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Abstract
We study the probability density function (PDF) of the first-reaction times between a diffusive
ligand and a membrane-bound, immobile imperfect target region in a restricted ‘onion-shell’
geometry bounded by two nested membranes of arbitrary shapes. For such a setting, encountered
in diverse molecular signal transduction pathways or in the narrow escape problem with additional
steric constraints, we derive an exact spectral form of the PDF, as well as present its approximate
form calculated by help of the so-called self-consistent approximation. For a particular case when
the nested domains are concentric spheres, we get a fully explicit form of the approximated PDF,
assess the accuracy of this approximation, and discuss various facets of the obtained distributions.
Our results can be straightforwardly applied to describe the PDF of the terminal reaction event in
multi-stage signal transduction processes.

1. Introduction

A completed reaction event between a diffusive particle and a specific target site often represents an
intermediate yet crucial step in diverse biochemical and biophysical processes. In many realistic situations a
particle diffuses in a shell-like region delimited by impermeable outer and inner boundaries and reacts with
an immobile target region (e.g. a catalytic site; in the remainder, we simply refer to ‘the target’) placed on
either of the boundaries. In some applications, this target is located on the inner boundary (figure 1(a)).
This is a common situation in chemoreception processes [1, 2] as well as, more generally, in cellular signal
transduction pathways [3–5]. Here the shell-like domain can be an extracellular medium and the inner
boundary represents the (outer) plasma membrane of a cell. In such a setting the particle is commonly
referred to as the ‘ligand’ or, in the literature on signal transduction, as the first ‘messenger’. The target is a
receptor that undergoes a conformational change when the first messenger binds to it, stimulating then a
synthesis of the second messenger which moves inside the cell itself, i.e. within the inner domain. Similarly
the particle may cross the cell wall through membrane pores. In a different scenario, the shell-like domain
can be the intracellular medium (cytoplasm). Then the outer boundary is the cellular membrane and the
particle can be, e.g. the second messenger, which searches diffusively for a specific target on the inner
boundary, e.g. the nuclear membrane, then launching a cascade of processes upon binding to this site. In
other situations, the target can be located on the outer boundary (figure 1(b)). It can be a tiny aperture—an
escape window, in which case the shell-like domain delimited by two boundaries can be regarded as the
cortex region, while the inner domain may represent, e.g. the centrosome, as studied in [6, 7]. Such a
geometrical setup differs from (and is more complicated than) usually studied geometrical settings of the
by-now classical narrow escape problem (NEP) [8–23] due to the presence of a centrosome. From a
different perspective, this case can be viewed as an initial step in cell-to-cell communication processes [2–5]
(see also recent results in [24, 25]). In this important situation, a particle is the first signalling molecule
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Figure 1. Sketch of our geometrical setup. A domain Ω2 with an impermeable boundary ∂Ω2 is nesting a smaller domain Ω1

enclosed by an impermeable boundary ∂Ω1. A particle, whose starting position is indicated by the blue point, diffuses within the
shell-like domain Ω = Ω2\Ω1 delimited by the two boundaries and seeks an immobile target (drawn here as an interval in red)
placed on either the inner boundary (a) or the outer boundary (b).

emitted at a specified location within the intracellular medium, which then has to engage with the target on
the cellular membrane. After a reaction with this region, the cell secretes a ligand that moves diffusively in
the extracellular domain until it binds to another cell. The binding event is followed by the so-called
internalisation process: the signal propagates within the second cell in a cascade of successive reactions, as
described above.

Understanding the kinetic behaviour of such multi-stage processes comprising a specific reaction event
as one of its controlling factors is impossible without the knowledge of how long such a single reaction stage
lasts, starting with the launch of a diffusive particle and terminating at the instant of a successful reaction
event. The duration of this stage is a random variable, which in what follows we call the first reaction time
(FRT). Its distribution can be rather broad even in bounded systems with a simple geometry [26, 27]. From
the mathematical point of view, the derivation of the probability density function (PDF) of FRTs is
well-established [28–30]: it consists of solving the diffusion equation within the domain under
consideration, subject to the appropriate boundary conditions. This solution determines the so-called
survival probability, i.e. the probability that the particle did not react up to the time instant t, and the
desired FPT PDF is deduced as the derivative of the survival probability with respect to t, taken with the
minus sign. However, the domain may have a complicated shape, and even more crucially, the appropriate
boundary conditions for chemical reactions are the so-called mixed boundary conditions: a zero-current
boundary condition on the impermeable surfaces and a reactive boundary condition on the target. Thus, in
general, this problem has no explicit exact solutions, except for asymptotical results obtained for the NEP in
the limit of a vanishingly small size of the escape window [8–10] as well as several spectral exact solutions
derived for simple geometries [31–33]. In the general case, one therefore either has to resort to stochastic
simulations (ranging from lattice random walks or basic Monte Carlo schemes to more advanced
techniques such as enhanced Green’s function reaction dynamics [34]), or to a numerical analysis of the
boundary value problem via standard discretisation schemes (such as, e.g. finite difference or finite element
methods). Here, we follow another direction which consists in developing approximate analytical methods.
The latter are, of course, more advantageous because they show how the pertinent properties depend on the
system parameters, a dependence that can be verified by comparison with simulations results or
experimental data. The predictions of approximate methods can be also tested against available exact
solutions in simple geometries.

One such approximate method is the self-consistent approximation (SCA) originally developed in [35]
to calculate the Smoluchowski-type constant for reactions with a small centre situated on the otherwise
impenetrable surface of a spherical domain. In essence, one replaces the mixed Robin–Neumann boundary
condition by an inhomogeneous Neumann boundary condition, and then establishes an appropriate closure
relation for the current through the surface of the target. This approach has been subsequently invoked to
study several reaction-diffusion problems. Specifically, it was used to calculate (i) the mean velocity of a
directional motion of a colloid decorated with a catalytic patch, which prompts reactions in the embedding
medium and creates a self-propulsive force [36]; (ii) the mean FRT in the NEP with long-ranged
interactions with the boundary and an entropic barrier at the aperture [23]; and (iii) the mean FRT for
particle binding to a specific site on a stretched DNA [37]. For the latter case the SCA was also compared
against the predictions of another approximate approach, the so-called boundary homogenisation method,
and was shown to be more accurate than the latter [38]. Extending the SCA beyond the mean rates, the full
PDF of the FRT was determined for the NEP in circular and spherical domains [39] and for the binding
kinetics to a specific site on an impermeable cylinder, which mimics an elongated DNA, in a bigger
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cylindrical domain [40]. Moreover, upon a comparison with the numerical solution of the mixed
boundary-value problem it was demonstrated that the SCA is a very reliable approximation, whose
predictions agree very well with the numerical results obtained through the finite elements method.

Here we study the statistics of the FRTs in the restricted ‘onion-shell’ geometry depicted in figure 1
which consists of two nested bounded domains: an inner domain Ω1 placed inside a larger domain Ω2. A
diffusive point-like particle is launched at time t = 0 from an arbitrary fixed position within the shell-like
domain Ω = Ω2\Ω1 delimited by the impermeable boundaries ∂Ω1 and ∂Ω2. The particle then searches for
the immobile target T located at either of the delimiting boundaries. Such settings correspond to many
realistic situations encountered in molecular signal transduction or in the NEP with additional steric
constraints [6, 7]. Considering the reaction between the particle and the target we pursue the general case in
which a reaction (or binding event) is not perfect and takes place only with a finite probability. This defines
the intrinsic chemical reactivity κ with 0 < κ < ∞ (see, e.g. [23, 29, 35, 36, 41–46]). When κ = ∞ we are
in the case of perfect reactions, occurring immediately upon first contact. The FRT in this case is then
exactly the first-passage time to the target, similar to Smoluchowski’s original assumption [47]. For finite κ,
the reaction is not instantaneous and may not complete upon the first encounter of the diffusive particle
with the target, thus necessitating repeated diffusive loops and reaction attempts. Clearly, the FRT is always
longer than the first-passage time and strongly depends on the value of κ. Our aim here is to calculate the
PDF of the FRT.

We proceed as follows. We start with the general situation in which the nested domains have arbitrary
shape with (sufficiently smooth) impermeable boundaries. Capitalising on the recent analysis [31], we
present a formally exact spectral solution of the problem and then develop an SCA for domains of arbitrary
shapes. Note that the SCA has only been worked out previously for some particular geometries. Here, we
establish a general theoretical framework which includes previous geometrical settings as particular cases.
Moreover, all steps involved in this general approach are clearly identified and will thus be useful and
instructive for the analysis of the FRT statistics in other systems. We then apply the developed framework to
the case when the domains Ω1 and Ω2 are concentric balls, such that Ω has the form of a spherical shell. For
this particular case, we present explicit forms of the FRT PDF, discuss its detailed behaviour and also
compare it against the formally exact spectral solution, in which the entering matrices are inverted
numerically (see below). We note that the obtained FRT PDF can be considered as a ‘building block’ in
more complex signal transduction pathways taking place in nested bounded domains (see, e.g. [48] for
more details).

The paper is organised as follows. In section 2, we present the mathematical formulation of the FRT
problem and its formal spectral solution as obtained in [31]. Mainly we derive a general form of the SCA,
which is valid for domains of arbitrary shape and connectivity, even including unbounded domains with a
bounded boundary4. In section 3 the developed framework is applied to spherical shell domains, for which
we evaluate the novel exact spectral solution and also provide an explicit prediction for the generating
function of the FRT. The result is also discussed for some particular limiting cases. Finally, we analyse the
corresponding FRT PDF via numerical inversion of the Laplace transform. In section 4 we present a brief
discussion of the general form of the obtained FRT PDF and its asymptotic behaviour. In addition, we show
how the shape of the PDF depends on the local curvature of the boundary in the vicinity of the target and
also on the radius of the inner domain. We conclude in section 5 with a brief summary of our results and
outline some perspectives for future research. Details of intermediate calculations and some of the results
are relegated to appendices. In appendix A we discuss the accuracy of the SCA in spherical-shell domains as
compared to the exact spectral solution, in appendix B we determine the mean FRT, while in appendix C we
sketch an extension of our results to a planar circular annulus domain. Appendix D yields complementary
insights via the analysis of the distribution of reaction event locations.

2. Spectral solution and the SCA in Laplace domain

Consider a point-like particle with diffusivity D which starts at time zero at position x and diffuses within a
bounded, d-dimensional Euclidean domain Ω ⊂ Rd. The boundary ∂Ω of Ω is assumed to be sufficiently
smooth and is reflecting everywhere, except for the target denoted by T . Upon hitting the target, a particle
reacts with it with a finite probability which defines the intrinsic chemical reactivity κ [23, 35, 36]. The FRT

4 The mathematical term ‘bounded boundary’ is used in the sense of a compact (loosely, ‘finite’) boundary.
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τ is a random variable, that is distributed according to the PDF

H(t|x) = −∂S(t|x)

∂t
. (1)

Here S(t|x) = Px{τ > t} is the survival probability, that satisfies the diffusion equation [28]

∂S(t|x)

∂t
= DΔS(t|x) (x ∈ Ω), (2)

where Δ is the Laplace operator, subject to the initial condition

S(0, x) = 1 (3)

and the mixed Robin–Neumann boundary conditions{−D∂S(t, x)/∂n = κS(t, x) (x ∈ T )

−D∂S(t, x)/∂n = 0 (x ∈ ∂Ω \ T )
. (4)

Here ∂/∂n is the normal derivative oriented outwards from the domain. The first relation in (4) states that
the diffusive flux toward the target T is equal to the reaction flux on that target. In turn, the second relation
indicates zero diffusive flux on the remaining part of the impermeable boundary. These boundary
conditions can be compactly written as

− ∂S(t|x)

∂n
= qIT (x)S(t|x) (x ∈ ∂Ω), (5)

where IT (x) is the indicator function of the subset T that is IT (x) = 1 if x ∈ T and 0 otherwise.
The parameter q = κ/D (in units of inverse length) ranges from 0 to infinity and quantifies the interplay

between bulk diffusive transport (characterised by D) and surface reaction (characterised by κ). After
multiplication by an appropriate length scale R of the confining domain, one can distinguish
reaction-limited (small qR) and diffusion-limited (large qR) processes [49–51]. The inverse of q can also be
interpreted as the size of a typical region around the first arrival point on the boundary, in which the
reaction occurs (see [52–54] and appendix D for details).

2.1. Spectral solution in Laplace domain
We focus on the Laplace-transform

H̃(p|x) =

∞∫
0

dt e−ptH(t|x) (6)

of the first-reaction time PDF, which is related to the Laplace-transformed survival probability via
H̃(p|x) = 1 − pS̃(p|x) and thus satisfies the modified Helmholtz equation

(p − DΔ)H̃(p|x) = 0 (x ∈ Ω) (7)

subject to the mixed boundary conditions

∂H̃(p|x)

∂n
+ qIT (x)H̃(p|x) = qIT (x) (x ∈ ∂Ω). (8)

As discussed in [31] a formal spectral solution of this problem can be obtained by use of the
Dirichlet-to-Neumann operator Mp, which associates to a given function f(x) on the boundary ∂Ω another
function g(x) on that boundary as follows:

Mp : f (x) → g(x) =

(
∂u(x)

∂n

)∣∣∣∣
∂Ω

, where

{
(p − DΔ)u(x) = 0 (x ∈ Ω)

u(x) = f (x) (x ∈ ∂Ω)
. (9)

In other words, for a given function f(x), one solves the modified Helmholtz equation with Dirichlet
boundary condition u(x) = f(x) and then evaluates the normal derivative of u(x). It is known that Mp is a
pseudo-differential self-adjoint operator which represents the action of the normal derivative onto a
solution of the modified Helmholtz equation [55–59]. As a consequence the mixed boundary condition (8)
can be written as

MpH̃(p|x) + qIT (x)H̃(p|x) = qIT (x). (10)

4



New J. Phys. 23 (2021) 123049 D S Grebenkov et al

Keeping the same notation IT for the operator of multiplication by the function IT (x), one can formally
invert this operator equation to get

H̃(p|x) =
(
Mp/q + IT

)−1
IT (x) (x ∈ ∂Ω), (11)

from which the solution H̃(p|x) can be extended to the whole domain Ω by using the Dirichlet Green’s
function (see below). Since the boundary ∂Ω was assumed to be bounded, the spectrum of the
self-adjoint operator Mp with p � 0 is discrete, i.e. there is an infinite sequence of eigenvalues,

μ
(p)
0 � μ

(p)
1 � . . . ↗ +∞, associated to eigenfunctions {v(p)

n (x)} forming an orthonormal basis of the
space L2(∂Ω) of square integrable functions on ∂Ω. Using these eigenfunctions, one can represent the above
solution as

H̃(p|x) =
∞∑

n,n′=0

v(p)
n (x)

[(
M(p)/q + K(p)

)−1
]

n,n′
C∗

n′ (x ∈ ∂Ω), (12)

where M(p) is the diagonal matrix of eigenvalues μ(p)
n , M(p)

n,n′ = δn,n′μ
(p)
n (δn,n′ denoting the

Kronecker symbol),

Cn =

∫
∂Ω

dxIT (x)v(p)
n (x) =

∫
T

dx v(p)
n (x), (13)

and [
K(p)

]
n,n′ =

∫
∂Ω

dx v(p)
n (x)IT (x)[v(p)

n′ (x)]∗ =

∫
T

dx v(p)
n (x)[v(p)

n′ (x)]∗ (14)

is the matrix representation of the operator IT with respect to the eigenbasis {v(p)
n }. In the above the

asterisk denotes the complex conjugate. This construction is an exact solution of the problem defined by (7)
and (8), which requires, however, the inversion of the infinite-dimensional matrix M(p)/q + K(p). We stress
that it is valid for any Euclidean domain Ω with a sufficiently smooth bounded boundary and target T of
any shape, not necessarily small (it may, in fact, cover the entire boundary ∂Ω), nor necessarily
simply-connected; in fact, the solution holds for multiple target, as well.

While the solution (12) was derived for x ∈ ∂Ω, its extension to any x ∈ Ω can be obtained in a
standard way by solving the Dirichlet boundary value problem for the modified Helmholtz equation (7),

H̃(p|x) =

∫
∂Ω

ds H̃(p|s)

(
−D

∂

∂n
G̃∞(x′, p|x)

)
x′=s︸ ︷︷ ︸

=̃j∞(s,p|x)

, (15)

where G̃∞(x′, p|x) is the Dirichlet Green’s function for equation (7). Here, the expression in parentheses is
the Laplace transform of the probability flux density j∞(s, t|x), that yields a probabilistic interpretation to
this extension: a diffusing particle first hits the boundary ∂Ω at some point s (the first-passage problem
described by j∞(s, t|x)), from which it continues searching the target (the first-reaction time problem
described by H(t|s)). Their convolution in time domain takes the form of a product in (15) in Laplace
domain. Substituting the spectral decomposition (12), one finally gets,

H̃(p|x) =
∞∑

n,n′=0

V (p)
n (x)

[(
M(p)/q + K(p)

)−1
]

n,n′
C∗

n′ (x ∈ Ω), (16)

with

V (p)
n (x) =

∫
∂Ω

ds v(p)
n (s)̃j∞(s, p|x). (17)

In this way, one extends the eigenfunctions v(p)
n (s) of the Dirichlet-to-Neumann operator, defined on the

boundary ∂Ω, into the whole domain Ω. Such extensions can also be understood as the eigenfunctions of
the associated Steklov problem.

At a first glance, the spectral representation (12) may look useless, as it expresses an unknown but
intuitively appealing quantity H̃(p|x) in terms of several unknown and less clear quantities (eigenfunctions
v

(p)
n , matrices M(p) and K(p)). In section 3 we will discuss that in some geometric settings the latter

quantities can be found explicitly thus rendering the above formal solution suitable for both numerical
computations and analytical studies.
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2.2. Self-consistent approximation
We now turn to the SCA as developed and applied in [23, 35–40]. This approximate method consists in
replacing the mixed Robin–Neumann boundary condition (5) by an effective Neumann boundary
condition. The latter preserves a zero flux boundary condition at the reflecting part ∂Ω \ T of the boundary
and stipulates that the current through the target T is a constant that does not depend on the spatial
coordinates within the target. In other words, one aims at solving the modified problem

(p − DΔ)S̃app(p|x) = 1 (x ∈ Ω), (18)

−∂S̃app(p|x)

∂n
=

J

p
IT (x) (x ∈ ∂Ω), (19)

where the subscript ‘app’ highlights that the solution of this problem, S̃app(p|x), is meant to approximate
S̃(p|x). The adjustable parameter J has to be determined from the self-consistent closure condition, which
requires that the original Robin boundary condition on the target T is satisfied on average:

∫
T

dx

(
−∂S̃app(p|x)

∂n

)
=

∫
T

dx
(
qS̃app(p|x)

)
. (20)

Using the modified boundary condition (19), one gets

J =
qp

|T |

∫
T

dxS̃app(p|x), (21)

where |T | is the area of the target T . In turn, setting

H̃app(p|x) = 1 − pS̃app(p|x) = Jh̃app(p|x),

the problem defined by equations (18) and (19) reads

(p − DΔ)h̃app(p|x) = 0 (x ∈ Ω), (22)

∂h̃app(p|x)

∂n
= IT (x) (x ∈ ∂Ω), (23)

while the closure relation (21) becomes

J = q

⎛
⎝1 − J

|T |

∫
T

dx h̃app(p|x)

⎞
⎠ ,

from which

J =

⎛
⎝1

q
+

1

|T |

∫
T

dx h̃app(p|x)

⎞
⎠−1

. (24)

The modified boundary value problem, equations (22) and (23), is generally much simpler than the original
one. In particular, it can be solved in an explicit exact form for some geometric settings, see the examples in
[23, 35–40] and in section 3. In general, one can express its solution by using the eigenbasis of the
Dirichlet-to-Neumann operator. In fact, as Mp represents the normal derivative in (23), its inversion
immediately yields

H̃app(p|x) = JM−1
p IT (x) =

∞∑
n=0

v
(p)
n (x)

μ
(p)
n /J

C∗
n (x ∈ ∂Ω), (25)

where the Cn are given by (13). Substituting this solution into (24), we get

J =

(
1

q
+

1

|T |

∞∑
n=0

|Cn|2

μ
(p)
n

)−1

. (26)

We emphasise that the solution (25) with (26) does not require any matrix inversion and is thus explicit,
once the eigenbasis of the Dirichlet-to-Neumann operator is known (e.g. in the cases of an interval and of
rotation-invariant domains, see the examples in [60] and in section 3). Note also that the expressions for

6
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Figure 2. Sketch of the geometrical setup in section 3: a spherical shell domain Ω is delimited by the impermeable boundaries of
two concentric balls, Ω1 with radius R1 and Ω2 with radius R2 (R1 < R2). The small red ball indicates the starting position of the
diffusing particle, with spherical coordinates (r, θ). Note that the azimuthal angle φ does not matter in such a geometry due to
the axial symmetry. (a) The target (dark blue region) is located on the inner surface. (b) The target (light red region) is located
on the outer surface.

the SCA derived in [23, 35–40] could be directly found from this general solution for each considered
geometric setting. An extension of the expression (25) to any x ∈ Ω is simply

H̃app(p|x) =
∞∑

n=0

V (p)
n (x)

μ
(p)
n /J

C∗
n , (27)

with V (p)
n (x) given by (17).

The comparison of the spectral solution (12) with (25) indicates that the SCA can formally be
understood as a sort of approximate inversion of the matrix M(p)/q + K(p). More precisely, the SCA is
retrieved if [(

M(p)/q + K(p)
)−1

]
n,n′

≈ δn,n′

μ
(p)
n /q

(
1 +

q

|T |

∞∑
n=0

|Cn|2

μ
(p)
n

)−1

. (28)

This specific form of approximate inversion is quite unexpected. The first factor is the result of the inversion
of the diagonal matrix M(p)/q, if the matrix K(p) was neglected. In turn, the second factor, which does not
depend on n, is a common correction to all diagonal elements due to the matrix K(p). It is worthwhile
noting that this approximation differs from the so-called diagonal approximation developed in [19–22] in
the context of surface-mediated intermittent diffusion, in which the ‘correction’ matrix (like K(p) here) was
approximated by keeping only its diagonal elements, allowing to obtain explicit approximate solutions. We
also stress that the limit q →∞ of a perfectly reactive target is rather challenging for the exact spectral
solution in (12) because the factor 1/q stands in front of the matrix M(p) representing the dominant
contribution of an unbounded operator Mp, as compared to the bounded operator IT represented by the
matrix K. Concurrently, this limit is trivial within the SCA.

In the next section we apply this general approach to spherical shell domains, whose rotational
symmetry greatly simplifies the above solutions and permits to obtain explicit expressions.

3. Spherical shell domains

We consider two variants of the FRT problem in a spherical shell domain Ω = {x ∈ R3 : R1 < |x| < R2},
between two concentric spheres of radii R1 < R2, respectively (see figure 2). The boundary ∂Ω of the
domain is fully reflecting except for a circular cap region at the north pole, the target, defined in spherical
coordinates (r, θ,φ) by the inequality θ < ε. This target can be located either on the boundary of the inner
sphere (problem I) or on the boundary of the outer sphere (problem II). In our further analysis we
concentrate on problem I with the target on the boundary of the inner sphere. The analysis for the problem
II is very similar and we will merely present the final results without detailed derivation.

Since the boundary ∂Ω of the spherical shell domain consists of the boundaries of two disjoint spheres,
∂Ω = ∂Ω1 ∪ ∂Ω2, one of which is fully reflecting it is convenient to modify the definition (9) of the
Dirichlet-to-Neumann operator by restricting its action only on the sphere which contains the target
[60, 61]. For instance, for Problem I, one defines the operator Mp that associates to a given function f(x) on

7
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∂Ω1 another function g(x) on the same boundary,

Mp : f (x) → g(x) =

(
∂u(x)

∂n

)∣∣∣∣
∂Ω1

, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p − DΔ)u(x) = 0 (x ∈ Ω)

u(x) = f (x) (x ∈ ∂Ω1)

∂u(x)/∂n = 0 (x ∈ ∂Ω2)

. (29)

3.1. Problem I. Target on the inner sphere
We start with the exact spectral solution discussed in the previous section. Since the Dirichlet-to-Neumann
operator does not depend on the target location, we take advantage of the rotational invariance of the shell
domain to determine the eigenbasis of Mp along with the matrices M(p) and K(p) [31, 46, 60]. Moreover, as
the circular target preserves the axial symmetry of the problem, the solution does not depend on the angle
φ. One can therefore keep only the eigenfunctions that are independent of φ, see [60] for details,

vn(θ) =
1

R1

√
2n + 1

4π
Pn(cos θ), (30)

where Pn(z) are Legendre polynomials, and

μ(p)
n = −g′n(R1), (31)

with

gn(r) =
k′n(αR2)in(αr) − i′n(αR2)kn(αr)

k′n(αR2)in(αR1) − i′n(αR2)kn(αR1)
. (32)

Here α =
√

p/D, in(z) =
√
π/(2z)In+1/2(z) and kn(z) =

√
2/(πz)Kn+1/2(z) are the modified spherical

Bessel functions of the first and second kind. The prime here and henceforth denotes the derivative with
respect to the argument. The radial functions gn(r) satisfy the second-order differential equation

g′′n (r) +
2

r
g′n(r) − n(n + 1)

r2
gn(r) − α2gn(r) = 0, (33)

with gn(R1) = 1 and g′n(R2) = 0. Note that here the eigenfunctions vn(θ) are independent of p. Using the

explicit form of the Dirichlet Green’s function from [60], one also gets V (p)
n (x) = gn(r)vn(θ).

One can also compute explicitly the matrix elements Kn,n′ (see equation (D12) of [31]), which are
independent of the Laplace parameter p,

Kn,n′ =
√

(n + 1/2)(n′ + 1/2)

min{n,n′}∑
k=0

Bk
nn′

Pn+n′−2k−1(cos ε) − Pn+n′−2k+1(cos ε)

2(n + n′ − 2k) + 1
, (34)

where

Bk
nn′ =

AkAn−kAn′−k

An+n′−k

2n + 2n′ − 4k + 1

2n + 2n′ − 2k + 1
, Ak =

Γ(k + 1/2)√
πΓ(k + 1)

. (35)

Note that a more general case of multiple non-overlapping circular targets was also considered in [31].
Finally, the integral in (13) can be easily performed to yield

Cn = R1

√
π√

2n + 1
(Pn−1(cos ε) − Pn+1(cos ε)) . (36)

Substituting these expressions into (16) we get

H̃(p|x) =
∞∑

n,n′=0

√
2n + 1gn(r)Pn(cos θ)

[(
M(p)/q + K

)−1
]

n,n′

Pn′−1(cos ε) − Pn′+1(cos ε)

2
√

2n′ + 1
, (37)

with the standard convention P−1(z) ≡ 1. Together with the explicit formulas for the matrices M(p) and K,
this is the exact solution of the original problem in the Laplace domain. However, we are unable to invert
the infinite-dimensional matrix M(p)/q + K analytically and have to resort to a numerical inversion. In
doing so we truncate the matrices M(p) and K at some order and exercise care afterwards that finite-size
effects do not matter, such that our numerical solution is valid with any prescribed accuracy.

While our main focus is on the case of a fixed starting point x, it is instructive to consider two other
common situations, in which the starting point is uniformly distributed, either in the bulk, or on a sphere
of some radius r. The former case can be relevant when the particle is produced inside the domain in a

8
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random location. In turn, the second case accounts for situations when a cell has many membrane channels
for a given molecular species, and thus the release point to the shell of interest on the inner membrane
surface can be viewed as randomly located. In both cases the above solution in (37) is simplified. The
surface-averaged solution reads

H̃(p|r) =
1

4πr2

∫
|x|=r

dx H̃(p|x)

=

∞∑
n′=0

g0(r)
[(

M(p)/q + K
)−1

]
0,n′

Pn′−1(cos ε) − Pn′+1(cos ε)

2
√

2n′ + 1
, (38)

where the orthogonality of the Legendre polynomials leads to the cancellation of all terms with n > 0. The
volume-averaged solution involves an additional integral over r,

H̃(p) =
1

4π(R3
2 − R3

1)/3

∫
Ω

dx H̃(p|x) =
3

R3
2 − R3

1

R2∫
R1

dr r2H̃(p|r).

Multiplying (33) by r2 and integrating over r from R1 to R2, one gets

R2∫
R1

dr r2g0(r) =
R2

2g′0(R2) − R2
1g′0(R1)

α2
=

R2
1μ

(p)
0

p/D
, (39)

from which

H̃(p) =
3DR2

1μ
(p)
0

p(R3
2 − R3

1)

∞∑
n′=0

[(
M(p)/q + K

)−1
]

0,n′

Pn′−1(cos ε) − Pn′+1(cos ε)

2
√

2n′ + 1
. (40)

We next turn to the SCA developed in the previous section. In the geometry considered here our
equation (27) becomes

H̃app(p|x) = J
∞∑

n=0

gn(r)Pn(cos θ)
1

μ
(p)
n

Pn−1(cos ε) − Pn+1(cos ε)

2
, (41)

where the parameter J is determined from (26) as

J =

(
1

q
+

1

2(1 − cos ε)

∞∑
n=0

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)μ(p)
n

)−1

, (42)

and we took into account the fact that the area |T | of the spherical cap is given explicitly by
|T | = 2πR2

1(1 − cos ε). The surface-averaged and volume-averaged approximations are particularly simple,

H̃app(p|r) = J
g0(r)

μ
(p)
0

1 − cos ε

2
(43)

and

H̃app(p) = J
3R2

1D

p(R3
2 − R3

1)

1 − cos ε

2
= J

D|T |
p|Ω| . (44)

In appendix A, we illustrate the remarkable agreement between the prediction (41) of the SCA and the exact
solution (37), even in the case when the target covers half of the inner sphere.

Below we consider two particular cases in which the system reduces to previously studied models.
The entire boundary of the inner sphere is a target. In the particular case when the target extends over

the whole boundary of the inner sphere, i.e. when ε = π, the matrix K is the identity matrix due to the
orthonormality of the eigenfunctions {v(p)

n }. Moreover in this case all terms in (37) with n > 0 vanish, such
that the exact spectral solution becomes

H̃ε=π(p|x) =
g0(r)

1 + μ
(p)
0 /q

, (45)

where g0(r) and μ
(p)
0 in (31) and (32) are explicitly given by

9
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g0(r) =
R1

r

eα(R1−r)(e2αr(1 + αR2) − e2αR2 (1 − αR2))

e2αR1 (1 + αR2) − e2αR2 (1 − αR2)
, (46)

μ
(p)
0 =

e2αR1 (1 − αR1)(1 + αR2) − e2αR2 (1 + αR1)(1 − αR2)

R1 (e2αR1 (1 + αR2) − e2αR2 (1 − αR2))
. (47)

We thus retrieve the textbook solution for a spherical target surrounded by a larger reflecting sphere (see,
e.g. [62] for a more detailed discussion). Interestingly, the SCA result (41) also yields the exact result (37)
when ε→ π. As a consequence, the SCA appears to be accurate not only in the limit of a vanishingly small
target, ε→ 0, but also exact in the opposite limit ε→ π. This is a direct consequence of the self-consistent
closure condition and one of the reasons why the SCA yields accurate results even for the intermediate case
of large targets.

Limit R2→∞. In the limit R2 →∞ the outer reflecting boundary extends to infinity and one retrieves a
common setting of a single circular target on a sphere, explored by a particle diffusing in the unbounded
space Ω = {x ∈ R3 : |x| > R1}. This is precisely the classical problem of binding of a ligand that diffuses in
an extracellular medium to a finite-sized receptor on an impermeable boundary (see, e.g. [1, 35]). Recall,
however, that former studies of this problem concentrated exclusively on the mean FRTs (or mean reaction
rates). Our analysis below shows that the full PDF of the FRTs can be evaluated for such a geometrical
setting.

Even though the domain itself is unbounded, its boundary ∂Ω is bounded, and the above solution is still
applicable. From the asymptotic behaviour of the modified spherical Bessel functions in(z) and kn(z) one
finds that the radial functions gn(r) converge to

gn(r) →− kn(αr)

kn(αR1)
. (48)

These determine the eigenvalues μ(p)
n via equation (31). The other quantities remain unchanged. To our

knowledge, this is the first time when exact and approximate expressions for the Laplace-transformed PDF
H̃(p|x) are presented in this geometric setting.

3.2. Problem II. Target on the boundary of the outer sphere
As we already remarked, the case of the target on the outer sphere is fairly similar to the previously
considered problem I. Therefore, here we just list the modifications by using the known form of the
Dirichlet-to-Neumann eigenbasis [60],

vn(θ) =
1

R2

√
2n + 1

4π
Pn(cos θ) (49)

and
μ(p)

n = g′n(R2), (50)

with

gn(r) =
k′n(αR1)in(αr) − i′n(αR1)kn(αr)

k′n(αR1)in(αR2) − i′n(αR1)kn(αR2)
, (51)

satisfying gn(R2) = 1 and g′n(R1) = 0.5 In turn, the matrix K remains unchanged, as well as the formulae
(37), (41), and (42) for H̃(p|x), H̃app(p|x), and J.

In the limit R1 → 0, the reflecting inner sphere shrinks to a point, and hence, does not hinder anymore
the particle dynamics. One thus retrieves the NEP for an escape from a sphere through a circular hole on its
boundary. In this limit, radial functions gn(r) converge to

gn(r) → in(αr)

in(αR2)
, (52)

and we therefore recover the SCA result derived in [39] (indeed, equation (A.21) from [39], together with
equations (A.13), (A.17) and (A.18), is identical with equations (41) and (42)). The remarkable accuracy of
the SCA prediction is illustrated in appendix A.

3.3. The PDF in time domain
The solution H(t|x) in time domain can be obtained via inverse Laplace transformation by using the residue
theorem. As the spherical shell domain is bounded, the Laplace operator with mixed boundary conditions

5 Note that there is a misprint in equation (B2) of [60], in which g′n(R) should be replaced by g′n(L).
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Figure 3. Comparison between the exact solution H(t|x) (filled circles) and the SCA result Happ(t|x) (solid line) both of which
are obtained numerically via inverse Laplace transformation of H̃(p|x) and H̃app(p|x) by using the Talbot algorithm. The latter
quantities were calculated with truncation at nmax = 25. The target is located at the inner sphere, with parameters: R1 = 0.1,
R2 = 1, r = 0.45, θ = 0, and D = 1. (a) q = 1, ε = 0.1; (b) q = 1, ε = π/2; (c) q = 100, ε = 0.1; (d) q = 100, ε = π/2.

governing the diffusion-reaction dynamics in equations (2) to (4) has a discrete spectrum, i.e. H̃(p|x) has
infinitely many poles {pk} lying on the negative axis in the complex plane p ∈ C. Formally, these poles are
determined as zeros of the determinant of the matrix M(p)/q + K(p) when the matrix is not invertible,
yielding a singular, pole-like behaviour of H̃(p|x). If {γ(p)

n } are the eigenvalues of this matrix, then the poles
correspond to such values of p at which at least one γ(p)

n is zero. The poles determine the eigenvalues of the
Laplace operator: λn = −pn/D. Evaluating the residues of H̃(p|x), one formally gets the spectral expansion
of the solution in time domain:

H(t|x) =
∞∑

n=1

cn(x)e−Dtλn , (53)

where the cn(x) are determined by these residues.
In practice it is more convenient to search the poles {p′k} of H̃app(p|x), that can be used as

approximations of {pk}. The approximate poles are determined by an explicit equation on p, at which the
parameter J from (42) diverges,

1

2(1 − cos ε)

∞∑
n=0

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)μ(p)
n

= −1

q
. (54)

The computation of the residue at each pole p′k and their properties are discussed for the case of a sphere in
[39]. Instead of this analysis we will invert the Laplace transform numerically by using the Talbot algorithm.

Figure 3 illustrates the behaviour of the PDF H(t|x) and its SCA Happ(t|x) for a small target located on
the inner sphere. Expectedly, the PDF is broader when the target is smaller and less reactive. In particular,
for the case q = 1 and ε = 0.1, the PDF spans over eight orders of magnitude in time. Figure 4 presents the
same quantities for the target located at the outer sphere. While we kept the same angular sizes of the target,
their linear sizes are R2/R1 = 10 times larger here, which explains why the distributions are narrower in
figure 4 in comparison to figure 3. We discuss these PDFs in the next section.

4. Discussion

In this section we discuss several features of the calculated PDF H(t|x) such as the different regimes it
exhibits as well as the asymptotic behaviour. We also evoke the question of the ‘screening’ effects of the
boundary on, e.g. a perfectly-reactive target (κ = ∞) and finally analyse the ‘concealment’ effect of the
inner sphere.
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Figure 4. Comparison between the exact spectral solution for H(t|x) (filled circles) and the SCA result Happ(t|x) (solid line) both
of which are obtained numerically via the inverse Laplace transform of H̃(p|x) and H̃app(p|x) by help of the Talbot algorithm. The
latter quantities were calculated with truncation at nmax = 25. The target is located at the outer sphere, with parameters:
R1 = 0.1, R2 = 1, r = 0.45, θ = 0, and D = 1. (a) q = 1, ε = 0.1; (b) q = 1, ε = π/2; (c) q = 100, ε = 0.1; (d) q = 100,
ε = π/2.

4.1. The structure of the PDF in time domain
One may notice that the PDF H(t|x) evaluated in the previous section as well as the exact spectral solution
exhibits four different temporal regimes delimited by three characteristic time scales. Namely, an initial
regime that extends from time zero up to the most probable (typical) FRT tmp; a second regime in which the
PDF descends from the maximal value; then a plateau-like regime and, ultimately, an exponential decay at
long times. We note that this is quite a generic behaviour of the PDFs of the FRTs in bounded domains,
which has been amply discussed in previous papers, see, e.g. [39, 40, 62]. Here, for the sake of completeness,
we present a succinct account of the different temporal regimes and the corresponding asymptotic
behaviour.

At short times H(t|x) is characterised by the singular Lévy–Smirnov-type form [28]

H(t|x) ∼ At
exp

(
−ρ2/(4Dt)

)
t3/2

(t → 0), (55)

where At is a computable amplitude and ρ is the shortest distance between the starting point and the target.
This regime is thus dominated by the ‘direct’ trajectories [62–64], which go straight from the initial
point to the target. As a consequence, in this regime the dimensionality of the embedding space and of the
boundaries does not come into play, unless a particle starts close to the south pole while the target is located
at the north pole, such that the optimal path is ‘interacting’ with either of the boundaries. Note that At in
(55) is t-independent for perfect target (κ = ∞), and is an algebraic function of time, At ∼ κt, for
imperfect reactions. In the latter case the particle may be reflected from the target and react with it only
upon some subsequent arrival to its location. Therefore, in this latter case H(t|x) is smaller for short times
than in the case of perfect reactions.

The second regime corresponds to a power-law descent from the maximum. This regime is also
universal, in the sense that it is independent of the actual dimensionality of space, and it terminates at the
characteristic time tc when a particle first engages with any of the boundaries; thus realising that it moves in
a bounded domain. Note that this intermediate power-law decay is responsible for an effective broadness of
the PDF. As demonstrated earlier in [26, 27], in situations when this regime lasts sufficiently long, the FRTs
observed for two realisations of the process may become disproportionally different.

Next a plateau-like regime with a very slow variation of H(t|x) emerges due to the gap between the first
and second eigenvalues λ1 and λ2 (which are related to the poles, i.e. the solutions of equation (54) above).
In this regime all values of the FRT are nearly equally probable.
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Finally, at times t ∼ 1/(Dλ1) the PDF crosses over to an exponential decay of the form

H(t|x) ∼ exp (−Dtλ1) . (56)

In summary, there is an appreciable amount of the trajectories that lead to much earlier reaction times,
see the discussions in [39, 40, 62, 63, 65]. In the case of very small target, the mean FRT is close to 1/(Dλ1)
(see appendix B), and thus the mean FRT controls the long-time behaviour of the PDF [66]. However, the
mean FRT, which is typically orders of magnitude longer than the typical reaction time tmp, is therefore
insufficient to describe the rich structure of the PDF, especially in the limit of low concentrations typical for
many biochemical situations [67]. Strong defocusing of the FRTs is a generic feature of diffusion-controlled
reactions, which was commonly ignored in former studies.

4.2. Screening effects of the boundary
As we have already remarked, the main mathematical difficulty of the problem at hand is represented by the
mixed boundary conditions: a zero-flux boundary condition imposed on the reflecting parts of the
boundary and a reactive condition at the target. From a physical point of view, this also implies that the
reflecting part of the surface has its effect on the reaction and may, to some unknown extent, ‘screen’ the
target. To get some (at least partial) understanding of an emerging effective screening, we compare here the
PDFs calculated for two cases: the particle starts at the north pole of the outer sphere and searches for the
target region at the north pole of the inner sphere (problem I), and the particle starts at the north pole of
the inner sphere and searches for the target region at the north pole of the outer sphere (problem II). The
initial distance here is the same by definition, the domain in which a particle moves is the same, but in one
case the surface in the vicinity of the target is concave, while in the other it is convex. There is, however, a
small subtlety concerning the size of the target: to render the two cases identical, should one take the same
area of the target or the same angular size? We consider both situations.

In figure 5 we compare the FRT PDFs H(t|x) for situations (i) and (ii) in the case of a high intrinsic
reactivity, q = 100, which permits us to disentangle the effects of a finite reaction probability from the
screening effects of the geometry. Clearly, for such a high reactivity, a particle most likely reacts with the
target upon first encounter such that H(t|x) should be very close to the first-passage time PDF. We observe
that, indeed, a curvature in the vicinity of the target does matter, regardless of whether we fix the area of the
target or its angular size. When the area is fixed (figure 5(a)), the PDF is slightly broader for the
outer-to-inner case (problem I) than for the inner-to-outer case (problem II), and also the height of the
maximum is lower. As a consequence, transmitting signals from the membrane to the nucleus, under
similar biophysical parameters, should usually take longer than in the opposite direction. This seems highly
relevant to cell signalling in general, and possibly provides another rationale for the presence of concentric
cytoskeletal tracks in the cells6. In the case when ε is identical (figure 5(b)), the effect is more pronounced
and the difference is more appealing: the distribution is much broader and the maximum is an order of
maximum lower in the outer-to-inner case than in the inner-to-outer case. Therefore, the FRTs in the case
when the target is concave are more focused around the most probable value. We note parenthetically that
the effect of a local curvature on the first-passage times was already studied within the context of the NEP.
In particular, the mean first-passage time was discussed in [68–70] for the case when the escape window is
located at a corner, or at a cusp in the boundary and on a Riemannian manifold. It was shown there that
the very functional dependence of the mean first-passage time on the angular size ε of the aperture can be
different, as compared to the case when the boundary is smooth. Our results in figure 5 demonstrate that
even in the case of a smooth boundary the effect of the local curvature is present.

4.3. Concealment effect of the inner sphere
We turn here to the situation in which the target is located at the north pole of the outer sphere, whereas
the starting point is on the south pole of the outer sphere. Evidently, this model can be viewed as the NEP
in which the particle dynamics is concealed by the impermeable inner sphere (an obstacle). However, the
concealment effect is not evident a priori: on the one hand, one may expect that the presence of such an
obstacle should slow down the search process, because the particle now cannot move along ‘direct
trajectories’ from the south to the north pole of the outer sphere and has to bypass the obstacle, which
makes its trajectories somewhat longer. On the other hand, when the radius of the inner sphere becomes
comparable to that of the outer one (i.e. R1 is close to R2), the particle diffuses in a thin spherical shell and
thus undergoes effectively two-dimensional diffusion that may speed up the search process. Which
argument is valid here? For a different geometric setting [71], it was argued that obstacles cannot speed up

6 This effect is related to the ‘centrifugal drift’ or ‘geometric spurious drift’ mentioned in [28, 64].
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Figure 5. Comparison of the FRT PDFs H(t|x) for outer-to-inner case [problem I, when the particle starts from the north pole
of the outer sphere (r = R2, θ = 0) and the target is at the north pole of the inner sphere; solid blue curve] and inner-to-outer
case [problem II, when the particle starts from the north pole of the inner sphere (r = R1, θ = 0) and the target is at the north
pole of the outer sphere; red dashed curve]. Parameters: q = 100, D = 1, R1 = 0.1, and R2 = 1. (a) Areas of the target are equal
for problems I and II. The angular size of the target is ε1 = 0.1 for I and ε2 = 0.01 for II. (b) Angular size of the target site
ε = 0.1 is the same for problems I and II.

Figure 6. FRT PDF to a target on the outer sphere, with R2 = 1, D = 1, ε = 0.1, q = 100 (a), and q = 1 (b), the starting
point at the South pole of the outer sphere (r = R2, θ = π), and four values of R1. Note that some curves are not shown for too
short times due to numerical artifacts of the Laplace transform inversion.

the search process. We thus pose the question of the effect that the radius R1 of the inner sphere has on the
shape of the PDF.

In figure 6 we depict H(t|x) for the particular case when the starting point of the particle is located at
the south pole of the outer sphere, the radius of the outer sphere is fixed, and the radius of the inner sphere
is varied. We find that, in general, the PDF gets more focused around the most probable FRT upon an
increase of the radius of the inner sphere, the peak value of the distribution at this point increases, and the
distribution becomes more narrow, which implies that the variability of the FRT reduces in the presence of
an obstacle.

5. Conclusions and perspectives

Experimental progress in monitoring biochemical reactions has been massive in the last two decades. Thus
it is now possible to monitor gene expression events such as real-time protein production ‘one protein
molecule at a time’ [72], providing unprecedented insight into, e.g. bursty protein production [72], specific
binding of transcription factor proteins to their binding site on the DNA [73], or elucidating the molecular
origins of bacterial individuality [74]. Similarly, single-molecule biochemical reactions in the membranes of
living cells can be monitored and rationalised [75]. The control of gene expression is often running off at
extremely small concentrations of the involved molecules. Thus, the well-studied Lac and phage lambda
repressor proteins occur at copy numbers of only few to few tens in a single, relatively small bacteria cell,
corresponding to nanomolar concentrations. It was found that even in such bacteria cells the distance
between a gene encoding for a protein A and another gene, to which A is supposed to bind to controls its
expression, is relevant [76, 77]. Therefore it was concluded that a single reaction rate, as used since
Smoluchowski’s seminal work [47], cannot account for the complexity of the involved diffusive search [78]
and biochemical reactions themselves [79]. Concurrently the role of heterogeneity in cells is being
recognised as a key element in understanding intracellular transport [63, 80–83].
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Here we studied the full statistics of first-reaction times to an imperfect immobile target in a typical
setting for intracellular reactions [82]. In our model a particle starts from a fixed location and diffuses in a
bounded region between two nested impermeable domains, and the target is assumed to be placed on either
boundary, a typical situation for many molecular regulation processes naturally running off in biological
cells. As in previous work [39, 40, 48, 62, 63, 84] we obtained clear evidence that the associated reaction
times have a broad distribution and thus the mean reaction time (or its inverse, the reaction rate) are not
representative for individual reaction events, especially in the low concentration limit.

For the case in which the nested domains have an arbitrary shape with sufficiently smooth impermeable
boundaries we presented a formally exact spectral solution of the problem and on this basis developed a
general, SCA, which has previously been used for several particular geometries. We thus established a
general theoretical framework which includes previous geometrical settings as particular cases and in which
all steps involved are clearly identified. This framework will be useful and instructive for the analysis of FRT
statistics in other systems.

We then demonstrated how to apply the SCA to the case when the domains are concentric balls, such
that the inter-domain region, in which the particle diffuses, has the form of a spherical shell. For such a
geometry we presented explicit forms of the Laplace-transformed FRT PDF evaluated within the SCA and
showed that it agrees exceptionally well with the numerically-evaluated exact spectral solution.

As we mentioned in the Introduction, our model is quite realistic and appears indeed in many systems
of biophysical and biochemical interest. In particular, it corresponds to intermediate steps in either
intracellular reaction pathways or can be seen as the initial stage in cell-to-cell communication processes
[5], see also the recent work [48]. In view of the relevance to these important fields, several generalisations
of the analysis presented here may be important:

(a) In many applications, a target may not be unique, as we supposed here, but there rather exists an array
of such targets, and the particle of interest may react with either of them in order to trigger the same
desired response. For instance, receptors on the cellular membrane may be present in sufficiently big
amounts (see, e.g. [5]) and binding to either of them will result in the launch of the second messenger.
The general form of the SCA derived here allows for an immediate extension to this setting. Actually,
the only change consists in replacing the matrix K (which is determined by the shape of the target), and
the elements of this matrix were calculated in [33] for the case of multiple non-overlapping targets of
circular shape.

(b) In some instances, the target may themselves perform a slow diffusive motion along the boundary of
the domain. Recently, some analytical approaches have been developed to study the survival of a
diffusive particle in the presence of diffusive mobile sites in unbounded domains [85–90], which
ultimately gives an access to the first-reaction time PDF. An extension of these approaches to the case in
which a particle diffuses within the inter-boundary region while the target perform diffusive motion
along the boundaries represents an interesting problem in its own right.

(c) At some stages of the intercellular signalling, the signal can be ‘amplified’ [5]. In other words, instead of
a single particle, initially some amount N of identical particles are launched. This is an important
aspect when an extreme event in which the arrival of the first out of N particles matters. The impact of
such an extreme event on the FRTs and their PDF has been rather extensively discussed within the
recent years, and several analytical analyses have been proposed (see, e.g. [84, 91–94] and references
therein). An extension of such analyses for the geometrical setting studied here should be of interest.

(d) Finally we mention that inhomogeneities of the environment should ultimately be included in the
description. Such conditions may either be represented by position-dependent diffusivities, by local
patches with their diffusion coefficient, or lead to anomalous diffusion statistics. We also mention
scenarios of two-channel diffusion of a particle, that switches between inert and reactive ‘channels’ with
two different probabilities [65], or more general switching diffusion models that may account for
reversible binding to other molecules or organelles [67, 95, 96]. Yet another extension consists in the
incorporation of radial active transport on concentric cytoskeletal tracks (e.g. microtubules), in which
the signal molecules are transported by a mixed diffusive-convective motion (with convective motion in
radial directions). All of these points will deserve attention in future work.
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Figure A1. Comparison between the SCA result (41) truncated at nmax = 25 (solid line) and the exact solution (37) shown by
filled circles, in which the matrices M(p) and K are truncated at the size (nmax + 1) × (nmax + 1). The target is located on the
inner sphere. The parameters are: R1 = 0.1, R2 = 1, r = 0.45, θ = 0, and D = 1. (a) q = 1, ε = 0.1; (b) q = 1, ε = π/2;
(c) q = 100, ε = 0.1; (d) q = 100, ε = π/2.
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Appendix A. Validation of the self-consistent approximation

In this appendix, we discuss the accuracy of the SCA in Laplace domain.
We start by considering the case when the target is located on the inner sphere. Figure A1 illustrates the

remarkable agreement between the prediction (41) of the SCA and the exact solution (37). Note that both
expressions were truncated at nmax = 25, i.e. the size of the (infinite-dimensional) matrices M(p) and K was
set to (nmax + 1) × (nmax + 1), and also in (41) we truncated the series at n = 25. We verified that this
truncation does not affect the accuracy of the exact solution (e.g. an increase of nmax from 25 to 50 does not
change the solution visibly). The two left panels (a) and (c) show H̃(p|x) for a small target (ε = 0.1) with
moderate (q = 1) and high (q = 100) reactivity, respectively. Expectedly the SCA appears to be very
accurate for small targets, regardless of the actual value of q. Most surprisingly, however, the SCA turns out
to be accurate even for a large target (ε = π/2, i.e. half of the inner sphere), see the right panels (b) and (d).
We note that the starting point is relatively far from the target which is the most ‘favourable’ configuration
for the applicability of the SCA. Yet, this is also a typical situation in many applications. For instance, for
the signal transduction processes a particle starts on one of the boundaries and has to reach a target on the
other boundary, i.e. it appears initially quite far from the target. The relative error of the SCA is shown in
figure A2 for the same set of parameters. Expectedly, the error is smaller when the target is smaller and less
reactive. But even in the worst case of a large, highly reactive target (ε = π/2, q = 100), the relative error
remains below 5% for a very broad range of p-values, in spite of the fact that H̃(p|x) varies over more than
ten orders of magnitude.

The accuracy of the SCA remains excellent for problem II when the target is located on the outer
boundary. Figure A3 compares the SCA prediction against the exact spectral solution, whereas figure A4
illustrates its relative error. The agreement is again remarkably good, with the relative error raising only up
to 8% for large values of p, which corresponds to the short-t behaviour of the PDF.
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Figure A2. Relative error of the SCA result (41) as compared to the exact spectral solution. Parameters are the same as shown in
figure A1.

Figure A3. Comparison between the SCA result (41) truncated at nmax = 25 (solid line) and the exact solution (37) shown by
filled circles, in which the matrices M(p) and K are truncated at the size (nmax + 1) × (nmax + 1). The target is located at the outer
sphere. The parameters are: R1 = 0.1, R2 = 1, r = 0.45, θ = 0, and D = 1. (a) q = 1, ε = 0.1; (b) q = 1, ε = π/2; (c) q = 100,
ε = 0.1; (d) q = 100, ε = π/2.

Appendix B. Mean first-reaction time

The moments of the first-reaction time can be accessed directly from the generating function

Ex{τ k} = (−1)k lim
p→0

∂k

∂pk
H̃(p|x). (B.1)

Once again, it is more convenient to use the SCA result H̃app(p|x) for this computation, i.e.

Ex{τ k} ≈ Tk(x) = (−1)k lim
p→0

∂k

∂pk
H̃app(p|x). (B.2)

Since the domain is bounded, the smallest eigenvalue μ(p)
0 vanishes as p → 0 [97], whereas other eigenvalues

μ
(p)
n converge to strictly positive limits μ(0)

n .
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Figure A4. Relative error of the SCA result (41) as compared to the exact spectral solution. Parameters are the same as shown in
figure A3.

For the target on the inner sphere, one has the following expansion

μ
(p)
0 = ap − bp2 + O(p3), a =

R3
2 − R3

1

3DR2
1

, b =
5R6

2 − 9R5
2R1 + 5R3

1R3
2 − R6

1

45D2R3
1

, (B.3)

while [60]

μ(0)
n =

n(n + 1)

R1

1 − (R1/R2)2n+1

n + (n + 1)(R1/R2)2n+1
(n > 0). (B.4)

As a consequence, we find

J = J1p − J2p2 + O(p3), J1 =
a

d
, J2 =

a2c + bd

d2
, (B.5)

where d = (1 − cos ε)/2 and

c =
1

q
+

1

2(1 − cos ε)

∞∑
n=1

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)μ(0)
n

. (B.6)

Using
g0(r)

μ
(p)
0

=
1

ap
+ e + O(p), (B.7)

with

e = R2
1

5r3 + 10R3
2 − 3r(R2

1 + 6R2
2)

10r(R3
2 − R3

1)
+

9R4
1R2

2(R2 − R1)

5(R3
2 − R3

1)2
, (B.8)

we finally get

T1(x) =
ac

d
+

b

a
− ae − a

d

∑
n>0

g(p=0)
n (r)

μ(0)
n

Pn(cos θ)
Pn−1(cos ε) − Pn+1(cos ε)

2
, (B.9)

where

g(p=0)
n (r) = (R1/r)n+1 n + (n + 1)(r/R2)2n+1

n + (n + 1)(R1/R2)2n+1
. (B.10)

For the target on the outer sphere, one has

μ
(p)
0 = ap − bp2 + O(p3), a =

R3
2 − R3

1

3DR2
2

, b =
R6

2 − 5R3
1R3

2 + 9R2R5
1 − 5R6

1

45D2R3
2

, (B.11)

while [60]

μ(0)
n =

n(n + 1)

R2

1 − (R1/R2)2n+1

n + 1 + n(R1/R2)2n+1
(n > 0). (B.12)

As a consequence, we find that

J = J1p − J2p2 + O(p3), J1 =
a

d
, J2 =

a2c + bd

d2
, (B.13)
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with c and d as defined above. Using
g0(r)

μ
(p)
0

=
1

ap
+ e + O(p), (B.14)

with

e = R2
2

5r3 + 10R3
1 − 3r(R2

2 + 6R2
1)

10r(R3
2 − R3

1)
+

9R2
1R4

2(R2 − R1)

5(R3
2 − R3

1)2
, (B.15)

we get again equation (B.9) for T1(x), with

g(p=0)
n (r) = (r/R2)n n + 1 + n(R1/r)2n+1

n + 1 + n(R1/R2)2n+1
. (B.16)

Appendix C. A planar circular annulus domain

The general approach from section 2 can also be applied to a planar circular annulus domain
Ω = {x ∈ R2 : R1 < |x| < R2}, with the target represented by an arc (−ε, ε) either on the inner circle, or on
the outer circle. This problem is also equivalent to diffusion between two coaxial cylinders of radii R1 and
R2, (i.e. in the domain Ω′ = Ω× R ⊂ R3), towards a vertical infinitely long partially reactive stripe of
angular size 2ε. Note that this shape of the target is different from that considered in [23, 37, 40].

In this case, the eigenbasis of the Dirichlet-to-Neumann operator is well known. For instance, for the
target on the inner circle, one has [60]: v(p)

n = einθ/
√

2πR1 and μ
(p)
n = −g′n(R1), where

gn(r) =
K ′

n(αR2)In(αr) − I′n(αR2)Kn(αr)

K ′
n(αR2)In(αR1) − I′n(αR2)Kn(αR1)

, (C.1)

with n ∈ Z. One then easily gets

Kn,n′ =

∫ ε

−ε

d(R1θ)
ei(n−n′)θ

2πR1
=

sin(n − n′)ε

π(n − n′)
(C.2)

and

Cn =

∫ ε

−ε

d(R1θ)
einθ

√
2πR1

=
√

2πR1
sin nε

πn
. (C.3)

The exact solution (12) is then

H̃(p|x) =
∞∑

n,n′=−∞
einθ

[(
M(p)/q + K(p)

)−1
]

n,n′

sin n′ε

πn′ (x ∈ ∂Ω), (C.4)

while the SCA reads

H̃app(p|x) = J
∞∑

n=−∞
gn(r)einθ 1

μ
(p)
n

sin nε

πn
, (C.5)

with

J =

(
1

q
+

π

ε

∞∑
n=−∞

1

μ
(p)
n

(
sin nε

πn

)2
)−1

. (C.6)

Note that the above summations can be reduced to nonnegative values of n by symmetry.
When the target is on the outer circle one has v(p)

n = einθ/
√

2πR2 and μ
(p)
n = g′n(R2), and

gn(r) =
K ′

n(αR1)In(αr) − I′n(αR1)Kn(αr)

K ′
n(αR1)In(αR2) − I′n(αR1)Kn(αR2)

, (C.7)

while relations (C.4)–(C.6) remain unchanged.

Appendix D. Spread harmonic measure

In this appendix, we provide some insights into the role of the parameter q characterising the reactivity of
the target. For the sake of brevity, we focus on the case when the target covers the whole inner sphere. After
the first arrival onto the inner sphere, the particle does not necessarily react immediately but may be
reflected to continue its bulk diffusion, return to the target and be reflected again, and so on, until an
eventual reaction after a number of failed attempts. As a consequence, the location of the reaction event is
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Figure D1. (a) Probability Pq(θ) for the reaction event to occur on the inner sphere within the spherical cap of angle θ, for four
values of q, with R1 = 1 and R2 = 2. Note that P0(θ) = (1 − cos θ)/2. The crossing with the horizontal line at 1/2 determines
the size R1Θt of the typical region on which the half of reaction events occurs. For large q, R1Θt ∝ 1/q. (b) Mean geodesic
distance R1Θm as function q, for R1 = 1 and R2 = 2. The dashed line shows q ln(q).

in general different from the location of the first arrival. The distribution of reaction locations is called the
spread harmonic measure [53]. Some properties of this measure and the related interpretation of the
parameter q were discussed in [52–54] for a restricted class of domains. In general, the spread harmonic
measure density ωq(s|s0), characterising the probability of the reaction event at a boundary point s after the
arrival onto the boundary point s0, can be expressed in terms of the eigenfunctions of the
Dirichlet-to-Neumann operator [46]

ωq(s|s0) =
∞∑

n=0

v(0)
n (s)[v(0)

n (s0)]∗

1 + μ(0)
n /q

. (D.1)

For the considered shell-like domain in which the target covers the whole inner sphere, the first arrival
point s0 can be set to be on the north pole, without loss of generality. The explicit form (30) of the
eigenfunctions yields

ωq(s|s0) =
1

4πR2
1

∞∑
n=0

(2n + 1)Pn(cos θ)

1 + μ(0)
n /q

, (D.2)

with μ(0)
n given by (B.4) for n > 0, and μ(0)

0 = 0. Integrating over the azimuthal angle φ and multiplying by
R2

1, we get the distribution of the polar angle θ of the reaction point,

ωq(θ) =
sin θ

2

∞∑
n=0

(2n + 1)Pn(cos θ)

1 + μ(0)
n /q

, (D.3)

where sin θ comes from using spherical coordinates. The integral of ωq(θ′) from 0 to θ is the probability
that the reaction location is on the spherical cap of angle θ,

Pq(θ) =

∫ θ

0
dθ′ ωq(θ′) =

1

2

∞∑
n=0

Pn−1(cos θ) − Pn+1(cos θ)

1 + μ(0)
n /q

. (D.4)

Setting Pq(Θt) = 1/2 determines implicitly the angular size Θt of the spherical cap, on which half of the
reaction events occur. Figure D1(a) illustrates the behaviour of this probability for three values of q.

In addition, one can calculate the mean angle Θm, which is related to the mean geodesic distance
between the north pole (the first arrival) and the reaction location,

Θm =

∫ π

0
dθθ ωq(θ) =

1

2

∞∑
n=0

(2n + 1)

1 + μ(0)
n /q

In, (D.5)

where

In =

∫ 1

−1
dx arccos(x)Pn(x) = π ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 (n = 0),

−
(

(n − 2)!!

2(n+1)/2((n + 1)/2)!

)2

(n odd),

0 (n even).

(D.6)
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We thus obtain

Θm =
π

2

(
1 −

∞∑
k=0

2(2k + 1) + 1

1 + μ(0)
2k+1/q

ck

)
, (D.7)

with

ck =

(
(2k − 1)!!

2k+1(k + 1)!

)2

(k = 0, 1, 2, . . .). (D.8)

In the limit of high reactivity, q →∞, the spread harmonic measure density converges to a Dirac
distribution around the first arrival point. Since ck ∝ k−3, one gets the asymptotic behaviour
Θm ∝ ln(qR1)/(qR1). In other words, for large q, the inverse of q is proportional to the mean geodesic
distance R1Θm, up to a logarithmic correction. In the opposite limit of low reactivity, q → 0, the spread
harmonic measure density is getting uniform, and one gets Θm → π/2. This reflects the fact that the inner
sphere, as well as all geodesic distance on it, are bounded. In other words, the mean geodesic distance
cannot grow as 1/q forever, as it was the case for the plane [52, 54]. The dependence of Θm on q is
illustrated on figure D1(b).
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[83] Witzel P, Götz M, Lanoiseĺee Y, Franosch T, Grebenkov D S and Heinrich D 2019 Heterogeneities shape passive intracellular

transport Biophys. J. 117 203–13
[84] Grebenkov D S, Metzler R and Oshanin G 2020 From single-particle stochastic kinetics to macroscopic reaction rates: fastest

first-passage time of N random walkers New J. Phys. 22 103004
[85] Bray A J and Blythe R A 2002 Exact asymptotics for one-dimensional diffusion with mobile traps Phys. Rev. Lett. 89 150601
[86] Oshanin G, Bénichou O, Coppey M and Moreau M 2002 Trapping reactions with randomly moving traps: exact asymptotic

results for compact exploration Phys. Rev. E 66 060101
[87] Moreau M, Oshanin G, Bénichou O and Coppey M 2003 Pascal principle for diffusion-controlled trapping reactions Phys. Rev. E

67 045104
Moreau M, Oshanin G, Bénichou O and Coppey M 2004 Lattice theory of trapping reactions with mobile species Phys. Rev. E 69
046101

[88] Bray A J, Majumdar S N and Blythe R A 2003 Formal solution of a class of reaction-diffusion models: reduction to a
single-particle problem Phys. Rev. E 67 060102

[89] Yuste S B, Oshanin G, Lindenberg K, Bénichou O and Klafter J 2008 Survival probability of a particle in a sea of mobile traps: a
tale of tails Phys. Rev. E 78 021105

[90] Le Vot F, Yuste S B, Abad E and Grebenkov D S 2020 First-encounter time of two diffusing particles in confinement Phys. Rev. E
102 032118

[91] Meerson B and Redner S 2015 Mortality, redundancy, and diversity in stochastic search Phys. Rev. Lett. 114 198101
[92] Reynaud K, Schuss Z, Rouach N and Holcman D 2015 Why so many sperm cells? Commun. Integr. Biol. 8 e1017156
[93] Lawley S D and Madrid J B 2020 A probabilistic approach to extreme statistics of Brownian escape times in dimensions 1, 2, and 3

J. Nonlinear Sci. 30 1207
[94] Lawley S D 2020 Distribution of extreme first passage times of diffusion J. Math. Biol. 80 2301
[95] Grebenkov D S 2019 A unifying approach to first-passage time distributions in diffusing diffusivity and switching diffusion

models J. Phys. A: Math. Theor. 52 174001
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