nonlinearities in density dependence might alsoChemostats allowed

for perfect control of
environmental
variability and,

hence, were ideal
systems to study the

Moran effect.

cause deviations from the expected picture that rp = r [54, 131]. In the
chemostat experiments of chapter four, the dilution rate was changed
in intervals large enough to cause detectable changes in population
density, and small enough not to cause any nonlinear behavior (popu-
lation densities converging towards steady state). Thus, this accurate
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system reproduced well the Moran effect when Gaussian distributed
white noise was applied to identical chemostat populations. Since
completely identical populations in identical habitats do not exist
(meaning talking about one and the same population), we tested for
the Moran effect in two chemostat populations differing in average
dilution rate and nitrogen supply concentration. Results showed that
rp < r confirming results from field-studies [113] and theoretical
studies [44, 70]. However, when applying differently autocorrelated Experiments

supported theoretical
findings that rp > r
when differently
autocorrelated noises
influenced the
populations.

environmental fluctuations (colored noise) on identical populations,
rp was significantly higher than r. This result is surprising, absolutely
nonintuitive and has not been reported before. Although explainable
by theoretical analysis, an easy and intuitive explanation is difficult.
Some interdependence that is implemented in the environmental
fluctuations can not be detected by means of cross-correlation. This
hidden correlation can however be unmasked, when it is imposed
on a population that effectively responds as a low-pass filter which
finally led to an enhanced Moran effect. Since autocorrelated time
series are common, these results have widespread relevance not only
in ecological research.

5.3 synchrony in ecology

Synchronous behavior is one of the most pervasive and apparent
dynamical patterns in nature. Gravitational synchrony in the solar
system; fireflies flashing in unison; coordinate firing of pacemaker
cells in the heart; electrons in a superconductor marching in lockstep
[136]. Whatever scale one looks at, in animate as well as inanimate
systems, one is likely to encounter synchrony.

In ecology, there are two types of synchrony: single populations
whose individuals are synchronized in analogy to the phase syn-
chronization of coupled oscillators; and synchronous fluctuations of
spatially disjunct populations experiencing correlated environmental
stochasticity (Moran effect). Either type has strong relevance in ecology
since synchrony is destabilizing population dynamics and is assumed
to decrease the persistence of populations [65, 41].

In March 2011, I was part of a diverse group of researchers form
mathematics and statistics and the biological sciences that met at a
workshop held at the National Institute of Mathematical and Biolog-
ical Synthesis (NIMBioS) in Knoxville, Tennessee (USA) to discuss
’Synchrony in Biological Systems Across Multiple Scales’, as the workshop
was entitled. Unfortunately, we failed to find a general definition to
describe synchronous behavior in biological systems. Nevertheless,
ideas about the study of synchrony in one field provided novel in-
sights into questions of synchrony in other fields. Thus, I believe that
ecologists will strongly benefit from interdisciplinary collaborations
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filling the gaps in knowledge to explain the dynamics of populations
and to identify the underlying mechanisms.
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C Y C L E S , P H A S E S Y N C H R O N I Z AT I O N , A N D
E N T R A I N M E N T

a.1 algal cultures and experimental procedure

stock cultures We established monoclonal batch cultures of
the three green algae Monoraphidium minutum (Clorococcales, former
Kirchneriella lunaris), Chlorella vulgaris (Chlorococcales) and Chlamy-
domonas reinhardtii (Volvocales). Batch cultures were kept in a climate
chamber at 23.3◦ ± 0.4◦C and constant fluorescent illumination at
110 µE·m−2·s−1. Light inside the climate chamber consisted of neutral-
white (4000K) and warm-white (3000K) light in equal amounts. These
batch cultures served as stock cultures for the chemostat experiments.
We kept the batch cultures under constant illumination to prevent syn-
chronization by light-dark cycles. One week prior to each chemostat
experiment, we started a new batch culture. Nitrogen concentrations
were adjusted to be non-limiting or only weakly limiting to avoid pre-
synchronization by limitation (unless this was specifically desired).

medium We used sterile, modified Woodshole WC medium after
Guillard & Lorenzen (1972, pH = 6.8) [55]. Nitrogen concentrations
were sufficiently low to limit algal growth and were set to 40 (phos-
phorus to nitrogen ratio P/N40 = 1/0.8), 80 (P/N80 = 1/1.6), 160
(P/N160 = 1/3.2), 240 (P/N240 = 1/4.8) or 320 (P/N320 = 1/6.4)
µmol·L−1 by adjusting the amount of NaNO3. The medium contained
trace metals, vitamins and other nutrients in non-limiting concentra-
tions. For stock cultures we used medium containing 320 µmol·L−1.

chemostat setup A chemostat is a continuous flow-through cul-
turing system, designed to keep a population of microorganisms at
a steady-state over a long period of time. We used glass chemostat
vessels of 1.5 L volume and adjusted the culture volume to approxi-
mately 800 mL. To prevent CO2 limitation algal cultures were bubbled
with pressurized, sterile air. We measured extinction at 880 nm as
a proxy for algal biovolume (biomass) (for details see section ’Light
extinction measurement apparatus’). We also sampled the outflow of
chemostats and determined algal cell numbers and biovolume of the
samples using a CASY particle counter (©Schärfe, Reutlingen). Assum-
ing spherical cell shapes, we used CASY measurements to generate
cell size spectra with a resolution of 0.1 µm.
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chemostat experiments We performed two types of chemo-
stat experiments. The dilution rate varied between δ = 0.29 and
δ = 0.81 day−1. Type 1 experiments: Chemostat cultures were in-
oculated from strongly nitrogen-limited batch cultures. After inoc-
ulation, we performed no further experimental manipulations and
the populations could grow towards steady-state. Here, we investi-
gated the dynamics of populations that are potentially already syn-
chronized when they start growing in the chemostat system. Type 2

experiments: Chemostat cultures were inoculated from non-limited,
non-synchronous batch cultures. First, we let the populations grow
without any experimental manipulation towards steady-state. Then,
we switched off the dilution (= flow through the chemostat) for 5-7
days, as described by Pascual & Caswell (1997) [112]. During this time,
algal cells were expected to take up the remaining nitrogen, became
strongly nitrogen-limited and thereby synchronized. With this series of
experiments we directly tested for mechanisms by which synchroniza-
tion could be induced in previously non-synchronized cultures. All
chemostat experiments were conducted in the same climate chamber
in which the stock cultures were located and experienced identical
environmental conditions.

a.2 light extinction measurement apparatus

We used light extinction measurement devices according to Walz et
al. (1997) [150], an improved method of Boraas & Bennett (1988) [16].
Light extinction was measured as the light transmittance (wavelength
λ = 880 nm) through a sterile syringe (inner diameter = 11 mm,
outer diameter = 14 mm) that pulled out and pushed back 10 mL of
chemostat content every 5 minutes. Thus, it is a quasi-continuous, non-
invasive method. Traditional methods based on sampling would have
failed to show the regularity of the population cycles. Algal growth
on the wall of the syringe was prevented due to the bidirectional
movement of the syringe plunger. To automatically store the data, the
extinction measurement devices were connected to a computer. An
analogue input/digital output unit converted the measured voltage
of the light extinction sensor into digital units of Volts and amplified
the signal negatively. This means that the higher the biovolume in the
chemostat was the less light passed the syringe and the higher was
the measured voltage.

Figure 1.1a shows that, during small-amplitude oscillations, light ex-
tinction is an accurate proxy only for algal biovolume. Light extinction
measurements are in phase with biovolume but in anti-phase with the
cell density measurements (Fig. 1.1b). That is, the light extinction is
low when the biovolume is low and the cell density is high, and vice
versa. Under all other dynamic conditions (steady-state, monotonous
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Figure 1.1: Oscillations of (a) algal biovolume (green), (b) cell density (blue)
and (c) mean cell volume (red) in relation to light extinction (grey)
in chemostat trial number 6 of Table 2.1 (δ = 0.52 day−1, Ni =
160 µmol·L−1). (d) Oscillations of population density structure.

increase etc.) light extinction is a good proxy for both biovolume and
cell density.

The mean cell volume (Fig. 1.1c) and the size spectrum (Fig. 1.1d)
show that the majority of the cells are rather big (8-10 µm3) when the
biovolume is high and the cell density is relatively low. Conversely,
the cells are comparatively small when the biovolume is low and the
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cell density is high. Thus, when the majority of the cells are small one
can assume that most cells are newly released daughter cells and the
cell density is high due to a growing population. In contrast, when
most cells are rather big they recently invested into cellular growth to
finally become mother cells, i.e. biovolume is high but cell numbers
are not.

a.3 stage-structured simulation model

Our model (compare to Pascual & Caswell, 1997 [112]) describes the
distribution p(θ, t) of cells in phase θi ∈ [0, 2π] along the cell cycle at
time t. The total population number is obtained by integrating the
distribution over θ

P(t) =

∫2π
0

p(θ, t)dθ

The dynamics of the distribution is determined by

∂P

∂t
+
∂

∂θ
[gP] =

∂

∂θ
D(g)

∂P

∂θ
− δP.

Here, the term with δ corresponds to a constant loss rate for each
oscillator of strength δ equal to the chemostat dilution rate, D(g) is
the effective diffusion constant and g(θ,N) is the maturation velocity
of a cell, described as follows (for the numerical realization see below)

g = g(θ,N) =

{
ω N
KN+N if θ ∈ [θ0, θc]

ω otherwise.

In the phase subinterval [θ0, θc] the maturation velocity is nutrient
dependent with half-saturation constant KN and maximal velocity ω,
while through the rest of the cycle the maturation velocity is constant.
We used the same maximum maturation velocity ω in the nutrient
sensitive and in the nutrient insensitive phase interval.

As phases are only defined in the interval 0 6 θ 6 2π, the model
needs to be applied with a boundary condition at both sides of the
phase range. Here we assume that the inflow Jin = g(0,N)p(0) of
daughter cells from the left boundary is ν times larger than the outflow
Jout = g(2π,N)p(2π) of dividing cells into the absorbing boundary at
θ = 2π, where ν denotes the average number of daughter cells after
cell division. Since the maturing velocity attains the same value at
both ends of the phase range g(0,N) = g(2π,N) we arrive at

p(0, t) = νp(2π, t).

We do not explicitly consider the heterogeneity in the aging velocity
of different cells. Instead, phase dispersion is incorporated into the
model in the form of an effective diffusion term. This term can be
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thought to describe the effect of stochastic forces on the maturation
of each cell (eq. 2.1, main text). The diffusion constant is assumed to
scale proportional to the square of the maturation velocity

D(g) = χg2.

In this way we assure that sharp peaks in the density distribution do
not decay when maturation velocity is zero. In the usual parameteri-
zation however, our model results are not affected by this choice of
the diffusion term.

The dynamics of the nutrient is similar to standard Monod-type
chemostat models, given by

Ṅ = δ(Ni −N) − νm
N

KN +N
P.

parameter values Parameter values were taken as follows:
Number of daughter cells: ν = 4

Nutrient sensitive phase interval: θ0 = 2π·0.05, θc = 2π·0.45
Diffusion strength: χ = 0.018 days
Half saturation constant: KN = 350 µmol·L−1

Maximal maturation velocity: ω = 2.94·2π·day−1

Maximal nutrient uptake rate: vm = 1.74·10−4 µmol·day−1·cell−1)
Dilution rate: δ = 0 . . . 0.81 day−1

Nutrient concentration in external medium: Ni = 40-320 µmol·L−1

We used maximum likelihood parameter estimation. We estimated
the set of parameter values that minimized the mean square deviation
of the model outcome to the chemostat population density represented
in Fig. 2.3 (δ = 0.8 day−1, Ni = 160 µmol·L−1) using a stochastic gra-
dient descent method. The model parameters that we obtained in
this way by fitting to one data set were then used to independently
generate simulations for the remaining data sets. We found that this
single set of parameters yielded remarkable agreement of the model
outcome to all experimentally measured time series. Accordingly, all
simulations were performed with these parameters. Using extensive
simulation runs we verified that the qualitative model results are ro-
bust to changes in all parameter values.

Parameter justification:
• The nutrient concentration of the external supply medium Ni and
the dilution rate δ are the values that were used in the chemostat
experiments.
• The number of daughter cells was fixed to ν = 4, since in our ex-
periments large Chlorella mother cells divide by splitting into four
small daughter cells. This value further coincides to the ratio of the
volumes between large mother and small daughter cells, which in our
experiments was found to be in a range from 3.81 to 4.29.
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• The interval length of the nutrient sensitive phase [θ0, θc] (G1-
phase) makes about 30 to 40% of the cell cycle under optimal, non-
limiting conditions [110]. Similar to Pascual & Caswell (1997) [112]
we decided to place the interval at the beginning of the cycle as
[θ0, θc] = [2π·0.05, 2π·0.45].
• The maximum nutrient uptake rate vm, the half-saturation constant
KN, the maximum maturation velocity ω and the diffusion parameter
χ were simultaneously obtained by maximum likelihood estimation.
This resulted in a value of vm = 1.74·10−4 µmolůday−1·cell−1 which
deviates marginally from values reported by Halterman (1984) [58] that
are 3.34·10−4 µmol·day−1 ·cell−1 (C. vulgaris) or 3.00·10−4 µmol·day−1

·cell−1 (C. pyrenoidosa).
• Parameter estimation for the half-saturation constant yielded KN =

350 µmol·L−1. Reported values of the half-saturation constant KN in
the literature vary over a large range: e.g., 0.89 µmol·L−1 (C. vulgaris)
[58], 4.5 µmol·L−1 (C. pyrenoidosa) [116], 148 µmol·L−1 (C. reinhardtii)
[148], 230 µmol·L−1 (C. pyrenoidosa) [132].
• Parameter estimation for the maximum maturation velocity ω

yielded a value of ω = 2.94·2π day−1, meaning that under optimal
conditions a cell could fulfill approximately three cycles a day.
• Parameter estimation for the diffusion parameter χ resulted in a
value of χ = 0.018 days.

For the numerical solution of the partial differential equation we
discretized all variables on a grid which consisted of 200 points. The
diffusion term was approximated by a second order central discretiza-
tion scheme and the ’advection’ term was represented by a third-order
upwind biased formula. The resulting system of ordinary differential
equations was integrated using a backward differentiation formula, by
the CVODE package (). We have verified that our results do not change
by various alterations of the numerical procedure. Additionally we
have found practically identical simulation results using the escalator
boxcar train method [37].

To avoid numerical problems when solving the model’s partial
differential equations we chose a continuous formula to describe
nutrient dependent maturation velocity (see Fig. 1.2)

g(θ,N) = ω (1− f(N))) [1+θ0 (θ) − Fθc(θ)] +ωf(N),

with the Fermi-function

Fϑ(θ) =

(
1+ exp

θ− ϑ

α

)−1

,

of width α = 0.01·2π and the Monod function

f(N) =
N

KN +N
.
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Figure 1.2: Maturation velocity g(θ,N) as a function of the normalized phase
θ/2π and the nutrient concentration N.

To measure the order parameter R of the Kuramoto model in exper-
imental populations cell volume V was translated to phase according
to the following formula

θ = 2π
V − Vmin

Vmax − Vmin

with Vmin = 1.15m3 and Vmin = 18.82m3. The complex order param-
eter [117] can then be estimated from the phase density as

Reiψ =

∫2π
0

dθeiθp(θ, t).

The complex order parameter indicates the center of gravity of all
oscillators, distributed according to their phase on a unit circle in the
complex plane (see Fig. 1.3). The order parameter equals R = 0 when
all cells oscillate out of phase with each other (incoherent state) and
R=1 when all cells are perfectly locked in phase.

a.4 stationary distributions
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Figure 1.3: Schematic representation of the complex order parameter. Shown
is the distribution of oscillators on the unit circle in the complex

plane. The order parameter Reiψ =
(∑n

j=1 e
iθ
)
/n points to

the center of gravity. The absolute value R measures the phase
coherency or degree of synchronization and ψ describes the
average phase of the oscillators.

a.5 results of additional chemostat trials

We ran chemostat trials in addition to the examples shown in the main
paper. In Table 2.1 we give a comparative summary of the results of the
9 trials performed as Type 2 experiment (i.e. with off-on manipulation
of the chemostat leading to synchronization).

Fig. 1.5 shows the relationship between period length, supplied ni-
trogenNi and dilution rate δ. Blue dots represent the 9 chemostat trials
summarized in Table 2.1. The three red lines show model predictions
for the period length once along a gradient of dilution rates (con-
stant nitrogen supply, Ni = 160 µmol·L−1 and Ni = 320 µmol·L−1)
and along a gradient of supplied nitrogen (constant dilution rate,
δ = 0.5 day−1).

Figures 1.6-1.8 show examples of time series of synchronization
experiments for C. reinhardtii (Fig. 1.6), M. minutum (Fig. 1.7) and C.
vulgaris (Fig. 1.8).
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Figure 1.4: Comparison of (a) experimental and (b) model relative fre-
quency distributions at steady-state (t = 19.89 days). Data
were taken from chemostat trial 5 with δ = 0.81 day−1 and
Ni = 160 µmol·L−1 and the corresponding model simulation.
The characteristic shape can be explained as the combined ef-
fect of three processes: (i) as the cell progression through the
G1-phase of the cell cycle is slow, this yields an elevated number
of oscillators in this phase (i.e. a peak for small cell volumes).
(ii) as cells are washed out of the chemostat system during their
growth process there is tendency for an exponential decay of cell
numbers with volume. (iii) from a certain cell volume most cells
divide into smaller daughter cells, which results in a sharp drop
in cell numbers around V = 13m3.
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Figure 1.5: Comparison of chemostat trials with off-on manipulation (blue
dots) against model predictions (red lines).

Figure 1.6: Trial 1 with C. reinhardtii: δ = 0.51 day−1, Ni = 160 µmol·L−1,
∆toff = 5.1 days. (sine interpolation between day 53.5 and 53.8)
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Figure 1.7: Trial 2 with M. minutum: δ = 0.51 day−1, Ni = 160 µmol·L−1,
∆toff = 4.9 days.

Figure 1.8: Trial 6 with C. vulgaris: δ = 0.52 day−1, Ni = 160 µmol·L−1,
∆toff = 7.2 days.
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E N H A N C E D M O R A N E F F E C T

b.1 experimental setup

stock cultures We established monoclonal batch cultures of the
green alga Chlorella vulgaris. Batch cultures were kept in a climate
chamber at 23.3◦ ± 0.4◦C and constant fluorescent illumination at
110 µE·m−2·s−1. Light inside the climate chamber consisted of neutral-
white (4000K) and warm-white (3000K) light in equal amounts. The
batch cultures served as stock cultures for the chemostat experiments.
Constant illumination prevented synchronization by light-dark cycles.
One week prior to each chemostat experiment, we started a new batch
culture. Nitrogen concentrations were adjusted to be non-limiting to
avoid synchronization by limitation.

medium We used sterile, modified Woodshole WC medium after
Guillard & Lorenzen (1972, pH = 6.8) [55]. Nitrogen concentrations
were sufficiently low to limit algal growth and were set to 80 µmol·L−1

by adjusting the amount of NaNO3. The medium contained trace
metals, vitamins and other nutrients in non-limiting concentrations.
For stock cultures we used medium containing 320 µmol·L−1.

chemostat setup A chemostat is a continuous flow-through cul-
turing system, designed to maintain a microorganismal population at
steady-state over a long period of time. We used glass chemostat ves-
sels of 1.5 L volume and adjusted the culture volume to approximately
800 mL. To prevent CO2 limitation, algal cultures were bubbled with
pressurized, sterile air. We measured light extinction at λ = 880 nm as
a proxy for algal biovolume (biomass) [93]. We also sampled the out-
flow of chemostats and determined algal cell numbers and biovolume
of the samples using a CASY particle counter (©Innovatis). Assuming
spherical cell shapes, we used CASY measurements to generate cell
size spectra with a resolution of 0.1 µm.

light extinction measurements We used light extinction mea-
surement devices according to Walz et al. (1997) [150]. Light extinction
was measured as the light transmittance (wavelength λ = 880 nm)
through a sterile syringe (inner diameter = 11 mm, outer diameter =
14 mm) that pulled out and pushed back 10 mL of chemostat content
every 5 minutes. It is a quasi-continuous, non-invasive method allow-
ing to detect the regularity of the population cycles. Algal growth
on the wall of the syringe was prevented due to the bidirectional
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movement of the syringe plunger. To automatically store the data, the
extinction measurement devices were connected to a computer.

b.2 tables

Table 2.1: Series 1: Characteristic parameter values and statistics for trails 1

to 6; Gaussian distributed white noise in identical populations.

Trial Ni 〈δA〉 〈δB〉 σ r rp

# (µM L−1) (day−1) (day−1) (day−1)

1 80 0.74 0.73 0.20 0.80 0.71

2 80 0.76 0.71 0.20 0.20 -0.17

3 80 0.75 0.75 0.20 0.60 0.80

4 80 0.72 0.76 0.20 0.00 0.21

5 80 0.75 0.77 0.20 0.40 0.48

6 80 0.72 0.72 0.20 1.00 0.96

Table 2.2: Series 2: Characteristic parameter values and statistics for trails 7

to 12; Gaussian distributed white noise in differing populations.

Trial Ni,A Ni,B 〈δA〉 〈δB〉 σ r rp

# (µM L−1) (µM L−1) (day−1) (day−1) (day−1)

7 80 40 0.76 0.39 0.15 0.80 0.68

8 80 40 0.74 0.43 0.15 0.20 0.07

9 80 40 0.77 0.40 0.15 0.60 0.79

10 80 40 0.76 0.44 0.15 0.00 -0.09

11 80 40 0.75 0.38 0.15 0.40 -0.02

12 80 40 0.77 0.42 0.15 1.00 0.48
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b.3 data processing

Before computing the correlation coefficients, all time series under-
went identical data processing (Fig.1 2.2). First, the logarithmic light
extinction values were normalised to zero mean, denoted as X ′ (Sup-
plementary Fig. 2.2a, light blue). Then, X ′ was smoothed by a local
regression filter that uses weighted linear least squares and a 2

nd

degree polynomial model (’rloess’ filter from Matlab’s curve fitting
toolbox, the span was set to 2% of the data points). This gave the
smoothed time series X (Supplementary Fig. 2.2a, dark blue).

Next, we gently detrended X by subtracting a coarse fit F generated
with a Savitzky-Golay filter. This filter comprises a generalized moving
average with coefficients determined by an unweighted linear least-
squares regression and a 2

nd degree polynomial model (’sgolay’ filter
from Matlab’s curve fitting toolbox, the span was set to 100% of the
data points; Supplementary Fig. 2.2b, green). Detrending was applyed
to account for changes influencing the times series after the start of
a new experimental trial. This gave the detrended times series N ′

(Supplementary Fig. 2.2b, red). Finally, N ′ was discretised according
to the intervals when δ was changed. This gave the discrete times
series N used in the correlations (Fig. 2.2c).

Figure 2.1: Synchronization by Gaussian distributed white noise in two dif-
fering populations (trial 12). Although differing in 〈δ〉 and Ni,
both populations deviated only minor in densities (a) and growth
rates (b).
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Figure 2.2: Data processing example for one chemostat of trial 1; Gaussian
distributed white noise in identical populations. The normalized,
logarithmic light extinction measurements were first smoothed (a)
and then detrended (b). Discretizing of the continuous detrended
time series according to the changing steps of the dilution rate
gave the population time series used for calculating correlations
(c). The growth rate of the population corresponded well with
the normalized dilution rate (d)
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