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Models are useful tools for understanding and predicting ecological patterns and pro-
cesses. Under ongoing climate and biodiversity change, they can greatly facilitate deci-
sion-making in conservation and restoration and help designing adequate management 
strategies for an uncertain future. Here, we review the use of spatially explicit models 
for decision support and to identify key gaps in current modelling in conservation 
and restoration. Of 650 reviewed publications, 217 publications had a clear manage-
ment application and were included in our quantitative analyses. Overall, modelling 
studies were biased towards static models (79%), towards the species and population 
level (80%) and towards conservation (rather than restoration) applications (71%). 
Correlative niche models were the most widely used model type. Dynamic models as 
well as the gene-to-individual level and the community-to-ecosystem level were under-
represented, and explicit cost optimisation approaches were only used in 10% of the 
studies. We present a new model typology for selecting models for animal conservation 
and restoration, characterising model types according to organisational levels, biologi-
cal processes of interest and desired management applications. This typology will help 
to more closely link models to management goals. Additionally, future efforts need 
to overcome important challenges related to data integration, model integration and 
decision-making. We conclude with five key recommendations, suggesting that wider 
usage of spatially explicit models for decision support can be achieved by 1) developing 
a toolbox with multiple, easier-to-use methods, 2) improving calibration and valida-
tion of dynamic modelling approaches and 3) developing best-practise guidelines for 
applying these models. Further, more robust decision-making can be achieved by 4) 
combining multiple modelling approaches to assess uncertainty, and 5) placing models 
at the core of adaptive management. These efforts must be accompanied by long-
term funding for modelling and monitoring, and improved communication between 
research and practise to ensure optimal conservation and restoration outcomes.

Keywords: adaptive management, biodiversity conservation, cost optimisation, 
ecosystem restoration, global change, predictive models
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Introduction

Biodiversity is continuing to decline worldwide (Pimm et al. 
2014, Davis et al. 2018) despite repeated policy commitments 
to reduce the rate of loss (Mace et  al. 2018). As awareness 
about the risks that the climate and biodiversity crises pose 
to societal well-being is increasing (IPBES 2019), the United 
Nations (UN) has called out the UN Decade on Ecosystem 
Restoration 2021–2030 to protect and revive ecosystems 
all around the world and to ensure integrity and resilience 
of our biosphere. Conservation and restoration actions are 
costly while time and financial resources for them are scarce 
(McCarthy et al. 2012). We should thus use our best avail-
able science to guide global actions.

A structured decision-making process can help to allocate 
limited resources efficiently (Fischer et al. 2009, Wintle et al. 
2011, Guisan et al. 2013). Necessary steps involve identify-
ing the problem and formulating objectives, defining pos-
sible actions and assessing their associated costs, evaluating 
the effectiveness of alternative actions with respect to the 
objective, and taking decisions based on cost–benefit trade-
offs. This can be done in a purely heuristic manner or by 
means of quantitative modelling. Models are cost-effective 
and useful tools to summarise our current understanding of 
biological phenomena and complex ecosystem processes, to 
explore management options, to assess feasibility and poten-
tial success of restoration and conservation measures, and to 
predict the effect of multiple global change drivers on biodi-
versity and ecosystem functioning (IPBES 2016). Essentially, 
they allow us to answer ‘what if ’ questions and to explore the 
potential effectiveness of different actions prior to implemen-
tation. Thus, models can help to move away from a reactive 
mode of decision-making to a proactive mode that aims to 
anticipate potential effects of global change and alternative 
management scenarios (Wintle et al. 2011, IPBES 2016).

In both conservation and restoration, it is crucial to iden-
tify suitable sites for action and the target biodiversity and eco-
system components and processes that should be conserved 
or restored. Under ongoing global change, management 
decisions should also consider the role of transient dynam-
ics. First, species and ecosystems may not be at equilibrium 
with their environment but could exhibit legacy effects. In 
systems with a time-delayed response, for example, extinction 
debts due to past habitat loss (Semper-Pascual et al. 2021), 
even immediate conservation actions may not be able to halt 
biodiversity loss in its entirety. Second, biodiversity and eco-
systems respond dynamically to global change, and conserva-
tion actions need to anticipate these dynamics (Araújo et al. 
2011, Oliver  et  al. 2016). For example, for range shifting 
species, static protected areas may not be sufficient for pre-
serving metapopulation viability into the future, but climate 
change-induced range shifts may need to be facilitated by 
adequate stepping stones and dynamic approaches to conser-
vation (Wiens et al. 2011, Alagador et al. 2014, Synes et al. 
2020). Last, restoration typically requires the identification 
of a reference state for species and ecosystem recovery. Yet, 
the historic equilibrium state of an ecosystem, for example 

the Pleistocene reference, might be unknown or impossible 
to restore due to extinctions of keystone species or might 
be inappropriate as a reference in the face of rapid climate 
change (Harris et al. 2006, Higgs et al. 2014). Effective con-
servation and restoration planning thus needs to incorporate 
considerations about transient dynamics and future climate 
change and needs to balance between conserving current or 
restoring past ecosystems in planning for resilient systems for 
the future.

Here, we ask how models can support conservation and 
restoration planning in a changing world. More specifically, 
we conduct a quantitative review to assess the current state 
of spatially explicit models for decision-support in animal 
conservation and ecosystem restoration. We add to recent 
reviews of the biodiversity modelling literature (Urban et al. 
2016, Zurell 2017, Briscoe et al. 2019) by explicitly asking 
how different model types have been used to guide pro-active 
decision-making in conservation and restoration. The litera-
ture review is limited to animals to keep the breadth of avail-
able model types focussed. Models cover static to dynamic 
approaches on various organisational levels, from genes to 
ecosystems (Box 1). We consider a broad range of manage-
ment applications in conservation and restoration, ranging 
from population reinforcement and connectivity to disease 
control and rewilding (Box 2). Finally, we analyse the identi-
fied case studies according to different modelling and man-
agement characteristics. More specifically, we ask whether 
specific model types are associated with specific management 
applications, what kind of prioritisation methods are typi-
cally used to inform management, and whether any biases 
persist in terms of considered ecological processes, ecosys-
tems, regions, taxonomic group and threats. This will help 
elucidate critical gaps and biases in model-based decision 
support and identify future opportunities and challenges for 
more widespread usage.

Model-based decision support for 
conservation and restoration

Ecological models are often classified into correlative and pro-
cess-based approaches (Dormann et al. 2012, Briscoe et al. 
2019). Correlative or phenomenological models rely on 
statistical approaches to relate a specific biodiversity facet, 
for example species occurrence, to environmental predic-
tors. Most prominent examples of correlative approaches 
in biodiversity and wildlife research are correlative ecologi-
cal niche models (Zurell  et  al. 2020). In contrast, process-
based or mechanistic approaches aim to establish causal links 
between ecological and environmental variables and explic-
itly describe the processes that underpin certain ecological 
or evolutionary phenomena. Important processes include 
physiology, demography, dispersal, species interactions and 
evolution (Urban et al. 2016, Cabral et al. 2017). Although 
the distinction of correlative versus process-based repre-
sentations is important, models can also be classified into 
static models that predict equilibrium states and dynamic 
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Box 1: Spatially explicit model types in conservation and restoration

Static models typically assume equilibrium and predict stationary states. The modelled relationships have no indepen-
dent time variable, but time can be incorporated implicitly through variation of the considered predictor variables.

•	 Ecological niche models (ENM) aim to quantify and map the determinants of the species ecological niche. We 
broadly summarise correlative and mechanistic niche models under this category. Correlative species-environment 
relationships relate the observed biodiversity facet (e.g. occurrences or abundances) at each site with a set of abiotic 
and/or biotic environmental variables (e.g. correlative species distribution model, resource selection function, static 
occupancy model) (Zurell et al. 2020). Mechanistic niche models establish causal links between species fitness and 
environmental, mostly (micro-) climatic, variables based on biophysical principles (Kearney and Porter 2009). As 
output, they predict vital rates such as survival or reproductive output.

•	 Static connectivity models (Con) assess how well habitat patches in a fragmented landscape (i.e. habitat/matrix con-
figuration) are connected by the movement of a target species. This assessment can be based solely on Euclidian dis-
tance but often considers the site-specific resistance to dispersal, for example, modelled as a function of environmental 
variables (e.g. circuit theory, least-cost path analysis or graph theory measures) (McRae et al. 2008).

•	 Static macroecological model (MEM) are correlative models that relate macroecological or macroevolutionary 
properties (e.g. species richness, trait patterns) with spatial characteristics (e.g. species richness regression models) 
(D’Amen et al. 2017).

Dynamic models explicitly model processes and changes in time. The models include an independent time axis along 
which the modelled state evolves, such as species abundance or genetic diversity. Therefore, transient dynamics can be 
represented.

•	 Individual-based models (IBM) simulate the status of each single individual or agent through time and therefore 
model higher-level patterns (e.g. population abundance or relative proportion of genotypes) as emergent from indi-
vidual behaviour (Grimm and Railsback 2005). Depending on the time scale, IBMs can consider several processes, 
for example annual cycles of survival, reproduction and dispersal or daily cycles of foraging and movement. They can 
also include genetic dynamics (Bocedi et al. 2021).

•	 Patch occupancy models (POM) describe spatial distribution of populations as the result of two underlying pro-
cesses, colonisation and extinction. The colonisation and extinction probabilities are often modelled as a function of 
environmental variables and sometimes as a function of the patches pairwise distance (Hanski and Thomas 1994, 
MacKenzie et al. 2003).

•	 Population-based models (PBM) explicitly model the growth and dispersal of populations in a landscape. Each cell 
or patch contains a local population with site-specific reproduction and survival, and different local populations are 
connected by dispersal (Akçakaya 2000).

•	 Integrated assessment models (IAM) integrate models over several disciplines and aim to describe the complex 
relationships between environmental, social and economic drivers of biodiversity dynamics (IPBES 2016). At the 
moment, they are rarely used for predicting biodiversity, and in the few existing examples, biodiversity change is not 
always modelled as a dynamic system property (Kapitza et al. 2021).

•	 General ecosystem models (GEM) simulate ecosystem dynamics based on mechanistic relationships between envi-
ronmental variables and different trophic levels within an ecosystem, from primary production to higher trophic 
levels. These relationships can be modelled, for example, in the form of explicit energy flow and/or nutrient cycling 
(Harfoot et al. 2014) or in the form of interaction networks (Baker et al. 2016).
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models that simulate time-dependent changes in the state 
of a system. Both categories can include phenomenological 
and mechanistic aspects (Box 1). For example, niche-based 
models (ENM) can include not only correlative ENM, such 
as resource selection functions and static occupancy models, 
but also mechanistic ENM (Kearney and Porter 2009). We 
regard this distinction of static versus dynamic models as 
more useful in the context of conservation and restoration 
under global change as it emphasises the ability of the differ-
ent models to take into account transitional stages, and we 
will thus distinguish between these two broad model catego-
ries throughout this review.

Models have been frequently used in the context of conser-
vation and risk assessments. Araújo et al. (2019) found that 
among the ca 6000 publications that have been published on 
correlative ENM between 1995 and 2015, over half of the 
studies had a clear focus on future scenarios, conservation 
or restoration. Yet, Cayuela  et  al. (2009) and Guisan et  al. 
(2013) highlighted that only 1–5% of correlative ENM stud-
ies published since 1995 produced clear management deci-
sions. Recently, Hunter-Ayad  et  al. (2020) reviewed static 
and dynamic models for informing species reintroductions 
and provided a modelling guide from individual to com-
munity level. However, a quantitative review on the current 
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Box 2: Type of management applications in conservation and restoration

•	 Species conservation: Practise of preservation and protection of wildlife and their habitats. A species conservation 
approach can be focused on individual species or groups of species with common needs or common ecological char-
acteristics, thus ranging from conservation of specific populations to the protection of umbrella species or keystone 
species that are important for the entire ecosystem.

•	 Habitat conservation: Management practise that seeks to conserve, protect or restore landscapes and ultimately 
prevent ecosystem degradation. Conservation of habitat involves improving the conservation status of the habitat 
structure and components, as well as the interactions among these components and with the environment.

•	 Spatial prioritisation: The process of identifying priority areas where best to allocate conservation or restoration efforts 
as the best trade-off between available resources and conservation or restoration gain. Reserve selection is an applica-
tion of spatial prioritisation to plan and design protected areas that contribute to species and habitat conservation.

•	 Harvest management: Conservation activity which includes protection, maintenance and sustainable utilisation of 
species populations through hunting and fishing. For example, reducing density and abundance of a population to 
keep its impact on the ecosystem at an acceptable level.

•	 Connectivity: Restoration and conservation applications that are dedicated towards managing space such that viable 
populations of species can survive, evolve, move and interconnect within and between suitable areas. Connectivity 
combines a description of the physical landscape structure with an organism’s response to that structure.

•	 Reintroduction/translocation: Restoration activity that involves the intentional relocation of living organisms from 
one area to another (IUCN 2013). There exists a broad range of terms that highlight different purposes and circum-
stances of this activity, for example differentiating whether the reintroduction does or does not occur in the historical 
distribution range of the species (reintroduction versus assisted colonisation and ecological replacement) or whether 
conspecifics are present in the region or not (reinforcement versus reintroduction) (Seddon et al. 2014).

•	 Ecosystem restoration: Interventions to assist the recovery of ecosystems that have been degraded, damaged or 
destroyed, as well as conserving the ecosystems that are still intact (IPBES 2018). Rewilding is a form of ecosystem 
restoration that involves the reestablishment of self-regulating ecosystems by reorganising and regenerating ecosystem 
functionality while reducing human intervention (du Toit and Pettorelli 2019, Perino et al. 2019, Svenning 2020).

•	 Disease/invasive control: Activity of regulation or management of an organism or pathogen that impacts adversely 
on ecosystems. Activities include exclusion, repulsion, physical treatment or removal (e.g. management techniques to 
control invasive alien species).

R
estoration Special Issue

usage of static and dynamic models in decision-making for 
various conservation and restoration applications, and from 
the gene to ecosystem level, is still missing.

We assessed the state-of-the-art of model-based decision 
support for conservation and restoration using a quantitative 
literature review. To this end, we conducted a Web of Science 
search on 9 February 2021, searching for studies employing 
different model types (Box 1) for specific management appli-
cations (Box 2) in the period 1900–2021 (for a complete list 
of keywords cf. Supporting information). We initially identi-
fied 5179 papers, which we further refined to papers that fell 
under the Web of Science category ‘biodiversity conserva-
tion’, yielding a list of 650 papers. We screened these and 
only kept papers that had a clear management application 
(Box 2) and that provided some form of spatial planning 
and decision support. The latter requirement was met when 
at least a map of the status quo was derived from the model 
and presented. Papers that had potential implications for 
conservation but did not provide a basis for spatial planning 
and management decisions were excluded. The final list con-
tained 217 research articles that met our inclusion criteria.

For each selected research article, we recorded different 
information about the models and case studies. First, we 
recorded model type (static versus dynamic; represented as 

0/1), the ecological level being modelled (genes – individual 
– population – community – ecosystem; represented as an 
ordinal variable), the processes considered (sensu Urban et al. 
2016: environmental response, physiology, demography, dis-
persal, interspecific interactions and evolution; each repre-
sented as 1 if the process was considered and 0 otherwise), 
the number of species covered and the spatial resolution and 
spatial extent (all three variables were represented as ordinal 
variables). Based on these 11 variables, we ran a non-metric 
multidimensional scaling (NMDS) analysis to identify gra-
dients of the highest variation between typical model types, 
processes, and scales (Supporting information). From the 217 
reviewed articles, 155 studies contained information for all 
relevant variables and were included in the NMDS. Second, 
we recorded additional information for each paper related to 
the type of management application (Box 2), prioritisation 
method (mapping, gap analysis, global change scenario, man-
agement scenario, cost optimisation), threats (land/sea use 
change, overexploitation, pollution, invasive species and dis-
ease, climate change), essential biodiversity variable (genetic 
composition, species populations, species traits, community 
composition, ecosystem function, ecosystem structure), eco-
system type, geographic region, taxonomic group, and tem-
poral dimension. To identify spatial and thematic gaps and 
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biases in the concurrent literature, we analysed the relative 
proportion of papers falling into these categories (using all 
identified papers n = 217) and how these categories correlated 
with the NMDS axes (n = 155). A full list of information 
recorded in the review is provided in Supporting informa-
tion. The final list of papers including their classifications is 
available from Dryad (Data availability statement).

Overall, we found substantial variation in the relative 
frequency of model types, management applications, eco-
system types, taxonomic groups, relevant threats, and the 

focal level of ecological organisation. The ordination con-
verged with a stress value of 0.172, indicating a fair but not 
excellent representation of pairwise dissimilarities in two-
dimensional Euclidean space (Clarke 1993, Dexter  et  al. 
2018). The first NMDS axis mainly represented the gradi-
ent from static to dynamic and the processes dispersal and 
demography, while the second axis mainly represented spa-
tial resolution and extent and the inclusion of environmen-
tal responses (Fig. 1a). Static models were used more often 
than dynamic models (79% vs 21%), with a particularly 

Figure 1. Ordination results. (A) Biplot showing the ordinated studies (points) and considered variables projected into ordination space 
(arrows). (B)–(D) Distribution of model types (B), management applications (C) and prioritisation method (D) across ordination space. 
Arrow lengths in plots (A) and (C) are proportional to the correlation of the respective variables with the ordination configuration but 
adjusted to fit the size of the plot. Thus, arrow lengths are not comparable among plots. Instead, significant variables are highlighted in blue. 
We only included those studies in the ordination (non-metric multidimensional scaling, NMDS) that contained information for all relevant 
ordination variables (n = 155). (ENM: ecological niche model; CON: connectivity model; MEM: macroecological model; IBM: individ-
ual-based model; POM: patch-occupancy model; PBM: population-based model; IAM: integrated assessment model; GEM: general eco-
system model).
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strong representation of niche-based models (65%; Fig. 1b). 
In line with Urban  et  al. (2016), we found that the envi-
ronmental response of the focal ecological unit was most 
frequently modelled (93% of studies). Among the other 
processes, dispersal (19%) and demography (20%) were 
considered regularly, while interspecific interactions (7%), 
as well as physiology and evolution, were rarely considered 
(both <1%). Only 29% of studies modelled multiple pro-
cesses simultaneously.

Most studies focussed on conservation rather than restora-
tion, with species and habitat conservation being the most 
frequent applications (44% and 31%, respectively), while 
applications related to ecosystem restoration made up less than 
5% of the studies, reintroduction 3%, and translocation less 
than 1%. There was a tendency that restoration applications 
such as reintroductions were rather addressed with more com-
plex dynamic models while species conservation applications 
mostly relied on static models (Fig. 1c). Recommendations 
and decision-making were typically informed by current 
mapping (46%) or exploration of different management sce-
narios (26%), whereby management scenarios were primarily 
explored in dynamic models (Fig. 1d). Explicit cost–benefit 
optimisation was only used in 10% of the studies, a gap anal-
ysis was carried out in 12%, and global change scenarios were 
addressed in 5% of the studies.

Commonly cited (non-mutually exclusive) threats were 
land/sea use change (56%) and overexploitation (27%), 
while climate change (11%), pollution (5%), and invasive 
species and disease (7%) were mentioned less frequently as 
study motivation (Fig. 2a). In 16% of the studies, the threats 
could not be assigned to one of the major five threat cat-
egories (marked as ‘other’ in Fig. 2a). Studies covered all 
continents whereby half of them were carried out in Europe 
and North America (Fig. 2b). Also, there was a bias towards 
(semi-) natural terrestrial ecosystems, in particular towards 
forests (47%) and grasslands (41%). The spatial resolution 
was ≤ 10 km for 90% of the studies. Most studies focus on 
the population level and, thus, from the six classes of essential 

biodiversity variables (EBVs) (Pereira et al. 2013), the EBV 
class ‘species populations’ was overrepresented (72%; Fig. 2c). 
Taxonomically, the majority of studies focussed on a single 
taxonomic group (82%), and most studies included mammals 
(62%) and birds (30%), followed by reptiles (11%), amphib-
ians (9%), invertebrates (9%), fishes (4%), and microbes (< 
1%). Half of all studies focused on single species (Supporting 
information). We could not find any temporal trends in the 
relative use of static versus dynamic models or for attempting 
predictions into the future (Supporting information).

A model typology for animal conservation 
and restoration

Increasing awareness of the importance of predicting conser-
vation and restoration outcomes, together with the increas-
ing availability of spatial data, has led to the development 
and application of a broad range of spatially explicit models 
to inform conservation and restoration actions (Box 1). Our 
quantitative review highlighted important gaps and biases in 
the current use of these models with a strong bias towards 
static models, towards the species and population level, and 
towards conservation (rather than restoration planning). 
Some advantages and disadvantages of different model types 
have been discussed in a few recent reviews (Cabral  et  al. 
2017, Zurell 2017), and some authors also provide initial 
guidance for selecting appropriate models for specific appli-
cations and goals (Briscoe  et  al. 2019, Hunter-Ayad  et  al. 
2020). Yet, we are still missing a model typology that captures 
the entire breadth of spatially explicit models and matches 
these with ecological levels and relevant processes and, in par-
ticular, with specific management applications in animal con-
servation and restoration. Such a model typology could pave 
the road for more cost-effective and targeted use of modelling 
in systematic conservation and restoration planning in order 
to safeguard animal species and communities as well as entire 
ecosystems against ongoing global change.

Figure 2. Relative proportions of studies addressing different (A) focal threats, (B) continents and (C) essential biodiversity variables (EBVs). 
Focal threats (A) were non-mutually exclusive across the considered studies (n = 217).
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Here, we aim to fill this gap and provide a new model 
typology matching available spatially explicit model types 
with animal conservation and restoration goals (Fig. 3). This 
model typology recognises the different ecological levels from 
genes to ecosystems and the relevant ecological and evolution-
ary processes that are relevant at these organisational levels. It 
allows matching conservation and restoration goals with dif-
ferent static and dynamic model types. We deliberately kept 
the model typology rather general, indicating useful model 
types but without identifying specific model implementa-
tions, although a non-exhaustive list of current implemen-
tations is provided in the Supporting information. In the 
model typology, we indicate which spatially explicit model 
types could be extended to lower or higher ecological levels 
than is currently done (Fig. 3). Most of the conservation and 
restoration applications have been approached at the popula-
tion level, using static models. However, dynamic models are 

generally better suited to capture patterns or processes at the 
far end of the ecological spectrum (genes, and ecosystems; 
Fig. 3). The outstanding questions are thus why dynamic 
models are not more routinely used in animal conservation 
and restoration and likewise why the gene-to-individual and 
the community-to-ecosystem level are underrepresented in 
the literature although the modelling frameworks are princi-
pally available. In the following, we briefly discuss the poten-
tial advantages of dynamic models as well as recent advances 
in modelling frameworks across ecological levels, while 
we reflect on further challenges and opportunities in the  
next section.

From static to dynamic models

It is important to acknowledge that choosing between a static 
or dynamic modelling approach will determine the kind of 

Figure 3. Typology of spatially explicit models for conservation and restoration, typical management applications and relevant ecological 
processes at different ecological levels. We list the relevant ecological processes at those ecological levels where they would most naturally be 
modelled. Boxes for model types and management applications indicate the ecological levels at which these models and applications are 
typically used or the ecological processes that are typically considered when making model-based decisions, while the arrows indicate the 
potential to consider other ecological levels and processes.
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management goals that can be informed by models (Fig. 4). 
Static models will be most useful to inform site selection in 
the widest sense (e.g. habitat or climate suitability, corridors) 
and plan abiotic interventions (e.g. building habitat, reme-
diating physical conditions). By contrast, dynamic models 
can inform biotic interventions that are necessary to conserve 
or restore population viability and ecosystem functioning, 
for example quantifying the required number, timing, and 
locations of reintroductions to ensure viable populations 
(Ovenden  et  al. 2019) or ecosystem recovery. The strong 
bias towards static models in the reviewed literature indicates 
that currently model-based decision support in animal con-
servation and restoration is focusing on selecting sites and 
site management, while modelling population viability and 
ecosystem functioning in a spatially explicit way is less often 
done. This means that management decisions are mostly 
based on predicted habitat extent or quality and less so on 
predicted temporal population dynamics or community sta-
bility and ecosystem intactness (Fig. 4).

Generally, dynamic models for decision support would be 
preferable over static models in cases where the timing of a 
certain management action is of importance (e.g. in sequen-
tial recovery) or when the success and time horizon of a cer-
tain management action for population viability or ecosystem 
functioning should be assessed a priori (e.g. in reintroduction 
planning). Also, under scenarios of global change, dynamic 
models have been shown to outperform the predictive per-
formance of static models (Zurell et al. 2016, Fordham et al. 
2018). By explicitly accounting for transient dynamics of 
biological processes such as dispersal, demography and evo-
lution, among others, dynamic models are better able to pre-
dict the response of different ecological levels to management 
actions or external threats and to predict potential time lags 
(Briscoe  et  al. 2019). Yet, dynamic modelling approaches 
typically need more data to inform the different biologi-
cal processes being modelled (Fig. 4) (Urban  et  al. 2016, 
Briscoe et al. 2021) and also a solid a priori understanding of 
the system or extensive model testing to adequately capture 

Figure 4. The use of spatially explicit models to inform different conservation and restoration objectives. Static models (ENM: ecological 
niche model; MEM: macroecological model; Con: connectivity model) are most useful at selecting sites and planning abiotic interventions. 
These models require comparably simple information for model calibration. Dynamic approaches (POM: patch-occupancy model; PBM: 
population-based model; IBM: individual-based model; IAM: integrated assessment model; GEM: general ecosystem model) can help 
planning biotic interventions, for example, designing conservation and restoration measures to ensure or increase population viability or 
ecosystem functioning over time. These dynamic modelling approaches require increasingly complex data for calibration. The listed objec-
tives are not exhaustive. All management objectives can be optimised by comparing model outputs against desired targets, for example 
specific targets for habitat amount, population abundance or ecosystem intactness.
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the structural uncertainty, meaning defining the adequate 
model complexity (Zurell et al. 2016). Thus, data availabil-
ity and accessibility of methods remain key barriers that pre-
vent more widespread use of dynamic modelling approaches 
(Briscoe et al. 2019).

Models across ecological levels

Our quantitative literature review further indicated that the 
gene-to-individual level as well as the community-to-ecosys-
tem level were particularly underrepresented (Fig. 2c). This 
strong bias towards populations and species allows only a 
limited view of biodiversity changes as set out by the EBV 
framework (Pereira et al. 2013). Successful conservation and 
restoration of ecosystems need to move beyond single species 
or habitat approaches, since biological impoverishment and 
threats act at multiple levels of organisation (Noss 1990).

To date, genetics are rarely considered in spatially explicit 
models, although genetic and evolutionary processes are now 
recognised to be key elements to consider in designing effec-
tive conservation and restoration strategies (Hoffmann and 
Sgrò 2011, Mijangos  et  al. 2014, Hoffmann  et  al. 2015, 
2021). Conservation and restoration strategies that take into 
account genetics and evolution are operating across two main 
objectives: increasing current population fitness through 
genetic rescue and increasing genetic diversity to maintain 
adaptive potential in the face of changing environments (i.e. 
evolutionary rescue) (Weeks et al. 2011, Derry et al. 2019, 
Gaitán-Espitia and Hobday 2020). Hitherto, relevant evolu-
tionary processes such as variation and loss of genetic diver-
sity by genetic drift, reduction in fitness due to inbreeding 
depression, and adaptive evolution have mostly been consid-
ered in spatiallyimplicit simulations to perform ‘genetic via-
bility analyses’ in single small and often isolated populations 
(Hoban et al. 2012, Grueber et al. 2018). Spatially explicit 
models including genetics have rarely been used (here, <1% 
of reviewed studies) but show large potential. For example, 
Mims  et  al. (2019) assessed how reintroduction strategies, 
life-history variation, and riverscape structure affect the 
demography and genetic diversity and structure of reintro-
duced bull trout populations in Washington State, USA. 
At a larger scale and considering adaptive genetic variation, 
Bush  et  al. (2016) projected the distribution of 17 species 
of Australian drosophilids with genetic variation underlying 
their climatic tolerances and showed that drosophilids might 
have the capacity to adapt under realistic scenarios of climate 
change. Thus, models that consider evolutionary responses to 
changing or new environments and in a spatially explicit way 
are particularly useful for studying the interaction between 
genetic and demographic processes and alternative manage-
ment strategies (Pavlova et al. 2017, Kelly and Phillips 2019).

Genetic threats and adaptive potential are two fundamen-
tal pieces of the puzzle for managing and restoring species, 
communities, and ecosystems, such as guiding provenanc-
ing and identifying reinforcement needs (Fig. 4). Yet, active 
interventions aimed at genetic restoration in the broader 
sense have been rarely implemented in practise because of 

uncertainties related to potential negative effects such as out-
breeding depression, swamping of locally adapted genotypes, 
and genetic homogenisation (Weeks  et  al. 2011, Bell  et  al. 
2019, Hoffmann  et  al. 2021). Dynamic and process-based 
models can be a powerful tool for shedding light on the 
complex interactions between evolutionary and ecological 
processes as well as feedbacks and trade-offs (Tallmon et al. 
2004, Whiteley et al. 2015, Hoffmann et al. 2021) and on 
the likely response of the system to specific management 
strategies and future global change scenarios. Additionally, 
using spatially explicit models can help to evaluate the poten-
tial genetic consequences of higher-level management inter-
ventions, meaning actions that are not explicitly aimed at 
genetic restoration but, for example, at restoring or conserv-
ing habitat or connectivity between populations. As promis-
ing new applications are emerging that integrate genetic and 
evolutionary processes with other relevant processes such 
as physiology, demography, dispersal and/or interspecific 
interactions in different combinations and levels of sophis-
tication (Bush et al. 2016, Landguth et al. 2017, Okamoto 
and Amarasekare 2018, Haller and Messer 2019, Cotto et al. 
2020, Bocedi et al. 2021, Malchow et al. 2021), modelling 
biodiversity from the gene to ecosystem-level becomes pro-
gressively more feasible and opens exciting new perspectives 
for conservation and restoration.

At the other end of organisational levels, community-level 
and ecosystem models were underrepresented in the reviewed 
applications in animal conservation and restoration. General 
ecosystem models (GEMs, Box 1) aim to predict the complex 
interactive effects of multiple species and trophic levels in the 
landscapes (Geary et al. 2020) and are thus particularly use-
ful to plan and assess the potential efficiency of restoration 
measures for ecosystem functioning (Fig. 4). For example, 
Baker et al. (2016) devised an ensemble ecosystem modelling 
method integrating a large number (ensemble) of ambigu-
ous species interaction networks and dynamic community 
simulations to explore potential effects of wolf reintroduction 
to Yellowstone National Park and dingo reintroduction to a 
national park in Australia. The simulations allowed assessing 
relative increases and decreases of plant species abundance, 
as well as of different herbivores and meso-predators abun-
dance, and identifying species that would be important to 
monitor to avoid any negative effects from reintroduction. 
Pesendorfer  et  al. (2017) used a similar approach to assess 
how the reintroduction of seed dispersers could acceler-
ate the recovery and expansion of natural tree communities 
(passive restoration) in California’s Channel Islands National 
Park. Such ecosystem models allow ecologists to complement 
individual-to-population level analysis of biodiversity pat-
terns with community and ecosystem-level modelling that 
builds on ecological theory. For example, in the mechanistic 
GEM ‘Madingley’, ecosystem structure and functions emerge 
from individual-level (or cohort-level) processes such as for-
aging and growth and interspecific interactions within grid 
cells, and dispersal between grid cells (Harfoot et al. 2014, 
Hoeks et al. 2021). The Madingley model is not species-spe-
cific but relies on functional groups of similar body mass and 
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trophic level. It could thus be particularly useful in under-
studied regions where species data are sparse, but knowledge 
of ecosystem-level properties can be applied (Purves  et  al. 
2013). Recently, a novel application of the Madingley model 
assessed the sustainability of bushmeat hunting across envi-
ronmental gradients in Africa (Barychka et al. 2019). These 
examples show that ecosystem-level modelling provides the 
means to assess the efficiency and resilience of ecosystems and 
their functioning and thus has a high potential to inform eco-
system restoration efforts.

Challenges and opportunities

Despite the potential of dynamic approaches to predict pop-
ulation viability and ecosystem functioning and manage for 
transient dynamics (Fig. 4), our results indicated a strong bias 
towards static models. Also, most studies focus on single or 
few species and few taxonomic groups (Supporting informa-
tion). This underlines that important data and modelling 
challenges remain and need to be overcome for operation-
alising models over multiple taxonomic and spatiotemporal 
scales (Urban et al. 2016, Briscoe et al. 2019). Additionally, 
our results indicated underuse of cost optimisation frame-
works such as spatial conservation prioritisation (Ball  et al. 
2009). Broader exploration of modelling options paired with 
explicit prioritisation methods seems particularly promising 
as this could provide cost-effective tools to assess efficiency of 
different management options to achieve clear conservation 
and restoration objectives (Guisan  et  al. 2013). In the fol-
lowing, we discuss current challenges and opportunities for 
using spatially explicit models for informing animal conser-
vation and restoration. Overall, we believe that the challenges 
go beyond the availability of appropriate model frameworks, 
data integration and optimisation methods, but we need 
more knowledge transfer between modellers and practitio-
ners as well as applied scientists to make existing and newly 
emerging modelling frameworks more accessible and easier to 
use and to provide (best-practise) guidelines for their usage.

Data challenges

Previous reviews proposed that the lack of data is hamper-
ing more widespread use of dynamic models in global change 
research (Urban et al. 2016, Briscoe et al. 2019). It is undis-
puted that dynamic and mechanistic models require more 
complex data than simple correlative models (Dormann et al. 
2012). For example, while correlative species distribu-
tion models require only simple snapshot occurrence data, 
patch-occupancy models need time-series data of occurrence 
and population-based models need demographic informa-
tion and/or time series of abundance for calibration (Box 
1, Fig. 4). Further, model evaluations on simulated data as 
well as on empirical data have shown that predictive accu-
racy of dynamic models increases when fitted to longer time 
series, with more information content on transient dynam-
ics (Pagel and Schurr 2012, Briscoe et al. 2021). Such time 

series data are only available for limited taxonomic groups 
and regions. Typically, spatiotemporal data are particularly 
scarce for rare species that often are of high conservation 
concern. Recent studies show promise for using habitat 
and demographic proxies in such cases (Bleyhl et al. 2021). 
Additionally, we see great potential for extending available 
time-series data through emerging new sensor and genetic 
techniques and approaches that will improve our ability to 
document biodiversity dynamics and patterns but will also 
provide a more complete, holistic picture of ecosystem res-
toration (Pimm  et  al. 2015). Emerging techniques include 
citizen science, efficient automated and semi-automated bio-
acoustics and camera-trap devices, remote sensing techniques 
(e.g. spaceborne, airborne, radar, lidar), genomics (popula-
tion genomics, meta-omics and genome editing) (Breed et al. 
2019), and the accessibility of retrieving DNA from environ-
mental samples (environmental DNA – eDNA) (Bush et al. 
2017, Kissling et al. 2018a, b). These methods allow sampling 
and biomonitoring of ecosystems at high resolution and in 
real-time, filling data gaps between fine-scale and ecosystem-
scale observations and detecting systematic changes in ecosys-
tems. An outstanding challenge is to improve the integration 
of these data types in monitoring and modelling. Here, a 
promising and still underexploited avenue is provided by 
more flexible computational methods such as Approximate 
Bayesian Computation and pattern-oriented modelling that 
can help integrating heterogeneous data sources into simula-
tion models (Hartig et al. 2011, Grimm and Railsback 2012, 
Gallagher et al. 2021).

Data challenges also remain for improving data avail-
ability of relevant environmental drivers, in past, present, 
and future (Urban et  al. 2016). While most studies in our 
review mentioned direct effects of human activities (e.g. land-
use change, overexploitation) as the dominant threat in the 
studied system, the impact of indirect anthropogenic effects 
such as climate change and ocean acidification is becoming 
increasingly relevant (Uthicke  et  al. 2013, Urban 2015). 
Designing effective conservation measures under these 
dynamic and non-local threats requires a detailed under-
standing of their individual and joint effects (Oliver and 
Morecroft 2014). For example, habitat loss and fragmen-
tation not only lead to local extinctions and reduced gene 
flow among populations but also limit the ability of species 
to track their environmental niche under climate change 
(Warren et al. 2001). Similarly, habitat degradation and cli-
mate change may put the native fauna at a competitive dis-
advantage against potential and already-established invasive 
species (Foley 2005, Bellard et al. 2013). Likewise, rewilding 
apex predators may be unsuccessful in a policy context that 
does not regulate poaching (Bleyhl et al. 2021), and riparian 
habitat restoration may be inefficient when pollution sources 
are not eliminated first. Quantifying whether stressors affect 
biodiversity additively or synergistically requires improved 
environmental data, including past time series when study-
ing legacy effects (Semper-Pascual et al. 2021) and future sce-
narios to inform decision-making. A key challenge is thus to 
provide integrated scenarios of climate, land use, and other 
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anthropogenic pressures at finer spatial resolution in order to 
inform regional conservation and restoration efforts.

Modelling challenges

The comparably simple data requirements of static models, 
in particular correlative ENMs, are an important but likely 
not the only reason for their popularity compared to dynamic 
modelling approaches. Another major difference is the acces-
sibility of easy-to-use software implementations and exten-
sive guidance to use ENMs (Zurell et al. 2020). By contrast, 
many open-source and cross-platform implementations of 
dynamic modelling approaches have only been released com-
parably recently, and less guidance is currently available for 
applying them in practise (Supporting information). This 
means that it will take time for less experienced modellers and 
practitioners to accustom with these approaches. Knowledge 
transfer could be improved by providing more dedicated 
modelling support in form of extended tutorials and text-
books (as has happened for correlative ENMs) or in form of 
support teams. For example, the Climate Change Specialist 
Group (CCSG) of the International Union for Conservation 
of Nature (IUCN) has established a modelling support activ-
ity providing useful resources and advice to modelling carried 
out by the IUCN specialist groups (<http://ccsg-iucn.com/
themes/modelling-support/>). Development of best-prac-
tise guidelines (Araújo  et  al. 2019) and standard protocols 
(Grimm et  al. 2010, 2014, Zurell  et  al. 2020) can further 
facilitate planning, implementation, documentation, and 
communication of models and thus improve confidence in 
their adequacy for decision-making.

Additionally, several items are still missing from the toolbox 
of spatially explicit, dynamic modelling approaches, includ-
ing easy-to-use routines for model calibration and model 
selection (Hartig et al. 2011, 2012) as well as for model vali-
dation. While model selection, model averaging and ensem-
ble modelling, and validation of predictive performance are 
common practise for correlative ENMs (Roberts et al. 2017, 
Dormann  et  al. 2018), fitting complex simulation models 
to data and assessing their predictive performance is still 
regarded as cutting-edge and rarely done. Yet, these topics 
should receive much more attention in dynamic modelling 
approaches. The more complex the models, the more com-
plex are decisions regarding the necessary process detail in the 
models (Zurell et al. 2016). This structural uncertainty could 
be dealt with by designing adequate model selection strate-
gies for simulation models, or it could be accounted for by 
ensemble approaches. Validating predictive performance is 
particularly important for assessing uncertainty, when trans-
ferring models to different places and times and when model 
predictions are used to inform conservation and restoration 
projects, such as species reintroductions (Yates et al. 2018). 
For example, measures for preventing invasions and spread 
of aliens can be designed based on predictions of invasibility 
and establishment potential (Medley 2010, Villemant et al. 
2011). Also, hindcasting to past and forecasting to future cli-
mates can help to benchmark and plan trophic rewilding and 

to select suitable sites for species reintroduction (Jarvie and 
Svenning 2018). Model transferability has received much 
attention in static modelling (Sequeira  et  al. 2018), and 
methodological advances have been made by introducing, 
for example, block cross-validation that explicitly tests pre-
dictive accuracy to different places, times, or environments 
(Wenger and Olden 2012, Roberts et al. 2017). By contrast, 
transferability and predictive accuracy in dynamic modelling 
approaches have rarely been assessed explicitly (Trotsiuk et al. 
2020), although benchmarking studies showed that model 
fit to calibration data is not indicative of predictive accu-
racy under changing environmental conditions (Zurell et al. 
2016). More routinely assessing limits to transferability of 
both static and dynamic models in space and time in a stan-
dardised way will be crucial for defining their forecast horizon 
(Petchey et al. 2015) and for adequately guiding conservation 
and restoration efforts under global change. A major step in 
this direction will be implementing standard routines for 
model validation within dynamic modelling platforms.

Decision-making challenges

As only limited funds and resources are available to spend on 
conservation and restoration efforts (McCarthy et al. 2012), 
it is crucial to invest the available means efficiently, for exam-
ple by relying on explicit prioritisation approaches. In our 
review, most studies provided decision support only in the 
form of mapping the status quo, for example by identifying 
hotspots and coldspots of biodiversity and threats (Romero-
Muñoz  et  al. 2020), or in the form of a gap analysis, for 
example by comparing hotspots with currently implemented 
protected areas and management plans. Cost optimisation 
approaches were rarely used as a formal decision support tool 
(10%), although their proportional use increased compared 
to former evaluations (Guisan  et  al. 2013). Well-validated 
spatial models allow the exploration of alternative, pre-
defined management options either by comparing scenarios 
or by adopting a cost optimisation strategy that aims to find 
the optimal solution between maximising conservation and 
restoration gains and minimising costs (e.g. financial, human 
and spatial resources). Cost optimisation relies on defining 
an appropriate conservation goal that should ideally reflect 
different biodiversity facets, for example taxonomic, phylo-
genetic, and functional diversity (Pollock  et  al. 2017). Yet, 
most studies reviewed here only considered species richness 
as model response or focussed on only a single species. Here, 
we argue that multi-faceted conservation and restoration tar-
gets should be considered more routinely in decision-mak-
ing. For example, complex models that incorporate processes 
from gene to ecosystem level (Fig. 3) will allow cost opti-
misation based on multiple EBVs and can effectively trade 
off different biodiversity facets in conservation as well as 
the provision of different ecosystem functions and services 
in ecosystem restoration. Additionally, using dynamic mod-
els will help anticipating transient dynamics in response to 
global change (Fig. 4) and thus bear the potential to plan 
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sequential restoration measures (Higgs 2016) and to more 
effectively guide adaptative management strategies.

A range of optimisation software is available (Ball et al. 
2009, Moilanen  et  al. 2011) that has traditionally been 
applied to static biodiversity information, such as optimising 
the representation or number of species or sites. Alagador 
and Cerdeira (2020) showed how existing prioritisation 
software such as ‘Marxan’ (Ball et al. 2009) and ‘Zonation’ 
(Moilanen  et  al. 2011) could be reformulated to optimise 
persistence goals under transient climate change dynamics, 
yet at the expense of high computational load. New priori-
tisation methods are currently being developed to make use 
of machine learning and artificial intelligence (Chadès et al. 
2017). For example, deep reinforcement learning approaches 
(Rolnick  et  al. 2019) can be applied to the complex chal-
lenges of conservation and restoration of ecological systems. 
Again, a key challenge will be making these methods acces-
sible to applied modellers and practitioners in the form 
of easy-to-use interfaces or modelling support groups and 
establishing best-practise guidelines for aiding model-based 
decision-making.

Discussion and conclusion

As ecosystems further deteriorate and our focus shifts from 
conservation to restoration, we urgently need more advanced 
models to support planning and decision-making under tran-
sient dynamics. To meet the challenges posed by the climate 
and biodiversity crises and the growing human population, 
we need to provide effective tools for quantifying the trade-
offs between economic and societal well-being, biodiversity, 
climate adaptation, and climate mitigation (Leclère  et  al. 
2020, Poertner et al. 2021). Models can greatly aid this deci-
sion-making and uncertainty quantification and should be 
used more routinely for guiding conservation and restoration 
actions at the local to global level (IPBES 2016).

Our literature review highlighted advances and oppor-
tunities of available spatially explicit modelling approaches 
and applications in animal conservation and restoration. 
This resulted in a new model typology for matching models 
with conservation and restoration goals and for facilitating 
model-based decision support. Thereby, our review focussed 
on applications in animal conservation and restoration and 
thus does not cover the entire breadth of available model-
ling frameworks in ecology, ignoring for example the wide 
field of vegetation modelling (Snell  et  al. 2014). Also, we 
only considered modelling studies that had a clear manage-
ment application and were spatially explicit. We took care to 
define a set of general taxonomic keywords that would not 
bias our search towards terrestrial animals but cannot exclude 
that the keywords related to ‘space’ (Supporting information) 
have reduced the number of freshwater and marine studies 
considered. Nevertheless, we are confident that the identified 
studies provide a representative picture of the current state of 
spatially explicit models in animal conservation and restora-
tion across regions and realms.

Important gaps for modelling and forecasting biodiversity 
at the gene to ecosystem level could be closed by improved 
integration of relevant ecological and evolutionary processes 
at the different organisational levels (Urban  et  al. 2016), 
improved data integration, and improved integration of cost 
optimisation strategies that include multiple biodiversity fac-
ets and transient dynamics. We conclude with a list of explicit 
recommendations for improving model-based decision sup-
port in conservation and restoration.

1)	 Develop a toolbox for conservation and restoration modelling: 
For a widespread adoption of models to inform effective 
animal conservation and restoration activities, it is critical 
that accessibility of modelling tools is improved and their 
use is facilitated. This would be substantially enhanced 
by the provision of an integrated platform or easy-to-use 
toolbox that provided ready access to a suite of models 
from across the modelling typology. Strong documenta-
tion, examples of effective model applications, and forum 
pages could all be helpful for developing a supportive 
developer and user community.

2)	 Improve calibration and validation of dynamic modelling 
approaches: Operationalising dynamic models over large 
numbers of species and ecosystems will require efficient 
and automated parameterisation and model selection and 
will need to integrate different sets of heterogeneous data. 
This requires easy access and guidance on advanced cali-
bration methods such as pattern-oriented modelling and 
Approximate Bayesian Computation. Additionally, more 
routine model validation methods for dynamic model-
ling approaches need to be developed to explicitly assess 
predictive accuracy in a standardised way and increase 
confidence in these models. Without this information, 
it is impossible to know when it is necessary to collect 
additional data for updating model parameterisation and 
consequent model-based decisions.

3)	 Develop and harmonise best-practise guidelines across model-
ling approaches: When using models to project the state of 
biodiversity and ecosystems in time and space, we need 
to make sure that models are aligned with the intended 
use and are robust. Best-practise guidelines and standard 
protocols for model reporting will facilitate model imple-
mentation and communication and will ensure transpar-
ency and reproducibility. Such best-practise guidelines are 
needed in all aspects of model-based conservation and res-
toration planning, including the spatially explicit ecologi-
cal models as well as the decision-making approaches.

4)	 Use multiple models in combination: For most conservation 
and restoration projects that we can envisage, it is likely 
that results from more than one model type can be useful 
as each model approach has specific strengths and weak-
nesses and can inform different aspects of the project. For 
example, if a reintroduction is being planned, an ENM 
may help inform where it is best to reintroduce while an 
IBM including genetics may help determine how many 
individuals should be reintroduced and at what temporal 
schedule to ensure effective establishment and long-term 
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genetic viability. An ecosystem model may then be useful 
to determine the likely broader impacts of the reintroduc-
tion of a species. Further, model validation may result in 
varying levels of confidence for alternative model types 
or alternative model implementations. Similar to other 
disciplines, epistemic uncertainty in the models could 
be considered by comparing results from, or by combin-
ing, multiple model types and algorithms in ensemble 
approaches.

5)	 Use models as a core part of adaptive management: Effective 
adaptive management requires long-term projects that 
couple management, monitoring, and research. The pro-
posed toolbox with improved modelling methods and 
best-practise guidelines will allow model-based adaptive 
management, which should become an integral part of 
conservation and restoration projects. By monitoring 
and validating model predictions, and updating model 
assumptions and decision-making in an iterative fashion, 
model-based adaptive management will allow to identify 
and react to early warning signals of a system’s shift and 
ensure ecosystem resilience into the future. The availabil-
ity of long-term funding for modelling and monitoring 
and improved communication between research and prac-
tise will be key for achieving desired conservation and res-
toration outcomes.
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