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Abstract

Deep convection is an essential part of the circulation in the North Atlantic Ocean.
It influences the northward heat transport achieved by the thermohaline circula-
tion. Understanding its stability and variability is therefore necessary for assessing
climatic changes in the area of the North Atlantic.

This thesis aims at improving the conceptual understanding of the stability
and variability of deep convection. Observational data from the Labrador Sea show
phases with and without deep convection. A simple two-box model is fitted to these
data. The results suggest that the Labrador Sea has two coexisting stable states,
one with regular deep convection and one without deep convection. This bistability
arises from a positive salinity feedback that is due to the net freshwater input into
the surface layer. The convecting state can easily become unstable if the mean
forcing shifts to warmer or less saline conditions.

The weather-induced variability of the external forcing is included into the box
model by adding a stochastic forcing term. It turns out that deep convection is
then switched “on” and “off” frequently. The mean residence time in either state is
a measure of its stochastic stability. The stochastic stability depends smoothly on
the forcing parameters, in contrast to the deterministic (non-stochastic) stability
which may change abruptly. The mean and the variance of the stochastic forcing
both have an impact on the frequency of deep convection. For instance, a decline
in convection frequency due to a surface freshening may be compensated for by an
increased heat flux variability.

With a further simplified box model some stochastic stability features are stud-
ied analytically. A new effect is described, called wandering monostability: even if
deep convection is not a stable state due to changed forcing parameters, the stochas-
tic forcing can still trigger convection events frequently. The analytical expressions
explicitly show how wandering monostability and other effects depend on the model
parameters. This dependence is always exponential for the mean residence times,
but for the probability of long nonconvecting phases it is exponential only if this
probability is small. It is to be expected that wandering monostability is relevant
in other parts of the climate system as well.

All in all, the results demonstrate that the stability of deep convection in the
Labrador Sea reacts very sensitively to the forcing. The presence of variability
is crucial for understanding this sensitivity. Small changes in the forcing can al-
ready significantly lower the frequency of deep convection events, which presumably
strongly affects the regional climate.
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Kurzzusammenfassung

Die Tiefenkonvektion ist ein wesentlicher Bestandteil der Zirkulation im Nordat-
lantik. Sie beeinflusst den nordwirtigen Warmetransport der thermohalinen Zir-
kulation. Fin Versténdnis ihrer Stabilitit und Variabilitéit ist daher nétig, um
Klimaverédnderungen im Bereich des Nordatlantiks einschétzen zu kénnen.

Diese Arbeit hat zum Ziel, das konzeptionelle Verstdndnis der Stabilitdt und der
Variabilitit der Tiefenkonvektion zu verbessern. Beobachtungsdaten aus der La-
bradorsee zeigen Phasen mit und ohne Tiefenkonvektion. Ein einfaches Modell mit
zwei Boxen wird an diese Daten angepasst. Das Ergebnis legt nahe, dass die Labra-
dorsee zwei koexistierende stabile Zusténde hat, einen mit regelméfliger Tiefenkon-
vektion und einen ohne Tiefenkonvektion. Diese Bistabilitéit ergibt sich aus einer
positiven Salzgehalts-Riickkopplung, deren Ursache ein Netto-SiiBwassereintrag in
die Deckschicht ist. Der konvektive Zustand kann schnell instabil werden, wenn
der mittlere Antrieb sich hin zu wirmeren oder weniger salzhaltigen Bedingungen
dndert.

Die wetterbedingte Variabilitdt des externen Antriebs wird durch die Addi-
tion eines stochastischen Antriebsterms in das Modell eingebaut. Es zeigt sich,
dass dann die Tiefenkonvektion hiufig an- und wieder ausgeschaltet wird. Die
mittlere Aufenthaltszeit in beiden Zustéinden ist ein Maf} ihrer stochastischen Sta-
bilitéit. Die stochastische Stabilitdt hingt in glatter Weise von den Parametern
des Antriebs ab, im Gegensatz zu der deterministischen (nichtstochastischen) Sta-
bilitéit, die sich abrupt d&ndern kann. Sowohl das Mittel als auch die Varianz des
stochastischen Antriebs beeinflussen die Haufigkeit von Tiefenkonvektion. Eine Ab-
nahme der Konvektionshiufigkeit, als Reaktion auf eine Abnahme des Salzgehalts
an der Oberfliche, kann zum Beispiel durch eine Zunahme der Variabilitét in den
Wirmefliissen kompensiert werden.

Mit einem weiter vereinfachten Box-Modell werden einige Figenschaften der sto-
chastischen Stabilitat analytisch untersucht. Es wird ein neuer Effekt beschrieben,
die wandernde Monostabilitéit: Auch wenn die Tiefenkonvektion aufgrund geénder-
ter Parameter des Antriebs kein stabiler Zustand mehr ist, kann der stochastische
Antrieb immer noch héufig Konvektionsereignisse auslésen. Die analytischen Glei-
chungen zeigen explizit, wie die wandernde Monostabilitét sowie andere Effekte von
den Modellparametern abhéngen. Diese Abhéngigkeit ist fiir die mittleren Aufent-
haltszeiten immer exponentiell, fiir die Wahrscheinlichkeit langer nichtkonvektiver
Phasen dagegen nur dann, wenn diese Wahrscheinlichkeit gering ist. Es ist zu er-
warten, dass wandernde Monostabilitdt auch in anderen Teilen des Klimasystems
eine Rolle spielt.

Insgesamt zeigen die Ergebnisse, dass die Stabilitéit der Tiefenkonvektion in der
Labradorsee sehr empfindlich auf den Antrieb reagiert. Die Rolle der Variabilitit
ist entscheidend fiir ein Versténdnis dieser Empfindlichkeit. Kleine Anderungen im
Antrieb konnen bereits die Hiufigkeit von Tiefenkonvektionsereignissen deutlich
mindern, was sich vermutlich stark auf das regionale Klima auswirkt.
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Chapter 1

Introduction

1.1 Deep convection as a part of the global ocean
circulation

Most of the processes that make up the ocean circulation are continuous
over long periods of time and extend over large parts of the oceans. The
surface fluxes of heat and freshwater cause the deep overturning circulation
known as the thermohaline circulation (THC). Eddies that form in regions of
strong horizontal density gradients mix the waters laterally. The momentum
transferred by the winds affects the upper layer of the ocean: it induces a
shallow vertical mixing, and it drives a large-scale advective circulation.

Open-ocean deep convection differs from all those processes. Deep con-
vection events last but a few days and occur only in a few small areas. These
areas are marked by a particularly weak vertical density gradient, in con-
trast to the strong vertical density stratification that is found throughout
most of the world ocean. Deep convection happens when strong surface
forcing, like rapid cooling in winter, is capable of increasing the density in
the upper layer to a point where the vertical gradient vanishes. In a few
days, the convecting water column is then vigorously mixed throughout its
volume of, typically, some ten kilometres in diameter and about two kilo-
metres depth. A comprehensive review of the physics and phenomenology
of deep convection was given by Marshall and Schott (1999).

Why the interest in deep convection? In spite of its intermittent and
scarce appearance, it is a crucial part of the global circulation for two rea-
sons: it triggers the deep-water formation that is an essential part of the
THC, and it is a bottle-neck for the global heat fluxes in the ocean.

Concerning the deep-water formation first, one finds that deep convec-
tion occurs in those areas that have the highest surface density of the world
ocean. In the North Atlantic, these are the Greenland-Iceland-Norwegian
Sea and the central Labrador Sea (Fig. 1.1). After a deep convection event,
the very dense, convectively mixed water slowly sinks to depth and entrains
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Figure 1.1: Map of the central Labrador Sea between the southern tip of
Greenland (top margin) and Newfoundland (lower left corner). Arrows show
the mean circulation (neglecting eddies): white for surface currents, dashed
and black for intermediate depth currents. In contrast to the strong boundary
currents there is only a very weak mean velocity in the interior Labrador Sea.
The position of Ocean Weather Ship Bravo referred to in chapter 2 is denoted
by “B” (in the hatched deep convection area). The map is from Marshall
and Schott (1999).

the neighbouring waters. The horizontal density gradient between these
dense waters in the Northern Atlantic and the lighter waters at lower lati-
tudes and in the Southern Atlantic drives the THC. The dense waters flow
southwards at depth, and at the same time there is a northward flow of
warmer and lighter surface waters. This flow transports huge amounts of
heat northwards (Roemmich and Wunsch, 1985; Ganachaud and Wunsch,
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2000), an indispensable contribution to the relatively mild climate in Europe
(Rahmstorf and Ganopolski, 1999).

Concerning the role of deep convection for the ocean’s heat budget, one
observes that during deep convection events the deep ocean loses enormous
amounts of heat to the atmosphere in short periods of time. This rapid
small-scale heat loss balances the slow heat gain of the deep ocean due to
various large-scale mixing processes (Kunze and Sandford, 1996; Munk and
Wunsch, 1998).

Apart from being a spectacular physical process of its own, the twofold
relevance of deep convection for the global ocean circulation calls for a deep-
ened understanding of its stability and variability. The present work con-
tributes to this understanding by addressing three guiding questions:

Guiding Questions

GQ1: How sensitive is deep convection in the Labrador Sea to
changes in climate?

GQ2: Defining “stability” as “sensitivity to perturbations” —
what role does external climate variability play in determining
the stability of deep convection?

GQ3: How can this role be explained theoretically in a simple
conceptual way?

The following sections of this Introduction sketch our strategy to tackle
these questions, and they review the relevant and recent research.

1.2 Observations of open-ocean deep convection
and its variability

Direct observations of deep convection events are rare due to their small
extent in space and time. However, the cold and dense water mass that deep
convection leaves behind (Lazier, 1973; Send and Marshall, 1995) is easily
detectable many months later. The data from the past decades (Lazier,
1980, 1988; Dickson et al., 1988, 1996; Belkin et al., 1998; Khatiwala et al.,
2002) display a great interannual to decadal variability in the occurrence
and depth of deep convection events in the Labrador Sea. Phases with deep
convection occurring regularly each winter alternate with phases where deep
convection is absent. Our focus is on the Labrador Sea because much less
data are available from other deep convection sites.

The observations suggest that deep convection is very sensitive to
changes in the forcing of the upper layer of the water column. The main
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contributors to the buoyancy forcing of the interior Labrador Sea are the
local surface flux of heat and the lateral freshwater transport (Marshall and
Schott, 1999). The local surface heat fluxes are determined by the weather
conditions (Lab Sea Group, 1998; Lilly et al., 1999). Thus, the interannual
variability of the strength of deep convection is strongly correlated with the
leading interannual variability mode of the atmosphere over the North At-
lantic, the North Atlantic Oscillation (Dickson et al., 1996). The freshwater
forcing of the interior Labrador Sea operates in two steps: freshwater from
sea-ice melt and runoff is advected by the boundary currents (Fig. 1.1), and
then lateral eddy mixing transports the freshwater into the central Labrador
Sea (Dickson et al., 1988, 1996; Houghton and Visbeck, 2002). The sensi-
tivity of deep convection is also inferred from its apparent absence from the
Labrador Sea under different climatic conditions in the past (Hillaire-Marcel
et al., 2001).

A prominent feature of the variability in the North Atlantic are Great
Salinity Anomalies (GSAs). During a GSA a pool of anomalously fresh
water travels through the North Atlantic (Dickson et al., 1988; Belkin et al.,
1998). The arrival of such a freshwater anomaly weakens or even stops deep
convection in the Labrador Sea. Particularly well-documented is the GSA
that suppressed deep convection in the years 1969-1971 (Lazier, 1980).

It is the first step of our research strategy to develop a conceptual ap-
proach that is directly based on Lazier’s observations. The mean vertical
profile in the Labrador Sea suggests a two-box approach. The parameters
of the two-box model are estimated from a fit to Lazier’s data. The model
is then successful in reproducing the observed evolution (chapter 2), partic-
ularly the switches between the convecting and the nonconvecting phases.

Analyses of the hydrographic and meteorological observations (Dickson
et al., 1996; Lilly et al., 1999) revealed that several processes act together to
stop convection: apart from the lateral freshwater flux, these are weak local
heat flux forcing at the surface, weak cyclonic wind stress (too weak to de-
crease the density stratification of the water column), and a local amplifying
feedback, the positive salinity feedback (Fig. 1.2). This feedback arises from
the annual mean freshwater input into the upper layer. As long as deep
convection occurs regularly every winter, the freshwater input is removed
by the mixing with the more saline deep water mass. If deep convection is
however suppressed, maybe in an anomalously warm winter, the freshwater
accumulates. The surface layer becomes less and less dense, strengthening
the vertical density gradient. The longer the absence of deep convection
lasts, the stronger a forcing must be that can overcome the vertical density
gradient, restart deep convection, and mix the water column again.

It is not fully settled yet how the heat and freshwater forcing interact
with the positive salinity feedback in triggering and maintaining a phase of
absent deep convection. Previous studies (Dickson et al., 1996; Lilly et al.,
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Figure 1.2: The positive salinity feedback.

1999) only assume a passive ocean that merely reacts to the external forcing,
where the local positive salinity feedback plays a minor role.

The positive salinity feedback is easily captured by our two-box model
through an appropriate choice of the boundary conditions. Thus, our con-
ceptual model is an ideal tool to formulate our main hypothesis:

Main Hypothesis

Deep convection is interrupted by a short anomaly in the surface
forcing, either in the heat fluxes or in the lateral freshwater fluxes.
After such an anomaly the local positive salinity feedback actively
works to enhance the vertical density gradient further.

The interplay of the forcing anomalies and the positive salinity feedback
proposes a mechanism for the observed switches between convecting and
nonconvecting phases. Moreover it explains why deep convection in the
Labrador Sea is so sensitive to the variability of different forcings. With the
model parameters estimated from the observational data we can quantify
this sensitivity (ch. 2; also Kuhlbrodt et al. (2001)), which is one part of the
answer to the first guiding question (GQ1).

To assume a positive salinity feedback being active in the phases of absent
deep convection contrasts with the conclusions of Dickson et al. (1996) and
Lilly et al. (1999). Our results however will show that this assumption is
well justified. We stress that in a very recent observational study (Houghton
and Visbeck, 2002) the positive salinity feedback was employed to close the
Labrador Sea freshwater budget.
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1.3 The stability of deep convection in models

The concept of the stability of a climate or model state is crucial for this
study. We call a state stable under two conditions: (i) it is an equilibrium
state, meaning that it does not change in time (apart from the seasonal
cycle), and (ii), if small perturbations are applied, they are not amplified, but
eventually the equilibrium state is reached again. This stability definition
is sufficient for the first parts of the study (ch. 2). Later on, we will add a
quantitative aspect, asking how strong the perturbations must be to leave
the stable state (ch. 3). A mathematically more rigorous definition will be
provided in chapter 4. Note that the dynamic stability we deal with here is
not to be confused with the static stability of a stratified fluid.

How are deep convection and its stability represented in models? High-
resolution, three-dimensional ocean general circulation models (OGCMs)
capture the large-scale features of deep convection. For instance, the inten-
sity and location of deep convection influence the northward heat transport
of the THC (Rahmstorf, 1995a; Hakkinen, 1999) and the total meridional
overturning (Rahmstorf, 1995c; Boning et al., 1996). However, due to their
small spatial extent and their short duration the convection events them-
selves are not resolved in most of the OGCMs. For this reason they have to
be parameterized.

Vertical mixing depends in a highly nonlinear way on the vertical den-
sity gradient. It is very weak for a strong vertical density gradient, but if
this density gradient approaches zero, the vertical mixing rapidly intensifies,
becoming the vigorous convective mixing. In most models this nonlinearity
is parameterized in its step-function limit, which is dubbed convective ad-
justment (CA). Wherever there is a grid box with denser water overlying a
grid box with lighter water, the CA schemes (Marotzke, 1991; Rahmstorf,
1993; Klinger et al., 1996) remove this static instability in the water column
by completely mixing the waters in such vertically adjacent boxes. These
schemes have some drawbacks: for instance, the convective mixing may be
too intense (Lilly et al., 1999), or grid-scale instabilities may occur (Cessi,
1996b; Molemaker and Dijkstra, 2000). Nevertheless, given the need to min-
imize computing time for OGCMs, CA proved a sufficient parameterization
for many applications.

A simple conceptual model of deep convection consists of two boxes, one
for the permanently mixed surface layer and one for the deep ocean (We-
lander, 1982). It includes different boundary conditions for the surface fluxes
of heat and freshwater. Convective mixing is modeled by CA. Under bound-
ary conditions that mimic the positive salinity feedback, the nonlinearity of
the convective mixing may lead to a bistability of the water column where
convection can be either permanently “on” or permanently “off”, depend-
ing only on the initial condition. The point of zero density stratification is
then a threshold that separates two model regimes, a convecting one and a



Introduction 7

nonconvecting one. They correspond to the phases of regular or absent deep
convection seen in the observational data.

Using Welander’s box model, Lenderink and Haarsma (1994, 1996)
showed that large regions of a simple model ocean are indeed bistable in
this sense. With small salinity perturbations at grid points in those regions,
convection can be switched “off” or “on”. Often this leads to convection
switches in neighbouring grid points, and eventually the whole circulation
pattern of the thermohaline overturning reorganizes. In this respect the
THC exhibits multistability: small anomalies applied under constant bound-
ary conditions make the model jump between different circulation states.
Rahmstorf (1994, 1995c), Pierce et al. (1995), and Hirschi et al. (1999)
studied the same kind of multistability in idealized OGCMs. It appears as
well in an OGCM with realistic topography (Rahmstorf, 1995a,b). Convec-
tive multistability is also a function of the spatial resolution of an OGCM
and its convection parameterization (Cessi and Young, 1996; Vellinga, 1998;
Molemaker and Dijkstra, 2000).

From all those studies it is obvious that the switching mechanism of our
main hypothesis is relevant in OGCMs and in box models. We want to
address the open question whether it operates in the real ocean, too (ch. 2).
The box model we use is based on Rahmstorf’s (2001) extended version of
Welander’s (1982) model. We will show that the Labrador Sea is indeed
bistable with respect to deep convection, also in the presence of the seasonal
cycle.

Following our main hypothesis, we apply single anomalies in the forcing
to make the model switch between the two states. Our results demonstrate
that with this mechanism the model quite satisfyingly reproduces the two
convection switches seen in Lazier’s (1980) data. This renders our main
hypothesis fairly plausible, and lays a basis for the further work.

The next issue addressed in chapter 2 is the sensitivity of both the con-
vecting and the nonconvecting state to changes in the mean heat and fresh-
water fluxes. We will show that small changes in these fluxes may destabilize
the convecting state. This high sensitivity is one part of the answer to the
first guiding question (GQ1).

1.4 Stability in the presence of variability

The variability of the surface weather forcing and the freshwater fluxes
strongly influence the convective activity in the Labrador Sea (section 1.2).
How to include this external variability in the box model in a possibly simple
way? In order to address GQ2 we need to extend our model. So far it has
been deterministic: apart from single, arbitrary anomalies the forcing terms
do not include any variability.
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What difference does the inclusion of climate variability make in GCMs?
In general, OGCMs have a climatological atmospheric boundary condition.
They are designed to model a mean circulation state, but not the variability
of the circulation. Having studied the high sensitivity of the deep water
formation areas in their OGCMs, Rahmstorf (1995c) and Lenderink and
Haarsma (1996) already pointed out the need to study the convective multi-
stability under the influence of the seasonal cycle and of stochastic forcing.

In contrast to OGCMs, coupled GCMs (CGCMs) include a fully dynami-
cal, variable atmosphere. Some CGCMs actually show how deep convection
in the Labrador Sea switches “on” and “off” (Tett et al. (1997); P. Wu,
pers. comm.), and how such convective variability is linked with variability
in the overall THC overturning (Delworth et al., 1993; Cooper and Gordon,
2002). The convective variability is obviously part of the equilibrium climate
state in those models.

In some global warming runs conducted with CGCMs one sees that deep
convection in the Labrador Sea strongly weakens in the early 21st century
(Flato and Boer, 2001) or even completely ceases (Wood et al., 1999). Such
a final shutdown of deep convection goes along with strong regional climate
changes: the atmosphere lacks the convective heat release from the ocean
and cools. Hence, the understanding of the stability of deep convection in
the present climate is essential for an assessment of possible future climatic
changes in the North Atlantic area.

A simple conceptual way to introduce climate variability in the box
model is to add Gaussian noise to the forcing terms in the model equa-
tions. This so-called stochastic climate model was proposed by Hasselmann
(1976) and applied to sea-surface temperatures by Frankignoul and Hassel-
mann (1977). Hall and Manabe (1997) showed that it works as well for sea
surface salinities. Hasselmann’s approach is explained in detail in chapter
3. Since its early days, stochastic forcing has been used in many studies to
drive OGCMs (Weisse et al., 1994; Skagseth and Mork, 1998), climate mod-
els of intermediate complexity (Mysak et al., 1993; Aeberhardt et al., 2000;
Knutti and Stocker, 2002; Ganopolski and Rahmstorf, 2002), and ocean box
models (Stommel and Young, 1993; Cessi, 1994, 1996a; Griffies and Tziper-
man, 1995; Pierce et al., 1995; Lohmann and Schneider, 1999; Timmermann
and Lohmann, 2000; Monahan, 2002).

Here we use a stochastic term to mimic weather variability (ch. 3), and we
model freshwater anomalies stochastically, too (ch. 4), taking up an early
suggestion of Dickson et al. (1988). The basic concepts of Hasselmann’s
(1976) stochastic climate model and Welander’s (1982) two-box model are
thus combined to a stochastic deep convection box model.

In contrast to the deterministic model used in chapter 2, anomalies are
now always present. In the bistable domain this leads to frequent jumps
between the two model states of convection occurring regularly (“on”) or
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not at all (“off”). This provides a simple mechanism of how the convection
“flickering” seen in CGCMs might come about.

It will turn out that we need a different definition of stability if stochas-
tic variability is present. The theory of random dynamical systems (Freidlin
and Wentzell, 1998) provides that definition. The average time that the
model trajectory stays in one state before it jumps away again, the mean
residence time, is a convenient measure of stochastic stability. In this way,
the variability is exploited to measure the stability. We use the mean resi-
dence time to quantitatively compare the stability of the convecting and the
nonconvecting state. This concept of quantitative stability does not exist in
the deterministic picture. Thus there are two approaches to answer GQ1:
the deterministic approach (ch. 2), and the stochastic approach (ch. 3).

We will see that the frequent jumps between the model states occur as
well if one of the two model states is not stable. Changing a forcing param-
eter may lead to an abrupt stability loss in the deterministic model, but in
the stochastic model this induces only a smooth decrease in the frequency
of jumps. This is the main answer to GQ2 (ch. 3; see also Kuhlbrodt et al.
(2001)): in the stochastic model that includes climate variability, switches
between convecting and nonconvecting phases happen regularly. The pa-
rameters of the deterministic model determine only how often these jumps
occur. In fact, similar results have been obtained with a box model of the
THC (Cessi, 1994) and with a box model of the Welander type mimicking os-
cillatory states of an OGCM (Cessi, 1996a), but yet no study has addressed
the bistability of deep convection derived from observations.

Another issue dealt with in chapter 3 are the distributions of the resi-
dence times. They reveal the influence of the positive salinity feedback in
the stochastic model.

In order to obtain reliable statistics of the residence times many long
model runs are needed. Working with a simple model is a major advantage
here because a GCM is computationally far too expensive for this purpose.
Another major advantage of simple models is that only the most relevant
processes are included. While a simple model is open to thorough physical
understanding, it is often difficult to isolate the main processes and feedbacks
in a GCM. Since our focus is on the conceptual and theoretical understand-
ing, studies with more comprehensive models (like two-dimensional models
of the Labrador Sea (Visbeck et al., 1997; Khatiwala and Visbeck, 2000), or
OGCMs) have been left for future research.

1.5 Understanding stochastic stability

Seeing the pronounced differences between deterministic and stochastic sta-
bility, it is our aim to explain them in the simplest possible way. For this
purpose we want to apply the existing theory on simple stochastic dynami-
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cal systems (see the textbooks of Freidlin and Wentzell (1998) and Gardiner
(2002)). In particular, there is a large body of work on mean residence times
that has been employed in many branches of physics (Hanggi et al., 1990).
Freidlin and Wentzell’s concept of stochastic stability, outlined in chapter 4,
relies on mean residence times. If we want to understand stochastic stability
analytically in our model, we need a strongly simplified version.

In contrast to the familiar non-stochastic (or deterministic) stability the-
ory, the theory of stochastic stability has not often been used in ocean
dynamics. The papers of Cessi (1994, 1996a) have already been men-
tioned. Timmermann and Lohmann (2000) suggested that multiplicative
noise (whose strength is a function of the variables) may excite additional
stochastically stable model states, but this suggestion was erroneous (Mon-
ahan et al., 2002). Very recently, Monahan (2002) worked out a number
of differences between deterministic and stochastic stability using a bistable
THC box model.

Climate change may manifest itself as a changing preference of specific
climate regimes (Houghton et al., 2001). A recently observed trend to strong
deep convection in the Labrador Sea (Dickson et al., 2002) might be inter-
preted in this way. Following the idea of Palmer (1999), Monahan (2002) as
well as Khatiwala et al. (2001) showed that from simple stochastic bistable
models one can learn how this regime preference works, and on which pa-
rameters it depends. Yet, there is still need for a deeper conceptual un-
derstanding of the stability of climate regimes. In addressing the third of
our guiding questions (GQ3) we strive for contributing to this fundamental
issue.

It will turn out that a simple stochastic model of two potential wells
separated by the convection threshold is sufficient to capture the stability
properties of the two-box model (ch. 4). This strongly simplified model
still has the main physical ingredients: the convection threshold mimics the
nonlinearity of the vertical mixing, and by giving the two wells differing sizes
the positive salinity feedback is represented.

With this simplest possible model of deep convection we can see analyt-
ically how the residence times depend on the climate parameters. It is thus
the proper tool to address GQ3. In addition, by analyzing the distribution
of the residence times we can state the results of Khatiwala et al. (2001)
more precisely.

We will show in chapter 4 that the stochastic forcing has two contrasting
effects on the stability. On the one hand, the stochastic model often occupies
only one of two potential wells, as described by Monahan (2002). On the
other hand, if only the well of the nonconvecting state is present, convection
events may still be triggered frequently. We will call this new effect wan-
dering monostability, because the model trajectory wanders through both
model regimes even if only the nonconvecting state is stable. Eventually this
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might be the core process behind the deep convection variability observed
in the Labrador Sea.

In the subsequent chapter 2 the observational data are analyzed, and
with the two-box model the stability of deep convection is studied (GQ1).
The crucial effect of variability on the stability is explored in chapter 3
(GQ1, GQ2), along with some quantitative aspects of the variability. With
the theoretical underpinning developed in chapter 4 that effect is explained
in an analytical way (GQ3). Finally, the summarizing chapter 5 gives the
overall view on the results and points out some lines of future research.
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Chapter 2

Deterministic stability
analysis of Labrador Sea
deep convection

2.1 Overview

In this chapter a deterministic (non-stochastic) approach to model deep
convection in a conceptual way is followed. A detailed analysis of observa-
tional data from one of the sites where deep convection occurs in the North
Atlantic, namely the Labrador Sea (section 2.2), highlights the differences
between the behaviour of the surface mixed layer and the deep interior of the
ocean. This is the motivation for developing a conceptual two-box model
(section 2.3). Since the variables are temperature 7" and salinity S in each of
the 2 boxes, it is dubbed the 2TS model. Previous work with similar models
is extended by fully including the seasonal cycle in the surface forcing. This
extension opens up the possibility to estimate the model parameters from
the observational data (section 2.4). The observations show marked differ-
ences between periods with and without deep convection. This is reflected
in the box model by two possible stable states: one convecting and one non-
convecting. The two states overlap in the parameter space; this bistability is
studied in section 2.5. In addition, we are able to locate Labrador Sea deep
convection — as represented by the observations — in a stability diagram,
which allows some inferences regarding its stability in a changing climate.
These are found in the concluding section 2.6.

2.2 Observational data from OWS Bravo

Long time series of hydrographic data that show clear signs of deep convec-
tion events are rare. The data from Ocean Weather Ship (OWS) Bravo are
exceptional due to their location and their sampling rate. OWS Bravo was

13



14 Deterministic stability analysis of Labrador Sea deep convection

located in the central Labrador Sea close to the area of the deepest con-
vection events (Fig. 1.1). From January 1964 through September 1974 the
sampling rate of the data varied between six hours and two months. This
enables the derivation of a time series of monthly means that clearly reflects
the winter open ocean deep convection events. Other time series that extend
longer in time (e.g. by the Canadian Department of Fisheries and Oceans,
http://www.mar.dfo-mpo.gc.ca/science/ocean/woce/welcome.html) do not
resolve the seasonal cycle in most of the years. Hence, a model fit to the
data as carried out in section 2.4 would not be possible.

The original data (Lazier, 1980) were interpolated to standard depth
levels. Potential temperature (6) and potential density (og) were computed
with the standard formulae (Fofonoff and Millard Jr., 1984). To obtain
monthly mean values, the data of each month were binned and averaged at
each depth level. Missing monthly means were interpolated linearly. Subse-
quently, the data were averaged over the upper layer (0-50 m) and the deep
layer (200-2000 m). The intermediate level (50-200 m) was left out because
on the one hand this layer still shows substantial seasonal variations, but
on the other hand it is not part of the surface mixed layer throughout the
year. The next chapters will show that our results do not depend on the
exact layer depths.

The resulting time series of monthly means are given in Fig. 2.1. The
winters 1969-1971 show the impact of the Great Salinity Anomaly (GSA,
described by Dickson et al. (1988)) that suppressed deep convection in the
Labrador Sea by the advection of a large freshwater anomaly. In conse-
quence, temperatures and salinities follow different trends in both layers:
cooling and freshening in the upper layer lead to less dense waters, while
the deep ocean is becoming slightly warmer and saltier. The upper layer
values show a strong seasonal cycle. A small potential density difference
between the two layers indicates deep convection. For a number of reasons,
this difference is not exactly zero: the mixing of the layers occurs only dur-
ing a few days, but the data are monthly averaged; the mixing does not
occur necessarily exactly at the ship site and throughout the whole water
column. In some winters the upper layer overshoots in temperature: to com-
pensate for the deep ocean being saltier than the surface waters, the upper
layer must become colder than the deep ocean before the vertical density
gradient vanishes and deep convection starts.

In order to consider seasonal and interannual variability separately, we
first computed the mean seasonal cycle of the time series (Fig. 2.2). In the
upper layer, the temperature cycle has its minimum in February and its
maximum in September, with an amplitude of 2.2°C. The salinity cycle lags
by about one month: the cycle, with an amplitude of 0.13 psu, peaks in
March and reaches its minimum in October. The og cycle lies in between
with an amplitude of 0.29 kg m™3. The deep layer seasonal cycles (not
shown) are almost two orders of magnitude smaller. The deep layer is coldest
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Figure 2.1: Time series of monthly means obtained from the OWS Bravo

data set: potential temperature (a), salinity (b), and potential density (c) of

the upper layer (dashed) and the deep layer (dots). Interpolated values are
indicated by circles. The large minimum density difference in the winters
from 1969 to 1971 is an indication for the absence of deep convection, which

led to the cooling and freshening of the upper layer.
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Figure 2.2: Mean seasonal cycle of the upper layer (0-50 m) from OWS

Bravo data for potential temperature (solid), salinity (dashed) and potential
density (dash-dotted).

and densest in April after the convection season. Afterwards there is a
warming of 0.12°C and a density decrease of 0.015 kg m~3, both of which
reach their extremum in November /December. Deep layer salinity variations
are very small.

The temperature cycle in the upper layer is mostly forced by fluxes of la-
tent and sensible heat in winter and short-wave radiation in summer (Smith
and Dobson, 1984). Various freshwater sources of inexactly known strength
(Canadian runoff, melt-water, local precipitation, and low-salinity inflow
from the Arctic Ocean) account for the salinity cycle (Lilly et al., 1999).
Results from recent analyses that make use of several tracers (Khatiwala
et al., 1999, 2002) try to quantify those different freshwater sources. The
role of precipitation is apparently not large. Advected sea-ice that melts
locally does not contribute strongly either. The main source of freshwater
in the central Labrador Sea is through lateral eddy mixing from the bound-
ary currents. While the seasonal cycle is mainly caused by sea-ice melt
freshwater that is advected with the boundary currents, the net freshwater
transport can be attributed to Arctic runoff being advected in the same way.

Next, we subtracted the seasonal cycle from each time series in Fig. 2.1.
The resulting time series (Fig. 2.3) show the variability excluding the sea-
sonal cycle. Three distinct phases stand out, marked by either the occur-
rence or the absence of convection. In the first convective phase (Phase 1),
from January 1964 to March 1968, the values in the upper box fluctuate
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with hardly any interannual trend. However, there are trends in the deep
layer. Time series of single depth levels reveal that these trends are more
pronounced in deeper layers. With maximum convection depth varying from
year to year, the deeper layers sometimes remain untouched and accumulate
heat over more than one year.

28.8r 7 T T T T T T T T T T
35.2} a)
2861 6f :
284t 3O 5 ]
& o
£282F 348f = 4 . 1
2 = 3 oo //»\”\/\\
> 28} §346, g 3 \ ‘N \ .
2 27 2 TINEN ERNTAT
So78} = g o Py
£ n344r B
8 c
So76¢ g1
g g
342}
27.4} ot
272t 34r -1
274 338l - :
64 65
279 3498 38
2788 34961 36
34.941
27.861 3.4
P 3492t 9
Eovsat o 32 \
2 = 349 = I
- 2 [ LW 1o (| v 1
gor82s g 3¢ M s o ey
2% »34880 2 VT g \ '
[ = £ \ | i | (. |
° = 8ogl | \ Iy AR
S 2780 3a86; T | UL
= IS I -
2 226} \
§ 2778} 3484t ° )
\ I
L 24K '\ A i 1
2776 3482 N, ST W LTRRE
BRI \, - | VAR NLATEE A
348t 22f S L A
27.74} i | v -
L 3478l

64 65 66 67 68 69 70 71 72 73 74 75
Year
Figure 2.3: Time series of monthly means with subtracted seasonal cycle for

the upper layer (a) and the deep layer (b) of potential temperature (solid),
salinity (dashed) and potential density (dash-dotted).

The phase from April 1968 to September 1971 (Phase 2) is characterized
by the passage of the GSA through the Labrador Sea, suppressing convec-
tion. Phase 2 begins after the last convection event and ends with the upper
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Quantity 01 S1 00,1

Trend (yr—!) || —0.28°C | —0.11 psu —0.060 kg m~3
Quantity 0 So 00,2

Trend (yr~!) || —0.070°C | —0.0072 psu | —0.0013 kg m~3

Table 2.1: Trends of potential temperature, salinity and potential density
in the upper layer (index 1) and the deep layer (index 2) during the GSA
(04/68 to 09/71) from the time series without seasonal cycle depicted in
Figure 2.3.

layer salinity starting to rise again. Annual trends of all quantities during
Phase 2 are given in Table 2.1. Starting in 1968, a large amount of fresh
surface water, advected by the Greenland current and then laterally mixed
into the central Labrador Sea (Dickson et al., 1988), lowers the salinity in
the upper layer. This suppresses deep convection; the absence of convec-
tion leads to further cooling and freshening and a density decrease in the
upper layer. While the cooling comes to a halt already in early 1970, the
strong freshening continues until late 1971. Our view on the role of the
GSA freshwater anomaly in the Labrador Sea is different from the view of
Dickson et al. (1988) and Lilly et al. (1999). While they assume that the
freshwater anomaly lasts four years and thus inhibits convection, it is our
hypothesis that a short anomaly suppresses convection in one winter, and
that the evolution in the following years is due to the local positive salinity
feedback.

In the deep layer, the waters become slightly warmer and more saline
during Phase 2, mostly by lateral mixing from adjacent water masses. Po-
tential density in the deep layer shows a hardly significant decreasing trend
that is clearly smaller than in Phase 1, as the warming and salinification
partly compensate in their effect on density.

Phase 3 is again characterized by annual convection events. Starting in
October 1971, strong wind mixing of the surface mixed layer caused it to
deepen and to entrain salt from below (Dickson et al., 1996). Additional
strong cooling then achieved a vigorous deep convection event in early 1972.
Afterwards convection occurs again every year until the end of the time
series. The upper layer returns to more saline and dense conditions but
remains cool, in a state clearly different from Phase 1. Possibly this is a
consequence of the deep convection chimney being farther away from the
weather ship now; the larger winter gap between upper and lower layer
salinity (compared to Phase 1, see Fig. 2.1 b) suggests this. The deep layer
jumps back to a colder and less saline state, and a further cooling and
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freshening trend sets in, albeit with little effect on density.

In summary, the OWS Bravo data show a transition from a state of
annual convection to stable stratification and back to convection. These
transitions are at the core of our understanding of the stability of deep
convection that is presented in this work.

2.3 The two-box model of deep convection

The analysis of the OWS Bravo data motivates a two-box model of a poten-
tially convective water column in the open Labrador Sea. Welander (1982)
had the basic idea fur such a model, and it was further developed by Rahm-
storf (2001) and Kuhlbrodt et al. (2001). The model is designed to study
the interplay of the slowly changing fluxes caused by advection and eddy
diffusion with the short and vigorous convective mixing events. As sketched
in Fig. 2.4, the model consists of two stacked boxes. A shallow upper box
(index 1) represents the surface layer of the ocean that is well-mixed through-
out the year. A large deep box (index 2) represents the waters below the
seasonal thermocline that are involved in deep convective mixing. The box
depths are assumed to be constant, their ratio being termed A*. In this
way, effects like variable convection depth or mixed layer deepening are not
included. The advantage of keeping the model so simple is the possibility of
solving the model equations analytically (section 2.5).

T S4* Upper box

T T18 | npio
, Mixing

To* Sy* Deep box

Figure 2.4: Sketch of the 2TS box model with 2 active boxes and four vari-
ables (temperature T and salinity S in each boz). Solid arrows denote con-
tinuous processes like eddy mixing and advection, while the broken arrow
represents the non-continuous convective adjustment.
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The variables of the two-box model are the temperatures T4, T5 and the
salinities S7, So in both boxes — hence it is called the 2TS model. These
four variables are relaxed towards prescribed relaxation temperatures and
salinities 17", ST, T5, S5. This relaxation represents exchange processes with
the surrounding waters. Since the water column has open boundaries every-
where, it cannot be considered as a closed system, and the model equations
cannot be derived from conservation laws.

The relaxation includes various processes for the single variables. The
upper box temperature T3 is coupled strongly to the atmosphere through
surface heat fluxes. The upper box salinity S is partly determined by the
freshwater flux (evaporation minus precipitation) balance at the sea surface,
without a feedback to the atmosphere. This fundamental difference is ac-
counted for by using two different time scales 717 and 115 for the restoring.
In addition, this restoring includes heat and salt exchanges with the sur-
rounding waters, mostly by lateral eddy mixing. The deep box temperature
T5 and salinity S5 are assumed to be determined by the eddy transfer fluxes
at depth, which motivates a common restoring time scale 7. Rahmstorf
(2001) further refined the model by adding a seasonal cycle with amplitude
Ar to the upper box relaxation temperature 7} to include seasonality and
achieve a short winter convection period instead of year-round convection,
in accordance with the observations. To facilitate comparison with observa-
tions, and given the pronounced seasonal cycle in upper layer salinity in the
data, Kuhlbrodt et al. (2001) added a seasonal cycle (with amplitude Ag
and zero mean) to the upper box salinity forcing as well. A phase shift v
between the temperature and salinity cycles is introduced as an adjustable
parameter. Finally, keeping the dimensions of the variables clarifies the
physical meaning of the parameters. Time is in units of 1 year. The full
equation set now reads:

% - m(ﬂ ~T1) + % (T7 — Apcos(2nt) = T1)  (2.1)
% - _h*TiAP) (So— 81) + % (ST + As cos(2mt + ) — 1) (2.2)
% = @(ﬂ —15) + %(Tz* —Ty) (2:3)
% = @(51 —S2) + %(55 — S2). (24)

In each of the equations the first term on the right hand side represents
convective vertical mixing, and the second term the horizontal and surface
heat/salt flux. The crucial difference between the comparatively slow advec-
tive and diffusive fluxes on the one hand and the quick and short convection
events on the other hand is reflected in the fact that the four relaxation
temperatures and salinities, the three relaxation time-scales, the two ampli-
tudes and the phase shift are model parameters (see Table 2.2 for a detailed
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list), but that the time scale of vertical convective mixing 7. is a strongly
nonlinear function of the model variables through the density difference

Ap=p1—p2=—a(ly —T3) + B(S1 — S2). (2.5)

Here, a and § are the thermal and haline expansion coefficients of the
linearized equation of state of seawater (Gill, 1982). Carrying out the
linearization around 4°C and 35 psu yields @ = 0.105 kg m™ K~! and
B =0.796 kg m~3 psu~l.

For stable stratification (Ap < 0) the vertical mixing is very weak, so 7.
has a large value. In the case of unstable stratification (Ap > 0) convection
starts, i.e., vigorous vertical mixing with a time scale 7. of the order of days.
Since this value of 7. is much smaller than the other involved time scales, we
assume 7. — 0 and use the common parameterization for deep convection,
known as convective adjustment (Rahmstorf, 1993; Klinger et al., 1996).
The water column is checked at each time step for hydrostatic stability (we
used dt = 2 days). Nothing is done in case of stable stratification, but any
occurring instability is instantaneously removed by complete mixing. Thus
the numerical integration scheme has two parts.

1. Integrate forward (2.1) to (2.4) one time step without the vertical

mixing terms. If we start at time ¢, this gives preliminary values Tf“,
Sitl Titl SitL for the variables at time i + 1.

2. Apply the convective adjustment scheme to obtain the final values
Tt St Tt SitL of the variables. If Ap < 0, the final values
are identical to the preliminary ones; if Ap > 0, the two columns are
mixed:

T =T = BT 4+ (1= RT3 and
Sitt =St = prSITh 4 (1 - RY)SET. (2.6)

The convective adjustment (CA) even enhances the nonlinearity 7.(Ap),
resulting in a step function. Although this strong nonlinearity leads to
numerical problems in OGCMs (Cessi, 1994; Molemaker and Dijkstra, 2000;
Lind et al., 2002; Titz, 2002), CA is widely used because more sophisticated
parameterizations are often too expensive in terms of computing time. Here,
CA is chosen since it keeps the model simple, allowing analytical solutions.
Experiments with a continuous function 7.(Ap) (e.g. a hyperbolic tangent)
yielded very similar results. However, to obtain realistic model behaviour,
T.(Ap) must be very steep close to Ap = 0. This renders the equation system
rather stiff, bringing up the need for special algorithms with variable time
step for the numerical integration. Those algorithms have two consequences
that are negative in the context of our study: first, computing time increases
considerably, cancelling out an advantage of the simple model; second, a
variable time step is hard to reconcile with algorithms for the solution of
stochastic differential equations, which we need in chapters 3 and 4.
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2.4 Fitting the two-box model to the OWS Bravo
data

We adjust the model parameters (see Table 2.2 for a complete list) to find
the best fit of the model to the OWS Bravo data, and use a least squares
fit procedure for this purpose. We define a cost function K as the sum of
the quadratic distances of each monthly averaged model variable time series
Ty, S1, To, S (weighted by the thermal and haline expansion coefficients to
have a common density unit) to the observed values. The optimal parameter
set minimizes K. As discussed above, the OWS Bravo data show two dif-
ferent phases with convection, but the model can have only one convecting
solution with the same forcing. Hence we restrict our analysis to Phases 1
and 2 of the OWS Bravo data. (An analysis based on Phases 2 and 3 gives
similar results.) The 10-dimensional parameter space is spanned by a 10-
dimensional matrix. For every possible parameter combination out of this
matrix the cost function K is computed from a model run with convecting
state initial conditions. The onset of the GSA in the model is achieved by
adding an anomalous salt flux of -0.8 psu/yr to the upper box for a period of
three months in spring 1968 to mimic the arrival of an advected freshwater
anomaly. The crucial idea here is that we aim to find one single param-
eter set that yields a realistic model behaviour in both states (convecting
and nonconvecting) with the same forcing; the prescribed salt flux anomaly
provides a short anomaly which induces a state transition in the model.

It turns out that K and its derivatives with respect to the parameters
are smooth functions and behave in a physically understandable manner.
However, both physical intuition and objective analysis show that the ten
free model parameters are under-determined by the fit: the problem is ill-
posed. This is because the OWS Bravo data contain a steady convecting
state (Phase 1), but not a steady nonconvecting state. Phase 2 of the OWS
Bravo data displays the initial trends after cessation of convection but does
not reveal which equilibrium values the three variables S7, Ty and Sy would
eventually reach in the nonconvecting state. Only the trend in 77 stops in
1970, so that T} can be determined. The impact of the missing nonconvect-
ing state on the parameter determination can be clarified through the model
equations. Take (2.2) for the upper box salinity. We neglect the seasonal
cycle here because it has no impact on the long-term trend. If no convection
occurs, (2.2) reduces to

S (si-s). (2.7)
When dS;/dt and an initial S; are known from the data, then on the right-
hand side of (2.7) for any arbitrary choice of S a corresponding value of 715
can be found to fulfil the equation. Thus one of the two parameters in (2.7)
is free. The situation is similar for 7% and S5, and since (2.3) and (2.4) are
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Parameter Value Uncertainty Description

1Y 4.4°C 4.0 - 4.6°C Upper box restoring
temperature

ST 33.5 psu # Upper box restoring
salinity

T5 4.1°C 3.9 -4.3°C Deep  box  restoring
temperature

S5 34.97 psu # Deep  box  restoring
salinity

TIT 5 months 3 — 9 months Restoring time scale of
upper box temperature

TS 8 years 6 — 11 years Restoring time scale of
upper box salinity

T9 20 years 14 — 28 years Restoring time scale of
deep box

Ap 6.4°C 5.0 - 7.8°C Amplitude of seasonal
cycle added to TY

Ag 4.5 psu 3 — 6 psu Amplitude of seasonal
cycle added to ST

() 0.6 months —0.5 — 1.5 months Phase shift of the
seasonal cycles

h* 1/36 # Ratio of box depths

Table 2.2: The model parameters with the values determined from fitting the

2TS model to the OWS Bravo data.

The set of these parameter values is

called the “optimal parameter set”. The uncertainty range is spanned by all
parameter sets for which the cost function value exceeds the minimum by
less than 10%. The parameters marked with # were not determined through
the cost function, but directly from observational data.
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coupled through the common time scale 79, a second degree of freedom arises
here. In short, the least squares fit procedure constrains the ten-dimensional
parameters space to a two-dimensional subspace. This subspace is clearly
seen when attempting to minimize the cost function.

Two further constraints are thus needed to close the problem, i.e. to
obtain a global minimum in K. One could assume arbitrary values of m1g
and 7»; we opt for making assumptions about S} and either 75 or S5. This
option is equivalent to assuming the equilibrium mean values of the three
variables S7, Ts, S in the nonconvecting state. The upper box salinity is
expected to lie between the 34.7 psu of the convecting Labrador Sea and the
approximately 32 psu of the North Pacific at the same latitude. From the
mean salinity distribution in the Labrador Sea (Levitus, 1982) a value of S}
= 33.5 psu seems plausible. For the deep box parameters 75 and S5, the
average values for the waters in the North Atlantic in the latitude band of
the Labrador Sea (but excluding the Labrador Sea itself) and between 200
m and 2000 m depth are 75 = 4.3°C and S5 = 34.97 psu. These values are
almost equivalent to assuming Irminger Sea conditions for the nonconvecting
Labrador Sea. They yield a deep box time scale of 79 = 20 yr.

Finally, we applied one further assumption, namely to restrict the length
of the winter convection event ., to less than 20 days, as low cost function
values were in some cases reached also with excessively long convection pe-
riods. All the major conclusions of the present work are insensitive to the
somewhat arbitrary assumptions described in this paragraph and hold for a
wide range of ST, T3, S5 and maximum £,,c.. The constraints from the OWS
Bravo data are sufficient to determine the stability properties discussed be-
low.

The fitting procedure now arrives at a global minimum of the cost func-
tion K and is repeated with parameter matrices of higher resolution (in
parameter space) to localize the global minimum more exactly. The optimal
parameter set thus determined is shown in Table 2.2. The value for the
eleventh parameter h* is a result of our analysis in section 2.2 and not of
the fitting procedure. Changes in h* (by assuming an upper box depth of
100 m, say) lead to quantitatively slightly different results. To measure the
parameter uncertainty we determined all parameter combinations for which
the cost function remains within 10% of its minimum value. This defines an
uncertainty range for each parameter, save the fixed ones.

In comparison with other studies on exchange rates in the Labrador Sea
(Khatiwala and Visbeck, 2000) the values for the time scales are rather large.
Yet, firstly this is in agreement with the small trends in the deep layer during
the GSA (see Table 2.1), and secondly our parameters apply for both the
convecting and nonconvecting state, in contrast to the study of Khatiwala
and Visbeck (2000) that deals with the state of frequent deep convection
only. We could not use more sophisticated algorithms for estimating the
parameters from the observational data because these algorithms cannot
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cope with the strongly nonlinear behaviour of the convective adjustment.
Algorithms that estimate the parameters for stochastic differential equa-
tions (e.g. the unscented Kalman filter) fail for the same reason (H. Voss,
pers. comm.). Hence for this study we content ourselves with the optimal
parameter set.

A comparison of a model run using the optimal parameter set with the
OWS Bravo data (Fig. 2.5) shows that many relevant features of the data
are captured by the model. This includes the two upper box seasonal cycles
during Phase 1 leading to a winter convection event each year. The min-
imum difference between S; and Ss is very small in the model time series
because the model mixes the two boxes completely, whereas for a number of
reasons the complete mixing is not visible in the observational data. In this
cyclostationary state of the model, without stochastic forcing, there is no in-
terannual variability in any variable. Phase 2 starts with a negative salt flux
anomaly in the model run. Convection ceases, and the model reproduces
the observed trends of all four variables: the upper box cools and freshens
strongly while the deep box warms and becomes more saline. (The trends
in the deep box are hardly visible on the scale of Fig. 2.5.) In accordance
with the observational data, the model deep box is not an infinite reservoir
of heat and salt (like in former versions of the box model, e.g. Welander
(1982) or Lenderink and Haarsma (1994)), but receives diffusive fluxes from
the neighbouring waters. The end of Phase 2, marked by the beginning
salinification of the upper layer in the OWS Bravo data, is achieved in the
model by a cold and saline anomaly in the upper box forcing. Only a strong
anomaly in surface forcing is capable of turning convection on again. It is
clearly seen from the trends in Fig. 2.5 that the longer convection is off, the
lighter the surface layer becomes and the stronger an anomaly must be to
restart convection. This positive salinity feedback is studied in greater detail
in the next chapter. After convection is started again the model returns to
its previous convecting state. The different Phase 3 state of the OWS Bravo
data cannot be captured by the model.

2.5 Stability of Labrador Sea deep convection

The stable states of the deterministic 2T'S model under varying parameters
are now explored. For any given set of parameters, a model state is called
stable if small perturbations can excite only finite excursions in a neigh-
bourhood of the state, and if after such a perturbation the stable state is
eventually reached again. (Section 4.2 provides a more rigorous definition of
stability.) The states are cyclostationary due to the presence of the seasonal
cycles. The numerical stability analysis performed here, together with the
analytical results achieved by Rahmstorf (2001), gives a complete picture
of the model’s stability properties. However, we omit here an oscillatory
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Figure 2.5: Comparison of model output (solid, upper box; dash-dotted, deep
box) and observed time series (dashed, upper layer; dotted, deep layer) for
temperatures (a), salinities (b), and densities (c). The model was run with
the optimal parameter set. All graphs are in monthly means. The GSA, also
called Phase 2 in the text, was started by adding a negative salt flur anomaly
in the upper box during April to June 1968. The GSA was stopped by a
positive salt flux anomaly during October to December 1971 accompanied by
a cold anomaly in the upper box temperature forcing.
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Figure 2.6: Stable model states depending on the upper box buoyancy forcing
parameters. Convection is either “on” or “off”. These two stable states
overlap in a bistable domain. The asterisk denotes the position of the opti-
mal parameter set in the parameter space. The stable states were determined
for varying only T} and/or ST, keeping the other parameters from the op-
timal set constant. For ST > 34.97 psu the upper box would be forced to a
higher salinity than the deep box; this case does not occur in high-latitude
deep convection like in the North Atlantic. For other parameter sets within
the uncertainty range or with different values of Sy or S5 the slopes of the
domain boundaries change, but the marginal position of the parameter set
itself is a robust feature. The inclusion of sea ice effects would affect the
diagram for low T wvalues.

state which appears for parameter sets that do not represent the conditions
in the North Atlantic. Rather, we are interested in stability changes in re-
sponse to the upper box buoyancy forcing, given by 77 and S7. Changing
other parameters will lead to similar pictures. The parameter space section
along these two axes (Fig. 2.6) shows the stable model states: the convecting
state and the nonconvecting state. They overlap in a bistable domain. The
domain boundaries are given in a good approximation by the analytical ex-
pressions for the necessary conditions for the stability of the nonconvecting
state:

o(T; — A —T) > B(S; — As — S5) (2.8)
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and for the stability of the convecting state:

Ti7 + Toh*

Ty — Ar = T35) < B(ST — As — Sg)m-

(2.9)
These expressions are easily derived from the model equations (2.1) to (2.4).
For the nonconvecting stable state, the density difference (2.5) for the equi-
librium values of the four variables has to be negative. For the convecting
stable state, the density difference between the mixed water column and
the nonconvecting deep box (both in equilibrium) has to be positive in or-
der to maintain convection. Since we introduced seasonal cycles such that
convection now occurs around the temperature minimum and the salinity
maximum in the upper box, the respective amplitudes are subtracted and
added. (See also (9) and (12) in Rahmstorf (2001).) The shape of Fig. 2.6 is
in agreement with earlier studies (Lenderink and Haarsma, 1994). We can
thus conclude that the presence of the seasonal cycles does not change the
basic stability properties of Welander’s (1982) box model.

The position of the model Labrador Sea — represented by the optimal
parameter set — in the parameter space section is marked by the asterisk
in Fig. 2.6. It is in the bistable domain: both states, convecting and non-
convecting, are steady states of the model under the given conditions. A
sufficiently large anomaly can switch convection on or off. Moreover, the
model is located very close to the domain where only the nonconvecting
state is stable. Changing the buoyancy forcing by a few tenths of a degree
or a few tenths of a psu will lead to the convecting state becoming unsta-
ble. In other words, there are two possible ways for suppressing convection.
In the first way, convection is temporarily switched off by an anomaly, but
can be restarted later by an opposite anomaly, while the average properties
of the buoyancy forcing (i.e. the model parameters) do not change. This
is the GSA case depicted in Fig. 2.5, and this may be the case with a 50
yr-long spell of convection in the Labrador Sea being switched “on” among
centuries without convection, which was found by Tett et al. (1997) in a
coupled GCM. In the second way, under a slowly changing buoyancy forcing
(e.g., T} or ST) the convecting state eventually becomes unstable and con-
vection stops. This scenario could apply to the global warming GCM run
of Wood et al. (1999), in which Labrador Sea convection stops early in the
215% century. The simplified 1S model (see chapter 4) will provide a means
to understand these two ways of stopping convection in detail. The first way
is then a hopping between two potential wells, and the second way is equiv-
alent to a disappearance of one well. The role of the anomalies triggering
state transitions in both cases is examined in detail in chapter 3.

We checked systematically how the stability diagram changes for differ-
ent choices of ST, S5 (or T3) and maximum £y, as well as for parameter
sets in the uncertainty range defined by a 10% change in the cost function.
Egs. (2.8) and (2.9) show that those parameter changes affect the width of
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the bistable domain: for instance, for a larger difference (S7—S3) the bistable
domain (in terms of 77) is wider. However, the distance of the model solu-
tion from the border of the bistability domain varies only by some tenths of
a degree on the T} axis and similarly small amounts on the ST axis. This
is a consequence from the OWS Bravo data which show that a freshwater
anomaly equivalent to —0.2 psu induced a transition form the convecting to
the nonconvecting state. The precarious position of the Labrador Sea, in
the bistable domain but close to the nonconvecting domain, is therefore a
robust feature of the fitted model.

2.6 Conclusions

A new picture of the deterministic stability of open ocean deep convection
has been developed in this chapter. This new picture is based on the analysis
of observational data. Depending on the external forcing, the water column
may have two stable states, one with regular deep convection events and the
other without deep convection. Additional anomalies in the forcing trigger
transitions between these two stable states. Convection can be switched off
in two ways: either temporarily, by an anomaly, or definitively, if continuous
parameter changes drive the model out of the bistable domain.

The analysis tool is a two-box (“2TS”) model of the water column in
a potentially convective part of the ocean. The model is rather simple
(only four variables), but comprehensive enough to reproduce observed time
series in a satisfying way. This is an advantage over earlier studies that
used simpler versions of the convection box model and dealt with model
output only. The 2TS model opens up the possibility to estimate the model
parameters from observations.

The observed data are from the Labrador Sea. They show three dis-
tinct phases between 1964 and 1974, marked by presence or absence of deep
convection events in winter. The four-year phase without deep convection
is characterized by a freshening and cooling in the upper layer (a “Great
Salinity Anomaly”).

With the model parameters obtained from a least squares fit procedure,
the position of the Labrador Sea in a stability diagram can be determined.
For a certain region in the parameter space the model has two stable states,
with convection being either “on” or “off” each winter. Using the Labrador
Sea parameters the model is located in this bistable domain, meaning that
anomalies in the forcing are capable of triggering jumps from the convecting
to the nonconvecting state and back.

The model shows that lasting anomalies similar to the Great Salinity
Anomaly (1968-72) can be triggered by short-term anomalies in the surface
conditions suppressing convection in one winter. This mechanism of transi-
tions between two stable states can explain the basic properties of the time
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series from OWS Bravo, and is thus a part of the answer to the first guiding
question (GQ1). Compared with other studies this is a new understanding.
According to Lilly et al. (1999), the atmospheric heat flux forcing is predom-
inant in triggering the very convection events, and the long-term freshwater
advection sets the background stratification. They conclude that it was per-
sistent weak atmospheric forcing that led to the absent deep convection in
the years 1969-1971. Dickson et al. (1996) suggest that deep convection was
suppressed in two complementary ways: wind anomalies over Greenland en-
hanced freshwater advection, while other wind anomalies over the Labrador
Sea itself reduced the the cyclonic wind stress and the heat fluxes.

In those pictures the potentially convective water column merely reacts
passively to the external forcing. Following our main hypothesis, the ex-
ternal forcing kicks off the local internal dynamics of the water column. A
short-term perturbation switches convection off, and the subsequent evo-
lution is governed by the local positive salinity feedback (Fig. 1.2) until
another perturbation switches convection on again. At least for the per-
turbation that terminated the GSA in late 1971 this understanding can be
substantiated by observations (Dickson et al., 1996; Mertens, 2000): deep
convection was switched on again by local weather forcing, not by internal
ocean processes. Moreover, the positive salinity feedback is apparently nec-
essary to close the freshwater budget of the upper Labrador Sea (Houghton
and Visbeck, 2002). High-resolution ocean models also show this interac-
tion of short anomalies with the local bistability (sect. 1.3; (Lenderink and
Haarsma, 1994, 1996; Rahmstorf, 1995c)). All this evidence renders our
main hypothesis fairly plausible.

It turns out that the position of the model Labrador Sea in the bistable
domain is very close to the border to the monostable domain where the
convecting state is unstable. This holds true irrespective of the parameter
assumptions about the stable nonconvecting state. This position is pre-
carious: changing the ocean’s surface forcing by about one degree towards
warmer conditions leads to the convecting state becoming unstable. If con-
vection is switched off in this way, the convection shutdown is abrupt and
definitive. An external perturbation can cause at most a transient convec-
tion event, but no jump back to regular deep convection is possible. This
is another type of sensitivity of deep convection and thus another part of
the answer to GQ1. Such a shutdown of Labrador Sea convection did occur
in a global warming scenario computed with a coupled GCM (Wood et al.,
1999).

Model simulations and observational data show that the longer a noncon-
vecting phase lasts, the harder it is to interrupt it. This effect is due to the
positive salinity feedback. It means that if deep convection in the Labrador
Sea once stops in reaction on global warming, it takes an extraordinarily
strong anomaly to make it start again.
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The results of Wood et al. (1999) suggest that in a complex, high-
resolution ocean model deep convection in the Labrador Sea is similarly
as easy to interrupt as in the box model used here. One of the main differ-
ences between simple box models and complex GCMs is the variability that
is present in the latter. Therefore, the influence of variability on the deter-
ministic stability properties discussed in this chapter needs to be studied.
The next two chapters show how such external variability excites internal
variability in the box model, and how it changes the stability properties.
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Chapter 3

Variability of deep
convection excited by
stochastic forcing

3.1 Overview

This chapter explores the role of stochastic forcing for the variability of
deep convection. The presented approach follows the concept of Stochas-
tic Climate Models and the theory of Large Deviations, which are outlined
in section 3.2. The stochastic forcing is meant to represent the short-term
weather variability. With such a forcing term included, the 2TS model is
called the stochastic climate model of deep convection (section 3.3). The pa-
rameters for the stochastic forcing term are estimated from an observed heat
flux time series. The main effect of the stochastic forcing are the jumps be-
tween the convecting and the nonconvecting model state. The model output
shows events that resemble the Great Salinity Anomaly. This corroborates
the hypothesis that short anomalies, here provided by the stochastic forcing,
can trigger interannual convective variability. Deep convection events occur
even if the convecting state is unstable (section 3.4). This observation is
a first step towards the concept of stochastic stability, in which the mean
residence times in the two model regimes play a crucial role (section 3.5).
A pronounced asymmetry between the two regimes appears for the distri-
butions of the residence times. It turns out that long-term interruptions
of deep convection can be part of the natural variability, and that this is
a consequence of the positive salinity feedback (section 3.6). The conclud-
ing section 3.7 summarizes the differences between the deterministic and
the stochastic model and highlights how the results help to understand the
variability of deep convection in the North Atlantic.

33
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3.2 Theory of stochastic climate models

“A characteristic feature of climatic records is their pronounced variability.”
With this statement Hasselmann (1976) starts his seminal paper about the
theory of stochastic climate models. As the application of his methods
to study the variability of deep convection events is the foundation of the
next two chapters of our work, we give here an outline of the theory of
stochastic climate models. This includes mentioning briefly the theory of
Large Deviations (Freidlin and Wentzell, 1998) which extends Hasselmann’s
ideas in a way that is essential for the present work. (More details about
Freidlin and Wentzell’s theory are found in chapter 4.) We also refer to
Arnold (2001) who re-expressed Hasselmann’s and Freidlin and Wentzell’s
ideas highlighting the main mathematical steps.

It is remarkable that the observed variability of most climatic variables is
distributed over a very broad range of time scales: from the seconds of local
turbulence phenomena, over the strong diurnal cycle, the synoptic variability
of the weather on the scale of days, the strong seasonal cycle, decadal,
centennial and millenial variability up to the ice age cycles of 100,000 years.
In other words, the spectral variance of climatic variables extends over a
frequency range that spans many orders of magnitude.

Often it is observed that the variance is stronger at lower frequencies.
The variance spectrum is then said to be “red”. This red spectrum is re-
produced by the highly complex, deterministic general circulation models
(GCMs), but any simpler deterministic model stays far from explaining this
special shape of the spectrum. However, the most simple stochastic dif-
ferential equation does reproduce this red spectrum. This fact was one of
Hasselmann’s main motivations to introduce stochasticity into climate mod-
elling.

A fundamental assumption of stochastic climate models is the time scale
separation. Suppose we have a GCM, given by a system of differential
equations

Z2=h(z). (3.1)

It is now assumed that the components of z come in two well separated
kinds: fast, “weather” variables y with a dominant time scale of days, and
slow, “climate” variables z with typical time scales of months, years and
longer. Typical fast variables are atmospheric variables like air temper-
ature or sea level pressure; typical slow components of the climate sys-
tem are the ocean, ice shields or the biosphere. The question whether the
assumption of time scale separation can be reliably founded on observa-
tions is still under discussion and exceeds the scope of the present work.
We make this assumption nevertheless, bearing in mind that Hasselmann’s
ideas have had some success, starting from an immediate sequel paper
(Frankignoul and Hasselmann, 1977) to very recent work (e.g. Ganopol-
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ski and Rahmstorf (2002)). Since the two time scales are clearly dif-
ferent, (3.1) is now written as a coupled system of differential equations

t = f(z,y) “climate” variables

1 3.2
y = -—g(x,y) “weather” variables. (3:2)
£

The parameter € is assumed to be small. For the typical time scales, we
then have 7, ® 1 > 7, ~ .

Provided that we do not want to solve the complete equation system (3.1)
or merely are not capable of doing so due to lack of computer power, we can
now take advantage of the time scale separation. If we are interested only in
the evolution of the mean of the climate variables — their first moments —,
we can make use of the Method of Averaging. Most Statistical Dynamical
Models (SDMs) are obtained in this way. Given a differential equation

&= flx, &) (3-3)

with a fast forcing function &, one can derive an averaged right-hand side
by defining

T
F(@) = (£ ) = Jim 7 [ f(o.65) . (3.4

The averaging is carried out for fixed x, i.e. we consider time scales 7 < 1.
In most cases one assumes ergodicity, meaning that the time average in (3.4)
may be replaced by the mean over an ensemble of realizations. The averaged
differential equation, expressed in the variable v = (x), is now given by F:

i=F(u). (3.5)

With e controlling the smallness of &;, one can show that, for diminishing
g, the solution x of the full equation (3.3) converges to the solution u of the
averaged equation (3.5) on a finite time interval [0,7]. Since the fast vari-
ability has been averaged out to obtain the averaged equation, the so-called
SDMs of the form (3.5) are indeed rather deterministic than statistical. Note
that (3.3) does not contain a feedback from the slow variables to the fast
ones. The procedure outlined here can also be carried out for the slow part
of (3.2) with the full coupling between the fast and the slow variables. Yet,
in this case it is not always ensured that x converges to u in the small noise
limit.

If we want to have information about the variance of the climate variables
— their second moments — as well, we can use the Central Limit Theorem.
Consider the deviation of the full solution from the averaged solution

® —u, (3.6)

where we have written z° to denote the dependence of the full solution x
on €. Under the condition that the fast process {; has a short decorrelation
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time and does not depend on x, the Central Limit Theorem now states that
in the limit € — 0 and on a finite time interval [0, 7], the process

— (2 —w) (3.7)

has a normal Gaussian distribution. In other words, the error made by the
Method of Averaging is asymptotically normally distributed.

The Central Limit Theorem is the reason why Gaussian noise processes
are so widely used in climate modelling: if the details of those fast processes
are not known or not resolved one can still rely on the fact that their dis-
tribution is, in the limit, Gaussian. Since we now know how the first and
second moments of the solution of (3.3) behave, we can write

i 2 F(u) + o¢, (3.8)

with F'(u) describing the average evolution, (; a normally distributed Gaus-
sian process with short decorrelation time, and ¢ a noise intensity. The

equality L s an approximate equality in distributions. If we consider the
evolution of (3.8) on short time scales (7 < 1), the averaged solution may
be assumed to be constant, such that F'(u) = x. The solution of (3.8), in-
terpreted as a proper equation, and driven by a white noise process (¢, is
then a random walk, with its variance growing without bounds.

On time scales of 7 = 1, effects like negative feedbacks and dissipation
will come into play, influencing the behaviour of the averaged solution. The
simplest way to include those is to assume F'(x) = —kz, such that

Tt =—kzx+ 0. (3.9)

The solution of this simple stochastic differential equation has a clearly de-
fined, finite variance, and the variance spectrum is indeed red. Thus, (3.9)
is the basic form of a Stochastic Climate Model. The slow components of
the climate provide the damping feedback, determining the average evolu-
tion. They “integrate” the fast atmospheric variability that is approximated
as a Gaussian random process. This very picture is Hasselmann’s idea of
Stochastic Climate Models, and the Method of Averaging and the Central
Limit Theorem are their theoretical underpinning.

We note in passing that the picture of a slow system component driven
by fast motion has been developed about one hundred years ago to describe
the motion of a pollen grain in a liquid. The description of this Brownian
motion was historically the physically motivated way into the theory of
distributions of random variables and into stochastic differential equations
(e.g. Einstein (1905)).

The Method of Averaging and the Central Limit Theorem are valid only
on finite time intervals. But what happens if we consider time intervals
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growing with 1/e, if we are interested in the system’s evolution on time
scales much larger than 7, ~ 17 On such large time scales, arbitrary large
deviations of the fast variables (or noise processes) from the averaged motion
might occur. In case that there is one stable steady state of the averaged
solution, the non-averaged solution of (3.9) will then leave any bounded
neighbourhood of this stable state, notwithstanding the fact that the vari-
ance is bounded. In the case that there is more than one stable steady state,
the full solution can hop between the different attractors. This effect adds
a new quality to the system: where the deterministic solution can always
reach only one attractor, the stochastic system can escape to other attrac-
tors or regimes. In fact, it will do so after a typical time scale, the mean
escape time (t.). The theory of Large Deviations (Freidlin and Wentzell,
1998) derives an analytical expression for (t.). Suppose we have a simple
system, driven by Gaussian white noise, where a potential difference AU
has to be overcome to leave the neighbourhood of interest. One then has

lim o?In(t.) = AU . (3.10)
g—

Thus, the mean escape time depends exponentially on the potential differ-
ence and the square of the noise intensity o?:

() ~ eAU/° (3.11)

Freidlin and Wentzell (1998) generalized this result for a much wider class
of dynamical systems by introducing a quasipotential. The quasipotential is
defined as the minimal work required to reach the boundary of the neigh-
bourhood E; from the stable state x*. This definition does not assume the
dynamical system to have a potential. The only requirement is that there
is some way to compute the work needed to move the system along a given
path in phase space. Equation (3.11) is applied in this sense in the present
chapter. In the next chapter, (3.11) together with a proper potential U is
at the heart of the concepts of stochastic stability (section 4.2).

The Method of Averaging and the Central Limit Theorem are the funda-
mentals of linear stochastic climate models which have only one stable state.
The Large Deviations theory is needed in addition for nonlinear models with
more than one stable state, like the box models used in this study.

3.3 A stochastic climate model of deep convection

A particular physical motivation for introducing variability in the 2TS box
model has become clear in chapter 2: anomalies in the surface buoyancy
forcing are capable of switching convection on and off. Hasselmann’s theory
suggests to include the variability as a stochastic forcing term. Observa-
tions (Marshall and Schott, 1999; Lilly et al., 1999) suggest that heat flux
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anomalies (due to weather activity) and freshwater flux anomalies (by lat-
eral mixing) act together to trigger or suppress convection. Yet, the heat
fluxes clearly prevail in their contribution to the overall buoyancy forcing
(Sathiyamoorthy and Moore, 2002). Hence, we focus on heat flux variabil-
ity as the primary variability component. The characteristic time scale of
synoptic cyclones is a few days. Applying the concept of a stochastic cli-
mate model, we parameterize synoptic-scale variability by a stochastic term
added to the surface heat flux forcing. A parameter estimation, given in
detail below, suggests the stochastic term to consist of red noise & with
a decorrelation time of about six days times a standard deviation o. The
model equation for the upper box temperature (2.1) is thus extended to

% _ m@ —T)+ % (TF — Apcos(2nt) + 06 —Th) . (3.12)
Equation (3.12) together with the other three model equations (2.2) — (2.4)
and the convective adjustment (2.6) yields the stochastic 2TS box model of
deep convection.

Note the special role of the convective adjustment (CA). The model has
two distinct regimes, with the two boxes being either uncoupled (convection
“off”) or fully mixed at each time step (convection “on”). As long as the
model trajectory is in the nonconvecting regime, the Hasselmann ansatz
of time scale separation is justified. The smallest dynamical time scale of
the model (717 = 5 months) is still much larger than the time scale of the
stochastic forcing term (7p = 6 days). Yet, due to the CA we expect the
model to switch to the convecting regime from time to time. The short time
scale of the convective mixing, expressed through the instantaneous CA, is
not in full agreement with the assumed time scale separation. The physics of
the deep convection process however motivates to have two fast processes in
the model: the convective mixing and the stochastic forcing. We deal with
this issue again in the framework of the 1S model presented in chapter 4.

In the stochastic 2TS model, two classical conceptual models — for deep
convection (Welander, 1982) and for high-frequency atmospheric forcing of
the ocean (Hasselmann, 1976) — are combined to give a simple model that
we call the stochastic climate model of deep convection. For its numerical
integration we applied a semi-implicit Milstein scheme following Kloeden
and Platen (1992). Its theoretical convergence is twice as good as with an
ordinary Euler scheme, which is relevant regarding the discontinuity arising
from the CA.

Although applying Hasselmann’s concepts suggests to work with variance
spectra, their use is not feasible here. The model time series can become
non-stationary due to the CA. This leads to spurious kinks in the variance
spectra, making their physical interpretation difficult. Therefore we use and
develop other methods to analyze the variability seen in the model.
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In general, the fundamental physical differences between deterministic
and stochastic differential equations would require a completely new param-
eter estimation for the stochastic climate model of deep convection. Yet,
this requirement is not easy to fulfil. Algorithms that estimate parameters
for stochastic differential equations are more complex than the simple least
squares method we used in section 2.4. If applied to our model, they fail
due to the strong nonlinearity posed by the convective adjustment (H. Voss,
pers. comm.). For this reason only the parameters for the stochastic term
are estimated here, and the other parameters (table 2.2) are taken over.

The time series from OWS Bravo (section 2.2) has a too small sam-
pling rate for estimating the parameters of the weather forcing. Instead,
we analyzed a 52-year long time series of daily net surface heat flux at the
OWS Bravo site. This time series was extracted from the NCEP database
(Kalnay et al., 1996). The aim is an estimate for the standard deviation and
the decorrelation length of the noise term in (3.12). Assuming that the heat
flux time series Q(t) can be decomposed into an average flux (o, a seasonal
cycle with amplitude Ag, and a noise term & with standard deviation o,

Q(t) = Qo + Ag cos(2mt) + 0gés , (3.13)

it turns out that, for averaging intervals of one to a few days, the autocor-
relation function of the noise process & falls off to zero only after the first
few lags. In other words, & can be modelled by an AR(1) process

S =a1§1+ Gy (3.14)

where the value & at time ¢ is determined by the value &_1 at the previous
time step times the autocorrelation at lag 1, «y, plus a random value (;
from a Gaussian white noise process. With values for a; estimated from
the NCEP time series, the decorrelation time as defined in von Storch and
Zwiers (1999),

o 1+ o
N 1-— (e73] ’

D (3.15)

lies between five and seven days, depending on the averaging interval of the
time series. This decorrelation time is just the typical time scale for synoptic
activity. Using this red noise forcing in the model (instead of pure white
noise) is a more realistic parameterization of the high-frequency heat flux
variability and renders the model results more robust against changes in
the time step of the numerical integration scheme. The dependence of the
estimates 7p on the averaging interval is a fundamental feature (Wunsch,
1999). Here we use the time step that is motivated by the typical time scale
for deep convection events, which is two days.

Apart from the decorrelation length, the second parameter we need to
estimate for the noise term in eq. (3.12) is the standard deviation o. Using
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the heat flux time series in eq. (3.13) to force the temperature of an ocean
surface layer we write

cppohlcil—f = Qo + Ag cos(2mt) + o0& — AT, (3.16)
with the specific heat capacity ¢, = 3990 J kg~! K~!, a reference density
po = 1028 kg m~3, the surface layer depth h; = 50 m, and a restoring con-
stant . Setting cy = cppoh1, this reads

‘fi—z; — Cj—;) + ‘i—? cos(2t) + ‘Z—fgt - %T. (3.17)
Comparison with (3.12) shows how the standard deviation o of the stochastic
forcing in (3.12) is related with the standard deviation o of the heat flux

time series: -
o=09—. (3.18)

€o
With a dependence on the averaging interval again, we find
og = 120-140 W m~2, which translates into ¢ = 89°C. This is a
rather high value, larger than the average flux Qg — and still the seasonal
cycle of the standard deviation itself, reaching its maximum in winter, has
not been accounted for here. Sathiyamoorthy and Moore (2002), in their
analysis of the buoyancy flux at OWS Bravo derived from weather ship data,
obtain a similar result. The dominant role of the synoptic-scale variability
of the heat flux in the Labrador Sea is highlighted here again. For simplicity
we have added noise only to the surface temperature forcing. To obtain a
realistic variability in the whole surface buoyancy flux pronouncedly higher
values of o have to be assumed since the variability of surface freshwater
fluxes and of eddy-induced transports of heat and salt have not been

considered here. A range of o = 15-20°C seems therefore plausible.

3.4 Stochastic forcing and state transitions

Thirty years from a model run with stochastic forcing are displayed in
Fig. 3.1. Several times, convection is interrupted for a few years, indicated
by the large minimum density difference Ap between the upper and the
deep box (Fig. 3.1c). The upper box temperature 77 (Fig. 3.1a) is the only
variable directly influenced by the noise, so it shows the strongest variabil-
ity. Apart from the convective mixing induced by that variability the other
three variables evolve in an unperturbed way. Similarly to the GSA in the
OWS Bravo data (Fig. 2.1), in the nonconvecting years the upper box tends
to freshen (Fig. 3.1b) and cool (Fig. 3.1a), until a cold anomaly restarts
convection again. In contrast to the observed GSA the nonconvecting phase
in this model run is kicked off by a warm anomaly in the upper box, not a
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Figure 3.1: Time series of monthly means from the stochastically forced
model: temperature (a), salinity (b), and density (c) of the upper box (solid)
and the deep box (dash-dotted). The model was run with the optimal pa-
rameter set and a standard deviation o = 18°C of the stochastic forcing.
The thirty model years shown include several interruptions of the convecting
state. The difference to the observed GSA (cf. Fig. 2.1) is that the positive
buoyancy anomaly needed to stop convection is achieved here by local heat
fluzes rather than lateral freshwater fluzes.
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freshwater anomaly. This is due to the fact that the stochastic variability
appears in 73 only, not in S7, so by construction only temperature anoma-
lies can appear. However, through the Hasselmann mechanism the upper
box integrates the weather noise to (intra-)seasonal temperature anomalies
(because 717 = 5 months). Thus, integrated synoptic heat flux anomalies
and advected intra-seasonal freshwater anomalies have the same impact on
Ap.

The key point here is that a comparatively short anomaly (lasting for
a couple of months) triggers the state transition, and that the long term
trends evolving afterwards are due to the internal dynamics until the next
anomaly triggers the next state transition. We hypothesize that this picture
of a bistable water column holds for the Labrador Sea. This implies that the
falling surface salinity from 1968 to late 1971 does not result from anomalous
freshwater input during this whole time, nor does the return to convecting
conditions in 1972 result from an end to the anomalous forcing. Rather,
the falling salinity only requires a short trigger anomaly (which could even
have been thermal instead of freshwater) that prevents convection in 1968.
Convection then cannot recover by itself but requires another substantial
trigger event. The longer convection has been off the larger the trigger needs
to be. Had the winter of 1972 not been such a harsh one, subsequent winters
would have needed to be even colder to restart Labrador Sea convection.

This hypothesis is consistent with the conclusion of Dickson et al. (1996),
who analyzed the 1972 convection onset in the Labrador Sea in detail in
the observed data. They conclude that the jump-like rise of the upper
layer salinity is explicable only by anomalously strong wind forcing that
mixes saline intermediate waters into the mixed layer; advection or mixing
processes cannot lead to such strong changes. In other words, observational
data show that the termination of the GSA in the Labrador Sea was achieved
by anomalous weather conditions at the ocean’s surface, not by its internal
dynamics.

The presence of noise leads to a qualitative change in the model’s stabil-
ity behaviour: the sharp domain boundaries depicted in Fig. 2.6 are replaced
by more gradual changes in the frequency of the occurrence of convection.
As a measure we use n., the fraction of years with convection out of all years
in a model run. Fig. 3.2 shows how n. depends on the standard deviation
o of the noise. Using the optimal parameter set with the convecting state
as initial condition and increasing o (Fig. 3.2a), n. drops close to zero for
weak noise. This reflects the marginal position of the optimal parameter set
in parameter space (Fig. 2.6). Any small perturbation shifts the model into
the nonconvecting state, but the small perturbations are not able to induce
a jump back to convection. For o > 12°C, the convecting state is reached
in some cases. The fraction of convecting years rises quickly and asymptot-
ically reaches a value of n. = 0.75. When the noise is strong, it tends to
override the deterministic stability properties. This feature becomes clearer
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Figure 3.2: (a) Dependence of the fraction n. of convection years in a long
model run (10% yr) on the noise level o. The model was run with the un-
changed optimal parameter set and convecting state initial conditions. The
deterministic case without stochastic forcing is at o = 0. (b) Contour plot
of ne as a function of o and additionally of the upper box temperature forc-
ing Ty. The dashed line denotes the position of the graph shown in (a).
With a nonconvecting initial condition, n, = 0 for o = 0 for all values of
Ty > —4.4°C (i.e. in the bistable domain, see Fig. 2.6). The lower part of
(b) would change accordingly.
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when considering changes in the surface buoyancy forcing 77 in addition.
The contour plot in Fig. 3.2b displays how n. depends on ¢ and T5}. For
o =0, Fig. 3.2b corresponds to the deterministic (not stochastically forced)
parameter space section (Fig. 2.6) with only the nonconvecting state being
stable for 77 > 4.5°C. For low noise and large 77 there is a large, wedge-
shaped domain where almost no convection events occur. The shape of this
domain can be understood when thinking of the convecting state becoming
less and less stable for larger T7. Then, for larger 7} a smaller amount of
noise is needed to trigger a jump into the nonconvecting state. Since the
nonconvecting state becomes more stable for larger T}, a larger amount of
noise is necessary to trigger jumps back into the convecting state. Fig. 3.2b
also shows that beyond this wedge-shaped domain the noise is capable of
keeping the model in the convecting state for more than half of the time even
when this state is unstable in the deterministic case. The exact extent of
this domain depends on the respective parameter set: for instance, a lower
ST leads to a less dense upper box in the nonconvecting state, so convec-
tion is harder to trigger, and the domain becomes wider. The concept of a
state becoming “less” or “more” stable is put on a theoretical foundation in
chapter 4.

In section 3.3 it was shown that for the Labrador Sea conditions in the
box model ¢ is likely to be near or larger than 15°C. This means that the
model is located in a domain where n, is sensitive to changes in the surface
forcing. There are two ways of making convection occur less often: either
by decreasing the variability o or by increasing the surface temperature 77
(or equivalently decreasing S7). But convection can still occur even when
the convecting state is unstable in the deterministic case. If an increase in
17 is taken as a crude representation of a global warming scenario, then
these results suggest that the frequency of Labrador Sea convection could
decrease substantially due to a future warming (and/or freshening) unless
variability increases strongly at the same time.

3.5 Residence times and stability

Apart from the mere frequency of convection it is also of interest how long a
continuous sequence of convecting or nonconvecting years lasts. The length
of such a sequence is dubbed residence time. The mean residence times in
the two model states can be used to estimate how the stability of the model
states depends on the model parameters.

Consider a particle in an ideal double-well potential. If the particle is
initially in one well, then added noise will rattle it. To leave the initial
potential well and jump to the other one, the particle has to overcome a
potential difference AU. If the noise is Gaussian distributed, eventually one
perturbation, occurring after time t., is large enough for the particle to hop
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Figure 3.3: Mean residence times in the convecting state ({t.), solid) and
in the nonconvecting state ({t,), dash-dotted) in dependence on the mean
surface temperature forcing Ty for constant standard deviation (o = 18°C')
of the stochastic surface temperature forcing. The dashed line indicates the
position of the optimal parameter set: the convecting state lasts 3.5 yr and
the nonconvecting state 11.2 yr, on average.

into the other well. In this ideal case (treated in chapter 4) we can use the
relation (3.10) between the particle’s mean escape time (t.) from one well,
the potential difference AU and the intensity ¢ of the added noise,

lim o?In(t,) = AU, (3.19)
to characterize the stability of the states. The two stable states of the
box model (with four variables) cannot be expressed as minima of a (one-
dimensional) potential. However, there is a way to use (3.19) for our pur-
poses. The potential U can be interpreted as a quasipotential (sect. 3.2).
Then, the potential difference AU is the necessary perturbation strength
for a state transition. The larger AU is, the more stable is the state. In-
stead of the mean escape times of eq. (3.10), we use the mean residence
times (t.) and (¢,) in the convecting and the nonconvecting state as esti-
mated from long model runs. We do this for leaving o constant and varying
T} only. With the help of (3.19) we are then able to give a quantitative es-
timate of the relative stability of the two states as a function of the surface
forcing. Fig. 3.3 shows how the logarithms of the residence times change
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with varying T7. For low values of 77, the convecting state is clearly the
more stable one. Conversely, for warm surface forcing the stability of the
nonconvecting state increases strongly.

There are two caveats when interpreting the residence times in this way.
First, (3.19) makes sense only if there is a deterministically stable state from
which the stochastic system may escape. In Fig. 3.3 both stable states coex-
ist only for —4.4°C< 17 < 4.5°C. Thus, their stochastic stability in terms of
the mean residence time can be compared only on this interval. Second, the
noise has to be small relative to the potential difference. As the potential dif-
ference approaches zero close to the respective domain border, the above 17
interval has to be chosen even smaller. Note, however, the contrast between
the sharp stability domain borders of the deterministic model (Fig. 2.6) and
the smoothly shaped graphs of In(t,) as a function of T} in the stochas-
tic case. Since T} from the optimal parameter set is close to the interval
boundaries, we cannot make a quantitative comparison of the stabilities; we
just observe that the nonconvecting state is clearly more stable than the
convecting one. This gives a quantitative understanding of Fig. 3.2a: weak
noise can provide the anomalies to jump into the nonconvecting state, but
anomalies twice as large, necessary for the jump back, occur only extremely
rarely.

From Fig. 3.3 we see that the mean residence times for the optimal
parameter set and a standard deviation of ¢ = 18°C in the stochastic forcing
are (t.) = 3.5 yr and (t,,) = 11 yr. Thus, the average time for the model to
jump from one state to the other and back is about 15 yr. In other words, the
typical time scale for the variability is in the decadal range. This is clearly
different from the synoptic time scale of the stochastic surface forcing. The
effect of the weather noise is here to excite intraseasonal variability in the
mixed layer, which in turn triggers interannual to decadal variability. The
deep ocean, being isolated from the atmosphere nearly at all times, “sees”
the synoptic variability through the “window” of deep convection events —
but responds to this forcing with its own typical decadal time scale. In this
way deep convection is an example of time scale interactions in the climate
System.

3.6 Distributions of residence times

The analysis of residence times can be carried one step further by ex-
tending our view from their means (t.) and (t,) to their distributions
ps(te) and ps(t,), which are equivalent to the stationary probability
density functions (pdfs). This draws a statistically more complete pic-
ture of the variability. The different shapes of the two pdfs in Fig. 3.4
stand out. The residence times in the convecting state (Fig. 3.4a) are
distributed following a straight line, with t. > 20 yr occurring only
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rarely during a 100,000 yr model run. In comparison, ps(t,) has a bent
shape with high probability density for very short residence times and
some occurrences of t, exceeding 20 yr. These features are obscured
when considering the mean value only: while the mean residence time is
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Figure 3.4: Distribution of residence times in the convecting state (a) and
the nonconvecting state (b). The frequency of every single residence time is
given as a fraction of the total number of residences during a 10° yr run.
Hence, the distributions are approzimate probability density functions. The
fraction axis is logarithmically scaled; the small bar in panel (a) att. = 25 yr
corresponds to one single occurrence. The model was run with the optimal
parameter set and a standard deviation of o = 18°C, yielding a fraction
of convecting years n. = 0.26. The tail of the distribution in (b) was cut
arbitrarily; the maximum t, is 526 yr.
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Figure 3.5: Probability distribution of residence times in the convecting state
(te, solid) and the nonconvecting state (t,, dash-dotted) from the same model

run as in Fig. 3.4. For any time t, the probability distribution gives the
probability of the residence time being smaller than or equal to t.

(tn) = 11 yr, we learn from ps(t,) that the time series will contain many
cases of only a few years without convection, but also some occasions where
convection is interrupted for more than 100 years. With the probability
distributions of the residence times (Fig. 3.5) this can be quantified. For
instance, there is a 10% probability for the nonconvecting state to last longer
than 13 yr, but the convecting state will do so only with a probability of
1.5%. Hence, the observation of two decades without deep convection, like
in the years 1982-2001 in the Greenland Sea (Rhein (1996); Visbeck and
Rhein (2000); J. Holfort (pers. comm.)), is not necessarily a sign of a global
climatic trend but could be within the natural variability properties of a
convecting water column.

The difference between the two distributions in Fig. 3.4 can be under-
stood qualitatively in the framework of “runs” introduced by von Storch
and Zwiers (1999). A “run” is defined as the time that a stochastic process
spends uninterruptedly on one side of its mean value. Von Storch and Zwiers
analyzed AR(1) processes with varying autocorrelation coefficient o, and
found that for ay = 0 (white noise) the run length pdf decreases exponen-
tially. In a logarithmic plot this pdf of the run lengths, or residence times,
appears as a straight line like in Fig. 3.4a. For red noise (a1 > 0), long resi-
dence times are more probable at the expense of intermediate times, which
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gives the bent shape of the graph in Fig. 3.4b. In other words, the linear
shape of p(t.) in Fig. 3.4a means that the probability for a convection stop
is equal in all years, whereas the exponential shape of p(t,) in Fig. 3.4b
stems from the diminishing probability of leaving the nonconvecting state
with increasing residence time t,. This feature again reflects the positive
salinity feedback.

3.7 Conclusions

The influence of surface forcing anomalies on the variability of deep con-
vection has been explored in this chapter. The theory of stochastic climate
models justifies to model those anomalies by a stochastic forcing term. Fre-
quent jumps between the convecting and the nonconvecting state occur.
The variability arising from these jumps is characterized through the resi-
dence times in both states. The convection frequency depends smoothly on
the forcing parameters, giving a new view on the stability of deep convec-
tion that contrasts with the abrupt stability changes in the non-stochastic
model of chapter 2. The positive salinity feedback leads to a non-negligible
probability for long nonconvecting phases.

The stochastic 2TS model joins Welander’s (1982) deterministic concept
of the stability of convection with Hasselmann’s stochastic concept of cli-
matic variability. This stochastic climate model of deep convection is based
on our main hypothesis: that short anomalies trigger switches between the
two states of the model. These anomalies are now provided by the stochas-
tic forcing. However, it is not the small fluctuations around a deterministic
stable state that are of interest here — the interesting events are the large
fluctuations which carry the system close to the other deterministically sta-
ble state. Where Hasselmann’s theory does not focus on the influence of
those large fluctuations, they are the core topic of the Large Deviations the-
ory of Freidlin and Wentzell (1998). Their theory is applied to the stochastic
2TS model here. Thus, joining the concepts of Welander and Hasselmann
leads to a new picture of the stability and variability of deep convection that
goes beyond both those concepts.

Chapter 2 showed that there are two ways to switch between the two
model states: temporarily, caused by anomalies, or definitively, by chang-
ing a model parameter (e.g., T} or S7). In the stochastic model there are
anomalies triggering convection switches all the time, much like in the real
ocean. The physically interesting observable is now the frequency of deep
convection events. Now, if one studies the effect of changing parameters like
T7 or S in the stochastic model, one observes that the convection frequency
is a continuous function of the forcing parameters.

This is the core result of this chapter, and the main answer to GQ2: in
the stochastic model, the frequency of convection event depends smoothly
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on the heat and freshwater forcing of the upper box. An abrupt loss of
stability like in the deterministic 2T'S model does not occur. Even when the
convecting state is unstable in the deterministic case the variability excites
frequent convection events.

Frequent convection switches between phases with and without deep con-
vection are also seen in CGCMs (P. Wu, pers. comm.), and the local con-
vective bistability appears as well in OGCMs (Rahmstorf, 1995a; Lenderink
and Haarsma, 1996). These examples suggest that convective variability is
indeed driven by our proposed mechanism. However, this needs to be cor-
roborated by closely analyzing those models with our box model, and by
studying other time series from deep convection sites. This could include
adding more vertical layers to the box model, as well as coupling several
boxes horizontally (as done by Titz (2002) and Lind et al. (2002)).

The frequency of convection events depends on the noise strength in a
highly nonlinear way. There are two plateaus for the frequency value: weak
noise triggers hardly any jumps, and with strong noise the jumps become
very frequent and occur every few years. In between is a small range of
noise strengths where the jump frequency steeply rises. For the plausible
parameter range the position of the Labrador Sea is in the region of this
steep rise, which reflects its sensitivity to changes in surface forcing.

With the convection frequency depending both on the forcing parame-
ters and the noise strength, these two effects may reinforce or cancel out
each other. For instance, a mean freshening, as may be expected in the
near future due to global warming, could be compensated in its effect on
convection frequency by a stronger surface forcing variability. This result
from the stochastic approach answers GQ1 in a different way than with the
deterministic approach of chapter 2.

Density anomalies in the upper box can be caused either by the heat flux
forcing or by the freshwater flux forcing. In the stochastic 2TS model, the
stochastic heat flux forcing with its time scale of days is integrated by the
upper box to give intraseasonal temperature anomalies. From observations
it is seen that salinity anomalies of the same intraseasonal time scale cause
density anomalies as well. The impact of both types of anomalies on the
vertical density gradient is similar. Since the focus is here on the statistics of
deep convection events, it is sufficient to have one source of anomalies only.
The impact of stochastic freshwater anomalies is studied in the 1S model of
chapter 4.

The intraseasonal anomalies in the upper box lead to interannual to
decadal phases during which convection is permanently “on” or “off”. Thus,
the 2TS box model shows a way how weather variability, being integrated
in the surface layer, can excite decadal variability in the deep ocean. An
example of this mechanism being at work is given by Weisse et al. (1994). In
their OGCM, they have just the freshwater anomaly advection mechanism
we propose as equivalent to the temperature anomalies. The deep water
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formation area in their model is south of Greenland, not in the Labrador
Sea. The Hasselmann mechanism generates surface salinity anomalies in
the Labrador Sea. Since no deep convection occurs there, these anomalies
are advected to the deep water formation site, where they trigger decadal
variability of the ocean circulation.

The probability distribution of the residence times in the nonconvecting
state shows that there is a small, but not negligible probability for the
nonconvecting state lasting a decade or longer. In contrast to a deterministic
understanding of the system, this means that convection may start again
after a long break due to natural variability. The 19 year-long cessation of
deep convection in the Greenland Sea is thus not necessarily due to a long-
term climatic trend but could be part of the normal stochastic variability
properties of convection. This is one more example how the stochastic model
gives a new approach in explaining the variability of deep convection. In the
next chapter, we will turn to its stochastic stability properties.
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Chapter 4

Stochastic stability in an
analytical model of deep
convection

4.1 Overview

The striking differences between the deterministic model (chapter 2) and
the stochastic model (chapter 3) deserve a deeper analysis. This analysis
of stability and variability features is carried out in this chapter. To be-
gin, a theoretical foundation for the stochastic stability concepts is laid in
section 4.2. The tool for the theoretical analysis is a highly simplified box
model of deep convection (section 4.3). Since it has only one variable, the
salinity gradient, it is called the 1S model. The residence times in the two
model regimes, convecting and nonconvecting, are studied in section 4.4. In
order to interpret the model output in a physically meaningful way, a new
probability measure is developed that combines the concepts of probability
density and residence times (section 4.5). The 1S model’s simplicity allows
us to understand analytically how the residence times and the new prob-
ability measure depend on the model parameters. Concerning long phases
of absent convection, it turns out that this dependence is not always as
strong as suggested by other authors (section 4.6). The stochastic stability
properties are explored in section 4.7. This includes a comparison with the
deterministic stability properties, and it is shown how short, but dynami-
cally relevant excursions to an unstable regime can be incorporated into the
concept of stability. Section 4.7 has a keystone character since on the one
hand the stochastic stability properties are explained analytically, and on
the other hand the 1S model is shown to behave qualitatively very similar to
the 2TS model of the previous chapters. This larger context is highlighted
in the concluding section 4.8.
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4.2 The concept of stochastic stability

We briefly discuss some results of the theory of stochastic dynamical sys-
tems. The focus is to give here a theoretical underpinning for the stability
concepts developed later on in this chapter. The reader is introduced to
the Fokker-Planck Equation and its application to calculate mean residence
times (Gardiner, 2002), and to the theory of stochastic stability developed
by Freidlin and Wentzell (1998).

4.2.1 The Fokker-Planck equation

Suppose we have a one-dimensional stochastic differential equation
T =b(x,t)+/D(x,t) (4.1)

driven by Gaussian white noise ;. In general, b is called the drift coefficient,
and D is the diffusion coefficient. The solution of this stochastic differential
equation (SDE) is an individual trajectory. The Fokker-Planck equation
(FPE) describes the evolution of the probability density function (or pdf)
p(z,t) of the diffusion process given by (4.1):

2

9ty =~ o p.t) + 2L (D@ p) . (42)

ot oz 2 922
Now imagine that we have an over-damped particle moving in a one-
dimensional potential U, driven by noise with constant intensity o. The

SDE is then
dU

The corresponding FPE reads
0 0 au 1 5 02
= -2 (= s . 4.4
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Since U and ¢ do not depend on time, there is a solution to (4.4) that
is time-independent as well. It is called the stationary probability density
function ps(z), which is an analytical solution to (4.4):

2
pe(@) = N exp [—?U(x)} . (4.5)
The normalization constant A is determined by the condition

/OO ps(z)de =1. (4.6)

—00

The stationary probability density function is reached from almost all initial
pdfs after sufficient long time.
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It is clear from (4.5) that to every well in the potential U(z) there is a
corresponding peak in ps(z). The probability to find the system in a given
interval (x1,x2) is

2

Py < 7 < 9) = / po()dz. (4.7)

1

One defines the cumulative distribution function or probability distribution

o

Pz < z0) = / pe(a)dz. (4.8)
—0o0
Through (4.6) it is ensured that the probability to find the system anywhere
on the z-axis equals one.

4.2.2 Measures of stochastic stability

We start with the definition for deterministic (i.e., non-stochastic) stability.
Consider a dynamical system given by the differential equation

& =b(x). (4.9)
Its steady states z* are defined by
b(xz*) =0. (4.10)

A steady state z* is called stable if any neighbourhood E; of x* contains
another neighbourhood FEs such that, for ¢ — oo, any trajectory of the
dynamical system starting in Ey does not leave E;. The state x* is called
asymptotically stable if the same trajectory, in the same limit ¢ — oo, reaches
x* itself. Put in another way, an asymptotically stable state is characterized
by the fact that trajectories that start sufficiently close to it will approach
it asymptotically. In the following, we say stable and mean asymptotically
stable.

This stability definition includes possible transient growth. It is therefore
not surprising that it still holds if we consider a dynamical system

& = bz, ) (4.11)

with a bounded perturbation function ;. In particular, 1); may be the sea-
sonal cycle, and thus this stability definition applies to the cyclostationary
states of the previous chapters.

Yet, the picture completely changes when we replace the perturbation
function in (4.11) by a noise process &£7:

= bz, 7). (4.12)

The noise process will in general be unbounded in an absolute sense. One will
only be able to give a boundary for the mean of the process, and one will be



56 Stochastic stability of deep convection

able to state that there is a low, but finite probability for arbitrarily large
deviations beyond this mean value. Thus, the above stability definition
is not applicable any more. In the case of a Gaussian distributed noise
process, the probability is in fact one that the solution of (4.12) will leave
any neighbourhood FE; of a stable state for any noise intensity o if we only
wait long enough. Using this fact, one can estimate the probability per fixed
time interval for the solution to leave Fq. The reciprocal of this probability
is equivalent to the mean escape time (t.) of the solution from F;. Suppose
that we have

T = b(:B) 4+ o(; (4.13)

with a Gaussian white noise process (;. In addition, suppose that b(z) is
given by a potential U, so that the solution has to overcome a potential
difference AU to leave E;. It is then a classical result (Kramers, 1940) that

(te) ~ AU/ (4.14)

in the limit of small noise intensity o. The mean escape time depends
exponentially on the potential difference and the squared noise intensity.
The higher the potential difference and the weaker the noise, the longer the
solution of (4.13) will rest in its initial neighbourhood E;. Using the 1S
model which does have a potential, the mean escape time can in fact be
determined exactly using the Fokker-Planck equation. For the 2TS model
another approach was needed, see chapter 3.2.

Suppose we have one stable state at x*, and we are interested in the
mean escape time from the interval (—oo,xg), where ¢ > x*. When does
the system leave the neighbourhood of z*, bounded by x(, in the positive
direction? The mean escape time is

(te) = % /;0 exp {%U(m)] </—i>o exp {—%U(w’)] dx’) dz, (4.15)

see Gardiner (2002). This equation is of practical use in section 4.4.

With Freidlin and Wentzell (1998) we think that (4.7) and (4.14) are
useful and appropriate to characterize the stability behaviour of stochastic
dynamical systems. We can measure stochastic stability with the following
criteria:

1. the probability P,« to be in the neighbourhood of a stable state x*,
2. the mean escape time (t¢ z+) from this neighbourhood,

3. the potential difference AU®") needed to escape from the stable state.
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These measures give us the possibility to introduce the concept of quantita-
tive stability. With this concept the stabilities of two or more stable states
of a stochastic dynamical system can be compared in their degree of stabil-
ity (see section 4.7). Whereas the potential may often not be available, the
quantities Py« or (te,+) can be estimated from the model output to study
the stabilities (as done for the 2TS model in sect. 3.5).

Which of the three stochastic stability measures is the most convenient
one? It is instructive to consider the behaviour for small noise intensity
o0 — 0. The value of P,- will certainly converge to one: (4.5) tells us that
the peak of ps; around the stable state becomes sharper for weaker noise, such
that the values of ps outside the considered neighbourhood decrease. With
a similar argument, using (4.14), one sees that the mean escape time (t¢ =)
will grow arbitrarily large for diminishing noise. The potential difference
AU®") however does not depend on the noise intensity (at least in case of
additive noise). This motivates choosing the deterministic quantity AU (@)
as a measure for stochastic stability, bearing in mind that AU through
(4.14), determines the stochastic quantity (t,«). Of course, AU®") can
only be used as a stability measure here because the dynamical system we
are going to deal with, the 1S model, does have a potential.

Equations of the type (4.15) are valid only in the small noise limit. Yet, in
the climate system the noise is not arbitrarily small, but has finite intensity.
Although this puts limits to the validity of analytical expressions, it is just
this finite-intensity noise that leads to the stochastic stability phenomena
studied in the previous and the present chapter.

4.2.3 Time scales

It will prove useful to clarify the roles of the involved time scales in the
stochastic dynamical system. Consider a stochastic dynamical system given
by

&= F(x)+ o0& (4.16)

that is driven by Gaussian noise & with a small intensity o. Assume that
F(x) is a nonlinear function of x, but that F'(z) is well approximated linearly
close to a stable state xq:

T =—k(x —xo) + o0& (4.17)

If we study how (4.16) evolves in time after a start close to xo, we will find
three relevant time scales.

1. The Gaussian noise process &; is often assumed to be white noise,
without any autocorrelation. Although this has advantages for the
mathematical treatment, physical processes are in general observed to
have a finite decorrelation time Tp, a time scale on which the autocor-
relation is significantly larger than zero. An example is the heat flux
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time series analyzed in section 3.3. In the picture of many stochastic
climate models (e.g., section 3.2), 7p corresponds to the fast time scale
of the weather variables.

2. If we wait somewhat longer, the evolution of (4.16) is governed by the
feedback coefficient k in (4.17), yielding a typical dynamical time scale
74 = 1/k. This dynamical time scale corresponds to the slow time scale
of the climate variables in the picture of stochastic climate models. It
is also the time scale of the system’s evolution in the deterministic
limit.

3. If we observe the system still longer, then the noise will lead to excur-
sions from the bounded neighbourhood where the linear approximation
(4.17) is valid. The system might even hop between neighbourhoods of
several stable states. The frequency of these excursions is given by the
mean escape time (te). Roughly speaking, it depends exponentially on
the deterministic term in (4.16) divided by the squared noise intensity
o2. Therefore, in many cases the mean escape time is much larger

than the dynamical time scale.

Often one focuses on the evolution on the dynamical time scale 74, assuming
that the neighbourhood of interest is not left. This assumption may be
justified, but one has to take into account that a deterministically stable
state is only metastable under stochastic forcing: the system’s trajectory
is likely to be in its neighbourhood only on time scales smaller than (t).
In the present study we are interested in the hopping events between the
convecting and the nonconvecting state. Thus it is a prerequisite that the
neighbourhood of either states is left frequently. The time scale considered
is much larger than the mean escape time (t.).

4.3 An analytical model of deep convection in one
variable

4.3.1 Deterministic part

Our aim is to derive a minimal conceptual model of deep convection that is
as simple as possible, and hence open to an analytical understanding. The
starting point is the 2T'S box model with four variables (temperature T and
salinity S in each box) used in chapters 2 and 3. We will end up with a
1-box model of the mixed layer with only one variable (salinity), dubbed
the 1S model. For the reader’s ease, we repeat the equations of the 2TS
model from section 2.3:
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% _ m(:@ —T) 4 % (T — Apcos(2nt) = T1)  (4.18)
dd_il — m(& —S1) + é (ST + Agcos(2mt + 1) — S1)(4.19)
L — (=T + (1 =Ty (4.20)
> @(& — 52)+ (5~ 52). (4.21)

The vertical exchange time scale 7. is a function of the vertical density
difference

Ap=p1—py=—a(Ty = To) + B(S1 — S2), (4.22)
where a and 3 are the thermal and haline expansion coefficients of the
linearized equation of state for seawater. The vertical exchange time scale
is very large for Ap < 0, but for Ap > 0 the convective mixing starts, and
T, is of the order of a few days.

To start the simplification, we use the fact that the variations in the deep
ocean are much smaller than in the upper layer. Inspection of Fig. 2.3 tells
that the difference is about one order of magnitude. This motivates setting
the deep box temperature and salinity to constant values 75 and S5. Next,
the seasonal cycle is not considered. Section 2.5 showed that its presence
does not change the basic stability properties. Finally, we assume that the
upper box temperature is relaxed much faster than the upper box salinity,
so that we can use a constant value 77 = T7. This is justified because in the
parameters obtained from fitting the 2TS model to data from the Labrador
Sea (table 2.2), the two relaxation time scales differ by a factor of about
20. With a constant 77 there is no heat flux feedback during convection
events as in the 2TS model. Therefore the length of the convection events
is reduced here. For the coarse-grained criterion used later on this length is
however not relevant.

All these assumptions leave us with one single equation for the upper

box salinity:
dSh 1 1
— = S5 — S — (ST -5 4.23
dt TC(AP)( 2 1)+TlS( 1 1)7 ( )
with the same function for 7. as above. The vertical density gradient now

depends on S; only:
Ap=p1—p2=—a(If = T5) + B(S1 — 53). (4.24)
We can rewrite the two equations (4.23) and (4.24) after a transformation
of the variables, and switching from time scales to exchange coefficients:

dy
dt

= —ky+ks(y* —y),where (4.25)
k=0 for y<uyo
k=k. for y>uyg
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We used
S1— 55 (4.26)
yr o= ST -5 (4.27)
« * *
Yo = E(Tl —-13) (4.28)
ks = 1/ms (4.29)
kE = 1/1.(Ap), (4.30)
and 1/k. of the order of a few days. For later use we define
K =ke/ks+1. (4.31)

The model is sketched in Figure 4.1. Following similar arguments, Cessi
(1996a) has used the same simplifications to obtain a deep convection box
model in one variable. In our 1S model, the properties of the deep ocean are
fixed, and so is the upper layer temperature. The vertical salinity gradient

y* N y Active Box
? .
(ks: Eddy mixing ) <—<k Convective Mlxm@
v
Deep
Reservoir

Figure 4.1: Sketch of the 1S boxr model with one single active box for the
surface mized layer salinity. The only variable of the model is the vertical
salinity gradient y. The deep box is considered as an infinite reservoir of
water with constant salinity.

y is restored to a reference value y*, representing the effect of eddy mixing.
Other processes acting on the upper layer are less important (Houghton and
Visbeck, 2002). If the upper layer salinity becomes sufficiently high, then the
vertical salinity gradient y overcomes the fixed vertical temperature gradient
10, and convective mixing starts. Hence, yo plays an important role as a
threshold that separates the two regimes of the model. In the convecting



Stochastic stability of deep convection 61

-2f bistable
-25¢ off
_3 L L L
-1.5 -1 -0.5 0
yO

Figure 4.2: Stability diagram of the 15 model for the parameters kg = 1
and k. = 10. Depending on the parameters y* and yo there exist one or
both stable states, with convection being “on” or “off 7. The lines define the
borders of the respective domains. The crosses show the parameter sets used
for the panels in Fig. 4.3. Note the similarity to the stability diagram of the
2TS model (Fig. 2.6).

regime (y > yp), the upper box is coupled to the deep box very strongly;
in the nonconvecting regime (y < yo) the two boxes are independent. The
function 7.(Ap) has thus been specified to be a step function having the
value 1/k. or co.

The two stable steady states yﬁ?’c) immediately follow from the model

equation (4.25): a nonconvecting, or “off” state at yg?) = y*, existing if

y* < yo, and a convecting, or “on” state at yé? = y* /K, existing if y* > Kyj.
For Kyy < y* < yo both states exist. The model is bistable in this parameter
range. The stability diagram (Fig. 4.2) shows that the stability properties
of the 1S model are very similar to those of the 2T'S model (Fig. 2.6). With
the 2TS model, the main parameters to study stability changes were the
upper box restoring temperature 77 and the upper box restoring salinity
S7. In an analogous way, the fixed vertical temperature gradient yo and the
reference vertical salinity gradient y* are chosen here for this purpose.

A potential is readily derived from (4.25). Assuming the potential U
to be zero at y = g, we define the potential function on either side of the
convection threshold:
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bistable

u(y)

u(y)

off

e 5 U U W U

Figure 4.3: The potential U (in arbitrary units) as a function of y as given by
eqs. (4.32) and (4.33). The dash-dotted line denotes the convection thresh-
old yo that separates the convecting and the nonconvecting regime. By def-

inition, U(yg) = 0. The potential is shown for three cases: convecting
monostable, bistable, and nonconvecting monostable, corresponding to the
crosses in Fig. 4.2. The parameters are kg = 1, k. = 10, y* = —1, and

yo = —1.2; —0.2; 0.0, respectively.
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Uly) = 2 (w-v)-w-v)) fy<w, (4.32)

Uly) = lw%((z;—%f—(yo—%)j if y > 9. (4.33)

The evolution equation (4.25) can now be written as:

@ _ _dU (4.34)
dt dy

This potential (see Fig. 4.3) is different from a classical double-well potential
in several points. First, due to the two restoring coefficients k. and kg
the two wells are asymmetric. The strong coupling in the convecting state
implies a deep potential well. Second, the convection threshold in (4.25)
results in a continuous, but non-differentiable point at yg. There is no
unstable steady state at this point. Third, since the restoring coefficients are
constant, the curvature of the two parabolic wells does not change with y* or
yo; only the potential well depth relative to U(yg) = 0 is altered. There are
clearly defined borders for the existence of the two deterministically stable
states (Fig. 4.2), but it is important to note that the two regimes always
exist. Even if one of the regimes does not contain a stable state (e.g., the
convecting regime in the lower panel of Fig. 4.3), this unstable regime may
be accessed temporarily by the model trajectory.

4.3.2 Stochastic part

As in chapter 3, we want to study the impact of anomalies in the forcing
of the upper layer, and these anomalies are represented by a stochastic
term in the model equation. In the stochastic climate model of chapter
3, this stochastic term represented the synoptic heat flux variability in the
surface fluxes. Now, in the 1S model, the focus is on the freshwater flux
variability with its typical time scale of a few months. Although heat flux
variability plays the dominant role in triggering a single convection event,
the freshwater flux variability is an important contribution to the long-term
evolution of the background stratification of the water column (Houghton
and Visbeck, 2002). Thus, the focus is now on the interannual variability of
lateral eddy mixing and advection, which are the main sources for freshwater
flux variability. As Hall and Manabe (1997) showed, the stochastic approach
holds for sea surface salinity as well, especially on time scales below a few
years. (The heat flux variability could be represented in a rudimentary way
by adding another stochastic term to yg. Since this does not change the
basic model behaviour [see Wunsch (2002)], we rather opted for keeping the
model as simple as possible.)
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The 1S model equation (4.25) is thus extended by a noise process £ with
a decorrelation time 7¢ and a noise intensity o:

d *

= —ky+ks(y' —y)+€ (4.35)
d¢ 1 o

= = - 4.
I Tgf‘f‘TgCt (4.36)

k=0 for y<uyp
k=k. for y>uyo

The noise process is driven by a Gaussian white noise process (;. In the
limit 7¢ — 0 the noise process &(t) becomes white noise as well; with 7¢ > 0
the process £(t) is red noise. Estimations of all parameter values are given
in section 4.3.3.

The 1S model and the 2TS model differ in where they separate the “fast”
from the “slow” time scales (sect. 4.2.3). In the 1S model, we have assumed
an instantaneously relaxed upper box temperature. This means that this
relaxation, taking place on a time scale of a few months, is now considered
as “fast”. By contrast, in the 2TS model the fast time scale in this sense was
the synoptic time scale of a few days. With stepping from the 2TS model to
the 1S model, the time scale separation border between resolved processes
and those parts of the dynamics that are considered as fast shifts from a few
days to a few months.

In general, the fast processes are represented by the stochastic forcing.
However, in both models the convective mixing is another fast process. The
mixing time scale is given by the numerical integration time step in the
2TS model (due to the convective adjustment), and it is of the order of
a few days in the 1S model. To have two competing fast processes is not
in full agreement with Hasselmann’s theory. Yet, from the physics of deep
convection it is justified to construct the two models in the way we have
done it here: the forcing as well as the convection events are indeed fast
processes in the real ocean. Moreover, the results of the previous chapter
have shown that in the limit of weak noise, the behaviour of the stochastic
model converges to that of the deterministic model.

For the next few sections the noise is assumed to be white (1 = 0),
which makes the analytical computations easier. The effect of red noise,
which is more realistic due to its finite decorrelation time, is shown later on.

A typical trajectory of the model (Fig. 4.4) shows how the model fluc-
tuates around the two states, and how it crosses the separating threshold
from time to time. The trajectory can be characterized by the stationary
probability density function ps (see section 4.2.1). With the potential (4.32)
and (4.33) it is straightforward to use the Fokker-Planck equation in order
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Figure 4.4: Time series from the 15 model with parameters ks =1, k. = 10,
o =038, y* = -1, and yo = —0.2. The parameters are the same as for
the middle panel of Fig. 4.3; the model is in the bistable domain. The
dash-dotted line denotes the threshold yo that separates the convecting regime
(y > yo) from the nonconvecting regime (y < yo). Convection occurs in the
model years 24, 28, 29, 30, 31, 36, 37, and 38.

to determine py for (4.35):

k

p(o) = Abiesp |55 -9)?| ity <w, (137
koK *\ 2

ps(y) = Nbaexp l— 52 (y—%)] if y > yo. (4.38)

There are two abbreviating constants

k .
by = exp L—g (Yo —y )2] , (4.39)
kSK y* 2
- Sl —-Z . 4.4
bo eXp[ 3 (yo K) ] (4.40)

The constant N is determined by the normalization condition

[e.o]

/ ps(y)dy = 1. (4.41)

—00

Three typical probability density functions (pdfs) are shown in Fig. 4.5.
From the exponential term in (4.37) and (4.38) it is obvious that the pdf
peak is sharper for a deeper well (large kg values) and for weaker noise
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Figure 4.5: Probability density function ps (thick, in arbitrary units) cor-
responding to the three potential curves of Fig. 4.3. The potential curves
are repeated here (thin). Parameter values as in Fig. 4.3; the white noise
intensity is 0 = 0.8. The dash-dotted line denotes the convection threshold
yo. The two peaks in the bistable case (middle panel) are clearly different
in size, indicating that the “off” regime (to the left of the dash-dotted line)
is occupied more often than the “on” regime. Conversely, the lower panel
shows that there is a non-zero, finite probability for the “on” regime to be
occupied even if the stable “on” state does not exist.
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(small o values). In the deterministically monostable domains the pdf has
one peak, and there are excursions over the threshold into the other regime.
Stronger variability leads to more excursions over the threshold. If the de-
terministic system is bistable, then the pdf has two peaks. Yet, the different
size of the two peaks indicates that the trajectory spends more time in one
regime than in the other. If the peak sizes are very different, this may mean
that one regime is reached only rarely.

Neglecting transients due to particular initial conditions, the probability
for the model to be in the convecting regime is given by

oo
Pe= [ ps(y)dy. (4.42)
Yo
Similarly, the probability for the model to be in the nonconvecting regime
is

P, = / y;ps(y)dy. (4.43)

These two probabilities are useful in later sections.

The results from the previous chapters motivate to study the model
behaviour in the “bistable” and in the “off” domain. In contrast, Cessi
(1996a), although using a model very similar to ours, studied the behaviour
in an oscillatory state of the model. The observed temperature and salinity
stratifications in the North Atlantic never lead to such an oscillatory state;
Cessi (1996a) aimed at analyzing oscillations of the THC occurring in GCMs.

4.3.3 Parameter estimation

The 1S model draws a highly idealized picture of convection dynamics. It
is designed as a tool to study the dynamics of the 2TS model, but it is
not meant to realistically model salinity time series by itself. A detailed
parameter estimation like the one carried out for the 2TS model is thus not
feasible. We will work with two parameter sets: one “tutorial” that helps to
clarify the basic model properties, and one “estimated” from observational
data that is somewhat more realistic.

Considering the “estimated” parameters first, we start with taking over
the parameters from the 2T'S model (table 2.2) and derive the 1S parameters
according to egs. (4.27) to (4.29). This yields y* ~ —1.5 psu and yg =
0.04 psu. With the time unit being still one year, we have kg = 0.125yr—!
from 71¢ = 8 yr. The convective mixing is assumed to have k. = 50yr—1,
corresponding to a time scale of one week. Larger values of k. would require
numerical time steps smaller than 1 day, which is undesirable with respect
to the time scale of the stochastic forcing. For the sake of brevity, the units
of the parameters are left out hereafter. The “estimated” parameter set is
thus kg = 0.125, k. = 50,y* = —1.5, and yo = 0.04.
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A check for this parameters is possible with data from Houghton and
Visbeck (2002), hereafter cited as HV02. They specify a value of 0.2 Sv
total mean freshwater flux into the Labrador Sea (1 Sv = 106 m3s~!). Most
of this freshwater is transported by the boundary currents, such that only
20%, or 0.04 Sv, reach the interior Labrador Sea through lateral eddy mixing.
They further assume a volume of V = (0.6 - 105 km?) - 300 m for the interior
Labrador Sea, and a reference salinity of Sy = 35 psu. One obtains a mean
freshwater flux of

S
Qpy = VO - 0.04Sv = 0.25psuyr !, (4.44)

According to HV02 the error of this estimated freshwater flux is 50%. Thus,
the value of ® gy is consistent with the observation that, if convection is
absent, the upper layer salinity decreases with about half of this rate (table
2.1, see also Fig. 5 of HV02). In the 1S model, the initial salinity decrease
immediately after the end of convection (y(tg) = yo) is

dy

pri ks(y* —y(to)) = 0.125-(—=1.5—0.04) psuyr ' ~ —0.2 psuyr ', (4.45)

which is consistent with the above value of ® gy, too.

However, there is a difference to the “flushing time” of the interior
Labrador Sea as estimated by Khatiwala and Visbeck (2000). From dy-
namical considerations, they obtain a value of 3 yr for the interior Labrador
Sea to be ventilated by lateral mixing and deep convection. Our value of
T1s = 8 yr (or kg = 0.125) is somewhat larger. Yet, their study has the
baroclinic lateral mixing as a prerequisite. The presence of deep convec-
tion is needed to maintain the horizontal salinity gradient that drives the
lateral eddy mixing. If convection is absent for a longer time, then freshwa-
ter accumulates in the interior Labrador Sea. Thus this horizontal gradient
is removed, and the lateral mixing becomes weaker (Dickson et al., 1988).
This fits with the box model’s relaxation being strong in the beginning of
a non-convecting phase, but lessening later on. Whereas the flushing time
of Khatiwala and Visbeck (2000) was obtained for a phase with frequent
convection, our box model applies also to long nonconvecting phases.

Due to the absence of the seasonal cycle the estimated parameters reflect
the annual mean state. With yy > 0, the model is located in the “off”
domain. Only a forcing with a magnitude similar to the amplitude of the
seasonal cycle will then be able to trigger convection events. If we do not
want to include the seasonal cycle itself (to keep the model simple), then
the stochastic forcing term has to take over this amplitude. Alternatively
one could derive the parameters from permanent winter conditions. The
stochastic forcing would then represent the interannual variability only. The
results are affected only quantitatively by this alternative.

We still need to estimate the decorrelation time 7¢ and the standard
deviation std(§) of the noise term & in (4.35). The decorrelation time scale
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of the freshwater flux is difficult to estimate from observations because long
time series are sparse, and the freshwater flux is fed from many sources (such
as continental runoff, sea ice advection and melt, precipitation). Proxy time
series from models suggest to assume a decorrelation time of half a year to
three years. Such time series are, for instance, the sea ice export through
Fram strait (H. Haak, pers. comm.) or the sea ice volume in Baffin Bay
(M. Maqueda, pers. comm.). We use here 7¢ = 2 years. In this way, the
stochastic freshwater forcing includes interannual anomalies.

According to HV02, the anomalous freshwater flux associated to a Great
Salinity Anomaly is 20% of the mean freshwater flux. This yields a standard
deviation std(¢) = 0.05psuyr~! for the interannual variability. The anoma-
lous freshwater flux amounts to 20% of the processes that drive the seasonal
cycle (HV02). If the stochastic forcing term is to contain the variability of
the seasonal cycle as well, then a sensible choice is std(£) = 0.25 psuyr—1.
Since we will also use white noise forcing, it is useful to determine the noise
intensity o in (4.36) from o = /27¢ std(€) (Gardiner, 2002). With the above

values this yields o = 0.5 psuyr—/2.

Parameter set || kg ke o Te y* Yo
(yr7 ) | v | (psuyr=2)| (yr) | (psu) | (psu)

“estimated” 0.125 50 0.5 2.0 -1.5 0.04

“tutorial” 1.0 10 0.8 0 — —

Table 4.1: Parameter sets for 15 model simulations. For the tutorial param-
eters no particular values for y* and yo are specified.

The “estimated” values for kg and k. result in two strongly asymmetric
potential wells. The “on” well is very narrow and would be hard to visualize.
For tutorial reasons, we have therefore chosen kg = 1, k. = 10, and ¢ = 0.8
for the next few sections, and return to the estimated parameter values later.
These “tutorial” parameters still capture the two different regimes and are
not completely unphysical. Moreover, with the tutorial parameters we use a
stochastic forcing with 7¢ = 0 (white noise), to make the analytical compu-
tations easier. Both parameter sets are given in table 4.1. Additionally, the
values kg = 10 and k. = 50 were used in two cases for illustrative reasons.

4.4 Residence times

4.4.1 Mean residence times

The mean residence times are a relevant dynamical feature of a stochastic
dynamical system. They give the information how often the jumps between
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the regimes occur, while the probabilities P, and P, only tell how much
time the system has spent in total in either regime. The mean residence
times are also important for defining stochastic stability (section 4.2). For
the 1S model an analytical approximation for the mean residence time is
derived. A comparison with numerical computations will show the limits of
this approximation.

The residence time ¢, is defined here as the time that a trajectory spends
uninterruptedly in one regime. Inspection of Fig. 4.4 shows that this defi-
nition includes long residences of several years where the trajectory spends
much time close to the deterministic stable state — but also short residences
of a few time steps’ length where the trajectory stays close to the threshold
1o. Defining the residence time in this way is appropriate in the context of
the 1S model, since we are interested in the transitions between the convect-
ing an the nonconvecting regimes. In particular, it does not matter whether
one of the stable states does not exist. The definition relies only on the
regime transitions.

Another approach is needed for an approximate analytical calculation of
the residence times. Here an expression for the mean escape time can be
obtained. Provided that a deterministically stable state exists, the escape
time t. is defined as the time the trajectory spends in the corresponding
pdf peak before it hits a given threshold the first time. This definition is
commonly used in physics (Hénggi et al., 1990). For a system moving in
a potential U, we know (eq. 4.15) that the mean escape time (t.) from a
potential minimum (here at y*) to a threshold (here at yo, and yo > y*) is

Yo y
)= [ exp | U] ([ ew |- S0 dv)dy. (@ao)
02 Jyr o o0 o

This equation is now used to obtain the mean escape time (t. ) from the
nonconvecting state. If we assume small noise, then the first exponential
is large only close to yg, while the second has significant magnitude only
around y*. Hence the contribution from the second integral is relevant for y
close to yg only, and will not vary strongly for these y values. Therefore we
can set y to yo in the upper bound of the second integral and treat the two
integrals as approximatively independent. Further, to solve the first integral
we linearize U(y) around yo. With these assumptions, the solution of (4.46)

1S
1

(ten) ~ vm <k—s (yo — y*)2)§ exp {% (Yo — y*)Q] : (4.47)

ks \o?
The mean escape time from the nonconvecting state predominantly depends
on the exponential of the potential well depth divided by the squared noise
intensity. Equation (4.47) is a generalization of a result already obtained by
Kramers (1940) for the escape time from a parabolic potential well over a

kink in the potential curve into a second, symmetric potential well (see also
Hénggi et al. (1990)).
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Figure 4.6: (a) Comparison of the mean residence time in the nonconvecting
regime (t,n) (logarithmically scaled, time unit is one year) from simulations
(crosses) with the analytically computed mean escape time (te ) (solid) as a
function of y* for fived yo = —0.067. The dashed lines enclose the bistable
domain. (b) Contour plot of the mean residence time (logarithmically scaled)
as a function of the two model parameters (yo,y*). Due to the finite length
of the model simulations the contours are not perfectly smooth and could not
be computed for the whole parameter plane. Shading indicates where they
miss. The thick lines are the deterministic stability borders like in Fig. 4.2.
For panels (a) and (b) the tutorial parameters were used. (c) shows the same
comparison like in (a), but with other parameters: ks = 10, k. = 50,0 = 0.5,
and yo = —0.1. Note that the analytical approzimation in (c) holds much
better because of the larger value of kg. The deterministic stability borders
(thick line and/or dashed lines) and the shading will appear in some of the
following plots.
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In comparing our result (4.47) with an estimate of the mean residence
time from numerical simulations (Fig. 4.6), several points deserve our at-
tention.

e The analytical expression (4.47) for the mean escape time (t. ) is
a good approximation to the mean residence time (t,,) if there is a
sharp pdf peak at the “oft” state. This is only the case for y* < yp, and
moreover requires the term kg (yo — y*)? 02 to be large (cf. eq. 4.37).
This is achieved by either a strong restoring coefficient kg, small
noise o or a large difference (yo — y*), which is seen in comparing
Fig. 4.6a with Fig. 4.6c. For a small difference (yo — y*), the term
(ks (yo — y*)202)"1/2 in (4.47) grows large and the approximation
breaks down (right-hand part of Fig. 4.6a).

e The large difference between the analytical (t.,) and the numerical
(trn) in Fig. 4.6a as well as the large excursions of the time series in
Fig. 4.4 demonstrate that the noise intensities used here are rather
high. At the same time, we see from the left-hand part of Fig. 4.6a
that the analytical results are an important guidance to understand
the model behaviour, even if the noise is not “small” in the sense of
the assumption that underlies the analytical calculations.

e The analytical approximation for the mean escape time (t. ) is valid
only for those events where the system moves from the pdf peak to the
threshold. The numerical mean residence time (t,,) is more compre-
hensive: it includes as well short back-and-forth crossings of the thresh-
old. These events lead to smaller values for (¢, ,) than for (t. ). Those
short crossings however produce a time-step dependence of (t,,): the
smaller the time step, the smaller is the shortest possible residence
time. This undesirable feature is overcome by introducing the coarse-
grained statistics in section 4.5.

e The mean residence time (¢, ,) is a smooth function of the model pa-
rameters yo and y* irrespective of the deterministic stability domain
borders. The right-hand dashed line in Fig. 4.6a denotes the y* value
where the nonconvecting state ceases to exist, but the curve of the
mean residence time does not show a sign of this particular point. The
mean residence times do not show abrupt changes in dependence on
the model parameters, in contrast to the deterministic stability prop-
erties. Although not shown here, this is also true for the distribution
of residence times.

e The analytical approximation shows that the mean residence times
depend exponentially on the forcing parameters like the vertical tem-
perature gradient yg or the reference vertical salinity gradient y*. The
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numerical simulations show that this holds true throughout the pa-
rameter space, independent of the deterministic stability of the model
states, and even if the analytical approximation breaks down.

e Since the mean residence time in one regime depends on the potential
function in this regime, the lines of equal (¢, ,) are parallel to isolines
of the potential function in the nonconvecting regime (Fig. 4.6b).

These properties of the mean residence time are crucial for the stochastic
stability concept developed later on.

We note that Cessi (1994) computed the mean residence times in a sim-
ilarly simple model. She simplified Stommel’s (1961) box model of the ther-
mohaline circulation to a version with one single variable, the horizontal
salinity gradient in the Atlantic. The residence times were computed for
two states, a weak and a strong meridional overturning circulation. While
her focus was to characterize the variability of the large-scale circulation,
we aim at analyzing the local stability of the (potentially) convecting water
column.

4.4.2 Probability of residence times exceeding a threshold

Having considered the mean residence time in a regime, we now turn towards
the distribution of the residence times and the probability for the residence
time to exceed a threshold value. In general, for a random process with van-
ishing autocorrelation it is known (Leadbetter et al., 1983; von Storch and
Zwiers, 1999) that the residence times ¢, in a given regime are exponentially
distributed. The probability density function is then:

i) = s [-5] i

with (¢,) the mean residence time. The probability distribution for ¢, reads:

P <t = [ttt =1 e )

The function P(t, < t,) gives the probability for the residence time to
stay below a threshold ¢,. It is easy now to compute, for instance, the

probability of the residence time ¢, , to be larger than one year. The only
required quantity is the mean value (¢;.,,):

(4.49)

t
P(tr,n > tyr) =1- P(tr,n < tyr) = exp l_ <tyr>‘| (4.50)
rn

Yet, the noise process considered here, the output from the 1S model, has a
considerable autocorrelation that is determined by kg and k.. In this case
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the distribution of t,, deviates from the ideal exponential form, as seen
in section 4.6. An analytical treatment is still possible (Leadbetter et al.,
1983), but tedious. Therefore (4.50) is used for further calculations, but
only as an approximation.

4.5 Coarse-grained statistics of the model time
series

For the sake of simplicity we have avoided to explicitly introduce the seasonal
cycle. Instead we let the stochastic forcing take over its amplitude. Deep
convection events now may occur at any time in a given year, and not
only during the cycle’s extremum in winter. This is a problem for counting
convection events. Introducing a coarse-grained criterion to interpret the
time series from the 1S model provides a way out.

In the real ocean the physically most relevant feature of a deep convec-
tion event is the mixing of the deep waters with the surface layer waters. As
the diffusive and advective time scales of the deep ocean are clearly larger
than one year, and as there is virtually no seasonal cycle in the deep waters,
it does not really matter when exactly in a given year deep convection oc-
curs. Under constant boundary conditions, the relevant physical question is
whether convection did occur in a given year at all. Therefore, a given year
of the model output is called a “convecting year” if there was at least one
convection event during this year. This rule establishes the coarse-grained
criterion. As an illustrative example, consider the time series displayed in
Fig. 4.4. The model years 24, 28, 29, 30, 31, 36, 37, and 38 are “convecting
years” in the above sense.

The question how often convection occurs can be answered by the prob-
ability n. for a convecting year to occur in a model run. The probability
n. is coarse-grained in the sense that it neglects the short back-and-forth
changes between the convecting and the nonconvecting regime. Although
these short changes may occur in the real ocean, it is the cumulated effect
of all those short convection events that determines water mass properties
and the circulation in the ocean. In contrast to the mean residence time, n,
depends only very weakly on the time step size. Changing the time step by
one order of magnitude leads to changes in n. that hardly exceed 10%. In
any case, it is justified to use the coarse-grained probability n. as long as
the focus is on the statistics of deep convection events.

An analytical expression for n. is readily derived. Suppose that the
nonconvecting stable state exists so that (4.47) is valid. The time span of
one year is called t,,. (The definition of “year” is arbitrary here, it could be
any time interval of fixed length.) Obviously,

ne =1— P(y < yo during t,,) . (4.51)
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The probability P(y < yo during t,,) for convection not to occur in a year
is the probability to be in the nonconvecting regime in the beginning of this
year times the probability for the residence time in the nonconvecting regime
to exceed one year:

P(y < yo during t,;) (4.52)
= P(y(to) <o) - P(y(t) <yoforalltg <t <to+t,) (4.53)

= /y:ops(y)dy - exp [— by ] . (4.54)

{tr.n)
Finally,

ne=1—P, - exp [_@ty_x] . (4.55)

The probability n. is a function of the probability to be in the nonconvecting
regime and of the mean residence time in this regime.
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Figure 4.7: Estimates of (a) the probability P. to be in the convecting regime
and (b) the probability n. for a convecting year from numerical simulations
of the 1S model. Contours show P. and n. as a function of the forcing
parameters y* and yg, using the tutorial parameters. Thick lines denote the
deterministic stability domain borders as in previous figures. Note that the
contours run smoothly through these deterministic stability borders.

It is instructive to compare n., the probability for a convecting year,
with P., the probability to be in the convecting regime. Figure 4.7 shows
the differences. Consider first the lower left-hand part of the panels. This is
the bistable domain with y* < —1.5, say. The values of P. and n. are very
similar. Both potential wells are rather deep here, and the mean residence
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Figure 4.8: (a) Contours of n. for kg = 10, k. = 50 and o = 0.5. For small
y* walues the contours follow the (t, ) contours, or the isolines of the po-
tential function of the “off” regime. (b) Comparison of numerical (crosses)
and analytical (solid line) computation of n. for the same parameter values
with fized yo = —0.1. The analytical approximation breaks down where the
analytical (te,) has its minimum (cf. Fig. 4.6¢).

times are large. Consequently, the exponential in (4.55) is close to one, so in
the limit we have n, =1 — P, - 1 = P.. Now consider the upper right-hand
part of the panels. This is the “off” domain with y* > —1.5 or so. Here the
differences of P. and n. are considerable. The P. values are small since the
stable convecting state does not exist. In contrast, the n. values are large
and even exceed 0.5. The convecting state does not exist, but the probability
for a convecting year can be larger than 50%. The explanation lies in the
“off” potential well being shallow here. The small residence time means
that there are frequent excursions from the non-convecting equilibrium state
where the model hits the convection threshold. The pdf peak is broad, as
seen in the “off” panel of Fig. 4.5. Since P, ~ 1, we have, again in the limit,
ne =1—1-exp[—ty/(trn)]. In the “off” domain, n. depends on the mean
residence time only. This feature comes out more clearly in Fig. 4.8a. For
large y* the isolines of n. are parallel to the “off” domain borders. These
parallels are the lines of equal (yo — y*) and therefore lines of equal shape
of the potential function in the nonconvecting regime.

With (4.55) n. can be computed analytically. The mean residence time
obtained numerically is then replaced by the analytical expression for the
mean escape time (4.47). In addition, the n. definition relies on the as-
sumption of exponentially distributed residence times. Fig. 4.8b shows a
comparison of the analytically and the numerically computed n.. The an-
alytical approximation obviously follows the numerical values quite closely
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over a large range of y* values. This is an example of how successful the 1S
model is in providing conceptual and analytical approaches to understand
the statistics of deep convection events.

The qualitative differences between P. and n. are the same when not
using the “tutorial” parameters, but the more realistic “estimated” param-
eters. Fig. 4.9 shows that with the estimated parameters, the dependence
of P, and n. on y* is weaker than in Fig. 4.7, but the dependence on g is
stronger. The reason lies in the ratio of the two potential wells in either pa-
rameter set. A convenient measure for this ratio is K (see (4.32) and (4.33)):
for the tutorial parameters K = 11, whereas the estimated parameters have
K = 401. In any case, in the “off” domain the values of n. are still larger
than the P, values.

P n
Cc [
of @) T
o
-0.5
g 01/
*x [e2] *x
> 3 ] 8 !//
? S
Q'\‘
-15} N 1 -1.5}
-2 / -2
-0.2 -0.1 0 0.1 -0.2 -0.1 0 0.1
yO yO

Figure 4.9: Contours of (a) P. and (b) n. for the estimated parameter set.
The difference between P. and n. is still significant, particularly in the “off”
domain (yo > 0).

The differences between P, and n. are remarkable in their physical in-
terpretation. The frequent occurrence of convecting years does not depend
on the existence of the convecting state, because short excursions over the
convection threshold into the convecting regime are sufficient to achieve con-
vection events. The curves of n. run smoothly across the point where the
convecting stable state ceases to exist.

4.6 Nonconvecting phases

We consider now the probability for uninterrupted sequences of convect-
ing years (or of nonconvecting years). Each of these sequences is called a
(non)convecting phase. We compare the results of the 1S model with those
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of the 2TS model. Fig. 4.10 shows the distributions of the length of the two
kinds of phases. The distribution of the frequency of the phase lengths may
again be interpreted as a pdf of the phase length. Obviously, Fig. 4.10 is
qualitatively similar to the Figure from the 2TS model (Fig. 3.4). Again, the
convecting phase lengths are distributed almost exponentially, indicated by
the almost straight line of the distribution in the logarithmically scaled plot
(panel a). In contrast, the distribution of the nonconvecting phase lengths
is bent, with short phases occurring rather often, but also a small frequency
of nonconvecting phases that are longer than 100 yr (not shown here).

At this point the positive salinity feedback comes into play again. Like
in the 2TS model, this feedback acts during the nonconvecting phases,
rendering their termination less and less probable the longer they last. This
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Figure 4.10: Distributions of the lengths of convecting phases (a) and non-
convecting phases (b), where a convecting phase is an uninterrupted sequence
of convecting years. The frequency of every single phase length is given as a
fraction of the total number of phases during a 10° yr model run. The frac-
tion axis is logarithmically scaled. For the analyzed model run the estimated
parameters were used (but y* = —0.75). The model is in the (determinis-
tically) monostable “off” domain. The distribution in (b) shows the char-
acteristic “red-noise bent” at short phase lengths. The mean phase lengths
are 4.0 yr (a) and 29 yr (b). The tail of the distribution in (b) was cut off
arbitrarily.
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Figure 4.11: Probability for the length p, of the nonconvecting phase to be
10 yr or longer: (a) as a function of y* with fized yo = —0.1, (b) contour
plot as a function of yo and y*. Tutorial parameter set. Shading, thick and
dashed lines as in Fig. 4.6.

is the reason for both the relatively high probability for short phases and the
small, but non-negligible probability for very long phases. The point is that
this feedback is acting in the model run analyzed in Fig. 4.10, although pa-
rameters from the monostable “off” domain were used. In other words, the
positive salinity feedback is not tied to the bistable domain. Instead, it is the
“memory” of the system being longer than one year (namely, 1/kg = 8 yr)
that produces the feedback. This is easily seen when looking at the phase
length pdf from model runs with kg = 1 (not shown here). In this case,
the dynamical time scale is 1/kg = 1 yr. There is no long memory in the
system, and the nonconvecting phase lengths are distributed exponentially
as well. The positive salinity feedback is represented by the construction of
a sufficiently broad single potential well plus the convection threshold; the
bistability is not required.

The pdf can be cumulated to give the probability for the phase length
pn to exceed a certain threshold (cf. Fig. 3.5). Here we are interested in
how this probability depends on the forcing parameters. As an example,
Fig. 4.11a shows how the probability P(p, > 10) for a nonconvecting phase
to last 10 yr or longer depends on the value of the reference salinity gradient
y*. Where this probability is very small for y* close to zero, corresponding
to saline surface conditions, it increases with a fresher surface forcing. For
y* = —1 its value is about 0.2, meaning that, when a nonconvecting phase
starts, chances are 20% that it will last 10 yr or even longer. If y* is further
decreased, P(p, > 10) continues to grow and eventually reaches 1. The
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whole curve has a shape similar to a hyperbolic tangent. Equation (4.50)
reveals that P(p, > 10) depends on the mean residence time only. Thus its
contours are parallel to the line yo = y* (Fig. 4.11b), as for n. in the “off”
domain (Fig. 4.8a).

Note that P(p, > 10) shows an exponential dependence on the param-
eters if its values are small. However, for 0.2 < P(p, > 10) < 0.8 the
dependence is almost linear. If we interpret the fact that a nonconvecting
phase lasts 10 yr or longer as a kind of a climatic extreme event (which
it would be at least in the Labrador Sea), then this result is an important
extension to the findings of Khatiwala et al. (2001).

Using a model very similar to our stochastic 1S model, Khatiwala et al.
(2001) analyzed how the slope of the phase length pdf (i.e. the slope of a
straight line fit to Fig. 4.10a) depends on a forcing parameter (their Fig. 4a).
It turned out that this is a linear dependence. Thus, the parameter govern-
ing the exponential distribution of the phase lengths is a linear function of
the model parameters. Interpreting their simple model as paradigmatic for
climatic regimes in the atmosphere, they stated that changing climate pa-
rameters might lead to “exponential changes in the occurrence of persistent
events” in the atmosphere.

Our analysis however makes it clear that the probability for “persistent
events”, namely long phases showing no convection, may well be a linear
function of the climate parameters if the probability itself is not too small.
This is a contrast to the mean phase length which always depends exponen-
tially on the parameters. The simplicity of the 1S model — a potential well,
a relevant threshold, and stochastic forcing — suggests that our results may
be valid as generally as the double-well model of Khatiwala et al. (2001).
Whether the exponential rise of the mean phase length or the linear rise of
the probability for long phases is the more appropriate perspective depends
on the system under consideration. If we study, for instance, the probabil-
ity for atmospheric regimes yielding long droughts for certain regions, then
already the linear increase in probability might be critical and threatening.
In any case, our view that includes the distribution of phase lengths is more
comprehensive than only considering their mean.

4.7 Stochastic stability in comparison with
deterministic stability

4.7.1 Quantitative stochastic stability and effective mono-
stability

The framework of the simple 1S model allows to study the stochastic stability
measures developed in section 4.2.2 in detail. Applied, for instance, to the
nonconvecting state of the 1S model, the three stability measures are



Stochastic stability of deep convection 81

1. the probability P, to be in the nonconvecting regime (eq. 4.43);

2. the mean residence time (¢, ,) in the nonconvecting regime;

3. the potential difference AU™ = \U(yg?)) —U(yo)| = \U(yg?)ﬂ needed
to escape from the nonconvecting state. Often, AU™ is called the
potential well depth.

These measures may be defined analogously for the convecting state. The
definitions rely on the existence of the deterministic potential well. In addi-
tion, it is assumed that the mean residence time is a time scale of interest,
such that transitions from one regime to the other are observed. On time
scales smaller than the mean residence time, such transitions are very un-
likely. The system stays in one of the two regimes without “feeling” the
bistability.

The stochastic stability measures now open the possibility to quanti-
tatively compare the stochastic stability of the two states in the bistable
domain. Section 4.2.2 has shown that the potential well depth, if available,
is the most convenient stability measure because it does not depend on the
noise intensity. To compare the stability of the two states, one can use the
potential well depth difference

x\ 2
%S (—(yo ~y)?+ K <yo - %) >| - (4.56)

With the relation (4.14) it is easy to see that the potential well depth differ-
ence AU is equivalent to the difference 6t, of the logarithms of the mean
residence times

SAU == AU™ — AU =

1

6ty = In(ty ) — In(t,c) = — 0AU, (4.57)
o

where we assumed that the mean residence times do not deviate too much
from the mean escape times used in (4.14). The third possibility to com-
pare the stochastic stability of the two states is to use P. = 1 — F,,. The
probability to be in one regime is just the fraction of the total time that the
system spends in this regime.

The three measures for comparing the stochastic stability are shown
in Fig. 4.12¢, e, and a. Not surprisingly, they give similar results. For a
symmetric potential, the lines of JAU = 0, 6t, = 0, and P. = 0.5 would
coincide. The asymmetry of the 1S model explains the deviations. The
quantities P. and dt, can be used as stability measures only in the bistable
domain. However, their contours run smoothly across the deterministic
stability borders. In this sense, a stochastic system has no notion of the
deterministic stability loss. If one considers the system behaviour under
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Figure 4.12: Stochastic stability measures, effective monostability, and wan-
dering monostability. Panel (a) and (b) show P. and n. like in Fig. 4.7.
P. is compared with two other stability measures: the potential well depth
difference (c) and the difference ot, of the logarithm of the mean residence
times (e). The tutorial parameters are used for all panels. Shading in (e)
as in previous figures. Two pdf peaks with strongly different size lead to ef-
fective monostability (d), whereas a single pdf peak that leaks into the other
regime is associated with wandering monostability (f). Panels (d) and (f)
show the potential (thin) and the pdf (thick) as a function of y, with y* and
yo corresponding to the position of the letters Ey and W in (b).
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parameter changes, then a possible sudden loss of stability in the deter-
ministic system is replaced by a continuous tendency to one regime being
occupied less often. Consequences of this effect were studied in section 3.4.

Note that there is only a narrow streak in the (yo,y*) parameter plane
where the probabilities to be in either regime do not differ by at least one
order of magnitude. This is consistent with the narrow streak where |dt,| <
1. In the largest part of the bistable domain, to either side of that streak, the
probability to be in one regime is very close to one, and the other regime is
rarely visited. Although the system has two potential wells, one well is much
deeper such that the residence time becomes very large. The deterministic
bistability is turned into effective monostability. The points E1 and Es in
the panels of Fig. 4.12 denote the domains of effective monostability, and
panel d illustrates the grossly differing size of the two pdf peaks. Effective
monostability is a known feature of stochastic bistable systems (Gardiner,
2002), and it has recently been studied in a box model of the thermohaline
circulation (Monahan, 2002).

4.7.2 Wandering monostability due to the convection
threshold

If one considers the coarse-grained probability n., the probability for a con-
vecting year, then another stochastic stability effect comes up. It has been
shown that in parts of the “off” domain, the probability for a convecting
year is still high, although the convecting state does not exist. The high
values of n, are explained by short excursions of the model trajectory into
the convecting regime. The trajectory spends most of the time in the broad
potential well of the nonconvecting state. The fact that the well is broad
however favours the trajectory wandering across the convection threshold g
and entering the convecting regime. We call this wandering monostability:
deterministically there is only one stable state, but the coarse-grained prob-
ability n. for a convecting year is significantly larger than P, and may even
exceed 0.5. Point W in Fig. 4.12b denotes the domain of wandering mono-
stability, and panel f displays how one tail of the pdf peak stretches into the
convecting regime. Note that the pdf of any nonlinear potential well model
driven by Gaussian noise will easily extend into unstable regimes; the effect
of the wandering monostability is a consequence of the physically relevant
convection threshold.

Wandering monostability in the stochastic 1S model is an important
effect because the coarse-grained probability n. is well motivated by the
physics of deep convection. In the real ocean like in the 1S model, the
convection events are quite short, but still achieve the vertical mixing of
the water column. The forcing of the upper layer has to bring the vertical
density gradient just beyond the point of neutral stratification to start a
convection event. In the deterministic 2TS model it is the seasonal cycle
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Figure 4.13: Comparison of the n. values for (a) the 2TS model and (b) the
1S model. Parameter values are for 18 the tutorial ones, and for 2TS the
optimal parameter set, where T} and ST vary, and o = 18°C. The asterisk
in (a) denotes the position of the optimal parameters as given in table 2.2.

that drives the model over the convection threshold and back again; in the
stochastic 2TS model convection events may be additionally triggered (or
suppressed) by the stochastic forcing; and in the 1S model the stochastic
forcing alone causes the convection events.

4.7.3 Stability in the 1S and in the 2TS model

The n. stability diagram from the 1S model compares well with the n. sta-
bility diagram from the 2TS model (Fig. 4.13). The probabilities n. are
directly comparable because they were defined in the same way: given a
model run, n. is the probability for a convecting year, or the fraction of
years with a convection event out of the total number of years. (See sec-
tion 3.4 for details on n. in the 2TS model). Both stability diagrams show
the areas of effective monostability in the flanks of the bistable domain,
and both stability diagrams show wandering monostability in parts of the
“oft” domain. The different curvature of the contours may stem from the
2TS model not having a simple potential well structure. The noise has two
opposite effects: deterministic bistability is turned into effective monosta-
bility, and due to the coarse-grained probability n. areas of deterministic
monostability show wandering monostability.

The focus is here on the satisfying qualitative accordance of the two
stochastic stability diagrams. Fig. 4.13 demonstrates that the simplifications
introduced in this chapter — reducing the number of variables from four to
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one and compensating for the neglected seasonal cycle with stronger stochas-
tic forcing and the coarse-grained statistics — have not destroyed the struc-
ture of the model dynamics. Therefore, the very simple and theoretically
biased 1S model could be used to gain an extended stochastic-dynamical
understanding of the stochastic 2TS model, the stochastic climate model of
deep convection.

The two different pictures are crucial, too, for the interpretation of the
position of the estimated parameter set (the asterisk in Fig. 4.13a). In the
deterministic picture, a shift of the parameters to lower ST or larger T}
looks quite dramatic due to the associated loss of stability for the “on”
state. In the stochastic picture, however, the same parameter changes only
lead to a smaller probability for a convecting year, but obviously no abrupt
threshold crossing will happen. In other words, the presence of variability
in the climate system has a moderating influence here, since the stochastic
model can stay temporarily in a state that is deterministically unstable.

4.8 Conclusions

The aim of this chapter is to gain a theoretical understanding of the stochas-
tic stability and variability properties of the 2TS model of deep convection.
As a tool, a simplified “1S” box model with one single variable is developed.
Its output is analyzed by the probability for convection to occur during any
given year. The dependence of this probability on the model parameters can
be explained in principle analytically. The stochastic stability diagrams of
both the 1S and the 2TS model are qualitatively rather similar. In the do-
main of wandering monostability, only the nonconvecting state is stable, but
there are frequent excursions over the threshold into the convecting regime.
The stochastic stability features, too, are described analytically.

The 1S model draws a very simple picture of a potentially convective wa-
ter column. The nonconvecting state is associated with a broad and shallow
potential well. The convecting state, in contrast, is modeled as a narrow and
deep potential well. The two wells are connected at the convection thresh-
old, where the vertical density gradient is zero. The model’s variable, the
vertical salinity gradient, can be imagined as an over-damped ball moving in
these wells. A crossing of the threshold is associated with a transition from
one model regime to the other. For instance, if convection is absent in the
beginning, a strong salinity anomaly may reduce the density gradient until
convection starts. Such a forcing pushes the ball away from the broad well
over the threshold into the deep well of the convecting state. The stochastic
forcing continuously provides anomalies of all kinds that keep pushing the
ball around.

Now, the model parameters may be such that a stable convecting state
does not exist. The respective potential well is replaced by a mere upward
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sloping potential curve. The ball cannot stay for long on this slope, it will
roll back into the nonconvecting state. Yet, it is a crucial feature that it
can still cross the threshold to convect temporarily. The salinity anomaly
mentioned above may be strong enough to start convection, but then it is
diluted by the mean freshwater flux until convection ceases.

The idea of such transient excursions into the convecting regime is at the
core of this chapter and provides the answer to the third guiding question
(GQ3). Through the stochastic forcing these excursions occur frequently,
even if the convecting state does not exist. This effect is called wandering
monostability. Although unstable from a deterministic perspective, the deep
water formation process continues because the model trajectory wanders into
the convecting regime. In this picture, the positive salinity feedback is rep-
resented by the ball’s damped motion in the broad nonconvecting potential
well.

Another phenomenon of stochastic stability is dubbed effective monosta-
bility (see also Monahan (2002)). Here the stochastic forcing has the effect
that one of two existing potential wells is almost never visited. Both effects,
effective monostability and wandering monostability, highlight the need to
take climate variability into account when analyzing the stability of climate
states.

Many nonlinearities and thresholds arise from the climate system’s high
complexity. In their vicinity, the presence of variability may lead to clear
qualitative stability changes. The deterministic picture of one or more dis-
tinct stable climate states is replaced by the stochastic picture of jumps
between different regimes. It is then this wandering which has to be taken
as the overall climate state, and not only the averages of the observed quan-
tities. The example of flickering convection as seen in CGCMs (P. Wu,
pers. comm.) supports this picture.

The simplicity of the 1S model allows us to see analytically how the
probability for an unusually long residence in one regime depends on the
model parameters. The mean residence times depend exponentially on pa-
rameters like the mean freshwater forcing, or its variance. The probability
for the residence times to exceed a given limit grows exponentially as well,
as Khatiwala et al. (2001) already concluded. However, this holds only for
small values of that probability. Our results show that the initially quick
growth slows down to a linear increase if that probability has intermediate
values.

We expect that our results are valid for other physical systems with a
relevant threshold. For instance, simple stochastic models have been suc-
cessfully applied to convection in the tropical atmosphere (Lin and Neelin,
2000; Yano et al., 2001), and they have also been suggested as convection
parameterizations in the atmosphere (Palmer, 2001). Threshold-crossing
statistics have been used to analyze the time series of the NAO (Wunsch,
1999) and the 100 kyr cycle found in paleoclimatic records (Wunsch, 2002).
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Large-scale atmospheric variability is seen as a wandering between different
regimes (Corti et al., 1999). Our stochastic stability concepts, in particu-
lar the wandering monostability, might help to understand these climatic
processes as well.

The benefits of a simple model are bought at the price of drawbacks. For
the stochastic climate model ansatz, it is sometimes not easy to justify the
necessary time scale separation. As in other studies our results depend on
how that ansatz is carried out in detail. However, the qualitative agreement
between the 1S and the 2TS model showed that the basic stability and
variability properties persist if the time scale separation border is shifted.
Having compared the 2TS model with the observational data increases the
credibility of our results further. Nevertheless it needs to be studied more
deeply to what extent the concepts of stochastic stability developed here
capture the stability properties of GCMs and of the real deep convection
sites. Some strategies to do so are suggested in the next, concluding chapter.
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Chapter 5

Summary and outlook

The aim of this thesis is to study the stability and variability of open-ocean
deep convection. We have developed a conceptual modeling approach to ad-
dress the guiding questions we put forward in the Introduction (section 1.1).
This involves a two-box, or 2TS model, as well as a more simplified one-box,
or 1S model. With the box models we explore how the slow heat and fresh-
water fluxes, caused by exchange with the atmosphere and horizontal eddy
mixing, interact with the vigorous vertical convective mixing in the water
column. In contrast to previous studies on the stability of deep convection,
our box model study starts from observational data and not from simulations
with general circulation models (GCMs). The 2TS model is successful in re-
producing the observed variability of deep convection in the Labrador Sea.
The 1S model is a tool to understand this variability analytically. Both
models are based on the main hypothesis (section 1.2) of a locally active
positive salinity feedback.

In the following we summarize what our answers to the guiding questions
are and what support for the main hypothesis was found, and we outline
what our results imply for future research.

5.1 Answers to the guiding questions

How sensitive is deep convection in the Labrador Sea to changes in
climate? The answer to this question depends on whether a deterministic
or a stochastic approach is used.

The deterministic approach focuses on the mean state in the model. The
variability of the forcing is accounted for only in the form of single anomalies.
In this approach, the results from fitting the 2TS model to the Labrador Sea
data suggest that the Labrador Sea is bistable: deep convection occurs either
regularly every winter, or not at all. A shift of the mean external forcing to
either warmer or fresher conditions may easily drive the model out of the
bistable domain into a domain where only the nonconvecting state is stable.
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Deep convection then stops abruptly, meaning that it is highly sensitive
to climate change. Under constant mean forcing, a short anomaly in the
external forcing — for instance, a warm winter — can still switch convection
off. But due to the bistability, a following anomaly may switch it on again.

The stochastic approach includes the variability of the external forcing.
The heat flux variability caused by the weather is represented by an addi-
tional stochastic term in the 2TS model. This variability leads to frequent
switches between the two model states. If now the mean of the forcing is
changed, then the reaction is not an abrupt end of convection. Rather,
the frequency of convection events decreases. The wvariance of the forcing
has a similar effect. Hence both the mean and the variance can compete.
If there is, say, less convection due to a surface freshening, this may be
compensated for by increased variability in the heat fluxes. The stochastic
approach is more realistic since it includes the observed atmospheric vari-
ability. Furthermore, frequent convection switches are seen in observational
data (e.g. Dickson et al. (2002)) as well as in simulations of high-resolution
coupled GCMs (P. Wu, pers. comm.).

Both approaches, the deterministic and the stochastic, indicate a high
sensitivity to changes in the forcing. The climate changes expected for the
next decades might significantly reduce the frequency of deep convection
events in the Labrador Sea. From CGCM simulations it was concluded that
even a total shutdown has to be envisaged (Wood et al., 1999; Schweckendiek
and Willebrand, 2002). In any case, the regional climate will presumably be
seriously affected.

Defining “stability” as ‘“sensitivity to perturbations” — what
role does external climate variability play in determining the sta-
bility of deep convection? The two different approaches followed to
answer the first question show that the variability of the external forcing
has a fundamental impact on the stability of deep convection. With the
frequent jumps into and out of the model states, we can define stochastic
stability by the mean residence time in either state. This adds a quantitative
aspect to the concept of stability that enables us to compare how stable the
two states are. The stochastic 2TS model shows that in the Labrador Sea
the nonconvecting state is clearly more stable than the convecting one.

Moreover, due to the stochastic forcing the model trajectory accesses de-
terministically unstable regimes: convection events occur even if the convect-
ing state is unstable. This explains why the convection frequency depends
smoothly on the forcing parameters, rather than showing abrupt changes.

A consequence of the positive salinity feedback together with the external
variability is a small probability for long nonconvecting phases. Such phases
have been observed in the Greenland Sea (Rhein, 1996). Our results suggest
that they are not necessarily signs of a complete convection shutdown; they
might be part of the natural variability instead. A sufficiently strong surface
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forcing (like an exceptionally cold winter) might well trigger further deep
convection events.

How can this role be explained theoretically in a simple concep-
tual way? In the 1S model the nonconvecting state is imagined as a broad
potential well. A ball is moving in this well, pushed by the stochastic forcing
and damped by the mean freshwater input. Somewhere up one slope there is
a threshold where the convecting regime starts. If the 1S model time series
is analyzed in a newly developed coarse-grained way, we can see that for the
theoretical understanding it is not essential how the ball is pushed beyond
the threshold, or how convection is started: by the stochastic forcing, by
the seasonal cycle, or both. This explains why a change in the amount of
variability may counteract a change in the mean forcing in the effect on the
frequency of deep convection events.

If in the convecting regime there is no second potential well, then convec-
tion is not a stable state, but can still occur. We call this effect wandering
monostability, and we explain it analytically using the coarse-grained statis-
tics. The analytical results demonstrate that wandering monostability is
closely linked to short mean residence times in the nonconvecting state.

The self-sustaining effect of deep convection is, in this picture, explained
by the long time scale for the external freshwater fluxes. Saline surface
waters that stem from a deep convection event are only gradually diluted
and are able to favour deep convection in the following winter.

5.2 Support for the main hypothesis

With the main hypothesis we have proposed a mechanism by which a non-
convecting phase begins and ends. To switch deep convection off, all it takes
is a short anomaly in the forcing that suppresses deep convection in one win-
ter. The mean freshwater input then accumulates in the upper layer. This
strengthens the vertical density gradient. Due to this positive salinity feed-
back it becomes increasingly harder to restart convection, but eventually a
strong cold (or salt) anomaly might be sufficient to achieve this.

Previous studies (Dickson et al., 1996; Lilly et al., 1999) followed the
idea that a freshwater forcing anomaly is permanently present during a
nonconvecting phase, and that the positive salinity feedback is not relevant
to maintain it. Our results show that the assumption of an active positive
salinity feedback is equally in accordance with the observational data. The
2TS model that is built on our main hypothesis successfully represents these
data. It explains the upper layer salinity drift in the absence of deep con-
vection, and it reproduces some features of the observed variability. The
1S model still contains the same mechanism, giving qualitatively the same
results. All these issues render the main hypothesis quite plausible, estab-
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lishing an alternative to the idea of Dickson et al. (1996) and Lilly et al.
(1999).

In addition, there is some evidence from other studies that supports
our hypothesis. Houghton and Visbeck (2002) very recently employed the
positive salinity feedback in order to explain the observed salinity variability
in the Labrador Sea. Moreover, there is a number of modelling studies
demonstrating how forcing anomalies can switch deep convection on and off
(Lenderink and Haarsma, 1994, 1996; Rahmstorf, 1995¢), and showing that
the positive salinity feedback is indeed operating at deep convection sites
(Rahmstorf, 1994; Voss and Mikolajewicz, 2001).

5.3 Implications and outlook

Our conceptual picture obviously works well for the Labrador Sea. Ongoing
work on modelling Labrador Sea deep convection with more refined concep-
tual models (F. Straneo, pers. comm.) indicates that qualitative changes of
our picture are not to be expected. This confirms what we have seen from
the similarity of the results from the 2TS and the 1S models.

We suspect that our results apply to some extent to the other important
deep convection site in the North Atlantic, the Greenland Sea. The situation
there however differs from the Labrador Sea. First, the presence of sea-ice
cannot be neglected. Then, it is rather the intermediate than the deep waters
that contribute to the THC overturning. Confined by bottom topography,
the deep waters form a reservoir of very dense water that is replenished by
rare deep convection events. All this suggests at least a three-box conceptual
model; with variable box depths the relevant difference between shallow and
deep convection would be better represented.

The IPCC recently assessed that climate change can appear as a shift in
a mean value, or as a change in the preference of different regimes (Houghton
et al., 2001). A shifting mean value is easily explained in a purely determin-
istic picture. Our stochastic models show how changes in regime preferences
(in terms of the mean residence time) can come about. In this broader con-
text wandering monostability means that certain climate regimes might still
be visited when they have become unstable before — but they are visited less
often. Such a lowered frequency may seem less critical than an abrupt cli-
mate change. Yet, this lowering may cause problems when, for instance, one
deals with atmospheric regimes that decide about drought or precipitation
for large populated regions.

With the 1S model we show that, under a surface freshening or warming,
the mean length of nonconvecting phases increases exponentially. However,
the probability of these phases to be longer than a given length shows an
exponential growth only initially, when this probability is small, but then
shifts to a linear increase. Since the simplicity of the 1S model allows to
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generalize these results, they are an extension to the study of Khatiwala
et al. (2001). For instance, if the probability for a long drought period in
a certain region increases with global warming, then the results from our
study suggest that this increase is exponential only when the absolute value
of this probability is small.

Our results bear some implications for ocean modelling with GCMs.
There are studies that analyze the deep water formation processes in a purely
deterministic way: the OGCM is forced with an atmosphere climatology, and
attains a mean circulation state after the spinup (e.g. Marotzke and Scott
(1999)). This corresponds to the deterministic approach we started with.
Our results emphasize that the inclusion of variability might give a different
picture of the deep water formation process and its stability.

Of course, there are also many model studies that include a fully variable,
dynamic atmosphere. Such coupled GCMs give a detailed picture of its
impact on ocean dynamics (e.g. Timmermann et al. (1998); Cooper and
Gordon (2002)). However, their high computational cost prevents extensive
sensitivity studies, and the delicate balance between the atmosphere and
the ocean modules may lead to unrealistic instabilities when performing
perturbation experiments.

Stochastically forced OGCMs can fill the gap between coupled GCMs
and conceptual models. Provided that the stochastic atmosphere is not too
complex, it is still possible to carry out long model runs that allow a sound
statistical analysis. For instance, thermohaline oscillations (Skagseth and
Mork, 1998) and the variability of the thermohaline circulation (Holland
et al., 2001) have been studied in this way. There are still many uncer-
tainties about the appropriate parameterization of deep convection and the
associated deep water formation. Yet, some OGCMs represent it acceptably,
and in approximately the right locations (e.g. CLIO, see Goosse (1998)). By
forcing such an OGCM stochastically, the sensitivity of specific convection
sites could be studied explicitly. One would then have a three-step modeling
approach, consisting of the box model, the stochastically driven OGCM, and
the full coupled GCM. Such an approach will certainly deepen the concep-
tual understanding of the stability of deep convection.
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