
Digital Engineering Fakultät

Lawrence Benson | Hendrik Makait | Tilmann Rabl

Viper: An Efficient Hybrid PMem-DRAM Key-
Value Store

Suggested citation referring to the original publication:
Proceedings of the VLDB Endowment 14 (2021) 9, pp. 1544 - 1556
DOI: https://doi.org/10.14778/3461535.3461543
ISSN: 2150-8097

Journal article | Version of record

Secondary publication archived on the Publication Server of the University of Potsdam:
Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät
20
ISSN: 2150-8097
URN: https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-559664
DOI: https://doi.org/10.25932/publishup-55966

Terms of use:
This work is licensed under a Creative Commons License. This does not apply to quoted con-
tent from other authors. To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/.

Viper: An Efficient Hybrid PMem-DRAM Key-Value Store
Lawrence Benson, Hendrik Makait, Tilmann Rabl

{firstname.lastname}@hpi.de
Hasso Plattner Institute, University of Potsdam

ABSTRACT
Key-value stores (KVSs) have found wide application in modern
software systems. For persistence, their data resides in slow sec-
ondary storage, which requires KVSs to employ various techniques
to increase their read and write performance from and to the under-
lying medium. Emerging persistent memory (PMem) technologies
offer data persistence at close-to-DRAM speed, making them a
promising alternative to classical disk-based storage. However, sim-
ply drop-in replacing existing storage with PMem does not yield
good results, as block-based access behaves differently in PMem
than on disk and ignores PMem’s byte addressability, layout, and
unique performance characteristics. In this paper, we propose three
PMem-specific access patterns and implement them in a hybrid
PMem-DRAM KVS called Viper. We employ a DRAM-based hash
index and a PMem-aware storage layout to utilize the random-
write speed of DRAM and efficient sequential-write performance
PMem. Our evaluation shows that Viper significantly outperforms
existing KVSs for core KVS operations while providing full data
persistence. Moreover, Viper outperforms existing PMem-only,
hybrid, and disk-based KVSs by 4–18x for write workloads, while
matching or surpassing their get performance.

PVLDB Reference Format:
Lawrence Benson, Hendrik Makait, Tilmann Rabl. Viper: An Efficient
Hybrid PMem-DRAM Key-Value Store. PVLDB, 14(9): 1544 - 1556, 2021.
doi:10.14778/3461535.3461543

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hpides/viper.

1 INTRODUCTION
Persistent key-value stores (KVSs) have become a widely used al-
ternative type of data store next to classical relational database
management systems (RDBMSs). Different to RDBMSs, KVSs store
schema-less data (value) retrievable through a given key. KVS work-
loads also differ from classical RDBMS workloads in that they are
write-heavy and nearly exclusively operate on single records [24].
These workload characteristics allow for a variety of KVS appli-
cations, ranging from storage engines in SQL systems [10], over
state-storage for stream processing engines [4, 56], to caches for
web applications [45]. On a large scale, these use-cases all require
high performance and strong persistence guarantees.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.
doi:10.14778/3461535.3461543

To ensure data persistence, current KVSs write their data to
devices with a block-based interface, i.e., SSDs or HDDs. However,
the emergence of persistent memory (a.k.a., PMem, NVRAM, or
NVM) promises byte-addressable data persistence with close-to-
DRAM speed [14, 20, 50, 54]. Thus, leveraging PMem for KVSs
and removing disk access has a large potential to improve KVS
performance. It also supports the storage of arbitrary data structures
without the need for record de-/serialization, which is required in
traditional string-based KVSs.

To improve the performance of write-heavy workloads, most
traditional persistent KVSs such as RocksDB [11] or LevelDB [13]
optimize their inserts to avoid expensive write amplification on
block-based devices. They employ log-structured trees [41] to col-
lect records in-memory that are then written to disk in a single
block-sized chunk. This approach requires additional disk-based
write-ahead logging to ensure data persistence, as well as sophis-
ticated merging logic for the disk-writes. Additionally, most disk-
based KVSs require string or byte keys and values to store arbitrary
data. This comes at a high de-/serialization cost for each access,
significantly impacting the overall performance [12, 33].

Previous PMem research either focuses on how to adapt existing
systems or develop new ones to harness PMem’s potential. Vari-
ous hybrid PMem-DRAM data structures have been proposed that
leverage the speed of DRAM with the persistence of PMem for
better overall performance. Most research focuses on the design
of index structures, e.g., B-Trees [40, 55], LSM-Trees [29], or hash
maps [30, 39]. Other research integrates PMem into larger systems,
e.g., for database buffer management or recovery [2, 49]. Some
simulated-PMem KVSs have also been proposed [29, 53].

However, as PMem has only recently become publicly avail-
able, the majority of previous PMem research uses simulations to
estimate PMem performance in which key characteristics were
assumed incorrectly [54]. These incorrect assumptions limit the
effectiveness of proposed solutions as the optimal utilization of
PMem requires knowledge of the underlying storage access pat-
terns and characteristics. Recent research shows that Intel’s Optane
DIMMs [18] behave differently than DRAM and SSD [9, 54]. Thus,
simply replacing disk-based storage with an identical PMem-based
one does not yield the best performance. Benchmarks also show
that sequential write latency to PMem is much closer to DRAM’s
performance, whereas there is a higher penalty for random reads
than expected [14, 54]. This breaks one main assumption previous
research built upon, that writes are slow and should be avoided and
reads are fast and can be random.

To overcome the central performance issues of disk-based KVSs
and incorrect assumptions of previous PMem research, we pro-
pose three PMem-specific access patterns for efficient data storage,
direct PMem writes, DIMM-aligned storage segments, and uniform
thread-to-DIMM distribution. We implement these patterns in Viper,
a hybrid PMem-DRAM KVS whose persistence is built on PMem,

1544

https://doi.org/10.14778/3461535.3461543
https://github.com/hpides/viper
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3461535.3461543

thus avoiding expensive disk accesses. Viper consists of a volatile
index and persistent data, to perform most of the random opera-
tions in fast DRAMwhile optimizing the storage layout for efficient
writes to PMem. In summary, we make the following contributions:

1) We propose PMem-specific access patterns to efficiently store
and retrieve data directly to and from PMem in a hybrid PMem-
DRAM environment.

2) We implement these access patterns in Viper, a hybrid PMem-
DRAM KVS that persists its data directly in PMem.

3) We evaluate Viper against state-of-the-art KVSs and show that it
outperforms them for core KVS operations. Viper exceeds exist-
ing PMem-only, hybrid, and disk-based KVSs by 4–18x for write
workloads, while matching or surpassing their get performance.

The remainder of this paper is structured as follows. In Section 2
we cover some technical background that is relevant to our work.
In Section 3 we introduce Viper and its core design principles. We
show Viper’s core functionality in Section 4, followed by a detailed
evaluation in Section 5. We end this paper with an overview of
related work in Section 6 and our conclusion in Section 7.

2 BACKGROUND
In this section, we introduce persistent memory and its performance
characteristics, followed by a brief discussion of key-value stores.

2.1 Persistent Memory
Persistent memory (PMem) is an emerging class of memory de-
vices that bridges the gap between DRAM and flash-based storage.
It combines the byte-addressable data access offered by DRAM
with the persistence of secondary storage while providing close-
to-DRAM speed. Intel has recently made its Optane DC Persistent
Memory DIMMs publicly available [18]. These DIMMs are based on
3D XPoint technology and are denser than DRAM DIMMs, offering
larger capacities at a lower cost per GB ratio. Intel Cascade Lake
CPUs support one PMem DIMM per memory channel, commonly
resulting in six DIMMs per socket. As Optane is the only avail-
able PMem, we base our assumptions and designs in Viper on its
characteristics and use PMem and Optane interchangeably.

For each DIMM, the integrated memory controller (iMC) main-
tains read and write pending queues (RPQs and WPQs) to buffer
requests that were issued to the iMC. To guarantee persistence, the
WPQs of the iMC are part of the asynchronous DRAM refresh (ADR)
domain. Data that has reached a WPQ is therefore guaranteed to be
flushed to PMem on power failure, whereas data in CPU caches is
lost. While the iMC communicates with the DIMM in 64 Byte cache
lines, physical media access occurs at 256 Byte granularity. Thus, an
on-DIMM controller translates smaller requests to 256 Byte granu-
larity before physically accessing the media, which causes read and
write amplification. To reduce this effect, the controller combines
adjacent writes using a write-combining buffer.

Running PMem in App Direct Mode gives the user explicit con-
trol over access to PMem, whereas Memory Mode uses PMem as a
volatile extension of DRAM, in which DRAM acts as an “L4” cache
and data is not persistent. To guarantee persistence in Viper, we use
the App Direct Mode and map PMem into our application’s virtual
memory space via mmap [37] to leverage its byte-addressability.

Table 1: Bandwidth (in GB/s) and Latency (in ns) of DRAM,
PMem, and SSD for 32 threads measured on our server1.

READ WRITE

BW Latency BW Latency
max Seq Rnd max Seq Rnd

DRAM 100 40 190 70 110 170
PMem 40 50 450 13 230 900

SSD 1 115k 130k 1 125k 125k
PMem also supports interleaving data across DIMMs. While non-

interleaved PMem appends the memory space of one DIMM behind
the other, interleaving aims to improve the overall throughput of
reads andwrites by spreading sequential data accesses overmultiple
DIMMs in parallel, similar to RAID 0. This allows for better parallel
access and a higher throughput [54]. In PMem, data is commonly
interleaved in 4 KB chunks, distributing each consecutive block
of 24 KB across all six available DIMMs. In Viper, we assume an
interleaved PMem storage.

To guarantee persistence in App Direct Mode, the user must flush
cache lines to PMem by using, e.g., the clwb (cache line write back)
instruction. As the compiler and OS can re-order instructions for
better performance, it is necessary to explicitly avoid this behavior
by issuing an sfence instruction, which guarantees that the write
to PMem was completed and not re-ordered [30, 50].

Even though PMem performance was assumed similar to DRAM
but slower, recent research by Yang et al. [54] has found that the
performance differs significantly and is less predictable.We perform
high load micro benchmarks with 32 threads to get accurate latency
and bandwidth numbers on our server for KVS workloads. As
shown in Table 1, random reads have a 2.5x higher latency than
DRAM, caused by a longer delay for accessing the media, but three
orders of magnitude lower latency than SSD. At the same time, the
latency of sequential persistent writes is almost equal to DRAM,
since data only needs to reach the WPQ in the iMC to be persisted.
Random writes suffer a 5x higher latency and are impacted heavily
by the bandwidth. As a result, writing sequentially to PMem is
encouraged, while random access should be directed to DRAM
whenever possible. And while PMem’s peak bandwidth is lower
than DRAM’s, it still reaches 40% for reads and 20% for writes,
achieving significantly higher values than SSD.

2.2 Key-Value Stores
Key-value stores (KVSs) are a class of storage systems that handle
data as ⟨ key, value ⟩ pairs. The basic operations KVSs implement
are put, get, delete, and optionally update [5, 11, 24]. To access KVSs,
two designs have emerged, KVS servers and embedded KVSs. A
server-based KVS stores and synchronizes state that can be globally
accessed by multiple applications running on different machines.
It communicates with the applications via a network client/server
API. Popular KVS servers are Redis [45] and memchached [35]. If
the KVS is used by a single application, embedded KVSs provide a
more lightweight alternative to server-based ones. These KVSs are
embedded in the application and accessed using library function
calls. Popular embedded KVS are RocksDB [11] and FASTER [5].

164 Byte access size; DRAM: Samsung M393A2K40CB2-CVF, PMem: Intel Optane DC
128GB, SDD: Micron 5100 ECO SSD

1545

Figure 1: Write latency for various write patterns to DRAM and PMem.

A main advantage of KVS servers is that they are self-contained
systems. This provides them with full system control, i.e., among
others, theymanage their own threads, concurrency, and I/O queues.
However, this control entails an abstraction cost via, e.g., a network-
based interface. On the other hand, embedded KVSs are controlled
by the user within an application, which results in less commu-
nication overhead compared to network-based access and allows
more fine-tuning. Yet, this control comes at the risk of incorrect
usage, which might impact correctness and performance. To pro-
vide good performance and control, embedded KVS must design
their interfaces as simple as possible without requiring the user
to strictly follow patterns or complex procedures in case of, e.g.,
partial failures or system restarts. In this work, we focus on the
design of such an embedded KVS and simple interface to allow
the user to fully utilize PMem without high network overhead. We
present such a design and implementation in Viper.

3 VIPER: A HYBRID KEY-VALUE STORE
In this section, we present Viper, a hybrid PMem-DRAM KVS that
leverages PMem-specific access patterns for efficient data storage
and retrieval. Viper avoids expensive disk access by persisting data
in PMem while keeping an in-memory index to harness DRAM’s
lower random access latency over a fully PMem-based approach.
We first discuss our hybrid design in Viper in Section 3.1 followed
by a description of Viper’s core components in Section 3.2.

3.1 Hybrid Design
To fully utilize both DRAM’s and PMem’s strengths, we propose a
hybrid storage approach in Viper. Viper consists of a volatile hash
index located in DRAM and persistent data blocks located in PMem.
While Optane DIMMs can act as a drop-in replacement for SSDs
to achieve data persistence, to fully leverage the performance of
PMem, we need to understand its storage layout and beneficial
access patterns. All data is durably stored in persistent memory
and the hash index contains only references to the storage location.

Hybrid storage models have also been proposed in previous
work on index structures [40, 55] under the concept of selective
persistence. The idea behind selective persistence is to store only
the data required to rebuild the entire system state in persistent
memory and keep a dynamic recoverable state in volatile memory.
Viper is designed to be an embedded KVS similar to RocksDB [11] or
FASTER [5] and not a KVS server. Thus, users interact directly with
the database in the same process without any network interface.

PMem Access Patterns. Initial studies on real PMem show
complex performance characteristics, which often lead to low band-
width and high latency [20, 54] In Viper, we propose three core

design choices for PMem-specific access patterns that significantly
impact its performance on real hardware:
1) Direct PMem writes. As sequential PMem writes are faster

than previously assumed in simulations, Viper writes all data
directly to PMem without an intermediate DRAM buffer.

2) Uniform thread-to-DIMMdistribution.Viper minimizes the
thread-to-DIMM ratio for inserts by assigning threads to differ-
ent memory regions.

3) DIMM-aligned storage segments. Viper stores data in DIMM-
boundary aligned VPages to balance DIMM contention with
parallelism. Smaller VPages result in more threads accessing
the same DIMM and larger VPages result in a single thread
accessing multiple DIMMs, both leading to a worse, and thus
disadvantageous, thread-to-DIMM ratio [54].
We demonstrate the impact of these design choices in Figure 1

(see Section 5.1 for our system setup). We perform 64 Byte stores
followed by clwb and sfence with a varying number of threads in
PMem and DRAM. Figures 1a and b show that sequential writes
have a similar latency for PMem and DRAM (maximum 2x higher
for 32 threads), while randomwrites perform significantly worse on
PMem even for low thread counts. This is due to Optane’s internal
write-combining buffer, which combines adjacent writes to reduce
expensive media flushes but cannot combine small random writes,
causing high write amplification. From this observation, we derive
our direct PMem writes design.

Figure 1c shows the importance of an even distribution of threads
across all DIMMs. We distribute the threads across k memory re-
gions (1 GB each), representing log files, to which they write se-
quentially. Using 1 log file (denoted as 1 in the plot), all threads
write adjacent cache lines, i.e., thread 1 writes bytes 0–63, thread 2
writes 64–127, and so on. When using the same number of threads
and logs, each thread has its own disjoint memory region. With
more logs, fewer threads share a memory region and evenly dis-
tribute across the DIMMs. The poor performance of 1 log is caused
by all threads operating on a single DIMM (32 × 64 Byte = 2048
Byte) and thus, disregarding the inherent parallelism of interleaved
PMem. We see a performance increase when using more logs as
the threads profit from PMem’s parallelism by writing to varying
locations evenly distributed across DIMMs. From this observation,
we derive our uniform thread-to-DIMM distribution design.

Finally, Figure 1d shows the impact of storage-aligned access.
In this benchmark, we let each thread write 4 KB sequentially and
alter the alignment of the writes. We see that 4 KB aligned writes
(offset = 0) achieve the lowest latency, while a 2 KB offset has an 18%
higher latency. This is again caused by the necessity of accessing
twoDIMMs to write 4 KB instead of only one. From this observation,
we derive our DIMM-aligned storage segments design.

1546

Figure 2: Viper’s storage aligned with 4 KB PMem layout.

Volatile Index. Our evaluation of real PMem hardware shows
that random operations have a significantly higher latency than
sequential ones and achieve lower bandwidth (cf. Figure 1 and
Table 1). Thus, we avoid (possibly multiple) expensive random op-
erations to the hash index by locating it in DRAM. Additionally,
the efficient design and implementation of hash maps in DRAM are
widely studied [22, 25, 34, 48], allowing us to fully take advantage of
these concepts. Persistent hash maps, on the other hand, have only
recently been introduced [30, 38, 39, 46] and show lower perfor-
mance than DRAM-based ones. Furthermore, due to the persistence
of every operation in the map, complex logic is required to avoid
concurrency and memory issues, e.g., persistent memory leaks,
invalid pointers, and blocked persistent locks. For our implementa-
tion of Viper, we build on CCEH [38] and use it in DRAM instead of
PMem. CCEH uses an extendible hashing approach, thus allowing
for dynamic resizing without an expensive full table rehashing. As
we use the volatile index to store offsets to PMem locations, we
refer to it as Offset Map in the remainder of this work.

Persistent Data. As our goal is to persist all data in Viper, we
need to store all key-value pairs on a durable storage medium.
We choose Intel’s Optane DC Persistent Memory [18] in our imple-
mentation. In Viper, we write all records directly to PMem-based
storage segments (design choice 1). Viper’s main storage segments
are called VPages and contain the individual key-value records as
well as some metadata. Figure 2 shows how we align VPages with
the layout of the underlying PMem DIMMs (design choice 3). As
described in Section 2.1, we assume a system configuration with six
DIMMs per socket. However, Viper is configurable to work on any
number of DIMMs. We use Optane DIMMs in the interleaved mode
to achieve a higher degree of parallelism [54]. In the interleaved
mode, data is striped across all DIMMs in 4 KB pages. We exploit
this striping by aligning VPages to the 4 KB page boundaries. This
allows us to access exactly one DIMM per VPage, thus reducing
contention on the DIMMs during parallel access (design choice 2) .

3.2 Architecture
Viper consists of three main components, persistent VBlocks and
VPages, as well as an in-memory Offset Map. We show Viper’s core
components in Figure 3. On the right-hand side, we see Viper’s
persistent storage segments (VPage) grouped into VBlocks, located
in PMem. On the left-hand side, we see Viper’s volatile Offset Map,
which acts as an index by storing the key and persistent storage
location of each record. In the remainder of this section, we describe
the design of the three core components in detail for fixed- and
variable-sized records. We first describe the VBlock and Offset Map,
as these are identical for both variations, followed by the fixed-sized
VPage design and the variable-sized modifications.

Figure 3: Viper’s architecture. VPages store key-value records
in PMem (right). The Offset Map stores (key, record-offset) entries

in a volatile hash index (left).

3.2.1 Common Components. In this section, we present compo-
nents that are identical for fixed- and variable-sized records: the
VBlock and Offset Map, as well as Viper’s metadata management.

VBlock. In Viper, we align VBlocks to the boundaries of the
underlying interleaved set of DIMMs, spanning exactly 24 KB. Each
VBlock contains a fixed number of VPages, one VPage for each
DIMM, stored in an in-place array for efficient access. VBlocks
contain no logic themselves but simply act as a grouping of VPages
to reduce the bookkeeping overhead in Viper. Each VPage is 4 KB
(DIMM-aligned) and contains some metadata plus the actual key-
value records stored in slots. They are the actual storage units in
Viper. To support larger key-value pairs, Viper scales VPages to
multiples of 4 KB and VBlocks to multiples of 24 KB, ensuring the
same 4 and 24 KB alignment. For simplicity, we assume 4 KB VPages
and 24 KB VBlocks in the remainder of this work.

Offset Map. The Offset Map is the core volatile index that Viper
uses to keep track of all records. In Viper, the Offset Map is an
in-memory, concurrent hash map. When a record is inserted into
Viper, it is first persisted in a VPage and then the offset of the record
is stored as the value in the Offset Map for the given key. The offset
consists of three parts: the VBlock id, the VPage id, and the record
position in the VPage. The record position depends on fixed- or
variable-sized records. With these three parts, Viper can uniquely
locate any given record. Viper stores the offset in a 64-bit Offset
object, where the most significant 45 bits represent the block id, the
following 3 bit represent the page id, and the next 16 bit are used
for the record position. The bit-assignments may be modified in
case the user has specific knowledge of the expected workload, e.g.,
very large records or the number of DIMMs varies significantly.

Analogously to previous work, we use fingerprinting in order to
store keys larger than 8 Byte in the Offset Map [30, 40]. Instead of
storing the actual key in the map, Viper stores the hash of that key
and checks for equality only if the hash matches. This significantly
reduces the number of expensive comparisons with the keys in
PMem, as very few collisions are expected for 64-bit hashes.

Metadata Management. To grow, Viper allocates VBlocks in
PMem and maps them into the virtual memory space via mmap [37].
To keep track of the virtual addresses, Viper stores a pointer to
each VBlock in a list in DRAM. This allows for easy access to an
arbitrary VBlock by its implicit id, which is equal to the offset in
the list. Once the available VBlocks reach a certain configurable
filling degree, Viper allocates additional VBlocks and adds them
to the list. Viper supports PMem allocation from both devdax or
an fsdax directory. Data is allocated in increasing memory order

1547

(a) 200 Byte fixed-sized records.

(b) Variable-sized records.

Figure 4: VPage layout with example entries. Key-value
records are stored consecutively.

(devdax) or increasing file names (fsdax) to guarantee ordering,
thus maintaining the VBlock order after a restart. To reduce the
number of memory allocations, large chunks (or files) are allocated,
which contain 43690 VBlocks by default (1 GB). Metadata recovery
and mapping all data back into Viper’s virtual memory space takes
only a few milliseconds, as it mainly consists of mmap calls.

3.2.2 Fixed-Sized Records. We now present the VPage design for
fixed-sized records, as shown in Figure 4a.

VPageData.Viper stores the actual key-value records in VPages.
Both the key and the value are stored together in a single slot. The
slot id is used as the third part of the Offset Map entry (record
position) for fixed-sized records. When using the term key-value
record, we refer to both the key and value together. The number of
slots per VPage depends on the record size, where larger records
require more space and thus fewer fit into the available 4 KB. Viper
uses nearly all of the 4 KB to store data, as only a few bytes are
needed for metadata. We describe the calculation for the number
of slots with the metadata size below.

VPageMetadata. Themetadata is stored in the first few bytes of
the VPage. It consists of a version lock byte and a bitset indicating
which slots are free or populated. Both concepts are also used in pre-
vious research on PMem data structures, e.g., in tree nodes [6, 40]
or in hash buckets [30]. We use a lock byte to handle concurrent ac-
cess to the VPage, allowing only one thread to concurrently modify
its data. The lock is acquired and released via atomic compare-and-
swap operations (CAS). We thus avoid the use of heavy-weight
mutexes at this point. Even though there are persistent CAS imple-
mentations [52] that ensure correct persistence-semantics, Viper
uses regular in-memory CAS operations with less overhead. The
lock is only relevant during active use and is reset after a crash.

The bitset contains 𝑘 bits, one for each slot in the VPage. A set
bit indicates that the slot is occupied and contains data. An unset
bit, in reverse, indicates that the slot is free. This allows Viper to
efficiently delete a record by setting the bit at its slot position to 0.

VPage Slot Count and Metadata Size. The exact size of the
metadata depends on the record size, as Viper requires one bit per
slot in the bitset. To determine the metadata size, we first calculate
the number of slots per page by dividing the VPage size by the
record size, ⌊𝑠𝑖𝑧𝑒𝑝/𝑠𝑖𝑧𝑒𝑟 ⌋ = 𝑛𝑢𝑚𝑠𝑙𝑜𝑡𝑠 . This is rounded down to
the nearest integer as we cannot have partial slots. To avoid an
over-allocation of the VPage, we need to check if the metadata still
fits. The metadata size is calculated as 1 + ⌈𝑛𝑢𝑚𝑠𝑙𝑜𝑡𝑠/8⌉ = 𝑠𝑖𝑧𝑒𝑚
bytes, for the lock + bitset. We round up the bitset size, as the

underlying system cannot work on individual bits but requires
full bytes. If the data plus metadata is too large for the VPage
(𝑛𝑢𝑚𝑠𝑙𝑜𝑡𝑠 ∗ 𝑠𝑖𝑧𝑒𝑟 + 𝑠𝑖𝑧𝑒𝑚 > 𝑠𝑖𝑧𝑒𝑝), we reduce the number of slots
by one. All unused space at the end of the VPage is left as padding
to keep the 4 KB alignment.

3.2.3 Variable-Sized Records. To support variable-sized records,
the VPage-design needs to be modified, as shown in Figure 4b.

VPage Data. Records are not stored in fixed slots, as their size
is unknown a priori. Thus, Viper uses all non-metadata bytes in
the VPage as a log. Each record is consecutively written to this log
together with the respective key and value length. The sizes are
stored in a single 32-bit value (15 bits for key, 16 bits for value)
to allow for atomic updates. The least significant bit of the value
indicates whether the record is set (= 1) or deleted (= 0). The offset
in the log is used as the third part of the Offset Map entry (record
position) for variable-sized records. For key-value pairs larger than
4 KB, Viper dynamically uses an entire VBlock as a single VPage.
For even larger records, Viper writes the record across multiple
large VPages and marks these as overflow pages. Thus, large records
do not impact the design of Viper, as it still has unique VBlocks per
client and equal distribution of client threads to DIMMs.

VPage Metadata. As the VPage does not contain any slots, the
free slot bitset is removed. Instead, each VPage now contains a
pointer to its next insert position, i.e., the tail of the log, and an 8-
bit integer to track how much data has approximately been deleted
(i.e., metadata bit = 0) and needs to be compacted. The metadata
size is fixed for variable-length records at 10 Byte, allowing for 4086
Bytes of records per VPage.

4 KEY-VALUE STORE OPERATIONS
In this section, we discuss the commonKVS operations put (Sec. 4.2),
get (Sec. 4.3), update (Sec. 4.4), and delete (Sec. 4.5), as well as space
reclamation (Sec. 4.6) and the recovery of an existing database
(Sec. 4.7). Before discussing the operations, we present the Viper
client through which users interact with Viper.

4.1 Viper Client
Commonly in embedded KVSs, a database handle is created for a
given file, which either creates a new database if the file does not
exist or opens the existing database. This handle can be used by
multiple threads to interact with the KVS, by issuing, e.g., get or
put requests. However, when the KVS does not control or own the
threads, the handle has to control external concurrent access. Ex-
amples for such embedded KVSs are RocksDB [11] or LevelDB [13].
For put requests, this means providing a new insert location for
each request. This central synchronization point quickly becomes
a bottleneck, which we avoid in Viper by introducing a Viper client.

As Viper is an embedded KVS, the client does not contain any
network logic as common in KVS servers. It is a light-weight object
that exposes the KVS-operation interface to the user and contains
information on where to write future records to reduce synchro-
nization within Viper. In Figure 5 we show clients interacting
with Viper. In our example, three clients have been created. Each
client is initialized with its own VBlock (#1 → VBlock0, #2 →
VBlock1, #3 → VBlock2), i.e., no two clients write new records to
the same VBlock. To indicate that a VBlock is currently “owned”

1548

Figure 5: Client requests new VBlock. Client #1 requests a new
VBlock after a put to a full one and then writes to the new VBlock.

by a client, an owned_bit is set in the version lock of the first VPage.
This bit is used for space reclamation and recovery. The client
then writes data to its current VBlock/VPage and progresses the
VPage until all VPages are full. Once a client cannot put data into
its VBlock because it is full 1 , it requests a new VBlock from Viper
2 . Viper then returns the next block to the client and atomically
updates the next_block and the next_page counters. Viper stores
the next_block and next_page counters in a single 64-bit variable
that can be updated atomically with a compare-and-swap operation.
The next_page counter is chosen randomly to achieve a uniform
distribution across DIMMs. When the client receives its next block,
it updates its references and inserts the record into the new VPage
3 . This approach significantly reduces the coordination overhead
within Viper, as it does not need to issue a new write location for
each put. If a VBlock fits, e.g., 100 records, the overhead is reduced
by 100x, as a client only needs a new location every 100 writes.

As Viper supports space reclamation (Sec. 4.6), it also keeps track
of free blocks in a concurrent queue. If a free block is present in the
queue, it is given to a client for re-use rather than allocating a new
client. In that case, the block is removed from the queue and the
next_block counter remains unchanged.

4.2 Put
To insert data into Viper, clients must issue a put(Key, Value)
request. The pseudo-code for this is presented in Listing 1. The client
first acquires the VPage lock for its current VPage in a blocking call
(Line 1). To acquire exclusive access, the version lock is atomically
compare-and-swapped with a +1 increment to an odd-number, e.g.,
from 0 to 1. If a client encounters an odd-numbered lock, it retries
its operation. Once the client has exclusive access to the VPage,
it searches for the next free slot (Line 2). If the VPage is full, the
client releases the lock, updates its page and block information, and
retries the put operation (Lines 3-6). To update the page and block
information, it either progresses to the next VPage in its current
VBlock or it requests a new VBlock from Viper.

If there is a free slot in the current VPage, the client stores the
record in the free slot and persists it (Lines 8-9). To write the current
cache line to PMem, the Persist method issues a clwb call to the
underlying system followed by an sfence call. The sfence enforces
correct ordering guarantees, i.e., after the call, the data is guaranteed
to be persisted. Only after the data is persisted does the client update
and persist the bitset (Lines 10-11). The order here is important,
as the bitset becomes the ground truth for recovery [30, 40]. If the
bitset indicates a populated slot but the data is not properly stored,
Viper is in an inconsistent state.

Listing 1: Viper’s put(Key k, Value v)

1 AcquireVPageLock(v_page);
2 free_slot_idx = FindFreeSlot(v_page.slot_bitset);
3 if (free_slot_idx == max_bitset_size) {
4 ReleaseLock(v_page); GetNewVPageOrVBlock ();
5 return Put(k, v);
6 }
7
8 v_page.slots[free_slot_idx] = {k, v};
9 Persist(v_page.slots[free_slot_idx]);
10 v_page.slot_bitset[free_slot_idx] = 1;
11 Persist(v_page.slot_bitset);
12
13 offset = {block_num , page_num , free_slot_idx };
14 [is_new , old_offset] = offset_map.Insert(k, offset);
15 if (! is_new) DeleteOldRecord(old_offset);
16
17 ReleaseLock(v_page);
18 return is_new;

Once the data is persisted, the client inserts the new offset into
the Offset Map. If the Offset Map contained an entry for the key, the
old value is overwritten and the client must ensure that the record
at the old location is deleted by setting the corresponding bit to 0
(Line 15, see Section 4.5). As the Offset Map handles concurrency,
it guarantees that in the event of concurrent writes to the same
key, one client will see the value added by the other client as an
old offset, thus deleting the other client’s value. Finally, the client
releases the lock on the VPage and returns a Boolean indicating
whether a new key was inserted or an existing one was overwritten
(Lines 17-18). The lock is released by atomically storing another +1
increment, thus, making the lock even-numbered again.

Crash Consistency If a crash occurs between persisting the
bitset and the deletion of an old record, Viper contains two values
for the same key. To guarantee a deterministic recovery and thus
ensure atomic writes, Viper selects the greater ⟨ block_id, page_id,
slot_id ⟩ in case of a conflict. We note that this is not necessarily
the newer value, as “old” block ids are reused after reclamation
but it constitutes a deterministic tie-break during recovery. To
ensure that the new value is not read until it is guaranteed to be
deterministically recoverable, clients hold the VPage lock until the
old record is deleted. In rare cases, this may lead to a deadlock, as
two clients might need to lock the same two VPages in reverse
order. If a deadlock is detected, i.e., the lock cannot be acquired in
𝑥 tries, the client adds the offset it needs to delete 𝑂 to a global list.
All clients in the deadlock continuously check this list for offsets
𝑂 ′ that match their current VPage, delete the record at 𝑂 ′, and
remove it from the list. If a client notices that 𝑂 was deleted from
the list, the deadlock is solved and it can return after unlocking its
VPage. In a micro benchmark with 50 million mixed operations,
Viper encounter only two such deadlock-like scenarios.

Variable-Sized Records. Inserting variable-sized records fol-
lows a similar procedure as shown in Algorithm 1, but the actual
writing of the data is different. To insert a variable-sized record, the
client first retrieves the next_insert_position from the VPage
metadata. It then writes the record to PMem at the given location
followed by a Persist call. Only then does it write the record’s
metadata in front of the record. This order guarantees that if the
metadata is present, the record is persistently stored. This is iden-
tical to persisting the bitset after the slot for fixed-sized records.
When a record does not fit into a page, the client checks if the

1549

key without the value fits. If it fits, the value is written to the next
page, and only then is the key written with metadata indicating
a value length of 0, which tells Viper that the value is stored on
the following page to ensure the same persistency guarantees as
above. If the key does not fit, the record is written to the next page
and the metadata is set to an invalid configuration on the current
page, indicating that no more data is present after this marker. Af-
ter inserting the record, the next_insert_position is updated to
reflect either the end of the page or a new position.

4.3 Get
To retrieve individual records fromViper, the client issues a get(Key)
request. To efficiently scale for read-heavy workloads, Viper uses
lock-free reads [6, 30]. First, the client searches for the key in the
Offset Map and returns an error if not entry was found. The client
then atomically reads the version lock of the VPage that contains
the record into 𝑙1. If 𝑙1 is odd-numbered, another client currently
holds an exclusive lock and the entire read is retried, as a VPage
modification might have altered the retrieved offset. In an unlocked
state, the client reads the value at the given offset. The pointer
retrieval is a lookup in Viper’s VBlock list for the offset’s block id,
followed by direct accesses into that VBlock’s page list at the page
id and the VPage’s slots at the slot id. We note here that the VPage
array within a VBlock and the slots within a VPage are known at
compile-time, thus allowing the compiler to combine the latter two
lookups into simple pointer arithmetic on the VBlock pointer from
the initial lookup. Before returning the value, it again atomically
loads the version lock into 𝑙2. If 𝑙1 = 𝑙2, the VPage was not modi-
fied and the value can be safely returned. If 𝑙1 ≠ 𝑙2, the entire read
operation is retried, as a conflict might have occurred.

Retrieving variable-sized records follows the same steps, but the
actual record lookup differs slightly. Instead of reading a record
from a given slot, it first reads the record length at the given offset
in the VPage log and then retrieves the value according to its size.

4.4 Update
In order to update a value in Viper, the user can call update(Key,
UpdateFn), where UpdateFn is an arbitrary function that receives a
value and modifies it atomically. As Viper does not copy the values,
modifications are made in-place in PMem. To avoid partial update
anomalies, only atomic updates can be performed. However, this
allows the user to modify up to 8 Byte (or 16/32/64 with modern
AVX-512 CPUs) of a value in-place. This is useful to, e.g., update
counters or other individual fields in the value [3]. Updating in
Viper is similar to get but instead of returning the value if no version
conflict occurred, the client acquires an exclusive lock and applies
the UpdateFn to the value. Thus, any subsequent operations are
aware that a modification was performed.

For non-atomic updates, the valuemust be re-inserted. To achieve
this, the user gets the value, creates a copy, modifies it, and finally
calls insert for the same key with the new value. This is a common
approach in many KVSs [11, 13, 21, 31] and Viper always falls back
to this approach if in-place modifications are not possible. This is
also the approach for variable-sized records, as modifications in
them might change their size. In Viper, records are tightly packed
in the log and do not allow for any subsequent size variation.

Two main advantages of in-place updates over conventional
copy-on-write are avoiding serialization and fewer cache line flushes,
i.e., only one Persist call is needed in Viper as no metadata is
updated. Also, recent work shows that in-place modification is
preferred over copy-on-write for PMem [23, 51].

4.5 Delete
To delete a record, the client issues a delete(Key) request. The
client first looks for the key in the Offset Map and returns false
if it is not found. If it was found, the client retrieves the VPage
from the offset information and acquires its lock to block other
modifying access. In Viper, the actual record is not erased, but the
corresponding free slot bit is set to 0 and the bitset is persisted
to make the deletion durable. Then, the key is removed from the
Offset Map before releasing the page lock and returning a successful
deletion. For variable-sized records, the deletion bit is not set in
the bitset but rather in the record metadata in the log. The size
information is not modified, as it is required to skip the deleted
record when scanning the VPage during recovery or compaction.

4.6 Space Reclamation
After various records have been deleted or re-inserted, the VPages
contain many free slots or tombstoned records in the log. In order
to reuse this free space, Viper runs a periodic background space
reclamation process. In this reclamation, Viper scans the bitsets of
the VPages to see how many free slots are available. If the number
of free slots in a VBlock is higher than a configurable threshold
and the VBlock is not currently “owned” by a client, the VBlock
is compacted into a new VBlock, marked as free, and added to the
free block queue. Compacting a VBlock is equivalent to re-inserting
each record in that VBlock. Thus, when compacting many VBlocks,
the records are tightly packed again. If a client reads a record that is
currently being compacted, it either reads the stale offset and retries
because the version lock of the compacted VPage has changed or it
reads the new offset. Each VPage is locked for the entire duration
of its compaction to avoid modifications throughout.

For variable-sized records, Viper checks the metadata of each
VPage for the approximate free space on this page. If the VBlock
reaches a configurable threshold, it gets compacted as in the fixed-
sized process. After the compaction of a VBlock, it is marked as
free with a free bit in its first VPage’s lock byte. This allows Viper
to recognize free VBlocks during a recovery. This process can also
be used to deallocate VBlocks at the tail of the VBlock list and thus
reduce its PMem footprint after many records have been deleted.

4.7 Recovery
A persistent KVS needs to be able to recover from a crash or be
re-opened after a regular shutdown. In Viper, we handle both sce-
narios identically, as all required metadata is continuously persisted
during its normal operational mode. Viper stores a small amount of
metadata in PMem to keep track of the number of allocated VBlocks,
the number of used VBlocks, and the total memory-mapped size.
Every time new VBlocks are allocated in PMem, the metadata is
updated to reflect the total number of allocated blocks. Additionally,
every time a new VBlock is assigned to a client, the number of used
blocks is incremented in the metadata.

1550

Figure 6: Core KVS operations.

When Viper is opened with an existing database, it checks this
metadata and prepares for a recovery based on it. Viper maps
existing VBlocks into its virtual address space and stores pointers
to each VBlock, as described in Section 3.2. After mapping all
VBlocks, Viper checks for the number of used blocks and scans
those to retrieve the records in them. For each VPage, Viper checks
which slots are set (fixed-sized) or scans the log for non-deleted
records (variable-sized) and inserts the offsets into the map. This
can be parallelized by assigning disjoint VBlock-ranges to different
threads. After scanning all VBlocks, the next_block counter in Viper
is updated to the highest used block_id + 1, so that new clients
receive fresh VBlocks (see Section 4.1).

5 EVALUATION
In this section, we present the evaluation results of our implemen-
tation of Viper compared against other KVSs. In Section 5.1 we
describe our setup, followed by an introduction of the other sys-
tems in Section 5.2. We present our Micro-Benchmark results in
Section 5.3 and our YCSB evaluation in Section 5.4.

5.1 Setup and Methodology
We run all experiments on an Intel Xeon Gold 5220S CPU server and
pin all threads to one socket to avoid cross-socket data access. The
CPU has 18 cores (36 logical cores via hyperthreading). The socket
is connected to 750 GB PMem, in six 128 GB Intel Optane Persistent
Memory DIMMs, and to 96 GBDRAM. To access the Optane DIMMs
directly, we use devdax mode. We prefill the stores with 100 million
records before performing the benchmark operations and use 16
Byte keys (e.g., a UUID) and 200 Byte values, as these represent
common sizes in real-world KVSs [3].

We implement our prototype of Viper in C++, compiled with
GCC 9.3 on Ubuntu 20.04. We use and modify the CCEH map [38]
for the offset map and low-level libpmem (v1.10) [42] calls to persist
data in PMem. Our code is open-source and available on Github2.

5.2 Other Systems
We evaluate Viper against six other systems to show the impact
of various design choices in Viper: FASTER, pmem-rocksdb, Dash,
pmemkv, µTree, and Cross-Referencing Logs. FASTER [5] (v1.8.0) is a
state-of-the-art embedded hash-based KVS, whichwe run backed by
PMem instead of SSD, making it a hybrid DRAM-PMem system. We
initialize FASTER’s hash index identically to the authors’ evaluation
with ∼ #𝑘𝑒𝑦𝑠/2 hash buckets, resulting in a 2 GB index. We set the
log size to 6 GB, which is ~1/4 of the total raw data size. pmem-
rocksdb [32] is a modified version of RocksDB to work explicitly
2https://github.com/hpides/viper

with PMem by optimizing SSTables for and placing the WAL on it.
We run pmem-rocksdb with the same configuration as the authors.
These comparisons show the need for new PMem-aware designs
instead of drop-in replacements and minor modifications.

We also compare Viper against two PMem-only setups to show
the benefit of a hybrid design. As proposed in previous work, index
structures can be used together with a persistent allocator as a
KVS [30, 40, 55]. Dash [30] is a state-of-the-art PMem-optimized
hash index that we pair with PMDK’s persistent allocator [42].
A second PMem-only system we evaluate is Intel’s hash-based
pmemkv [43] (v1.4), which we run with the cmap backend [19, 44].

We also evaluate Viper against two hybrid PMem-DRAM sys-
tems. µTree [6] is a state-of-the-art hybrid BTree implementation
that natively supports large values, making it suitable for a KVS
use-case. We note that the performance of a BTree is expected to
be slightly lower for single record operations, due to sorting over-
head for additional range-query support. Cross-Referencing Logs
(CRL) [17] were proposed to bridge the gap between volatile and
persistent KVSs by persisting cross-referencing logs between two
KVSs, one in DRAM and one in PMem. As CRL is not publicly
available, we implement it (CrlStore) with Intel’s volatile TBB con-
current hash map as the DRAM KVS [19] and the persistent map
as the PMem KVS [44], which both fulfill the per-record locking
requirements of CRL. As CRLs require front- and backend threads,
we use a 1:1 mapping for all write operations, limiting our results
to 18 threads in the plots. We do not employ a dynamic mapping,
as proposed by the authors, because the backend threads constitute
the bottleneck in our experiments. For get requests, we use only
frontend threads.

5.3 Micro Benchmarks
In this section, we evaluate Viper’s performance through various
micro benchmarks. To this end, we discuss the performance of
the four core KVS operations, the impact of different record sizes
and variable-length records, followed by the systems’ memory
consumption. We then evaluate Viper-internal design choices by
showing the impact of in-place updates and of data placement
on DRAM or PMem, followed by an operation breakdown, space
reclamation impact, and recovery performance.

5.3.1 Key-Value Store Operations. To understand the throughput
of Viper, we compare it against the other KVSs for the core KVS
operations insert, get, update, and delete. We initially fill each KVS
with 100 million 216 Byte records (16 B key, 200 B value), before
performing 50 million individual operations on them. Each client
inserts consecutive keys from a disjoint range. For update, get, and
delete, we uniformly choose a random key in each call. We use a

1551

https://github.com/hpides/viper

fresh KVS for each operation to avoid unintentional caching effects.
For all get operations, we explicitly read the value to ensure that it
is accessed from the underlying medium and not just pointed to.

The results are shown in Figure 6. In (a), we see that Viper’s
insert throughput scales well with the number of threads due to
its efficient sequential access across multiple DIMMs via the Viper
clients, reaching a peak of 15 million puts/s with 36 threads. The
PMem-optimized Dash and µTree also scale but achieve only ~4
Mops/s. Both are limited by the record allocation outside of the
actual index structure, which shows the need for a more structured
insert mechanism. FASTER performs better than Viper for few
threads, as the data is initially written to DRAM and is not persisted.
However, after 8 threads its performance decreases. Once FASTER’s
DRAM-based log is full, it writes old segments to PMem to free
space. This becomes a bottleneck, as the log needs to wait until
the segment was copied and flushed before it can allocate a new
segment to write to. The other systems do not scale well and achieve
fewer than 1 million inserts/s due to unoptimized random hash map
operations performed in PMem.

Retrieving records (b) is split into two groups. FASTER, pmemkv,
and RocksDB do not perform well for random get request due to
inefficient lookups in PMem, all peaking below 4 Mops/s. FASTER
and RocksDB are optimized for access from disk-storage, disregard-
ing random access capabilities PMem, while pmemkv is built for
PMem but with an unoptimized hash index. The other group of
systems are optimized for PMem and achieve peaks between 25 and
35 Mops/s. This shows that get performance heavily depends on
the chosen (hash-) index implementation and that the DRAM-based
index in Viper does not significantly outperform PMem-based Dash.
We plan to investigate the use of different index types in Viper in
future work, as a recent study shows that, e.g., Dash achieves sig-
nificantly higher lookup rates than CCEH [16]. In Figure 11, we
show that DRAM-based Viper achieves ~50 Mops/s, indicating that
CrlStore is limited by the TBB concurrent map in this evaluation.

In real world use-cases, record updates are often small modifica-
tions, e.g., 8 B counter updates [3]. In such a workload (c), we see
that Viper outperforms all other systems due to its atomic PMem-
aware in-place modification compared to the read-modify-write
semantics of the other systems. We discuss the different update
semantics in Viper in more detail in Section 5.3.5.

Deleting (d) records behaves similarly to updating in Viper, as it
performs a key lookup followed by a small write, i.e., invalidating
the slot. Other systems’ delete performance is higher than their re-
spective update performance, as many use a tombstone invalidation
without the need to insert a new entry.

Our evaluation shows that for inserts, a PMem-specific sequen-
tial write pattern considerably improves the performance over
batched disk-based approaches or random PMem allocations by
4–18x. Also, the update performance of Viper is superior, as it can
perform in-place updates in persistent storage, which other systems
cannot. For data retrieval, Viper performs on par with comparable
systems. As PMem-RocksDB performs worse than all other systems,
we omit it from future evaluation due to limited space.

5.3.2 Key-Value Record Size. To understand the impact of record
sizes, we evaluate all systems with varying key and value lengths.
We evaluate the impact of very small records (8 Byte key, 8 Byte

Figure 7: Key-Value size impact.

value), more common sizes (16 B, 100 B) and (32 B, 500 B), as well
as large records (100 B, 900 B). We define a fixed prefill data size of
20 GB, which we divide by the record sizes to get the number of
records to prefill each system with, i.e., 20 𝐺𝐵/16 𝐵 = 1.25 billion
16 B records and 92/37/20 million 216/532/1000 B records. We then
insert 10 GB in the same manner, i.e., exactly half as many records
as the prefill. In a second workload, we issue 50 million get requests
on a prefilled KVS. All runs are performed with 36 threads. We omit
µTree, as it does not support large keys.

The results are shown in Figure 7. For 16 Byte records, Viper
achieves ~20 M puts/s and decreases linearly with an increasing
record size, as it becomes PMem bandwidth-bound. FASTER also
achieves nearly 20 M puts/s for 16 B records, as many of them
fit into the DRAM-based log and are not persisted. With increas-
ing record sizes, FASTER’s performance drops to under 2 Mops/s
as fewer records fit into the log, requiring more frequent PMem
flushes. From this result, we see that efficient access patterns to
PMem, as employed in Viper, have a higher impact on the overall
performance than simply reducing the number of PMem flushes,
as done in FASTER, via a DRAM buffer followed by a large PMem
flush. We note that especially for larger records, the impact of a
single additional metadata flush decreases, as multiple flushes are
required for the record alone.

Dash benefits from 16 Byte records, as it does not require an
extra memory allocation outside of the index. However, its insert
performance is only about 50% of Viper’s, which demonstrates the
high overhead of random writes to PMem over sequential ones. For
larger records, random memory allocations become the bottleneck
in Dash. Both pmemkv and CrlStore cannot insert the 1.25 billion
16 B records as they run out of memory. We note that this behavior
is expected, as explained in the PMDK documentation: “allocations
of a size less than 64 Bytes [are] extremely inefficient and discour-
aged.”3 Thus, both pmemkv and a default allocator KVS are not
suitable for small records, and for larger records, they are limited
by their inefficient PMem writes.

The get performance trend of Viper is similar to the insert perfor-
mance, where access to larger records is bandwidth-bound. Surpris-
ingly, 16 B gets are less efficient than 216 B, as CCEH performs better
with fewer entries. Dash retrieves 16 B records very efficiently, as
the values are stored directly in the map without indirection. For
larger records, its performance is also bandwidth-bound. CrlStore
exhibits a consistently high get performance, as all requests are
answered from DRAM without PMem access. Both FASTER and
pmemkv show the same low performance as in the previous section
due to inefficient access.
3https://pmem.io/pmdk/manpages/linux/v1.8/libpmemobj/pmemobj_alloc.3

1552

https://pmem.io/pmdk/manpages/linux/v1.8/libpmemobj/pmemobj_alloc.3

Figure 8: Variable-sized ∼216 Byte records.

5.3.3 Variable-sized Records. In this benchmark, we evaluate the
impact of variable-sized records on the performance of the systems.
To this end, we prefill 100 million records of about 216 Byte, with a
normal distribution around 16 B for the key (N(16, 3.22)) and 200 B
for value size (N(200, 402)). We then perform each 50 million puts
and gets and measure the throughput.

The results shown in Figure 8 are in line with those of the core
operations (cf. Fig 6). For puts, Viper clearly outperforms the other
systems due to its efficient VPage design. Record retrieval also
follows the same trend of fixed-sized records discussed above. How-
ever, both put and get achieve lower overall throughput compared
to fixed-sized records. For fixed-sized records, the compiler gener-
ates SIMD mov instruction, while regular mov instructions are used
for variable-length. The get performance is also lower for variable
records, as they additionally require more data reads than fixed
records. Viper must read the size metadata before retrieving the
actual value, while fixed records require only pointer arithmetic
due to known offsets at compile time.

5.3.4 Memory Consumption. We evaluate the total DRAM and
PMem consumption to better understand the systems’ resource re-
quirements. We fill each systemwith the default 100 million records,
i.e., 20.1 GB raw data (1GB = 230B). We measure the DRAM and
PMem consumption with Intel’s VTune4, pmap5, and pmempool6.

The results are shown in Figure 9. Viper consumes 21.2 GB of
PMem and 2.3 GB of DRAM. The DRAM consumption is attributed
nearly completely to the offset map. FASTER consumes slightly less
memory overall but significantly more DRAM due to its volatile log,
which holds a large part of the data. Dash and µTree both require
23.8 GB for the data via the allocator, being ~10% less efficient than
Viper. However, Dash requires only an additional 2.1 GB PMem
for its index while µTree requires nearly 9 GB of DRAM for its
tree index. pmemkv is very inefficient in its memory consumption,
requiring more than twice the raw data size in PMem at 52 GB. In
our implementation, CrlStore requires 28 GB of DRAM and 41 GB
of PMem, as it needs to store each record twice.

DRAM is a scarce and expensive resource compared to PMem,
with a capacity of only about 1/8x on our server and a 9x higher
$/GB ratio [1, 18]. Viper’s DRAM-PMem ratio is ~1/10 for 216 B
records and lower for larger keys due to fingerprinting, i.e., the
DRAM consumption depends solely on the number of records. Thus,
Viper efficiently manages DRAM and supports larger configura-
tions.

5.3.5 Update Strategy. A recent study by Facebook shows that
certain workloads consist of many small updates, e.g., 8 B counter
4https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
5https://linux.die.net/man/1/pmap
6https://pmem.io/pmdk/manpages/linux/v1.8/pmempool/pmempool-info.1.html

Figure 9: Total memory. Figure 10: Update strategy.

Figure 11: Viper versions. Figure 12: Op breakdown.

updates [3]. For these workloads, efficient in-place modification
significantly reduces read- and write-amplification. In Figure 10
we show the advantage of in-place updates over copy-on-write
(CoW) updates. When atomically updating only 8 B of a value,
Viper achieves more than 2x updates/s compared to CoW. If an
atomic update is not possible, Viper still outperforms the other
systems when reading, modifying, and re-inserting the value (cf.
Fig 6). Recent work [23, 51] has also shown the advantage of in-
place updates, thus, supporting larger in-place modifications poses
an interesting challenge for future work.

5.3.6 Viper Versions. In Figure 11, we evaluate four Viper versions
to understand the impact of data placement in our design, i.e., by
placing data + index in PMem or DRAM, by placing the data in
PMem and the index in DRAM (Viper), and by using unaligned
VPages in PMem shifted by 2048 Byte (Unaligned). We run the
experiments with 36 threads. This evaluation supports our design
choice of DIMM-aligned storage, as unaligned writes reduce put
performance by 11%, due to a worse thread-to-DIMM distribution.
Random gets are affected less than 1%, as they are point lookups
that rarely cross DIMM borders.

Placing all data in PMem achieves only ~1/3x performance of
the hybrid approach, clearly showing the advantage of a hybrid
design when aiming for higher throughput. In Figure 12, we see
that 60% of a put are already spent in PMem. Adding the index to
PMem increases the absolute time spent on Offset Map operations
and decreases PMem bandwidth due to inefficient access.

On the other side, hybrid Viper achieves ~2/3x of a DRAM-only
Viper. The 1.4 µs spent in PMem for put are now approximately
halved (cf. Fig 1a), reducing the put duration to ~1.6 µs, allowing
for ~22 Mops/s. Similarly, the time spent fetching data from PMem
is reduced by 2.5x, allowing for ~50% more ops/s. This evaluation
shows that a hybrid approach significantly outperforms a PMem-
only one, while the cost of data persistence is only about 33%. To
further close the gap between PMem- and DRAM-based storage,
we plan to investigate caching strategies in DRAM in future work.

5.3.7 Operation Breakdown. To better understand the individual
operations, we break them down into common sub-parts. We prefill

1553

Figure 13: YCSB latency and throughput.

Viper before performing 50 million operations with 36 threads. We
split the operations evenly into a mixed 25%-each workload.We nor-
malize the runtime of each operation to 1 and present the time spent
on PMem access, Offset Map access, and VPage fetching/locking.

The results are shown in Figure 12. For put, we see that most of
the time (~60%) is spent on writing the record to PMem. Due to its
VPage and client design, very little time is spent on locking and
fetching the VPage, as it is cached in the client. As PMem-write
speeds are close to those of DRAM, Viper makes good use of the
time spent on inserting. However, adding random PMemwrites, e.g.,
in a persistent index, might significantly impact the performance
benefits gained by the sequential VPage writes.

Both updates and deletes require ~30% of the operation time
to initially fetch the required VPage and lock it. The majority of
the time is then spent in the map, which also includes fingerprint
lookups in PMem, to retrieve the correct record offset. The final
record update/invalidation is only a small part of the operation.

Retrieving data is similar to updates and deletes, in that it ini-
tially requires ~20% to fetch the VPage (but not lock it). Again,
the majority (> 50%) is spent in the map lookup and fingerprint
resolution. Finally, compared to updates/deletes, 20% is spent on
retrieving the actual record and copying it to DRAM.

This breakdown shows that Viper efficiently handles the core
operations. The DRAM-based index access takes up a significant
portion and Viper might benefit from different index designs, which
we plan to investigate in future work.

5.3.8 Space Reclamation. To evaluate the impact of space reclama-
tion on insert and get workloads, we prefill Viper with 216 Byte
records and randomly delete 33% of the records without space recla-
mation. We then manually trigger a compaction of all VBlocks and
start 32 parallel threads that put or get records. Our evaluation
shows that running space reclamation in the background has only
a marginal impact on the performance of read workloads, i.e., ∼2%
and no impact on write workloads, as each client inserts records
independently and Viper reuses existing VBlocks without new al-
locations. Thus, space reclamation should be used to reduce the
PMem footprint if free CPU resources are available. If Viper is not
run at capacity, reclamation can be parallelized to reduce its run-
time or a higher threshold can be set to avoid reclaiming every
deleted record.

5.3.9 Recovery. As a persistent KVS should be able to restart after
a crash or shutdown, we evaluate Viper’s recovery performance.
We prefill 100 million 216 Byte records and recover using a varying
number of threads. A single thread requires 38 seconds to fully
restart Viper. More threads reduce the recovery time to 19/10/5/4
seconds with 2/4/8/16 threads. 36 threads recover Viper in 2.3 s.

A disadvantage of a hybrid KVS is that the volatile index needs
to be rebuilt when restarting. For a very large KVS, e.g., 1 TB, this
can take up to 2 minutes. In Viper, we optimize for the average case
of a running database, i.e., improve put/get performance instead of
the worst case, i.e., a crash. However, recovery time is an important
aspect of KVSs and we plan to investigate the trade-off between
operational and recovery performance in future work.

5.4 YCSB
In this section, we evaluate Viper and the other systems with the
widely used Yahoo Cloud Serving Benchmark (YCSB) [8]. We dis-
cuss latency and throughput as both are important metrics depend-
ing on the exact application, as well as mixed workloads. We split
our evaluation along three axes, i) latency and throughput (top/bot-
tom row), ii) uniform and Zipfian distribution (left/right half), and
iii) 50:50 and 10:90 read:write workloads (left/right quarter). As
YCSB is Java-based and Viper does not offer a network interface,
we generate the workloads (8 B keys, 200 B values) using YCSB and
thenmap them into our C++ benchmark for execution.We show the
average latency in microseconds measured with HdrHistogram [15]
and the throughput in million operations/s.

The results are shown in Figure 13. We first look at the latency
measurements in the top row, i.e., (a) – (d). We see that Viper
has a very low average latency for all four workloads. It increases
from 1.2 µs with one thread to a maximum of 2 µs with 36 threads.
The Zipfian workloads show a slightly lower latency, due to better
caching effects. Dash and µTree have similar latency for all work-
loads, which is 3–5x higher than Viper’s and is mainly caused by the
random record allocation. CrlStore also shows low latency, as writes
return as soon as they are persisted in the log and frontend KVS.
However, while the average latency is low, the 99.9𝑡ℎ-percentiles of
Dash/µTree/CrlStore in the uniform workloads reach 150/110/240
µs compared to only 25 µs in Viper. pmemkv has significantly higher
latency than the other systems in all workloads and peaks at ~50
µs. For all systems, we see a slightly lower latency in the 50:50

1554

workloads compared to the write-heavy workloads as get requests
perform better in all systems. As FASTER is inherently asynchro-
nous and request completion intervals must be tuned by the user,
we omit its latency as it is not directly comparable.

The throughput of all systems follows the trend of the respective
latency. For Viper, we see slightly lower maximum throughput
(~20 Mops/s) in the uniform workloads than expected compared
to the average of the individual put and get operations as shown
in Figure 6, which would reach ~24 Mops/s. In the realistic YCSB
workload, there is more mixed access to PMem, which decreases
the bandwidth [54], compared to our isolated micro benchmarks.
The throughput of the other systems is also similar to the numbers
shown in Figure 6. However, all systems are severely limited by
inefficient insert operations. Dash and µTree peak at ~8 Mops/s and
the other systems reach fewer than 5 Mops/s.

YCSB shows that Viper consistently outperforms existing KVSs
with an average latency below 2 µs/op and a maximum through-
put of over 19 Mops/s for both write-heavy and mixed workloads.
Overall, Viper’s throughput is significantly higher in all workloads
compared to the other systems, ranging from 3x to 27x, making its
design choices a good fit for real-world workloads.

6 RELATEDWORK
Viper builds on many techniques from prior KVSs, concurrent
hash maps, pure PMem data structures, and hybrid PMem-DRAM
structures. In this section, we briefly discuss related work.

Traditional Key-Value Stores. Popular in-memory KVSs such
as Redis [45], memcached [35], or MICA [26] optimize for a purely
in-memory cache-like use case for maximum performance. They
do not persist the data in order to avoid expensive disk access at
the cost of data-loss after a system shutdown or crash.

Prior research in persistent KVSs is extensive and focuses mainly
on avoiding expensive read- and write-amplification to either SSDs,
HDDs, or both [31, 36, 47]. Popular stores such as RocksDB [11], Lev-
elDB [13], and Cassandra [21] use log-structured merge trees with
an in-memory table for insertions to reduce write-amplification. To
ensure the persistence of the data in the in-memory table, they of-
ten employ file-based Write-Ahead-Logging (WAL), which quickly
becomes a bottleneck. FASTER [5] is a modern KVS that uses an
in-memory hash index and a hybrid log to store records on disk
with a volatile “tail” that allows for in-place updates. Data in the
volatile tail may be lost during a crash. While this approach works
very well in some use-cases, we aim for a stronger storage model in
Viper, in which data-persistence is guaranteed. With Viper, we pro-
pose a persistent KVS that that leverages PMem instead of disk to
allow for efficient operation without central log-based bottlenecks.

PMem-Based Key-Value Stores. Recent research also focuses
on PMem-based KVSs. RStore [24] is a hybrid PMem-DRAM KVS
that focuses on reducing tail-latency via asynchronous message
passing and log-structured storage. FlatStore [7] also employs a
hybrid design based on record batching and cross-core stealing
from RDMA-connected request buffers. As RStore and FlatStore are
designed as a KVS server, their core design decisions are tightly
coupled to networking, include controlling their own threads, and
reducing network overhead through user-space networking. Viper’s
design as an embedded KVS is significantly different, as it does not

require any network interaction and more importantly, it does
not control its own threads. HiKV [53] proposes a hybrid index
for a KVS, where a hash index is stored in PMem and a B-Tree
is located in DRAM for efficient range queries. However, as only
the B-Tree is located in DRAM, all point queries are performed
on PMem essentially making it a PMem-only KVS compared to
Viper. LibreKV [27] also builds a hybrid index where data is initially
inserted into a DRAM-based hash map and later merged into a
PMem-based hash map once it reaches a certain filling degree.
However, LibreKV does not offer consistency as all data in DRAM
is lost during a crash. NVLevel [29] is an LSM tree-based KVS that
uses multiple PMem-based memtables and compacts these into
SSTables on disk once they are full. NVLevel uses disk as its storage
medium, thus being limited similarly to other disk-based KVSs. In
Viper, we propose PMem-specific access patterns for real hardware
to efficiently store and retrieve data directly in and from PMem.

PMem Data Structures. Several (hybrid) PMem data struc-
tures have been proposed that introduce concepts used in Viper.
Dash [30], NVTree [55], and FPTree [40] use a lock-per-node ap-
proach in their hash map and B-Tree structures, which we leverage
in our VPages. Various work has focused on the advantages of using
a hybrid DRAM-PMem approach [6, 28, 40, 49, 57], from which we
derive our hybrid index-storage model. Lersch et al. [23] show that
in-place updates are preferred over copy-on-write for PMem and
that fingerprinting is an effective mean to reduce PMem lookups.

PMem Programming. Yang et al. [54], Izraelevitz et al. [20],
and van Renen et al. [50] show how access patterns affect the
performance of PMem, which we rely on in Viper. PMDK [42] is
the de-facto standard toolkit to interact with persistent memory.
We make use of its low-level methods in our implementation.

7 CONCLUSION
In this paper, we present Viper, a hybrid PMem-DRAM key-value
store that leverages PMem-specific access patterns to efficiently
store and retrieve data while providing full data persistence. We
propose three key design choices for hybrid PMem-DRAM sys-
tems based on efficient PMem access patterns for real hardware, di-
rect PMem-writes, uniform thread-to-DIMM distribution, and DIMM-
aligned storage segments. We also discuss how to implement core
KVS operations in such a system with regard to correct persis-
tence guarantees. Our evaluation shows the efficiency of our design
choices, as Viper significantly outperforms existing PMem-only,
hybrid, and disk-based KVSs by 4–18x for write workloads, while
matching or surpassing their get performance. In future work, we
plan to investigate alternative index designs and as PMem shows
similar performance characteristics to DRAM for certain access,
we want to investigate moving parts of the index to PMem. With
Viper, we provide a foundation for future work on PMem-aware
storage systems and hybrid PMem-DRAM designs based on real
PMem hardware characteristics.

ACKNOWLEDGMENTS
This work was partially funded by the German Ministry for Education and
Research (ref. 01IS18025A and ref. 01IS18037A), the German Research Foun-
dation (ref. 414984028), and the European Union’s Horizon 2020 research
and innovation programme (ref. 957407).

1555

REFERENCES
[1] Paul Alcorn. 2020. Intel Optane DIMM Pricing. https://www.tomshardware.com/

news/intel-optane-dimm-pricing-performance,39007.html.
[2] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s talk about stor-

age & recovery methods for non-volatile memory database systems. In SIGMOD.
ACM, 707–722.

[3] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HCDu. 2020. Characterizing,
Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In
FAST ’20. USENIX Association, 209–223.

[4] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl,
and Kostas Tzoumas. 2015. Apache Flink(TM): Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4, 28–38.

[5] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. In SIGMOD ’18. ACM, 275–290.

[6] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. uTree:
a persistent B+-tree with low tail latency. Proceedings of the VLDB Endowment
13, 12, 2634–2648.

[7] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu.
2020. FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Per-
sistent Memory. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,
1077–1091.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC ’10. ACM,
143–154.

[9] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing persistent memory bandwidth utilization for OLAP workloads. In
SIGMOD ’21. ACM.

[10] Benoit Dageville, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q.
Munir, Steven Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, Philipp
Unterbrunner, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,
Jon Bock, Jonathan Claybaugh, Daniel Engovatov, and Martin Hentschel. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD ’16. ACM, 215–226.

[11] Facebook. 2020. RocksDB. https://rocksdb.org.
[12] Apache Flink. 2020. Improvement in (de)serialization of keys and values for

RocksDB state. https://issues.apache.org/jira/browse/FLINK-9702.
[13] Google. 2020. LevelDB, a fast key-value storage library. https://code.google.com/

p/leveldb.
[14] Philipp Götze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. 2020. Data structure

primitives on persistent memory: an evaluation. In DaMoN ’20. ACM, 14:1–14:3.
[15] HdrHistogram. 2020. HdrHistogram: A high dynamic range histogram. http:

//hdrhistogram.org.
[16] Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. 2021.

Persistent Memory Hash Indexes: An Experimental Evaluation. Proceedings of
the VLDB Endowment 14, 5, 785–798.

[17] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and
Steve Byan. 2018. Closing the Performance Gap Between Volatile and Persistent
Key-Value Stores Using Cross-Referencing Logs. 967–979.

[18] Intel. 2020. Intel® Optane™ Persistent Memory. https://intel.com/
optanedcpersistentmemory.

[19] Intel. 2020. TBB concurrent hash map. https://software.intel.com/en-us/node/
506077.

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. arXiv:1903.05714 [cs].

[21] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2, 35–40.

[22] Per-Ake Larson. 1988. Dynamic hash tables. Commun. ACM 31, 4, 446–457.
[23] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas

Willhalm. 2019. Evaluating persistent memory range indexes. Proceedings of the
VLDB Endowment 13, 4, 574–587.

[24] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. Enabling
low tail latency on multicore key-value stores. Proceedings of the VLDB Endow-
ment 13, 7, 1091–1104.

[25] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman.
2014. Algorithmic improvements for fast concurrent Cuckoo hashing. In EuroSys
’14. ACM, 1–14.

[26] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: a holistic approach to fast in-memory key-value storage. In NSDI’ 14.
USENIX Association, 429–444.

[27] Hao Liu, Linpeng Huang, Yanmin Zhu, and Yanyan Shen. 2017. LibreKV: A
Persistent In-Memory Key-Value Store. IEEE Transactions on Emerging Topics in
Computing, 1–1.

[28] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+Trees: optimizing persistent
index performance on 3DXPoint memory. Proceedings of the VLDB Endowment
13, 7, 1078–1090.

[29] Ruicheng Liu, Peiquan Jin, Xiaoliang Wang, Zhou Zhang, Shouhong Wan, and
Bei Hua. 2019. NVLevel: A High Performance Key-Value Store for Non-Volatile
Memory. In HPCC/SmartCity/DSS ’19. IEEE, 1020–1027.

[30] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. Proceedings of the VLDB Endowment 13, 8, 1147–
1161.

[31] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. WiscKey: Sepa-
rating Keys from Values in SSD-Conscious Storage. ACM Transactions on Storage
13, 1, 5:1–5:28.

[32] Kelly Lyon. 2021. How Intel Optimized RocksDBCode for PersistentMemorywith
PMDK. https://software.intel.com/content/www/us/en/develop/articles/how-
intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html.

[33] Kazuaki Maeda. 2012. Performance evaluation of object serialization libraries in
XML, JSON and binary formats. In DICTAP ’12. IEEE, 177–182.

[34] Anton Malakhov. 2015. Per-bucket concurrent rehashing algorithms.
arXiv:1509.02235 [cs].

[35] Memchached. 2020. Memcached, high-performance, distributed memory object
caching system. https://https://memcached.org/.

[36] Prashanth Menon, Tilmann Rabl, Mohammad Sadoghi, and Hans-Arno Jacobsen.
2014. CaSSanDra: An SSD boosted key-value store. In ICDE ’14. IEEE, 1162–1167.

[37] mmap. 2020. mmap(2): map/unmap files/devices into memory - Linux man page.
https://linux.die.net/man/2/mmap.

[38] Moohyeon Nam, Hokeun Cha, Young-Ri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-optimized dynamic hashing for persistent memory. In FAST ’19.
USENIX Association, 31–44.

[39] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R.
Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically Persistent Hash Map.
In DISC ’17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 37:1–37:16.

[40] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-Tree
for Storage Class Memory. In SIGMOD ’16. ACM, 371–386.

[41] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4, 351–385.

[42] PMDK. 2020. Persistent memory programming. https://pmem.io/pmdk.
[43] PmemKV. 2020. pmemkv, key/value datastore for persistent memory. https:

//pmem.io/pmemkv.
[44] PmemObj++. 2020. libpmemobj++ concurrent hash map. https://github.com/

pmem/libpmemobj-cpp.
[45] Redis. 2020. Redis, an in-memory data structure store. https://redis.io.
[46] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. 2015.

NVC-Hashmap: A Persistent and Concurrent Hashmap For Non-Volatile Memo-
ries. In IMDM ’15. ACM, 4:1–4:8.

[47] Pradeep Shetty, Richard Spillane, Ravikant Malpani, Binesh Andrews, Justin
Seyster, and Erez Zadok. 2013. Building workload-independent storage with
VT-trees. In FAST ’13. USENIX Association, 17–30.

[48] Julian Shun and Guy E. Blelloch. 2014. Phase-concurrent hash tables for deter-
minism. In SPAA ’14. ACM, 96–107.

[49] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In SIGMOD ’18. ACM,
1541–1555.

[50] Alexander Van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent memory I/O primitives. In DaMoN ’19. ACM, 12:1–12:7.

[51] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2020. Building blocks for persistent memory. The VLDB Journal.

[52] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy Lock-Free
Indexing in Non-Volatile Memory. In ICDE ’18. IEEE, 461–472.

[53] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: a hybrid index key-
value store for DRAM-NVM memory systems. In ATC ’17. USENIX Association,
349–362.

[54] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In FAST ’20. USENIX Association, 169–182.

[55] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: reducing consistency cost for NVM-based single
level systems. In FAST ’15. USENIX Association, 167–181.

[56] Matei Zaharia, Scott Shenker, Haoyuan Li, Tathagata Das, Timothy Hunter, and
Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at
scale. In SOSP ’13. ACM, 423–438.

[57] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
differential indexing for persistent memory. Proceedings of the VLDB Endowment
13, 4, 421–434.

1556

https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://rocksdb.org
https://issues.apache.org/jira/browse/FLINK-9702
https://code.google.com/p/leveldb
https://code.google.com/p/leveldb
http://hdrhistogram.org
http://hdrhistogram.org
https://intel.com/optanedcpersistentmemory
https://intel.com/optanedcpersistentmemory
https://software.intel.com/en-us/node/506077
https://software.intel.com/en-us/node/506077
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://https://memcached.org/
https://linux.die.net/man/2/mmap
https://pmem.io/pmdk
https://pmem.io/pmemkv
https://pmem.io/pmemkv
https://github.com/pmem/libpmemobj-cpp
https://github.com/pmem/libpmemobj-cpp
https://redis.io

	Title
	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	Table 1

	2.2 Key-Value Stores
	Figure 1

	3 Viper: A hybrid key-value store
	3.1 Hybrid Design
	Figure 2

	3.2 Architecture
	Figure 3
	Figure 4

	4 Key-value store operations
	4.1 Viper Client
	Figure 5

	4.2 Put
	Listing 1

	4.3 Get
	4.4 Update
	4.5 Delete
	4.6 Space Reclamation
	4.7 Recovery
	Figure 6

	5 Evaluation
	5.1 Setup and Methodology
	5.2 Other Systems
	5.3 Micro Benchmarks
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	5.4 YCSB

	6 Related work
	7 Conclusion
	Acknowledgements
	References

