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Summary 

Species respond to environmental change by dynamically adjusting their geographical ranges. 

Robust predictions of these changes are prerequisites to inform dynamic and sustainable 

conservation strategies. Correlative species distribution models (SDMs) relate species’ 

occurrence records to prevailing environmental factors to describe the environmental niche. 

They have been widely applied in global change context as they have comparably low data 

requirements and allow for rapid assessments of potential future species’ distributions. 

However, due to their static nature, transient responses to environmental change are 

essentially ignored in SDMs. Furthermore, neither dispersal nor demographic processes and 

biotic interactions are explicitly incorporated. Therefore, it has often been suggested to link 

statistical and mechanistic modelling approaches in order to make more realistic predictions 

of species’ distributions for scenarios of environmental change.  

In this thesis, I present two different ways of such linkage. (i) Mechanistic modelling can act 

as virtual playground for testing statistical models and allows extensive exploration of 

specific questions. I promote this ‘virtual ecologist’ approach as a powerful evaluation 

framework for testing sampling protocols, analyses and modelling tools. Also, I employ such 

an approach to systematically assess the effects of transient dynamics and ecological 

properties and processes on the prediction accuracy of SDMs for climate change projections. 

That way, relevant mechanisms are identified that shape the species’ response to altered 

environmental conditions and which should hence be considered when trying to project 

species’ distribution through time. (ii) I supplement SDM projections of potential future 

habitat for black grouse in Switzerland with an individual-based population model. By 

explicitly considering complex interactions between habitat availability and demographic 

processes, this allows for a more direct assessment of expected population response to 

environmental change and associated extinction risks. However, predictions were highly 

variable across simulations emphasising the need for principal evaluation tools like sensitivity 

analysis to assess uncertainty and robustness in dynamic range predictions. Furthermore, I 

identify data coverage of the environmental niche as a likely cause for contrasted range 

predictions between SDM algorithms. SDMs may fail to make reliable predictions for 

truncated and edge niches, meaning that portions of the niche are not represented in the data 

or niche edges coincide with data limits.  
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Overall, my thesis contributes to an improved understanding of uncertainty factors in 

predictions of range dynamics and presents ways how to deal with these. Finally I provide 

preliminary guidelines for predictive modelling of dynamic species’ response to 

environmental change, identify key challenges for future research and discuss emerging 

developments.  
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Zusammenfassung 

Das Vorkommen von Arten wird zunehmend bedroht durch Klima- und 

Landnutzungswandel. Robuste Vorhersagen der damit verbundenen Arealveränderungen sind 

ausschlaggebend für die Erarbeitung dynamischer und nachhaltiger Naturschutzstrategien. 

Habitateignungsmodelle erstellen statistische Zusammenhänge zwischen dem Vorkommen 

einer Art und relevanten Umweltvariablen und erlauben zügige Einschätzungen potentieller 

Arealveränderungen. Dabei werden jedoch transiente Dynamiken weitgehend ignoriert sowie 

demographische Prozesse und biotische Interaktionen. Daher wurden Vorschläge laut, diese 

statistischen Modelle mit mechanistischeren Ansätzen zu koppeln. In der vorliegenden Arbeit 

zeige ich zwei verschiedene Möglichkeiten solcher Kopplung auf. (i) Ich beschreibe den 

sogenannten ‚Virtuellen Ökologen’-Ansatz als mächtiges Validierungswerkzeug, in dem 

mechanistische Modelle virtuelle Testflächen bieten zur Erforschung verschiedener 

Probenahmedesigns oder statistischer Methoden sowie spezifischer Fragestellungen. Auch 

verwende ich diesen Ansatz, um systematisch zu untersuchen wie sich transiente Dynamiken 

sowie Arteigenschaften und ökologische Prozesse auf die Vorhersagegüte von 

Habitateignungsmodellen auswirken. So kann ich entscheidende Prozesse identifizieren 

welche in zukünftigen Modellen Berücksichtigung finden sollten. (ii) Darauf aufbauend 

koppele ich Vorhersagen von Habitateignungsmodellen mit einem individuen-basierten 

Populationsmodell, um die Entwicklung des Schweizer Birkhuhnbestandes unter 

Klimawandel vorherzusagen. Durch die explizite Berücksichtigung der Wechselwirkungen 

zwischen Habitat und demographischer Prozesse lassen sich direktere Aussagen über 

Populationsentwicklung und damit verbundener Extinktionsrisiken treffen. Allerdings führen 

verschiedene Simulationen auch zu hoher Variabilität zwischen Vorhersagen, was die 

Bedeutung von Sensitivitätsanalysen unterstreicht, um Unsicherheiten und Robustheit von 

Vorhersagen einzuschätzen. Außerdem identifiziere ich Restriktionen in der Datenabdeckung 

des Umweltraumes als möglichen Grund für kontrastierende Vorhersagen verschiedener 

Habitateignungsmodelle. Wenn die Nische einer Art nicht vollständig durch Daten 

beschrieben ist, kann dies zu unrealistischen Vorhersagen der Art-Habitat-Beziehung führen. 

Insgesamt trägt meine Arbeit erheblich bei zu einem besseren Verständnis der Auswirkung 

verschiedenster Unsicherheitsfaktoren auf Vorhersagen von Arealveränderungen und zeigt 

Wege auf, mit diesen umzugehen. Abschließend erstelle ich einen vorläufigen Leitfaden für 

Vorhersagemodelle und identifiziere Kernpunkte für weitere Forschung auf diesem Gebiet.  
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1 General Introduction 
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1.1 Motivation and objectives 

Why does a species occur in a particular place on Earth or why does it not occur? This 

fascinating question central to the discipline of biogeography has a long-standing history and 

inspired many important naturalists, such as Alexander von Humboldt and Charles R. Darwin, 

to seek explanations or even develop more general theories of the diversity of life. 

Biodiversity is not evenly distributed across our planet but species’ distributions are 

fundamentally constrained by physiological tolerances to environmental conditions. If 

environmental conditions change beyond the species’ tolerances, then species may respond by 

range shifts, phenology shifts, (genetic and/or behavioural) adaptation or (local) extinction 

(Parry et al. 2007). Community-level changes are likely to follow these species-level changes 

and may include changing biotic interactions and changing species compositions. Already at 

the end of the 19
th

 century, famous biogeographer Alfred R. Wallace warned about the 

impacts human activities such as deforestation can have on ecosystems and, through complex 

interactions, also on the climate system (Wallace 1878). Over the last centuries, virtually all 

of Earth’s ecosystems have experienced significant transformations caused by human actions 

(MEA 2005). Today, the most critical direct drivers causing ecosystem changes are habitat 

change, climate change, invasive species, overexploitation, and pollution (Sala et al. 2000). 

While land use change and pollution are currently the most important drivers of biodiversity 

change in terrestrial ecosystems, the impact of climate change is expected to rapidly increase 

during the 21
st
 century (Pereira et al. 2010). This is alarming because climate change is 

probably the most pervasive threat to Earth’s biodiversity as it has the potential to influence 

all ecosystems, including those that are far from human populations and development and are 

still classified as wilderness (MEA 2005). Evidence is accumulating that recent anthropogenic 

change in climate, especially warmer regional temperatures, have already affected 

biodiversity in many parts of the world. Species’ responses included changes in geographic 

distributions, population sizes and community structures (Thomas et al. 2001, Walther et al. 

2002, Parmesan and Yohe 2003), timing of reproduction and migration (Menzel and Fabian 

1999, Visser and Both 2005, Both et al. 2009) as well as an increase in the frequency of 

epidemic diseases (Harvell et al. 2002, Pounds et al. 2006, Bosch et al. 2007). With growing 

concern about irrevocable species loss, predictive modelling of species’ distributions has 

become an increasingly important tool in climate change research and conservation 

biogeography. Projections facilitate better understanding of possible environmental change 

impacts which, in turn, is essential for management actions and policy aimed at mitigating 

negative impacts. Therefore, a growing number of modelling studies has attempted to project 
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21
st
 century species extinctions for scenarios of environmental change (e.g. Thomas et al. 

2004, Malcolm et al. 2006, van Vuuren et al. 2006, Jetz et al. 2007) and more studies are 

constantly appearing.  

Generally, projections of future species’ distributions can build on models ranging from 

purely statistical models to complex mechanistic models. These two types of models can be 

thought of as alternative ends on a trade-off gradient between precision and generality (Levins 

1966, Sharpe 1990), or between specificity and transferability, although, in practice, many 

models exist with components of both types. Mechanistic models are powerful in modelling 

spatiotemporal population responses to environmental change as, by definition, they are 

grounded in mechanistic understanding of underlying processes. However, they are highly 

data demanding, usually involve more complex model structures and, thus, rely on extensive 

knowledge on species’ biology and population processes. This information is not readily 

available for the majority of species, thus limiting the general use of mechanistic models in 

conservation biogeography and biodiversity assessment. Statistical species distribution 

models (SDMs) are an alternative approach that fit the environmental niche of a species by 

relating species’ occurrence records to environmental characteristics (Guisan and 

Zimmermann 2000, Guisan and Thuiller 2005). Here, future projections of species’ 

distributions do not depend on profound prior knowledge on the species (although, in my 

perception, the fitted relationships should be consistent with fundamental theory). SDMs are 

less complex and less ‘data hungry’, and currently remain one of few practical approaches for 

assessing the impact of projected climate change on a wide range of species (Huntley et al. 

2004, Guisan and Thuiller 2005, Elith and Leathwick 2009). Nevertheless, it has to be 

acknowledged that SDMs are not designed for extrapolation under climate change because 

this widely stresses key assumptions of SDMs: that species are at equilibrium with their 

environment (ignoring transient dynamics, dispersal capacity and pathways, persistence); that 

all environmental factors limiting species’ distribution are included in the model and that 

these environmental gradients have been adequately sampled; that biotic interactions will be 

the same under extrapolated conditions; that genetic variability, phenotypic plasticity and 

adaptive mechanisms are negligible  (Austin 2002, Dormann 2007, Elith and Leathwick 

2009). Further, different algorithms, each with their own specific assumptions, have partially 

led to controversial projections (Thuiller 2004, Pearson et al. 2006, Buisson et al. 2010), and 

validation of model predictions under climate change is challenging and rarely done (Araújo 

et al. 2005, Franklin 2010). As future is unknown, ecological models are often validated with 

data gathered in present conditions (e.g. validation with ‘space for time’ substitutes). But this 
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way, we implicitly assume that prediction accuracy in the case of present climate guarantees 

realism of the model and thus prediction accuracy in the case of changing climatic conditions 

as well which may not necessarily be the case (Hänninen 1995, Hampe 2004, Elith et al. 

2010).  

Several authors have proposed to link or supplement the statistical modelling approaches by 

more mechanistic models in order to improve the realism of key assumptions presumably 

leading to more robust model projections (Guisan and Thuiller 2005, Araújo and Guisan 

2006, Thuiller et al. 2008). In this context, with mechanistic models researchers mostly mean 

process-oriented, dynamic population models that simulate demographic processes and are 

able to describe non-equilibrium dynamics explicitly by incorporating modifying mechanisms 

such as migration limitations, source-sink dynamics, evolutionary changes, or species 

interactions. Guisan and Thuiller (2005) identified two major avenues for linking SDMs and 

dynamic population models that may lead to improved biodiversity forecasts: (1) SDMs may 

be improved by incorporating theoretical information from population dynamics. For 

instance, knowledge about inherent stochasticity in a system exhibiting source-sink dynamics 

may help to determine the maximum amount of deviance that can possibly be explained by 

SDMs. (2) SDMs can lend support to population studies. For example, in spatially explicit 

metapopulation models SDMs may aid the definition of patches by providing maps of habitat 

suitability for given environmental conditions. In fact, the latter approach has repeatedly been 

employed by researchers over the last two decades, and more recently, has also been utilised 

in climate change research (for an overview see Franklin 2010). Here, SDMs are used to 

project habitat suitability for scenarios of climate change. Then, time series of habitat 

suitability maps are fed into spatially explicit stochastic population models. Recent 

applications of this approach promised better understanding of species’ vulnerability and of 

non-linear responses to environmental change, and insights of how these responses may be 

mediated by interactions with other processes such as disturbance regimes (Keith et al. 2008, 

Anderson et al. 2009, Brook et al. 2009, Cheung et al. 2009). 

With this thesis, I want to add some more aspects to this discussion. First of all, I want to add 

a third point to the above list how SDMs and more mechanistic, dynamic modelling 

components may be linked to improve forecasts: Mechanistic models may serve as virtual 

playground for thoroughly validating statistical methods in a ‘virtual ecologist’ approach. 

Here, we essentially imitate the entire process of ecological analysis and modelling by 

simulating ecosystems and species therein as well as observer behaviour and subsequent data 

processing. As we have full control over this ‘virtual world’ and full access to all information 
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created therein, in contrast to reality, we are able to draw strong conclusions about sampling 

methods and about (statistical) modelling methods used for interpretation and prediction. In 

SDM context, this allows rigorous evaluation of all steps in the model building strategy such 

as the choice of appropriate sampling designs or model algorithms for a given purpose. But 

what is much more appealing and particularly relevant to climate change research, such a 

virtual ecologist approach allows direct evaluation of SDM predictions under transient 

dynamics and other complicating ecological processes. Part of this thesis is aimed at 

promoting this virtual ecologist approach and its manifold applications (chapter 2). Thereby, I 

do not only critically discuss its capabilities and relevance for various ecological disciplines 

but I also demonstrate how it may foster the integration of theoretical and empirical work, and 

outline possible future applications that I find especially promising. This review is 

complimented by a case study in which I utilise such a virtual ecologist approach to explore 

the applicability of SDMs for making predictions under changing climatic conditions (chapter 

3). To this end, I present a spatially explicit, multi-species dynamic population model 

incorporating species-specific and interspecific ecological processes, environmental 

stochasticity, and climate change. The effects of transient dynamics and ecological properties 

and processes as well as the effect of different algorithms on SDM prediction accuracy are 

explicitly investigated in a full factorial design. That way, relevant mechanisms are identified 

that shape the species’ response to altered environmental conditions and which should hence 

be considered when trying to project potential species’ distribution through time. In 

subsequent chapter 4, I am asking whether incorporating these processes into our models will 

really render predictions more robust or whether consideration of these processes may not, at 

the same time, introduce immense additional uncertainty. I explore this question in a case 

study for black grouse (Tetrao tetrix) in Switzerland. Predictions of climate-induced range 

dynamics are made by linking models of habitat suitability and spatially explicit population 

dynamics similar to the approaches described above (Keith et al. 2008, Anderson et al. 2009). 

Then, in an extensive sensitivity analysis, I apportion variation in key model outputs 

(population size, probability of extinction, elevational range, and mean population centre) to 

different sources of uncertainty: statistical methods (SDM algorithms), dynamic population 

model parameters, regional circulation models and emission scenarios. Thereby, I 

demonstrate both the merits but also the weaknesses of such an integrated approach. On the 

one hand, it allows for a more direct assessment of expected population response to 

environmental change and associated extinction risks as we can study the complex interplay 

between habitat availability and demographic processes explicitly. On the other hand, both 
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quantitative and qualitative predictions of range and population dynamics may be highly 

variable. This underscores the necessity of sensitivity analysis in dynamic range predictions 

because robustness can never be a model property per se but needs to be assessed contingent 

on explicit simulation runs. Additionally, I outline important challenges that remain with this 

type of species vulnerability assessment. For example, one recurrent issue here is why 

predictions made by different SDM algorithms differ. In chapter 5 of this thesis, I again 

employ simulated data to explore this question and identify data coverage of the species 

environmental niche to be a crucial factor. Different SDM algorithms may in fact perform and 

predict equally well if the entire niche is encompassed by data. However, SDM algorithms 

may fail to make reliable predictions if the niche is truncated, meaning that portions of the 

niche are not represented in the data, or if the niche edge coincides with data limit. Thus, 

SDMs will need to extrapolate the full shape of the environmental niche and different 

algorithms will assume different shapes. This will pose a problem to subsequent predictions, 

if these unobserved portions of the niche get unclosed following environmental change. In my 

concluding chapter (chapter 6), I summarise the key results of this thesis and put these into 

broader context. I provide general conclusions regarding range predictions and coupled model 

systems; identify other complicating factors in climate change research and conservation 

biogeography, and outline emerging developments and future directions. But first of all, in the 

remaining part of this chapter, I spend a few more words to introduce the reader to the 

concepts of statistical and mechanistic models of species distributions and the hybrids 

between them. 

1.2 State of the art 

This thesis covers a broad range of ecological model types. Because I suspect many readers to 

have expertise knowledge in one particular field rather than in all model types, I will shortly 

summarise important properties of the different modelling philosophies. Thereby, I will 

indicate where these model types appear in subsequent chapters. Note, that this is not a 

comprehensive review of available biodiversity models (Pereira et al. 2010), but rather I want 

to provide a short overview of available models to make spatial predictions of environmental 

change response at the species level for large scales. 

1.2.1 Correlative species distribution models 

As the main focus of this thesis is on correlative species distribution models (SDMs) they 

have earned especial attention here. Thereby, I define species distribution models (SDMs) as 

phenomenological (statistical, correlative) models that relate species location data (presences, 
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presence/absences or abundances) to environmental variables to describe the environmental 

conditions within which a species occurs. These models are aimed at understanding and 

explaining the species-environment relationship and/or aimed at predicting the potential 

distribution. Rather than reiterating what is already said about species distribution models in 

general, I want to refer the reader to some comprehensive reviews about SDMs in the 

literature, for example Guisan and Zimmermann (2000), Guisan and Thuiller (2005), 

Schröder (2008a) as well as Elith and Leathwick (2009). Here, I will confine myself to 

summarising theoretical underpinnings that I find central to understanding SDMs and possible 

problems and limitations in global change context. Note that the following overview does not 

present a critical discussion but is simply a summary of current practice and believes. Thus 

when stating that things should be done in specific ways this merely means that this is 

currently regarded as good scientific practice. I will supply more critical views and add my 

own voice to this subject in subsequent chapters, and I will provide a critical synopsis in 

chapter 6. 

1.2.1.1 Theoretical framework 

Numerous synonyms for the term species distribution model exist including ecological niche 

model, habitat suitability model, resource selection function, or environmental envelope 

model among others (Elith and Leathwick 2009). Despite smaller differences in emphasis and 

meaning, all these models have similar theoretical concepts and essentially follow the same 

basic modelling process. Although the term species distribution modelling is now (maybe the 

most) widespread, and I will use it throughout this thesis, SDMs do not actually model the 

species’ distribution per se as the name might imply but rather the distribution of suitable 

habitat (Pearson 2007). The outputs of SDMs are habitat suitability maps.  

SDMs aim at describing the species’ range limits in geographic space by identifying the 

environmental space that is physiologically suitable for the species, the environmental niche 

(Hutchinson 1957). Predictions of potential distributions are made by projecting the 

environmental niche back onto geographic space, either to current environmental conditions 

or to selected scenarios of environmental change (Fig. 1.1). We can envision environmental 

space as an n-dimensional conceptual space that is defined by the environmental factors to 

which the species responds. Thereby, we need to appreciate that environmental variables 

included in SDMs are likely to represent only a subset of all possible dimensions of the 

environmental niche.  Moreover, different dimensions may be important at different spatial 

scales, often resulting in a hierarchical structure (Mackey and Lindenmayer 2001, Guisan and 

Thuiller 2005). Generally, it is desirable to include only causal, functionally relevant 
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environmental variables that exert direct effects on species and that constitute limiting factors 

or resources to the species or describe disturbances (Austin 2002). Only models that are 

consistent with fundamental theory are likely to be robust and facilitate understanding of 

underlying processes. 

 

Figure 1.1. Schema of predictive species distribution modelling. Species’ distributional data (e.g. presence-

absence data of black grouse in Switzerland) and a suite of environmental variables (e.g. climatic such as 

annual temperature [°C] or land use such as grassland cover [%]) are sampled in geographic space 

according to underlying hypotheses regarding species’ ecology. Statistical models (e.g. generalised linear 

model) are used to characterise the environmental space within which the species occurs. Current and 

future potential distribution are modelled by projecting the environmental niche back onto geographic 

space, either to current environmental conditions or to selected environmental change scenarios. The 

predictive power of the species distribution model should ideally be evaluated against independent test 

data. 

Guisan and Thuiller (2005) identify six important steps in the model-building procedure: 

conceptualisation, data preparation, model fitting, model evaluation, spatial predictions, and 

assessment of model applicability. Although, or maybe because, recent years have seen an 

upsurge of available methods and rapid improvements of existing ones, both assisted by the 

spread of easy computation, integration with ecological theory often remains insufficient 

(Austin 2002, Huston 2002, Guisan and Thuiller 2005). That means that we generally like to 

regard descriptive, empirical models as black boxes that take any input and produce some 
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system output (in our case potential distribution of habitat) without explicitly considering the 

driving processes. Easy to use software packages of recent years may well have fuelled this 

way of thinking as they allow automated modelling of multiple species simultaneously 

including automatic selection of predictors out of hundreds of possible input variables (‘data 

mining’), automatic decisions about the species’ response shape to those predictors etc. In 

contrast ‘out in the fields’, I dare say, an ecologist will never regard species’ behaviour and 

distribution as black box response but will formulate hypotheses about the species under 

study and build a conceptual model in his mind which can and should be compared to 

computational outputs. Such systematic consideration of ecological theory at each model-

building step will greatly improve our models’ realism. For example, this may involve the 

selection of most causal environmental predictors, the choice of ecologically realistic 

response curves for each predictor, determination of restricted set of competing models in 

multi-model inference or in ensemble framework, discussion of likely causes and cost of 

prediction errors as well as validity assessment of underlying model assumptions when 

projecting into the future (for more examples see Table 2 in Guisan and Thuiller 2005). 

1.2.1.2 Extrapolation and robustness 

While in their beginnings, SDMs were primarily used as explanatory models, nowadays, they 

are increasingly used for making predictions to new times and places (Mac Nally 2000, Elith 

and Leathwick 2009). Generally, when transferring a model in time and space, the model 

needs to extrapolate beyond environmental conditions it was calibrated on. The crux is that 

SDMs are not intended for extrapolation, especially not for extrapolation under environmental 

change. Foremost, SDMs assume that species are in pseudo-equilibrium with their 

environment (Guisan and Theurillat 2000) which brings out two problems for extrapolation. 

On the one hand, species may not be in equilibrium with environment (Leathwick 1998). For 

example, Svenning and Skov (2004) measured low range filling for many European tree 

species suggesting that many present-day species’ ranges may still be controlled by post-

glacial dispersal limitations. On the other hand, when extrapolating, we implicitly assume an 

instantaneous realisation of a new equilibrium situation essentially ignoring transient 

dynamics. But of course, if suitable habitat is predicted to shift for about 100 km, then the 

species will first have to migrate into the newly available habitat and then will have to 

establish a viable population there (Thuiller and Münkemüller 2010). In most projections, 

species’ migration abilities are inappropriately taken into consideration corresponding to two 

extreme assumptions, namely ‘null’ (zero) or ‘full’ (unlimited and instantaneous) migration 

(e.g. Thomas et al. 2004, Thuiller 2004). Furthermore, the limiting environmental factors may 
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differ throughout a species’ geographic range and trends may not be valid beyond the 

calibrated environmental range (Dormann 2007). Also, limiting factors may change 

substantially in environmental change context as do biotic interactions because of different 

migration rates, different food resources, and different competitors among others (Davis et a. 

1998). And most probably, species’ long-term response will be influenced by genetic 

variability, phenotypic plasticity and evolutionary changes (Elith and Leathwick 2009). 

Summarising, we need to be aware that we make numerous assumptions on the way when 

extrapolating and we should, thus, be careful not to put faith in our projections too 

lightheartedly (Dormann 2007). In contrast, we should constantly scrutinise not only our 

model-building steps as explained above but also our predictions in order to reduce or expose 

errors (Elith and Leathwick 2009). This may involve quantifying differences between 

sampled environmental space and prediction space (Elith et al. 2010; also see chapter 5), 

employing multiple models and reducing error by consensus (e.g. in ensemble framework, 

Araújo and New 2007; for application see chapter 4) or discovering why predictions differ 

(Elith and Graham 2009; also see chapter 5).  

In order to assess the robustness and reliability of predictions we need to evaluate predictive 

ability of our models (cf. Fig. 1.1). This is a non-trivial task as predictions generally concern 

events that have not yet occurred (Heikkinen et al. 2006). Often, data resampling methods are 

utilised to test predictive performance because independent data are often unavailable. This 

may involve split samples, cross-validation or bootstrapping (Araújo et al. 2005, Elith and 

Leathwick 2009). Independent testing could be achieved by using retrospective data (Hill et 

al. 1999, Araújo et al. 2005, Pearman et al. 2008a). Availability of such is rare, however, and 

thus perfect validation may not be conceptually possible for every species and study (Araújo 

et al. 2005). Another possible route is to use virtual data generated by mechanistic models as I 

will show in subsequent chapters (Zurell et al. 2009, 2010; chapters 2 and 3). This allows 

explicit investigation of the effects of transient dynamics and confounding ecological 

properties and processes on SDM prediction accuracies. Overall, the usefulness of models and 

their predictions is contingent on both underlying questions and on the methods used (Araújo 

et al. 2005). Multiple assessments based on several accuracy measures should be preferred 

over using a single measure (Fielding 2002, Zurell et al. 2009, chapter 3). Also, accuracy 

measures should be closely linked to the intended use of the model and the species’ biology. 

For example, higher commission errors (false presences) may be expected for species 

experiencing range expansions because not all suitable locations may have been colonised yet 
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while we may expect higher omission errors (false absences) at places that are characterised 

by source-sink dynamics (Thuiller and Münkemüller 2010). 

1.2.2 Mechanistic models of species distributions 

Mechanistic or process-based models aim at providing a more general image of real world 

processes by reproducing the assumed internal structure of the studied systems. Predictions 

are grounded in real cause and effect links between different system components. Thereby, 

setting up a mechanistic model that is a faithful, one-to-one reflection of real world’s 

complexity would be the most naïve approach (Levins 1966). Such a one-to-one reflection is 

not possible, however, and, more importantly, not desirable because it would most probably 

hamper rather than facilitate understanding (Wissel 1992). Models need to make artificial 

assumptions, simplifications and idealisations in order to gain insights into selected attributes 

of the studied system. Therefore, we will only ever consider specific processes in any one 

model depending on the purpose of the model, on the temporal and spatial scales involved, on 

available information and data among others.  

When speaking of mechanistic or process-based modelling of species distributions, we need 

to be aware that there are sometimes misunderstandings about what mechanistic or process-

based means in ecological modelling context. In its classical meaning, mechanistic or process-

based models are ab initio, based on first principles. These models start directly at the level of 

established laws of nature (physics). However, many natural systems are (computationally) 

irreducible systems and have so many interacting elements that it is not possible to reduce the 

system’s behaviour and evolution to a law in nature (Wolfram 1984 a,b). For example, the 

exact form of a post-glacial species’ range depends not only on species’ physiological traits 

but also on behaviour as well as site history and other confounding factors and may be 

determined only by following each step in the colonisation history of the species. Thus, in an 

ecological model that is based on ‘first principles’ the system’s behaviour and development 

emerges from modelling its physiological as well as behaviourally relevant dynamic 

processes and their interactions with the physical environment (Bossel 1992, Grimm and 

Railsback 2005, Grimm et al. 2007). These models do not make assumptions such as fitting 

parameters but only include real process parameters that are empirically measurable (Bossel 

1992). In practice however, the term process-based often is attributed also to models that do 

not strictly follow these principles. Rather, such models incorporate key dynamic processes of 

an ecosystem in an aggregate form which requires model fitting (calibration) because these 

‘process’ parameters are not empirically measurable (Bossel 1992) but imposed (Grimm and 

Railsback 2005).  In the following, I briefly introduce process-based models relevant to 
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modelling species distributions in space and time. Thereby, I want to draw a distinction 

between models that primarily focus on representing key demographic processes and models 

that are based on first principles, i.e. models that incorporate ecophysiological and/or 

behavioural mechanisms and are, thus, process-based in the narrower sense. 

1.2.2.1 Modelling demographic processes 

Population dynamics, the distribution and abundance of species through time, are determined 

by the demographic processes of birth, death and migration which are, in turn, influenced by 

environmental factors. The fundamental demographic processes can be described by the 

simple single-population equation Nt+1 = Nt + B – D+ I - E, where N is population size at time 

t, B is the number of births, D is the number of deaths, I is the number of immigrants to and E 

the number of emigrants from the site (Begon et al. 2006). We can link these demographic 

processes and the dynamic patterns we observe in nature by means of mathematical 

modelling. Model systems describing population dynamics may differ in how they approach 

space and time, which ecological level they focus on (individual, population, species etc.), 

what life cycle details are included, the number of state variables they require, whether 

stochasticity is considered, whether parameters need to be fitted or are empirically derived 

etc. Thereby, classical (analytical) models from theoretical ecology such as the Lotka-Volterra 

equations and their variants or the logistic growth model that use population size as a state 

variable are considered most general. The more detail such as age, space or habitat we include 

in our models the less general and the more specific to e.g. particular populations they 

become (Grimm and Railsback 2005).  

In the context of range dynamics, as we are interested in the spatial distribution of populations 

or species, models, self-evidently, need to be spatially explicit. This leads us to so-called 

spatially explicit population models (SEPMs; Dunning et al. 1995) that are mostly bottom-up 

which means that smaller system components are modelled in detail and system dynamics 

emerge from the interactions between these components (Grimm and Railsback 2005). Lattice 

models are examples of models whose components can be characterised by or as spatial units. 

Thereby, a regular (usually square) lattice or grid is composed of cells with properties such as 

amount of suitable area, number of individuals or species. Cellular automata are stochastic, 

discrete-time lattice models in which the value of each site is determined by the values of its 

neighbours from the previous time step. Coupled-map lattices (CML) model local population 

(within-patch) dynamics and extend these in space by linking local populations by dispersal 

whereby local population dynamics are often described by analytical models (Hassel et al. 

1991, Comins et al. 1992, for application see Zurell et al. 2009, chapter 3). Similar to CMLs, 
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many spatially explicit metapopulation models link local and regional population dynamics 

with the main difference that space is not divided into regular grid cells but into suitable 

habitat patches of varying sizes (Hanski and Thomas 1994, Hanski 1999, Hanski and 

Gaggiotti 2004). Here, more sophisticated approaches are taken to describe local population 

dynamics, for example stage-structured matrix models (Beissinger and Westphal 1998, 

Akçakaya 2000, Söndgerath and Schröder 2002). In individual-based models (IBMs), we 

follow, by definition, the state of all individual organisms within an ecological community 

through an entire simulation (Grimm 1999, for application see Zurell et al. 2011, chapter 4). 

IBMs can incorporate a wide range of individual behaviour and landscape structures, and 

direct links between these, for example through resource depletion (DeAngelis and Mooij 

2005, Grimm and Railsback 2005).  

In the context of modelling species distributions, SEPMs allow us to study effects of large-

scale patterns and processes on population dynamics and, thus, provide better mechanistic 

understanding of how populations react to and are influenced by the environmental conditions 

and landscape context. Relative importance of different processes in shaping population 

response can be assessed. In contrast to phenomenological models, understanding is 

facilitated by more interpretable parameters as they relate to specific traits of organisms. Even 

aggregate parameters can tell us a lot about the species, for example mortality rates can 

inform us about species’ persistence ability (Cabral 2009). Likewise, the degree of 

environmental stochasticity can indicate important processes acting at smaller spatial or 

temporal scales that have not yet been considered. However, as mentioned above, the more 

detail the models include the more specific they become to the organism, to the landscape or 

study area, to initial conditions etc. Also, demographic parameters are generally derived from 

field observations or fitted to observations within a statistical framework.  That way, these 

parameters are only valid for the environmental conditions under which the model was 

designed, a fact that we have already learned about correlative SDMs. Thus, similar to 

correlative models, dynamic population models are not intended for extrapolation to novel 

environments unless they build on first principles as I will explain in the next paragraph. 

1.2.2.2 Modelling ecophysiological and behavioural processes 

This thesis does not actually include any models of this type. Nevertheless, as ‘first 

principles’ are mentioned at different places throughout the thesis, I feel that some 

introductory words are appropriate here. As an organism’s fitness is driven by interactions 

between environmental factors and an organism’s physiological and behavioural traits, it 

seems only natural to also allow model organisms to respond to their direct environment in 
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their best physiological and behavioural capability (Grimm and Railsback 2005, Grimm et al. 

2007, Kearney et al. 2010). For this, we need to base our models on first principles.  

For example, mechanistic niche models are physiological models that describe the potential 

niche of a species based on functional traits of organisms (Kearney and Porter 2009). These 

models follow the concepts of biophysical ecology. They adhere to the conservation laws of 

thermodynamics (energy and mass balance) and are, thus, primarily concerned with transport 

phenomena (Gates 2003). For example, heat is transferred through the skin of ectotherms if 

they bask in the sun or mass is transferred through the gut when drinking or eating (Kearney 

and Porter 2009). In contrast to correlative species distribution models which merely yield 

indices of habitat suitability, the output of mechanistic niche models relates to key fitness 

components such as survival and reproduction. Validation of mechanistic niche models is 

(potentially) more straight-forward than that of correlative models because observed 

distribution data, for example, are not needed for model calibration and, hence, provide truly 

independent test data (Morin and Thuiller 2009). As mechanistic niche models are grounded 

in sound physics they are highly general and transferable, and, thus, allow predictions to 

novel climates and in non-equilibrium situations. However, it is useful to note that precision 

of the predictions may be low (Kearney and Porter 2009). Because mechanistic niche models 

merely map the fundamental niche of the species they are subject to the same basic caveat as 

correlative species distribution models are. They aim to identify areas with suitable 

environmental conditions that can potentially support a viable population, but they do not 

inform us which areas are actually occupied (Pearson 2007).  

What we often like to ignore is that organisms actively respond to their environment and are 

able to adapt their behaviour (Grimm et al. 2007). From a natural selection perspective, 

fitness maximising behaviours are favoured (Salant et al. 1995). Thereby, an organism will 

assume the optimal behavioural strategy with the best trade-off between optimal feeding 

location, locomotion costs, reproduction effort, competition, predation risk among others. For 

example, the ectotherm needs to bask in the sun to heat up body temperature but through 

extensive basking it will lose time for foraging and also extensive basking will make it more 

detectable for predators. Thus, the ectotherm will only spend so much time with basking as it 

needs for acquiring optimal body temperature for subsequent activities (Kearney et al. 2010). 

As mentioned in the previous paragraph, individual-based models (IBMs) are well suited to 

study behaviour and performance of individuals and explore emergent properties at the 

population, community or species level (Grimm and Railsback 2005). Here, we need to 

distinguish between IBMs that are demography-based and rely on empirically derived 
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demographic parameters as described above, and behaviour-based IBMs (Grimm and 

Railsback 2005, Goss-Custard et al. 2006, Grimm et al. 2007). The latter represent the 

physiology and behavioural decision making of individuals explicitly. Demographic functions 

emerge from the behavioural decisions of individuals instead of being imposed properties of 

the model. Behaviour-based IBMs base on the assumption that even if these behavioural 

decisions of individuals change with altered environmental conditions, the fitness-maximising 

strategy the individuals base their decisions on will not change and will hold even for non-

analogue environments (for an independent test see Goss-Custard et al. 2006). However, 

behaviour-based models are highly data-demanding, they may take a long time to develop and 

require fundamental knowledge on behaviour and bioenergetics which probably will not be 

available for many species thus constraining their overall practicality. 

1.2.3 ‘Hybrid’ models of species distributions 

In recent years, it has often been suggested to supplement correlative SDMs with more 

mechanistic approaches that are able to describe non-equilibrium dynamics by explicitly 

simulating dispersal and migration, landscape dynamics and demographic processes (Guisan 

and Thuiller 2005, Thuiller et al. 2008). The rationale is to keep the practicality of correlative 

SDMs for rapid impact assessments over a wide range of species as well as their predictive 

accuracy at large spatial scales while overcoming some principal limitations associated with 

their static nature by taking into account modifying demographic mechanisms such as 

dispersal or local extinctions among others (Brook et al. 2009, Franklin 2010, Gallien et al. 

2010). One way to achieve this is to use SDMs to predict maps of habitat suitability which are 

then fed into spatially explicit population models to constrain the population models’ 

demographic parameters (Akçakaya 2000; for applications under climate change see Keith et 

al. 2008, Anderson et al. 2009, Zurell et al. 2011, chapter 4 of this thesis, Fig. 1.2). 

Sometimes, this kind of models are referred to as ‘hybrid’ models (Thuiller et al. 2008, 

Gallien et al. 2010, Thuiller and Münkemüller 2010), probably to underscore that these 

models are meant to ‘capitalize on the strength and advantage of both approaches and 

concepts to make more reliable and useful predictions’ (Gallien et al. 2010). For better 

recognition, I also used this term in this section’s title. Nevertheless, I find the name a little 

misleading and rather imprecise because from the onset one cannot know what kinds of 

models are ‘hybridised’, to which purpose and, moreover, within which scientific discipline 

this is done. In fact, these models belong to the category (demography-based) spatially 

explicit population models with the specific feature that the spatial structure of the population 

is determined by a habitat suitability map which can be derived by SDMs. Akçakaya (2000) 
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coined the term habitat-based SEPMs for this kind of models. Thereby, demographic 

parameters such as carrying capacity (Keith et al. 2008, Anderson et al. 2009, Cheung et al. 

2009) and intrinsic growth rate (Pagel and Schurr 2011) are constrained by local habitat 

suitability. Hence, habitat suitability acts as surrogate for the species’ habitat requirements 

and may represent factors such as suitable climate space, resources and shelter. 
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Figure 1.2. Simplified flow chart of habitat-based, spatially explicit individual-based model for Swiss 

black grouse population (cf. chapter 4). The correlative species distribution model is external to the 

individual-based model and provides a habitat suitability map for each time step given the environmental 

conditions. Habitat suitability is related to carrying capacity which regulates density. Each time step starts 

in spring and includes the processes reproduction, dispersal and death. 

Only few attempts have been made yet to apply this approach in environmental change 

context (Keith et al. 2008, Anderson et al. 2009, Cheung et al. 2009; for review on other 

applications see Franklin 2010). Therefore, many questions remain regarding their practical 

use and general guidelines some of which are dealt with in chapter 4. I will provide further 

considerations in chapter 6. 

1.3 Thesis structure 

Given the cumulative character of this thesis, the core part of the present work (chapters 2-5) 

consists of four thematically related yet stand-alone articles that are published in or are in 

review for international peer-reviewed, ISI-listed scientific journals (for full references, see 

front pages of the respective chapters). These chapters can be read independently as they 
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focus on specific aims and, thus, constitute autonomous contributions to scientific literature. 

Some information contained in the articles may be overlapping though, especially regarding 

introductions. In contrast to the general introduction (chapter 1) and the synthesis (chapter 6), 

the articles presented in the core chapters 2-5 are written in first-person plural because they 

are co-authored. However, as the lead author of all articles I have performed the main work 

described in these chapters, and the views expressed throughout the entire thesis are mine. 

Nevertheless, I want to acknowledge support by the co-authors in terms of data collection and 

provision, fruitful and invaluable discussions as well as proof-reading.  

Further, I want to acknowledge that the idea for this thesis was born during my diploma thesis 

(Zurell 2007) and that fundamental experimental design concepts were recycled for parts of 

this PhD thesis (the virtual ecologist approach, chapter 3). Nonetheless, all findings presented 

here are original and result from work that I have done independently during the course of this 

thesis. 
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2 The virtual ecologist approach: simulating data 

and observers
1
 

                                                 
1
 An article with equivalent content has been published as: 

Zurell, D., Berger, U., S. Cabral, J., Jeltsch, F., Meynard, C.N., Münkemüller, T., Nehrbass, N., Pagel, J., 

Reineking, B., Schröder, B. and Grimm, V. 2010: The virtual ecologist approach: simulating data and observers. 

Oikos 119: 622-635.  
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2.1 Abstract  

Ecologists carry a well-stocked toolbox with a great variety of sampling methods, statistical 

analyses and modelling tools, and new methods are constantly appearing. Evaluation and 

optimisation of these methods is crucial to guide methodological choices. Simulating error-

free data or taking high-quality data to qualify methods is common practice. Here, we 

emphasise the methodology of the “virtual ecologist” (VE) approach where simulated data 

and observer models are used to mimic real species and how they are ‘virtually’ observed. 

This virtual data are then subjected to statistical analyses and modelling, and the results are 

evaluated against the ‘true’ simulated data. The VE approach is an intuitive and powerful 

evaluation framework that allows a quality assessment of sampling protocols, analyses and 

modelling tools. It works under controlled conditions as well as under consideration of 

confounding factors such as animal movement and biased observer behaviour.  In this review, 

we promote the approach as a rigorous research tool, and demonstrate its capabilities and 

practical relevance. We explore past uses of VE in different ecological research fields, where 

it mainly has been used to test and improve sampling regimes as well as for testing and 

comparing models, for example species distribution models. We discuss its benefits as well as 

potential limitations, and provide some practical considerations for designing VE studies. 

Finally, research fields are identified for which the approach could be useful in the future. We 

conclude that VE could foster the integration of theoretical and empirical work and stimulate 

work that goes far beyond sampling methods, leading to new questions, theories, and better 

mechanistic understanding of ecological systems. 

2.2 Introduction 

Models permeate every field in ecology. They have become an indispensable tool for a wide 

range of tasks, including the understanding of mechanisms, capturing the processes behind the 

emergence of ecological phenomena, quantifying relationships between species presence or 

abundance and environmental conditions, and forecasting effects of changing environments 

on broad spatial and temporal scales (DeAngelis and Mooij 2005, Araújo and Rahbek 2006, 

Thuiller et al. 2008).  

There is, however, a further important field of application of ecological models that so far has 

not been thoroughly acknowledged in ecological research: evaluating methods for data 

sampling, analysis and modelling methods by means of virtual data. Here, the idea is to 

generate virtual data by simulating not only ecological processes, but also the sampling 

processes that are used to collect these data in reality and the methodological tools used to 
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analyse them. We propose to call this the “virtual ecologist” (VE) approach (see Box 2.1). 

The virtue of this approach is its ability to rigorously test method performance against a 

known truth. The VE approach is concerned with practical questions regarding ecological 

methods: Is a method able to identify patterns that we know exist (Grimm et al. 1999)? Can 

we infer the mechanisms underlying these patterns given a certain set of data (Tyre et al. 

2001)? Can we correctly and reliably predict future events (Zurell et al. 2009, chapter 3)? 

 

Box 2.1. Glossary.  

To evaluate methods of data collection, statistical analysis, and modelling we would ideally 

compare their outcome to reality. This would allow us to assess whether existing patterns 

were detected correctly, whether correct estimates of process rates were obtained, or whether 

the distribution of a species was predicted correctly. However, we have no privileged access 

to reality independent of and beyond field observations and analytical methods. The ability of 

field data to represent reality depends not only on the time interval and the spatial extent of 

observation but also on the disturbances the observation procedure might induce. We can 

Descriptive model: a model that describes system behaviour quantitatively 

without explaining any underlying mechanisms. The system is regarded as 

a black box and is described by input-output analysis or by statistical 

means, e.g. regression analysis.    

Species distribution model: a descriptive model that relates species 

occurrence to environmental (biotic and abiotic) factors to describe 

environmental conditions within which a species occurs. (Synonyms: 

habitat model, habitat-suitability model, environmental niche model) 

Mechanistic model: a model that simulates the processes under study by 

reproducing the assumed internal structure, i.e. the cause and effect links 

between components of the studied system. Depending on spatial and 

temporal scale, only specific processes are considered in any mechanistic 

model. 

Virtual Ecologist approach: a framework for evaluating sampling 

schemes and methods, (statistical) analysis tools, model approaches and 

structures. Virtual data is generated by simulating (a) a virtual ecological 

model which includes key processes of the ecological system, (b) a virtual 

sampling model mimicking the observation procedure, and (c) the 

methodological tools used to analyse the ‘virtually’ observed data. Results 

are evaluated against ‘true’ simulated data. 
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never know the complete “truth” because any knowledge about the real world is based on 

(limited) data, because the methods to derive and analyse real world data sets are subject to 

constraints and biases (Austin et al. 2006, Grimm et al. 1999, Halle and Halle 1999, Hirzel et 

al. 2001), and because amount of data is limited by time and costs. Many factors cannot be 

controlled: underlying environmental factors; historical factors such as disturbances, 

catastrophes, past land uses; and ecological processes such as competition, dispersal, and 

diseases.  

With the VE approach all relevant information can be obtained at all times in the virtual world 

which is taken as a surrogate of reality. We know, for example, the full movement path of 

model animals, or the exact location of all individuals or subpopulations at a given time. In 

the virtual reality, we can generate certain patterns a priori as well as biases introduced by the 

(virtual) observer.  

The idea of generating virtual data to evaluate different methods is quite natural and not new. 

An early example for evaluating sampling methods is given by Stickel (1954). Stickel 

analysed the quality of mark-recapture data describing the dispersal of small mammals. For 

this, the author used as a virtual habitat a sheet of paper divided into grid cells. Some of the 

grid cells marked traps. Animal movement was simulated by random movements of a pencil. 

Based on the virtual capture data, movement indices were calculated and compared to those 

derived from the full trajectories of the pencil. By this the accuracy of different observational 

algorithms was evaluated.  

In statistics it is quite common praxis to use high-quality data or artificially created, error-free 

data to qualify different sampling or modelling methods (cf. Hirzel et al. 2001). For example, 

Fortin et al. (1989) subsampled a large, real vegetation data set of sugar-maple (Acer 

saccharum L.) in southwestern Québec, simulating three different types of sampling designs 

(random, systematic and systematic-cluster). This allowed them to evaluate the effects of 

these sampling designs and of different sampling efforts on the estimation of spatial structures 

as well as the sensitivity of different spatial analysis methods. Statistical ecologists also build 

replicate or simulated data sets with known properties to demonstrate the unbiasedness of new 

modelling methods they have developed or to show their superior efficiency in comparison to 

previous methods (Bolker 2008). Many introductory textbooks on statistics deal with such 

topics. Bolker (2008) recommends using simulated data as a “best-case scenario” to test 

whether correct estimates of the parameters of an ecological system can be inferred from the 

data before proceeding to real data.  
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In this review, we identify two main fields of application for VE: (i) Testing and improving 

sampling schemes and methods; (ii) Testing and comparing models. The first includes the 

evaluation of spatial and temporal sampling designs, and the assessment of sampling bias as 

well as the sensitivity of sampling methods to extrinsic conditions, trappability or 

observability (Halle and Halle 1999). For the latter, VE may help to assess whether a 

particular model fitted to the virtual data is principally capable of describing and predicting 

underlying patterns and processes. Also, contests can be arranged between competing models 

(Hanski 1999), and their application domain can be circumscribed theoretically (Hirzel et al. 

2001). In this way, VE helps to select the most appropriate model for a given situation.  

The primary aim of this review is to give the VE approach, which emerged and keeps 

emerging independently under different names in the literature, a common name and 

summarise its potential and current limitations. We want to introduce VE as a generic, 

rigorous and unifying approach that can be used as a common basis for testing methods of 

data collection and for testing modelling methods. First we will characterise the virtual 

ecologist approach and its elements in more detail. Secondly, we will review past uses of VE 

and list specific examples within the two above-mentioned main fields of application. We will 

thereby show that VE can be applied in a broad and diverse range of problems in ecology. 

Then we will discuss potential uses for empirical ecologists and ecological modellers, and 

give some practical guidelines which might help to design VE studies for given purposes. 

Finally, we will outline future directions and list specific research fields that we feel would 

benefit from VE.  

2.3 The virtual ecologist approach 

The virtual ecologist approach requires four elements (Fig. 2.1): (a) the virtual ecological 

model, (b) the virtual sampling model, (c) (statistical) modelling and (d) evaluation. The 

virtual ecological model (a) represents the virtual species and/or ecosystem, and includes key 

processes of the ecological system relevant to the question under study. Thus, the virtual 

ecological model may comprise a single or multiple species, single individuals or entire 

populations; it may be temporally and spatially implicit or explicit, fine-scaled or coarse-

scaled; it may be governed by abiotic factors etc. The virtual sampling model (b) simulates 

the observation process. Data are collected from the virtual ecosystem (by a “virtual 

ecologist”) according to a sampling scheme mimicking the way the data would be collected 

by real ecologists in real ecosystems. (Statistical) Modelling (c) is used to draw inferences 

from the collected data. Examples include estimation of population size, identification of 
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factors influencing species distribution or abundance, and estimation of process parameters. 

(Statistical) Modelling can also be used to predict the effects of ecological processes. Finally, 

the results are evaluated against ‘true’ simulated data (d). Essentially, the “virtual ecologist” 

operates in the same way as an empirical ecologist (Fig. 2.1). However, in a VE study we 

have full access to all information created by the virtual ecological model which allows us to 

draw strong conclusions about our sampling and (statistical) modelling methods.  

 

Figure 2.1. The elements of the virtual ecologist approach. 

Different names have emerged throughout the literature for the very same approach: “artificial 

data” or “artificial species” (Austin et al. 2006, Meynard and Quinn 2007, Cabral and Schurr 

2010), “virtual species” (Hirzel et al. 2001), “virtual ecologist” (Grimm et al. 1999, Tyre et al. 

2001, Zurell et al. 2009, chapter 3), “simulated data” (Hanski 1999, Dormann et al. 2007), 

“virtual ecology” (Grimm et al. 1999, Nehrbass et al. 2006), to name but a few. Of these, 

virtual ecologist approach seems to best capture the central idea that not only a virtual reality 

is created but that the sampling itself or the observer’s behaviour is also being simulated in a 

second model in a hierarchical way. The term virtual ecologist is thus not ambiguous in 

contrast to terms such as “virtual experiment” or “virtual ecology” which are also used for 

studies simply employing conceptual models for hypothesis testing where the effect of 

different scenarios on some system response is explored (Parysow and Gertner 1997, 1999). 

The current inconsistent terminology emphasises the importance to give the approach a 

common name which, we believe, will make it more visible and coherent.  

In addition to various studies that we simply knew from regular scanning of the ecological 

literature, our overview of applications of the virtual ecologist approach is based on extensive 

literature searches carried out between autumn 2008 and spring 2009 using both the search 

engines http://www.scirus.com and http://www.sciencedirect.com. We used multiple 

keywords such as “virtual ecologist”, “virtual biologist”, “virtual experiment”, “virtual 
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species”, ”artificial species”, “artificial data” and “simulated data”. Due to the lack of a 

general terminology, it is possible that we have not detected all studies that would have been 

relevant to our review of the VE approach. However, we are confident that we included a 

representative set of worked examples and of ecological research fields.  

Both the virtual ecological model and the virtual sampling model can be of different 

complexities. Depending on how much process detail is put into these models the VE 

approach covers quite a broad range of scientific questions and applications. Generally, we 

can distinguish descriptive and mechanistic models representing the virtual species/ecosystem 

(see Box 2.1). In the same way, the virtual sampling model, i.e. the virtual ecologist, may be 

descriptive or mechanistic.  

Throughout our literature survey, we found an approximately equal ratio between descriptive 

and mechanistic representations of the virtual ecological model (Appendix A Table A.1; 21 

descriptive models vs. 25 mechanistic models). In most studies that aimed at testing and 

improving sampling regimes (n=14) the virtual ecosystem was simulated by means of 

mechanistic modelling (12). Within the second field of application, testing and comparing 

models, 19 out of 32 reviewed studies used descriptive models of the virtual ecosystem. The 

field of mechanistic modelling is vast and, thus, mechanistic modelling types employed in VE 

studies are manifold (Appendix A Table A.1). They range from grid-based models and patch 

network models (cf. Hanski 1998) to individual-based models (cf. Grimm 1999, Grimm and 

Railsback 2005).  

Likewise, the virtual sampling model (Fig. 2.1, b) covers a wide range of complexities and 

model types. In most studies we reviewed within the two main fields of application, virtual 

sampling was modelled as simple subsampling from the full simulated data, and in rare cases 

virtual sampling was modelled probabilistically (Appendix A Table A.1; 37 out of 46 VE 

studies employed subsampling, eight of which carried out a full census; seven VE studies 

employed probabilistic sampling). Simple subsampling means that the virtual ecologist acts 

flawlessly according to a certain sampling design, makes no observational or measurement 

errors and does not interact with the virtual species in any way (Tyre et al. 2001). 

Probabilistic sampling includes e.g. probability of detection and regards observation as a 

stochastic process (Reese et al. 2005). For instance, even if the species is present, it may not 

be detected. Still the virtual sampling includes no interaction between virtual species and 

virtual ecologist. If the virtual ecosystem is based on a mechanistic model, direct feedbacks 

may be included between the models of virtual species and virtual sampling, such as observer 

induced individual escapes (Berger et al. 1999, Nott 1998). 
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2.4 Past use of VE 

2.4.1 Testing and improving sampling schemes and methods 

In many field studies, ecologists obtain data that are known to be biased. Nevertheless, such 

data may provide valuable information particularly in cases where the ratio of measured 

variables between ecological systems is of interest.  Knowledge about the error range of each 

variable is essential, as it might differ depending on the particular observation scenario. An 

increasing number of studies already optimise the error ranges of their chosen observation 

scenario by a virtual or theoretical comparison of optional scenarios beforehand (Appendix A 

Table A.1). In the following we chose three of these studies to illustrate the range of potential 

fields of application. 

Entomologists frequently use mark-recapture methods to monitor the position of grasshoppers 

or ground beetles in order to understand their behaviour and mobility depending on habitat 

quality, intra-daily variable climatic conditions, or interactions with con-specific and other 

animals. Based on the resulting data on positions at different times, various mobility variables 

are calculated, for example the mean daily movement, maximal distance between two 

locations an individual was captured, or mean activity radius. These indices may be biased 

and their quality may differ depending on the particular observation scheme, sample size, 

edge effects, and spatial discretisation among others (Berger et al. 1999).  

 

Figure 2.2.  Movement of one exemplary individual over a 100 day period; (a) undisturbed and (b) 

influenced by an observer’s motion during daily surveys (after Berger et al. 1999). 

It seems reasonable to assume that the quality of mobility variables increases with the 

frequency of observations. However, too frequent or dense observations will disturb the 

individuals and might artificially increase their activity (Fig. 2.2). It is thus necessary to 

optimise the observation scenario related to the minimisation of the observation error and, 

simultaneously, to minimise the disturbance effect by the observer. The VE approach was 
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used for this optimisation (Berger et al. 1999). The “virtual ecologist” samples the data 

according to the observation schemes applied in the field and disturbance effects on 

grasshopper are included in the model. The comparison of the “real” mobility variables 

(obtained in the virtual world) with the sampled variables provides a quality assessment of the 

various variables depending on the particular survey method and allows to rank their 

suitability.  

The VE approach can also be used for assessing the compatibility of different sampling 

methods across spatial scales (Mac Nally 2001). Mac Nally asks whether comparing 

experimental units of different size may cause scaling artefacts. He tests the ability of the two 

most common methods to estimate the strength of interaction between competing species, 

enclosures and quadrate- or transect-based techniques, and whether information from the two 

sources can be mixed, which often is done for parameterising so-called community matrix 

models (e.g. Wootton 1995). In his simulation model, Wootton (1995) describes three types 

of foragers (mimicking micro-algal grazers on rocky shores) which are distinguished by their 

foraging strategy (“random walkers”, “homing”, “searcher”). Mac Nally (2001) found that for 

foragers that apply a more “intelligent” foraging strategy, including dynamic decision-making 

capabilities, the mixing of data from field-enclosure experiments and quadrate-based methods 

is ill-advised because the error of these two methods scales differently with the size of the 

sampling plot.  

A third example is related to tree-mortality relationships. Tree mortality is a key process in 

forest dynamics. In many cases, tree death is preceded by periods of slow growth, and many 

forest succession models incorporate growth-mortality relationships. Few studies, however, 

quantify the growth-mortality relationship from empirical data. One question concerns the 

accuracy of growth-mortality models that are based on tree-ring data, forest inventory data or 

a combination of both. Wunder et al. (2008) address this question with a VE approach. An 

individual-based virtual forest model included growth, mortality, snag standing time and 

regeneration of trees. The forest was subjected to alternative sampling regimes (tree-coring, 

forest inventories). Growth-mortality relationships were estimated with statistical models of 

varying flexibility, and were compared to the a priori specified relationships. Highest 

accuracies were found for tree-ring based models, which require only a small sample size (60 

dead trees). High model accuracies were also found for forest inventory-based models, 

starting at sample sizes of 500 trees. Overall, the study provided guidelines for efficient 

sampling schemes in real forests. 
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2.4.2 Testing and comparing models 

Within this field of application we can compare the efficiency of different modelling 

approaches including algorithmic choices, or the effects of different model structures and 

complexities. We distinguish different classes of problems that can be unified conceptually or 

technically: first, we list examples of VE studies testing and comparing species distribution 

models (see Box 2.1), followed by studies that tested descriptive models in the context of 

community assembly theory. Finally, we present studies that used VE to test statistical 

modelling frameworks to parameterise dynamic population models of differing complexity.  

2.4.2.1 Species distribution models 

Species distribution models are commonly used to characterise suitable environmental 

conditions for a species by relating incidence data to environmental variables (Guisan and 

Zimmermann 2000). The resulting species-habitat relationship can be extrapolated in space 

and time to identify the spatial distribution of potentially suitable habitats. Steps in species 

distribution modelling involve data acquisition, selection of modelling algorithm, model 

calibration including selection of important predictor variables and parameters, creation of 

habitat suitability maps, and model evaluation. VE studies usually focussed on specific steps 

of this model building procedure. 

Several VE studies tested and compared the performance of alternative modelling algorithms 

(Austin et al. 2006, Dormann et al. 2007, Hirzel et al. 2001, Legendre et al. 2002, Meynard 

and Quinn 2007, Moisen and Frescino 2002, Reese et al. 2005, Tyre et al. 2003) conditional 

on e.g. response shapes, direct and indirect predictor variables, prevalence, sample size, 

spatial autocorrelation, or colonisation history. Reineking and Schröder (2006) compared 

regularisation and variable selection methods for model calibration. Other studies tested 

different threshold criteria (Jiménez-Valverde and Lobo 2007) or the use of favourability 

functions (Albert and Thuiller 2008, Real et al. 2006) to convert the species distribution 

model output to maps of presence or absence.  

All these studies focussed on the methods’ ability to correctly reproduce the current 

distribution pattern of the virtual species. Simple descriptive models were used to create these 

patterns. Only few studies were concerned with the processes behind those distribution 

patterns, and simulated the virtual ecosystem and driving processes by means of mechanistic 

modelling (Tyre et al. 2001, Railsback et al. 2003, de Marco et al. 2008, Zurell et al. 2009, 

chapter 3). 
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Tyre et al. (2001) examined whether species distribution models are capable of identifying 

source habitats with high birth rates and low death rates and, thus, whether demographic 

processes can be inferred from simple distribution patterns. De Marco et al. (2008) evaluated 

the performance of SDMs coupled with Spatial Eigenvector Mapping under range expansion. 

Railsback et al. (2003) and Zurell et al. (2009, chapter 3) assessed whether species 

distribution models are able to project species distribution into the future when species 

undergo transient dynamics due to environmental change. Species distribution models are 

increasingly used to project shifts in species distributions for different scenarios of climate 

change (Thomas et al. 2004, Thuiller 2004) and land use change (Pompe et al. 2008). Since 

the future is unknown, these expected distributional changes are difficult to evaluate, and the 

use of species distribution models for global change projections remains hotly debated 

(Dormann 2007).  

Zurell et al. (2009, chapter 3) utilised VE to explore the performance of species distribution 

models under climate change scenarios, and tested the effects of transient dynamics and 

ecological processes on projection accuracies. To accomplish this, they created a virtual 

ecosystem by means of mechanistic modelling that included three species, a butterfly, a host 

plant and a predator, and incorporated species-specific properties and processes such as 

ecological niche width, dispersal and reproduction, interspecific ecological processes such as 

competition and predation, environmental stochasticity, and climate change. Virtually 

sampled data were used to calibrate species distribution models; then, future potential species 

distribution was projected and evaluated against the simulated “true” distribution of the 

virtual species. With the VE approach, Zurell et al. (2009, chapter 3) were able to show that 

the performance of species distribution models for climate change projections strongly 

depends on the dispersal ability of the species and the extinction rate at the trailing edge of 

range shifts. Furthermore, their results indicated that species distribution models were useful 

tools in most of their tested situations. Zurell et al. (2009, chapter 3) were the first to 

rigorously assess the potential impacts of such factors like dispersal, demographic processes 

and biotic interactions on global change projections. Nevertheless, they also point out, that 

their study only scratched the surface of what could be done by using VE with mechanistic 

models of the virtual ecosystems to test species distribution models. In the future, the 

complicating effects of several other factors could be explored with this approach such as 

changing biotic interactions under environmental change, the effects of changing disturbance 

regimes, local ecological adaptation or the evolution of species niches.  
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2.4.2.2 Descriptive community assembly models 

Several studies on community structure and assembly rules utilised the virtual ecologist 

approach. Local communities can be considered as a subset of the larger regional pool of 

potential community members. Numerous processes (including niche differentiation, 

environmental filtering, limited dispersal, niche conservatism and convergence) contribute to 

the formation of the local community from the regional species pool by fostering some 

species and excluding others. From certain patterns in distributional data, underlying 

community processes can be inferred by employing different metrics that characterise the 

community structure and by testing these for significant deviations from the null hypothesis 

(e.g. the community is locally neutral). Therefore, the question is twofold. First, do different 

processes result in different patterns of phenotypic, genotypic and trait diversity? Second, do 

the metrics and null models successfully distinguish between different patterns? The VE 

approach has been mainly used to address the second question, i.e. to test the performance of 

different metrics and null models in identifying non-random patterns in biodiversity 

distribution data. 

 

Figure 2.3. Example of a typical VE approach within community ecology. 

Here, artificial communities that result from any of the proposed processes are created, for 

example by using simple filtering algorithms (Fig. 2.3). For instance, limiting similarity has 

been modeled by the stepwise exclusion of species with the lowest trait based Euclidean 

distances to other species while neutrality was modelled by random exclusion (Kraft et al. 

2007). Then different metrics and null models are applied and their performance at 

distinguishing patterns created by different community processes is assessed. Patterns tested 

have considered nestedness (Fischer and Lindenmayer 2002, Greve and Chown 2006, Higgins 

et al. 2006, Ulrich and Gotelli 2007a, 2007b) and trait, phylogenetic and species diversity 

(Kraft et al. 2007). 
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Hardy (2008) studied how phylogenetic community metrics and null models perform in 

identifying neutral processes by using an individual-based model to represent the virtual 

ecosystem. In contrast to Kraft et al. (2007), he found inflated type I error rates for some null 

model tests. Hardy argues that the difference in results are due to differences in the structure 

of the virtual ecological model, Kraft et al.’s (2007) model being much simpler (based on 

simple algorithms and neglecting individual differences, abundances, the influence of 

dispersal limitation, and the influence of community size variation). However, Hardy only 

simulated a neutral community. It would be interesting to see, what happens to the 

performance of the different indices and null models when applied to a range of distributional 

patterns generated not by simple filtering algorithms but by mechanistic models. 

2.4.2.3 Dynamic (meta-)population models 

The VE approach has also achieved prominence for models of population dynamics, 

whenever these are parameterised from data. A class of models which has been extensively 

explored with VE are metapopulation models or stochastic patch occupancy models (SPOMs,  

Hanski 1999, Hanski et al. 2000). SPOMs describe metapopulation dynamics in a patch 

network by rates of local extinction and colonisation and are parameterised either from 

recorded turnover events or spatial data on patch occupancy. For the latter, Moilanen (1999) 

presents an improved technique for parameter estimation based on maximising the likelihood 

of observed transitions in patch occupancy. By evaluating the new method with a VE 

approach, Moilanen (1999) demonstrates that parameter estimates were generally more 

accurate than those produced by the original method. In a similar study, the new method 

showed to be less susceptible to the prediction of spurious trend in metapopulation size than 

other methods (e.g. logistic regression of turnover rates), especially when only snapshot data 

from two years is used (Moilanen 2000). While both these studies used exact data, Moilanen 

(2002) imposed error on the virtual measurements of both patch area and patch occupancy 

and simulated oversight of patches during survey in order to study the effect of different error 

types on parameter estimation and predictions and, thus, to guide survey efforts accordingly. 

Extending the VE approach further by using an IBM for the ecological simulation enabled 

Hilker et al. (2006) to compare the performance and data needs of a patch-based SPOM 

against a grid-based analogue. 

Another field of population modelling studied by VE experiments is population viability 

analysis (PVA). For example, McCarthy et al. (2003) assessed absolute and relative 

predictions of extinction risks for a total of 160 parameter scenarios using the stochastic 

Ricker model. To scrutinise common assumptions of single-species PVA, Sabo and Gerber 



· Chapter 2 · Past use of VE 

 

 32 

(2007) simulated time series of population abundance with a stochastic stage-based predator-

prey model. Both demographic PVA models and time-series PVA methods were tested for the 

effect of neglected species interactions on predictions of quasi-extinction risk for the prey. 

 

Figure 2.4. Schematic representation of the likelihood framework introduced by Cabral and Schurr 

(2010). The process-based model of range dynamics consists of a demographic and an observation 

component and is fitted to spatial abundance data. Virtual data are simulated by running the process-

based model with predefined, ‘true’ parameter values against which the estimated parameters are 

evaluated. 

A more challenging task is the parameterisation of spatially explicit demographic models 

from species’ count data. For the development and verification of parameterisation techniques 

the VE approach can be an (in-)valuable tool. An example was performed by Cabral and 

Schurr (2010) using hybrid models of species distribution (Fig. 2.4). The authors aimed to 

parameterise both the mechanistic demographic model, which simulated the range dynamics 

of a species within its suitable habitat, and the observation model, which incorporated 

sampling error of the survey data set used for parameterisation. With a selected combination 

of demographic and observation parameter values, they simulated virtual data in five different 

fractal landscapes. Using these virtual survey data, they assessed whether the applied 

parameterisation framework was able to recover the underlying parameters. Although the 

fitted parameter values could vary around the correct values, the median values over the five 
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different landscapes were strikingly close to the correct values, confirming the suitability of 

the parameterisation technique. 

2.5 Discussion 

The VE approach provides an important, unifying framework to test sampling methods as 

well as statistical analysis and modelling methods (Hilker et al. 2006). More and new methods 

are constantly appearing in ecology, especially as more computer power becomes available. 

These methods need to be tested rigorously and continuously before applying them to real 

data. VE is an intuitive and powerful method to do so. It has been used in ecology for a long 

time without being properly recognised or acknowledged. We think that VE deserves a more 

prominent place in the ecological toolbox.  

VE is particularly suitable for synthesising our mechanistic understanding of factors 

influencing our study results: system-immanent properties and processes such as animal 

movement, methodological aspects such as observer behaviour and analysis tools as well as 

interactions of both. The VE models can incorporate an increasing level of complexity that 

allows the separation of different factors, and it can be carried out at spatial and temporal 

scales that would be impossible to tackle in reality. 

The behaviour of individual ecologists can be simulated in particular situations and, thus, 

potential problems arising during data sampling can be extensively explored: limited access to 

certain areas (e.g. lack of roads, steep slopes); spatial autocorrelation in the samples and in the 

way ecologists move; interactions with the observation target; varying detection probabilities 

among other factors. Specific problems can be isolated and thereby better understood. A 

simulation can help to optimise resources and get an idea of the necessary sampling effort for 

a desired level of accuracy, given site access, budget constraints, sampling bias, and current 

knowledge of the system. This becomes particularly important when we are about to spend a 

large budget in surveying a large area, for example.  

VE allows to compare alternative methods and thereby to theoretically circumscribe their 

application domain. The most appropriate model for any situation can be selected, i.e. the best 

modelling approach for a given data set, and crucial data needs for the application of more 

complex descriptive or even mechanistic models may be identified (Hirzel et al. 2001). This 

has to be seen different from and is more sophisticated than model selection techniques. In 

model selection the fit of potential models to the data is assessed and models are then ranked 

according to their predictive power (Burnham and Anderson 2002). For instance, Gotelli et al. 

(2009) recently proposed a modelling strategy that employs parametric bootstrapping to 
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assess the fit of simulation models and to rank competing models according to their ability to 

explain large-scale diversity patterns. At first sight, this sounds very similar to VE. However, 

in model selection the goodness of fit of alternative models can only be evaluated on the 

given data which might be limited and biased. In contrast, VE allows the models to be 

evaluated against known (virtual) truth. Thus, in a VE study the question is not about how 

well the model fits the data but how well the model represents (virtual) reality and under 

which circumstances it does this. 

2.5.1 Limitations 

Beside the merits of the virtual ecologist approach, modellers must be aware of possible 

limitations of VE, which are actually more related to the models used or to the simulation 

design than with VE itself. Foremost, the benefit of VE depends on the quality of the 

ecological model, and ignores whatever complexity is not covered by the model. Models by 

definition simplify; the real world is much more complicated, and conclusions drawn from the 

virtual data sets might be limited. Wunder et al. (2008) point out that when using VE to 

identify necessary sample sizes to achieve a desired level of accuracy, these values constitute 

only lower bounds as they were estimated under the controlled conditions of the virtual 

reality. In the model of Berger et al. (1999), grasshoppers moved according to a random walk. 

Deviations from this movement behaviour might lead to a different ranking of the observation 

errors. However, different movement modes can be implemented and tested in the model, as 

in the example of Mac Nally (2001). Generally, VE is better at discrediting methods than at 

corroborating them. If a method fails in the virtual world, chances are that it fails in the real 

world as well, unless the method’s deficits fortuitously counterbalance the virtual world’s 

biases. However, if a method works well in the virtual world, this does not guarantee that it 

works in the real world as well. 

In addition, models are prone to errors, and we should never put blind faith in our models 

(Wissel 1992); this also holds for VE. Numerous limitations can be hidden in the modelling 

process: uncertainty in input data, in underlying model assumptions, in parameters, and bugs 

in the simulation program itself (Grimm et al. 1999). Thus, as any other tool, VE needs to be 

used consciously and cautiously, and it should continuously be scrutinised. 

Sometimes, the VE approach may seem a bit circular. For example, Hirzel et al. (2001) 

sampled from the same statistical modelling type, a logistic regression model that they aimed 

to test. However, even if one samples from the same (statistical) model, running VE is 

worthwhile. If the tested method is not able to recover the underlying model, then it will not 

be worth to further develop this particular method. 
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2.5.2 The role of mechanistic models 

Following the famous words of Albert Einstein one should make the models “as simple as 

possible, but not simpler”. In good modelling practice this means that both the virtual 

ecological model and the virtual sampling model should be no more complex than is 

necessary to answer the scientific question. Of course, this also requires a clear definition of 

the problem and the target underlying the VE study.  

 

Figure 2.5. Decision tree which methods to use for the virtual ecosystem and the virtual sampling model 

for which purposes (IBM: Individual-based model). 

If the scope of the VE study is to assess whether a pattern may be correctly identified by a 

particular sampling method or correctly predicted by a model then, in most cases, a 

descriptive model of the virtual ecosystem will be adequate. In contrast, if the scope is to test 

whether a specific sampling method is able to identify, or a model is able to predict, for 

example, certain spatial and temporal dynamics or process rates, then a more mechanistic 

model of the virtual ecosystem is needed in which the processes are simulated in a 

“structurally realistic” way (Fig. 2.5; Grimm et al. 2005a, Wiegand et al. 2003). Also, the 

decision whether the virtual sampling model should be descriptive or mechanistic should be 

driven by the scope of the VE study; that is questions like: should observer errors or biases be 

included; are there interactions between the observer and the species (Fig. 2.5)?  
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Nevertheless, we want to emphasise that a contemporary shift towards generating virtual 

species/ecosystem and observer from mechanistic models can qualitatively enhance the 

potential of the VE approach. Mechanistic models can account more realistically for 

complexity in both ecological and observational processes, including possible interactions. 

Specific problems or aspects of ecological systems can be incorporated. Data are still 

controlled, but potentially behave in a non-trivial manner. The exercise becomes one that is 

equally about understanding complex dynamics and optimising the way we can study them 

empirically by using mechanistic, “close to nature” simulation models. In mechanistic models 

of virtual species/ecosystems one has to take care of complicating effects such as coloured 

noise, stochasticity, and deterministic chaos. We can thus test whether our method under 

study is working even in the face of such complex inherent interactions, and hence delineate 

the method’s application domain more accurately.  

Individual-based models (IBMs) are the most general mechanistic models as the emergence of 

metapopulation dynamics is the result of individual interactions in a landscape mosaic 

(Grimm 1999, Hilker et al. 2006). IBMs differ from descriptive models or mechanistic models 

on a more aggregated, metapopulation level, in that the ‘true’ values of the population-level 

parameters we try to estimate are not necessarily known, but rather are an emergent property 

(Hilker et al. 2006). The parameters can be estimated, however, in the IBM with arbitrary 

precision because we can produce as many replicates as required (at least if sufficient 

computer power is available). The efforts of such a complex IBM might be justified if the 

field study is a non-repeatable project; if a wide-spread sampling method is to be evaluated; 

or if we want to test how mechanistic models on a more aggregated, metapopulation level 

converge to more complex (virtual) reality (Hilker et al. 2006). A full-fledged VE approach 

with the virtual species modelled by means of individual-based modelling and explicit 

interactions between virtual observer and virtual species (Berger et al. 1999) may be useful in 

survey planning of highly mobile and sensitive species. 

2.5.3 Future directions 

We have shown various applications and research fields where the virtual ecologist approach 

has been successfully employed, and has proven itself as a practical and worthwhile tool. As 

pointed out throughout this review, the approach is not yet fully explored and many more 

aspects of ecological surveys and modelling tasks can be addressed with VE.  

The ecological community holds enormous stocks of data collected, for example, in herbaria; 

by voluntary or hobby ornithologists, entomologists; nature conservationists; PhD students 

etc. Sometimes trust in these data is rather limited because of suspected bias in survey design 
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or observer behaviour. For instance, volunteers monitoring butterflies will often preferentially 

visit places where they expect to find the most enigmatic and interesting species. Conversely, 

places where observers do not expect to find many species are likely to not be monitored 

properly or only very short visits will be paid to such places. Through such unequal observer 

effort fallacious absences (and also presences) might be induced with unknown effects for 

subsequent data analyses. Here, VE could help to assess potential effects rigorously and to 

assess sampling bias if information on the observer effort is available; the data could then be 

corrected by these estimated values. However, we want to stress that VE is no panacea for 

flawed survey designs. It can merely be a way to salvage at least some of the information in 

the data.  

Another important research field for which VE holds great potential for the future is global 

change research. Railsback et al. (2003), Cabral and Schurr (2010) and Zurell et al. (2009, 

chapter 3) show that VE can help to evaluate models which are intended to project species 

distributions into the future for different scenarios of environmental change. The effects of 

many other factors potentially complicating global change projections could be explored with 

VE: changing biotic interactions or spatially dependent biotic interactions that only take place 

at the edges of species distributions, behavioural adaptation, evolutionary effects, invasions, 

climatic extremes or catastrophic events. The VE approach would also allow to assess 

projections that address the effects of climate change or land use change for individual species 

with particular species-environment relationships, or to integrate species with different 

functional characteristics into assessing the effects of global change in whole communities or 

ecosystems.  

In addition to these potential future directions, the virtual ecologist approach could, if it were 

used more routinely in the future, have more general and perhaps even more important 

benefits: it could foster the integration of theoretical and empirical work. Empiricists are often 

unaware of the potentials and limitations of ecological models, and the same holds for 

theoreticians regarding field work and sampling methods. Working together on the 

development of sampling methods, designs and efforts by using the VE approach could help 

overcome this mutual ignorance. It could help practitioners to better plan their work. It could 

help modellers to increase the practical value of their work. It could also stimulate work that 

goes far beyond sampling methods. While trying to test sampling methods, new and 

interesting ecological models and even theories might emerge; and while trying to use 

existing models for testing sampling methods, ecological models might become more realistic 

in structure and lead to new questions for empirical research. Also, field work could be 



· Chapter 2 · Discussion 

 

 38 

oriented more directly towards data needs modellers have for specific modelling tasks. 

Looking at their models from the perspective of optimising empirical work might make work 

of theoreticians more valuable, and also it might help to better understand the system. 
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3  Static species distribution models in 

dynamically changing systems: how good can 

predictions really be?
2
 

                                                 
2
 An article with equivalent content has been published as: 

Zurell, D., Jeltsch, F., Dormann, C.F. and Schröder, B. 2009. Static species distribution models in dynamically 

changing systems: how good can predictions really be? Ecography 32: 733-744. 
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3.1 Abstract 

It is widely acknowledged that species respond to climate change by range shifts. Robust 

predictions of such changes in species’ distributions are pivotal for conservation planning and 

policy making, and are thus major challenges in ecological research. Statistical species 

distribution models (SDMs) have been widely applied in this context, though they remain 

subject to criticism as they implicitly assume equilibrium, and incorporate neither dispersal, 

demographic processes nor biotic interactions explicitly. In this study, the effects of transient 

dynamics and ecological properties and processes on the prediction accuracy of SDMs for 

climate change projections were tested. A spatially explicit multi-species dynamic population 

model was built, incorporating species-specific and interspecific ecological processes, 

environmental stochasticity and climate change. Species distributions were sampled in 

different scenarios, and SDMs were estimated by applying generalised linear models (GLMs) 

and boosted regression trees (BRTs). Resulting model performances were related to 

prevailing ecological processes and temporal dynamics. 

SDM performance varied for different range dynamics. Prediction accuracies decreased when 

abrupt range shifts occurred as species were outpaced by the rate of climate change, and 

increased again when a new equilibrium situation was realised. When ranges contracted, 

prediction accuracies increased as the absences were predicted well. Far-dispersing species 

were faster in tracking climate change, and were predicted more accurately by SDMs than 

short-dispersing species. BRTs mostly outperformed GLMs. The presence of a predator, and 

the inclusion of its incidence as an environmental predictor, made BRTs and GLMs perform 

similarly.  

Results are discussed in light of other studies dealing with effects of ecological traits and 

processes on SDM performance. Perspectives are given on further advancements of SDMs 

and for possible interfaces with more mechanistic approaches in order to improve predictions 

under environmental change. 

3.2 Introduction 

Among the expected consequences of the ongoing climate change are shifts in species’ 

geographic ranges, range expansions and contractions. Robust prediction of these 

distributional changes are a prerequisite for dynamic and sustainable conservation strategies, 

and thus constitute a major challenge in present-day ecological research (Guisan and Thuiller 

2005; Vaughan and Ormerod 2005).  
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Statistical species distribution models (SDMs) have been widely used to project species range 

shifts, and to derive extinction risks for different climate change scenarios (Bakkenes et al. 

2002; Midgley et al. 2002; Thomas et al. 2004; Thuiller 2004). These data-driven models 

relate field observations to environmental predictor variables. They provide an easy-to-use 

and potentially powerful tool for ecologists and conservationists because simple spatial 

incidence data can be used to derive the statistical models (Scott et al. 2002). Despite these 

merits, SDMs also show particular limitations regarding climate change projections 

(Dormann 2007; Guisan and Thuiller 2005; Pearson and Dawson 2003; Araújo and Rahbek 

2006). Foremost, they assume equilibrium between the species and its environment, and aim 

at predicting a new equilibrium state when extrapolating. Thus, transient dynamics are 

essentially ignored when projecting into the future. Furthermore, SDMs do not explicitly 

incorporate demographic processes and biotic interactions, and only few attempts have been 

made yet to narrow uncertainties due to dispersal assumptions (Midgley et al. 2006). All these 

issues may lead to substantial uncertainties in climate change projections (Dormann et al. 

2008). To date, there is little knowledge of the consequences as the accuracy of SDMs in 

predicting future species distributions is not easy to evaluate (Araújo et al. 2005; Thuiller 

2004). This is mainly because the events we aim to project have not yet occurred, and the 

future species’ geographic ranges are therefore unknown (but see Araújo et al. (2008) for an 

application for predicting current distributions from historical data).  

One way to overcome the data limitations are artificial or virtual experiments (Berger et al. 

1999; Austin et al. 2006; Schröder and Seppelt 2006). Such approaches have the further 

advantages of allowing us perfect knowledge and control over the underlying processes. 

Previous studies employing virtual experiments and SDMs have tested optimal sampling 

strategies (Hirzel and Guisan 2002; Reese et al. 2005), compared the performance of different 

statistical methods, model selection strategies, or threshold criteria for binary predictions 

(Hirzel and et al. 2001; Reineking and Schröder 2006; Jiménez-Valverde and Lobo 2007), 

and assessed how good SDMs were at identifying ‘source’ habitats (Tyre et al. 2001), the 

effect of diverse occurrence-environment relationships (Austin et al. 2006; Meynard and 

Quinn 2007) or the use of favourability functions (Albert and Thuiller 2008). To our 

knowledge, it has not been tested yet how transient dynamics and ecological properties and 

processes affect SDM accuracy when projecting into the future.  

In this study we propose a virtual experiment to test SDM prediction accuracy under ongoing 

climate change by developing species distribution models on data from a complex, dynamic 

population model, which is used to model transient responses of a species to climate change. 
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We therefore built a dynamic, spatially explicit multi-species population model which 

incorporated species-specific ecological properties and processes such as the ecological niche, 

dispersal ability and intrinsic growth rate, interspecific interactions such as competition and 

predation, environmental stochasticity, and climate change. Different scenarios were 

developed by systematically manipulating model properties. For each modelling scenario 

SDMs were estimated by applying two different SDM methods, Generalised Linear Models 

(GLMs) and Boosted Regression Trees (BRTs). Projected species distributions by SDMs 

were compared to simulated “true” species distributions by the dynamic population model 

focusing on the following questions: (1) Do transient dynamics lead to a decrease in 

projection accuracy under climate change? (2) Are modern, flexible statistical modelling 

techniques (represented in our study by BRT) more capable of projecting future species 

ranges than long-established, parametric methods (represented here by GLM)? (3) Are these 

effects confounded by differing ecological properties and processes? 

3.3 Methods 

3.3.1 Dynamic population model 

The purpose of the dynamic population model was to mimic scenarios of real-world situations 

with a complex virtual world containing a focal species characterised by species-specific 

properties and processes, and influenced by predation, environmental stochasticity, and 

climate change. To achieve this, a discrete-generation host-parasitoid system was set in a real 

environment. Such host-parasitoid systems are well suited for simple population models 

because they can have a much simpler structure than many other enemy-victim interactions 

due to the tight link between trophic and reproductive aspects of the parasitoid life history 

(Hassell 2000; King and Hastings 2003; Nicholson 1933). 

The host was the focal species, a holometabolous insect with distinct generations which is 

henceforth referred to as butterfly. A highly synchronised parasitoid parasitised the butterfly 

during its larval stage, and thereby caused the death of the butterfly (Mills and Getz 1996). 

Movement and dispersal were limited to the adult insect stages. In analogy to real systems the 

model was tritrophic, i.e. the butterfly-parasitoid interaction depended on a host plant, 

henceforth called plant, which affected the presence and abundance of the butterfly. A 

coupled-map lattice model was used to link the local and regional dynamics (Bonsall and 

Hassel 2000; Comins et al. 1992; Hassell et al. 1991). In each cell of a two-dimensional 

lattice the local butterfly-parasitoid population dynamics were mapped annually. The 



· Chapter 3 · Methods 

 

  43 

populations were then connected by dispersal. We thus obtained a spatially explicit multi-

species dynamic population model which allowed systematic modifications in several ways.  

3.3.1.1 Structure, scales and scheduling 

Space was represented by a two-dimensional lattice of 148 × 113 sites with a cell size of 1 km 

× 1 km. Absorbing boundary conditions were assumed, representing an open system where 

butterflies and parasitoids were able to leave the habitat, but not to (re-)enter it. One time step 

represented one year and the whole simulation covered a period of 150 years.  

 

Figure 3.1. Process scheduling of the dynamic model is illustrated in the flowchart in the centre. Each 

simulation started with the input of elevation and potential moisture distribution (top left) as well as 

temperature and precipitation time series (top right). After time initiation, four processes were carried out 

within each time step: Additional ecogeographical information layers were calculated, i.e. actual 

temperature and moisture distribution (Process 1) as well as local host carrying capacities (Process 2). 

Then dispersal of hosts and parasitoids was simulated (Process 3) and reproduction and parasitism took 

place (Process 4). The figure in the centre right depicts the fundamental and realised niche of the host 

plant. Temperature dependency of host growth rate is shown in the bottom right figure. 

During initialisation, the environmental factors elevation and potential moisture were 

attributed to each cell in the lattice, and the climatic factors temperature and precipitation 

were assigned to each time step. Butterflies and parasitoids were randomly distributed over 

the suitable habitat. During simulation, each time step was characterised by four processes 

(Fig. 3.1). Foremost, climate state and habitat state were updated. Temperature and moisture 

were assigned to each cell by climatological downscaling. The host plant foliage projective 
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cover was determined by the prevalent temperature and moisture regime, and induced a 

carrying capacity K for butterflies in each lattice cell. Resource competition at plant level was 

introduced by adding a second plant species, the competitor, whose fundamental niche 

overlapped with that of the host plant (Fig. 3.1), and which did not serve as a host plant for 

the butterfly. At the beginning of each time step, butterflies and parasitoids dispersed 

throughout the lattice. After colonisation, butterflies reproduced and the offspring could then 

be parasitised by female parasitoids. Detailed descriptions of the modelled processes are 

contained in Appendix B, parameter values are given in Table 3.1.   

Table 3.1. Constants in the process-based dynamic model. Respective equations are contained in Appendix 

B. 

Function Symbol Value Unit Description 

Grid w 1 km Cell width 

Climate State Tlapse 7 °C km
-1

 adiabatic gradient 

Habitat State Kmax 5000 ind maximum carrying capacity of a cell 

μT,plant 15.5 °C mean of host plant's temperature utilisation 

function  

μW,plant 5.5 - mean of host plant's moisture utilisation function  

μT,comp 12 °C mean of competitor's temperature utilisation 

function  

σT,comp 1 °C standard deviation of competitor's temperature 

utilisation function  

μW,comp 7 - mean of competitor's moisture utilisation function 

σW,comp 1 - standard deviation of competitor's moisture 

utilisation function  

σF 0.008  standard deviation for environmental stochasticity 

Dispersal βbutterfly 1.5 - butterfly's shape parameter in equation B.4 

μbutterfly 0.75 - fraction of local butterfly population emigrating 

αparasitoid 2 - parasitoid's scale parameter in equation B.4 

βparasitoid 1.5 - parasitoid's shape parameter in equation B.4 

μparasitoid 0.75 - fraction of local parasitoid population emigrating 

Reproduction 

& parasitism 

Topt,λ 16.5 °C optimal temperature for butterfly growth rate, 

location parameter of Gumbel distribution  

σλ 1.4 °C scale parameter of Gumbel distribution  

Ncrit 50 ind critical population size for Allee effect 

c 1 ind parameter in equation B.5 

3.3.1.2 Input 

The environmental data employed in the simulations were based on real environmental data 

derived from a digital terrain model developed by the Swiss Federal Statistical Office, 

GEOSTAT. The coordinates of the 148 km × 113 km grid are 607,000-754,000 m E / 

152,000-264,000 m N (Swiss grid CH1903). Environmental input layers were elevation, 
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drainage area above each cell, slopes and aspects. Altitude in the study region ranged from 

269 m to 3854 m a.s.l. Main climate variables in the virtual world were energy and water, in 

particular mean summer temperatures and mean summer precipitation. Time series were 

calculated manually by drawing for each time step a random number from a Normal 

distribution with a characteristic mean (temperature T = 21 °C at 0 m a.s.l.; precipitation Prec 

= 640 mm) and standard deviation (σT = 0.5 °C; σPrec = 30 mm). A generalised climate change 

scenario was derived for the period 2001 to 2050. Rates of change approximately followed 

the projected changes of the IPCC SRES scenario A2 for Central and Northern Europe 

(Houghton et al. 2001). Mean temperature was increased by 3°C in 50 years, mean 

precipitation decreased by 50 mm; mean values within the 50 years were linearly interpolated.  

3.3.1.3 Scenarios 

A standard simulation run lasted 150 years. The model ‘spinned up’ for 100 years, running 

with average climate, thereby ensuring a long-term equilibrium between butterfly population 

and environment which was usually reached after five years. Scenarios were applied over the 

last 50 model years.  

Table 3.2. Range of parameter values in the process-based dynamic model. Please note that low values of 

αbutterfly correspond to long dispersal distances and high values to short dispersal distances. Respective 

equations are contained in Appendix B. 

Function Symbol Values Unit Description 

Habitat State σT/W,plant 1.5 2.5 °C standard deviations of host plant's temperature and 

moisture utilisation functions  

Dispersal αbutterfly 0.5 4 - butterfly's scale parameter in equation B.4 

Reproduction 

& parasitism 

λmax 35 70 ind maximum butterfly population growth rate 

a 0 0.01 ind area of discovery in equation B.6 

 

Scenarios were derived in which ecological properties and processes as well as climate were 

systematically manipulated in a factorial simulation experiment of five factors with two levels 

each (Table 3.2). Climate change and parasitism were either turned on or off, the latter by 

adjusting the area of discovery, i.e. the attack rate by the parasitoids. Butterfly growth rate 

was either low or high through manipulation of the maximum growth rate λmax. Plant niche 

width was either narrow or wide, which was achieved by varying the standard deviation of the 

plant’s resource utilisation functions. Finally, butterfly dispersal distance was either short or 

long through manipulation of the scale parameter α in Eq. B.4 (Appendix B). A value of α = 4 

resulted in a maximum dispersal distance of one cell, α = 0.5 in a maximum dispersal distance 

of five cells, while the parasitoids dispersed with a fixed maximum dispersal distance of two 
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cells (α = 2). All possible parameter combinations resulted in 2
5 

= 32 scenarios. For each 

scenario we ran 10 replicate simulations.  

3.3.2 Sampling by virtual ecologist 

Similar to real field studies, a virtual ecologist sampled the butterfly population with the same 

strategy as an ecologist might choose in reality. A random stratified sampling strategy was 

applied (Hirzel and Guisan 2002), with temperature as the stratifying variable. The quantiles 

(0.2-, 0.4-, 0.6- and 0.8-quantiles) of the temperature distribution were taken to split the data 

into five ordinal classes, generating five homogenous environmental strata with respect to 

temperature. An equal number of cells (replicates) were chosen in each stratum. In a selected 

cell, the incidence of the butterfly and the prevailing environmental conditions were recorded. 

In order to reduce spatial autocorrelation in the response variable, samples were not taken in 

adjacent cells. The virtual ecologist made no errors in detection, i.e. butterfly occurrence and 

environmental conditions were recorded exactly as given in the dynamic model. This way, the 

performance of the statistical model could be directly related to the underlying demographic 

and stochastic processes (Tyre et al. 2001). Training data were sampled directly after ‘spin 

up’, i.e. after 100 model years, with a sample size of 1000. For each simulation run, five 

training data sets were sampled to capture the variability introduced by snapshot data; SDM 

accuracies for these five training data sets were averaged later. Independent (test) data sets 

(sample size = 1000) were sampled in the year 100, and in every subsequent 10 years until 

year 150.   

3.3.3 Statistical modelling 

3.3.3.1 Model formulation  

Butterfly occurrences were analysed by Generalised Linear Models (GLMs) and Boosted 

Regression Trees (BRTs) using a binomial error distribution and a logistic link function. 

GLMs have been traditionally used in species distribution modelling, and fit parametric terms. 

BRTs were developed within the machine-learning community, and are an ensemble-

prediction method combining regression trees and boosting. They are very flexible, but at the 

same time resistant to overfitting, and are able to automatically model complex interactions 

between predictor variables (Ridgeway 1999; Leathwick et al. 2006; Thuiller et al. 2006; 

Elith et al. 2008).  

Before the application of GLMs and BRTs, the predictor variables were tested for 

multicollinearity by calculating Spearman’s rank correlation coefficient ρS. Following 
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Fielding and Haworth (1995), if two variables had a correlation ρS > 0.7 the predictor with 

less ecological importance in respect to butterfly occurrence was removed. GLMs were 

estimated for the remaining predictor variables by applying an Akaike Information Criterion 

(AIC)-based stepwise variable selection procedure (Akaike 1974; Harrell 2006). According to 

the ecological knowledge we had (from the ‘virtual’ reality), we included linear (e.g. host 

plant cover) and quadratic terms (e.g. temperature and soil moisture) in the GLMs as well as 

an interaction term between temperature and soil moisture.  The linear term was forced into 

the model each time the quadratic term or the interaction term was selected in the final model. 

BRTs were estimated with a tree complexity of 2, a bag fraction of 0.75 and a learning rate of 

0.005 which ensured that the models were fitted with at least 1000 trees (cf. Elith et al. 2008). 

3.3.3.2 Extrapolation in space and time  

The resulting SDMs were used to make predictions to independent (test) data sets (sample 

size = 1000) for the year 100, in which the models were fitted, and for every subsequent 10 

years until year 150 where the simulation ended. Thus, SDMs were fitted under average 

climate where the butterfly population was in long-term equilibrium with its environment, 

and, in the case of climate change, the occurrence of butterflies was projected to differing 

time slices under gradually ongoing climate change.  

3.3.3.3 Model transferability: Validation  

For each prediction in space and in time, three different measures of accuracy were calculated 

in order to get a multi-facetted view of how good the SDM predictions were. The proportion 

of deviance explained by the final models was quantified by the explained deviance r
2

L, a 

logistic regression equivalent to the coefficient of determination r
2
 (Menard 2000). We 

derived the deviance by applying Equation 1.10 in Hosmer and Lemeshow (2000). The 

models’ ability to discriminate between occupied and non-occupied sites was assessed by 

calculating AUC, the area under the ROC-curve (Fielding and Bell 1997). AUC is 

independent of classification thresholds and typically assumes values between 0.5 and 1, with 

AUC = 0.5 for models with predictive ability no better than the null model and AUC = 1 for 

perfectly discriminating models. Values of AUC > 0.7 indicate useful predictions according to 

Hosmer and Lemeshow (2000). Additionally, the calibration curve was calculated, to 

determine the agreement between observations and predicted values, i.e. the goodness-of-fit 

(Pearce and Ferrier 2000). It was derived from a logistic regression of the observed values on 

the logit of the predicted values (Harrell 2001; Reineking and Schröder 2006). A perfectly 

calibrated model would exhibit a calibration curve with a slope of one and an intercept of 
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zero. Departures from these values indicate bias and spread, respectively, in the predicted 

values.  

3.4 Results 

3.4.1 Dynamic population model 

Not all suitable cells were occupied by butterflies. This was a consequence of local 

extinctions caused by predation or stochastic processes, or due to dispersal limitation. The 

relative proportion of occupied habitat, the prevalence, became greater when the plants had 

wider niches resulting in more available habitat for the butterflies, and when the butterflies 

were able to travel farther distances which allowed them to spread throughout more of their 

geographical niche and to reach even more distant patches (Fig. 3.2). Prevalence was also 

greater for scenarios without parasitism, as extinction then only occurred due to stochastic 

processes in the environment. Although high butterfly growth rates caused higher butterfly 

abundances, prevalence was not affected, and did not differ considerably between scenarios of 

high and low butterfly growth rates.   

 

Figure 3.2. Effects of ecological properties on mean abundances and prevalences of butterflies in the 

virtual world in year 100 when butterflies were in long-term equilibrium with their environment. Open 

and filled boxes indicate low and high values for a given ecological parameter, respectively (Table 3.2). 

Sample size is n = 160.   

In all scenarios under climate change the butterfly population moved southwards, not 

gradually, but rather in distinct steps which corresponded to distinct steps in the temperature 

trajectory (Fig. 3.3). After 115 years, the butterflies started to shift their geographical range 

southwards which was accompanied by a small range contraction. Then after 135 years, 

distinct range contractions took place accompanied by ongoing southwards movements. The 
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northernmost patches which formerly supported intermediate relative butterfly abundances 

became unoccupied after year 140.  

 

Figure 3.3. Range dynamics under climate change. The shift in relative butterfly abundances in north (N) 

-south (S) direction is depicted in the top panel. It is the average butterfly abundance of all (16) scenarios 

and replicate runs under climate change, and in each 1-km wide N-S transect in years 100 to 150, when 

climate change took place. The bottom panel shows the temperature trajectory under climate change for 

the years 100 to 150 (red) and the 3-year moving average (black). Range shifts took place after year 115, 

after year 135 distinct range contractions occurred. These steps coincided with steps in the temperature 

trajectory. 

3.4.2 Statistical models 

Under average climate, both BRTs and GLMs achieved high prediction accuracies. According 

to the rules of thumb given by Hosmer and Lemeshow (2000) the average discrimination 

ability could be considered as outstanding with (mean and median) AUC > 0.9. Furthermore, 

models were transferable in space without noticeable loss in predictive power (Fig. 3.4a). 

Under climate change, the distinct steps in the range dynamics were reflected in the prediction 

accuracies achieved for the different time slices (Fig. 3.4b). The range shift after year 115 

caused only a slight difference, namely a wider range of prediction accuracies for the year 120 

while for the year 130 the pattern seen in Fig. 3.4a was retrieved. Thus, abrupt range shifts 

caused a loss in predictive power in some scenarios, but, after a small time lag, predictive 

power was resumed. After year 140 which corresponded to the distinct range contractions, 

there was a profound difference between the prediction accuracies achieved by BRTs and 

GLMs. While the mean discriminatory power of BRTs even increased and the range 
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decreased, the opposite was true for prediction accuracies of GLMs with a decrease in mean 

performance and a much wider range.  Still, all scenarios yielded AUC > 0.7 indicating that 

for all scenarios both BRTs and GLMs were able to make useful predictions.  

 

Figure 3.4. Boxplots of AUC values for scenarios under average climate (a) and climate change (b). SDMs 

were fitted in year 100; predictions were made on independent data for year 100 and every subsequent 10 

years. The AUC values achieved for BRTs and GLMs, respectively, for the different climate regimes in 

the respective years are depicted in the boxplots; n = 160. 

The effects of different ecological properties on the mean prediction accuracies achieved 

under climate change are shown in Fig. 3.5. Accuracies for the year 100 correspond to 

accuracies the SDMs would achieve under average climate. When the butterflies were not 

influenced by a parasitoid-interaction (Fig. 3.5a-c) differing butterfly population growth rates 

caused the only considerable effect on prediction accuracies, with higher AUCs for lower 

growth rates. There were trends that long butterfly dispersal distances and wide plant niche 

widths led to higher prediction accuracies. BRT prediction accuracies slightly decreased for 

year 120, except for scenarios with far butterfly dispersal distances where mean AUCs 

remained constant, and then increased and achieved even higher values in the year 150 than at 

the time of model estimation. GLM prediction accuracies exhibited the same pattern up to the 

year 130 but then strongly decreased for the years 140 and 150 where the distinct range 

contractions occurred. The exception were the scenarios with wide plant niche widths which 

only showed slight decreases in prediction accuracies under range contractions. Both BRT 

and GLM prediction accuracies for the year 120 only decreased for scenarios with short 

butterfly dispersal distances and there was this aforementioned time lag until predictive power 

was retrieved. Thus, butterflies with short dispersal distances did not track the range shift 

instantaneously but with some time lag.  
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Figure 3.5. Effects of ecological properties on mean prediction accuracies (AUCs) of BRTs and GLMs 

achieved under climate change for all time slices, and for cases without parasitism (a-c) and with 

parasitism (d-f), respectively. Open and filled symbols indicate low and high values for a given ecological 

parameter, respectively (Table 3.2). Error bars indicate 95%-confidence intervals. Sample size is n = 40. 

When parasitoids attacked the butterflies, the resulting prediction accuracies for the different 

time slices looked completely different (Fig. 3.5d-f). There were only minimal differences 

between BRTs and GLMs, and when the BRT prediction accuracies increased with range 

contractions, those of GLMs did as well. The virtual ecologist had perfect knowledge of the 

occurrence of parasitoids at all times. In the presence of a parasitoid-interaction the inclusion 

of this parasitoid incidence as predictor in the SDMs put GLMs on a par with BRTs. In 

contrast to scenarios without parasitism, butterfly population growth rates now did not show a 

remarkable effect on prediction accuracies anymore, and the effects of plant niche widths and 

butterfly dispersal distances were reversed. Butterfly dispersal ability exhibited the most 

pronounced effect with much higher prediction accuracies for short dispersal distances up to 

the year 130. When range contractions occurred this effect was smaller but still noticeable.  

While for the year 150 under climate change even the lowest prediction accuracies achieved 

by GLMs still indicated useful predictions, they had alarmingly low explanatory power in 

some scenarios (Fig. 3.6). Without any parasitoid-interaction BRTs explained at least 50% of 

the deviance and achieved even values up to 90%. GLMs, on the other hand, did not even 

explain 20% of the deviance in five out of eight cases. Only in scenarios with wide plant 

niche widths and low butterfly population growth rates and in the scenario with high plant 

niche width, high butterfly population growth rate and far butterfly dispersal distance did 
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GLMs have explanatory power above 40% up to 60% explained deviance. Explained 

deviances achieved intermediate values between 30% and 70% in scenarios with parasitism 

assumed, and were similar for BRTs and GLMs.  

  

Figure 3.6. Effects of ecological properties on explained deviance achieved by BRTs and GLMs under 

climate change for year 150. 

 

Figure 3.7. The mean calibration curves achieved by BRTs and GLMs under climate change without 

parasitism for all time slices. Sample sizes are n = 80. 
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Calibration statistics allowed us to judge the bias and spread in the predicted probabilities of 

occurrence compared to observed occurrences. The calibration curves obtained for BRTs and 

GLMs under climate change and without parasitism are shown in Fig. 3.7. Both BRTs and 

GLMs slightly underestimated the probability of butterfly occurrence in the year 120 when 

the butterflies started to shift their geographical range. This was true for all scenarios 

regardless of dispersal ability, indicating that the butterflies persisted at the trailing edge of 

the range shift for some time whereas the SDMs predicted unsuitable habitat. When range 

contractions took place, the probability of occurrence was overestimated, only slightly by 

BRTs but consistently by GLMs which showed a strong bias in their predictions (Fig. 3.8).  

 

Figure 3.8. Effects of ecological properties on calibration statistics of BRTs and GLMs under climate 

change without parasitism for the year 150. (a) Open and filled symbols indicate low and high magnitudes, 

respectively (Table 3.2). The reference is the fit in year 100. Error bars (a) and shading lines (b) present 

the 95%-confidence interval. Sample sizes are n = 40, respectively n = 80 for the reference (a). 

Overall, predictions made by BRTs fitted the observations well even under ongoing climate 

change. Bias and spread in the predictions differed for the different scenarios, i.e. for different 

ecological properties (Fig. 3.8). For instance for the year 150, short butterfly dispersal 

distances and wide plant niche widths caused BRTs to be slightly biased towards 

overestimating the probability of butterfly occurrence while low butterfly population growth 

rates caused no bias, and all other scenarios caused bias towards underestimating the 
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probabilities of occurrence. All scenarios resulted in calibration slopes greater than one 

indicating that higher predicted values were underestimating the occurrence of butterflies 

while lower predicted values were overestimating the occurrence of butterflies. Nevertheless, 

for BRTs differences to the ideal calibration curve were small and in no way alarming. The 

strong bias in GLM predictions led to consistent overestimation of butterfly occurrence for all 

scenarios (Fig. 3.8a). Here, differing calibration slopes only determined whether this 

overestimation was more extreme for very low or very high predicted values (Fig. 3.8b). 

Overall, due to consistent overestimation GLMs were not able to accurately predict the 

absences under range contraction which, in contrast, was the major strength of the BRTs. 

3.5 Discussion 

3.5.1 Prediction accuracies under climate change 

The main outcome of this study was that the ways in which species respond to climate change 

lead to quite different projection accuracies achieved by SDMs. As one might expect, 

prediction accuracies initially decreased when species started to shift their geographic range 

due to climate change. The calibration statistics helped to explain how this mismatch between 

simulated true species distribution and forecasts made by SDMs was determined on one hand 

by the dispersal ability of the species and on the other hand by the ability of the species to 

endure, at least for some time, suboptimal conditions at the trailing edge of the range shift 

where habitat became gradually unsuitable (Morin and Thuiller 2009). Both mechanisms led 

to a time lag after the range shift where the predictive performance of SDMs was decreased, 

although the mechanisms at the trailing edge were of minor importance. The uncertainty in 

prediction accuracies introduced by the unlimited dispersal assumption strongly depended on 

the dispersal ability of the species (Midgley et al. 2006; Thuiller et al. 2005). As soon as the 

species’ potential geographic range remained static long enough for the species to fill its 

entire range, i.e. as a new equilibrium situation was realised, prediction accuracies increased 

again to values the SDMs would achieve under average climate. This also implied that rates 

and intensity of climate change are of utmost importance for the predictive performance of 

SDMs. If the potential geographic range of the species were to shift continuously, or if 

climate change were accelerated for periods of time, this would cause greater discrepancies 

between predicted and true species occurrences. Somewhat counterintuitively at first sight, 

the predictive performance of SDMs increased when species geographic ranges contracted. At 

second sight however, we saw that this happened because the absences were predicted more 

accurately. Thus, range contractions and consequently refugia could be modelled quite 
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accurately by SDMs, and thus may allow identification of core areas for nature conservation. 

The results also highlight the benefit and importance of using different performance measures 

for SDMs. Models performing well in terms of predicting climate-change induced 

distributional shifts from a discrimination perspective (measured using the popular AUC 

statistic) may nevertheless perform poorly in terms of calibration, with significant 

implications for estimates of extinction risk and colonisation success.  

3.5.2 Model comparison 

As one might have expected, BRTs outperformed GLMs both when making predictions under 

both average climate and climate change. The high flexibility of BRTs and their ability to 

model thresholds in species’ occurrence made them superior to GLMs. Surprisingly, in the 

presence of a parasitoid interacting with the butterfly this effect vanished and BRTs and 

GLMs were equivalent, highlighting the importance to include biotic interactions as 

predictors. It was striking that the mean discriminatory power of BRTs increased when range 

contractions took place while the mean performance of GLMs decreased. But can we 

generalise these results and, thus, can we expect BRTs to generally better perform under 

climate change than GLMs? The answer is no, because attention should be paid to the 

circumstances where the models were estimated. As BRTs model thresholds in species’ 

occurrences and extrapolate beyond the parameter range by predicting the mean response of 

the parameter region closest to the newly encountered parameter space, the prediction 

accuracy strongly depends on the extent to which the recorded occurrences correspond to the 

entire niche of the species. Ideally, the full range of a species should be used for estimating 

SDMs because then the probability is reduced to extrapolate to environmental conditions the 

species has never encountered before (Dormann 2007; Thuiller et al. 2004); examples are 

given by del Barrio et al. (2006) and Pearson et al. (2002). If this is met, then BRTs will 

probably always outperform parametric methods as GLMs, simply because they allow a 

highly non-linear threshold-like fitting of presence-absence data, rather than relying on 

monotone approximations such as the logistic curves of binomial GLMs. 

3.5.3 Effects of ecological properties and processes 

Several studies reported decreasing spatial prediction accuracies with increasing range sizes 

and niche breadth, i.e. more accurate predictions could be made for specialists than for 

generalists (Brotons et al. 2007; Hernandez et al. 2006; McPherson and Jetz 2007; Pearce et 

al. 2001; Segurado and Araújo 2004; Seoane et al. 2005; Stockwell and Peterson 2002). This 

however, is not beyond controversy as e.g. Garrison and Lupo (2002) reported better model 
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performances for species with larger range sizes. We encountered both effects: when 

butterflies were interacting with a parasitoid, specialists were modelled more accurately. In 

contrast, when no parasitoid-interaction was present there was no considerable effect for 

spatial predictions but under ongoing climate change the distributions of generalists were 

modelled more accurately than of specialists. There is no easy biological explanation for this. 

To explain why specialists can be modelled more accurately than generalists Stockwell and 

Peterson (2002) suggested that widespread species may show local ecological adaptations. 

Modelling all these subpopulations together would effectively overestimate the species’ 

niche, and therefore reduce model performance. However, our dynamic model did not 

incorporate any local adaptation and we may thus rule out this explanation. A likely 

explanation why in the presence of a parasitoid-interaction SDMs performed better for 

specialists than for generalists is that the relationship between butterfly and parasitoid 

occurrence might be noisier for wide-ranging butterflies. Without parasitism a remarkable 

difference between model performances for generalists and specialists only occurred when the 

species started to shift their geographic range and in the case of GLMs increased noticeably 

when range contractions occurred. A reason might be that suitable habitat became more 

isolated with ongoing range shifts and contractions, and that this isolating effect was severer 

for specialists. Thus, butterflies were not able to reach all suitable habitat patches, this effect 

being more pronounced for narrow-ranging than for wide-ranging butterflies.  

Without parasitism lower butterfly population growth rates led to higher predictive 

performances of both BRTs and GLMs under average climate and for range shifts. There was 

no considerable effect when range contractions occurred and when the butterflies were 

interacting with parasitoids. Higher growth rates caused higher abundances and because of 

local dispersal also higher prevalences, but only in particular regions where the temperature 

was near the optimum growing temperature. This may have resulted in biased habitat 

selection patterns and therefore response surfaces, obscuring the true species-habitat 

relationship. These findings are in contrast to the results of Seoane et al. (2005) who obtained 

better models for species that can reach high densities. They, however, predicted abundances 

instead of probabilities of occurrence, and for accurate predictions of species abundances 

other ecological factors may be of importance.  

Under average climate and without parasitism, model performances did not differ between 

short and far-dispersing butterflies. This is consistent with results found by Garrison and Lupo 

(2002) and Stockwell and Peterson (2002). Pearce et al. (2001) on the other hand reported 

poorer prediction accuracies for mobile species though this effect was not significant. As 
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mentioned before, when the species started to shift their geographic range due to climate 

change short-dispersing butterflies were initially outpaced by climate change. When 

butterflies were interacting with parasitoids prediction accuracies were much better for short-

dispersing butterflies. This is an effect of parasitoids’ dispersal ability. When parasitoids were 

worse dispersers than the butterflies then the relationship between butterfly and parasitoid 

occurrences was much noisier. Thus, not only the dispersal ability of the focal species is of 

importance but also the dispersal behaviour of species it is interacting with.  

3.5.4 Limitations and extensions 

Creating a virtual world is fraught with difficulties. Our spatially explicit tritrophic system 

and companion virtual ecologist represent only one possible implementation, but it enabled us 

to manipulate important biotic interaction and dispersal effects on SDM accuracy.  

One caveat of our study is the assumption that our virtual ecologist acts flawlessly and under 

optimum conditions: the virtual species is detected perfectly and the spatial samples are 

complete in coverage and instantaneous in time. In studies of real data ecologists have to deal 

with false negatives in the data, incomplete coverage of environmental predictors, more 

complex species-habitat relationships, etc., the effects of which clearly remain to be explored 

by future extensions of our approach.  

Additionally, several other effects can be explored with this approach, which lie outside 

experimental manipulation in the real world. First the effect of other types of ecological 

processes can be investigated, such as spatial dependency of biotic interactions (i.e. some 

taking place only at the edge of a species distribution) or changing biotic interactions under 

environmental change, the effects of changing disturbance regimes or local ecological 

adaptation. Secondly, several statistical and sampling issues can be addressed, such as the 

usefulness of proxies (e.g. NDVI as surrogate for host plant abundance); effect of missing 

important variables (e.g. omitting incidence of parasitoids from SDMs); or density-

dependence in detection probability of the focal species (a problem that underlies the 

development of efficient survey designs). 

3.5.5 Perspectives and research needs in species distribution 

modelling 

Several steps must be taken in order to improve predictions of species distributions under 

scenarios of environmental change. Distributional patterns of species in space and time are 

determined by environmental variability, and processes acting at specific spatial scales and 

times may be crucial for the occurrence of a species. Climate change may even increase 
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variability in the environment both spatially and temporally, and thus this variability must be 

accounted for in species distribution modelling. The importance of spatial scale and 

hierarchical structure in ecological processes has long been recognised (Mackey and 

Lindenmayer 2001), but only very few studies have so far explicitly dealt with multiple 

spatial scales in a hierarchical manner (Graf et al. 2005; Diez and Pulliam 2007; McMahon 

and Diez 2007; Albert et al. 2008). Ignoring hierarchical structure in processes may be 

fallacious and result in erroneous projections of future species distributions under 

environmental change (Davis et al. 1998; Diez and Pulliam 2007; Dormann 2007). In real 

world studies, the underlying processes are rarely known, making, in our opinion, 

consideration of hierarchy in scales and processes indispensable, for example by means of 

multilevel modelling (Gelman and Hill 2007). Our results showed that temporal patterns of 

climate change and transient dynamics greatly affect SDM prediction accuracies, and other 

studies have suggested that temporal variability increases the probability of population 

extinction (cf. Thuiller et al. 2008). Midgley et al. (2006) showed that even a simple ‘time-

slice’ approach may reveal transient range dynamics which are obscured by ‘one-step’ 

projections as commonly applied when projecting future species ranges by SDMs. We 

recommend the use of  ‘time-continuous’ approaches with discrete time steps in which step 

lengths should be as small as possible or should at least be determined by temporal patterns 

and rates of expected environmental change (cf. Schröder et al. 2008 for an example on 

landscape-scale). Overlaying the resulting habitat suitability maps of the different time steps 

or years may allow the identification of core areas within a species’ range (cf. Osborne and 

Suarez-Seoane 2007) and thus core areas for nature conservation.  

Our study showed that the performance of SDMs predicting species which experienced range 

shifts strongly depended on two processes: dispersal at the leading edge and extinction or 

persistence at the trailing edge of the range shift. The incorporation of these processes into 

species distribution modelling is thus of major importance. Several strategies have already 

been tested to incorporate animal dispersal or animal dispersed pollen and seeds into SDMs, 

including the simple assumption of maximum dispersal rates (Midgley et al. 2006), and 

connectivity analyses (del Barrio et al. 2006; Graf et al. 2005). More complex approaches 

mechanistically modelling dispersal rely on dispersal kernels (e.g. del Barrio et al. 2006) or 

individual-based models (e.g. Graf et al. 2005). Applying such mechanistic approaches to 

range projections under climate change additionally requires integrated modelling of local 

population dynamics. The choice of approach to use depends on the specific aims of the study 

in question. However, for the prediction of species’ responses to climate change an 
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integration of dispersal and local population dynamics in a mechanistic manner seems 

promising (del Barrio et al. 2006; Keith et al. 2008), on the one hand because knowledge of 

local population dynamics is needed for the prediction of persistence at the trailing edge and 

local extinctions within the species’ range. On the other hand, incorporation of local 

population dynamics may help to predict species’ responses to, for example, seasonally 

asymmetric climate change or extreme events. Explicit consideration of dynamic species’ 

responses may provide the basis for dynamic and integrated conservation strategies.  

Biotic interactions must be included in SDMs. But then, future projections of species’ 

distribution then also require knowledge and thus prediction of the distribution of interacting 

organisms (Hawkins and Porter 2003, Schweiger et al. 2008). In cases where the link between 

predator and prey is as tight as in our virtual world, where the parasitoid only foraged on the 

butterflies and was directly dependent on them, the temporal distribution of the predator may 

be approximated by a simple dispersal model simulating movement between patches 

exhibiting a probability of prey occurrence above a certain threshold. Also, the distribution of 

lower trophic levels on which the focal species forages must be known or predicted at all 

projection times introducing further uncertainties in range projections. There is no simple 

solution to that, and for now we must be content with making projections under specific 

assumptions regarding the distribution of any interacting organisms.   

3.5.6 Conclusion 

Different range dynamics may lead to quite different prediction accuracies of SDMs under 

climate change. A species’ ability to track climate change, determined by dispersal ability and 

the rate of change, is decisive for SDM performance when species shift their geographic 

range. Range contractions may be predicted quite accurately as the absences are predicted 

well. Flexible methods as BRTs will probably always outperform parametric methods due to 

their ability to fit non-monotone relationships. The study demonstrates the benefits and 

capabilities of integrating dynamic and statistical modelling approaches in different ways. On 

the one hand, dynamic population modelling as virtual playground for testing statistical 

models allows the extensive exploration of specific questions. On the other hand, the 

integration of dynamic processes into species distribution modelling may help to improve 

predictions of species distributions under environmental change. Here, the present study 

provides valuable insights which processes are of relevance when species undergo transient 

dynamics and should hence be incorporated in species distribution models.  
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4  Uncertainty in predictions of range dynamics: 

black grouse climbing the Swiss Alps
3
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4.1 Abstract 

Empirical species distribution models (SDMs) constitute often the tool of choice for the 

assessment of rapid climate change effects on species’ vulnerability. Conclusions regarding 

extinction risks might be misleading, however, because SDMs do not explicitly incorporate 

dispersal or other demographic processes. Here, we supplement SDMs with a dynamic 

population model (i) to predict climate-induced range dynamics for black grouse in 

Switzerland, (ii) to compare direct and indirect measures of extinction risks, and (3) to 

quantify uncertainty in predictions as well as the sources of that uncertainty. To this end, we 

linked models of habitat suitability to a spatially explicit, individual-based model. In an 

extensive sensitivity analysis, we quantified uncertainty in various model outputs introduced 

by different SDM algorithms, by different climate scenarios and by demographic model 

parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. By the 

end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some 

climate scenarios. In contrast, population size and occupied area were primarily controlled by 

currently negative population growth and gradually declined from the beginning of the 

century across all climate scenarios and SDM algorithms. However, predictions of population 

dynamic features were highly variable across simulations. Results indicate that inferring 

extinction probabilities simply from the quantity of suitable habitat may underestimate 

extinction risks because this may ignore important interactions between life history traits and 

available habitat. Also, in dynamic range predictions uncertainty in SDM algorithms and 

climate scenarios can become secondary to uncertainty in dynamic model components. Our 

study emphasises the need for principal evaluation tools like sensitivity analysis in order to 

assess uncertainty and robustness in dynamic range predictions. A more direct benefit of such 

robustness analysis is an improved mechanistic understanding of dynamic species’ responses 

to climate change. 

4.2 Introduction 

Recent studies in biogeography and macroecology resulted in growing concerns about 

species’ range shifts driven by ongoing climate and land use change. Species dynamically 

adjust their ranges in response to the complex interplay of environmental forces, changing 

biotic interactions, and their interactions with key demographic traits (Araújo and Luoto 2007, 

Thuiller et al. 2008, Walther et al. 2002). To date, a substantial body of literature has amassed 

on predicting potential range dynamics as well as extinction risks in order to derive mitigation 

strategies for global change impacts (Midgley et al. 2002, Thomas et al. 2004, Thuiller 2004).  
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Many, if not most, recent climate impact studies rely on correlative, phenomenological 

species distribution models (SDMs). These derive statistical relationships between the 

species’ occurrence (or abundance) and prevailing environmental (biotic and abiotic) factors 

to characterise the environmental niche (Guisan and Zimmermann 2000). Potential future 

ranges of species are projected by transferring this relationship to future environmental 

conditions, thus allowing for rapid assessment of potential threats. SDMs require comparably 

simple species location data such as presence-absence and do not rely on profound prior 

knowledge on the species’ biology. Therefore, they constitute one of few practical approaches 

to study environmental change impacts on a wide range of species quickly (Elith and 

Leathwick 2009, Huntley et al. 2004) and have spurred hundreds of applications and 

publications on these issues (Zimmermann et al. 2010).  

However, SDMs are not intended for making transient predictions under environmental 

change. Many recent publications have tried to raise awareness to the inherent fundamental as 

well as methodological limitations accompanying SDMs (Buckley and Roughgarden 2004, 

Dormann 2007, Guisan and Thuiller 2005, Hampe 2004). Some principal limits for SDMs 

arise from their conceptual underpinning. Foremost, they assume that species are in 

equilibrium with their environment, which may not even be the case for many post-glacial 

distributional ranges (e.g. Svenning and Skov 2004). Correspondingly, when extrapolating to 

new times and places, SDMs implicitly assume an instantaneous realisation of a new 

equilibrium situation. Thereby, transient population dynamics and important life history traits 

such as dispersal capacity and local persistence ability that shape a species’ response to 

environmental change are essentially ignored (Thuiller et al. 2008, Zurell et al. 2009, chapter 

3). This may lead to biased estimates of extinction risks. In addition, discussions about 

methodological issues prevail. Different SDM algorithms, for instance, have led to divergent 

predictions of habitat suitability for scenarios of climate change (Buisson et al. 2010, Pearson 

et al. 2006, Thuiller 2004). Among others, model predictions can be expected to be sensitive 

to model building steps and data characteristics including uncertainty in future climate 

scenarios (Araújo and Guisan 2006, Dormann et al. 2008, Heikkinen et al. 2006).  

Challenges for SDM predictions under environmental change are manifold and, therefore, 

several steps have been proposed to improve SDMs and to yield more robust predictions. One 

solution is to make use of multiple models within an ensemble framework which allows 

analysing the range of uncertainty introduced, for example, by different SDM algorithms and 

different climate scenarios (Araújo and New 2007, Thuiller et al. 2009). To overcome 

fundamental limitations of SDMs that are related to their static nature, several authors have 
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urged to supplement SDMs by more mechanistic, stochastic population models that 

incorporate key demographic processes determining range dynamics (Araújo and Guisan 

2006, Guisan and Thuiller 2005, Thuiller et al. 2008, Schröder 2008, Zurell et al. 2009, 

chapter 3). Stochastic population models explicitly describe demographic processes such as 

mortality, reproduction and dispersal while taking into account environmental and 

demographic stochasticity. They allow the assessment of species vulnerability or extinction 

risks via population viability analyses (PVA, Burgman et al. 1993, Brook et al. 2000) and 

may help to uncover ‘tipping points’ that lead to rapid and potentially irreversible species’ 

responses to environmental change (Pereira et al. 2010). However, these models are also 

highly data demanding, usually involve more complex model structures, and rely on extensive 

knowledge on species’ biology and population processes which often constrains the spatial 

scale of the studies, the number of species or the generality of results (Jeltsch et al. 2008).  

Attempts have been made to make use of both phenomenological and population dynamic 

approaches when predicting climate change-induced range shifts (Anderson et al. 2009, 

Cheung et al. 2009, Keith et al. 2008). Thereby, SDMs and comparably simple, spatially 

explicit population models are integrated by constraining basic demographic parameters of 

the dynamic model (e.g. carrying capacity) by SDM output (e.g. habitat suitability). As such, 

the predictive accuracy of SDMs at large spatial scales is retained while being able to capture 

transient population dynamics in response to climate change (Gallien et al. 2010, Keith et al. 

2008). Another simple way is to run a dynamic, multi-species population model under a range 

of environmental and landscape contextual conditions, and then to fit the major outcome of 

these simulations, namely migration rate, against climate and competition as predictors, and 

to combine this information in a simple GIS time-step model to predict transient responses of 

the target species to changing land use and climates (Meier et al. 2011).  

The goal of all these considerations and efforts is to increase robustness of model predictions 

under environmental change. Quantitative predictions of models typically carry substantial 

error margins due to structural (model specification) uncertainty and parameter (data) 

uncertainty as well as inherent (natural) stochasticity of ecological dynamics (Barry and Elith 

2006, Jeltsch et al. 2008). Conclusions regarding the robustness of predictions can only be 

made conditional on explicit simulation runs. When integrating SDMs and dynamic 

population models in order to predict range dynamics for scenarios of environmental change 

final predictions essentially carry errors of three different models (SDM, population model 

and climate model; Beaumont et al. 2008, Wiens et al. 2009). These uncertainties need to be 

quantified in order to draw inferences about the robustness of model results.  
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In this context, the objectives of our study were threefold: (1) to predict climate-induced 

range dynamics for black grouse in Switzerland, (2) to compare direct and indirect measures 

of extinction risks, and (3) to quantify uncertainty and robustness of predictions and assess 

relative contribution of different modelling components to overall uncertainty. To achieve 

this, habitat suitability maps obtained from spatio-temporal SDM predictions were linked to a 

spatially explicit individual-based model that described key demographic processes of black 

grouse. Predictions were derived and compared for multiple key model outputs (population 

and occupied area size, probability of extinction, mean elevation and mean population centre). 

Uncertainty in predictions was quantified by extensive sensitivity analysis. Thereby, we 

focused on three different uncertainty components: climate scenarios, SDM algorithms, and 

demographic model parameters. Furthermore, sensitivity was evaluated for each key model 

output to delineate more or less robust features of dynamic range predictions. 

4.3 Methods 

4.3.1 Species data 

In the Swiss Alps, black grouse (Tetrao tetrix) mainly occurs in treeline habitats, in dwarf-

shrub-rich transition zones between forests and alpine meadows at an altitude of up to 2500 m 

above sea level (Zbinden and Salvioni 2003). Swiss black grouse populations were judged as 

stable by comparisons between the two observation periods of the Swiss Breeding Bird 

Atlases 1972-1976 and 1993-1996 (Schifferli et al. 1980, Schmid et al. 1998). However, 

population sizes are known to fluctuate strongly and, thus, estimates on population status 

derived from such short time periods may be imprecise. For example, local declines were 

reported for the northern as well as southern Prealps caused by habitat loss and fragmentation 

(Schmid et al. 1998, Zbinden and Salvioni 2003).  

Species distribution data at 1 km resolution were obtained from the Swiss Breeding Bird Atlas 

(Schmid et al. 1998). Count data for assessing reproductive success were obtained from a time 

series observed between 1981-2007 in Ticino, Switzerland, where the numbers of chick-

rearing hens and juveniles were recorded annually in the second half of August (Zbinden and 

Salvioni 2003). 

4.3.2 Environmental predictors 

Environmental predictors included climatic variables as well as land use and vegetation data 

at 1 km resolution. Climate data were derived from the BIOCLIM database (Swiss Federal 

Research Institute WSL) including long-term averages from the period 1961-1990 on summer 
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(June-August), winter (December-February) and annual values for the variables: precipitation 

sum;  mean temperature; potential solar radiation; mean summer moisture index (precipitation 

– potential evapotranspiration); and growing degree days above 0 °C. Details for the 

derivation of these climate layers are given in Zimmermann and Kienast (1999) and in Guisan 

et al. (2007). Land use and vegetation data were compiled from the land use and land cover 

database GEOSTAT (Swiss Federal Statistical Office).  From these, we chose five land use 

categories that we deemed sensible to explain black grouse presences and absences, based on 

the ecology of the species: scattered forest, bushy forest, grassland and arable land, 

unproductive vegetation, and residential and infrastructural areas. 

4.3.3 Climate change scenarios 

Climate change scenarios were obtained from the ENSEMBLES Project 

(http://www.ensembles-eu.org/). Five scenarios were obtained from three regional circulation 

models with three different underlying general circulation models and three different emission 

scenarios (A1B, B1, B2, see Table 4.1). These scenarios were chosen to reflect a range of 

predictions for the Central European Alps that were both realistic and reached from 

pessimistic to optimistic. Scenarios were downscaled to a 1 km spatial resolution according to 

the procedure described in Engler et al. (2011). Climate scenarios were available as 10 year 

time slices which we interpolated to obtain annual changes in climate. The general climate 

trend over the 21st Century is illustrated in Appendix C, Fig. C.1. 

Table 4.1. Regional circulation models (RCM) used in the ensemble simulations of this study. Each RCM 

was based on the boundary inputs from a General Circulation Model (GCM). We used three different 

SRES scenarios, which translate for the Swiss case study to tabulated climate anomalies by the end of the 

21st century (ΔT, ΔP). HC: Hadley Center; MPI: Max Plank Institute; SMHI: Swedish Meteorological 

and Hydrological Institute.  

Short RCM GCM Institute SRES ΔT ΔP 

H-a1 HadRM3q0 HadCM3 HC A1B +5.26°C +4.67mm 

M-a1 CLM ECHAM5 MPI A1B +4.51°C +5.96mm 

M-b1 CLM ECHAM5 MPI B1 +3.07°C +10.51mm 

S-a1 RCA30 CCSM3 SMHI A1B +2.71°C +0.70mm 

S-b2 RCA30 CCSM3 SMHI B2 +2.89°C +1.55mm 

4.3.4 Species distribution model 

Black grouse potential distribution was predicted using three different statistical algorithms 

that take presence-absence input data, are widely used in species distribution modelling and 

that present different levels of flexibility (Elith et al. 2006, Heikkinen et al. 2006), namely: 
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generalised linear models (GLM), generalised additive models (GAM) and boosted regression 

trees (BRT).   

In order to minimise multicollinearity problems, we pre-selected the final predictors prior to 

modelling so that bivariate Spearman correlations were below |r|=0.7 (Fielding and Haworth 

1995). Thereby, we gave preference to land use variables as we regard these as more proximal 

predictors for black grouse occurrence and, hence, retained only those climate variables that 

we expected to have a direct effect on black grouse occurrence. Our final predictor set 

included five land use variables (see above), two climate variables (mean annual temperature, 

winter precipitation), and potential solar radiation describing topographic effects.  

We allowed second-order polynomials in GLM, and non-parametric cubic smoothing splines 

with up to four degrees of freedom in GAM. BRT was estimated with a tree complexity of 2, 

a bag fraction of 0.75 and a learning rate of 0.01 which ensured that the model was fitted with 

at least 1000 trees (cf. Elith et al. 2008).  

A split-sample approach was used to validate SDM performance (Araújo et al. 2005). Models 

were calibrated on a randomly selected sample of 70 % of the data and validated against the 

remaining 30 %. Data splitting was repeated 100 times and evaluation statistics were averaged 

to yield a final evaluation that is quasi-independent of initial conditions (Thuiller et al. 2009). 

Several measures of accuracy were calculated: explained deviance R2 (Menard 2000), the 

area under ROC curve (AUC; Fielding and Bell 1997), the true skill statistic (TSS) (Allouche 

et al. 2006), sensitivity (true presences) and specificity (true absences) as well as slope and 

intercept of the calibration curve which describe spread and bias in the predictions (Reineking 

and Schröder 2006, Zurell et al. 2009, chapter 3). We derived the deviance by applying eq. 

1.10 in Hosmer and Lemeshow (2000). As TSS, sensitivity and specificity require binary 

predictions we converted the predicted occurrence probabilities into presence-absence maps 

by applying the prevalence threshold (Liu et al. 2005). All SDMs with accompanying analysis 

of their performance were built in R version 2.12.1 (R Development Core Team 2010).  

The resulting SDMs estimated black grouse occurrence probabilities for entire Switzerland. 

High occurrence probabilities were interpreted as indicating environmental conditions that 

define highly suitable habitat for black grouse (Araújo et al. 2002, Söndgerath and Schröder 

2002).  

4.3.5 Individual-based model 

We simulated population dynamics of black grouse by a stochastic, spatially-explicit 

individual-based model (IBM) that followed the fate of individual birds from birth to death. 

The subsequent model description follows the ODD (Overview, Design concepts, Details) 
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protocol for describing individual-/agent-based models (Grimm et al. 2006, Grimm et al. 

2010).  

Purpose: The main purpose of the model is population viability analysis.  

Entities, state variables and scale: Female birds constituted the biological entity in our 

model. In black grouse, females are the limiting sex regarding not only reproduction but also 

dispersal as the latter is restricted predominantly to first-year hens while first-year cocks 

affiliate to the nearest lek (mating arena for competitive courtship display), and adults are 

rather sedentary (movements within the home ranges were ignored, Caizergues and Ellison 

2002). Individuals were characterised by the state variables location and age. The model 

landscape represented entire Switzerland and consisted of a grid of 42181 cells of 1 km 

resolution. Each grid cell was characterised by its carrying capacity K. Boundary conditions 

were reflecting so that emigration from the study area equalled immigration. The model 

proceeded in annual time steps (from spring to spring).  

Process overview and scheduling: At the beginning of each time step, carrying capacity K of 

all cells was determined from habitat suitability as estimated by SDMs. In summer, hens 

reproduce and raise juveniles that survive until first autumn with the probability pleadYoung 

(see Table 4.2 for IBM parameters). Thus, pleadYoung subsumes the processes of clutch 

survival, hatching rate and early chick survival. The probability of a hen to lead a certain 

number of juveniles is p(x)Fledglings. The probability for a fledgling to be female is 

pFemale, otherwise it is a male and is subsequently ignored. In autumn, first-year hens 

disperse from their natal patch with a probability pDispersal. Individual birds perceive the 

environment as heterogeneous and avoid to settle in or to traverse wide stretches of unsuitable 

habitat (Graf et al. 2007). All sources of mortality are subsumed under an annual survival 

probability pSurv, the probability of an individual hen to survive until early spring. Mortality 

and emigration may increase with density due to increased predation risk or simply due to 

shortage of resources. At the end of the simulation year (early spring), the age of all 

individuals is incremented by one year. Individuals growing older than MaxAge are removed. 

Design concepts: The model follows a bottom-up approach, and population dynamics and 

spatial distribution of black grouse emerge from individual behaviour. Life cycle, 

reproduction, and survival rates are imposed by empirical rules and parameters. Dispersal 

includes the basic adaptive decision to avoid unsuitable and over-crowded habitat. 

Demographic stochasticity is included to mimic individual-level variability by interpreting all 

demographic parameters as probabilities (Burgman et al. 1993). Environmental stochasticity 

is considered by drawing pleadYoung (probability of hen to reproduce and raise juveniles that 
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survive until first autumn) from a normal distribution. This parameter subsumes the processes 

of nest predation, hatch rate and early chick survival that are most strongly influenced by 

environmental fluctuations between years. The normal distribution was defined by the mean 

and SD derived from empirical data, cut at minimum and maximum of empirically observed 

values (Table 4.2).  Key outputs monitored from the model are population size, probability of 

extinction by time t (proportion of replicate runs that went extinct), area size, mean elevation, 

and mean population centre (lon/lat).  

Table 4.2. IBM parameters. 

Parameter Value Description 

pleadYoung  

(min, max) 
0.6  0.09  

(0.39, 0.77)  

probability of a hen to lead young during 

simulation year 

p(x)Fledglings 0.103/1, 0.198/2, 0.270/3, 0.249/4, 

0.124/5, 0.037/6, 0.013/7, 0.004/8, 

0.002/9 

probability to produce x fledglings (given 

as probability/clutch size) 

pFemale 0.5 probability to be female at birth 

pDispersal 0.81 probability of juveniles to emigrate 

meanDist 8  mean dispersal distance [km] 

rangeDist 1.0-29.0 range dispersal distance [km] 

pSurv 0.5 probability to survive the simulation year 

Kmax 10 maximum carrying capacity [km
-2

] 

MaxAge 10 maximum age 

 

Initialisation: Initially, 8000 individuals were randomly distributed in suitable habitat, and 

were assigned a random age (between 1 and 3 years), which is in accordance with data from 

the Swiss Breeding Bird Atlas (Schmid et al. 1998). The initial habitat suitability map is 

obtained from the species distribution model run with current climate. The model ‘spinned 

up’ for 25 years to exclude initialisation effects (Rossmanith et al. 2007). After this ‘spin-up’ 

climate change was initiated with annual timesteps. 

Input data: For each time step, a habitat suitability map is derived from the species 

distribution model described above given the environmental input layers (climate and land 

cover).  

Submodels: Detailed descriptions of submodels implementing the modelled processes are 

provided in Supplementary material Text S1. The entire IBM was implemented in C++. 

4.3.6 Sensitivity analysis 

We evaluated three major sources of uncertainty in range predictions: underlying species 

distribution models (SDM), climate scenarios (RCM), and demographic parameters of the 

individual-based model. In a preliminary local sensitivity analysis we found that IBM 
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parameters affecting survival and reproduction, namely survival probability (pSurv), the 

probability to be female at birth (pFemale) and the probability of a hen to lead young 

(pleadYoung), were the most sensitive parameters for range predictions while others such as 

dispersal parameters had little effect on population fate. This is not unexpected because as 

black grouse range contracts and retrieves to higher elevations of the Swiss Alps in response 

to warmer regional temperatures the species’ fate is more restricted by local persistence 

ability and successful establishment at higher elevations than by dispersal. Thus, in 

subsequent sensitivity analysis we concentrated on the three above-mentioned survival and 

reproduction parameters and varied them in a 3k factorial design (low, intermediate, and high 

values given by default parameters in Table 4.2 ± 5%). As pleadYoung is drawn from a 

normal distribution we manipulated both position and shape of this distribution by shifting the 

entire distribution by ± 5% and by varying the standard deviation of this distribution by ± 5% 

(resulting in a more peaked or more flattened distribution). Our sensitivity analysis thus 

crossed three different SDM techniques, five different climate scenarios, and four different 

demographic parameters (note that pleadYoung counts twice) with three levels each resulting 

in a total of 1215 different model configurations. For each of these we performed 35 

replicates (McCarthy et al. 1995). We quantified the sensitivity in the years 2001, 2050 and 

2100 for five different model outputs (population size, probability of extinction by year t, area 

size, mean elevation, and mean population centre). First, for each parameter combination we 

calculated the mean values of the five key model outputs from the 35 replicate simulations. 

Then, for each model output and for each uncertainty component we performed univariate 

linear regressions with the respective model output as dependent variable and the respective 

uncertainty component as independent variable (cf. Dormann et al. 2008). The relative 

contribution of each uncertainty component to variability in predictions was then given by the 

explained variance R2 of the linear regression models. Additionally, we ran ‘control’ 

simulations with default IBM parameterisation across the different SDM algorithms and 

climate scenarios with 100 replicates each to obtain an estimate of variation in model outputs 

due to stochasticity. All analyses of IBM output were carried out in R version 2.12.1 (R 

Development Core Team 2010). 

4.4 Results 

4.4.1 Statistical modelling and range predictions 

All three SDM techniques fitted consistent relationships between black grouse occurrence and 

environmental predictors (Fig. 4.1) although differences were also apparent, mainly in areas 
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of the environmental space with lower data coverage. Mean annual temperature was by far the 

most important variable (Fig. C.2), followed by grassland cover type which mainly described 

species absences, and followed by bushy and scattered forest and unproductive vegetation 

which were more important for describing species presence. In the split-sample validation 

(n=100) we found only slight differences in model performance between methods. All three 

SDMs showed excellent discrimination in terms of AUC (approx. 0.95), very good accuracy 

in terms of TSS (approx. 0.78), high rates of correctly predicted presences (sensitivity: 0.93-

0.95) and absences (specificity: 0.84-0.86), and excellent calibration (calibration slope and 

intercept near one and zero; Table C.1). BRT showed highest scores for all measures except 

for sensitivity, which was highest for GLM (although differences were not pronounced). 

Overall, SDMs explained between 57.2 and 59 % of the deviance in black grouse occurrence 

(Table C.1).  

Table 4.3. Model output for Default IBM parameterisation, averaged across different SDM algorithms 

and climate scenarios.  

Output Year Mean SE Median 

Population size 2001 5,508 56 5,144 

 2050 2,318 36 1,998 

 2100 974 21 703 

Area size [km2] 2001 3,221 27 3,090 

 2050 1,478 20 1,323 

 2100 662 14 504 

Mean elevation [m] 2001 1,791 1 1,791 

 2050 2,039 15 2,026 

 2100 2,217 32 2,171 

 

GLM predicted greatest total area size of potentially suitable habitat for black grouse under 

current environmental conditions, BRT smallest (Year 2001; GLM 11,690 km2, GAM 11,240 

km2, BRT 10,590 km2). Predictions of habitat suitability changes under climate change were 

very similar across all three SDMs. Differences did not emerge until the end of the 21st 

century when predictions varied considerably across climate change scenarios with great and 

abrupt habitat losses under the more extreme scenarios H-a1 and M-a1 (Fig. C.3). For these 

extreme cases, also differences between SDMs became more apparent with greatest losses 

predicted by GAM, lowest by GLM. Altitudinal ranges were predicted to shift uphill from 

mean elevations of approx. 1,800 m a.s.l. in 2001 to mean elevations of approx. 2,200 m a.s.l. 
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by 2100 (Fig. 4.2 and Table 4.3). BRT predicted accompanying range contractions while 

GLM and GAM predicted an eastward shift in suitable habitat. Range contractions were 

predicted in the western Prealps primarily due to elevational limits (Fig. 4.3). Consensus on 

black grouse presence was high for the Central and Eastern Swiss Alps (Fig. C.4). 

 

 

Figure 4.1. Partial dependence plots for all eight environmental predictors and for the three different 

SDM algorithms (BRT, GAM, GLM). 

4.4.2 Population dynamics 

The IBM predicted mean population sizes of ca. 5,500 female black grouse for current 

environmental conditions and for default IBM parameterisation (Fig. 4.4 and Table 4.3). 

Population size was predicted to gradually decline over the century (Fig. 4.4). By the end of 

the century, black grouse population sizes were predicted to drop to 12 – 22 % of their initial 

size. The strong population decline mainly resulted from a negative population growth rate 
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given the demographic rates (Table 4.2). For comparison, we manipulated the parameter 

survival probability so that current population trend was stable (pSurv = 0.51). This resulted 

in higher predicted population sizes and moderate declines which were similar in trend yet not 

identical in shape to habitat trajectory (Fig. C.5). 

 

Figure 4.2. Mean elevation occupied by black grouse for scenarios of climate change. Bottom: Grey lines 

show mean elevations across all simulations, coloured lines those for default IBM parameterisation (cf. 

Table 4.2) across different SDMs and climate scenarios. Top: Boxplots depict variation of mean elevations 

predicted for the end of 21
st
 century (2100) and for different SDMs and climate scenarios. 

4.4.3 Sensitivity analysis 

The relative contribution of each uncertainty component to variation in predictions differed 

for the different time slices considered and for the different model outputs. Great variations 

across simulations were found in predictions of population dynamic features such as 

population and occupied area sizes as well as for probabilities of extinction. Variation in 

predicted population size due to uncertainty in demographic parameters was approximately 

one order of magnitude greater than variation due to environmental and demographic 

stochasticity and due to uncertainty in SDMs and climate scenarios (Tables 4.3 and 4.4). On 

the other hand, geographic features like mean population centre, range extent, and mean 

elevation showed comparably low variation across simulations. Different climate scenarios 

had no considerable effect on population dynamic features, yet they were the most important 

uncertainty component for geographic features. Specifically, the variation in mean elevation 

was best explained by climate scenarios (Table 4.4 and Fig. 4.2). Also, the choice of SDM 

algorithms had no effect on population dynamic features, but explained a considerable 
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amount of variance in mean population centres and in mean elevation. Probability of survival 

proved to be the most crucial demographic parameter (Table 4.4). For example, the linear 

models fitted to the results of the sensitivity analysis estimated that an increase in survival 

probability of 0.01 would cause an increase in population size of 3,000 to 4,000 individuals 

(compare Fig. C.5). 

Table 4.4. Sensitivity analysis of model outputs based on n=1,215 model configurations. 

Output Year Mean SE  Median N 

Explained variance R
2
 by uncertainty 

components and direction of influence (in 

parentheses) 

SDM RCM pSurv pFemale pleadYoung 

mean 

Population 

size 

2001 15,430 558 5,127 1,215 0 0 0.55 

(+) 

0.14 

(+) 

0.10 

(+) 

2050 17,330 618 2,207 1,215 0 0 0.60 

(+) 

0.11 

(+) 

0.08 

(+) 

2100 13,770 521 856 1,215 0 0.04 0.52 

(+) 

0.09 

(+) 

0.07 

(+) 

Probability 

of 

extinction  

2001 0 0 0 1,215      

2050 0.23 0.01 0 1,215 0 0 0.44 

(-) 

0.10 

(-) 

0.08 

(-) 

2100 0.38 0.01 0 1,215 0 0 0.59 

(-) 

0.08 

(-) 

0.07 

(-) 

Area size 

[km
2
] 

2001 4,462 120 3,022 1,215 0 0 0.68 

(+) 

0.12 

(+) 

0.09 

(+) 

2050 4,339 138 1,389 1,215 0 0 0.63 

(+) 

0.09 

(+) 

0.07 

(+) 

2100 3,685 126 585 1,215 0 0.02 0.56 

(+) 

0.08 

(+) 

0.07 

(+) 

Mean 

elevation 

[m] 

2001 1,788 0.19 1,790 1,215 0.18 0.13 0.14 

(+) 

0.05 

(+) 

0.03 

(+) 

2050 2,014 2.33 2,013 1,102 0.08 0.40 0.11 

(+) 

0.01 

(+) 

0.01 

(+) 

2100 2,199 4.39 2,159 900 0.14 0.63 0.03 

(+) 

0 0 

Mean 

population 

centre  

2001 

Easting 

683,600 57 684,000 1,215 0.18
 

0 0.21 

(+) 

0.05 

(+) 

0.03 

(+) 

2001 

Northing 

160,000 20 159,800 1,215 0.50
 

0 0 0 0 

2050 

Easting 

694,800 422 697,000 1,102 0.01 0.01 0.10 

(+) 

0 0 

2050 

Northing 

158,400 176 158,200 1,102 0.01 0.01 0.01 

(-) 

0 0 

2100 

Easting 

707,200 581 706,700 900 0.05 0.13 0.01 

(+) 

0 0 

2100 

Northing 

157,400 187 157,200 900 0.06 0 0.02 

(-) 

0 0 
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Figure 4.3. Mean population centres of black grouse for scenarios of climate change. Small symbols show 

mean population centres predicted for different SDMs (from top to bottom) and for the years 2050 (left) 

and 2100 (right) across different climate scenarios and model parameterisations. Thereby, dark triangles 

depict current population centre, dark circles depict default IBM parameterisation (cf. Table 4.2), light 

circles depict all simulated population centres for the respective time slice. Ellipses depict 1.5 directional 

standard deviation. Black ellipses depict current black grouse range; coloured ellipses depict default IBM 

parameterisation grey ellipses depict all simulated ranges for the respective time slice. 

Under current climate, survival probability alone represented 55 % of variation in population 

size and even 68 % of variation in occupied area size. While probability of extinction by 2100 

was zero for the default IBM parameterisation, decreases in the demographic parameters 

especially survival probability led to black grouse extinction in up to 90% of the simulations 

on average (Fig. 4.5). Conversely, increases in the demographic parameters reversed climate-

induced population declines and even led to temporarily increasing population sizes (Fig. 

4.4). The shape of the probability distribution of pleadYoung (more flattened or more peaked; 

determined by standard deviation of the Gaussian distribution, see Table 4.2) and, thus, the 

magnitude of environmental stochasticity, had no effect on the mean predictions but only 

resulted in slightly increased variability between replicates of simulations. We calculated a 

consensus map across all simulations as the fraction of simulations (n = 1,215) that predicted 
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black grouse to be present at a site (Fig. 4.6). Under current climate, consensus about black 

grouse presence was very high (> 80 %) in the Swiss Alps and intermediate (20 - 60 %) for 

most parts of the Jura mountains where black grouse are in fact absent (Schmid et al. 1998). 

With ongoing climate change, consensus on presence sites decreased considerably as 

extinction probability increased for many model configurations. 

 

Figure 4.4. Population size relative to 2001 (current climate). Bottom: Grey lines show relative population 

trajectories across all simulations, black lines those for Default IBM parameterisation (cf. Table 4.2) 

across different SDMs and climate scenarios. Top: Boxplots depict population size ratio of year 2100 

relative to 2001 for different demographic parameters. 

4.5 Discussion 

In this study, we integrated correlative species distribution models and a simple, spatially 

explicit individual-based model to predict climate-induced range dynamics of black grouse in 

the Swiss Alps and evaluated variability introduced by different uncertainty components. By 

this, we were able to better understand important features of range predictions and current as 

well as transient population dynamics. Our results clearly show that extinction risks cannot 

simply be approximated by expected changes in suitable habitat (Akçakaya et al. 2006, Brook 

et al. 2009, Keith et al. 2008). Rather, the expected population trajectory seems to result from 

a complex interplay between available habitat and demographic processes. Our study also 

underscores the necessity of sensitivity analyses in dynamic range predictions. Predicted 

population response to environmental change may be highly variable, both quantitatively as 

well as qualitatively. Thus, robustness of modelling results can only be assessed if the 

inherent uncertainty is explicitly considered. 
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Figure 4.5. Effects of different uncertainty components on probability of extinction for the years 2001 

(current climate), 2050 and 2100. Symbols indicate mean values; errors bars show 99 percent confidence 

interval. 

4.5.1 Black grouse population and range dynamics 

We were very careful in choosing SDM algorithms and climate scenarios that were both 

realistic and reflected a range of predictions reaching from pessimistic to optimistic. Overall, 

all three SDMs produced congruent predictions of habitat change (Fig. C.3). Absolute area 

size of suitable habitat, however, differed slightly and differences became more pronounced 

with ongoing climate change. This both corroborates and contradicts findings of previous 

studies. On the one hand, differences between predictions become more pronounced the 

further we project into the future which is in line with earlier findings (Buisson et al. 2010, 

Pearson et al. 2006, Thuiller 2004). Consensus between SDM predictions was still remarkably 

high though (Fig. C.4) while earlier studies partially reported highly contrasting predictions 

(e.g. Buisson et al. 2010). Nevertheless, further research is needed regarding why method 

performance and predictions differ (Elith and Graham 2009) and to provide general guidelines 

on appropriate model choice.   
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By the end of the 21st century, differences in suitable area were larger between climate 

scenarios than between SDMs. Considerable loss in suitable habitat was predicted for two out 

of five climate scenarios, namely for the more extreme climate scenarios with mean 

temperature increases between 4°C and 5°C. Current trends in CO2 emissions and global air 

temperature indicate that expected increases in temperature may be at the upper end of current 

climate projections or even above (Rahmstorf et al. 2007).  Thus, while absolute area size of 

suitable habitat is predicted to remain more or less unchanged until the middle of the century, 

in the second half of the century abrupt losses in suitable area of 40 % are not unlikely to 

expect. However, our results also clearly demonstrate that suitable and actual habitat are not 

directly related and, thus, population trajectory may take a different course than suitable 

habitat (Fig. C.5).  

In the dynamic model runs, the area of suitable habitat was not completely occupied by black 

grouse. Under current environmental conditions, the high sensitivity of occupied area size to 

survival probability indicated high site turnover where suitable habitat frequently became 

unoccupied. Higher survival probabilities and, thus, higher local persistence ability led to 

lower site turnover, more complete range filling, and consequently to greater area occupied 

and less fragmented ranges. Although the model predicted only small declines and shifts in 

suitable habitat early in the 21st century, gradual declines in black grouse population and 

occupied area sizes were predicted across all climate scenarios and underlying SDMs. This 

primarily resulted from a negative trend in population growth given the observed 

demographic rates (Fig. 4.4). On the other hand, Schmid et al. (1998) judged the population to 

be stable but these estimates rely only on rather short time periods. The strong fluctuation and 

high site turnover predicted by our model suggest that longer observation periods are needed 

to accurately assess black grouse population status. Reassuringly, however, even with the 

negative trend in current population growth rate, population size is predicted to not fall below 

1000 hens by 2100 which is a decent population size especially as that population is predicted 

to strive in continuous areas (Fig. 4.6).  

Our results underscore that inferring extinction risks simply from quantity of suitable habitat 

might be misleading (Fig. C.5; Akçakaya et al. 2006, Brook et al. 2009, Keith et al. 2008). A 

non-dynamic approach might considerably underestimate extinction risks because important 

interactions between life history traits and habitat suitability would be ignored. Expected 

mean abundance is only indirectly related to habitat suitability through demographic functions 

which determine site turnover and, thus, how much of available habitat is maximally occupied 

at the time (Table 4.4). Considering the differences between habitat suitability predictions by 
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different SDM algorithms and the associated population dynamics (Fig. C.5), expected mean 

abundance also depends on spatial distribution of available habitat and on the degree of 

fragmentation. 

 

 

Figure 4.6. Consensus on black grouse presence for years 2001 (top), 2050 (centre) and 2100 (bottom); 

calculated as the fraction of all simulations (n=1212) predicting black grouse to be present. (Note that zero 

percent consensus on presence equal 100 percent consensus on black grouse absence.) 

4.5.2 Robustness of range predictions 

Our study not only highlights the benefits of a dynamic approach to range predictions but also 

underlines that we have to deal with immense additional prediction uncertainty when 

modelling population dynamics and that robustness of model results needs to be explicitly 

assessed. Here, quantitative predictions of absolute population and occupied area size as well 

as probability of extinction showed great variations across simulations (Table 4.4). This is in 
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accordance with previous criticism on spatially explicit simulation models (SEPM, Dunning 

et al. 1995) and related population viability analysis (PVA) expressing concerns about taking 

predictions, for example probabilities of extinction, at face value (Beissinger and Westphal 

1998, McCarthy et al. 2003). Alternatively, we could have made qualitative predictions by 

evaluating relative differences among model outputs. However, previous SEPM and PVA 

discussions focused on equilibrium population dynamics opposed to transient dynamics as 

expected under environmental change. In our black grouse system, also predictions of relative 

population size were fragile across parameter space and rather sensitive to demographic 

parameters and available habitat (Fig. 4.4). We believe this is a symptom of two general 

problems when using such simple SEPMs in combination with SDMs in environmental 

change context. First, it is difficult to determine reasonable error margins for the highly 

aggregated demographic parameters to be used in robustness analysis of model predictions. 

Second, if the structure of the demographic model is very simple this may lead to high 

parameter sensitivity and thus large prediction uncertainty.  

For the sensitivity analysis of the demographic parameters, we chose a heuristic rather than 

applied view by perturbing the parameters in fixed intervals of ±5 % instead of choosing error 

margins that could be expected in the field. One reason for this was simply because such error 

margins were difficult to evaluate for Swiss black grouse, which probably holds for the 

majority of populations/species. On the other hand, longer-term predictions are inherently 

risky for example due to unforeseeable fluctuations induced by the environment and that way 

current error margins for demographic parameters might not be very meaningful under 

climate change. In this respect, we find it reasonable to heuristically choose the parameter 

space as it allows theoretically circumscribing possible population outcomes given these 

boundary conditions. Although, we believe that the fixed interval of ±5 % of the respective 

demographic rate is greater than the error range that could reasonably be expected in 

Switzerland for these highly aggregated parameters, for example survival probability.  

It is known from PVA that very simple population models generally exhibit high parameter 

sensitivity and thus large prediction uncertainty (Beissinger and Westphal 1998, Grimm and 

Storch 2000). Arguably, combined population – SDM models should be as simple as possible 

because they have to cover a wide range of habitat types and environmental conditions. Due 

to its simplicity the model presented here is also highly general and - especially in 

conjunction with extensive sensitivity analysis - it provides valuable insights into possible 

population outcomes for Swiss black grouse. However, the large parameter sensitivity in the 

demographic model may in part arise because important mechanisms shaping population 
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response are missing or inadequately represented in the model structure. For example, Grimm 

et al. (2005b) suggested that simple population models may overestimate extinction risk 

because they lack certain buffer mechanisms that reduce environmental stochasticity. 

Thereby, the most simple and general buffer mechanism that could be considered is individual 

variability such that individuals differing in fitness are not equally affected by environmental 

fluctuations (Rossmanith et al. 2006).  Also, the exact form of density dependence and 

carrying capacity may strongly affect predicted extinction risks (Beissinger and Westphal 

1998). Although assuming a linear link between demographic parameters (here, carrying 

capacity) and predicted habitat suitability is the only practicable approach given general data 

limitations, this is not fully supported by empirical findings and further research is required in 

this field (Gallien et al. 2010). 

4.5.3 Challenges in species distribution modelling 

By integrating predictions of habitat suitability made by correlative species distribution 

models with spatially explicit, dynamic population models we are able to overcome some 

limitations associated with SDMs. For example, by relaxing the equilibrium assumption such 

combined models allow the prediction of transient population response to environmental 

change. However, spatially explicit population models do not solve all problems associated 

with correlative SDMs in global change context. Most importantly, we still assume constant 

species-environment relationships (niche conservatism, Pearman et al. 2008). This assumption 

underlies both the correlative model producing habitat suitability maps and it also underlies 

the constant demographic rates in the population model. Thus, spatially explicit population 

models like our black grouse IBM are only valid as long as environmental change only shifts 

the environmental conditions in space. Changes in biotic interactions as well as ecological and 

behavioural adaptations will violate this assumption of niche conservatism. Also, 

demographic rates might change in response to changing environmental conditions, for 

example if environmental stress regimes change. As we have shown, possible population 

outcomes for changing boundary conditions (e.g. demographic rates) can be assessed via 

sensitivity analyses.  

More realistic model assumptions can be achieved by including demographic rates and 

behavioural adaptations that are ecophysiologically informed and based on first principles. 

For example, biophysical or mechanistic SDMs could provide biophysical calculations as key 

input data for dynamic population models and include e.g. climate-dependent vital rates, 

movement potential and sex ratios (Kearney and Porter 2009). Moreover, the individual-based 

perspective taken here allows easy implementation of diverse behavioural responses such as 
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feeding location or prey selection (e.g. Railback and Harvey 2002, Stillman and Goss-Custard 

2010), consideration of spatial characteristics such as resource heterogeneity and direct 

interactions between these two, for example through resource depletion (Grimm and 

Railsback 2005). Also, selective pressures and genetic adaptation can easily be incorporated 

(e.g. Burton et al. 2010). Thus, various processes could be included in our model framework 

potentially increasing realism in the model. Dynamic models that are based on first principles 

can be designed to predict the response of demographic parameters to the full range of 

environmental conditions of concern, even including conditions for which no demographic 

data exist (e.g. Goss-Custard et al. 2008). Such models require considerable resources for 

development and testing, and certainly cannot be developed for all species. However, once 

such a model exists, it can be relatively straightforward to adopt its design to similar species 

(Stillman 2008). Both simple and more complex population models can be valuable for 

predicting species distributions. The right choice depends on how important model 

predictions are for supporting decision making, and on how much resources one is able, or 

willing, to invest. 

A crucial issue for mechanistic range predictions is the availability of data for model 

parameterisation as well as validation. For making sensitivity analyses of range predictions, a 

standard tool has the benefit that also indirect sources can be utilised for model 

parameterisation without sacrificing robustness or reliability of model results. Indirect sources 

may include life history data obtained from different subpopulations or from related species 

(Keith et al. 2008) or demographic parameters derived from allometric relationships (Cheung 

et al. 2009). Pattern-oriented modelling is a general strategy for systematically exploiting the 

information contained in such multiple, often qualitative, patterns observed at different scales 

and levels of organization (Grimm et al. 2005a, Wiegand et al. 2003). One important element 

of this approach, parameterisation by Monte-Carlo filtering of parameter combinations, can 

be complemented by Bayesian parameterisation methods (Martinez et al. 2011, Hartig et al. 

2011).  

One source of uncertainty that we did not include in our case study is land use and land cover 

change. Further investigations are needed to understand the role land use change may play for 

the persistence of black grouse in the Swiss Alps. For example, black grouse are known to 

respond sensitively to abandonment of alpine summer pastures with accompanying shrub 

encroachment and reforestation. Here, we included land use variables as static predictors only. 

In future studies, the interactions of land use and climate change should be evaluated. 
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4.5.4 Conclusions 

Integrating correlative species distribution models into spatially explicit population models 

for predictions of large-scale range dynamics allows for a more direct, multi-faceted view of 

complex, spatiotemporal species’ response to environmental change and related extinction 

risks. However, without explicit assessment of robustness of predictions, for example by 

means of sensitivity analysis, the task remains of more theoretical nature. The merit of 

developing dynamic population models for climate impact studies only becomes apparent and 

the effort justified when this undertaking is accompanied by explicit investigation of 

sensitivity and robustness of the results. This substantially increases the confidence in range 

predictions and, as a more direct benefit, increases our mechanistic understanding of the 

studied ecological system and the expected population response. Further research is needed to 

provide general guidelines for models predicting climate-induced range dynamics. Thereby, 

challenges remain for both static and dynamic modelling components and include, for 

example, the choice of appropriate SDM algorithms, the role of land use and climate change, 

model structure and complexity, or the design of robustness analysis. Addressing these 

challenges will help to establish this comparably new avenue of climate impact assessment as 

a feasible and reliable tool. 
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5 Predicting to new environments: tools for 

visualising model behaviour and impacts on 

mapped distributions
4
 

                                                 
4
 A manuscript with equivalent content has been conditionally accepted in Diversity and Distributions: 

Zurell, D., Elith, J. and Schröder, B. conditionally accepted. Predicting to new environments: tools for 

visualising model behaviour and impacts on mapped distributions.  
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5.1 Abstract 

Data limitations can lead to unrealistic fits of predictive species distribution models (SDMs) 

and spurious extrapolation to novel environments. Here, we want to draw attention to novel 

combinations of environmental predictors that are within the sampled range of the individual 

predictors but are nevertheless outside the sample space. These tend to be overlooked when 

visualising model behaviour. They may be a cause of differing model transferability and 

environmental change predictions between methods, a problem described in some studies but 

generally not well understood. We here use a simple simulated data example to illustrate the 

problem and provide new and complementary visualisation techniques to explore model 

behaviour and predictions to novel environments. We then apply these in a more complex real 

world example.  Our results underscore the necessity of scrutinising model fits, ecological 

theory and environmental novelty. 

5.2 Introduction 

Predictive species distribution models (SDMs, Guisan and Zimmermann 2000, Elith and 

Leathwick 2009) have become a prominent technique in conservation biogeography and are 

increasingly used as prediction tools for environmental change forecasts and invasive species 

research (Franklin 2010). Numerous SDM algorithms exist with varying degrees of model 

complexity (Elith et al. 2006, Heikkinen et al. 2006). Several studies have shown that these 

algorithms can predict substantially different future potential ranges even if current 

predictions are largely congruent (Thuiller 2004, Buisson et al. 2010).  Explanations for 

varying behaviour usually point to the extent to which the environmental range was covered 

by the training data and to the specific assumptions made by each algorithm when 

extrapolating beyond that range (Thuiller et al. 2004, Pearson et al. 2006, Elith and Graham 

2009). Williams and Jackson (2007) argued that data limitations may impede extrapolation to 

novel environments because the species’ niche may not be fully represented by data (here, 

termed ‘truncated niches’) and, depending on the direction of environmental change, currently 

unobserved portions of the niche may open up. Fitzpatrick and Hargrove (2009) contended 

that predictions should not be attempted to environmental conditions without analogues to the 

combinations under which the model was calibrated, or at least that maps should indicate 

where extrapolation has occurred.  

Useful ideas are emerging for probing models and predictions, enabling users to understand 

model behaviour in novel space. For instance environmental spaces have been compared 

using principal component analyses and metrics summarising differences between niches 
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(Broennimann et al. 2007, Warren et al. 2008, Medley 2010), impacts of sample design on 

environmental and niche coverage have been explored and related to models and their 

predictions (Albert et al. 2010), and methods for mapping novel environments in geographic 

space have been suggested (Williams et al. 2007, Platts et al. 2008, Elith et al. 2010).   Here 

we add to these by focussing on the issue of combinations of variables that are within the 

sampled range of each predictor treated individually, but are nevertheless outside of the 

sampled environmental space (Fig. 5.1, hatched areas). These tend to be overlooked in 

visualisation methods (cf. Fitzpatrick and Hargrove 2009).  

 

Figure 5.1. Conceptual diagram illustrating three situations how species niche may be represented in 

sampled environmental space (dotted ellipse): i) a species niche is entirely represented by sample space 

(species 1) (ii) the niche is ‘truncated’ because samples do not exist for part of one or more environmental 

gradients (species 2), and (iii) the edge of the niche abuts the edge of the sampled space, and no samples 

exist beyond it (species 3). The hatched square represents the ‘implied’ sample space that is implicitly 

assumed to be known when focussing on the sampled, univariate ranges of all environmental predictors 

individually instead of explicitly focussing on the multivariate combinations of environmental predictors 

represented in the sample. 

For instance, partial dependence functions (i.e., plots of the fitted functions that show the 

effect of a variable on the response after accounting for the average effects of all other 

variables in the model) are plotted along the full gradient of each variable represented in the 

data, regardless of the coverage along that gradient of other environmental dimensions. 

MaxEnt's multivariate environmental similarity surface (MESS, Elith et al. 2010) takes a 

related box-like or envelope viewpoint by analysing environmental coverage one variable at a 

time, and reporting as novel those conditions outside the environmental hyper-dimensional 

rectangle. However, not all multivariate combinations of the environmental conditions may be 

represented in the data. We define those parts of the environmental space that are within that 
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box but nevertheless outside the sample space as ‘implied sample space’ (hatched areas of 

Fig. 5.1). Here we show that existing methods can fail to clarify why predictions differ, and 

we provide new and complementary visualisation techniques that will be relevant for many 

species modelling problems. 

5.3 Demonstrating prediction problems: simulated species 

Fig. 5.1 illustrates three situations that can arise when sampling in geographic space 

(Williams and Jackson 2007, Albert et al. 2010). For species 2 and 3, no samples exist for 

parts of the environmental niche or for the niche edges. These may not be problematic if the 

intention is simply to model the distribution of that species in the sampled space, but as soon 

as models to these data are used for prediction to new times and places which might contain 

environments outside of the training sample, difficulties arise.  

 

Figure 5.2. Simulated data example for species 2 with truncated niche. (a) True response surface. (b) 

Partial dependence plots for GAM and BRT. (c) and (d) show fitted response surfaces for GAM and BRT. 

Grey dots at p=0 in panels (a), (c) and (d) represent sampled absences, black dots at p=1 represent 

sampled presences. 

To simulate data representing the situations of Fig. 5.1, a virtual species (Zurell et al. 2010, 

chapter 2) was created (using logistic regression) that exhibited a unimodal response to 

temperature and a positive linear response to percent woodland cover (Fig. 5.2a; for details 
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see Appendix D.2 in Supporting Information). The entire simulation study was built in R (R 

Development Core Team 2010), and we provide code in Appendix D.1. For each situation, 

1000 samples were drawn and converted to binary observations by using the simulated 

response (varying from 0 to 1) as the success rate for one sample of the binomial distribution. 

For species 1, samples cover the entire environmental space while for species 2 (truncated 

niche), the samples cover the full univariate range of each environmental variable 

individually, but combinations of the two are missing (Fig. 5.2a). SDMs were fitted to these 

samples using generalised additive models (GAMs) with cubic smoothing splines, four 

degrees of freedom and no interactions, and boosted regression trees (BRTs) with tree 

complexity of 1 (tree stumps; note that in our examples higher tree complexity results in 

similar extrapolation behaviour). We chose these methods as examples of the range of current 

methods, spanning standard regression techniques to advanced machine learning methods (for 

overviews see Elith et al. 2006, Heikkinen et al. 2006). The models were then used to predict 

across the full environmental space spanned by the environmental gradients of the individual 

predictors, meaning that for species 2, predictions were made to new combinations of 

variables.  

For species 1 (entire niche sampled), both methods were successful in fitting the true response 

(Fig. D.1). Because the environmental niche of the species was truncated in the training data 

for species 2, predictions for the unsampled combinations required extrapolation. As a result 

of the way our cubic splines and regression trees extrapolate, GAM continued the fitted trend 

to ‘unknown’ sites while BRT predicted a constant value from the last ‘known’ site leading to 

inaccurate model predictions in those parts of the unsampled environment space with high 

woodland cover, and particularly those that also have lower or higher than optimal 

temperatures (Fig. 5.2d, Fig. D.2). The latter is not obvious from the usual partial dependence 

plots (Fig. 5.2b) because these are derived at average values of other predictors, for which this 

model performs reasonably well. Similar extrapolation errors also occur if niche edges 

coincide with the limits of the recorded environmental space (species 3; Fig. D.3).  

5.4 New tools for visualisation 

 The simulation study was simple, and use of three-dimensional plots (e.g. Fig. 5.2d) was 

sufficient to demonstrate the model fit and its implications for predictions to unsampled 

combinations of predictors (cf. Fig. D.2). In most situations, though, models have more than 

two covariates and predictions are also mapped. Hence we suggest two new tools that will 

highlight predictions to new combinations of variables.  
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First, we propose to ‘inflate’ conventional response curves (partial dependence plots) by 

visualising the effects of all variables in the model over their full range, and at the same time 

plotting the available data in that space. Basically, inflated response curves are an abstracted 

2D version of multidimensional response surfaces. These show the effect of a variable on the 

response while accounting not only for the average effects of the other variables but also for 

minimum and maximum (and median and quartile) values. Thus, the response plot for any 

one variable consists of many response curves representing all possible combinations of all 

other variables in the model (for code see Appendix D.1; for detailed description see 

Appendix D.3). Because the number of combinations grows exponentially with the number of 

variables and restricts computational feasibility, we use Latin hypercube sampling to reduce 

dimensionality for large numbers of variables. This is simply a means to efficiently sample a 

representative subset from all possible combinations of environmental predictors (Carnell 

2009).  

Second, we propose to extend the idea of MESS maps by not only focussing on the 

environmental range of predictors individually but also on combinations of environmental 

predictors. By that we are able to identify those parts of the environmental space that are 

within the sampled, univariate range of the individual predictors but nevertheless represent 

new multivariate combinations of these (‘implied sample space’ of Fig. 5.1). This 

‘environmental overlap’ (or ‘environmental gap’ if one wants to emphasise that certain parts 

of the prediction space may not be represented in the sample space) can be determined by 

splitting the training or reference data into a specified number of bins where each bin holds a 

unique combination of environmental predictor values. Any bins in test or prediction data that 

do not overlap with these reference bins are defined as novel environments. An environmental 

overlap mask can be used to highlight predictions where the model must extrapolate to novel 

environments (cf. ‘null prediction’ in Fitzpatrick and Hargrove 2009), e.g. within inflated 

response curves and in prediction maps (for code see Appendix D.1; for detailed method 

description see Appendix D.3). Note that a bin number of one equates to the border that 

distinguishes novel space (negative values) in MESS maps.  

We illustrate the usefulness of these two methods for black grouse (Tetrao tetrix) in 

Switzerland (Zurell et al. 2011, chapter 4, for more details see Appendix D.4). Conceptually 

the problem is slightly different to that of the simulated species. Clearly, we do not know the 

true niche of the species. But we know the environmental space covered by the sample, and 

could suppose that for predictions to other times or places, there may be combinations of 

environments not present in the training data. Hence, we are interested in how the model 
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predicts to such new combinations outside the training data space (as we were for the 

simulated species).   

 

Figure 5.3. Swiss black grouse example. (a) shows the partial dependence of back grouse occurrence to 

mean annual temperature for GAM and BRT. (b)-(c) show the respective inflated response curves. Light 

grey lines and dotted dark grey lines depict the temperature effects over the full range of the other 

predictors (minimum, maximum, median, mean and quartiles). Light grey lines indicate combinations of 

environmental predictors that were observed in the sample space while dotted dark grey lines indicate 

extrapolations to novel, unsampled combinations. The plots represent n=150 Latin hypercube samples 

from all possible combinations of environmental predictors. 

Again, we used a GAM with cubic smoothing splines, four degrees of freedom and no 

interactions and BRT with tree complexity of 1 to estimate the species environment 

relationship. We included six environmental predictors that covered large gradients yet only 
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portions of all possible combinations were present (Fig. D.4). In consequence, GAM and BRT 

exhibited distinctly different extrapolation behaviour in the unsampled parts of the 

multivariate environmental space, particularly in those parts with high temperatures. These 

differences were not evident in conventional response plots plotted on the scale of the 

response, but were nicely represented by inflated response curves (Fig. 5.3; Figs. D.5, D.6).  

We see the advantages of the inflated curves as: (1) they are explicit about the shape of the 

response at different values of other variables. Whilst in additive models this might be 

deduced, especially if partial plots are fitted on the scale of the link function, it requires some 

careful thought and is much more apparent with our methods, especially in the case of 

truncated responses; (2) they make clear the responses if interactions are included in the 

models.  The increasing popularity of methods that can optionally fit interactions if detected 

in the data (e.g. tree-based methods), of ensembles that might include such models, and of all 

subsets regression where interactions are potentially allowed mean that model structure might 

not be superficially apparent. We believe that this increasing complexity of model structure 

requires tools that allow exploration and understanding. Here, we believe that black grouse 

response fitted by GAM is more plausible than that fitted by BRT. From an ecological 

perspective, it seems more intuitive to assume that species response to a bioclimatic variable 

such as mean annual temperature gradually decreases towards physiological limits (Thuiller et 

al. 2004).  

However, different extrapolation behaviour will only constitute a problem to model 

transferability if models are used to extrapolate to places with non-analogue environments in 

which currently unobserved portions of the environmental niche become available for 

prediction (Williams and Jackson 2007, Fitzpatrick and Hargrove 2009, Dobrowski et al. 

2011).  We demonstrate in Fig. D.7 that plotting fitted values along each variable and 

comparing those obtained for training and prediction data can provide useful insights. 

Mapping these predictions and using environmental overlap masks to explicitly show 

predictions in sampled and non-analogue environmental spaces emphasises where differences 

in predictions are due to extrapolation behaviour of the models. Fig. 5.4 shows the mapped 

predictions of Swiss black grouse occurrence probability from GAM and BRT models. While 

predictions for the current environment are similar for GAM and BRT (year 2001; Fig. 5.4a, 

e), the mapped predictions for the year 2100 under climate change differ substantially (Fig. 

5.4b,f). Using environmental overlap masks (with default number of 5 bins per environmental 

variable), we can distinguish between predictions in geographic space that are within the 

sampled environmental space (Fig. 5.4c,g) where the model is, in fact, interpolating, and 
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predictions to novel environmental space (i.e., to environmental conditions beyond the 

sampled ranges of the variables as in MESS maps, and to novel combinations of 

environmental variables; Fig. 5.4d,h) where the model is, in fact, extrapolating. For our Swiss 

black grouse example we see that main differences between GAM and BRT predictions for 

the scenario of climate change indeed occur in those parts of the geographic space that exhibit 

novel environmental conditions compared to the sample space.  

 

Figure 5.4. Predicted distributions of black grouse in Switzerland made by GAM (a-d) and BRT (e-h). (a) 

and (e) show current predictions while (b) and (f) show predictions to climate change scenario for the year 

2100 (A1F1 scenario from HadCM3 with average temperature increase of 7.7 °C and average 

precipitation increase of 48 mm for Switzerland). Predicted distributions are logistic outputs from low 

(grey) to high values (black). Environmental overlap masks (with default number of 5 bins per 

environmental variable) are used for highlighting predictions to sampled (c)+(g) and to novel 

environmental space (d)+(h). 

We do not intend these results as general advice about SDM algorithms. GAMs will not 

always extrapolate well (e.g. Elith et al. 2010) and BRTs might fit responses that extrapolate 

in ecologically realistic ways. The important issue is that using SDMs to predict to unsampled 

parts of the environmental space is inherently risky, and uncertainty in models as well as in 

predictions and maps need to be carefully assessed (Rocchini et al. 2011). The plots and maps 

presented here were useful for visualising the environmental space in more than one 

dimension and for understanding the predicted responses in this space. Plausibility of SDM 

fits needs to be judged individually for any species modelled and should comply with 

ecological theory and prior knowledge on the species (Guisan and Thuiller 2005, Austin 

2007). As environmental variables generally correlate, linearly and non-linearly, we will 

rarely find all possible combinations in any one region (or the world). Also, species may be 

precluded from portions of their fundamental niche because of dispersal limitations, 

disturbance or biotic interactions (Colwell and Rangel 2009). In invasive species research, it 
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has also been demonstrated that the realised niche in the native and invaded range may differ 

(Broennimann and Guisan 2008). Extrapolation behaviour may be improved by model 

smoothing (Elith et al. 2010) or by forcing the predicted probabilities to gradually approach 

zero outside observed environment (Thuiller et al. 2004). More research on the effect of 

including interactions in models used for extrapolation is needed; it may complicate 

extrapolation, and alternate means of representing the ecological response (e.g. by careful 

construction of predictors) might be preferable. 

5.5 Summary 

SDMs would yield reliable predictions under environmental change, if the entire niche was 

encompassed by data meaning that samples exist for all environmental conditions the species 

can occur in. However, truncated or edge niches are probably common, as not all possible 

environmental combinations are currently present. This may lead to erroneous predictions 

when extrapolating to novel environments, depending on how the model extrapolates. Thus, 

whenever prediction is the aim, we need to rule out unrealistic extrapolation behaviour of our 

models or at the very least indicate where extrapolation has occurred. The tools we provide 

here help to explore cases that were previously difficult to visualise. 
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6.1 Summary of achievements 

This thesis focused on the ways dynamic and statistical modelling components can be 

integrated to improve current predictions of climate-induced range dynamics. I assembled 

different pieces of evidence which both provide momentum for predictive modelling of range 

dynamics but also call for more care and further research in applied as well as theoretical 

modelling issues. 

Broadly, one can break down the key results of this thesis into three lessons. The first lesson 

deals with the benefits of simulation studies and, in particular, with the virtual ecologist (VE) 

approach as a rigorous evaluation tool for our analysis and modelling methods and the unique 

opportunities this approach holds in global change context. Lessons two and three concern 

uncertainty in predictions of range dynamics and deal with more practical problems we are 

facing in predictive modelling of species distributions for scenarios of environmental change. 

Throughout this thesis, I approached this complex issue from very different angles. First of 

all, I employed a VE approach to better understand how prediction accuracy of correlative 

species distribution models (SDMs) is affected by transient dynamics as well as ecological 

properties and processes (Zurell et al. 2009, chapter 3). Then, in order to improve predictions 

by explicitly depicting persistence and extinction rates as well as colonisation success in 

space and time I aimed to supplement projections of potential future habitat for black grouse 

in Switzerland with an individual-based model (IBM) that described demographic processes 

and dispersal (Zurell et al. 2011, chapter 4). Finally, I set out to identify reasons for 

fundamental differences in predictions across SDM algorithms (chapter 5). For ease of 

understanding, in lessons two and three I will summarise and discuss results separately for 

range predictions made by purely correlative models and by dynamic models. 

6.1.1 Virtual ecologists 

The VE approach played a prominent role throughout this thesis (chapters 2, 3 and 5) and, in 

fact, deserves more attention in theoretical as well as applied ecology. In chapter 2 (Zurell et 

al. 2010), I reviewed many published examples of the VE approach which underlined its wide 

practicality and the overall benefits. VE is a powerful evaluation tool that can foster the 

integration of theoretical and empirical work, it can help to design field studies and interpret 

data, and it can provide a means to explore new scientific questions and theories. Especially 

in the field of climate impact research VE holds great potential as chapters 3 and 5 nicely 

demonstrated. Predictive modelling of environmentally forced range dynamics is not yet fully 

explored although most methods employed have been around for decades. Much criticism and 
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many questions remain regarding, for example, the applicability of different ecological 

modelling types in non-equilibrium situations, the ability of different models to appropriately 

capture the underlying species environment relationships or the interactive effect of sampling 

bias among others (Austin 2002, Guisan and Thuiller 2005, Elith and Leathwick 2009). These 

questions are difficult to approach because hardly any species is understood in every detail, 

long-term data of range dynamics may not be available or these data may be biased itself. 

Here, VE provides the means to conduct systematic experiments, test hypotheses and assess 

model behaviour under controlled conditions. Thus, VE allows approaching questions that are 

outside experimental manipulation in the real world. The study presented in chapter 3 (Zurell 

et al. 2009) is the first I am aware of to rigorously assess the potential impact of dispersal, 

demographic processes and biotic interactions on the prediction accuracies of SDMs when 

applied under different climate change scenarios. It therefore makes an important contribution 

to better understanding range dynamics and predictive modelling tools in conservation 

biogeography. Similarly, the simplified VE approach in chapter 5 allowed to theoretically 

exploring one possible cause of differing environmental change predictions across SDM 

algorithms which have been reported repeatedly but so far are not well understood (cf. Elith 

and Graham 2009).  

For the future, I envision more model competitions like that presented in chapter 3 to describe 

the applicability of different modelling frameworks. For example, the same setting could be 

used to evaluate different approaches to consensus forecasting (Araujo and New 2007, 

Marmion et al. 2009, Thuiller et al. 2009), or to evaluate in how far models and subsequent 

predictions may be biased if the models are fitted in non-equilibrium situations (Zurell 2007). 

Also, a similar setting could be used to run competitions between correlative and mechanistic 

models. Such an approach has recently been employed by Pagel and Schurr (2011) who used 

a Hierachical Bayesian framework to fit a demography-based, spatially explicit dynamic 

population model to species occurrence and abundance data while accounting for the 

confounding effects of species environment relationship, population dynamics and observer 

effort. The authors used a VE approach to demonstrate the feasibility of the framework and 

compared predictions made by the process-based model and those obtained from simple 

SDMs (using generalised linear models, GLMs). However, their approach was not (and was 

not meant to be) a fair competition between SDMs and process-based models as the virtual 

data were sampled from the same dynamic population model that they aimed to fit within the 

Bayesian framework. In their case, VE simply served as a means to test the fitting procedure 

itself and to demonstrate its capability to model transient dynamics. To theoretically assess 
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the applicability of correlative models opposed to mechanistic models in a fair competition, 

we would need to build a sufficiently complex, dynamic simulation model and, ideally, only 

pass virtually sampled data along with basic ecological knowledge about the virtual species 

on to independent modellers who will then build the models that are to compete. Such 

competitions may help to derive rules of thumb for optimal model choice for different 

situations and species groups. With the case studies and literature examples provided here, I 

hope that this thesis will call attention to the usefulness of VE in a wide array of ecological 

disciplines and, in particular, that it will inspire many researchers to more rigorously evaluate 

their prediction tools and explore theoretical questions related to environmentally forced 

range dynamics. 

6.1.2 Range predictions by correlative models 

In this thesis, I primarily employed theoretical approaches to assess prediction accuracy of 

SDMs. Thereby results were both reassuring and unsettling. First of all, in chapter 3 (Zurell et 

al. 2009), I used a VE approach to explicitly investigate model performance for transient 

range dynamics and the complicating effects of ecological properties and processes. As 

expected, it became evident that under environmental change we may not be able to make 

reliable predictions in time if dispersal and persistence ability are ignored in our models. 

These effects are confounded by species’ ecological traits and other ecological processes as 

well as the direction and magnitude of environmental change. For example, SDM predictions 

will be better the faster the species is able to track climate change. Also, transient range 

dynamics may merely cause a time lag between potential range and occupied range. If 

environmental conditions remain static long enough for the species to fill its entire (new) 

range, then predictions made by SDMs can be quite accurate. If, on the other hand, 

environmental conditions shift continuously we can expect discrepancies between occupied 

and potential range to increase. Nevertheless, the models yielded useful predictions in most of 

the tested situations indicating that SDMs can in fact predict fairly well under climate change. 

However, these results were obtained under ideal conditions of a virtual world without taking 

into account other complicating ecological processes like (behavioural or phenotypic and 

genotypic) adaptation or changing community structures which are likely to influence species 

response under climate. For example, the results in chapter 3 also show that all becomes more 

complicated for strong biotic interactions because in such cases SDM prediction accuracy not 

only depends on ecological traits of the focal species but also on ecological traits of the 

species it is interacting with. If we can include information on biotic interactions in our 

models and are able to predict these satisfactorily, then predictions may render reasonably 
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accurate. However, to date general guidelines and also practical modelling frameworks to 

account for biotic interactions in range dynamics are still rare and further research is needed 

in this field.  

Many authors have highlighted that different SDM algorithms can lead to contrasting 

predictions under environmental change (Thuiller 2004, Pearson et al. 2006, Dormann et al. 

2008, Buisson et al. 2010). Throughout this thesis, I repeatedly compared different SDM 

algorithms and got very different results in the various situations. Thereby, I employed widely 

used SDM algorithms representing different levels of flexibility ranging from standard 

regression techniques to advanced machine learning methods (Elith et al. 2006, Heikkinen et 

al. 2006), namely: generalised linear models (GLMs, cf. chapters 3 to 5), generalised additive 

models (GAMs, cf. chapter 4) and boosted regression trees (BRTs, cf. chapters 3 to 5). In the 

VE approach in chapter 3 (Zurell et al. 2009), I found that prediction accuracies achieved by 

BRTs increased for range contractions of the (virtual) butterflies because the absences were 

predicted with high precision while GLMs overpredicted the contracting ranges. However, 

these results are not generalisable but rather situational and should be regarded with great 

care. First of all, we have to note that the sample data from the virtual world were complete in 

coverage and that the SDM techniques hence merely reproduced the patterns in the data 

(according to model specification and algorithmic specific assumptions). Then, I suspect that 

it was the nature of the species environment relationship of the butterfly that played into the 

hands of BRTs. Because the butterfly depended on temperature both directly and indirectly 

(through its host plant), the apparent species-temperature relationship was rather crooked. 

Now, due to their flexibility BRTs are able to depict even such crooked, highly non-linear 

relationships accurately while GLMs aim to fit parametric, monotone relationships that are 

not able to depict such crookedness. In chapter 4 (Zurell et al. 2011), predictions of habitat 

suitability for Swiss black grouse were highly consistent across SDM algorithms. Only small 

differences between predictions became apparent and this only for the more extreme climate 

change scenarios. In chapter 5, I used simulated data to show the effect of having data that do 

not capture all aspects of the multidimensional niche. If the data do not represent all possible 

combinations of environmental conditions the species can occur in, then prediction to these 

combinations not represented in the data requires extrapolation. This may be a cause for 

controversial range predictions reported in the literature. My results are important in several 

ways. First, they call for more care in sampling, in model building and in appropriate model 

choice within an ensemble framework which also underscores the necessity of scrutinising 

model behaviour for any single species for which predictions are to be derived. To this end, it 
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is crucial to not only assess model fit under current conditions but also to judge realism of 

model extrapolation behaviour and of predictions using for example inflated response curves 

as suggested in chapter 5. Inspecting the fitted response for scenarios of environmental 

change can also be informative. Unfortunately, in many instances we will not be able to do 

anything about the restrictedness of the data simply because not all possible environmental 

combinations currently exist on Earth, because the species is dispersal limited or because 

disturbance precludes it. In the first case, we may find ways and confidence to incorporate 

expert knowledge in our models, for example by defining expert-derived physiological limits 

for the species. In the other cases, a mechanistic determination of the niche (Pulliam 2000) 

may be more appropriate, for example by means of dynamic range models as introduced by 

Pagel and Schurr (2011). 

6.1.3 Range predictions by dynamic models 

Results from the VE study in chapter 3 (Zurell et al. 2009) indicated that in order to depict 

transient population dynamics more accurately we need to account for dispersal and 

persistence ability in our range predictions. This has been suggested by several authors before 

(Guisan and Thuiller 2005, Araújo and Guisan 2006, Heikkinen et al. 2006, Thuiller et al. 

2008) and has spurred some attempts to integrate SDMs and spatially explicit population 

models (SEPMs, Dunning et al. 1995) to predict range dynamics for scenarios of 

environmental change (habitat-based SEPMs sensu Akçakaya 2000; for climate change 

applications see Keith et al. 2008, Anderson et al. 2009, Cheung et al. 2009). The rationale is 

‘to provide more realistic forecasts of population change, habitat fragmentation and extinction 

risk under climate change’ (Brook et al. 2009). The study in chapter 4 (Zurell et al. 2011) 

showed that population trajectory of black grouse under climate change will be approximately 

proportional to expected changes in suitable habitat if the current population is stable. From 

this one might conclude that relative population change may well be inferred from available 

habitat alone if demographic rates are sufficient to sustain a stable population, thus giving 

support to SDMs as useful tools for vulnerability assessments under climate change. 

However, due to high site turnover mean density of black grouse across entire Switzerland 

was predicted to be below one individual per km
2
 although local densities of up to 10 

individuals per km
2
 were possible. Thus, expected mean abundance and habitat suitability are 

not directly related but demographic functions determine how much of available habitat is 

maximally occupied at the time. Thereby, it seems also important how available habitat is 

distributed in space and how connected or fragmented it is. This corroborates previous views 

and findings that extinction risk may not directly relate to range size but that each species 
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(and population) will show a distinct relationship between these (Jablonski 1986, Buckley and 

Roughgarden 2004). Also, sensitivity analysis showed that variability in predictions 

introduced through uncertainty in demographic parameters is much greater than variability 

across different climate scenarios or SDM algorithms. If initial population status was only 

slightly declining, then inferring extinction probabilities simply from quantity of suitable 

habitat strongly underestimated extinction risk. In this light, my results support a general 

movement away from purely correlative approaches to more dynamic simulation models in 

order to predict species vulnerability to environmental change more realistically. 

Nevertheless, the results also call for great care when designing and applying SEPMs in this 

context. If we aim at more directly assessing relative population change from dynamic 

population models then we have to start by obtaining reliable estimates of current population 

status and expected range of demographic rates under environmental change. Sensitivity or 

robustness analysis within ‘reasonable’ error margins can then help to target the most likely 

areas of species colonisation and persistence for a given range of demographic rates. Further 

research is needed to determine such ‘reasonable’ error margins and to define rules of thumb 

for predictions of range dynamics. Such rules of thumb may refer to model building and 

analysis steps as well as to appropriate model choice for specific situations and contingent on 

species’ traits. 

The study in chapter 4 (Zurell et al. 2011) further underscores the more direct benefit of 

spatially explicit simulation models to test or improve current mechanistic understanding of a 

specific system and to test the response to different scenarios of environmental change 

(Jeltsch and Moloney 2002).  Black grouse in Switzerland have been studied for a long time 

and are fairly well understood (e.g. Zbinden and Salvioni 2003, 2004).  Yet, some questions 

remain regarding for example the precision of population size estimates and population status 

(Schmid et al. 1998). My modelling results show that given existing knowledge on 

demographic functions and rates the Swiss black grouse population may well be declining 

instead of being stable as was estimated by Schmid et al. (1998). The strong fluctuations in 

population size and the high site turnover rates predicted by the model suggest that longer 

observation periods are needed to accurately assess black grouse population status. 

Furthermore, my results show that even slightly decreased demographic rates, especially a 

lower survival rate, may result in considerable population declines over the 21
st
 century. 

Survival and reproduction rates both constitute rewarding parameters to focus management 

on. Both may be improved through habitat restoration or, by any means, negative impact 

through further habitat destruction should be avoided. In the future, the relative impact of 
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different land use scenarios on black grouse population and interactions with climate change 

should be tested. 

6.2 Challenges in dynamic range predictions 

There are many pressing questions in the prediction of environmentally forced range 

dynamics, several of which I have successfully addressed in this thesis. Nevertheless, 

although providing important conclusions and notions for conservation biogeography the 

work presented here merely scratches the surface of the complex issue of predicting 

environmental change-induced range dynamics. My thesis probably raised as many questions 

as it answered. Several of these open questions were brought up in the preceding chapters. 

Here, I want to provide some additional considerations about underlying assumptions and 

consequent application domains of the models presented in this thesis as well as current 

shortcomings in data availability. 

6.2.1 Niche conservatism 

My thesis provides further evidence that our models need to become more dynamic in order 

to predict transient range and population dynamics more realistically and provide more direct 

assessments of species vulnerability (cf. Guisan and Thuiller 2005, Thuiller et al. 2008, Brook 

et al. 2009). Nevertheless, we need to be aware that some assumptions of SDMs are also 

common to demography-based SEPMs and the hybrids between them which may hamper 

their overall applicability under environmental change, in particular for unprecedented 

environmental conditions (including non-analogue climate and land use as well as changing 

community structures among others). One fundamental assumption is that of niche 

conservatism as I have discussed in chapter 4 (Zurell et al. 2011). According to this the 

demographic model parameters are only valid for the environmental conditions under which 

they were measured or estimated. For non-analogue environments, demographic rates of 

species may change as they emerge from the complex interplay of environment and 

physiological as well as behavioural traits (Kearney 2006, Grimm et al. 2007). Moreover, 

Oliver et al. (2009) showed British butterfly species to exhibit varying habitat specificity 

throughout their range with constrained habitat associations at range boundaries. Their results 

also imply that population dynamics at leading range boundaries may differ from those 

towards the range core because of a more limited range of climatically suitable habitat types 

which should hence be taken into account when predicting range dynamics. Also, Burton et 

al. (2010) showed in a theoretical study that during range expansion different selection 
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pressures between range core and expanding range edge can lead to varying demographic 

rates throughout the range. 

6.2.2 Circularity 

Some authors raised concerns about potential circularity problems in habitat-based SEPMs: as 

we aim to describe dispersal or biotic interactions using the dynamic population model but the 

underlying SDM may implicitly account for these factors as well, we may in fact account for 

these factors twice (Gallien et al. 2010, Thuiller and Münkemüller 2010). For example, if 

current species distribution is strongly affected by source-sink dynamics or dispersal barriers 

then ignoring these processes may bias the fitted SDM and, consequently, the dynamic 

population model as well (Thuiller et al. 2008, Thuiller and Münkemüller 2010). One 

suggested solution to this problem is to simultaneously fit the dynamic population model and 

underlying SDM within the same statistical framework. Pagel and Schurr (2011) only recently 

presented dynamic range models (DRMs) that are fitted within a hierarchical Bayesian 

framework and jointly estimate species niches and spatiotemporal population dynamics from 

occurrence records and local abundance time series. I believe that circularity may pose a 

problem in some but not in all species. Hence, the approaches of DRMs and habitat-based 

SEPMs as presented in chapter 4 (Zurell et al. 2011) could be complementary and useful for 

specific situations depending on species’ traits, specific population dynamics, site history and 

quality of data among others. In the future, it would be desirable to assess and specify 

application domains for these frameworks. For example, in Switzerland black grouse are not 

dispersal limited and broad-scale distribution patterns do not seem to be biased by population 

dynamics in contrast to local abundances which may fluctuate widely due to high site 

turnover. The grouse system thus seems a good candidate for such a habitat-based SEPM as 

presented here where environmental correlations are used to describe large-scale distribution 

while independently observed demographic rates are used to describe population dynamics. 

For species that exhibit, for example, post-glacial dispersal limitations (cf. Svenning and Skov 

2004) a framework like that presented by Pagel and Schurr (2011) may be more appropriate. 

6.2.3 Model specification 

One recurrent problem of all models correlative and mechanistic alike is uncertainty in model 

structure. Any model is a simplification of reality and, thus, any model makes artificial 

assumptions (Levins 1966). To account for model misspecification we can build several 

alternative models each with different simplifications and compare model results (Araújo and 

New 2007). Then, ‘our truth is the intersection of independent lies’ (Levins 1966). Thereby, I 
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believe that care must be taken which ‘lies’ we assemble to get to the truth. As mentioned 

earlier in this thesis, the interesting question in model comparisons is why predictions differ 

(Elith and Graham 2009). SDM algorithms differ, for example, in their degree of flexibility or 

in whether interactions are modelled implicitly or need to be specified explicitly. Therefore, 

different algorithms may deal with problems differently and our task will be to disentangle 

problems and problem-makers (cf. chapter 5). One problem I see for model specification is 

the problem of multicollinearity in environmental predictors, in particular high correlation 

between two causal predictors (Dormann et al., unpublished manuscript). Envision a butterfly 

that depends on temperature directly and also indirectly through its host plant. In this case, 

SDMs are not able to estimate the butterfly’s relationship to temperature independently of the 

host plant-temperature relationship. If the temperature niches of butterfly and host plant 

drifted apart due to climate change (Williams and Jackson 2007), then SDM predictions might 

be fallacious (but see Schweiger et al. 2008 who suggested disentangling climate effects of 

butterfly and host plant by restricting the butterfly SDM to areas where the host plant is 

currently present). Results of chapter 5 also call for more care in model specification and 

integration of ecological theory. Sometimes, seemingly strong patterns in the data, for 

example strong interactions between environmental variables, may be delusive and rather the 

result of data limitations. 

Of course, when making dynamic predictions of range changes then we should also consider 

uncertainty in the structure of the dynamic model. The dynamic model presented in chapter 4 

(Zurell et al. 2011) is fairly simple and many processes are subsumed in demographic or 

environmental stochasticity. When adding processes (submodels) to make the model more 

realistic, then the structure and processes should be validated for example by means of 

pattern-oriented modelling (Grimm et al. 2005a). 

6.2.4 Model complexity 

At this stage, I need to spend some more words on the issue of model complexity. Generally, 

model building should follow the principle of parsimony which is also known as Occam’s 

razor: ‘Pluralitas non est ponenda sine necessitas’ (‘Plurality should not be assumed without 

necessity’, William of Ockham 14
th

 century). Thereby, we have to trade off bias against 

variance. Too simple models may be inaccurate because they are too rigid to capture the true 

relationship and, thus, show large bias (Grimm and Railsback 2005). Too complex models 

may be inaccurate because they represent peculiarities of the data too closely and, thus, show 

large variance. Surely, model complexity is also a matter of scale which has been discussed 

elsewhere (e.g. Scott et al. 2002) and which I do not explicitly cover throughout this thesis. In 
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environmental change context, SDMs have often been the tool of choice because they are 

easy-to-use, widely available, have comparably low data requirements and can, hence, easily 

be applied to a wide array of species (cf. chapter 1). The rationale behind habitat-based 

SEPMs is in part to keep this simplicity while being able to capture transient dynamics 

(Gallien et al. 2010). Hence, the dynamic population models are deliberately kept simple (cf. 

Zurell et al. 2011, chapter 4 of this thesis). However, we thereby have to keep in mind that 

this simplicity may hamper the reliability of such SEPMs in environmental change context. It 

is generally known from population viability analyses that in very simple population models 

even comparably small changes in parameter values can strongly affect population growth 

rate and predicted extinction risk (Beissinger and Westphal 1998, Grimm and Storch 2000) as 

was also apparent in the black grouse case study of chapter 4 (Zurell et al. 2011). However, 

systematic investigation of the likely causes is lacking. It may well be that high parameter 

sensitivity occurs because important mechanisms shaping population response are missing in 

the model structure or are inadequately taken into account. For example, the exact form of 

density dependence and carrying capacity can strongly affect predicted extinction risks 

(Beissinger and Westphal 1998). Moreover, Grimm et al. (2005b) raised concerns that simple 

population models might overestimate extinction risks because they do not include buffer 

mechanisms that reduce environmental stochasticity and because high environmental noise 

causes higher extinction risks (Wissel et al. 1994, Wichmann et al. 2003). In the future, more 

research should focus on investigating the effects of density dependence, carrying capacity 

and environmental stochasticity in more detail and efforts should be targeted at providing the 

necessary data base for model verification. 

6.2.5 Response vs. effect traits 

If we think of species not only responding to their environment but also actively shaping and 

exploiting it (cf. response and effect traits, Lavorel and Garnier 2002), a more direct 

limitation to the use of habitat-based SEPMs becomes apparent. So far, only one-way 

interactions between species and environment are incorporated in SDMs and associated 

habitat-based SEPMs (Gallien et al. 2010, Thuiller and Münkemüller 2010). Yet, two-way 

interactions in the models are necessary to account for species’ effect traits on the 

environment, for example the depletion of a resource or interspecific effects. If a species 

expands or shifts its range due to climate change then it will at the same time invade new 

places with potentially large effects on available resources or on native species (for a nice 

anecdote about invasive wasps simply removing native ants from food resource see Grangier 

and Lester 2011). To account for species’ effects on their abiotic as well as biotic 
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environment we will need a numerical framework in which both the state of the species and 

the state of the environment are updated at each model time step. Explicit modelling of both 

response and effect traits (two-way interactions between species and environment) will, thus, 

require predictions of environmental change- induced development of resources as well (for 

SDM application, see for example Schweiger et al. 2008, 2011). Future research is required in 

this field to establish frameworks and guidelines how to model resource depletion and 

especially biotic interactions. For example, what will the appropriate scale be to model the 

interactions between a predator (e.g. Eagle) and its prey (e.g. hares), the scale of the Eagle’s 

home range or that of the hares? 

6.2.6 Data availability 

We need to keep in mind that often in SDMs the environmental predictors are only proxies for 

the resources themselves. For example in the black grouse case study in chapter 4 (Zurell et 

al. 2011), I aimed to include only those climate and land use predictors that are relevant to the 

species biology. Unfortunately, the choice of potential predictors is also determined by 

availability and resolution of the data. Clearly, the land cover variable scattered forest is not 

the direct resource for black grouse but a proxy for shelter and for the availability of resources 

like Ericaceae and Vaccinium in particular. When predicting range dynamics for scenarios of 

environmental change then the choice of variables in our models is not only restricted by 

availability of current climate or vegetation data, but also by variables available in 

environmental change scenarios. Thus, refining environmental data and scenarios will be a 

crucial step in modelling of future species range changes. However, it is important to 

acknowledge that we may buy more realism in our species’ models at the cost of larger 

uncertainties in environmental change scenarios which will also propagate through to 

predictions of range dynamics. While global circulation models are fairly consistent in their 

projections of future climate, downscaling of these global scenarios proves more difficult and 

finer scale projections carry larger uncertainties than broad scale projections (Schröter et al. 

2005). Derivation of land use scenarios is even more problematic as these have to consider 

political, economic, demographic and technological developments as well as interactions with 

climate change (Holman et al. 2005a,b, Dormann 2007).  

A crucial step for wide applications of dynamic models predicting range changes is the 

availability of demographic data to parameterise the models. In the future, more efforts should 

be targeted at assembling existing data (or at least metadata) in extensive trait databases (for 

an example see LEDA Traitbase, Kleyer et al. 2008). To achieve this we will also need to 

improve mutual understanding between empiricists and theoreticians. Often, theoreticians are 
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not aware of the enormous data treasures already acquired by empiricists, partly because 

information (metadata) is missing. At the same time, empiricists may not be aware of the 

value their data may have for modellers. Also, a good portion of scepticism remains on the 

empiricist side that their data may not be handled correctly or that they may lose control over 

their data. Improving the exchange between empiricists and theoreticians may also have 

additional value for both parties. Empiricist could then acquire (additional) data that may be 

more meaningful for modelling purposes. At the same time models and predictions can serve 

as eye catchers for the general public and could make the hard empirical work more visible. 

Unfortunately, for most species we currently lack truly independent data to validate our model 

predictions on. As outlined in chapter 1, today we often rely on resampling methods for 

model validation (Araújo et al. 2005, Thuiller et al. 2009, for application see Zurell et al. 

2011, chapter 4). However, resampled data do not actually resemble truly independent test 

data. Rather, in such cases training and test data still share the same (or at least similar) 

statistical properties. That way, model validation may provide a performance measure of how 

good the model depicts current distribution but it does by no means provide a measure of 

model robustness against the full range of environmental conditions that we may expect under 

environmental change. The VE approach constitutes a powerful evaluation framework as 

shown in chapters 2, 3 (Zurell et al. 2009, 2010) and 5. Thereby, it may help in answering 

theoretical questions of models’ application domains but does not lend itself as a general tool 

for robustness analysis. Yet, as anthropogenic environmental change has been going on for 

decades, we are now entering a stage at which we can validate our models on contemporary 

changes (Hill et al. 1999, Willis et al. 2009). For example, my black grouse case study was 

parameterised for the turn of the millenium and predictions could be validated on observed 

changes in the beginning of the 21
st
 century as soon as the new breeding bird survey will be 

completed for Switzerland in a couple of years. New insights about species response and 

resilience could then also be used to update existing models, for example in a Bayesian 

framework the species environment relationships estimated on current data can be used as 

priors in second-generation models (Clark and Gelfand 2006). 

6.3 Quo vadis? 

Where to go from here? Predicting environmental change-induced range dynamics is a story 

with many facets. Among the different ecological model types discussed here, there are no 

clear winners or losers. Each family of models has its benefits and limitations which make the 

models more or less suitable for specific applications. Therefore, the biggest task I see for the 
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near future is not primarily to further improve existing model systems. Rather, we need to 

develop conceptual guidelines and rules of thumb regarding general modelling strategies, 

model verification, necessary process detail and model application domains (cf. Gallien et al. 

2010, Franklin 2010). Thereby, we do not have to reinvent the wheel. Many guidelines and 

general strategies already exist for species distribution modelling (e.g. Guisan and 

Zimmermann 2000, Guisan and Thuiller 2005, Elith and Leathwick 2009) and also for 

population modelling (e.g. Beissinger and Westphal 1998, Lindenmayer et al. 2003, Grimm et 

al. 2005a, Grimm and Railsback 2005). However, in global change context we may have to 

rethink these guidelines and translate them for ecological systems that are changing rapidly 

and possibly in unprecedented manner. 

For predicting environmental change-induced species’ range dynamics we can follow a 

simple-to-complex strategy:  

1. Use phenomenological models for screening purposes of potential impacts on 

available habitat. Instead of relying on ‘one-step’ projections as commonly done in 

SDM studies, I recommend a ‘multi-step’ approach with discrete time steps (cf. 

Midgley et al. 2006, Zurell et al. 2009, chapter 3). Step lengths should be as small as 

possible and/or determined by temporal patterns and rates of expected environmental 

change. Overlaying predicted habitat suitability maps by SDMs may provide a first 

indication of potential core areas of species’ range and, thus, for nature conservation 

(cf. Osborne and Suarez-Seoane 2007).  

2. For expected range shifts and range expansions, simple estimates of migration rates 

can provide valuable insights about potentially colonisable areas (cf. Midgley et al. 

2006, Franklin 2010).  

3. If adequate demographic data are available for the population(s) under study, 

demography-based, spatially explicit population models can be developed to explicitly 

model colonisation success and local persistence of populations (cf. Zurell et al. 2011, 

chapter 4).  

4. In the rare cases where enough data and expert knowledge are available, mechanistic 

models (based on first principles, behaviour-based population models, cf. chapter 1) 

can be developed that account for ecophysiological and behavioural mechanisms and 

are, thus, able to predict to novel environments. To reduce computational burdens, 

such fully mechanistic models can be combined with demography-based SEPMs 

(Grimm et al. 2007). Thereby, the mechanistic models can be used to predict 

population-level demographic functions for a wide range of environmental conditions. 
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The resulting ranges of population-level demographic rates can then be used to set the 

boundary conditions for robustness analysis of demography-based population models 

to explore long-term and large-scale population response and associated extinction 

risks.  

All modelling attempts should be accompanied by explicit sensitivity and robustness analysis 

to quantify prediction uncertainty. In SDM context, this can be achieved by comparing 

outputs from different SDM algorithms (ensemble framework, Araújo and New 2007, 

Thuiller et al. 2009; Zurell et al. 2011, chapter 4). Thereby, great differences between SDM 

predictions should alarm us to scrutinise model behaviour more thoroughly (Elith and Graham 

2009) in order to exclude, for example, ecologically implausible extrapolation behaviour 

(chapter 5). I recommend scanning future environmental change scenarios for novel 

environmental conditions without contemporary analogue (e.g. by means of multivariate 

environmental similarity surface, MESS, Elith et al. 2010). We could then provide reliability 

maps for habitat suitability that delineate SDM predictions for analogue environment against 

predictions for non-analogue environment which require extrapolation to environmental 

conditions outside the calibrated parameter range (chapter 5). Assessing similarity between 

current and future environment may also help in determining error margins of demographic 

rates that could be expected under environmental change.  

The above strategy on model choice for predicting environmental change-induced range 

dynamics is rather general and primarily guided by data quality and data availability as well 

as effort required for model development. In the future, more research is needed for better 

integration of ecological theory and on developing conceptual guidelines regarding 

application domains of specific modelling frameworks. Thereby, I see three different key 

challenges that we need to address in order to make best use of existing models, and to make 

models and predictions more reliable and also more worthwhile. 

I. We need to address questions regarding applicability and feasibility of specific model 

frameworks. Thereby, a rather general question concerns the optimum in prediction 

improvement that could possibly be achieved considering general restrictions in data 

availability and quality as well as the trade-off between parameterisation effort and 

process detail (Jeltsch et al. 2008)? More specific questions may ask, for example, under 

which circumstances and for what kind of data will circularity in habitat-based SEPMs 

pose a problem. As first approximations, VE studies may help to theoretically answer 

such questions. Extensive VE model competitions may provide valuable insights how 
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performance of different model frameworks is affected by species’ traits and prevailing 

ecological and environmental processes (cf. chapters 2 and 3).  

II. More empirical effort to improve available data bases is needed as well as better 

integration and digital processing of existing data and knowledge. Extensive, high 

quality process-level data are required concerning species’ traits such as dispersal and 

persistence capacity, reproduction, behavioural adaptability, phenotypic and genotypic 

plasticity, genetic adaptability as well as historic and/or current population dynamics 

among others. On the one hand, such data are needed for efficient parameterisation of 

more realistic, mechanistic models of species’ range dynamics. On the other hand, better 

understanding of species’ traits and ecological as well as evolutionary processes will 

help us to determine the process detail required for modelling species-specific response 

to environmental change. Also, this may facilitate derivation of functional types (Gitay 

and Noble 1997) or response and effect groups (Lavorel and Garnier 2002), and provide 

generalised answers of how species respond to environmental change (Jeltsch et al. 

2008).  

III. For deriving long-term conservation and management options, models and predictions 

need to become more accessible to politicians and practitioners. This can be achieved by 

improving model description and documentation including information about theoretical 

foundations and underlying assumptions, boundary conditions and subsequent 

application domain (e.g. ODD protocol for describing individual-/agent-based models, 

Grimm et al. 2006, 2010). On the other hand, free software applications can be 

developed with quite general models and submodels that can easily be adjusted for 

different species or functional groups (e.g. BioMove platform for dynamic simulation of 

plant species’ response to environmental change, Midgley et al. 2010). Thereby, results 

from (I) and (II) can guide optimal model and submodel choices for given species and, 

thus, facilitate better informed and, ultimately, more reliable predictions.  

I believe that these steps will aid to overall feasibility and applicability of dynamic range 

predictions and that by making model conceptualisation and descriptions more transparent 

also model reliability will increase. At the end, I want to cite some smart words by Levins 

(1966) that I could not better phrase: ‘All models are both true and false. Almost any 

plausible proposed relation among aspects of nature is likely to be true in the sense that it 

occurs (although rarely and slightly). Yet all models leave out a lot and are in that sense false, 

incomplete, inadequate. The validation of a model is not that it is ‘true’ but that it generates 

good testable hypotheses relevant to important problems.’ Of course, making more reliable 



· Chapter 6 · Quo vadis? 

 

  111 

predictions of environmental change-induced range dynamics is a primary goal in 

conservation biogeography. But above that, models also facilitate conceptual understanding of 

ecological systems and of species’ response to environmental change. In that sense, making 

models more realistic by adding processes should go hand in hand with applying theoretical 

models to further investigate basic principles and derive general hypotheses regarding 

species’ distributions and range dynamics. 
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B  Static species distribution models in 

dynamically changing systems: how good can 

predictions really be? – Supplementary material 
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B.1 Submodels of dynamic population model 

In the following, the processes occurring in each time step of the dynamic population model 

are described. Respective parameter values are given in Table 3.1.  

B.1.1 Process 1: Climate states 

At the beginning of each time step, the climate state, characterised by temperature and 

moisture, was updated. Each cell’s temperature was calculated by climatological downscaling 

of mean summer temperature considering altitudinal differences, the adiabatic gradient Tlapse 

and radiation (Bellasio et al. 2005; Moore et al. 1993; Wilson and Gallant 2000): 


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
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
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lapseij
S

S
z

TTT
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1000
  (B.1) 

with zij being the elevation of the grid cell, Sij the ratio between the insolation of the cell and 

the horizontal surface. The insolation was truncated to the cosine of the solar illumination 

angle i:  

)cos()sin()sin()cos()cos( 00 Aslopei     (B.2) 

with the solar zenith angle θ0 = 78.25° and the solar azimuth φ0 = 180°, A was the aspect and 

slope the surface slope (Dubayah and Loechel 1997). Potential soil moisture was 

approximated by the topographic wetness index (Beven and Kirkby 1979; O'Neill et al. 1997), 

standardised for a precipitation rate of 500 m/a:  

500

1

)tan(
ln


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
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






ij

ij

ij
slope

area
W     (B.3) 

where areaij was the drainage area above the cell. Flow directions were assigned using the D8 

method, i.e. flow occurred in steepest down-slope direction to one of the cell’s eight 

neighbours, either adjacent or diagonal (Wilson and Gallant 2000). Thus, Wij could be 

interpreted as the proportion of rainwater each cell was able to retain. Actual soil moisture 

was then calculated by multiplying the proportion of retained water with actual rainfall. 

B.1.2 Process 2: Habitat state  

The butterfly depended on the presence and abundance of the plant which induced a carrying 

capacity K in each lattice cell. K was proportional to the plant foliage projective cover F, with 

the maximum carrying capacity Kmax. F was determined by temperature and moisture 

conditions of a cell, each representing a one-dimensional resource spectrum. The 

physiological response of the plant was described by a Gaussian utilisation function with the 
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mean being the preferred position in the spectrum and a characteristic variance (May and Mac 

Arthur 1972). Following Liebig’s law of the Minimum which says that growth is controlled 

by the scarcest resource, the limiting factor, F was calculated by multiplying the degree of 

utilisation of each resource. Resource competition at plant level was introduced by adding a 

second plant species, the competitor, whose fundamental niche overlapped with that of the 

host plant, and which did not serve as a host plant for the butterfly. The competitor always 

outcompeted the host plant resulting in a narrower, realised niche of the latter (Fig. 3.1). To 

simulate environmental stochasticity, the actual physiological response was drawn from a 

Normal distribution with mean F and a variance σ
2

F. 

Global dispersal was assumed for host plant and competitor plant. Too abrupt changes in the 

plant distribution were avoided by incorporating a simple memory effect such that the actual 

capacity of the new time step was the arithmetic mean between the calculated capacity of time 

step t+1 and the old capacity of time t. This simple memory effect resulted in a time lag of 

several years. 

B.1.3 Process 3: Dispersal  

Early in each year, on emergence, a proportion of adult butterflies and parasitoids left their 

natal patch to colonise other cells in the lattice. Local dispersal was assumed, i.e. the 

dispersers were concentrated around the area in which they developed as juveniles. The 

probability pij that an individual dispersed from cell i to j over the integer distance dij was 

described by a two-parameter Weibull distribution allowing different dispersal strategies 

(Söndgerath and Schröder 2002): 

 




j ij

ij

ij
d

d
p

)exp(

)exp(







   (B.4) 

with the shape parameter β, and the scale parameter α determining the dispersal distance. A 

high value of α indicated short-range dispersal, a low one large-range dispersal. At α=0 the 

dispersers would be evenly distributed throughout the lattice (global dispersal). The integer 

distance dij between cells depended on the applied neighbourhood rule, in this case an 8-cell 

(Moore) neighbourhood (Hogeweg 1988). Individuals dispersing to unsuitable habitats, i.e. 

cells without butterfly and plants respectively, died.  

B.1.4 Process 4: Reproduction and parasitism  

The generalised form of the difference-equation framework for the reproduction and 

parasitism phase was as follows: 
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   (B.5) 

where N and P were the population abundances of the susceptible butterfly stage and the 

searching adult female parasitoid, respectively, in generations t and t+1, λ the net finite rate of 

increase of the butterfly population, g(Nt) the density-dependent survival of the butterflies 

progeny, f(Pt) the proportion of butterflies escaping parasitism, c included the average number 

of adult female parasitoids emerging from each butterfly parasitised. The parasitoids’ 

functional response was linear (type I functional response) and the attacks were randomly 

distributed amongst the butterfly population (Nicholson 1933; Nicholson and Bailey 1935). 

The fraction of butterflies escaping parasitism was given by the zero term of a Poisson 

distribution (Eq. B.6) with mean aPt where a was the area of discovery:  

)exp()( tt aPPf      (B.6) 

Density dependence of butterfly reproduction entered the model system via g(Nt) (Eq. B.7), a 

discrete version of the logistic equation (Hassell 2000; Ricker 1954): 


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exp)(


   (B.7) 

The intrinsic butterfly population growth rate λ was modelled temperature-dependent to 

reflect its metabolic dependence. To simulate the generally humped-shaped and left-skewed 

relationship between physiological rates and temperature, a Gumbel distribution was used 

with Topt as location parameter, a scale parameter σ, and a maximum growth rate λmax. 

Butterfly population growth rate was additionally restrained by introducing a simple but 

strong Allee effect (Allee 1931). Below a critical population size Ncrit, the extinction 

threshold, no reproduction occurred and the local butterfly population went extinct. 
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C  Uncertainty in predictions of range dynamics: 

black grouse climbing the Swiss Alps – 

Supplementary Material  
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C.1 Submodels of individual-based model 

C.1.1 Carrying capacity 

Carrying capacity is a function of habitat area and suitability (Keith et al. 2008), and is 

updated at the beginning of each time step. Habitat suitability is defined as black grouse 

occurrence probability determined by the statistical species distribution models.  Suitable 

habitat is defined by a threshold minimum value of habitat suitability. This threshold is given 

by the present-day prevalence of black grouse (Liu et al. 2005).  We assumed that habitat 

suitability was a direct surrogate of carrying capacity whenever the modelled habitat 

suitability exceeded this threshold (for examples see Anderson et al. 2009, Araújo et al. 2002, 

Keith et al. 2008). Maximum carrying capacity was defined as the maximum density of black 

grouse per km
2
 that can be expected in Switzerland given the home range requirements of the 

species.  

Individuals may persist for some time under suboptimal conditions. This is realised by a 

simple memory effect incorporated in the habitat suitability index.  If the SDM prediction for 

a cell is lower than the cell’s habitat suitability of the preceding time step, then habitat 

suitability of the actual time step is the mean of the preceding habitat suitability and the 

current SDM prediction. This simple memory effect prevents too abrupt shifts in habitat 

suitability. 

C.1.2 Reproduction 

The probability of a hen to reproduce successfully and lead young is pleadYoung. Some may 

fail to reproduce because eggs do not hatch or nests are predated or deserted. We calculated 

these probabilities from empirical data (Zbinden and Salvioni 2003, Zbinden unpublished 

data).  

C.1.3 Fledging 

Upon successful reproduction the probability of a hen to lead a certain number of young birds 

is p(x)Fledglings. Probabilities were calculated from empirically observed distribution of 

brood sizes (Zbinden and Salvioni 2003, Zbinden unpublished data). The probability for a 

fledgling to be female is pYoungFemale, otherwise it is a male and is subsequently ignored. 

C.1.4 Natal dispersal 

In autumn, first-year hens disperse from their natal patch with a probability pDispersal 

(Caizergues and Ellison 2002). Dispersal is assumed to be equally likely in eight directions, 
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and subsequently each dispersing individual is assigned a random direction (N, NE, E, SE, S, 

SW, W, and NW). The expected mean natal dispersal distance of female black grouse 

meanDist and the range of dispersal distances rangeDist were compiled from Caizergues and 

Ellison (2002). These two values were used to draw the individual dispersal distances from an 

empirical model for natal dispersal distances in birds which was proposed by Sutherland et al. 

(2000, Equ. 2) and is based on the negative exponential distribution. In our model, individual 

birds perceive the environment as heterogeneous and avoid to settle in or to traverse wide 

stretches of unsuitable habitat (Zbinden, unpublished data). Hence, they will not settle in cells 

without any resources available. This is the case when habitat suitability is so low that 

carrying capacity K < 1, or when the cell is crowded and N  ≥ K. Dispersers will then search 

the (eight) nearest neighbour cells for better suited habitat or, if this search is of no avail, will 

make a second dispersal attempt. Individuals will not cross widely unsuitable areas, i.e. more 

than ten cells (i.e. max. 10 km) with carrying capacity K < 1. If they encounter such a stretch 

of unsuitable habitat, they will sidestep it and resume their original direction as soon as 

possible (cf. Graf et al. 2007). 

C.1.5 Mortality and density dependence 

All sources of mortality are subsumed under an annual survival probability (pSurv), the 

probability of an individual hen to survive until early spring (Zbinden and Salvioni 2003).  

Mortality and emigration may increase with density due to increased predation risk or simply 

due to shortage of resources. As no information is available for density dependence in Alpine 

black grouse populations, we assumed carrying capacity K to have a ceiling effect on the local 

population. If the number of adults in a cell exceeds K, random individuals are removed from 

this cell according to two rules: (1) Individuals will be randomly assigned to the (eight) 

nearest neighbour cells, if these are not crowded (N < K). Thereby, we accounted for some 

adaptability of home ranges. Then, (2) if local population size N still exceeds K, random 

individuals will be removed from the cell until the local population size is equal to K (Grimm 

and Storch 2000). 
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C.2 Supplementary Tables and Figures 

 

Figure C.1. Predicted mean temperature and precipitation changes for scenarios of climate change.  For 

abbreviations see Table 4.1.  

 

Table C.1. SDM evaluation statistics (mean ± SD of 100 split-sample runs). 

Performance criterion BRT  GAM  GLM  

AUC 0.950 ± 0.01 0.949 ± 0.01 0.946 ± 0.01 

Explained deviance R
2
 0.590 ± 0.02 0.583 ± 0.03 0.572 ± 0.03 

TSS 0.785 ± 0.02 0.784 ± 0.02 0.782 ± 0.02 

Sensitivity (True presences) 0.926 ± 0.01 0.939 ± 0.01 0.947 ± 0.01 

Specificity (True absences) 0.859 ± 0.01 0.845 ± 0.01 0.836 ± 0.01 

Calibration slope (Spread) 1.005 ± 0.07 0.975 ± 0.10 0.955 ± 0.13 

Calibration intercept (Bias) 0.003 ± 0.14 0.006 ± 0.14 0.013 ± 0.14 

 

 

Figure C.2. Relative variable contribution in SDMs. 
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Figure C.3. Predicted suitable area size for scenarios of climate change and different SDM algorithms. 

Solid lines indicate predictions made by BRT, dashed lines GAM and dotted lines GLM.  Suitable area is 

defined as the sum of all 1 km
2
 cells with habitat suitability exceeding the prevalence threshold. For 

abbreviations see Table 4.1. 
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Figure C.4. Consensus on black grouse presence across different SDMs and climate scenarios for years 

2001, 2050 and 2100 (from top to bottom), calculated as fraction of simulations (n = 15) predicting black 

grouse to be present. IBM was run with default parameterisation. (Note that zero percent consensus on 

presence equal 100 % consensus on black grouse absence). 
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Figure C.5. Predicted suitable area size and population size for scenarios of climate change, different SDM 

algorithms and different IBM parameterisations. Suitable area is defined as the sum of all 1 km
2
 cells with 

habitat suitability exceeding the prevalence threshold. Population size with current status ‘declining’ is 

predicted by running the IBM with default parameterisation. Population size is with current status 

‘stable’ is predicted by increasing survival probability in IBM (pSurv=0.51). For abbreviations of climate 

scenarios see Table 4.1. 
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D  Predicting to new environments: tools for 

visualising model behaviour and impacts on 

mapped distributions  – Supplementary 

Material 
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D.1 Code for simulated data and inflated response curves 

The subsequent code is written for R (R Development Core Team 2010) under Windows XP 

Professional. 

# example with simulated data: 

# species' occurrence described by species' tolerance to temperature, woodland; 

# three cases with different data coverage of two-dimensional environmental niche: 

# (1) species niche entirely encompassed by data; 

# (2) species niche truncated, i.e. portions of the niche are not represented in data; 

# (3) species niche abuts environmental data, i.e. niche edge coincides with data limits; 

# For all cases, different SDMs are estimated on training data, and fitted values are compared. 

# Then, predictions are made for changing climate (=warmer temperature while land cover remains constant) 

# and again fitted values for future climate are compared. 

 

#********************************************** 

# set working directory 

setwd("...") 

 

# load libraries 

library(Design) 

library(boot) 

library(gam) 

library(gbm) 

source("brt.functions.R") #this is extra code provided in Elith et al. (2008) JAnimEcol 77:802-813 

# note that the inflated.response() function will additionally require the package 'lhs' to be installed 

 

#******************************************************** 

# some functions for creating species data, for evaluation and plotting 

# define species (lrm) 

species=function(temp,wood,sdev=3){ 

  return(inv.logit(-170+40*temp-2.5*temp^2+ 

  .35*wood+ 

  rnorm(max(length(temp),length(wood)),0,sdev)))} 

 

#-------------------------------------------------------------- 

# plot fitted values for all three predictors + true response curve 

myplot<- function(x,y,main,thresh=F,ylab="Occurrence probability"){ 

  plot(x$temp,y,xlab="Temperature",ylab=ylab,main=main,ylim=c(0,1),xlim=c(3,16)) 

  i=seq(3,16,length=100) 

  lines(i,species(i,70,sdev=0),lty="solid",col="grey80",lwd=2) 

  plot(x$woodlandCover,y,xlab="Woodland cover",ylab="",main=main,ylim=c(0,1)) 

  i=seq(min(x$woodlandCover),max(x$woodlandCover),length=100) 

  lines(i,species(8,i,sdev=0),lty="solid",col="grey80",lwd=2) 

  } 

   

#-------------------------------------------------------------------------------  

# plot 'inflated' response curves - 'inflated' partial dependence plots 

inflated.response=function(object,predictors,select.columns=NULL,label=NULL,len=50,lhsample=100,lwd=1, 

    ylab="Occurrence probabilities",method="stat3",disp="all",overlay.mean=T, 

    col.curves='grey',col.novel='grey',col.mean='black',lwd.known=2,lwd.mean=2,...){ 

     

  # plot inflated response curves; 

  # plot effect of one variable over range of other predictors; 

  # method determines at which values the other predictors are held constant: 

  # method='mean' corresponds to conventional partial dependence plots, 

  # method='stat3' (Default) considers minimum, mean and maximum values of predictors, 

  # method='stat6' considers min,mean,median,max and quartiles. 

  # for 'stat3' and 'stat6' effects of one variables is plotted for all possible 

  # combinations of remaining predictors - as the number of combinations increases exponentially, 

  # the maximum number of combinations can be set with lhsample. Whenever lhsample is exceeded, 
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  # candidate combinations are drawn by latin hypercube sampling. 

  # len determines the number of intervals along the environmental gradient plotted, 

  # i.e. smoothness of response curves. 

  # disp can take options 'all' or 'eo.mask' - in the latter case, eo.mask() is used 

  # to distinguish between areas of the estimated environmental niche / plotting areas 

  # that are supported by data and those that require extrapolation. 

  # if overlay.mean is true, then the mean response curve is overlaid on the inflated plot. 

   

  if (is.null(select.columns)) select.columns=1:ncol(predictors) 

   

  require(lhs,quietly=T) 

  for (i in select.columns) 

  { 

  summaries=data.frame(matrix(0,6,ncol(predictors))) 

  for (iz in 1:ncol(predictors)) summaries[,iz]=summary(predictors[,iz]) 

  if (method=="stat3") {summaries.j=as.matrix(summaries[c(1,4,6),-i],ncol=(ncol(predictors)-

1));comb=min(lhsample,3^(ncol(predictors)-1));nc=3} else 

  if (method=="stat6") {summaries.j=as.matrix(summaries[,-i],ncol=(ncol(predictors)-

1));comb=min(lhsample,6^(ncol(predictors)-1));nc=6} else 

  if (method=="mean") {summaries.j=as.matrix(summaries[4,-i],ncol=(ncol(predictors)-

1));comb=1;nc=1;overlay.mean=F} 

  dummy.j=as.matrix(predictors[1:len,-i],ncol=(ncol(predictors)-1)) 

  if (comb<lhsample) { 

    mat=vector("list",ncol(dummy.j)) 

    for (m in 1:ncol(dummy.j)) mat[[m]]=1:nc 

    mat=expand.grid(mat) 

    } else 

  mat=round(qunif(randomLHS(lhsample,ncol(dummy.j)),1,nrow(summaries.j)),0) 

  if (is.null(label)) label=names(predictors) 

 

  for (r in 1:nrow(mat)) 

    { 

      for (j in 1:ncol(dummy.j)) 

      { 

      dummy.j[,j]=as.vector(rep(summaries.j[mat[r,j],j],len)) 

      } 

 

    dummy=data.frame(seq(min(predictors[,i]),max(predictors[,i]),length=len),dummy.j) 

    names(dummy)[-1]=names(predictors)[-i] 

    names(dummy)[1]=names(predictors)[i] 

 

    if (is(object,"gbm")) curves<-predict.gbm(object, dummy,n.trees=object$gbm.call$best.trees, 

type="response") # when using brt code from Elith et al. (2008) JAnimEcol 

    else if (is(object,"glm")) curves<-predict(object, dummy, type="response") 

    else if (is(object,"randomForest")) curves<-predict(object,dummy) 

    else if (is(object,"tree")) curves<-predict(object,dummy) 

    else if (is(object,"list")) curves<-mars.predict(object, dummy)$prediction[[1]]   #when using mars code from 

Elith and Leathwick (2007) Div Distr 

    else if (is(object,"fda")) curves<-predict(object,dummy,type="post")[,2] 

    else if (is(object,"nnet")) curves<-predict(object,dummy,type="raw") 

    else {print("SDM class unknown");break} 

     

    # display all lines in same type 

    if (disp=='all') 

    { 

    if (r==1) 

    { 

    if (i==1) plot(dummy[,names(predictors)[i]], 

      curves,type="l",ylim=c(0,1),xlab=label[i],ylab=ylab, 

      lwd=lwd,col=col.curves,...) 

    else plot(dummy[,names(predictors)[i]], 

      curves,type="l",ylim=c(0,1),xlab=label[i],ylab="",lwd=lwd,col=col.curves,...) 
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    } 

    else lines(dummy[,names(predictors)[i]], 

      curves,lwd=lwd,col=col.curves,...) 

    } 

     

    # highlight extrapolation to novel environmental conditions 

    if (disp=='eo.mask') 

    { 

    novel=eo.mask(predictors,dummy) 

    curves.known=curves 

    curves.known[novel==1]=NA 

    curves.novel=curves 

    curves.novel[novel==0]=NA 

     

    if (r==1) 

    { 

    if (i==1) {plot(dummy[,names(predictors)[i]], 

      curves.known,type="l",ylim=c(0,1),xlab=label[i],ylab=ylab, 

      lwd=lwd.known,col=col.curves,...) 

      lines(dummy[,names(predictors)[i]], 

      curves.novel,lwd=lwd,col=col.novel,lty='dotted',...)} 

    else {plot(dummy[,names(predictors)[i]], 

      curves.known,type="l",ylim=c(0,1),xlab=label[i],ylab="",lwd=lwd.known,col=col.curves,...) 

      lines(dummy[,names(predictors)[i]], 

      curves.novel,lwd=lwd,col=col.novel,lty='dotted',...)} 

    } 

    else {lines(dummy[,names(predictors)[i]], 

      curves.known,lwd=lwd.known,col=col.curves,...) 

      lines(dummy[,names(predictors)[i]], 

      curves.novel,lwd=lwd,col=col.novel,lty='dotted',...)} 

    } 

    } 

     

    #------------------------------------------------- 

    # now, this is for overlaying mean response curve 

    if (overlay.mean==T) 

    { 

    dummy=predictors[1:len,] 

    dummy[,i]=seq(min(predictors[,i]),max(predictors[,i]),length=len) 

    for (j in 1:ncol(predictors)) 

      { 

      if (j!=i)  

        { 

        dummy[,j]=rep(mean(predictors[,j]),len) 

        } 

      } 

     

    if (is(object,"gbm")) curves<-predict.gbm(object, dummy,n.trees=object$gbm.call$best.trees, 

type="response") 

    else if (is(object,"glm")) curves<-predict(object, dummy, type="response") 

    else if (is(object,"randomForest")) curves<-predict(object,dummy) 

    else if (is(object,"tree")) curves<-predict(object,dummy) 

    else if (is(object,"list")) curves<-mars.predict(object, dummy)$prediction[[1]] 

    else if (is(object,"fda")) curves<-predict(object,dummy,type="post")[,2] 

    else if (is(object,"nnet")) curves<-predict(object,dummy,type="raw") 

    else {print("SDM class unknown");break} 

 

    lines(dummy[,names(predictors)[i]], 

      curves,lwd=lwd.mean,col=col.mean,...) 

    }     

  }} 

 



 Appendix D   

 

 139 

 

#-------------------------------------------------------------------------------  

# calculate environmental overlap mask 

# extension of MESS that was proposed by Elith et al. 2010 MethodsEcolEvol 1:330-342. 

 

eo.mask=function(traindata,newdata,nbin=5,type="EO") 

  { 

  # a bin size of one corresponds to MESS 

  # type 'EO' returns a vector of zeros and ones for analog(0) and novel(1) environments 

  # type 'ID' returns a character vector defining the combination of bins each data entry  

  # belongs to - this may help finding the problem maker parts of the prediction space 

   

  train.minima=apply(traindata,2,min) 

  train.maxima=apply(traindata,2,max) 

   

  train.ids=apply(apply(ceiling(apply(round( 

    sweep(sweep(traindata, 2, train.minima, "-"), 2, train.maxima - train.minima, "/")*nbin,4), 

    c(1,2),FUN=function(x){if(x==0)x=1 else x=x})), 

    c(1,2),FUN=function(x){if(x<1)x=0 else if(x>nbin)x=nbin+1 else x=x}),1,paste,collapse=".") 

   

  new.ids=apply(apply(ceiling(apply(round( 

    sweep(sweep(newdata[,names(train.minima)], 2, train.minima, "-"), 2, train.maxima - train.minima, 

"/")*nbin,4), 

    c(1,2),FUN=function(x){if(x==0)x=1 else x=x})), 

    c(1,2),FUN=function(x){if(x<1)x=0 else if(x>nbin)x=nbin+1 else x=x}),1,paste,collapse=".") 

     

  if (type=="ID") return(new.ids) 

  else if (type=="EO") return(sapply(new.ids%in%train.ids,FUN=function(x){if(x==T) x=0 else if(x==F)x=1}))     

  }   

 

#**************************************************************************** 

#**************************************************************************** 

#**************************************************************************** 

 

# global variables: 

minTemp=3 

maxTemp=13 

minWood=0 

maxWood=70 

 

#**************************************************************************** 

#assumed response surface (lrm) 

temperature<-seq(minTemp,maxTemp,length=25) 

woodland<-seq(minWood,maxWood,length=25) 

 

dat=data.frame(expand.grid(woodlandCover=woodland,temp=temperature)) 

response=inv.logit(-170+40*dat$temp-2.5*dat$temp^2+.35*dat$woodlandCover) 

windows() 

wireframe(response~dat$woodlandCover*dat$temp,, 

          scales=list(arrows=F,tck=.6,distance=.7,z=list(at=c(0,.5,1),labels=c("0.0","","1.0"),cex=2), 

          x=list(at=c(10,30,50,70),cex=2),y=list(cex=2),col="black"), 

          zlim=c(0,1),zlab=list('True response',rot=94,cex=2), 

          xlab=list("Woodland cover [%]",rot=33,cex=2),ylab=list("Temperature [°C]",rot=-26,cex=2), 

          par.settings = list(axis.line = list(col = "transparent")), screen=list(z=50,x=-70,y=0), 

          alpha.regions=.7) 

 

rm(list=c("woodland","temperature","dat","response")) 

 

#************************************************************************* 

#************************************************************************* 

#************************************************************************* 

# case 1: species niche entirely encompassed by data; 
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# training data + future 

CurrentTemperature=runif(1000,min=minTemp,max=maxTemp) 

woodlandCover=runif(1000,min=minWood,max=maxWood) 

occurrence=species(CurrentTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

train1=data.frame(occurrence,temp=CurrentTemperature,woodlandCover) 

plot(train1) 

cor(train1) 

 

FutureTemperature=CurrentTemperature+3 

occurrence=species(FutureTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

future1=data.frame(occurrence,temp=FutureTemperature,woodlandCover) 

 

# independent test data for current conditions 

CurrentTemperature=runif(1000,min=minTemp,max=maxTemp) 

woodlandCover=runif(1000,min=minWood,max=maxWood) 

occurrence=species(CurrentTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

test1=data.frame(occurrence,temp=CurrentTemperature,woodlandCover) 

 

#************************************* 

# fit models 

 

# generalised additive model 

gam1=gam(occurrence~s(temp)+s(woodlandCover),binomial,data=train1) 

# boosted regression tree 

brt1 <- gbm.step(data=train1,gbm.x = c(2:3),gbm.y = 1,family = "bernoulli", 

    tree.complexity = 1,learning.rate = 0.02,bag.fraction = 0.75) 

 

#**************************************************** 

# predictions under current conditions 

pred.gam=predict(gam1,newdata=test1,type="response") 

pred.brt=predict.gbm(brt1,newdata=test1,n.trees=brt1$gbm.call$best.trees, type="response") 

 

# plot fitted values 

windows() 

par(mfrow=c(2,2)) 

myplot(test1,pred.gam,main="GAM - current") 

myplot(test1,pred.brt,main="BRT - current") 

 

# plot response curves 

windows() 

par(mfrow=c(2,2)) 

inflated.response(gam1,train1[,2:3],main="GAM",method="stat6") 

inflated.response(brt1,train1[,2:3],main="BRT",method="stat6") 

 

#********************************** 

# projections into future 

pred.gam=predict(gam1,newdata=future1,type="response") 

pred.brt=predict.gbm(brt1,newdata=future1,n.trees=brt1$gbm.call$best.trees, type="response") 

 

# plot fitted values 

windows() 

par(mfrow=c(2,2)) 

myplot(future1,pred.gam,main="GAM - future") 

myplot(future1,pred.brt,main="BRT - future") 
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#***************************************************************************** 

#***************************************************************************** 

#***************************************************************************** 

# case 2: species niche truncated 

 

# training data + future 

CurrentTemperature=runif(1000,min=minTemp,max=maxTemp) 

woodlandCover=numeric(1000) 

# woodland occurs above 3°C and below 13°C with maximum woodland cover between 7 and 9°C 

woodlandCover[CurrentTemperature>3&CurrentTemperature<=7]= 

  sapply((CurrentTemperature[CurrentTemperature>3&CurrentTemperature<=7]-3)*maxWood/4, 

  function(x){runif(1,min=minWood,max=x)}) 

woodlandCover[CurrentTemperature>7&CurrentTemperature<9]= 

  

runif(length(woodlandCover[CurrentTemperature>7&CurrentTemperature<9]),min=minWood,max=maxWood) 

woodlandCover[CurrentTemperature>9&CurrentTemperature<13]= 

  sapply((13-CurrentTemperature[CurrentTemperature>9&CurrentTemperature<13])*maxWood/4, 

  function(x){runif(1,min=minWood,max=x)}) 

occurrence=species(CurrentTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

train2=data.frame(occurrence,temp=CurrentTemperature,woodlandCover) 

plot(train2) 

cor(train2) 

 

FutureTemperature=CurrentTemperature+3 

occurrence=species(FutureTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

future2=data.frame(occurrence,temp=FutureTemperature,woodlandCover) 

plot(future2) 

cor(future2) 

 

# test data current conditions 

CurrentTemperature=runif(1000,min=minTemp,max=maxTemp) 

woodlandCover=numeric(1000) 

woodlandCover[CurrentTemperature>3&CurrentTemperature<=7]= 

  sapply((CurrentTemperature[CurrentTemperature>3&CurrentTemperature<=7]-3)*maxWood/4, 

  function(x){runif(1,min=minWood,max=x)}) 

woodlandCover[CurrentTemperature>7&CurrentTemperature<9]= 

  

runif(length(woodlandCover[CurrentTemperature>7&CurrentTemperature<9]),min=minWood,max=maxWood) 

woodlandCover[CurrentTemperature>9&CurrentTemperature<13]= 

  sapply((13-CurrentTemperature[CurrentTemperature>9&CurrentTemperature<13])*maxWood/4, 

  function(x){runif(1,min=minWood,max=x)}) 

occurrence=species(CurrentTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

test2=data.frame(occurrence,temp=CurrentTemperature,woodlandCover) 

 

 

#*************************************** 

# fit models 

 

# generalised additive model 

gam2=gam(occurrence~s(temp)+s(woodlandCover),binomial,data=train2) 

# boosted regression tree 

brt2 <- gbm.step(data=train2,gbm.x = c(2:3),gbm.y = 1,family = "bernoulli", 

    tree.complexity = 1,learning.rate = 0.01,bag.fraction = 0.75)  

 

 

#********************************************* 

# predictions under current conditions 

pred.gam=predict(gam2,newdata=test2,type="response") 
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pred.brt=predict.gbm(brt2,newdata=test2,n.trees=brt2$gbm.call$best.trees, type="response") 

 

# plot fitted values 

windows() 

par(mfrow=c(2,2)) 

myplot(test2,pred.gam,main="GAM - current") 

myplot(test2,pred.brt,main="BRT - current") 

 

# plot response curves 

windows() 

par(mfrow=c(2,2)) 

inflated.response(gam2,train2[,2:3],main="GAM",method="stat6",disp='eo.mask') 

inflated.response(brt2,train2[,2:3],main="BRT",method="stat6",disp='eo.mask') 

 

#************************************************* 

# projections into future 

pred.gam=predict(gam2,newdata=future2,type="response") 

pred.brt=predict.gbm(brt2,newdata=future2,n.trees=brt2$gbm.call$best.trees, type="response") 

 

# plot fitted values 

windows() 

par(mfrow=c(2,2)) 

myplot(future2,pred.gam,main="GAM - future") 

myplot(future2,pred.brt,main="BRT - future") 

 

 

 

 

#**************************************************************************** 

#**************************************************************************** 

#**************************************************************************** 

# case 3: edge niche 

 

# training data + future 

CurrentTemperature=runif(1000,min=minTemp,max=maxTemp) 

woodlandCover=numeric(1000) 

woodlandCover[CurrentTemperature<10.5]= 

  runif(length(woodlandCover[CurrentTemperature<10.5]),min=minWood,max=maxWood) 

occurrence=species(CurrentTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

train3=data.frame(occurrence,temp=CurrentTemperature,woodlandCover) 

plot(train3) 

cor(train3) 

 

FutureTemperature=CurrentTemperature+3 

occurrence=species(FutureTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

future3=data.frame(occurrence,temp=FutureTemperature,woodlandCover) 

plot(future3) 

cor(future3) 

 

# test data current conditions 

CurrentTemperature=runif(1000,min=minTemp,max=maxTemp) 

woodlandCover=numeric(1000) 

woodlandCover[CurrentTemperature<10.5]= 

  runif(length(woodlandCover[CurrentTemperature<10.5]),min=minWood,max=maxWood) 

occurrence=species(CurrentTemperature,woodlandCover) 

occurrence<-sapply(occurrence,function(x){rbinom(1,1,x)}) 

test3=data.frame(occurrence,temp=CurrentTemperature,woodlandCover) 

 

 

#*************************************** 
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# fit models 

 

# generalised additive model 

gam3=gam(occurrence~s(temp)+s(woodlandCover),binomial,data=train3) 

# boosted regression tree 

brt3 <- gbm.step(data=train3, gbm.x = c(2:3), gbm.y = 1, family = "bernoulli", 

    tree.complexity = 1, learning.rate = 0.02, bag.fraction = 0.75) 

 

#********************************************* 

# predictions under current conditions 

pred.gam=predict(gam3,newdata=test3,type="response") 

pred.brt=predict.gbm(brt3,newdata=test3,n.trees=brt3$gbm.call$best.trees, type="response") 

 

# plot fitted values 

windows() 

par(mfrow=c(2,2)) 

myplot(test3,pred.gam,main="GAM - current") 

myplot(test3,pred.brt,main="BRT - current") 

 

# plot response curves 

windows() 

par(mfrow=c(2,2)) 

inflated.response(gam3,train3[,2:3],main="GAM",method="stat6",disp='eo.mask') 

inflated.response(brt3,train3[,2:3],main="BRT",method="stat6",disp='eo.mask') 

 

#************************************************* 

# projections into future 

pred.gam=predict(gam3,newdata=future3,type="response") 

pred.brt=predict.gbm(brt3,newdata=future3,n.trees=brt3$gbm.call$best.trees, type="response") 

 

# plot fitted values 

windows() 

par(mfrow=c(2,2)) 

myplot(future3,pred.gam,main="GLM - future") 

myplot(future3,pred.brt,main="BRT - future") 

 

D.2 Details for simulated data example 

We simulated a virtual species (Zurell et al. 2010, chapter 2) from a logistic regression model 

with two environmental variables, temperature and woodland cover. The virtual species 

showed a unimodal response to temperature and a linear positive response to percent 

woodland cover, in an additive model (cf. Fig. 5.2a): 
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Three species were created whose niches were differently covered by data representing the 

situations of Fig. 5.1. (1) The niche of species 1 was entirely represented by data. 

Temperature and percent woodland cover at site i were drawn from uniform distributions 

between their minimum and maximum values (Fig. D.1). (2) The niche of species 2 was 

truncated meaning that no samples existed for parts of the environmental niche of the species. 

Here, we assumed that high percent woodland cover would only occur within a specific 

temperature range (7-9 °C) and would linearly decline towards extreme temperatures (Fig. 

5.2). (3) The niche of species 3 coincided with the edge of the sampled environmental space. 

In this case, we assumed zero percent woodland cover for all sites i with temperatures >10.5 

°C (Fig. D.3). Significant correlations between environmental variables were only found for 

species 3 ( 46.0 ). For all three cases, climate warming was simulated by increasing the 

temperature values of sites i in the training data by +3 °C. The entire code necessary to repeat 

the simulated data example is contained in Appendix D.1.  

 

 

Figure D.1.  Response surfaces for simulated species 1 whose niche is entirely encompassed within sample 

space. Both methods, GAM (left) and BRT (right), show congruent model behaviour.  
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Figure D.2.  Fitted values for simulated species 2 with truncated niche. Panels show the fitted values of 

GAM (a-b, e-f) and BRT (c-d, g-h) plotted along temperature gradient (left) and woodland cover gradient 

(right) for predictions to current environment (a-d) and for predictions under climate warming (+3 °C; e-

h). Grey lines depict true response of species 2.  

 

 

Figure D.3. Response surfaces for simulated species 3 whose niche edge coincides with edge of sample 

space. BRT (right) shows erroneous extrapolation behaviour in those parts of the environment space 

where no samples exist beyond the species niche edge. 
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D.3 Method descriptions for visualisation tools 

Here, we describe the environmental overlap masks and inflated response curves in more 

details. Respective R codes are contained in Appendix D.1.  

 

Environmental overlap mask 

Function call: eo.mask( ) 

Description: The environmental overlap mask is an extension of MaxEnt’s multivariate 

environmental similarity surface (MESS) maps (Elith et al., 2010). The latter are BIOCLIM-

style estimates that take the full gradients of the environmental variables that are covered by 

data, extend these into a hyper-dimensional rectangle and define all environmental conditions 

outside that rectangle or box as novel conditions. We could think of these boxes as ‘implied 

sample space’ because they pretend that all possible combinations of environmental variables 

within the box are represented in the sample data which may not be the case (Fig. 5.1). Now, 

the environmental overlap mask splits these hyper-dimensional rectangles or boxes into 

smaller bins. Then, it compares the bins in the test or prediction data set to the bins in the 

training data and defines all non-overlapping bins as novel environmental conditions. Thus, 

depending on the number of bins the box is split into, the environmental overlap mask will 

also allow identifying those parts of the box that are within the sampled ranges of each 

predictor variable treated individually but are nevertheless outside the sample space. Note that 

a bin number of one equates to the border that distinguishes novel space (negative values) in 

MESS maps.  

Arguments: eo.mask( ) takes four arguments, two of which are obligatory.  

- traindata must be a data.frame (obligatory) 

- newdata must be a data.frame (obligatory) 

- nbin determines the number of bins the environmental gradients are split into 

(default nbin=5). Thereby, nbin refers to the number of bins each univariate 

predictor is split into. The actual number of bins is then nbin
n
 where n is the 

number of predictors. 

- type defines the output. This could either be a vector of length nrow(newdata) 

containing for each entry in newdata zeros for analogue environments and ones for 

novel environments (type=’EO’, the default) or a character vector returning for 

each entry in newdata a unique identifier for the bin the data point belongs to 

(type=’ID’). The latter may help distinguishing data entries from sample space, 

‘implied sample space’ or novel space beyond that.  
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Required R packages: base.  

 

Inflated response curves 

Function call: inflated.response( ) 

Description: Inflated response curves are an abstracted 2D version of multidimensional 

response surfaces that help to visualise the combined effects of all variables in the model over 

their full range. They show the effect of a variable on the response while accounting not only 

for the average effects of the other variables but also for minimum and maximum (and 

median and quartile) values. Thus, the response plot for any one variable consists of many 

response curves representing all possible combinations of all other variables in the model. 

Because the number of combinations grows exponentially with the number of variables and 

restricts computational feasibility, we use Latin hypercube sampling to reduce dimensionality 

for large numbers of variables. This is simply a means to efficiently sample a representative 

subset from all possible combinations of environmental predictors (Carnell, 2009). Note that 

due to stochasticity different replicates of inflated response plots may differ depending on the 

number of variables and the Latin hypercube sample size.  

Arguments: inflated.response( ) takes 17 arguments, two of which are obligatory.  

- object denotes the model object for which response plots are desired, e.g. a GAM 

model (obligatory) 

- predictors is as data.frame containing the predictor variables of object (usually the 

training data) (obligatory) 

- select.columns allows to determine a subset of predictors for which inflated response 

plots are to be drawn (defaults to NULL meaning that one plot is made for each 

column of predictors) 

- label can be a character vector of names used to label the x axes of the plots (defaults 

to NULL meaning that column names of predictors are used for labelling) 

- ylab takes a character string for labelling the y axis (defaults to ‘Occurrence 

probabilities’).  

- len determines the number of data points used to draw the response curves (defaults to  

50) 

- lhsample determines the number of Latin hypercube samples (defaults to 100 meaning 

that 100 LH samples are drawn if more than 100 combinations of environmental 

predictor values exist) 
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- method determines the summary statistics that are used to characterise the predictors. 

‘mean’ corresponds to conventional partial dependence plots. ‘stat3’ (the default) 

considers mean, minimum and maximum values of predictors. ‘stat6’ considers min, 

mean, median, max and quartiles. Thus, 3
n-1

 combinations of environmental predictor 

values exist for ‘stat3’ and 6
n-1

 for ‘stat6’ where n is the number of predictors in 

object.  

- disp can take options ‘all’ (the default) or ‘eo.mask’. In the latter case, eo.mask( ) is 

used to mask all combinations outside the sample space as novel conditions. These 

parts of the response curves can then be displayed differently.  

- overlay.mean takes a Boolean value determining whether the mean response should be 

overlayed over the inflated response curves (defaults to ‘True’) 

- col.curves (defaults to ‘grey’), col.novel (defaults to ‘grey’), col.mean (defaults to 

‘black’) are graphic parameters determining the color of the response curves, those 

parts of the curves that are identified as novel by eo.mask( ), and the overlayed mean 

response curve.  

- lwd (defaults to 1), lwd.mean (defaults to 2), lwd.known (defaults to 2) are graphic 

parameters. If disp=’all’ then lwd determines the line width of all curves. If 

disp=’eo.mask’ then lwd determines the line width of the novel parts and lwd.known 

the line width for those predictor combinations present in the sample space. lwd.mean 

determines the line width of the overlayed mean response curve.  

- ylim sets the y axis limits (defaults to c(0,1)) 

Required R packages: base, lhs (Latin Hypercube Sample package), any packages relating to 

specific SDM methods one wants to include (e.g. gam or gbm library), additional code for 

eo.mask( ). 

D.4 Swiss black grouse example 

A case study for Swiss black grouse was developed in Zurell et al. (2011; chapter 4) and we 

here give only a very brief description of the species and data. In the Swiss Alps, black grouse 

(Tetrao tetrix) mainly occur in treeline habitats at altitudes of up to 2500 m above sea level. 

Species distribution data at 1 km resolution were obtained from the Swiss Breeding Bird Atlas 

(Schmid et al. 1998). Environmental predictors included climatic variables as well as land use 

and vegetation data at 1 km resolution. These were pre-selected so that bivariate Spearman 

correlations were below |r|=0.7. Climate data were derived from the BIOCLIM database 

(Swiss Federal Research Institute WSL). We here used only the most important climatic 
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predictors, namely mean annual temperature, potential solar radiation in summer months 

(June-August) and winter precipitation (sums December-February). Land use and vegetation 

data were compiled from the land use and land cover database GEOSTAT (Swiss Federal 

Statistical Office). From these, we chose the three most important predictors namely 

percentage cover of scattered forest, bushy forest and grassland (Fig. D.4). For illustrative 

purposes, we chose a rather extreme climate change scenario from the HadCM3 global 

circulation model which corresponded to the socio-economic scenario A1F1 for the year 2100 

downscaled to a 1 km resolution (Swiss Federal Research Institute WSL). For this scenario, 

mean annual temperature increased by +7.7 °C and winter precipitation increased by +48 mm 

on average.  

 

Figure D.4. Scatterplots of black grouse presences (dark grey) and absences (light grey) along 

environmental gradients. Although the single environmental predictors cover large gradients, only 

portions of all possible combinations were present in the sample. 
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Figure D.5. Inflated response curves for GAM along the sampled environmental gradients. Bold black 

lines show the mean effects as provided by conventional partial dependence plots. Light grey lines and 

dotted dark grey lines depict predictor effects over the full range of the other predictors (minimum, 

maximum, median, mean and quartiles). Light grey lines indicate combinations of environmental 

predictors that were observed in the sample space while dotted dark grey lines indicate extrapolations to 

novel, unsampled combinations. The plots represent n=150 Latin hypercube samples from all possible 

combinations of environmental predictors.  

 

 

Figure D.6. Inflated response curves for BRT along the sampled environmental gradients. Bold black lines 

show the mean effects as provided by conventional partial dependence plots. Light grey lines and dotted 

dark grey lines depict predictor effects over the full range of the other predictors (minimum, maximum, 

median, mean and quartiles). Light grey lines indicate combinations of environmental predictors that 

were observed in the sample space while dotted dark grey lines indicate extrapolations to novel, 

unsampled combinations. The plots represent n=150 Latin hypercube samples from all possible 

combinations of environmental predictors. 
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Figure D.7. Predictions for Swiss black grouse. Panels show the fitted values of GAM (a, c) and BRT (b, d) 

plotted along the environmental gradients for predictions to current environment (a-b) and for 

predictions to climate change scenario for the year 2100 (A1F1 scenario from HadCM3 with average 

temperature increase of 7.7 °C and average precipitation increase of 48 mm for Switzerland). While fitted 

values are largely congruent for current predictions (a-b), we see marked differences in fitted values for 

the climate change scenario (c-d) most noticeably in the temperature and forest predictors. While GAM 

predicts low occurrence probabilities for high temperatures (c) as is also suggested by current fits (a) and 

which could imply a physiological limit to temperature, BRT predicts high occurrence probabilities even 

for high temperatures (d). 
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