Does It Have To Be Trees?
Data-Driven Dependency Parsing with
Incomplete and Noisy Training Data

Dissertation von Kathrin Spreyer

Eingereicht bei der Humanwissenschaftlichen Fakultét
der Universitdat Potsdam
zur Erlangung des Grades des Doktors der Philosophie

Heidelberg, 11. Oktober 2011

This work is licensed under a Creative Commons License:
Attribution - Noncommercial - Share Alike 3.0 Unported
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/3.0/

Gutachter:
Prof. Dr. Jonas Kuhn
Prof. Dr. Manfred Stede

Datum der miindlichen Priifung: 15. Dezember 2011

The research that led to this dissertation was funded by the DFG as part of
the collaborative research center SFB 632.

Published online at the

Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp /volltexte/2012/5749/
URN urn:nbn:de:kobv:517-opus-57498
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57498

iii

Erklirung

Ich erkldre, dass ich diese Dissertation selbstédndig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Heidelberg, den 11. Oktober 2011.

Kathrin Spreyer

v
Abstract

We present a novel approach to training data-driven dependency parsers on in-
complete annotations. Our parsers are simple modifications of two well-known
dependency parsers, the transition-based Malt parser and the graph-based MST
parser. While previous work on parsing with incomplete data has typically
couched the task in frameworks of unsupervised or semi-supervised machine
learning, we essentially treat it as a supervised problem. In particular, we pro-
pose what we call agnostic parsers which hide all fragmentation in the training
data from their supervised components.

We present experimental results with training data that was obtained by
means of annotation projection. Annotation projection is a resource-lean tech-
nique which allows us to transfer annotations from one language to another
within a parallel corpus. However, the output tends to be noisy and incomplete
due to cross-lingual non-parallelism and error-prone word alignments. This
makes the projected annotations a suitable test bed for our fragment parsers.
Our results show that (i) dependency parsers trained on large amounts of pro-
jected annotations achieve higher accuracy than the direct projections, and that
(ii) our agnostic fragment parsers perform roughly on a par with the original
parsers which are trained only on strictly filtered, complete trees. Finally, (iii)
when our fragment parsers are trained on artificially fragmented but otherwise
gold standard dependencies, the performance loss is moderate even with up to
50% of all edges removed.

Acknowledgments

First of all, I would like to thank my Doktorvater, Jonas Kuhn, for his sup-
port, encouragement and patience — and for putting up with my stubbornness.
He provided the guidance I needed, but at the same time let me pursue things
in my own manner, which I greatly appreciate. Needless to say, by sharing his
ideas, he greatly contributed to this thesis.

Further, I would like to thank my former colleagues Gerlof Bouma, Lilja
@vrelid, Eleftherios Avramidis, Sina Zarriel, Wolfgang Seeker for interesting
and helpful discussions. Thanks also to Florian Marienfeld and Georg Jéhnig
for the effort they put into cleaning up the Europarl corpus.

I am also very grateful to Joakim Nivre for an interesting discussion back
in 2008, which encouraged me to further pursue the idea of using fragmented
parse trees; to Sebastian Padé for making his Europarl gold standard publicly
available; and to Yi Zhang for sharing his dependency conversion software for
the German treebank. Moreover, I am indebted to people at the Computa-
tional Linguistics department at Heidelberg for letting me use their computing
resources: Anette Frank, Markus Kirschner and Patrick Simianer.

I would also like to thank the anonymous reviewers at CoNLL 2009, LREC
2010, and COLING 2010 for helpful comments.

Contents

Introduction

1.1 Annotation Projection
1.2 Parsing with Tree Fragments
1.3 Evaluation of Projection-based Systems
1.4 Overview of the Thesis

Related Work

2.1 Annotation Projection
2.1.1 Word-based annotation projection
2.1.2 Projection of structured annotations

2.2 Dependency Parsing
2.2.1 Data-driven dependency parsing
2.2.2 Weakly supervised approaches
2.2.3 Synchronous and multilingual parsing

2.3 Learning From Fragmented Annotations

Projection of Syntactic Dependencies

3.1 Parallel Data
3.1.1 Parallel corpora.
3.1.2 Bilingual alignment

3.2 Violations of Direct Correspondence

3.3 Projection of Dependency Trees
3.3.1 Strict projection
3.3.2 Constrained fallback projection
3.3.3 Partial correspondence projection

3.4 Quality of Direct Projections
3.4.1 Gold standard evaluation (German)
3.4.2 Pseudo-evaluation against treebank parsers

3.5 Summary and Discussion

Training Parsers on Fragmented Trees

4.1 Background: Data-driven Dependency Parsing
4.1.1 Basic notions of dependency parsing
4.1.2 Textual representation of dependency graphs

4.2 Background: Transition-Based Parsing with Malt
4.2.1 Transition system oL
4.2.2 Parsing algorithm,
4.2.3 Feature model

vii

21
22
22
23
29
32
35
39
41
47
48
93
55

viii

A

CONTENTS

4.3 fMalt. . . .
4.4 Background: Graph-Based Parsing with MST
4.4.1 Parsing algorithm
4.4.2 Scoring function Lo oL
4.5 fMST . . .
4.6 Summary and Discussion L.

Evaluation Methodology

5.1 Evaluation of Treebank Parsers

5.2 Treebanks

5.3 Annotation Schemes
5.3.1 Comparison
5.3.2 Conversionso e e e
5.3.3 Learnability experiments.

5.4 Variance Assessment

5.5 Summary and Discussion
5.5.1 Labeling schemes

Experiments
6.1 Experimental Setup oL
6.2 Parameter Tuning
6.2.1 Parser-specific training parameters
6.2.2 Parameter optimization with manually annotated devel-
opment data
6.2.3 Parameter optimization with projected development data
6.2.4 Fragment sizeo
6.3 Baselines and Upper Bounds
6.4 Maltand fMalt
6.4.1 Malt: parsers with completeness assumptions
6.4.2 fMalt: parsers with fragment awareness
6.5 MST and fMST
6.5.1 MST: parsers with completeness assumptions
6.5.2 fMST: parsers with fragment awareness
6.6 Summary and Discussion

Error Analysis

7.1 Sentence Length

7.2 Dependency Length

7.3 Dependency Type
7.3.1 Subjects
7.3.2 Objects e
7.3.3 Modifiers

7.4 Concrete Examples oo oL

7.5 Summary and Discussion 0oL

Conclusions

Evaluation of Fragmentation Constraints

97
100
102

115
115
117
119
119
124
124
125
132

133
135
136

137

CONTENTS

B Analysis by Dependency Length

ix

141

Chapter 1

Introduction

In this dissertation we explore the induction of data-driven dependency parsers
in the absence of manually annotated treebanks. Instead, our training data con-
sists of parse tree fragments that are obtained by means of annotation projection
within a large multilingual, parallel corpus.

The motivation for this resource-lean approach lies in the notorious shortage
of manually annotated corpora, the so-called resource bottleneck. Resources such
as treebanks are readily available for a handful of languages — foremost English —
but for most of the world’s languages no such data exists, or only in insufficient
quantities. Moreover, considering the effort involved in creating a treebank, it
seems unlikely that the situation will improve in the near future: the annotation
process alone can take many years, and annotations need to be double-checked in
order to ensure the desired quality and consistency; prior to annotation proper,
annotation guidelines must be defined which describe linguistically plausible
and computationally practical structures, and which are also easy to obey by
the annotators. We will come back to the issue of annotation schemes and the
role they play in a setup that uses annotation projection.

Thus, while state-of-the-art dependency parsers can achieve astonishing lev-
els of accuracy, the applicability of the pivotal statistical and machine learning
methods is dependent on large amounts of training data and therefore limited to
the few resource-rich languages. This in turn affects a multitude of higher-level
NLP tasks that build upon the dependency analysis produced by the parsers. It
is therefore important to find ways of overcoming the resource bottleneck. The
challenge can be approached from two perspectives. On the one hand, there are
techniques for creating annotated resources (semi-)automatically; annotation
projection (introduced in the next section) is one such technique. On the other
hand, the parsing methods can be adapted to scenarios with less supervision.
Although the abandonment of supervision is almost invariably accompanied by
a loss in accuracy, it can be salvaged to some extent by benefiting from a nearly
unlimited supply of unlabeled or partially labeled data. We propose a perspec-
tive on parsing with partial, projected training data, and we show how the two
major paradigms in dependency parsing — graph-based and transition-based
parsing — can be modified to the effect that they can handle the incomplete
annotations.

2 CHAPTER 1. INTRODUCTION

DT JJ NN IN JJ NN
a significant producer for crude oil

un producteur important de petrole brut
DT NN JJ N JJ

Figure 1.1: Annotation projection of part-of-speech tags from English (top) to
French (bottom).

1.1 Annotation Projection

Annotation projection (Yarowsky et al., 2001) is a technique which exploits
parallel corpora — text collections that contain translations in several languages
— in order to transfer annotations from a (resource-rich) source language to
a (resource-scarce) target language. It thereby enables us to bootstrap stand-
alone tools for the target language without having to rely on manually annotated
training data in that language. Besides the parallel corpus, the only resources
required for annotation projection are the annotations in the source language
portion of the corpus. These can be either manual annotations, or even auto-
matic labelings produced by an ezisting source language analyzer of high quality.
By choosing a source language for which such a tool is available, the resource
bottleneck is sidestepped in that it is deflected from the resource-scarce target
language to the resource-rich source language.

Annotation projection uses word-level correspondences (so-called word align-
ments) between the source and target language text as a bridge so that the target
language words can “inherit” annotations from the aligned source words. This
process induces an automatic labeling for the target language, as can be seen in
the example shown in Figure 1.1. The example (from Yarowsky et al. (2001))
shows the projection of part-of-speech (POS) tags from English to French. In the
upper half we see the English sentence with POS annotations above. The lower
part shows the French translation, and the links between English and French
words indicate the word alignments. The POS tag associated with a word in the
English sentence is projected to the corresponding word in the French sentence
as indicated by the word alignment. For example, consider the English adjective
significant in the figure. It is aligned with the French important. The assump-
tion underlying annotation projection is that the POS tag for significant (1J)
is also appropriate for its translation important. The French word is therefore
tagged with the JJ tag. In the same manner, other words in the French sentence
receive a POS tag from their English correspondents.

The word-level alignments that are required to perform projection can be
induced from parallel text in an unsupervised manner, typically by a cascade of
increasingly complex models (Brown et al., 1993). The success of these mod-
els, however, hinges on the availability of substantial amounts of parallel text.
Despite being resource-lean with respect to annotated resources, annotation pro-
jection — including the technique proposed in this thesis — therefore needs to be
backed by a large (unannotated) parallel corpus. This is because the accuracy
of the word alignment is a crucial factor in the induction of high-quality pro-

1.1. ANNOTATION PROJECTION 3

Yvofu\are absomht

l U heeft volkomen gelijk l

Figure 1.2: Dependency tree projection from English to Dutch.

jected annotations. Moreover, word alignments tend to be sparse in the sense
that some words remain unaligned. The words for and de in Figure 1.1, for
instance, do not have alignments in the other language. As a consequence, the
English tag for the preposition (IN) cannot be projected, leaving the tag se-
quence for the French sentence incomplete. This is a minor problem when the
projected annotations are word-based, as is the case for POS tags: the resulting
annotations are interpretable irrespective of the context and do not depend on
other words in the sentence.! The situation is different when we are dealing
with structured annotations. Dependency trees, with which we are concerned
in this dissertation, fall into this category. Consider the example in Figure 1.2,
which shows the projection of a dependency tree from English to Dutch. The
projection algorithm projects a dependency edge between two English words h
(the head of the dependency) and d (the dependent) by finding corresponding
(aligned) Dutch words h' and d’, respectively, and establishing an edge between
I’ to d' in the Dutch tree under construction. For instance, the edge between
right and absolutely in Figure 1.2 is projected by finding the Dutch correspon-
dent of right (gelijk) and of absolutely (volkomen), and introducing an edge
from gelijk to volkomen. In this setting, a missing word alignment (like the one
between are and heeft in Figure 1.2) leads to a target language structure that is
not a tree, but rather a set of tree fragments. This is because none of the source
language edges involving the unaligned word can be projected. In the example,
this affects the edge between are and you, as well as the one between are and
right. The projected graph consists of three fragments: the isolated nodes u
and heeft, and the subtree rooted in gelijk.

The basic assumption underlying the projection of dependency trees is the
Direct Correspondence Assumption (DCA; Hwa et al., 2005). In simple terms, it
states that the syntactic structures of two sentences that are literal translations
of each other are isomorphic. We will discuss the DCA in detail in Chapter 3,
where we also address the limitations of the assumption, especially its restricted
empirical applicability: real-world translations are rarely one hundred percent
literal. Thus even if the DCA holds in cases where the translation is in fact

1This is true for the annotations as such — the prediction of these annotations, as performed
by automatic POS taggers, typically does require context information in order to resolve
ambiguities. Without further pursuing the projection of POS tags in this thesis, we conjecture
that our approach to the treatment of incomplete annotations can in principle be applied to
that task as well. Moon and Baldridge (2007) present an alternative bootstrapping approach.
We discuss their work in Chapter 2.3.

4 CHAPTER 1. INTRODUCTION

literal, its coverage is severely limited when we take the non-literal translations
into account. Given these limitations, one may ask: Why bother at all? Can
we gain anything from it? Hwa et al. (2002) provide a compelling argument
against dismissing the approach all too early:

For years, stochastic modeling of language has depended on the lin-
guistically implausible assumptions underlying n-gram models, hid-
den Markov models, context-free grammars, and the like, with re-
markable success. Having made the [underlying assumption] explicit,
we would suggest that the right questions are: to what extent is it
true, and how useful is it when it holds? (Hwa et al., 2002, p. 394)

We add to these questions the following: Is annotation projection still useful
when the correspondence between source and target language is partial? We
will explore this question for syntactic dependencies. Can we train parsers (we
call them fragment parsers) on projected dependencies even if they do not con-
stitute complete trees? Or are we better off restricting the training data to those
sentences that received a complete analysis? How do fragment parsers compare
to the latter parsers, which are trained only on the limited amount of complete
projections? We show that the effective amount of training data is reduced to a
minuscule fraction (less than 3%) of the sentences in the parallel corpus when we
restrict ourselves to complete target language trees. Moreover, while recall can
be improved by including additional, less reliable alignment links, we will see
that the quantitative gain is almost completely canceled out by the simultane-
ous qualitative degradation. We therefore propose a precision—recall tradeoff of
a different kind, which we call partial correspondence projection: instead of im-
proving recall by admitting weaker alignments, we maintain a precision-oriented
alignment filter but do not enforce completeness on the target side. The result-
ing high-precision tree fragments account for a substantially larger training set
for the target language parser, and we present simple modifications of existing
data-driven dependency parsers which can handle fragmented training data.

In order to avoid confusion later on, we would like to clarify right from the
start that our goal is not so much the development of high-performance projec-
tion algorithms, but rather the investigation of the usefulness of — potentially
imperfect — projected annotations for parser induction. We consider three pro-
jection settings that mainly differ in terms of the tradeoff between precision
and recall. A number of additional improvements are conceivable beyond these
purely structural variations. We ignore these options for the most part in favor
of a methodologically more straightforward exploration of the impact of struc-
tural incompleteness on parsing performance. We discuss some extensions of
the projection algorithms towards the end of Chapter 3.

1.2 Parsing with Tree Fragments

The use of incomplete training data for machine learning and stochastic mod-
eling is not a novel idea, and particularly in the parsing community this issue
has received considerable attention, as we will see in Chapter 2. In conjunc-
tion with annotation projection, two strategies have been proposed to deal with
fragmentation in projected syntax trees. The first solution is to apply correction
rules to the projected annotations. Such rules infuse target language-specific

1.3. EVALUATION OF PROJECTION-BASED SYSTEMS 5

knowledge about the appropriate attachment of unaligned words; they can even
be designed to amend systematic precision errors in the projection output. The
rule-based treatment of partial projections has proven very effective, and parsers
trained on the transformed trees exhibit large gains in accuracy. However, the
rules need to be hand-crafted anew for every target language and hence turn the
conceptually language-independent projection method into a language-specific
processing pipeline.

The second popular strategy completes the partial annotations in an unsu-
pervised manner by marginalizing over all possible completions. In this scenario,
model parameters are typically estimated via Expectation-Maximization (EM).
Unfortunately, the EM algorithm is highly sensitive to the initialization of the
parameters and its performance is hard to predict.

We present parsers which are also trained on the fragmented trees directly,
but rather than explicitly summing over possible completions of the input struc-
tures like EM does, we mask the fragmentation in such a way that the parser
essentially ignores missing edges. In graph-based dependency parsing, where
parsing amounts to finding the highest-scoring set of edges that span the entire
sentence, this “agnostic” training procedure will operate only on (the scores
of) those edges that are present, and it will ensure that the training example
receives a higher score than other possible trees that are inconsistent with those
edges. The other parser we consider is a transition-based parser. It performs
parsing actions like a shift-reduce parser and uses a data-driven component to
predict the sequence of locally optimal actions (or transitions) at test time. Our
fragment-compatible variant of the transition-based parser eliminates from the
training data of the internal learner those transitions that concern the attach-
ment of fragment roots. This leads to parsers which are trained only on those
transitions that are in fact supported by the projected dependencies, without
necessitating explicit provisions for incomplete input structures.

We will show empirically that our projected fragment parsers perform on
a par with the corresponding parsers trained only on (the limited amount of)
complete trees. Moreover, our analysis reveals that the fragment parsers are
in fact superior on longer sentences and long-distance attachments. Both the
fragment-trained as well as the tree-trained projected parsers outperform the
direct projections that are output by the projection algorithm.

1.3 Evaluation of Projection-based Systems

This thesis touches upon a third topic, besides projection and fragment pars-
ing: the evaluation of projection-based systems. Although annotation projection
produces stand-alone target language annotations which can in turn be used to
induce stand-alone target language tools, the target annotations are still loosely
coupled with the source annotations through the annotation scheme. Consider
again the example in Figure 1.2. The parse tree for the English sentence adheres
to a certain schema that determines how syntactic relations are to be marked
up. This includes decisions about the orientation of dependency edges (head-to-
dependent versus dependent-to-head), the head word of nominal phrases (noun
versus determiner), the depth of the tree (flat versus highly branching struc-
tures).

When the English dependency representation is projected to Dutch, the re-

6 CHAPTER 1. INTRODUCTION

sulting target language annotation — be it complete or partial — conforms to
the same annotation scheme. This is desirable in a scenario where no language-
specific annotation scheme exists for the target language. It is also unprob-
lematic in an application-oriented setting when the concrete annotation style is
irrelevant as long as the actual annotation scheme is known and can thus be
referred to.

Complications only arise when we want to compare the projected annota-
tions (or the output of parsers which are trained on projected annotations) with
a target language gold standard. Gold standard annotations for the target lan-
guage typically conform to an annotation scheme that is likely to differ from
the source language scheme, since annotation schemes tend to be language-
specific. A direct comparison of the projected annotations with the gold stan-
dard would be largely meaningless. The issue is usually addressed by a conver-
sion step which consolidates the annotation schemes during projection (Spreyer
and Kuhn, 2009), or it is sidestepped by choosing source and target language
data that are annotated according to identical annotation schemes. For instance,
Hwa et al. (2005) use the Penn Treebank for English and Chinese. By contrast,
we propose an evaluation methodology in which the conversion between anno-
tation schemes is performed in the gold standard. In particular, for each source
language we create variants of our target language test sets which conform to
the source language annotation scheme. For example, a parser for Italian that
was trained on annotations projected from English is evaluated against a variant
of the Italian gold standard converted to the English (PTB) scheme.

As we will see in Chapter 5, performing the conversion on the test data
is preferable over various alternative scenarios because it can be done without
introducing any additional noise. By performing the conversion on the test data,
we further isolate the problem of diverging annotation schemes in the evaluation
step and thus make the rest of the system independent of the presence or absence
of an annotation scheme for the target language.

1.4 Overview of the Thesis

In this section we equip the reader with a more detailed picture of what to
expect. Recall that our primary goal here is to assess the usefulness of our
technique of fragment parsing as opposed to training on (i) a very small amount
of conservatively filtered complete trees, and (ii) considerably larger amounts of
complete trees that suffer from more noise. Of course there are many conceivable
alternative approaches and heuristic improvements, but we will only pursue a
few of them in order not to blur the focus on the main research question.

Chapter 2 presents related work in annotation projection, weakly-supervised
(dependency) parsing, and finally training with incomplete annotations. In Sec-
tion 2.1 we distinguish word-based from structural annotation projection and
focus on the latter, where annotations for individual tokens cannot be (fully)
interpreted in isolation, but only in relation to other tokens in the same sentence.
Section 2.2 begins with a brief overview of supervised data-driven depen-
dency parsing, and then turns to weakly supervised and unsupervised approaches,
including a thorough discussion of synchronous and multilingual parsing.

1.4. OVERVIEW OF THE THESIS 7

Finally, we review related approaches to learning from fragmented annota-
tions in Section 2.3.

Chapter 3 introduces parallel corpora and word alignment (Section 3.1)
and discusses limitations of the Direct Correspondence Assumption (DCA)
which forms the basis of annotation projection (Section 3.2). We then present
our basic algorithm for dependency tree projection in Section 3.3. The
algorithm comes in three flavors of varying conservatism: we start out from a
very strict projection setting which uses only highly reliable alignment links and
discards dependency graphs unless they form complete trees. As we will see, the
effective amount of data that passes this filter constitutes only a fraction of the
initial data set, and is heavily biased towards simplistic structures. In order to
retain a more varied data set of projected structures, we then relax the filter by
using not only the highly reliable bidirectional word alignments as anchors for
projection, but allowing a fallback onto additional, weaker alignments that are
supported only in one direction (source-to-target or target-to-source). At the
same time we still enforce the completeness constraint, that is, we still discard
incomplete projections. Like fallback projection, the third variant of our projec-
tion algorithm strives to improve the recall of the projected structures. Unlike
fallback projection, however, it does not incorporate weaker alignments in order
to boost recall. Instead, it simply lifts the completeness constraint, thereby ad-
mitting fragmented projections in the output. That is, we acknowledge partial
correspondence between a source sentence and a target sentence, by admit-
ting projected structures even if they do not form trees because some edges are
missing.

We first conduct a quantitative assessment of the output of the projection
algorithms. It reveals that both fallback projection and partial correspondence
projection amend the extreme data loss incurred by strict projection. We also
provide a qualitative evaluation of our word alignments, the source language
parse trees which form the base for projection, and the dependencies induced
via projection. When compared to gold standard dependency trees for German,
for example, the output of the strict projection algorithm exhibits an f-score
of merely 1% due to extremely low recall. With an f-score of 10% the fall-
back approach shows some improvement, but is by far outperformed by partial
correspondence projection, which achieves 46% f-score.

In Chapter 4 we turn to dependency parsing. We begin by providing for-
mal definitions and notation for the basic concepts of dependency parsing such
as head, dependent and dependency edge (Section 4.1). In Sections 4.2 and
4.4, respectively, we give a detailed description of two concrete (data-driven)
dependency parsers: the Malt parser (Nivre et al., 2006), which implements
transition-based dependency parsing, and the MST parser (McDonald et al.,
2005), a representative of the graph-based dependency parsing paradigm. Both
systems assume that the training data consists of complete trees. If we want
to leverage fragmented dependency graphs — as obtained through partial corre-
spondence projection — as training data, we therefore need to make adjustments
to the original parsers, and more specifically to the training phase. Since the
textual representation format for parse trees expected by the parsers requires
that every word be attached to exactly one head (possibly the artificial root

8 CHAPTER 1. INTRODUCTION

token wyp), we are forced to introduce spurious attachments for fragment roots,
and our modifications to the original parsers implement an awareness of the fact
that these attachments are spurious. This fragmentation awareness is then
exploited to simply disregard the attachments in question, resulting in parsers
that are agnostic towards missing edges, as opposed to trying to estimate the
plausibility of various possible attachments. We call our fragment-aware variant
of the Malt parser fMalt, described in Section 4.3. The graph-based counterpart,
fMST, is described in Section 4.5. We point out that both fragment parsers,
despite being trained on partial annotations, produce complete trees as their
output. This is because the fragmentation never percolates into the training
data of the data-driven components.

Chapter 5 is devoted to the discussion of our evaluation methodology.
We set out with a summary of the standard evaluation procedure for treebank
parsers (Section 5.1) and continue with a general overview of the treebanks we
use as test data (Section 5.2). The remainder of the chapter addresses two
major issues in the evaluation of projection-based systems. First, the anno-
tation scheme employed for the source language text is unlikely to coincide
with the annotation scheme in the test data for the target language. Section 5.3
explores this topic in great detail, including a comparison of the annotation
styles employed in our test sets, a proposal for the consolidation of diverg-
ing annotations, and an empirical assessment of the learnability of various
annotation schemes.

In Section 5.4 we shift our focus to variance assessment and signifi-
cance testing. In the parsing community, this is commonly tackled using cross-
validation over the labeled training set, often in combination with randomized
comparisons of the system outputs. In a projection-based setting, however, we
are faced with the problem that the training set is typically disjoint from the test
set. The training set is derived from a parallel corpus (otherwise no projection
could be performed) and is usually not associated with any gold standard anno-
tations. This rules out cross-validation over the training set. On the other hand,
the gold standard test data that is used to evaluate projection-based systems
is rarely part of a parallel corpus, so cross-validation over the test set is not an
option, either. Even if a parallel dataset with manual annotations is available,
it would have to be of considerable size in order to yield meaningful results,
especially seeing as the training data tend to be noisy. We therefore propose
an alternative validation scheme for our projected parsers which (i) does not
reduce the amount of test data by partitioning, (ii) does not require parallel
test data and is independent of the projection step, and (iii) takes advantage of
the fact that training data is cheap and therefore abundant in projection-based
settings.

In Chapter 6 we present experimental results. We first describe our ex-
perimental setup and procedures for parameter tuning, as well as simple
heuristic baselines and upper bounds (treebank parsers).

Our experimental results with fMalt and fMST lead us to conclude that
tree-based parsers trained on small amounts of data created using a precision-
oriented projection algorithm perform roughly on a par with our fragment
parsers trained on larger amounts of annotation obtained using partial cor-

1.4. OVERVIEW OF THE THESIS 9

respondence projection. For Dutch, for example, the tree-based Malt parser
projected from English achieves an unlabeled attachment score of 73.1%, while
the corresponding fMalt parser achieves 74.3%. The tree-based MST parser for
the same language pair reaches 74.0%, outperforming fMST (73.3%) by a small
margin.

Chapter 7 provides a detailed error analysis for the parsers evaluated in
Chapter 6. We find that our fragment parsers largely outperform the tree-
based parsers on longer sentences as well as longer dependencies. We further
analyze the results relative to (gold standard) dependency type and word class,
and discuss the dependency analyses predicted by our parsers for a concrete
example.

Chapter 8 concludes with a summary and a discussion of future directions.

Chapter 2

Related Work

In this chapter we give an overview of related work. In doing so, we start out
with an overview of work in annotation projection. We then turn to data-driven
dependency parsing with a special focus on multilingual approaches, which
are often closely related to or based in the annotation projection framework.
Roughly speaking, the difference between multilingual learning on the one hand
and annotation projection on the other hand is that the latter treats the word-
aligned source language analysis as a hard constraint on the target language
annotation that is being induced, whereas multilingual learning paradigms re-
gard the source annotations as soft constraints which merely help steer model
parameters in the right direction.

2.1 Annotation Projection

Annotation projection as a means to address the resource bottleneck for less
researched languages was first introduced in the seminal works of Yarowsky
and colleagues (Yarowsky et al., 2001; Yarowsky and Ngai, 2001). They em-
ploy annotation projection from English to induce stand-alone part-of-speech
taggers, base NP bracketers, named-entity taggers and morphological analyz-
ers for French, Chinese, Czech and Spanish. Furthermore, they present robust
training methods that are capable of overcoming the noise in the automatic,
direct projections. For POS tagging, this kind of robustness is achieved by re-
inforcing the bias towards the majority tag in the lexical prior model P(tw),
and subsequently weighting the contribution of each training sentence to the
tag sequence model P(¢;|t;—1,...) proportional to its alignment score on the
one hand, and its agreement with the biased lexical priors on the other hand.
These re-estimation techniques are thoroughly discussed in Yarowsky and Ngai
(2001). For improved NP bracketing accuracy, Yarowsky et al. (2001) exclude
sentences with low alignment scores from the training data altogether. The
performance of the morphological analyzer is boosted by the use of multiple
translations on the source language side: redundant repeated, identical transla-
tions increase the confidence in those inflection—root pairs, whereas differences
among the translations serve to improve coverage.

In the remainder of this section, we provide an overview of annotation pro-
jection approaches that followed the initial proposal in Yarowsky et al. (2001).

11

12 CHAPTER 2. RELATED WORK

We distinguish between the projection of word-based and structured annota-
tions. While word-based annotations allow for a straightforward isolation of
high-precision projected data points (Section 2.1.1), structured annotations are
typically subject to wellformedness constraints which on the one hand may fa-
cilitate the assessment of the plausibility of the projected annotations; on the
other hand, such constraints also tend to complicate the filtering of unreliable
data points (Section 2.1.2).

Since the basic principle of annotation projection is so generally applicable,
differences between the works discussed below are often confined to task-specific
idiosyncrasies, especially in the word-based projection paradigm. We will there-
fore have little to say about many articles mentioned in the next section, but
list the prominent research for the sake of completeness and refer the interested
reader to those articles for more details.

2.1.1 Word-based annotation projection

The projection of part-of-speech tags, pioneered by Yarowsky et al. (2001),
has since been performed — at varying levels of tagset granularity, and often
in tandem with other lexical and morphological information, such as case or
(grammatical) gender — for Swedish (Borin, 2002), Czech and French (Drabek
and Yarowsky, 2005), Polish (Ozdowska, 2006), Romanian, Kurdish, and Span-
ish (Cucerzan and Yarowsky, 2002, 2003), and French (Probst, 2003). The
method has even been applied in the monolingual setting. For instance, Moon
and Baldridge (2007) induce a POS tagger for Middle English via projection
from modern English in a parallel diachronic corpus.

Other word-based annotation tasks for which annotation projection has been
explored include the acquisition of word senses and semantic lexicons (Diab
and Resnik, 2002; Bentivogli and Pianta, 2005; Padé and Lapata, 2005a), verb
classification (Merlo et al., 2002), mention detection (Zitouni and Florian, 2008),
temporal analysis (Saquete et al., 2006; Spreyer and Frank, 2008), information
extraction (Riloff et al., 2002), identification of verb arguments (Bouma et al.,
2008), or relation extraction (Kim et al., 2010).

The projection of annotations across parallel corpora is inherently noisy due
to cross-language divergences (even in relatively literal translations) and errors
in the automatic word alignment (cf. Chapter 3). This problem is commonly
addressed by aggressive noise filters that identify and discard unreliable data
points. Various filtering criteria have been used, for example Giza alignment
scores (Yarowsky et al., 2001; Yarowsky and Ngai, 2001; Spreyer and Frank,
2008), consensus of multiple source languages (Bouma et al., 2008), alignment
topology (Hwa et al., 2005; Spreyer and Frank, 2008), or the confidence of the
source language tools (Kim et al., 2010).

2.1.2 Projection of structured annotations

In contrast to word-based annotations, structured (e.g., hierarchical) annota-
tions often cannot be interpreted on a word-by-word basis, but rather connect
words to form larger, more complex units. Examples include NP bracketing
(chunking), semantic role labeling, and of course syntactic parsing. In these
tasks, word labels often cannot be introduced in isolation without affecting the

2.1. ANNOTATION PROJECTION 13

wellformedness of the annotation as a whole. This means that noise filters typ-
ically have to discard entire sentences if some part of the annotation is deemed
unreliable — even if the rest of the sentence could be labeled with high confidence.

A notable exception to this all-or-nothing approach has been presented in
Pad6 and Lapata (2005b) and Pad6 and Lapata (2006), who automatically con-
struct constituent alignments from sparse, high-precision word-level alignments
in order to project semantic roles. Semantic roles are frequently assigned to
contiguous spans of multiple words rather than a single word, thus constituent
alignment captures the target unit of projection more adequately than mere
word alignment. Constituent alignments can be computed locally (Padé and
Lapata, 2005b) or globally (Padé and Lapata, 2006).

Of course, since dependency relations (introduced below in Section 2.2 and
more thoroughly in Chapter 4) hold between individual words, word alignments
are indeed the suitable link between source and target language units for the
purpose of dependency tree projection. Hwa et al. (2005) (also Hwa et al.,
2002) were the first to project dependency trees from English to Spanish and
Chinese. They identify unreliable target parses (as a whole) on the basis of
the number of unaligned or over-aligned words. In addition, they manipulate
the tree structures to accommodate non-isomorphic sentences. Systematic non-
parallelism between source and target language is subsequently addressed by
hand-crafted correction rules in a post-projection step. These rules account for
an enormous increase in the unlabeled f-score of the direct projections from
33.9 to 65.7 for Spanish and from 26.3 to 52.4 for Chinese. But they need to be
designed anew for every target language, which is time-consuming' and, more
importantly, requires knowledge of that language.

Ozdowska (2006) projects dependencies from English and French to Polish,
and finds that the choice of source language makes no distinct difference. Un-
fortunately, she restricts the evaluation to precision and does not report recall
figures.

Wréblewska and Frank (2009) present a framework for the projection of
LFG f-structures (Bresnan, 2001) from English to Polish. F-structures basi-
cally encode syntactic dependencies, but do not necessarily encode dependency
trees because of the possibility of structure sharing. Like Hwa et al. (2005),
Wréblewska and Frank (2009) define post-projection transformations that im-
plement linguistic knowledge specific to the target language. A notable differ-
ence with respect to the projection of plain dependencies is that an algorithm
for f-structure projection (or, alternatively, the post-projection rules) needs to
account for pro-drop phenomena, since unrealized pronouns are made explicit
in the f-structure analysis. In the standard data sets for dependency parsing,
dropped pronouns are not represented at all and hence do not pose a problem
for projection into a pro-drop language.? In contrast to many other projection
approaches, Wréblewska and Frank (2009) argue for the use of unidirectional
alignments (cf. Section 3.1.2). They base this decision on the nature of the
language pair: The source language, English, is an analytic language with im-
poverished morphology and the heavy use of function words. Polish, on the

1Hwa et al. (2005) mention an upper bound of one month for the design of the set of
correction rules for one language. However, this assumes that a (linguistically trained) native
speaker of the target language is available.

2Note, however, that projection in the opposite direction would systematically leave certain
NPs unattached.

14 CHAPTER 2. RELATED WORK

other hand, is a highly inflecting language and uses case marking in many cases
that would be realized in analytic expressions in English. A unidirectional word
alignment, permitting one-to-many links, can be expected to capture such corre-
spondences, whereas they are inevitably lost when only bidirectional alignments
are considered. The projected f-structures achieve an unlabeled f-score of 51%
(labeled: 50%), and 63.5% when the correction rules are applied.

Ganchev et al. (2009) project English dependencies to Spanish and Bulgar-
ian. However, rather than using the projected annotations directly to train
a supervised parser, they accommodate uncertainty and partial correspondence
by interpreting the English source analysis as constraints on the posterior expec-
tations derived by the EM algorithm during the E-step (Graga et al., 2008). We
will come back to this work in Section 2.3, where we discuss research that deals
with fragmented training data. Similar in spirit to Hwa et al. (2005), Ganchev
et al. (2009) introduce rules to deal with differences in annotation conventions
between the treebanks. The (technically unsupervised) parsers that are ob-
tained in this way generally outperform the corresponding supervised baselines
trained on the hard (direct or transformed) projections.

Jiang and Liu (2009) also move away from hard projection and instead
project trees from English to Chinese by searching for the Chinese tree that
is most consistent with the English source tree, where consistency is defined as
an aggregated score over the edges in the Chinese candidate tree, anchored in
lexical translation probablities. They subsequently filter the projected trees by
means of a threshold for the normalized consistency score, and then train the
MST parser (cf. Section 4.4) on the remaining sentences.

The latter two approaches are both closely related to multilingual learning
methods for dependency parsing, which we will discuss below.

We conclude the discussion of related work in annotation projection by
briefly mentioning a proposal for treebank transfer between comparable cor-
pora (Jansche, 2005), which dispenses with the need for strictly parallel data
by treating target language trees as latent variables that are conditional on a
monolingual n-gram model and a syntactic mapping from source language trees
to target language trees. However, Jansche (2005) assumes that the syntactic
mapping is given. Designing such a mapping is a non-trivial task in its own
right.

2.2 Dependency Parsing

The notion of syntactic dependencies as asymmetrical binary relations between
words dates back many centuries (cf. Kruijff (2002) for a historical overview
of dependency grammar). The formal framework of dependency grammar is
attributed to Tesniére (1959) and Mel’¢uk (1988), and has become popular for
languages with a high degree of non-configurationality, especially the Slavic
languages. This is because, in contrast to constituent-based representations of
syntactic structure, dependency grammar does not assume phrasal nodes and
thereby facilitates a straightforward representation of so-called non-projective
structures, which contain crossing dependencies.

Dependency grammar has since spawned many grammar formalisms and
syntactic theories. Their discussion is beyond the scope of this dissertation.
The interested reader is referred to Nivre (2006) and Kruijff (2002) for a list of

2.2. DEPENDENCY PARSING 15

references.

2.2.1 Data-driven dependency parsing

In computational linguistics and the parsing community in particular, depen-
dency representations have only recently received attention after efficient parsing
algorithms have been proven to exist and implemented (Eisner, 1996; Yamada
and Matsumoto, 2003; Nivre, 2008). In the wake of the CoNLL Shared Task on
multilingual data-driven dependency parsing (Buchholz and Marsi, 2006) and
subsequent shared tasks that focused on domain adaptation for dependency
parsers (Nivre et al., 2007) and joint dependency parsing and semantic role la-
beling (Surdeanu et al., 2008; Haji¢ et al., 2009), a wealth of systems have been
presented which achieve state-of-the-art performance on the emerging bench-
mark data sets.

Approaches to data-driven dependency parsing can be divided into two broad
paradigms: transition-based and graph-based (McDonald and Nivre, 2007). Tran-
sition-based parsers construct a dependency tree in a step-wise fashion that is
reminiscent of standard shift-reduce parsing algorithms for context-free pars-
ing. They traverse the input sentence, typically from left to right, and perform
parsing actions (or transitions) which either add a dependency arc, or push
the current word onto a stack of partially processed words, to be attached at
a later point in time. The data-driven component of such parsers is the deci-
sion model, which determines the locally optimal parser action on the basis of
words in the input, on the stack, and previously constructed edges. Yamada
and Matsumoto (2003) first proposed a transition-based parser which produces
an unlabeled dependency tree in multiple passes over the input sentence, using
SVMs to predict transitions. The Malt parser (Nivre et al., 2006), by contrast,
is fully incremental in that it only makes a single pass over the input. Moreover,
it produces labeled dependencies.

Graph-based methods, on the other hand, assume a global perspective on
the parsing problem. They consider all possible dependency relations that could
make up a well-formed dependency tree for a given sentence, and choose the tree
that receives the highest aggregated score, which is obtained as a function of
its component scores (e.g., individual arc scores in an arc-factored model). The
models of Eisner (1996) fall into this category of graph-based models. More
recently, the MST parser (McDonald et al., 2005, 2006; McDonald and Pereira,
2006) has been widely used. Given a sentence, the MST parser finds the max-
imum spanning tree for this sentence. The training data is used to adjust the
scores assigned to the candidate trees, such that the margin between the correct
tree and the other candidates is maximized. Computational speed-ups for MST
parsing have been proposed in terms of hash kernels and parallelization across
several CPUs (Bohnet, 2010), and in terms of arc filters that prune the search
space by excluding unlikely edges (Bergsma and Cherry, 2010).

Other graph-based dependency parsers include the system of Carreras et al.
(2006), which extends the feature set of the MST parser, or parsing in the belief
propagation framework (Smith and Eisner, 2008).

Graph-based and transition-based parsers are known to have complementary
strengths (McDonald and Nivre, 2007). Consequently, there have been propos-
als to integrate the two paradigms. Nivre and McDonald (2008) introduced a
technique now known as parser stacking, in which the predictions of one parser

16 CHAPTER 2. RELATED WORK

are included as features in the training phase of the other parser. An alterna-
tive strategy for the combination of graph-based and transition-based parsers
has been proposed by Zhang and Clark (2008). They employ a beam search
decoder to find the tree that achieves the highest joint score, expressed as the
sum of the independent scores from both parsers.

2.2.2 Weakly supervised approaches

Research in the field of unsupervised and weakly supervised parsing ranges from
various forms of EM training (Pereira and Schabes, 1992; Klein and Manning,
2004; Smith and Eisner, 2004, 2005) and Generalized Expectation constraints?
for discriminative models (Druck et al., 2009) over bootstrapping approaches
like self-training (McClosky et al., 2006; Smith and Eisner, 2007) or co-training
(Sggaard and Rishgj, 2010) to feature-based enhancements of discriminative
reranking models (Koo et al., 2008) and the application of semi-supervised SVMs
(Wang et al., 2008).

The partial correspondence method we present in this thesis is compati-
ble with such approaches and can be combined with other weakly supervised
machine learning schemes.

2.2.3 Synchronous and multilingual parsing

Synchronous parsing is an area of NLP that deals with parsing systems which
infer the syntactic structure of parallel texts in lock step and simultaneously
infer the (hierarchical) alignment between these structures (Melamed, 2003),
typically in an unsupervised fashion.

Melamed (2003) proposes a very general framework for synchronous parsing.
His Multitext Grammars (MTGs) are expressive enough to account for various
types of translation mismatches, while remaining computationally tractable.
MTG subsumes many previous synchronous parsing approaches, including In-
version Transduction Grammars (Wu, 1997) and Alshawi’s finite-state head
transducers for synchronous dependency parsing (Alshawi et al., 2000). The
left-hand side of MTG productions is a vector of non-terminals, with one com-
ponent per language. The right-hand side of such a rule is either a vector of
terminal symbols (including the empty word €), or it consist of a vector of mono-
lingual right-hand sides and a vector of permutations which specify the surface
order of symbols in the respective right-hand sides. Shieber and Schabes (1990)
present a similar formalism for Tree-Adjoining Grammar (Joshi, 1985).

Using the MTG framework, Smith and Smith (2004) improve monolingual
Korean parsing by combining a state-of-the-art statistical parser for English
with an unlexicalized PCFG for Korean. They train the latter on only a small
amount of annotated data and benefit from the performance of the English
parser by jointly maximizing the scores of the English tree, the Korean tree
and the word alignment. They report small, but significant improvements over
the monolingual Korean model. Taking this line of thought one step further,
Burkett and Klein (2008) improve monolingual parsing performance for both
languages by simultaneously reranking the n-best candidates of the source and
target language parsers using bilingual features that infer the most likely tree

3See Mann and McCallum (2008).

2.2. DEPENDENCY PARSING 17

alignment, given the sentence pair and word alignment. They recently extended
this method for a semi-supervised scenario which uses automatically annotated
parallel parse trees rather than relying on hand-annotated bitext (Burkett et al.,
2010).

The transition between synchronous parsing and syntax-based machine trans-
lation (Galley et al., 2004; Zollmann et al., 2006) is seamless. For more details
in this field see, for instance, Yamada and Knight (2001); Gildea (2003); Eisner
(2003); Blunsom et al. (2009).

Multilingual learning is a technique that is closely related to annotation
projection, but like synchronous parsing it is most commonly formulated in
the context of syntax-based MT. In contrast to synchronous parsing, it makes
weaker isomorphy assumptions about the source and target annotations, and
pursues a feature-driven rather than a structural incorporation of parallel infor-
mation to jointly model the syntactic structure in two or more languages. While
the models described in this section rely on information from both languages at
training time, they are typically only provided with target language text at test
time. This means that the role of the aligned source language data amounts to
guiding parameter search to good local optima.

One of the first to apply the multilingual learning paradigm to parsing was
Kuhn (2004). He proposes an unsupervised method for PCFG induction which
uses word alignments with a source language to derive a prior distribution over
the PCFG parameters for the target language. In particular, the prior is de-
signed to discourage certain string spans as constituent candidates. A similar,
but more complex approach is pursued by Snyder et al. (2009), who jointly
model the source and target language parse trees and tree alignments between
them. The model extends the Constituent-Context Model (CCM) of Klein and
Manning (2002) by duplicating the original constituent and context distribu-
tions of the CCM for each language so as to model monolingual preferences,
and introducing a so-called coupling parameter which captures the compatibil-
ity of aligned constituent yield pairs.

For dependency parsing, Smith and Eisner (2006) introduce quasi-synchro-
nous grammars (QGs), which are based on the unsupervised Dependency Model
with Valence (DMV) of Klein and Manning (2004). In addition to the monolin-
gual parameters of the DMV, QGs are equipped with bilingual parameters that
model lexical translation probabilities, and a probability distribution over pairs
of subtrees (so-called configurations). The latter explicitly allows structural
divergences between source and target trees.

Smith and Eisner (2009) demonstrate how QGs can be used for parser adap-
tation and parser projection. In the projection setting, they train a QG which
is conditioned on the source sentence and source tree; at test time, they back off
from conditioning in order to obtain a truly monolingual parser. Conditioning
the model on the source language information stirs the EM training proce-
dure towards linguistically adequate target language structures without enforc-
ing the DCA. In experiments with English—-German and English-Spanish they
show that the “projected” QG parser substantially outperforms a graph-based
dependency parser trained on high-precision hard projections, with unlabeled
attachment scores of 68.5 versus 66.2 (German) and 64.8 versus 59.1 (Spanish),
respectively. They also compare the hard projection approach — which discards
sentences with incomplete projected dependencies — to an EM-based variant of
hard projection which uses the available high-precision dependencies to compute

18 CHAPTER 2. RELATED WORK

expected counts for the remaining dependencies. This method is closely related
to the research presented in this thesis; the difference between our approach and
that of Smith and Eisner (2009) is that they explicitly model the uncertainty
introduced by missing edges, while we deliberately ignore it. With attachment
scores of 58.6 (German) and 53.0 (Spanish), their EM-based projected parser
turns out to perform poorly in comparison to both the QG model and the su-
pervised parser trained on aggressively filtered projected dependencies. As we
will see, our technique for exploiting incomplete projection leads to parsers that
achieve scores within 0.7 percentage points of the tree-oriented (aggressively fil-
tered) counterparts, and in fact offers significant improvements for some of the
language pairs we consider (including English-German).

2.3 Learning From Fragmented Annotations

This section outlines approaches that are more directly related to our fragment
parsing proposal in that they involve training on incomplete — more specifically,
fragmented — annotations, while still aiming at producing complete output at
test time.

Eisner and Smith (2005, 2009) and Dreyer et al. (2006) suggest vine pars-
ing. Vine parsing incorporates hard constraints on dependency length, which
increases parsing speed, but may result in fragmented parses. There are two
major differences between vine parsing and our approach of training on frag-
mented trees. First, vine parsers incorporate a probabilistic finite-state au-
tomaton which explicitly models sequences of fragment roots. Secondly, vine
parsers produce fragmented output, whereas our parsers — despite being trained
on fragments — still strive to build complete trees for new sentences.

Moon and Baldridge (2007) project POS tags conservatively and then train
a simple bigram tagger on the sequences of target language words that re-
ceived a tag this way. Using this tagger, they relabel the target text so as to
obtain complete training data for a more sophisticated tagger. In an out-of-
domain evaluation, the accuracy of their bootstrapped tagger (62%) surpasses
that of a state-of-the-art supervised tagger for modern English (the “source”
language) when applied to Middle English (“target” language) text (56%). The
bootstrapped tagger also outperforms the initial bigram tagger (58%) that was
trained on the partial, projected tag sequences. In contrast to our work, the
training of the bigram tagger from the tagged (sub-)sequences does not use the
unlabeled word sequences at all, while our fragment parsers do make use of
unattached (i.e., unlabeled) words as lexical context.

Hwa (1999) exploits partially labeled data for domain adaptation. In partic-
ular, she compares two ways of training a parser on sparsely bracketed sentences
from the new domain. The first strategy employs the Inside-Outside algorithm
(Pereira and Schabes, 1992) to induce a grammar from the partial parse trees
from scratch. The alternative and more effective strategy first trains a su-
pervised parser on fully labeled, but out-of-domain data, and then uses that
grammar to initialize the Inside-Outside algorithm.

Ganchev et al. (2009) (discussed in Section 2.1) require expectations to agree
(approximately) with those parts of the structure that are present. Specifically,
the learner is instructed to favor analyses that agree with the majority of the
projected edges. This allows the learner to deviate from projected structures

2.3. LEARNING FROM FRAGMENTED ANNOTATIONS 19

if evidence from other training examples or previous iterations indicates that
some of the projected information might be incorrect. At the same time, the
expectation constraints say nothing about missing edges; missing structure is
induced via the iterative EM procedure. Similarly, Smith and Eisner (2009)
(discussed in the previous section) pursue the EM-alternative to our “agnostic”
fragment parsing method.

Our proposal is closest to that of Tsuboi et al. (2008) and Clark and Cur-
ran (2006). They present similar methods for training with partial annotations,
the former for sequential data, the latter for dependency trees. What is com-
mon to these two approaches — and what sets them apart from ours — is that
they explicitly marginalize out the unknown parts of the training annotations.
While Tsuboi et al. (2008) pursue this strategy in the framework of Conditional
Random Fields (Lafferty et al., 2001), Clark and Curran (2006) use partial
training data extracted from CCG lexical categories for the adaptation of a log-
linear dependency model (Clark and Curran, 2004) to new domains. The lexical
categories contain a considerable amount of information about possible depen-
dencies, and as such can be considered an underspecified representation of the
dependency tree. The rationale in training with the underspecified set of de-
pendencies is then to restrict the training data to those dependencies that occur
in k% of the derivations licensed by the lexical items. During training, missing
attachments are addressed by summing over all trees consistent with the par-
tial training example. As we will see in Chapter 4, this is very similar to our
fragment-aware variant of the graph-based MST parser. The crucial difference
between our projected, fragmented training data and Clark and Curran’s lexical
categories lies in the nature of the uncertainty they convey: dependencies that
cannot be inferred from the lexical categories are indicative of true attachment
ambiguities. By contrast, the fragmentation introduced during projection is due
to missing word alignments and therefore not syntactically motivated.

Chapter 3

Cross-lingual Projection of
Syntactic Dependencies

In the introduction, we have already discussed the dependence of supervised sta-
tistical NLP paradigms on labeled gold standards, and the bottleneck that arises
from the limited availability of suitable resources. While it is true that a range
of corpora, treebanks and tools for automatic annotation exist for English and
a handful of other languages (e.g., German, Spanish, Japanese, Czech, Swedish,
Chinese), these resources cover merely a small percentage of “the world’s 200+
major languages” (Yarowsky and Ngai, 2001).

Annotation projection attempts to bridge the gap between these resource-
rich languages and the remaining resource-scarce languages by transferring an-
notations from labeled sentences to their unlabeled translations. The technique
depends on links that indicate translational equivalence between words, so-called
word alignments. We discuss parallel data and word alignment in Section 3.1.

Before we describe our projection algorithms for dependency trees (Section
3.3), we address the limitations of the approach. First, natural languages are
of course not one hundred percent isomorphic, but exhibit inter-language non-
parallelism. These discrepancies are inherent in parallel data, and occur to a
smaller or larger extent depending on factors such as language family, date of
text creation, text genre, and even author. Second, professional translators
regularly deviate from the strict word-to-word translation paradigm that would
benefit the annotation projection approach, but tends to result in unnatural
target language texts. Thus, non-literalness of translation further feeds the
list of cross-language discrepancies. Third, automatic word alignment links are
notoriously sparse and not always accurate. Section 3.2 is dedicated to these
limiting factors.

Previous work on annotation projection (cf. Chapter 2) and similar weakly
supervised annotation induction has chiefly relied on heuristics or other filtering
techniques to deal with noise in unlabeled or automatically labeled training data.
The objective is to select, from the pool of potential training examples, high-
precision training data in sufficient quantities. While heuristic approaches can
infuse linguistic knowledge that helps to detect and potentially adjust noisy
data, they are usually specific to the language. This means they introduce a
component of indirect supervision. Non-heuristic filtering techniques, on the

21

22 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

other hand, frequently employ reliability measures (often unrelated to the task)
to predict high-precision data points. To reach a sufficient level of precision,
filtering typically has to be aggressive, especially for highly structured tasks like
parsing, where errors would propagate from one subpart of the annotation to
many others. As we show in Section 3.3, such aggressive filters incur massive
data loss and enforce harsh trade-offs between the quality and the amount of
usable data. Moreover, they are particularly prone to distort the frequency
spectrum of the data by systematically excluding certain types of examples.

Ideally, a general filtering strategy for weakly supervised training of struc-
tured analysis tools should eliminate noisy subparts in the automatic annotation
without discarding other, high-precision parts of that same structure. Thereby
data loss and distortion of the data distribution would be kept to a minimum.
This chapter presents a very simple method to reduce noise in projected anno-
tations: partial correspondence projection eliminates unreliable components of
an example, while greedily retaining a partial structure. This approach thus
exploits correspondences that potentially cover only substructures of translated
sentences. Section 3.3 describes how we approximate the reliability of pro-
jected annotations, and contrasts partial correspondence projection (Section
3.3.3) with a stricter as well as a laxer filtering alternative (Sections 3.3.1 re-
spectively 3.3.2).

3.1 Parallel Data

3.1.1 Parallel corpora

Parallel corpora are multilingual corpora consisting of so-called bitexts, that is,
documents in a source language Ly along with their translation in one or more
target languages L;. The translations are typically produced by professional
translators or interpreters who are proficient in both L and L;. In computa-
tional linguistics, parallel corpora have originally been collected for the purpose
of training and testing (statistical) machine translation systems, which use the
translations included in the corpus as reference translations.

Freely available parallel corpora often consist of proceedings and other docu-
ments of multinational organizations or governments of countries with multiple
official languages. The most widely used of these bitexts is the Europarl cor-
pus (Koehn, 2005) of proceedings of the European Parliament in 11 languages,
with approximately 45 million words per language. The JRC-Acquis corpus
(Steinberger et al., 2006) of legislative texts of EU member states comprises
documents in 20 languages, but with only 8.8 million words per language, on
average. The Hansards corpus’® of proceedings of the Canadian Parliament con-
sists of approximately 20.5 million words in English and French. Finally, bible
translations are also frequently used as parallel data. They have the advantage
of a standardized verse alignment, and electronic copies are available for nearly
all languages. On the downside, the language is hardly representative of modern
everyday usage, and the size does not exceed 1 million words per language.

The Europarl corpus. Throughout the dissertation, we use data from the
Europarl corpus (Koehn, 2005). Europarl consists of the Proceedings of the Eu-

Thttp://www.isi.edu/natural-language/download/hansard/

3.1. PARALLEL DATA 23

lang. pair # bisents # words (Lj) # words (L)

ennl 1,317,788 36,734,246 (en) 36,604,096 (nl)
de-nl 1,312,187 34,300,673 (de) 36,071,014 (nl)

en-it 1,103,443 32,200,832 (en) 31,738,972 (it)
de-it 1,075,985 29,738,817 (de) 30,872,232 (it)

en-de 1,314,944 36,822,040 (en) 34,895,635 (de)

Table 3.1: Europarl parallel corpus data for selected language pairs.

ropean Parliament, which are transcribed and edited.? In release 3, the corpus
encompasses the proceedings of the years 1996 through 2006, with translations
in eleven languages, namely Danish, German, Greek, English, Spanish, Finnish,
French, Italian, Dutch, Portuguese, and Swedish. The exact amount of data
available for the language pairs considered in this thesis is summarized in Table
3.1.3 With more than 1 million sentences per language, the Europarl corpus
constitutes the largest parallel corpus of controlled origin.

3.1.2 Bilingual alignment

Preprocessing. The raw FEuroparl corpus does not indicate translational e-
quivalence of text units at any level. The texts are, however, grouped into
speaker turns which can be matched across translations. In order to establish
sentence- and word-level alignments, the paragraphs first need to be broken
down into smaller units. The necessary preprocessing steps for our data were
performed using the Procep toolchain developed at the University of Potsdam.*
The pipeline includes word tokenization and sentence splitting functionality
that was carefully designed to avoid confusion between punctuation pertaining
to abbreviations and truly sentence-final punctuation. It uses unsupervised
machine learning techniques to identify sentence boundaries as well as hand-
crafted, language-specific rules for word tokenization.’

On the basis of the Procep tokenization, the bitexts were sentence-aligned
using the implementation of the Church and Gale algorithm (Gale and Church,
1993) which is provided alongside the raw corpus on statmt.org. The pre-
processed, sentence-aligned corpus we are using is the Golden Delicious release
described in Jdhnig and Marienfeld (2010). Figure 3.1 shows an excerpt from
the sentence-aligned English—Italian bitext. The example in the upper part of
the figure illustrates a straightforward one-to-one correspondence between an

20bvious characteristics of spoken language, such as hesitations and corrections, are not
featured in the transcriptions.

3The raw corpus as available from http://www.statmt.org/europarl/ contains a super-
set of the data considered here. Some sessions were discarded in order to obtain cleaner
alignments. Cf. Section 3.1.2.

4Procep is freely available at http://sourceforge.net/projects/procep/.

5For Dutch, Procep delegates preprocessing to Alpino (van Noord, 2006).

24 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

L’ ordine del giorno reca la
fissazione dell’ ordine dei
lavori .

Mrs Angelilli , thank you .))

La ringrazio e prendo atto
I have taken note of your .

del suo intervento .
comment .

The next item is the order
of business .

Figure 3.1: Excerpt from the tokenized, sentence-aligned English—Italian bitext,
illustrating one-to-one (top) and many-to-one (bottom) sentence alignments.

English sentence and its Italian translation. As we can see in the second ex-
ample, translators sometimes choose to split or merge sentences, resulting in
many-to-one sentence alignments.

Word alignment. The sentence pairs (or bisentences) thus identified are sub-
sequently aligned at the word level. Word alignments arise as a by-product in
the estimation of translation probabilities. The latter are estimated in an iter-
ative process which initially hypothesizes that any word in the sentence could
be aligned to any word in the translation, but then successively takes cross-
lingual patterns into account (e.g., when heute occurs in German, there tends
to be an occurrence of today in English). As a side effect, particular word align-
ments (among the many possible options) gain the status of the best possible
“explanation” of the co-occurrence of a source and target word string.

We use the Giza++ tool (Och and Ney, 2003) for the estimation of the
word alignments. Giza++ implements a cascade of statistical word alignment
models which estimate translation probabilities from large parallel corpora. In
particular, Giza++ trains a sequence of successively more sophisticated models
and uses the parameters of the simpler models to initialize the more complex
ones in order to find good local optima.

More formally, statistical alignment models explain the relationship between
a source language string f and a target language string e in reference to a hidden
variable a, the word alignment, as follows:

Pr(fle) = Y Pr(f,ale) (3.1)

The models differ with respect to the decomposition of Pr(f, a|e) and hence the
alignments they can model. The Hidden Markov Model (HMM) approach to
statistical word alignment (Vogel et al., 1996) breaks the translation probability
down into an alignment probablility Pr(a,; |ff_17 a{_l, e) with a first-order depen-
dence on the alignment of the preceding source word, and a lexicon probability

Pr(f;] f77' a,e) which depends only on the alignment of the current word. In

6As the models become more complex, the summation over all alignments a in (3.1) is
actually approximated by considering only the best predicted alignment so far, the so-called
Viterbi alignment. It is precisely this Viterbi alignment that we are interested in — we do not
make use of the translation probability Pr(f|e).

3.1. PARALLEL DATA 25

The next item is the order of business .

A

L’ ordine del giorno reca la fissazione dell’ ordine dei lavort

b. The next item is the order of business .

e i

L’ ordine del giorno reca la fissazione dell’ ordine dei lavori™

c. /}y‘m/is/the order of business .
L’ ordine del giorno reca la fissazione dell’ ordine %
d. The next item is the order of busmess

L’ ordine del giorno reca la ﬁssamone dell ordlne dei lavori™

The next 1tem 15 the order of busmebb

e

L’ ordine del giorno reca la ﬁssazmne dell ordine dei lavori™

Figure 3.2: Viterbi word alignments for an English-Italian bisentence, showing
both alignment directions separately (a and b, respectively) as well as the cu-
mulative (c) and the intersective (d) alignment. A compact representation of
the two combined alignments from ¢ and d is shown in e.

addition, the HMM includes a term relating the length of the source and target
language. The IBM Models 1 and 2 basically use the same decomposition as
the HMM, but differ from the latter in that they assume zero-order dependence
for the alignment probability and thereby eliminate any notion of word order.

The HMM as well as the IBM Models 1 and 2 allow source words to align
to at most one target word. The IBM Models 3-5 (Brown et al., 1993) are
more expressive (and more complex) because they also account for many-to-one
alignments. This is achieved by modeling fertility: the fertility ¢; of a target
language word e; is defined as the number of source language words f; that are
aligned with e; under a given alignment. Fertility affects the lexicon probability,
which is now composed of the probability of all one-to-one alignments that a
word is involved in. The fertility-based models 3 and 47 differ with respect to
the alignment probabilities: like Models 1 and 2, Model 3 makes a zero-order
Markov assumption. In Model 4, by contrast, the alignment of a target word e;
depends on the alignment(s) of the preceding word e;_;. Och and Ney (2003)
present a sixth model with combines the source language Markov dependence
of the HMM with the target language dependence of Model 4.

"Model 5 is merely a non-deficient reformulation of Model 4, but considerably more com-
plex. See Brown et al. (1993) for its formulation.

26 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

en—nl de-nl en—it de—it en—de
¢ en nl de nl en it de it en de

0 21.0221 20.024.6 21.119.1 283274 226 19.7
1 69.367.8 69.067.2 68.569.9 576610 68.567.8
2 67 66 72 53 80 81 87 81 6.6 85
3 1719 18 12 14 1.7 27 1.8 13 2.2
4 07 07 08 06 05 06 1.0 08 0.5 08
5 03 04 04 03 02 02 05 04 02 04
6 0202 03 02 01 01 03 02 01 02
v 01 01 02601 01 01 03 01 0.1 02
§ 01 01 01 01 01 01 02 01 01 01
9 0102 0303 01 01 05 02 01 02

Table 3.2: Distribution of fertilities ¢ in unidirectional (non-cumulative) Viterbi
alignments.

The parameters of the models are estimated iteratively by means of the
EM algorithm. The most likely alignments (Viterbi alignments) for the parallel
corpus can then be reconstructed based on the final set of parameters. Due
to the asymmetry of the alignment models, it is common practice to compute
the alignments in both directions (source-target and target—source) and then
use a combination of the two, such as their intersection or their union. This is
illustrated in Figure 3.2. The gloss for the Italian sentence is shown in (3.2).

(3.2) L’ ordine del giorno reca la fissazione dell’ ordine
The agenda of the day brings the fixing of the order
dei lavori.

of activities

‘The next item on the agenda is the order of business.’

Figure 3.2a shows the Viterbi alignment by the alignment model which treats
Italian as the source and English as the target; the Viterbi alignment for the
opposite direction is given in Figure 3.2b. Figure 3.2c depicts the union of
the two unidirectional alignments; we call this the cumulative alignment. The
intersection of the unidirectional alignments (Figure 3.2d) is commonly used
in scenarios that prioritize precision over recall (annotation projection typically
falls into this category): the resulting bidirectional alignment links are sparse,
but generally very reliable. Finally, Figure 3.2e illustrates how we represent
the cumulative and intersective alignments compactly in one graph: the solid
lines correspond to bidirectional links (which are a subset of the cumulative
alignment) and are complemented by dashed lines which indicate links that are
present in one of the two (but not both) unidirectional alignments.

For the alignment of our data, Giza++ was set to run five iterations of the
IBM Model 1, five iterations of the HMM, and three iterations each of Models 3
and 4. Table 3.2 gives an impression of the distribution of fertilities in the aligned
corpus. For each alignment direction it shows the percentage of target language

3.1. PARALLEL DATA 27

a. lang. pair % unaligned (Ls;) % unaligned (L;)

en—nl 3.34 (en) 3.99 (nl)
de-nl 3.31 (de) 3.40 (nl)
en—it 3.47 (en) 3.73 (it)
de-it 3.41 (de) 3.14 (it)
en—de 3.07 (en) 3.44 (de)

b. lang. pair % unaligned (Ls;) % unaligned (L;)

en-nl 28.25 (en) 27.48 (nl)
de-nl 27.61 (de) 30.96 (nl)
en—it 25.46 (en) 24.10 (it)
de-it 36.00 (de) 38.23 (it)
en—de 29.64 (en) 25.67 (de)

Table 3.3: Percentages of unaligned words in Europarl under a. the cumulative
alignment (union) and b. the intersective alignment.

words that have a given fertility according to the Viterbi alignment. The second
column from the left, for instance, tells us that 21.0% of all English words in the
English—Dutch bitext remain unaligned in the alignment from Dutch to English,
and that 69.3% of all English words are aligned to exactly one Dutch word, etc.
The fertility distribution in the opposite alignment direction (English-to-Dutch)
is shown in the next column, labeled ‘nl.” It is immediately evident from the
table that the majority (57-69%) of words, across all languages, are aligned to
exactly one word in the other language, that is, have fertility ¢ = 1. However,
substantial portions (20-28%) also remain unaligned (¢ = 0). Fertilities of 4
or greater each account for 1% or less. The distribution of fertilities generally
appears surprisingly stable across language pairs, with the exception of the
alignment between German and Italian. Not only is the German-Italian word
alignment particularly sparse at the expense of one-to-one alignments — the
proportion of unaligned Italian words, for instance, exceeds that in the English—
Italian alignment by more than 8 percentage points, while the number of words
with fertility 1 drops by almost 9 percentage points — but at the same time
there are conspicuously greater portions of words with higher fertility. This
latter trend tends to be indicative of erroneous alignments for fertilities of 5 and
beyond.

Table 3.3 summarizes the coverage of the combined Viterbi alignments. It
shows the percentage of unaligned words for each of our language pairs. The
most striking observation here is that the number of unaligned words is smaller
by almost an order of magnitude under the cumulative alignment (Figure 3.3a)
in comparison to the intersective alignment (Figure 3.3b). Moreover, the amount

28 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

precision recall f-score

cumulative 72.78 79.22 75.86
intersection 94.88 62.04 75.02
Padé (2007)

intersection 98.60 52.90 68.86

Table 3.4: Evaluation of English—-German word alignment against the Padé gold
standard.

of cumulatively unaligned words exhibits very little variation across languages,
ranging from 3.07% to 3.99%. Differences are more pronounced when we look
at the intersective setting. In particular, our suspicion is confirmed that the
German—Italian word alignment must be considered an outlier. However, it is
unclear if the unusually high proportion of unaligned words is merely due to
an especially harsh precision-recall tradeoff, or if both measures are negatively
affected, in which case we have to assume that this specific bitext — for one
reason or another — is generally hard to align.

Evaluation of word alignment quality. Manually annotated word align-
ments are hard to come by, and unfortunately, for most of our language pairs
we do not have gold standard alignments at our disposal. For the language pair
English—-German, however, there is a data set of 1,000 bisentences which are
aligned manually, in accordance with the Blinker guidelines (Melamed, 1998a,b).
The data is made available by Sebastian Padé,® and we refer to the data set as
the Pado gold standard, or PGS. In addition to the manual word alignments, the
annotations include syntactic as well as role-semantic analyses. In Section 3.3
we will use the syntax annotations to assess the quality of our direct projections
from English to German. Table 3.4 shows the result of evaluating our automatic
word alignments against the manually annotated alignments.? Precision and re-
call were computed in terms of individual links (i.e., many-to-one alignments
are counted as multiple independent links); the f-score is the harmonic mean of
precision and recall. It comes as no surprise that the cumulative and intersec-
tive alignments have complementary strengths: The union of the unidirectional
alignments (cumulative) exhibits high recall (79.22%) but at a level of precision
that is less than satisfactory (72.78%). Although the discrepancy between the
two measures is even greater for the intersective alignment, the precision of this
alignment (94.88%) exceeds its recall (62.04%). For comparison, we also list
the figures reported in Padé (2007) for the evaluation of his automatic align-
ment against the same data set. We observe that Padd’s automatic alignment
exhibits an even harsher precision—recall tradeoff. As we shall see in Chapter 6,
this is a favorable constellation for a noise-prone technique such as annotation
projection if the projected annotations are used as training data for machine
learning algorithms.

Shttp://www.nlpado.de/~sebastian/srl_data.html
9Due to differences in tokenization and sentence splitting, we had to exclude 346 of the
1,000 sentences. The figures in the table are based on the remaining 654 sentences.

3.2. VIOLATIONS OF DIRECT CORRESPONDENCE 29

3.2 Violations of Direct Correspondence

The basic assumption underlying annotation projection is the Direct Correspon-
dence Assumption (DCA; Hwa et al., 2005).

DCA: Given a pair of sentences E and F that are (literal) trans-
lations of each other with syntactic structures Treegp and Treep, if
nodes xp and yg of Treegp are aligned with nodes xp and ypg of
Treep, respectively, and if syntactic relationship R(xg, yg) holds in
Treeg, then R(xp, yr) holds in Treep. (Hwa et al., 2005, p. 314)

For the DCA to be met, the source tree effectively has to be isomorphic to the
intended target language tree. The violation of this assumption causes gaps or
errors in the projected target annotations. Although the DCA is in fact valid
in many cases — consider for instance the internal structure of nominal phrases,
which witnesses little variation even across language families (Yarowsky and
Ngai, 2001; Fox, 2002) — it clearly does not hold in general. Firstly, profes-
sional translators and interpreters trade off literalness against stylistic consid-
erations in order to produce natural translations, leading to translation mis-
matches (Kameyama et al., 1991) as in (3.3) and, in the extreme, very loose
translations (3.4), which are both examples from the Europarl corpus.

(3.3) Bei einem der grofsten Unfalle in jungster Zeit war

in one of the greatest accidents in youngest time was
nicht die Ladung an sich gefdhrlich.
not the load in itself dangerous

‘In one of the worst accidents to have occurred recently, the goods
being transported were not dangerous in themselves.’

(3.4) Wir sind der Auffassung, daffi das richtig ist.
we are of the opinion that this right is

‘We think they should.’

Secondly, there are of course inherent limits to the extent of cross-language
parallelism: so-called translation shifts. The term was introduced by Catford
(1965), who defines translation shifts as “departures from formal correspon-
dence in the process of going from the source language to the target language”
(Catford, 1965, page 73). Translation shifts have been discussed, especially in
translation studies, for several decades (Vinay and Darbelnet, 1958; Leuven-
Zwart, 1989; Kameyama et al., 1991). Naturally, they are also an issue of great
concern in machine translation, particularly the transfer-based flavors. Dorr
(1994) formalizes systematic lexical-semantic differences between languages in
terms of a set of divergence categories and subsequently defines translation map-
pings for each category, thus resolving the divergence by means of transfer via
an interlingua. Examples for her divergence categories are shown in Figure 3.3
(Figure 1, page 598 in Dorr, 1994).

There have been attempts to create annotated resources that facilitate the
empirical study of translation shifts (Cyrus, 2006; Culo et al., 2008; Pad6 and
Erk, 2010). However, since translation shifts are notoriously hard to anno-
tate because they tend to interact, researchers have aimed at capturing such

30 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

a. Thematic divergence:
E: I like Mary < S: Marfa me gusta a mi{
‘Mary pleases me’

b. Promotional divergence:
E: John usually goes home < S: Juan suele ir a casa
‘John tends to go home’

c. Demotional divergence:
E: T like eating < G: Ich esse gerne
‘T eat likingly’

d. Structural divergence:
E: John entered the house < S: Juan entré en la casa
‘John entered in the house’

e. Conflational divergence:
E: I stabbed John < S: Yo le di punaladas a Juan
‘I gave knife-wounds to John’

f. Categorial divergence:
E: T am hungry < G: Ich habe Hunger
‘I have hunger’

g. Lexical divergence:
E: John broke into the room < S: Juan forzo la entrada al cuarto
‘John forced (the) entry to the room’

Figure 3.3: Divergence categories according to Dorr (1994)

3.2. VIOLATIONS OF DIRECT CORRESPONDENCE 31

shifts by investigating their correlation with more easily observable proper-
ties that are likely indicators of shifts. For example, Culo et al. (2008) con-
sider discrepancies between aligned words and chunks on the level of part-
of-speech, grammatical function and position (sentence initial theme position
versus later in the sentence). Cyrus (2006), on the other hand, describes a
framework for annotating translation shifts directly, but restricts the enterprise
to shifts that manifest themselves in the predicate-argument structure. She dis-
tinguishes grammatical shifts — category change, (de-)passivization, (de-)pro-
nominalization, number change — and semantic shifts — semantic modification,
explicitation/generalization, addition/deletion, mutation.

Fox (2002) measures phrasal cohesion between English and French, and finds
that it is best preserved in a dependency representation (as opposed to a phrase-
structure representation) of the syntactic structure. According to this study,
which uses excerpts from the Canadian Hansards parallel corpus with manual
word alignments (Och and Ney, 2000), 12% of all modifiers are incoherent with
respect to their head, and 9% of all pairwise modifier comparisons reveal inco-
herence of modifiers. Closer inspection of the non-cohesive cases suggests that
a considerable amount of divergence is due to non-literal translation.

Padé and Erk (2010) investigate — in an idealized setting with manual word
alignments and manual annotations — to what extent the failure of annotation
projection can predict the presence of semantic translation shift. In contrast
to grammatical shifts, semantic shifts are typically characterized by much more
subtle differences such as changes in perspective or reconceptualisations.

In the context of syntactic parsing, semantic translation shifts often do not
harm the “projectability” of syntactic dependencies. Examples are generaliza-
tion and explicitation (Cyrus, 2006), where a source language lexeme is trans-
lated by target language lexeme with a more general or a more specific meaning,
respectively. Shifts of this kind do not influence the syntactic analysis. More-
over, mere frequency makes grammatical shifts the more severe problem. In
their empirical evaluation of the DCA for dependency trees in English and Chi-
nese, Hwa et al. (2002) find that the direct projection approach, which assumes
full validity of the DCA, achieves precision and recall values in the range of 30—
40%. Our partial correspondence approach (described in Section 3.3.3) achieves
66.69% precision and 35.74% recall when evaluated against gold standard Ger-
man parse trees.

For the purpose of annotation projection, translation shifts can in principle
be addressed with transformations that either manipulate the source language
dependencies prior to projection, or amend the projected annotations. The lat-
ter strategy is pursued by Hwa et al. (2002, 2005). However, such a rule-based
approach conflicts with the otherwise resource-lean trademarks of annotation
projection in that it requires extensive linguistic knowledge of the target lan-
guage if it is to attain reasonable coverage. A suitable alternative could be
realized with machine learning methods. But again, the obvious supervised sce-
narios would rely on a systematic and consistent markup of the shifts, which is
a challenge in its own right (Cyrus, 2006) and to the best of our knowledge is
not available to date.

We pursue a radically different scheme in the present proposal in that we
consider only those (partial) annotations that are supported by reliable align-
ment links. The resulting dependency structures may thus be fragmented. Since
our goal is to bootstrap dependency parsers for the target language rather than

32 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

English (L;): {Dave tv@tions

AR

Dutch (L;): Ik heb twee vragen
A A/

Figure 3.4: Dependency tree projection from English to Dutch.

producing gold standard treebanks, we accept those partial annotations without
further modification and adapt the parsers so that they can handle incomplete
training data, namely, the projected dependencies. Our take on parsing with
fragmented training data is described in the next chapter. But first, the re-
mainder of this chapter presents our algorithms for the cross-lingual projection
of dependency trees.

3.3 Projection of Dependency Trees

The basic concept of annotation projection is simple: given a suitable resource
in the source language L, and a word-aligned parallel corpus with languages
Ls and L, label the Lg-portion of the parallel text and copy (or project) the
resulting annotations to the corresponding (i.e., aligned) elements in language
Lt.

In our case, the resource exploited in the source language L is a dependency
parser, and the parallel corpus is Europarl. Figure 3.4 illustrates the projection
of dependency trees with an example where L is English and L; is Dutch. The
links between English and Dutch words indicate the word alignment. Assuming
that the source language parser produces the dependency tree shown for the
English sentence (above), we build the projected tree for the Dutch sentence
(below) by postulating dependency arcs between words wy (e.g., Ik) and wy,
(heb) if there are aligned pairs (wq, w}) (Ik and I) and (wp,w),) (heb and have)
such that wj, is the head of w) in the English tree.

We formally introduce the notation for dependency trees in Chapter 4; for
now, suffice it to say that a dependency graph is a pair (S, A) consisting of the
sequence of words S = wiws ...w, which make up the sentence, and a set A of
dependency edges (or arcs). An arc (wp,r, wq) represents a dependency relation
of type r (e.g., subject) between the head wy, and the dependent w410 Figure 3.5
shows pseudo-code for the basic projection algorithm. After initializing the arc
set A for the target language tree in line 1, we iterate over the target language
words wg from left to right (line 2) and retrieve the aligned source language word
w!, (line 3). If there is no such word, we move on to the next word, otherwise
we find the head wj, of w/, in the source tree and identify its correspondent wy,

10We assume that all arcs are labeled, but we ignore the labels for the most part. Cf.
Section 5.5.1.

3.3. PROJECTION OF DEPENDENCY TREES 33

projectsyict (S, G', a)
S = wow; ... wy: target language sentence
G' = (9, A’): dependency tree for source language sentence
a:S — S intersective word alignment

1 Initialization: A =0

2 for wy (1<d<n)
3w =a(wg)
4 if w/, # null
then
5 wp, =at(w),) st (w,rw]) €A
for some relation r
6 if wp # null
then
7 A=AU{(wp,r,wq)}

8 return A

Figure 3.5: The basic projection algorithm based on intersective word align-
ments.

in the target sentence (line 5). Provided that such an alignment exists (line 6),
an arc from wy, to wy is added to the target language tree (line 7).

In other words, for each source language dependency arc, if both the head
and the dependent are aligned to a target language word, then the projected
arc is added to the target graph under construction. Our algorithm is driven by
the target language side, that is, the iteration in line 2 is over target language
words. Alternative formulations driven by the source language sentence are of
course possible.

It is easy to see that the target graph constructed by the algorithm in Figure
3.5 is not necessarily going to be a tree, even when the source graph G’ is.
The first two projection variants proposed in the following sections will simply
discard analyses which do not form complete trees at the end of the projection
phase (strict projection and constrained fallback projection), whereas the third
(partial correspondence projection) does admit fragmented output. We discuss
the exact treatment of fragmented analyses in the respective sections.

Preprocessing. Before we delve into the details of the projection algorithms,
a few words are in order concerning the preprocessing steps that need to be
performed in the Lg portion of the bitexts.

We use English as well as German as alternative instantiations of Ls. For
both languages we POS-tag the respective Europarl portions with the Tree-
Tagger (Schmid, 1994)!! and subsequently parse the texts with the source

1'We use the pretrained models available at http://www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger/.

34 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

a. UAS LAS b. UAS LAS

en — — en 91.67 88.56
de 83.80 77.77 de 87.13 84.14

Table 3.5: Evaluation of German and English source parsers against a. the out-
of-domain Padé gold standard (German only), b. the in-domain WSJ/Tiger
test sets.

parsers. Our source parsers are Malt parser models (cf. Section 4.2) trained
on a dependency-converted version of the Wall Street Journal (WSJ) part from
the Penn Treebank and the German TIGER Treebank, respectively. The parsers
are described in Qvrelid et al. (2009), where they are used as baseline parsers.!?

We also POS-tagged the target language texts (Dutch, Italian, German).
The resulting POS annotations are not used during projection, but they are
exploited as features in the monolingual parsers that are derived from the pro-
jected dependency trees (Sections 4.3, 4.5 and Chapter 6). Although we strive
for a resource-lean approach, we argue that the availability of POS taggers is
less of an issue than the availability of parsers. Variants of our setup are con-
ceivable in which POS tags are projected from a source language, just like we
project the dependencies. This approach could then be improved by bootstrap-
ping techniques like those proposed in Moon and Baldridge (2007). We leave
this extension for future work.

Source parser quality. The performance of the German source parser on
the Padé gold standard (PGS) parse trees is given in Table 3.5a.!> Note that
the test sentences in the PGS are from a different domain than the data used
to train the parsers: neither the German nor the English parser were trained on
Europarl, but on the WSJ respectively Tiger corpus instead. This evaluation
— like the evaluation of our projected parsers in Chapter 6 — is therefore out
of domain. For comparison, Table 3.5b shows the results of the in-domain
evaluation reported in @vrelid et al. (2009). The degradation in the out-of-
domain setting (for German) is substantial, with a difference of 3.33 percentage
points UAS (LAS: A-6.37).

12More specifically, we are using the baseline parsers in the setting with automatically
assigned POS tags. That is, both training and testing is carried out using POS information
that is derived by a tagger (as opposed to gold standard POS sequences).

13The Tiger-style annotations were converted to dependencies using software that was kindly
provided by Yi Zhang. (It is the same conversion that was also used to prepare the data for
the 2009 CoNLL Shared Task.) The conversion is specific to German, however, and to our
knowledge there is no tool to convert Padé’s TigerXML-encoded Penn Treebank annotations
to dependencies. This is why we omit the out-of-domain evaluation of the English source
parser. Results from the literature suggest that a substantial drop in performance must be
expected. For example, the system of Sagae and Tsujii (2007), which performed best in
the domain adaptation track of the CoNLL 2007 Shared Task (Nivre et al., 2007), sacrifices
6.45 percentage points UAS (LAS: A-7.95) when parsing out-of-domain chemical research
abstracts.

3.3. PROJECTION OF DEPENDENCY TREES 35

English: Yg}\are abso@ht

AV /

Dutch: U heeft volkomen gelijk

Figure 3.6: Dependency tree projection from English to Dutch: projection fails
due to weak alignments.

3.3.1 Strict projection

In the general description of the projection algorithm above we have neglected
the directionality of the word alignments. Recall from Section 3.1.2 that we
compute both the Ly — L; and the L; — L, alignments. It is common prac-
tice to intersect the two alignments and consider only the intersection, which
contains those links that are supported bidirectionally. Bidirectional alignments
have proven to be highly reliable, albeit very sparse. The high-precision as-
pect of the intersective alignment seemingly makes bidirectionality a promising
candidate for a reliability measure on which we can base a noise filter. The
first noise filter we examine is therefore the one that considers bidirectional
alignments exclusively. We call this filter the strict or bidirectional filter and
sometimes refer to bidirectional links as strong alignments, as opposed to weak
unidirectional links which are only supported in one direction. The bidirectional
filter admits dependency arcs to be projected only if the alignment between the
heads wj, and wy, as well as the alignment between the dependents w/; and wq
are supported under the intersection of the two unidirectional alignments. In
practice this means that if one of the target words or any source word with an
outgoing dependency arc does not have such a strongly corresponding word in
the other language, then the projected structure is not a tree. Strict projection
therefore rejects the entire sentence.

Let us return briefly to Figure 3.4. We observe that all alignment links
are bidirectional (indicated by solid rather than dashed links). All dependency
edges can thus be projected and the resulting target language structure forms a
tree; that is to say, the target sentence receives an analysis under strict projec-
tion. Figure 3.6 shows an example where this is not the case: the Dutch verb
heeft is only weakly aligned with the English translation are, while a second
weak alignment links it to the pronoun you. This means that under the strict
filter, none of the dependencies involving are are projected, and the projected
structure is not connected.

Although bidirectional alignments may be a reliable indicator of alignment
quality, we now proceed to show that their modest recall hardly allows any trees
to be projected completely. Subsequent sections then discuss less restricted
projection methods which can incorporate larger portions of the data.

Table 3.6 quantifies the data loss in terms of the number of sentences that
receive a parse tree under projection (a), the vocabulary size observed in those

36 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

unfiltered bidirectional fallback bi+frags<s
a. en-nl 1,317,788 32,066 (2.4%) 134,375 (10.2%) 114,351 (8.7%)
denl 1,312,187 54,953 (4.2%) 188,191 (14.3%) 163,191 (12.4%)
en-it 1,103,443 25,131 (2.3%) 128,804 (11.7%) 100,204 (9.1%)
de-it 1,075,985 20,003 (1.9%) 94,626 (8.8%) 58,423 (5.4%)
en—de 1,314,944 35,367 (2.7%) 142,094 (10.8%) 125,992 (9.6%)
avg. 1,224,869 33,504 (2.7%) 137,618 (11.2%) 112,432 (9.2%)
b. en-nl 203,026 11,565 (5.7%) 34,493 (17.0%) 27,509 (13.5%)
de-nl 201,135 17,583 (8.7%) 46,980 (23.4%) 35,945 (17.9%)
en—it 75,897 8,287 (10.9%) 21,366 (28.2%) 16,479 (21.7%)
de-it 74,771 6,075 (8.1%) 18,527 (24.8%) 11,723 (15.7%)
en—de 250,468 12,975 (5.2%) 40,067 (16.0%) 30,058 (12.0%)
avg. 161,059 11,297 (7.0%) 32,287 (20.0%) 24,343 (15.1%)
c. en-nl 27.78 7.33 (26.4%) 11.85 (42.7%) 10.30 (37.1%)
de-nl 27.49 8.33 (30.3%) 12.96 (47.1%) 11.31 (41.1%)
en—it 28.76 7.09 (24.7%) 13.06 (45.4%) 10.90 (37.9%)
de-it 28.69 5.78 (20.1%) 11.29 (39.4%) 8.61 (30.0%)
en—de 26.54 7.17 (27.0%) 11.43 (43.1%) 10.06 (37.9%)
avg. 27.85 7.14 (25.6%) 12.12 (43.5%) 10.24 (36.8%)

Table 3.6: Data reduction effect of noise filters. a. Number of target language
sentences with a projected parse, b. vocabulary size (number of distinct lem-
mas), ¢. mean sentence length. The percentages in parentheses are relative to
the full data set (‘unfiltered’).

3.3. PROJECTION OF DEPENDENCY TREES 37

unfiltered bidirectional fallback bi4frags<s

en—nl 1.89 28.54 11.00 10.59
de—nl 1.92 22.96 9.13 9.11
en—it 1.83 32.50 9.45 9.94
de-it 1.86 42.94 12.75 16.08
en—de 2.02 26.99 10.25 10.43
avg. 1.90 30.78 10.51 11.23

Table 3.7: Percentage of duplicate sentences in the original and filtered data
sets.

remaining sentences (b), and their mean sentence length (c). The first column
(‘unfiltered’) states these statistics for the unfiltered Europarl data for reference.
The two rightmost columns (‘fallback’” and ‘bi+frags<s’) refer to projection al-
gorithms described in later sections. We ignore them for now and focus on the
column labeled ‘bidirectional.’

We see that out of all sentences in the Europarl corpus (on average 1.2 million
per language pair), only between 1.9% (German-Italian) and 4.2% (German—
Dutch) of the sentences pass the bidirectional filter. This corresponds to a data
reduction of up to 98.1%. Consequently, the vocabulary size diminishes, leaving
data sets that contain merely 5% (English-German and English-Dutch) to 11%
(English-Ttalian) of the lemmas that occur in the original, unfiltered Europarl
(Table 3.6b). More crucially, the mean sentence length drops considerably from
an average of almost 28 words to 7 words per sentence Table 3.6¢). This is
noteworthy because it suggests that most non-trivial examples are lost. Inspec-
tion of the filtered data confirms that not only is the range of sentences reduced
to rather simplistic phrases, but it is also highly repetitive. In Table 3.7 we
report the percentages of duplicate sentences in the data. Again, we ignore the
columns ‘fallback’ and ‘bi+frags<s’ for the moment. We first note that even in
the unfiltered data sets the portion of duplicates is not negligible, ranging from
1.83% in the English-Ttalian bitext to 2.02% in the English-German text. Sen-
tences that occur multiple times are typically part of the parliamentary protocol,
such as declarations of resumption and adjournment of sessions or indications
of applause; we will see some examples shortly. Under strict projection (‘bidi-
rectional’), repetition is amplified to the extent that roughly one third (30.78%
on average) of all projected parses are duplicates.

Figure 3.7 lists the most prominent target language sentences among the
strictly filtered projections, along with their frequency and projected depen-
dency tree.'* A pleasant fact to notice is that the projected trees (shown here

14Here and in the rest of the dissertation we omit the attachment of punctuation in our
examples. The implementation of the projection algorithm consistently attaches punctuation
to the root node. In the case of sentence-internal punctuation, this procedure is likely to intro-

38 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

en—nl 32,066 sentences, 22,915 distinct

2,844 Het debat is gesloten .
844 (Applaus)
409 Applaus
264 Waarom ?
223 Stemming

de—nl 54,953 sentences, 42,338 distinct

2,842 Het debat is gesloten .
842 (Applaus)

660 (Het Parlement neemt de resolutie aan)

656 De stemming vindt morgen om/aOO uur plaats .

393 Applaus

en—it 25,131 sentences, 16,965 distinct
2,349 La discussione & chiusa .
643 (Applausi)
436 Applausi
273 Perché ?

257 Vi sono osservazioni ?

de—it 20,003 sentences, 11,414 distinct
2,329 La discugio_rgé chiusa .
645 (Applausi)
v
478 (Il Parlamento approva la risoluzione)
421 Applausi
283 Perché ?

en—de 35,367 sentences, 25,824 distinct

2,941 Die Aussprache ist geschlossen .
902 (Beifall)
436 Beifall
288 Warum ?
240 Herr Président !

Figure 3.7: Most frequent sentences with projected dependency tree. The exact
frequency is shown to the left of each sentence. For each language pair, we
further state the number of non-unique sentence tokens and non-unique sentence
types (“distinct”).

3.3. PROJECTION OF DEPENDENCY TREES 39

projects, (S, G’ a1, a2)
S = wow; ... wy: target language sentence
G' = (5, A"): dependency tree for source language sentence
ai,as : S x S’: unidirectional word alignments

1 A = projecty,ict (S, G’ a1 Nasz)

2 a=aiUay

3 forwy (1<d<n)
4 if wy has no incoming edge in A
then
5 w!, = select(a(wq))
6 if w), # null
then

7 wy, = select(a™t(w},))

8 s.t. (wy,r,w)) € A" and —connected(wq, wp, A)
9 if wy, # null

then

10 A =AU {(wp,r,wq)}
11 return A

Figure 3.8: Pseudo-code for constrained fallback projection. We use the func-
tional notation a(w) as a shorthand for the set {w’ : (w,w’) € a}.

only for non-trivial utterances with two or more words) are in fact correct analy-
ses of the target language sentences. However, it is also obvious that a large por-
tion of the sentences are one-word utterances which convey no parsing-relevant
information. Moreover, the most frequent sentence in all five language pairs is
the equivalent of The sesston is adjourned with 2,000-3,000 occurrences. While
the sentence constitutes a valid and informative training example, seeing over
2,000 copies of it during training does not help a dependency parser attain
broader coverage or higher accuracy.

In summary, the data loss incurred by the bidirectional filter goes beyond a
mere reduction of the sample size. It also leads to highly skewed data samples
that can no longer be considered representative of the underlying corpus: the
filter limits the projected annotations to extremely short, simple sentences that
have little lexical coverage.

3.3.2 Constrained fallback projection

The immense data loss and frequency distortion of the strict projection approach
are a result of the sparseness of bidirectional alignments. A denser mapping
between source and target language words can be obtained if all alignment
links are taken into consideration, including the unidirectional ones. But we
have to keep in mind that the unidirectional alignments are weaker than the

40 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

English: You are absolutely right

[/ |

Dutch: U he;eft volkomen gelijk
g

Figure 3.9: Constrained fallback projection from English to Dutch.

alignments that are also supported in the opposite direction.

In this section we lay out a more relaxed projection method, which we call
constrained fallback projection. Constrained fallback projection considers all
alignments, but takes reliability into account by prioritizing bidirectional align-
ments. The pseudo-code in Figure 3.8 outlines the algorithm. The approach
essentially comes down to a fallback mechanism which projects further depen-
dencies only after a partial structure has been built based on the more reliable
bidirectional links (line 1). Moreover, the dependencies established via unidi-
rectional alignments in lines 3-10 are constrained to be compatible with the
existing subtrees, and are subject to the wellformedness conditions for depen-
dency trees: single-headedness (line 4) and acyclicity (line 8).

In contrast to the intersective alignment, the cumulative alignments are not
necessarily one-to-one. As a consequence, if a word is multiply aligned (like
heeft in Figure 3.6, for example) a choice has to be made as to which alignment
should be used for projection. This choice is ideally led by the existing struc-
ture established via strict projection. If these constraints still permit multiple
projection avenues, we have to take recourse to a secondary selection strategy,
denoted select in Figure 3.8. Our implementation simply picks the leftmost
alignment link; more sophisticated strategies are of course conceivable.

Figure 3.9 demonstrates how constrained fallback projection recovers a com-
plete parse tree for the weakly aligned sentence pair in Figure 3.6. The graph
is initialized with the unconnected structure built with the bidirectional filter.
Starting with the leftmost word in the Dutch sentence and its English transla-
tion (U and You), there is a unidirectional alignment for the head of You: are
is aligned to heeft, so U is established as a dependent of heeft via fallback. Like-
wise, heeft can now be identified as the root node. The (incorrect) alignment
between heeft and You is not pursued because it would lead to heeft being a
dependent of itself, thus violating the wellformedness conditions. Finally, the
subtree rooted in gelijk is incorporated as the second dependent of heeft.

The data obtained with constrained fallback projection is summarized in
Table 3.6 (p. 36) as ‘fallback.” As expected, the proportion of examples that
pass this filter increases — to 11.2% on average — and 20.0% of the Europarl
vocabulary are preserved with this filter. Moreover, with a mean length of

duce many crossing edges; we come back to this issue when we discuss pseudo-projectivization
(Nivre and Nilsson, 2005) in Chapter 4.

3.3. PROJECTION OF DEPENDENCY TREES 41

approximately 12 words, the sentences are not quite as short as those that
pass the strict filter. Roughly 10% of the data are duplicate sentences, so the
repetition rate is also considerably lower than in the data obtained under strict
projection, where 30% of all sentences are repetitions (Table 3.7).

To summarize, we have thus far seen two rather extreme noise filters. Situ-
ated on one end of the spectrum is the strict projection approach, which admits
projected dependency trees only if they are projected via bidirectional align-
ment links. As we will see later in this chapter, the bidirectional filter produces
comparatively high-precision annotations. but on the downside, it induces im-
mense data loss and frequency distortion (Tables 3.6 and 3.7). In the other
extreme, we have explored the less conservative fallback projection, which looks
at all alignments, whether bidirectional or unidirectional. Quantitatively, data
loss and distortion can be somewhat dampened in this way. However, we will
show shortly that the quality of the annotations projected via weak alignments
is rather modest.

A questionable aspect of both strict projection and constrained fallback pro-
jection as they are formulated here is their completeness assumption: target
language annotations are rejected unless the projected dependency edges form
a connected tree structure spanning the entire sentence. By demanding com-
plete trees we practically exclude all instances of L; insertion from the projected
data, that is, bisentences where the target language part consists of more words
than the source language part (cf. Section 3.2). Since insertion is a frequent
phenomenon in translation, the completeness requirement for the projected an-
notations contributes to the distortion of the data sample. We therefore propose
a perspective on projection which combines the advantages of strict and fallback
projection by allowing partial annotations in the data.

3.3.3 Partial correspondence projection

So far, we have only considered complete trees, that is, projected dependency
graphs with exactly one root node. This is a rather strict requirement, given
that even state-of-the-art parsers sometimes fail to produce plausible complete
analyses for long sentences, and that non-sentential phrases such as complex
noun phrases still contain valuable, non-trivial information. This section dis-
cusses partial correspondence projection. In addition to the complete annota-
tions produced by tree-oriented projection, partial correspondence projection
yields partial structures: it admits fragmented analyses in cases where neither
strict nor fallback projection can construct a spanning tree.

As an example, consider again Figure 3.6. This example is discarded in
a tree-oriented, bidirectional scenario. Under partial correspondence, it is in-
cluded as a partial analysis consisting of three fragments:

B3, 4

U heeft volkomen gelijk

Although the amount of information provided in this analysis is limited,
the arc between gelijk and volkomen, which is strongly supported by the align-
ment, can be established without including potentially noisy data points that
are only weakly aligned. Partial correspondence projection thus combines the

42 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

a.

La mia seconda osservazione concerne la posizione strategica della Bulgaria
rispetto alle frontiere esterne dell’ Unione europea.

, is echter een andere vraag.

/

0]

v N LY
[...] diese interessante Aussprache unterstreicht die Dringlichkeit und die

/

Bedeutung diewhlags.

Figure 3.10: Examples projected under partial correspondence projection. The
dependency graph in (a) shows an analysis projected from English to Italian,
(b) is projected from English (top) respectively German (bottom) to Dutch, and
(c) is projected from English to German.

3.3. PROJECTION OF DEPENDENCY TREES 43

high-precision aspect of strict projection with the greedy, recall-oriented per-
spective of a fallback approach. The result is a less dismissive rendition of the
bidirectional filter. We show a few more elaborate examples in Figure 3.10. In
Figure 3.10a we see the dependency structure that was projected onto the Ital-
ian sentence from English. (3.6) provides a gloss for the sentence, along with
the English translation from the corpus.

(3.6) La mia seconda osservazione concerne la posizione strategica
the my second remark concerns the position strategic
della Bulgaria rispetto alle frontiere esterne dell’
of the Bulgaria with respect to the borders external of the
Unione europea.

Union European

‘My second comment concerns the strategic position of Bulgaria on the
external borders of the European Union.’

In this example, only two edges are missing, namely the dependency between La
and osservazione, and the one between rispetto and alle. The first dependency,
which should attach the determiner to the noun, cannot be recovered because La
has no corresponding word in the English translation. The second fragment root,
alle, is aligned with the English the (cf. (3.6)) via a weak, unidirectional link,
which is not considered by partial correspondence projection. Note, however,
that even if that alignment were strongly supported, the syntactic structure
annotated by the English (Penn Treebank) source parser would in fact lead to
alle being attached to frontiere, instead of the desired attachment to rispetto,
with frontiere a dependent of alle. Apart from the two missing edges (and the
questionable attachment of frontiere to rispetto), the projected dependencies
constitute a fully legitimate syntactic analysis for the sentence.

For the Dutch example in Figure 3.10b we show the dependency structure
projected from English above and the structure projected from German below
the sentence.'® The sentence is glossed in (3.7).

(3.7) Of het correct s, is echter een andere wvraag.
whether it right is is however a different issue

‘Whether it is right is a different issue.’

One arc is missing in the English-based projection: echter remains unattached
because it has no corresponding word in the English translation. The rest of
the dependency structure is a correct parse for the sentence. The German-
based projected dependencies (depicted below the Dutch sentence) are slightly
more sparse since the entire predicative NP ‘een andere vraag’ remains un-
analyzed due to the presence of the idiomatic expression ‘steht auf einem an-
deren Blatt’ in the German translation. Furthermore, echter is attached to the
wrong occurrence of is, which can be traced back to an error in the automatic
word alignment. The rest of the analysis is fully acceptable; it differs from
the English-based dependencies simply because the source language annotation
schemes prescribe diverging treatments for subordinate clauses.

15The German translation reads as follows:

Ob das aber richtig ist, steht auf einem anderen Blatt.
whether that however right is stands on a different leaf/sheet

44 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

#frags 1 2 3 4-15 >15
sent. length

(in words)
<4 4,740 1,297 180 - -
4-9 19,185 20,326 20,551 46,007 -
10-19 7,621 15,817 24,547 298,050 3,148
20-30 486 1,646 3,688 285,384 92,198
>30 34 126 237 96,999 375,393

Table 3.8: Fragmentation in the Dutch annotations produced with partial cor-
respondence projection from English. Number of corpus sentences according to
sentence length and number of fragments obtained. The sentences included in
the data set ‘bi+frags<s’ are in boldface.

unfiltered bi+frags<s
words/sent words/frag frags/sent words/sent words/frag frags/sent

en—nl 27.78 1.95 14.25 10.30 4.71 2.19
de—nl 27.49 1.98 13.92 11.31 5.50 2.06
en—it 28.76 2.26 12.79 10.90 4.85 2.25
de-it 28.69 1.66 17.33 8.61 3.99 2.16
en—de 26.54 2.05 12.98 10.06 4.57 2.20
avg. 27.85 1.98 14.25 10.24 4.72 2.17

Table 3.9: Average fragmentation in the partial correspondence projections.

Finally, the German example in Figure 3.10c illustrates the almost complete
projection of a coordinate structure. There are again two edges that could not
be projected: the determiner in the second NP-conjunct is not realized in the
English sentence, and the genitive phrase ‘dieses Vorschlags’ is not attached
to the rest of the sentence because the discrepancy between the analytical ‘of
the’-construction in English, where the intervening preposition has not direct
correspondence in the German NP where genitive case is marked morphologi-
cally:

(3.8) [...] diese interessante Aussprache wunterstreicht die Dringlichkeit
this interesting debate highlights the wurgency
und die Bedeutung dieses Vorschlags.
and the importance of this proposal
‘[...] this interesting debate highlights the urgency and importance of
this proposal.’

To give an impression of the composition of the data sets obtained via par-
tial correspondence projection, Table 3.8 shows how fragment size varies with

3.3. PROJECTION OF DEPENDENCY TREES 45

sentence length in the Dutch annotations projected from English (en—nl), while
aggregated statistics for all language pairs are given in Table 3.9. It is evident
from Table 3.8 that the projected dependency graphs are indeed highly frag-
mented, with most parses being split into four or more fragments (columns ‘4-15’
and ‘>15’). Table 3.9 confirms that this is the case across all languages: taking
into consideration all sentences irrespective of the degree of fragmentation (‘un-
filtered’), we find that the projected analyses are split into 14.25 fragments on
average (column ‘frags/sent’). At an average sentence length of 27.85 words, this
amounts to approximately 2 words per fragment. The degree of fragmentation
thus needs to be restricted so as to exclude data with no (interesting) depen-
dencies. For instance, a sentence of five words with a projected parse consisting
of five fragments provides virtually no information about dependency structure
because no words are interconnected. We therefore impose a limit (fixed at 3
for the remainder of the chapter) on the number of fragments that can make up
an analysis. When we discard the projections that exceed this threshold, the
remaining data (shown in boldface in Table 3.8, and in the right-hand part of
Table 3.9) contains larger fragments (4.72 words per fragment on average). In
other words, the filtered annotations are more densely populated with proper
dependency edges. Alternative filters could require a minimum fragment size, or
even set a threshold dynamically, depending on sentence length. We will explore
the suitibility of different fragmentation constraints in Chapter 6. Note that we
do not require the fragments to be contiguous; this allows long distance and
more complex dependencies to pass the filter, for instance the relative clause in
(3.9).

(3.9)

[..] Zustimn@n Préasident Prodi fand, der seine Zusage [...] bekraftigte.

(3.10) Frau Prasidentin! Die Vorstellung des politischen
madam president! the presentation of the political

Programms der Kommission Prodi fir die gesamte
programme of the commission Prodi for the whole

Wahlperiode ging auf einen Vorschlag der Fraktion
legislative period went to a proposal of the faction

der Sozialdemokratischen Partei Furopas zuritck, der
of the social democratic party of Europe back, which

die einhellige Billigung der Konferenz der Prasidenten
the unanimous approval of the conference of the presidents

im September wund auch die ausdrickliche Zustimmung wvon
in the September and also the explicit acceptance of
Prdsident Prodi fand, der seine Zusage in seiner

president Prodi found, who his commitment in his

46 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

Antrittsrede bekrdaftigte.
inaugural speech affirmed.

‘Madam President, the presentation of the Prodi Commission’s political
programme for the whole legislature was initially a proposal by the
Group of the Party of European Socialists which was unanimously
approved by the Conference of Presidents in September and which was
also explicitly accepted by President Prodi, who reiterated his
commitment in his inaugural speech.’

(3.11)

AR
Die Vorstellun/_g\des po@ogr. der Kommis@di fiir die gesamte W.p.

In this example, the dependencies between the modified proper name (Prodi),
the head of the relative clause (bekrdftigte) and the relative pronoun (der) are
correctly projected. However, the sentence as a whole is highly fragmented, as
shown in (3.10), where all unattached words are highlighted in boldface. A total
of 18 words remain unattached, that is, 18 edges are missing for the projected
dependency structure to form a complete tree. Clearly, this analysis would be
discarded under strict projection, but it can in principle be admitted under
partial correspondence projection, depending on the fragmentation constraint
used for filtering. Besides the relative clause attachments, the sentence contains
an almost complete analysis of a complex noun phrase, shown in (3.11). The
only disruption in this fragment is the lack of an attachment for the determiner
der, which was not projected from the English source because of the discrepancy
between the analytic ‘of the’-construction in English and the morphological case
marking on the determiner in German.

In Table 3.6 (column ‘bi+{rags<s’), we see that partial correspondence pro-
jection boosts the amount of usable data to a range similar to that of the fallback
technique for trees: 9.2% of all target language sentences are deemed valuable,
retaining 15.1% of the vocabulary at an average sentence length of 10.24 words.
Duplicate sentences account for 11.23% of the data, rather than 30.78% under
strict projection.

Of course, in the partial correspondence setting, not all words in the tar-
get language corpus are actually attached. That is, some words do not encode
information about the dependency structure directly. However, they provide
contextual information for those attachments that were projected successfully.
Table 3.10 complements Table 3.6 by stating the number of attached word to-
kens (‘words attached’) and the number of attached word types (‘vocabulary
attached’) in the partial correspondence data sets. We see that, on average,
88.83% of all words in the fragmented data are attached by means of a pro-
jected dependency edge. In other words, 11.17% of the edges are missing. The
number of word types that are thus seen as proper dependents in the data is also
reduced to 89.15% on average. Although there are words in the data projected
under partial correspondence that do not directly carry information about the

3.4. QUALITY OF DIRECT PROJECTIONS 47

words words vocabulary vocabulary

attached attached
en—nl 1,178,332 1,036,332 (89.0%) 27,509 22,917 (83.3%)
de-nl 1,845,121 1,671,529 (90.6%) 35,945 32,869 (91.4%)
en—it 1,092,387 955,090 (87.4%) 16,479 15,737 (95.5%)
de-it 502,993 431,231 (85.7%) 11,723 11,075 (94.5%)
en—de 1,268,084 1,108,885 (87.5%) 30,058 25,906 (86.2%)
avg. 1,177,383 1,040,613 (88.8%) 24,343 21,701 (89.2%)

Table 3.10: Summary of the partial correspondence data sets (bi+frags<s),
ignoring unattached words.

dependency structure, the fragmented data sets still leave us with considerably
more information than can be obtained through strict, tree-oriented projection,
and the information is considerably more varied, as we have seen in Table 3.7.

3.4 Quality of Direct Projections

This section is concerned with the qualitative assessment of the direct projec-
tions. We have already seen the quantitative effect of the noise filters on the
data in previous sections, but in order to evaluate their potential when it comes
to producing training examples for data-driven dependency parsers, we need to
compare the projected annotations to a gold standard.

Before we delve into the details of this comparison, we need to point out
that there is one crucial fact which complicates the evaluation of projected
annotations: the annotation scheme that is projected from the source language
typically does not coincide with the annotation scheme employed in the target
language gold standard. Chapter 5 is devoted to this issue and describes our
methodology to circumvent the problem. For now, suffice it to say that we
are not actually comparing the projected annotations against the original gold
standard, but against a version of the gold standard which is converted so as to
reflect the source language annotation scheme.

Recall that we are considering two source languages (German and English)
and three target languages (Dutch, Italian and German), giving rise to the
five language pairs German—Dutch, English-Dutch, German—Italian, English—
Italian and English-German. For German, we can once more use the Padé gold
standard (PGS) with its dependency-converted syntax trees. We parse the En-
glish portion of the test set, project the annotations to German, and evaluate
the projected dependencies against the manual annotation for the German sen-
tences. For the other two target languages — Dutch and Italian — the situation is
more complicated, for we are not aware of any dependency-annotated resources

48 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

that are based on a parallel corpus. To work around this bottleneck, we use tree-
bank parsers as a proxy for manual annotations and thus compare the projected
graphs against the predictions of those parsers. Doing this not only for Dutch
and Ttalian, but also for German will allow us to estimate (if only very roughly)
to what extent potential errors of the treebank parsers distort the results of the
proxy evaluation. But let us begin with the conventional evaluation procedure
with proper gold standard annotations for German.

3.4.1 Gold standard evaluation (German)

We evaluate our projection methods in two different settings. In the first set-
ting (PGS;), the direct projections are obtained using automatically annotated
source trees and the automatic Giza word alignment, but they are evaluated
against the gold standard target trees. The second setting (PGS,) uses auto-
matic source trees, too, but projects them along the gold standard alignment
instead of the Giza alignment.'® Note that the fallback projections elude eval-
uation in this latter setting because the manual alignments annotated in the
PGS are undirected. Hence, they do not embody a notion of strong versus weak
alignment links.

The primary metric employed to evaluate syntactic dependencies is the (la-
beled or unlabeled)'” attachment score (3.12), which measures the percentage
of words that are attached to the correct head:

|G NS
S|

where G and S denote the set of gold and predicted dependencies, respectively.'®
Since all complete dependency trees for a given sentence consist of the same
number of dependency relations (namely, one per word), |S| equals |G|, so that
the attachment score coincides with both precision and recall. However, if we
exclude missing edges from the evaluation instead of taking their default attach-
ment to ROOT at face value, then we can define more meaningful precision and
recall measures:

AS=P=R=

(3.12)

|G N Syl |G NSy
Py = Ry =
TCH Tel

where Sy denotes the filtered set of predicted dependencies that are not frag-
ment roots. Thus, |S¢| < |G|, and missing edges affect recall, but not precision.
Under tree-oriented strict and fallback projection, St contains dependency edges
that form complete trees — but only for those sentences that do indeed receive
a complete projected analysis. By contrast, the predictions S; under partial
correspondence projection contain all projected edges, irrespective of the com-
pleteness of the analysis, but there may be words within a sentence that are not
mentioned in S at all due to missing attachments.

(3.13)

16We omit the third setting, PGS¢,s,a, which would make use of gold standard trees for
both the source and the target language, as well as the manual alignment. As mentioned in
footnote 13, the reason for this omission is that the annotations in the PGS are encoded in
TigerXML emulating the Penn Treebank annotation style, and there is no straightforward
conversion from TigerXML-encoded Penn Treebank annotations to pure dependencies.

17We only consider the unlabeled attachment score throughout the thesis.

8 Following standard practice, we exclude punctuation from the evaluation.

3.4. QUALITY OF DIRECT PROJECTIONS 49

filtered

PGS; strict 5.54 | 78.90 0.66 1.30
fallback 10.02 | 67.20 5.78 10.64
frags 37.66 | 66.69 35.74 46.54

PGS;, strict 9.64 | 60.36 5.30 9.75
fallback n.a. n.a. n.a. n.a.
frags 48.37 | 56.33 47.50 51.54

parser (Tiger) 83.80 | 83.80 83.80 83.80
baseline (next) 29.53 | 29.53 29.53 29.53

Table 3.11: Evaluation of direct projections from English to German against
the Padé gold standard (PGS), using automatic source parses and automatic
alignments (PGS;) or manual alignments (PGS, ,). The baseline attaches every
word to the word on its right. The evaluation metrics are stated as percentages.

The results of the evaluation are summarized in Table 3.11. In the first
column, we report the unlabeled attachment score according to the definition in
(3.12). The remaining columns record precision and recall as defined in (3.13)
as well as their harmonic mean, the F score.

Let us first compare the two tree-oriented projection methods ‘strict’ and
‘fallback’ in the PGS; setting, where we project automatic source trees along
automatic word alignments and then evaluate the projections against gold stan-
dard target language trees. Both strict and fallback projection result in a very
low attachment score of 5.54% and 10.02%, respectively. This can be explained
by the fact that both methods discard any target language analysis that does
not form a complete tree. We have already quantified the resulting data loss
across the Europarl corpus in the previous chapter. In the PGS data set, the fil-
ters reduce the effective amount of data from 654 to 13 (strict) and 97 (fallback)
sentences. Given the definition of the attachment score in (3.12), the sentences
that do not receive an analysis not only incur recall errors, but also precision
errors due to the implicit attachment of unanalyzed words to the root node,
which for the majority of words is not supported by the reference annotation in
the gold standard. The filtered variants of precision and recall (3.13) eliminate
the impact of those spurious attachments. According to Py, the quality of the
strict, tree-oriented projection exceeds the fallback projections as well as the
fragments by more than 10 percentage points. Moreover, it is noteworthy that
the trees projected under fallback projection — that is, using weak word align-
ments — achieve a precision that is higher than that of the fragments, which
are projected using only bidirectional alignment links. This means that the
completeness constraint that is enforced by tree-oriented projection methods is
indeed a valid noise filter. When we turn to the R; measurements, however,
it is evident that this noise filter comes at the price of greatly reduced recall:
at 0.66% filtered recall, the strict projection method successfully projects less

50 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

1 2 36 >7

PGS, strict 1.57 1.23 1.29 0.12
fallback 12.96 9.48 11.64 5.25
frags 60.62 48.25 42,55 33.34

PGS;, strict 12.69 8.35 11.16 6.77
fallback n.a. n.a. n.a. n.a.
frags 69.73 51.98 55.30 50.95

parser (Tiger) 93.29 87.22 84.60 83.88
baseline (next) 58.87 0.00 0.00 0.00

Table 3.12: F-score of the direct projections relative to dependency length.

than one edge in one hundred. The 5.78% R of the fallback method constitute
an improvement but are still far from satisfactory. When fragmented analyses
are taken into consideration (‘frags’) the precision—recall tradeoff is less harsh.
In fact, we sacrifice only very little precision in comparison to fallback projec-
tion (A0.51 Py), while at the same time the recall is increased by a factor of
six (35.74% Ry). This gives rise to an overall F-score of 46.54% in the PGS;
evaluation setting.

In the PGS; , setting, which is also shown in Table 3.11, the word alignment
is not the automatically induced Giza++ alignment that we use in PGS;, but
rather manual alignment link annotations. As mentioned above, this scenario is
not applicable to the fallback projection method because the manual alignment
in the PGS is undirected. It comes as no surprise that we witness an increase
in UAS (+4.10% and +10.71%, respectively) as well as recall (+4.64% and
+11.76%) for both strict projection and partial correspondence projection: the
manual alignments are more dense than the recall-impaired intersective align-
ments produced by Giza++. While this has a positive effect on recall, it also
reduces precision by 18.54% (‘strict’) respectively 10.36% (‘frags’).

For comparison, we also report the performance of a state-of-the-art tree-
bank parser which was trained on the Tiger treebank (‘parser (Tiger)’, the source
parser from Table 3.5), and the performance of a very simple attach-right base-
line (‘baseline (next)’; see Section 6.3, page 105 for details).

In order to arrive at a more detailed picture of the strengths and shortcom-
ings of our projection algorithms, we further analyze the direct projections with
respect to dependency length (Table 3.12) and dependency type (Table 3.13).
We discuss the results in turn.

Dependency length. Table 3.12 shows the results of evaluating the projected
annotations relative to dependency length, that is, the distance (in words) be-
tween a dependent and its head. It should come as no surprise that the f-scores
aggregate a precision-recall tradeoff (not shown) which is highly biased towards
precision, at the cost of recall. We further notice a general drop in f-score as de-

3.4. QUALITY OF DIRECT PROJECTIONS 51

pendency length increases, with the exception that the tree-oriented strict and
fallback projections achieve slightly higher f-scores on dependencies of length
3—6 than on dependencies of length 2.

The corresponding results for the German treebank parser (‘parser (Tiger)’)
show that the same degradation occurs with a state-of-the-art parser. However,
the magnitude of the effect is much smaller: the difference in UAS between
dependencies of length one and dependencies longer than six amounts to ap-
proximately 10%. By contrast, the partial correspondence projections (‘frags’)
sacrifice A27.28 (PGS;) and A18.78 (PGS).

An explanation is in order concerning the baseline performance. It is situ-
tated at 58.87% UAS on dependencies between adjacent words (length one),
but at 0.00% UAS on all edges longer than one. This is not surprising since
our baseline, by design, only introduces dependencies of length one by attaching
every word to the word to its right.

Dependency type. Table 3.13 shows the results of factoring the performance
by gold standard dependency labels.!? As a point of reference, let us first look at
the scores achieved by the supervised source parser for German (‘parser (Tiger)’)
and the baseline. Note that the baseline actually outperforms the treebank
parser on proper names (pnc). This is due to annotation differences between
the CoNLL X dependency encoding which was used to train the source parser
on the one hand, and the dependency encoding of the CoNLL 2009 shared task
for which the TigerXML-to-dependencies conversion tool was designed (cf. foot-
note 13). The performance of the treebank parser gives an indication of which
dependency types are especially hard or easy to recover. According to this rea-
soning, appositions (app), comparative complements (cc), placeholder phrases
(ph), relative clauses (rc), repeated elements (re) and vocatives (vo) are difficult
to identify: the treebank parser does so with less than 60% accuracy. On the
other hand, expletives (ep) and noun kernel material (nk) are easily identified
(>90% UAS). In contrast to the treebank parser, the results of the baseline sys-
tem do not reflect the difficulty of recovering dependencies of a certain type, but
instead reflect how often a particular dependency type holds between adjacent
words. The results show that this is frequently (>80%) the case for components
of numeral expressions (nmc) and proper nouns (pnc), as well as for morpho-
logical particles (pm). The majority of dependency types, however, can never
be identified by our simple baseline (typically by design). This holds true for
appositions, comparative complements, conjuncts of a coordinate structure (cj),
collocational verb constructions (cvc), phrasal genitives (pg), relative clauses,
repeated elements, passivized subjects (sbp), and vocatives.

Turning to the results obtained with the projected annotations, we find that
the attachment scores of both tree-oriented projection algorithms (‘strict’ and
‘fallback’) are devastating: they rarely exceed 5% UAS, and in fact the large
amount of zero-valued cells in the table tell us that many dependency types are
never projected correctly under these projection methods. Taking fragmented
analyses into consideration (‘frags’) results in improved coverage across most

19The list of edge labels shown in Table 3.13 does not exhaustively cover all labels of
the Tiger treebank: we ignore some highly infrequent labels. Furthermore, the label cp for
complementizers is not included because it does not occur in the converted test set where
complementizers govern the subordinate verb rather than being analyzed as a CP-dependent
of the latter.

52 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

ag

PGS; strict 0.00
fallback 1.46

frags 18.25

PGS, , strict 1.09
frags 18.25
baseline (next) 0.73
parser (Tiger) 89.05
da

PGS; strict 0.00
fallback 6.20

frags 22.48

PGS, strict 4.65
frags 31.78
baseline (next) 21.71
parser (Tiger) 68.22
oc

PGS; strict 0.88
fallback 5.74

frags 29.73

PGS; , strict 5.68
frags 48.72
baseline (next) 21.76
parser (Tiger) 88.14
rc

PGS; strict 0.00
fallback 1.85

frags 18.52

PGS, strict 2.47
frags 30.25
baseline (next) 0.00
parser (Tiger) 48.15

app
0.00
5.00
12.50

2.50
17.50

0.00
57.50

€p
0.00
0.00
25.00

4.55
45.45

27.27
97.73

op
0.00
7.75
31.01

3.10
47.29

9.30
81.40

re
0.00
0.00
5.97

2.99
14.93

0.00
34.33

cc
0.00
0.00
0.00

0.00
5.71

0.00
31.43

0.45
3.67
22.26

3.85
33.99

22.79
71.26

pd
1.15
6.32
40.80

9.77
53.45

31.03
83.33

sb
1.20
8.49
39.84

7.86
60.23

32.27
91.52

cd
0.25
3.96
43.07

4.46
52.48

4.21
78.71

ng
0.00
9.97
14.93

0.75
20.90

38.06
62.69

pPg
0.00

5.26
34.21

7.89
55.26

0.00
86.84

sbp
0.00
0.00
28.57

4.76
38.10

0.00
76.19

cj
0.18
5.11
35.21

4.23
42.25

0.00
68.31

nk
0.53
5.81
48.59

5.37
57.24

51.87
93.96

ph
0.00
0.00
21.05

0.00
26.32

31.58
68.42

SVp
0.00
8.33

4.17

0.00
10.42

10.42
87.50

cm
0.00
0.00
8.33

5.56
16.67

33.33
83.33

nmce
0.00
0.00
62.50

0.00
62.50

87.50
75.00

pm
0.00
0.00
1.40

0.00
3.50

85.31
100.00

VO
0.00
9.30

20.93

2.33
41.86

0.00
44.19

cve
0.00
0.00
0.00

0.00
11.76

0.00
88.24

oa
1.12
6.59
32.54

5.19
44.04

27.63
77.70

pnc
0.00
23.53
88.24

5.88
88.24

88.24
23.53

Table 3.13: Evaluation of direct projections from English to German across gold

standard dependency types (UAS).

3.4. QUALITY OF DIRECT PROJECTIONS 53

source filtered
lang. UAS Pf Rf Ff
EPge en strict 6.22 | 85.26 0.69 1.36
fallback 8.39 | 62.59 3.28 6.23
frags 33.14 | 63.03 30.29 40.92

Table 3.14: Pseudo-evaluation of direct projections for German against the
output of the treebank parser.

labels, but cannot remedy the failure on comparative complements and colloca-
tional verb constructions. We note that even the partial correspondence projec-
tions do not always outperform the baseline (cm, nme, ng, pm) and attribute
this finding to the fact that the baseline is more “consistent” than projection in
the sense that it always assigns the same analysis irrespective extraneous factors
such as the word alignment.

Another interesting observation that emerges from Table 3.13 is that for some
dependency types, namely attributive genitives (ag) and components of numer-
als and proper nouns, the use of gold standard word alignments for projection
(PGS;,q) does not improve the projection quality in comparison to the PGS,
setting, which uses automatic alignments. We draw two conclusions: firstly, the
automatic word alignment already establishes the correct links for the words
involved in those dependencies; secondly, the remaining attachment errors on
the labels in question originate from true cross-language divergences.

3.4.2 Pseudo-evaluation against treebank parsers

As explained above, the PGS data covers English-German bitexts. In order to
assess the quality of the projections to the remaining target languages considered
here (Dutch and Italian), we therefore conduct a pseudo-evaluation in which we
compare the projected annotations to treebank parsers, that is, parsers that
were trained on manually annotated sentences, albeit from a different domain.
In particular, we use parsers which we will discuss in greater detail in Chapter
5. The parsers are trained on treebank data of the target languages, but they
employ the annotation scheme of the respective source language (Section 5.3.3).
We know from Table 3.11 that a parser trained on the German treebank
fares reasonably well when evaluated against the manual annotations in the
PGS (83.80%). Table 3.14 confirms that the results obtained using the German
pseudo-gold standard are to some extent comparable to the results we observe
when using the manual PGS annotations: The ranking among the systems
(strict < fallback < frags) is the same, by approximately the same magnitudes.
We therefore conclude that the output of treebank parsers can be used as a
proxy for gold standard data, but more so in relative than in absolute terms.
With this in mind, we now proceed to the pseudo-evaluation results for
Dutch (Table 3.15) and Italian (Table 3.16). Both paint a picture similar to the
one we observe for German: strict projection produces annotations that exhibit
high precision but unacceptably low recall. Relaxation to fallback projections

54 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

source filtered
lang. UAS Pf Rf Ff
EP., en strict 4.90 | 76.54 0.55 1.10

fallback 6.77 | 61.60 2.79 5.34
frags 33.27 | 65.16 31.25 42.24

de strict 5.51 | 79.34 1.26 2.49
fallback 9.01 | 59.14 5.35 9.81
frags 2798 | 54.09 26.46 35.54

Table 3.15: Pseudo-evaluation of direct projections for Dutch against the output
of the treebank parser.

source filtered
lang. UAS Pf Rf Ff
EP;; en strict 4.19 | 58.09 0.31 0.62

fallback 6.30 | 47.31 2.81 5.30
frags 29.60 | 50.90 2791 36.05

de strict 4.02 | 66.67 0.11 0.22
fallback 5.36 | 41.35 1.79 3.43
frags 16.77 | 40.60 14.77 21.66

Table 3.16: Pseudo-evaluation of direct projections for Italian against the output
of the treebank parser.

3.5. SUMMARY AND DISCUSSION 55

improves recall, but not by much (roughly 1.5%). Finally, partial correspon-
dence projection boosts the f-scores through considerable recall gains at only
moderate loss of precision.

Recall from previous sections that the German—Italian alignment and the
projections based on this alignment were outliers from a quantitative perspec-
tive. The results in Table 3.16 strongly suggest that the language pair is an
outlier in qualitative terms, too. Due to the sparse nature of the tree-oriented
projection approaches, this manifests itself more clearly in the partial correspon-
dence setting, where we observe a difference of 12.83 percentage points UAS and
14.39 percentage points F'y.

3.5 Summary and Discussion

In this chapter, we have introduced the techniques and ideas underlying an-
notation projection, and we proposed three algorithms for the projection of
syntactic dependencies. The first algorithm (tree-oriented bidirectional projec-
tion) is very conservative in that a dependency edge is projected only if the
alignment of both the head and the dependent is supported by the word align-
ment in both directions (source-to-target and target-to-source). Moreover, pro-
jected target language analyses are discarded unless they form complete trees.
The second algorithm (tree-oriented constrained fallback projection) builds on
top of the structures created by bidirectional projection: it attempts to com-
plete the dependency graph by taking weaker (unidirectional) alignment links
into consideration as long as they are compatible with the bidirectionally pro-
jected partial structure. This algorithm is also tree-oriented: incomplete target
language structures are rejected. Finally, we proposed partial correspondence
projection, which differs from the strict bidirectional projection algorithm in
that incomplete target analyses are not discarded.

Various heuristic methods are conceivable that could populate incomplete
projections of dependency graphs in manners more informed than our con-
strained fallback or partial correspondence approaches. For example, the fall-
back to weaker alignments could be confined to configurations (e.g., POS-based
patterns) previously observed with strong alignment support. Similarly, the
fragmented output of partial correspondence projection could be supplemented
by patterns over POS tags, or correction rules as proposed by Hwa et al. (2005).
It would also seem promising to employ such heuristic approaches in conjunction
with a bootstrapping cycle. However, we focus on techniques that are entirely
language independent and will therefore not pursue any heuristic improvements
in this thesis. We concentrate instead on a comparison of our three basic,
non-enhanced projection settings, neither of which uses additional knowledge,
heuristic or otherwise.

Our projection algorithms target different precision-recall tradeoffs. Bidirec-
tional projection is clearly geared towards precision, ignoring all but the most
confident alignment links and admitting only complete trees in the output. Con-
strained fallback projection, on the other hand, is more focused on recall in that
it tries to produce a larger number of fully connected dependency graphs even
when this requires drawing on alignment links which are poorly supported. In
terms of the precision-recall tradeoff, partial correspondence projection opts for
a compromise between the two. Like the strict bidirectional projection algo-

56 CHAPTER 3. PROJECTION OF SYNTACTIC DEPENDENCIES

rithm, it considers only strongly supported alignment links. But unlike either
tree-oriented projection algorithm, partial correspondence projection does not
enforce the tree constraint on the output structure. It thereby admits even
fragmented dependency graphs in the output.

We quantitatively assessed the output of our three projection algorithms and
found that the precision-oriented bidirectional projection induces immense data
loss. Since incomplete target language analyses are discarded, the remaining
sentences are overly short (7 words or 25% of the sentence length in the orig-
inal data set), impoverished in terms of vocabulary (15% of the vocabulary in
the original data), and highly redundant in that more than 30% of all parse
trees projected under bidirectional projection are duplicates (non-unique in the
projected data).

Both constrained fallback projection and partial correspondence projection
succeed at enhancing the projected dependencies from the purely quantitative
perspective. The former boosts the mean sentence length to 12 words and the
vocabulary size to 20% of the original (unfiltered) data sets. Partial corre-
spondence projection achieves similar quantitative results with a mean sentence
length of 10 words on average and an effective (attached) vocabulary that covers
13.5% of the original vocabulary. Throughout this quantitative assessment, the
alignment — and consequentially the projections — from German to Italian stood
out as an outlier.

We further conducted a qualitative evaluation of the projection algorithms,
using manual gold standard annotations for German and the output of state-
of-the-art treebank parsers for Dutch and Italian. The results show that both
tree-oriented projection approaches have severe recall issues which lead to f-
scores well below 10%. Constrained fallback projection outperforms bidirec-
tional projection in terms of recall, but at the same time sacrifices precision.
Partial correspondence projection, which is not geared towards complete tree
structures, improves over the tree-oriented algorithms by an order of magnitude,
in terms of both recall and f-score. In summary, we can say that partial cor-
respondence imposes a high-precision filter (bidirectionality) while improving
recall through relaxed structural requirements (partial annotations).

We conjecture that the idea and usefulness of partial correspondence is not
limited to projection frameworks. Given a suitable reliability metric/measure,
partial correspondence filters can be devised for any structural or sequential
annotations that potentially contain noisy subparts. However, if the annotations
are intended to be used as training data for a machine learning algorithm, the
algorithm is likely to require adjustment to the presence of partial, incomplete
labels.

In the remainder of this thesis, we show how existing dependency parsers can
be modified to process training data of this kind. The resulting parsers predict
dependency structures with an accuracy which by far exceeds the quality of the
direct projections.

Chapter 4

Training Parsers on
Fragmented Trees

Models for data-driven dependency parsing can be roughly divided into two
paradigms: graph-based and transition-based models (McDonald and Nivre,
2007; Kiibler et al., 2009). In this chapter, we review representative imple-
mentations of both paradigms, and present alternative formulations to handle
fragmented training data as produced by partial correspondence projection. In
particular, we deal with the Malt parser (Nivre et al., 2006) as a representative
of the transition-based parsing paradigm, and the MST parser (McDonald et al.,
2005) as an instance of graph-based parsing.

Section 4.1 covers the basic notions underlying data-driven dependency pars-
ing and describes the data format used to represent dependency graphs. In Sec-
tion 4.2, we discuss transition-based parsing, exemplified by the Malt parser,
and introduce fMalt as a fragment-aware variant. Section 4.4 describes the
graph-based MST parser and proposes fMST to handle fragments in the train-
ing data

4.1 Background: Data-driven Dependency Pars-
ing

The term data-driven dependency parsing is used to describe parsing frameworks
that use machine learning techniques to assign dependency trees to sentences.
The systems we consider here employ supervised learning methods in the sense
that they rely on annotated training data in order to learn a mapping from input
sentences to dependency graphs. Moreover, since neither one of the parsers
is grammar-based, any input string is deemed “grammatical” and therefore
receives an analysis, even if it would be rejected by a formal grammar of the
language at hand. This results in robust parsing models that can be readily
applied to a wide range of natural language texts.

o7

58 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

English (L;): {Dave tv@tions

AR

Dutch (L;): Ik heb twee vragen
A A/

Figure 4.1: Dependency tree projection from English to Dutch.

4.1.1 Basic notions of dependency parsing

In the framework of dependency grammar, the syntactic structure of a sentence
is represented as a binary, assymmetric relation over the words in the sentence.
The elements of this relation are called dependencies, and are represented as
dependency edges (or arcs) between the head of the dependency and its depen-
dent. To indicate the type of a dependency, the edges are typically labeled. The
concrete set of dependency types varies with the annotation scheme, but most
distinguish at least subjects, objects, and modifiers (adjuncts). A dependency
edge with label r between a head w; and a dependent w; is thus represented
as a triple (w;,r,w;), or graphically as w; —" w;. Since dependency grammar
postulates edges between words and does not assume intermediate constituents,
the nodes in a dependency graph correspond directly to the words in the sen-
tence. In addition, most formulations include an artificial root token wg =
ROOT, which is prepended to the sentence as the root of the dependency graph.
The role of ROOT will become clear when we discuss the properties of admissible
dependency structures below.

Adopting the definition of Kiibler et al. (2009), a dependency graph for a
sentence S = wowy ... wy, is a labeled directed graph G = (V, A) consisting of
nodes V' and arcs A such that

1. V CH{wo,ws,...,w,}
2. ACV x R x V, where R is the set of possible edge labels.
3. if (w;, 7, w;) € A then (w;,r',w;) ¢ A for all v’ #r

Given this definition, the dependency structure for the English sentence in Fig-
ure 3.4 — repeated here as Figure 4.1 for convenience — would be represented as
follows (labels are not shown in the figure):

V = { roor, I, have, two, questions }

A = { (ROOT, rOOT, have), (have, sBJ, I), (have, OBJ, questions), (questions,
NMOD, two) }.

The set of well-formed dependency graphs is usually restricted to directed
spanning trees originating out of node wg. This definition implies various fun-
damental properties of dependency trees.

4.1. BACKGROUND: DATA-DRIVEN DEPENDENCY PARSING 59

All dies entspricht den Grundsatzen, die wir stets verteidigt haben.

Figure 4.2: Non-projective dependency tree for a German sentence.

First, the root property demands that no node dominate wy. Second, the
node set V is required to contain every word in the sentence, that is, V =
Vs = {wo,wn,...,wy} (spanning property), and the graph is connected. The
spanning property and connectedness obviously cannot be guaranteed when we
allow fragmented analyses in the training data. However, they can be reinstated
— from a technical point of view — with the help of the artificial ROOT node by
creating a dependency edge from ROOT to every word that would otherwise
remain unattached. Finally, dependency trees are acyclic and they satisfy the
single-head property, which states that for all w;, w; € Vg, if w; — w; then there
does not exist w; € Vg such that ¢’ # ¢ and wy — w; (Kiibler et al., 2009).

Many parsing algorithms further require dependency trees to be projective,
that is, without crossing edges. Non-projective dependency edges regularly
occur in languages with relatively free word-order, such as Dutch or German,
but they can also be found in English, for example in cases of extraposition.
Figure 4.2 shows an example from the German Europarl. Although there are
parsing algorithms that allow non-projective trees, their flexibility comes at the
cost of complexity, and hence reduced efficiency. An attractive alternative to
more expressive parsing algorithms is a technique called pseudo-projectivization
(Nivre and Nilsson, 2005). Pseudo-projectivization methods are applied to the
training data prior to training. They reattach non-projective edges at points
higher up in the tree where they no longer cross other edges. The information
about the original attachment is encoded by means of an augmented label set, so
that pseudo-projective edges in the output of the parser can be “deprojectivized”
in order to create truly non-projective dependencies where appropriate. The
complexity introduced by non-projective arcs is thus shifted from the level of
graph structure (A) to the level of dependency labels (R), thus avoiding the
need for more complex parsing algorithms. Depending on the machine learning
strategy, the augmented label set might itself add complexity to the parsing
process, but at most by a constant factor.

The pseudo-projectivization framework of Nivre and Nilsson (2005) is imple-
mented as part of the Malt parser and in fact makes provisions for the treatment
of isolated tree fragments, which are called covered roots in that context. The
Malt parser can attach covered roots to the left, to the right, or to the head
of the shortest covering arc. This strategy is intended for cases like dangling
mid-sentence punctuation that would otherwise be attached to ROOT and cause
spurious non-projective edges. Re-attaching fragments of this kind in a consis-
tent manner streamlines the projectivized label set without sacrificing faithful-
ness to the original annotation scheme. And in fact, we make use of this option;

60 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

I have two questions

ID FORM LEMMA CPOSTAG POSTAG HEAD DEPREL
1 I I PP PP 2 SBJ
2 have have VHP VHP 0 ROOT
3 two two CD CD 4 NMOD
4 questions question NNS NNS 2 0BJ

Figure 4.3: Textual representation of a dependency tree in the CoNLL-X format.

however, we do not incorporate the resulting attachments into the training data
of the machine learning component of the parsers (as discussed in subsequent
sections). The covered root treatment in our case therefore merely serves to re-
duce the number of pseudo-projectivized dependency edges, but does not affect
attachment proper.

4.1.2 Textual representation of dependency graphs

We use the CoNLL-X data format for dependency trees (Buchholz and Marsi,
2006) to represent dependency graphs, both complete and fragmented.

The CoNLL-X data format encodes one word per line. The columns in
each line contain information that describes the word (ID, FORM, LEMMA,
(C)POSTAG) and identifies the word’s head (HEAD) as well as the dependency
type (DEPREL).! Figure 4.3 exemplifies the data format for the dependency
tree in Figure 4.1. We see that every dependent in the tree lists the index (ID) of
its head in the HEAD field, with the corresponding edge label in the DEPREL
column. As a special case, the head of the word have is the artifical (implicit)
root token wy referred to by the index 0. This dependency is labeled ROOT.

Now, when we want to represent a fragmented analysis, we will also use the
ROOT token to represent the unique root node of the dependency graph, thus
encoding a wellformed tree in the technical sense. That is, every word that is
the root of a fragment specifies wy as its head. However, the edge is labeled by
a special relation “FRAG” in order to distinguish it from a true root dependency.
Thus, sentences with a fragmented parse are represented as a single sentence
with a single dependency graph, just like sentences with complete analyses; the
only difference from a fully parsed sentence is that unconnected substructures

IThe original format further defines the columns PHEAD and PDEPREL which can be
used to specify alternative projective edges, and a column FEATS to store additional proper-
ties (e.g., morphological). These fields are always empty in our data and hence omitted here.
We also note that none of our parsing models actually employs the LEMMA field, and the
CPOSTAG field, which stores a coarse-grained part-of-speech tag, is only used to split the
training data for the SVMs (cf. Section 4.2).

4.2. BACKGROUND: TRANSITION-BASED PARSING WITH MALT 61

Lol

U heeft volkomen gelijk

ID FORM LEMMA CPOSTAG POSTAG HEAD DEPREL
1 U u pron pronpers 0 FRAG
2 heeft hebben verb verbpressg 0 FRAG
3 volkomen volkomen adj adj 4 AMOD
4 gelijk gelijk adj adj 0 FRAG

Figure 4.4: Textual representation of a fragmented dependency graph.

are attached directly under wgy. For instance, the partial projected parse in
Figure 3.6 is represented as depicted in Figure 4.4.

4.2 Background: Transition-Based Parsing with
Malt

Transition-based models for dependency parsing construct dependency structure
in a stepwise fashion by applying parser actions according to a transition system.
In this and the following sections, we use the terminology laid out in Kiibler
et al. (2009). A detailed discussion of data-driven transition-based dependency
parsing can also be found in Nivre (2006).

The specific parser we describe in the following sections is the Malt parser
(version 1.4) of Nivre et al. (2006).

4.2.1 Transition system

The default transition system implemented in the Malt parser amounts to basic
shift-reduce parsing, with two internal data structures: an input buffer con-
taining the input tokens that remain to be processed, and a stack of par-
tially processed words. The current state of these two data structures together
with A, the set of dependency edges created so far form a parser configuration
c¢=(0,0,A) € C, where

1. o is a stack of words w; € V
2. @ is a buffer of words w; € V
3. Ais a set of dependency arcs (w;,r,w;) € V x R x V.

Furthermore, for any sentence S = wows ...wy, there is exactly one initial
configuration c¢q(S) = ([wo], [w1,--.,wy],0). Any configuration of the form
(0,]],A), for any o and A, is called a terminal configuration. In other words,

62 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

Shift
(vai|ﬂa A) = (U|wi7ﬂ7A)

Left-Arc, ifi£0
(olwi,w;|B,4) = (o, w;|B, AU {(w;,r,wi)})

Right-Arc,
(olwi,wy|8,4) = (oywil B, AU{(wi,r,wy)})

Figure 4.5: Arc-standard transition system.

the parser is initialized with an empty arc set and with wg = ROOT on the stack
and all other words in the input buffer. The parser is done when all words in
the input buffer have been processed.

Given a configuration, the transition system defines the set 7 of permissible
transitions that can be applied to derive the next configuration. A transition
is a parser action, and the Malt parser defines three types of actions: SHIFT,
LEFT-ARC, and RIGHT-ARC. The two latter actions are further parametrized
over edge labels. Figure 4.5 shows the definition of the transition system for
shift-reduce dependency parsing.? The SHIFT action simply removes the next
input token from the buffer and pushes it on top of the stack. It does not
introduce any dependency arcs and is applicable whenever the input buffer is
non-empty. The transition LEFT-ARC, introduces a dependency of type r from
the word on top of the buffer to the word on top of the stack, and the dependent
is removed from the stack. The condition that i # 0 ensures that the resulting
dependency graph satisfies the root property. Conversely, RIGHT-ARC,. adds an
arc with label r from the word on top of the stack to the next input token. The
input token is then removed from the buffer and replaced by the word on top
of the stack.

A transition sequence for a sentence S in this transition system is a sequence
of configurations (cg, ¢1, ..., ¢p) such that ¢g is the initial configuration for S,
¢m 18 terminal configuration, and each ¢; (1 < i < m) can be derived from the
preceding configuration by means of a permissible transition t € 7: ¢; = t(¢;—1).
The dependency tree derived for S is then G.,, = (Vs, Ae,,) where A, is the arc
set in the terminal configuration c,,. Figure 4.6 shows the transition sequence
for the tree in Figure 3.4. Nivre (2008) formally proves that the transition

2The transition system discussed above is of the “arc-standard” flavor. This means that
a word is only attached to its head when all its dependents have already been identified.
An arc-eager variant which introduces edges as soon as possible is also available in the Malt
parser system. The arc-eager transition system uses an additional action REDUCE and requires
slight modifications of LEFT-ARC and RIGHT-ARC:

Reduce if (w,r’,w;) € A
(O—‘wi7187‘4) = (U,B,A)

Left-Arc, if (wg,r,w;) € A
(o|lwi,wi|B,A) = (o,w;|B, AU {(wj,r,w;)}) and i # 0

Right-Arc,

(olwi,wj|B,A) = (o|lwilwj, B, AU {(wi,r,w;)})

4.2. BACKGROUND: TRANSITION-BASED PARSING WITH MALT 63

([wo), [Tk, heb, twee, vragen], ()
SH = ([wo, IK], [heb, ..], (Z))
LAsg; = ([wol, [heb,...], A; = {(heb,sBs,Ik)})
sH = ([wo, heb], [twee,...], A1)
SH = ([wp, heb, twee], [Vragen] Aq)
LAnmon = ([wo, heb], [vragen|, Ay = A; U {(vragen, NMOD, twee)})
RAog; = ([wo] [h] Az = Ay U {(th7 OBJ, vragcn)})
RAroor = ([, [wo], Ay = Az U {(wp,ROO0T, heb)})
sH = ([wol, IE Ay)

Figure 4.6: Transition sequence for the dependency tree in Figure 3.4, annotated
with transitions.

a. parse(S,0) b. parse(S,g)
¢ — co(S) ¢ — co(S)
while c is not terminal while ¢ is not terminal
t* «—o(c) t—g(f(c))
c—1t*(c) ¢ t(c)
return G, return G,

Figure 4.7: Deterministic transition-based algorithm with a. an oracle and b. a
classifier.

system in Figure 4.5 derives exactly the set of projective dependency trees.

4.2.2 Parsing algorithm

What remains to be addressed is the parsing algorithm: How does the parser
derive a concrete transition sequence given an input sentence? Note that the
transition system as such is non-deterministic, that is, there may be more than
one transition permissible for a given configuration. A greedy, deterministic
parsing algorithm is given in Figure 4.7a. The algorithm starts with the initial
configuration and deterministically derives the correct transition sequence —and
thus the correct parse tree — by applying the transition returned by the oracle
o. The oracle is a function which returns the optimal transition t* given the
current configuration c.

Unfortunately, oracle functions are somewhat tricky to procure in real life.
But recall that the Malt parser is a supervised parser which assumes the avail-
ability of a training set D annotated with complete trees of gold standard qual-
ity:

D = {(Sa, Ga)} |, (4.1)
Then for each training example (Sg, Gq = (Vy, Aq)) € D, the oracle op can be

constructed by “reverse-engineering” the transition system using the knowledge
from A, as follows:

64 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

Attribute Address

fi POSTAG o[0]
f» POSTAG 3[o]
fs POSTAG A[1]
fi POSTAG 4[2]
fs POSTAG B[3]
fs POSTAG o[1]
f; DEPREL Idep(c[0])
fs DEPREL rdep(c[0])
fo DEPREL dep(3[0])
fio DEPREL rdep(3[0])
f11 FORM O'[O]
Ji2 FORM Bl0]
Ji3 FORM A
f14 FORM head (0’[0])

Table 4.1: Feature model for arc-standard parsing.

LEFT-ARC, if (8[0],r,0[0]) € Aq
_) RIGHT-ARC, if (¢[0],r, 5]0]) € Aq and, for all w, 1,
ole = (0,08, 4)) = if (B[0],7',w) € Ay, then (8[0],7",w) € A
SHIFT otherwise

At first glance, op may seem to be of little use, since it is only defined for
sentences that are already annotated with the correct parse. But we will see
shortly how it allows the Malt parser to train a classifier gp which can replace
the oracle to parse free text. This data-driven version of the parsing algorithm
is outlined in Figure 4.7b. It differs from the oracle-driven algorithm in that
it chooses the transition ¢ that is predicted by the classifier ¢ (specifically, gp)
given a feature representation f(c) of the current configuration c.

4.2.3 Feature model

The Malt parser approximates the oracle with a classifier g that is trained on
the training set D. More specifically, the function op is applied successively
to each training example (S4,G4) € D to derive the transition sequence Cy =
(coyc1y-..,Cm) corresponding to G4. Each non-terminal configuration ¢;(0 <
i < m) then gives rise to a training instance (f(c;),t;) for the classifier g. t; is
the transition that is applied to ¢; in Cy, that is, ¢;(¢;) = ¢;iv1, and f(¢;) is a
feature representation of ¢;.

The exact make-up of the feature representation is defined in terms of feature
functions. In the Malt parser, a feature function (voa)(c): C — Y is composed
of

1. an address function a(c) : C — V, and

2. an attribute function v(w):V — Y.

4.3. FMALT 65

The Malt parser defines a wide range of address functions; we restrict our
discussion to those used in the default feature model for the arc-standard parser,
which is given in Table 4.1.% The most basic address functions extract the node
at a given position in the stack or the input buffer. For instance, o[0] extracts
the word on top of the stack, o[1] the second word from the top of the stack,
B[3] the fourth word from the front of the buffer, and so forth. The functions
head, Idep and rdep extract the head, the leftmost dependent and the rightmost
dependent of a given node, respectively. The attribute functions used in Table
4.1 extract the value in the corresponding input column, as described in Section
4.1.2.

To illustrate the mapping from configurations to feature representations,
Figure 4.8 shows the training instances (f(c¢;), t;) constructed from the transition
sequence in Figure 4.6. Note that the final SHIFT transition generates no training
instance. This is because SHIFT trivially is the only permissible action when

Finally, the training instances (f(c;), ;) are passed on to the machine learn-
ing mechanism of choice to train the oracle approximation gp. In our case, this
is the libsvm package of Chang and Lin (2001), which implements support vector
machines (SVMs; Vapnik, 1995).

4.3 fMalt

The system we have described so far (i.e., the original Malt parser system)
expects that the training data consists of complete trees. This section proposes
a variant of Malt which relaxes this assumption. We call the system fMalt, for
filtering Malt, or fragment-aware Malt.

The ultimate challenge which we need to address in defining fMalt lies in the
discrepancy between the training data and the expected output structures: our
training data consists of projected dependency graphs, which may or may not
be complete. To reiterate the point made in Chapter 3, we have observed that
aggressive filtering of the projected annotations leads to a sharply pronounced,
undesirable bias towards simplistic sentences. A data set that is restricted to
examples with a complete projected tree can therefore hardly be considered a
representative sample. We have shown that the situation can be improved if we
take into account partial correspondences and project tree fragments. However,
we do not merely want to train a partial parser, but expect the output of our
parser to be complete trees, just like those produced by a regular treebank
parser. This means we have to find a way to “hide” the fragmentation from the
machine learning component of the parser in order to overcome the gap between
incomplete training annotations and complete output annotations.

At the same time, we need to consider that although the oracle approxima-
tion gp performs local optimization, it does take into account context informa-
tion about neighboring words. In the feature model at hand (Table 4.1), the
context takes the form of the next three words in the input buffer § as well as
the preceding word on the stack . The context contributes with the attributes
POSTAG and FORM and hence provides valuable lexical information. How-
ever, some of the features in the model refer to dependency structure. Taking

3See http://maltparser.org/userguide.html#featurespec for a full list of available fea-
ture functions.

CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

66

f1
ROOT
pron
ROOT
verb
num
verb
ROOT

51
ROOT
adj

f2 f3 fa f5 fe f7 fs fo f1o f11 f12
pron verb num noun NULL NULL NULL NULL NULL ROOT Ik
verb num noun NULL ROOT NULL NULL NULL NULL Tk heb
verb num noun NULL NULL NULL NULL SBJ NULL ROOT heb
num noun NULL NULL root SBJ NULL NULL NULL heb twee
noun NULL NULL NULL verb NULL NULL NULL NULL twee vragen
noun NULL NULL NULL ROOT SBJ NULL NMOD NULL heb vragen
verb NULL NULL NULL NULL NULL NULL SBJ OBJ ROOT heb
Figure 4.8: Training instances (f(c),t) for classifier g.

f2 f3 fy fs fe f7 fs fo fio f11 fi2

adj adj NULL NULL NULL NULL NULL NULL NULL ROOT volkomen

mQu NULL NULL NULL ROOT NULL NULL NULL NULL volkomen mmHHuW

Figure 4.9: Training instances (f(c),t) for fMalt classifier g;.

fis
heb
twee
twee
vragen
NULL
NULL
NULL

fis

gelijk NULL
NULL

f14

NULL
NULL
NULL
NULL
NULL
NULL
NULL

m.ub

NULL

SH
LAgg;
SH

SH
LAxmoD
RAogs

HW>WOOH

t
SH

H._>>HSOU

4.3. FMALT 67

([wo], [U,heeft, volkomen, gelijk], @)

>RArrAG = ([, [wo, heeft, . . .], Ay = {(wp, FrAG, U)})

SH = ([wo], [heeft, ..], Aq)
>RAFrRAG = ([, [wmvolkomen J, As = Ay U {(wp, FRAG, heeft) })

SH = ([wp], [volkomen,...], A)

SH = ([wo, volkomen], [gelijk], Asz)

LAamop = ([wo], [gelijk], Az = Ay U {(gelijk, AmoD, volkomen)})

>RApraG = ([[wo], Ay = As U {(wg, FRAG, gelijk)})

Figure 4.10: Transition sequence for the incomplete dependency graph in Figure
4.4. Filtered transitions are marked with arrowheads.

the dependencies in the training data at face value, the feature model as defined
above is prone to incorporate aspects of the parser configuration that are resid-
ual of the provisional attachment of fragments to ROOT, which is misleading
at the least, or even plain wrong. The remainder of this section describes the
differences between Malt and fMalt in detail.

When we described the textual representation of parse tree fragments as
dependents of the artificial root node in a strictly technical sense (Section 4.1.2),
we said that these arcs are distinguished from proper root dependencies by
means of a special label FRAG. Now, to the Malt parser, FRAG is of course a
label like any other and consequently is not given any special treatment. In
the training phase, FRAG edges are accordingly assumed to indicate the correct
attachment of the fragment root. By contrast, their intended meaning is that
the correct attachment is unknown. Basically, what we aim for is a parser
that learns from whatever dependencies are provided in the training data but
acknowledges the fact that the input is incomplete by ignoring FRAG edges.

We achieve this behavior by modifying the parser in two respects. First,
when constructing training instances (f(c;), ;) for a training example (Sg, Gq),
fMalt simply omits those instances where ¢; is of the form (o, w|3, A) and there
exists an arc (ROOT, FRAG, w) € Ay in the “gold standard” tree. This change
prevents the provisional attachment decisions concerning fragment roots from
entering into the training data for the classifier gp directly. Figure 4.10 shows
the transition sequence for a sentence with a fragmented analysis. The tran-
sitions for which fMalt does not generate a training instance are marked with
arrowheads.

The second modification ensures that information about fragment attach-
ment does not leak into the feature representations f(c;). Recall that the feature
model in Table 4.1 refers to the dependency structure built by op in the tran-
sitions that have derived ¢;. This means that the address functions head, Idep
and rdep as well as the attribute function deprel potentially introduce faulty
information into the feature vector representing an otherwise perfectly legiti-
mate transition. Again, fMalt solves this problem by omission: while letting
the oracle op access the complete training example (in particular, A4 including
FRAG edges) so as not to disrupt the transition sequence, we do prevent it from
actually adding FRAG edges to the arc set A. It is this set A that the feature
functions in question draw from when constructing the feature vectors.

68 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

Conceptually, fMalt accommodates the distinguished treatment of FRAG edges
as a special case in the transition system:*

Right-Arcrrac

(4.2) (clwswi6,4) = (0,8, A)

Sticking with the example in Figure 4.10, this means that none of the FRAG arcs
are actually added and A, contains only the AmMoD dependency. The resulting
feature representations are shown in Figure 4.9.

Given that the affected RIGHT-ARC transitions are also excluded from the
training data for the classifier, their purpose is thereby reduced to advancing the
state of the data structures ¢ and (. In summary, the two modifications allow
fMalt to emulate complete transition sequences for fragmented training exam-
ples without letting the data-driven component g be affected by the spurious
attachments necessitated by wellformedness constraints.

4.4 Background: Graph-Based Parsing with MST

The graph-based approach to dependency parsing differs from transition-based
parsing in two important respects. Firstly, the parsing algorithm operates di-
rectly on trees; that is, there is no equivalent of transition sequences or similar
intermediate representations. Secondly, the objective in graph-based parsing is
global optimization (or at least some approximation thereof); by contrast, the
transition-based approach implemented in Malt and fMalt proceeds in a greedy,
locally optimal fashion.

Graph-based parsing, as the name suggests, employs techniques and algo-
rithms from graph theory to solve the parsing problem. The motivation for such
an approach is obvious: dependency structures as defined in Section 4.1 lend
themselves quite naturally to an interpretation as directed acyclic graphs, for
which computer science provides many well-understood algorithms (see, e.g.,
Cormen et al., 2001).

The graph-based parser we consider in this dissertation is the MST parser
(McDonald et al., 2005). It solves the parsing task by finding maximum span-
ning trees (hence the name MST): given a sentence S, it finds the graph G such
that

G = argmax s(G) (4.3)
GegGs
where Gg is the set of all well-formed spanning trees for S rooted in wg, and s
is a scoring function.

In Section 4.4.1, we briefly describe an efficient parsing algorithm that solves
the maximization for projective dependency trees. We then describe in Section
4.4.2 how the MST parser uses the training data to learn the scoring function
s, and finally propose the fragment-aware variant fMST in Section 4.5.

4In the implementation of fMalt, the transition system is not actually altered. Instead,
the feature functions are redefined to the effect that address functions return the value NULL
if the path to the requested address involves a FRAG edge. Likewise, the attribute function
deprel returns NULL instead of FRAG.

4.4. BACKGROUND: GRAPH-BASED PARSING WITH MST 69

J J
= =
ORIEO); ® 1@ ®
s q q+1 t s t s t

© Elsllil[left][true] @ Elg +1][j][left][true] ® E[i)[j][right][false]
@ Elilg)lright][true] @ E[j][t][right][true] — © E[i][t][right][true]

Figure 4.11: Addition of an arc from w; to w; with Eisner’s algorithm.

4.4.1 Parsing algorithm

In the MST parser, parsing is couched in an arc-factored parametrization. This
means that the score s(G) for a graph G = (V, A) is computed as a combination
of the scores of its arcs:

s(G) = Z s(w;, r,wj), (4.4)

(wi,r,w;)EA

and the parsing problem can be reformulated as finding

G = argmax Z s(wg, r,wj) (4.5)
G=(V,4)€Gs (w;,rw;)EA

The MST parser implements two alternative parsing algorithms. One is
the Chu-Liu-Edmonds spanning tree algorithm (Chu and Liu, 1965; Edmonds,
1967), which is used for non-projective dependency parsing. Since we are as-
suming (pseudo-)projective dependency graphs throughout the thesis, we do
not discuss this algorithm here and instead refer the interested reader to Kiibler
et al. (2009).

The other spanning tree algorithm used in the MST parser is the projec-
tive algorithm of Eisner (1996, 2000). While a naive CKY-style chart-parsing
algorithm would require an O(n®) runtime to populate the chart (Kiibler et al.,
2009), Eisner’s algorithm runs in cubic time. This is achieved by processing
and storing left and right dependents separately, and introducing new edges
(w;, T, w;) by combining w; together with its left/right children with w; and its
right /left children in an intermediate subgraph that has w; at one periphery and
w; at the other. This is illustrated in Figure 4.11. The left and right depen-
dents of w; are represented by the triangles labeled @ and@®), respectively, and
likewise for the dependents of w; (® and @). When adding w; as a new right
dependent of w;, the algorithm first creates a chart entry for the subgraph®)),
which spans the right dependents of w; (@) and the left dependents of w; (®).
In a second step, the intermediate subgraph is merged with the right dependents
of w; (@) to form the new subtree ® which covers the complete extent of w;’s
right dependents.

Subgraphs are stored in the dynamic programming table E. Each entry
E[s][t][d][c] contains the score of the highest weighted subgraph spanning ws to
wy, and since left and right dependents are stored separately, the arc direction

70 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

parse(.S, score)
sentence S = wowy ... Wy,
scoring function score (cf. Section 4.4.2)

1 Initialization: E[s][s][d][¢c] =0
for all 0 < s < n,d € {left, right}, c € {true, false}

2 form:1.n

3 for s:0..n

4 t=s54+m

) if t > n then break

6 E[s][t][left][false] = max score(wy, r, ws) + E[s][g][right][true]
R +Elq + 1)[t][left)truc]

7 E[s][t][right][false] = max score(ws,r, w;) + E[s][q][right][true]

TR +E[q + 1][t][left][true]

8 Els][t)[left][true] = max E[s][q][left][true] + Elg][t][left][false]

9 E[s][t][right][true] = max Els][qg][right]|false] + E[q][t][right][true]

10 return backpointers[0][n][right][true]

Figure 4.12: Arc-factored projective parsing with Eisner’s algorithm.

d € {left, right} implies that the head is either the rightmost word w; (when
d = left) or the leftmost word ws (d = right). The flag ¢ indicates whether the
subgraph is complete (¢ = true) or intermediate (¢ = false).

The algorithm is outlined in Figure 4.12. It starts by initializing all sub-
graphs of length 1 to a weight of 0 in line 1. It then builds larger subgraphs
by iterating over spans of increasing lengths (line 2), from left to right (lines
3-5). In lines 6 and 7, the chart is filled with entries for intermediate sub-
graphs like ®in Figure 4.11. The algorithm finds the optimal such subgraph
by maximizing over possible split points ¢ and arc labels r. Similarly, lines 8
and 9 define how the intermediate subgraphs are combined with the remaining,
adjacent dependents to form complete subgraphs.

Finally, the score of the maximum spanning tree for the entire sentence can
be found in the entry E[0][n][right][true], which spans words wg through wy,
and is rooted in the leftmost word wg. Since the chart E merely contains the
score of the optimal tree, retrieval of the actual graph structure requires some
additional book-keeping. We leave the details of the reconstruction unspecified
here and assume that an appropriate auxiliary table backpointers contains the
relevant information about split points and arc labels (line 10).

4.4. BACKGROUND: GRAPH-BASED PARSING WITH MST 71

Wi;—1 w; Wi41 W Wj—1 w Wi+1
i<k<j
Unigram
form, pos
form&pos
form, pos
form&pos
Bigram
formé&pos form&pos
formé&pos form, pos
form, pos form&pos
form form
pos form
Intervening
pos pos pos
Surrounding
pos pos pos pos
pos pos pos pos
pos pos pos pos
pos pos pos pos

Table 4.2: Feature model for first-order arc-factored parsing. The ampersand
(‘&’) denotes feature conjunction.

4.4.2 Scoring function

The scoring function s : V- x R x V' — R is the crucial element of the parsing
algorithm in finding the optimal spanning tree. It is defined as a function that
assigns real-valued scores to dependency edges. More precisely, it arrives at
the score for a given edge (w;,r,w;) by multiplying the feature representation
f(w;,r,w;) € R™ with a weight vector w € R™:

S(’UJZ',T’, w]) =W f(wi7Ta w]) = Z wk‘fk‘(wiara w]) (46)

1<k<m

A schematic representation of the specific features that make up the feature
vector f(w;,r,w;) is shown in Table 4.2. Unigram features refer to the surface
form (‘form’) or the POS tag (‘pos’) of either w; or w; in isolation, whereas
bigram features combine the unigram features of these two words. The features
listed under the heading ‘intervening’ additionally include information about
the words intervening between the head and the dependent (namely, their POS
tags). Features over surrounding words combine the POS-based bigram features
with the POS tag of directly adjacent words. In addition, all features in the table
are also combined with the arc direction and the distance between w; and w;.
In contrast with the Malt feature models, MST incorporates no parse history,
that is, the feature representation of an edge does not encode information about
other edges.

72 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

mira(D, N)
D: training data
N: number of epochs

1 wO=0;v=0;i=0
2 forn:1.N
3 ford:1.|D]

4 min [|[w0+D —w®)||
5 s.t. Si+1(Gd) — 8i+1(Gl) > L(G/, Gd)
6 where G’ = parse(Sy, s;)
7 v =v+4+with
1=1+1

8 w=v/(Nx|D|)
9 returnw

Figure 4.13: MIRA algorithm for online learning.

The MST parser learns w from the training data D using an online learning
algorithm called MIRA (Margin Infused Relaxed Algorithm; Crammer and
Singer, 2003). Online algorithms are presented with one training example at
a time. They immediately update the weights so as to correctly classify the
current example, while keeping the change to the weight vector as small as
possible. Upon seeing a new training example (S4, G4) € D, MIRA adjusts the
weight vector w to establish a margin between the correct tree G4 and the tree
that receives the highest score according to the old w. Pseudo-code for the
algorithm is given in Figure 4.13. First, the weights w and an auxiliary vector
v are initialized to zero (line 1). The algorithm makes a pre-specified number
N of passes over the training set (line 2). In each pass, each of the training
examples (Sq,Gy4) € D is considered in turn (line 3), and MIRA attempts to
keep the new weight vector w(*t1) as close to the old one as possible (line 4),
subject to scoring the correct tree G4 highest with a margin at least as large as
the loss of the highest scored incorrect tree (lines 5 and 6). The loss of a tree
is defined as the number of words with incorrect parents relative to the correct
tree:

L(G',Gq) = {w; : (wi,r,wj) € A"\ Ag} (4.7)

We write s; to refer to the scoring function s using the weight vector w(®.
Thus, the margin in line 5 is computed using the new weights w(**1) | whereas
the highest scoring tree G is of course determined using the weights w(?) from
the previous iteration. Note that when G’ already coincides with G4 the weight
vector will not be updated because the loss is zero and the constraint in line 5
is satisfied trivially.

In line 7, the weights are accumulated in the auxiliary vector v, and the final
weight vector w that is returned in line 9 is the average of all vectors w(%).5

5This is very similar to the averaged perceptron of Collins (2002) who shows that averaging

4.5. FMST 73

4.5 fMST

In the training phase, the original MST parser tries to maximize the scoring
margin between the correct training example and the candidate that currently
scores best. However, if the training example is fragmented, it is not strictly
speaking correct, in the sense that it does not coincide with the desired parse
tree. In fact, this desired tree is among the other possible trees that MST
assumes to be suboptimal. In order to relax this assumption, a fragment-aware
version of MST has to ensure that the loss of the desired (complete) tree is zero.
This section presents fMST as one such parser. Much like fMalt, fMST masks
fragmentation in the training data by essentially ignoring FRAG edges.

The vast pool of literature on the topic of unsupervised and semi-supervised
parsing makes it abundantly clear that we are not the first to suggest learning
from incomplete annotations. But to our knowledge, the idea of dealing with
missing annotations by omission (as opposed to, e.g., explicit marginalization)
is novel. Chapter 2 provides an overview of some of the proposals most closely
related to ours, and in Section 4.6 we briefly outline a concrete alternative to the
“agnostic” way of handling incomplete training data which we advocate here.

As mentioned above, the key objective in deriving the fragment-aware fMST
from the original MST parser is to ascertain zero loss for the intended complete
tree in the face of an incomplete training example. While it is impossible to
single out this one tree (since we do not know which one it is), we can steer
the margin in the right direction with a loss function that assigns zero loss to
all trees that are consistent with the training example, that is, trees that differ
from the training example at most on those words that are fragment roots. To
formalize the notion of consistency at the level of dependency edges, we define
the consistent attachments CZ, for a word w; given a graph G = (V, A) as an
equivalence class over dependency edges as follows:

ClL = {(wi,r,wj) :w; € VA ((w,r,wj) € AV Jwy, € V : (wy, FRAG, w;) € A)}

| (4.8)
If w; is not a fragment root, then CZ will only contain one edge, namely the
attachment of w; in G. On the other hand, if w; is a fragment root (that is,
is attached to some w;% by a dependency of type FRAG), then Cé contains all
possible edges that attach w; to any word in V. We can then define the set Cq
of dependency graphs consistent with G as

Co ={G = (V,A'): (w;,r,w;) € CL for all (w;,r,w;) € A'}, (4.9)

and a loss function with the desired property of assigning zero loss to graphs
consistent with the training example Gg4:

L(G,Gq) = [{w; : (wi,r,w;) € A\ CL Y| (4.10)

It follows from the definition of C¢ (4.9) that L(G,G4) =0 for all G € Cg,.
Finally, we adjust the score of all graphs G = (V, A) € Gg, for a given
training example (Sq,Gq = (Vs, A4)) in order to make the margin constraints

the model parameters helps prevent overfitting.
6In our setup, this wy, is always the root node wq.

74 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

| | asz |
Ga= " ;4 si(Ga) = si(as)
U; heefty volkomens gelijky = s;(w4, AMOD, w3)
/
a/ Qg 7
Gi= |70, 84(C1) = si(af)
Uy heefty volkomens gelijky L(G1,G4) =0
sit1(as) — sip1(aj) >0
a// alzl 77
G = (\1 m si(Gz) = si(az)
U; heefty volkomens gelijky L(G2,Gy) =1
si+1(az) — si+1(ag) > 1

Figure 4.14: Scoring, loss, and margin constraints in fMST.

compatible with the fMST notion of loss:

s(G) = Z s(wg, T, w;) (4.11)

(wg,mwj;)€A
st Vwg €Vgi(wy FRAG,w;)gA,

This scoring function sums only over those edges in G for which G4 has a
definitive attachment. This modification of the scoring function is important
because the margin constraints would otherwise enforce unmotivated updates
of the weight vector w. To see this, consider the example in Figure 4.14.
The “correct” graph G4 contains a single non-FrRAG edge as = (gelijk, AMOD,
volkomen); all other edges are FRAG edges that link fragment roots to the ar-
tificial root token. Let us assume that G, which is in fact the desired tree, is
the highest weighted tree under the current weights w(?), which implies that
3i(G1) > 8i(Gq). If s; were to sum over all edges, this would further imply that
si(ah) +si(ah) +si(aly) > si(ar) +si(az) + si(aa), because s;(as) = s;(a3). Now,
according to the fMST definition of L, the loss of G is zero, and the margin
constraint with complete scoring would become

si+1(a1) + siv1(az) + siy1(aq) — (sit1(ay) + sit1(ad) + sia(a})) 20, (4.12)

thus forcing the algorithm to transfer weight from the correct G; edges to the
spurious FRAG edges. However, if we score only the non-FrAG edges a3 and af,
the spurious updates are avoided because the constraint is already satisfied.

Figure 4.14 shows a second possible scenario, where the highest weighted
graph G5 has non-zero loss because it contains an edge af which is not consistent
with G4. Under complete scoring, the corresponding constraint would require
that

sip1(ar) + sip1(az) + siv1(az) + siv1(as) — (sip1(af) + sivi(ay) + siy1(as)
+siy1(ay)) > 1,
(4.13)

4.6. SUMMARY AND DISCUSSION 75

but the updates would by no means be localized to the relevant edge af. In
fact, the constraint resolution implemented in the MST parser distributes the
updates uniformly over all features in the distance vector f(G4) — £(G2). On
the other hand, if we limit the score (and the updates) to the non-FRAG edges,
the resulting margin constraint gives rise to much more succinct updates:

si+1(as) — sit1(az) > 1 (4.14)

4.6 Summary and Discussion

This chapter revolved around two dependency parsers, Malt and MST, and how
we adapted them in order to accommodate fragmented training data but at the
same time output complete trees.

The Malt parser is a transition-based parser, which means that it models a
parse tree as a sequence of parser actions. The data-driven component of the
parser learns the locally optimal choice for the next parser action, given the
current state of the parser, which is in turn characterized in terms of three data
structures: the list of remaining input tokens, the stack of partially processed
words, and the set of dependency relations established so far. Our fragment-
aware variant of the Malt parser (fMalt) differs from the original system in two
respects. First, training instances (pairs of a parser state and the suitable transi-
tion action) are only passed on to the machine learning algorithm if they concern
actual attachments supported in the training example; training instances that
describe the spurious attachment of a fragment root to the artificial root node
are discarded. This filter enables the parser to learn from whatever informative
structure is encoded in the data, without ever knowing that the training exam-
ple as a whole may not have been a connected tree. The second modification
which distinguishes fMalt from Malt simply ensures that (misleading) informa-
tion about fragment attachment does not leak into the feature representation of
the parser states. At the same time, however, lexical and categorial information
about unattached words is available as context information.

The second parser we discussed is the MST parser. It is a graph-based parser
which formulates the parsing problem as a search for the maximum spanning
tree, where the score of a tree is defined in terms of the scores of its edges, and
each edge is represented by features over the head and the dependent of edge, as
well as intervening and surrounding words. During training, the corresponding
feature weights are updated so as to maximize the scoring margin between the
correct parse tree on the one hand, and the candidate that currently scores best
on the other hand. It is exactly this assumption which is relaxed in our modified
version of the MST parser (fMST): When the training data are fragmented,
the structures encountered during training do not necessarily coincide with the
desired trees. In fact, the desired (complete) parse tree may be among the other
possible trees — which the original MST parser would assume to be suboptimal.
fMST solves this discrepancy by introducing a modified loss function which
assigns zero loss to all trees consistent with the training example. In order
to make the margin constraints compatible with this consistency-based notion
of loss, we further adjusted the scoring function to disregard the edges which
attach words that are fragment roots in the training example.

Both fMalt and fMST hide the partial status of the training data from their
respective data-driven components. fMalt achieves this by ignoring certain tran-

76 CHAPTER 4. TRAINING PARSERS ON FRAGMENTED TREES

sitions, whereas fMST ignores certain edges. These modifications allow us to
essentially treat parsing with incomplete annotations as a supervised problem.
This is in contrast to traditional, EM-based approaches, which infer an ezplicit
model of the uncertainty introduced by partial annotations.

We now proceed to the empirical part of this thesis, beginning with a dis-
cussion of issues related to the evaluation methodology of projected parsers in
Chapter 5. In Chapter 6, then, we will present empirical results that allow us
to assess the quality of the parse trees predicted by our parsers. These results
will further be subjected to a detailed error analysis in Chapter 7.

Chapter 5

Evaluation Methodology

Figure 5.1 shows an overview of the framework we are developing in this thesis.
So far, we have covered the upper part of the figure: we have described the
projection step in Chapter 3, and training and parsing with (f)Malt and (f)MST
in Chapter 4. The intervening step labeled ‘sample’ indicates a simple sampling
procedure that randomly selects sentences from the entire pool of projected
trees. This will become relevant in Chapter 6, where we conduct an empirical
evaluation of projected parsers: the sampling step ensures that the parsers
are all trained on equal amounts of training data and thereby enables us to
control the data loss factor incurred by the noise filters (Chapter 3). Before
presenting any empirical results, however, a few words are in order about the
evaluation methodology, depicted in the lower part of the figure. The evaluation
methodology is the focus of this chapter, and we will occasionally return to
Figure 5.1 when we explain the individual steps in the following sections.

Two problems arise in the evaluation of parsers trained on projected data
(henceforth, projected parsers). First, the annotations projected from the source
language usually differ stylistically from those found in the target language
test data, rendering any immediate comparison between the predictions of the

I II
A < A A
Al Ls || Le project | L, | sample | pi [train (F)Malt/
’ ’ > (F)MST s
A < A A D
1<i<k
A A A
Vi, A transform Ly, A re-tag Ly, A parse
gold | gold —5 | gold
A A auto [\ II1
i
tr,
k=10 compare pred
|D?| = 100, 000 words l
UAS = £ 37, <<, UAS; UAS;

Figure 5.1: Evaluation of projected dependency parsers. The roman numbers
refer to potential conversion sites and will be explained in Section 5.3.2.

7

78 CHAPTER 5. EVALUATION METHODOLOGY

projected parser and the gold standard meaningless. We discuss the use of tree
transformations to consolidate discrepancies between the annotation schemes.
We also present experiments (with treebank parsers, not projected parsers) that
investigate the learnability of different annotation schemes, that is, how suitable
they are from a machine learning perspective.

The second problem we address is the assessment of variance in the train-
ing data, and hence in parser quality. The standard procedure for this pur-
pose would be k-fold cross-validation. However, the popular data sets used for
benchmarking parsers are typically based on monolingual text. This means that
cross-validation is unavailable for projection-based frameworks, because no pro-
jection can be performed for the training splits in the absence of a translation
in the source language. We therefore propose an alternative validation scheme.

We begin by reviewing the evaluation of dependency parsers in the standard
supervised setting, where the parser is trained and tested on manually anno-
tated treebank data (Section 5.1). Of course, as far as testing is concerned,
we also need treebank data in the projection setting; Section 5.2 describes the
target language treebanks we use for this purpose, and also the source language
treebanks that the source parsers are trained on. We then proceed to compare
the annotation schemes employed in the various treebanks, and describe how
we consolidate the differences by means of treebank conversions (Section 5.3).
Finally, Section 5.4 addresses the issue of variance assessment and significance
testing in projection-based frameworks.

5.1 Evaluation of Treebank Parsers

In order to evaluate dependency parsers, they are compared against a test set,
usually an excerpt from a treebank. Since treebanks are manually annotated by
trained linguists, they can be regarded as a gold standard. Applying the parser
to the sentences in the test set yields the predictions which can subsequently be
compared to the gold standard trees. The comparison allows us to estimate the
correctness of the parser, relative to the gold standard. The evaluation metric
defines how correctness is measured. The most common evaluation metric for
dependency parsers is the attachment score: the labeled attachment score (LAS)
is the percentage of words for which the parser predicts the correct head and
dependency label, whereas the unlabeled attachment score (UAS) measures the
percentage of words that have the correct head, irrespective of the label. These
metrics have been implemented in the eval.pl script in the context of the
CoNLL-X Shared Task.!

Most treebanks are annotated with constituent structure rather than depen-
dency structure, and need to be converted to a dependency format if they are
to be used for dependency parsing. To perform this conversion, it is necessary
to recursively identify the head of each constituent and attach all siblings of
the head as dependents. This procedure is rather straightforward if the original
treebanks is annotated with grammatical functions which explicitly distinguish
the head; if no grammatical functions are available, the conversion has to re-
sort to pattern matching on the basis of constituent labels (Magerman, 1994;
Johansson and Nugues, 2007).

lhttp://nextens.uvt.nl/depparse-wiki/SoftwarePage#eval07.pl

5.2. TREEBANKS 79

Once the treebank is thus prepared, it is traditionally split into a training
set, a development set, and a test set. The parser is trained on the training
set, and parameters (if any) are tuned based on preliminary results on the
development set. The resulting parser is then applied to the held-out test set,
and the predicted trees are compared to the reference trees in the treebank in
terms of LAS and UAS. In practice, however, cross-validation over the training
and test set is preferred over one designated test set because it allows a more
reliable estimate of performance which takes variance into account. To perform
k-fold cross-validation, the data is partitioned into k splits of equal size, and
one of the splits is used as test data, while the remaining k — 1 splits serve as
training data. The train—test cycle is repeated until each of the k subsamples
has been used as test data exactly once. The k pairs of gold standard and
predicted annotations give rise to k LAS and UAS values, so that the average in
conjunction with the standard deviation summarizes performance and variance.

Furthermore, performance differences across systems are usually subjected
to statistical significance tests. In parsing, the standard software for this task
is Dan Bikel’s implementation of a “Randomized Parsing Evaluation Compara-
tor,”? which repeatedly (e.g., 10,000 times) swaps the predictions of the two
systems for randomly selected sentences, reassesses the difference, and finally
determines a p-value based on the distribution of the 10,000 artificial difference
values, as compared to the actual difference.

In a projection-based approach, evaluation basically follows the same princi-
ples, but it is complicated by two factors, as laid out above. First, the annotation
scheme that is projected from the source language and learned by the projected
parsers is likely to differ from the annotation scheme employed in the target
language test set. Sections 5.3 deals with this issue. Second, cross-validation
is not applicable unless a parallel gold standard is available. An alternative
is presented in Section 5.4. For reasons that will become clear in Section 5.3,
we ignore labels throughout our experiments, and therefore report only UAS.
We also note that we treat punctuation marks as non-scoring tokens, following
common practice.

5.2 Treebanks

In Chapter 6 we will present experiments with two different source languages
(English and German) and three target languages (Dutch, German, and Italian).
We are thus dealing with four languages, and four treebanks.

The treebanks are used for different purposes. On the one hand, the Penn
Treebank (Marcus et al., 1993) for English and the Tiger Treebank (Brants
et al., 2002) for German figure indirectly, as training data for the source lan-
guage parsers. On the other hand, the Alpino Treebank (van der Beek et al.,
2002) for Dutch, the Turin University Treebank® (TUT) for Italian, and again
the German Tiger Treebank serve as (i) test data for the projected target lan-
guage parsers, and (ii) training data for our upper bounds. The Dutch and
German data sets are those provided for the CoNLL-X Shared Task (Buchholz
and Marsi, 2006). Italian was not included in the 2006 Shared Task; the TUT
data was released in the context of the EVALITA workshop (Magnini et al.,

2http://www.cis.upenn.edu/~dbikel/software.html#comparator
Shttp://www.di.unito.it/~tutreeb

80 CHAPTER 5. EVALUATION METHODOLOGY

PTB (en) Tiger (de) Alpino (nl) TUT (it)

train

words 950,348 699,610 195,069 23,336
sents 39,832 39,216 13,349 794

words/sent 23.9 17.8 14.6 29.4

% non-scoring 11.5 11.5 11.3 11.0

test

words 56,702 5,694 5,585 6,712
sents 2,416 357 386 306

words/sent 23.5 15.95 14.47 21.93
% non-scoring 12.1 12.0 11.0

% unseen 2.0 5.7 11.3 15.7

genre news news mixed news

Table 5.1: Characteristics of the treebank data sets.

2008). Table 5.1 summarizes the data sets. As we can see, all test sets that will
be directly involved in the evaluation of the projected parsers are of roughly the
same size (approximately 5,000 words), while the number of training examples
varies greatly, from 23,000 words for Italian to 700,000 words for German. The
WSJ portion of the Penn Treebank constitutes of course a much larger data
set with 950,000 words of training data and almost 57,000 words of test data.
We will describe the treebanks and in particular the (dependency-converted)
annotations in greater detail in the next section.

Beside the syntactic annotations, all four treebanks also include manually
annotated POS tags. Part-of-speech labels constitute a crucial source of in-
formation for data-driven parsers, and as we have seen in Chapter 4 both the
(f)Malt and the (f)MST feature models employ this feature. However, @vrelid
et al. (2009) argue that any results based on such gold standard tags (as op-
posed to automatically assigned tags) overestimate the performance that one
can realistically expect if the parser is applied to free text. This is because the
free text will be tagged automatically rather than manually, and even the best
state-of-the-art taggers are not one hundred percent accurate. Tagging errors
in the input will in turn affect parsing performance. In our setup, where the
training data is created in an entirely automatic fashion, there are in fact no
gold standard tags available in the first place. We therefore replace the manual
tags in the test sets with the tags assigned automatically by the TreeTagger
(Schmid, 1994).# Assuming that the errors of the tagger occur systematically,
this should ensure equal conditions in training and testing.

4 Again, we use the pre-trained models available from http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/.

5.3. ANNOTATION SCHEMES 81

PTB (en) Tiger (de) Alpino (nl) TUT (it)

NP/PP

YISy v Yy YISy Y oy
Prep Det Noun Prep Det Noun Prep Det Noun Prep Det Noun

auxiliaries
Y Y Y Yy N
Aux Verb Aux Verb Aux Verb Aux Verb
subordination
Y v N Y Y

Comp Verb Comp Verb Comp Verb Comp Verb
relative clauses
Y \ Y Y
Rel Verb Rel Verb Rel Verb Rel Verb

coordination

v Y
X:‘C\Olg-)zg X1 Conj X2 XTaorg-)zg X:‘C\Olg-)zg

Figure 5.2: Different annotation schemes in the dependency-converted tree-
banks.

5.3 Annotation Schemes

Except for the Italian TUT annotation scheme, none of the treebanks is anno-
tated with pure dependency structure. Specifically, the Penn Treebank contains
only constituent structure, whereas the Dutch and the German treebank adopt
hybrid strategies: in Alpino, dependency trees are embedded explicitly in Head-
driven Phrase Structure Grammar (HPSG; Pollard and Sag, 1994) analyses,
and the Tiger Treebank combines relatively flat phrase-structures with gram-
matical function labels. As mentioned earlier, these treebanks have been con-
verted to the CoNLL dependency format in the context of the Shared Tasks. In
the following discussion of the annotation schemes, we refer to these converted
annotations, which are strictly word-based, without traces or other relics of a
constituent-based analysis.

5.3.1 Comparison

The main phenomena in which the four annotation schemes differ are depicted
in Table 5.2.

As shown in the table, both the English and the Dutch treebank annotate
prepositional phrases hierarchically, with an embedded NP. The flat annotation
scheme of the German treebank, on the other hand, makes every word in the PP
a dependent of the preposition (with some exceptions). The Italian annotation

82 CHAPTER 5. EVALUATION METHODOLOGY

scheme assumes a hierarchical structure like English and Dutch, but declares
the determiner rather than the noun as the head of nominal phrases. Another
idiosyncrasy of the Italian annotation scheme is the treatment of fused prepo-
sitions such as della, which incorporate the determiner of the embedded NP. In
the dependency-converted TUT, such fused prepositions are represented as two
separate tokens, one tagged as a preposition, the other as a determiner.

Next, auxiliaries take the lexical verb as their dependent in all treebanks ex-
cept the Italian TUT, which inverts the dependency, resulting in a flat structure
where the lexical verb is the head of the auxiliary. The structure of subordinate
clauses is hierarchical according to the English, Dutch and Italian annotation
schemes, but flat in Tiger, with the complementizer as a dependent of the em-
bedded verb. Relative clauses, on the other hand, are assigned a flat structure
in all but the Dutch scheme, where the relativizer is the head of the embedded
verb. Finally, coordination is annotated in three different ways: while the En-
glish and Italian treebanks implement a strictly right-branching strategy, the
German annotation scheme attaches both the conjunction and the second con-
junct to the first conjunct. The Dutch treebank annotates coordinations as flat
symmetrical structures, with all conjuncts depending on the conjunction.

The annotation of PPs in TUT and (to some extent) in Tiger might con-
ceivably be motivated on language-specific grounds, in that the flat structure
adopted in the German treebank as well as the DP analysis of the Italian TUT
facilitate a reasonably uniform treatment of fused prepositions, which occur in
Italian and German, but not in English or Dutch. The precautionary approch
is, however, not the only possibility given that prepositions and determiners
form closed classes; that is to say, fused prepositions can in principle be treated
like regular prepositions and their presence does not preclude the use of an an-
notation scheme like, say, the English one. The deviant treatment of auxiliaries
as dependents in the Italian treebank may also give a more adequate account
of the language. This is because Italian is a relatively free word order language
where the primary role of the auxiliary is one of tense and aspect marking,
rather than fulfilling a syntactic function. This is in contrast to a fully config-
urational language like English, where the auxiliary is an important anchor for
word order constraints. But again, there is no technical reason to prevent an
analysis that postulates the auxiliary as the head rather than the dependent of
the lexical verb. Interestingly, the remaining discrepancies between the annota-
tion schemes do not seem to be based on language-specific arguments, but rather
reflect stylistic choices, subscribing to one flavor of dependency grammar or an-
other. This observation leads us to hypothesize that the annotation schemes
are in fact more or less interchangable between the languages considered here,
and consequently, that we can apply straightforward treebank conversions tech-
niques to consolidate the discrepancy between the annotations that we project
from the source language and the target annotations dictated by the test data.

5.3.2 Conversions

In order to evaluate our projected parsers, we need to overcome the differ-
ences between the source and target annotations. A straightforward way of
doing so is by means of treebank conversion, which matches the input struc-
tures expected under one annotation scheme and transforms them into another
annotation scheme. Naturally, this begs the question of where such transfor-

5.3. ANNOTATION SCHEMES 83

1 1T 111 v
source projected predicted test set
trees trees trees
direction Ls — Lt LS — Lt Ls — Lt Lt — Ls
training L; L L L,
noise POS, POS, POS, none
(Ls parser) projection L; parser
reliability (-) - - +
applicability full limited full full

Table 5.2: Comparison of potential conversion sites.

mations should take place: one could transform the projected annotations to
conform to the reference annotations encountered in the test set; alternatively,
one could manipulate the test set to reflect the annotation decisions adopted
in the source annotations. A variant of the former approach has been imple-
mented by Hwa et al. (2005). They apply post-projection transformations to
the Chinese training data projected from English in order to infuse L;-specific
information which has no counterpart in the source language. Ganchev et al.
(2009) and Wréblewska and Frank (2009) propose similar correction rules, albeit
more general in nature, and fewer in number.

By contrast, we argue that in a real-world scenario it is conceivable that
the source language annotation scheme would be adopted unaltered for the
target language parser; devising a tailored annotation scheme for the target
language requires linguistically trained personnel with extensive knowledge of
the language at hand.

Examining the project—train—evaluate pipeline laid out so far, we find that
there are in fact four places where consolidation of the source and target anno-
tation schemes could take place. Namely, on the source language annotations
(labeled I in Figure 5.1); on the projected target language annotations (labeled
II); on the predicted annotations (III); or on the test data (IV). Table 5.2 as-
sesses the alternative sites with respect to various criteria. The first aspect we
consider is the direction of conversion, which also bears upon the annotation
scheme that the projected parsers are ultimately trained on. Conversion sites
I and II involve conversion from the source language annotation scheme to the
target language annotation scheme: If the source annotations are converted
prior to projection, as in scenario I, then the projected training data will im-
mediately conform to the target language annotation scheme; alternatively, the
conversion from the source to the target language scheme can take place on the
projected structures (II). In either case, the projected parsers would be trained
on annotations that correspond to those in the target language test set. By
contrast, if we consolidate annotation differences on the predicted trees (III),
the training data is annotated according to the source language scheme. In
the fourth scenario (IV), the gold standard trees in the test set are converted
from the original target language annotation scheme to the annotation scheme

84 CHAPTER 5. EVALUATION METHODOLOGY

intended:
de: mit galicischer Besatzung (TUT) con un equipaggio galiziane
it: con un equipaggio galiziane converted: con un equipaggio galiziane
(Tiger—TUT)

Figure 5.3: Conversion in scenario II fails to produce the desired DP struc-
ture of the TUT annotation scheme due to fragmentation in the projected Ly
dependencies for the phrase con un equipaggio galiziane (‘with a Galician crew’).

employed by the source parser.

Next, we look at potential error sources that could perturb the conversion.
We discussed above that the target language training data for projected parsers
— and thus also their test data — is necessarily POS-tagged automatically. Any
part of the conversion procedure that refers to part-of-speech at sites IT or III is
therefore likely to be affected by tagging errors. The same is true for the source
language data that is the source for projection (I). However, recall that the
treebanks do contain the manually assigned tags; in scenario IV it is therefore
possible to base the conversion on the highly reliable manual POS tags, and only
then insert the automatic tags. These two steps are labeled ‘transform’ and ‘re-
tag’ in Figure 5.1. There are additional error sources: In scenario I, the source
language annotations may be incorrect due to errors of the source parser.® The
noise introduced by projection (relevant in scenario IT) was discussed in Chapter
3, and clearly the projected target language parsers introduce some additional
noise, too (scenario IIT). Each of these error sources must be expected to trigger
inadequate conversion decisions and thus introduce additional noise. Solely the
conversion of the test set (IV) — prior to automatic re-tagging — can be deemed
reliable.

Finally, we note that the applicability as well as the quality of the individual
transformations in conversion scenario II may be limited by fragmentation in
the projected dependencies. The example in Figure 5.3 illustrates the problem
for the NP/PP-to-DP transformation that is part of the conversion from Tiger
to TUT annotations. On the left, we see the German source parse (‘de’) and
the projected dependencies for the Italian translation (‘it’). Since the Italian
indefinite article un has no counterpart in the German translation, it cannot be
attached during projection. The conversion, which in scenario II is performed
on the basis of the projected dependencies, tries to match the Tiger-style an-
notations and transform them into the format of the Italian TUT test data.
Unfortunately, given that the determiner is not part of the PP-structure in the

5Although we assume high-quality source parsers, they cannot be expected to be one
hundred percent accurate. Especially in the out-of-domain setting in which they are applied
here, they constitute a non-negligible error source (cf. Section 3.3, Table 3.5).

5.3. ANNOTATION SCHEMES 85

projected dependencies, it cannot be included in the converted PP, either,® so
that the resulting PP-internal dependencies (shown at the bottom right) do not
conform to the TUT annotation scheme, which calls for the structure depicted
at the top right of Figure 5.3. At first glance, one might think that these kinds
of errors are tied directly to the fragmentation and are unrelated to the con-
version process. But upon closer inspection we find that missing edges in the
projected dependencies are really just that: missing information. It is only
when the conversion mechanism tries to interpret these structures as complete
dependency graphs that the absent attachments trigger inappropriate transfor-
mations; in Figure 5.3, the conversion constructs the TUT analysis for PPs that
embed bare NPs — despite the presence of a determiner.

In conclusion, conversion of the test data presents itself as the most promis-
ing option because it is based on gold standard annotations. By contrast, sce-
narios I-III are prone to introducing additional noise or amplifying the effect
of other error sources. Moreover, the separation of evaluation-related processes
from the training and parsing phase of the parsers is certainly appropriate in an
application-oriented context, where gold standard annotations or even a dedi-
cated annotation scheme may not be available at all. In this case, one would
conceivably resort to a task-based evaluation, settling for whatever annotation
scheme has been projected from the source language, rather than devising a
new annotation scheme for the target language and annotating test data from
scratch. In the light of these arguments, we couch the conversion in scenario
IV as shown in Figure 5.1, and derive transformed versions of the Dutch, Ger-
man and Italian test sets for each source language: one version according to the
Penn Treebank annotation scheme to evaluate the parsers projected from En-
glish, and another version according to the Tiger-style annotations to evaluate
parsers projected from German. The relevant transformations are summarized
in Figure 5.4.7 The conversions under the heading ‘Alpino=Tiger’ are applied
to the Dutch test set when we evaluate the Dutch parsers projected from Ger-
man, while for the evaluation of parsers projected from English, we apply the
‘Alpino=PTB’ transformations. Likewise, the Italian test set is converted with
the ‘TUT=Tiger’ transformations in order to evaluate the Italian parsers pro-
jected from German, and with the ‘TUT=-PTB’ transformations to evaluate
those projected from English. The evaluation of the German projected parsers
is performed on the German Tiger test set after it has been converted using the
transformations labeled ‘Tiger=-PTB.’

5.3.3 Learnability experiments

If the annotation scheme is carried over from the source language as we sug-
gest above, we may ask: Is one annotation scheme more appropriate than the
other? When more than one source language (annotation scheme) is available,
will one produce more “learnable” target language annotations than the other?

6This is unless we want the transformation to build structure, which is an arguable enter-
prise in real-world applications where a well-defined target language annotation scheme may
not exist.

"The conflation of the two tokens representing fused prepositions under the TUT scheme is
not strictly speaking required in order to consolidate the annotation schemes. It is, however,
necessitated by our tokenization of the Italian Europarl data, which does not distinguish fused
prepositions from base form prepositions.

86 CHAPTER 5. EVALUATION METHODOLOGY

Alpino = Tiger

TUT = Tiger

fused prepositions
NP
' A~
PP Prep Det N = Prep Det N
auxiliaries
subordination
Y v
Comp Verb = Comp Verb
relative clauses
Y v
Rel Verb = Comp Verb
coordination

X:FOIGXQ = X1 COHj Xy

Alpino = PTB

~
PrepDet,, PrepDet; = PrepDet
Y Y
Det N = Det N
TNOY
Prep Det N = Prep Det N

Yy Y
Aux Verb = Aux Verb

Y v
Comp Verb = Comp Verb

X, O3 X = Xy Conj Xa

TUT = PTB

fused prepositions

NP
auxiliaries
relative clauses
Y v
Rel Verb = Rel Verb
coordination

X'IE)IgSEQ = X:E)Ig-}\zQ

Tiger = PTB

v
PrepDet,, PrepDety = PrepDet

Y Y
Det N = Det N

Yy Y
Aux Verb = Aux Verb

PRy o
Prep Det N = Prep Det N

coordination

subordination

v Y
Comp Verb = Comp Verb

X4 COIlj Xy = X:E)I@z

Figure 5.4: Test set conversions from target language annotation schemes to
source language annotation schemes.

5.3. ANNOTATION SCHEMES 87

a. lang orig PTB Tiger b. lang orig PTB Tiger

nl 79.23 80.79 79.19 nl 81.41 83.01 83.87
PTB > orig =~ Tiger Tiger =~ PTB > orig

it 88.52 86.88 84.02 it 90.23 89.02 84.11
orig > PTB > Tiger orig > PTB > Tiger

de 86.92 87.12 cf.‘orig’ de 89.86 87.76 cf. orig’
PTB = orig ortg > PTB

Table 5.3: UAS of Malt parsers (a) and MST parsers (b) trained on gold stan-
dard dependencies in different annotation schemes.

This section concludes the discussion of annotation schemes by exploring these
questions experimentally.

The training data for the parsers in this section is taken from treebanks;
in particular, we are using the training sets described in Table 5.1. Although
supervised (i.e., treebank) parsers are not at the center of discussion in this
dissertation, they are more suitable for approaching the above questions than
the projected parsers, which will be analyzed extensively in Chapter 6. First,
the impact of the annotation scheme on parser performance can only be assessed
in a meaningful way if the results are not distorted by noise stemming from the
source parser, the word alignment, or projection issues. Second, the treebank
parsers presented in the following experiments will give us an approximate idea
of where the upper bound lies for dependency parsing with our target languages
and the two parsers we use. We did not attempt parameter optimization, so the
figures reported here represent weak upper bounds. For a survey of the state of
the art in dependency parsing, we refer the interested reader to McDonald and
Nivre (2011).

The results, in terms of unlabeled attachment scores (UAS), are shown in
Table 5.3. The first column of each table (‘orig’) lists the results for training
and testing on the original annotation scheme, that is, Alpino for Dutch, TUT
for Italian, and Tiger for German. In the ‘PTB’ column, we see the results
for parsers trained and tested on annotations converted to the Penn Treebank
scheme. Similarly, the column labeled ‘Tiger’ contains the results with annota-
tions converted to the Tiger annotation scheme.

Inspection of the results for Dutch reveals a rather surprising outcome: the
Malt parser (Table 5.3a) trained on the Alpino-style annotations (79.23%) per-
forms on a par with the parser based on Tiger-style annotations (79.19%), and
is in fact significantly® (p<0.01) outperformed by the Malt parser trained with
PTB-style annotations (80.79%). The ranking of annotation schemes is similar
for the MST parser (Table 5.3b), where the parser based on PTB-style annota-
tions again outperforms the Alpino-based parser. These results are surprising
because the Alpino scheme was devised specifically for Dutch, whereas the PTB

8 According to Dan Bikel’s Randomized Parsing Evaluation Comparator, cf. Section 5.1.

88 CHAPTER 5. EVALUATION METHODOLOGY

annotation scheme was developed with English in mind.

Note also that the Dutch Malt parser responds better to the hierarchical
PTB-based annotation scheme than to the flat Tiger scheme (p<0.01). We
observe no significant difference between the corresponding MST parsers. We
will have more to say on this topic below.

For Italian, training on the PTB-transformed treebank is again significantly
(p<0.01) more effective than training on the Tiger-transformed treebank. The
original TUT scheme is even more effective (p<0.01), which comes as no surprise
given that the TUT guidelines were tailored to the traits of the Italian language.

Finally, the Malt parsers for German exhibit no significant difference with
respect to the annotation scheme used in training, whereas the MST counter-
parts show that the Tiger-style annotations are preferable over the PTB-style
annotations in a graph-based parsing scenario.

The results in Table 5.3 affirm that the performance of a parser hinges on
the annotation scheme that it is trained on. However, the learnability of a given
scheme depends not only on the annotation decisions, but also on the pars-
ing algorithm implemented by the parser. McDonald and Nivre (2007) present
a systematic comparison of the errors of the graph-based MST parser versus
the transition-based Malt parsers. They conclude that the graph-based parser
tends to be superior when it comes to long distance dependencies and depen-
dencies that are close to the root of the tree in general, whereas the strength
of the Malt parser lies in local attachments. For instance, it has been pointed
out (Joakim Nivre, p.c. 2008) that flat coordination structures like those in
the Alpino Treebank generally pose a challenge to incremental, deterministic
parsers like the Malt parser. And in fact, when we compare the performance
of the transition-based Malt parser on the one hand (Table 5.3a) with the re-
sults of the graph-based MST parser on the other hand (Table 5.3b), we see
this trend confirmed for Dutch: the Alpino-based Malt parser (along with its
German-based counterpart trained on the Tiger-style annotations, which are
also comparatively flat) performs significantly worse than the PTB-based Malt
parser, which employs far more hierarchical structures. Among the correspond-
ing MST parsers, the ranking of English and German annotation schemes is
reversed, indicating that the graph-based approach appears to be advantageous
when dealing with relatively flat annotations like those in the Tiger corpus. The
Alpino-annotated data, however, still appears to be less adequate for training
dependency parsers, even in the graph-based paradigm.

We observe no such shift in annotation scheme adequacy for Italian, where
the original TUT annotations consistently outperform the PTB-trained parsers,
and the advantage over the Tiger annotations is even more pronounced (slightly
more so among the MST results). Among the German parsers, we witness a
shift similar to that in Dutch: the flat Tiger annotations are more effective in
conjunction with the graph-based parser.

To shed some light on the unexpected ranking of the Alpino annotation
scheme, we look at the impact of the individual transformations separately in
Table 5.4. The upper part of the table shows how the transformations of the
Alpino data towards PTB-style annotations affects learnability. We find that
both the MaltParser and the MST parser benefit from the right-branching coor-
dination markup of the PTB scheme. The attachment of relativizers in relative
clauses seems to play only a minor role and makes no significant difference.

Turning to the Tiger-style transformations, first note that the semi-flat co-

5.4. VARIANCE ASSESSMENT 89

trans Malt MST
none 79.23 81.41
coordination,, 80.91 83.01
relativee, 79.21 81.81
allen 80.79 83.01
coordinationge 79.39 82.19
relativege 79.21 81.81
subordge 79.47 82.67
np/PPde 80.73 83.83
allge 79.19 83.87

Table 5.4: Impact of individual transformations on Dutch treebank parsers.
Significant improvements (p<0.01) over original Alpino annotation (‘none’) are
in bold face.

ordination adopted in the German treebank does not seem to be superior to
the flat annotations in Alpino: no significant improvement is achieved for ei-
ther parser by using the former (‘coordinationge’). Surprisingly, both parsers
benefit from the flat annotation of prepositional phrases (‘np/ppg.’). The MST
parser, but not the MaltParser, further takes advantage of the flat subordina-
tion structure annotated in Tiger. As mentioned earlier, this is in line with the
fundamentally different parsing paradigms represented by Malt and MST.

We tentatively conclude that the MST parser is in fact better at exploiting
the flat aspects of the Tiger annotations, while both parsers largely benefit from
the highly hierarchical coordination structure of the PTB annotation scheme.
A more detailed exploration of these issues is clearly in order, and subject to
future research.

5.4 Variance Assessment

We now turn to the second factor that complicates the evaluation of projected
parsers, namely the assessment of variance in the training data, and hence in
parser quality. As mentioned earlier, the standard procedure for this purpose
would be cross-validation, which partitions the data into k bins of equal size,
and uses each of the bins once as test data while training on the remaining k —1
bins. The problem in a projection-based setting is the following: the training
data has to be projected from a source language and must therefore be available
as a multilingual parallel corpus. At the same time, cross-validation requires
that all data be used as test data once. In combination, this means that only
multilingual gold standards of appropriate size can be used for evaluation, and
these are scarce. Moreover, the expected noise level in the projected dependen-
cies requires that there be a considerable amount of training data for the results
to be meaningful. So even if parallel test data is available, the data partitioning
performed in cross-validation may compromise the results.

We therefore propose a validation scheme which (i) does not reduce the
amount of test data by partitioning (this may be a problem when only a small

90 CHAPTER 5. EVALUATION METHODOLOGY

number of gold standard annotations is available), (ii) does not require parallel
test data and is independent of the projection step, and (iii) takes advantage
of the fact that projected training data is cheap and therefore abundant in
projection-based settings.

In particular, given that we have plenty of training data, we can train a par-
ticular parser multiple (say, k) times, each time sampling a fixed number of train-
ing examples from the pool of training data. In Figure 5.1 on page 77 these sam-
ples are denoted D?, and each gives rise to a parsing model (f)Malt/(f)MSTp:.
The k parsers can then each parse the unseen test set, and subsequent compar-
ison against the gold standard annotations yields k£ values of the performance
metric at hand (here, UAS). As in conventional cross-validation, these k values
can then be averaged to provide an aggregated score, and they can be used to
derive standard deviations etc. The arrays of measurements for different sys-
tems can further be subjected to significance tests such as the two-sample t-test
to verify that observed performance differences are not merely random effects.

For the experiments in Chapter 6, we set k& = 10, and we sample 100,000
words training data in each round (unless mentioned otherwise). We report the
average of the 10 UAS values. Statistical significance of the difference between
two systems A and B is determined by comparing the 10 results of A with the 10
results of B in a two-sample t-test. Unless stated explicitly, we imply a p-value
smaller than 0.01 when we say that system A significantly outperforms system
B.

5.5 Summary and Discussion

In this section, we have introduced the evaluation methodology that will be
applied in the next chapter, where we present a systematic empirical evaluation
of our projected parsers.

We have discussed two issues that arise in the evaluation of frameworks that
involve cross-lingual projection of annotations, and in particular the projection
of dependency trees. The first obstacle one needs to overcome in order to evalu-
ate projected parse annotations and tools derived from them is the consolidation
of different annotation schemes. More specifically, the parse trees projected onto
the target language sentences conform to whichever annotation scheme was em-
ployed in the source language treebank. A given test set for the target language,
on the other hand, is likely to be annotated according to different guidelines. In
order to evaluate the projected annotations and parsers against the gold stan-
dard annotations, we therefore propose to convert the target language test sets
to the annotation scheme employed in the respective source language.

Diverging annotation schemes are problematic not only for cross-lingual ap-
proaches, but they also blur the results of domain adaptation if the data sets
for the source and target domains are annotated according to different guide-
lines (Dredze et al., 2007). In fact, the conversions we propose here could be
replaced by parser adaptation techniques (e.g., Smith and Eisner, 2009; Jiang
and Liu, 2009). However, this would require for the training data of the adap-
tation model to be annotated with both annotation schemes. The definition of
transformations would therefore still be necessary.

Kiibler et al. (2008) present an extensive comparison of two German tree-
banks: the Tiger treebank with its rather flat annotation scheme, and the

5.5. SUMMARY AND DISCUSSION 91

TiBa/DZ treebank with more hierarchical structures. They find that the flat
Tiger annotation scheme is more easily learned by constituent-based (PCFQG)
parsers when evaluated at a dependency level. Our results suggest the oppo-
site, but this may well be due to the differences in the experimental setup: our
training data represent dependency trees directly, and we learn incremental,
deterministic dependency parsers rather than PCFGs. In line with our results,
Seeker et al. (2010) report results which clearly indicate that a restructuring
of prepositional phrases can yield improvements in parsing accuracy: they add
more structure to the entirely flat PP annotation of the Tiger corpus by explic-
itly representing the PP-internal nominal phrase.

We performed our evaluation of the learnability of various annotation schemes
for Dutch, Italian and German. For English, we refer the reader to Buyko
and Hahn (2010), who conduct an indirect (task-based) evaluation comparing
the suitability of CoNLL dependencies versus Stanford dependencies (Marneffe
et al., 2006) for event extraction. They employ six different dependency parsers
and find that the CoNLL dependency representation turns out more helpful for
the IE task with four of these parsers.

In this chapter, we have further proposed a validation scheme which unlike
cross-validation does not require parallel test data. Instead, it exploits the fact
that training data is usually available in abundance in projection scenarios, so
parsers can be trained on multiple random samples and evaluated against a
single, independent test set which need not be further partitioned.

Classical cross-validation and the validation method described here do mea-
sure slightly different things. First, in cross-validation it is not only the training
data that is varied, but the test data as well. Second, when two systems are
compared under the cross-validation regime, the k rounds can usually be consid-
ered paired samples because both systems are trained and evaluated on identical
partitionings of the data. In contrast, projection-based settings typically involve
some form of filtering on the basis of the projected annotations; in our case, the
filter restricts the degree of fragmentation in the projected dependency tree.
This filtering makes it all but impossible to pair the training samples without
seriously diminishing the pool from which the samples are drawn. For instance,
when comparing an Italian parser projected from English (itp) and one pro-
jected from German (ityg), then a training sentence may receive a complete
analysis from the English translation, and hence be included in the training
pool for itp,; but the same (Italian) sentence may receive a highly fragmented
analysis under projection from German (e.g., due to missing alignment links)
and be discarded from the training pool for ity;g.

With samples that cannot be paired, it is also not obvious how evaluation
strategies like the randomized comparison mentioned above (fn. 2) could be
employed in a sound way.

5.5.1 Labeling schemes

An issue we have not addressed thus far is the labeling of dependency edges.
Just like the structural annotation schemes differ across treebanks, so do the
labeling schemes. Hence, there is no one-to-one mapping between the labels
employed in different treebanks. In fact, the labels are usually so intricately
language specific and in complex interaction with attachment decisions that a
sound mapping of labels is an enterprise by itself. Yarowsky and Ngai (2001);

92 CHAPTER 5. EVALUATION METHODOLOGY

Moon and Baldridge (2007) discuss tagset differences in POS tagging, and solve
the issue by manually defined mappings to a (coarse-grained) consensus tagset.

We make no attempt at such a mapping for syntactic dependency types.
We instead rely on the unlabeled attachment score (UAS) to reflect parser per-
formance. The fact that the annotation scheme conversions may render the
labeling inconsistent in the absence of an appropriate mapping is acceptable in
our setup because the converted test sets are never used as training data.

Chapter 6

Experiments

This chapter provides empirical results showing that the dependency structures
projected under partial correspondence projection are perferable — not only in
terms of quantity, but also qualitatively — to the parse trees obtained with strict
projection.

We describe a series of experiments performed in order to evaluate various
projected parsers. In particular, we focus on the following questions: Can quan-
tity really make up for compromised quality when it comes to training data?
And if so, to what extent? How does the presence of fragmented analyses in
the training data affect parsing performance? Can certain error types be traced
back to this fragmentation? Do the transition-based and the graph-based parser
react differently? Is parsing with fragments more appropriate for one language
than for another?

The majority of these experiments has been described previously in Spreyer
and Kuhn (2009), @vrelid et al. (2009), and Spreyer et al. (2010). The concrete
numbers given here, however, differ slightly from those reported in the publica-
tions due to parameter tuning, which has not been performed until recently. In
addition, minor bug-fixes were introduced after the aforementioned articles were
published, and the random sampling involved in the evaluation cycles witnesses
some variation in the training data.

We describe our experimental setup in Section 6.1. Our core experiments
and results are presented in Sections 6.4 and 6.5. A detailed error analysis will
be presented in Chapter 7.

6.1 Experimental Setup

The principal aspects of our experimental methodology have already been ad-
dressed in Chapter 5 when we discussed the evaluation of projected parsers.
We repeat Figure 5.1 here as Figure 6.1. To recapitulate, our test data con-
sist of sentences from the Alpino Treebank for Dutch (5,600 words), the Tiger
Treebank for German (5,700 words), and the TUT Treebank for Italian (6,700
words). In order to evaluate our projected parsers in a meaningful way, we con-
vert each of the test sets to the annotation scheme employed by the respective
source parsers (English or German). For instance, when we report results for a
Dutch parser projected from English, these results are obtained by comparing

93

94 CHAPTER 6. EXPERIMENTS

the predictions of the projected parser against the Alpino test set with gold
standard annotations converted to the Penn Treebank annotation style.

We emphasize that the projected parsers are subjected to an out-of-domain
evaluation: They are trained on the Europarl corpus, which consists of proceed-
ings of parliamentary debates, whereas the test sets are from the newspaper
(Dutch: mixed) domain. This means that the results presented in Sections 6.4
and 6.5 are likely to underestimate the true performance of our parsers.

Unless stated otherwise, all results refer to unlabeled attachment scores (UAS),
that is, the percentage of words for which the parser predicts the correct head,
but not necessarily the same dependency label. The reason why we disregard the
labels is that the label set employed by the source parser — and hence the pro-
jected parsers — does not usually coincide with the dependency types assumed
in the test data.

Recall from Chapter 5 that we train the parsers multiple times in order to
account for variance in the training data. The concrete training sets (D in
Figure 6.1) are sampled randomly from the pool of all projected parse trees.
Naturally, when we want to train parsers on the entire corpus, the samples are
all random permutations the same set of sentences. Our k-fold training (and
evaluation) procedure may at first glance seem redundant in this case. However,
both the Malt parser and the MST parser are sensitive to the order in which
training examples are presented to the learner. The MIRA algorithm employed
by the MST parser is order-dependent by virtue of being an online learning
scheme. But even the libsvm package used for training the SVM classifiers in
the Malt parser arrives at different feature weights when presented with different
permutations of the training set. We therefore have two reasons to maintain
k-fold training even if the training sample overlap is complete: (i) Doing so
enables us to estimate the impact of order-sensitivity in terms of variation in
accuracy across the permutations; and (ii) it allows us to maintain a consistent
— and hence comparable — way of significance testing, namely by means of the
t-test: While the nature of the variance captured by training on permutations
certainly differs from that captured by training on different sentences, the k-
arrays of UAS scores can be compared in a meaningful way within the respective
sampling paradigms.

Europarl
A > VAN AN
Al Ls || Le project Li |a sample | pi |5 train (f)Malt/
> > > (F)MST p:
A > A A
1<i<k
target VAN A\ VAN
language ngtd A transform LilLdS A re-tag LtlL]s A parse
(e} _— O > old
treebank A € N ato A
Ly,
k=10 compare pred
|D?| = 100,000 words
UAS = + 37, <<, UAS; UAS;

Figure 6.1: Evaluation of projected dependency parsers.

6.2. PARAMETER TUNING 95

Parameter Values considered
parsing algorithm nivrestandard, nivreeager
root handling normal, strict, relaxed

marking strategy baseline, head, path, head+path
covered root left, right

learner libsvm
data split column CPOSTAG of 3[0]
data split threshold 5,000

Table 6.1: Malt parser parameters and their values.

What remains to be addressed is the set of training parameters, including
both parser-specific parameters like the parsing algorithm, as well as the pa-
rameters restricting the degree of fragmentation in the training data.

6.2 Parameter Tuning

6.2.1 Parser-specific training parameters

Parser-specific parameters in our setup refer to parser options that modify the
behavior of the parser. These are parameters defined for the original parsers
Malt and MST.

Malt/fMalt. The relevant Malt parser parameters are summarized in Table
6.1. Parameters not mentioned in the table assume their default value.! Simi-
larly, values that are not mentioned are not considered in parameter optimiza-
tion. We consider two parsing algorithms, namely the arc-standard and arc-
eager variants of the Nivre algorithm (Nivre, 2008). The arc-standard variant
discussed in Chapter 4 does not attach right dependents until they have been as-
signed all their dependents. The arc-eager version of the transition system adds
all arcs, including right arcs, as soon as possible, thus eliminating (spurious) un-
certainty as to whether or not to attach right dependents (Kiibler et al., 2009).
The root handling parameter determines the treatment of ROOT dependents:
normal root handling attaches dependents of ROOT with RIGHT-ARC transitions
during parsing. Neither relaxed nor strict root handling allow these attachments
during parsing, but instead attach ROOT dependents in a post-processing phase;
strict root handling further prohibits the reduction of ROOT dependents from
the stack.? Normal root handling turned out to outperform the two alternative
strategies across the board. We therefore omit this parameter when we discuss
the results of parameter optimization in Section 6.2.2.

1We are using version 1.4.1 of the Malt parser, and version 0.2 of the MST parser.

21t may at first seem that root handling counteracts fragment parsing, since it seemingly
connects fragments to the rest of the graph. However, our implementation of fMalt identifies
fragment roots solely on the basis of the designated FRAG label, and hence supersedes the
re-attachment of fragments performed during projectivization.

96 CHAPTER 6. EXPERIMENTS

Parameter Values considered

decoder projective (Eisner)

loss function Hamming loss incl. punctuation
order 1,2

training-k 1,2,5,10

pre-/post-processing (Malt):
marking strategy Dbaseline, head, path, head+path
covered root left, right

Table 6.2: MST parser parameters and their values.

The parameters called marking strategy and covered root specify the details
of pseudo-projectivization (cf. Section 4.1). The marking strategy determines
to what extent the arc lifts are encoded in the labels; the covered root option
prevents unnecessary lifts by re-attaching ROOT dependents to nearby nodes if
they are covered by crossing edges.

Finally, we note that we use the libsvm package to train Malt’s oracle ap-
proximation. The training instances are split into bins according to the value
of the CPOSTAG of the word in $[0] (data split column in Table 6.1), and sep-
arate SVMs are trained for bins that contain at least 5,000 instances (data split
threshold).

MST/fMST. The training parameters specific to the MST parser are shown
in Table 6.2. We consider only the projective parsing algorithm, that is, the Eis-
ner algorithm described in Section 4.4.1. As with the Malt parser, we employ
pseudo-projectivization to ensure that the training examples are in fact projec-
tive; the specifics of this procedure are again determined by the marking strategy
and covered root options of the Malt parser, which is run in (de-)projectivization
mode as pre- and post-processing steps.

The loss function implements the standard Hamming distance, which counts
attachment discrepancies across all words of a sentence, including punctuation.
The order parameter of MST determines the feature set used to encode de-
pendency graphs. In the first-order feature model, edges are described without
reference to adjacent edges. The second-order model also includes features over
pairs of adjacent edges.

When we discussed the MST parser in Chapter 4, we presented a k-best
formulation with & = 1. This means that the margin is enforced only between
the correct example and the single highest scoring candidate parse. Thus, in
the general case, k-best training imposes margin constraints between the correct
graph and each of the k highest scoring graphs, respectively. This parameter k
is set with MST’s training-k option. We consider the values 1, 2, 5, and 10.

6.2. PARAMETER TUNING 97

optimize-parameters(D, k, G)
D: training data
k: number of folds
G: development data

1 split D into k folds D; of equal size

2 for each fold D;

3 for each parameter combination p

4 train parser with options p on remaining folds | J i D;
5 ’D?fd — parse(D;)

6 UAS? — compare(Dﬁfd,Di)

7 gfj;fd «— parse(G)

8 UAS’Q)J- — compare(gi‘j;ed, 9)

9 for each parameter combination p
10 UASP « %ZZ UASP
11 UASG — £ 3, UASpJ

12 return (argmax, UAS”, argmax, UASY)

Figure 6.2: Pseudo-code for parameter optimization.

6.2.2 Parameter optimization with manually annotated
development data

In order to find the ideal combination of the parameters discussed above, we
assess the performance of the resulting parsers on development data. For each
target language, we randomly sampled a development set of 2,000 words from
the treebanks that are also used for final testing, but distinct from the test sets.
Like the test sets, the development sets are subsequently prepared to match the
annotation scheme of the source language as described in Chapter 5.

In addition to the optimization on the basis of the manually annotated gold
standard, we simultaneously investigate (in Section 6.2.3) the impact of the
parameters when evaluated against projected data. We believe that a com-
parison of the parameter combinations selected by optimization with manually
annotated data on the one hand and projected data on the other hand will
be instructive in that it should shed some light on which factors are helpful in
overcoming noise in the training data, as opposed to merely fitting the training
data.

Parameter optimization with automatically labeled data is realized as 10-
fold cross-validation on training samples of 100,000 words for the Malt parame-
ters, and 50,000 words for MST parameters.® In this setup, parsers are trained

3We decided to reduce the amount of training data for the parameter tuning of MST due
to time constraints. For the same reason, we adopted the marking strategy and covered root
treatment of the corresponding (f)Malt systems, and we use the ‘trees (bi.)” parameters for

98 CHAPTER 6. EXPERIMENTS

training parameters
samples algorithm marking cov. root UAS (dev)
en—nl trees (bi.) standard head left 68.97
trees (fb.) standard head left 68.65
frags (fMalt) standard head left 70.60
de-nl trees (bi.) standard head left 69.03
trees (fb.) standard head left 58.98
frags (fMalt) standard head+path left 67.25
en—it trees (bi.) standard baseline left 64.50
trees (fb.) standard baseline left 62.53
frags (fMalt) standard baseline left 64.60
de-it trees (bi.) standard head+path left 53.97
trees (fb.) standard head+path left 46.81
frags (fMalt) standard head+path left 53.75
en—de trees (bi.) eager head left 61.28
trees (fb.) standard head left 58.54
frags (fMalt) standard head left 59.89

Table 6.3: Optimal parameter settings for Malt and fMalt parsers, as determined
on development sets of 2,000 words.

on 90,000 (45,000) words of projected data — trees or fragments — and their
predictions for the remaining fold are compared against the dependency struc-
tures projected from the source language. Since the test folds for fMalt and
fMST parsers contain fragmented analyses, we modify the comparison to con-
sider only non-FRAG attachments, much like the loss function formulated for
fMST. Pseudo-code for the parameter optimization procedure is given in Fig-
ure 6.2. Note that parameter optimization is run separately for each projection
scenario: The parameters ideal for training with projected trees are determined
independently of those for fragment training.

While we defer the comparison between the two optimization approaches
to Section 6.2.3, we mention the cross-validation approach here because the
resulting parsers (trained on 10 times 9 out of 10 folds of projected data) are
the very same models we use to parse the development data to tackle the ideal
parameter combinations.

Malt/fMalt. Table 6.3 lists the optimal parameter settings for Malt and fMalt
parsers along with the corresponding attachment scores against the development
sets. For German parsers trained on trees, the arc-eager version of Nivre’s
algorithm in combination with head marking for pseudo-projectivization and
left-attachment of covered roots achieves the best data fit. Head marking and
left-attachment also yield the best results for trees projected under fallback

the ‘trees (fb)’ parsers, too.

6.2. PARAMETER TUNING 99

training parameters
samples order k marking cov. root UAS (dev)
en—nl trees (bi.) 2 10 head left 70.45
frags (fMST) 1 10 head left 70.56
de-nl trees (bi.) 2 10 head left 70.58
frags (fMST) 2 1 head+path left 65.83
en—it trees (bi.) 2 10 baseline left 64.01
frags (fMST) 2 10 baseline left 65.09
de-it trees (bi.) 2 10 head+path left 52.92
frags (fMST) 2 10 head+path left 50.53
en—de trees (bi.) 2 2 head left 63.23
frags (fMST) 2 10 head left 62.82

Table 6.4: Optimal parameter settings for MST and fMST parsers, as deter-
mined on development sets of 2,000 words.

projection, and for fragmented training sets. However, in these settings the arc-
standard formulation of the parsing algorithm outperforms the eager variant.

The arc-standard transition system also performs best with the Dutch pro-
jections, from either source language. Left-attachment is chosen for both lan-
guage pairs to deal with covered roots, and arc-lifting is marked using the
head strategy for all Dutch parsers except the fragment-trained parser projected
from German, which takes advantage of the additional information encoded in
head+path marking.

In line with the Dutch and the majority of the German results, the Italian
parsers consistently prefer the arc-standard algorithms and left-attachment for
covered roots. However, parameter optimization reveals that different marking
strategies are in order for Italian: dependency structures projected from English
do not require any encoding of arc-lifts performed during pseudo-projectivization
(baseline strategy), while parsers trained on projections from German benefit
from the elaborate head+path encoding.

MST/fMST. The parameter settings ideal for the graph-based parsers are
summarized in Table 6.4. As mentioned above, the projectivization parameters
have been adopted from the corresponding (f)Malt systems. The remaining
parameters are order and training-k. For all language pairs and parsing systems
except one (namely, en—nl fragment parsing), the second-order feature model is
preferable. The preferred number k of suboptimal parse trees for which margin
constraints are generated is 10 (the largest possible value in our search space)
with two exceptions: de—nl fragment parsing and en—de tree parsing select k = 1
and k = 2, respectively.

100 CHAPTER 6. EXPERIMENTS

training parameters
samples algorithm marking cov. root UAS (proj)
en-nl trees (bi.) eager path right 80.52
trees (fb.) standard head left 67.65
frags (fMalt) eager head left 79.37
de—nl trees (bi.) eager head right 79.80
trees (fb.) standard head left 64.37
frags (fMalt) eager head left 74.63
en—it trees (bi.) eager head left 80.57
trees (fb.) standard head left 69.59
frags (fMalt) standard baseline left 78.83
de-it trees (bi.) standard head+path left 80.43
trees (fb.) standard head / baseline right / left 53.40
frags (fMalt) standard head left 73.77
en—de trees (bi.) standard head right 79.11
trees (fb.) standard head left 67.62
frags (fMalt) eager head left 79.78

Table 6.5: Optimal parameter settings for Malt and fMalt parsers, as determined
through cross-validation against projected data.

6.2.3 Parameter optimization with projected development
data

In this section we compare the ideal parameters determined in the previous
section to the parameter combinations that a cross-validation on projected data
arrives at. The comparison allows us to identify those parameters that enable
the parsers to deal with noisy training data. This is because optimization on
automatically labeled data singles out the parameters that result in the best data
fit, while the optimization with gold standard dependencies reveals the parser
settings that are best capable of learning the desired tree structures despite the
erroneous or missing attachments in the training data.

Malt/fMalt. Table 6.5 shows the (f)Malt parameter combinations that lead
to the best results when evaluated against automatically labeled data. Com-
paring these settings to the “proper” parameters in Table 6.3, we observe that
the arc-standard transition system is chosen over the arc-eager variant in al-
most every instance when the optimization procedure is based on gold data. By
contrast, the arc-eager algorithm performs better when evaluated against pro-
jected annotations, which leads us to conclude that the eager transition system
is prone to fit the noise in the training data. However, we also see that even
with automatically labeled test data, the optimization procedure consistently
selects the arc-standard formulation for fallback trees (rows labeled ‘trees (fb.)’).
This is interesting because fallback projection constitutes the weakest noise fil-

6.2. PARAMETER TUNING 101

training parameters
samples order k marking cov. root UAS (proj)
en—nl trees (bi.) 2 5 head left 89.73
frags (fMST) 1 5 head left 81.58
de-nl trees (bi.) 2 10 head left 84.753
frags (fMST) 1 5 head+path left 76.60
en—it trees (bi.) 2 10 baseline left 88.73
frags (fMST) 1 10 baseline left 82.14
de-it trees (bi.) 2 10 head+path left 88.70
frags (fMST) 1 10 head+path left 78.18
en—de trees (bi.) 2 10 head left 89.88
frags (fMST) 1 10 head left 82.18

Table 6.6: Optimal parameter settings for MST and fMST parsers, as deter-
mined through cross-validation against projected data.

ter and hence produces the noisiest annotations. So it seems that optimization
against projected data in a cross-validation scheme is capable of discovering fa-
vorable parameters (here, the arc-standard parsing algorithm), but it requires
a prohibitive amount of noise (as in the fallback trees) to do so.

For German and Dutch, the cross-validated, unsupervised optimization pro-
cedure further selects right-attachment of covered roots for bidirectionally pro-
jected trees, across both source languages. Interestingly, parameter tuning on
fallback projections from German to Italian does not exclude a covered root
attachment to the right, either. Given the pronounced language-specific pref-
erence for left-attachment, as witnessed by the strong baseline performance for
Italian, this emphasizes once more that these annotations are of questionable
quality.

MST/fMST. The results of unsupervised parameter optimization for (f)MST
in Table 6.6 reveal that a first-order model is sufficient to fit the fragmented
data, across all language pairs. This is in contrast to the second-order parsers
that were selected for almost all language pairs during optimization against gold
standard annotations. This discrepancy can be explained by the fragmentary
nature of the annotations that make up the training data for the fMST parsers:
few edges actually have adjacent edges, thus second-order features are very
sparse and have little discriminative power when compared against fragmented
data. Evaluation against gold standard data, on the other hand, requires that
the parsers learn that it is precisely the denser parts of the dependency structure
which are highly informative for building complete trees.

102 CHAPTER 6. EXPERIMENTS

constraint description values

T<=z less than z missing edges x €{2,3,4,5}

T<zAW>y less than = missing edges, y € {4,5,6}
sentence length at least y words

W/T > x avg. fragment size at least x x €{2,3,4,5}

W/T >x AW >y avg. fragment size at least x, y € {4,5,6}

sentence length at least y words

MAX >z largest fragment has at least nodes x € {2,3,4,5}
MAX > AW >y largest fragment has at least = nodes, y € {4,5,6}
sentence length at least y words

Table 6.7: Schemata for fragmentation constraints.

6.2.4 Fragment size

The training parameters for fMalt (Table 6.3) and fMST (Table 6.4) were de-
termined on the basis of a fixed fragmentation constraint: the training data
contained only sentences with at most two missing edges, and at least 4 words.
We now explore various other constraints on fragmentation.

The constraint schemata we consider are shown in Table 6.7. We define
three variables to describe fragmentation in the data: T denotes the number
of fragments that make up the dependency graph for a sentence, W refers to
the number of words in the sentence, and MAX provides the size of the largest
fragment in the graph.*

The first constraint schema (T < z) allows only sentences with a dependency
structure that consists of at most = fragments. In other words, the number of
missing edges must be smaller than x. The second schema is a variant of the first
which additionally requires a minimum sentence length of y words in order to
exclude trivial, uninformative training examples. The second group of schemata
(W/T > zand W/T > AW > y) directly relates the number of fragments T to
the sentence length W by imposing a minimum average fragment size. Finally,
the last pair of constraints effectively ensures that each sentence contains at
least one coherent fragment of size x or larger.

The impact of fragmentation constraints on the performance of the fMalt
parsers on the development set (the one that was also used for tuning the other
parameters, cf. Section 6.2.2) is plotted in Figure 6.3. The figure shows results
for those constraints where y equals 6; the interested reader will find the com-
plete results in Appendix A. A brief glance at the plots reveals that the variation
among the fragmentation constraints is surprisingly small. In fact, there is no
single data set that results in significantly better results than all other data sets
(cf. appendix). While no individual constraint stands out as superior, we can
discern more general tendencies from the results. First, we generally observe

4The size of a fragment is defined as the number of nodes it consists of, which is equivalent
to the number of words in the fragment’s yield.

6.2. PARAMETER TUNING

Fragmentation constraints

103

Fragmentation constraints

8 —— fragsize_en_nl_maxge_wge6 8 fragsize_en_it_maxge_wge6
--- fragsize_en_nl_tlex_wge6 fragsize_en_it_tlex_wge6
fragsize_en_nl_wdivigex_wge6é fragsize_en_it_wdivigex_wge6
fragsize_de_nl_maxge_wge6 fragsize_de_it_maxge_wge6
2 - fragsize_de_nl_tlex_wge6 2o - fragsize_de_it_tlex_wge6
- fragsize_de_nl_wdivigex_wge6é fragsize_de_it_wdivtgex_wge6
o o
R R
7] »
g 84 g 8
2 2
8 @
w0 | v |
bl Il
o 2
3 3
T T T T T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
x(y=6) . . x(y=6)
Fragmentation constraints
8 1 —— fragsize_en_de_maxge_wge6
--- fragsize_en_de_tlex_wge6
fragsize_en_de_wdivigex_wge6
w
2
o
R
%)
IR
P o ememTTTITAean
3
v
8
9
3

X(y=6)

Figure 6.3: Effect of fragmentation constraints on the performance of fMalt
parsers.

104 CHAPTER 6. EXPERIMENTS

(f)Malt
(H)MST
system algorithm marking order k fragmentation

en—nl trees standard head 2 10

frags standard head 1 10 W/T>5AW >6
de—nl trees standard head 2 10

frags standard head+path 2 1 W/ T>5AW >6
en—it trees standard baseline 2 10

frags standard baseline 2 10 T<3IANW >4
de—it trees standard head+path 2 10

frags standard head+path 2 10 W/T > 5
en-de trees (bi.) eager

trees (fb.) standard head 2 2

frags standard head 2 10 T<4ANW >6

Table 6.8: Final parameter settings as determined on the development sets.

a. lang orig PTB Tiger b. lang orig PTB Tiger

nl 79.23 80.79 79.19 nl 81.41 83.01 83.87
it 88.52 86.88 84.02 it 90.23 89.02 84.11
de 86.92 87.12 cf.‘orig’ de 89.86 87.76 cf. orig’

Table 6.9: UAS of Malt parsers (a) and MST parsers (b) trained on gold stan-
dard dependencies.

performance improvements with increasing restrictivity of the constraints, that
is, fewer missing edges and greater average fragment size. In line with this ob-
servation, the results further suggest that constraints that merely require that
there be at least one fragment of sufficient size (MAX > z) are not restrictive
enough. None of the systems trained under these conditions can compete with
the respective best constraints.

Table 6.8 summarizes the final parameter values used in the experiments in
the remainder of this chapter. We omit the root handling parameter here since
it always takes the value left.

6.3 Baselines and Upper Bounds

In order to situate our results with respect to supervised (treebank) parsing
on the one hand, and simpler (heuristic and semi-heuristic) approaches on the
other hand, we establish upper and lower bounds.

The treebank parsers presented in Section 5.3.3 — repeated here in Table 6.9
— can be considered upper bounds for the respective language pairs: they give

6.3. BASELINES AND UPPER BOUNDS 105

Fragmentation Fragmentation

100
1

— malt_de_it 8 — mst_de_it
--- malt_de_nl --- mst_de_nl
malt_en_de mst_en_de

- malt_en_it -~ mst_en_it
——- malt_en_nl ——- mst_en_nl

920
920

80
80

UAS
UAS

70
70

60
I
60
I

50
50

T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

% deleted edges % deleted edges

Figure 6.4: UAS of fMalt (left) and fMST parsers (right) trained on artificially
fragmented gold standard dependencies (with predicted POS tags).

an indication of the level of accuracy that can be achieved when the training
data is noise-free. Taking this line of thought further, we may also ask which
evaluation figures can realistically be expected with noise-free, but fragmented
training data. This amounts to an upper bound specifically for our approach
to fragment parsing. We arrive at this upper bound by randomly removing a
portion of the dependency edges from the training portions of the treebanks and
then training fMalt and fMST on the resulting, artificially fragmented data sets.
The results of this experiment are shown in Figure 6.4. Note that, in contrast
to the results reported for supervised treebank parsers in chapter 5, the parsers
evaluated in Figure 6.4 are trained using predicted rather than gold POS tags.
As expected, the accuracy of the parsers drops as the degree of fragmentation
(i.e., the proportion of missing edges) increases. Nonetheless, it is noteworthy
that the slope of most of the curves is rather shallow. Especially the fMST
parsers seem rather robust towards fragmentation: for instance, even with 50%
missing edges, the Dutch fMST system projected from English sacrifices less
than 3.5 percentage points UAS.

In addition to the upper bounds, we report the performance of simple,
resource-lean baselines in Table 6.10. The first three columns of the table re-
fer to purely heuristic baselines which attach each word to the preceding word
(‘prev’), the following word (‘next’), or the ROOT node (‘root’). These baselines
reveal a clearly preferred attachment direction for German and Italian, across
all annotation schemes. For Dutch, however, the right-attachment preference
encoded in the original Alpino scheme diverges from the left-attachment fa-
vored under the PTB and Tiger schemes. We attribute this divergence to the
flat, symmetrical treatment of coordinate structures in Alpino, which introduces
right-attachments for all conjuncts to the left of the conjunction.

The rightmost column in Table 6.10 shows the results of a more sophisticated
baseline (‘pos’), which attaches words to the neighboring left or right word

106 CHAPTER 6. EXPERIMENTS

prev next root \ pos

nl PTB 26.91 24.77 10.28 | 45.50
Tiger 28.75 16.71 10.28 | 32.97
orig 23.65 27.63 10.28 | 41.84

it PTB 50.06 14.41 5.12 | 59.91
Tiger 41.76 13.00 5.12 | 50.66
orig 62.78 8.95 4.71 | 64.13

de PTB 18.67 26.58 7.13 | 31.23
orig. 21.03 22.38 7.13 | 27.16

Table 6.10: Heuristic baselines (prev, next, root) and a weakly supervised base-
line (pos).

on the basis of their POS tag. The attachment direction for a given tag is
estimated from a small set of 10 annotated sentences (distinct from the test
sets); alternatively, the direction could be provided by a native speaker. If a tag
has not been encountered in the training sentences, the direction is assigned by
the best performing heuristic baseline.

Clearly, the supervised POS-based baseline substantially outperforms the
heuristic strategies across all languages and annotation schemes, with improve-
ments ranging from A1.35 for Italian (under the TUT scheme) to A18.59 for
Dutch (PTB scheme). As the strong performance of the ‘prev’ baseline for Ital-
ian already indicates, attachment to the left is predominant in this language
under all three annotation schemes, albeit to varying degrees. It is therefore
not surprising that a differentiation based on part-of-speech adds only little
accuracy, especially if we take into account that neither baseline system gen-
erates arcs of length greater than one. This also explains the weak baseline
performance on the Tiger annotation scheme, which calls for longer arcs due
to its flat structures. Based on the advantage it gives for Dutch and Italian,
one might expect that the German baseline should achieve considerably higher
attachment scores when evaluated against the PTB scheme, but although we
see some improvement (‘next’: A4.20, ‘pos’: A4.07), the performance is still
mediocre in comparison to the other languages. We conjecture that may be due
to the German STTS tagset on which the flat Tiger (Negra) annotation scheme
is based.

Having established upper and lower bounds, the remainder of this chapter
presents experimental results with transition-based (Section 6.4) and graph-
based parsers (Section 6.5) that are trained on projected dependencies. A de-
tailed error analysis will be provided in Chapter 7.

6.4. MALT AND FMALT 107

trees (bi.) trees (fb.) baseline (pos)

en-—nl 72.38xx 70.74 45.50
de—nl 70.11xx* 59.40 32.97
en—it 67.86%x 64.90 59.91
de—it 52.5Txx* 47.28 50.66
en-de 59.83xx 57.79 | 31.23

Table 6.11: Unlabeled attachment scores of projected Malt parsers trained on
100,000 words.

6.4 Malt and fMalt

In this section, we consider transition-based Malt and fMalt parsers that are
trained on projected data. We begin with the evaluation of conventional (origi-
nal) Malt parsers, which assume that the training data consists of complete trees
and are thus restricted to the fraction of training data consisting of complete
trees.

6.4.1 Malt: parsers with completeness assumptions

When we use the original Malt parser for training, irrespective of the exact
makeup of the training data, the implicit assumption underlying the training
procedure is that the training examples are complete trees.

Table 6.11 shows the performance of two different Malt parsers that incor-
porate this “completeness assumption.” The parsers are trained on samples of
100,000 words (after filtering). Note that a much larger pool of parallel data
is required to obtain a data set of 100,000 words containing only complete pro-
jected analyses. This detail should not be underestimated: although there are
relatively large amounts of unlabeled training data for many languages, it is
still in limited supply for smaller languages, especially seeing as the projection
method also requires a translation in the source language. Furthermore, as dis-
cussed in Chapter 3, the strictness of the completeness constraint tends to result
in data sets made up of short, simple and repetitive sentences.

In the first column of Table 6.11 (‘trees (bi.)’) we see the results for models
trained exclusively on trees as obtained under strict projection, that is, using
only bidirectional word alignments. By contrast, the parsers in the ‘trees (fb.)’
column are derived from trees that were projected using the fallback mecha-
nism, which imposes a more relaxed filtering criterion on projected dependency
structures. The POS-based baselines are repeated in the rightmost column for
comparison. Statistical significance of a parser A over the next best parser B is
marked by asterisks on A; the number of asterisks indicates the level of confi-
dence (#* : p < 0.01,% : p < 0.05).5 For readability, the highest score for each

5No significance tests were performed with respect to the baseline systems because the
sampling approach pursued for the (f)Malt parsers (cf. Section 5.4) is not applicable to the

108 CHAPTER 6. EXPERIMENTS

language pair is printed in bold face.

The most striking observation from Table 6.11 is that the bidirectionally pro-
jected trees give rise to the best parsers across all language pairs, and in each
case the difference to the parser based on fallback projection is statistically
significant (p < 0.01). The parsing accuracy in absolute terms varies, however.
The highest attachment scores are obtained by the Dutch parsers, and in partic-
ular the Dutch parsers projected from English: both systems exhibit unlabeled
attachment scores over 70%, the one trained on strict tree projections reaches a
UAS of 72.38%. Both parsers outperform the baseline by 25 percentage points
UAS or more.

The ranking among the Dutch parsers projected from German is analogous
to that of the English—Dutch systems, but there is a noteworthy difference. The
drop in UAS from the strict parser (trees (bi.): 70.11%) to the fallback parser
(trees (fb): 59.40%) by more than 10 percentage points is considerably more
pronounced than is the case with the parsers projected from English (A <2).
As with the English-Dutch parsers, the baseline performance is exceeded by
more than 25 percentage points UAS.

Turning to the Italian parsers we witness a substantial decrease in accuracy,
for parsers projected from English, but even more so for those projected from
German. While the test sets and hence the results across target languages
are of course not immediately comparable, comparison across source languages
is, to some extent, warranted. Recall from Chapter 5 that the test sets are
converted to conform to the annotation scheme of the source language, and we
have seen that the English (PTB) annotation scheme does indeed seem to be
preferable over the German Tiger-style annotations when it comes to training
transition-based parsers for Italian. However, the difference of more than 15
percentage points UAS which we observe here between the best English-Italian
parser (67.86%) and the best German-Italian parser (52.57%) suggests that
other factors are at play. In fact, we have seen in Chapter 3 that projection
from German to Italian is more prone to data reduction — especially reduction of
average sentence length — under all projection scenarios we investigated (Table
3.6 on page 36). Moreover, the percentage of duplicate sentences in the projected
data is substantially higher for this language pair (Table 3.7, page 37), as is the
degree of fragmentation under partial correspondence projection (Table 3.9,
page 44). These observations lead us to conclude that the word alignment
between the German and Italian FEuroparl sections are of poorer quality — or
simply more sparse — than the word alignments between the other language
pairs; this claim is substantiated by the percentage of unaligned tokens in Table
3.3. We have seen in the previous section that even the simple attach-left
heuristics constitutes a strong baseline, and we observe now that only the ‘trees
(bi.)” parser achieves higher accuracy by a small margin (A1.91).

The results for German follow the same pattern: the parser projected under
strict projection fares significantly better than the fallback parser. Both parsers
clearly outperform the baseline (A >26).

The parsers in Table 6.11 are all trained on data sets of equal size, namely
100,000 words. However, we have seen in Chapter 3 that the effective amount of
training data that can be obtained from a given corpus varies immensely depend-
ing on the projection technique and noise filter that is being used: precision-

baselines.

6.4. MALT AND FMALT 109

trees (bi.) trees (fb.)

ennl (235,000) 73.09% (1,592,000) 72.79
de-nl (458,000) 72.28+x (2,438,000) oom

en-it (178,500) 68.31sx (1,682,000) 65.92
de-it (115,500) 52.68sxx (1,068,500) 48.38

en-de (253,500) 59.86xx (1,623,500) 58.10

Table 6.12: Unlabeled attachment scores of projected Malt parsers trained on
the entire Europarl corpus, subject to filtering (effective training set size (words)
given in parentheses).

oriented bidirectional projection in conjuction with a filter that discards all
partial analyses yields very small data sets of presumably high-quality depen-
dencies, while the amount of trees projected under fallback projection is com-
paratively large, closely followed by partial correspondence projection in terms
of quantity. Given that the assumption underlying the relaxation of the noise
filters is that quantity — and thereby variety — can make up for quality, a real-
istic picture of the merit of the various projection methods and filters can only
be obtained by taking this quantitative aspect into account. We therefore re-
peat the experiments discussed above, but rather than controlling the effective
training set size, we train the parsers on whatever data remains after filtering
the projections of the entire Europarl corpus. The results are shown in Table
6.12, along with the number of words in the effective training sets. They in-
dicate that the increase in sheer amount of data does not help the parser in
overcoming the poor quality of the fallback projections. However, the difference
between the scores of the respective systems is diminished. The results for the
parser projected from German to Dutch under fallback projection is missing due
to memory limitations.

6.4.2 fMalt: parsers with fragment awareness

So far we have only considered parsers that assume complete trees in the training
data. In this section, we compare those parsers to fMalt, our fragment-aware
variant of the Malt parser. As before, we first investigate parsers trained on
equal (i.e., fixed) amounts of training data, namely 100,000 words. The results
are summarized in Table 6.13. For comparison, we also repeat the results of the
best tree-oriented parsers from Table 6.11.5

It is immediately evident that the results here are less clear-cut than those
discussed above, since the fragment-aware parsers generally seem to achieve a
level of accuracy very similary that of their tree-oriented counterparts (Malt,
‘trees (bi.)’). No general trend is discernible when all models are trained on

6These results are at odds with the results reported in previous publications (Spreyer and
Kuhn, 2009; Spreyer et al., 2010; Spreyer, 2010). This is due to an erroneous feature model
used in training the tree-oriented parsers, which decreased their performance.

110 CHAPTER 6. EXPERIMENTS

Malt fMalt
trees (bi.) frags

en—nl 72.38 72.88x%
de—nl 70.11xx 68.75

en—it 67.86%x 67.29
de—it 52.57 52.80

en—de 59.83 59.19

Table 6.13: Unlabeled attachment scores of projected fMalt parsers trained on
100,000 words. For comparison, we also repeat the corresponding results of the
original Malt parser trained only on bidirectionally projected complete trees, cf.
Table 6.11.

Malt fMalt
trees (bi.) frags

en-nl (235,000) 73.09 (1,138,500) 74.26%*
de-nl (458,000) 72.28xx (2,114,500) 71.62

en-it (178,500) 68.31 (1,092,500) 68.08
de-it (115,500) 52.68 (317,500) 53.92+x

en-de (253,500) 59.86 (1,972,000) 60.21

Table 6.14: Unlabeled attachment scores of projected fMalt parsers trained on
the entire Europarl corpus. For comparison, we repeat the corresponding results
of the original Malt parser trained only on bidirectionally projected complete
trees, cf. Table 6.12.

the same amount of data, neither across source languages nor across target
languages: The tree-oriented (Malt) parsers significantly outperform the frag-
ment parsers for the language pairs German—Dutch and English—Italian, while
the opposite is true for English—Dutch, albeit at a weaker level of significance
(p < 0.05). For the pairs German-Italian and English-German, the difference
between the Malt and fMalt parsers is not significant.

But as before, we argue that we can only obtain realistic results when we
take the quantitative aspect of projection and noise filtering into account by
fixing the amount of training data prior to filtering. The results obtained in
this setting are displayed in Table 6.14. And indeed, once we take the quan-
titative aspect into account, a clear picture emerges: except in one instance,
none of the fMalt parsers fall short of their tree-trained Malt counterparts with
statistical significance. On the contrary, the English-based Dutch fMalt and the
German-based Italian fMalt both significantly outperform the corresponding
Malt parsers.

6.5. MST AND FMST 111

trees (bi.) trees (fb.) baseline (pos)

en—nl 73.98x%x 68.27 45.50
denl 71.02xx* 60.07 32.97
en—it 66.82xx 60.77 59.91
de—it 51.02xx* 42.57 50.66
en-de 63.21xx 61.50 | 31.23

Table 6.15: Unlabeled attachment scores of projected MST parsers trained on
100,000 words.

6.5 MST and fMST

In this section we present results for the graph-based MST and fMST parsers.
We proceed in essentially the same manner as we did for the Malt parsers in
the previous section. However, due to time constraints and limited computing
resources, we had to resort to smaller training sets and fewer sampling steps in
some settings. Moreover, we are adopting the fragmentation constraints that
were identified as ideal for the fMalt parsers, which presumably constitutes a
suboptimal tuning for fMST. We explicitly identify diverging training circum-
stances when we discuss the affected parsers. The full battery of experimental
results under comparable training conditions will be made public in the course
of future work.

6.5.1 MST: parsers with completeness assumptions

Tables 6.15 and 6.16 show the results of MST parsers trained on 100,000 words
and the first 500,000 words of Europarl, respectively. As for the corresponding
Malt parsers in Section 6.4.1, we consider complete trees projected under strict
projection (‘trees (bi.)’) and complete trees projected under constrained fallback
projection (‘trees (fb.)’). The parsers discussed in this section are instantiations
of the original MST parser, which expects the training sentences to be annotated
with complete trees. The results obtained with fragmented training data and
fragment-aware fMST parsers will be discussed in Section 6.5.2.

The results for tree-oriented parsing with MST are largely analogous to the
corresponding Malt results in that the parsers trained on bidirectional projec-
tions exhibit higher accuracy throughout. No clear trend is discernible that
indicates that one of the parsers (Malt or MST) fares clearly better than the
other. MST achieves higher absolute figures for Dutch and German, whereas
Malt is superior on the Italian data. Seeing as both German and Dutch al-
low relatively free word order, whereas Italian does not, this is in line with the
observations of McDonald and Nivre (2007). They show that the graph-based
MST parser is more successful at learning about long distance dependencies,
whereas the transition-based Malt parser models local dependencies very well.

112 CHAPTER 6. EXPERIMENTS

trees (bi.) trees (fb.)

en-nl (90,000) 73.72xx (607,000) 68.22
de-nl (174,000) 71.89xx (928,500) 59.83

en-it (80,500) 66.4T+ (758,500) 60.51
de-it (53,500) 51.26%+ (495,500) 42.53

en-de (96,800) 62.63xx (614,500) 61.90

Table 6.16: Unlabeled attachment scores of projected MST parsers trained on
the first 500,000 sentences of the Europarl corpus, subject to filtering (effective
training set size (words) given in parentheses).

MST fMST
trees (bi.) frags

en-—nl 73.98 73.90
denl 71.02x%x 66.52

en—it 66.82 68.84 %%
de—it 51.02 53.04 %%

en—de 63.21xx 62.28

Table 6.17: Unlabeled attachment scores of projected fMST parsers trained on
100,000 words. For comparison, we repeat the corresponding results of the
original MST parser trained only on bidirectionally projected complete trees,
cf. Table 6.15.

6.5.2 fMST: parsers with fragment awareness

The result of training fragment-aware fMST parsers on 100,000 words of train-
ing data are summarized in Table 6.17. As before with fMalt, the results are
not clear-cut. The fragment parsers significantly outperform the tree-oriented
parsers for Italian, but the opposite is the case for German and for the Dutch
parsers projected from German. The difference between the Dutch parsers pro-
jected from English is not significant.

Even when we train the parsers on data samples that reflect the aggres-
siveness of the underlying noise filters, no clear picture emerges (Table 6.18).
With only one fifth of the amount of training data, the Dutch tree-oriented
parsers still outperform their fragment-aware counterparts (73.72 versus 73.26
from English, 71.89 versus 65.27 from German). The reverse is true for German
(62.63 versus 63.23) and for the Italian parser projected from German (51.26
versus 52.10). The difference between MST and fMST is not significant for the
language pair English-Italian.

6.6. SUMMARY AND DISCUSSION 113

MST fMST
trees (bi.) frags

en-nl (90,000) 73.72% (449,000) 73.26
de-nl (174,000) 71.89%x (797,500) 65.27

en-it (80,500) 66.47 (492,500) 66.60
de-it (53,500) 51.26 (145,000) 52.10%x

en-de (96,800) 62.63 (484,000) 63.23%

Table 6.18: Unlabeled attachment scores of projected fMST parsers trained on
the first 500,000 sentences of the Europarl corpus.

6.6 Summary and Discussion

The empirical results presented in this chapter show that fragment parsers (fMalt
and fMST) perform roughly on a par with their tree-based counterparts (Malt
and MST). In fact, the fMalt parsers achieve unlabeled attachment scores as
high as or higher than the Malt parsers, with the exception of one language
pair (German-Dutch). The results with MST and fMST are not as clear-cut:
The original MST parser significantly outperforms fMST on the language pairs
English-Dutch and German—Dutch, while the opposite is true for the Italian
parser projected from German and the German parser projected from English.
There is no significant difference between MST and fMST for the language pair
English-Ttalian.

We further find that the parsers projected under constrained fallback pro-
jection consistently fail to outperform the parsers based on strict (bidirectional)
projections, despite the fact that the former are trained on considerably more
training data. This finding is not surprising given the qualitative evaluation of
the direct projections in Chapter 3: While the fallback projections improve re-
call to some extent, this cannot make up for the loss in precision and thus leads
to substantially more noise in the training data of the fallback parsers. The
results obtained with the fragment parsers, on the other hand, suggest that the
even more pronounced gain in recall and thus greater quantity of training an-
notations obtained under partial correspondence projection does help overcome
the noise we introduce when we allow fragmented projections.

In the next chapter we will explore the strengths and weaknesses of fragment
and (strict) tree-based parsers in more detail. In particular, we will conduct
evaluations by sentence length, dependency length, dependency type, and word
class.

Chapter 7

Error Analysis

The error analysis presented in this chapter focuses on the differences between
bidirectional (strict) tree-oriented parsers and the fragment parsers. It is based
on the output of the parsers trained on the complete (MST parsers: half) Eu-
roparl corpus (Tables 6.14 and 6.18). We investigate the performance of our
parsers relative to sentence length (Section 7.1), dependency length (Section
7.2), and dependency type (Section 7.3). We conclude the chapter with two
concrete examples in Section 7.4.

7.1 Sentence Length

In order to observe the performance gradient with respect to sentence length,
we divided the test sentences into bins of six different length ranges, namely
sentences with one to four words, five to nine words, 10 to 19, 20-29, 30-39 and
finally 40 words or more. Each of these bins was then evaluated separately. The
results are given in Table 7.1 for (f)Malt, in Table 7.2 for (f)MST.

Comparing tree with fragment parsers across all language pairs and bins,
we find that fragment parsers generally tend to outperform their tree-oriented
counterparts on long sentences, and vice versa for the shorter sentences. This
is especially obvious for the fMalt parsers (Table 7.1). With the exception of
the English-Dutch system, fMalt outperforms the tree-oriented Malt parser on
sentences longer than 40 words across all languages. The Italian and German
fMalt systems further perform better on sentences with 30 to 39 words. The Ger-
man fMalt parser also outperforms the tree-oriented counterpart on sentences
of length 10 or longer.

For the fMST parsers the trend is not as pronounced. But even so, we find
that most fragment parsers outperform the tree-oriented parser on the set of
extremely long sentences (>40 words), and the English-Dutch, English-Italian
and English—-German fMST systems extend this tendency to sentences of 30 to
39 words.

The observation that the fragment parsers tend to fare better on longer
sentences can of course be explained by the nature of the training sets that the
parsers learned from: as we saw in Chapter 3, the training examples projected
under bidirectional trees-only projection comprise only six to eight words per
sentence on average. The fragment parsers, on the other hand, are trained on

115

116 CHAPTER 7. ERROR ANALYSIS

1-4 59 10-19 20-29 30-39 >40

en-nl trees 66.42 72.33 74.60 73.68 73.47 55.33
frags 66.10 71.46 76.02 75.55 74.15 53.80
de-nl trees 69.68 70.75 74.20 74.40 68.75 49.53
frags 68.05 71.37 74.14 73.08 67.74 50.47

en-it trees 65.42 68.71 69.21 68.71 64.79 70.09
frags 47.08 66.60 68.01 68.22 65.72 70.55
de-it trees 73.33 70.61 58.61 52.59 47.58 48.86
frags 86.67 67.77 57.49 53.30 50.47 51.70

en-de trees 69.57 71.35 63.06 58.91 55.02 47.35
frags 65.92 69.14 63.33 59.47 56.22 48.94

Table 7.1: UAS relative to sentence length (Malt). The higher of the two scores
(trees versus frags) is in bold face.

1-4 59 10-19 20-29 30-39 >40

en-nl trees 66.04 72.70 76.74 74.57 71.25 52.67
frags 65.66 73.68 75.68 73.86 71.92 52.67
de-nl trees 6893 69.35 75.23 73.36 67.79 46.66
frags 69.31 64.83 68.74 6491 61.33 48.40

en-it trees 66.67 69.48 68.97 66.40 62.93 66.95
frags 74.17 6826 68.68 6544 64.28 67.56
de-it trees 68.34 72.39 5545 50.44 48.77 46.99
frags 75.00 71.82 56.78 52.21 49.39 46.81

en-de trees 76.56 76.29 67.41 60.88 55.65 47.91
frags 75.91 7420 67.09 61.16 57.80 52.94

Table 7.2: UAS relative to sentence length (MST). The higher of the two scores
(trees versus frags) is in bold face.

7.2. DEPENDENCY LENGTH 117

sentences with an average length of 11 to 18 words. Thus, while the superior
performance of the fragment parsers on longer sentences is a straightforward
consequence of the makeup of the underlying training sets, it also shows that
the strengths of the fragment parsers are complementary to those of the tree-
oriented parsers.

7.2 Dependency Length

A factor related to sentence length is dependency length, that is, the distance
(in words) between a dependent and its head. Long distance dependencies are
typically harder for most parsers to model and discover than short dependencies
between adjacent or close words. This is because longer dependencies cannot
be modeled using only local context. In fact, dozens of words can in princi-
ple intervene between a head and its dependent in a long distance dependency.
In this section, we evaluate our parsers with respect to their performance on
dependencies of increasing length. This is again accomplished by aggregating
dependencies of similar length into bins. Specifically, the first bin contains de-
pendencies of length 1, the second bin those of length 2, the third combines
dependencies of length 3 to 6, and the last bin contains all remaining depen-
dencies (length >7). The results of this evaluation are presented in Figures
7.1 and 7.2 for (f)Malt and (f)MST, respectively. In the left column of each
figure, we show the f-score for each bin. The right column plots the correspond-
ing precision—recall tradeoff. The tables underlying these plots are provided as
Appendix B.

Malt/fMalt. Let us first consider the (f)Malt results in Table 7.1. The obvious
observation is that performance degrades with increasing dependency length,
which can be seen in the downward slope of the f-score curves (left column).
While this slope is rather “constant” for the Dutch parsers, it levels off for (most
of) the Italian parsers, and even more so for the German systems. Comparing
the Dutch parsers projected from German, we find that Malt (de) and fMalt
(de) perform almost identical on dependencies up to and including length 6.
Dependencies in the fourth bin are captured more accurately by the fragment
parser. The plot on the right-hand side further shows that both parsers find a
relative balance between recall and precision, with a slight orientation towards
recall, which is more pronounced for very long dependencies (+).

A similar picture emerges for the parsers projected from English: the re-
spective f-score curves are close. In addition, fMalt outperforms Malt on depen-
dencies of length 2. The precision-recall plot reveals an interesting detail which
holds for both parsers: they are rather recall-oriented on short dependencies
(length 1 and 2), but geared towards precision when it comes to longer depen-
dency edges. The fMalt system exhibits higher precision and higher recall across
all bins except bin 3, where it lags behind on recall by less than 0.5 points.

We now turn to the Italian (f)Malt parsers in the second row of Table 7.1.
The f-score curves have a similar shape as those for Dutch in that the fragment
parsers maintain a considerably higher level of quality on dependencies of length
3 and longer. Especially the tree-oriented parser from German is seriously lim-
ited on very long edges, which is due to drops in both recall and precision. The

118

90

80

70

4
s
o
82 &
]
w
o
e}

40

30

90

80

70

4
s
o
82 &
]
w
o
5}

40

30

90

80

70

4
s
o
82 &
]
w
o
e}

40

30

Binned dependency length (nl)

CHAPTER 7. ERROR ANALYSIS

Precision-recall tradeoff (nl)

)
8
--- fMalt (de) --- fMalt (de)
Malt (de) ™* Malt (de) **
--- fMalt (en) ** --- fMalt (en) **
——- Malt (en) ~~- Malt (en)
o |
8
B ’;14
N B>
R S 7
s c -7 ’
Sy S -5 p
~ . 2 o | - P
AN g 8 * ¥
\\\ a +
>+
9
g
o A
o 2
A 3-6
+ >6
o |
&
T T T T T T T T
2 3 4 20 40 60 80 100
bin Recall
Binned dependency length (it) Precision-recall tradeoff (it)
o
8
--- fMait (de) ** --- fMalt (de) **
Malt (de) Malt (de)
--- fMalt (en) --- fMalt (en)
——- Malt (en) ~~- Malt (en) /
o |
8
c
S
2 o
g 8
o ol
2
[y
|
9
g
o1
o 2
A 3-6
+ >6
+ < -
T T T T T T T T
2 3 4 20 40 60 80 100
bin Recall
Binned dependency length (de) Precision-recall tradeoff (de)
o
8
o |
*® @
i)
N c > y
B~ 2 0
RS 2 o ‘
Sl 3 8 \
A o
S 2 P
9
g
o1
o 2
A 3-6
+ >6
o |
&
T T T T T T T T
2 3 4 20 40 60 80 100
bin Recall

Figure 7.1: F-score and precision-recall tradeoff for dependencies of length 1
(bin 1, O), 2 (bin 2, o), 3-6 (bin 3, A) and longer than 6 (bin 4, +) for Malt
and fMalt parsers.

7.3. DEPENDENCY TYPE 119

English-based parsers both have very low precision on dependencies in bin 4,
but exhibit a fairly balanced tradeoff otherwise.

Finally, the German parsers perform almost alike on short dependencies (bins
1 and 2). In contrast to the other languages, however, it is the tree-oriented Malt
parser that is clearly superior on longer dependencies. If we break down the f-
score into precision and recall, we see that the performance drop is really a
recall issue: the fragment parser lags behind by more than 6 percentage points
on dependencies longer than 6 words (+), and by almost 4 percentage points
on dependencies of length 3 to 6 (A), while the precision remains above that of
the tree-oriented Malt parser in both cases.

MST/fMST. The plots for the (f)MST parsers are shown in Figure 7.2. The
general trends conveyed by these plots are not entirely unlike the corresponding
(f)Malt behavior. However, there are noteworthy differences.

For Dutch, the fMST parser projected from German underperforms consis-
tently, and especially on dependencies in bin 3. The corresponding precision-
recall curve reveals that this parser fails to strike a balance between precision
and recall. While it suffers from relatively low precision on dependencies of
length 1 (O), it lags behind in terms of recall on dependencies longer than 1.

The Italian parsers suffer immense drops in f-score on longer dependencies,
with the English-based fMST parser being affected most. For this parser, the
degradation is due to recall limitations, whereas the other (f)MST parsers for
Italian sacrifice precision on longer dependencies.

Finally, the German parsers (‘fMST (en)’ and ‘MST (en)’) perform roughly
alike, and even exhibit nearly the same precision-recall tradeoffs, except on very
long dependencies, where fMST maintains a relatively high precision at the cost
of recall, and MST does the inverse.

7.3 Dependency Type

In this section we analyze the performance of our parsers by dependency type. In
particular, we partition the dependency edges in the test sets according to their
gold standard label, and subsequently obtain unlabeled attachment scores for
each of these bins. Tables 7.3 through 7.8 contain results for most dependency
types found in the target language treebanks.!. We focus our discussion on three
major dependency types — subjects, objects, and modifiers — which manifest
themselves in one or more edge labels, depending on the annotation scheme.

7.3.1 Subjects

All treebanks considered here have a single label for subjects proper: su in the
Dutch Alpino Treebank, subj in the Italian TUT, and sb in the German Tiger
treebank. In addition, the label sbp is employed in the German treebank to
mark subjects in passive constructions. The Dutch treebank uses the label sup
to distinguish provisional subjects, that is, expletives in subject position.

The results for subject dependencies are mixed. While the Dutch fMalt
parsers projected from English outperform the tree-based Malt system on both

1We omit some highly infrequent labels.

120

F-score
40 50 60 70 80 90

30

F-score
40 50 60 70 80 90

30

F-score
40 50 60 70 80 90

30

Binned dependency length (nl)

CHAPTER 7. ERROR ANALYSIS

Precision-recall tradeoff (nl)

o
s
- fMST (de) - fMST (de)
MST (de) ** MST (de) ™
-~ MST (en) -~ fMST (en)
——- MST (en) * ——- MST (en)*
2 - o
&« T8
AN 8 * 4
Sr 2 84 N
N [i
SN ¥ & !
P
2
<
o1
o 2
A 36
+ >6
o
&
T T T T T T T T T
2 3 4 5 20 40 60 80 100
Recall
Precision-recall tradeoff (it)
o
s
- fMST (de) ** - fMST (de) **
MST (de) MST (de)
- fMST (en) -~ fMST (en)
- MST (en) ——- MST (en)
g
8
|
c Ry
S 2
2 o | o
s 8
2 s biie
«D/V
L 1
B8 5
S N I
!
o o1
o 2
+ 3 A 36
+ >6
o
&
T T T T T T T T T
2 3 4 5 20 40 60 80 100
bin Recall
Binned dependency length (de) Precision-recall tradeoff (de)
o
s
g
8
-8
s P
8-) s rE
TR 2 o | +
—_—]
o
2
<
o1
o 2
A 36
+ >6
o
&
T T T T T T T T T
2 3 4 5 20 40 60 80 100
bin Recall

Figure 7.2: F-score and precision-recall tradeoff for dependencies of length 1
(bin 1, O), 2 (bin 2, o), 3-6 (bin 3, A) and longer than 6 (bin 4, +) for MST
and fMST parsers.

7.3. DEPENDENCY TYPE 121

app rel body cnj crd det hdf

en-nl Malt 43.33 61.20 60.70 65.58 57.30 93.27 30.00
fMalt 41.73 80.80 61.95 63.81 59.19 93.93 26.67

de-nl Malt 52.80 78.33 - 55.15 64.42 91.30 6.67
fMalt 54.13 76.67 - 55.22 64.52 91.39 33.33

1d me mod obcomp objl obj2 pc

en-nl Malt 67.39 20.00 67.96 35.56 82.10 72.50 56.83
fMalt 65.22 66.67 69.70 44.44 83.04 67.50 56.63

de-nl Malt 59.13 23.33 65.49 21.11 81.90 43.75 64.36
fMalt 60.87 40.00 64.03 12.22 79.78 56.25 69.50

pobjl pred se su sup SVp ve

en-nl Malt 50.00 69.70 33.33 74.80 97.50 53.57 79.96
fMalt 45.00 72.53 86.67 76.80 100.00 50.00 79.65

de-nl Malt 50.00 75.15 66.67 79.25 100.00 59.52 82.44
fMalt 50.00 68.18 96.67 77.88 95.00 63.33 82.29

cmp

en-nl Malt -
fMalt -

de-nl Malt 85.25
fMalt 86.75

Table 7.3: Dutch (f)Malt parsing accuracy (unlabeled) across gold standard
dependency types. rel is the label we introduced in the conversion step to label
the dependency from the subordinated verb in a relative clause to the relative
pronoun.

appo- arg coord empty- extra- ind- ind-

sition compl obj compl obj

en-it Malt 37.76 81.43 43.98 55.56 100.00 74.16 61.29
fMalt 36.63 81.01 4143 59.44 100.00 70.07 64.84

de-it Malt 29.49 64.26 24.59 54.44 100.00 70.42 37.42
fMalt 29.29 64.81 28.28 60.56 100.00 69.58 42.58

obj pred rmod rmod+ subj visi-

relcl tor

en-it Malt 66.67 71.50 68.44 53.79 56.39 48.33
fMalt 67.91 66.54 69.50 57.06 55.45 40.00
de-it Malt 48.31 67.38 47.45 36.86 42.49 29.17
fMalt 49.34 71.78 48.49 36.93 43.76 30.83

Table 7.4: Italian (f)Malt parsing accuracy (unlabeled) across gold standard
dependency types.

122

en-de

en-de

en-de

en-de

Malt
fMalt

Malt
fMalt

Malt
fMalt

Malt
fMalt

ag
9.33
13.87

cve
100.00
95.00

oa
59.56
64.37

pnc
1.04
1.49

app
16.67
10.95

da
46.82
58.18

oc
64.89
59.25

re
29.72
32.22

cc
0.00
0.00

€p
92.73
91.82

op
49.57
62.61

re
0.77
7.69

CHAPTER 7. ERROR ANALYSIS

cd
64.61
66.48

43.92
48.30

pd
78.71
73.23

sb
66.96
65.92

cj
64.07
66.63

ng
37.73
35.45

pg
90.91

90.91

sbp
29.00
30.00

cm
8.89
7.78

nk
76.80
76.74

ph
100.00
100.00

SVp
49.68
33.23

cp

nme
82.08
80.83

pm
1.11
2.22

Vo
100.00
100.00

Table 7.5: German (f)Malt parsing accuracy (unlabeled) across gold standard
dependency types.

en-nl

de-nl

en-nl

de-nl

en-nl

de-nl

en-nl

de-nl

MST
fMST
MST
fMST

MST
fMST
MST
fMST

MST
fMST
MST
fMST

MST
fMST
MST
fMST

app
39.62
40.53
47.47
43.47

1d
72.67
80.00
66.96
60.87

pobjl
50.00
20.00
50.00
0.00

cmp

80.50
74.00

rel
74.86
72.80
76.67
54.44

33.33
66.67
20.00
66.67

pred
75.47
72.73
82.42
70.91

body
52.90
47.97

mod
67.68
68.76
62.65
50.17

se
28.57
33.33
33.33
100.00

cnj
62.89
58.35
57.22
48.21

obcomp
36.51
22.22
0.00
0.00

su
81.42
80.78
80.07
74.25

crd det
57.41 93.65
59.91 93.82
65.71 89.99
57.14 87.46
objl obj2
80.19 62.50
76.84 67.50
81.82 75.00
76.89 47.50
sup SVp
89.29 60.54
80.00 64.29
100.00 75.24
95.00 56.67

hdf
0.00
0.00
26.67
0.00

pc
64.78
67.13
68.32
65.74

ve
82.78
80.23
82.48
81.24

Table 7.6: Dutch (f)MST parsing accuracy (unlabeled) across gold standard
dependency types.

7.3. DEPENDENCY TYPE

en-it

de-it

en-it

de-it

MST
fMST
MST
fMST

MST
fMST
MST
fMST

appo-
sition
28.98
37.96
18.98
15.10

obj

67.35
66.46
50.21

53.97

arg

79.74
82.98
62.57
62.71

pred

58.50
67.85
62.24
72.90

coord

41.43
39.90
20.59

24.13

rmod

66.76
62.28
46.20
45.58

empty-
compl
47.78
36.67
54.44
44.44

rmod—+
relcl
47.45
40.00
24.18
24.05

extra-
obj
0.00
0.00
100.00
60.00

subj

59.36
46.48
45.49

46.48

ind-
compl
69.11
81.84
70.52
74.12

visi-
tor
31.67
38.33
31.67
40.00

123

ind-
obj
61.94
58.06
41.94
41.94

Table 7.7: Ttalian (f)MST parsing accuracy (unlabeled) across gold standard
dependency types.

en-de

en-de

en-de

en-de

MST
fMST

MST
fMST

MST
fMST

MST
fMST

ag
12.27
21.07

cve
90.00
100.00

oa
59.61
56.50

pnc
1.19
0.00

app
20.95

7.62

da
48.18
35.45

oc
69.57
67.21

rc
29.44
26.11

cc cd
0.00 64.06
0.00 66.56
ep mo
100.00 49.33
92.73 49.11
op pd
60.43 79.35
63.91 81.29
re sb
0.00 71.56
3.08 70.99

cj
64.42
68.37

ng
33.18
36.36

pg
84.55

77.27

sbp
34.00
46.00

cm
0.00
0.00

nk
77.88
78.99

ph
100.00
100.00

SVD
49.68
50.32

Cp

nmec
64.17
90.83

pm
5.93
4.44

Vo
100.00
100.00

Table 7.8: German (f)MST parsing accuracy (unlabeled) across gold standard
dependency types.

124 CHAPTER 7. ERROR ANALYSIS

regular and provisional subjects, the opposite is true for parsers projected from
German (Table 7.3). If we look at the corresponding (f)MST parsers in Ta-
ble 7.6, we find that the original system outperforms fMST across both source
languages, for regular as well as provisional subjects.

The results for Italian in Tables 7.4 and 7.7 are more clear-cut: the original
Malt and MST parsers prevail when they are trained on dependencies projected
from English, while the fragment parsers are superior in retrieving subject de-
pendencies when the training examples are projected from German.

Finally, Tables 7.5 and 7.8 show that both fragment parsers outperform their
tree-based counterparts on sbp dependencies, but not on regular subjects (sb).

7.3.2 Objects

Object dependencies constitute a much more diverse dependency type than
subjects. We consider direct and indirect (nominal) objects, verbal and clausal
object complements, and prepositional objects. In the treebanks, the corre-
sponding labels are the following. The Dutch treebank uses objl and obj2 for
direct and indirect objects, respectively. Verbal complements are denoted as vc,
and prepositional objects bear the label pc. We will further consider the labels
pobjl (provisional direct objects) and Id (locative and directional complements).
The Italian treebank provides the labels obj, indobj and indcompl for direct and
indirect objects and verbal complements, respectively. Moreover, there is a dis-
tinguished label extraobj for duplicated objects. In the German annotations, we
encounter oa (direct objects), da (indirect objects), oc (clausal objects), and op
(prepositional objects).

7.3.3 Modifiers

In order to assess the accuracy of modifier attachments, we consider the la-
bels mod (Alpino), mo? (Tiger), and rmod (TUT). We further consider relative
clauses, which have separate labels in the Italian (rmod+relcl) and German (rc)
treebanks.

The Dutch fMalt and fMST parsers projected from English recover modifier
dependencies with almost 70% UAS. In the German—Dutch setting, however,
the tree-based parsers outperform the fragment parsers, and the attachment
score is generally lower (Malt: 65.49%, MST: 62.65%).

Turning to the Italian parsers (Tables 7.4 and 7.7) we find that the fMalt
systems outperform the tree-oriented Malt parsers across the board on modifier
dependencies, including relative clauses. In the graph-based paradigm, however,
the opposite is the case: the original MST parser consistently outperforms fMST
on those dependencies (again including relative clause attachments). We find
the same pattern among the German systems: fMalt outperforms Malt, while
fMST lags behind MST (although only by A0.22 UAS on mo-dependencies).

2The figures reported for mo in Tables 7.5 and 7.8 summarize the performance on the
original labels mo and mnr.

7.4. CONCRETE EXAMPLES 125

... that will come up on Thursday and which I will then raise again

Figure 7.3: English—-German sentence pair with automatic word alignment and
projected dependency structure. Solid arcs indicate edges supported bidirec-
tionally, dotted arcs are licensed under fallback projection

7.4 Concrete Examples

In this section we look at two example sentences in detail. Our first example is
a sentence from the German section of the Europarl corpus, while the second
example is from the Italian test set, that is, from the TUT treebank. For each of
these sentences, we will compare the gold standard parse tree to the dependency
structures predicted by our parsers.

Let us begin with the German example. A gloss for the sentence is given
in (7.1); for reasons of space and ease of readability, we will omit parts of the
sentence in the discussion that follows.

(7.1) Meine Frage betrifft — eine Angelegenheit, die am
my question concerns a matter which on
Donnerstag zur Sprache kommen wird und auf die ich
Thursday to the speech come will and to which I
dann erneut wverweisen werde.
then again refer will

‘My question relates to something that will come up on Thursday and
which I will then raise again.’

Since the example is taken from Europarl, we also have access to the English
translation and can thus examine the dependency structure projected onto the
German sentence on the basis of the automatic Giza++ word alignment. The
aligned sentence pair is depicted in Figure 7.3. We show the English sentence
above, with the dependency graph as predicted by the English source parser
(cf. Section 3.3). The dependency edges shown below the German sentence in
the lower half of Figure 7.3 are those projected from English. Solid arcs denote
edges supported under the intersection of the two alignment directions — that
is, strict as well as partial correspondence projection — whereas dotted edges are
licensed only under constrained fallback projection.

126 CHAPTER 7. ERROR ANALYSIS

..., die am/]i?). zur Spr. kommen wird und auf die ich dann erneut verw. werde.

Figure 7.4: Gold standard parse for the German example (transformed to PTB
conventions).

We first note that the analysis proposed by the English source parser is not
complete: the relative pronoun which is left unattached. This directly leads to a
missing attachment of the corresponding German pronoun die, despite the fact
that Giza actually recovered the correct alignment between the two words. The
word alignment identifies many of the correspondences, but not all of them. The
bidirectional (strong) links are naturally sparse, but those that are posited are
also correct, except the alignment of that with the comma. The unidirectional
(weak) alignment links boost the coverage to some extent, but also introduce
considerable noise. For instance, while the particle up is correctly aligned to
the German verb kommen? and the correspondence between the prepositions on
and am is identified, the unidirectional alignment postulates a second, erroneous
alignment of on with the preposition auf, and further suggests that raise in the
English sentence is equivalent to the German prepositional phrase zur Sprache.
The latter might be the case in a different context, but is not correct in the
present sentence.

We can now compare the analysis projected to the German sentence via this
word alignment to the desired dependency structure for the sentence, shown in
Figure 7.4. Some arcs are missing in the projected dependencies due to missing
alignments. This concerns the attachment of both occurrences of the relative
pronoun die. Second, we find that five out of the six edges established under
strict projection (solid arcs in Figure 7.3) are in accordance with the desired
tree. Only the attachment of dann to the auxiliary (werde) deviates from the
“gold” analysis, which stipulates an attachment to the main verb verweisen.
Turning to the fallback projections, we are faced with quite a few incorrect
edges, namely three out of five. All of these errors are due to the misalignments
discussed above: the word auf is mistakenly attached to kommen because of
the uncertain alignments involving the English on. Both zur and Sprache are
attached to werde because they are aligned with raise, the projected head of
which is werde.

When we evaluate the projected trees — one obtained under strict, the other
under fallback projection — according to the evaluation metrics Py and Ry
introduced in Chapter 3 (page 48), they both achieve scores of zero in the
tree-oriented paradigm, since they are discarded due to incompleteness. Un-

31t is of course arguable whether such heterogenous alignment links — between a parti-
cle/preposition and a verb in this case — are indeed useful for a task like dependency parsing
when the syntactic properties of the aligned categories differ so obviously.

7.4. CONCRETE EXAMPLES 127

e

., die am Do. zur Spr. kommen wird und auf die ich dann erneut verw. werde.

Wi~

., die am Do. zur Spr. kommen wird und auf die ich dann erneut verw. werde.

SN e~

., die am Do. zur Spr. kommen wird und auf die ich dann erneut verw. werde.

Figure 7.5: Predicted parse trees for the German example sentence: a. Malt
(strict trees), b. Malt (fallback trees), c. fMalt.

der partial correspondence projection (considering only bidirectionally projected
edges), we have Py = 8 =85.7%, Ry = £ = 40.0% and thus Fy = 54.6%."
Now that we have discussed the gold and projected dependencies for the
sentence, we contrast these with the dependency structures predicted by our
projected parsers. The predictions from the Malt and fMalt parsers are shown
in Figure 7.5. We first note that every single one of these trees looks by far more
reasonable than the projected structure from Figure 7.3, which confirms that, at
least to some degree, the multitude of (potentially fragmented, potentially noisy)
projected annotations enables the parsers to construct a model of the target
language which assigns mostly complete dependency trees to new sentences.®
Figure 7.5a shows the prediction of the original Malt parser trained on
strictly projected trees. Comparison with the “gold” parse in Figure 7.4 re-

4If we were to also consider the weakly projected edges in partial correspondence projection
— thus abandoning the high-precision filter imposed by bidirectionality — we could achieve an
Fy score of 64.3% brought about by an increased recall of Ry = % = 60.0%, but at the cost
of severely impaired precision Py = 1% = 69.2.

5At this point we should point out that the projected annotations depicted in Figure 7.3
are not actually part of the training data of any of the parsers. Since the projections do not
form a complete tree, they are discarded by both of the tree-oriented projection algorithms.
Partial correspondence projection, when restricted to bidirectional alignments as we do here,
also dismisses the analysis due to the high degree of fragmentation: eight fragments, with
1.9 words on average, are too much to pass the filter we determined as appropriate during
parameter tuning in Chapter 6.

128 CHAPTER 7. ERROR ANALYSIS

®

, die am/]s?). zur Spr. kommen wird und auf die ich dann erneut verw. werde.

AN

, die am Do zur Spr. kommen wird und auf die 1ch dann erneut verw. werde.

S

, die am Do zur Spr. kommen wird und auf die ich dann erneut verw. werde.

o

Figure 7.6: Predicted parse trees for German example sentence: a. MST (strict
trees), b. MST (fallback trees), c. fMST.

veals that five out of the 15 proposed attachments are incorrect. Two of these
five involve the attachment of modifiers (dann and erneut), which should both
modify the main verb verweisen. Furthermore, the second occurrence of the
relative pronoun die should be a dependent of auf, auf in turn the prepositional
object of verweisen. Finally, the parser did not correctly identify the coordi-
nate structure (... wird und . .. werde), but rather attached the second conjunct
directly to the first. The analysis proposed for the first conjunct is completely
correct.

The Malt parser trained on fallback projections (Figure 7.5b) produces six
erroneous attachments, three in each conjunct. The prepositions am and zur are
incorrectly attached to the auxiliary, and so is the noun Sprache, which should
be a dependent of zur. This parser also fails when it comes to attaching auf,
die and dann. In contrast to the bidirectionally projected parser, however, the
fallback-based parser successfully identifies (i) the coordination of the auxiliaries
and (ii) verweisen as the head of erneut.

In Figure 7.5¢ we finally see the analysis proposed by the fMalt fragment
parser. It leaves one word unattached (the relative pronoun die, which is at-
tached wrongly by the two other parsers) and produces two errors in identifying
the head of auf and dann, respectively.

We conclude the discussion of the German example by comparing the nu-
merical scores achieved by the respective analyses. Malt trained on strict
trees (Figure 7.5a) correctly predicts the heads of ten out of 15 words, thus

7.4. CONCRETE EXAMPLES 129

[.]

Figure 7.7: Gold standard parse for Italian example (transformed to Tiger con-
ventions).

Py = Ry = 12 = 66.7%. The Malt parser based on fallback trees (Figure 7.5b)
makes one more error, hence Py = Ry = % = 60.0%. Finally, the analysis
proposed by fMalt for this sentence leaves one word unattached and makes two
errors: Py = 12, Ry = 12 and Fy = 82.8%.

For the sake of completeness we also show the corresponding analyses pre-
dicted by the (f)MST parsers in Figure 7.6. These analyses are, however, some-
what disappointing, and neither approaches the quality of the Malt-predicted
dependencies. The Italian example we will discuss now illustrates more reason-
able predictions by the MST parsers.

Figure 7.7 shows the gold standard parse tree for our second example, which
is part of the test set for our Italian parsers, taken from the TUT treebank. The

sentence is glossed® in (7.2).

(7.2) Valona ¢é in mano alla folla, fuori da ogni controllo,
Valona is in hand of the crowd, outside of every control,
la polizia & scomparsa, |...].
the police is passing
‘Valona is in the hands of the crowds, out of control, the police are
vanquished.’

We show the predicted trees of the MST and fMST parsers in Figure 7.8. None
of the parsers correctly identifies the coordination of the first and second oc-
currence of é. The MST parser trained on strict trees (Figure 7.8a) makes six
mistakes altogether. In particular, it attaches in to alla rather than to ¢é, and the
prepositions alla and da to a verb in a later part of the sentence not shown here.”
Furthermore, fuori is analyzed as a dependent rather than the head of da, which
is also postulated to be the head of polizia. The latter is in turn mistaken as the
head of the auxiliary ¢. These six errors lead to Py = Ry = Fy = 141726 = 57.1%.

Turning to the analysis of the fallback parser in Figure 7.8b we observe nine

errors overall. Six of these errors involve the participle scomparsa, which is

6The gloss and translation are constructed on the basis of the automatic translation ob-
tained using babelfish.yahoo.com since the author of this thesis does not speak Italian.

"The entire sentence reads Valona é in mano alla folla, fuori da ogni controllo, la polizia
e scomparsa, rintanata nelle caserme. The attachment of alla and da in Figure 7.8a points
to rintanata.

130 CHAPTER 7. ERROR ANALYSIS

Y WY
Valona & in@lo alla folla, fuori da ogni controllo, la polizia ‘e@arsa [..]

Valgn-a\‘e(i\rvl mano alla folla, fuori da ogni controllo, la polizia & scomparsa |...].

R AN TON N WY)

Val in' mano alla folla, fuori da ogni controllo, 1av./p§1;;i?é@rzg)arsa [..]

Figure 7.8: Predicted parse trees for Italian example sentence: a. MST (strict
trees), b. MST (fallback trees), c. fMST.

the dependent of ¢ according to the gold standard annotations (Figure 7.7),
but plays the role of the matrix predicate (root node) in the dependency tree
suggested by the fallback parser. All of the proposed dependents of scomparsa
— la, polizia, da, as well as both occurrences of é — are wrongly identified. The
erroneous attachments of alla, folla and fuori account for the remaining three
errors, thus Py = Ry = Fy = 14119 = 35.7%.

The output of fMST on this example is shown in Figure 7.8c. It attaches 11
out of the 14 words correctly, thus achieving Py = Ry = Fy = 1 = 78.6%. Like
the two MST parsers, fMST fails at identifying fuori as the head of the adverbial
modifier phrase fuori da ogni controllo, thereby introducing wrong attachments
for fuori and da. The third error can be found in the attachment of ¢ in the
second conjunct, which should be attached to the first occurrence of é.

The outputs of the Malt and fMalt parsers for the Italian example are given
in Figure 7.9. There is considerable overlap between the errors made by the
(f)MST parsers and their (f)Malt counterparts, and they achieve rather similar
scores. The scores for both examples and all parsers are summarized in Table
7.9. For the German example (Table 7.9a.) we also repeat the scores obtained

with the direct projections (cf. Figure 7.3).

7.4. CONCRETE EXAMPLES 131

Y
Valona € in mano alla folla, fuori da ogni controllo, lavu/pplizia ‘e@arsa [...].

N/

Valona ¢ in mano alla folla, fuori da ogni controllo, la polizia & scomparsa |...].

C. r\m /\vmhﬁ\v

Valona ¢ in mano alla folla, fuori da ogni controllo, la polizia & scomparsa [. ..].

Figure 7.9: Predicted parse trees for Italian example sentence: a. Malt (strict
trees), b. Malt (fallback trees), c. fMalt.

a. German example b. Italian example

Py Ry Fy Py Ry Fy
projected projected — - -
trees (strict) 0.0 0.0 0.0 trees (strict) - - -
trees (fb.) 00 0.0 0.0 trees (fb.) - - -
frags 85.7 40.0 54.6 frags - - -
predicted predicted
Malt (strict) 66.7 66.7 66.7 Malt (strict) 57.1 57.1 57.1
Malt (fb.) 60.0 60.0 60.0 Malt (fb.) 714 714 714
fMalt 85.7 80.0 82.8 fMalt 78.6 78.6 78.6
MST (strict) 53.3 53.3 53.3 MST (strict) 57.1 57.1 57.1
MST (fb.) 66.7 66.7 66.7 MST (fb.) 35.7 35.7 35.7
fMST 42,9 40.0 414 fMST 78.6 786 78.6

Table 7.9: Precision and recall scores achieved by the parsers on the German
example (a) and the Italian example (b).

132 CHAPTER 7. ERROR ANALYSIS

7.5 Summary and Discussion

In this chapter we have provided a detailed error analysis for our parsers, namely
by taking into account sentence length, dependency length, and gold standard
dependency type.

The analysis by sentence length revealed that the tree-oriented parsers (Malt
and MST) tend to perform better than the fragment parsers on short sentences,
while the fragment parsers outperform the tree-oriented parsers on longer sen-
tences. We observed a similar pattern for the impact of dependency length:
fMalt and to some degree fMST are clearly superior on longer dependencies.
Moreover, the fragment parsers often strike a better balance between precision
and recall.

Our evaluation relative to gold standard dependency labels did not yield con-
clusive results. We suspect that this is due to the absence of a label mapping.
Since we do not attempt to reconcile the projected labels — that is, the labels
posited by the source parser, for the source language dependencies — with the
labels that occur in the target language test data, the labels used to group the
dependencies for the evaluation by dependency type do not necessarily coincide
with a well-defined label (set) in the inventory of the projected parser. Fur-
thermore, cross-lingual non-parallelism can lead to situations during projection
where the projected attachment may be correct, but the dependency type from
the source language parse is no longer appropriate in the target language. This
affects the semantics of the dependency types in the projected annotations and
makes a mapping between label inventories even harder. Nevertheless, or for
exactly this reason, the induction of a consistent labeling scheme for the target
language — be it (weakly) supervised, unsupervised or even devised manually —
should bear potential for improvement of the parsers.

Chapter 8

Conclusions

This thesis deals with three broad topics. The first is cross-lingual projection
of annotations. Annotation projection is a resource-lean way of attaining au-
tomatic annotations for languages with limited resource coverage. The only
resources required are a parallel corpus of the source language and the target
language, and a tool which can reliably produce the desired annotations for the
source language. The annotations in the source language portion of the parallel
corpus are then transferred (projected) onto the target language using the word
alignment between corresponding words in the bitexts. This word alignment
can be obtained automatically with tools such as Giza++ (Och and Ney, 2003).

In this thesis we were concerned with the projection of syntactic dependency
relations as produced by off-the-shelf data-driven dependency parsers (Nivre
et al., 2006). We used the Europarl parallel corpus of European Parliament
proceedings (Koehn, 2005), and in particular considered English and German
as alternative source languages, and Dutch, Italian and German as target lan-
guages, thus dealing with the language pairs English-Dutch, German-Dutch,
English-Ttalian, German—Italian and English—-German.

Three error sources can compromise the quality of the projected target lan-
guage annotations. First, the source language labeler whose annotations are
the basis for projection may introduce annotation mistakes. The source label-
ers are parsers in our case, and although both source parsers achieve unlabeled
attachment scores of 92% (English) and 87% (German) on in-domain test sets,
we have also seen that their performance drops somewhat on out-of-domain
sentences such as those in the Europarl corpus: the German source parser ex-
periences a loss of 3.5 percentage points (unlabeled). A second source of error
is the non-literalness of the translations, brought about by stylistic considera-
tions of the interpreter on the one hand, and true cross-lingual divergencies on
the other, making a fully literal word-by-word translation undesirable or even
impossible. These divergences from parallelism in turn contribute to the third
error source, the automatic word alignment. Especially the intersected variant
which is typically used for annotation projection tasks is well known to exhibit
high precision at the expense of recall, and while content words are aligned with
relative accuracy, the alignment of function words is often erroneous or missing.

All three of these error sources can cause noise in the projected annotations.
Moreover, they can lead to the projected annotations being incomplete. In the
case of parsing, where the annotations are structured and built of successively

133

134 CHAPTER 8. CONCLUSIONS

larger subtrees, this problem needs to be addressed if the target language anno-
tations are to constitute the training data for a stand-alone labeler for the target
language. A common solution to the issue of noise and gaps in the projected
annotations is the definition of more or less aggressive filters (Yarowsky and
Ngai, 2001; Hwa et al., 2005, among others). In this thesis we have investigated
two such filters, both of which discard incomplete trees. The first, which we call
strict projection, considers only those edges for which both the head and the
dependent have a strongly (i.e., bidirectionally) aligned equivalent in the target
language. The second, constrained fallback projection, further considers weaker
(unidirectional) alignment links, but also discards the resulting structure unless
it forms a tree. We have shown that the former projection algorithm leads to
prohibitive data loss, outputting only very short, simplistic, repetitive sentences.
The latter, on the other hand, introduces lots of noise in the output because
the unidirectional alignment links are notoriously unreliable. Our preferred so-
lution is therefore a compromise between strict and fallback projection. In what
we call partial correspondence projection, we consider only bidirectionally sup-
ported alignment links, but do not enforce the completeness constraint. That
is, the output of partial correspondence projection is potentially fragmented.

This leads us to the second topic addressed in this dissertation: the training
of data-driven dependency parsers on fragmented training data. This problem
has been addressed in the past by means of techniques from unsupervised and
semi-supervised machine learning (cf. Chapter 2). By contrast, our approach
essentially turns the task into an instance of supervised parsing by simply mask-
ing the fragmentation from the learning component of the parser. We have
shown how two specific dependency parsers can be modified to achieve this:
the transition-based Malt parser (Nivre et al., 2006) and the graph-based MST
parser (McDonald et al., 2005).

The transition-based parser consists of a transition system which defines the
set of legitimate parser actions given the current state of the parser, much like a
shift-reduce parser. During training, an oracle reconstructs the correct sequence
of transitions for each training example, and each pair of intermediate parser
state and subsequent parser action then constitutes a training instance for the
data-driven component of the parser: a classifier which determines locally op-
timal parser actions. Our fragment-enhanced variant of the Malt parser, which
we call fMalt, handles fragments as follows. The oracle performs a modified
RIGHT-ARC action when it encounters a fragment root. This modified action
does not actually add a dependency edge which attaches the fragment, but it
is crucial in order to advance the state of the parser and allow it to process the
rest of the input. Moreover, the fact that no edge is added for the fragment
root also prevents misleading information to leak into the feature representation
of the parser state, which may reference the dependency structure built so far.
Finally, the modified RIGHT-ARC actions are of course withheld from the ma-
chine learning component. The latter is therefore never aware of the fact that
the training tree may have been fragmented, but instead learns from whatever
informative structure is present.

Unlike the Malt parser, the graph-based MST parser determines the most
likely dependency tree for a given sentence by summing over the scores of com-
ponent edges. These edge scores are adjusted during training by solving margin
constraints which separate the gold standard training tree from (a subset of)
the suboptimal trees for the sentence which are currently ranked highest. In

8.1. SO, DOES IT HAVE TO BE TREES? 135

order to train such a parser with fragmented training data, our modified variant
fMST scores only those edges that are not fragment roots in the training ex-
ample, and simultaneously relaxes the loss function which triggers the relevant
margin constraints so that the deviation of a proposed tree from the training
tree does not incur any loss as long as the differences pertain to the attachment
of a fragment root.

In our experiments we trained these fragment parsers (fMalt and fMST) on
the annotations previously obtained by means of annotation projection. That
is, the parsers were faced with highly fragmented data (although constrained
in most cases to contain at least 5 words per fragment). Our experimental re-
sults show that the fragment parsers perform roughly on a par with the original
parsers trained on only conservatively projected, complete trees. A more de-
tailed error analysis further revealed that the fragment parsers are superior on
longer sentences as well as on longer dependencies. This is a natural consequence
of the more diverse makeup of their training data, but it also confirms that the
parsers are indeed capable of exploiting the additional information contained in
the fragments.

Finally, the third topic we discussed in this thesis is the evaluation of projec-
tion-based systems. This includes the evaluation of the projected annotations
directly, as well as the evaluation of the parsers trained on projected annotations.
Evaluation against existing gold standards is problematic in two respects. First,
the annotations which are projected onto the target sentences from the source
language typically do not follow the same guidelines that were used to construct
the target language gold standard. This requires a conversion between the two
annotation schemes, which is error prone. We argue in this thesis that the
most convenient venue for this conversion is the gold standard test set. That
is, the gold annotations, which follow the target language annotation scheme,
are converted to the source language annotation scheme. The advantage of
this conversion direction is that the training and application of the parser (or
more generally, labeling tool) are ultimately independent of the existence of
designated annotation guidelines for the target language, and the conversion
need only be performed when the system is to be evaluated. Furthermore, the
venue as such (a gold standard test set) ideally prevents the introduction of
annotation errors due to misguided conversion steps.

The second aspect which complicates the evaluation of projection-based sys-
tems is the fact that the training data need to be paired with a translation so
that projection can be performed in the first place. The standard treebanks
from which test sets are taken are usually monolingual. This shortage of paral-
lel test data usually precludes the application of cross-validation. We therefore
did not employ cross-validation in this dissertation, but instead trained each of
our parser ten (five) times, each time drawing a random sample from the pool
of all projected annotations. The arrays of ten results were then used to test
for significant differences between the systems, by means of the t-test.

8.1 So, does it have to be trees?

Based on the empirical evidence presented in this dissertation, the answer would
be: It doesn’t hurt. But we can add, based on the same evidence, that parsers
trained on tree fragments can achieve the same and sometimes even a higher level

136 CHAPTER 8. CONCLUSIONS

of accuracy than their tree-based counterparts trained on aggressively filtered
examples. However, the success of this method hinges on the choice of the
source language, the quality of the word alignment, and, as we have shown in
Chapter 5, on the (source language) annotation scheme. Note, however, that the
same is true for any projected parsers and does not apply to fragment parsers
specifically.

Our experiment with artificially fragmented but otherwise gold standard
training data (cf. Figure 6.4 on page 105) indicates that fragmentation as such,
in an environment with little to no noise, is handled well by our fragment parsers.
For instance, even with 50% of all edges removed from the gold standard trees,
the fMST parser projected from English to Dutch suffers a decrease of less
than 3.5 percentage points in unlabeled attachment score, from 84.1% to 81.7%
UAS. These results suggest that fMalt and maybe even more so fMST could be
highly useful to process genuinely partial annotations, which brings us to future
directions.

8.2 Future Directions

As mentioned above, our fragment parsers could turn out to be a valuable tool
for genuinely partial annotations, that is, annotations which are largely noise-
free, but where some parts of the dependency structure are left unspecified.
This could be useful for problematic or underspecified dependencies, or even for
dependencies which are already well represented in the training set, for instance
the annotation of nominal and prepositional phrases: given a treebank which
contains ample examples of this kind, the annotation of more NPs or PPs will
most likely not improve a parser by much; instead, annotators could focus their
attention on more fruitful phenomena such as the attachment of the PP, the
core structure of coordinations, or the markup of long distance dependencies,
etc. Using a parser like fMalt or fMST, the remainder of the sentence could
simply remain unanalyzed, and the parser could still benefit from the partial
annotations provided. In a similar vein, the parsers could be used for targeted
domain adaptation.

Some questions remain of course with respect to the fragment parsers them-
selves. In this dissertation we considered various fragmentation constraints,
that is, constraints on the degree of fragmentation which is acceptable for a de-
pendency graph to be included in the training set for the parser. However, we
have certainly not explored all possible kinds of constraints. For a more elab-
orate tweaking of the fragment size, for instance, one could devise POS-based
heuristics which allow missing edges in constellations which are typical for word
alignment sparsity (conjunctions, pronouns) or cross-language non-parallelism
(prepositions).

Finally, it would also be interesting to conduct a more thorough comparison —
both theoretical and empirical — of our fragment parsers with related approaches
such as the EM-based fragment treatment of Smith and Eisner (2009) and also
with more recent work such as the parsers of Naseem et al. (2010), Sggaard
(2011), or McDonald et al. (2011).

Appendix A

Evaluation of
Fragmentation Constraints

137

138APPENDIX A. EVALUATION OF FRAGMENTATION CONSTRAINTS

L, W>1 W>4 W>5 W2>6
en: T<2 - 69.75 70.04 70.24
T<3 - 70.18 70.23 70.16
T7<4 - - 69.24 69.69
T<5 69.46

W/T>2 6824 6843 68.28 68.38
W/T >3 69.81 69.76 70.14 69.47
W/T>4 7032 -~ 70.16 70.22
W/T>5 17046 - -
MAX >2 6742 6715 6720 67.42
MAX >3 6813 67.83 67.08 68.17

MAX >4 68.66 - 68.11 68.03
MAX >5 68.60 - - 68.39

de: T<2 - 67.31 67.05 67.32
T<3 - 66.94 66.80 67.02

T<4 - - 66.65 66.56

T<5 66.50

W/T>2 6564 6505 6524 65.31
W/T >3 6682 66.66 6644 66.75
W/T >4 67.04 - 66.82 67.13
W/T>5 66.69 ~ -
MAX >2 6402 6447 6407 64.43
MAX >3 6502 64.60 6453 64.42
MAX >4 64.72 - 64.64 64.89
MAX >5 65.45 - - 64.64

Table A.1: Performance of different fragmentation constraints for Dutch fMalt
parsers. Boldface indicates equivalence class of significantly best systems (p <
0.05).

L, W>1 W>4 W>5 W=>6
en: r<2 - 64.75 64.92 64.83
T<3 - 64.49 64.71

T<4 - - 64.20 64.45

T<5 - - - 64.07

W/T >2 6247 62.63 6277 63.29

W/T >3 6358 63.85 6396 63.83

W/T >4 63.87 - 64.03 64.07
W/T>5 64.81 - -~ 64.56

MAX >2 6294 6287 6270 62.65
MAX >3 6326 6280 6242 63.02
MAX >4 62.86 - 62.99 62.99
MAX >5 63.16 - - 63.11

de: r<2 - 53.65 53.383 53.75
T<3 - 5353 53.46 53.30

T<4 - - 5322 53.84

T<5 - - - 53.31

W/T>2 5214 5200 5215 52.14

W/T >3 5347 53.28 52.88 52.80

W/T >4 54.18 - 53.78 53.64

W/T > 5 - - 54.39

MAX >2 51.00 50.84 50.90 51.14
MAX >3 5076 50.70 50.75 51.54
MAX >4 51.20 - 51.69 51.25
MAX >5 5135 - - 51.60

139

Table A.2: Performance of different fragmentation constraints for Italian fMalt

parsers.

Ls W>1 W>4 W>5 W2>6
en: T<2 - 60.56 60.81 60.74
T<3 - 60.92 60.68 60.56
T<4 - - 60.61
T<5 = = = 60.71
W/T>2 6035 5947 59.89 59.65
W/T >3 6023 60.13 60.51 60.22
W/T >4 60.79 - 60.57 60.70
W/T>5 60.68 - - 60.56
MAX >2 5863 29.61 5520 57.36
MAX >3 59.68 30.75 30.89 30.70
MAX >4 59.50 - 60.02 59.95
MAX >5 59.66 - - 59.30

Table A.3: Performance of different fragmentation constraints for German fMalt

parsers.

Appendix B

Analysis by Dependency
Length

141

142 APPENDIX B. ANALYSIS BY DEPENDENCY LENGTH

F-score
root 1 2 3-6 >7

en-nl trees 7395 87.28 75.24 65.75 54.03
frags 75.54 88.41 77.35 66.52 58.34
de-nl trees 80.14 86.92 77.81 70.85 57.96
frags 79.06 86.28 77.60 70.17 60.93

en-it trees 58.12 87.33 62.80 47.92 38.27
frags 55.17 87.29 62.80 51.37 41.04
de-it trees 59.99 76.39 53.34 44.24 30.79
frags 62.14 77.09 54.17 46.99 40.65

en-de trees 65.68 79.11 62.10 59.81 57.41
frags 59.92 79.56 62.62 57.92 55.42

Table B.1: F-score relative to dependency length (Malt).

143

169G
8974

L9°8¢€
1¢°1¢€
€2C°9¢
90°G€

GT°8G
LTVS
gc'19
9¢°64

66°€9
v1'€9

1578 4
80V
Lv'es
88°6¥

9104
98'69
aT 1L
€1°69

9-€

(areIN) qaSue] Adouspuadop 01 dAlye[ol UOISAId pue [[@d9Y :z'¢q ORI,

L€°99
4785

L9°€S
¢8'cS
TL°T9
19°09

0T°9.2
G9°9.L
97°€L
88°0L

4
UOISIOAI]

67°9L
cl'8L

0€°64
L9°8.
G6°L8
¥6°L8

08°G8
¥6°98
68°G8
€678

T

1¢7S
00°09

LL°T9
88°64
G0°G4
T9°6S

0488
Gg'16
97°a8
9878

1001

8ET4
€709

86°C¥
17°0€
GE' LY
LT°CV

00°'%9
1€¢9
cLGS
€967

L<

16°¢S
€8°9G

98°67
€C'8Y
vvev
1T°9%

8T1°04
L8'TL
9%°¢9
0L°29

9-€

01°09
01°6¢

897G
L8€S
¢6°€9
a1°g9

91°64
006
L9°18
8T°08

(4
[reooy

88°C8
¢108

66°7.L
vevl
79°98
V.98

8798
06°98
60°T16
L1768

86°99
GGg'cl

¢S°c9
0T°09
0€°G9
0L°9S

1L
LCTL
69°L9
€6°99

1001

s3ery
$9019

sgerqy
S90.19
s3ery
$90.19

sserqy
S9919)
sgeiy
S901)

op-uo

J1-op

-9

[u-op

[u-uo

144 APPENDIX B. ANALYSIS BY DEPENDENCY LENGTH

F-score
root 1 2 3-6 >7

en-nl trees 77.25 87.66 76.33 69.06 57.37
frags 75.66 86.89 74.68 68.47 58.60
de-nl trees 79.15 86.30 77.20 72.14 60.80
frags 77.64 79.44 70.62 56.48 56.45

en-it trees 57.31 86.48 62.29 48.79 35.37
frags 54.62 84.92 52.50 32.81 24.48
de-it trees 56.72 76.32 53.26 43.54 34.49
frags 62.53 7530 46.56 37.73 37.72

en-de trees 71.44 80.12 63.07 60.90 58.35
frags 68.65 80.30 64.18 61.38 58.78

Table B.3: F-score relative to dependency length (MST).

145

00°99
9.°19

09°G¢
cy'9e
¢6°0S
¥9°8¢

90°99
YEVS
v9°LS
69°¢S

00°L9
81799

0S°€¥V
80°¢¥
984S
G887

97°0L
98°T14
V.89
9T 1L

9-€

“(ILSIN) yasuo] Aouopuadop 07 oA1IR[RI UOISRId pue [[ed9Y g 9[qR],

G999
¢0'99

0L°19
c0°LS
81°09
<19

87°08
CG'LL
0G°€L
€9°GL

4
UOISIOAI]

0T"LL
G¢L9L

0T
7564
08°LL
8L'88

89'89
cG'98
09'98
T9°98

T

0064
00°99

G129
VL'€S
91°¢cS
90°9¢

06°88
988
74°6L
6678

1001

86°CS
1€°G¢

crov
89°6V
€191
Gc v

186V
¥0°69
€964
66°C9

L<

€9°99
0¥°94

1€°€€
oT°S¥%
€C€C
9.8V

V1LY
€Vl
¢a'89
0129

9-€

88°T9
8€°09

4y
86°6¥
LG9V
02°€9

16°¢9
61°LL
06°GL
G0°LL

(4
[reooy

8L'€Y
78°€8

16°6L
PE€L
LV°€6
6C¢78

0276
L0°98
61°L8
CL'88

L0°28
€€°6L

16°C9
90°09
cELG
€9°8G

16°89
cS'1L
v1'cL
¢8°0L

1001

s3ery
$9019

sgerqy
S90.19
s3ery
$9019

sseqy
S991)
sgeiy
S901)

op-uo

J1-op

-0

[u-op

[u-uo

Bibliography

Alshawi, H., Douglas, S., and Bangalore, S. (2000). Learning dependency trans-
lation models as collections of finite-state head transducers. Computational
Linguistics, 26(1):45-60.

van der Beek, L., Bouma, G., Malouf, R., and van Noord, G. (2002). The
Alpino dependency treebank. In Computational Linguistics in the Netherlands
(CLIN).

Bentivogli, L. and Pianta, E. (2005). Exploiting parallel texts in the creation
of multilingual semantically annotated resources: the MultiSemCor Corpus.
Natural Language Engineering, 11(3):247-261.

Bergsma, S. and Cherry, C. (2010). Fast and accurate arc filtering for depen-
dency parsing. In Proceedings of Coling, pages 53-61, Beijing, China.

Blunsom, P., Cohn, T., and Osborne, M. (2009). Bayesian synchronous grammar
induction. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors,
Advances in Neural Information Processing Systems 21, pages 161-168. MIT
Press.

Bohnet, B. (2010). Top accuracy and fast dependency parsing is not a contra-
diction. In Proceedings of Coling, pages 89-97, Beijing, China. Coling 2010
Organizing Committee.

Borin, L. (2002). Alignment and Tagging. In Borin, L., editor, Parallel corpora,
parallel worlds. Selected papers from a symposium on parallel and comparable
corpora 1999, pages 207-218, Uppsala University, Sweden. Rodopi, Amster-
dam.

Bouma, G., Kuhn, J., Schrader, B., and Spreyer, K. (2008). Parallel LFG Gram-
mars on Parallel Corpora: a Base for Practical Triangulation. In Proceedings
of the LFG Conference, Sydney, Australia.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The
TIGER treebank. In Proceedings of the Workshop on Treebanks and Linguistic
Theories, pages 24-41.

Bresnan, J. (2001). Lezical-Functional Syntaz. Blackwell.

Brown, P. E., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993).
The Mathematics of Statistical Machine Translation: Parameter Estimation.
Computational Linguistics, 19(2):263-311.

147

148 BIBLIOGRAPHY

Buchholz, S. and Marsi, E. (2006). CoNLL-X Shared Task on Multilingual
Dependency Parsing. In Proceedings of CoNLL-X, pages 149-164, New York
City.

Burkett, D. and Klein, D. (2008). Two languages are better than one (for
syntactic parsing). In Proceedings of EMNLP, Honolulu, Hawaii.

Burkett, D., Petrov, S., Blitzer, J., and Klein, D. (2010). Learning better mono-
lingual models with unannotated bilingual text. In Proceedings of CoNLL,
pages 46-54, Uppsala, Sweden. Association for Computational Linguistics.

Buyko, E. and Hahn, U. (2010). Evaluating the impact of alternative depen-
dency graph encodings on solving event extraction tasks. In Proceedings of
EMNLP, pages 982-992, MIT, MA.

Carreras, X., Surdeanu, M., and Marquez, L. (2006). Projective dependency
parsing with perceptron. In Proceedings of CoNLL-X, pages 181-185, New
York City, NY.

Catford, J. C. (1965). A Linguistic Theory of Translation: An Essay in Applied
Linguistics. Oxford University Press, Oxford.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vec-
tor machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

Chu, Y. and Liu, T. (1965). On the shortest aborescence of a directed graph.
Science Sinica, 14:1396-1400.

Clark, S. and Curran, J. R. (2004). Parsing the WSJ using CCG and log-linear
models. In Proceedings of ACL, pages 104-111, Barcelona, Spain.

Clark, S. and Curran, J. R. (2006). Partial training for a lexicalized-grammar
parser. In Proceedings of HLT, pages 144-151, New York.

Collins, M. (2002). Discriminative training methods for hidden Markov mod-
els: Theory and experiments with perceptron algorithms. In Proceedings of
EMNLP, pages 1-8, Philadelphia, PA.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction
to Algorithms. MIT Press, 2nd edition.

Crammer, K. and Singer, Y. (2003). Ultraconservative online algorithms for
multiclass problems. Journal of Machine Learning Reseach, 3:951-991.

Cucerzan, S. and Yarowsky, D. (2002). Bootstrapping a multilingual part-of-
speech tagger in one person-day. In Roth, D. and van den Bosch, A.; editors,
Proceedings of CoNLL, pages 132-138, Taipei, Taiwan.

Cucerzan, S. and Yarowsky, D. (2003). Minimally supervised induction of gram-
matical gender. In Proceedings of HLT-NAACL, pages 40-47.

Culo, O., Hansen-Schirra, S., Neumann, S., and Vela, M. (2008). Empirical
studies on language contrast using the English-German comparable and par-
allel CroCo corpus. In Proceedings of the LREC Workshop on Building and
Using Comparable Corpora, pages 47-51, Marrakech, Morocco.

BIBLIOGRAPHY 149

Cyrus, L. (2006). Building a resource for studying translation shifts. In Pro-
ceedings of LREC, pages 1240-1245, Genoa, Italy.

Diab, M. and Resnik, P. (2002). An unsupervised method for word sense tagging
using parallel corpora. In Proceedings of ACL, pages 255-262, Philadelphia,
PA.

Dorr, B. J. (1994). Machine Translation Divergences: A Formal Description
and Proposed Solution. Computational Linguistics, 20(4):597-635.

Drabek, E. F. and Yarowsky, D. (2005). Induction of fine-grained part-of-speech
taggers via classifier combination and crosslingual projection. In Proceedings
of the ACL Workshop on Building and Using Parallel Texts, pages 49-56,
Ann Arbor, MI.

Dredze, M., Blitzer, J., Pratim Talukdar, P., Ganchev, K., Graga, J. a., and
Pereira, F. (2007). Frustratingly hard domain adaptation for dependency
parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-
CoNLL, pages 1051-1055.

Dreyer, M., Smith, D. A., and Smith, N. A. (2006). Vine parsing and minimum
risk reranking for speed and precision. In Proceedings of CoNLL-X, pages
201-205, New York City.

Druck, G., Mann, G., and McCallum, A. (2009). Semi-supervised learning of
dependency parsers using generalized expectation criteria. In Proceedings of
ACL-IJCNLP, pages 360-368, Suntec, Singapore. Association for Computa-
tional Linguistics.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National
Bureau of Standards, 71(B):233-240.

Eisner, J. (1996). Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of Coling, pages 340-345, Copenhagen, Denmark.

Eisner, J. (2000). Bilexical grammars and their cubic-time parsing algorithms.
In Bunt, H. and Nijholt, A., editors, Advances in Probabilistic and Other
Parsing Technologies, pages 29—62. Kluwer Academic Publishers.

Eisner, J. (2003). Learning non-isomorphic tree mappings for machine transla-
tion. In Proceedings of ACL, Companion Volume, pages 205-208, Sapporo,
Japan.

Eisner, J. and Smith, N. A. (2005). Parsing with soft and hard constraints on
dependency length. In Proceedings of the Ninth International Workshop on
Parsing Technologies (IWPT), pages 30—41, Vancouver, BC.

Eisner, J. and Smith, N. A. (2009). Favor short dependencies: Parsing with
soft and hard constraints on dependency length. In Bunt, H., Merlo, P., and
Nivre, J., editors, Trends in Parsing Technology, chapter 9. Springer.

Fox, H. J. (2002). Phrasal cohesion and statistical machine translation. In
Proceedings of EMNLP, pages 304-311.

150 BIBLIOGRAPHY

Gale, W. A. and Church, K. W. (1993). A program for aligning sentences in
bilingual corpora. Computational Linguistics, 19(1):75-102.

Galley, M., Hopkins, M., Knight, K., and Marcu, D. (2004). What’s in a trans-
lation rule? In Proceedings of HLT-NAACL, pages 273-280, Boston, MA.

Ganchev, K., Gillenwater, J., and Taskar, B. (2009). Dependency grammar
induction via bitext projection constraints. In Proceedings of ACL-IJCNLP,
pages 369-377, Suntec, Singapore. Association for Computational Linguistics.

Gildea, D. (2003). Loosely tree-based alignment for machine translation. In
Proceedings of ACL, pages 80-87, Sapporo, Japan.

Graga, J. a., Ganchev, K., and Taskar, B. (2008). Expectation maximization
and posterior constraints. In Platt, J., Koller, D., Singer, Y., and Roweis, S.,
editors, Advances in Neural Information Processing Systems 20. MIT Press,
Cambridge, MA.

Haji¢, J., Ciaramita, M., Johansson, R., Kawahara, D., Marti, M. A., Marquez,
L., Meyers, A., Nivre, J., Padé, S., Stépanek, J., Strangk, P., Surdeanu, M.,
Xue, N., and Zhang, Y. (2009). The conll-2009 shared task: Syntactic and se-
mantic dependencies in multiple languages. In Proceedings of CoNLL (Shared
Task), pages 1-18, Boulder, CO. Association for Computational Linguistics.

Hwa, R. (1999). Supervised grammar induction using training data with limited
constituent information. In Proceedings of ACL, pages 73-79, College Park,
MD.

Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., and Kolak, O. (2005). Boot-
strapping parsers via syntactic projection across parallel texts. Natural Lan-
guage Engineering, 11(3):311-325.

Hwa, R., Resnik, P., Weinberg, A., and Kolak, O. (2002). Evaluating Transla-
tional Correspondence using Annotation Projection. In Proceedings of ACL,
Philadelphia, PA.

Jahnig, G. and Marienfeld, F. (2010). Word tokenization, sentence splitting,
sentence alignment and word alignment of europarl. Technical report, Uni-
versity of Potsdam.

Jansche, M. (2005). Treebank transfer. In Proceedings of the Ninth International
Workshop on Parsing Technologies (IWPT), pages 74-82, Vancouver, BC.
Association for Computational Linguistics.

Jiang, W. and Liu, Q. (2009). Automatic adaptation of annotation standards
for dependency parsing — using projected treebank as source corpus. In Pro-
ceedings of IWPT, pages 25-28, Paris, France. Association for Computational
Linguistics.

Johansson, R. and Nugues, P. (2007). Extended constituent-to-dependency con-
version for English. In Nivre, J., Kaalep, H.-J., and Koit, M., editors, Pro-
ceedings of NODALIDA, pages 105-112.

BIBLIOGRAPHY 151

Joshi, A. K. (1985). Tree adjoining grammars: How much context-sensitivity is
required to provide reasonable structural descriptions?, chapter 6, pages 206—
250. Natural Language Parsing. Cambridge University Press, Cambridge.

Kameyama, M., Ochitani, R., and Peters, S. (1991). Resolving translation
mismatches with information flow. In Proceedings of ACL, pages 193-200,
Berkeley, CA. Association for Computational Linguistics.

Kim, S., Jeong, M., Lee, J., and Lee, G. G. (2010). A cross-lingual annotation
projection approach for relation detection. In Proceedings of Coling, pages
564-571, Beijing, China.

Klein, D. and Manning, C. D. (2002). A generative constituent-context model
for improved grammar induction. In Proceedings of ACL, pages 128-135.

Klein, D. and Manning, C. D. (2004). Corpus-based induction of syntactic
structure: Models of dependency and constituency. In Proceedings of ACL,
pages 478-485, Barcelona, Spain.

Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Trans-
lation. In Proceedings of the MT Summit.

Koo, T., Carreras, X., and Collins, M. (2008). Simple semi-supervised depen-
dency parsing. In Proceedings of ACL-HLT), pages 595-603, Columbus, Ohio.

Kruijff, G.-J. M. (2002). Formal and computational aspects of dependency
grammar: History and development of dg. Technical report, ESSLLI-2002.

Kiibler, S., Maier, W., Rehbein, I., and Versley, Y. (2008). How to Compare
Treebanks. In Proceedings of LREC, pages 2322-2329.

Kiibler, S., McDonald, R., and Nivre, J. (2009). Dependency Parsing. Synthesis
Lectures on Human Language Technologies. Morgan & Claypool.

Kuhn, J. (2004). Experiments in parallel-text based grammar induction. In
Proceedings of ACL, pages 470-477.

Lafferty, J., McCullum, A., and Pereira, F. (2001). Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In Pro-
ceedings of the 18th International Conference on Machine Learning, pages
282-289, San Francisco, CA. Morgan Kaufmann.

Leuven-Zwart, K. M. (1989). Translation and original: Similarities and dissim-
ilarities, i. Target, 1(2):151-181.

Magerman, D. M. (1994). Natural language parsing as statistical pattern recog-
nition. PhD thesis, University of Pennsylvania, Philadelphia.

Magnini, B., Cappelli, A., Tamburini, F., Bosco, C., Mazzei, A., Lombardo, V.,
Bertagna, F., Calzolari, N., Toral, A., Lenzi, V. B., Sprugnoli, R., and Sper-
anza, M. (2008). Evaluation of natural language tools for Italian: EVALITA
2007. In Proceedings of LREC, Marrakesh, Morocco.

Mann, G. S. and McCallum, A. (2008). Generalized expectation criteria for
semi-supervised learning of conditional random fields. In Proceedings of ACL-
HLT, pages 870-878, Columbus, OH.

152 BIBLIOGRAPHY

Marcus, M. P.; Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of English: the Penn Treebank. Computational Linguistics,
19(2):313-330.

Marneffe, M.-C. d., MacCartney, B., and Manning, C. D. (2006). Generating
typed dependency parses from phrase structure parses. In Proceedings of
LREC, pages 105-112, Genoa, Italy.

McClosky, D., Charniak, E., and Johnson, M. (2006). Effective self-training for
parsing. In Proceedings of HLT-NAACL, pages 152-159, New York.

McDonald, R., Lerman, K., and Pereira, F. (2006). Multilingual dependency
analysis with a two-stage discriminative parser. In Proceedings of CoNLL-X.

McDonald, R. and Nivre, J. (2007). Characterizing the errors of data-driven
dependency parsing models. In Proceedings of EMNLP-CoNLL, pages 122—
131.

McDonald, R. and Nivre, J. (2011). Analyzing and integrating dependency
parsers. Computational Linguistics, 37(1):197-230.

McDonald, R. and Pereira, F. (2006). Online learning of approximate depen-
dency parsing algorithms. In Proceedings of EACL, pages 81-88, Trento,
Italy.

McDonald, R., Pereira, F., Ribarov, K., and Haji¢, J. (2005). Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of HLT-
EMNLP, pages 523-530, Vancouver, BC.

McDonald, R., Petrov, S., and Hall, K. (2011). Multi-source transfer of delexical-
ized dependency parsers. In Proceedings of EMNLP, pages 62-72, Edinburgh,
Scotland.

Melamed, D. I. (1998a). Annotation style guide for the blinker project. Technical
Report 98-06, IRCS.

Melamed, D. I. (1998b). Manual annotation of translational equivalence: The
blinker project. Technical Report 98-07, IRCS.

Melamed, D. I. (2003). Multitext grammars and synchronous parsers. In Pro-
ceedings of HTL-NAACL, pages 79-86, Edmonton.

Mel’cuk, I. (1988). Dependency Syntax: Theory and Practice. State University
of New York Press.

Merlo, P., Stevenson, S., Tsang, V., and Allaria, G. (2002). A Multilingual
Paradigm for Automatic Verb Classification. In Proceedings of ACL, pages
207-214, Philadelphia, PA.

Moon, T. and Baldridge, J. (2007). Part-of-speech tagging for middle English
through alignment and projection of parallel diachronic texts. In Proceedings
of EMNLP-CoNLL, pages 390-399, Prague, Czech Republic. Association for
Computational Linguistics.

BIBLIOGRAPHY 153

Naseem, T., Chen, H., Barzilay, R., and Johnson, M. (2010). Using universal
linguistic knowledge to guide grammar induction. In Proceedings of EMNLP,
pages 1234-1244, MIT, MA.

Nivre, J. (2006). Inductive Dependency Parsing, volume 34 of Text, Speech and
Language Technology. Springer.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing.
Computational Linguistics, 34(4):513-553.

Nivre, J., Hall, J., Kiibler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret,
D. (2007). The CoNLL 2007 shared task on dependency parsing. In Proceed-
ings of EMNLP-CoNLL, pages 915-932, Prague, Czech Republic.

Nivre, J., Hall, J., Nilsson, J., Eryigit, G., and Marinov, S. (2006). Labeled
pseudo-projective dependency parsing with support vector machines. In Pro-
ceedings of CoNLL-X, pages 221-225.

Nivre, J. and McDonald, R. (2008). Integrating graph-based and transition-
based dependency parsers. In Proceedings of ACL-HLT, pages 950-958,
Columbus, Ohio.

Nivre, J. and Nilsson, J. (2005). Pseudo-projective dependency parsing. In
Proceedings of ACL, pages 99-106.

van Noord, G. (2006). At last parsing is now operational. In Mertens, P., Fairon,
C., Dister, A., and Watrin, P., editors, TALN06. Verbum Ex Machina. Actes
de la 13e conference sur le traitement automatique des langues naturelles,
pages 20-42.

Och, F. J. and Ney, H. (2000). Improved statistical alignment models. In
Proceedings of ACL, pages 440-447.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1):19-51.

@vrelid, L., Kuhn, J., and Spreyer, K. (2009). Cross-framework parser stacking
for data-driven dependency parsing. Traitement Automatique des Langues
(TAL) Special Issue on Machine Learning for NLP, 50(3):109-138.

Ozdowska, S. (2006). Projecting POS tags and syntactic dependencies from
English and French to Polish in aligned corpora. In Proceedings of the EACL
Workshop on Cross-Language Knowledge Induction, pages 53—60, Trento,
Italy.

Padé, S. (2007). Cross-Lingual Annotation Projection Models for Role-Semantic
Information. PhD thesis, Saarland University.

Padé, S. and Erk, K. (2010). Translation shifts and frame-semantic mismatches:
A corpus analysis. International Journal of Corpus Linguistics. To appear.

Padé, S. and Lapata, M. (2005a). Cross-lingual Bootstrapping for Semantic
Lexicons: The Case of FrameNet. In Proceedings of AAAI pages 1087-1092,
Pittsburgh, PA.

154 BIBLIOGRAPHY

Padd, S. and Lapata, M. (2005b). Cross-lingual projection of role-semantic
information. In Proceedings of HLT-EMNLP, Vancouver, BC.

Padé, S. and Lapata, M. (2006). Optimal constituent alignment with edge covers
for semantic projection. In Proceedings of Coling-ACL, Sydney, Australia.

Pereira, F. and Schabes, Y. (1992). Inside-outside reestimation from partially
bracketed corpora. In Proceedings of ACL, pages 128-135.

Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase-Structure Grammar.
University of Chicago Press, Chicago.

Probst, K. (2003). Using ‘smart’ bilingual projection to feature-tag a monolin-
gual dictionary. In Daelemans, W. and Osborne, M., editors, Proceedings of
CoNLL, pages 103-110, Edmonton, Canada.

Riloff, E., Schafer, C., and Yarowsky, D. (2002). Inducing Information Extrac-
tion Systems for New Languages via Cross-language Projection. In Proceed-
ings of Coling.

Sagae, K. and Tsujii, J. (2007). Dependency parsing and domain adaptation
with LR models and parser ensembles. In Proceedings of the CoNLL Shared
Task Session of EMNLP-CoNLL, pages 1044-1050, Prague, Czech Republic.

Saquete, E., Martinez-Barco, P., Munoz, R., Negri, M., Speranza, M., and
Sprugnoli, R. (2006). Multilingual extension of a temporal expression nor-
malizer using annotated corpora. In Proceedings of the EACL Workshop on
Cross-Language Knowledge Induction, pages 1-8, Trento, Italy.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees.
In International Conference on New Methods in Language Processing, pages
44-49, Manchester, England.

Seeker, W., Bohnet, B., @vrelid, L., and Kuhn, J. (2010). Informed ways of
improving data-driven dependency parsing for German. In Proceedings of
Coling (Poster volume), pages 1122-1130, Beijing, China.

Shieber, S. M. and Schabes, Y. (1990). Synchronous tree-adjoining grammars.
In Proceedings of ACL, pages 253-258.

Smith, D. A. and Eisner, J. (2006). Quasi-synchronous grammars: Alignment
by soft projection of syntactic dependencies. In Proceedings of the Workshop
on Statistical Machine Translation, pages 23—-30, New York City. Association
for Computational Linguistics.

Smith, D. A. and Eisner, J. (2007). Bootstrapping feature-rich dependency
parsers with entropic priors. In Proceedings of EMNLP-CoNLL, pages 667—
677, Prague.

Smith, D. A. and Eisner, J. (2008). Dependency parsing by belief propagation.
In Proceedings of EMNLP, pages 145-156, Honolulu, Hawaii.

Smith, D. A. and Eisner, J. (2009). Parser adaptation and projection with
quasi-synchronous grammar features. In Proceedings of EMNLP, pages 822—
831.

BIBLIOGRAPHY 155

Smith, D. A. and Smith, N. A. (2004). Bilingual parsing with factored esti-
mation: Using english to parse korean. In Proceedings of EMNLP, pages
49-56.

Smith, N. A. and Eisner, J. (2004). Annealing techniques for unsupervised sta-
tistical language learning. In Proceedings of ACL, pages 487-494, Barcelona.

Smith, N. A. and Eisner, J. (2005). Contrastive estimation: Training log-linear
models on unlabeled data. In Proceedings of ACL, pages 354-362, Ann Arbor,
MI.

Snyder, B., Naseem, T., and Barzilay, R. (2009). Unsupervised multilingual
grammar induction. In Proceedings of ACL-IJCNLP, pages 73-81, Suntec,
Singapore. Association for Computational Linguistics.

Segaard, A. (2011). Data point selection for cross-language adaptation of de-
pendency parsers. In Proceedings of ACL-HLT, pages 682—686, Portland, OR.

Segaard, A. and Rishgj, C. (2010). Semi-supervised dependency parsing using
generalized tri-training. In Proceedings of Coling, pages 1065-1073, Beijing,
China.

Spreyer, K. (2010). Notes on the evaluation of dependency parsers obtained
through cross-lingual projection. In Proceedings of Coling (Poster volume),
pages 1176-1184, Beijing, China. Coling 2010 Organizing Committee.

Spreyer, K. and Frank, A. (2008). Projection-based acquisition of a temporal
labeller. In Proceedings of IJCNLP, Hyderabad, India.

Spreyer, K. and Kuhn, J. (2009). Data-driven dependency parsing of new lan-
guages using incomplete and noisy training data. In Proceedings of CoNLL,
pages 12-20, Boulder, CO.

Spreyer, K., @vrelid, L., and Kuhn, J. (2010). Training parsers on partial trees:
A cross-language comparison. In ELRA, editor, Proceedings of LREC.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufis, D.,
and Varga, D. (2006). The JRC-acquis: A multilingual aligned parallel corpus
with 204 languages. In Proceedings of LREC, Genoa, Italy.

Surdeanu, M., Johansson, R., Meyers, A., Marquez, L., and Nivre, J. (2008).
The CoNLL 2008 shared task on joint parsing of syntactic and semantic de-
pendencies. In Proceedings of CoNLL, pages 159-177, Manchester, UK.

Tesniere, L. (1959). Eléments de syntaze structurale. Editions Klincksieck.

Tsuboi, Y., Kashima, H., Mori, S., Oda, H., and Matsumoto, Y. (2008). Training
conditional random fields using incomplete annotations. In Proceedings of
Coling, pages 897-904, Manchester, UK. Coling 2008 Organizing Committee.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.

Vinay, J.-P. and Darbelnet, J. (1958). Stylistique Comparée du Francais et de
UAnglais: Méthode de Traduction. Didier, Paris.

156 BIBLIOGRAPHY

Vogel, S., Ney, H., and Tillmann, C. (1996). HMM-based word alignment in
statistical translation. In Proceedings of Coling, pages 836—841, Copenhagen,
Denmark.

Wang, Q. I., Schuurmans, D., and Lin, D. (2008). Semi-supervised convex
training for dependency parsing. In Proceedings of ACL-HLT, pages 532-540,
Columbus, Ohio.

Wréblewska, A. and Frank, A. (2009). Cross-lingual projection of LFG f-
structures: Building an f-structure bank for polish. In Passarotti, M.,
Przepiérkowski, A., Raynaud, S., and Eynde, F., editors, Proceedings of the
Eighth International Workshop on Treebanks and Linguistic Theories (TLT),
pages 209-220, Milan, Italy.

Wu, D. (1997). Stochastic Inversion Transduction Grammars and Bilingual
Parsing of Parallel Corpora. Computational Linguistics, 23(3):377-404.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with
support vector machines. In van Noord, G., editor, Proceedings of IWPT,
pages 195-206.

Yamada, K. and Knight, K. (2001). A syntax-based statistical translation
model. In Proceedings of ACL, pages 523-530, Toulouse, France. Associa-
tion for Computational Linguistics.

Yarowsky, D. and Ngai, G. (2001). Inducing Multilingual POS Taggers and NP
Bracketers via Robust Projection across Aligned Corpora. In Proceedings of
NAACL, pages 200-207.

Yarowsky, D., Ngai, G., and Wicentowski, R. (2001). Inducing multilingual text
analysis tools via robust projection across aligned corpora. In Proceedings of
HLT.

Zhang, Y. and Clark, S. (2008). A tale of two parsers: Investigating and com-
bining graph-based and transition-based dependency parsing. In Proceedings
of EMNLP, pages 562-571, Honolulu, Hawaii.

Zitouni, 1. and Florian, R. (2008). Mention detection crossing the language
barrier. In Proceedings of EMNLP, pages 600-609, Honolulu, Hawaii.

Zollmann, A., Venugopal, A., Vogel, S., and Waibel, A. (2006). The CMU-UKA
Syntax Augmented Machine Translation System for IWSLT-06. In Proceed-
ings of the International Workshop on Spoken Language Translation, Kyoto,
Japan.

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	1.1 Annotation Projection
	1.2 Parsing with Tree Fragments
	1.3 Evaluation of Projection-based Systems
	1.4 Overview of the Thesis

	2 Related Work
	2.1 Annotation Projection
	2.1.1 Word-based annotation projection
	2.1.2 Projection of structured annotations

	2.2 Dependency Parsing
	2.2.1 Data-driven dependency parsing
	2.2.2 Weakly supervised approaches
	2.2.3 Synchronous and multilingual parsing

	2.3 Learning From Fragmented Annotations

	3 Projection of Syntactic Dependencies
	3.1 Parallel Data
	3.1.1 Parallel corpora
	3.1.2 Bilingual alignment

	3.2 Violations of Direct Correspondence
	3.3 Projection of Dependency Trees
	3.3.1 Strict projection
	3.3.2 Constrained fallback projection
	3.3.3 Partial correspondence projection

	3.4 Quality of Direct Projections
	3.4.1 Gold standard evaluation (German)
	3.4.2 Pseudo-evaluation against treebank parsers

	3.5 Summary and Discussion

	4 Training Parsers on Fragmented Trees
	4.1 Background: Data-driven Dependency Parsing
	4.1.1 Basic notions of dependency parsing
	4.1.2 Textual representation of dependency graphs

	4.2 Background: Transition-Based Parsing with Malt
	4.2.1 Transition system
	4.2.2 Parsing algorithm
	4.2.3 Feature model

	4.3 fMalt
	4.4 Background: Graph-Based Parsing with MST
	4.4.1 Parsing algorithm
	4.4.2 Scoring function

	4.5 fMST
	4.6 Summary and Discussion

	5 Evaluation Methodology
	5.1 Evaluation of Treebank Parsers
	5.2 Treebanks
	5.3 Annotation Schemes
	5.3.1 Comparison
	5.3.2 Conversions
	5.3.3 Learnability experiments

	5.4 Variance Assessment
	5.5 Summary and Discussion
	5.5.1 Labeling schemes

	6 Experiments
	6.1 Experimental Setup
	6.2 Parameter Tuning
	6.2.1 Parser-specific training parameters
	6.2.2 Parameter optimization with manually annotated development data
	6.2.3 Parameter optimization with projected development data
	6.2.4 Fragment size

	6.3 Baselines and Upper Bounds
	6.4 Malt and fMalt
	6.4.1 Malt: parsers with completeness assumptions
	6.4.2 fMalt: parsers with fragment awareness

	6.5 MST and fMST
	6.5.1 MST: parsers with completeness assumptions
	6.5.2 fMST: parsers with fragment awareness

	6.6 Summary and Discussion

	7 Error Analysis
	7.1 Sentence Length
	7.2 Dependency Length
	7.3 Dependency Type
	7.3.1 Subjects
	7.3.2 Objects
	7.3.3 Modifiers

	7.4 Concrete Examples
	7.5 Summary and Discussion

	8 Conclusions
	8.1 So, does it have to be trees?
	8.2 Future Directions

	Appendix
	A Evaluation of Fragmentation Constraints
	B Analysis by Dependency Length

	Bibliography

