AVErsSyx.
NS

@i
Platther . g Il
Institut % @"

e/
Digital Engineering * Universitat Potsdam &m
°
°

Improving the Accessibility of
Heterogeneous System Resources
for Application Developers
using Programming Abstractions
Verbesserung der Zuginglichkeit heterogener Systemressourcen fiir

Anwendungsentwickler durch Programmierabstraktionen

Max Frederik Plauth

Dissertation
zur Erlangung des Doktorgrades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Digital Engineering Fakultat
der Universitat Potsdam

ANEeIS;yx.
NS

Hasso y
Plattner . Ll
Institut %

Digital Engineering - Universitat Potsdam ¢ Q)c'?m

Improving the Accessibility of
Heterogeneous System Resources
for Application Developers
using Programming Abstractions
Verbesserung der Zuginglichkeit heterogener Systemressourcen fiir

Anwendungsentwickler durch Programmierabstraktionen

Max Frederik Plauth

Dissertation
zur Erlangung des Doktorgrades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Digital Engineering Fakultat
der Universitat Potsdam

This work is licensed under a Creative Commons License: @ @ @
Creative Commons Attribution-ShareAlike 4.0 Internationall BY _sa
This does not apply to quoted content from other authors.

To view a copy of this license visit
https://creativecommons.org/licenses/by-sa/4.0/deed.en.

Betreuer: Prof. Dr. rer. nat. habil. Andreas Polze
Universitat Potsdam,
Digital Engineering-Fakultit,
Operating Systems and Middleware Group

Gutachter: Prof. Dr.-Ing. Jorg Nolte
Brandenburgische Technische Universitit Cottbus-Senftenberg,
Fakultit 1 / Institut fiir Informatik,
Fachgebiet Verteilte Systeme/Betriebssysteme

Prof. Dr.-Ing. Timo Honig

Ruhr Universitit Bochum,

Fakultit fiir Informatik,

Operating Systems and System Software Group

Datum der Einreichung: 03. Mai 2022
Datum der Disputation: o5. Juli 2022

Published online on the Publication Server of the University of Potsdam:
https:/ /doi.org/10.25932 / publishup-55811
https:/ /nbn-resolving.org/urn:nbn:de:kobv:517-opus4-558118

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

The heterogeneity of today’s state-of-the-art computer architectures is confronting appli-
cation developers with an immense degree of complexity which results from two major
challenges. First, developers need to acquire profound knowledge about the program-
ming models or the interaction models associated with each type of heterogeneous system
resource to make efficient use thereof. Second, developers must take into account that
heterogeneous system resources always need to exchange data with each other in order
to work on a problem together. However, this data exchange is always associated with a
certain amount of overhead, which is why the amounts of data exchanged should be kept
as low as possible.

This thesis proposes three programming abstractions to lessen the burdens imposed by
these major challenges with the goal of making heterogeneous system resources accessible
to a wider range of application developers. The [ib842 compression library provides the
first method for accessing the compression and decompression facilities of the NX-842
on-chip compression accelerator available in IBM Power |Central Processing Units (CPUs)|
from user space applications running on Linux. Addressing application development of
scale-out |Graphics Processing Unit (GPU)| workloads, the CloudCL framework makes the
resources of clusters more accessible by hiding many aspects of distributed com-
puting while enabling application developers to focus on the aspects of the data parallel
programming model associated with Furthermore, CloudCL is augmented with
transparent data compression facilities based on the [ib842 library in order to improve
the efficiency of data transfers among cluster nodes. The improved data transfer effi-
ciency provided by the integration of transparent data compression yields performance
improvements ranging between 1.11x and 2.07 x across four data-intensive scale-out[GPU]
workloads. To investigate the impact of programming abstractions for data placement
in [Non-Uniform Memory Access (NUMA)| systems, a comprehensive evaluation of the
PGASUS framework for NUMA}laware C++ application development is conducted. On
a wide range of test systems, the evaluation demonstrates that PGASUS does not only
improve the developer experience across all workloads, but that it is also capable of out-
performing [NUMAlagnostic implementations with average performance improvements
of 1.56 x.

Based on these programming abstractions, this thesis demonstrates that by providing a
sufficient degree of abstraction, the accessibility of heterogeneous system resources can
be improved for application developers without occluding performance-critical properties
of the underlying hardware.

iii

Zusammenfassung

Die Heterogenitit heutiger Rechnerarchitekturen konfrontiert Anwendungsentwickler
mit einem immensen Mafl an Komplexitat, welches sich aus zwei grofien Herausforderun-
gen ergibt. Erstens miissen Entwickler fundierte Kenntnisse tiber die Programmiermodelle
oder Interaktionsmodelle verfiigen, welche eine Voraussetzung sind um die jeweiligen
heterogenen Systemressourcen effizient nutzen zu konnen. Zweitens miissen Entwickler
berticksichtigen, dass heterogene Systemressourcen immer auch Daten untereinander aus-
tauschen miissen, um ein Problem gemeinsam zu bearbeiten. Dieser Datenaustausch ist
aber auch immer mit einem gewissen Mehraufwand verbunden, weshalb die ausgetausch-
ten Datenmengen so gering wie moglich gehalten werden sollten.

Diese Dissertation schldgt drei Programmierabstraktionen vor und ermdglicht es so,
Anwendungsentwickler bei der Bewiltigung dieser Herausforderungen zu entlasten, so
dass heterogene Systemressourcen fiir eine grofiere Anzahl von Anwendungsentwicklern
zugénglich werden. Die lib842-Kompressionsbibliothek bietet Anwendungen erstmals die
Moglichkeit, die Kompressions- und Dekompressionsfunktionen des in IBM Power Pro-
zessoren integrierten NX-842 Kompressionsbeschleunigers unter Linux zu verwenden.
Das CloudCL-Framework richtet sich an die Entwicklung von GPU-beschleunigten, ver-
teilten Anwendungen und macht die Ressourcen von [GPU}-Clustern vereinfacht nutzbar,
indem es viele Aspekte des verteilten Rechnens ausblendet und es so Anwendungs-
entwicklern ermoglicht, sich auf die Aspekte des auf GPUs tiblichen, datenparallelen
Programmiermodells zu konzentrieren. CloudCL wurde weitergehend {iiber transparente
Datenkompressionsfunktionalitidt auf Basis der lib842 Programmbibliothek erweitert, um
die Dateniibertragungseffizienz zwischen Clusterknoten zu verbessern. Die verbesserte
Datentransfereffizienz fithrt zu Leistungsverbesserungen zwischen 1,11-fach und 2, 07-
fach bei der Verwendung von vier datenintesiven, verteilten, und [GPU}beschleunigten
Arbeitslasten.

Um die Auswirkungen von Programmierabstraktionen auf die Datenplatzierung in
[INUMA}Systemen zu untersuchen, wird eine umfassende Evaluierung des PGASUS-
Frameworks fiir NUMA}gewahre C++-Anwendungsentwicklung durchgefiihrt. Unter
Verwendung einer breiten Palette von Testsystemen zeigt die Evaluierung, dass PGA-
SUS nicht nur die Entwicklung von gewahren Anwendungen erleichtert, sondern
auch in der Lage ist, die Leistung von [NUMAlagnostischen Implementierungen im Mittel
um 1,56 x zu iibertreffen.

Auf der Grundlage dieser Programmierabstraktionen zeigt diese Dissertation, dass
heterogene Systemressourcen durch die Bereitstellung angemessener Abstraktionsmecha-
nismen einfacher von Anwendungsentwicklern erschlossen werden konnen, ohne dass
leistungsrelevante Eigenschaften der zugrunde liegenden Hardware verdeckt werden.

iv

Acknowledgements

This thesis would have never been completed without the support I have received from
many people whom I would like to thank. I would like to thank my advisor Andreas
Polze, who has guided my work by sharing his advice for countless times. First as the
advisor and later as my colleague and friend, Frank Feinbube has sparked my interest in
returning to academia in order to pursue the endeavors of earning a doctoral degree. At
the beginning of my undertakings, the SSICLOPS project, or rather the project partners
involved in it, have provided me with a research direction when I was not sure which
direction I wanted to pursue. Collaborating with the IBM Germany Ré&D Lab in Boblingen
over the course of the Hybrid DB project was an incredible opportunity. Special thanks are
due to Wolfgang Maier and his team, who did not only provide valuable feedback, but
based on their support, I have been awarded with the IBM PhD Fellowship Award in 2017.

Over the years I have spent at the Operating Systems and Middleware Group led by
Andreas Polze, I have enjoyed both the collaboration and the numerous coffee talks with
the “inhabitants’ of the "hardware corner’, namely Felix Eberhardt, Andreas Grapentin,
Sven Kohler, and Lukas Wenzel. I am especially grateful to Sven Kohler and Lukas
Wenzel, who both have been a great source of inspiration not only professionally, but also
on a personal level. Over time, Bernhard Rabe, Christian Neuhaus, Daniel Richter, Frank
Feinbube, Lena Feinbube, Marcel Taeumel, Tobias Pape, and Robert Schmid have helped
me advance in my endeavors. At the later stages of my undertakings, the collaboration
with Timo Honig has provided me with several new perspectives and ideas that I hope I
will be able to pursue in my postdoctoral life.

Without the support of Sabine Wagner, many bureaucratic acts would have been a
nightmare. Also, this work would not have been possible without the FutureSOC Lab.
More important than the compute equipment provided by the lab was the relentless
support of Bernhard Rabe, Tobias Pape, and Ayleen Oswald.

The biggest thanks are due to my wife Annabell and my children. Without their
tremendous loving support, I could never have pulled this through.

Contents

__Introduction| 1
[1.1 Heterogeneous System Resources|. 2
[1.2 Problem Statement| 3
[1.3 Research Question| 5
l1.4 Contributions| 5
....................................... 6
1.6 Publications| 6
.. 7

|1.7.1 Scalable and Secure Infrastructures for Cloud Operations (SSICLOPS)| 7
[r.72 HybridDB[. o 11
[1.7.3 Memento: Energy-Efficient Memory Placement| 14
[1.7.4 Teaching Activities| 16

[2_State of the Art and Related Work| 17

|2.1 The Origins of Heterogeneous System Resources|. 17
[2.1.1 Non-Uniform Memory Access Architectures|. 17
212 GPUComputing| 20

[2.2 Irends in Heterogeneous System Resources|. 23
[2.2.1 Coherent Interconnects| 23
[2.2.2 Disruptive Memory Technologies| 23

|2.3 Programming Abstractions for Heterogeneous System Resources| 25
[2.3.1 Memory Compression and Compressed Data Iransfers| 25
[2.3.2 General Purpose Computingon GPUs| 26
[2.3.3 Data Placement in NUMA Architectures| 29

2.4 Summaryl. 31

[3 Programming Abstractions for On-Chip Hardware Compression Resources 33
3.1 Motivation and Problem Statement|. L. 34
[3.2 The 842 Compression Algorithm| 35
[3.3 Lib842: A User-Space Library for 842 Compression| 38
3.4 Implementation| L L 39

3-4.1 Hardware-based On-Chip Accelerator (NX-842) 40
[3.4.2 Software-based Compression and Decompression (CPU Baseline)| . 41
[3.4.3 Software-based Compression and Decompression (CPU Optimized)| 41
[3.4.4 Software-based Decompression using OpenCL (GPU)[. 43

3.5 Evaluation| 46
[3.5.1 lesting Environment & Benchmark Procedure| 47
3.5.2 Compression Ratio| 0000 47
[3.5.3 Compression Throughput and Energy Demand Benchmark] 49

vii

Contents

3.6 Summary|. 51
[4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters| 53
l4.1 Motivation and Problem Statement|{. L. 54
l4.2 CloudCL: Single-Paradigm Scale-Out GPU Computing| 55
l4.2.1 Underlying Technologies| 56
4.2.2 Enhancements|. 58

l4.3 Developer Experience of CloudCL| 60
|4.3.1 Semi-Sparse Matrix Multiplication|. 0. 60
l4.3.2 Analytical Database Query| 61
[4.33 Summary| 62

l4.4 Augmenting CloudCL with Data Transfer Compression| 63
l4.4.1 Choice of Compression Algorithm|. 63
l4-4.2 Assumed Cluster Model|. 64
l4.4.3 Integration Strategy| o oo oL 64

4.5 Implementation| L o oo 65
l4.5.1 Master Node to Compute Node Data Transfers| 67
l4.5.2 Compute Node to Master Node Data Transfers| 69
l4.5.3 Compute Node to Compute Node Data Iransfers| 70

l4.6 Evaluation| 70
l4.6.1 Testing Environment & Benchmark Procedure| 71
l4.6.2 Effective Data Iransfer Performance|. 73
4.6.3 Workload Benchmarks|. 74
4.6.4 Summary| 80

4.7 SUMMATIY|. . . . o v vttt e e 80
[5__Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures| 81

[5.1 Motivation and Problem Statement{. 82
[5.2 Data Placement in NUMA Systems|. 83
[5.2.1 Object Placement| 84
|5.2.2 Object Migration| 84
[5.3 PGASUS: NUMA-Aware C++ Application Development| 85
5.3.1 Membources|. 85
5.3.2 Place Guards| 86
[5.3.3 lopology Discovery| 88
|5.3.4 NUMA-aware Task-Parallelism|. 89
5.3.5 NUMA-aware Hash Table| 89
[5.4 Developer Experience|, 90
5-4.1 TextHistogram| 90
|5-4.2 Data Compression| 93
|5.4.3 Database Table Scan| 95
[5-4.4 Summary| 97
[5.5 Performance Evaluation| 0 L. 97
|5.5.1 lesting Environment & Benchmark Procedure| 97
[5.5.2 Memory Allocation Performance|. 98
|5.5.3 Workload Benchmarks|. 100

viii

Contents

|5.5.4 Energy Demand Analysis| 103

[5.5.5 Summary| 104

5.6 Summary|. 104
[6_Discussion and Outlook] 107
....................................... 107
|6.2 Contributions and Future Research|. 107
|6.3 Review of Research Question| 110

m
13

131

ix

1 Introduction

Over the last few decades, the uninterrupted growth of data quantities accumulating in
the age of digitization has been driving an ever-growing demand for compute capacity.
Up until the early 2000s, this demand could be easily satisfied based on the performance
gains provided by frequency scaling. With frequency scaling however having reached its
limits around 2006, computer architectures had to resort to different approaches in order
to continuously provide improved compute capacities. Even though the first response
to the end of frequency scaling was to invest the steadily increasing transistor count
into multicore the pressure to innovate created by the end of frequency scaling
has promoted the entry of heterogeneous system resources into mainstream computer
architectures [146]. As such, most vendors have adopted cache-coherent
architectures to scale multiprocessor systems to dimensions that were not feasible with
[Uniform Memory Access (UMA)|approaches [92} [107]. Similarly, all major [GPU|microar-
chitectures have adopted unified shader architectures, paving the way for the utilization

of [GPUs|as general purpose compute resources [39) |5, 116].

—@- CPUs (Intel)
4 -
103 -m GPUs (AMD)
1 4 GPUs (NVIDIA)
(D -
&
o 10°3
O]
102
L) I L) I L) I L) I L) I L) I
2006 2008 2010 2012 2014 2016 2018

Year

Figure 1.1: The development of single-precision peak performance of both and demon-
strates that even though [CPU] performance has caught up based on the introduction of excessively
wide [Single Tnstruction Multiple Data (SIMD)]|extensions, heterogeneous compute resources such
as have delivered sustained growth of compute capacity over the years. The plot has been
generated based on the data provided by Karl Rupp [176].

Ever since, heterogeneous system resources have not only become indispensible in
providing significant improvements in compute capacity as illustrated in [Figure 1.1} but

1 Introduction

the degree of heterogeneity in computer architectures has also been steadily increasing
over the following years [214]. Upon closer examination, today’s state-of-the-art systems
ranging from mobile phones to high-end servers are brimmed with heterogeneous system
resources such as dedicated inference engines, video compression engines, digital signal
processing engines, and many more. A crucial factor driving this trend is the specializa-
tion of heterogeneous compute resources offering superior performance per watt ratings
compared to the general purpose compute resources of

1.1 Heterogeneous System Resources

In the context of computer architectures, heterogeneity is a largely overloaded term. For
example, heterogeneous computing may refer to the use of different classes of compute re-
sources (e.g.,[CPUs|and [GPUs), the use of[CPUs| with varying [Instruction Set Architectures|
or the use of with the same but differences in their microarchitectural
properties such as the mixed use of performance-optimized cores and efficiency-optimized
cores. Therefore, the goal of this section is to establish a mutual understanding about
what types of heterogeneous system resource are considered in the context of this thesis.

GPU NIC GPU GPU NIC GPU

B | e |
— < —
mEm—EY o o | E3 ey
o o
[Ven | | | [Ve |
GPU NIC GPU GPU NIC GPU

Figure 1.2: In this thesis, programming abstractions for three different types of heterogeneous
system resources are presented: NX842 compression accelerators as an exemplary instance of on-chip
accelerators (gray), dedicated [GPUs| as manifestations of off-chip accelerators (), as well as
non-uniform memory resources ()

This thesis considers the three types of heterogeneous system resources highlighted in

igure 1.2

* On-Chip Accelerators Many modern [CPUs|and [System on a Chip (SoC)| designs are
equipped with on-chip accelerators that unlike SIMDJ|[ISA] extensions are not easily
accessible from user-space. While these types of accelerators are tightly integrated
into the on-chip communication fabric, interacting with these types of accelerators
can be particularly challenging as the methods for invoking their resources may
vary even among individual models produced by the same vendor.

¢ Off-Chip Accelerators As the probably most common approach for heterogeneous
computing, compute resources of the [CPU]are augmented with a different type of
compute resource such as a which is connected to the using an off-chip

1.2 Problem Statement

interconnect (e.g., [Peripheral Component Interconnect Express (PCle)). To interact
with these kinds of heterogeneous compute resources, their vendors typically pro-
vides the necessary infrastructure. In the case of both vendor-specific and
vendor-agnostic programming frameworks are available.

* Non-Uniform Memory Resources Even though the memory resources available in a
cache-coherent system are presented to application developers using a flat
address space, both latency and bandwidth available for load and store operations
may vary depending on which [CPU]|they are issued and where the data resides. As
upcoming technology-agnostic memory interfaces support the mixed use of differ-
ent memory technologies in a single system (e.g., volatile [Synchronous Dynamic|
[Random-Access Memory (SDRAM)|for large data quantities, |[High-Bandwidth Mem{
resources for memory-bound algorithms, and non-volatile memory for
persistent data) the heterogeneity of memory resources is only going to intensify
from here on.

1.2 Problem Statement

While the ever-growing degree of heterogeneity facilitates continuously increasing com-
pute capacities, it is also the source of two major challenges in dealing with heterogeneous
system resources from the perspective of application developers:

1. Many types of heterogeneous system resources require application developers to
adapt specific programming models or interaction models to make use of its ca-
pabilities. With the large variety of heterogeneous system resources available in
state-of-the art computer architectures, application developers are therefore con-
fronted with an immense degree of complexity.

2. Heterogeneous system resources have to exchange data in order to process a work-
load collectively. Since moving data across heterogeneous system resources can be
a performance bottleneck, application developers have to be wary about balancing
the use of heterogeneous system resources against the overhead associated with
data transfers. However, there are certain scenarios in which prevalent system
abstractions may make it hard for application developers to gauge whether their
actions may trigger unnecessary data transfers or not.

With the imminent advent of disruptive memory technologies the effects of these chal-
lenges are very likely to intensify [136]. It is therefore necessary to provide application
developers with programming abstractions that improve the accessibility of heterogeneous
system resources without obscuring performance-critical system properties and that help
developers to reduce the amount of data that has to be exchanged among heterogeneous
system resources.

1 Introduction

The goal of this thesis is to address these challenges by proposing programming ab-
straction approaches for each type of heterogeneous system resource considered in this
work (cf. Section 1.1). In the context of this thesis, libraries and frameworks that hide
certain complexities of the underlying hardware or the programming models therewith
are considered as programming abstractions. For this endeavor, each approach has to
factor in the peculiarities of the corresponding resource type:

On-Chip Compression Accelerators Originally intended for the use-case of transparent
main-memory compression [17], one goal of this thesis is to enable the use of the NX-842
on-chip compression accelerator available in IBM POWER [CPUs| to improve the efficiency
of data transfers across heterogeneous system resources. On POWER7+ and POWERS
the NX-842 on-chip compression accelerator is only accessible from kernel-space
using the privileged [Initiate Coprocessor Store Word Indexed (icswx)|instruction and is
therefore inaccessible from user-space applications. Even though the |Virtual Accelerator
[Switchboard (VAS)| facilities have been introduced in the POWERg microarchitecture with
the goal of providing user-space applications access to on-chip accelerator resources such
as the NX-GZIP compression accelerator, access to the NX-842 units via the facilities
is still restricted to kernel-space unless the skiboot firmware is modified correspondingly.
Therefore, a programming abstraction is necessary that exposes kernel-space resources
to the user-space in order to make the compression facilities of the NX-842 accessible for
user-space applications. The two NX-842 units available per POWER are tightly
integrated and can process up to 36.8 GB/s, exceeding even the throughput of dedicated
compression accelerators attached via 4.0.

Scale-Out GPU Clusters The demand for compute resources has been steadily in-
creasing over the last few years to the point where workloads such as deep learning
applications require entire clusters [84] to satisfy their demand for compute re-
sources. Application development for scale-out workloads is very challenging, as
developers have to be adept using both data parallel programming models (e.g.,
[Computing Language (OpenCL)) and distributed memory parallel programming models
(e.g., [Message Passing Interface (MPI)). To produce relief, a programming abstraction
mechanism is required that enables developers to focus on a single parallel programming
model. However, data transfers between [CPUs|and [GPUs| can already be a bottleneck in
single node scenarios. The limited bandwidth available 10 Gbit/s, 25Gbit/s, and even
40 Gbit/s Ethernet networks which are still the norm in the vast majority of data centers
[19]] necessitates that the volume of data transfers is kept minimal in order not to impede
the scalability of scale-out workloads.

Non-Uniform Memory Access Systems Even though have become popular in many
data-intensive application domains, many workloads still rely on the flexibility and ver-
satility of multicore [208]. While several of these [CPUlbased workloads can be
adapted to scale-out across multiple systems to provide sufficient compute resources,
certain workloads such as[In-Memory Databases (IMDBs)|[25] or de novo genome assembly
[133] are inherently hard to scale out and therefore require as many resources as possible
in a single scale-up system. For such workloads, state-of-the-art systems support

1.3 Research Question

up to 32 multicore [76] and 64 TiB of main memory [191] while maintaining a single
cache-coherent address space. On one hand, making all memory resources in such a scale-
up system accessible through the flat address space of the virtual memory abstraction
enables application developers to hold on to the shared memory parallel programming
model they are familiar with. On the other hand however, the drawback of the virtual
memory abstraction is that application developers can only consider performance-critical
aspects of systems using operating system specific [Application Programming]
[Interfaces (APIs)[such as libnuma, with their usage involving several pitfalls on their own.
As such, there is a strong need for programming abstraction facilities that enable applica-
tion developers to easily specify memory placement policies with the goal of exploiting
data locality and to avoid unnecessary data transfers across domains.

1.3 Research Question

The research question of this thesis is concerned with improving the accessibility of het-
erogeneous system resources for applications developers. A central assumption of the
research question is that suitable programming abstractions can help to address two
major challenges inherent to heterogeneous system resources: Foremost, this thesis hy-
pothesizes that a certain degree of the complexity conditioned by the large variety of
heterogeneous system resources considered in the context of this work can be encap-
sulated using programming abstractions without obscuring performance-critical system
properties. Furthermore, this thesis hypothesizes that these abstractions can help to miti-
gate the performance penalty associated with data transfers across heterogeneous system
resources by either improving data transfer efficiency or by avoiding unnecessary data
transfers altogether. For these endeavors, it is of utmost importance to find the right
balance between providing a sufficient degree of abstraction on one without burying the
heterogeneous system resources under too many layers of abstraction on the other hand.

1.4 Contributions

The author of this thesis, provides several contributions to the field of software engineer-
ing. First, the author proposes a programming abstraction mechanism in the form of the
lib842 compression library that facilitates user-space access to the resources of NX-842
on-chip compression accelerators. To enable interoperability of data compressed using
the proprietary 842 compression algorithm with arbitrary or the library also
provides the first publicly available user-space facilities for software-based 842 compres-
sion and decompression on as well as [OpenCL}based decompression on
Both the hardware as well as the software-based compression facilities provide sufficient
throughput to saturate 10 Gbit/s, 25 Gbit/s, and even 40 Gbit/s Ethernet networks which
are still the norm in the vast majority of data centers [19]. Second, the author introduces
the CloudCL framework which provides a single-paradigm programming experience for
scale-out [GPU| workloads. By abstracting away many aspects of the distributed memory
parallel programming model commonly used in scale-out scenarios, the framework allows
application developers to focus on the data parallel programming model associated with

1 Introduction

To warrant efficient data exchange across compute nodes of a [GPU}cluster, the
CloudCL framework implements transparent on-the-fly data compression based on the
lib842 compression library. Third, the author provides a comprehensive evaluation of the
impact of the programming abstractions for NUMA}aware C++ application development
provided by the PGASUS framework on both developer experience and application perfor-
mance. To facilitate reproducibility, all software-artifacts presented or used in this thesis
in curated in a freely accessible repositoryf]

1.5 Overview

This thesis is structured as follows. After the introduction, analyses the state
of the art of heterogeneous system resources and presents related work from the field
of software engineering. presents the concept, implementation, as well as
the evaluation of the [ib842 compression library which provides user-space access to the
hardware-based compression facilities of the NX-842 on-chip compression accelerator.
Focusing on scale-out workloads, highlights the programming abstraction
facilities provided by the CloudCL framework that enable application developers and do-
main experts to focus their efforts on the data parallel programming model associated
with The improved developer experience offered by CloudCL is demonstrated
in by showcasing CloudCL-based implementations of two exemplary work-
loads. To improve the efficiency of data-exchange across compute nodes of a[GPUlcluster,
also presents the concept, implementation and evaluation of transparent data
compression based on the lib842 compression library. provides an overview
of the programming abstractions provided by the PGASUS framework for [NUMA}aware
C++ application development, which has been proposed in the master’s theses of Wieland
Hagen [68] and Karsten Tausche [198]. The improved developer experience facilitated
by the PGASUS framework is demonstrated in [Chapter 5 by comparing PGASUS-based
implementations of three exemplary workloads to[NUMAlaware implementations based
on the Open Multi-Processing (OpenMP)|interface or the pthreads library. As another cen-
tral aspect of the performance impact of the PGASUS framework is evaluated.
discusses the contributions of the thesis and reflects on potential links for future

research before the thesis concludes in

1.6 Publications

I have already published partial results about many central aspects of the major contri-
butions I am going to present in the following chapters of this thesis. With this section
I would like to provide a list of the papers that have directly shaped the contributions I
am presenting in this thesis and which have been published in peer-review workshops,
conferences, and journals. In my research efforts leading to these publications, I have
been supported by the work of many colleagues and master’s students, with their support
being acknowledged in each publication’s respective list of authors.

“https://github.com/plauth/thesis-artifacts

https://github.com/plauth/thesis-artifacts

1.7 Context

[69]] Wieland Hagen, Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas
Polze. “PGASUS: A Framework for C++ Application Development on NUMA
architectures”. In: Proceedings of the Fourth International Symposium on Comput-
ing and Networking (CANDAR). IEEE. Nov. 2016, pages 368-374. DOI: 10.1109/
CANDAR.2016.0071

[160] Max Plauth, Florian Rosler, and Andreas Polze. “CloudCL: Distributed Het-
erogeneous Computing on Cloud Scale”. In: Proceedings of the Fifth Interna-
tional Symposium on Computing and Networking (CANDAR). IEEE. Nov. 2017,
pages 344—350. DOI: 10.1109/CANDAR.2017.49

[161] Max Plauth, Florian Rosler, and Andreas Polze. “CloudCL: Single-Paradigm
Distributed Heterogeneous Computing for Cloud Infrastructures”. In: Interna-
tional Journal of Networking and Computing 8.2 (July 2018), pages 282—301. ISSN:
2185-2847. DOI: |10.15803/ijnc.8.2_282

[159] Max Plauth and Andreas Polze. “Towards Improving Data Transfer Efficiency
for Accelerators Using Hardware Compression”. In: Proceedings of the Sixth
International Symposium on Computing and Networking Workshops (CANDARW).
IEEE. Nov. 2018, pages 125-131. DOIL: 10.1109/CANDARW.2018.00031

[158] Max Plauth and Andreas Polze. “GPU-Based Decompression for the 842 Al-
gorithm”. In: Proceedings of the Seventh International Symposium on Computing
and Networking Workshops (CANDARW). IEEE. Nov. 2019, pages 97-102. DOI:
10.1109/CANDARW.2019.00025

[150] Max Plauth, Joan Bruguera Micé, and Andreas Polze. “Improved Data Transfer
Efficiency for Scale-Out Heterogeneous Workloads Using On-the-Fly I/O Link
Compression”. In: Concurrency and Computation: Practice and Experience (Dec.
2020), €6101. DOI: 10.1002/cpe.6101

[152] Max Plauth, Felix Eberhardt, Andreas Grapentin, and Andreas Polze. “Improv-
ing the Accessibility of NUMA-Aware C++ Application Development Based
on the PGASUS Framework”. In: Concurrency and Computation: Practice and
Experience (Feb. 2022), e6887. DOI: |10.1002/cpe. 6887

1.7 Context

Over the years that have led to this work, I had the honor and pleasure to work with many
wonderful colleagues in several research projects, collaborations, or teaching activities.
Therefore, the goal of this section is to provide a brief overview of the activities that have
both accompanied and influenced my work.

1.7.1 Scalable and Secure Infrastructures for Cloud Operations (SSICLOPS)

Funded from the European Union’s Horizon 2020 research and innovation program 2014-
2018 under grant agreement No. 644866, the SSICLOPS project lasted from February 2015
to January 2018. As outlined in the major goal of the project was to investigate
resource management strategies in federated private cloud infrastructures. Operating
under the guiding principle "resource management from core to cloud", the work package
dealing with workload and data placement strategies in private cloud infrastructures

https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1109/CANDAR.2017.49
https://doi.org/10.15803/ijnc.8.2_282
https://doi.org/10.1109/CANDARW.2018.00031
https://doi.org/10.1109/CANDARW.2019.00025
https://doi.org/10.1002/cpe.6101
https://doi.org/10.1002/cpe.6887

1 Introduction

Clients o ©) © O
2 O
OO O

Intra-cloud Intra-cloud
control < Cloud federation control plane > control

| lane
pane’J_l/< Client traffic LY \D/ >/\|_|_‘p

§ Cloud federation dataplane ’y _/
w w v _)_/

Cloud infrastructure A Internet Cloud infrastructure B

Figure 1.3: The SSICLOPS project has investigated federated private cloud infrastructures [180].

turned out to be a productive environment for my colleague Felix Eberhardt and me
to investigate workload and data placement strategies on the scope of systems.
In our joint research efforts centered around systems, we have co-supervised
the master’s thesis by Wieland Hagen [[68]], which has yielded the initial version of the
PGASUS framework. PGASUS provides the foundation for my contributions I am going
to present in Beyond the topic, I have supervised the seminar project
by Karsten Tausche [199], in which he investigated the dOpenCL forwarding library to
evaluate whether resources can be virtualized on the abstraction level of the
interface [199]]. The successful evaluation yielded by this seminar has served as the basis
for the Dynamic OpenCL framework presented in the master’s thesis by Florian Rosler
[175], which again has laid the groundwork for my work on the CloudCL framework,
which I am going to present in[Chapter 4] Together with my colleagues I have undertaken
further research efforts in the work package on policy and security as well as the work
package on scenario integration. Even though these research efforts do not align with the
topics covered in my thesis, they have yielded several joint publications.

1.7.1.1 Project-Related Publications

The joint research efforts I have conducted together both with my colleagues Felix Eber-
hardt and Stefan Halfpap (Klauck) from HPI as well as our collaboration partners from
the SSICLOPS project have yielded several peer-reviewed publications. Even though these
publications are not necessarily related to my thesis or have only influenced my research
efforts indirectly, they are listed hereinafter to highlight the research activities I have
conducted alongside my work on this thesis:

[49] Frank Feinbube, Max Plauth, Christian Kieschnick, and Andreas Polze. “Evolv-
ing Scheduling Strategies for Multi-Processor Real-Time Systems”. In: Pro-
ceedings of the 11th Annual Workshop on Operating Systems Platforms for Embed-
ded Real-Time Applications. July 2015, pages 57—62. URL: https://www.mpi-
sws.org/~bbb/events/ospertl5/pdf/ospertl5-p57.pdf

https://www.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p57.pdf
https://www.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p57.pdf

[12]

[151]

[154]

[156]

[153]

[157]

[199]

[162]

[96]

[155]

1.7 Context

Jossekin Beilharz, Frank Feinbube, Felix Eberhardt Eberhardt, Max Plauth, and
Andreas Polze. “Claud: Coordination, Locality And Universal Distribution”.
In: Proceedings of the Parallel Computing Conference 2015 (PARCO). Sept. 2015,
pages 605-614. DOI: 10.3233/978-1-61499-621-7-605

Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas Polze. “A Survey of
Security-Aware Approaches for Cloud-Based Storage and Processing Technolo-
gies”. In: Proceedings of the Third HPI Cloud Symposium "Operating the Cloud".
Nov. 2015, page 33. DOI: 10.13140/RG.2.2.26664.57604

Max Plauth, Frank Feinbube, Frank Schlegel, and Andreas Polze. “Using
Dynamic Parallelism for Fine-Grained, Irregular Workloads: A Case Study of
the N-Queens Problem”. In: Proceedings of the Third International Symposium
on Computing and Networking (CANDAR). IEEE. Dec. 2015, pages 404—407. DOI:
10.1109/CANDAR.2015.26

Max Plauth, Wieland Hagen, Frank Feinbube, Felix Eberhardt, Lena Fein-
bube, and Andreas Polze. “Parallel Implementation Strategies for Hierarchi-
cal Non-uniform Memory Access Systems by Example of the Scale-invariant
Feature Transform Algorithm”. In: Proceedings of the IEEE International Paral-
lel and Distributed Processing Symposium Workshops (IPDPSW). IEEE. May 2016,
pages 1351-1359. DOI: [10.1109/IPDPSW.2016.47

Max Plauth, Frank Feinbube, Frank Schlegel, and Andreas Polze. “A Perfor-
mance Evaluation of Dynamic Parallelism for Fine-grained, Irregular Work-
loads”. In: International Journal of Networking and Computing 6.2 (July 2016),
pages 212—229. ISSN: 2185-2847. DOI: |10.15803/ijnc.6.2_212

Max Plauth and Andreas Polze. “Are Low-Power SoCs Feasible for Heteroge-
nous HPC Workloads?” In: Proceedings of the European Conference on Parallel
Processing. Springer. Aug. 2016, pages 763—774. DOIL: 10.1007/978-3-319~
58943-5_61

Karsten Tausche, Max Plauth, and Andreas Polze. “dOpenCL-Evaluation of
an API-Forwarding Implementation”. In: Proceedings of the Fourth HPI Cloud
Symposium “Operating the Cloud”. Nov. 2016. DOI: |10.13140/RG.2.2.16598,
24641

Max Plauth, Christoph Sterz, Felix Eberhardt, Frank Feinbube, and Andreas
Polze. “Assessing NUMA Performance Based on Hardware Event Counters”.
In: Proceedings of the IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). IEEE. May 2017, pages 904—913. DOI: 10.1109/
IPDPSW.2017.51

Maél Kimmerlin, Peer Hasselmeyer, Seppo Heikkild, Max Plauth, Pawet Parol,
and Pasi Sarolahti. “Network Expansion in OpenStack Cloud Federations”. In:
2017 European Conference on Networks and Communications (EuCNC). June 2017,
pages 1-5. DOI: |10.1109/EuCNC.2017.7980655

Max Plauth, Lena Feinbube, and Andreas Polze. “A Performance Survey of
Lightweight Virtualization Techniques”. In: Proceedings of the European Confer-
ence on Service-Oriented and Cloud Computing. Springer. Sept. 2017, pages 34—48.
DOI:|10.1007/978-3-319-67262-5_3

https://doi.org/10.3233/978-1-61499-621-7-605
https://doi.org/10.13140/RG.2.2.26664.57604
https://doi.org/10.1109/CANDAR.2015.26
https://doi.org/10.1109/IPDPSW.2016.47
https://doi.org/10.15803/ijnc.6.2_212
https://doi.org/10.1007/978-3-319-58943-5_61
https://doi.org/10.1007/978-3-319-58943-5_61
https://doi.org/10.13140/RG.2.2.16598.24641
https://doi.org/10.13140/RG.2.2.16598.24641
https://doi.org/10.1109/IPDPSW.2017.51
https://doi.org/10.1109/IPDPSW.2017.51
https://doi.org/10.1109/EuCNC.2017.7980655
https://doi.org/10.1007/978-3-319-67262-5_3

1 Introduction

[971 Maél Kimmerlin, Max Plauth, Seppo Heikkild, and Tapio Niemi. “A Practical
Evaluation of a Network Expansion Mechanism in an OpenStack Cloud Federa-
tion”. In: 2017 IEEE 6th International Conference on Cloud Networking (CloudNet).
2017, pages 1—-6. DOI: |10.1109/CloudNet.2017.8071540

[149] Max Plauth, Matthias Bastian, and Andreas Polze. “Facilitating Policy Adher-
ence in Federated OpenStack Clouds with Minimally Invasive Changes”. In:
Proceedings of the Fifth HPI Cloud Symposium "Operating the Cloud”. Nov. 2017.
DOI: 10.13140/RG.2.2.34267.28969

[60] Andreas Grapentin, Max Plauth, and Andreas Polze. “MemSpaces: Evaluating
the Tuple Space Paradigm in the Context of Memory-Centric Architectures”.
In: Proceedings of the Fifth International Symposium on Computing and Networking
(CANDAR). IEEE. Nov. 2017, pages 284-290. DOI: 10.1109/CANDAR.2017.55

[771 Jens Hiller, Maél Kimmerlin, Max Plauth, Heikkild Seppo, Stefan Klauck, Ville
Lindfors, Felix Eberhardt, Dariusz Bursztynowski, Jesus Llorente Santos, Oliver
Hohlfeld, and Klaus Wehrle. “Giving Customers Control Over Their Data:
Integrating a Policy Language into the Cloud”. In: 2018 IEEE International
Conference on Cloud Engineering (IC2E). 2018, pages 241-249. DOI: [10.1109/
IC2E.2018.00050

[163] Max Plauth, Fredrik Teschke, Daniel Richter, and Andreas Polze. “Hardening
Application Security using Intel SGX”. in: Proceedings of the IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE. Aug. 2018,
pages 375-380. DOI: [10.1109/QRS.26018.00050

[99] Stefan Klauck, Max Plauth, Sven Knebel, Marius Strobl, Douglas Santry, and
Lars Eggert. “Eliminating the Bandwidth Bottleneck of Central Query Dispatch-
ing Through TCP Connection Hand-Over”. In: Datenbanksysteme fiir Business,
Technologie und Web (BTW 2019). Edited by Torsten Grust, Felix Naumann,
Alexander Bohm, Wolfgang Lehner, Theo Harder, Erhard Rahm, Andreas
Heuer, Meike Klettke, and Holger Meyer. Gesellschaft fiir Informatik, Bonn,
2019, pages 97-106. DOI: [10.18420/btw2019-07

1.7.1.2 Project-Related Master’s Theses

In the context of the SSICLOPS project, I have (co-)supervised the following master’s
theses:

[184] Patrick Schmidt. “Optimization Guidelines for NUMA Architectures”. Mas-
ter’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of Pots-
dam, Jan. 2016. URL: https://osm.hpi.de/bookshelf/Details/533

[68] Wieland Hagen. “A Programming Model for C++ Application Development
on Non-Uniform Memory Access Architectures”. Master’s thesis. Potsdam,
Germany: Hasso Plattner Institute, University of Potsdam, Apr. 2016

[186] Vincent Schwarzer. “Evaluierung von Unikernel-Betriebssystemen fiir Cloud-
Computing”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute,
University of Potsdam, June 2016

10

https://doi.org/10.1109/CloudNet.2017.8071540
https://doi.org/10.13140/RG.2.2.34267.28969
https://doi.org/10.1109/CANDAR.2017.55
https://doi.org/10.1109/IC2E.2018.00050
https://doi.org/10.1109/IC2E.2018.00050
https://doi.org/10.1109/QRS.2018.00050
https://doi.org/10.18420/btw2019-07
https://osm.hpi.de/bookshelf/Details/533

[192]

[11]

(8]

[175]

[203]

[1o2]

[127]

1.7 Context

Christoph Sterz. “Analyzing NUMA Performance Based on Hardware Event
Counters”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute,
University of Potsdam, July 2016. URL: |https://osm.hpi.de/bookshelf/
Details/530

Jossekin Beilharz. “Koordinierungssprachen — von NUMA-Knoten bis zu
Cloud-Verbiinden”. Master’s thesis. Potsdam, Germany: Hasso Plattner Insti-
tute, University of Potsdam, Oct. 2016

Matthias Bastian. “Entwurf und Integration eines Frameworks zur Einhaltung
nutzerdefinierter Policies in OpenStack”. Master’s thesis. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, Jan. 2017. URL: https://osm,
hpi.de/bookshelf/Details/457

Florian Rosler. “Dynamic OpenCL - Distributed Computing on Cloud Scale”.
Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of
Potsdam, Apr. 2017. URL: https://osm.hpi.de/bookshelf/Details/460
Fredrick Teschke. “Hardening Applications with Intel SGX”. Master’s thesis.
Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, July 2017
Sven Knebel. “Interfaces for New Networking Challenges”. Master’s thesis.
Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, June 2018.
URL: https://osm.hpi.de/bookshelf/Details/528

Jan-Henrich Mattfeld. “Design and Implementation of a Unified Middleware
for Policy Enforcement in Multi-Cloud Infrastructures”. Master’s thesis. Pots-
dam, Germany: Hasso Plattner Institute, University of Potsdam, Apr. 2018.
URL: https://osm.hpi.de/bookshelf/Details/480

1.7.1.3 Project-Related Master’s Projects

In the master’s programs at HPI, the master’s thesis is preceded by a larger project
comparable to the scope of a final year project. Over the course of the SSICLOPS project,
I have (co-)supervised the following master’s projects:

lo1]

[[126]

Marvin Keller, Philipp Pajak, Florian Rosler, and Robert Schéfer. “Scalable
and Secure Infrastructures for Cloud Operations”. Master’s Project Report.
Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, Mar. 2016
Fabian Maschler, Jan-Henrich Mattfeld, and Norman Rzepka. “Scalable and Se-
cure Infrastructures for Cloud Operations”. Master’s Project Report. Potsdam,
Germany: Hasso Plattner Institute, University of Potsdam, Sept. 2016

1.7.2 Hybrid DB

The Hybrid DB project has been conducted in cooperation with IBM Germany Research and
Development from 2016 through 2021 as a follow-up to preceding research efforts centered
around systems undertaken by my colleague Felix Eberhardt. Hence, a central
aspect of the Hybrid DB project was the investigation of heterogeneous properties of main
memory resources in large scale-up systems. In this continuation of
related research, I have supervised the master’s thesis by Karsten Tausche [198] in which
he has contributed improvements to the PGASUS framework. PGASUS serves as the

11

https://osm.hpi.de/bookshelf/Details/530
https://osm.hpi.de/bookshelf/Details/530
https://osm.hpi.de/bookshelf/Details/457
https://osm.hpi.de/bookshelf/Details/457
https://osm.hpi.de/bookshelf/Details/460
https://osm.hpi.de/bookshelf/Details/528
https://osm.hpi.de/bookshelf/Details/480

1 Introduction

foundation for my contributions I am going to present in As another central
aspect of the HybridDB project was the investigation of new approaches for interacting
with heterogeneous system resources, the project provided me with an ideal environment
for focusing my research efforts on this topic. In this environment, I have co-supervised
the master’s theses by Lukas Wenzel and Robert Schmid [181], who have explored
programming abstractions for leveraging coherently integrated [Field-Programmable Gate|
accelerators for data-intensive workloads such as leveraging the
then unique [Coherent Accelerator Interface Architecture (CATA)| facilities introduced with
the POWERS microarchitecture. Their work on data-intensive workloads has sparked my
research interests centered around the NX-842 on-chip compression accelerators, which I
am going to introduce in [Chapter 3} Building up on top of the work of Karsten Tausche
(cf. dOpenCL [199]) and Florian Rosler (cf. Dynamic OpenCL [175]) conducted within the
framework of the SSICLOPS project (cf. [Section 1.7.1), I have furthermore investigated
strategies for virtualizing [GPU| compute resources in multi-tenant scenarios in the context
of the Hybrid DB project. For this work, I have been awarded with the IBM PhD Fellow-
ship Award in 2017. In these [GPU}related research efforts, I have proposed the CloudCL
framework which I am going to present in

FPGA Host L "
T pevatrs
CAPI - gorﬁl libsnap
' [ubea]
Coherent user

SNAP Core

FPGA Host
Memory Memory

Figure 1.4: Introduced with the POWERS microarchitecture, the facilities are comprised of
the [Coherent Accelerator Processor Proxy (CAPP)|on the side of the host[CPU|and the[POWER]
[Service Layer (PSL)|on the side of the accelerator, with both components communicating via the
[Coherent Accelerator Processor Interface (CAPI)| protocol. Image source: .

1.7.2.1 Project-Related Publications

The research efforts I have conducted together with my colleagues Felix Eberhardt, Robert
Schmid, and Lukas Wenzel have yielded several peer-reviewed publications. Even though
these publications are not necessarily related to my thesis or have only influenced my
research efforts indirectly, they are listed hereinafter to highlight the research activities I
have conducted alongside my work on this thesis:

[210] Lukas Wenzel, Robert Schmid, Balthasar Martin, Max Plauth, Felix Eberhardyt,
and Andreas Polze. “Getting started with CAPI SNAP: Hardware Develop-
ment for Software Engineers”. In: Euro-Par 2018: Parallel Processing Workshops.
Springer. Aug. 2018, pages 187-198. DOI: [10.1007/978-3-030-10549-5_15

12

https://doi.org/10.1007/978-3-030-10549-5_15

[183]

[182]

1.7 Context

Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, and Andreas
Polze. “Orchestrating Near-Data FPGA Accelerators Using Unix Pipes”. In:
Proceedings of the Seventh International Symposium on Computing and Networking
Workshops (CANDARW). IEEE. Nov. 2019, pages 125-128. DOI: [10.1109/CAND
ARW.2019.00030

Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, and Andreas
Polze. “Accessible Near-Storage Computing with FPGAs”. In: Proceedings of
the Fifteenth European Conference on Computer Systems. EuroSys "20. Heraklion,
Greece: Association for Computing Machinery, Apr. 2020. 1SBN: 9781450368827.
DOI: 10.1145/3342195.3387557

1.7.2.2 Project-Related Master’s Theses

In the context of the Hybrid DB project, I have (co-)supervised the following master’s

theses:

[103]

[173]

[198]

l45]

[211]

[[181]

[209]

[10]

[22]

Sven Kohler. “On-Chip Accelerators on POWERS8”. Master’s thesis. Potsdam,
Germany: Hasso Plattner Institute, University of Potsdam, May 2017. URL:
https://osm.hpi.de/bookshelf/Details/531

Daniel Roeder. “Recording and Profiling Workload Characteristics”. Master’s
thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
July 2017

Karsten Tausche. “Memory Management on IBM Power Systems with NUMA
Characteristics based on the PGASUS Programming Framework”. Master’s
thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
Oct. 2017. URL: https://osm.hpi.de/bookshelf/Details/540

Kai Fabian. “Measuring and Interpreting NUMA Main Memory Latencies”.
Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of
Potsdam, Sept. 2017. URL: |https://osm.hpi.de/bookshelf/Details/536
Christian Wuerz. “Resource Contention of Competing Processes in Parallel Sys-
tems”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University
of Potsdam, Oct. 2017. URL: |https://osm.hpi.de/bookshelf/Details/534
Robert Schmid. “Using FPGA Performance Counters for Profiling Heteroge-
nous Applications”. Master’s thesis. Potsdam, Germany: Hasso Plattner
Institute, University of Potsdam, Dec. 2018. URL: https://osm. hpi.de/
bookshelf/Details/535

Lukas Wenzel. “Operating System Facilities for FPGA Accelerator Designs”.
Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of
Potsdam, June 2019. URL: https://osm.hpi.de/bookshelf/Details/498
Yannick Badumer. “Hardware Accelerated Lossless Compression using High-
Level Synthesis”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute,
University of Potsdam, Nov. 2019. URL: https://osm.hpi.de/bookshelf/
Details/538

Joan Bruguera Micé. “Improved Data Transfer Efficiency for Scale-Out GPU
Workloads using On-the-Fly I/O Link Compression”. Master’s thesis. Potsdam,
Germany: Hasso Plattner Institute, University of Potsdam, July 2020. URL:
https://osm.hpi.de/bookshelf/Details/539

13

https://doi.org/10.1109/CANDARW.2019.00030
https://doi.org/10.1109/CANDARW.2019.00030
https://doi.org/10.1145/3342195.3387557
https://osm.hpi.de/bookshelf/Details/531
https://osm.hpi.de/bookshelf/Details/540
https://osm.hpi.de/bookshelf/Details/536
https://osm.hpi.de/bookshelf/Details/534
https://osm.hpi.de/bookshelf/Details/535
https://osm.hpi.de/bookshelf/Details/535
https://osm.hpi.de/bookshelf/Details/498
https://osm.hpi.de/bookshelf/Details/538
https://osm.hpi.de/bookshelf/Details/538
https://osm.hpi.de/bookshelf/Details/539

1 Introduction

1.7.2.3 Project-Related Master’s Projects

In the master’s programs at HPI, the master’s thesis is preceded by a larger project
comparable to the scope of a final year project. Over the course of the Hybrid DB project,
I have (co-)supervised the following master’s projects:

[124] Balthasar Martin, Robert Schmid, and Lukas Wenzel. “CAPI SNAP Develop-
ment for Programmers”. Master’s Project Report. Potsdam, Germany: Hasso
Plattner Institute, University of Potsdam, Sept. 2017. URL: https://osm.hpi|
de/capi-snap

1.7.3 Memento: Energy-Efficient Memory Placement

Together with my colleagues Sven Kshler and Lukas Wenzel, I have performed preliminary
research in collaboration with the Bochum Operating Systems and System Software (BOSS)
research group at the Ruhr University Bochum (RUB) headed by Prof. Dr. Timo Honig
from 2019 through 2021, which has led to the submission of the joint Memento proposal
to the Priority Program 2377 on Disruptive Memory Technologies by the German Research
Foundation. Based on an [[SAlagnostic workload representation, our initial goal was to
improve energy-efficiency in data centers by placing workloads on the resources that are
best suited for the respective workload as outlined in

Development Time Workload

(_ Analysis

Workloads &

offline

Memento

Notation

N

Persistent
Runtime
Collection

Memory
emory Expected Energy

Energy ¥ Consumption)

] Model
Memory

Governor

online

: Workload @
H . in Execution
....... Runtime

Placement
Decision

|implicit| pjacement Placement

D
Deduction =3 Requirements -—

—e

explicit

N

Characteristics |.uuviesssensnnnnnn, "

Memory Resources

=== amE. am s 1 Memory :
— Characterisation 2 Administrative 0

Constraints

System Setup Time

Figure 1.5: The goal of the proposed Memento project is to improve energy efficiency based on mem-
ory placement strategies that consider the varying characteristics of diverse memory resources
available in state-of-the-art computer architectures. Image source: [79].

During the initial phase of the preliminary work, our research efforts were focused on
establishing common for measuring the energy demand of workloads across various
hardware using the Pinpoint utility [104]. However, as the diversification of memory
resources has culminated in the approval of the Priority Program 2377 on Disruptive Memory
Technologies, we have refocused our research efforts on exploiting the heterogeneity of
memory resources with the goal of improving energy efficiency. Even though a funding

14

https://osm.hpi.de/capi-snap
https://osm.hpi.de/capi-snap

1.7 Context

decision for Memento proposal is still pending at the time of writing, we are hoping to
commence the active work on the Memento project some time around summer 2022.

1.7.3.1 Project-Related Publications

The joint research efforts I have conducted together both with my colleagues Sven Kohler
and Lukas Wenzel from HPI as well as our collaboration partners Timo Honig and
Benedict Herzog from RUB have yielded several peer-reviewed publications. Even though
these publications are not necessarily related to my thesis or have only influenced my
research efforts indirectly, they are listed hereinafter to highlight the research activities I
have conducted alongside my work on this thesis:

[72] Benedict Herzog, Timo Honig, Wolfgang Schroder-Preikschat, Max Plauth,
Sven Kohler, and Andreas Polze. “Bridging the Gap: Energy-efficient Execu-
tion of Software Workloads on Heterogeneous Hardware Components”. In:
Proceedings of the Tenth ACM International Conference on Future Energy Systems.
June 2019, pages 428-430. DOT: |[10.1145/3307772.3330176

[104] Sven Kohler, Benedict Herzog, Timo Honig, Lukas Wenzel, Max Plauth, Jorg
Nolte, Andreas Polze, and Wolfgang Schroder-Preikschat. “Pinpoint the Joules:
Unifying Runtime-Support for Energy Measurements on Heterogeneous Sys-
tems”. In: 2020 IEEE/ACM International Workshop on Runtime and Operating
Systems for Supercomputers (ROSS). IEEE. Nov. 2020, pages 31—40. DOI: 10,
1109/R0SS51935.2020.00009

[105] Sven Kohler, Lukas Wenzel, Max Plauth, Pawel Boning, Philipp Gampe,
Leonard Geier, and Andreas Polze. “Recognizing HPC Workloads Based on
Power Draw Signatures”. In: Ninth International Symposium on Computing and
Networking (CANDAR). Matsue, Japan: IEEE, Nov. 2021, pages 278-284. poI:
10.1109/CANDARW53999.2021.00053

1.7.3.2 Project-Related Master’s Theses

During the preparatory work leading to the submission of the Memento proposal, I have
(co-)supervised the following master’s theses:

[671 Felix Grzelka. “On the Energy Consumption of Deep Learning Workloads”.
Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of
Potsdam, Apr. 2021. URL: https://osm.hpi.de/bookshelf/Details/529

1.7.3.3 Project-Related Master’s Projects

In the master’s programs at HPI, the master’s thesis is preceded by a larger project
comparable to the scope of a final year project. Over the preparation phase leading to
the submission of the Memento proposal, I have (co-)supervised the following master’s
projects:

15

https://doi.org/10.1145/3307772.3330176
https://doi.org/10.1109/ROSS51935.2020.00009
https://doi.org/10.1109/ROSS51935.2020.00009
https://doi.org/10.1109/CANDARW53999.2021.00053
https://osm.hpi.de/bookshelf/Details/529

1 Introduction

[14] Lawrence Benson, Fabian Paul, Christian Werling, and Fabian Windheuser.
“Real-time Power Monitoring for Heterogenous Data Centers”. Master’s Project
Report. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
Mar. 2019

[18] Pawel Boning, Philipp Gampe, and Leonard Geier. “Power-Based Workload
Classification”. Master’s Project Report. Potsdam, Germany: Hasso Plattner
Institute, University of Potsdam, Mar. 2021

[62] Erik Griese, Leon Matthes, and Maximilian Stiede. “Save Energy by Monitoring
Workload Memory Utilization”. Master’s Project Report. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, Mar. 2022

1.7.4 Teaching Activities

The research efforts leading to this work were accompanied by various teaching activities
specified hereinafter. Especially the lectures on parallel programming and heterogeneous
computing are tightly associated with the topics covered in this thesis, whereas the
remaining courses are motivated by the research projects highlighted in the preceding
sections.

Winter 2015/16 Parallel and Distributed Systems
Project Seminar, Master

Summer 2016 IBM Power Systems
Block Lecture, Bachelor and Master

Winter 2017/18 File System From Scratch
Project Seminar, Master

Winter 2017/18 Embedded Operating Systems
Lecture, Master

Winter 2018/19 IBM Power Systems
Block Lecture, Bachelor and Master

Summer 2019 Parallel Programming and Heterogeneous Computing
Lecture, Master

Winter 2019/20 Energy-Aware Computing in Heterogeneous Data Centers
Project Seminar, Master

Summer 2020 Parallel Programming and Heterogeneous Computing
Lecture, Master

Summer 2021 Parallel Programming and Heterogeneous Computing
Lecture, Master

16

2 State of the Art and Related Work

This chapter presents the state of the art and related work in the research field of hetero-
geneous computer architectures. To deepen the appreciation of the heterogeneous system
resources considered in this thesis, this chapter starts by elaborating on the origins of
using |Graphics Processing Unit (GPU)| resources for general purpose computations as
well as the development of [Non-Uniform Memory Access (NUMA)|architectures. After-
wards, upcoming trends in heterogeneous computer architectures are discussed to point
out upcoming challenges for the use of heterogeneous system resources. Finally, the
canonical approaches for interacting with the heterogeneous system resources covered by
this thesis are discussed alongside approaches that provide programming abstractions to
deepen the understanding of the complexities application developers are confronted with
by heterogeneous system resources.

2.1 The Origins of Heterogeneous System Resources

Revisiting the origins of heterogeneous system resources helps to deepen the understand-
ing of today’s heterogeneous computer architectures. Therefore, this section begins with
elaborating on how resources have gained general purpose computing capabili-
ties. Afterwards, the formation of modern NUMA| architectures is revisited to stress the
omnipresence of heterogeneous memory resources in most modern server systems.

2.1.1 Non-Uniform Memory Access Architectures

Of the various parallel architectures available in the 1980s, [Symmetric Multiprocessing|
and message-passing emerged as the major multiprocessor architectures [71]. Espe-
cially for smaller multiprocessor systems, shared memory systems were prevalent,
using a bus to interconnect all processors with main memory and 1/O resources [71] as
illustrated in The success of bus-based systems lies in the circumstance,
that smaller instances approach the properties of the Paracomputer model [106]], in which
“identical processors (each with a conventional order-code set) share a common memory
which they can read simultaneously in a single cycle” ([185]). Using a shared medium to
attach the processors to main memory alleviated the introduction of coherent caches based
on bus snooping in order to reduce memory access latencies in these [Uniform Memory Ac{
systems in practice [71]. For a larger number of processors however, the traffic
caused by the snooping-based coherence mechanisms results in bus contention, limiting
the scalability of this approach to configurations ranging between 4 and 16 processors per
system, depending on the system at hands [172} [71].

Aiming towards better scalability, [Distributed Shared Memory (DSM)| architectures
emerged in the late 1970s and early 1980s, giving up cache coherence to overcome the

17

2 State of the Art and Related Work

CPU

CPU

CPU

CPU

Cache

Cache

Cache

Cache

Main

I/0

Memory

Figure 2.1: In architectures, the bus used to interconnect all processors with main memory and
I/0 resources can be exploited to implement coherent caches based on bus snooping. However,
the shared medium also represents a bottleneck, limiting the scalability of the approach. Figure
adapted from [71].

scaling limitations of bus-based [SMP|systems. Notable[DSM]multiprocessor approaches in-
clude the Carnegie Mellon Cm’[197], the IBM RP3 [147], the Honeywell Information Systems
Italia (HISI) XPS-100 series [32, 200], and the Bolt, Baranek, and Newman (BBN) Butterfly
[108| [56]. As depicted in each processor in a architecture is equipped
with local main memory and I/O resources, and all processors are interconnected using
a scalable interconnection network. Even though memory resources are physically dis-
tributed in this approach, the shared memory programming model still applies, as all
memory resources are accessible through a single shared address space [71]. As a result
of the shared address space, each processor can access remote memory resources attached
to another processor through the scalable interconnection network using load and store
semantics. Without a shared medium as an interconnection network, snooping-based
coherency protocols were no longer feasible [71]. From an application developers per-
spective, systems were much more challenging to develop for, as remote data access
operations could not be cached due to the lack of cache coherency, resulting in remote
access times that could take 10 times longer compared to local access operations [71]. With
varying access times being a performance-critical property of architectures, they are
more commonly referred to as[NUMA] architectures. Due to the vast performance penalty
of uncached remote access operations in such systems, developers had to carefully
decide which data should be shared [187].

To combine the scalability of architectures with the application developer pro-
ductivity of bus-based architectures, directory-based schemes for maintaining cache
coherence in large multiprocessor systems have been proposed as a promising approach
in 1988 [4]]. By augmenting each processor with the local partition of a distributed direc-
tory as visualized in the coherence state of cache lines can be tracked without
congesting the interconnection network. With the Stanford DASH multiprocessor, the first
[Cache Coherent Non-Uniform Memory Access (ccNUMA)| multiprocessor architecture
has been introduced in 1992 [112]. In the DASH prototype, Silicon Graphics Power Station

18

2.1 The Origins of Heterogeneous System Resources

CPU+ CPU+ CPU+ CPU+
Cache Cache Cache Cache

—| 1/0 | | Men. |——| 1/0 || Men. |——| 1/0 | | Men. |——| 1/0 |

Interconnection Network

—| 1/0 | | Men. |——| 1/0 || Men. |——| 1/0 | | Men. |——| 1/0 |

CPU+ CPU+ CPU+ CPU+
Cache Cache Cache Cache

Figure 2.2: architectures avoid the bottleneck of systems by equipping each processor
with local main memory and I/O resources at the cost of giving up coherent caches, making
remote memory access extremely costly. Figure adapted from .

4D/340 4-way [SMP| systems were used as base clusters. By augmenting the memory bus
of a base cluster system with directory memory and an inter-cluster interface, up to 16
base clusters could be interconnected to form a system with up to 64
[Processing Units (CPUs)l Another important contribution of the DASH project is that it
formalized weak memory consistency models, including release consistency as further
means to improve the scalability of multiprocessor architectures [57].

CPU+ CPU+ CPU+ CPU+
Cache Cache Cache Cache

—| 1/0 | | Men. |——| 1/0 || Men. |——| 1/0 | | Men. |——| 1/0 |

Dir. Dir. Dir. Dir.

Interconnection Network

Dir. Dir. Dir. Dir.

Mem. —| I/0 | | Mem. |——| I/0 || Mem. |——| 1/0 | | Mem. |——| I/0 |
CPU+ CPU+ CPU+ CPU+
Cache Cache Cache Cache

Figure 2.3: By augmenting the local memory resources with directories for tracking the location
of cache-lines, systems manage to combine the ease of use of SMP| systems with the
scalability of DSM|architectures. Figure adapted from [71].

Defining a directory-based, coherent high-speed interconnection standard, the approval
of the [Scalable Coherent Interface (SCI)| (IEEE 1596-1992) paved the way for the first wave
of commercially available systems. The Convex Exemplar SPP-1000 series intro-

19

2 State of the Art and Related Work

duced in 1994 marks the first commercial system on the market. Based on
the Exemplar SPP-1000 was available in configurations with up to 16 hypernodes comprised
of 8 HP PA-7100 each [20]. In 1996, the Sequent NUMA-Q series, internally dubbed
Sequent: The Next Generation (with Intel inside) (STING), has been introduced, which em-
ployed [SCI] to interconnect up to 16 quads comprised of 4 Intel Pentium Pro [119]. A
similar approach has been taken with the Data General AViiON AV 2000 series introduced
in 1997, which also relied on to interconnect up to 8 quads comprised of 4 Intel Pen-
tium Pro [35]. All three approaches have in common that like the DASH prototype,
they used conventional, bus-based configurations as building blocks and augmented
them with glue logic to interconnect multiple blocks. In this glue-based approach, bus-
based snooping to used to implement coherency on the building block level, whereas
the directory-based coherence mechanisms of [SCI|are used to maintain coherence across
building blocks.

While the glue-based approaches provided the flexibility that unmodified designs
could be used, they came at the cost of increased remote access latencies caused by the
two-leveled design. With the Silicon Graphics Origin 2000 series, the first commercially
available glueless architecture was introduced in 1997 [110]. Unlike the glue-
based approaches, the two in each node do not form a bus-based cluster, but
are directly connected to the interconnection Hub. In theory, the employed architecture
would have supported a maximum of 1024 but customer configurations were only
available with up to 128[CPUs| and only one system with 512|CPUs|was installed internally
at Silicon Graphics.

With a certain delay, all major vendors adopted architectures in their
processor designs. IBM followed by introducing a design in their POWER
4 processors in 2002 [202]. In 2003, the Digital Equipment Corporation (DEC) adopted a
architecture in their Alpha 21364 (EV7) processors [37]. With the introduction
of the AMD Opteron series of processors also in 2003, a[ccNUMA}based design entered
the mass market [92]]. Finally, Intel caught up in 2009 by introducing [ccNUMA}based
designs in their lineup of both x86_64 and Itanium processors with the Nehalem [107]
and Tukwila [190] microarchitectures, respectively.

Since [ccNUMA| approaches have become the predominating manifestation of NUMA
architectures since the 1990s, the prefix for indicating the cache coherent variant is com-

monly omitted and the term [NUMA|is used to refer to [ccNUMA|architectures.

2.1.2 GPU Computing

An initial level of programmability has made its entry into professional graphics hardware
in the mid 1980s, as programmable graphics architectures have been introduced as an
alternative to fixed rendering pipelines [42]. To achieve programmability, early examples
such as the Pixar CHAP architecture [113] or the Ikonas platform [42] employed microcod-
able [Single Instruction Multiple Data (SIMD)| processors in order to process vertex and
pixel data in parallel. In the late 1990s, programmable [Multiple Instruction Multiple Data]
architectures such as PixelFlow [44] or the Silicon Graphics InfiniteReality [132]
system became available in the high-end range of professional graphics workstations.
The notion of exploiting hardware for general purpose computations was trig-
gered by the introduction of programmable vertex and fragment shaders in consumer

20

2.1 The Origins of Heterogeneous System Resources

sl Quickly after the introduction of corresponding hardware such as the NVIDIA
GeForce 3 or the ATI Radeon 8500 in 2001, an attempt at offloading matrix multiplica-
tions to has been presented [109]. Even though this first approach was unable
to achieve performance improvements compared to [CPU}based execution, it marks an
important milestone as the first successful attempt to use for general purpose com-
putations. Only one year later in 2002, another approach has managed to break even with
performance, achieving a 3.2x speed-up for [GPU}based matrix multiplication using
1500 x 1500 matrices [205].

Despite the high potential of using[GPUs|for general purpose computations, widespread
adoption of this approach was limited as it was very taxing even for application developers
with in-depth knowledge of graphics [Application Programming Interfaces (APIs)| such
as OpenGL to set up compute workflows [23]. To simplify the process, several third
party compute libraries started to appear in the mid 2000s, with Brook being one
of the most influential examples. However, even with such compute libraries at hands,
early generations of consumer with programmable shaders were still limited in
various ways, such as the number of instructions that could be used per shader. On an
architectural level, the most limiting factor was that fixed pipelines with separate vertex
and pixel processors were used, which limited their flexibility for graphics workloads as
well as for general purpose computations.

Vertex Shader Inst

Cull / Chp / Setup

S I = " S 4 Fragnent. Shader Tnst |
[

Fragment | Fragment Fragment | Fragment Fragment | Fragment Fragment | Fragment Fragment | Fragment Fragment | Fragment
Shader Shader Shader Shader Shader Shader Shader Shader Shader Shader Shader Shader

Fragment | Fragment Fragment | Fragment Fragment | Fragment Fragment | Fragment Fragment | Fragment Fragment | Fragment
Shader Shader Shader Shader Shader Shader Shader Shader Shader Shader Shader Shader

[

| Fragment Crossbar |
Figure 2.4: Earlier generations of equipped with programmable shaders suffered from the
limitation that each stage of the graphics pipeline required dedicated hardware, making it hard

for vendors to decide how much of their chip area they want to spent on what types of resources
to provide decent performance across a wide range of applications. Image source: [178].

As the first approach to replace fixed pipeline designs with unified shader architectures,
the TerraScale microarchitecture by ATI was introduced in the form of the Xenos
employed in the Microsoft Xbox 360 gaming console [39, [5]. The TerraScale microar-
chitecture employed a D|architecture based on |Very Long Instruction Word (VLIW)|
characteristics with the goal of maximizing [[nstruction-Level Parallelism (ILP), whereas
the Tesla microarchitecture presented by competitor NVIDIA in 2006 used a[SIMD]archi-
tecture based on|Reduced Instruction Set Computer (RISC)|characteristics, which exploits

21

2 State of the Art and Related Work

[Thread-Level Parallelism (TLP)|[116]. While graphics workloads were able to benefit from
unified shader architectures, the novel architecture had an even larger impact on compute
tasks and paved the way for a widespread adoption of employing[GPUs|as general pur-
pose compute accelerators. In 2007, NVIDIA released the initial version of the
|Unified Device Architecture (CUDA)| framework to officially support and promote
the use NVIDIA for general purpose computations. With similar capabilities, the
Khronos group has released the initial version of the OpenCL specification as a
vendor-independent alternative to also including support for other compute re-
sources such as [CPUs| [Digital Signal Processors (DSPs)] [Field-Programmable Gate Arrays|
and others.

| Vtx Thread Issue | | Geo Thread Issue | | Px1l Thread issue |
|

[I - I I I |
5 g5 5 5 5 5 o 5

58 5 o 5 LOac |,
0 1 o
0 01 0 1 o
0 0 I o

| | | |

TEX UNIT TEX UNIT TEX UNIT TEX UNIT TEX UNIT TEX UNIT TEX UNIT TEX UNIT

_|

v v v v v v
| [R— ' [' [! [— ' [— ' [— |

Figure 2.5: In unified architectures, the special-purpose resources employed in fixed-pipeline
[GPU]designs are replaced with generic compute resources that can be used to process most stages

of a graphics pipeline, greatly increasing the flexibility of[GPUs| Image source: [178].

Over the course of the 2010s, all major [GPU] microarchitectures adopted [SIMD] compute
resources with [RISC| characteristics. Not only dedicated improved continuously, but
also integrated advanced significantly as and resources reached a much
tighter level of integration, sharing the same memory hierarchy not only physically but
also on a logical level [165]. With the introduction of the IBM Power System AC922 in 2018,
the combination of IBM POWERg NVIDIA V100 and the cache-coherent
NVLink 2.0 interconnection technology have yielded the first system setup to achieve
cache-line level integration of dedicated into the main memory hierarchy of the

host[CPUS) [171].

22

2.2 Trends in Heterogeneous System Resources

2.2 Trends in Heterogeneous System Resources

At the time of writing, innovations in the area of interconnection standards are driving
extensive transformations in heterogeneous computer architectures. Most notably, the
memory hierarchy is about to become more diverse and an increasing number of accelera-
tors such as or other domain-specific accelerators are gaining fine-grained,
coherent integration into the host system. In this section, the major aspiring interconnec-
tion standards are reviewed in and the importance of disruptive memory

technologies are outlined in

2.2.1 Coherent Interconnects

Introduced in 2003, the [Peripheral Component Interconnect Express (PCle)| standard
has served as the standard intra-node interconnect technology for almost two decades.
As illustrated in frequent releases of new revisions of the standard
roughly every 3.5 years have yielded continuous bandwidth improvements on par with
the progression of memory bandwidth available per socket throughout the first three
revisions of the standard [63} |64, |65]. After the release of 3.0 however, the pace of
development has slowed down significantly, as the first commercially available product
to support the succeeding 4.0 standard was released seven years later in 2017 with
the introduction of the IBM POWERg [177,166]. Unfortunately, widespread adoption
of the newer standard has only started with the introduction of the AMD Zen 2
microarchitecture in 2019 [196], but even at the time of writing not all major [CPU]| vendors
have adopted the 4.0 standard.

Over the extensive lifespan of 3.0 as the dominating standard, continuous im-
provements in the performance of and accelerators have been accompanied by
proportionate improvements of their respective memory subsystems. Due to the over-
due progression of interconnect technology, the severe gap between the capabilities of
interconnects and the performance of and accelerators as well as their respective
memory subsystems have created a strong need for innovation in the field of interconnect
technologies. Consequently, several consortia have formed to bring forward a new gener-
ation of interconnection standards such as [Open Coherent Accelerator Processor Interface]
[195], [Compute Express Link (CXL)] [33]l, [Cache Coherent Interconnect for
[Accelerators (CCIX)|[27], and Gen-Z. Differing in technical details, all of these approaches
have in common that they do not only facilitate improved bandwidth and latency, but they
also introduce new features such as coherent integration of devices into the main memory
hierarchy, as well as serial facilities for attaching memory. While [OpenCAPI| [CXL} and
are intended for short-reach, intra-node connectivity, the Gen-Z specification has
been drafted with rack-scale connectivity in mind. In addition to vendor-independent
technologies, proprietary approaches such as NVIDIA NVLink have been introduced.

2.2.2 Disruptive Memory Technologies

Over the last decades, most computer architectures have employed homogeneous mem-
ory resources on each layer of the memory hierarchy. In these systems, the properties
of memory resources were sufficiently similar to conceal them behind the flat address

23

2 State of the Art and Related Work

103
-@ DRAM BW /CPU socket
- PCle BW /16 lanes
102
R
(0]
=
M
(O]
10!
100 T T T T T
2000 2005 2010 2015 2020
Year

Figure 2.6: Over the years, a certain gap has emerged between the development of Dinamic Ranj
[dom Access Memory (DRAM)| bandwidth compared to the bandwidth provided by the [PCle]
standard. The pressure to innovate created by this discrepancy has fueled a competition for next-
generation interconnection technologies. The figure has been adapted from [[78] and augmented
with additional data from [176].

space of the virtual memory abstraction. However, the recent introduction of various
novel memory technologies has initiated a fundamental shift in the design of computer
architectures towards supporting heterogeneous memory resources on various layers of
the memory hierarchy. The near end of the memory hierarchy is extended with large,
potentially self-managed caches based on stacked [Static Random-Access Memory (SRAM))|
or on-package [High-Bandwidth Memory (HBM)| memory [212} [15]. One step further

out in the memory hierarchy, volatile resources are augmented with
Double Data Rate (GDDR) memory or resources for memory-bound algorithms

and non-volatile memory for persistent data, either exclusively [213] or in combination
with conventional [Double Data Rate (DDR)| memory resources. Originating from the
respective ecosystems of the [OpenCAPI and [CXT] interconnection standards, the mixed
used of different memory technologies is enabled based on the introduction of technology-
agnostic memory interfaces [191]. At the far end of the memory hierarchy, the new
interconnection technologies discussed in also provide the foundation for
disaggregated memory resources, which have the potential to offer enormous memory
capacities [148]. The diversity of employable memory technologies implies a disruptive
degree of heterogeneity regarding the characteristics of memory resources, which have to

be considered.

24

2.3 Programming Abstractions for Heterogeneous System Resources

2.3 Programming Abstractions for Heterogeneous System
Resources

The prevalence of heterogeneous system resources has implied a wide range of program-
ming abstractions that have been presented over the last decade. To put the programming
abstractions proposed in this thesis in perspective with the latest insights from the field,
this section provides an overview of programming abstractions and related approaches
for the heterogeneous system resources considered in this work.

2.3.1 Memory Compression and Compressed Data Transfers

Using compression as means for improving utilization of main memory has a well-
established history. This is well reflected by the work of Mittal et al. [131], which provides
a comprehensive survey of the widely researched field of data compression mechanisms
for CPU}lbased main memory and cache resources. Regarding memory compression on
a number of approaches have been published as well. Targeting memory-bound ap-
plications on|[GPUs|, Sathish et al. [179] have proposed using hardware-based compression
to increase the efficiency of access to off-chip device memory, yielding up to 37% better
performance compared to the uncompressed case. A similar approach has been published
by Vijaykumar et al. [207], who are also employing memory and register compression to
increase the utilization of all|[GPU|resources, yielding up to 2.6 x speed-up across a variety
of memory-bound applications. Following the same goal, Lu et al. [120] have recently
proposed a low-latency, hardware-based compression architecture optimized for floating
point data that reduces bandwidth demand and energy consumption of [GPUs|by 44.46%
and 44.34%, respectively. Focusing entirely on the register level, Lee et al. [111] have
explored register compression on with the goal of reducing the energy consump-
tion of graphics hardware. All approaches have in common that they are using custom,
domain-specific compression algorithms instead of general-purpose compression algo-
rithms and rely on custom hardware designs. With the introduction of their latest A100
GPUs, NVIDIA has introduced hardware support for device-sided memory compression
with the Compute Data Compression feature [143], promising up to 4x improvements in
effective DRAM and L2 bandwidth.

Both [CPUpbased and [GPU}base approaches for memory compression can improve
both effective bandwidth and capacity of memory resources significantly. Regrettably, all
approaches presented thus far only consider the isolated scope of the memory resources
attached to either a ora only and do not consider the scenario of exchanging
data across devices in compressed form. Patel et al. [145] have explored the feasibility
of on-the-fly data compression for data transfers between and using a generic
compression algorithm. The authors conclude that on-the-fly data compression is not
feasible using their software-based compression approach implemented on the[CPU] Using
a data-specific compression algorithm however, Kaczmarski et al. [86] have successfully
demonstrated that on-the-fly data compression can be used to speed-up transfers between
main memory and memory for [GPU}based [[n-Memory Database (IMDB)| use cases.
Khavari Tavana et al. [93] have also investigated [GPU}based compression approaches
using compression algorithms tailored to the characteristics of floating point data. In

25

2 State of the Art and Related Work

contrast to improving transfer efficiency between and they are using on-the-fly
data compression to improve data transfers among multiple

2.3.2 General Purpose Computing on GPUs

When the concept of performing general-purpose computations on emerged, in-
depth knowledge of graphics [APIs| were necessary to set up compute workflows based on
fragment shaders. Considering these origins, fundamental frameworks for comput-
ing[Open Computing Language (OpenCL) and [CUDA|provide a decent level of abstraction.
However, further approaches have been presented with the goal of abstracting the use of
[GPUs|both on the single-node level and in scale-out deployments. The goal of this section
is to provide a brief overview of abstractions for compute resources ranging from
the basics at the level of fundamental compute frameworks such as to high-level
abstractions concerned with scale-out resources.

2.3.2.1 OpenCL

The standard [204] defines a framework for executing parallel compute kernels
on heterogeneous compute resources available in a single system such as
and possibly even further device types. At a conceptual level, the
standard is built around four models: a platform model, an execution model, a memory model,
and a programming model.

The platform model describes the basic hierarchy of a host that is equipped with an arbi-
trary number of compute devices, which are comprised of compute units as an organizational
structure for grouping individual processing elements. An implementation must
provide a platform in the form of an [Installable Client Driver (ICD), which enables the
host to control compute devices belonging to the platform. Multiple platforms may even
coexist on a single host, as multiple may be available on a system (e.g., for using
heterogeneous compute resources from diverse vendors).

The execution model distinguishes between the host application and device kernels. To
provide an organizational structure for managing kernel instantiations, the execution model
defines an index range that comprises a hierarchy of work-items and work-groups in order to
specify what data individual kernel instances operate on. A work-item represents the work
performed by a single kernel instance, whereas work-groups provide an organizational unit
for grouping multiple work-items. In a context, the host application defines devices, kernels,
program objects, and memory objects. Furthermore, the host application is responsible for
managing gueues, which are used to define a sequence of kernel executions, operations on
memory objects (e.g., transfers between host and device memory), as well as synchronization
points.

The memory model is tightly complected with the peculiarities of the platform model and
the execution model and defines different types of memory that vary in their scope of
accessibility as well as their performance characteristics. Main memory resources of the
host system are referred to as host memory. On the side of compute devices, the memory
hierarchy is composed of global memory, constant memory, local memory, as well as private
memory. The global memory and constant memory resources comprised by a context are
typically served by off-chip memory or and can be accessed by both the host

26

2.3 Programming Abstractions for Heterogeneous System Resources

and kernels. In contrast to that, local memory is often backed by on-chip and is only
shared among the work-items belonging to a single work-group. Private memory refers to
memory resources at the register level and is therefore only accessible from the work-item
it belongs to.

With supporting a wide range of heterogeneous compute resources, the em-
ployed programming model is flexible enough to support both a data parallel programming
model and a task parallel programming model. For the data parallel case, a strict one-to-one
mapping between a few data elements and work-items is used, whereas the task parallel
case can be achieved by defining an index-range with a single work-item per task.
kernels are implemented using C, which is a superset of C99, containing addi-
tional keywords that are used specify the employed memory resources defined by the
memory model as well as synchronization mechanisms. The host application is usually
implemented in C or C++, however other language bindings exist as well.

presents a minimal kernel implementing the addition of two vectors.
Each parameter is a pointer to an array of float values residing in the global memory of the
heterogeneous compute resource. As the kernel is instantiated for every work-item, each
kernel instance identifies its work-item by querying its index using the in-built function
get_global_id.

Listing 2.1: Examplary |OpenCL| vector addition kernel.

1 __kernel void vec_add(__global float *a, __global float *b, __global float *c) {
2 int i = get_global_id(0);

5 c[i] = ali]l + b[i];

4}

While the simplistic vector kernel amounts to very few lines of kernel code,

is notorious for its verbosity regarding the host code necessary to choose an appropriate
device, initiate data transfers, execute the kernel, and perform other auxiliary tasks. Even

though the host code exemplified in [Listing 2.2| uses the C++ bindings of which

are much less verbose than the native C roughly 30 lines of code are necessary to
execute the vec_add kernel. Using the native C the same application requires roughly
50 lines of code.

Listing 2.2: Minimal C++|OpenCL|host application necessary to execute the vec_add kernel.

1 int main(){
2 // Initialize arrays on host

3 float array_al10] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7

;, float array_b[10] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
5 float*x array_result = new float[10];

6 size_t size = 10 x sizeof(float);

7

8 // OpenCL initialization

9 cl::Platform platform;
10 cl::Platform::get(&platform);

12 std::vector<cl::Device> devices;

13 platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
1 cl::Context context(devices);

27

16

17

19

20

21

22

23

24

25

26

27
28

2 State of the Art and Related Work

cl::Program program(context, OPENCL_PROGRAM) ;
program.build(devices);
cl::Kernel kernel(program, "vec_add");

cl::CommandQueue queue(context, devices[0]);

cl::Buffer d_a(context, CL_MEM_READ_ONLY, size);
cl::Buffer d_b(context, CL_MEM_READ_ONLY, size);
cl::Buffer d_c(context, CL_MEM_WRITE_ONLY, size);

// data transfers & kernel invocation

queue.enqueueWriteBuffer(d_a, CL_FALSE, 0, size, array_a);
queue.enqueueWriteBuffer(d_b, CL_FALSE, 0, size, array_b);
queue.enqueueNDRangeKernel(kernel, cl::NullRange, size, cl::NullRange);
queue.enqueueReadBuffer(d_c, CL_TRUE, 0, size, array_result);

2.3.2.2 Single-Node Wrappers for OpenCL

For many application developers and domain experts not well versed in the C or C++
programming languages, the verbosity of can be overwhelming. Hence, a wide
range of wrappers have been presented for various higher-level programming
languages such as Java, C#, and Python. As one of the best known [OpenCL] wrappers, the
Aparapi framework makes the resources of OpenCL}compatible compute devices available
in Java. Aparapi is not just a simple wrapper and aims for a transparent integration of
heterogeneous compute resources, completely abstracting away device handling tasks and
data transfers. Inspired by Aparapi, the Hybrid.Parallel project attempts to go even one step
further by implementing an [OpenCIL}backed drop-in replacement for the Parallel.For
construct of the Task Parallel Library (TPL) in the .NET ecosystem [50 48]. In contrast to
these tightly integrated approaches, approaches such as PyOpenCL offer basic
wrappers [101].

2.3.2.3 Scale-Out Extensions for OpenCL

Scaling out|GPU]workloads across multiple compute nodes of a cluster is a recurring issue
which has been investigated in a wide range of publications. The canonical approach
for distributing workloads relies on mixing compute frameworks such as
[OpenCL] or [CUDA] with implementations of the Message Passing Interface (MPI)|standard.
However, this approach requires application developers to deal with multiple levels of
abstraction, using different programming models and synchronization semantics.

A commonly employed approach for achieving a uniform developer experience is to
present devices scattered across compute nodes as if they were local devices. Relying on
means of forwarding, this strategy exploits the mechanisms available in for
coordinating work across multiple devices and has been applied by various approaches
such as dOpenCL [90], SnuCL [95], or VirtualCL [7]. However, these approaches require
developers to partition and schedule their workloads across multiple, potentially hetero-
geneous devices, increasing the complexity of applications significantly.

To address the problem of increased application complexity, DistCL [38] as well as
another approach [94] have proposed to fuse multiple compute devices into a single

28

2.3 Programming Abstractions for Heterogeneous System Resources

logical device. DistCL creates the illusion of a single, logical device by splitting kernels
and the data they operate on it into multiple sub-ranges. To make this automatic splitting
process possible, application developers have to supply a meta-function that specifies the
memory access pattern. Based on the provided meta-functions, DistCL can identify data
relevant for a sub-range and transfers it to the corresponding heterogeneous compute
resource.

2.3.3 Data Placement in NUMA Architectures

The variety of approaches available for controlling data placement in systems
ranges from approaches that assume a shared memory parallel programming model
on one end to approaches that assume a distributed memory parallel programming
model on the other end. Both strategies are valid, as the architecture employed by
systems exhibits certain characteristics of a distributed system, all while the cache
coherent address space spanning across all nodes facilitates the system behavior
of a shared memory system. Situated somewhere in between, several approaches employ
the [Partitioned Global Address Space (PGAS) model which enables the differentiation
between local and remote memory resources. Hereinafter, popular approaches from all
three categories are highlighted.

2.3.3.1 Shared Memory Model

Since many software developers are highly accustomed to the shared memory parallel
programming model, the idea of extending this environment with means for controlling
data placements on stands to reason. This section provides an overview of some
of the most important approaches that have attempted to achieve that very same goal.

OpenMP The|Open Multi-Processing (OpenMP)|standard specifies compiler-based exten-
sions for the C/C++ and Fortran programming languages [144]]. Based on annotations,
enables application developers to instruct the compiler to define tasks that can
be executed concurrently using a fork-join workflow. The runtime library is re-
sponsible for mapping tasks onto the threading and synchronization primitives provided
by the operating system. As[OpenMP|has no concept of memory locality, developers have
to consider data placement themselves. Even though several approaches have been pre-
sented that extend [OpenMP|with task-to-data associations and a locality-aware scheduling
policies [21, [135], none of these approaches have gained traction. As a result thereof, the
canonical methods for making [OpenMP}based applications [NUMAlaware are to rely on
the first touch memory allocation policy of the operating system or to use the libnuma
[100] to manually manage the placement of memory resources. Both approaches are
cumbersome to use as they result in cluttered code that harder to maintain.

Threading Building Blocks The [Threading Building Blocks (TBB)| C++ template library
[169] provides a framework for task and data parallelism for shared memory systems.
Based on a parallel tasking infrastructure, synchronization primitives, atomic operations
and concurrent data-structures, the library enables application developers to implement

29

2 State of the Art and Related Work

parallel algorithms. Similar to the framework does not consider
characteristics on its own. Building up on top of Majo et al. [122]] have presented
TBB-NUMA, which extends the scheduler with task affinities that can be specified
manually or automatically by annotating parallel constructs with distribution templates.
These task affinities are then considered by the scheduler.

Polymorphic Allocators Standardized in C++-17, Polymorphic Allocators [70] can be con-
structed using specific memory pools which can be used to represent different
domains or different memory characteristics (e.g., volatility, latency, or bandwidth). By
serving allocations from the memory pool they have been constructed upon, polymorphic
allocators enable developers to enforce specific memory placement policies of the active
scope. Unfortunately, polymorphic allocators cannot be used to modify data placement
policies of allocations performed by nested data-structures transparently as polymorphic
allocators have to be used explicitly. The explicit use of polymorphic allocators makes it
necessary to modify nested data-structures in order to pass allocator objects to the nested
allocations.

AutoNUMA With memory management being a central aspect of operating systems, it
makes sense to facilitate NUMA}awareness through means of operating system facili-
ties. Since version 3.8, the Linux Kernel implements a transparent mechanism called
AutoNUMA [34]. The mechanism provides two strategies: memory-follow-cpu and cpu-
follow-memory. The former approach unmaps the process pages in regular intervals and
tracks the NUMA}node of the which has triggered the page-fault. Based on that
information, pages are migrated to the identified NUMAlnode to facilitate data locality.
The latter strategy uses fault statistics to migrate tasks to cores residing on the same
[NUMAlnode where most of the memory resides. These approaches work well assuming
that data-structures are page-aligned. However, issues arise when data-structures are scat-
tered among pages or if they are placed alongside other data-structures that are accessed

from cores residing on different nodes.

2.3.3.2 Distributed Memory Model

As the de-facto standard for implementing scale-out applications based on the distributed
memory parallel programming model [167, 89], the standard [134] defines an exten-
sive list of message-based communication patterns, including point-to-point and group
communication as well as reductions. Based on the [Single Program Multiple Data (SPMD)|
paradigm, the execution model assumes one application such as the one exemplified
in that is deployed on all compute nodes participating in the computation. In
a[NUMA}agnostic scenario, one process is instantiated per compute node. Each process
is identified by a unique identifier, and processes exchange messages to coordinate their
work.

An application does not necessarily have to be executed on a set of distinct cluster
nodes, but can also launch multiple processes on a single [UMA] or NUMA| system.
Since applications are typically designed with the goal of minimizing communication
among processes, they scale very well when deployed on a system [156]. However,

30

N

- T)

20

21

22

23

24

25

2.4 Summary

using to implement NUMA}awareness on a shared memory system does not allow
application developers to exploit the strengths of large scale-up NUMA|systems.

Listing 2.3: Simple message passing example implemented in C using MPL

#include <stdio.h>
#include <string.h>
#include <mpi.h>

int main(int argc, char *xargv){
char msgBuffer[64];
int rank, processCount;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &processCount);

if(rank == 0) {
for(int i = 1; i<processCount;i++) {
sprintf(msgBuffer, "This is a message from Process 0.");
MPI_Send(msgBuffer, sizeof(msgBuffer), MPI_CHAR, i, ©, MPI_COMM_WORLD);

}
1} else {
MPI_Recv(msgBuffer, sizeof(msgBuffer), MPI_CHAR, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE) ;
printf("Process %d receives: %s\n", rank, msgBuffer);

}

MPI_Finalize();
return 0;

2.3.3.3 Partitioned Global Address Space Model

The programming model has been designed for data-parallel workloads, main-
taining a global address space regardless of the underlying system architecture. The
model has been employed by a multitude of programming languages, libraries
and extensions such as X10 [29]], Chapel [28], Legion [9]], Sequoia [46], Unified Parallel C
(UPC) [41]], or High Performance Fortran (HPF) [170]. A central aspect of the model
is the distinction between local and remote memory resources, which would make it a
perfect fit for systems. However, even though the model could be applied
to both shared memory architectures and distributed memory architectures, the latter case
is much more common and the shared memory level is usually only considered in order
to improve the performance of node-local inter-process communication [16].

2.4 Summary
Each type of heterogeneous system resource considered in this thesis has widely varying

characteristics, which is well reflected in the way the approaches for providing abstractions
vary from one type of heterogeneous system resource to another. While main memory

31

2 State of the Art and Related Work

compression in itself has been researched extensively [131], the different implementations
and prototypes available vary on a per-product basis, rendering generic abstractions
unreasonable. In the field of computing, many approaches exist for alleviating
access to However, many approaches offer a similar range of functionality, often
times neglecting challenges of distributed computing such as the potential overhead of
inter-node data transfers. For systems, the necessary for controlling data
placement are available but very difficult to use correctly. This has resulted in many
application developers either hoping for automatic approaches such as AutoNUMA to
yield decent performance, or to ignore the coherent shared memory view available by

treating systems as distributed systems which is a common strategy in the
[Performance Computing (HPC)|community.

32

3 Programming Abstractions for On-Chip
Hardware Compression Resources

This chapter lays out the foundation for investigating the impact of on-the-fly data com-
pression for data transfers across |Central Processing Units (CPUs)|and |Graphics Processing]
in scale-out clusters in For this purpose, the current chap-
ter is focused on presenting the [ib842 compression library, which provides user-space
access to the high-throughput compression facilities of the NX-842 on-chip compression
accelerator available in all IBM POWER processors introduced since the POWER7+ [17].
With the proprietary 842 algorithm [54] employed by the NX-842 accelerator lacking any
software-based implementations available for user-space applications, the lib842 compres-
sion library introduces software-based high-throughput implementations of the algorithm
to enable interoperability with arbitrary [CPUs|and [GPUs]

The following master’s theses were supervised alongside the research leading to this
chapter, fostering scholarly exchange between this work and the supervised theses:

¢ Sven Kohler. “On-Chip Accelerators on POWERS”. Master’s thesis. Potsdam,
Germany: Hasso Plattner Institute, University of Potsdam, May 2017. URL: https:
//osm.hpi.de/bookshelf/Details/531

¢ Joan Bruguera Micé. “Improved Data Transfer Efficiency for Scale-Out GPU Work-
loads using On-the-Fly I/O Link Compression”. Master’s thesis. Potsdam, Ger-
many: Hasso Plattner Institute, University of Potsdam, July 2020. URL: https:
//osm.hpi.de/bookshelf/Details/539

Furthermore, partial results of the work presented in this chapter have been published:

¢ Max Plauth and Andreas Polze. “Towards Improving Data Transfer Efficiency for
Accelerators Using Hardware Compression”. In: Proceedings of the Sixth International
Symposium on Computing and Networking Workshops (CANDARW). IEEE. Nov. 2018,
pages 125-131. DOI: |10.1109/CANDARW.2018.00031

* Max Plauth and Andreas Polze. “GPU-Based Decompression for the 842 Algorithm”.
In: Proceedings of the Seventh International Symposium on Computing and Networking
Workshops (CANDARW). 1IEEE. Nov. 2019, pages 97—102. DOI: (10.1109/CANDARW .
2019.00025

* Max Plauth, Joan Bruguera Mic6, and Andreas Polze. “Improved Data Trans-
fer Efficiency for Scale-Out Heterogeneous Workloads Using On-the-Fly I/O Link
Compression”. In: Concurrency and Computation: Practice and Experience (Dec. 2020),
e€6101. DOI: |10.1002/cpe.6101

33

https://osm.hpi.de/bookshelf/Details/531
https://osm.hpi.de/bookshelf/Details/531
https://osm.hpi.de/bookshelf/Details/539
https://osm.hpi.de/bookshelf/Details/539
https://doi.org/10.1109/CANDARW.2018.00031
https://doi.org/10.1109/CANDARW.2019.00025
https://doi.org/10.1109/CANDARW.2019.00025
https://doi.org/10.1002/cpe.6101

3 Programming Abstractions for On-Chip Hardware Compression Resources

This chapter is structured as follows. motivates the demand for hardware-
accelerated and software-based high-throughput compression facilities. The 842 compres-
sion algorithm employed by the NX-842 on-chip hardware compression accelerator is
introduced in [Section 3.2| [Section 3.3|then introduces the [ib842 compression library on a
conceptual level. The implementation details of all major hardware-based and software-
based compression facilities provided by the [ib842 library are detailed in
Both the compression ratio and the throughput of all implementations are evaluated in
using a wide range of test systems. Finally, the chapter is summarized in

3.1 Motivation and Problem Statement

Combining the strengths of diverse heterogeneous system resources such as
and other accelerators in state of the art heterogeneous computer architectures is vital
to keep up with the demand for compute capacity imposed by the abundance of data
accumulating in the age of digitization. To solve a given task using the respective strengths
of the different heterogeneous system resources at hands, transferring data back and
forth among the local memories of the involved system resources is a critical aspect of
heterogeneous systems [61]. Except for highly integrated approaches where all major
system resources can be accommodated on a single [System on a Chip (S50C)|or package,
data transfers across the local memories of dedicated system resources in heterogeneous
systems are usually entailed by a certain level of performance degradation and increased
energy demand compared to operations that can be completed without accessing the
memory of another compute resource [88]. Unfortunately, the number of workloads
exceeding the compute capacity of single nodes increases with growing data volumes,
requiring computations to be scaled out across numerous systems. For example, the
soaring popularity of deep learning applications has drastically increased the demand for
both Cloud-based and private clusters [84]. As the penalties related to data transfers
already affect certain workloads executed on a single system, scale-out workloads are
more susceptible to the overhead of data transfers as data has to be conveyed across
comparatively slow inter-node interconnects. While the forthcoming commoditization of
coherent interconnection technologies (cf. has the potential to improve upon
the situation, the penalties associated with data transfers will not disappear entirely.

To further improve the efficiency of data transfers, on-the-fly data compression has
already been demonstrated as a viable approach both in academic research and in com-
mercial products. On the level of single compute nodes, most of the generally applicable
approaches are restricted to individual system resources [179, |207]. Belonging to this
category, the compute data compression feature introduced by NVIDIA with their latest
generation of Ampere serves as a notable example of a product-grade approach,
yielding up to 4x effective bandwidth improvements for accessing data residing in the
local [GPU|memory or in the L2 cache of the [30]. While all the previously mentioned
on-the-fly data compression approaches rely on custom hardware-based compression facil-
ities, a software-based lightweight compression technique has been used to improve data
transfer efficiency among system resources on the intra-node level [86]. Regrettably, the
compression technique used in this approach is only applicable to workloads operating

34

3.2 The 842 Compression Algorithm

on unsigned integer data, as it truncates all unused high-order bits. Similarly, the
[Performance Computing (HPC)| community has successfully employed floating point
compression schemes for on-the-fly data compression that assume specific properties of
the data in order to improve the efficiency of inter-node data transfers [168]. Regarding
generic software-based compression facilities however, their limited throughput has thus
far restricted beneficial impacts of on-the-fly compression for inter-node data transfers to
very slow networks (e.g., gigabit Ethernet) [51].

On-chip hardware compression accelerators for generic compression algorithms have
become available in certain [Commercial Off-the-Shelf (COTS)|[CPUs| such as the Cav-
ium ThunderX processor family [26] as well as the lineup of IBM POWER processors
introduced since the POWERy+ [17]. Delivering up to 36.8 GB/s of compression
throughput per processor socket, the NX-842 accelerators available in POWER [CPUs| [17]
provide sufficient compression throughput to saturate even state-of-the-art high-speed
inter-node interconnects [85]. With such potent compression facilities at hands, the idea of
applying on-the-fly data compression using a generic compression algorithm to improve
data transfer efficiency in heterogeneous systems is intriguing. Except for the confined
range of equipped with on-chip hardware compression accelerators however, the
absence of high-throughput generic compression facilities on the side of all other het-
erogeneous system resources is inhibiting the feasibility of compressed data exchange.
Furthermore, even though the Linux kernel contains drivers for the NX-842 as well as for
most available on-chip hardware compression acceleratorsﬂ their hardware com-
pression facilities are only accessible from other kernel resources using the internal Linux
Kernel Crypto API. In this chapter, this thesis addresses the latter issue by proposing the
first method for enabling user-space applications on Linux to access the compression facil-
ities of the NX-842 accelerator. To address the former issue, [CPU}based and [GPU}based
high-throughput software compression facilities for the proprietary 842 compression al-
gorithm employed by the NX-842 accelerator are presented. By making these artifacts
available in the form of the [ib842 compression library, this chapter lays out the foundation
for investigating the impact of On-the-Fly I/O Link Compression for data transfers among

CPUs|and [GPUs|in scale-out clusters in

3.2 The 842 Compression Algorithm

The 842 algorithm [54}|17] is a generic compression algorithm that has been designed with
the use case of transparent main memory compression in mind. As this use case requires
compression and decompression facilities that offer high throughput and low latency,
the algorithm has been designed accordingly to enable hardware-based implementations
that can be placed directly on transmission channels [17]. The first implementation of
the algorithm is a hardware-based implementation that has been introduced with the
NX-842 on-chip compression accelerator, which is available in all IBM POWER processors
introduced since the POWERy+ [17]. The 842 algorithm can be attributed to the family of
Lempel-Ziv derivatives [54]. The compression process deviates from the original Lempel-
Ziv algorithm [215] in several aspects. However, decompression works very similar
compared to LZ'77 [54].

1‘https://g'ithub.com/torvalds/l"inux/tree/master/dr"ivers/crypto

35

https://github.com/torvalds/linux/tree/master/drivers/crypto

3 Programming Abstractions for On-Chip Hardware Compression Resources

Hash Buffer
LTl Tl e[R]P[AF——r{HashO || 1op1e8 > 0F Fsets [
<
= i i o
| — Hash —>| Buffer —> 55 Encode
| | X
w Table4 —>{ Offsetd —> ?El‘ S [| pata [
= 1 =]
= d
- Update
-~ Hash [=3] Buffer 3 Vzlues
= Table2 3] 0ffset2 [|
ALl AL

Raw: [P]I]T]T[E[R]PJA]T]T]E[R]P]I[T][T[E]R][P]A]T]TIE[R[L]I]S]T]E[N]T]O]

2 4|a|§|4
K

Compressed: [[PTI[T[T[E[R]P[A

[LTT]STTIEN]T]O]

|
S

Figure 3.1: The 842 compression algorithm operates in units of 8 bytes, treating the input data as
sub-phrases of 8, 4 and 2 bytes length. The algorithm uses a fixed set of template codes (see
to encode 8 bytes of raw data by specifying a permutation of offsets to past occurrences
or literals of 8, 4 and 2 bytes length, as demonstrated in the example.

As illustrated in the 842 algorithm operates on units of 8 bytes,

treating input data as sub-phrases of 8, 4 and 2 bytes length, respectively. For each phrase
length, a hash table holds offsets to sub-phrases that have already appeared in the raw data
stream within a certain window. Depending on the outcome of the lookup, a compression
template is chosen from the fixed list of available templates (see [Table 3.1, with each
template encoding 8 bytes of raw data. Each 5-bit template encodes a permutation of
offsets or literals of 8, 4 and 2 bytes length, followed by the actual offsets and literals.
Offsets to 2 and 8-byte phrases are encoded using 8 bits, whereas offsets to 4-byte phrases
are encoded using 9 bits, resulting in the parameter sizes specified for each template in
With a clock frequency of 2.3 GHz, and the ability to ingest 8 bytes per cycle,
one NX-842 unit can achieve a maximum throughput of 18.4 GB/s [17]. With two NX-842
units per socket, the total compression throughput of a POWER processor can be as high

as 36.8 GB/s [17].

The example provided in demonstrates how the 32-byte string PITTERPAT-
TERPITTERPATTERLISTENTO is compressed using four templates. The template 0x00 is
used to encode the raw literal PITTERPA, since no matching sub-phrases have appeared
in the raw data stream beforehand. The second template ©x13 encodes TTERPITT by
providing offsets to two 2-byte phrases in the uncompressed data stream at the positions
2 (TT) and 4 (ER), as well as an offset to a 4-byte phrase at the position o (PITT). The
third template 6x18 encodes ERPATTER by providing offsets to two 4-byte phrases at the
positions 4 (ERPA) and 8 (TTER). Finally, the last template 0x00 encodes LISTENTO as a raw
literal.

36

3.2 The 842 Compression Algorithm

Table 3.1: A 5-bit template encodes precisely 8 bytes of raw data using four consecutive actions.
Actions include raw data phrases D and index references I, both in variants yielding 8, 4 and 2
bytes respectively. No-op actions NO are used to fill up unused action slots (not shown).

Template Parameters

Ox00
0x01
0x02
0x03
0Ox04
Ox05
0x06
Ox07
Ox08
0x09
OX0A
Ox0B
0x0C
Ox0D
OXOE
OXOF
Ox10
Ox11
0x12
0x13
0x14
Ox15
0Ox16
Ox17
0x18
0x19
Ox1A
Ox1B
Ox1C
Ox1D
Ox1E

64 bits
56 bits
56 bits
48 bits
41 bits
56 bits
48 bits
48 bits
40 bits
33 bits
56 bits
48 bits
48 bits
40 bits
33 bits
48 bits
40 bits
40 bits
32 bits
25 bits
41 bits
33 bits
33 bits
25 bits
18 bits
08 bits
00 bits
06 bits
00 bits
00 bits
00 bits

Actions and corresponding bytes encoded by the template.
1 2 3 4 5 6 7 8

Reserved / Unused
Repeat preceding 8 B for N times
Emit 8 B of zeros

Reserved / Unused
End of compressed bitstream

37

3 Programming Abstractions for On-Chip Hardware Compression Resources

3.3 Lib842: A User-Space Library for 842 Compression

The availability of high-throughput and low-latency compression and decompression fa-
cilities accessible from user-space are stringently required in order to enable application
developers to improve data transfer efficiency among heterogeneous system resources
based on data compression. Even though the 842 compression algorithm has been de-
signed with transparent main memory compression in mind (cf. [Section 3.2), it should be
well suited for compressing data transfers among system resources, too since the require-
ments of both use cases are virtually identical in that they require high-throughput and
low-latency compression and decompression facilities. Prior to this work however, both
hardware-based and software-based implementations of the 842 compression algorithm
have been widely inaccessible for user-space applications. The only way for user-space
applications to leverage the resources of the NX-842 on-chip compression accelerator was
to use IBM’s proprietary [Advanced Interactive eXecutive (AIX)| operating system, where
an in-built user-space API exposes the hardware-accelerated compression facilities. On
Linux however, both the NX-842 on-chip compression accelerator and a rudimentary a
software-based fallback implementation were only accessible from kernel-space through
the Linux Crypto APL To make high-throughput 842 compression and decompression
facilities available to user-space applications on Linux, this chapter introduces the lib842
compression library.

As its most prominent contribution, the lib842 library introduces the first available ap-
proach for making the resources of the NX-842 on-chip compression accelerator available
to user-space applications running on Linux. To provide high-throughput 8§42 compres-
sion and decompression facilities on compute resources that are not equipped with a
corresponding compression accelerator, library contributes software-based compression
and decompression facilities several execution targets. Hiding the implementation details
of all hardware and software-based implementations from any users of the library, lib842
exposes all available implementations through an implementation-agnostic interface as
illustrated in Of course, the implementation-agnostic interface also facilitates
extensibility, making it relatively easy to add further implementations (e.g., for other
heterogeneous system resources such as [Field-Programmable Gate Arrays (FPGAs)). A
brief overview of all implementations that are currently provided by the lib§42 library is
outlined hereinafter:

Hardware-based On-Chip Compression Accelerator (NX-842) Based on a custom kernel
module, this implementation exposes the compression and decompression facilities of all
available NX-842 on-chip compression accelerators to user-space.

Software-based Compression and Decompression (CPU|Baseline) This version is a user-
space port of the software-based fallback-implementation of 842 compression and de-
compression facilities provided by the Linux kernel in case an NX-842 accelerator is not
available. Even though this version merely provides minor compression and decom-
pression throughput, it served as a golden unit during the development of all other
implementations.

38

3.4 Implementation

1ib842

Implementation-Agnostic Interface for Compression/Decompression

! L

ioctl Wrapper |
t C++ OpenCL ! Other I
Implementation| |Implementation :Implementation:

Kernel Module o __ T______J
N
1 1
1 1
POWER CPU Any ' other |
with CPU GPU I H |
NX-842 i I
1 1

Figure 3.2: The [ib842 compression library provides implementations for hardware-accelerated com-
pression and decompression using NX-842 on-chip compression accelerators, software-based
compression and decompression on arbitrary and [GPU}based decompression on OpenCL-
capable The implementation-agnostic interface abstracts away the details of all existing
implementations, but also serves as the contact point for adding further implementations.

Software-based Compression and Decompression (CPU|Optimized) Building up on top of
the [CPU}based baseline implementation, this version uses several optimization techniques
to yield significantly higher compression and decompression throughput.

Software-based Decompression using OpenCL To provide high-throughput decom-
pression facilities for 842 compressed data on a wide range of this version is
implemented using the [Open Computing Language (OpenCL)| framework. Relying on
many optimization-techniques used in the optimized [CPU}based implementation, some
additional [GPU}specific optimizations are employed in this implementation.

3.4 Implementation

This section provides insights into all major implementations provided by the lib842
compression library as highlighted in [Section 3.3| [Section 3.4.1| presents the first available
approach for leveraging hardware-accelerated 842 compression on Power from
user-space applications running on Linux. Serving as a golden unit during development,
[Section 3.4.2]briefly outlines the challenges of porting Linux kernel code to user-space for
the software-based baseline implementation. elaborates on the optimization
strategies applied to the optimized software-based compression facilities that can be

executed on arbitrary Finally, [Section 3.4.4] documents the optimization techniques
used in the GPU-based decompression component implemented in

39

3 Programming Abstractions for On-Chip Hardware Compression Resources

3.4.1 Hardware-based On-Chip Accelerator (NX-842)

On all POWER microarchitectures available at the time of writing, the NX-842 on-chip
compression accelerators can only be accessed directly from kernel-space. While the
[AIX] operating system provides a corresponding user-space [Application Programming]
comparable interfaces are not available in the Linux kernel even though
the NX-842 accelerators have already been in use for some time to implement the zram
memory compression feature analogue to the [Active Memory Expansion (AME)| feature
in To the best of the author’s knowledge, the approach presented in this section is
the first to make the resources of the NX-842 on-chip compression accelerators available
to user-space applications running on Linux. The presented approach involves several

layers of indirection, as visualized in [Figure 3.3

User Space . Kernel Space , Hardware
I I
i X i
1 g < 1
1 S — 3] |
| — e > |
~N >) | < o \ o
< [} > < <
0 ° ! > | o © ! (5]
< c 404 ! © %f‘\ 4{3)_ ~ g ! >I<
o | o . |
— °S o &% > o Do =
~ L | Q (Y] S > [S
w U) > o pa =
— < £ X <
£ > | o Qg = |
O] > E n v]
o |) O C |
NG | [N} e

Figure 3.3: On the kernel level, a driver for the NX-842 accelerator, a wrapper for the Linux Kernel
Crypto AP]I, as well as a modified version of the cryptodev-Tinux out-of-tree kernel module are
required to expose the resources of the NX-842 on-chip compression accelerator to user-space
applications. These components are augmented by a user-space wrapper provided by [ib842
for interacting with the /dev/crypto special file exposed by the cryptodev-linux kernel module
through foct1() system calls.

Closest to the hardware, the nx842 driver available in the Linux kernel interacts with
the hardware accelerator. Various code paths are available in the driver to cover different
hardware configurations (e.g., to differentiate between native hardware and the PowerVM
hypervisor). Another aspect the driver needs to provide different code paths for is that
the method for interacting with the NX-842 units differs depending on the employed
generation of the POWER microarchitecture. On POWER7+, POWERS, and POWERS+
all on-chip accelerators are accessed through the privileged |[Initiate Coprocessor]
[Store Word Indexed (i cswx)|instruction and its associated communication protocol [17].
From POWERg onwards, the [Virtual Accelerator Switchboard (VAS)| facilities have been
introduced with the goal of making on-chip accelerator resources accessible from user-
space [83]]. For user-space access to be enabled, the firmware has to be modified to
initialize accelerators and make them available in the device tree. While corresponding
modifications are available for other on-chip accelerators such as the NX-GZIP [164],
comparable firmware modifications are thus far unavailable for NX-842 accelerators. As
a result thereof, the NX-842 remains to be accessible from kernel-space only even on

[VAStenabled POWER

40

3.4 Implementation

A wrapper then hides the various code paths available in the nx842 driver as well as
the software-based fallback implementation of the 842 algorithm available in the Linux
kernel [118], utilizing the interface for compression algorithms in the Linux Kernel Crypto
API Unfortunately, the subset of the Linux Kernel Crypto API exposed to user-space
through the AF_ALG socket type does not include compression facilities. Even though
the cryptodev-linux out-of-tree kernel module Elprovides user-space access to a bigger
portion of the Linux Crypto API compared to the AF_ALG socket type, it too does not
provide access to any compression facilities. Therefore, the cryptodev-linux kernel
module was extended in the context of this thesis to expose the resources of the NX-842
as well as other hardware accelerated compression facilities available through the Linux
Kernel Crypto API through the /dev/crypto special file.

On the user-space side, [ib842 takes care of interacting with the special file through
ioctl() system calls. Since each ioctl request on the /dev/crypto special file involves
a system call, the interface was augmented with a batching method that enables [ib842
to submit multiple chunks for compression or decompression using a single system call.
To further optimize the interaction between lib842 and /dev/crypto, session caching was
implemented in order to re-use sessions. With these optimizations in place, the proposed
approach is able to achieve high throughput for compression or decompression from
user-space applications with minimal load on the

3.4.2 Software-based Compression and Decompression (CPU Baseline)

Prior to this work, the only software-based implementation of the algorithm available to
the public prior has been the fall-back implementation in the Linux kernel [118]], which
is also only accessible from kernel-space. As a first step, this basic implementation was
ported to user-space by replacing all kernel dependencies with corresponding equiva-
lents. The majority of dependencies could be easily resolved by consolidating various
preprocessor definitions of constants and simple functions spread across the kernel in a
single header file. More complex however was the task of replacing the generic hash table
facilities provided by the Linux kernel [40] with the uthashﬁ C library. Finally, concate-
nating strings of bits on the sub-byte level required careful consideration of the execution
targets endianness, as the NX-842 operates in big-endian byte order. Delivering meager
performance for both compression and decompression, the biggest value of this version is
its use as a golden unit for all other software-based implementations.

3.4.3 Software-based Compression and Decompression (CPU Optimized)

Building up on top of the baseline implementation discussed in various

optimization efforts brought forward software-based high-throughput compression and
decompression facilities that can be executed on arbitrary Recalling the basic
workflow of 842 compression illustrated in[Figure 3.1} all major operations were optimized
as documented hereinafter.

ihttps://github.com/cryptodev—l'inux/cryptodev—l'inux
§https://troydhanson.g'ithub.'io/uthash/

41

https://github.com/cryptodev-linux/cryptodev-linux
https://troydhanson.github.io/uthash/

"

N

w

I

w

N

® N

3 Programming Abstractions for On-Chip Hardware Compression Resources

3.4.3.1 Fast Hash Tables

With efficient hash table lookups being the major potential bottleneck of the compression
process, the general-purpose hash tables used in the baseline version were replaced with
a very simplistic hashing mechanism. First, the 8, 4, and 2-byte sub-phrases are stored
in a vector of 64-bit unsigned integer values. The vector-based representation with a
uniform data type enables compilers to perform auto-vectorization of most subsequent
operations. Using a vector-scalar-multiplication, all fields of the vector are multiplied with
the largest prime number that falls within the range of a 64-bit unsigned integer. A right
shift operation truncates the result of the multiplication results to its 7,5, most significant
bits, yielding a vector of hashes. For each sub-phrase lengths, two buffers are used to
form a basic hash table structure: an index array with 2" unsigned short integer values
and a FIFO buffer of 28, 29, and 28 elements for 2, 4, and 8-byte sub-phrases, respectively.
The latter exponents are fixed constants defined by the FIFO sizes employed by the
hardware-based NX-842 implementation. The index array uses hash-based addressing to
store the offsets of corresponding values in the FIFO buffer. To retrieve the best possible
performance, the hash size 1y, has to be chosen carefully to yield acceptable collision
rates at a memory footprint that still fits into the CPU caches. For ny,s;, = 10, the total
memory footprint amounts to 3 * 210 x sizeof (uint16_t) + 28 x sizeof (uintl6_t) +
29 x sizeof(uint32_t) + 28 x sizeof (uint64_t) = 10.5KiB and should fit into the L1
data cache of most recent CPU architectures. Several tests were performed to make sure
the presented hashing mechanism has minimal effects on compression ratio.

3.4.3.2 Efficient Template Lookup

In the baseline implementation, the hash tables are queried for known occurrences of a
phrase in a complex hierarchy of if-else blocks in order to determine the most suitable
template code for the data at hand. This mechanism was replaced with a simple look-
up mechanism, where the template key is computed as exemplified in The
resulting template key is used to retrieve the template code (as specified in at
the i-th position of a fixed lookup table. Since the isInHashTable flags can be computed
branchless, the entire look-up is free of any branches.

Listing 3.1: Prime numbers 13, 53, and 149 are used to encode matches of 2, 4 or 8 byte phrases,
respectively. To encode the action slot of the match, prime numbers 3, 5, 7, and 11 are used to
encode a matching phrase in the first, second, third, or forth action slot. When a known value
is found in a hash table, the primes indicating phrase-length and position are multiplied. The
prime numbers have been chosen so that higher template keys indicate more efficient template
codes.

// isInHashTable has been computed earlier on without branches
uintl6é_t templateKey_21 = (13 * 3) & isInHashTable_21;
uintl6e_t templateKey_22 = (13 * 5) isInHashTable_22;
uintl6_t templateKey_23 = (13 x 7) isInHashTable_23;
uintl6e_t templateKey_24 = (13 * 11) isInHashTable_24;
uintl6e_t templateKey_41 = (53 * 3) isInHashTable_41;
uintl6_t templateKey_42 = (53 x 5) isInHashTable_42;
uintl6e_t templateKey_81 = (149 x 3) isInHashTable_81;

R Qe R RO Qo Ro

42

o

11

12

"

4

15

-

N

o u s W

3.4 Implementation

// prefer one 4-byte matches over two 2-byte matches
uintl6é_t high = max(templateKey_41, templateKey_21 + templateKey_22);
uintl6_t low = max(templateKey_42, templateKey_23 + templateKey_24);

// prefer one 8-byte match over two 4-byte matches
uintl6_t templateKey = max(templateKey_81, high+low);

3.4.3.3 Optimized Template Encoder

The unoptimized baseline version encodes the template code and the four action parame-
ters by calling an append function on the output buffer for each data item independently.
Calls to the append function require a certain degree of overhead due to bookkeeping
tasks for the bitstream writer. To reduce the number of append calls, fused calls to the ap-
pend function were implemented for each template code, as exemplified in[Listing 3.2] As
an additional optimization, the append function was replaced with the buffered bitstream
writerﬂ] employed by the zfp library [117]. It accumulates bitstrings until a full 64-bit
data sequence can be written to the output buffer. The buffering technique significantly
reduces the complexity of appending sub-byte bitstring to the output buffer.

Listing 3.2: For all templates except for 0x00, the template key and all action parameters are packed
into a single value, which reduces the number of calls to the stream_write_bits() function
from five invocations to a single invocation. Template ©x00 requires two invocations.

uint64_t out = 03
switch(TEMPLATE_KEY) {
case 0x00: // { D8, NO, NO, NO }, 64 bits

stream_write_bits(p->stream, TEMPLATE_KEY, OP_BITS);
stream_write_bits(p->stream, rawPhrase_81, D8_BITS);
break;
case 0x01: // { D4, D2, I2, NO }, 56 bits

out = (((uint64_t) TEMPLATE_KEY) << (D4_BITS + D2_BITS + I2_BITS)) |
(((uint64_t) rawPhrase_41]) << (D2_BITS + I2_BITS)) |
(((uint64_t) rawPhrase_23) << (I2_BITS)) |
(((uinte4_t) indexOffset_24));

stream_write_bits(p->stream, out, OP_BITS + D4_BITS + D2_BITS + I2_BITS);

break;

3.4.4 Software-based Decompression using OpenCL (GPU)

An important design goal for the GPU-based implementation [158] of 842 decompression
is that it must remain fully compatible with the compressed data streams produced by the
NX-842 hardware compression accelerator. With this limitation in mind, the compression
format of the NX-842 unit (see leaves no obvious venues for parallelism
at the intra-chunk level of granularity. Due to the sliding window mechanism used to
encode known phrases within the window as index offsets, there are no entry points
that guarantee the absence of data dependencies within a chunk of compressed data.

tﬂhttps://g'ithub.com/LLNL/zfp/blob/develop/s,rc/‘inl‘ine/b'itstream.c

43

https://github.com/LLNL/zfp/blob/develop/src/inline/bitstream.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

3 Programming Abstractions for On-Chip Hardware Compression Resources

Therefore, naive parallel decompression of chunks remains as the only viable venue for
parallelization. However, decent decompression throughput can be achieved on various
hardware using the optimization strategies explained hereinafter.

3.4.4.1 Avoiding Divergent Execution

Most importantly, the amount of divergent execution among threads had to be reduced
to a minimum. For the implementation at hands, divergent execution could be reduced
by replacing a naive case differentiation required to process each template code with a
branch-free implementation. As outlined in the branch-free implementation
strategy relies on a dictionary using the template code as a key for which it provides
all parameters necessary to interpret the four actions encoded by a template code (e.g.
type of action, parameter length in the compressed bitstream, and the length of the
decompressed literal). Furthermore, the bitstream reader yielding an arbitrary number of
bits from the compressed data stream has been reformulated to come by with very few
case differentiation.

Listing 3.3: The array dec_templates serves as a dictionary, specifying the four actions associated
with a template code. For each action, it holds the parameter size of the action (specified in
bits), a tag specifying whether the action is an index action or not, and the number of raw bytes
produced by the action. Based on this information, templates can be decoded without requiring
a complex hierarchy of case differentiations.

#define OP_DEC_NO {(N0_BITS | NO_INDEX_OP), 0}

#define OP_DEC_D2 {(D2_BITS | NO_INDEX_OP), 2}

#define OP_DEC_D4 {(D4_BITS | NO_INDEX_OP), 4}

#define OP_DEC_D8 {(D8_BITS | NO_INDEX_OP), 8}

#define OP_DEC_I2 {(I2_BITS | IS_INDEX_OP), 2}

#define OP_DEC_I4 {(I4_BITS | IS_INDEX_OP), 4}
|

#define OP_DEC_I8 {(I8_BITS IS_INDEX_OP), 8%

__constant uint8_t dec_templates[26][4][2] = {
{OP_DEC_D8, OP_DEC_NO, OP_DEC_NO, OP_DEC_NO}, // template code 0x00
{OP_DEC_D4, OP_DEC_D2, OP_DEC_I2, OP_DEC_NO}, // template code 0x01
{OP_DEC_D4, OP_DEC_I2, OP_DEC_D2, OP_DEC_NO}, // template code 0x02

{OP_DEC_I8, OP_DEC_NO®, OP_DEC_NO, OP_DEC_NO}, // template code 0x19
}

__kernel void decompress(__global uint64_t *in, __global uint64_t xout) {
uint64_t template;
do {
template = read_bits(&buffer, OP_BITS);
for(int i = 0; i < 4; i++) { // there are four actions to be decoded
uint32_t dec_template = dec_templates[template][i][0];
uint32_t is_index = (dec_template >> 7);

uint32_t dst_size = dec_templates[template][i][1];

uint64_t value = read_bits(&buffer, dec_template & Ox7F);

44

30
31
32
33
34
35
36
37
38

3.4 Implementation

if(is_index) { // compilers may eliminate this conditional using predicates
// retrieve value from decompressed stream with index offset

}

// assemble action results in output buffer

}
// write output buffer to out
} while (template != OP_END);
}

3.4.4.2 Avoid Template Lookups

Even though the approach outlined in greatly reduces the occurrence of
branching and improves decompression throughput on to a certain degree, the
performance improvements yielded from this approach are much more distinct on
where the lookup table easily fits the L1 data cache. On most [GPUs|however, the limited
performance improvements gained by this approach are caused by frequently accessing the
constant memory for each lookup, which is a far more expensive operation than accessing
the L1 data cache on However, the regular pattern of data and index actions used
in templates 0x00 through 0x18 (cf. can be used to compute parameter size,
action type, as well as the number of bytes produced by each action as demonstrated in
It should be noted that this technique is not applicable for template 0x19,
however this is not a problem as it can be handled earlier on in the codebase alongside with
the special templates @x1A through 0x1E. Even though the computation of all necessary
information involves expensive operations such as modulus and division operations, this

approach provides higher throughput across all tested hardware (cf. [Table 3.2).

Listing 3.4: The regular patterns in the templates (cf. can be exploided to compute parameter
size, action type, as well as the number of bytes produced by each action. With this information
available, the dec_templates dictionary used in can be removed in order to avoid
costly memory access operations on each lookup in addition to avoiding diverent execution.

__kernel void decompress(__global uint64_t xin, __global uint64_t xout) {
uint64_t template;
do {
op = read_bits(&buffer, OP_BITS);

opbits = 64 - ((op % 5) + 1) / 2 x 8 - ((op % 5) / 4) =7
- ((op /5) +1) /28~ ((op/ 5) /4 xT;
uint64_t params = read_bits(p, opbits);

for (int i = 0; i < 45 i++) {
uint8_t opchunk = (i < 2) 2 op / 5 : op % 5;
uint32_t is_index = (i & 1) * (opchunk & 1)
+ ((i & 1) M 1) * (opchunk >= 2);
uint32_t dst_size = 2 + (opchunk >= 4)
(L -2x% (i%2) *2;
uint8_t num_bits = (i & 1) * (16 - (opchunk % 2) * 8
- (opchunk >= 4) % 16) + ((i & 1) * 1)
* (16 - (opchunk / 2) * 8 + (opchunk >= 4) x 9);

*

45

3 Programming Abstractions for On-Chip Hardware Compression Resources

uint64_t bitsmask = ((uint64_t)-(num_bits != 0)) &
(((uinte4_t)-1) >> (64 - num_bits));
uint64_t value = (params >> (opbits - num_bits)) & bitsmask;

}
// write output buffer to out
} while (template != OP_END);

3.4.4.3 Optimized Memory Access Patterns

Another important optimization step was to reduce the number of global memory access
operations by modifying the bitstream reader logic borrowed from the zfp library [117]
to cache data from global memory in registers, using the granularity of a native machine
word. Based on this method, significant speed-up was achieved since not every read
operation on the compressed input data results in a global memory access operation.

Transposing the compressed input data with the goal of achieving coalesced memory
access operations was also evaluated as an optimization technique even though it would
break compatibility with the data format generated by the NX-842 unit. However, this
approach did not yield any measurable performance improvements. The reason for this
is that each chunk is very likely to use a different series of template codes with differing
parameter length each (cf. [Table 3.1). Therefore, each thread ingests a differing amount
of data in each step so that sooner rather than later threads request data from different
offsets in their respective chunks, breaking the coalesced access pattern.

Finally, another attempt at improving memory access efficiency was undertaken by
caching the output data in local memory. In theory, this would improve performance for
index actions when phrases are copied from earlier positions of the output buffer. While
this approach was able to deliver roughly 2 x speed-up, it could only do so for very small
chunk sizes (< 256 bytes). With each thread requiring the equivalent of one chunk of
local memory, the overall consumption of local memory becomes too high for reasonable
chunk sizes (> 4 KiB), resulting in poor occupancy and thus worse performance.

3.5 Evaluation

In this section, compression throughput, the energy demand, and compression ratio of
all major implementations contributed by the [ib842 compression library are evaluated.
The list of evaluated implementations includes hardware-based compression and decom-
pression using the NX-842 on-chip compression accelerator, optimized software-based
compression and decompression on as well as|GPU}based decompression imple-
mented in Laying out the foundation for the evaluation, documents
the testing environment as well as the benchmark procedures used for the evaluation. Af-
terwards, the compression ratio delivered by both high-throughput compressors available
in lib842 is investigated in Finally, determines the throughput
of compression and decompression operations for all evaluated implementations using
the wide range of test systems provided by the testing environment.

46

3.5 Evaluation

3.5.1 Testing Environment & Benchmark Procedure

To evaluate the throughput of the compression and decompression facilities provided
by lib842 across a wide range of [CPUs| and [GPUs] a total number of six different test
systems were employed. The detailed hardware configurations used for the evaluation
are documented in ranging from seasoned hardware configurations to state-of-
the-art high-end hardware configurations.

All compression throughput measurements presented hereinafter were performed after
a fresh reboot in order to ensure a clean system state. Furthermore, no other active users
or background tasks were running on the involved servers. Both for the evaluation of
compression rate and compression throughput, a chunk size of 64 KiB was used.

In order to retrieve a sufficiently meaningful dataset, each benchmark was executed
25 times. Error bars are used in all plots to report the standard deviation for each
measurement. Furthermore, each benchmark was preceded by a warm-up run in order to
eliminate any confounding factors. All measurements presented in this work are reported
as average values including standard deviation (n = 25).

Throughput was determined by dividing the size of the uncompressed test data set
through the isolated execution time of the compression and decompression functions. The
measured execution times only include the execution of the compression or decompression
function, respectively, excluding potential confounding variables such as the time required
for setup, data transfers and teardown.

To compare the energy demand of NX-842-based and software-based compression facili-
ties in [ib842, the energy demand of a test application performing a compression operation
immediately followed by a decompression operation on the contents of a given file was
measured on the IBM Power System 5824L test system using two Microchip MCP39F511N
dual-channel power measurement devices [129] and the PINPOINT [104] utility. Since
these measurements cover the entire execution of the test application, the compression
and decompression cycle is repeated 30 times in the test application in order to reduce the
impact of setup, data transfers, and teardown on the overall energy draw measurements.
From these measurements, the idle power draw of the test system is deducted in order to
only report the share of energy demand caused by the compression and decompression
process itself. Similarly, the energy demand of the [GPU}based decompression process
was measured using the PINPOINT utility [104] and the energy readings provided by the
NVIDIA Management Library [141].

3.5.2 Compression Ratio

As the performance optimization techniques for compression algorithms can often have an
impact on the compression ratio 7, the compression ratios achieved by both the hardware-
based NX-842 units (see[Section 3.4.1) and the optimized, [CPU}based software implemen-
tation (see is investigated hereinafter. The basic characteristics such as a brief
description, size, and compression ratio of all employed datasets used for this evaluation
are documented in However, the reported compression ratios indicate that the
differences in compression efficiency are negligible across all datasets. To facilitate replica-
bility, this investigation employs well-disseminated, publicly available datasets whenever

47

3 Programming Abstractions for On-Chip Hardware Compression Resources

Table 3.2: Specifications of the test systems used to evaluate the throughput of lib842.

S824L my10p
Model IBM Power System S824L [81] HPE ProLiant m71op [75]
CPU 2xIBM POWERS (Murano), Intel Xeon E3-1284Lv4,
3.42 GHz, 10C /80T each 2.90 GHz, 4C/8T
Memory 1024 GB DDR3 ECC, 1600 MHz 32 GB DDR3, 1600 MHz
GPU n/a Iris Pro Graphics P6300
(OF] Ubuntu 20.04.4 Ubuntu 18.04.4
Kernel 5.4.0 4.15.0
Compiler GCC 10.2.1 (AT 14.0) GCC 7.4.0
OpenCL n/a OpenCL 2.1 NEO
GPU Driver n/a 20.09.15980 (NEO)
DL380 Gog Tyan
Model HPE ProLiant DL380 Geng [73] Tyan TN83-B8251 [130]
CPU 2XxIntel Xeon E5-2620v4, 2x AMD EPYC 7282,
2.20GHz, 10C/20T each 2.80 GHz, 16C/32T each
Memory 256 GB DDR4 ECC, 2133MHz 256 GB DDR4 ECC, 3200 MHz
GPU 8xNVIDIA Tesla K8o NVIDIA Tesla T4
oS Ubuntu 20.04.4 Ubuntu 20.04.4
Kernel 5.4.0 5.4.0
Compiler GCC 9.4.0 GCC 9.4.0
OpenCL OpenCL 1.2 CUDA OpenCL 1.2 CUDA
GPU Driver 470.103.01 510.47.03
DGX-1 DGX A1o0
Model NVIDIA DGX-1 [140] NVIDIA DGX Azoo [139]
CrPu 2xIntel Xeon E5-2698v4 2xAMD EPYC 7742
2.20GHz, 10C/20T each 2.25GHz, 64C/128T each
Memory 512GB DDR4 ECC, 2133MHz 1024 GB DDR4 ECC, 3200 MHz
GPU 8xINVIDIA Tesla V100 8xNVIDIA Tesla A1oo
oS Ubuntu 20.04.4 Ubuntu 20.04.4
Kernel 5.4.0 5.4.0
Compiler GCC 9.4.0 GCC g9.4.0
OpenCL OpenCL 1.2 CUDA OpenCL 1.2 CUDA
GPU Driver 470.103.01 470.103.01

48

3.5 Evaluation

possible. For the remaining, artificial data sets, an additional description is provided
hereinafter.

The artificial datasets periodic, zeros, and random are self-explanatory and are used to
quantify the compression ratio r for extreme cases ranging from the best case (periodic,
zeros) to the worst case (random). Distinguishing periodic and zeros makes sense because
zeros triggers a special template in the 842 algorithm, whereas the periodic dataset has to

be encoded using the regular templates described in

3.5.3 Compression Throughput and Energy Demand Benchmark

To gauge the compression and decompression performance characteristics of all major
implementations available in the lib842 library, throughput measurements were performed
on all test systems presented in The throughput measurements retrieved for
hardware-based compression and decompression using the NX-842 on-chip compression
accelerator, optimized software-based compression and decompression on and

PUlbased decompression are illustrated in [Figure 3.4 As a compression payload, the
P 5 p pay
enwikg dataset (see [Table 3.3) was employed.

Using a total number of four NX-842 accelerators available in the dual-socket test-
system, the throughput measured for the hardware-accelerated implementation ap-
proaches the theoretical throughput offered by two NX-842 accelerators available per
Power yielding a utilization efficiency of roughly 38 %. One might come to ex-
pect a certain level of performance loss caused by the many abstraction layers involved
in the implementation (cf. [Section 3.4.1). However, it appears as if the utilization effi-
ciency of 43.48 % achieved for accessing the NX-GZIP accelerator from user-space based
on the facilities [3] does only provide slightly improved utilization efficiency. For
the software-based compression operation, even dual-socket systems equipped with high-
end state-of-the-art models can only provide roughly on third of the compression
throughput provided by the NX-842 units available in our dual-socket Power test-system.
While there still may be some room for minor optimizations in the software-based com-
pression process, the general picture is unlikely to change fundamentally even with further
optimizations in place. On the side of the decompression operation however, software-
based implementations on [CPUs|and [GPUs| are able to achieve throughput levels on the
high-end test systems comparable to the NX-842 accelerators available in our dual-socket
Power test-system

Additional tests using other datasets did not reveal a significant impact of the dataset
on the compression throughput, except for the zeros dataset. There, the compression
throughput for [CPUlbased compression roughly doubled across all node test systems.
This effect is likely caused by the special compression template used for encoding an
eight-byte sequence of zeros as well as the special template for encoding a repeated
occurrence of eight-byte sequences. When a special template is encoded, the entire hash-
and-lookup operations during the compression process is skipped, likely yielding the
observed speed-up. Since both special templates address corner cases, this effect rarely
occurs and compression throughput should remain stable across many datasets.

49

Table 3.3: Characteristics of the evaluated data sets and the respective compression ratios achieved using hardware and software-based compression.

Dataset Description Source Size Compression Compression
(Bytes) Ratio (NX-842) Ratio (SW)
Periodic Periodic pattern of 256 bytes (600 01 02 ... FD FE FF). gen. 1,000,000,000 r = 0.210 r =0.210
Zeros Zeroed bytes. gen. 1,000,000,000 r = 0.003 r = 0.003
Random Synthetic dataset consisting of pseudo random data. gen. 1,000,000,000 r = 1.000 r = 1.000
enwikg First 10 bytes from the 2006-03-03 Wikpedia dump. [121] 1,000,000,000 r = 0.701 r =0.705
Database Data for DB query benchmark, inspired by TPC-H Query 1. [206] n x 2,800,000,000 r = 0.410 r =0.410
Books Book reviews from Amazon.com. [128] 22,361,866,685 r = 0.691 r = 0.692
Wikipedia The full 2020-03-01 dump of English Wikipedia articles. [53] 76,154,077,184 r = 0.681 r = 0.683
OLW Dump of the Open Library works category. [115] 10, 565,840,859 r = 0.541 r = 0.542
Curiosity ~ Stitched panorama from the Curiosity Mars Rover [138] 8,154,406,104 r = 0.510 r =0.510
Telescope Space photography taken from Spitzer Space Telescope [201] 4,050,000,000 r = 0.390 r =0.390

3 Programming Abstractions for On-Chip Hardware Compression Resources

50

3.6 Summary

()
N
~
(%]
[ee)
]

Il CPU-SW
B CPU-HW

Hl CPU-SW
B CPU-HW
B GPU-SW

16384 +
8192+
4096
2048 +
1024+

512+

Compr. Throughput [MiB/s]
Decompr. Throughput [MiB/s] ~

N

(&)

[}
I

» R @S 6\}‘ &

Figure 3.4: Panel (a) depicts the compression throughput measured using software-based (CPU-SW)
and NX-842-accelerated (CPU-HW) implementations for each test system. The decompression
throughput measured using the software-based implementations on (CPU-SW) and
(GPU-SW) as well as the NX-842-based implementation (CPU-HW) are documented in panel (b).

Even though analyzing the energy-efficiency is not a central concern of this work, the
energy demand of all major implementations provided by lib§42 was measured (cf.
to investigate the energy-efficiency of different implementations and heteroge-
neous compute resources. The energy draw measurements for a compression/decompression-
cycle were only performed on the IBM Power System S824L test system with the goal
of enabling commensurability among hardware-based and software-based implemen-
tations. The optimized software-based implementation requires almost four times the
energy required by the NX-842 on-chip compression accelerator to perform the same
compression/decompression cycle on the employed test dataset. While the superior
energy-efficiency of the NX-842 should not come as a surprise, the clear difference in
energy consumption underlines the importance of being able to leverage the resources
of the dormant on-chip compression accelerators in place of software-based equivalents
whenever possible. On the side of[GPUlbased decompression, the energy required to per-
form the decompression process was measured on all employed NVIDIA to compare
the energy efficiency across various generations of microarchitectures. The measure-
ments demonstrate unequivocally how the energy-efficiency of improves with each
microarchitecture. With the lower-end T4 almost approaching the energy-efficiency
of the NX-842 unit, there seems to be a huge potential for improving the energy-efficiency
of certain workloads when end-users are willing to relinquish a certain level of throughput
in favor of improving the energy-efficiency of their application.

3.6 Summary

With the introduction of the [ib842 compression library, this chapter presented the first
user-space approach for providing compression and decompression facilities based on
the proprietary 842 compression algorithm. Relying on a modified version of the
cryptodev-Tlinux out-of-tree kernel module, the implementation details for making the
high-throughput and low-latency compression and decompression facilities of NX-842

51

3 Programming Abstractions for On-Chip Hardware Compression Resources

—
()
f=
—
o
~

3 200+ = 800
_ § Hm CPU-SW s Bl GPU-SW
L B La
29 150 BN CPUHW 28 g0
EQ ES
3 g 29
S 100 S 2 4004
58 58
Lcllcj g 504 5 _8 200

o

£ o

S oA © oA

Y S < 4’90 QQQ

Figure 3.5: Panel (a) compares the energy required to compress and decompress the enwikg test
dataset using the software-based implementation and the NX-842-accelerated approach on the
IBM Power System S824L test system. In panel (b), the energy required to decompress the
compressed enwikg test dataset on various generations of NVIDIA [GPU] microarchitectures is
compared.

on-chip compression accelerators accessible to user-space applications through lib842
were discussed. To enable compressed data exchange across heterogeneous system re-
sources, the hardware-accelerated approach was complemented with the introduction of
highly optimized software-based compression and decompression routines for arbitrary
as well as [OpenCL}based decompression facilities for arbitrary The de-
tailed evaluation of all major implementations available in /ib842 has revealed that while
hardware-based compression and decompression clearly outperforms software-based ap-
proaches both in terms of throughput and energy-efficiency, the latter still provide decent
throughput across the wide range of employed test systems. On higher-end systems, both
[CPUlbased and [GPU}based decompression is almost approaching the decompression
throughput provided by the hardware-accelerated implementation. By making these high-
throughput compression and decompression facilities available in the form of the [ib842
compression library, this chapter lays out the foundation for investigating the impact of
On-the-Fly 1/O Link Compression for data transfers among [CPUs| and [GPUs| in scale-out

[GPU] clusters in

52

4 Programming Abstractions for Scale-Out
Graphics Processing Unit Clusters

This chapter introduces the CloudCL framework, which attempts to make scale-out [Graph}
fics Processing Unit (GPU)| resources more accessible to a wider audience by providing
abstractions that hide many aspects of the distributed memory parallel programming
model associated with scale-out workloads. Based on these abstractions, the framework
enables application developers and domain experts to focus on the data parallel pro-
gramming model associated with By implementing a naive form of resource
disaggregation based on the dOpenCL [Application Programming Interface (API)| forward-
ing library for the Open Computing Language (OpenCL)| ecosystem, the framework also
helps operators to improve the utilization of their clusters. To improve the data
transfer efficiency of the forwarding approach in commodity 10 Gbit/s Ethernet net-
works, the dOpenCL library is augmented with transparent on-the-fly data compression for
inter-node data transfers based on the /ib842 compression library presented in [Chapter 3}
The following master’s thesis were supervised alongside the research leading to this
chapter, fostering scholarly exchange between this work and the supervised thesis:

¢ Florian Rosler. “Dynamic OpenCL - Distributed Computing on Cloud Scale”. Mas-
ter’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
Apr. 2017. URL: https://osm.hpi.de/bookshelf/Details/460

¢ Joan Bruguera Micé. “Improved Data Transfer Efficiency for Scale-Out GPU Work-
loads using On-the-Fly I/O Link Compression”. Master’s thesis. Potsdam, Ger-
many: Hasso Plattner Institute, University of Potsdam, July 2020. URL: https:
//osm.hpi.de/bookshelf/Details/539

Furthermore, partial results of the work presented in this chapter have been published:

» Karsten Tausche, Max Plauth, and Andreas Polze. “dOpenCL-Evaluation of an API-
Forwarding Implementation”. In: Proceedings of the Fourth HPI Cloud Symposium
“Operating the Cloud”. Nov. 2016. DOI: [10.13140/RG.2.2.16598.24641

* Max Plauth, Florian Résler, and Andreas Polze. “CloudCL: Distributed Heteroge-
neous Computing on Cloud Scale”. In: Proceedings of the Fifth International Sympo-
sium on Computing and Networking (CANDAR). IEEE. Nov. 2017, pages 344—-350. DOI:
10.1109/CANDAR.2017.49

* Max Plauth, Florian Résler, and Andreas Polze. “CloudCL: Single-Paradigm Dis-
tributed Heterogeneous Computing for Cloud Infrastructures”. In: International
Journal of Networking and Computing 8.2 (July 2018), pages 282-301. ISSN: 2185-2847.
DOI:10.15803/1jnc.8.2_282

53

https://osm.hpi.de/bookshelf/Details/460
https://osm.hpi.de/bookshelf/Details/539
https://osm.hpi.de/bookshelf/Details/539
https://doi.org/10.13140/RG.2.2.16598.24641
https://doi.org/10.1109/CANDAR.2017.49
https://doi.org/10.15803/ijnc.8.2_282

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

* Max Plauth, Joan Bruguera Mic6, and Andreas Polze. “Improved Data Trans-
fer Efficiency for Scale-Out Heterogeneous Workloads Using On-the-Fly I/O Link
Compression”. In: Concurrency and Computation: Practice and Experience (Dec. 2020),
e6101. DOI: |10.1002/cpe.6101

This chapter is structured as follows. motivates the need for programming
abstractions in the context of scale-out|GPU|workloads. Providing such abstractions, the
CloudCL framework is introduced in To demonstrate the developer experi-
ence of CloudCL, exemplifies the implementation of two data-intensive
scale-out workloads using CloudCL. then proposes a strategy for transpar-
ently integrating on-the-fly data compression into the CloudCL framework to improve
the efficiency of inter-node data transfers. The pipelined approach for implementing the
previously proposed integration strategy is elaborated in To test the impact
of transparently compressed data transfers both on the effective data transfer throughput
between nodes and on the overall performance of scale-out workloads, a thorough

evaluation is conducted in Finally, the chapter is summarized in

4.1 Motivation and Problem Statement

Over the last decade, the use of as a general purpose compute resource has become
prevalent across arbitrary domains [24} 87, [188, [174]. Consequently, the demand for
compute resources has been steadily increasing over the last few years to the point where
many use cases even require multiple|[GPUs]to satisfy their resource demands. The soaring
popularity of deep learning applications for example has drastically increased the demand
for both Cloud-based and private clusters [84].

As a result of scale-out workloads becoming increasingly common, the following
issues arise:

1. Application development for scale-out|GPU|workloads is becoming very challeng-
ing, as developers have to be adept using both data parallel programming models
(e.g., [OpenCL] cf. [Section 2.3.2.1) and distributed memory parallel programming
models (e.g., [Message Passing Interface (MPI)| cf. [Section 2.3.3.2) in addition to con-
sidering the dynamic aspects of [nfrastructure as a Service (IaaS)based resources.

2. To provide dynamic resources based on public or private clusters, their
operators are often faced with the problem of resource fragmentation [123] as

illustrated in

Numerous programming abstractions are available for alleviating access to com-
pute resources in single-node scenarios [6} |101, 50]. To tackle the first issue however, a
larger number of spread out across multiple nodes have to be considered. Even
though several approaches exist that make|GPUs|scattered across compute nodes appear as
if they were local resources based on forwarding techniques [90, |95} [7], programming
abstractions targeting this larger scale however have to provide the means for splitting
workloads into partitions that can be processed mostly independent of each other, without
requiring fine-grained communication between [193}13].

54

https://doi.org/10.1002/cpe.6101

4.2 CloudCL: Single-Paradigm Scale-Out GPU Computing

Node 1 Node 2
GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU
User 1 (3 GPUs) User 2 (4 GPUs) User 3 (3 GPUs) User 4 (6 GPUs)

Figure 4.1: Due to resource fragmentation, it may not be possible to satisfy the resource demands of
all users even though sufficient[GPUs|are available.

To resolve the second issue, resource disaggregation is considered a promising approach
to improve the efficiency of data centers [31, 125, |80]|, as resource disaggregation elimi-
nates many resource allocation issues such as fragmentation. With no implementation
of resources disaggregation being ready for production yet, simple forms of resources
disaggregation can be implemented in software already today. Using API forwarding tech-
niques for example to scale out multi{GPU] applications across multiple compute nodes
can be considered a naive form of resource disaggregation [123]. Usually, the lessened
data transfer performance available between the host [Central Processing Unit (CPU)|and
remote in such a naively disaggregated setup has to be compensated by either
employing expensive high-end inter-node network technology or by restricting the range
of employed workloads to compute-bound workloads operating on small datasets.

With the introduction of the CloudCL framework, this chapter presents an approach
that unites both solution strategies by extending an existing programming abstraction
framework for with the scale-out capabilities offered by an forwarding library
for the ecosystem. Furthermore, the programming abstraction mechanisms are
extended with the means necessary for defining workload partitions and for managing
the resources of an ad-hoc cluster. Building up on top of the efforts presented in
the potential of mitigating the limitations of such a naively disaggregated setup
based on on-the-fly data compression is investigated.

4.2 CloudCL: Single-Paradigm Scale-Out GPU Computing

In addition to hiding the complexity of the distributed memory programming model
for scale-out [GPU] workloads, the CloudCL framework presented in this chapter provides
ad-hoc clusters tailored specifically to the resource requirements of each workload.
By enabling developers and domain experts to focus on the data parallel programming
model, one goal of CloudCL is to make scale-out resources accessible to a wider
audience using a single-paradigm approach. Simultaneously, CloudCL attempts to improve
the utilization of public or private clusters by disaggregating resources. As
illustrated in CloudCL heavily relies on the dOpenCL library and the Aparapi
framework as underlying technologies to achieve these goals. Building up on top of these
technologies, CloudCL provides enhancements to Aparapi with the goal of optimizing
the framework for scale-out [GPU| workloads. Both the underlying technologies and the
enhancements are detailed hereinafter.

55

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

Application
. !
o) CloudCL
=
E Aparapi D Job Scheduler
S
g ! !
dOpenCL
i 4 [} AN

A AN

Compute Node Compute Node Compute Node Compute Node

Figure 4.2: The CloudCL framework builds up on top of the dOpenCL forwarding library for
and the Aparapi framework for executing native Java code on [OpenCI}enabled

The underlying technologies are extended with a job infrastructure to hide most aspects of the
distributed memory parallel programming model during the development of scale-out
workloads.

4.2.1 Underlying Technologies

CloudCL heavily relies on the dOpenCL library and the Aparapi framework as underlying
technologies. Therefore, both technologies are introduced in greater detail hereinafter.

4.2.1.1 dOpenCL

Serving as the foundation of CloudCL, the dOpenCL forwarding library for
enables applications to transparently utilize [OpenCL] devices installed in remote ma-
chines [90]. The library provides its own [Installable Client Driver (ICD)| which forwards
the calls to specified remote machines in the network, which run a dOpenCL daemon.
The calls are received by the daemon and are executed using the available native
on the remote compute node with the results being returned via network. With
this approach, kernels do not require changes to run remotely as dOpenCL hides
network transfers behind the standard An overview of the architecture of
an exemplary compute cluster based on dOpencl is shown in

4.2.1.2 Aparapi

Since the verbose nature of can still be overwhelming for many domain experts,
CloudCL employs Aparapi as an abstraction layer on top of [OpenCL] Aparapi is a framework
that drastically simplifies the usage of the and that minimizes development
efforts of kernels [6]. For CloudCL, the most important feature of Aparapi is that
it enables developers to implement kernels in a subset of Java which is then translated
to valid kernels. Of similar importance to CloudCL is that Aparapi takes care
of tedious setup-tasks and releases developers from the task of moving data back and

56

; final double[] a
> final double[] b
3 final double[] c

4

Master Node

Kernel

dOpenCL ICD

4.2 CloudCL: Single-Paradigm Scale-Out GPU Computing

Compute Node

dOpenCL Daemon NVIDIA ICD NVIDIA GPU
Compute Node
dOpenCL Daemon Intel ICD Intel CPU
Compute Node
AMD CPU
dOpenCL Daemon AMD ICD
AMD GPU

Figure 4.3: On the master node, the dOpenCL forwards calls to the native

ICDs| running on compute nodes via the dOpenCL daemon. This approach can be considered a
naive form of resources disaggregation.

forth between host and accelerator.

Based on these features, the framework enables

developers to express the same functionality of native with much fewer lines
of code, reducing code complexity significantly as demonstrated in The
reduced complexity enables developers to implement algorithms considerably faster and
offers beginners and domain experts easy access to features without profound
knowledge of low-level mechanisms.

Listing 4.1: Example of a vector addition kernel and the corresponding host code using Aparapi.

new double[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
new double[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

new double[10];

s Kernel kernel = new Kernel() {

6

7
8

@Override

public void run() {
int i = getgld();
c[i]l = a[i] + b[il;

}
}s

kernel.execute(10);

System.out.println(Arrays.toString(c));

57

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

4.2.2 Enhancements

CloudCL provides several enhancements to Aparapi with the goal of optimizing the frame-
work for scale-out workloads. These enhancements are explicated hereinafter.

4.2.2.1 Jobs

CloudCL introduces the concept of Jobs not only to serve as a unit of scheduling, but Job
classes are also the main venue for specifying the strategy how workloads are partitioned
into multiple kernel instances operating on independent sub-ranges of the input data
as exemplified in Providing numerous kernel instances for a workload that
can be processed independently is crucial in order for CloudCL to scale with the number
of available Even though semi-automatic approaches for identifying sensible sub-
ranges were investigated during the development of CloudCL [94, 114], a manual approach
where developers have to specify compartmentalization strategies themselves was favored
over the immense complexity associated with semi-automatic classification mechanisms.
While the manual approach requires the developer’s attention, partitioning strategies
tailored to a workload are likely to outperform generic approaches.

Listing 4.2: The VecAddJob class is responsible for dividing the input data into partitions that can
be processed independently by multiple VecAddKernel instances.

1 public class VecAddKernel extends CloudCLKernel{
2 int[] a, b, result;

4 public VecAddKernel(CloudCLJob job, Range range, 1int[] a, int[] b) {

5 super (job, range);

6 this.a = a;

” this.b = b;

8 this.result = new int[a.length];
9}

1 @Override

12 public void run() {

13 result[getgId()] = a[getgId()] + b[getgId()];
1y}

5}

17 public class VecAddJob extends CloudCLJob {
18 public VecAddJob(int vectorSize, int partCount, DevicePreference pref,
ThreadFinishedNotifyable notify) {

19 super ("VecAdd", notify);

20 int[] a = new int[vectorSize];

2 int[] b = new int[vectorSize];

2 int[] result = new int[vectorSize];

23

2 int partWidth = vectorSize / partCount;

25 for(int i = 0; i < partCount; 1i++){

26 int[] aPart= Arrays.copyOfRange(a, i * partWidth, (i + 1) * partWidth);
27 int[] bPart = Arrays.copyOfRange(b, i * partWidth, (i + 1) x partWidth);
28

29 Range range = Range.create(partWidth);

58

30

31

32

33

34

35

4.2 CloudCL: Single-Paradigm Scale-Out GPU Computing

VecAddKernel kernel = new VecAddKernel(this, range, aPart, bPart);
kernel.setDevicePreference(pref);
addKernel(kernel);

}
3

Unlike the C of all commands such as kernel invocations in Aparapi are
synchronous, requiring developers to use threading in order to launch kernels on multiple
devices simultaneously. To unburden developers, the Job infrastructure takes
care of launching all independent kernels concurrently as well as of monitoring their
execution status. Furthermore, performance metrics such as data volume, transfer time
and execution time are collected for all kernels to provide a solid basis for scheduling
decisions.

4.2.2.2 Job Scheduler

CloudCL employs a pluggable two-tiered architecture as outlined in The first
tier (Job Scheduler) operates on the Job level and does not consider individual kernel
instances and the corresponding data partitions. Operating at this high level of abstraction,
the first tier is mainly concerned with fairness and can be configured to use either a First In,
First Out (FIFO) or a Round Robin scheduling strategy to decide which jobs are becoming
eligible for being scheduled by the second tier. The first tier then hands over the kernel
instances belonging to a job to the second tier (Device Scheduler) which is responsible for
assigning individual kernels to available compute devices.

Scheduler

List of Jobs
’ Job Scheduler

Job Executor List of
Kernels
T List of
. Free Devices .
Device Scheduler Device Manager
Kernel-to-Device Assignments

Figure 4.4: The two-tier scheduling mechanism employed by CloudCL considers jobs on the first-tier
to make sure jobs are processed in a fair order. The second tier assigns the individual kernels
encapsulated by jobs to compute devices whilst taking into consideration statistics regarding data
volume, transfer time, and execution time of preceding runs.

Especially in the context of CloudCL, the net performance of a compute-device heavily
depends on the speed of the network connection used to tie in the compute device to
the CloudCL master node. Therefore, the second tier assigns kernels to devices based
on the performance metrics collected on the Job level. It also considers the fact that
the performance of kernels can vary significantly depending on what kind of
heterogeneous compute resource they are executed on. For example, kernels that may

59

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

perform exceptionally well on a may run poorly on a because of varying mi-
croarchitectural properties. Therefore, CloudCL enables developers to express preferences
which device type their kernels should be executed on using the Device Preference attribute

demonstrated in Valid values for the attribute include: None, only,
preferred, only and preferred.

4.2.2.3 Dynamic Scaling Capabilities

To exploit the potential of private or public [aaStbased compute resources, one important
goal of CloudCL is that resources can be dynamically added to or removed from the pool
of compute resources utilized by the framework However, both and Aparapi are
built to run on a single machine and as such assume a fixed topology of compute devices
during operation. Fortunately, dOpenCL supports adding and removing devices virtually
by adding or removing compute nodes at runtime using the custom methods clCreate-
ComputeNodeWwU and clReleaseComputeNodeWwWU. To further provide information about
the relation between compute nodes and devices, dOpenCL introduces another method
called clGetDeviceIDsFromComputeNodeWwU. Especially the latter feature is crucial for
removing resources dynamically, where it has to ensured that no kernels are running on
a device that is about to be removed.

Since Aparapi is bound to the standard interface specified by the specification,
the framework cannot make use of the offered dOpenCL extensions. To let CloudCL make
use the dynamic resource scaling capabilities of dOpenCL, Aparapi was extended in the
context of this work by implementing the two new [Java Native Interface (JNI)| methods
addNode and removeNode. Both call the respective dOpenCL functions, with addNode also
reporting back the available devices of the added node.

4.3 Developer Experience of CloudCL

One major goal of CloudCL is to make resources of clusters more accessible to devel-
opers and domain experts. To demonstrate the developer experience of the CloudCL frame-
work, this section showcases the implementations of two workloads that are also used
to evaluate the performance impact of employing on-the-fly data compression for data
transfers in CloudCL (cf. [Section 4.6). A Semi-Sparse Matrix Multiplication workload and
an Analytical Database Query workload are employed as data-intensive, memory-bound
workloads to evaluate the performance of CloudCL outside its comfort zone. Except for
the Java syntax, CloudCL kernels themselves remain fairly similar to kernels implemented
directly in C. The aspect that changes significantly however is the host code sur-
rounding the kernel. Therefore, the Job classes of both workloads are presented hereinafter
to demonstrate the brevity and simplicity of CloudCL.

4.3.1 Semi-Sparse Matrix Multiplication

The SemiSparseMatMulJob class exemplified in performs a dense matrix mul-
tiplication kernel to of matrix A (N x M) and matrix B (M x P), yielding matrix C (N x P)
as a result. Matrices A and B are filled with random data except for a configurable fraction
of cells that are zeros. This fraction of zeroed cells is controlled by the sparsity argument,

60

4.3 Developer Experience of CloudCL

where 0 means all cells are filled with random data and 1 means all cells contain zeros.
To focus on the aspect of partitioning the workload across multiple kernel instances, the
process of filling the matrices was excluded from the code example for reasons of brevity.
The semi-sparse scenario is intended to represent the varying degrees of compressibility
encountered across the various uses cases and application domains that rely on efficient
matrix multiplication. Even though sparse matrix representations such as Compressed
Sparse Row (CSR) are employed in use cases with a high-degree of sparsity, there is a cer-
tain gray area where the space gains provided by sparse representations are not sufficient
to justify the additional complexity introduced by sparse representations. A tiling strategy
is employed that splits up matrix A horizontally and distributes it independent workload
partitions, whereas the entire second matrix B is used by all workload partitions. The
dense matrix multiplication kernel itself is implemented using a naive implementation
strategy.

Listing 4.3: Using CloudCL, the SemiSparseMatMulJob class initializes all relevant data structures on
the host and specifies the strategy for partitioning the Semi-Sparse Matrix Multiplication workload
into multiple independent kernel instances.

1 public class SemiSparseMatMulJob extends CloudCLJob{

2 public SemiSparseMatMulJob(int sizeN, int sizeM, 1int sizeP, float sparsity,
int tiles, DevicePreference pref, ThreadFinishedNotifyable notify) {

super ("SemiSparseMatMul", notify);

final float[] a = new float[sizeNxsizeM];

final float[] b = new float[sizeMxsizeP];

- T S

8 // fill matrices with random data and sparsity

9

10 int tileHeight = sizeN/tiles;

11 for(int tile=0; tile<tiles; tile++){

12 float[] aPart = Arrays.copyOfRange(a, tilextileHeightxsizeM, (tile+l)x*
tileHeightxsizeM);

13 Range range = Range.create2D(tileHeight, sizeP, 100, 1);

14 DenseMatMulKernel kernel = new DenseMatMulKernel(this, range, aPart, b,
sizeM);

15 kernel.setDevicePreference(pref);

16 addKernel(kernel);

17 }

18 1

1 }

4.3.2 Analytical Database Query

The DatabaseQueryJob class presented in orchestrates an analytical database
query modeled after Query 1 of the TPC-H benchmark [206]. This query involves filtering
and grouping operations to perform an aggregation. To focus on the aspect of partitioning
the workload across multiple kernel instances, the process of data generation was excluded
from the code example for reasons of brevity. At this point, the author wishes to stress
that for reasons of simplicity, neither the query nor the data generator fully complies with
the very complex TPC-H specification. As such, the Analytical Database Query workload
must not be mistaken for a subset TPC-H benchmark. To facilitate efficient execution

61

1

2

11

12

14

15

17
18

20

21

22

23

24

25

26

27

28

29

30

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

in scale-out deployments, the table entries are split up horizontally in order to yield
partitions that can be processed independently.

Listing 4.4: Using CloudCL, the DatabaseQueryJob class initializes all table columns on the host and
specifies the strategy for partitioning the Analytical Database Query workload horizontally to yield
multiple independent kernel instances.

public class DatabaseQueryJob extends CloudCLJob{
public DatabaseQueryJob(Integer size, int tiles, DevicePreference pref,

ThreadFinishedNotifyable notify) {

super ("DatabaseQueryJob", notify);

int[] colQuantity = new int[size];

int[] colExtPrice = new 1int[size];

int[] colDiscount = new 1int[size];

int[] colTax = new int[size];

int[] colReturnFlag = new 1int[size];

int[] colLineStatus = new 1int[size];

int[] colShippingDate = new int[size];

// generate line items

int tileHeight = size/tiles;
for(int tile=0; tile<tiles; tile++){
int start = tilextileHeight, end = (tile+l)x*tileHeight;
int[] colQuantitySpl = Arrays.copyOfRange(colQuantity, start, end);
int[] colExtPriceSpl = Arrays.copyOfRange(colExtPrice, start, end);
int[] colDiscountSpl = Arrays.copyOfRange(colDiscount, start, end);
int[] colTaxSpl = Arrays.copyOfRange(colTax, start, end);
int[] colReturnFlagSpl = Arrays.copyOfRange(colReturnFlag, start, end);
int[] colLineStatusSpl = Arrays.copyOfRange(colLineStatus, start, end);
int[] colShippingDateSpl = Arrays.copyOfRange(colShippingDate, start, end);

Range range = Range.create(end - start, 256);

DatabaseQueryKernel kernel = new DatabaseQueryKernel(this, range,
colQuantitySpl, colExtPriceSpl, colDiscountSpl, colTaxSpl,
colReturnFlagSpl, colLineStatusSpl, colShippingDateSpl);

kernel.setDevicePreference(pref);

addKernel(kernel);

4.3.3 Summary

As a central construct of CloudCL, the job classes take care of initialization, splitting up
the workload into independent partitions, and launching kernel instances. The examples
demonstrated in [Section 4.3.1] and [Section 4.3.2| show that only few lines of code are
necessary to accomplish these tasks. Considering the verbosity of the native
this level of abstraction unburdens developers while still giving them full control over the
data partitioning strategies as a performance-critical aspect.

62

4.4 Augmenting CloudCL with Data Transfer Compression

4.4 Augmenting CloudCL with Data Transfer Compression

The overhead caused by inter-node data transfers in CloudCL is the biggest limitation of
the framework, restricting its utility to compute-bound workloads operating on small
datasets [161]. Preceding efforts of the research community have identified compression
as a viable method for improving data transfer efficiency for certain application domains
[189, |55]. To work around the issue of insufficient compression throughput, preceding
investigations have proposed the use of offline data compression, where the payload
for data transfers is available in a pre-compressed form. In this thesis has
demonstrated that both hardware-accelerated and purely software-based compression
facilities can deliver throughput levels sufficient to saturate 10 Gbit/s, 25 Gbit/s, and even
40 Gbit/s Ethernet networks which are still the norm in the vast majority of data centers
[19]. Based on this observation, this thesis hypothesizes that on-the-fly data compression
can be used to improve data transfer efficiency and consequently overall performance of

data-intensive scale-out workloads, as illustrated in

Master Node Compute Node Master Node Compute Node

Network Network
842 842
App GPU App HCompr. Compr. H GPU

Figure 4.5: Compared to uncompressed data transfers (left), on-the-fly data compression may in-
crease the effective bandwidth (right).

To test this hypothesis and to open up CloudCL to a wider range of workloads, an ap-
proach is presented hereinafter for augmenting CloudCL with on-the-fly data compression
with the goal of improving the efficiency of data transfer across the master node and
compute nodes. Building up on top of the work conducted in |[Chapter 3} [Section 4.4.1| mo-
tivates the reasons for using the 842 compression algorithm to implement on-the-fly data
compression in CloudCL. Since the concept of CloudCL detailed in envisions a
very arbitrary cluster model, the integration of on-the-fly data compression mandates that
the assumed cluster model is defined more precisely as outlined in Finally,
the strategy for implementing on-the-fly data compression based on the integration of

lib842 into CloudCL is elaborated in [Section 4.4.3|

4.4.1 Choice of Compression Algorithm

To improve data transfer efficiency in CloudCL based on on-the-fly data compression, the
842 algorithm is very well suited as it has been designed for the purpose of transparent
main memory compression as discussed in Unlike lightweight compression
approaches that can achieve high throughput by exploiting specific characteristics of
datasets such as the employed data type or a restricted range of values, the 842 algorithm
is a generic compression algorithm that can be used to compress arbitrary data. As it was
demonstrated in this generic approach yields sufficient compression ratios
across various data sets, including floating point data.

Another important reason for using 842 compression in this work is the availability
of NX-842 on-chip compression accelerators, which are part of all IBM Power

63

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

introduced since the POWER7+ microarchitecture [17]. The [ib842 compression library
presented in[Chapter 3|makes the resources of the NX-842 accelerators accessible from user-
space (cf. [Section 3.4), providing very high compression throughput without having to
spend excessive amounts of cycles on the task. The software-based implementations
provided by [lib842 are capable of providing compression throughput high enough to
saturate common 10 Gbit/s, 25 Gbit/s, and even 40 Gbit/s Ethernet network links using
high-end [CPUs| (cf. [Section 3.5.3). However, the software-based approach is only used as
a fall-back option in situations where no NX-842 on-chip compression accelerators may
be available.

4.4.2 Assumed Cluster Model

To saturate fast commodity networks such as 10 Gbit/s, 25Gbit/s, and even 40 Gbit/s
Ethernet or faster, on-the-fly data compression requires sufficiently high compression
throughput both on the side of the master node and on the side of compute nodes. As
depicted in the master node must be able to saturate the network interfaces
of all compute nodes, therefore having to deal with much larger traffic volumes than
each compute node. Therefore, the cluster model assumed in this work employs a master
node equipped with NX-842 on-chip compression accelerators, which are available in
IBM Power On the side of compute nodes, arbitrary types can be used as
decompression is handled by the [GPU}based 842 decompression facilities provided by
lib842. Based on the assumption that the results computed by each compute node are
usually smaller in volume compared to the input data, [CPUbased software compression
based on the [ib842 compression library is sufficient to transfer results back to the master
node.

Compute Node Compute Node
GPU n Master Node Any GPU
with =) N P Py [With
1ib842 Ethernet App Ethernet 1ib842

Compute Node Compute Node

Eth t Eth t

G'PU L Any erne Power erne Any L G‘PU
with CPU CPU w. CPU with
1ib842 NX-842 1ib842

Figure 4.6: The cluster model assumed by this work includes a master node equipped with NX-842
on-chip compression accelerators available in IBM POWER to accelerate compression,
and compute nodes equipped with that use lib842 (cf. [Chapter 3) for [OpenCI}based
decompression on the All nodes are interconnected using a 10 Gbit/s Ethernet network.

4.4.3 Integration Strategy

The CloudCL architecture outlined in offers various potential venues for inte-
grating transparent on-the-fly data compression into the CloudCL software stack. A total
number of four integration strategies were identified: On-the-fly data compression could
be integrated at the level of CloudCL, by introducing extensions at the level of the

64

4.5 Implementation

transparently behind the implementation of dOpenCL, or at the network level by
modifying Boost.Asio. While the two former approaches would require the explicit atten-
tion of application developers to use compressed data transfers, the latter strategies are
completely transparent to the layers above them. Integration at the level of CloudCL would
increase the complexity of the overall software stack as an additional CloudCL component
would have to be introduced on the side of compute nodes in order to enable compressed
data transfers. Providing custom extensions at the level of the would also
necessitate extensive modification of the remaining components, as they would have to be
adapted to make use of the modified On the level of the networking library, the lack
of application knowledge would inhibit sophisticated optimization strategies.

The standard defines a series of rules and requirements that an
implementation must fulfil for the movement of data between the host and the set of
devices associated with a buffer via its context. Even though the standard
leaves ample room for exotic implementations, most implementations (including dOpenCL)
follow a set of reasonable rules for data movement, aimed at minimizing unnecessary
copies, and applications rely on those rules for optimal performance. Such a well-specified
environment is an ideal starting position for implementing on-the-fly data compression
in dOpenCL for all common transfer methods, so the application running on the master
node does not need to be adapted to use a certain, specific mechanism in order to use
compressed transfers. Since dOpenCL also acts as the interface between master node and
compute nodes, this strategy allows for the integration of compression facilities without
having to introduce any new components. Last but not least, integrating compressed data
transfers transparently behind an implementation warrants compatibility with
regular applications that are making use of multiple

The resulting architecture for integrating on-the-fly data compression transparently at
the level of dOpenCL is illustrated in For the integration, dOpenCL uses the
lib842 compression library introduced in to provide access to the hardware-
based compression and decompression facilities of the NX-842 on-chip compression accel-
erators, if available. As a fallback option, the library uses the optimized, software-based
implementation for both compression and decompression. On the side of compute nodes,
dOpenCL is also responsible for coordinating the workflow of compressed data transfers,
using the lib§42 compression library to decompress data in memory based on an
[OpenCL}based decompression kernel. The decompressed buffers are left in the|GPU|device
memory, so that the actual application kernel can work on them without any additional
overhead. After the execution of the application kernel has completed, buffers that should
be transferred back to the master node are first copied back to the main memory of the
compute node. There, the [CPUlbased software compressor available as part of the [ib842
compression library is used to compress data prior to being sent back to the master node.

4.5 Implementation
This section is focused on documenting the cornerstones of implementing on-the-fly
compression transparently behind the curtains of the dOpenCL. From the rules and re-

quirements mandated by the specification for moving data, three categories of
data transfers can be derived: Data transfers from the host to a device, data transfers from

65

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

oS- R
i ‘ Application ‘ i i i
o [I I o
3 |9 CloudCL | | S|
= | g_ ou | | v
RS : T 5!
38 L5 ‘ Aparapi ‘<—>{ Job Scheduler ‘ 1 | Linux Crypto API 2
g 1% . £
= I i Lo I < |
i ‘ dopenCL ‘«—{ 1ib842 F —1 cryptodev-linux |
| — ~~— Coo |
I I I I
P .
dOpenCL [«— 1ib842 dOpenCL |«— 1ib842 dOpenCL [«— 1ib842 dOpenCL [«— 1ib842
comp. comp. comp. comp.
3 T 3 T
GPU ‘ GPU ‘ GPU ‘ l GPU ‘
1ib842 L .| App 1ib842 L, App 1ib842 L .| App 1ib842 L, App
decomp. Kernel decomp. Kernel decomp. Kernel decomp. Kernel
Compute Node Compute Node Compute Node Compute Node

Figure 4.7: On-the-fly data compression is transparently integrated into CloudCL by modifying
dOpenCL to incorporate the compression facilities of [ib842.

a device to the host, and data transfers from a device to another device. The single-most
important aspect that has to be considered for augmenting any of these types of data
transfers with transparent on-the-fly data compression is to achieve a maximum level of
concurrency of all operations. As illustrated in even high-throughput com-
pression facilities are unlikely to yield performance improvements when on-the-fly data
compression is implemented naively (b) compared to an uncompressed workflow (a). In
the illustrated example, a workload is assumed that can be compressed with the ratio
r = 0.5. Under the simplified assumption that all stages of the compressed workflow
(compression, network transfer, device upload, and decompression) are taking equally
long, the naive compressed workflow (b) even may increase transfer time compared to the
uncompressed workflow (a). For the compressed workflow to yield notable performance
improvements compared to the uncompressed case (a), it is mandatory to introduce
pipelining into the compressed workflow by overlapping the individual operations as
much as possible (c).

Operating under the assumption that many workloads are ingesting more data than
they egress and considering that the master node in dOpenCL has to supply data to a
potentially larger number of compute nodes, the most important type of transfers in
dOpenCL that have to be augmented with on-the-fly data compression are data transfers
from the master node to compute nodes, as elaborated in [Section 4.5.1] [Section 4.5.2] then
outlines the workflow for realizing compressing data transfers from compute nodes back
to the master node in dOpenCL. Even though CloudCL explicitly targets workloads that
can be partitioned into independent tasks that do not have to exchange data, the makeshift
strategy for implementing compressed data transfers across compute nodes in dOpenCL

is documented in [Section 4.5.3| to comply with the specification.

66

4.5 Implementation

(a) Send (5000MiB)

(b) Compress Send (2500MiB) H2D Memcopy Decompress

() Compress '

‘ Send (5000MiB) ‘

‘ H2D Memcopy

Decompress

| | ‘ | | | |
! Il Il Il Il Il Il
T T T T T T T
0 1 2 3 4 5 6

N

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

Il Il

T T Ll
7 8 time [s]

Figure 4.8: Visualization of the workflows for uncompressed data transfers (a), naively compressed
data transfers (b), and pipelined compressed data transfers (c).

4.5.1 Master Node to Compute Node Data Transfers

In data transfers from the host to a device triggered explicitly by a call to
clEnqueueWriteBufffer, a call to clEnqueueMapBuffer with the CL_MAP_WRITE or
CL_MAP_WRITE_INVALIDATE_REGION bits set in the map_flags argument, or a call to c1En-
queueUnmapMemObject. The same kind of data transfer can be triggered implicitly by the
first use of a buffer created by calling clCreateBuffer with the CL_MEM_USE_HOST_PTR
or CL_MEM_COPY_HOST_PTR bits set in the flags argument. To realize host to device
transfers in dOpenCL, the corresponding workflow for transparently compressed data
transfers from the master node to a compute node are visualized in On both
the side of the master node and the compute node, all opportunities for interleaving the
operations are exhausted. The approach for interleaving the compression process with
network transfers on the side of the master node as well as the strategy for pipelining
network transfers, device upload, and decompression on the side of compute nodes are
documented hereinafter.

clEnqueueWriteBuffer() / clEnqueueMapBuffer()

|

e Buffer NX-842-based Network
é S (Main Memory) Compression Send

L]

[

tg Buffer OpenCL-based Device Network
%‘2 (Device Memory) Decompression Upload Receive
o

Figure 4.9: The workflow for data transfers from the master node to compute nodes leverages
hardware-based compression if available to transparently compress buffers prior to sending them
out to compute nodes, where they are decompressed on the

67

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

4.5.1.1 Workflow on the Master Node

To interleave the compression and send stages of the workflow on the master node,
an buffer is partitioned into smaller units, so-called micro-batches, that can be
processed independently as illustrated in In this approach, a micro-batch
is composed of 16 chunks of 64KiB, each, resulting in a payload of 1MiB. To fully
utilize the resources of the available NX-842 on-chip compression accelerators, a pool of
compression threads is used to compress multiple micro-batches concurrently. In the send
stage, a network thread then takes care of sending out all micro-batches that have already
cleared the compression stage to the compute node. Especially for the send stage, pooling
multiple chunks into micro-batches greatly increases the efficiency of network transfers
significantly.

Main Memory Compression Thread Pool Network Thread Network

Micro Batch (IMiB)

64KiB||64KiB| ... |64KiB \ §§ 3 1ib842: : compressO)

Micro Batch (1MiB) \
1ib842:: ..asio: twri
sakis || 6aki 64KiB $§ S ib8 compress() $§ ? boost::asio::write() —_— %

Sé S 11b842: : compress()
Micro Batch (IMiB) /

64KiB||64KiB| ... |64KiB

Figure 4.10: On the master node, the compression stage and the send stage are interleaved by sending
out compressed micro-batches as soon as they are compressed using a pool of compression
threads.

4.5.1.2 Workflow on the Compute Node

Similar to the send stage on the master node, pooling the chunks into micro-batches
greatly increases the efficiency of the reception stage. On the side of the compute node,
a double buffering mechanism using a pair of receive buffers allocated on the
device is used to interleave the reception stage with the device upload stage as well as the
device upload stage with the decompression stage. At any single moment of time, only
one buffer is mapped to the host, allowing the network thread to write received micro-
batches directly into device memory. To allow for efficient device-based decompression,
both buffers are dimensioned large enough to accommodate up to 512 micro-batches each,
yielding a macro-batch of 512 MiB. Once the host-mapped receive buffer is filled up, it is
unmapped and its sibling buffer is mapped to the host before the decompression kernel
is launched on the former buffer. As demonstrated in this process is repeated
in alternating order until the entire, decompressed [OpenCI]bulffer is available in device

memory.

68

4.5 Implementation

\boost: :asio::read() boost::asio: :read()/

Macro Batch (512MiB) Macro Batch (512MiB) Macro Batch (512MiB) Macro Batch (512MiB)

Network

IMiB cee IMiB IMiB . 1MiB IMiB ce IMiB IMiB ce IMiB

/1ib8421 :decompress() 1ib842: :decompress()

Figure 4.11: On the side of compute nodes, a double buffering mechanism is used to interleave the
reception stage, the device upload stage, and the decompression stage.

Receive Buffers

Destination

Buffer

4.5.2 Compute Node to Master Node Data Transfers

The standard specifies that data transfers from a device to the host can be trig-
gered explicitly by a call to clEnqueueReadBuffer, a call to clEnqueueMapBuffer with
the CL_MAP_READ bits set in the map_flags argument, or a call to cl1EnqueueUnmapMemO-
bject. To implement device to host transfers in dOpenCL, the corresponding workflow
for transparently compressed data transfers from a compute node to the master node are

demonstrated in

clEnqueueReadBuffer() / clEnqueueMapBuffer()

o

L8 Buffer NX-842-based Network
§ 2 (Main Memory) Decompression Receive

[

[

E 2 Buffer Device Software-based Network
%‘g (Device Memory) Download Compression Send
o

Figure 4.12: The workflow for data transfers from compute nodes to the master node uses software-
based compression on to compress buffers before they are transmitted to the master node.

Both on the side of the compute node and on the side of the master node, the strategies
for interleaving stages work analogous to the approaches outlined in Due
to the lack of an [OpenCL}based compression kernel at the time of writing, the major
exception here is that the compression stage is performed on the of the compute
node. Since the cluster model assumed in this work (cf. does not assume
the availability of on-chip compression accelerators in compute nodes, the software-based
compression routine provided by [ib842 are utilized. The software-based compression fa-
cilities provided by lib842 provide high compression throughput on decent (cf.
[tion 3.5.3), this means that workloads yielding large result sets are more susceptible to
experiencing performance hits for transferring the results from the compute nodes back
to the master node.

69

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

4.5.3 Compute Node to Compute Node Data Transfers

According to the specification, data transfers from one device to another device
can be triggered explicitly by calling clEnqueueCopyBuffer. Alternatively, device-to-
device transfers can be triggered implicitly by any command that depends on an event
generated by another command that involves the manipulation of a buffer. Even though
CloudCL specifically targets workloads that can be partitioned into independent tasks that
do not require any device-to-device interaction, this case has to be addressed to comply
with the specification. As such, the resulting rudimentary strategy for enabling
compressed data transfers across devices in dOpenCL is pointed out in

clEnqueueCopyBuffer()

[
gg Buffer Device Software-based Network
5 2 (Device Memory) Download Compression Send
o

H
< —
L3 Network
22 Forward
=
B L]
gg Buffer OpenCL-based Device Network
5 2 (Device Memory) Decompression Upload Receive
o

Figure 4.13: Due to the lack of peer-to-peer communication among compute nodes in dOpenCL,
the workflow for data transfers among compute nodes requires buffers to be transmitted to the
master node from which they are forwarded to the respective compute node.

Compressed data transfers among compute nodes re-use the workflows employed on
the side of compute nodes for sending (cf. and receiving (cf.
compressed data. With dOpenCL employing a host-centric architecture, peer-to-peer com-
munication is not available and hence both workflows are stitched together using the
master node, which merely forwards the compressed micro-batches received from the
sending compute node to the receiving compute node. While this approach certainly pro-
vides subpar performance for device-to-device transfers, this scenario is merely covered
for the sake of completeness.

4.6 Evaluation

The evaluation presented in this section focuses on investigating the performance impact
of applying on-the-fly data compression to scale-out workloads implemented using
either CloudCL or dOpenCL. Laying out the foundation for the evaluation,
documents the testing environment as well as the benchmark procedures used for the
evaluation. The effects of on-the-fly data compression on the effective data transfer
performance are investigated in [Section 4.6.2| [Section 4.6.3| then evaluates the impact of
applying data transfer compression on the total execution time of four different scale-out

workloads. Finally, summarizes the major findings brought forward by

the evaluation.

70

4.6 Evaluation

4.6.1 Testing Environment & Benchmark Procedure

To evaluate the effect of compressed data transfers on the execution time of scale-out
[GPU]workloads across hardware configurations with varying levels of performance, three
different classes of compute nodes are employed in addition to the master node to rep-
resent potential low, medium, and high-performance configurations of compute nodes.
The detailed hardware configurations of each node type are documented in[Table 4.1} The
medium and high performance compute nodes are equipped with eight each, and
are connected to the same 10 Gbit/s Ethernet switch as the master node. To simulate
scale-out behavior, up to eight Docker containers with one attached to each container
were employed as depicted in[Figure 4.14] By instantiating a varying number of containers,
a varying node count could be emulated.

10 Gbit/s Ethernet
Master Node Switch

10 Gbit/s Ethernet

2 Docker Bridge

2 e

«

|

(9]

(=%

<

2 GPU GPU GPU GPU GPU GPU GPU GPU
E

2 Compute Compute Compute Compute Compute Compute Compute Compute
E Node Node Node Node Node Node Node Node

Container| |Container| |Container| |[Container| |Container| |Container| |Container| |Container

Figure 4.14: To simulate a varying number of compute nodes, the employed servers were
partitioned into eight compute nodes with one each using Docker containers.

For the low power compute nodes however, up to eight individual bare-metal micro-
servers were used instead of the container approach. All micro-servers are attached to the
same 10 Gbit/s Ethernet switch as the master node. Across all tests, the same master node
was used to warrant a certain degree of commensurability among the different compute
node classes.

All performance measurements presented hereinafter were performed after a fresh
reboot in order to ensure a clean system state. Furthermore, no other active users or
background tasks were running on the involved servers and the network switch was idle.
As discussed in[Section 4.5] a chunk size of 64 KiB, a micro-batch size of 1 MiB (16 chunks),
and a macro-batch size of 512 MiB (512 micro-batches) were employed.

In order to retrieve a sufficiently meaningful dataset, each benchmark was executed
25 times. Error bars are used in all plots to report the standard deviation for each
measurement. Furthermore, each benchmark was preceded by a warm-up run in order
to eliminate any confounding factors. All measurements presented in this chapter are
reported as average values including standard deviation (n = 25).

Execution time was measured from the point where the application is started until it
terminated. Therefore, all execution time measurements include the entire execution of a
program, including setup, data transfers, computation phases, as well as teardown.

71

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

Table 4.1: Specifications of the test systems used to evaluate the performance impact of applying
compressed data transfers in scale-out workloads based on CloudCL and dOpenCL.

Master Node Low Performance Node
Model IBM Power System S824L [81] HPE ProLiant my1op [75]
CrPuU 2xIBM POWERS (Murano), Intel Xeon E3-1284Lv4,
3.42 GHz, 10C /80T each 2.90 GHz, 4C/8T
Memory 1024 GB DDR3 ECC, 1600 MHz 32 GB DDR3, 1600 MHz
iGPU n/a Iris Pro Graphics P6300
dGPU n/a n/a
NIC 10 Gbit/s 10 Gbit/s
oS Ubuntu 20.04.4 Ubuntu 18.04.4
Kernel 5.4.0 4.15.0
Compiler GCC 10.2.1 (AT 14.0) GCC 7.4.0
OpenCL n/a OpenCL 2.1 NEO
GPU Driver n/a 20.09.15980 (NEO)
Medium Performance Node High Performance Node
Model HPE ProLiant DL380 Geng [[73] NVIDIA DGX-1 [140]
CrPu 2xIntel Xeon E5-2620v4, 2xIntel Xeon E5-2698v4,
2.20GHz, 10C/20T each 2.20GHz, 10C/20T each
Memory 256 GB DDR4 ECC, 2133MHz 512 GB DDR4 ECC, 2133 MHz
iGPU n/a n/a
dGPU 8xNVIDIA Tesla K8o 8xNVIDIA Tesla Vioo
NIC 10 Gbit/s 10 Gbit/s
oS Ubuntu 20.04.4 Ubuntu 20.04.4
Kernel 5.4.0 5.4.0
Compiler GCC 9.4.0 GCC 9.4.0
OpenCL OpenCL 1.2 CUDA OpenCL 1.2 CUDA
GPU Driver 470.103.01 470.103.01

72

4.6 Evaluation

4.6.2 Effective Data Transfer Performance

To compare the effective transfer throughput between the master node and a single
compute node with and without on-the-fly data compression, a modified version of the
oclBandwidthTest sample application from the NVIDIA OpenCL SDK [142] was used.
For this test, the synthetic periodic, zeros, and random datasets discussed in
were used as compression payloads. These artificial payloads are intended to test effective
data transfer bandwidth for worst case and best case edge cases. To include more repre-
sentative payloads, the enwikg, the OLW, as well as the Curiosity dataset (cf.
were included as well.

To evaluate effective transfer throughput in a scale-out scenario, the test application
was modified in order to perform data transfers to eight nodes, simultaneously. This test
uses the same data sets and only increases the data volume in proportion to the larger
number of nodes. The effective transfer throughput is aggregated across all nodes.

(a) (b)
10000 - 10000 -
Il Baseline Il Baseline
8000 + B Low 8000 + B Low
Bl Medium Bl Medium

6000 + 6000 +

Il High Il High

Transfer Throughput [MiB/s]

Transfer Throughput [MiB/s]

4000 o 4000 o

2000 o 2000 o
0- 0+
ef\‘obo ’\/éog & (\‘&{9 3 «\06\6 ';\06 ¢ oboe <\§9 O\\§ '«\050\6
] e o Q¢ e g

Figure 4.15: The effective transfer throughput with and without on-the-fly data compression is
documented in panel (a). Here, measurements were performed between the master node and a
single compute node of each class. The aggregated effective bandwidth for simultaneous transfers
to eight compute nodes is illustrated in panel (b).

The measurements for the effective single-node transfer throughput and the effective
scale-out transfer throughput are presented in the panels (a) and (b) of
respectively. The transfer throughput tests demonstrate that using the enwikg, OLW,
and Curiosity datasets, compressed data transfers improve effective transfer throughput
between 1.29x and 1.81x using medium or high performance compute nodes in the single
node scenario, and between 1.40x and 1.91 x using any compute node configuration in
the scale-out scenario. Random data as the worst-case payload has no negative impact
on the throughput, whereas the benevolent periodic and zeros datasets can yield drastic
performance improvements. A closer look at the scale-out results for real-world payloads
reveals that the limited bandwidth, especially on the master node network interface,
remains as a major bottleneck, as the aggregated effective bandwidth of the scale-out tests
only slightly exceeds the single node test bandwidth.

73

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

4.6.3 Workload Benchmarks

To evaluate whether on-the-fly data compression can be used to mitigate the performance
overhead caused by scaling out workloads across multiple compute nodes, the
best strategy is to use established benchmark suites. To compensate for the limited
choice of multi{GPU| benchmarks implemented in four custom benchmarks
were implemented in the course of this work using either Java and CloudCL or the C++
bindings of In the custom benchmarks, independent kernel instances are used
to process partitions of the input data in order to avoid inter{GPU| communication. For
each benchmark, the total execution time is measured using regular, uncompressed data
transfers for inter-node communication as a performance baseline. By performing the
same measurements with compressed data transfers enabled, the baseline performance
measurements can be used to quantify the performance improvements introduced by
the transparent integration of on-the-fly data compression discussed in and

ection 4.

The list of custom benchmarks includes a Semi-Sparse Matrix Multiplication workload,
an Analytical Database Query, a Text Search, as well as an Image Downscaler workload.
Implemented in Java using CloudCL, the Semi-Sparse Matrix Multiplication workload and
the Analytical Database Query were already introduced in The remaining
workloads are implemented in C++, using the C++ bindings of Each benchmark
is introduced with a brief description before the results are presented and discussed.

4.6.3.1 Semi-Sparse Matrix Multiplication

As demonstrated in this workload benchmark is implemented in Java using
the CloudCL framework. It assumes a matrix multiplication workload where a certain
fraction of cells can be assumed to hold zero values, but where this fraction is hard to de-
termine or where it is not large enough to justify the use of a sparse matrix representation
such as Compressed Sparse Rows (CSR). The benchmark performs a dense multiplication
of matrix A (N x M) and matrix B (M x P), yielding matrix C (N x P) as a result. The
dimensions used for A and B in this benchmark are N = 13125 * 1,,,4,,, M = 20000, and
P = 25. For node counts larger one, a tiling strategy is employed that partitions matrix A
horizontally and distributes it across compute nodes, whereas the second matrix B is sent
out to all compute nodes. The matrix multiplication kernel itself is implemented using a
naive implementation strategy. The amount of data to be transferred to compute nodes
roughly amounts to 4 * (N « M + M % P % n,,4,s) bytes, and the computation requires
roughly N*M*P flops.

To regulate the sparsity of the input matrices, both A and B are generated with cells
holding either random numbers or a zero value according to the sparsity parameter S.
For a value of S = 0, all cells hold randomly generated values, whereas S = 1 results in a
fully zeroed matrix. Therefore, the matrices used in this benchmark can be compressed
with a ratio r of roughly r = 1 — 5. The impact of compressed data transfers was tested
for the sparsity parameters S = 0.33, S = 0.50, and S = 0.67.

74

4.6 Evaluation

(a) (b)
10000 - 10000 -

Il Baseline Il Baseline
'g 80004 [EH S=0.33 'g 80004 [EH S=0.33
> B S=0.5 - B S=05
£ 60001 mm s=067 £ 60001 mm s=0.67
c c
£ 4000 4 £ 4000 4
8 3
& 2000 4 o 2000 4
1 2 4 8 1 2 4 8
Node Count Node Count

()

10000 4

Il Baseline
g 80004 EH S=0.33
o B S=05
£ 1 _
£ 60001 mm s=067
c
£ 4000 4
3
[}
& 2000 4

1 2 4 8
Node Count

Figure 4.16: Panels (a), (b), and (c) present the execution time measurements for the Semi-Sparse
Matrix Multiplication workload using low, medium and high power compute nodes, respectively.
For each node type, the uncompressed baseline performance is compared to the performance
achieved with compression enabled for the sparsity parameters S = 0.33, S = 0.50, and S = 0.67.

75

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

The measurements presented in demonstrate that compression can provide
performance improvements across the entire range of tested sparsity parameters. On
the low performance compute nodes, compression only pays off for larger node counts
(n > 4) with performance improvements ranging between 1.11x for S = 0.33 and 1.54x
for S = 0.66.

In contrast to the low performance compute nodes however, the medium and high
performance compute node types show slight but consistent performance improvements
even for low node counts (1 < n < 2). For larger node counts (n > 4), compression yields
performance improvements between 1.23x for S = 0.33 and 1.87x for S = 0.67. However,
it should be noted that this benchmark is dominated by transfer time and only a fraction
of the execution time is spent on computation.

4.6.3.2 Analytical Database Query

For this benchmark, an Analytical Database Query was implemented in Java using the
CloudCL framework as discussed in The implemented workload resembles
the characteristics of a column-oriented in-memory database executing an analytical query
that resembles Query 1 of the TPC-H Benchmark [206]. Test data for this benchmark is
generated loosely following the principles of the DBGEN data generator [206], with the
minor modification that the Java pseudo random number generator is used instead of the
custom pseudo random number generator specified by the DBGEN data generator.

At this point, the author wishes to reiterate that for reasons of simplicity, neither the
query nor the data generator fully complies with the very complex TPC-H specification. As
such, the Analytical Database Query benchmark must not be mistaken for a subset TPC-H
benchmark. The implemented query is a relatively simple, join-free aggregation query
that involves a simple filter statement. Only the relevant data columns are transferred
to the using a columnar layout. The data volume to be transferred and processed
amounts to 28 * 100000000 bytes per node, and 28 * 100000000 * #,,,4,s bytes in total. The
perform the aggregation, to the extent possible, in parallel.

The benchmark results depicted in demonstrate that compression allows
the query execution to scale almost perfectly on up to four nodes, as the total execution
time barely increases compared to a single node. For two to four nodes, on-the-fly data
compression facilitates almost perfect scaling behavior across all node types, as the multi-
node execution times are barely higher compared to the single-node configurations. For
the n = 8 nodes, performance improvements of 1.85x, 1.9%, and 2.07x are achieved
for low, medium and high performance compute nodes, respectively. Based on these
observations, it seems safe to assume that the network interface on the master node
is the major bottleneck. With a wider network interface available on the master node,
compressed data transfers have the potential to provide perfect scale-out behavior for
even larger node counts.

4.6.3.3 Text Search

Here, a simplistic Text Search kernel was implemented that checks for a match at each
position of a large text file. Unlike the preceding benchmarks, this test was implemented
in C++ using the C++ bindings, and therefore runs directly on top of the dOpenCL

76

4.6 Evaluation

30000 1 30000 1

Il Baseline Il Baseline
z 2500091 @ Compressed ? 2500091 @ Compressed
‘@ 20000 A ‘@ 20000 1
E £
< 15000 1 — 15000 A
o o
3 10000 A 3 10000 -
[} [}
x X
w5000 A w5000 4
0 04
1 2 4 8 1 2 4 8
Node Count Node Count
(c)
800007 Il Baseline
z 250004 @ Compressed
‘2 20000 A
E
— 15000 4
S
3 10000 4
Q
x
w5000 4
[/
1 2 4 8
Node Count

Figure 4.17: The execution time measurements for the Analytical Database Query workload are re-
ported in panels (a), (b), and (c) for low, medium and high power compute nodes, respectively.
Each node has to process the same volume of 28 * 100000000 bytes, meaning that a constant
execution time across node counts expresses perfect scale-out behavior. Up to a node count of
four, this ideal scale-out behavior is approached across all compute node types using on-the-fly
data compression.

77

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

library. The benchmark is performed using the Books, Wikipedia, and OLW datasets as
large text corpora (cf.[Section 3.5.2). A simple, computationally expensive but yet powerful
implementation strategy is employed that can match any pattern, even non-regular ones.
Using this naive approach also yields a workload that is dominated by compute time
instead of data transfer time. Depending on the number of nodes, the first 1000000000 x*
Myodes Dytes of an employed data set are transmitted to compute nodes, with each node
having to process 1000000000 bytes.

(@) (b)

200007 wm Books 200001 wm Books
2 16000 1 EE Wikipedia Z 16000 4 EE Wikipedia
‘o mm OoLw "y m oW
é 12000 4 E 12000 4
s c
£ 8000 S 80004
3 =]
5 8
ai 4000 4 & 4000 4
0.
1 2 4 8 1 2 4 8
Node Count Node Count
(c)
2000071 mm Books
Z 16000 4 EE Wikipedia
- mm oW
£ 12000 4
=
c
£ 8000 -
3
Q
35 4000 -
0.
1 2 4 8
Node Count

Figure 4.18: Panels (a), (b), and (c) report the execution times measured for the Text Search workload
on low, medium, and high performance compute nodes, respectively. The black portion of each
bar represents the performance baseline of using uncompressed data transfers. The data supports
the assumption that this benchmark is dominated by compute time, as the different performance
levels of compute nodes can be easily identified. Even though the benefit of on-the-fly data
compression for data transfers is not as distinct as in other workloads, compression becomes
more beneficial for higher node counts.

Considering the benchmark results provided in the first impression might
be that compression does not help too much in this use case, especially for faster compute
node configurations. However, as mentioned before, this benchmark is more compute-
intensive, which can be seen based on the larger performance differences between the
different compute node classes. With the tests being less sensitive to data transfer volumes,
it is still notable to see that compression yields 1.14x, 1.25%, and 1.43x performance im-
provements using n = 8 low, medium and high performance compute nodes, respectively.

78

4.6 Evaluation

4.6.3.4 Image Downscaler

Last but not least, a simple Image Downscaler workload was implemented in C++ using
the C++ bindings. In this benchmark, a [Tag Image File Format (TIFF) image
is read and transferred to all available in the form of an RGBA pixel buffer. To
utilized multiple the workload is partitioned by segmenting the image horizontally.
As reference payloads, the Curiosity and Telescope datasets are used (cf.[Section 3.5.2). In
contrast to the other workloads, this test does not clip the datasets proportionally to
the number of available nodes 7,,,4,.5, but the entire image is processed regardless of the
employed node count.

(a) (b)

160007 wm Curiosity 160007 wm Curiosity
) Hl Telescope Q@ Hl Telescope
£, 12000 4 £, 12000 4
[0] [0]
ig £
— 8000 = 8000 1
L2 k]

5 5
(5] (5]
2 4000 4 £ 4000 4
w w
0 0
1 2 4 8 1 2 4 8
Node Count Node Count
()
160001 Bl Curiosity
@ Bl Telescope
E. 12000 -
Q
£
— 8000 A
S
3
2 4000 4
w
0+
1 2 4 8
Node Count

Figure 4.19: Panels (a), (b), and (c) report the execution times measured for the Image Downscaler
workload on low, medium, and high performance compute nodes, respectively. The black portion
of each bar represents the performance baseline of using uncompressed data transfers. The
measurements clearly illustrate that the workload is dominated by data transfers, as the execution
time does not vary significantly across compute node classes and varying node counts. Here,
the use of on-the-fly data compression yields significant performance improvements across most
conditions.

The results presented in [Figure 4.19|illustrate that this workload is largely dominated by
transfer time, as the baseline execution time remains almost constant across varying node
counts. With the employed datasets being well compressible, this benchmark makes it
easy to gauge the impact of on-the-fly data compression, which improves execution time
considerably by up to 1.67x, 1.71x, and 1.89x on low, medium, and high performance
compute nodes, respectively. Nevertheless, the test also demonstrates that scalability is
ultimately limited by width of the network, even when data is compressed.

79

4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters

4.6.4 Summary

The preceding evaluation has successfully tested the hypothesis that on-the-fly data com-
pression can improve the overall performance of scale-out workloads using various
compute node configurations by increasing the effective bandwidth between the master
node and compute nodes. Ranging between 1.11x and 2.07x, the performance improve-
ments observed across various workloads may not appear drastic on first sight. However,
it should be noted that this speed-up was achieved without assuming any workload-
specific knowledge in the compression scheme, without necessitating any modifications in
the workloads themselves, or without introducing any other kind of overhead. Consider-
ing that the presented approach is capable of introducing even modest speed-up to a very
wide range of [GPU}based scale-out workloads, performance improvements up to 2.07 x
appear much more attractive on second sight, especially in the context that the number of
applications that require multiple to satisfy their resource demand is increasing by
the day.

4.7 Summary

This chapter has presented two major contributions:

Building up on top of the dOpenCL forwarding library for and the Aparapi
framework for executing native Java code on the CloudCL framework was intro-
duced. By extending the underlying technologies with a job infrastructure including a job
scheduler, as well as dynamic scaling capabilities for dynamically available resources, the
CloudCL framework hides several aspects of the distributed memory parallel programming
model during the development of scale-out workloads. These abstractions enable
application developers and domain experts to focus on the data parallel programming
model associated with yielding a single-paradigm development experience which
makes scale-out resources more accessible to a wider audience. From an operations
point of view, CloudCL can also improve resource utilization by disaggregating re-
sources. The improved developer experience provided by CloudCL was demonstrated by
presenting the job class implemented using the CloudCL framework for two exemplary
workloads.

Serving as the foundation of the CloudCL framework, the dOpenCL library was aug-
mented with transparent on-the-fly data compression for inter-node data transfers based
on the lib842 compression library presented in Using a highly pipelined ap-
proach to interleave all stages of the workflow for transferring transparently compressed
buffers from the master node to compute nodes or vice versa, it was possible
to improve the effective throughput across nodes. From a workload perspective, the
improved data transfer efficiency provided by the integration of transparent compression
has yielded performance improvements ranging between 1.11x and 2.07x across various
data-intensive scale-out[GPU|workloads implemented using either the CloudCL framework

or the directly.

8o

5 Programming Abstractions for Scale-Up
Non-Uniform Memory Access Architectures

In this chapter, the PGASUS C++ framework is introduced with the goal of alleviat-
ing application development for scale-up [Non-Uniform Memory Access (NUMA) archi-
tectures by providing easy-to-use facilities for memory placement and [NUMA}aware
task-parallelism. The PGASUS framework was originally proposed and extended in the
master’s theses by Wieland Hagen [68] and Karsten Tausche [198], respectively. Building
up on top of the concept and the implementation of the PGASUS framework brought
forward by these master’s theses, the contributions of this work in the context of
architectures are focused on investigating the impact of the programming abstractions
provided by PGASUS on both the developer experience and performance. The developer
experience of the framework is investigated exemplarily based on three different work-
loads, including a data compression workload that builds up on the /ib8§42 compression
library presented in Furthermore, a comprehensive evaluation is conducted to
investigate the performance-impact of the PGASUS framework.

The following master’s theses were supervised alongside the research leading to this
chapter, fostering scholarly exchange between this work and the supervised theses:

¢ Patrick Schmidt. “Optimization Guidelines for NUMA Architectures”. Master’s
thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, Jan.
2016. URL: |https://osm.hpi.de/bookshelf/Details/533

* Wieland Hagen. “A Programming Model for C++ Application Development on
Non-Uniform Memory Access Architectures”. Master’s thesis. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, Apr. 2016

¢ Christoph Sterz. “Analyzing NUMA Performance Based on Hardware Event Coun-
ters”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of
Potsdam, July 2016. URL: |https://osm.hpi.de/bookshelf/Details/530

¢ Kai Fabian. “Measuring and Interpreting NUMA Main Memory Latencies”. Mas-
ter’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
Sept. 2017. URL: |https://osm.hpi.de/bookshelf/Details/536

* Karsten Tausche. “Memory Management on IBM Power Systems with NUMA
Characteristics based on the PGASUS Programming Framework”. Master’s thesis.
Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, Oct. 2017. URL:
https://osm.hpi.de/bookshelf/Details/540

Furthermore, partial results of the work presented in this chapter have been published:

* Wieland Hagen, Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas Polze.
“PGASUS: A Framework for C++ Application Development on NUMA architec-

81

https://osm.hpi.de/bookshelf/Details/533
https://osm.hpi.de/bookshelf/Details/530
https://osm.hpi.de/bookshelf/Details/536
https://osm.hpi.de/bookshelf/Details/540

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

tures”. In: Proceedings of the Fourth International Symposium on Computing and Net-
working (CANDAR). IEEE. Nov. 2016, pages 368—374. DOT: |10.1109/CANDAR. 2016,
0071

* Max Plauth, Felix Eberhardt, Andreas Grapentin, and Andreas Polze. “Improving
the Accessibility of NUMA-Aware C++ Application Development Based on the
PGASUS Framework”. In: Concurrency and Computation: Practice and Experience
(Feb. 2022), e6887. DO1:|10.1002/cpe.6887

This chapter is structured as follows. motivates the demand for program-
ming abstractions that make it easier for developers to exploit data locality in scale-up
[NUMA|systems without disregarding their advantage of providing cache coherency across

NUMA| domains. After that, explains why neither the C++ standard library

nor operating system [Application Programming Interfaces (APIs)|such as libnuma do not
provide suitable means for controlling data placement for C++ objects on sys-

tems. then introduces the PGASUS framework and the facilities it introduces
to alleviate NUMAlaware application development in C++. To demonstrate the devel-
oper experience of PGASUS, compares PGASUS-based implementations of
three different workloads with [NUMA}aware implementations based on the
[Processing (OpenMP)|interface or a combination of POSIX pthreads and the libnuma library.
The performance impact of the abstractions introduced by PGASUS are investigated in a
comprehensive evaluation in [Section 5.5} Finally, the major insights from this chapter are
summarized in

5.1 Motivation and Problem Statement

Even though (Graphics Processing Units (GPUs)| have become popular in many data-
intensive application domains, many workloads still rely on the flexibility and versatility
of multicore [Central Processing Units (CPUs)| [208]. While several of these [CPUpbased
workloads can be adapted to scale-out across multiple systems to provide sufficient
compute resources, certain workloads such as in-memory databases [25] or de Novo genome
assembly [133] are inherently hard to scale out and therefore require as many resources as
possible in a single scale-up system.

As elaborated in [Section 2.1.1} [Uniform Memory Access (UMA)| architectures have
dominated multiprocessor systems for a long time. From the perspective of an application
developer, [UMA] architectures align conveniently with the shared memory programming
model. Unfortunately, sharing the memory subsystem with all other multicore
severely limits the scalability of multiprocessor systems, both in the number of multicore
and in the amount of memory that can be accommodated in a single system.

architectures avoid this bottleneck, as each multicore[CPUJis equipped with ded-
icated memory controllers. Memory attached to other multicore [CPUs|can still be accessed
transparently through inter{CPU]interconnects such as
[finity Fabric (IF)| and [Power with A-bus, X-bus, OpenCAPI, and NVLink (PowerAXON
However, remote memory access operations incur increased latencies and reduced band-
width, especially on systems with more than four multicore where fully meshed
connectivity among is no longer feasible. State-of-the-art systems support

82

https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1002/cpe.6887

5.2 Data Placement in NUMA Systems

up to 32 multicore [76] and 64 TiB of main memory [191] while maintaining a single
cache-coherent address space. In the near future, technological novelties such as memory
disaggregation are likely to further push the capacities of large[NUMA|systems [191} 148].

Since remote memory is transparently accessible in cache coherent scale-up
systems, the shared memory parallel programming model is still applicable, enabling
application developers can hold on to the programming model they are familiar with.
However, performance-critical aspects of systems such as the distinction between
local and remote memory resources are not considered. This is due to the perception
of a continuous virtual address space abstracting the heterogeneous memory subsystem.
Naturally, locality is covered by the distributed memory parallel programming model,
which is employed by the various programming languages and libraries that have been
brought forward by the [High-Performance Computing (HPC)| community. Unfortunately,
these distributed memory approaches completely ignore the benefits of a large, cache-
coherent scale-up system. The data parallel programming model, also referred to
as the [Partitioned Global Address Space (PGAS) model fills the gap between the extremes
of the shared memory model and the distributed memory model. A central aspect of the
model is the distinction between local and remote memory resources, which would
be the perfect fit for systems. Even though several programming languages and
language extensions based on the model have been presented, they are all rooted
in the community and most are targeting clusters instead of cache-coherent scale-up

[NUMA|systems.

To fill this gap of [PGAStbased approaches tailored for scale-up NUMA|systems, the
PGASUS framework has been proposed and improved by Wieland Hagen and Karsten

Tausche in their master’s theses [68, [198]. PGASUS is a C++-based framework that
provides easy-to-use facilities for memory placement and NUMA}aware task-parallelism.
The framework makes extensive use of the [Resource Acquisition is Initialization (RAII)|
programming idiom [194]], which is a powerful concept for managing the resources of
a given scope. By embracing the idiom, PGASUS makes it easy for developers to
specify a memory allocation strategy that serves all allocations of the active scope from a
specified Memory Source using the Place Guard construct. To make it easier for developers
to co-locate data and threads, PGASUS provides simple NUMA}aware parallel tasking
facilities that follow the general concepts of the interfaces for threading and asynchronous
calls in C++11 and onwards. However, the impact of using the programming abstractions
introduced by PGASUS has not been investigated sufficiently. The main contribution of
this chapter is that it attempts to fill this gap by conducting a comprehensive evaluation of
both the developer experience and the performance impact facilitated by the abstraction
mechanisms of PGASUS.

5.2 Data Placement in NUMA Systems

For developers intending to factor in the properties of systems in their appli-
cations, several challenges regarding data placement have to be considered during the
development of C++ applications. Hereinafter, the implications of object placement and
object migration on [NUMA}aware application development are identified, where neither

83

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

the C++ standard library nor operating system mechanisms provide sufficient means to

express data locality on NUMA|systems.

5.2.1 Object Placement

The C++ programming language and its standard library do not have any concept for
considering data locality in [NUMA| topologies. As a consequence of the virtual memory
abstraction, a flat, homogeneous address space is presented to applications, where regions
can be made available through operating system such as libnuma [100]. These
regions are identified only by location and length, and are otherwise indistinguishable, as
application developers are supposed to be indifferent about any details of the underlying
hardware. As such, no mechanisms are provided to group data, prevent intra-page
fragmentation or otherwise deal with the specific challenges of topologies, as

illustrated in

size capacity data
Page 0x10151 3 4 P R
Page Ox10152 string string string free
¢ ° ° ° space
Page 0x10321 “Foo“
Page 0x10322 : “Bar“
Page 0x10323 “Hello World! This is a test...“

Figure 5.1: Example of how a std::vector<std::string> instance and its underlying data struc-
tures can be spread across many distinct pages.

To control memory placement decisions at runtime, an application has to either provide
a custom implementation of the new operator that overrides the default behavior, or
memory has to be allocated manually in advance. However, neither method considers that
every class used in a context sensitive to object placement needs to be allocated using the
modified new operation. This cannot be guaranteed for classes that are defined outside of
the program such as libraries that may implement custom allocation schemes. Also, many
template-based container data-structures rely on the default behavior of placement new
and implement their own memory management based on malloc. Lastly, overwriting new
has no effect on data-structures implemented in C libraries that use malloc.

5.2.2 Object Migration

The issues faced during object migration are very similar to those described for object
placement. The page migration mechanisms provided by the operating system for moving
data to a differentNUMA|node does not consider the internal, potentially nested structure
of objects. To move an instance of std::vector<std::string> to another node for
example, not only the pages containing the std: :string instances have to be moved to
the other node, but also the pages holding the string data that are allocated separately on

84

5.3 PGASUS: NUMA-Aware C++ Application Development

the heap have to be considered for each std: :string instance as illustrated in
In the described scenario, the lack of control over the placement of the std: :vector and
std: :string data storage is a problem. When more complex objects containing nested
object hierarchies have to be migrated using the page migration mechanisms, all associated
objects have to be allocated in contiguous memory and occupy a private set of pages that
is not shared with other objects.

5.3 PGASUS: NUMA-Aware C++ Application Development

This section provides an overview of the PGASUS framework, which has been proposed
in the master’s thesis by Wieland Hagen [68] and which has been further extended in
the course of the master’s thesis by Karsten Tausche [198]. PGASUS is a C++ framework
that employs semantics on systems in order to provide developers with
the means to specify data placement policies based on the idiom. To furthermore
alleviate the co-location of data and tasks, PGASUS also provides a simple NUMAlaware
tasking infrastructure. The PGASUS framework provides five major facilities to alleviate
the development of aware C++ applications: MemSources are used to represent
logical memory regions that are bound to a specific nodes and provide the foun-
dation for the concept of PlaceGuards, which configure an underlying memory allocator to
serve allocations from a specific MemSource using the idiom. An interface for discov-
ering the topology of a system provides the means for developers to respond to
the characteristics of a system at runtime, whereas [NUMA|aware Task Parallelism
is used to situate tasks based on the location of the data they are operating on. Finally,
PGASUS provides a[NUMA}aware hash-table to investigate the potential of NUMA}aware
drop-in replacements of common data-structures. All five facilities are further detailed
hereinafter.

5.3.1 MemSources

The libnuma [100] in Linux provides two methods for influencing the placement
of data: Using calls to numa_alloc_onnode, memory can be allocated explicitly on the
specified node. Memory allocated using this method is always page aligned, which may
lead to internal fragmentation for small allocations, leaving large parts of the memory in a
page potentially unused. For existing code bases to incorporate this method, all allocations
have to be replaced with calls to numa_alloc_onnode and the size of allocations has to be
tracked to replace deallocations with the corresponding numa_free call.

Alternatively, using the numa_set_membind call implies a contextual approach. This
method can be used to specify which nodes should be used to serve subsequent
allocations. Like the other method, numa_set_membind also operates on the granularity
of pages, which means that the specified placement policy only applies to pages that
are faulted into the heap after the numa_set_membind call. This behavior can yield false
sharing effects in situations where an allocator serves small allocations from a page that
has been faulted into the heap prior to the call to numa_set_membind and therefore may

be placed on a different[NUMA|

85

"

N

'S

w

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

To avoid these pitfalls, PGASUS introduces MemSources as the central means for repre-
senting logical memory regions that are bound to a specific node. As exemplified
in[Listing 5.1} MemSources can be used to serve allocations for objects of arbitrary size and
type. Furthermore, MemSources provide a mechanism for conveniently migrating all of its
pages to another node, and also making sure that allocations are served from that node
thereafter.

Listing 5.1: MemSources represent a logical memory region that is bound to a specific NUMA|node.
The MemSource interface can be used to group memory allocations, to control allocation placement,
and to migrate groups of objects between NUMA|nodes.

int dinitialSize = 1 << 24; // 16 MiB
MemSource msource = MemSource::create(targetNode, initialSize);

Foo *foo = msource->construct<Foo>(); // create object
void xbuffer = msource->alloc(1024); // allocate memory

msource->migrate (newHomeNode) ; // migrate pages

A MemSource maintains a pre-allocated buffer bound to its home node using libnuma
from which smaller allocations are served using an optimized memory allocator. At first
sight, well-known high-concurrency allocators such as jemalloc [43] and TCMalloc [58] may
seem like a good choice from a performance perspective. Considering the segregated allo-
cation strategy employed by jemalloc, TCMalloc, as well as many other high-concurrency
allocators, they cannot be applied directly to a single, externally allocated memory block
such as the pre-allocated buffer provided by a MemSource as segregated allocators employ
many distinct memory blocks to serve allocations of different size classes. As a result, Mem-
Sources are implemented using the more conservative ptmalloc3 [59] allocator employing
a best-fit allocation strategy. The allocator supports the mspace_t construct, which can be
created within the pre-allocated buffers provided by the MemSources. These pre-allocated
buffers and the mspace_t constructs therein will be referred to as Arenas. Large allocations
are allocated directly via mmap and are bound to the home node of the MemSources using
libnuma.

For object location querying and, more importantly, object de-allocation, it is imperative
that each object allocated from an MemSource can be identified. Since the free function
used for memory de-allocation in C only takes one pointer to the memory chunk, it has
to be possible to query the MemSource belonging to a memory chunk by just using this
pointer. For this purpose a data item called Footer is stored before each allocated chunk.
This Footer contains a pointer to the MemSource and the Arena that the allocation was
made from. For large chunks allocated using mmap directly, the arena pointer is set to NULL
and the footer is extended to also include the block size and links to other mmap-allocated
chunks, thus implementing a linked list.

5.3.2 Place Guards

Following the [RAIllidiom [194], PGASUS introduces the PlaceGuard construct to control
the behavior of the new operator and all common memory allocation functions to allocate

memory from a Node (cf. [Listing 5.2) or a MemSource (cf. [Listing 5.3) instead of using the
INUMAlagnostic malloc implementation of the C library. After a PlaceGuard is created,

86

5.3 PGASUS: NUMA-Aware C++ Application Development

its effects are active until the PlaceGuard goes out of scope. Their effect can also be
nested by specifying additional PlaceGuards within an already guarded scope, allowing
for fine-grained control over the allocations of the application, and even of third-party
code. When a PlaceGuard instance goes out of scope and is deallocated, its effect will end
and subsequent allocations will be served by the previously active parent PlaceGuard, if
any, and otherwise will return to the malloc implementation of the C library.

Listing 5.2: PlaceGuards enable developers to easily specify object placement by configuring the
behavior of the underlying stacked malloc allocator. Both the allocated string object and its
underlying string data buffer will be allocated on the specified targetNode.

1 std::string* createStringOnTargetNone(Node targetNode) {
2 PlaceGuard guard(targetNode);

return new std::string("foo");

// PlaceGuard leaves scope and loses effect

w

&

Listing 5.3: PlaceGuards can also be specified in relation to a previously created MemSource instead
of a[NUMA|node. In this case, the data buffer inside the string implementation will be allocated
using the given MemSource.

1 std::string* createStringInMemSource(MemSource source) {
2 PlaceGuard guard(source);

return new std::string("foo");

// PlaceGuard leaves scope and loses effect

[

IS

To achieve this behavior, the PlaceGuard construct is backed by the stacked malloc alloca-
tor, which replaces all memory allocation functions defined by the C++ standard including
inherited C interfaces as well as specific POSIX interfaces with the behavior described
hereinafter. In stacked malloc, every thread maintains a stack of places, which can be either
references to MemSources or NUMA|nodes. When the PlaceGuard construct is invoked,
the specified MemSource or node is pushed onto the stack. Upon leaving scope,
the PlaceGuard construct removes the corresponding place from the stack. To serve allo-
cations, stacked malloc consults the top element of the stack. In case a MemSource resides
on the top of the stack, allocations are served thereof. When a node is the top element,
the default MemSource residing on the specified node is used to serve the allocation.

Upon deallocation of a memory chunk, it has to be known from which MemSource the
memory chunk was allocated. Thus the allocated memory chunks are annotated with
information that facilitates a link to the MemSource it stems from. It is then possible to ask
that MemSource to deallocate the given chunk. The basic algorithms for memory allocation
and deallocations are shown in

Listing 5.4: Simplified operating principle employed by the stacked malloc allocator.

1 MemSource *getMemSource() {

2 tls = getThreadlLocalStorage();

3 places = tls.placeStack;

4 if (!places.empty() && places.top.isMemSource())
5 return places.top.memsource;

87

~

10

11

13

14

16

17

19
20
21

22

23

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

int node = places.empty() ? localNode :
if (node == localNode)

return tls.localMemSource;
return tls.nodeData.msources[node];

}

static const int offset = sizeof(MemSource::

void malloc(size_t sz) {
MemSource *ms = getMemSource();
return ms->alloc(sz);

}

void free(void *p) {
void xchunk = p - offset;
MemSource *ms = *((MemSourcexx*) chunk);
ms->free(p);

places.top.node;

Footer);

5.3.3 Topology Discovery

PGASUS provides means for retreiving the topology of a system based on the Node and
NodeL1ist classes outlined in [Listing 5.5} The framework creates a model of the machine
topology by using the information provided by hwloc and /sys/devices/system/n-
ode/node[X]/distance. Certain hardware configurations can result in node ids
which may not be consecutive. Such situations include hypervisors such as PowerVM,
systems with coherently attached accelerator memory, or disaggregated memory setups.
To better deal with a non-linear id space, the topology interface employs a logical node
mapping using consecutive node ids. Similarly, there are configurations where
nodes may only contain memory resources and no resources. To address the possi-
bility of compute-less nodes, the helper methods in the NodeList class provide
additional variants considering only nodes equipped with resources.

Listing 5.5: PGASUS exposes topology information using the Node and NodeList classes.

1 class Node {

2 static Node currentNode(); // node of calling thread
3 static Node forCpuld(Cpuld 1id);

4 NodeList neighbors(); // sorted by distance
5 int physicalld();

6 int logicalId();

7

8 vector<int> cpulds();

9 size_t cpuCount() const;

10 size_t threadCount() const;

11 int indexOfCpuid(Cpuld id) const;

13 size_t memorySize() const;

14 size_t freeMemory() const;

5}

16
17 class NodelList : public std::vector<Node> {

88

21

22

23

24

25

26

27

—

o w2 woN

N

5.3 PGASUS: NUMA-Aware C++ Application Development

static NodelList& logicalNodes(); // as detected at runtime
static size_t logicalNodesCount();

static const NodelList& logicalNodesWithCPUs();
static size_t logicalNodesWithCPUsCount();

static 1int physicalTolLogicalld(int physicalld);
static size_t physicalNodesCount();

}

5.3.4 NUMA-aware Task-Parallelism

Even though a plethora of very mature parallel tasking libraries are readily available, they
are too complex to prototypically incorporate the notion of MemSources and the partitions
of the global address space they represent. To investigate the developer experience as
well as the performance impact of a parallel tasking mechanism that respects the locality
aspects of a partitioned global address space, PGASUS provides a simple parallel tasking
infrastructure. As demonstrated in|Listing 5.6 the tasking interface proposed for PGASUS
follows the general concepts of the interfaces for threading and asynchronous calls in
C++11 and onwards. Task functions are defined as a std::function<T>, where T is
the return value type which may also be void. For the specification of a task, a priority
level as well as a target node can be specified that the task should be bound
to. In addition to using named functions to define tasks functions, lambda expressions
introduced with C++11 may be used to define anonymous task functions. Spawning a
task returns a Future object that can be used to wait for the task to finish or to obtain
the result value. These simpel but versatile tasking facilities enable developers to easily
co-locate tasks and data by specifying a target node a task will be bound to, which is
typically the home node of a MemSource the task should operate on. If no target node is
specified, the task is executed on an arbitrary node when no tasks bound to that specific
node are available.

Listing 5.6: Spawning tasks using C++ lambdas yields a future object that can be used to wait for the
completion of the task. This behavior enables asynchronous and synchronous task parallelism.

auto task = numa::async(targetNode, []() {
std::cout << "Executed on node "
<< Node::current() << std:endl;

return 42;
}
// do something else in the meantime ...
auto result = task.wait(); // result = 42

5.3.5 NUMA-aware Hash Table

To investigate the potential of implementing [NUMA}aware drop-in replacement of com-
mon data-structures based on PGASUS, a[NUMAlaware Hash Table is provided as a part
of the PGASUS framework. The custom Hash Table was implemented using PGASUS
and allows an arbitrary amount of concurrent insert, update, read and delete operations.

89

"

N

w

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

Developers only have make sure that they only perform delete operations on objects that
are not currently read, modified or iterated upon.

The Hash Table is divided into 2N buckets, each of which is resides on a specific
node and is responsible for a part of the index space. The last N bits of a keys hash value
are used to identify the bucket responsible for storing that key. Each bucket is furthermore
subdivided into 2M bins. Bins are linked lists that store an arbitrary, but usually a very
small amount of key-value pairs.

Synchronization is applied at a very fine-grained level via Reader-Writer locks. Bin
entries are reference-counted to relax synchronization constraints. The Hash Table fea-
tures a number of hierarchical iterators, allowing the iteration space to be divided into
sub-iterations for each node. Automatic parallel iteration over the data-structure is imple-
mented by collecting all bucket iterators for each node. Each worker thread then iterates
over iterators from that node. Whenever there are iterators left for remote nodes after all
local iterators have been processed, workers start stealing from this remote work pool.

5.4 Developer Experience

A central aspect of this chapter is to demonstrate the developer experience of the PGA-
SUS framework. Therefore, this section introduces three carefully selected workloads
that are used to demonstrate the capabilities and limitations of the framework: A Text
Histogram application and a Data Compression workload are employed as embarrassingly
data parallel workloads using a fine-grained and a coarse-grained task granularity, re-
spectively. Furthermore, a Datatabase Table Scan workload is used to represent a more
challenging, irregular workload. For the Text Histogram and Data Compression workloads,
three implementations are compared against each other: an implementation entirely based
on PGASUS, a[NUMAlagnostic implementation based on the interface, and a
[NUMA}aware implementation that combines the mature task parallel computing capa-
bilities of with the data placement capabilities of PGASUS. The Database Table
Scan workload is presented to compare a C-based implementation based on pthreads and
libnuma with a C++-based implementation based on PGASUS.

5.4.1 Text Histogram

Using the massive corpus of public domain text books provided by Project Gutenberg [166],
an embarrassingly parallel text histogram workload is used as a stress test for the PGASUS
tasking component for fine-grained tasks. Counting the occurrence of each word, text
histograms are computed on a per-book granularity, with each book representing in the
order of hundreds of kilobytes of data that needs to be processed. As each book is stored
in an individual text file, the proposed interface for each text file is outlined in

Listing 5.7: For the Text Histogram workload, each book of the Project Gutenberg[166] corpus is
represented using a TextFile object.

class TextFile {
std::string fileName;
std::string fileContent;

90

5.4 Developer Experience

4 std::map<std::string, int> wordHistorgram; // occurrences of each word

6 void computeHistogram();

7 };

To compare the implementation effort for the simplistic parallelization strategy of the

Text Histogram workload, a[NUMAlagnostic [OpenMP}based implementation, a[NUMA}
aware [OpenMP}based implementation, and a PGASUS implementation are explicated
hereinafter. The[NUMA}agnostic implementation presented in serves
as a baseline that the [NUMA}aware implementations can be compared to.

Listing 5.8: based implementation of the loadFiles and computeHistograms methods of
the Text Histogram workload.

1 void loadFilesOMP(const std::vector<std::string> &fileNames) {
2 #pragma omp parallel for

3 for (size_t i = 0; i < fileNames.size(); i++) {

4 auto f = std::unique_ptr<TextFile>(new TextFile(fileNames[i]));
5

6 #pragma omp critical(fileaccess)

7 files[fileNames[i]] = std::move(f);

s}

9 1

1 void computeHistogramsOMP(const std::vector<TextFilex> &files) {
12 #pragma omp parallel for

13 for (size_t i = 0; i < files.size(); ++i) {

14 files[i]->computeHistogram();

5}

6 }

During the initialization phase of the Text Histogram workload, the books of the Project
Gutenberg corpus are loaded into main memory. All[NUMA}aware implementations em-
ploy a simple round robin scheme to evenly distribute the resulting TextFile objects
across nodes. The first NUMA}aware implementation outlined in
combines the mature parallel tasking facilities of with the data placement capa-
bilities of PGASUS. In the loadFiles method, PGASUS is used to bind the nodeStorage
elements to the respective nodes. The PGASUS topology interface is used extensively
both in the loadFiles method as well as the computeHistograms method to avoid the
complexity of performing topology discovery manually. Assuming the places policy being
set to sockets upon launch, the[NUMA}aware [OpenMP}based implementation relies on
two nested parallel statements in the computeHistograms method, with the outer state-
ment scheduling one master thread per node. On the level of the nested parallel
for statement, the location of each nodes master thread is inherited for the proc_bind
statement in order to schedule threads for all logical cores on the current node.

Listing 5.9: NUMAlaware [OpenMP}based implementation of the loadFiles and computeHis-
tograms methods of the Text Histogram workload.

1 void loadFilesPGASOMP (const std::vector<std::string> &fileNames) {
2 const auto& numaNodes = numa::NodelList::logicalNodesWithCPUs();
3 const size_t totalCPUCount = std::accumulate(...)

91

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

5 std::vector<std::vector<std::string>> perNodeFileNames(numaNodes.size());

7 // Distribute files/jobs to NUMA nodes according to local number of CPU cores
8 const float distFactor = float(fileNames.size()) / totalCPUCount;

9 size_t nextFileName = Qu;

10 for (size_t node = 0; node < numaNodes.size(); ++node) {

11 const size_t localCount = std::ceil(numaNodes[node].cpuCount() * distFactor);

12 for (size_t 1 = 0; 1 < localCount && nextFileName < fileNames.size(); ++1,
++nextFileName) {

13 perNodeFileNames[node] .push_back(fileNames[nextFileName]);

14 }

5}

17 nodeStorages.resize(numa: :NodelList::logicalNodesCount());

19 #pragma omp parallel proc_bind(spread) num_threads(numaNodes.size())

20 {

21 const auto node = numa::Node::curr();

2 const numa::PlaceGuard placeGuard{ node };

23 const auto nodeId = node.logicalld();

2 nodeStorages[nodeId] = std::unique_ptr<NodeStorage>(new NodeStorage);
25 NodeStorage &nodeStorage = xnodeStorages[nodeld];

26 const auto& localFileNames = perNodeFileNames[nodeId];

27

28 #pragma omp parallel for proc_bind(master) num_threads(node.threadCount())
29 for (size_t i = 0; i < localFileNames.size(); ++i) {

30 const std::string& fileName = localFileNames[i];

31 auto f = std::unique_ptr<TextFile>(new TextFile(fileName));

32 auto fPtr = f.get();

33 #pragma omp critical(fileaccess)

34 {

35 nodeStorage. files.push_back(std::move(f));

36 nodeStorage. filesMap.emplace(fileName, fPtr);

37 }

38 }

39 }

o}

41
4 void computeHistogramsPGASOMP() {

3 omp_set_nested(1);

44 const auto& numaNodes = numa::NodelList::logicalNodesWithCPUs();

45 #pragma omp parallel proc_bind(spread) num_threads(numaNodes.size())

46 {

47 const auto node = numa::Node::curr();

48 std::vector<const TextFilex> &localFiles

49 = nodeStorages[node.logicalld()]->files;

50 #pragma omp parallel for proc_bind(master) num_threads(node.threadCount())
51 for (size_t i = 0; i < localFiles.size(); ++i) {

52 localFiles[i]->computeHistogram();

53 }

54 }

55 }

92

-

[- T R S)

21

22

23

24

5.4 Developer Experience

The PGASUS-based implementation exemplified in uses the aware
hash table introduced in to keep the TextFile objects balanced across all
nodes in the loadFiles method. By leveraging the NUMA}aware hash table implemen-
tation provided by PGASUS, a simple lambda expression in the computeHistograms
method is sufficient to define tasks which are scheduled for execution on the
node on which the respective TextFile object resides. In terms of code complexity,
awareness based on PGASUS can be achieved with minimal effort, whereas the
nested parallel statements of the [NUMA}aware [OpenMP}based implementation are more

complex.

Listing 5.10: PGASUS-based parallelization of the text histogram workload.

numa: :HashTable<std::string, std::unique_ptr<TextFile>, 6> files;

virtual void loadFilesPGASUS(const std::vector<std::string> &fileNames) {
std::list<TriggerableRef> waitList;

for (const std::string &file : fileNames) {
waitList.push_back(files.insertAsync(file, [file]() {
return std::unique_ptr<TextFile>(new TextFile(file));
)
}

numa: :wait(waitList);

}

void computeHistogramsPGASUS (const std::vector<TextFilex> &files) {
std::list<TriggerableRef> waitList;

for (const TextFilex : files) {
waitList.push_back(numa::async<void>([this,file]() {
files[file]->wordHistogram();
}, 0, files.where(file).getNode()));
}

numa: :wait(waitList);

}

5.4.2 Data Compression

To complement the fine-grained quality of the Text Histogram workload, a Data Compression
workload is used to provide a coarse-grained task profile. The first 10° bytes from the
2006-03-03 Wikipedia dump (enwikg)[121] are compressed and decompressed using the
842 compression algorithm [54]]. Also belonging to the category of embarrassingly data
parallel problems, the Data Compression workload employs a coarse-grained task profile
with each task compressing or decompressing tens of megabytes of raw data using the

highly optimized /ib842 library presented in
To compare the implementation effort of the parallelized Data Compression workload, a

INUMA}agnostic based implementation, a[NUMA}aware based imple-
mentation, and a PGASUS implementation are discussed hereinafter. The[NUMA}agnostic

based implementation of the chunk-wise compression routine of the lib842 li-

93

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

brary outlined in [Listing 5.11|serves as a baseline that the NUMAlaware implementations

can be compared to.

Listing 5.11:(OpenMPtbased parallelization of the Data Compression workload.

#pragma omp parallel for

> for (size_t chunkNum = 0; chunkNum < num_chunks; chunkNum++) {

const uint8_t *chunk_in = [dinput_buffer + (chunkNum * CHUNK_SIZE);
uint8_t *chunk_out = compressed_buffer + (chunkNum * CHUNK_SIZE * 2);

"

w

-~

compress (chunk_in, CHUNK_SIZE, chunk_out, ...);
7}

o

During the initialization phase of the Data Compression workload, the enwikg data set is
loaded into main memory. Instead of loading the file into a single buffer, all NUMAlaware
implementations split up the file contents into sub-buffers bound to each node.
The[NUMA}aware[OpenMP}based implementation outlined in again combines
the mature parallel tasking facilities of with the data placement capabilities of
PGASUS to bind the sub-buffers residing in input_buffers and compressed_buffers to
the respective[NUMA|nodes. The PGASUS topology interface is used in the[NUMA}aware
[OpenMP}based implementation to avoid the complexity of performing topology discovery
manually. Like the Text Histogram workloads, the places policy has to be set to sockets
upon launch. This policy is used to schedule one master thread per node in the
outer parallel section. Each nodes master thread then executes a nested parallel for section
where the location of each nodes master thread is inherited for the proc_bind statement
in order to schedule threads for all logical cores on the current node. To make sure that
each thread operates on the correct sub-buffers and the respective chunks therein, the

NUMA}aware OpenMP}based implementation has to compute the identifiers nodeId and
localThreadId for each thread.

Listing 5.12:|NUMA|-aware |OpenMP|-based parallelization of the Data Compression workload.

1 omp_set_nested(1l);

> const auto& numaNodes = numa::NodelList::logicalNodesWithCPUs();

3

4+ #pragma omp parallel proc_bind(spread) num_threads(numaNodes.size())

5 {

6 #pragma omp parallel proc_bind(master) num_threads(currentNode.threadCount())

7

8 size_t nodeId = numa::Node::curr().logicalld();

9 size_t localThreadId = omp_get_thread_num();

10 size_t chunkStart = localThreadId * chunks_per_cpu;

11 size_t chunkEnd = chunkStart + chunks_per_cpu - 1;

13 for(size_t chunkNum = chunkStart; chunkNum <= chunkEnd; chunkNum++) {

14 // buffers are divided into local partitions per node

15 const uint8_t *chunk_in = dinput_buffers[nodeId] + (chunkNum * CHUNK_SIZE);

16 uint8_t *chunk_out = compressed_buffers[nodeId] + (chunkNum * (CHUNK_SIZE x*
2));

17 -

18 compress(chunk_in, CHUNK_SIZE, chunk_out, compressed_chunk_size);

19 }

94

20

22

-

5.4 Developer Experience

}

Similar to the NUMA}aware based implementation, the PGASUS-based im-
plementation of the Data Compression workload outlined in requires some
additional effort to compute the identifiers nodeId and localThreadId each task is op-
erating on. This additional degree of complexity is necessary in order to make sure
that each thread operates on the correct sub-buffer elements of input_buffers and com-
pressed_buffers and the respective chunks therein. Even though these operations re-
quire additional complexity compared to a[NUMA}agnostic[(OpenMP}based implementa-

tion, they are basic boilerplate operations that can be easily transferred to other workloads.
In direct comparison with the NUMAlaware [OpenMP}based implementation, PGASUS
obviates the need for the tedious setup of the nested parallel sections. Considering that
a manageable amount of boilerplate code is sufficient to facilitate awareness, the
slightly increased code complexity should be acceptable. Incorporating the prototypical
nature of PGASUS, future iterations of the framework may further alleviate the use of the
framework by providing thread and node indices through built-in helper functions.

Listing 5.13: PGASUS-based parallelization of the Data Compression workload.

std::atomic<size_t> threadIds[numa::NodeList::logicalNodesCount()] = {};

numa: :wait(numa::forEachThread(numa: :NodeList::logicalNodesWithCPUs(), [&](){
size_t nodeId = numa::Node::curr().logicalld();
size_t localThreadId = threadIds[nodeId].fetch_add(1);
size_t chunkStart = localThreadId * chunks_per_cpu;
size_t chunkEnd = chunkStart + chunks_per_cpu - 1;

for (size_t chunkNum = chunkStart; chunkNum < chunkEnd; chunkNum++) {
// buffers are divided into local partitions per node
const uint8_t *chunk_in = 1dinput_buffers[nodeId] + (chunkNum * CHUNK_SIZE);
uint8_t *chunk_out = compressed_buffers[nodeId] + (chunkNum * CHUNK_SIZE x 2)

)

compress (chunk_in, CHUNK_SIZE, chunk_out, ...);
}
3, 0))5

5.4.3 Database Table Scan

The PRESLEY benchmark by Felix Eberhardt and Andreas Grapentin [2] implements a
Database Table Scan workload optionally using an index structure to test the impact of
different types of indices on the throughput characteristics of a given workload. Currently
implemented are the B-Plus Tree [1] index which is commonly found in conventional
relational databases, as well as the Group Key index used in emerging in-memory database
systems [47]. The original implementation of the PRESLEY benchmark utilizes pthreads
for parallel execution and libnuma for data placement, whereas a new version of the
benchmark was implemented in the context of a joint plublication [152] to investigate the
developer experience of PGASUS, using the framework for both parallel execution and

95

11

12

13

14

15

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

data placement. In a setup phase, PRESLEY creates a main data table of configurable size
and uses either libnuma or PGASUS to place the data on a configurable primary
node. The data is then shuffled using the fisher-yates algorithm [j52] to ensure randomness
of the data accesses in order to maximize the rate of cache misses. For the configurations
relevant in the context of this work, the data is then indexed using one of the implemented
index types. The index is either placed on the primary node or is replicated across all
nodes in the system. After the setup phase, the benchmark performs lookups on
the data table either by accessing the non-replicated or the replicated index in parallel on
all avaialable in the system.

The version of the benchmark implemented using pthreads and libnuma outlined in
contains topology detection functionality to determine how many
nodes and cores are available in the system to place the threads and data accordingly.
Both the functionality of pthreads and libnuma is used to assign affinities to threads and
to bind memory allocations on the desired NUMA|nodes in order to implement the data
placement and index replication. This manual approach proved to be more difficult to
implement correctly and has several other drawbacks compared to the implementation of
the benchmark based on the PGASUS framework as well.

Listing 5.14: Sequential generation of replicated index data acrossNUMA|nodes based on libnuma.

for (size_t i = 0; i < topology.nodes.n; ++i) {
// wrapper to numa_membind_to_node
topology_membind_to_node(topology.nodes.nodes[i].num);

// explicitly allocate on correct node to avoid reusing existing heap pages
struct index_t *index =

numa_alloc_onnode(sizeof (*index), topology.nodes.nodes[i].num);
memset (index, 0, sizeof(xindex));

populate_data_index(index);
data_index[topology.nodes.nodes[i].num] = [index;

}

// wrapper to numa_membind_to_node
topology_release_membind();

In the PGASUS-based version of the benchmark demonstrated in topology
information is already provided by the PGASUS framework and the manual topology
detection is no longer needed. The PGASUS tasking functionality is used to execute the
enclosed lambda function once on each node. PGASUS partitions the heap into
separately managed spaces per node, thus operating on an allocation granularity
as opposed to the page granularity implemented by libnuma. This means that using the
PlaceGuard construct, the application has fine control over the allocations of third party
code without modifications, while also avoiding the internal fragmentation or false sharing
problems outlined in The PlaceGuard construct ensures that all allocations
in the current scope are placed on correct node. Since the PlaceGuard construct
loses its effect when it goes out of scope, there is no need to manually undo the memory
binding as it is the case in the pthreads and libnuma implementation. After making the

96

-

o w s W

5.5 Performance Evaluation

placement decision using the PlaceGuard construct, the remainder of the code uses regular
calls to malloc and the new operator to setup the data-structures.

Listing 5.15: Parallel generation of replicated index data across[NUMA|nodes based on the PlaceGuard
and tasking functionality of PGASUS.

numa: :wait(numa::onceForEachNode(numa: :NodelList::logicalNodesWithCPUs(), [&]() {
numa: :PlaceGuard mguard(numa::Node::curr(););

struct index_t *index = new struct -index_t;
memset (index, 0, sizeof(xindex));

populate_data_index(index);
data_index[current.logicalId()] = index;

return 0;

3, 0))5

5.4.4 Summary

Across the various workloads demonstrated in the preceding section, the PGASUS-based
implementations were always less complex compared to the NUMAlaware implemen-
tations based on or the pthreads library. With the programming abstractions
provided by PGASUS reducing the complexity of NUMA}aware application development,
the framework accomplishes its goal of unburdening developers. In terms of simplicity of
code, only the NUMAl}agnostic implementations can surpass the PGASUS-based imple-
mentations at the cost of completely ignoring the heterogeneity of the memory resources

in NUMA| systems.

5.5 Performance Evaluation

The goal of the evaluation presented in this section is investigate the performance impact
of the PGASUS framework using the workloads discussed in To achieve this
goal specifies all relevant details of the testing environment and the basic
benchmark procedures to make the evaluation more repeatable. As the performance of
memory allocations can have a big impact on the overall performance of workloads, a
synthetic benchmark is presented in which compares the memory allocation
performance of the stacked malloc allocator provided by PGASUS to ptmalloc3, jemalloc,
and TCMalloc. The performance measurements yielded for the workloads discussed in

are presented in|Section 5.5.3} Finally, [Section 5.5.5/summarizes central findings

of the evaluation.

5.5.1 Testing Environment & Benchmark Procedure

All hardware configurations used for the evaluation of PGASUS are documented in
The set of employed machines covers the range from common two socket configu-
rations up to high-end eight socket configurations. To analyze the behavior of different

97

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

processor designs and [Instruction Set Architectures (ISAs)| under different workloads,
configurations using x86_64-based AMD EPYC and Intel Xeon and ppc64le-based
IBM POWERS are included.

Table 5.1: Specifications of the test systems used to evaluate the performance impact of PGASUS.

Tyan S824L
Model Tyan TN83-B8251 [130] IBM Power System S824L [81]
CPU 2x AMD EPYC 7282, 2xIBM POWERS (Murano),
2.80 GHz, 16C 3.42 GHz, 10C /80T each
Memory 256 GB DDR4 ECC, 3200 MHz 1024 GB DDR3 ECC, 1600 MHz
oS Ubuntu 18.04.5 Ubuntu 20.04.1
Kernel 5.4.0 5.4.0
Compiler GCC 7.5.0 GCC 10.2.1 (AT 14.0)
DLs60 E880
Model HPE ProLiant DL56o Genio [74] IBM Power System E88o [82]
CPU 4xIntel Xeon Gold 6148, 8xIBM POWERS SCM (Turismo),
2.40 GHz, 20C each 4.00GHz, 12C each
Memory 1536 GB DDR4 ECC, 2666 MHz 6144 GB DDR3 ECC, 3200 MHz
oS Ubuntu 18.04.5 Ubuntu 18.04.4
Kernel 4.15.0 5.3.0
Compiler GCC 7.5.0 GCC 10.2.1 (AT 14.0)

All performance measurements presented hereinafter were performed after a fresh
reboot in order to ensure a clean system state. Furthermore, no other active users or
background tasks were running on the involved servers. In order to retrieve a sufficiently
meaningful dataset, each benchmark was executed 30 times. Error bars are used in all
plots to report the standard deviation for each measurement. As an additional measure,
simultaneous multithreading was disabled on all systems to reduce the variance of the
measurements. Furthermore, each benchmark was preceded by a warm-up run in order
to eliminate any confounding factors.

5.5.2 Memory Allocation Performance

In this section, a synthetic benchmark is used to investigate the performance of the stacked
malloc allocator provided by PGASUS. The performance of stacked malloc is compared
to ptmalloc3, jemalloc, as well as TCMalloc. The ptmalloc3 allocator is used by PGASUS
internally to serve small allocations from the arenas. Therefore, ptmalloc3 serves as measure
for the overhead introduced by PGASUS itself. Finally, jemalloc and TCMalloc are included
as state-of- the-art high-concurrency memory allocators that are currently used by major
software companies.

Measuring the exact time spent in a single malloc or free call is generally not possible,
as the measurement would introduce too much overhead compared to the duration of the

98

"

N

[- T T S V)

~

5.5 Performance Evaluation

call itself. Therefore, the duration of a large number of malloc/free cycles is measured
as demonstrated in on the IBM Power System S824L [81].

Listing 5.16: Conceptual code of the malloc/free benchmark. The volatile pointer variable prevents
the compiler from optimizing out the inner loop.

for (size_t size = 512; size <= 1024x1024%1024; size x= 2) {
const auto start = std::chrono::high_resolution_clock::now();
for (size_t i = 0; i < repetitions; ++i) {
volatile ptr = malloc();
free(ptr);
}

const auto end = std::chrono::high_resolution_clock: :now();
timings[size] = duration(start, end) / repetitions;

Due to the repeated, equally sized allocations directly followed by deallocations, the
benchmarking setup advantages caching allocators. Such allocators will serve most alloca-
tions with reused memory blocks, without requiring an actual system memory allocation.
This setup seemed reasonable, as most real-work applications generate characteristic mem-
ory access patterns on limited ranges of block sizes [36]. Therefore, it is safe to assume
that a well designed caching memory allocator will cover access patterns of realistic
applications in most cases.

Furthermore, this benchmark does not access allocated memory. Thus, as far as not
accessed by the allocator itself, memory pages are only virtually, but not physically
allocated. This, however, is not true for PGASUS, which uses libnuma to bind every
allocated memory page to a specific node. In Linux, memory bindings and
policies are only applied once a page is physically allocated.

15—

14 O ptmalloc3 + + + + tt
13- + PGASUS
121 A jemalloc
1=
®m TCMalloc
10 N 000,00

0.5

L4

AANANAAA

o
N
1

AAAnADAA
0.3+

0id 3535853000 geuuEN
Ly ey T T T

28 210 215 220 225 230
Allocation Size [Bytes]

Duration of Malloc/Free Cycle [us]
o
o
1

o
o
1

Figure 5.2: Duration of a single malloc/free cycle. Measurements were performed for data quanti-
ties matching multiples of two, ranging from 512 bytes up to 1 GiB.

An overview of the timings retreived for all allocators is presented in At

the border between small and large allocations, the duration of a malloc/free cycle of
ptmalloc3, and PGASUS increase by 81x and 99 x, respectively. Compared to that, jemalloc

99

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

and TCMalloc have a substantially higher performance and much smaller variations across
different allocation sizes. At the border between small and large allocations, the duration
of a malloc/free cycle increases by 15x and 8x, respectively.

For small allocations, PGASUS relies on ptmalloc3 for serving allocations from its arenas.
As the performance pf PGASUS is widely similar to that of ptmalloc3 for small allocations,
it appears as if the overhead introduced by the stacked malloc allocator of PGASUS is
minimal. Regarding large allocations, PGASUS is the slowest allocator in comparison.
However, it should be noted that PGASUS handles large allocations itself in lists of
mmap-allocated chunks, so that the internally used ptmalloc3 is not involved at this point.
As mentioned before, each large allocation request in PGASUS also results in physical
allocation and a call to libnuma in order to bind the allocated pages to the requested
node. ptmalloc3 serves large allocations approximately 40% faster than PGASUS
jemalloc and TCMalloc implement caching even for large allocations. They use a central
page heap implemented based on red-black trees [43] and free lists [58], respectively.

5.5.3 Workload Benchmarks

The main goal of this section is to demonstrate that the use of PGASUS can yield per-
formance improvements across a wide range of workloads, including a Text Histogram
workload, a Data Compression workload, and a Database Table Scan use case. All workloads
benchmarked throughout this section are available in the implementations discussed
in The throughput measurements presented in this section are reported
as average values including standard deviation (n = 30). For a statistically meaningful
evaluation of the collected throughput data, t-tests are performed to assess statistical signif-
icance. To further verify that changes in throughput are caused by improved data locality,
the performance counters PM_DATA_FROM_LMEM (data cache loaded from local memory),
PM_DATA_FROM_RMEM (data cache loaded from remote memory), and PM_DATA_FROM_DMEM
(data cache loaded from distant memory) are recorded for 10 repeated executions of each
workload on the IBM Power System S824L [81]]. Based on this data, the ratio between
remote memory access and local memory access (RMA/LMA) is computed.

5.5.3.1 Text Histogram

The Text Histogram workload employs a very fine-grained task profile, as a task computes
the word frequency histograms for one of the 64192 books curated by Project Gutenberg
[166] by the end of 2020. Each book is stored in a dedicated .txt file, with an average
file size of 360833 bytes. The total data volume processed by this workload amounts to
21.57 GiB. All three implementations discussed in [Section 5.4.1]are used for the evaluation.

As illustrated in PGASUS achieves between 1.09x and 4.7x performance
improvements for the fine-grained per-file task profile compared to the OMP base-
line implementation. With performance improvements between 0.2x and 5.9x, the
[OpenMPlibnuma implementation yields mixed results, surpassing the performance im-
provements of PGASUS on x86_64-based systems and providing similar or worse perfor-
mance POWERS-based systems. For each hardware configuration, a t-test has confirmed
statistically significant (p < 0.000001) performance impact of the respective implementa-
tions compared to the OMP baseline. RMA/LMA ratios of 0.164, 0.024, and 0.005 were

100

5.5 Performance Evaluation

100007y OpenmP

Bl OpenMP-+libnuma

7900w PGASUS

5000

2500

Throughput [Million Words/s]

0=

Tyan S824L DL560 E880

Figure 5.3: The throughput measurements (higher is better) yielded by the Text Historgram workload
exhibit increased throughput using PGASUS compared to the [OpenMP|baseline across all hard-
ware configurations. However, the superior performance of the[OpenMP}+libnuma implementation
demonstrates what speed-up might be possible if the simple tasking facilities of PGASUS handled
the fine-grained task profile more efficiently.

determined for the |OpenMP| the |OpenMPplibnuma, and the PGASUS implementations,
respectively, confirming considerably improved locality for the[NUMA}aware implementa-
tions. Additional performance profiling sessions have revealed that the simplistic
aware parallel tasking component of PGASUS is overwhelmed by the very fine-grained
task profile of the text histogram workload. Furthermore, the huge drop of performance
of the [OpenMP}+libnuma implementation on the IBM Power System E880 is caused by an
excessive amount of time spent in the implementation 1ibgomp.so. However,
the reason for this behavior could not be identified.

5.5.3.2 Data Compression

Unlike the preceding workload, the Data Compression workload exhibits a much more
coarse-grained task profile. Each task processes multiple megabytes of data (1GB /
number of CPU cores), performing complex operations. The measurements are performed
using the large text compression benchmark [121] as a payload, which is comprised of the
first 10° bytes from the 2006-03-03 Wikipedia dump. All three implementations discussed
in are used for the evaluation. Separate measurements are performed for the
compression operation and the decompression operation.

The benchmark results documented in demonstrate that PGASUS provides
performance improvements across all hardware configurations. For the compression oper-
ation, the PGASUS-based implementation achieves performance improvements between
1.08x and 1.75x. On the side of the decompression operation, the framework yields
between 1.02x and 1.54x performance improvements compared to the baseline imple-
mentation. The [OpenMP}libnuma implementation yields improvements in compression
throughput ranging between 0.33x and 1.18x. Surprisingly, the same implementation
results in consistent slowdowns for the decompression operation, delivering throughput
ranging between 0.27x and 0.935x of the OMP baseline performance. While additional
profiling sessions have not identified the source of the consistent slowdown in decompres-
sion performance, the huge drop of performance of the [OpenMP}t+libnuma implementation
on the IBM Power System E880 could be traced back to an excessive amount of time spent

101

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

(a) (b)

10000 =

n
a
o
o
o
]

) Hl OpenMP g Hl OpenMP
% 8000— HEE OpenMP-+libnuma =. 20000~ EE OpenMP+libnuma
5 Em PGASUS 3 Em PGASUS
£ 60004 <, 15000

[=2) =1

2]

£ 4000 £ 10000

= -

9 o

£ 2000- E 5000

S g

o 8 o

Tyan S824L DL560 E880 Tyan S§824L DL560 E880

Figure 5.4: The throughput measurements (higher is better) for compression and decompression are
reported in panels (a) and (b), respectively. For both operations, employing PGASUS provides
performance improvements across all hardware configurations, with the compression operation
experiencing slightly higher speed-up factors compared to the decompression operation. The
[OpenMPy+libnuma version also demonstrates performance improvements for the compression oper-
ation, although not as marked as the PGASUS implementation. Surprisingly, the[OpenMP}libnuma
implementation fails to exceed the baseline performance for decompression.

in the OpenMP|implementation 1ibgomp. so. For each hardware configuration, a t-test has
confirmed statistically significant (p < 0.000001) performance improvements of the PGA-
SUS-based implementation as well as the OpenMP}+libnuma implementation compared to
the OMP baseline. Finally, RMA/LMA ratios of 8.476, 2.680, and 2.771 were determined
for the OMP, the [OpenMP}+libnuma, and the PGASUS implementations, respectively, con-
firming considerably improved locality for the[NUMA}aware implementations.

5.5.3.3 Database Table Scan

The PRESLEY benchmark [2] implements a Database Table Scan workload looking for a
value in the primary key column of a database table. Scan-threads corresponding to the
number of logical cores in the employed machines are used, and the table has a single
column with 1,000,000, 000 unique integer values.

In the experiments, the throughput of the original implementation based on pthreads
and libnuma is compared to a PGASUS-based implementation. Furthermore, two different
configurations are compared for each implementation, with the first configuration per-
forming an index-based scan using a B+ tree residing on a single node and the
second configuration replicating the B+ tree across each node of the employed
system. The lookup of the search-values in the tree resembles a pointer-chasing-based
workload. This type of workload is latency-bound since every cacheline is only touched
briefly and another cacheline, possibly in a distant location is accessed next. Therefore,
varying memory latencies in a system are relevant.

Using both implementations discussed in[Section 5.4.3} the replicated configuration elim-
inates almost all remote memory access operations, yielding RMA/LMA ratios of 0.0041
and 0.0001 for the pthreads+libnuma and PGASUS implementations, respectively. In com-
parison, the non-replicated configuration yields RMA/LMA ratios of 12.6515 and 4.6707
for the pthreads+libnuma and PGASUS implementations, respectively. The low RMA/LMA
ratios of the replicated configurations are well reflected by the throughput measurements

102

5.5 Performance Evaluation

8
8x10 Bl pthreads+libnuma

EWE PGASUS
6x108=

4x108

2x108=

Throughput [Queries/5s]

Tyan S824L DL560 E880

Figure 5.5: The throughput measurements (higher is better) yielded by the PRESLEY benchmark
indicate improved performance across all hardware configurations when the B+ index is replicated
across all nodes. In all configurations, the PGASUS-based implementation outperforms
the pthreads+libnuma baseline implementation.

presented in yielding performance improvements between 1.293x and 3.23 x
for the replicated configurations in comparison to the non-replicated case. These improve-
ments come at the price of the increased memory footprint caused by the replicated index
copies. However, for irregular random access patterns this leads to a significant perfor-
mance improvement and could very well be viable in situation where memory is abundant.
Regarding the performance impact of the respective implementations, the PGASUS-based
implementation yields performance improvements ranging between 1.19x and 1.83x
compared to the pthreads+libnuma implementation. For each hardware configuration, a
t-test has confirmed statistically significant (p < 0.000001) performance improvements.

5.5.4 Energy Demand Analysis

Even though analyzing the energy-efficiency is not a central concern of this work, the
impact of NUMA}aware application development on the energy demand was briefly in-
vestigated using the Data Compression workload. The energy draw measurements for a
compression/decompression-cycle of the enwikg data set [121]] were performed using all
three implementations on the IBM Power System 5824L test system using two Microchip
MCP39F511N dual-channel power measurement devices [129] and the PINPOINT [104]
utility. Since these measurements cover the entire execution of the test application, the
compression and decompression cycle was repeated 30 times in the test application in
order to reduce the impact of setup, data transfers, and teardown on the overall energy
draw measurements. From these measurements, the idle power draw of the test system is
deducted in order to only report the share of energy demand caused by the compression
and decompression process itself. The results illustrated in demonstrate that
both NUMA}aware implementations provide considerably improved energy efficiency,
using less than half of the energy required by the OpenMP}based, NUMAlagnostic imple-
mentation of the Data Compression workload.

103

5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures

- -
o (6}
o o
1]

(63}
o
1

Energy consumed for
Compress/Decompress Cycle [J]

o
I

OpenMP OMP+libnuma PGASUS

Figure 5.6: For a compression/decompression-cycle of the enwikg test dataset, both NUMAfaware

implementations consume less than half of the energy required by the NUMA}agnostic
implementation.

5.5.5 Summary

The comprehensive evaluation conducted in this section has successfully demon-
strated that PGASUS offers performance improvements compared to the or
pthreads+libnuma baseline implementations across all evaluated workloads. For the fine-
grained task profile of the Text Histogram workload, the simplistic tasking facilities of
PGASUS are overstrained and cannot provide the same level of performance improve-
ments compared to the [OpenMP}+libnuma implementation on x86_64 based systems. In
additional profiling sessions, the busy waiting locks in the PGASUS task scheduler were
identified as a potential bottleneck. Therefore, it should be possible to improve the per-
formance of PGASUS for fine-grained task profiles with some additional optimization
work. Both for the Data Compression workload and the Database Table Scan workload, the
use of PGASUS yielded notable performance improvements compared to the or
pthreads+libnuma baseline implementations. With average performance improvements of
1.56x and peak performance improvements of up to 4.67 x, the evaluation demonstrated
that PGASUS does not only improve the developer experience across all workloads, but
that it also capable of outperforming the baseline implementations. Even though energy
measurements were only performed for the Data Compression workload, it can be assumed
that[NUMA}aware implementatons of the remaining workloads consume less energy as
well. In addition to the improved performance provided by the PGASUS framework, the
reduced energy demand provides one more reason to make data-intensive applications
NUMAlaware.

5.6 Summary

The PGASUS framework used in this chapter applies the concept of providing explicit
means for distinguishing between different memory partitions from the model
and makes it available to C++ application developers targeting shared memory systems
based on the idiom. Even though the PGASUS framework has been presented
in the master’s theses by Wieland Hagen [68] and Karsten Tausche [198]], both theses
have focused their evaluation efforts on micro-benchmarking aspects of the framework
itself. To fill this gap, this chapter contributed a comprehensive evaluation based on three

104

5.6 Summary

exemplary workloads. First, the improved developer experience offered by the framework
was demonstrated by comparing PGASUS-based implementations of all three workloads
to NUMA}agnostic as well as [NUMAlaware implementations based on or the
pthreads library. For the evaluation of performance aspects, test systems based on both the
x86_64 and ppcb4le and ranging from 2 to 8 socket configurations were employed.
On these systems, the evaluation demonstrated that PGASUS does not only improve the
developer experience across all workloads, but that it is also capable of outperforming
[NUMAlagnostic implementations with average performance improvements of 1.56 x and
peak performance improvements of up to 4.67x.

105

6 Discussion and Outlook

In this chapter, the achievements of this work are summarized, and the individual contri-
butions presented in this thesis are reviewed. The chapter reviews how the contributions
presented in this thesis address the problem statement formulated in This
chapter also discusses the limitations of the individual approaches and outlines ideas for
future research based on the contributions of this thesis.

6.1 Overview

This thesis contributes mitigations to the challenges formulated in by inves-
tigating programming abstractions for on-chip accelerators, off-chip accelerators, and
non-uniform memory resources. For each type of heterogeneous resource, one program-
ming abstraction mechanism is presented and evaluated. introduces the lib842
compression library. The library does not only make the resources of the NX-842 compres-
sion accelerator accessible from user space, but also introduces the first freely accessible
user-space implementations of software-based compression and decompression facilities
for [Central Processing Units (CPUs)| as well as [Graphics Processing Unit (GPU)based
decompression facilities. introduces the CloudCL framework with the goal of
hiding many aspects of distributed computing during the development of scale-out
workloads. To improve the scalability of the framework, the compression facilities of the
lib842 compression library are used to implement transparent compression for data trans-
fers. Targeting [Non-Uniform Memory Access (NUMA)|systems, [Chapter 5builds up on
top of the PGASUS framework for NUMA}aware C++ application development brought
forward by Wieland Hagen [68] and Karsten Tausche [198]. The chapter contributes a
comprehensive evaluation of the impact of the programming abstractions provided by
PGASUS on both developer experience and application performance.

6.2 Contributions and Future Research

In this section, the contributions presented in this thesis are reviewed and put in perspec-
tive with related abstraction mechanisms outlined in Furthermore, potential
starting points for future research efforts are identified, ranging from undertakings that
build up on top of the contributions presented in this work to aspects that have not been
investigated in the scope this work.

107

6 Discussion and Outlook

Lib842 Compression Library The [ib842 compression library presented in this thesis is the
first user-space approach for providing compression and decompression facilities based
on the proprietary 842 compression algorithm. Relying on a modified version of the
cryptodev-Tlinux out-of-tree kernel module, the implementation details for making the
high-throughput and low-latency compression and decompression facilities of NX-842
on-chip compression accelerators accessible to user-space applications through [ib842 are
discussed. To enable compressed data exchange across heterogeneous system resources,
the hardware-accelerated approach is complemented with the introduction of highly opti-
mized software-based compression and decompression routines for[CPUs|as well as
[Computing Language (OpenCL)tbased decompression facilities for arbitrary In
contrast to other approaches that only employ memory compression techniques on the
isolated scope of the memory resources attached to either a or a the 1ib842
compression library lays out the groundwork for exchanging data across heterogeneous
system resources in compressed form. Another distinctive feature of the employed 842 al-
gorithm is that it provides decent compression ratios across a wide range of workloads
(cf. and does not rely on characteristics of specific use cases [86), 93]

To further improve the interoperability of the lib842 library across heterogeneous system
resources, an obvious choice would be to extend the library with [GPU}based compression.
Furthermore, implementations for additional resource types such as|Field-Programmable]
[Gate Arrays (FPGAs)|should be included in future revisions of the library. Finally, assum-
ing future optimization efforts can manage to improve the compression and decompres-
sion throughput of accelerator-based implementations to levels comparable to the NX-842,
it might even be possible to improve the efficiency of intra-node data transfers based on
compression.

CloudCL Framework for Single-Paradigm Scale-Out GPU Computing The CloudCL frame-
work presented in this thesis joins together the dOpenCL [Application Programming Inter{
[face (API)|forwarding library [90] for[OpenCL]and the Aparapi framework [6] for executing
native Java code on By extending the underlying technologies with a job infras-
tructure including a job scheduler, as well as dynamic scaling capabilities for dynamically
available resources, the CloudCL framework hides several aspects of the distributed mem-
ory parallel programming model during the development of scale-out workloads.
These abstractions enable application developers to focus on the data parallel program-
ming model associated with yielding a single-paradigm development experience
which makes scale-out resources more accessible to a wider audience. With the
uniform developer experience enabled based on the job infrastructure and the support
for adding or removing cluster resources dynamically at runtime, the CloudCL framework
provides several distinguishing features compared to the use of plain API forwarding
approaches [90, 95, |7] that create the illusion of local resources.

To further foster this illusion of local resources, the dOpenCL library is augmented with
transparent on-the-fly data compression for data transfers based on the [ib§42 compres-
sion library in order to improve the efficiency of data transfers between the master node
and compute nodes. Using a highly pipelined approach to interleave all stages of the
workflow for transferring transparently compressed buffers from the master
node to a compute node or vice versa, it is possible to improve the effective throughput

108

6.2 Contributions and Future Research

across nodes. From a workload perspective, the improved data transfer efficiency pro-
vided by the integration of transparent compression yielded performance improvements
ranging between 1.11x and 2.07x across various data-intensive scale-out[GPU| workloads
implemented using either the CloudCL framework or the directly.

In its current form, the manual definition of independent workload partitions can be
considered as one of the biggest limitations of the CloudCL. Therefore, future revisions of
the framework shall investigate semi-automatic approaches such as the concept of meta-
functions employed by the DistCL library [38]. Finally, another limitation of dOpenCL and
therefore also the CloudCL framework is the lack of peer-to-peer communication among
compute nodes, making device-to-device data transfers prohibitively expensive. Therefore,
extending dOpenCL with support for peer-to-peer communication might open up CloudCL
for workloads that require inter-device communication.

PGASUS Framework for NUMA-aware data-placement in C++ To investigate the impact of
using non-uniform memory resources to its fullest potential, this thesis builds up on top of
the PGASUS framework which been originally presented in the master’s theses by Wieland
Hagen [68]] and Karsten Tausche [198]. The PGASUS framework applies the concept of
providing explicit means for distinguishing between different memory partitions from
the [Partitioned Global Address Space (PGAS) model (cf. and makes it
available to C++ application developers targeting shared memory systems based on the
[Resource Acquisition is Initialization (RAII)|idiom [194]. The major contribution of this
thesis to PGASUS is that it provides a comprehensive evaluation of the framework based
on three exemplary workloads. First, the improved developer experience offered by
the framework is demonstrated by comparing PGASUS-based implementations of all
three workloads to NUMA}agnostic as well as[NUMA}aware implementations based on
the [Open Multi-Processing (OpenMP)|[AP]| or the pthreads library. For the evaluation of
performance aspects, test systems based on both the x86_64 and ppc64le
[Architectures (ISAs)| and ranging from 2 to 8 socket configurations were employed. On
these systems, the results of the evaluation suggest that PGASUS does not only improve
the developer experience across all workloads, but that it is also capable of outperforming
[NUMAlagnostic implementations with average performance improvements of 1.56x and
peak performance improvements of up to 4.67x.

PGASUS provides a rewarding alternative to the approaches for enabling[NUMA}aware
memory placement discussed in Compared to implementing NUMA}aware
applications based on PGASUS provides significant improvements in terms of
developer experience, enabling them to specify data placement policies with distinctly
fewer lines of code. In contrast to polymorphic allocators 7o), PGASUS can transparently
influence memory placement of nested data structures without having to modify them
in order to make use of polymorphic allocators. Finally, PGASUS eliminates issues such
as unintended inter-page fragmentation and false sharing, which can easily occur when
operating system facilities such as libnuma [100] or AutoNUMA [34] are not used correctly.

In its current implementation, the simplistic tasking facilities of PGASUS leave room
for improvements. With further optimizations, the combination of NUMAlaware data
placement and task scheduling offers a lot of potential for NUMA}aware application
development. Even though PGASUS already provides certain advantages on today’s

109

6 Discussion and Outlook

INUMA| systems for coarse-grained task profiles, the author speculates that abstractions
for data placement such as PGASUS will become vital to deal with the increasing diversity
of memory resources in upcoming state-of-the-art computer architectures, as outlined in
Section 2.2]

6.3 Review of Research Question

This section reviews the research question of this thesis (cf. [Section 1.3), which seeks
for programming abstractions that improve the accessibility of heterogeneous system
resources for application developers. For this goal, two hypotheses are constructed:
First, it is assumed that a certain degree of the complexity conditioned by the large
variety of heterogeneous system resources considered in the context of this thesis can
be encapsulated using programming abstractions without obscuring performance-critical
system properties. Second, it is presumed that programming abstractions can help to
mitigate the performance penalty associated with data transfers across heterogeneous
system resources.

The implementations of the contributions presented in this thesis as well as their re-
spective evaluation results demonstrate that programming abstractions can be used to
make various heterogeneous system resources more accessible. For the NX-842 on-chip
compression accelerators, exposing their resources to user space through the means of a
software library makes them usable for applications in the first place. To test the hypoth-
esis for the CloudCL framework as well as the PGASUS framework, the showcase of the
developer experience of both frameworks demonstrates that they manage to reduce the
code complexity necessary to make use of scale-out resources and systems,
respectively.

Similarly, the contributions presented in this thesis show how programming abstrac-
tions can contribute to mitigating the performance penalty associated with data transfers.
With the tightly integrated on-chip connectivity of the NX-842 on-chip compression ac-
celerator, data transfers are hardly a bottleneck for this type of heterogeneous system
resource. However, the efficient use of the hardware-based compression facilities lays out
the groundwork for improving the efficiency of data transfers that cannot be avoided. As
such, the transparent integration of on-the-fly compression for inter-node data transfers
in CloudCL confirms that programming abstractions can help to improve the efficiency of
data transfers across heterogeneous system resources. Even more distinctive, the evalu-
ation of the PGASUS framework demonstrates that programming abstractions for data
placement can avoid unnecessary data transfers, delivering considerable performance
improvements.

In summary, the results of this thesis show that programming abstractions can indeed
be used to improve the accessibility of heterogeneous system resources for application
developers. However, to make efficient use of these abstractions, developers have to
provide a decent understanding of the underlying hardware characteristics.

110

7 Conclusion

Application developers bear a certain responsibility of leveraging the heterogeneous sys-
tem resources available in state-of-the-art computer architectures. The proper use of
heterogeneous resources does not only facilitate sustained performance improvements
over the years, but it is also vital to improve the energy-efficiency of workloads across all
application domains. Unfortunately, the heterogeneity of today’s state-of-the-art computer
architectures is confronting application developers with an immense degree of complexity
which can be ascribed to two major challenges. First, developers need to acquire profound
knowledge about the programming models or the interaction models associated with each
type of heterogeneous system resource to make efficient use thereof. Second, developers
must take into account that heterogeneous system resources always need to exchange data
with each other in order to work on a problem together. However, this data exchange
is always associated with a certain amount of overhead, which is why the amounts of
data exchanged should be kept as low as possible. To respond to these challenges, ap-
plication developers cannot and should not expect tools like their compilers to take over
the responsibility of making efficient use of heterogeneous system resources. However,
application developers should also not be overwhelmed with the immense complexities
that are implied by state-of-the-art computer architectures.

Standing on the shoulders of giants, this thesis has contributed to the state of the art
in heterogeneous computing by presenting programming abstractions that lessen these
burdens for three types of heterogeneous system resource. The [ib§42 compression library
provides the first method for accessing the compression and decompression facilities of
the NX-842 on-chip compression accelerator available in IBM Power from user
space applications running on Linux. Addressing application development of scale-out
workloads, the CloudCL framework makes the resources of clusters more
accessible by hiding many aspects of distributed computing while enabling application
developers to focus on the aspects of the data parallel programming model associated
with Furthermore, CloudCL is augmented with transparent data compression
facilities based on the [ib842 library in order to improve the efficiency of data transfers
among cluster nodes. The improved data transfer efficiency provided by the integration of
transparent data compression yields performance improvements ranging between 1.11x
and 2.07x across four data-intensive scale-out[GPU| workloads. To investigate the impact
of programming abstractions for data placement in systems, a comprehensive
evaluation of the PGASUS framework for NUMAlaware C++ application development is
conducted. On a wide range of test systems, the evaluation demonstrates that PGASUS
does not only improve the developer experience across all workloads, but that it is also
capable of outperforming [NUMA}agnostic implementations with average performance
improvements of 1.56x. For the contributed programming abstractions, this thesis has
demonstrated that they can indeed improve the accessibility of heterogeneous system
resources by reducing the code complexity in terms of lines of code necessary to make

111

7 Conclusion

use of the respective resources without obscuring performance-critical system properties.
Furthermore, the presented abstractions also help developers to reduce the amount of
data that has to be exchanged among heterogeneous system resources, improving both
the effective throughput and the energy efficiency of data transfers.

Fueled by the competition of coherent next-generation interconnection standards, the
performance of both inter-node and intra-node interconnection technologies is finally
catching up in upcoming computer architectures. In the light of the diversifying memory
resources enabled by these novel interconnection standards, programming abstractions
for data placement probably may have the brightest perspective for gaining traction. As
such, the characteristics of diversifying memory resources might be exploited with the
goal of improving energy efficiency based on memory placement decisions.

112

[1]

[2]

[10]

[11]

Bibliography

A minimal but extreme fast B+ tree indexing structure demo for billions of key-value
storage. https: //github.com/begeekmyfriend/bplustree. (accessed 2021-04-
01). 2015.

A minimal but extreme fast B+ tree indexing structure demo for billions of key-value
storage. https: //github . com/osmhpi/presleybench. (accessed 2022-05-02).
2020.

Bulent Abali, Bart Blaner, John J. Reilly, Matthias Klein, Ashutosh Mishra, Craig
B. Agricola, Bedri Sendir, Alper Buyuktosunoglu, Christian Jacobi, William J.
Starke, Haren Myneni, and Charlie Wang. “Data Compression Accelerator on
IBM POWERg9 and z15 Processors: Industrial Product”. In: 47th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2020, Valencia, Spain, May
30 - June 3, 2020. IEEE, 2020, pages 1-14. DOI: 10.1109/ISCA45697.2020.00012,

A. Agarwal, R. Simoni, J]. Hennessy, and M. Horowitz. “An Evaluation of Directory
Schemes for Cache Coherence”. In: Proceedings of the 15th Annual International Sym-
posium on Computer Architecture. ISCA ’88. Honolulu, Hawaii, USA: IEEE Computer
Society Press, 1988, pages 280—298. 1sBN: 0818608617.

J. Andrews and N. Baker. “Xbox 360 System Architecture”. In: [EEE Micro 26.2
(2006), pages 25-37. DOI:|10.1109/MM.2006.45.

Aparapi Repository. (Website).

A. Barak and A. Shiloh. The VirtualCL (VCL) Cluster Platform. White Paper. Rachel
and Selim Benin School of Computer Science, 2014.

Matthias Bastian. “Entwurf und Integration eines Frameworks zur Einhaltung
nutzerdefinierter Policies in OpenStack”. Master’s thesis. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, Jan. 2017. URL: |https://osm.
hpi.de/bookshelf/Details/457.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. “Legion: Express-
ing Locality and Independence with Logical Regions”. In: SC Conference on High
Performance Computing Networking, Storage and Analysis, SC '12. Edited by Jeffrey K.
Hollingsworth. Salt Lake City, UT, USA: IEEE/ACM, Nov. 2012, page 66. DOI:
10.1109/SC.2012.71.

Yannick Baumer. “Hardware Accelerated Lossless Compression using High-Level
Synthesis”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University
of Potsdam, Nov. 2019. URL: https://osm.hpi.de/bookshelf/Details/538,

Jossekin Beilharz. “Koordinierungssprachen — von NUMA-Knoten bis zu Cloud-
Verbiinden”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, Univer-
sity of Potsdam, Oct. 2016.

113

https://github.com/begeekmyfriend/bplustree
https://github.com/osmhpi/presleybench
https://doi.org/10.1109/ISCA45697.2020.00012
https://doi.org/10.1109/MM.2006.45
https://osm.hpi.de/bookshelf/Details/457
https://osm.hpi.de/bookshelf/Details/457
https://doi.org/10.1109/SC.2012.71
https://osm.hpi.de/bookshelf/Details/538

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

114

Jossekin Beilharz, Frank Feinbube, Felix Eberhardt Eberhardt, Max Plauth, and An-
dreas Polze. “Claud: Coordination, Locality And Universal Distribution”. In: Pro-
ceedings of the Parallel Computing Conference 2015 (PARCO). Sept. 2015, pages 605—
614. DOI:|10.3233/978-1-61499-621-7-605,

Tal Ben-Nun, Ely Levy, Amnon Barak, and Eri Rubin. “Memory Access Patterns:
The Missing Piece of the Multi-GPU Puzzle”. In: SC "15: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis.
2015, pages 1-12.

Lawrence Benson, Fabian Paul, Christian Werling, and Fabian Windheuser. “Real-
time Power Monitoring for Heterogenous Data Centers”. Master’s Project Report.
Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, Mar. 2019.

Arijit Biswas. “Sapphire Rapids”. In: IEEE Hot Chips 33 Symposium (HCS). Palo Alto,
CA, USA: IEEE, Aug. 2021, pages 1—22. DOI:[10.1109/HCS52781.2021.9566865|

Filip Blagojevic, Paul Hargrove, Costin Iancu, and Katherine A. Yelick. “Hybrid
PGAS Runtime Support for Multicore Nodes”. In: Proceedings of the Fourth Confer-
ence on Partitioned Global Address Space Programming Model (PGAS) 2010. Edited by
José E. Moreira, Costin lancu, and Vijay A. Saraswat. New York, NY, USA: ACM,
Oct. 2010, page 3. DOI:|10.1145/2020373.2020376.

Bart Blaner, Biilent Abali, Brian M. Bass, Suresh Chari, Ronald N. Kalla, Steven R.
Kunkel, Kenneth Lauricella, Ross Leavens, John J. Reilly, and Peter A. Sandon.
“IBM POWER7+ Processor On-Chip Accelerators for Cryptography and Active
Memory Expansion”. In: IBM Journal of Research and Development 57.6 (2013). DOTI:
10.1147/JRD.2013.2280090.

Pawel Boning, Philipp Gampe, and Leonard Geier. “Power-Based Workload Clas-
sification”. Master’s Project Report. Potsdam, Germany: Hasso Plattner Institute,
University of Potsdam, Mar. 2021.

Yuval Borenstein. Choosing the Right Speed for Your Leaf-Spine Data Center Network.
(Website). 2020.

T. Brewer. “A highly scalable system utilizing up to 128 PA-RISC processors”. In:
Digest of Papers. COMPCON’95. Technologies for the Information Superhighway. 1995,
pages 133-140. DOT: [10.1169/CMPCON.1995.512376|

Francois Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacrenier,
and Raymond Namyst. “ForestGOMP: An Efficient OpenMP Environment for
NUMA Architectures”. In: International Journal of Parallel Programming 38.5-6 (2010),
pages 418—439. DOI:|10.1007/s10766-010-0136-3.

Joan Bruguera Micé. “Improved Data Transfer Efficiency for Scale-Out GPU Work-
loads using On-the-Fly I/O Link Compression”. Master’s thesis. Potsdam, Ger-
many: Hasso Plattner Institute, University of Potsdam, July 2020. URL: https:
//osm.hpi.de/bookshelf/Details/539.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. “Brook for GPUs: Stream Computing on Graphics
Hardware”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pages 777-786. ISSN: 0730-0301.
DOI:|10.1145/1015706.1015800.

https://doi.org/10.3233/978-1-61499-621-7-605
https://doi.org/10.1109/HCS52781.2021.9566865
https://doi.org/10.1145/2020373.2020376
https://doi.org/10.1147/JRD.2013.2280090
https://doi.org/10.1109/CMPCON.1995.512376
https://doi.org/10.1007/s10766-010-0136-3
https://osm.hpi.de/bookshelf/Details/539
https://osm.hpi.de/bookshelf/Details/539
https://doi.org/10.1145/1015706.1015800

[24]

[25]

[26]
[27]

[28]
[29]

[30]

[31]

[32]

[33]
[34]

[35]
[36]

[37]

[38]

Bibliography

Alberto Cano. “A survey on graphic processing unit computing for large-scale
data mining”. In: WIREs Data Mining and Knowledge Discovery 8.1 (2018), e1232.
DOI:|10.1002/widm.1232.

Rick Cattell. “Scalable SQL and NoSQL data stores”. In: SIGMOD Record 39.4
(2011), pages 12—27. DOI:|10.1145/1978915.1978919.

Inc. Cavium. ThunderX Family of Workload Optimized Processors. (Product Brief).
2016.

Inc. CCIX™ Consotrium. An Introduction to CCIX' . White Paper. 2018.
Bradford L. Chamberlain. “A Brief Overview of Chapel”. In: Pre-Print (2013).

Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. “X10: an Object-
Oriented Approach to Non-Uniform Cluster Computing”. In: Proceedings of the
20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). Edited by Ralph E. Johnson and Richard P.
Gabriel. San Diego, CA, USA: ACM, Oct. 2005, pages 519-538. DOI: |10 . 1145/
1094811.1094852.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashin-
sky. “NVIDIA A1oo Tensor Core GPU: Performance and Innovation”. In: IEEE
Micro 41.2 (2021), pages 29-35. DOI:|10.1109/MM.2021.3061394.

Hewlett Packard Enterprise Company. HPE Demonstrates Worlds First Memory-
Driven Computing Architecture. https://www.hpe.com/us/en/newsroom/press-
release /2017 /03 /hewlett - packard-enterprise-demonstrates-worlds -~
first-memory-driven-computing-architecture.html. (Press Release). Nov.
2016.

James Connolly. “Honeywell rolls out Unix line with three 68ooo-based minis”. In:
Computerworld 20.39 (Sept. 1986), pages 10-10. ISSN: 0010-4841.

CXL"™ Consortium. Compute Express Link. White Paper. 2019.

Jonathan Corbet. AutoNUMA: the other approach to NUMA scheduling. (Website).
2012.

Data General Corporation. AViiON Enterprise Servers. 1997.

Diego Costa and Rivalino Matias Jr. “Characterization of Dynamic Memory Al-
locations in Real-World Applications: An Experimental Study”. In: 2015 IEEE
23rd International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. 2015, pages 93—101. DOI:|10.1109/MASCOTS.2015.28|

Zarka Cvetanovic. “Performance Analysis of the Alpha 21364-Based HP GS1280
Multiprocessor”. In: SIGARCH Comput. Archit. News 31.2 (May 2003), pages 218-
229. ISSN: 0163-5964. DOI:|10.1145/871656.859643,

Tahir Diop, Steven Gurfinkel, Jason Helge Anderson, and Natalie D. Enright Jerger.
“DistCL: A Framework for the Distributed Execution of OpenCL Kernels”. In: 2013
IEEE 215t International Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems. San Francisco, CA, USA: IEEE Computer Society,
Aug. 2013, pages 556—566. DOI:/10.1109/MASCOTS.2013.77.

115

https://doi.org/10.1002/widm.1232
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1109/MM.2021.3061394
https://www.hpe.com/us/en/newsroom/press-release/2017/03/hewlett-packard-enterprise-demonstrates-worlds-first-memory-driven-computing-architecture.html
https://www.hpe.com/us/en/newsroom/press-release/2017/03/hewlett-packard-enterprise-demonstrates-worlds-first-memory-driven-computing-architecture.html
https://www.hpe.com/us/en/newsroom/press-release/2017/03/hewlett-packard-enterprise-demonstrates-worlds-first-memory-driven-computing-architecture.html
https://doi.org/10.1109/MASCOTS.2015.28
https://doi.org/10.1145/871656.859643
https://doi.org/10.1109/MASCOTS.2013.77

Bibliography

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

116

Michael Doggett. “Xenos: XBox360 GPU”. In: (Nov. 2005). (accessed 2022-05-02).
Jake Edge. A Generic Hash Table. (Website). 2012.

Tarek A. El-Ghazawi and Lauren Smith. “UPC: Unified Parallel C”. In: Proceedings
of the ACM/IEEE S5C2006 Conference on High Performance Networking and Comput-
ing. Tampa, FL, USA: ACM Press, Nov. 2006, page 27. DOI: [10.1145/1188455|
1188483.

Nick England. “A Graphics System Architecture for Interactive Application-
Specific Display Functions”. In: IEEE Computer Graphics and Applications 6.1 (1986),
pages 60—70. DOI:/10.1109/MCG.1986.276612,

Jason Evans, Dave Watson, Qi Wang, and David Goldblatt. jermalloc memory allocator.
http://jemalloc.net. (accessed 2022-05-02).

John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo Lastra, Nick Eng-
land, and Lee Westover. “PixelFlow: The Realization”. In: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware. HWWS “97. Los An-
geles, California, USA: Association for Computing Machinery, 1997, pages 57-68.
ISBN: 0897919610. DOI:|10.1145/258694.258714,

Kai Fabian. “Measuring and Interpreting NUMA Main Memory Latencies”. Mas-
ter’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
Sept. 2017. URL: |https://osm.hpi.de/bookshelf/Details/536.

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike
Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally,
and Pat Hanrahan. “Sequoia: Programming the Memory Hierarchy”. In: Proceed-
ings of the ACM/IEEE SC2006 Conference on High Performance Networking and Com-
puting. Tampa, FL, USA: ACM Press, Nov. 2006, page 83. DOI:|10.1145/1188455|
1188543\

Martin Faust, David Schwalb, Jens Krueger, and Hasso Plattner. “Fast Lookups
for In-Memory Column Stores: Group-Key Indices, Lookup and Maintenance.”
In: International Workshop on Accelerating Data Management Systems Using Modern
Processor and Storage Architectures (ADMS). Edited by Rajesh Bordawekar and Chris-
tian A Lang. Istanbul, Turkey, Aug. 2012, pages 13—22. URL: http://www.adms+
conf.org/faust%5C_adms12.pdf.

Frank Feinbube. “Ansitze zur Integration von Beschleunigern ins Betriebssystem”.
PhD thesis. University of Potsdam, Germany, 2018. URL: https://d-nb.1info/
1168437628

Frank Feinbube, Max Plauth, Christian Kieschnick, and Andreas Polze. “Evolving
Scheduling Strategies for Multi-Processor Real-Time Systems”. In: Proceedings of
the 11th Annual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications. July 2015, pages 57—-62. URL: https://www.mpi-sws.org/~bbb/
events/ospertl5/pdf/ospertl5-p57.pdf.

Frank Feinbube, Jan-Arne Sobania, Peter Tr"oger, and Andreas Polze. “Hybrid
Parallel Light-Weight Programming of Hybrid Systems”. In: Parallel and Cloud
Computing 1 (2 2012).

https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1109/MCG.1986.276612
http://jemalloc.net
https://doi.org/10.1145/258694.258714
https://osm.hpi.de/bookshelf/Details/536
https://doi.org/10.1145/1188455.1188543
https://doi.org/10.1145/1188455.1188543
http://www.adms-conf.org/faust%5C_adms12.pdf
http://www.adms-conf.org/faust%5C_adms12.pdf
https://d-nb.info/1168437628
https://d-nb.info/1168437628
https://www.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p57.pdf
https://www.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p57.pdf

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

Bibliography

Rosa Filgueira, Malcolm Atkinson, Alberto Nufiez, and Javier Ferndndez. “An
Adaptive, Scalable, and Portable Technique for Speeding Up MPI-Based Appli-
cations”. In: Euro-Par 2012 Parallel Processing. Edited by Christos Kaklamanis,
Theodore Papatheodorou, and Paul G. Spirakis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pages 729—740. ISBN: 978-3-642-32820-6.

Ronald Aylmer Fischer and Frank Yates. “Statistical Tables for Biological, Agricul-
tural, and Medical Research”. In: Oliver and Boyd, London, 1938.

The Wikimedia Foundation. Dump of Articles on the English Wikipedia from 2020-
03-01. https://ftp.acc.umu.se/mirror /wikimedia.org/dumps/enwiki/
20200301/, (Website). 2020.

Peter A. Franaszek, Luis A. Lastras-Montafio, Song Peng, and John T. Robin-
son. “Data Compression with Restricted Parsings”. In: Data Compression Conference
(DCC’06). IEEE, Mar. 2006, pages 203—212. DOI:|10.1109/DCC.2006.22.

Shunji Funasaka, Koji Nakano, and Yasuaki Ito. “Adaptive Loss-Less Data Com-
pression Method Optimized for GPU Decompression”. In: Concurrency and Com-
putation: Practice and Experience 29.24 (Dec. 2017), €4283. DOI:/10.1002/cpe.4283|

Edward Gehringer, Janne Abullarade, and Michael H. Gulyn. “A Survey of Com-
mercial Parallel Processors”. In: SIGARCH Comput. Archit. News 16.4 (Sept. 1988),
pages 75-107. ISSN: 0163-5964. DOI:|10.1145/54331.54338.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. “Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors”. In: SIGARCH Comput. Archit. News 18.251 (May
1990), pages 15—26. ISSN: 0163-5964. DOI:|10.1145/325096.325102.

Sanjay Ghemawat and Paul Menage. TCMalloc : Thread-Caching Malloc. |https :
//gperftools.github.io/gperftools/tcmalloc.html. (accessed 2022-05-02).

Wolfram Gloger. ptmalloc. http://www.malloc.de/en/. (accessed 2022-05-02).

Andreas Grapentin, Max Plauth, and Andreas Polze. “MemSpaces: Evaluating
the Tuple Space Paradigm in the Context of Memory-Centric Architectures”. In:
Proceedings of the Fifth International Symposium on Computing and Networking (CAN-
DAR). IEEE. Nov. 2017, pages 284-290. DOI:|10.1109/CANDAR.2017.55.

Chris Gregg and Kim M. Hazelwood. “Where is the Data? Why You Cannot Debate
CPU vs. GPU Performance Without the Answer”. In: IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2011, 10-12 April, 2011,
Austin, TX, USA. IEEE Computer Society, 2011, pages 134-144. DOI: 10.1109/
ISPASS.2011.5762730.

Erik Griese, Leon Matthes, and Maximilian Stiede. “Save Energy by Monitor-
ing Workload Memory Utilization”. Master’s Project Report. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, Mar. 2022.

Peripheral Component Interconnect Special Interest Group. PCI Express Base Speci-
fication Revision 1.0a. Apr. 2003.

Peripheral Component Interconnect Special Interest Group. PCI Express Base Speci-
fication Revision 2.0. Dec. 2007.

117

https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20200301/
https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20200301/
https://doi.org/10.1109/DCC.2006.22
https://doi.org/10.1002/cpe.4283
https://doi.org/10.1145/54331.54338
https://doi.org/10.1145/325096.325102
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
http://www.malloc.de/en/
https://doi.org/10.1109/CANDAR.2017.55
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1109/ISPASS.2011.5762730

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

118

Peripheral Component Interconnect Special Interest Group. PCI Express Base Speci-
fication Revision 3.0. Nov. 2010.

Peripheral Component Interconnect Special Interest Group. PCI Express Base Speci-
fication Revision 4.0. Oct. 2017.

Felix Grzelka. “On the Energy Consumption of Deep Learning Workloads”. Mas-
ter’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
Apr. 2021. URL: https://osm.hpi.de/bookshelf/Details/529.

Wieland Hagen. “A Programming Model for C++ Application Development on
Non-Uniform Memory Access Architectures”. Master’s thesis. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, Apr. 2016.

Wieland Hagen, Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas Polze.
“PGASUS: A Framework for C++ Application Development on NUMA architec-
tures”. In: Proceedings of the Fourth International Symposium on Computing and Net-
working (CANDAR). IEEE. Nov. 2016, pages 368—374. DOI:|10.1109/CANDAR.2016,
0071.

Pablo Halpern. “Polymorphic Memory Resources”. In: C++ Standards Committee
Working Group ISOCPP (2013).

J. Hennessy, M. Heinrich, and A. Gupta. “Cache-coherent Distributed Shared
Memory: Perspectives on its Development and Future Challenges”. In: Proceedings
of the IEEE 87.3 (1999), pages 418—429. DOI:|10.1109/5.747863.

Benedict Herzog, Timo Honig, Wolfgang Schroder-Preikschat, Max Plauth, Sven
Koéhler, and Andreas Polze. “Bridging the Gap: Energy-efficient Execution of Soft-
ware Workloads on Heterogeneous Hardware Components”. In: Proceedings of the
Tenth ACM International Conference on Future Energy Systems. June 2019, pages 428—
430. DOI:10.1145/3307772.3330176.

Hewlett Packard Enterprise. HPE ProLiant DL3go Geng Server QuickSpecs. |https :
//www . hpe.com/h20195/v2/GetDocument.aspx?docname=c04346247. (Website).
2019.

Hewlett Packard Enterprise. HPE ProLiant DL560 Genio Server QuickSpecs. |http
s://www.hpe.com/h20195/v2 /GetDocument . aspx ?docname=a00021850enw.
(Website). 2020.

Hewlett Packard Enterprise. HPE ProLiant my1op Server Cartridge QuickSpecs. ht
tps://www. hpe.com/h20195/v2 /GetDocument . aspx ? docname=c04760473.
(Website). 2016.

Hewlett Packard Enterprise. HPE Superdome Flex QuickSpecs. https://www.hpe!
com/h20195/v2/GetDocument.aspx?docname=a00026242enw. (Website). 2021.

Jens Hiller, Maél Kimmerlin, Max Plauth, Heikkild Seppo, Stefan Klauck, Ville
Lindfors, Felix Eberhardt, Dariusz Bursztynowski, Jesus Llorente Santos, Oliver
Hohlfeld, and Klaus Wehrle. “Giving Customers Control Over Their Data: Integrat-
ing a Policy Language into the Cloud”. In: 2018 IEEE International Conference on
Cloud Engineering (IC2E). 2018, pages 241-249. DOI:|10.1109/IC2E.2018.00050.

https://osm.hpi.de/bookshelf/Details/529
https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1109/5.747863
https://doi.org/10.1145/3307772.3330176
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04346247
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04346247
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=a00021850enw
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=a00021850enw
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04760473
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=c04760473
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=a00026242enw
https://www.hpe.com/h20195/v2/GetDocument.aspx?docname=a00026242enw
https://doi.org/10.1109/IC2E.2018.00050

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

Bibliography

H. Peter Hofstee. Distributed Memory on POWER 10. https://www.clsac.org/
uploads/5/0/6/3/50633811/clsac-2020-hofstee.pdf. (accessed 2022-05-02).
Oct. 2020.

Timo Honig and Andreas Polze. Memento: Energy-Efficient Memory Placement.
Project Proposal. 2021.

Intel. Intel Rack Scale Design Architecture. |https://www. intel.com/content/
dam /www / public /us /en/documents /white- papers/rack-scale-design-
architecture-white-paper.pdf. (White Paper). 2018.

International Business Machines Corporation. IBM Power System S824L Technical
Owerview and Introduction. https://www. redbooks.ibm.com/redpapers/pdfs/
redp5139.pdf. (Website). 2014.

International Business Machines Corporation. IBM Power Systems E870 and E880
Technical Overview and Introduction. (Website). 2014.

Joefon Jann, Paul Mackerras, John Ludden, Michael Gschwind, Wade Ouren, Stuart
Jacobs, Brian F. Veale, and David Edelsohn. “IBM POWERg System Software”. In:
IBM Journal of Research and Development 62.4/5 (2018), 6:1—-6:10. DOI:/10.1147/JRD.
2018.2846959.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. “Analysis of Large-Scale Multi-Tenant GPU Clus-
ters for DNN Training Workloads”. In: 2019 USENIX Annual Technical Conference
(USENIX ATC 19). Renton, WA: USENIX Association, July 2019, pages 947-960.
ISBN: 978-1-939133-03-8. URL: https://www.usenix.org/conference/atcl9/
presentation/jeon.

Luke Anthony Kachelmeier, Faith Virginia Van Wig, and Kari Natania Erickson.
Comparison of High Performance Network Options: EDR InfiniBand vs. 100Gb RDMA
Capable Ethernet. Technical report. Los Alamos National Laboratory (LANL), 2016.

Krzysztof Kaczmarski and Piotr Przymus. “Fixed Length Lightweight Compres-
sion for GPU Revised”. In: Journal of Parallel and Distributed Computing 107 (2017),
pages 19—36. ISSN: 0743-7315. DOI:|10.1016/j.jpdc.2017.03.011!

T. Kalaiselvi, P. Sriramakrishnan, and K. Somasundaram. “Survey of using GPU
CUDA programming model in medical image analysis”. In: Informatics in Medicine
Unlocked 9 (2017), pages 133—144. ISSN: 2352-9148. DOI:|10.1016/]j.7mu.2017.08,
001l

Rubasri Kalidas, Mayank Daga, Konstantinos Krommydas, and Wu-chun Feng.
“On the Performance, Energy, and Power of Data-Access Methods in Heteroge-
neous Computing Systems”. In: 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop, IPDPS 2015, Hyderabad, India, May 25-29, 2015. IEEE
Computer Society, 2015, pages 871-879. DO1:/10.1109/IPDPSW.2015.131.

Supun Kamburugamuve, Pulasthi Wickramasinghe, Saliya Ekanayake, and Geof-
frey C. Fox. “Anatomy of Machine Learning Algorithm Implementations in MPI,
Spark, and Flink”. In: International Journal of High Performance Computing Applica-
tions 32.1 (2018), pages 61-73. DOI:|10.1177/1094342017712976.

119

https://www.clsac.org/uploads/5/0/6/3/50633811/clsac-2020-hofstee.pdf
https://www.clsac.org/uploads/5/0/6/3/50633811/clsac-2020-hofstee.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5139.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5139.pdf
https://doi.org/10.1147/JRD.2018.2846959
https://doi.org/10.1147/JRD.2018.2846959
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon
https://doi.org/10.1016/j.jpdc.2017.03.011
https://doi.org/10.1016/j.imu.2017.08.001
https://doi.org/10.1016/j.imu.2017.08.001
https://doi.org/10.1109/IPDPSW.2015.131
https://doi.org/10.1177/1094342017712976

Bibliography

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

120

Philipp Kegel, Michel Steuwer, and Sergei Gorlatch. “dOpenCL: Towards Uni-
form Programming of Distributed Heterogeneous Multi-/Many-Core Systems”.
In: Journal of Parallel and Distributed Computing 73.12 (2013), pages 1639-1648. DOL:
10.1016/5.jpdc.2013.07.021.

Marvin Keller, Philipp Pajak, Florian Rosler, and Robert Schifer. “Scalable and
Secure Infrastructures for Cloud Operations”. Master’s Project Report. Potsdam,
Germany: Hasso Plattner Institute, University of Potsdam, Mar. 2016.

Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, and Pat Conway. “The
AMD Opteron Processor for Multiprocessor Servers”. In: IEEE Micro 23.2 (2003),
pages 66—76. DOI:|10.1109/MM.2003.1196116.

M. Khavari Tavana, Y. Sun, N. Bohm Agostini, and D. Kaeli. “Exploiting Adaptive
Data Compression to Improve Performance and Energy-Efficiency of Compute
Workloads in Multi-GPU Systems”. In: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). May 2019, pages 664—674. DOI: |10.1109/
IPDPS.2019.00075.

Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. “Achieving a Single
Compute Device Image in OpenCL for Multiple GPUs”. In: Proceedings of the
16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP). Edited by Calin Cascaval and Pen-Chung Yew. San Antonio, TX, USA:
ACM, Feb. 2011, pages 277—288. DOI:|10.1145/1941553.1941591.

Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee.
“SnuCL: an OpenCL Framework for Heterogeneous CPU/GPU Clusters”. In: In-
ternational Conference on Supercomputing, ICS'12. Edited by Utpal Banerjee, Kyle A.
Gallivan, Gianfranco Bilardi, and Manolis Katevenis. Venice, Italy: ACM, 2012,
pages 341—352. DOI:[10.1145/2304576.2304623|

Maél Kimmerlin, Peer Hasselmeyer, Seppo Heikkild, Max Plauth, Pawel Parol, and
Pasi Sarolahti. “Network Expansion in OpenStack Cloud Federations”. In: 2017
European Conference on Networks and Communications (EuCNC). June 2017, pages 1—
5. DOI:|10.1109/EUCNC.2017.7980655.

Maél Kimmerlin, Max Plauth, Seppo Heikkild, and Tapio Niemi. “A Practical
Evaluation of a Network Expansion Mechanism in an OpenStack Cloud Feder-
ation”. In: 2017 IEEE 6th International Conference on Cloud Networking (CloudNet).
2017, pages 1—6. DOI:|10.1109/CloudNet.2017.8071540.

David Kirk. “NVIDIA CUDA Software and GPU Parallel Computing Architecture”.
In: Proceedings of the 6th International Symposium on Memory Management. ISMM ’o7.
Montreal, Quebec, Canada: Association for Computing Machinery, 2007, pages 103
104. ISBN: 9781595938930. DOI: 10.1145/1296907.1296909.

Stefan Klauck, Max Plauth, Sven Knebel, Marius Strobl, Douglas Santry, and Lars
Eggert. “Eliminating the Bandwidth Bottleneck of Central Query Dispatching
Through TCP Connection Hand-Over”. In: Datenbanksysteme fiir Business, Tech-
nologie und Web (BTW 2019). Edited by Torsten Grust, Felix Naumann, Alexander
Bohm, Wolfgang Lehner, Theo Harder, Erhard Rahm, Andreas Heuer, Meike Klet-

https://doi.org/10.1016/j.jpdc.2013.07.021
https://doi.org/10.1109/MM.2003.1196116
https://doi.org/10.1109/IPDPS.2019.00075
https://doi.org/10.1109/IPDPS.2019.00075
https://doi.org/10.1145/1941553.1941591
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1109/EuCNC.2017.7980655
https://doi.org/10.1109/CloudNet.2017.8071540
https://doi.org/10.1145/1296907.1296909

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Bibliography

tke, and Holger Meyer. Gesellschaft fiir Informatik, Bonn, 2019, pages 97-106. DOTI:
10.18420/btw2019-07.

Andi Kleen. itNUMA — NUMA Policy Library. Linux Manpage. (accessed 2022-
05-02). 2008.

Andreas Klockner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and
Ahmed Fasih. “PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU
Run-Time Code Generation”. In: Parallel Computing 38.3 (2012), pages 157-174.
DOI:/10.1016/j.parco.2011.09.001,

Sven Knebel. “Interfaces for New Networking Challenges”. Master’s thesis. Pots-
dam, Germany: Hasso Plattner Institute, University of Potsdam, June 2018. URL:
https://osm.hpi.de/bookshelf/Details/528.

Sven Kohler. “On-Chip Accelerators on POWERS”. Master’s thesis. Potsdam, Ger-
many: Hasso Plattner Institute, University of Potsdam, May 2017. URL: https:
//osm.hpi.de/bookshelf/Details/531.

Sven Kohler, Benedict Herzog, Timo Honig, Lukas Wenzel, Max Plauth, Jorg Nolte,
Andreas Polze, and Wolfgang Schroder-Preikschat. “Pinpoint the Joules: Unifying
Runtime-Support for Energy Measurements on Heterogeneous Systems”. In: 2020
IEEE/ACM International Workshop on Runtime and Operating Systems for Supercom-
puters (ROSS). IEEE. Nov. 2020, pages 31—40. DOIL: 10 . 1109 /R0SS51935 . 2020 .
00009.

Sven Kohler, Lukas Wenzel, Max Plauth, Pawel Boning, Philipp Gampe, Leonard
Geier, and Andreas Polze. “Recognizing HPC Workloads Based on Power
Draw Signatures”. In: Ninth International Symposium on Computing and Network-
ing (CANDAR). Matsue, Japan: IEEE, Nov. 2021, pages 278-284. DOI: |10.1109/
CANDARW53999.2021.00053.

Robert C Kunz. “Performance Bottlenecks on Large-Scale Shared-Memory Multi-
processors”. PhD thesis. Stanford University, 2005.

N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, and R. Kumar. “Next Gen-
eration Intel® Core™ Micro-Architecture (Nehalem) Clocking”. In: IEEE Journal
of Solid-State Circuits 44.4 (2009), pages 1121-1129. DOI: 10 . 1109/ JSSC. 2009 |
2014023.

BBN Laboratories. Butterfly Parallel Processor Overview. BBN Report no. 6148. Cam-
bridge, MA, Mar. 1986.

E. Scott Larsen and David McAllister. “Fast Matrix Multiplies Using Graphics
Hardware”. In: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing. SC
‘o1. Denver, Colorado: Association for Computing Machinery, 2001, page 55. ISBN:
158113293X. DOI:|10.1145/582034.582089. URL: https://doi.org/10.1145/
582034.582089.

James Laudon and Daniel Lenoski. “The SGI Origin: A ccNUMA Highly Scalable
Server”. In: SIGARCH Comput. Archit. News 25.2 (May 1997), pages 241—-251. ISSN:
0163-5964. DOI:|10.1145/384286.264206,

121

https://doi.org/10.18420/btw2019-07
https://doi.org/10.1016/j.parco.2011.09.001
https://osm.hpi.de/bookshelf/Details/528
https://osm.hpi.de/bookshelf/Details/531
https://osm.hpi.de/bookshelf/Details/531
https://doi.org/10.1109/ROSS51935.2020.00009
https://doi.org/10.1109/ROSS51935.2020.00009
https://doi.org/10.1109/CANDARW53999.2021.00053
https://doi.org/10.1109/CANDARW53999.2021.00053
https://doi.org/10.1109/JSSC.2009.2014023
https://doi.org/10.1109/JSSC.2009.2014023
https://doi.org/10.1145/582034.582089
https://doi.org/10.1145/582034.582089
https://doi.org/10.1145/582034.582089
https://doi.org/10.1145/384286.264206

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

122

Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro, and Mu-
rali Annavaram. “Warped-compression: Enabling Power Efficient GPUs Through
Register Compression”. In: SIGARCH Computer Architecture News 43.3 (June 2015),
pages 502—514. ISSN: 0163-5964. DOI:|10.1145/2872887.2750417.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. “The Stanford
Dash multiprocessor”. In: Computer 25.3 (1992), pages 63—79. DOI: 10.1109/2,
121510.

Adam Levinthal and Thomas Porter. “Chap - a SIMD Graphics Processor”. In:
SIGGRAPH Comput. Graph. 18.3 (Jan. 1984), pages 77-82. I1SSN: 0097-8930. DOI:
10.1145/964965.808581.

Pei Li, Elisabeth Brunet, Francois Trahay, Christian Parrot, Gaél Thomas, and
Raymond Namyst. “Automatic OpenCL Code Generation for Multi-device Het-
erogeneous Architectures”. In: 44th International Conference on Parallel Processing
(ICPP). Beijing, China: IEEE Computer Society, Sept. 2015, pages 959-968. DOTI:
10.1109/ICPP.2015.105.

Open Library. Open Library Data Dumps. https://openlibrary.org/data/ol_
dump_works_latest.txt.gzl (Website). 2013.

Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. “NVIDIA
Tesla: A Unified Graphics and Computing Architecture”. In: IEEE Micro 28.2 (Mar.
2008), pages 39-55. ISSN: 0272-1732. DOI:|10.1109/MM.2008.31.

Peter Lindstrom. “Fixed-Rate Compressed Floating-Point Arrays”. In: IEEE Trans-
actions on Visualization and Computer Graphics 20.12 (2014), pages 2674—2683. DOI:
10.1109/TVCG.2014.2346458.

Linux Kernel Module for Software-Based 842 Compression/Decompression. (Website).
2015.

Tom Lovett and Russell Clapp. “STING: A CC-NUMA Computer System for the
Commercial Marketplace”. In: SIGARCH Comput. Archit. News 24.2 (May 1996),
pages 308-317. ISSN: 0163-5964. DOI:|10.1145/232974.233006.

Meng-Yang Lu, Yu-An Lai, and Chih-Hung Kuo. “A Low-Latency Compression
Architecture for Memory I/O Link on GPGPU”. In: International Journal of Eletrical
Engineering 26.5 (Oct. 2019), pages 203—210. ISSN: 1812-3031. DOI:|10.6329/CIEE,
201910\ _26(5) .0003.

Matt Mahoney. Large Text Compression Benchmark. (Website). (Visited on 2011).

Zoltan Majo and Thomas R. Gross. “A Library for Portable and Composable
Data Locality Optimizations for NUMA Systems”. In: ACM Transactions on Parallel
Computing 3.4 (2017), 20:1-20:32. DOI: |10.1145/3040222|

Pak Markthub, Akihiro Nomura, and Satoshi Matsuoka. “Using rCUDA to Reduce
GPU Resource-Assignment Fragmentation Caused by Job Scheduler”. In: 2014
15th International Conference on Parallel and Distributed Computing, Applications and
Technologies. 2014, pages 105-112. DOI:|10.1109/PDCAT.2014.26.

https://doi.org/10.1145/2872887.2750417
https://doi.org/10.1109/2.121510
https://doi.org/10.1109/2.121510
https://doi.org/10.1145/964965.808581
https://doi.org/10.1109/ICPP.2015.105
https://openlibrary.org/data/ol_dump_works_latest.txt.gz
https://openlibrary.org/data/ol_dump_works_latest.txt.gz
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1145/232974.233006
https://doi.org/10.6329/CIEE.201910_26(5).0003
https://doi.org/10.6329/CIEE.201910_26(5).0003
https://doi.org/10.1145/3040222
https://doi.org/10.1109/PDCAT.2014.26

Bibliography

[124] Balthasar Martin, Robert Schmid, and Lukas Wenzel. “CAPI SNAP Development
for Programmers”. Master’s Project Report. Potsdam, Germany: Hasso Plattner
Institute, University of Potsdam, Sept. 2017. URL: https://osm.hpi.de/capi+
shap.

[125] Dylan Martin. IBM: Powerio CPU’s "Memory Inception’ Is Industry’s "Holy Grail'.
https://www.crn.com/news/components-peripherals/ibm-powerl0-cpu-s—
memory-inception-is-industry-s-holy-grail-. (Website). Aug. 2020.

[126] Fabian Maschler, Jan-Henrich Mattfeld, and Norman Rzepka. “Scalable and Secure
Infrastructures for Cloud Operations”. Master’s Project Report. Potsdam, Germany:
Hasso Plattner Institute, University of Potsdam, Sept. 2016.

[127] Jan-Henrich Mattfeld. “Design and Implementation of a Unified Middleware for
Policy Enforcement in Multi-Cloud Infrastructures”. Master’s thesis. Potsdam,
Germany: Hasso Plattner Institute, University of Potsdam, Apr. 2018. URL: https:
//osm.hpi.de/bookshelf/Details/480.

[128] Julian McAuley. Amazon Product Data. http://jmcauley.ucsd.edu/data/amazo
n/index_2014.html. (Website). 2018.

[129] Microchip. MCP39F511N Datasheet. 2018. URL: http://wwl.microchip.com/
downloads/en/DeviceDoc/20005473B. pdf.

[130] MITAC Computing Technology Corporation. Tyan Transport HX TN83-B8251. ht
tps://download. tyan.com/pub/datasheets /DataSheet_TN83-B8251. pdf.
(Website). 2020.

[131] Sparsh Mittal and Jeffrey S. Vetter. “A Survey Of Architectural Approaches for
Data Compression in Cache and Main Memory Systems”. In: IEEE Transactions on
Parallel and Distributed Systems 27.5 (2016), pages 1524—1536. DOI: 10.1109/TPDS,
2015.2435788.

[132] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J. Migdal.
“InfiniteReality: A Real-Time Graphics System”. In: Proceedings of the 24th An-
nual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ‘97.
USA: ACM Press/Addison-Wesley Publishing Co., 1997, pages 293-302. ISBN:
0897918967. DOI: 10.1145/258734.258871,

[133] Timothy Prickett Morgan. “Shared Memory Pushes Wheat Genomics To Boost Crop
Yields”. In: The Next Platform (May 2016). http:/ /www.nextplatform.com/2016/05/10/shared-
memory-pushes-wheat-genomics-boost-crop-yields/.

[134] MPI: A Message-Passing Interface Standard (Version 4.0). https://www.mpi-forum|
org/docs/mpi-4.0/mpi40-report.pdf. (accessed 2022-05-02). 2021.

[135] Ananya Muddukrishna, Peter A. Jonsson, and Mats Brorsson. “Locality-Aware
Task Scheduling and Data Distribution for OpenMP Programs on NUMA Sys-
tems and Manycore Processors”. In: Scientific Programming 2015 (2015), 981759:1—
981759:16. DOI: 10.1155/2015/981759,

123

https://osm.hpi.de/capi-snap
https://osm.hpi.de/capi-snap
https://www.crn.com/news/components-peripherals/ibm-power10-cpu-s-memory-inception-is-industry-s-holy-grail-
https://www.crn.com/news/components-peripherals/ibm-power10-cpu-s-memory-inception-is-industry-s-holy-grail-
https://osm.hpi.de/bookshelf/Details/480
https://osm.hpi.de/bookshelf/Details/480
http://jmcauley.ucsd.edu/data/amazon/index_2014.html
http://jmcauley.ucsd.edu/data/amazon/index_2014.html
http://ww1.microchip.com/downloads/en/DeviceDoc/20005473B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20005473B.pdf
https://download.tyan.com/pub/datasheets/DataSheet_TN83-B8251.pdf
https://download.tyan.com/pub/datasheets/DataSheet_TN83-B8251.pdf
https://doi.org/10.1109/TPDS.2015.2435788
https://doi.org/10.1109/TPDS.2015.2435788
https://doi.org/10.1145/258734.258871
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1155/2015/981759

Bibliography

[136]

[137]

[138]

[139]

[140]

[141]

[142]
[143]

[144]

[145]

[146]

[147]

[148]

124

Michael Miiller, Daniel Kessener, and Olaf Spinczyk. “First Things First: A Discus-
sion of Modelling Approaches for Disruptive Memory Technologies”. In: Tagungs-
band des FG-BS Herbsttreffens 2021. Bonn: Gesellschaft fiir Informatik e.V., 2021.
DOI:|10.18420/fghs2021h-02.

Aaftab Munshi. “The OpenCL Specification”. In: 2009 IEEE Hot Chips 21 Symposium
(HCS). 2009, pages 1—314. DOI:|10.1109/HOTCHIPS.2009.7478342!

NASA. Curiosity’s 1.8-Billion-Pixel Panorama. https://mars.nasa.gov/resource
s/24801/curiositys-18-billion-pixel-panorama/. (Website). 2019.

NVIDIA. NVIDIA DGX Az1o0o Datasheet. https : //images . nvidia.com/aem-
dam/Solutions/Data-Center /nvidia-dgx-al00-datasheet.pdf. (Website).
2020.

NVIDIA. NVIDIA DGX-1 Datasheet. https://www.nvidia.com/content/dam/en-
zz /Solutions /Data-Center /dgx-1/dgx-1-rhel-datasheet-nvidia—-us-
808336-r3-web.pdf. (Website). 2019.

NVIDIA Corporation. NVIDIA Management Library. 2021. URL: https://docs |,
nvidia.com/pdf/NVML_API_Reference_Guide.pdf.

NVIDIA OpenCL Examples. (Website). 2012.

NVIIDIA. NVIDIA A1o0 Tensor Core GPU Architecture. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-
whitepaper.pdfl (Whitepaper). 2020.

OpenMP Application Program Interface (Version 5.0). https://www.openmp.org/wp-
content/uploads/OpenMP-API-Specification-5.0.pdf. (accessed 2022-05-02).
2018.

R. A. Patel, Y. Zhang,]J. Mak, A. Davidson, and J. D. Owens. “Parallel Lossless
Data Compression on the GPU”. In: 2012 Innovative Parallel Computing (InPar). May
2012, pages 1—9. DOI:|10.1109/InPar.2012.6339599.

Oliver Pell and Oskar Mencer. “Surviving the End of Frequency Scaling with
Reconfigurable Dataflow Computing”. In: SIGARCH Computer Architecture News
39.4 (2011), pages 60—65. DOI:|10.1145/2082156.2082172|

Gregory F. Pfister, William C. Brantley, David A. George, Steve L. Harvey, Wally
J. Kleinfelder, Kevin P. McAuliffe, Evelin S. Melton, V. Alan Norton, and Jodi
Weiss. “The IBM Research Parallel Processor Prototype (RP3): Introduction and
Architecture”. In: International Conference on Parallel Processing, ICPP’85, University
Park, PA, USA, August 1985. IEEE Computer Society Press, 1985, pages 764-771.

Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis, Andrea
Reale, Kostas Katrinis, and H Peter Hofstee. “ThymesisFlow: A Software-Defined,
HW /SW co-Designed Interconnect Stack for Rack-Scale Memory Disaggregation”.
In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE. Athens, Greece, Oct. 2020, pages 868-880. DOI1:|10.1109/MICR050266 .
2020.00075.

https://doi.org/10.18420/fgbs2021h-02
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://mars.nasa.gov/resources/24801/curiositys-18-billion-pixel-panorama/
https://mars.nasa.gov/resources/24801/curiositys-18-billion-pixel-panorama/
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.pdf
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1109/InPar.2012.6339599
https://doi.org/10.1145/2082156.2082172
https://doi.org/10.1109/MICRO50266.2020.00075
https://doi.org/10.1109/MICRO50266.2020.00075

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Bibliography

Max Plauth, Matthias Bastian, and Andreas Polze. “Facilitating Policy Adherence
in Federated OpenStack Clouds with Minimally Invasive Changes”. In: Proceedings
of the Fifth HPI Cloud Symposium ”Operating the Cloud”. Nov. 2017. boI1:/10.13140/
RG.2.2.34267.28969.

Max Plauth, Joan Bruguera Mic6, and Andreas Polze. “Improved Data Transfer
Efficiency for Scale-Out Heterogeneous Workloads Using On-the-Fly 1/O Link
Compression”. In: Concurrency and Computation: Practice and Experience (Dec. 2020),
e6101. DOI: 10.1002/cpe.6101.

Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas Polze. “A Survey of
Security-Aware Approaches for Cloud-Based Storage and Processing Technolo-
gies”. In: Proceedings of the Third HPI Cloud Symposium "Operating the Cloud”. Nov.
2015, page 33. DOI: 10.13140/RG.2.2.26664.57604.

Max Plauth, Felix Eberhardt, Andreas Grapentin, and Andreas Polze. “Improving
the Accessibility of NUMA-Aware C++ Application Development Based on the
PGASUS Framework”. In: Concurrency and Computation: Practice and Experience
(Feb. 2022), €6887. DOT1:/10.1002/cpe.6887.

Max Plauth, Frank Feinbube, Frank Schlegel, and Andreas Polze. “A Performance
Evaluation of Dynamic Parallelism for Fine-grained, Irregular Workloads”. In:
International Journal of Networking and Computing 6.2 (July 2016), pages 212—229.
ISSN: 2185-2847. DO1:|10.15803/7jnc.6.2_212|

Max Plauth, Frank Feinbube, Frank Schlegel, and Andreas Polze. “Using Dynamic
Parallelism for Fine-Grained, Irregular Workloads: A Case Study of the N-Queens
Problem”. In: Proceedings of the Third International Symposium on Computing and
Networking (CANDAR). IEEE. Dec. 2015, pages 404—407. DOI: |10 .1109/CANDAR .
2015.26.

Max Plauth, Lena Feinbube, and Andreas Polze. “A Performance Survey of
Lightweight Virtualization Techniques”. In: Proceedings of the European Conference
on Service-Oriented and Cloud Computing. Springer. Sept. 2017, pages 34—48. DOI:
10.1007/978-3-319-67262-5_3.

Max Plauth, Wieland Hagen, Frank Feinbube, Felix Eberhardt, Lena Feinbube, and
Andreas Polze. “Parallel Implementation Strategies for Hierarchical Non-uniform
Memory Access Systems by Example of the Scale-invariant Feature Transform
Algorithm”. In: Proceedings of the IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). IEEE. May 2016, pages 1351-1359. DOI:
10.1109/IPDPSW.2016.47.

Max Plauth and Andreas Polze. “Are Low-Power SoCs Feasible for Heterogenous
HPC Workloads?” In: Proceedings of the European Conference on Parallel Processing.
Springer. Aug. 2016, pages 763—774. DOI:|10.1007/978-3-319-58943-5_61.

Max Plauth and Andreas Polze. “GPU-Based Decompression for the 842 Algo-
rithm”. In: Proceedings of the Seventh International Symposium on Computing and Net-
working Workshops (CANDARW). IEEE. Nov. 2019, pages 97—102. DOTI: |10.1109/
CANDARW.2019.00025.

125

https://doi.org/10.13140/RG.2.2.34267.28969
https://doi.org/10.13140/RG.2.2.34267.28969
https://doi.org/10.1002/cpe.6101
https://doi.org/10.13140/RG.2.2.26664.57604
https://doi.org/10.1002/cpe.6887
https://doi.org/10.15803/ijnc.6.2_212
https://doi.org/10.1109/CANDAR.2015.26
https://doi.org/10.1109/CANDAR.2015.26
https://doi.org/10.1007/978-3-319-67262-5_3
https://doi.org/10.1109/IPDPSW.2016.47
https://doi.org/10.1007/978-3-319-58943-5_61
https://doi.org/10.1109/CANDARW.2019.00025
https://doi.org/10.1109/CANDARW.2019.00025

Bibliography

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
[167]

[168]

[169]

[170]

126

Max Plauth and Andreas Polze. “Towards Improving Data Transfer Efficiency for
Accelerators Using Hardware Compression”. In: Proceedings of the Sixth Interna-
tional Symposium on Computing and Networking Workshops (CANDARW). IEEE. Nov.
2018, pages 125-131. DOI: 10.1109/CANDARW.2018.00031.

Max Plauth, Florian Rosler, and Andreas Polze. “CloudCL: Distributed Hetero-
geneous Computing on Cloud Scale”. In: Proceedings of the Fifth International Sym-
posium on Computing and Networking (CANDAR). IEEE. Nov. 2017, pages 344—350.
DOI:|10.1109/CANDAR.2017.49.

Max Plauth, Florian Rosler, and Andreas Polze. “CloudCL: Single-Paradigm Dis-
tributed Heterogeneous Computing for Cloud Infrastructures”. In: International
Journal of Networking and Computing 8.2 (July 2018), pages 282—301. ISSN: 2185-
2847. DOI1:/10.15803/1jnc.8.2_282,

Max Plauth, Christoph Sterz, Felix Eberhardt, Frank Feinbube, and Andreas Polze.
“Assessing NUMA Performance Based on Hardware Event Counters”. In: Proceed-
ings of the IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE. May 2017, pages 904—913. DOI: 10.1109/IPDPSW.2017.51.

Max Plauth, Fredrik Teschke, Daniel Richter, and Andreas Polze. “Hardening Ap-
plication Security using Intel SGX”. In: Proceedings of the IEEE International Confer-
ence on Software Quality, Reliability and Security (QRS). IEEE. Aug. 2018, pages 375
380. DOI:|10.1109/QRS.2018.00050.

POWER NX zlib compliant library. 2020. URL: https: //github.com/libnxz/
power-gzipl

Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beckmann,
Mark D. Hill, Steven K. Reinhardt, and David A. Wood. “Heterogeneous System
Coherence for Integrated CPU-GPU Systems”. In: 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). Association for Computing
Machinery, 2013, pages 457-467. DOI: 10.1145/2540708.2540747.

Project Gutenberg. https://www.projekt-gutenberg.org/\ (accessed 2022-05-02).

Diego Puppin, Nicola Tonellotto, and Domenico Laforenza. “Using Web Services
to Run Distributed Numerical Applications”. In: Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, 11th European PVM/MPI Users” Group
Meeting. Edited by Dieter Kranzlmuiller, Péter Kacsuk, and Jack J. Dongarra. Vol-
ume 3241. Lecture Notes in Computer Science. Budapest, Hungary: Springer, Sept.
2004, pages 207—214. DOI:|10.1007/978-3-540-30218-6_32,

Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. “Fast Lossless Compression
of Scientific Floating-Point Data”. In: 2006 Data Compression Conference (DCC 2006),
28-30 March 2006, Snowbird, UT, USA. IEEE Computer Society, 2006, pages 133—142.
DOI:|10.1109/DCC.2006.35.

James Reinders. Intel Threading Building Blocks - Outfitting C++ for Multi-Core Pro-
cessor Parallelism. O'Reilly, 2007. 1SBN: 978-0-596-51480-8. URL: http : / / www |
oreilly.com/catalog/9780596514808/index.html.

Harvey Richardson. “High Performance Fortran: History, Overview and Current
Developments”. In: Thinking Machines Corporation 14 (1996), page 13.

https://doi.org/10.1109/CANDARW.2018.00031
https://doi.org/10.1109/CANDAR.2017.49
https://doi.org/10.15803/ijnc.8.2_282
https://doi.org/10.1109/IPDPSW.2017.51
https://doi.org/10.1109/QRS.2018.00050
https://github.com/libnxz/power-gzip
https://github.com/libnxz/power-gzip
https://doi.org/10.1145/2540708.2540747
https://www.projekt-gutenberg.org/
https://doi.org/10.1007/978-3-540-30218-6_32
https://doi.org/10.1109/DCC.2006.35
http://www.oreilly.com/catalog/9780596514808/index.html
http://www.oreilly.com/catalog/9780596514808/index.html

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Bibliography

S. Roberts, C. Mann, and C. Marroquin. “Redefining IBM power system design for
CORAL". In: IBM Journal of Research and Development 64.3/ 4 (2020), 2:1-2:10. DOI:
10.1147/JRD.2019.2963637.

David P. Rodgers. “Improvements in Multiprocessor System Design”. In: SIGARCH
Comput. Archit. News 13.3 (June 1985), pages 225-231. ISSN: 0163-5964. DOI: 10 .
1145/327070.327215.

Daniel Roeder. “Recording and Profiling Workload Characteristics”. Master’s the-
sis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, July 2017.

Viktor Rosenfeld, Sebastian Brefs, and Volker Markl. “Query Processing on Hetero-
geneous CPU/GPU Systems”. In: ACM Computing Surveys 55.1 (Jan. 2022). ISSN:
0360-0300. DOI:|10.1145/3485126.

Florian Rosler. “Dynamic OpenCL - Distributed Computing on Cloud Scale”. Mas-
ter’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
Apr. 2017. URL: https://osm.hpi.de/bookshelf/Details/460.

Karl Rupp. CPU, GPU and MIC Hardware Characteristics over Time. https://gith
ub.com/karlrupp/cpu-gpu-mic-comparison. (accessed 2022-05-02). 2019.

Satish Kumar Sadasivam, Brian W. Thompto, Ron Kalla, and William J. Starke.
“IBM Powerg Processor Architecture”. In: IEEE Micro 37.2 (2017), pages 40-51. DOI:
10.1109/MM.2017.40.

Fabien Sangalard. A History of the NVIDIA Stream Multiprocessor. https://fabie
nsanglard.net/cuda/index.html (accessed 2022-05-02). 2020.

Vijay Sathish, Michael J. Schulte, and Nam Sung Kim. “Lossless and Lossy Mem-
ory 1/0 Link Compression for Improving Performance of GPGPU Workloads”. In:
Proceedings of the 21st International Conference on Parallel Architectures and Compila-
tion Techniques. Minneapolis, Minnesota, USA: ACM, 2012, pages 325-334. ISBN:
978-1-4503-1182-3. DOI1:|10.1145/2370816.2370864,

Scalable and Secure Infrastructures for Cloud Operations. https://cordis.europa.
eu/project/id/644866. (accessed 2022-05-02). 2018.

Robert Schmid. “Using FPGA Performance Counters for Profiling Heterogenous
Applications”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, Uni-
versity of Potsdam, Dec. 2018. URL: https://osm.hpi.de/bookshelf/Details/
535.

Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, and Andreas Polze.
“Accessible Near-Storage Computing with FPGAs”. In: Proceedings of the Fifteenth
European Conference on Computer Systems. EuroSys "20. Heraklion, Greece: Associ-
ation for Computing Machinery, Apr. 2020. ISBN: 9781450368827. DOI:|10.1145/
3342195.3387557.

Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, and Andreas Polze.
“Orchestrating Near-Data FPGA Accelerators Using Unix Pipes”. In: Proceedings of
the Seventh International Symposium on Computing and Networking Workshops (CAN-
DARW). IEEE. Nov. 2019, pages 125-128. DOI:|10.1109/CANDARW.2019.00030.

127

https://doi.org/10.1147/JRD.2019.2963637
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/3485126
https://osm.hpi.de/bookshelf/Details/460
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://doi.org/10.1109/MM.2017.40
https://fabiensanglard.net/cuda/index.html
https://fabiensanglard.net/cuda/index.html
https://doi.org/10.1145/2370816.2370864
https://cordis.europa.eu/project/id/644866
https://cordis.europa.eu/project/id/644866
https://osm.hpi.de/bookshelf/Details/535
https://osm.hpi.de/bookshelf/Details/535
https://doi.org/10.1145/3342195.3387557
https://doi.org/10.1145/3342195.3387557
https://doi.org/10.1109/CANDARW.2019.00030

Bibliography

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

128

Patrick Schmidt. “Optimization Guidelines for NUMA Architectures”. Master’s
thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, Jan.
2016. URL: https://osm.hpi.de/bookshelf/Details/533.

Jacob T. Schwartz. “Ultracomputers”. In: ACM Trans. Program. Lang. Syst. 2.4 (Oct.
1980), pages 484—521. ISSN: 0164-0925. DOI:|10.1145/357114.357116.

Vincent Schwarzer. “Evaluierung von Unikernel-Betriebssystemen fiir Cloud-
Computing”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, Univer-
sity of Potsdam, June 2016.

Steven L. Scott. “Synchronization and Communication in the T3E Multiproces-
sor”. In: Proceedings of the Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS VII. Cambridge, Mas-
sachusetts, USA: Association for Computing Machinery, 1996, pages 26—-36. ISBN:
0897917677. DOI:|10.1145/237090.237144,

Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and
Qiang-Sheng Hua. “Graph Processing on GPUs: A Survey”. In: ACM Computing
Surveys 50.6 (Jan. 2018). ISSN: 0360-0300. DOI:|10.1145/3128571|

Evangelia A. Sitaridi, René Miiller, Tim Kaldewey, Guy M. Lohman, and Kenneth
A. Ross. “Massively-Parallel Lossless Data Decompression”. In: 45th International
Conference on Parallel Processing (ICPP). Philadelphia, PA, USA: IEEE Computer
Society, Aug. 2016, pages 242—247. DOI:[10.1109/ICPP.2016.35.

B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai, E. Francom,
M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and S. Troyer. “A 65 nm 2-
Billion Transistor Quad-Core Itanium Processor”. In: IEEE Journal of Solid-State
Circuits 44.1 (2009), pages 18-31. DOI:|10.1109/JSSC.2008.2007150.

William J. Starke, Brian W. Thompto, Jeffrey Stuecheli, and José E. Moreira. “IBM’s
POWER1o0 Processor”. In: IEEE Micro 41.2 (2021), pages 7—14. DOI:|10.1109 /MM,
2021.3058632.

Christoph Sterz. “Analyzing NUMA Performance Based on Hardware Event Coun-
ters”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of
Potsdam, July 2016. URL: https://osm.hpi.de/bookshelf/Details/530.

Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. “Towards High-Level Pro-
gramming of Multi-GPU Systems Using the SkelCL Library”. In: 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops & PhD Forum.
2012, pages 1858-1865. DOI1:|10.1109/IPDPSW.2012.229.

Bjarne Stroustrup. “A Tour of C++: Abstraction Mechanisms”. In: The C++ Pro-
gramming Language. 4th edition. Addison-Wesley, May 2013.

J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner, C. Wollbrink,
and B. Allison. “IBM POWERg opens up a new era of acceleration enablement:
OpenCAPI”. In: IBM Journal of Research and Development 62.4/5 (2018), 8:1-8:8. DoT1:
10.1147/JRD.2018.2856978.

David Suggs, Mahesh Subramony, and Dan Bouvier. “The AMD “Zen 2” Proces-
sor”. In: IEEE Micro 40.2 (2020), pages 45—52. DOI:|10.1109/MM.2020.2974217.

https://osm.hpi.de/bookshelf/Details/533
https://doi.org/10.1145/357114.357116
https://doi.org/10.1145/237090.237144
https://doi.org/10.1145/3128571
https://doi.org/10.1109/ICPP.2016.35
https://doi.org/10.1109/JSSC.2008.2007150
https://doi.org/10.1109/MM.2021.3058632
https://doi.org/10.1109/MM.2021.3058632
https://osm.hpi.de/bookshelf/Details/530
https://doi.org/10.1109/IPDPSW.2012.229
https://doi.org/10.1147/JRD.2018.2856978
https://doi.org/10.1109/MM.2020.2974217

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]
[207]

[208]

[209]

Bibliography

Richard J. Swan, Andy Bechtolsheim, Kwok-Woon Lai, and John K. Ousterhout.
“The Implementation of the Cm* Multi-Microprocessor”. In: Proceedings of the June
13-16, 1977, National Computer Conference. AFIPS "77. Dallas, Texas: Association for
Computing Machinery, 1977, pages 645-655. ISBN: 9781450379144. DOI:|10.1145/
1499402.1499516.

Karsten Tausche. “Memory Management on IBM Power Systems with NUMA
Characteristics based on the PGASUS Programming Framework”. Master’s thesis.
Potsdam, Germany: Hasso Plattner Institute, University of Potsdam, Oct. 2017.
URL: https://osm.hpi.de/bookshelf/Details/540.

Karsten Tausche, Max Plauth, and Andreas Polze. “dOpenCL-Evaluation of an
API-Forwarding Implementation”. In: Proceedings of the Fourth HPI Cloud Sympo-
sium “Operating the Cloud”. Nov. 2016. DOI:|10.13140/RG.2.2.16598.24641!

SGM2 Development Team. SGM2 Product Design Description. Technical report. Hon-
eywell Information Systems Italia, Sept. 1986.

Spitzer Space Telescope. GLIMPSE360: Spitzer’s Infrared Milky Way. http: //www .,
spitzer.caltech.edu/glimpse360/. (Website).

J. M. Tendler, J. S. Dodson,]J. S. Fields, H. Le, and B. Sinharoy. “POWER4 System
Microarchitecture”. In: IBM Journal of Research and Development 46.1 (2002), pages 5—
25. DOI:|10.1147/rd.461.0005.

Fredrick Teschke. “Hardening Applications with Intel SGX”. Master’s thesis. Pots-
dam, Germany: Hasso Plattner Institute, University of Potsdam, July 2017.

The OpenCL Specification (Version 3.0). https: //www . khronos.org/registry/
OpenCL / specs /3 .0-unified/pdf /OpenCL _API . pdf. (accessed 2022-05-02).
Khronos OpenCL Working Group, Nov. 2021.

C.J. Thompson, Sahngyun Hahn, and M. Oskin. “Using Modern Graphics Archi-
tectures for General-Purpose Computing: a Framework and Analysis”. In: 35th
Annual IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-35).
Proceedings. 2002, pages 306—-317. DOI:|10.1109/MICR0.2002.1176259.

Transaction Processing Performance Council. TPC Benchmark H. (Website). 2018.

Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick,
Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd C. Mowry, and
Onur Mutlu. “A Case for Core-assisted Bottleneck Acceleration in GPUs: Enabling
Flexible Data Compression with Assist Warps”. In: SIGARCH Computer Architecture
News 43.3 (June 2015), pages 41-53. ISSN: 0163-5964. DOI: |10 . 1145 /2872887 |
2750399.

Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat Guney, and
Aashay Shringarpure. “On the Limits of GPU Acceleration”. In: Proceedings of
the 2nd USENIX Conference on Hot Topics in Parallelism (HotPar). Berkeley, CA, USA:
USENIX Association, 2010, page 13.

Lukas Wenzel. “Operating System Facilities for FPGA Accelerator Designs”. Mas-
ter’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of Potsdam,
June 2019. URL: |https://osm.hpi.de/bookshelf/Details/498|

129

https://doi.org/10.1145/1499402.1499516
https://doi.org/10.1145/1499402.1499516
https://osm.hpi.de/bookshelf/Details/540
https://doi.org/10.13140/RG.2.2.16598.24641
http://www.spitzer.caltech.edu/glimpse360/
http://www.spitzer.caltech.edu/glimpse360/
https://doi.org/10.1147/rd.461.0005
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://doi.org/10.1109/MICRO.2002.1176259
https://doi.org/10.1145/2872887.2750399
https://doi.org/10.1145/2872887.2750399
https://osm.hpi.de/bookshelf/Details/498

Bibliography

[210]

[211]

[212]

[213]

[214]

[215]

130

Lukas Wenzel, Robert Schmid, Balthasar Martin, Max Plauth, Felix Eberhardt,
and Andreas Polze. “Getting started with CAPI SNAP: Hardware Development
for Software Engineers”. In: Euro-Par 2018: Parallel Processing Workshops. Springer.
Aug. 2018, pages 187-198. DOI:/10.1007/978-3-030-10549-5_15,

Christian Wuerz. “Resource Contention of Competing Processes in Parallel Sys-
tems”. Master’s thesis. Potsdam, Germany: Hasso Plattner Institute, University of
Potsdam, Oct. 2017. URL: |https://osm.hpi.de/bookshelf/Details/534.

John J. Wuu, Rahul Agarwal, Michael Ciraula, Carl Dietz, Brett Johnson, Dave
Johnson, Russell Schreiber, Raja Swaminathan, Will Walker, and Samuel Naffziger.
“3D V-Cache: the Implementation of a Hybrid-Bonded 64MB Stacked Cache for
a ynm x86-64 CPU”. In: IEEE International Solid-State Circuits Conference (ISSCC)
2022. San Francisco, CA, USA: IEEE, Feb. 2022, pages 428—429. po1: |10.1109/
ISSCC42614.2022.9731565.

Shuji Yamamura, Yasunobu Akizuki, Hideyuki Sekiguchi, Takumi Maruyama,
Tsutomu Sano, Hiroyuki Miyazaki, and Toshio Yoshida. “A64FX: 52-Core Processor
Designed for the 442PetaFLOPS Supercomputer Fugaku”. In: IEEE International
Solid-State Circuits Conference (ISSCC) 2022. San Francisco, CA, USA: IEEE, Feb.
2022, pages 352—354. DOT:/10.1109/ISSCC42614.2022.9731627

Mohamed Zahran. “Heterogeneous Computing: Here to Stay: Hardware and Soft-
ware Perspectives”. In: Queue 14.6 (Dec. 2016), pages 31—42. ISSN: 1542-7730. DOI:
10.1145/3028687.3038873.

J. Ziv and A. Lempel. “A universal algorithm for sequential data compression”.
In: IEEE Transactions on Information Theory 23.3 (May 1977), pages 337—343. ISSN:
0018-9448. DOI1:/10.1109/TIT.1977.1055714.

https://doi.org/10.1007/978-3-030-10549-5_15
https://osm.hpi.de/bookshelf/Details/534
https://doi.org/10.1109/ISSCC42614.2022.9731565
https://doi.org/10.1109/ISSCC42614.2022.9731565
https://doi.org/10.1109/ISSCC42614.2022.9731627
https://doi.org/10.1145/3028687.3038873
https://doi.org/10.1109/TIT.1977.1055714

Glossary

icswx Initiate Coprocessor Store Word Indexed. [4} [40]

AIX Advanced Interactive eXecutive. 38} [4]
AME Active Memory Expansion. [40]

APl Application Programming Interface. [5} 8] 49} [59}
CAIA Coherent Accelerator Interface Architecture. [12]

CAPI Coherent Accelerator Processor Interface. [12]

CAPP Coherent Accelerator Processor Proxy.

CCIX Cache Coherent Interconnect for Accelerators.

ccNUMA Cache Coherent Non-Uniform Memory Access.

COTS Commercial Off-the-Shelf. [35]

CPU Central Processing Unit. [iii, [1Hs} [12} [19H23] 25} |26} o} B3H35} 38Ha 1} [45H4 74 [49) [51) [52)
55} 6 6365} 69 B2} B3} 188} (96, [08) [107} [108) [111]

CUDA Compute Unified Device Architecture.
CXL Compute Express Link.

DDR Double Data Rate.
DRAM Dynamic Random Access Memory.

DSM Distributed Shared Memory.
DSP Digital Signal Processor.

FPGA Field-Programmable Gate Array. [10§]

GDDR Graphics Double Data Rate.

GPU Graphics Processing Unit. [ifi} [iv} [1H6} [8} [12} [17 [20H23} |25} [26} [28} [32H35) [39} [44Ha 7 [49)
G156} [58} [bo} [63H65} 671 7072} [74} (76} [79} [Bo} B2} [rozir1t

HBM High-Bandwidth Memory. [3)}
HPC High-Performance Computing.

=)
[

laaS Infrastructure as a Service. @
ICD Installable Client Driver. 26 [56} 57

131

IF Infinity Fabric.
ILP Instruction-Level Parallelism. [21]

IMDB In-Memory Database. [4]
ISA Instruction Set Architecture.

JNI Java Native Interface.

MIMD Multiple Instruction Multiple Data.
MPI Message Passing Interface. [4}

NUMA Non-Uniform Memory Access.
[O9HTO5} 17

OpenCAPI Open Coherent Accelerator Processor Interface.

OpenCL Open Computing Language. [4} [5} [8} 2628} [bo}
ol Bol

OpenMP Open Multi-Processing. 6} o7

PCle Peripheral Component Interconnect Express. [3} [4}

PGAS Partitioned Global Address Space.
PowerAXON Power with A-bus, X-bus, OpenCAPI, and NVLink.

PSL POWER Service Layer.

RAIl Resource Acquisition is Initialization.
RISC Reduced Instruction Set Computer.

SCI Scalable Coherent Interface.
SDRAM Synchronous Dynamic Random-Access Memory.

SIMD Single Instruction Multiple Data.
SMP Symmetric Multiprocessing.

SoC System on a Chip.
SPMD Single Program Multiple Data.
SRAM Static Random-Access Memory.

TBB Threading Building Blocks.
TIFF Tag Image File Format.
TLP Thread-Level Parallelism. [22]

UMA Uniform Memory Access.
UPI Ultra Path Interconnect. 82|

VAS Virtual Accelerator Switchboard. [4} [40] [49]
VLIW Very Long Instruction Word.

132

Eidesstattliche Erklarung

Hiermit versichere ich, dass meine Dissertation “Improving the Accessibility of Hetero-
geneous System Resources for Application Developers using Programming Abstractions”
(“Verbesserung der Zuganglichkeit heterogener Systemressourcen fiir Anwendungsent-
wickler durch Programmierabstraktionen”) selbstindig verfasst wurde und dass keine
anderen Quellen und Hilfsmittel als die angegebenen benutzt wurden. Diese Aussage
trifft auch fiir alle Implementierungen und Dokumentationen im Rahmen dieses Projektes

Zu.

Potsdam, den 2. August 2022,

(Max Frederik Plauth)

133

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Heterogeneous System Resources
	1.2 Problem Statement
	1.3 Research Question
	1.4 Contributions
	1.5 Overview
	1.6 Publications
	1.7 Context
	1.7.1 Scalable and Secure Infrastructures for Cloud Operations (SSICLOPS)
	1.7.2 Hybrid DB
	1.7.3 Memento: Energy-Efficient Memory Placement
	1.7.4 Teaching Activities

	2 State of the Art and Related Work
	2.1 The Origins of Heterogeneous System Resources
	2.1.1 Non-Uniform Memory Access Architectures
	2.1.2 GPU Computing

	2.2 Trends in Heterogeneous System Resources
	2.2.1 Coherent Interconnects
	2.2.2 Disruptive Memory Technologies

	2.3 Programming Abstractions for Heterogeneous System Resources
	2.3.1 Memory Compression and Compressed Data Transfers
	2.3.2 General Purpose Computing on GPUs
	2.3.3 Data Placement in NUMA Architectures

	2.4 Summary

	3 Programming Abstractions for On-Chip Hardware Compression Resources
	3.1 Motivation and Problem Statement
	3.2 The 842 Compression Algorithm
	3.3 Lib842: A User-Space Library for 842 Compression
	3.4 Implementation
	3.4.1 Hardware-based On-Chip Accelerator (NX-842)
	3.4.2 Software-based Compression and Decompression (CPU Baseline)
	3.4.3 Software-based Compression and Decompression (CPU Optimized)
	3.4.4 Software-based Decompression using OpenCL (GPU)

	3.5 Evaluation
	3.5.1 Testing Environment & Benchmark Procedure
	3.5.2 Compression Ratio
	3.5.3 Compression Throughput and Energy Demand Benchmark

	3.6 Summary

	4 Programming Abstractions for Scale-Out Graphics Processing Unit Clusters
	4.1 Motivation and Problem Statement
	4.2 CloudCL: Single-Paradigm Scale-Out GPU Computing
	4.2.1 Underlying Technologies
	4.2.2 Enhancements

	4.3 Developer Experience of CloudCL
	4.3.1 Semi-Sparse Matrix Multiplication
	4.3.2 Analytical Database Query
	4.3.3 Summary

	4.4 Augmenting CloudCL with Data Transfer Compression
	4.4.1 Choice of Compression Algorithm
	4.4.2 Assumed Cluster Model
	4.4.3 Integration Strategy

	4.5 Implementation
	4.5.1 Master Node to Compute Node Data Transfers
	4.5.2 Compute Node to Master Node Data Transfers
	4.5.3 Compute Node to Compute Node Data Transfers

	4.6 Evaluation
	4.6.1 Testing Environment & Benchmark Procedure
	4.6.2 Effective Data Transfer Performance
	4.6.3 Workload Benchmarks
	4.6.4 Summary

	4.7 Summary

	5 Programming Abstractions for Scale-Up Non-Uniform Memory Access Architectures
	5.1 Motivation and Problem Statement
	5.2 Data Placement in NUMA Systems
	5.2.1 Object Placement
	5.2.2 Object Migration

	5.3 PGASUS: NUMA-Aware C++ Application Development
	5.3.1 MemSources
	5.3.2 Place Guards
	5.3.3 Topology Discovery
	5.3.4 NUMA-aware Task-Parallelism
	5.3.5 NUMA-aware Hash Table

	5.4 Developer Experience
	5.4.1 Text Histogram
	5.4.2 Data Compression
	5.4.3 Database Table Scan
	5.4.4 Summary

	5.5 Performance Evaluation
	5.5.1 Testing Environment & Benchmark Procedure
	5.5.2 Memory Allocation Performance
	5.5.3 Workload Benchmarks
	5.5.4 Energy Demand Analysis
	5.5.5 Summary

	5.6 Summary

	6 Discussion and Outlook
	6.1 Overview
	6.2 Contributions and Future Research
	6.3 Review of Research Question

	7 Conclusion
	Bibliography
	Glossary

