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Summary

Summary

Species respond to environmental change by dynamically adjusting their geographical ranges.
Robust predictions of these changes are prerequisites to inform dynamic and sustainable
conservation strategies. Correlative species distribution models (SDMs) relate species’
occurrence records to prevailing environmental factors to describe the environmental niche.
They have been widely applied in global change context as they have comparably low data
requirements and allow for rapid assessments of potential future species’ distributions.
However, due to their static nature, transient responses to environmental change are
essentially ignored in SDMs. Furthermore, neither dispersal nor demographic processes and
biotic interactions are explicitly incorporated. Therefore, it has often been suggested to link
statistical and mechanistic modelling approaches in order to make more realistic predictions
of species’ distributions for scenarios of environmental change.

In this thesis, I present two different ways of such linkage. (i) Mechanistic modelling can act
as virtual playground for testing statistical models and allows extensive exploration of
specific questions. I promote this ‘virtual ecologist’ approach as a powerful evaluation
framework for testing sampling protocols, analyses and modelling tools. Also, I employ such
an approach to systematically assess the effects of transient dynamics and ecological
properties and processes on the prediction accuracy of SDMs for climate change projections.
That way, relevant mechanisms are identified that shape the species’ response to altered
environmental conditions and which should hence be considered when trying to project
species’ distribution through time. (i1) I supplement SDM projections of potential future
habitat for black grouse in Switzerland with an individual-based population model. By
explicitly considering complex interactions between habitat availability and demographic
processes, this allows for a more direct assessment of expected population response to
environmental change and associated extinction risks. However, predictions were highly
variable across simulations emphasising the need for principal evaluation tools like sensitivity
analysis to assess uncertainty and robustness in dynamic range predictions. Furthermore, I
identify data coverage of the environmental niche as a likely cause for contrasted range
predictions between SDM algorithms. SDMs may fail to make reliable predictions for
truncated and edge niches, meaning that portions of the niche are not represented in the data

or niche edges coincide with data limits.



Summary

Overall, my thesis contributes to an improved understanding of uncertainty factors in
predictions of range dynamics and presents ways how to deal with these. Finally I provide
preliminary guidelines for predictive modelling of dynamic species’ response to
environmental change, identify key challenges for future research and discuss emerging

developments.
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Zusammenfassung

Zusammenfassung

Das Vorkommen von Arten wird zunehmend bedroht durch Klima- und
Landnutzungswandel. Robuste Vorhersagen der damit verbundenen Arealverdnderungen sind
ausschlaggebend fiir die Erarbeitung dynamischer und nachhaltiger Naturschutzstrategien.
Habitateignungsmodelle erstellen statistische Zusammenhinge zwischen dem Vorkommen
einer Art und relevanten Umweltvariablen und erlauben ziigige Einschédtzungen potentieller
Arealverdnderungen. Dabei werden jedoch transiente Dynamiken weitgehend ignoriert sowie
demographische Prozesse und biotische Interaktionen. Daher wurden Vorschldge laut, diese
statistischen Modelle mit mechanistischeren Ansétzen zu koppeln. In der vorliegenden Arbeit
zeige ich zwei verschiedene Mdglichkeiten solcher Kopplung auf. (i) Ich beschreibe den
sogenannten ,Virtuellen Okologen’-Ansatz als michtiges Validierungswerkzeug, in dem
mechanistische Modelle virtuelle Testflichen bieten zur Erforschung verschiedener
Probenahmedesigns oder statistischer Methoden sowie spezifischer Fragestellungen. Auch
verwende ich diesen Ansatz, um systematisch zu untersuchen wie sich transiente Dynamiken
sowie Arteigenschaften und Okologische Prozesse auf die Vorhersagegiite von
Habitateignungsmodellen auswirken. So kann ich entscheidende Prozesse identifizieren
welche in zukiinftigen Modellen Beriicksichtigung finden sollten. (ii) Darauf aufbauend
koppele ich Vorhersagen von Habitateignungsmodellen mit einem individuen-basierten
Populationsmodell, um die Entwicklung des Schweizer Birkhuhnbestandes unter
Klimawandel vorherzusagen. Durch die explizite Beriicksichtigung der Wechselwirkungen
zwischen Habitat und demographischer Prozesse lassen sich direktere Aussagen {iiber
Populationsentwicklung und damit verbundener Extinktionsrisiken treffen. Allerdings fithren
verschiedene Simulationen auch zu hoher Variabilitdt zwischen Vorhersagen, was die
Bedeutung von Sensitivitdtsanalysen unterstreicht, um Unsicherheiten und Robustheit von
Vorhersagen einzuschitzen. Auflerdem identifiziere ich Restriktionen in der Datenabdeckung
des Umweltraumes als moglichen Grund fiir kontrastierende Vorhersagen verschiedener
Habitateignungsmodelle. Wenn die Nische einer Art nicht vollstindig durch Daten
beschrieben ist, kann dies zu unrealistischen Vorhersagen der Art-Habitat-Beziehung fiihren.
Insgesamt tragt meine Arbeit erheblich bei zu einem besseren Verstindnis der Auswirkung
verschiedenster Unsicherheitsfaktoren auf Vorhersagen von Arealverdnderungen und zeigt
Wege auf, mit diesen umzugehen. AbschlieBend erstelle ich einen vorldufigen Leitfaden fiir

Vorhersagemodelle und identifiziere Kernpunkte fiir weitere Forschung auf diesem Gebiet.
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1 General Introduction




- Chapter 1 - Motivation and objectives

1.1 Motivation and objectives

Why does a species occur in a particular place on Earth or why does it not occur? This
fascinating question central to the discipline of biogeography has a long-standing history and
inspired many important naturalists, such as Alexander von Humboldt and Charles R. Darwin,
to seek explanations or even develop more general theories of the diversity of life.
Biodiversity is not evenly distributed across our planet but species’ distributions are
fundamentally constrained by physiological tolerances to environmental conditions. If
environmental conditions change beyond the species’ tolerances, then species may respond by
range shifts, phenology shifts, (genetic and/or behavioural) adaptation or (local) extinction
(Parry et al. 2007). Community-level changes are likely to follow these species-level changes
and may include changing biotic interactions and changing species compositions. Already at
the end of the 19™ century, famous biogeographer Alfred R. Wallace warned about the
impacts human activities such as deforestation can have on ecosystems and, through complex
interactions, also on the climate system (Wallace 1878). Over the last centuries, virtually all
of Earth’s ecosystems have experienced significant transformations caused by human actions
(MEA 2005). Today, the most critical direct drivers causing ecosystem changes are habitat
change, climate change, invasive species, overexploitation, and pollution (Sala et al. 2000).
While land use change and pollution are currently the most important drivers of biodiversity
change in terrestrial ecosystems, the impact of climate change is expected to rapidly increase
during the 21 century (Pereira et al. 2010). This is alarming because climate change is
probably the most pervasive threat to Earth’s biodiversity as it has the potential to influence
all ecosystems, including those that are far from human populations and development and are
still classified as wilderness (MEA 2005). Evidence is accumulating that recent anthropogenic
change in climate, especially warmer regional temperatures, have already affected
biodiversity in many parts of the world. Species’ responses included changes in geographic
distributions, population sizes and community structures (Thomas et al. 2001, Walther et al.
2002, Parmesan and Yohe 2003), timing of reproduction and migration (Menzel and Fabian
1999, Visser and Both 2005, Both et al. 2009) as well as an increase in the frequency of
epidemic diseases (Harvell et al. 2002, Pounds et al. 2006, Bosch et al. 2007). With growing
concern about irrevocable species loss, predictive modelling of species’ distributions has
become an increasingly important tool in climate change research and conservation
biogeography. Projections facilitate better understanding of possible environmental change
impacts which, in turn, is essential for management actions and policy aimed at mitigating

negative impacts. Therefore, a growing number of modelling studies has attempted to project
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- Chapter 1 - Motivation and objectives

21% century species extinctions for scenarios of environmental change (e.g. Thomas et al.
2004, Malcolm et al. 2006, van Vuuren et al. 2006, Jetz et al. 2007) and more studies are
constantly appearing.

Generally, projections of future species’ distributions can build on models ranging from
purely statistical models to complex mechanistic models. These two types of models can be
thought of as alternative ends on a trade-off gradient between precision and generality (Levins
1966, Sharpe 1990), or between specificity and transferability, although, in practice, many
models exist with components of both types. Mechanistic models are powerful in modelling
spatiotemporal population responses to environmental change as, by definition, they are
grounded in mechanistic understanding of underlying processes. However, they are highly
data demanding, usually involve more complex model structures and, thus, rely on extensive
knowledge on species’ biology and population processes. This information is not readily
available for the majority of species, thus limiting the general use of mechanistic models in
conservation biogeography and biodiversity assessment. Statistical species distribution
models (SDMs) are an alternative approach that fit the environmental niche of a species by
relating species’ occurrence records to environmental characteristics (Guisan and
Zimmermann 2000, Guisan and Thuiller 2005). Here, future projections of species’
distributions do not depend on profound prior knowledge on the species (although, in my
perception, the fitted relationships should be consistent with fundamental theory). SDMs are
less complex and less ‘data hungry’, and currently remain one of few practical approaches for
assessing the impact of projected climate change on a wide range of species (Huntley et al.
2004, Guisan and Thuiller 2005, Elith and Leathwick 2009). Nevertheless, it has to be
acknowledged that SDMs are not designed for extrapolation under climate change because
this widely stresses key assumptions of SDMs: that species are at equilibrium with their
environment (ignoring transient dynamics, dispersal capacity and pathways, persistence); that
all environmental factors limiting species’ distribution are included in the model and that
these environmental gradients have been adequately sampled; that biotic interactions will be
the same under extrapolated conditions; that genetic variability, phenotypic plasticity and
adaptive mechanisms are negligible (Austin 2002, Dormann 2007, Elith and Leathwick
2009). Further, different algorithms, each with their own specific assumptions, have partially
led to controversial projections (Thuiller 2004, Pearson et al. 2006, Buisson et al. 2010), and
validation of model predictions under climate change is challenging and rarely done (Aratjo
et al. 2005, Franklin 2010). As future is unknown, ecological models are often validated with

data gathered in present conditions (e.g. validation with ‘space for time’ substitutes). But this
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way, we implicitly assume that prediction accuracy in the case of present climate guarantees
realism of the model and thus prediction accuracy in the case of changing climatic conditions
as well which may not necessarily be the case (Hanninen 1995, Hampe 2004, Elith et al.
2010).

Several authors have proposed to link or supplement the statistical modelling approaches by
more mechanistic models in order to improve the realism of key assumptions presumably
leading to more robust model projections (Guisan and Thuiller 2005, Aratjo and Guisan
2006, Thuiller et al. 2008). In this context, with mechanistic models researchers mostly mean
process-oriented, dynamic population models that simulate demographic processes and are
able to describe non-equilibrium dynamics explicitly by incorporating modifying mechanisms
such as migration limitations, source-sink dynamics, evolutionary changes, or species
interactions. Guisan and Thuiller (2005) identified two major avenues for linking SDMs and
dynamic population models that may lead to improved biodiversity forecasts: (1) SDMs may
be improved by incorporating theoretical information from population dynamics. For
instance, knowledge about inherent stochasticity in a system exhibiting source-sink dynamics
may help to determine the maximum amount of deviance that can possibly be explained by
SDMs. (2) SDMs can lend support to population studies. For example, in spatially explicit
metapopulation models SDMs may aid the definition of patches by providing maps of habitat
suitability for given environmental conditions. In fact, the latter approach has repeatedly been
employed by researchers over the last two decades, and more recently, has also been utilised
in climate change research (for an overview see Franklin 2010). Here, SDMs are used to
project habitat suitability for scenarios of climate change. Then, time series of habitat
suitability maps are fed into spatially explicit stochastic population models. Recent
applications of this approach promised better understanding of species’ vulnerability and of
non-linear responses to environmental change, and insights of how these responses may be
mediated by interactions with other processes such as disturbance regimes (Keith et al. 2008,
Anderson et al. 2009, Brook et al. 2009, Cheung et al. 2009).

With this thesis, I want to add some more aspects to this discussion. First of all, I want to add
a third point to the above list how SDMs and more mechanistic, dynamic modelling
components may be linked to improve forecasts: Mechanistic models may serve as virtual
playground for thoroughly validating statistical methods in a ‘virtual ecologist’ approach.
Here, we essentially imitate the entire process of ecological analysis and modelling by
simulating ecosystems and species therein as well as observer behaviour and subsequent data

processing. As we have full control over this ‘virtual world’ and full access to all information
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created therein, in contrast to reality, we are able to draw strong conclusions about sampling
methods and about (statistical) modelling methods used for interpretation and prediction. In
SDM context, this allows rigorous evaluation of all steps in the model building strategy such
as the choice of appropriate sampling designs or model algorithms for a given purpose. But
what is much more appealing and particularly relevant to climate change research, such a
virtual ecologist approach allows direct evaluation of SDM predictions under transient
dynamics and other complicating ecological processes. Part of this thesis is aimed at
promoting this virtual ecologist approach and its manifold applications (chapter 2). Thereby, I
do not only critically discuss its capabilities and relevance for various ecological disciplines
but I also demonstrate how it may foster the integration of theoretical and empirical work, and
outline possible future applications that I find especially promising. This review is
complimented by a case study in which I utilise such a virtual ecologist approach to explore
the applicability of SDMs for making predictions under changing climatic conditions (chapter
3). To this end, I present a spatially explicit, multi-species dynamic population model
incorporating species-specific and interspecific ecological processes, environmental
stochasticity, and climate change. The effects of transient dynamics and ecological properties
and processes as well as the effect of different algorithms on SDM prediction accuracy are
explicitly investigated in a full factorial design. That way, relevant mechanisms are identified
that shape the species’ response to altered environmental conditions and which should hence
be considered when trying to project potential species’ distribution through time. In
subsequent chapter 4, I am asking whether incorporating these processes into our models will
really render predictions more robust or whether consideration of these processes may not, at
the same time, introduce immense additional uncertainty. I explore this question in a case
study for black grouse (7etrao tetrix) in Switzerland. Predictions of climate-induced range
dynamics are made by linking models of habitat suitability and spatially explicit population
dynamics similar to the approaches described above (Keith et al. 2008, Anderson et al. 2009).
Then, in an extensive sensitivity analysis, I apportion variation in key model outputs
(population size, probability of extinction, elevational range, and mean population centre) to
different sources of uncertainty: statistical methods (SDM algorithms), dynamic population
model parameters, regional circulation models and emission scenarios. Thereby, I
demonstrate both the merits but also the weaknesses of such an integrated approach. On the
one hand, it allows for a more direct assessment of expected population response to
environmental change and associated extinction risks as we can study the complex interplay

between habitat availability and demographic processes explicitly. On the other hand, both
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quantitative and qualitative predictions of range and population dynamics may be highly
variable. This underscores the necessity of sensitivity analysis in dynamic range predictions
because robustness can never be a model property per se but needs to be assessed contingent
on explicit simulation runs. Additionally, I outline important challenges that remain with this
type of species vulnerability assessment. For example, one recurrent issue here is why
predictions made by different SDM algorithms differ. In chapter 5 of this thesis, I again
employ simulated data to explore this question and identify data coverage of the species
environmental niche to be a crucial factor. Different SDM algorithms may in fact perform and
predict equally well if the entire niche is encompassed by data. However, SDM algorithms
may fail to make reliable predictions if the niche is truncated, meaning that portions of the
niche are not represented in the data, or if the niche edge coincides with data limit. Thus,
SDMs will need to extrapolate the full shape of the environmental niche and different
algorithms will assume different shapes. This will pose a problem to subsequent predictions,
if these unobserved portions of the niche get unclosed following environmental change. In my
concluding chapter (chapter 6), I summarise the key results of this thesis and put these into
broader context. I provide general conclusions regarding range predictions and coupled model
systems; identify other complicating factors in climate change research and conservation
biogeography, and outline emerging developments and future directions. But first of all, in the
remaining part of this chapter, I spend a few more words to introduce the reader to the
concepts of statistical and mechanistic models of species distributions and the hybrids

between them.

1.2 State of the art

This thesis covers a broad range of ecological model types. Because I suspect many readers to
have expertise knowledge in one particular field rather than in all model types, I will shortly
summarise important properties of the different modelling philosophies. Thereby, 1 will
indicate where these model types appear in subsequent chapters. Note, that this is not a
comprehensive review of available biodiversity models (Pereira et al. 2010), but rather I want
to provide a short overview of available models to make spatial predictions of environmental

change response at the species level for large scales.

1.2.1 Correlative species distribution models

As the main focus of this thesis is on correlative species distribution models (SDMs) they
have earned especial attention here. Thereby, I define species distribution models (SDMs) as

phenomenological (statistical, correlative) models that relate species location data (presences,
6
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presence/absences or abundances) to environmental variables to describe the environmental
conditions within which a species occurs. These models are aimed at understanding and
explaining the species-environment relationship and/or aimed at predicting the potential
distribution. Rather than reiterating what is already said about species distribution models in
general, I want to refer the reader to some comprehensive reviews about SDMs in the
literature, for example Guisan and Zimmermann (2000), Guisan and Thuiller (2005),
Schroder (2008a) as well as Elith and Leathwick (2009). Here, I will confine myself to
summarising theoretical underpinnings that I find central to understanding SDMs and possible
problems and limitations in global change context. Note that the following overview does not
present a critical discussion but is simply a summary of current practice and believes. Thus
when stating that things should be done in specific ways this merely means that this is
currently regarded as good scientific practice. I will supply more critical views and add my
own voice to this subject in subsequent chapters, and I will provide a critical synopsis in

chapter 6.

1.2.1.1 Theoretical framework

Numerous synonyms for the term species distribution model exist including ecological niche
model, habitat suitability model, resource selection function, or environmental envelope
model among others (Elith and Leathwick 2009). Despite smaller differences in emphasis and
meaning, all these models have similar theoretical concepts and essentially follow the same
basic modelling process. Although the term species distribution modelling is now (maybe the
most) widespread, and I will use it throughout this thesis, SDMs do not actually model the
species’ distribution per se as the name might imply but rather the distribution of suitable
habitat (Pearson 2007). The outputs of SDMs are habitat suitability maps.

SDMs aim at describing the species’ range limits in geographic space by identifying the
environmental space that is physiologically suitable for the species, the environmental niche
(Hutchinson 1957). Predictions of potential distributions are made by projecting the
environmental niche back onto geographic space, either to current environmental conditions
or to selected scenarios of environmental change (Fig. 1.1). We can envision environmental
space as an n-dimensional conceptual space that is defined by the environmental factors to
which the species responds. Thereby, we need to appreciate that environmental variables
included in SDMs are likely to represent only a subset of all possible dimensions of the
environmental niche. Moreover, different dimensions may be important at different spatial
scales, often resulting in a hierarchical structure (Mackey and Lindenmayer 2001, Guisan and

Thuiller 2005). Generally, it is desirable to include only causal, functionally relevant
7
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environmental variables that exert direct effects on species and that constitute limiting factors
or resources to the species or describe disturbances (Austin 2002). Only models that are
consistent with fundamental theory are likely to be robust and facilitate understanding of

underlying processes.

Sampling Annual temperature
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modelling
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Figure 1.1. Schema of predictive species distribution modelling. Species’ distributional data (e.g. presence-
absence data of black grouse in Switzerland) and a suite of environmental variables (e.g. climatic such as
annual temperature [°C| or land use such as grassland cover [%]) are sampled in geographic space
according to underlying hypotheses regarding species’ ecology. Statistical models (e.g. generalised linear
model) are used to characterise the environmental space within which the species occurs. Current and
future potential distribution are modelled by projecting the environmental niche back onto geographic
space, either to current environmental conditions or to selected environmental change scenarios. The
predictive power of the species distribution model should ideally be evaluated against independent test

data.

Guisan and Thuiller (2005) identify six important steps in the model-building procedure:
conceptualisation, data preparation, model fitting, model evaluation, spatial predictions, and
assessment of model applicability. Although, or maybe because, recent years have seen an
upsurge of available methods and rapid improvements of existing ones, both assisted by the
spread of easy computation, integration with ecological theory often remains insufficient
(Austin 2002, Huston 2002, Guisan and Thuiller 2005). That means that we generally like to

regard descriptive, empirical models as black boxes that take any input and produce some

8
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system output (in our case potential distribution of habitat) without explicitly considering the
driving processes. Easy to use software packages of recent years may well have fuelled this
way of thinking as they allow automated modelling of multiple species simultaneously
including automatic selection of predictors out of hundreds of possible input variables (‘data
mining’), automatic decisions about the species’ response shape to those predictors etc. In
contrast ‘out in the fields’, I dare say, an ecologist will never regard species’ behaviour and
distribution as black box response but will formulate hypotheses about the species under
study and build a conceptual model in his mind which can and should be compared to
computational outputs. Such systematic consideration of ecological theory at each model-
building step will greatly improve our models’ realism. For example, this may involve the
selection of most causal environmental predictors, the choice of ecologically realistic
response curves for each predictor, determination of restricted set of competing models in
multi-model inference or in ensemble framework, discussion of likely causes and cost of
prediction errors as well as validity assessment of underlying model assumptions when

projecting into the future (for more examples see Table 2 in Guisan and Thuiller 2005).

1.2.1.2 Extrapolation and robustness

While in their beginnings, SDMs were primarily used as explanatory models, nowadays, they
are increasingly used for making predictions to new times and places (Mac Nally 2000, Elith
and Leathwick 2009). Generally, when transferring a model in time and space, the model
needs to extrapolate beyond environmental conditions it was calibrated on. The crux is that
SDMs are not intended for extrapolation, especially not for extrapolation under environmental
change. Foremost, SDMs assume that species are in pseudo-equilibrium with their
environment (Guisan and Theurillat 2000) which brings out two problems for extrapolation.
On the one hand, species may not be in equilibrium with environment (Leathwick 1998). For
example, Svenning and Skov (2004) measured low range filling for many European tree
species suggesting that many present-day species’ ranges may still be controlled by post-
glacial dispersal limitations. On the other hand, when extrapolating, we implicitly assume an
instantaneous realisation of a new equilibrium situation essentially ignoring transient
dynamics. But of course, if suitable habitat is predicted to shift for about 100 km, then the
species will first have to migrate into the newly available habitat and then will have to
establish a viable population there (Thuiller and Miinkemiiller 2010). In most projections,
species’ migration abilities are inappropriately taken into consideration corresponding to two
extreme assumptions, namely ‘null’ (zero) or ‘full’ (unlimited and instantaneous) migration

(e.g. Thomas et al. 2004, Thuiller 2004). Furthermore, the limiting environmental factors may
9
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differ throughout a species’ geographic range and trends may not be valid beyond the
calibrated environmental range (Dormann 2007). Also, limiting factors may change
substantially in environmental change context as do biotic interactions because of different
migration rates, different food resources, and different competitors among others (Davis et a.
1998). And most probably, species’ long-term response will be influenced by genetic
variability, phenotypic plasticity and evolutionary changes (Elith and Leathwick 2009).
Summarising, we need to be aware that we make numerous assumptions on the way when
extrapolating and we should, thus, be careful not to put faith in our projections too
lightheartedly (Dormann 2007). In contrast, we should constantly scrutinise not only our
model-building steps as explained above but also our predictions in order to reduce or expose
errors (Elith and Leathwick 2009). This may involve quantifying differences between
sampled environmental space and prediction space (Elith et al. 2010; also see chapter 5),
employing multiple models and reducing error by consensus (e.g. in ensemble framework,
Aratjo and New 2007; for application see chapter 4) or discovering why predictions differ
(Elith and Graham 2009; also see chapter 5).

In order to assess the robustness and reliability of predictions we need to evaluate predictive
ability of our models (cf. Fig. 1.1). This is a non-trivial task as predictions generally concern
events that have not yet occurred (Heikkinen et al. 2006). Often, data resampling methods are
utilised to test predictive performance because independent data are often unavailable. This
may involve split samples, cross-validation or bootstrapping (Aratjo et al. 2005, Elith and
Leathwick 2009). Independent testing could be achieved by using retrospective data (Hill et
al. 1999, Aratjo et al. 2005, Pearman et al. 2008a). Availability of such is rare, however, and
thus perfect validation may not be conceptually possible for every species and study (Aratjo
et al. 2005). Another possible route is to use virtual data generated by mechanistic models as I
will show in subsequent chapters (Zurell et al. 2009, 2010; chapters 2 and 3). This allows
explicit investigation of the effects of transient dynamics and confounding ecological
properties and processes on SDM prediction accuracies. Overall, the usefulness of models and
their predictions is contingent on both underlying questions and on the methods used (Araujo
et al. 2005). Multiple assessments based on several accuracy measures should be preferred
over using a single measure (Fielding 2002, Zurell et al. 2009, chapter 3). Also, accuracy
measures should be closely linked to the intended use of the model and the species’ biology.
For example, higher commission errors (false presences) may be expected for species

experiencing range expansions because not all suitable locations may have been colonised yet
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while we may expect higher omission errors (false absences) at places that are characterised

by source-sink dynamics (Thuiller and Miinkemiiller 2010).

1.2.2 Mechanistic models of species distributions

Mechanistic or process-based models aim at providing a more general image of real world
processes by reproducing the assumed internal structure of the studied systems. Predictions
are grounded in real cause and effect links between different system components. Thereby,
setting up a mechanistic model that is a faithful, one-to-one reflection of real world’s
complexity would be the most naive approach (Levins 1966). Such a one-to-one reflection is
not possible, however, and, more importantly, not desirable because it would most probably
hamper rather than facilitate understanding (Wissel 1992). Models need to make artificial
assumptions, simplifications and idealisations in order to gain insights into selected attributes
of the studied system. Therefore, we will only ever consider specific processes in any one
model depending on the purpose of the model, on the temporal and spatial scales involved, on
available information and data among others.

When speaking of mechanistic or process-based modelling of species distributions, we need
to be aware that there are sometimes misunderstandings about what mechanistic or process-
based means in ecological modelling context. In its classical meaning, mechanistic or process-
based models are ab initio, based on first principles. These models start directly at the level of
established laws of nature (physics). However, many natural systems are (computationally)
irreducible systems and have so many interacting elements that it is not possible to reduce the
system’s behaviour and evolution to a law in nature (Wolfram 1984 a,b). For example, the
exact form of a post-glacial species’ range depends not only on species’ physiological traits
but also on behaviour as well as site history and other confounding factors and may be
determined only by following each step in the colonisation history of the species. Thus, in an
ecological model that is based on ‘first principles’ the system’s behaviour and development
emerges from modelling its physiological as well as behaviourally relevant dynamic
processes and their interactions with the physical environment (Bossel 1992, Grimm and
Railsback 2005, Grimm et al. 2007). These models do not make assumptions such as fitting
parameters but only include real process parameters that are empirically measurable (Bossel
1992). In practice however, the term process-based often is attributed also to models that do
not strictly follow these principles. Rather, such models incorporate key dynamic processes of
an ecosystem in an aggregate form which requires model fitting (calibration) because these
‘process’ parameters are not empirically measurable (Bossel 1992) but imposed (Grimm and

Railsback 2005). In the following, I briefly introduce process-based models relevant to
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modelling species distributions in space and time. Thereby, I want to draw a distinction
between models that primarily focus on representing key demographic processes and models
that are based on first principles, i.e. models that incorporate ecophysiological and/or

behavioural mechanisms and are, thus, process-based in the narrower sense.

1.2.2.1 Modelling demographic processes

Population dynamics, the distribution and abundance of species through time, are determined
by the demographic processes of birth, death and migration which are, in turn, influenced by
environmental factors. The fundamental demographic processes can be described by the
simple single-population equation N+, = N, + B— D+ [ - E, where N is population size at time
t, B is the number of births, D is the number of deaths, 7 is the number of immigrants to and £
the number of emigrants from the site (Begon et al. 2006). We can link these demographic
processes and the dynamic patterns we observe in nature by means of mathematical
modelling. Model systems describing population dynamics may differ in how they approach
space and time, which ecological level they focus on (individual, population, species etc.),
what life cycle details are included, the number of state variables they require, whether
stochasticity is considered, whether parameters need to be fitted or are empirically derived
etc. Thereby, classical (analytical) models from theoretical ecology such as the Lotka-Volterra
equations and their variants or the logistic growth model that use population size as a state
variable are considered most general. The more detail such as age, space or habitat we include
in our models the less general and the more specific to e.g. particular populations they
become (Grimm and Railsback 2005).

In the context of range dynamics, as we are interested in the spatial distribution of populations
or species, models, self-evidently, need to be spatially explicit. This leads us to so-called
spatially explicit population models (SEPMs; Dunning et al. 1995) that are mostly bottom-up
which means that smaller system components are modelled in detail and system dynamics
emerge from the interactions between these components (Grimm and Railsback 2005). Lattice
models are examples of models whose components can be characterised by or as spatial units.
Thereby, a regular (usually square) lattice or grid is composed of cells with properties such as
amount of suitable area, number of individuals or species. Cellular automata are stochastic,
discrete-time lattice models in which the value of each site is determined by the values of its
neighbours from the previous time step. Coupled-map lattices (CML) model local population
(within-patch) dynamics and extend these in space by linking local populations by dispersal
whereby local population dynamics are often described by analytical models (Hassel et al.

1991, Comins et al. 1992, for application see Zurell et al. 2009, chapter 3). Similar to CMLs,
12



- Chapter 1 - State of the art

many spatially explicit metapopulation models link local and regional population dynamics
with the main difference that space is not divided into regular grid cells but into suitable
habitat patches of varying sizes (Hanski and Thomas 1994, Hanski 1999, Hanski and
Gaggiotti 2004). Here, more sophisticated approaches are taken to describe local population
dynamics, for example stage-structured matrix models (Beissinger and Westphal 1998,
Akcakaya 2000, Sondgerath and Schroder 2002). In individual-based models (IBMs), we
follow, by definition, the state of all individual organisms within an ecological community
through an entire simulation (Grimm 1999, for application see Zurell et al. 2011, chapter 4).
IBMs can incorporate a wide range of individual behaviour and landscape structures, and
direct links between these, for example through resource depletion (DeAngelis and Mooij
2005, Grimm and Railsback 2005).

In the context of modelling species distributions, SEPMs allow us to study effects of large-
scale patterns and processes on population dynamics and, thus, provide better mechanistic
understanding of how populations react to and are influenced by the environmental conditions
and landscape context. Relative importance of different processes in shaping population
response can be assessed. In contrast to phenomenological models, understanding is
facilitated by more interpretable parameters as they relate to specific traits of organisms. Even
aggregate parameters can tell us a lot about the species, for example mortality rates can
inform us about species’ persistence ability (Cabral 2009). Likewise, the degree of
environmental stochasticity can indicate important processes acting at smaller spatial or
temporal scales that have not yet been considered. However, as mentioned above, the more
detail the models include the more specific they become to the organism, to the landscape or
study area, to initial conditions etc. Also, demographic parameters are generally derived from
field observations or fitted to observations within a statistical framework. That way, these
parameters are only valid for the environmental conditions under which the model was
designed, a fact that we have already learned about correlative SDMs. Thus, similar to
correlative models, dynamic population models are not intended for extrapolation to novel

environments unless they build on first principles as I will explain in the next paragraph.

1.2.2.2 Modelling ecophysiological and behavioural processes

This thesis does not actually include any models of this type. Nevertheless, as ‘first
principles’ are mentioned at different places throughout the thesis, I feel that some
introductory words are appropriate here. As an organism’s fitness is driven by interactions
between environmental factors and an organism’s physiological and behavioural traits, it

seems only natural to also allow model organisms to respond to their direct environment in
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their best physiological and behavioural capability (Grimm and Railsback 2005, Grimm et al.
2007, Kearney et al. 2010). For this, we need to base our models on first principles.

For example, mechanistic niche models are physiological models that describe the potential
niche of a species based on functional traits of organisms (Kearney and Porter 2009). These
models follow the concepts of biophysical ecology. They adhere to the conservation laws of
thermodynamics (energy and mass balance) and are, thus, primarily concerned with transport
phenomena (Gates 2003). For example, heat is transferred through the skin of ectotherms if
they bask in the sun or mass is transferred through the gut when drinking or eating (Kearney
and Porter 2009). In contrast to correlative species distribution models which merely yield
indices of habitat suitability, the output of mechanistic niche models relates to key fitness
components such as survival and reproduction. Validation of mechanistic niche models is
(potentially) more straight-forward than that of correlative models because observed
distribution data, for example, are not needed for model calibration and, hence, provide truly
independent test data (Morin and Thuiller 2009). As mechanistic niche models are grounded
in sound physics they are highly general and transferable, and, thus, allow predictions to
novel climates and in non-equilibrium situations. However, it is useful to note that precision
of the predictions may be low (Kearney and Porter 2009). Because mechanistic niche models
merely map the fundamental niche of the species they are subject to the same basic caveat as
correlative species distribution models are. They aim to identify areas with suitable
environmental conditions that can potentially support a viable population, but they do not
inform us which areas are actually occupied (Pearson 2007).

What we often like to ignore is that organisms actively respond to their environment and are
able to adapt their behaviour (Grimm et al. 2007). From a natural selection perspective,
fitness maximising behaviours are favoured (Salant et al. 1995). Thereby, an organism will
assume the optimal behavioural strategy with the best trade-off between optimal feeding
location, locomotion costs, reproduction effort, competition, predation risk among others. For
example, the ectotherm needs to bask in the sun to heat up body temperature but through
extensive basking it will lose time for foraging and also extensive basking will make it more
detectable for predators. Thus, the ectotherm will only spend so much time with basking as it
needs for acquiring optimal body temperature for subsequent activities (Kearney et al. 2010).
As mentioned in the previous paragraph, individual-based models (IBMs) are well suited to
study behaviour and performance of individuals and explore emergent properties at the
population, community or species level (Grimm and Railsback 2005). Here, we need to

distinguish between IBMs that are demography-based and rely on empirically derived
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demographic parameters as described above, and behaviour-based IBMs (Grimm and
Railsback 2005, Goss-Custard et al. 2006, Grimm et al. 2007). The latter represent the
physiology and behavioural decision making of individuals explicitly. Demographic functions
emerge from the behavioural decisions of individuals instead of being imposed properties of
the model. Behaviour-based IBMs base on the assumption that even if these behavioural
decisions of individuals change with altered environmental conditions, the fitness-maximising
strategy the individuals base their decisions on will not change and will hold even for non-
analogue environments (for an independent test see Goss-Custard et al. 2006). However,
behaviour-based models are highly data-demanding, they may take a long time to develop and
require fundamental knowledge on behaviour and bioenergetics which probably will not be

available for many species thus constraining their overall practicality.

1.2.3 ‘Hybrid’ models of species distributions

In recent years, it has often been suggested to supplement correlative SDMs with more
mechanistic approaches that are able to describe non-equilibrium dynamics by explicitly
simulating dispersal and migration, landscape dynamics and demographic processes (Guisan
and Thuiller 2005, Thuiller et al. 2008). The rationale is to keep the practicality of correlative
SDMs for rapid impact assessments over a wide range of species as well as their predictive
accuracy at large spatial scales while overcoming some principal limitations associated with
their static nature by taking into account modifying demographic mechanisms such as
dispersal or local extinctions among others (Brook et al. 2009, Franklin 2010, Gallien et al.
2010). One way to achieve this is to use SDMs to predict maps of habitat suitability which are
then fed into spatially explicit population models to constrain the population models’
demographic parameters (Akcakaya 2000; for applications under climate change see Keith et
al. 2008, Anderson et al. 2009, Zurell et al. 2011, chapter 4 of this thesis, Fig. 1.2).
Sometimes, this kind of models are referred to as ‘hybrid’ models (Thuiller et al. 2008,
Gallien et al. 2010, Thuiller and Miinkemiiller 2010), probably to underscore that these
models are meant to ‘capitalize on the strength and advantage of both approaches and
concepts to make more reliable and useful predictions’ (Gallien et al. 2010). For better
recognition, I also used this term in this section’s title. Nevertheless, I find the name a little
misleading and rather imprecise because from the onset one cannot know what kinds of
models are ‘hybridised’, to which purpose and, moreover, within which scientific discipline
this is done. In fact, these models belong to the category (demography-based) spatially
explicit population models with the specific feature that the spatial structure of the population

is determined by a habitat suitability map which can be derived by SDMs. Akg¢akaya (2000)
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coined the term habitat-based SEPMs for this kind of models. Thereby, demographic
parameters such as carrying capacity (Keith et al. 2008, Anderson et al. 2009, Cheung et al.
2009) and intrinsic growth rate (Pagel and Schurr 2011) are constrained by local habitat
suitability. Hence, habitat suitability acts as surrogate for the species’ habitat requirements

and may represent factors such as suitable climate space, resources and shelter.
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Figure 1.2. Simplified flow chart of habitat-based, spatially explicit individual-based model for Swiss
black grouse population (cf. chapter 4). The correlative species distribution model is external to the
individual-based model and provides a habitat suitability map for each time step given the environmental
conditions. Habitat suitability is related to carrying capacity which regulates density. Each time step starts
in spring and includes the processes reproduction, dispersal and death.

Only few attempts have been made yet to apply this approach in environmental change
context (Keith et al. 2008, Anderson et al. 2009, Cheung et al. 2009; for review on other
applications see Franklin 2010). Therefore, many questions remain regarding their practical
use and general guidelines some of which are dealt with in chapter 4. I will provide further

considerations in chapter 6.

1.3 Thesis structure

Given the cumulative character of this thesis, the core part of the present work (chapters 2-5)
consists of four thematically related yet stand-alone articles that are published in or are in
review for international peer-reviewed, ISI-listed scientific journals (for full references, see

front pages of the respective chapters). These chapters can be read independently as they
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focus on specific aims and, thus, constitute autonomous contributions to scientific literature.
Some information contained in the articles may be overlapping though, especially regarding
introductions. In contrast to the general introduction (chapter 1) and the synthesis (chapter 6),
the articles presented in the core chapters 2-5 are written in first-person plural because they
are co-authored. However, as the lead author of all articles I have performed the main work
described in these chapters, and the views expressed throughout the entire thesis are mine.
Nevertheless, I want to acknowledge support by the co-authors in terms of data collection and
provision, fruitful and invaluable discussions as well as proof-reading.

Further, I want to acknowledge that the idea for this thesis was born during my diploma thesis
(Zurell 2007) and that fundamental experimental design concepts were recycled for parts of
this PhD thesis (the virtual ecologist approach, chapter 3). Nonetheless, all findings presented
here are original and result from work that I have done independently during the course of this

thesis.
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2 The virtual ecologist approach: simulating data

and observers'

" An article with equivalent content has been published as:
Zurell, D., Berger, U., S. Cabral, J., Jeltsch, F., Meynard, C.N., Miinkemiiller, T., Nehrbass, N., Pagel, J.,

Reineking, B., Schrdder, B. and Grimm, V. 2010: The virtual ecologist approach: simulating data and observers.

Oikos 119: 622-635.
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2.1 Abstract

Ecologists carry a well-stocked toolbox with a great variety of sampling methods, statistical
analyses and modelling tools, and new methods are constantly appearing. Evaluation and
optimisation of these methods is crucial to guide methodological choices. Simulating error-
free data or taking high-quality data to qualify methods is common practice. Here, we
emphasise the methodology of the “virtual ecologist” (VE) approach where simulated data
and observer models are used to mimic real species and how they are ‘virtually’ observed.
This virtual data are then subjected to statistical analyses and modelling, and the results are
evaluated against the ‘true’ simulated data. The VE approach is an intuitive and powerful
evaluation framework that allows a quality assessment of sampling protocols, analyses and
modelling tools. It works under controlled conditions as well as under consideration of
confounding factors such as animal movement and biased observer behaviour. In this review,
we promote the approach as a rigorous research tool, and demonstrate its capabilities and
practical relevance. We explore past uses of VE in different ecological research fields, where
it mainly has been used to test and improve sampling regimes as well as for testing and
comparing models, for example species distribution models. We discuss its benefits as well as
potential limitations, and provide some practical considerations for designing VE studies.
Finally, research fields are identified for which the approach could be useful in the future. We
conclude that VE could foster the integration of theoretical and empirical work and stimulate
work that goes far beyond sampling methods, leading to new questions, theories, and better

mechanistic understanding of ecological systems.

2.2 Introduction

Models permeate every field in ecology. They have become an indispensable tool for a wide
range of tasks, including the understanding of mechanisms, capturing the processes behind the
emergence of ecological phenomena, quantifying relationships between species presence or
abundance and environmental conditions, and forecasting effects of changing environments
on broad spatial and temporal scales (DeAngelis and Mooij 2005, Aratijo and Rahbek 2006,
Thuiller et al. 2008).

There is, however, a further important field of application of ecological models that so far has
not been thoroughly acknowledged in ecological research: evaluating methods for data
sampling, analysis and modelling methods by means of virtual data. Here, the idea is to
generate virtual data by simulating not only ecological processes, but also the sampling

processes that are used to collect these data in reality and the methodological tools used to
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analyse them. We propose to call this the “virtual ecologist” (VE) approach (see Box 2.1).
The virtue of this approach is its ability to rigorously test method performance against a
known truth. The VE approach is concerned with practical questions regarding ecological
methods: Is a method able to identify patterns that we know exist (Grimm et al. 1999)? Can
we infer the mechanisms underlying these patterns given a certain set of data (Tyre et al.

2001)? Can we correctly and reliably predict future events (Zurell et al. 2009, chapter 3)?

Descriptive model: a model that describes system behaviour quantitatively
without explaining any underlying mechanisms. The system is regarded as
a black box and is described by input-output analysis or by statistical
means, e.g. regression analysis.

Species distribution model: a descriptive model that relates species
occurrence to environmental (biotic and abiotic) factors to describe
environmental conditions within which a species occurs. (Synonyms:
habitat model, habitat-suitability model, environmental niche model)
Mechanistic model: a model that simulates the processes under study by
reproducing the assumed internal structure, i.e. the cause and effect links
between components of the studied system. Depending on spatial and
temporal scale, only specific processes are considered in any mechanistic
model.

Virtual Ecologist approach: a framework for evaluating sampling
schemes and methods, (statistical) analysis tools, model approaches and
structures. Virtual data is generated by simulating (a) a virtual ecological
model which includes key processes of the ecological system, (b) a virtual
sampling model mimicking the observation procedure, and (c) the
methodological tools used to analyse the ‘virtually’ observed data. Results

are evaluated against ‘true’ simulated data.

Box 2.1. Glossary.

To evaluate methods of data collection, statistical analysis, and modelling we would ideally
compare their outcome to reality. This would allow us to assess whether existing patterns
were detected correctly, whether correct estimates of process rates were obtained, or whether
the distribution of a species was predicted correctly. However, we have no privileged access
to reality independent of and beyond field observations and analytical methods. The ability of
field data to represent reality depends not only on the time interval and the spatial extent of

observation but also on the disturbances the observation procedure might induce. We can
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never know the complete “truth” because any knowledge about the real world is based on
(limited) data, because the methods to derive and analyse real world data sets are subject to
constraints and biases (Austin et al. 2006, Grimm et al. 1999, Halle and Halle 1999, Hirzel et
al. 2001), and because amount of data is limited by time and costs. Many factors cannot be
controlled: underlying environmental factors; historical factors such as disturbances,
catastrophes, past land uses; and ecological processes such as competition, dispersal, and
diseases.

With the VE approach all relevant information can be obtained at all times in the virtual world
which is taken as a surrogate of reality. We know, for example, the full movement path of
model animals, or the exact location of all individuals or subpopulations at a given time. In
the virtual reality, we can generate certain patterns a priori as well as biases introduced by the
(virtual) observer.

The idea of generating virtual data to evaluate different methods is quite natural and not new.
An early example for evaluating sampling methods is given by Stickel (1954). Stickel
analysed the quality of mark-recapture data describing the dispersal of small mammals. For
this, the author used as a virtual habitat a sheet of paper divided into grid cells. Some of the
grid cells marked traps. Animal movement was simulated by random movements of a pencil.
Based on the virtual capture data, movement indices were calculated and compared to those
derived from the full trajectories of the pencil. By this the accuracy of different observational
algorithms was evaluated.

In statistics it is quite common praxis to use high-quality data or artificially created, error-free
data to qualify different sampling or modelling methods (cf. Hirzel et al. 2001). For example,
Fortin et al. (1989) subsampled a large, real vegetation data set of sugar-maple (Acer
saccharum L.) in southwestern Québec, simulating three different types of sampling designs
(random, systematic and systematic-cluster). This allowed them to evaluate the effects of
these sampling designs and of different sampling efforts on the estimation of spatial structures
as well as the sensitivity of different spatial analysis methods. Statistical ecologists also build
replicate or simulated data sets with known properties to demonstrate the unbiasedness of new
modelling methods they have developed or to show their superior efficiency in comparison to
previous methods (Bolker 2008). Many introductory textbooks on statistics deal with such
topics. Bolker (2008) recommends using simulated data as a “best-case scenario” to test
whether correct estimates of the parameters of an ecological system can be inferred from the

data before proceeding to real data.
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In this review, we identify two main fields of application for VE: (i) Testing and improving
sampling schemes and methods; (ii) Testing and comparing models. The first includes the
evaluation of spatial and temporal sampling designs, and the assessment of sampling bias as
well as the sensitivity of sampling methods to extrinsic conditions, trappability or
observability (Halle and Halle 1999). For the latter, VE may help to assess whether a
particular model fitted to the virtual data is principally capable of describing and predicting
underlying patterns and processes. Also, contests can be arranged between competing models
(Hanski 1999), and their application domain can be circumscribed theoretically (Hirzel et al.
2001). In this way, VE helps to select the most appropriate model for a given situation.

The primary aim of this review is to give the VE approach, which emerged and keeps
emerging independently under different names in the literature, a common name and
summarise its potential and current limitations. We want to introduce VE as a generic,
rigorous and unifying approach that can be used as a common basis for testing methods of
data collection and for testing modelling methods. First we will characterise the virtual
ecologist approach and its elements in more detail. Secondly, we will review past uses of VE
and list specific examples within the two above-mentioned main fields of application. We will
thereby show that VE can be applied in a broad and diverse range of problems in ecology.
Then we will discuss potential uses for empirical ecologists and ecological modellers, and
give some practical guidelines which might help to design VE studies for given purposes.
Finally, we will outline future directions and list specific research fields that we feel would

benefit from VE.

2.3 The virtual ecologist approach

The virtual ecologist approach requires four elements (Fig. 2.1): (a) the virtual ecological
model, (b) the virtual sampling model, (c) (statistical) modelling and (d) evaluation. The
virtual ecological model (a) represents the virtual species and/or ecosystem, and includes key
processes of the ecological system relevant to the question under study. Thus, the virtual
ecological model may comprise a single or multiple species, single individuals or entire
populations; it may be temporally and spatially implicit or explicit, fine-scaled or coarse-
scaled; it may be governed by abiotic factors etc. The virtual sampling model (b) simulates
the observation process. Data are collected from the virtual ecosystem (by a “virtual
ecologist”) according to a sampling scheme mimicking the way the data would be collected
by real ecologists in real ecosystems. (Statistical) Modelling (c) is used to draw inferences

from the collected data. Examples include estimation of population size, identification of
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factors influencing species distribution or abundance, and estimation of process parameters.
(Statistical) Modelling can also be used to predict the effects of ecological processes. Finally,
the results are evaluated against ‘true’ simulated data (d). Essentially, the “virtual ecologist”
operates in the same way as an empirical ecologist (Fig. 2.1). However, in a VE study we
have full access to all information created by the virtual ecological model which allows us to
draw strong conclusions about our sampling and (statistical) modelling methods.

Virtual Ecologist Empirical Ecologist

(a) Virtual (a) Real
ecological

sampling

(c) (Statistical)

Modelling

(d) Evaluation

Figure 2.1. The elements of the virtual ecologist approach.

Different names have emerged throughout the literature for the very same approach: “artificial
data” or “artificial species” (Austin et al. 2006, Meynard and Quinn 2007, Cabral and Schurr
2010), “virtual species” (Hirzel et al. 2001), “virtual ecologist” (Grimm et al. 1999, Tyre et al.
2001, Zurell et al. 2009, chapter 3), “simulated data” (Hanski 1999, Dormann et al. 2007),
“virtual ecology” (Grimm et al. 1999, Nehrbass et al. 2006), to name but a few. Of these,
virtual ecologist approach seems to best capture the central idea that not only a virtual reality
is created but that the sampling itself or the observer’s behaviour is also being simulated in a
second model in a hierarchical way. The term virtual ecologist is thus not ambiguous in
contrast to terms such as “virtual experiment” or “virtual ecology” which are also used for
studies simply employing conceptual models for hypothesis testing where the effect of
different scenarios on some system response is explored (Parysow and Gertner 1997, 1999).
The current inconsistent terminology emphasises the importance to give the approach a
common name which, we believe, will make it more visible and coherent.

In addition to various studies that we simply knew from regular scanning of the ecological
literature, our overview of applications of the virtual ecologist approach is based on extensive
literature searches carried out between autumn 2008 and spring 2009 using both the search
engines http://www.scirus.com and http://www.sciencedirect.com. We used multiple

keywords such as “virtual ecologist”, “virtual biologist”, “virtual experiment”, ‘“virtual
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2 2

species”, “artificial species”, “artificial data” and “simulated data”. Due to the lack of a
general terminologys, it is possible that we have not detected all studies that would have been
relevant to our review of the VE approach. However, we are confident that we included a
representative set of worked examples and of ecological research fields.

Both the virtual ecological model and the virtual sampling model can be of different
complexities. Depending on how much process detail is put into these models the VE
approach covers quite a broad range of scientific questions and applications. Generally, we
can distinguish descriptive and mechanistic models representing the virtual species/ecosystem
(see Box 2.1). In the same way, the virtual sampling model, i.e. the virtual ecologist, may be
descriptive or mechanistic.

Throughout our literature survey, we found an approximately equal ratio between descriptive
and mechanistic representations of the virtual ecological model (Appendix A Table A.1; 21
descriptive models vs. 25 mechanistic models). In most studies that aimed at testing and
improving sampling regimes (n=14) the virtual ecosystem was simulated by means of
mechanistic modelling (12). Within the second field of application, testing and comparing
models, 19 out of 32 reviewed studies used descriptive models of the virtual ecosystem. The
field of mechanistic modelling is vast and, thus, mechanistic modelling types employed in VE
studies are manifold (Appendix A Table A.1). They range from grid-based models and patch
network models (cf. Hanski 1998) to individual-based models (cf. Grimm 1999, Grimm and
Railsback 2005).

Likewise, the virtual sampling model (Fig. 2.1, b) covers a wide range of complexities and
model types. In most studies we reviewed within the two main fields of application, virtual
sampling was modelled as simple subsampling from the full simulated data, and in rare cases
virtual sampling was modelled probabilistically (Appendix A Table A.1; 37 out of 46 VE
studies employed subsampling, eight of which carried out a full census; seven VE studies
employed probabilistic sampling). Simple subsampling means that the virtual ecologist acts
flawlessly according to a certain sampling design, makes no observational or measurement
errors and does not interact with the virtual species in any way (Tyre et al. 2001).
Probabilistic sampling includes e.g. probability of detection and regards observation as a
stochastic process (Reese et al. 2005). For instance, even if the species is present, it may not
be detected. Still the virtual sampling includes no interaction between virtual species and
virtual ecologist. If the virtual ecosystem is based on a mechanistic model, direct feedbacks
may be included between the models of virtual species and virtual sampling, such as observer

induced individual escapes (Berger et al. 1999, Nott 1998).
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2.4 Past use of VE

2.4.1 Testing and improving sampling schemes and methods

In many field studies, ecologists obtain data that are known to be biased. Nevertheless, such
data may provide valuable information particularly in cases where the ratio of measured
variables between ecological systems is of interest. Knowledge about the error range of each
variable is essential, as it might differ depending on the particular observation scenario. An
increasing number of studies already optimise the error ranges of their chosen observation
scenario by a virtual or theoretical comparison of optional scenarios beforehand (Appendix A
Table A.1). In the following we chose three of these studies to illustrate the range of potential
fields of application.

Entomologists frequently use mark-recapture methods to monitor the position of grasshoppers
or ground beetles in order to understand their behaviour and mobility depending on habitat
quality, intra-daily variable climatic conditions, or interactions with con-specific and other
animals. Based on the resulting data on positions at different times, various mobility variables
are calculated, for example the mean daily movement, maximal distance between two
locations an individual was captured, or mean activity radius. These indices may be biased
and their quality may differ depending on the particular observation scheme, sample size,

edge effects, and spatial discretisation among others (Berger et al. 1999).
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Figure 2.2. Movement of one exemplary individual over a 100 day period; (a) undisturbed and (b)
influenced by an observer’s motion during daily surveys (after Berger et al. 1999).

It seems reasonable to assume that the quality of mobility variables increases with the
frequency of observations. However, too frequent or dense observations will disturb the
individuals and might artificially increase their activity (Fig. 2.2). It is thus necessary to
optimise the observation scenario related to the minimisation of the observation error and,

simultaneously, to minimise the disturbance effect by the observer. The VE approach was
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used for this optimisation (Berger et al. 1999). The “virtual ecologist” samples the data
according to the observation schemes applied in the field and disturbance effects on
grasshopper are included in the model. The comparison of the “real” mobility variables
(obtained in the virtual world) with the sampled variables provides a quality assessment of the
various variables depending on the particular survey method and allows to rank their
suitability.

The VE approach can also be used for assessing the compatibility of different sampling
methods across spatial scales (Mac Nally 2001). Mac Nally asks whether comparing
experimental units of different size may cause scaling artefacts. He tests the ability of the two
most common methods to estimate the strength of interaction between competing species,
enclosures and quadrate- or transect-based techniques, and whether information from the two
sources can be mixed, which often is done for parameterising so-called community matrix
models (e.g. Wootton 1995). In his simulation model, Wootton (1995) describes three types
of foragers (mimicking micro-algal grazers on rocky shores) which are distinguished by their
foraging strategy (“random walkers”, “homing”, “searcher”’). Mac Nally (2001) found that for
foragers that apply a more “intelligent” foraging strategy, including dynamic decision-making
capabilities, the mixing of data from field-enclosure experiments and quadrate-based methods
is ill-advised because the error of these two methods scales differently with the size of the
sampling plot.

A third example is related to tree-mortality relationships. Tree mortality is a key process in
forest dynamics. In many cases, tree death is preceded by periods of slow growth, and many
forest succession models incorporate growth-mortality relationships. Few studies, however,
quantify the growth-mortality relationship from empirical data. One question concerns the
accuracy of growth-mortality models that are based on tree-ring data, forest inventory data or
a combination of both. Wunder et al. (2008) address this question with a VE approach. An
individual-based virtual forest model included growth, mortality, snag standing time and
regeneration of trees. The forest was subjected to alternative sampling regimes (tree-coring,
forest inventories). Growth-mortality relationships were estimated with statistical models of
varying flexibility, and were compared to the a priori specified relationships. Highest
accuracies were found for tree-ring based models, which require only a small sample size (60
dead trees). High model accuracies were also found for forest inventory-based models,
starting at sample sizes of 500 trees. Overall, the study provided guidelines for efficient

sampling schemes in real forests.
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2.4.2 Testing and comparing models

Within this field of application we can compare the efficiency of different modelling
approaches including algorithmic choices, or the effects of different model structures and
complexities. We distinguish different classes of problems that can be unified conceptually or
technically: first, we list examples of VE studies testing and comparing species distribution
models (see Box 2.1), followed by studies that tested descriptive models in the context of
community assembly theory. Finally, we present studies that used VE to test statistical

modelling frameworks to parameterise dynamic population models of differing complexity.

2.4.2.1 Species distribution models

Species distribution models are commonly used to characterise suitable environmental
conditions for a species by relating incidence data to environmental variables (Guisan and
Zimmermann 2000). The resulting species-habitat relationship can be extrapolated in space
and time to identify the spatial distribution of potentially suitable habitats. Steps in species
distribution modelling involve data acquisition, selection of modelling algorithm, model
calibration including selection of important predictor variables and parameters, creation of
habitat suitability maps, and model evaluation. VE studies usually focussed on specific steps
of this model building procedure.

Several VE studies tested and compared the performance of alternative modelling algorithms
(Austin et al. 2006, Dormann et al. 2007, Hirzel et al. 2001, Legendre et al. 2002, Meynard
and Quinn 2007, Moisen and Frescino 2002, Reese et al. 2005, Tyre et al. 2003) conditional
on e.g. response shapes, direct and indirect predictor variables, prevalence, sample size,
spatial autocorrelation, or colonisation history. Reineking and Schroder (2006) compared
regularisation and variable selection methods for model calibration. Other studies tested
different threshold criteria (Jiménez-Valverde and Lobo 2007) or the use of favourability
functions (Albert and Thuiller 2008, Real et al. 2006) to convert the species distribution
model output to maps of presence or absence.

All these studies focussed on the methods’ ability to correctly reproduce the current
distribution pattern of the virtual species. Simple descriptive models were used to create these
patterns. Only few studies were concerned with the processes behind those distribution
patterns, and simulated the virtual ecosystem and driving processes by means of mechanistic
modelling (Tyre et al. 2001, Railsback et al. 2003, de Marco et al. 2008, Zurell et al. 2009,
chapter 3).
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Tyre et al. (2001) examined whether species distribution models are capable of identifying
source habitats with high birth rates and low death rates and, thus, whether demographic
processes can be inferred from simple distribution patterns. De Marco et al. (2008) evaluated
the performance of SDMs coupled with Spatial Eigenvector Mapping under range expansion.
Railsback et al. (2003) and Zurell et al. (2009, chapter 3) assessed whether species
distribution models are able to project species distribution into the future when species
undergo transient dynamics due to environmental change. Species distribution models are
increasingly used to project shifts in species distributions for different scenarios of climate
change (Thomas et al. 2004, Thuiller 2004) and land use change (Pompe et al. 2008). Since
the future is unknown, these expected distributional changes are difficult to evaluate, and the
use of species distribution models for global change projections remains hotly debated
(Dormann 2007).

Zurell et al. (2009, chapter 3) utilised VE to explore the performance of species distribution
models under climate change scenarios, and tested the effects of transient dynamics and
ecological processes on projection accuracies. To accomplish this, they created a virtual
ecosystem by means of mechanistic modelling that included three species, a butterfly, a host
plant and a predator, and incorporated species-specific properties and processes such as
ecological niche width, dispersal and reproduction, interspecific ecological processes such as
competition and predation, environmental stochasticity, and climate change. Virtually
sampled data were used to calibrate species distribution models; then, future potential species
distribution was projected and evaluated against the simulated “true” distribution of the
virtual species. With the VE approach, Zurell et al. (2009, chapter 3) were able to show that
the performance of species distribution models for climate change projections strongly
depends on the dispersal ability of the species and the extinction rate at the trailing edge of
range shifts. Furthermore, their results indicated that species distribution models were useful
tools in most of their tested situations. Zurell et al. (2009, chapter 3) were the first to
rigorously assess the potential impacts of such factors like dispersal, demographic processes
and biotic interactions on global change projections. Nevertheless, they also point out, that
their study only scratched the surface of what could be done by using VE with mechanistic
models of the virtual ecosystems to test species distribution models. In the future, the
complicating effects of several other factors could be explored with this approach such as
changing biotic interactions under environmental change, the effects of changing disturbance

regimes, local ecological adaptation or the evolution of species niches.
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2.4.2.2 Descriptive community assembly models

Several studies on community structure and assembly rules utilised the virtual ecologist
approach. Local communities can be considered as a subset of the larger regional pool of
potential community members. Numerous processes (including niche differentiation,
environmental filtering, limited dispersal, niche conservatism and convergence) contribute to
the formation of the local community from the regional species pool by fostering some
species and excluding others. From certain patterns in distributional data, underlying
community processes can be inferred by employing different metrics that characterise the
community structure and by testing these for significant deviations from the null hypothesis
(e.g. the community is locally neutral). Therefore, the question is twofold. First, do different
processes result in different patterns of phenotypic, genotypic and trait diversity? Second, do
the metrics and null models successfully distinguish between different patterns? The VE
approach has been mainly used to address the second question, i.e. to test the performance of
different metrics and null models in identifying non-random patterns in biodiversity

distribution data.
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Do we detect the original structuring factor?
e.g. Do we detect competition?

Figure 2.3. Example of a typical VE approach within community ecology.

Here, artificial communities that result from any of the proposed processes are created, for
example by using simple filtering algorithms (Fig. 2.3). For instance, limiting similarity has
been modeled by the stepwise exclusion of species with the lowest trait based Euclidean
distances to other species while neutrality was modelled by random exclusion (Kraft et al.
2007). Then different metrics and null models are applied and their performance at
distinguishing patterns created by different community processes is assessed. Patterns tested
have considered nestedness (Fischer and Lindenmayer 2002, Greve and Chown 2006, Higgins
et al. 2006, Ulrich and Gotelli 2007a, 2007b) and trait, phylogenetic and species diversity

(Kraft et al. 2007).
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Hardy (2008) studied how phylogenetic community metrics and null models perform in
identifying neutral processes by using an individual-based model to represent the virtual
ecosystem. In contrast to Kraft et al. (2007), he found inflated type I error rates for some null
model tests. Hardy argues that the difference in results are due to differences in the structure
of the virtual ecological model, Kraft et al.’s (2007) model being much simpler (based on
simple algorithms and neglecting individual differences, abundances, the influence of
dispersal limitation, and the influence of community size variation). However, Hardy only
simulated a neutral community. It would be interesting to see, what happens to the
performance of the different indices and null models when applied to a range of distributional

patterns generated not by simple filtering algorithms but by mechanistic models.

2.4.2.3 Dynamic (meta-)population models

The VE approach has also achieved prominence for models of population dynamics,
whenever these are parameterised from data. A class of models which has been extensively
explored with VE are metapopulation models or stochastic patch occupancy models (SPOMs,
Hanski 1999, Hanski et al. 2000). SPOMs describe metapopulation dynamics in a patch
network by rates of local extinction and colonisation and are parameterised either from
recorded turnover events or spatial data on patch occupancy. For the latter, Moilanen (1999)
presents an improved technique for parameter estimation based on maximising the likelihood
of observed transitions in patch occupancy. By evaluating the new method with a VE
approach, Moilanen (1999) demonstrates that parameter estimates were generally more
accurate than those produced by the original method. In a similar study, the new method
showed to be less susceptible to the prediction of spurious trend in metapopulation size than
other methods (e.g. logistic regression of turnover rates), especially when only snapshot data
from two years is used (Moilanen 2000). While both these studies used exact data, Moilanen
(2002) imposed error on the virtual measurements of both patch area and patch occupancy
and simulated oversight of patches during survey in order to study the effect of different error
types on parameter estimation and predictions and, thus, to guide survey efforts accordingly.
Extending the VE approach further by using an IBM for the ecological simulation enabled
Hilker et al. (2006) to compare the performance and data needs of a patch-based SPOM
against a grid-based analogue.

Another field of population modelling studied by VE experiments is population viability
analysis (PVA). For example, McCarthy et al. (2003) assessed absolute and relative
predictions of extinction risks for a total of 160 parameter scenarios using the stochastic

Ricker model. To scrutinise common assumptions of single-species PVA, Sabo and Gerber
31



- Chapter 2 - Past use of VE

(2007) simulated time series of population abundance with a stochastic stage-based predator-
prey model. Both demographic PVA models and time-series PVA methods were tested for the

effect of neglected species interactions on predictions of quasi-extinction risk for the prey.
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Figure 2.4. Schematic representation of the likelihood framework introduced by Cabral and Schurr
(2010). The process-based model of range dynamics consists of a demographic and an observation
component and is fitted to spatial abundance data. Virtual data are simulated by running the process-
based model with predefined, ‘true’ parameter values against which the estimated parameters are
evaluated.

A more challenging task is the parameterisation of spatially explicit demographic models
from species’ count data. For the development and verification of parameterisation techniques
the VE approach can be an (in-)valuable tool. An example was performed by Cabral and
Schurr (2010) using hybrid models of species distribution (Fig. 2.4). The authors aimed to
parameterise both the mechanistic demographic model, which simulated the range dynamics
of a species within its suitable habitat, and the observation model, which incorporated
sampling error of the survey data set used for parameterisation. With a selected combination
of demographic and observation parameter values, they simulated virtual data in five different
fractal landscapes. Using these virtual survey data, they assessed whether the applied
parameterisation framework was able to recover the underlying parameters. Although the

fitted parameter values could vary around the correct values, the median values over the five
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different landscapes were strikingly close to the correct values, confirming the suitability of

the parameterisation technique.

2.5 Discussion

The VE approach provides an important, unifying framework to test sampling methods as
well as statistical analysis and modelling methods (Hilker et al. 2006). More and new methods
are constantly appearing in ecology, especially as more computer power becomes available.
These methods need to be tested rigorously and continuously before applying them to real
data. VE is an intuitive and powerful method to do so. It has been used in ecology for a long
time without being properly recognised or acknowledged. We think that VE deserves a more
prominent place in the ecological toolbox.

VE is particularly suitable for synthesising our mechanistic understanding of factors
influencing our study results: system-immanent properties and processes such as animal
movement, methodological aspects such as observer behaviour and analysis tools as well as
interactions of both. The VE models can incorporate an increasing level of complexity that
allows the separation of different factors, and it can be carried out at spatial and temporal
scales that would be impossible to tackle in reality.

The behaviour of individual ecologists can be simulated in particular situations and, thus,
potential problems arising during data sampling can be extensively explored: limited access to
certain areas (e.g. lack of roads, steep slopes); spatial autocorrelation in the samples and in the
way ecologists move; interactions with the observation target; varying detection probabilities
among other factors. Specific problems can be isolated and thereby better understood. A
simulation can help to optimise resources and get an idea of the necessary sampling effort for
a desired level of accuracy, given site access, budget constraints, sampling bias, and current
knowledge of the system. This becomes particularly important when we are about to spend a
large budget in surveying a large area, for example.

VE allows to compare alternative methods and thereby to theoretically circumscribe their
application domain. The most appropriate model for any situation can be selected, i.e. the best
modelling approach for a given data set, and crucial data needs for the application of more
complex descriptive or even mechanistic models may be identified (Hirzel et al. 2001). This
has to be seen different from and is more sophisticated than model selection techniques. In
model selection the fit of potential models to the data is assessed and models are then ranked
according to their predictive power (Burnham and Anderson 2002). For instance, Gotelli et al.

(2009) recently proposed a modelling strategy that employs parametric bootstrapping to
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assess the fit of simulation models and to rank competing models according to their ability to
explain large-scale diversity patterns. At first sight, this sounds very similar to VE. However,
in model selection the goodness of fit of alternative models can only be evaluated on the
given data which might be limited and biased. In contrast, VE allows the models to be
evaluated against known (virtual) truth. Thus, in a VE study the question is not about how
well the model fits the data but how well the model represents (virtual) reality and under

which circumstances it does this.

2.5.1 Limitations

Beside the merits of the virtual ecologist approach, modellers must be aware of possible
limitations of VE, which are actually more related to the models used or to the simulation
design than with VE itself. Foremost, the benefit of VE depends on the quality of the
ecological model, and ignores whatever complexity is not covered by the model. Models by
definition simplify; the real world is much more complicated, and conclusions drawn from the
virtual data sets might be limited. Wunder et al. (2008) point out that when using VE to
identify necessary sample sizes to achieve a desired level of accuracy, these values constitute
only lower bounds as they were estimated under the controlled conditions of the virtual
reality. In the model of Berger et al. (1999), grasshoppers moved according to a random walk.
Deviations from this movement behaviour might lead to a different ranking of the observation
errors. However, different movement modes can be implemented and tested in the model, as
in the example of Mac Nally (2001). Generally, VE is better at discrediting methods than at
corroborating them. If a method fails in the virtual world, chances are that it fails in the real
world as well, unless the method’s deficits fortuitously counterbalance the virtual world’s
biases. However, if a method works well in the virtual world, this does not guarantee that it
works in the real world as well.

In addition, models are prone to errors, and we should never put blind faith in our models
(Wissel 1992); this also holds for VE. Numerous limitations can be hidden in the modelling
process: uncertainty in input data, in underlying model assumptions, in parameters, and bugs
in the simulation program itself (Grimm et al. 1999). Thus, as any other tool, VE needs to be
used consciously and cautiously, and it should continuously be scrutinised.

Sometimes, the VE approach may seem a bit circular. For example, Hirzel et al. (2001)
sampled from the same statistical modelling type, a logistic regression model that they aimed
to test. However, even if one samples from the same (statistical) model, running VE is
worthwhile. If the tested method is not able to recover the underlying model, then it will not

be worth to further develop this particular method.
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2.5.2 The role of mechanistic models

Following the famous words of Albert Einstein one should make the models “as simple as
possible, but not simpler”. In good modelling practice this means that both the virtual
ecological model and the virtual sampling model should be no more complex than is
necessary to answer the scientific question. Of course, this also requires a clear definition of

the problem and the target underlying the VE study.
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Figure 2.5. Decision tree which methods to use for the virtual ecosystem and the virtual sampling model
for which purposes (IBM: Individual-based model).

If the scope of the VE study is to assess whether a pattern may be correctly identified by a
particular sampling method or correctly predicted by a model then, in most cases, a
descriptive model of the virtual ecosystem will be adequate. In contrast, if the scope is to test
whether a specific sampling method is able to identify, or a model is able to predict, for
example, certain spatial and temporal dynamics or process rates, then a more mechanistic
model of the virtual ecosystem is needed in which the processes are simulated in a
“structurally realistic” way (Fig. 2.5; Grimm et al. 2005a, Wiegand et al. 2003). Also, the
decision whether the virtual sampling model should be descriptive or mechanistic should be
driven by the scope of the VE study; that is questions like: should observer errors or biases be

included; are there interactions between the observer and the species (Fig. 2.5)?
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Nevertheless, we want to emphasise that a contemporary shift towards generating virtual
species/ecosystem and observer from mechanistic models can qualitatively enhance the
potential of the VE approach. Mechanistic models can account more realistically for
complexity in both ecological and observational processes, including possible interactions.
Specific problems or aspects of ecological systems can be incorporated. Data are still
controlled, but potentially behave in a non-trivial manner. The exercise becomes one that is
equally about understanding complex dynamics and optimising the way we can study them
empirically by using mechanistic, “close to nature” simulation models. In mechanistic models
of virtual species/ecosystems one has to take care of complicating effects such as coloured
noise, stochasticity, and deterministic chaos. We can thus test whether our method under
study is working even in the face of such complex inherent interactions, and hence delineate
the method’s application domain more accurately.

Individual-based models (IBMs) are the most general mechanistic models as the emergence of
metapopulation dynamics is the result of individual interactions in a landscape mosaic
(Grimm 1999, Hilker et al. 2006). IBMs differ from descriptive models or mechanistic models
on a more aggregated, metapopulation level, in that the ‘true’ values of the population-level
parameters we try to estimate are not necessarily known, but rather are an emergent property
(Hilker et al. 2006). The parameters can be estimated, however, in the IBM with arbitrary
precision because we can produce as many replicates as required (at least if sufficient
computer power is available). The efforts of such a complex IBM might be justified if the
field study is a non-repeatable project; if a wide-spread sampling method is to be evaluated;
or if we want to test how mechanistic models on a more aggregated, metapopulation level
converge to more complex (virtual) reality (Hilker et al. 2006). A full-fledged VE approach
with the virtual species modelled by means of individual-based modelling and explicit
interactions between virtual observer and virtual species (Berger et al. 1999) may be useful in

survey planning of highly mobile and sensitive species.

2.5.3 Future directions

We have shown various applications and research fields where the virtual ecologist approach
has been successfully employed, and has proven itself as a practical and worthwhile tool. As
pointed out throughout this review, the approach is not yet fully explored and many more
aspects of ecological surveys and modelling tasks can be addressed with VE.

The ecological community holds enormous stocks of data collected, for example, in herbaria;
by voluntary or hobby ornithologists, entomologists; nature conservationists; PhD students

etc. Sometimes trust in these data is rather limited because of suspected bias in survey design
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or observer behaviour. For instance, volunteers monitoring butterflies will often preferentially
visit places where they expect to find the most enigmatic and interesting species. Conversely,
places where observers do not expect to find many species are likely to not be monitored
properly or only very short visits will be paid to such places. Through such unequal observer
effort fallacious absences (and also presences) might be induced with unknown effects for
subsequent data analyses. Here, VE could help to assess potential effects rigorously and to
assess sampling bias if information on the observer effort is available; the data could then be
corrected by these estimated values. However, we want to stress that VE is no panacea for
flawed survey designs. It can merely be a way to salvage at least some of the information in
the data.

Another important research field for which VE holds great potential for the future is global
change research. Railsback et al. (2003), Cabral and Schurr (2010) and Zurell et al. (2009,
chapter 3) show that VE can help to evaluate models which are intended to project species
distributions into the future for different scenarios of environmental change. The effects of
many other factors potentially complicating global change projections could be explored with
VE: changing biotic interactions or spatially dependent biotic interactions that only take place
at the edges of species distributions, behavioural adaptation, evolutionary effects, invasions,
climatic extremes or catastrophic events. The VE approach would also allow to assess
projections that address the effects of climate change or land use change for individual species
with particular species-environment relationships, or to integrate species with different
functional characteristics into assessing the effects of global change in whole communities or
ecosystems.

In addition to these potential future directions, the virtual ecologist approach could, if it were
used more routinely in the future, have more general and perhaps even more important
benefits: it could foster the integration of theoretical and empirical work. Empiricists are often
unaware of the potentials and limitations of ecological models, and the same holds for
theoreticians regarding field work and sampling methods. Working together on the
development of sampling methods, designs and efforts by using the VE approach could help
overcome this mutual ignorance. It could help practitioners to better plan their work. It could
help modellers to increase the practical value of their work. It could also stimulate work that
goes far beyond sampling methods. While trying to test sampling methods, new and
interesting ecological models and even theories might emerge; and while trying to use
existing models for testing sampling methods, ecological models might become more realistic

in structure and lead to new questions for empirical research. Also, field work could be
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oriented more directly towards data needs modellers have for specific modelling tasks.
Looking at their models from the perspective of optimising empirical work might make work

of theoreticians more valuable, and also it might help to better understand the system.
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3 Static species distribution models in
dynamically changing systems: how good can

predictions really be?”

* An article with equivalent content has been published as:
Zurell, D., Jeltsch, F., Dormann, C.F. and Schroder, B. 2009. Static species distribution models in dynamically
changing systems: how good can predictions really be? Ecography 32: 733-744.
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3.1 Abstract

It is widely acknowledged that species respond to climate change by range shifts. Robust
predictions of such changes in species’ distributions are pivotal for conservation planning and
policy making, and are thus major challenges in ecological research. Statistical species
distribution models (SDMs) have been widely applied in this context, though they remain
subject to criticism as they implicitly assume equilibrium, and incorporate neither dispersal,
demographic processes nor biotic interactions explicitly. In this study, the effects of transient
dynamics and ecological properties and processes on the prediction accuracy of SDMs for
climate change projections were tested. A spatially explicit multi-species dynamic population
model was built, incorporating species-specific and interspecific ecological processes,
environmental stochasticity and climate change. Species distributions were sampled in
different scenarios, and SDMs were estimated by applying generalised linear models (GLMs)
and boosted regression trees (BRTs). Resulting model performances were related to
prevailing ecological processes and temporal dynamics.

SDM performance varied for different range dynamics. Prediction accuracies decreased when
abrupt range shifts occurred as species were outpaced by the rate of climate change, and
increased again when a new equilibrium situation was realised. When ranges contracted,
prediction accuracies increased as the absences were predicted well. Far-dispersing species
were faster in tracking climate change, and were predicted more accurately by SDMs than
short-dispersing species. BRTs mostly outperformed GLMs. The presence of a predator, and
the inclusion of its incidence as an environmental predictor, made BRTs and GLMs perform
similarly.

Results are discussed in light of other studies dealing with effects of ecological traits and
processes on SDM performance. Perspectives are given on further advancements of SDMs
and for possible interfaces with more mechanistic approaches in order to improve predictions

under environmental change.

3.2 Introduction

Among the expected consequences of the ongoing climate change are shifts in species’
geographic ranges, range expansions and contractions. Robust prediction of these
distributional changes are a prerequisite for dynamic and sustainable conservation strategies,
and thus constitute a major challenge in present-day ecological research (Guisan and Thuiller

2005; Vaughan and Ormerod 2005).
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Statistical species distribution models (SDMs) have been widely used to project species range
shifts, and to derive extinction risks for different climate change scenarios (Bakkenes et al.
2002; Midgley et al. 2002; Thomas et al. 2004; Thuiller 2004). These data-driven models
relate field observations to environmental predictor variables. They provide an easy-to-use
and potentially powerful tool for ecologists and conservationists because simple spatial
incidence data can be used to derive the statistical models (Scott et al. 2002). Despite these
merits, SDMs also show particular limitations regarding climate change projections
(Dormann 2007; Guisan and Thuiller 2005; Pearson and Dawson 2003; Araujo and Rahbek
2006). Foremost, they assume equilibrium between the species and its environment, and aim
at predicting a new equilibrium state when extrapolating. Thus, transient dynamics are
essentially ignored when projecting into the future. Furthermore, SDMs do not explicitly
incorporate demographic processes and biotic interactions, and only few attempts have been
made yet to narrow uncertainties due to dispersal assumptions (Midgley et al. 2006). All these
issues may lead to substantial uncertainties in climate change projections (Dormann et al.
2008). To date, there is little knowledge of the consequences as the accuracy of SDMs in
predicting future species distributions is not easy to evaluate (Aragjo et al. 2005; Thuiller
2004). This is mainly because the events we aim to project have not yet occurred, and the
future species’ geographic ranges are therefore unknown (but see Araujo et al. (2008) for an
application for predicting current distributions from historical data).

One way to overcome the data limitations are artificial or virtual experiments (Berger et al.
1999; Austin et al. 2006; Schroder and Seppelt 2006). Such approaches have the further
advantages of allowing us perfect knowledge and control over the underlying processes.
Previous studies employing virtual experiments and SDMs have tested optimal sampling
strategies (Hirzel and Guisan 2002; Reese et al. 2005), compared the performance of different
statistical methods, model selection strategies, or threshold criteria for binary predictions
(Hirzel and et al. 2001; Reineking and Schroder 2006; Jiménez-Valverde and Lobo 2007),
and assessed how good SDMs were at identifying ‘source’ habitats (Tyre et al. 2001), the
effect of diverse occurrence-environment relationships (Austin et al. 2006; Meynard and
Quinn 2007) or the use of favourability functions (Albert and Thuiller 2008). To our
knowledge, it has not been tested yet how transient dynamics and ecological properties and
processes affect SDM accuracy when projecting into the future.

In this study we propose a virtual experiment to test SDM prediction accuracy under ongoing
climate change by developing species distribution models on data from a complex, dynamic

population model, which is used to model transient responses of a species to climate change.
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We therefore built a dynamic, spatially explicit multi-species population model which
incorporated species-specific ecological properties and processes such as the ecological niche,
dispersal ability and intrinsic growth rate, interspecific interactions such as competition and
predation, environmental stochasticity, and climate change. Different scenarios were
developed by systematically manipulating model properties. For each modelling scenario
SDMs were estimated by applying two different SDM methods, Generalised Linear Models
(GLMs) and Boosted Regression Trees (BRTs). Projected species distributions by SDMs
were compared to simulated “true” species distributions by the dynamic population model
focusing on the following questions: (1) Do transient dynamics lead to a decrease in
projection accuracy under climate change? (2) Are modern, flexible statistical modelling
techniques (represented in our study by BRT) more capable of projecting future species
ranges than long-established, parametric methods (represented here by GLM)? (3) Are these

effects confounded by differing ecological properties and processes?
3.3 Methods

3.3.1 Dynamic population model

The purpose of the dynamic population model was to mimic scenarios of real-world situations
with a complex virtual world containing a focal species characterised by species-specific
properties and processes, and influenced by predation, environmental stochasticity, and
climate change. To achieve this, a discrete-generation host-parasitoid system was set in a real
environment. Such host-parasitoid systems are well suited for simple population models
because they can have a much simpler structure than many other enemy-victim interactions
due to the tight link between trophic and reproductive aspects of the parasitoid life history
(Hassell 2000; King and Hastings 2003; Nicholson 1933).

The host was the focal species, a holometabolous insect with distinct generations which is
henceforth referred to as butterfly. A highly synchronised parasitoid parasitised the butterfly
during its larval stage, and thereby caused the death of the butterfly (Mills and Getz 1996).
Movement and dispersal were limited to the adult insect stages. In analogy to real systems the
model was tritrophic, i.e. the butterfly-parasitoid interaction depended on a host plant,
henceforth called plant, which affected the presence and abundance of the butterfly. A
coupled-map lattice model was used to link the local and regional dynamics (Bonsall and
Hassel 2000; Comins et al. 1992; Hassell et al. 1991). In each cell of a two-dimensional

lattice the local butterfly-parasitoid population dynamics were mapped annually. The
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populations were then connected by dispersal. We thus obtained a spatially explicit multi-

species dynamic population model which allowed systematic modifications in several ways.

3.3.1.1 Structure, scales and scheduling

Space was represented by a two-dimensional lattice of 148 x 113 sites with a cell size of 1 km
x 1 km. Absorbing boundary conditions were assumed, representing an open system where
butterflies and parasitoids were able to leave the habitat, but not to (re-)enter it. One time step

represented one year and the whole simulation covered a period of 150 years.
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Figure 3.1. Process scheduling of the dynamic model is illustrated in the flowchart in the centre. Each
simulation started with the input of elevation and potential moisture distribution (top left) as well as
temperature and precipitation time series (top right). After time initiation, four processes were carried out
within each time step: Additional ecogeographical information layers were calculated, i.e. actual
temperature and moisture distribution (Process 1) as well as local host carrying capacities (Process 2).
Then dispersal of hosts and parasitoids was simulated (Process 3) and reproduction and parasitism took
place (Process 4). The figure in the centre right depicts the fundamental and realised niche of the host
plant. Temperature dependency of host growth rate is shown in the bottom right figure.

During initialisation, the environmental factors elevation and potential moisture were
attributed to each cell in the lattice, and the climatic factors temperature and precipitation
were assigned to each time step. Butterflies and parasitoids were randomly distributed over
the suitable habitat. During simulation, each time step was characterised by four processes

(Fig. 3.1). Foremost, climate state and habitat state were updated. Temperature and moisture

were assigned to each cell by climatological downscaling. The host plant foliage projective
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cover was determined by the prevalent temperature and moisture regime, and induced a

carrying capacity K for butterflies in each lattice cell. Resource competition at plant level was

introduced by adding a second plant species, the competitor, whose fundamental niche

overlapped with that of the host plant (Fig. 3.1), and which did not serve as a host plant for

the butterfly. At the beginning of each time step, butterflies and parasitoids dispersed

throughout the lattice. After colonisation, butterflies reproduced and the offspring could then

be parasitised by female parasitoids. Detailed descriptions of the modelled processes are

contained in Appendix B, parameter values are given in Table 3.1.

Table 3.1. Constants in the process-based dynamic model. Respective equations are contained in Appendix

B.
Function Symbol Value Unit Description
Grid w 1 km Cell width
Climate State 7T} 7 °C km’! adiabatic gradient
Habitat State K, 5000  ind maximum carrying capacity of a cell
KT plant 15.5 °C mean of host plant's temperature utilisation
function
Uwplan 5.5 - mean of host plant's moisture utilisation function
U comp 12 °C mean of competitor's temperature utilisation
function
07 comp 1 °C standard deviation of competitor's temperature
utilisation function
Uwcomp T - mean of competitor's moisture utilisation function
Oweomp 1 - standard deviation of competitor's moisture
utilisation function
OF 0.008 standard deviation for environmental stochasticity
Dispersal Boutrerry 1.5 - butterfly's shape parameter in equation B.4
Uputerpy  0.75 - fraction of local butterfly population emigrating
Oparasitoid 2 - parasitoid's scale parameter in equation B.4
Poarasioia 1.5 - parasitoid's shape parameter in equation B.4
Uparasioia 0.75 - fraction of local parasitoid population emigrating
Reproduction Ty, ; 16.5 °C optimal temperature for butterfly growth rate,
& parasitism location parameter of Gumbel distribution
) 1.4 °C scale parameter of Gumbel distribution
Nir 50 ind critical population size for Allee effect
c 1 ind parameter in equation B.5

3.3.1.2 Input

The environmental data employed in the simulations were based on real environmental data

derived from a digital terrain model developed by the Swiss Federal Statistical Office,
GEOSTAT. The coordinates of the 148 km x 113 km grid are 607,000-754,000 m E /
152,000-264,000 m N (Swiss grid CH1903). Environmental input layers were elevation,
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drainage area above each cell, slopes and aspects. Altitude in the study region ranged from
269 m to 3854 m a.s.l. Main climate variables in the virtual world were energy and water, in
particular mean summer temperatures and mean summer precipitation. Time series were
calculated manually by drawing for each time step a random number from a Normal
distribution with a characteristic mean (temperature 7= 21 °C at 0 m a.s.l.; precipitation Prec
= 640 mm) and standard deviation (o7 = 0.5 °C; op,. = 30 mm). A generalised climate change
scenario was derived for the period 2001 to 2050. Rates of change approximately followed
the projected changes of the IPCC SRES scenario A2 for Central and Northern Europe
(Houghton et al. 2001). Mean temperature was increased by 3°C in 50 years, mean

precipitation decreased by 50 mm; mean values within the 50 years were linearly interpolated.

3.3.1.3 Scenarios

A standard simulation run lasted 150 years. The model ‘spinned up’ for 100 years, running
with average climate, thereby ensuring a long-term equilibrium between butterfly population
and environment which was usually reached after five years. Scenarios were applied over the
last 50 model years.

Table 3.2. Range of parameter values in the process-based dynamic model. Please note that low values of

puierpry correspond to long dispersal distances and high values to short dispersal distances. Respective

equations are contained in Appendix B.

Function Symbol Values Unit Description

Habitat State  opwpian 1.5 2.5 °C standard deviations of host plant's temperature and
moisture utilisation functions

Dispersal Oputersty 0.5 4 - butterfly's scale parameter in equation B.4

Reproduction 4,4, 35 70 ind maximum butterfly population growth rate

& parasitism 0 0.01 ind area of discovery in equation B.6

Scenarios were derived in which ecological properties and processes as well as climate were
systematically manipulated in a factorial simulation experiment of five factors with two levels
each (Table 3.2). Climate change and parasitism were either turned on or off, the latter by
adjusting the area of discovery, i.e. the attack rate by the parasitoids. Butterfly growth rate
was either low or high through manipulation of the maximum growth rate 4,,, Plant niche
width was either narrow or wide, which was achieved by varying the standard deviation of the
plant’s resource utilisation functions. Finally, butterfly dispersal distance was either short or
long through manipulation of the scale parameter a in Eq. B.4 (Appendix B). A value of a =4
resulted in a maximum dispersal distance of one cell, o = 0.5 in a maximum dispersal distance

of five cells, while the parasitoids dispersed with a fixed maximum dispersal distance of two
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cells (o = 2). All possible parameter combinations resulted in 2° = 32 scenarios. For each

scenario we ran 10 replicate simulations.

3.3.2 Sampling by virtual ecologist

Similar to real field studies, a virtual ecologist sampled the butterfly population with the same
strategy as an ecologist might choose in reality. A random stratified sampling strategy was
applied (Hirzel and Guisan 2002), with temperature as the stratifying variable. The quantiles
(0.2-, 0.4-, 0.6- and 0.8-quantiles) of the temperature distribution were taken to split the data
into five ordinal classes, generating five homogenous environmental strata with respect to
temperature. An equal number of cells (replicates) were chosen in each stratum. In a selected
cell, the incidence of the butterfly and the prevailing environmental conditions were recorded.
In order to reduce spatial autocorrelation in the response variable, samples were not taken in
adjacent cells. The virtual ecologist made no errors in detection, i.e. butterfly occurrence and
environmental conditions were recorded exactly as given in the dynamic model. This way, the
performance of the statistical model could be directly related to the underlying demographic
and stochastic processes (Tyre et al. 2001). Training data were sampled directly after ‘spin
up’, i.e. after 100 model years, with a sample size of 1000. For each simulation run, five
training data sets were sampled to capture the variability introduced by snapshot data; SDM
accuracies for these five training data sets were averaged later. Independent (test) data sets
(sample size = 1000) were sampled in the year 100, and in every subsequent 10 years until

year 150.
3.3.3 Statistical modelling

3.3.3.1 Model formulation

Butterfly occurrences were analysed by Generalised Linear Models (GLMs) and Boosted
Regression Trees (BRTs) using a binomial error distribution and a logistic link function.
GLMs have been traditionally used in species distribution modelling, and fit parametric terms.
BRTs were developed within the machine-learning community, and are an ensemble-
prediction method combining regression trees and boosting. They are very flexible, but at the
same time resistant to overfitting, and are able to automatically model complex interactions
between predictor variables (Ridgeway 1999; Leathwick et al. 2006; Thuiller et al. 2006;
Elith et al. 2008).

Before the application of GLMs and BRTs, the predictor variables were tested for

multicollinearity by calculating Spearman’s rank correlation coefficient pg. Following
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Fielding and Haworth (1995), if two variables had a correlation pg > 0.7 the predictor with
less ecological importance in respect to butterfly occurrence was removed. GLMs were
estimated for the remaining predictor variables by applying an Akaike Information Criterion
(AIC)-based stepwise variable selection procedure (Akaike 1974; Harrell 2006). According to
the ecological knowledge we had (from the ‘virtual’ reality), we included linear (e.g. host
plant cover) and quadratic terms (e.g. temperature and soil moisture) in the GLMs as well as
an interaction term between temperature and soil moisture. The linear term was forced into
the model each time the quadratic term or the interaction term was selected in the final model.
BRTs were estimated with a tree complexity of 2, a bag fraction of 0.75 and a learning rate of

0.005 which ensured that the models were fitted with at least 1000 trees (cf. Elith et al. 2008).

3.3.3.2 Extrapolation in space and time

The resulting SDMs were used to make predictions to independent (test) data sets (sample
size = 1000) for the year 100, in which the models were fitted, and for every subsequent 10
years until year 150 where the simulation ended. Thus, SDMs were fitted under average
climate where the butterfly population was in long-term equilibrium with its environment,
and, in the case of climate change, the occurrence of butterflies was projected to differing

time slices under gradually ongoing climate change.

3.3.3.3 Model transferability: Validation

For each prediction in space and in time, three different measures of accuracy were calculated
in order to get a multi-facetted view of how good the SDM predictions were. The proportion
of deviance explained by the final models was quantified by the explained deviance #°;, a
logistic regression equivalent to the coefficient of determination ¥ (Menard 2000). We
derived the deviance by applying Equation 1.10 in Hosmer and Lemeshow (2000). The
models’ ability to discriminate between occupied and non-occupied sites was assessed by
calculating AUC, the area under the ROC-curve (Fielding and Bell 1997). AUC is
independent of classification thresholds and typically assumes values between 0.5 and 1, with
AUC = 0.5 for models with predictive ability no better than the null model and AUC =1 for
perfectly discriminating models. Values of AUC > 0.7 indicate useful predictions according to
Hosmer and Lemeshow (2000). Additionally, the calibration curve was calculated, to
determine the agreement between observations and predicted values, i.e. the goodness-of-fit
(Pearce and Ferrier 2000). It was derived from a logistic regression of the observed values on
the logit of the predicted values (Harrell 2001; Reineking and Schréder 2006). A perfectly

calibrated model would exhibit a calibration curve with a slope of one and an intercept of
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zero. Departures from these values indicate bias and spread, respectively, in the predicted

values.
3.4 Results

3.4.1 Dynamic population model

Not all suitable cells were occupied by butterflies. This was a consequence of local
extinctions caused by predation or stochastic processes, or due to dispersal limitation. The
relative proportion of occupied habitat, the prevalence, became greater when the plants had
wider niches resulting in more available habitat for the butterflies, and when the butterflies
were able to travel farther distances which allowed them to spread throughout more of their
geographical niche and to reach even more distant patches (Fig. 3.2). Prevalence was also
greater for scenarios without parasitism, as extinction then only occurred due to stochastic
processes in the environment. Although high butterfly growth rates caused higher butterfly
abundances, prevalence was not affected, and did not differ considerably between scenarios of

high and low butterfly growth rates.
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Figure 3.2. Effects of ecological properties on mean abundances and prevalences of butterflies in the
virtual world in year 100 when butterflies were in long-term equilibrium with their environment. Open
and filled boxes indicate low and high values for a given ecological parameter, respectively (Table 3.2).
Sample size is n = 160.

In all scenarios under climate change the butterfly population moved southwards, not
gradually, but rather in distinct steps which corresponded to distinct steps in the temperature
trajectory (Fig. 3.3). After 115 years, the butterflies started to shift their geographical range
southwards which was accompanied by a small range contraction. Then after 135 years,

distinct range contractions took place accompanied by ongoing southwards movements. The
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northernmost patches which formerly supported intermediate relative butterfly abundances

became unoccupied after year 140.

o
Sw 10
S
©
™
3 0.8
2
0w o
¢
©
£ o 0.6
E 8
g 2
8
w 0.4
'8
Z 2
©
02
o
o
=1
S
©
T 5e-6

101 110 120 130 140 150
Time

NN NN
= N WA

Temperature [°C]

Figure 3.3. Range dynamics under climate change. The shift in relative butterfly abundances in north (N)
-south (S) direction is depicted in the top panel. It is the average butterfly abundance of all (16) scenarios
and replicate runs under climate change, and in each 1-km wide N-S transect in years 100 to 150, when
climate change took place. The bottom panel shows the temperature trajectory under climate change for
the years 100 to 150 (red) and the 3-year moving average (black). Range shifts took place after year 115,
after year 135 distinct range contractions occurred. These steps coincided with steps in the temperature

trajectory.

3.4.2 Statistical models

Under average climate, both BRTs and GLMs achieved high prediction accuracies. According
to the rules of thumb given by Hosmer and Lemeshow (2000) the average discrimination
ability could be considered as outstanding with (mean and median) AUC > 0.9. Furthermore,
models were transferable in space without noticeable loss in predictive power (Fig. 3.4a).
Under climate change, the distinct steps in the range dynamics were reflected in the prediction
accuracies achieved for the different time slices (Fig. 3.4b). The range shift after year 115
caused only a slight difference, namely a wider range of prediction accuracies for the year 120
while for the year 130 the pattern seen in Fig. 3.4a was retrieved. Thus, abrupt range shifts
caused a loss in predictive power in some scenarios, but, after a small time lag, predictive
power was resumed. After year 140 which corresponded to the distinct range contractions,
there was a profound difference between the prediction accuracies achieved by BRTs and

GLMs. While the mean discriminatory power of BRTs even increased and the range
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decreased, the opposite was true for prediction accuracies of GLMs with a decrease in mean
performance and a much wider range. Still, all scenarios yielded AUC > 0.7 indicating that

for all scenarios both BRTs and GLMs were able to make useful predictions.
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Figure 3.4. Boxplots of AUC values for scenarios under average climate (a) and climate change (b). SDMs
were fitted in year 100; predictions were made on independent data for year 100 and every subsequent 10
years. The AUC values achieved for BRTs and GLMs, respectively, for the different climate regimes in
the respective years are depicted in the boxplots; » = 160.

The effects of different ecological properties on the mean prediction accuracies achieved
under climate change are shown in Fig. 3.5. Accuracies for the year 100 correspond to
accuracies the SDMs would achieve under average climate. When the butterflies were not
influenced by a parasitoid-interaction (Fig. 3.5a-c) differing butterfly population growth rates
caused the only considerable effect on prediction accuracies, with higher AUCs for lower
growth rates. There were trends that long butterfly dispersal distances and wide plant niche
widths led to higher prediction accuracies. BRT prediction accuracies slightly decreased for
year 120, except for scenarios with far butterfly dispersal distances where mean AUCs
remained constant, and then increased and achieved even higher values in the year 150 than at
the time of model estimation. GLM prediction accuracies exhibited the same pattern up to the
year 130 but then strongly decreased for the years 140 and 150 where the distinct range
contractions occurred. The exception were the scenarios with wide plant niche widths which
only showed slight decreases in prediction accuracies under range contractions. Both BRT
and GLM prediction accuracies for the year 120 only decreased for scenarios with short
butterfly dispersal distances and there was this aforementioned time lag until predictive power
was retrieved. Thus, butterflies with short dispersal distances did not track the range shift

instantaneously but with some time lag.
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Figure 3.5. Effects of ecological properties on mean prediction accuracies (AUCs) of BRTs and GLMs
achieved under climate change for all time slices, and for cases without parasitism (a-c) and with
parasitism (d-f), respectively. Open and filled symbols indicate low and high values for a given ecological
parameter, respectively (Table 3.2). Error bars indicate 95%-confidence intervals. Sample size is n = 40.
When parasitoids attacked the butterflies, the resulting prediction accuracies for the different
time slices looked completely different (Fig. 3.5d-f). There were only minimal differences
between BRTs and GLMs, and when the BRT prediction accuracies increased with range
contractions, those of GLMs did as well. The virtual ecologist had perfect knowledge of the
occurrence of parasitoids at all times. In the presence of a parasitoid-interaction the inclusion
of this parasitoid incidence as predictor in the SDMs put GLMs on a par with BRTs. In
contrast to scenarios without parasitism, butterfly population growth rates now did not show a
remarkable effect on prediction accuracies anymore, and the effects of plant niche widths and
butterfly dispersal distances were reversed. Butterfly dispersal ability exhibited the most
pronounced effect with much higher prediction accuracies for short dispersal distances up to
the year 130. When range contractions occurred this effect was smaller but still noticeable.
While for the year 150 under climate change even the lowest prediction accuracies achieved
by GLMs still indicated useful predictions, they had alarmingly low explanatory power in
some scenarios (Fig. 3.6). Without any parasitoid-interaction BRTs explained at least 50% of
the deviance and achieved even values up to 90%. GLMs, on the other hand, did not even
explain 20% of the deviance in five out of eight cases. Only in scenarios with wide plant
niche widths and low butterfly population growth rates and in the scenario with high plant

niche width, high butterfly population growth rate and far butterfly dispersal distance did
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GLMs have explanatory power above 40% up to 60% explained deviance. Explained
deviances achieved intermediate values between 30% and 70% in scenarios with parasitism

assumed, and were similar for BRTs and GLMs.
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Figure 3.6. Effects of ecological properties on explained deviance achieved by BRTs and GLMs under

climate change for year 150.
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Figure 3.7. The mean calibration curves achieved by BRTs and GLMs under climate change without

parasitism for all time slices. Sample sizes are n = 80.
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Calibration statistics allowed us to judge the bias and spread in the predicted probabilities of
occurrence compared to observed occurrences. The calibration curves obtained for BRTs and
GLMs under climate change and without parasitism are shown in Fig. 3.7. Both BRTs and
GLMs slightly underestimated the probability of butterfly occurrence in the year 120 when
the butterflies started to shift their geographical range. This was true for all scenarios
regardless of dispersal ability, indicating that the butterflies persisted at the trailing edge of
the range shift for some time whereas the SDMs predicted unsuitable habitat. When range
contractions took place, the probability of occurrence was overestimated, only slightly by

BRTs but consistently by GLMs which showed a strong bias in their predictions (Fig. 3.8).
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Figure 3.8. Effects of ecological properties on calibration statistics of BRTs and GLMs under climate
change without parasitism for the year 150. (a) Open and filled symbols indicate low and high magnitudes,
respectively (Table 3.2). The reference is the fit in year 100. Error bars (a) and shading lines (b) present
the 95%-confidence interval. Sample sizes are n = 40, respectively n = 80 for the reference (a).

Overall, predictions made by BRTs fitted the observations well even under ongoing climate
change. Bias and spread in the predictions differed for the different scenarios, i.e. for different
ecological properties (Fig. 3.8). For instance for the year 150, short butterfly dispersal
distances and wide plant niche widths caused BRTs to be slightly biased towards
overestimating the probability of butterfly occurrence while low butterfly population growth

rates caused no bias, and all other scenarios caused bias towards underestimating the
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probabilities of occurrence. All scenarios resulted in calibration slopes greater than one
indicating that higher predicted values were underestimating the occurrence of butterflies
while lower predicted values were overestimating the occurrence of butterflies. Nevertheless,
for BRTs differences to the ideal calibration curve were small and in no way alarming. The
strong bias in GLM predictions led to consistent overestimation of butterfly occurrence for all
scenarios (Fig. 3.8a). Here, differing calibration slopes only determined whether this
overestimation was more extreme for very low or very high predicted values (Fig. 3.8b).
Overall, due to consistent overestimation GLMs were not able to accurately predict the

absences under range contraction which, in contrast, was the major strength of the BRTs.
3.5 Discussion

3.5.1 Prediction accuracies under climate change

The main outcome of this study was that the ways in which species respond to climate change
lead to quite different projection accuracies achieved by SDMs. As one might expect,
prediction accuracies initially decreased when species started to shift their geographic range
due to climate change. The calibration statistics helped to explain how this mismatch between
simulated true species distribution and forecasts made by SDMs was determined on one hand
by the dispersal ability of the species and on the other hand by the ability of the species to
endure, at least for some time, suboptimal conditions at the trailing edge of the range shift
where habitat became gradually unsuitable (Morin and Thuiller 2009). Both mechanisms led
to a time lag after the range shift where the predictive performance of SDMs was decreased,
although the mechanisms at the trailing edge were of minor importance. The uncertainty in
prediction accuracies introduced by the unlimited dispersal assumption strongly depended on
the dispersal ability of the species (Midgley et al. 2006; Thuiller et al. 2005). As soon as the
species’ potential geographic range remained static long enough for the species to fill its
entire range, i.e. as a new equilibrium situation was realised, prediction accuracies increased
again to values the SDMs would achieve under average climate. This also implied that rates
and intensity of climate change are of utmost importance for the predictive performance of
SDMs. If the potential geographic range of the species were to shift continuously, or if
climate change were accelerated for periods of time, this would cause greater discrepancies
between predicted and true species occurrences. Somewhat counterintuitively at first sight,
the predictive performance of SDMs increased when species geographic ranges contracted. At
second sight however, we saw that this happened because the absences were predicted more
accurately. Thus, range contractions and consequently refugia could be modelled quite
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accurately by SDMs, and thus may allow identification of core areas for nature conservation.
The results also highlight the benefit and importance of using different performance measures
for SDMs. Models performing well in terms of predicting climate-change induced
distributional shifts from a discrimination perspective (measured using the popular AUC
statistic) may nevertheless perform poorly in terms of calibration, with significant

implications for estimates of extinction risk and colonisation success.

3.5.2 Model comparison

As one might have expected, BRTs outperformed GLMs both when making predictions under
both average climate and climate change. The high flexibility of BRTs and their ability to
model thresholds in species’ occurrence made them superior to GLMs. Surprisingly, in the
presence of a parasitoid interacting with the butterfly this effect vanished and BRTs and
GLMs were equivalent, highlighting the importance to include biotic interactions as
predictors. It was striking that the mean discriminatory power of BRTs increased when range
contractions took place while the mean performance of GLMs decreased. But can we
generalise these results and, thus, can we expect BRTs to generally better perform under
climate change than GLMs? The answer is no, because attention should be paid to the
circumstances where the models were estimated. As BRTs model thresholds in species’
occurrences and extrapolate beyond the parameter range by predicting the mean response of
the parameter region closest to the newly encountered parameter space, the prediction
accuracy strongly depends on the extent to which the recorded occurrences correspond to the
entire niche of the species. Ideally, the full range of a species should be used for estimating
SDMs because then the probability is reduced to extrapolate to environmental conditions the
species has never encountered before (Dormann 2007; Thuiller et al. 2004); examples are
given by del Barrio et al. (2006) and Pearson et al. (2002). If this is met, then BRTs will
probably always outperform parametric methods as GLMs, simply because they allow a
highly non-linear threshold-like fitting of presence-absence data, rather than relying on

monotone approximations such as the logistic curves of binomial GLMs.

3.5.3 Effects of ecological properties and processes

Several studies reported decreasing spatial prediction accuracies with increasing range sizes
and niche breadth, i.e. more accurate predictions could be made for specialists than for
generalists (Brotons et al. 2007; Hernandez et al. 2006; McPherson and Jetz 2007; Pearce et
al. 2001; Segurado and Araujo 2004; Seoane et al. 2005; Stockwell and Peterson 2002). This

however, is not beyond controversy as e.g. Garrison and Lupo (2002) reported better model
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performances for species with larger range sizes. We encountered both effects: when
butterflies were interacting with a parasitoid, specialists were modelled more accurately. In
contrast, when no parasitoid-interaction was present there was no considerable effect for
spatial predictions but under ongoing climate change the distributions of generalists were
modelled more accurately than of specialists. There is no easy biological explanation for this.
To explain why specialists can be modelled more accurately than generalists Stockwell and
Peterson (2002) suggested that widespread species may show local ecological adaptations.
Modelling all these subpopulations together would effectively overestimate the species’
niche, and therefore reduce model performance. However, our dynamic model did not
incorporate any local adaptation and we may thus rule out this explanation. A likely
explanation why in the presence of a parasitoid-interaction SDMs performed better for
specialists than for generalists is that the relationship between butterfly and parasitoid
occurrence might be noisier for wide-ranging butterflies. Without parasitism a remarkable
difference between model performances for generalists and specialists only occurred when the
species started to shift their geographic range and in the case of GLMs increased noticeably
when range contractions occurred. A reason might be that suitable habitat became more
isolated with ongoing range shifts and contractions, and that this isolating effect was severer
for specialists. Thus, butterflies were not able to reach all suitable habitat patches, this effect
being more pronounced for narrow-ranging than for wide-ranging butterflies.

Without parasitism lower butterfly population growth rates led to higher predictive
performances of both BRTs and GLMs under average climate and for range shifts. There was
no considerable effect when range contractions occurred and when the butterflies were
interacting with parasitoids. Higher growth rates caused higher abundances and because of
local dispersal also higher prevalences, but only in particular regions where the temperature
was near the optimum growing temperature. This may have resulted in biased habitat
selection patterns and therefore response surfaces, obscuring the true species-habitat
relationship. These findings are in contrast to the results of Seoane et al. (2005) who obtained
better models for species that can reach high densities. They, however, predicted abundances
instead of probabilities of occurrence, and for accurate predictions of species abundances
other ecological factors may be of importance.

Under average climate and without parasitism, model performances did not differ between
short and far-dispersing butterflies. This is consistent with results found by Garrison and Lupo
(2002) and Stockwell and Peterson (2002). Pearce et al. (2001) on the other hand reported

poorer prediction accuracies for mobile species though this effect was not significant. As
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mentioned before, when the species started to shift their geographic range due to climate
change short-dispersing butterflies were initially outpaced by climate change. When
butterflies were interacting with parasitoids prediction accuracies were much better for short-
dispersing butterflies. This is an effect of parasitoids’ dispersal ability. When parasitoids were
worse dispersers than the butterflies then the relationship between butterfly and parasitoid
occurrences was much noisier. Thus, not only the dispersal ability of the focal species is of

importance but also the dispersal behaviour of species it is interacting with.

3.5.4 Limitations and extensions

Creating a virtual world is fraught with difficulties. Our spatially explicit tritrophic system
and companion virtual ecologist represent only one possible implementation, but it enabled us
to manipulate important biotic interaction and dispersal effects on SDM accuracy.

One caveat of our study is the assumption that our virtual ecologist acts flawlessly and under
optimum conditions: the virtual species is detected perfectly and the spatial samples are
complete in coverage and instantaneous in time. In studies of real data ecologists have to deal
with false negatives in the data, incomplete coverage of environmental predictors, more
complex species-habitat relationships, etc., the effects of which clearly remain to be explored
by future extensions of our approach.

Additionally, several other effects can be explored with this approach, which lie outside
experimental manipulation in the real world. First the effect of other types of ecological
processes can be investigated, such as spatial dependency of biotic interactions (i.e. some
taking place only at the edge of a species distribution) or changing biotic interactions under
environmental change, the effects of changing disturbance regimes or local ecological
adaptation. Secondly, several statistical and sampling issues can be addressed, such as the
usefulness of proxies (e.g. NDVI as surrogate for host plant abundance); effect of missing
important variables (e.g. omitting incidence of parasitoids from SDMs); or density-
dependence in detection probability of the focal species (a problem that underlies the

development of efficient survey designs).

3.5.5 Perspectives and research needs in species distribution

modelling

Several steps must be taken in order to improve predictions of species distributions under
scenarios of environmental change. Distributional patterns of species in space and time are
determined by environmental variability, and processes acting at specific spatial scales and

times may be crucial for the occurrence of a species. Climate change may even increase
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variability in the environment both spatially and temporally, and thus this variability must be
accounted for in species distribution modelling. The importance of spatial scale and
hierarchical structure in ecological processes has long been recognised (Mackey and
Lindenmayer 2001), but only very few studies have so far explicitly dealt with multiple
spatial scales in a hierarchical manner (Graf et al. 2005; Diez and Pulliam 2007; McMahon
and Diez 2007; Albert et al. 2008). Ignoring hierarchical structure in processes may be
fallacious and result in erroneous projections of future species distributions under
environmental change (Davis et al. 1998; Diez and Pulliam 2007; Dormann 2007). In real
world studies, the underlying processes are rarely known, making, in our opinion,
consideration of hierarchy in scales and processes indispensable, for example by means of
multilevel modelling (Gelman and Hill 2007). Our results showed that temporal patterns of
climate change and transient dynamics greatly affect SDM prediction accuracies, and other
studies have suggested that temporal variability increases the probability of population
extinction (cf. Thuiller et al. 2008). Midgley et al. (2006) showed that even a simple ‘time-
slice’ approach may reveal transient range dynamics which are obscured by ‘one-step’
projections as commonly applied when projecting future species ranges by SDMs. We
recommend the use of ‘time-continuous’ approaches with discrete time steps in which step
lengths should be as small as possible or should at least be determined by temporal patterns
and rates of expected environmental change (cf. Schroder et al. 2008 for an example on
landscape-scale). Overlaying the resulting habitat suitability maps of the different time steps
or years may allow the identification of core areas within a species’ range (cf. Osborne and
Suarez-Seoane 2007) and thus core areas for nature conservation.

Our study showed that the performance of SDMs predicting species which experienced range
shifts strongly depended on two processes: dispersal at the leading edge and extinction or
persistence at the trailing edge of the range shift. The incorporation of these processes into
species distribution modelling is thus of major importance. Several strategies have already
been tested to incorporate animal dispersal or animal dispersed pollen and seeds into SDMs,
including the simple assumption of maximum dispersal rates (Midgley et al. 2006), and
connectivity analyses (del Barrio et al. 2006; Graf et al. 2005). More complex approaches
mechanistically modelling dispersal rely on dispersal kernels (e.g. del Barrio et al. 2006) or
individual-based models (e.g. Graf et al. 2005). Applying such mechanistic approaches to
range projections under climate change additionally requires integrated modelling of local
population dynamics. The choice of approach to use depends on the specific aims of the study

in question. However, for the prediction of species’ responses to climate change an

58



- Chapter 3 - Discussion

integration of dispersal and local population dynamics in a mechanistic manner seems
promising (del Barrio et al. 2006; Keith et al. 2008), on the one hand because knowledge of
local population dynamics is needed for the prediction of persistence at the trailing edge and
local extinctions within the species’ range. On the other hand, incorporation of local
population dynamics may help to predict species’ responses to, for example, seasonally
asymmetric climate change or extreme events. Explicit consideration of dynamic species’
responses may provide the basis for dynamic and integrated conservation strategies.

Biotic interactions must be included in SDMs. But then, future projections of species’
distribution then also require knowledge and thus prediction of the distribution of interacting
organisms (Hawkins and Porter 2003, Schweiger et al. 2008). In cases where the link between
predator and prey is as tight as in our virtual world, where the parasitoid only foraged on the
butterflies and was directly dependent on them, the temporal distribution of the predator may
be approximated by a simple dispersal model simulating movement between patches
exhibiting a probability of prey occurrence above a certain threshold. Also, the distribution of
lower trophic levels on which the focal species forages must be known or predicted at all
projection times introducing further uncertainties in range projections. There is no simple
solution to that, and for now we must be content with making projections under specific

assumptions regarding the distribution of any interacting organisms.

3.5.6 Conclusion

Different range dynamics may lead to quite different prediction accuracies of SDMs under
climate change. A species’ ability to track climate change, determined by dispersal ability and
the rate of change, is decisive for SDM performance when species shift their geographic
range. Range contractions may be predicted quite accurately as the absences are predicted
well. Flexible methods as BRTs will probably always outperform parametric methods due to
their ability to fit non-monotone relationships. The study demonstrates the benefits and
capabilities of integrating dynamic and statistical modelling approaches in different ways. On
the one hand, dynamic population modelling as virtual playground for testing statistical
models allows the extensive exploration of specific questions. On the other hand, the
integration of dynamic processes into species distribution modelling may help to improve
predictions of species distributions under environmental change. Here, the present study
provides valuable insights which processes are of relevance when species undergo transient

dynamics and should hence be incorporated in species distribution models.
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4 Uncertainty in predictions of range dynamics:

black grouse climbing the Swiss Alps®

? A manuscript with equivalent content has been published as:
Zurell, D., Grimm, V., Rossmanith, E., Zbinden, N., Zimmermann, N.E. and Schréder, B. (2011). Uncertainty in
predictions of range dynamics: black grouse climbing the Swiss Alps. Ecography. doi: 10.1111/j.1600-
0587.2011.07200.x
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4.1 Abstract

Empirical species distribution models (SDMs) constitute often the tool of choice for the
assessment of rapid climate change effects on species’ vulnerability. Conclusions regarding
extinction risks might be misleading, however, because SDMs do not explicitly incorporate
dispersal or other demographic processes. Here, we supplement SDMs with a dynamic
population model (i) to predict climate-induced range dynamics for black grouse in
Switzerland, (ii) to compare direct and indirect measures of extinction risks, and (3) to
quantify uncertainty in predictions as well as the sources of that uncertainty. To this end, we
linked models of habitat suitability to a spatially explicit, individual-based model. In an
extensive sensitivity analysis, we quantified uncertainty in various model outputs introduced
by different SDM algorithms, by different climate scenarios and by demographic model
parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. By the
end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some
climate scenarios. In contrast, population size and occupied area were primarily controlled by
currently negative population growth and gradually declined from the beginning of the
century across all climate scenarios and SDM algorithms. However, predictions of population
dynamic features were highly variable across simulations. Results indicate that inferring
extinction probabilities simply from the quantity of suitable habitat may underestimate
extinction risks because this may ignore important interactions between life history traits and
available habitat. Also, in dynamic range predictions uncertainty in SDM algorithms and
climate scenarios can become secondary to uncertainty in dynamic model components. Our
study emphasises the need for principal evaluation tools like sensitivity analysis in order to
assess uncertainty and robustness in dynamic range predictions. A more direct benefit of such
robustness analysis is an improved mechanistic understanding of dynamic species’ responses

to climate change.

4.2 Introduction

Recent studies in biogeography and macroecology resulted in growing concerns about
species’ range shifts driven by ongoing climate and land use change. Species dynamically
adjust their ranges in response to the complex interplay of environmental forces, changing
biotic interactions, and their interactions with key demographic traits (Aratjo and Luoto 2007,
Thuiller et al. 2008, Walther et al. 2002). To date, a substantial body of literature has amassed
on predicting potential range dynamics as well as extinction risks in order to derive mitigation

strategies for global change impacts (Midgley et al. 2002, Thomas et al. 2004, Thuiller 2004).
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Many, if not most, recent climate impact studies rely on correlative, phenomenological
species distribution models (SDMs). These derive statistical relationships between the
species’ occurrence (or abundance) and prevailing environmental (biotic and abiotic) factors
to characterise the environmental niche (Guisan and Zimmermann 2000). Potential future
ranges of species are projected by transferring this relationship to future environmental
conditions, thus allowing for rapid assessment of potential threats. SDMs require comparably
simple species location data such as presence-absence and do not rely on profound prior
knowledge on the species’ biology. Therefore, they constitute one of few practical approaches
to study environmental change impacts on a wide range of species quickly (Elith and
Leathwick 2009, Huntley et al. 2004) and have spurred hundreds of applications and
publications on these issues (Zimmermann et al. 2010).

However, SDMs are not intended for making transient predictions under environmental
change. Many recent publications have tried to raise awareness to the inherent fundamental as
well as methodological limitations accompanying SDMs (Buckley and Roughgarden 2004,
Dormann 2007, Guisan and Thuiller 2005, Hampe 2004). Some principal limits for SDMs
arise from their conceptual underpinning. Foremost, they assume that species are in
equilibrium with their environment, which may not even be the case for many post-glacial
distributional ranges (e.g. Svenning and Skov 2004). Correspondingly, when extrapolating to
new times and places, SDMs implicitly assume an instantaneous realisation of a new
equilibrium situation. Thereby, transient population dynamics and important life history traits
such as dispersal capacity and local persistence ability that shape a species’ response to
environmental change are essentially ignored (Thuiller et al. 2008, Zurell et al. 2009, chapter
3). This may lead to biased estimates of extinction risks. In addition, discussions about
methodological issues prevail. Different SDM algorithms, for instance, have led to divergent
predictions of habitat suitability for scenarios of climate change (Buisson et al. 2010, Pearson
et al. 2006, Thuiller 2004). Among others, model predictions can be expected to be sensitive
to model building steps and data characteristics including uncertainty in future climate
scenarios (Aratjo and Guisan 2006, Dormann et al. 2008, Heikkinen et al. 2006).

Challenges for SDM predictions under environmental change are manifold and, therefore,
several steps have been proposed to improve SDMs and to yield more robust predictions. One
solution is to make use of multiple models within an ensemble framework which allows
analysing the range of uncertainty introduced, for example, by different SDM algorithms and
different climate scenarios (Aratjo and New 2007, Thuiller et al. 2009). To overcome

fundamental limitations of SDMs that are related to their static nature, several authors have
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urged to supplement SDMs by more mechanistic, stochastic population models that
incorporate key demographic processes determining range dynamics (Aratjo and Guisan
2006, Guisan and Thuiller 2005, Thuiller et al. 2008, Schroder 2008, Zurell et al. 2009,
chapter 3). Stochastic population models explicitly describe demographic processes such as
mortality, reproduction and dispersal while taking into account environmental and
demographic stochasticity. They allow the assessment of species vulnerability or extinction
risks via population viability analyses (PVA, Burgman et al. 1993, Brook et al. 2000) and
may help to uncover ‘tipping points’ that lead to rapid and potentially irreversible species’
responses to environmental change (Pereira et al. 2010). However, these models are also
highly data demanding, usually involve more complex model structures, and rely on extensive
knowledge on species’ biology and population processes which often constrains the spatial
scale of the studies, the number of species or the generality of results (Jeltsch et al. 2008).
Attempts have been made to make use of both phenomenological and population dynamic
approaches when predicting climate change-induced range shifts (Anderson et al. 2009,
Cheung et al. 2009, Keith et al. 2008). Thereby, SDMs and comparably simple, spatially
explicit population models are integrated by constraining basic demographic parameters of
the dynamic model (e.g. carrying capacity) by SDM output (e.g. habitat suitability). As such,
the predictive accuracy of SDMs at large spatial scales is retained while being able to capture
transient population dynamics in response to climate change (Gallien et al. 2010, Keith et al.
2008). Another simple way is to run a dynamic, multi-species population model under a range
of environmental and landscape contextual conditions, and then to fit the major outcome of
these simulations, namely migration rate, against climate and competition as predictors, and
to combine this information in a simple GIS time-step model to predict transient responses of
the target species to changing land use and climates (Meier et al. 2011).

The goal of all these considerations and efforts is to increase robustness of model predictions
under environmental change. Quantitative predictions of models typically carry substantial
error margins due to structural (model specification) uncertainty and parameter (data)
uncertainty as well as inherent (natural) stochasticity of ecological dynamics (Barry and Elith
20006, Jeltsch et al. 2008). Conclusions regarding the robustness of predictions can only be
made conditional on explicit simulation runs. When integrating SDMs and dynamic
population models in order to predict range dynamics for scenarios of environmental change
final predictions essentially carry errors of three different models (SDM, population model
and climate model; Beaumont et al. 2008, Wiens et al. 2009). These uncertainties need to be

quantified in order to draw inferences about the robustness of model results.
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In this context, the objectives of our study were threefold: (1) to predict climate-induced
range dynamics for black grouse in Switzerland, (2) to compare direct and indirect measures
of extinction risks, and (3) to quantify uncertainty and robustness of predictions and assess
relative contribution of different modelling components to overall uncertainty. To achieve
this, habitat suitability maps obtained from spatio-temporal SDM predictions were linked to a
spatially explicit individual-based model that described key demographic processes of black
grouse. Predictions were derived and compared for multiple key model outputs (population
and occupied area size, probability of extinction, mean elevation and mean population centre).
Uncertainty in predictions was quantified by extensive sensitivity analysis. Thereby, we
focused on three different uncertainty components: climate scenarios, SDM algorithms, and
demographic model parameters. Furthermore, sensitivity was evaluated for each key model

output to delineate more or less robust features of dynamic range predictions.
4.3 Methods

4.3.1 Species data

In the Swiss Alps, black grouse (Tetrao tetrix) mainly occurs in treeline habitats, in dwarf-
shrub-rich transition zones between forests and alpine meadows at an altitude of up to 2500 m
above sea level (Zbinden and Salvioni 2003). Swiss black grouse populations were judged as
stable by comparisons between the two observation periods of the Swiss Breeding Bird
Atlases 1972-1976 and 1993-1996 (Schifferli et al. 1980, Schmid et al. 1998). However,
population sizes are known to fluctuate strongly and, thus, estimates on population status
derived from such short time periods may be imprecise. For example, local declines were
reported for the northern as well as southern Prealps caused by habitat loss and fragmentation
(Schmid et al. 1998, Zbinden and Salvioni 2003).

Species distribution data at 1 km resolution were obtained from the Swiss Breeding Bird Atlas
(Schmid et al. 1998). Count data for assessing reproductive success were obtained from a time
series observed between 1981-2007 in Ticino, Switzerland, where the numbers of chick-
rearing hens and juveniles were recorded annually in the second half of August (Zbinden and

Salvioni 2003).

4.3.2 Environmental predictors

Environmental predictors included climatic variables as well as land use and vegetation data
at 1 km resolution. Climate data were derived from the BIOCLIM database (Swiss Federal

Research Institute WSL) including long-term averages from the period 1961-1990 on summer
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(June-August), winter (December-February) and annual values for the variables: precipitation
sum; mean temperature; potential solar radiation; mean summer moisture index (precipitation
— potential evapotranspiration); and growing degree days above 0 °C. Details for the
derivation of these climate layers are given in Zimmermann and Kienast (1999) and in Guisan
et al. (2007). Land use and vegetation data were compiled from the land use and land cover
database GEOSTAT (Swiss Federal Statistical Office). From these, we chose five land use
categories that we deemed sensible to explain black grouse presences and absences, based on
the ecology of the species: scattered forest, bushy forest, grassland and arable land,

unproductive vegetation, and residential and infrastructural areas.

4.3.3 Climate change scenarios

Climate change scenarios were obtained from the ENSEMBLES Project
(http://www.ensembles-eu.org/). Five scenarios were obtained from three regional circulation
models with three different underlying general circulation models and three different emission
scenarios (A1B, B1, B2, see Table 4.1). These scenarios were chosen to reflect a range of
predictions for the Central European Alps that were both realistic and reached from
pessimistic to optimistic. Scenarios were downscaled to a 1 km spatial resolution according to
the procedure described in Engler et al. (2011). Climate scenarios were available as 10 year
time slices which we interpolated to obtain annual changes in climate. The general climate
trend over the 21st Century is illustrated in Appendix C, Fig. C.1.

Table 4.1. Regional circulation models (RCM) used in the ensemble simulations of this study. Each RCM
was based on the boundary inputs from a General Circulation Model (GCM). We used three different
SRES scenarios, which translate for the Swiss case study to tabulated climate anomalies by the end of the

21st century (AT, AP). HC: Hadley Center; MPI: Max Plank Institute; SMHI: Swedish Meteorological
and Hydrological Institute.

Short RCM GCM Institute SRES AT AP

H-al HadRM3q0  HadCM3 HC AlB +5.26°C +4.67mm
M-al CLM ECHAMS MPI AlB +4.51°C +5.96mm
M-bl CLM ECHAMS MPI Bl +3.07°C +10.51mm
S-al RCA30 CCSM3 SMHI AlB +2.71°C +0.70mm
S-b2 RCA30 CCSM3 SMHI B2 +2.89°C +1.55mm

4.3.4 Species distribution model

Black grouse potential distribution was predicted using three different statistical algorithms
that take presence-absence input data, are widely used in species distribution modelling and

that present different levels of flexibility (Elith et al. 2006, Heikkinen et al. 2006), namely:
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generalised linear models (GLM), generalised additive models (GAM) and boosted regression
trees (BRT).

In order to minimise multicollinearity problems, we pre-selected the final predictors prior to
modelling so that bivariate Spearman correlations were below [r|=0.7 (Fielding and Haworth
1995). Thereby, we gave preference to land use variables as we regard these as more proximal
predictors for black grouse occurrence and, hence, retained only those climate variables that
we expected to have a direct effect on black grouse occurrence. Our final predictor set
included five land use variables (see above), two climate variables (mean annual temperature,
winter precipitation), and potential solar radiation describing topographic effects.

We allowed second-order polynomials in GLM, and non-parametric cubic smoothing splines
with up to four degrees of freedom in GAM. BRT was estimated with a tree complexity of 2,
a bag fraction of 0.75 and a learning rate of 0.01 which ensured that the model was fitted with
at least 1000 trees (cf. Elith et al. 2008).

A split-sample approach was used to validate SDM performance (Aragjo et al. 2005). Models
were calibrated on a randomly selected sample of 70 % of the data and validated against the
remaining 30 %. Data splitting was repeated 100 times and evaluation statistics were averaged
to yield a final evaluation that is quasi-independent of initial conditions (Thuiller et al. 2009).
Several measures of accuracy were calculated: explained deviance R2 (Menard 2000), the
area under ROC curve (AUC; Fielding and Bell 1997), the true skill statistic (TSS) (Allouche
et al. 2006), sensitivity (true presences) and specificity (true absences) as well as slope and
intercept of the calibration curve which describe spread and bias in the predictions (Reineking
and Schroder 2006, Zurell et al. 2009, chapter 3). We derived the deviance by applying eq.
1.10 in Hosmer and Lemeshow (2000). As TSS, sensitivity and specificity require binary
predictions we converted the predicted occurrence probabilities into presence-absence maps
by applying the prevalence threshold (Liu et al. 2005). All SDMs with accompanying analysis
of their performance were built in R version 2.12.1 (R Development Core Team 2010).

The resulting SDMs estimated black grouse occurrence probabilities for entire Switzerland.
High occurrence probabilities were interpreted as indicating environmental conditions that
define highly suitable habitat for black grouse (Aratjo et al. 2002, Sondgerath and Schroder
2002).

4.3.5 Individual-based model
We simulated population dynamics of black grouse by a stochastic, spatially-explicit

individual-based model (IBM) that followed the fate of individual birds from birth to death.

The subsequent model description follows the ODD (Overview, Design concepts, Details)
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protocol for describing individual-/agent-based models (Grimm et al. 2006, Grimm et al.
2010).

Purpose: The main purpose of the model is population viability analysis.

Entities, state variables and scale: Female birds constituted the biological entity in our
model. In black grouse, females are the limiting sex regarding not only reproduction but also
dispersal as the latter is restricted predominantly to first-year hens while first-year cocks
affiliate to the nearest lek (mating arena for competitive courtship display), and adults are
rather sedentary (movements within the home ranges were ignored, Caizergues and Ellison
2002). Individuals were characterised by the state variables location and age. The model
landscape represented entire Switzerland and consisted of a grid of 42181 cells of 1 km
resolution. Each grid cell was characterised by its carrying capacity K. Boundary conditions
were reflecting so that emigration from the study area equalled immigration. The model
proceeded in annual time steps (from spring to spring).

Process overview and scheduling: At the beginning of each time step, carrying capacity K of
all cells was determined from habitat suitability as estimated by SDMs. In summer, hens
reproduce and raise juveniles that survive until first autumn with the probability pleadYoung
(see Table 4.2 for IBM parameters). Thus, pleadYoung subsumes the processes of clutch
survival, hatching rate and early chick survival. The probability of a hen to lead a certain
number of juveniles is p(x)Fledglings. The probability for a fledgling to be female is
pFemale, otherwise it is a male and is subsequently ignored. In autumn, first-year hens
disperse from their natal patch with a probability pDispersal. Individual birds perceive the
environment as heterogeneous and avoid to settle in or to traverse wide stretches of unsuitable
habitat (Graf et al. 2007). All sources of mortality are subsumed under an annual survival
probability pSurv, the probability of an individual hen to survive until early spring. Mortality
and emigration may increase with density due to increased predation risk or simply due to
shortage of resources. At the end of the simulation year (early spring), the age of all
individuals is incremented by one year. Individuals growing older than MaxAge are removed.
Design concepts: The model follows a bottom-up approach, and population dynamics and
spatial distribution of black grouse emerge from individual behaviour. Life cycle,
reproduction, and survival rates are imposed by empirical rules and parameters. Dispersal
includes the basic adaptive decision to avoid unsuitable and over-crowded habitat.
Demographic stochasticity is included to mimic individual-level variability by interpreting all
demographic parameters as probabilities (Burgman et al. 1993). Environmental stochasticity

is considered by drawing pleadYoung (probability of hen to reproduce and raise juveniles that
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survive until first autumn) from a normal distribution. This parameter subsumes the processes
of nest predation, hatch rate and early chick survival that are most strongly influenced by
environmental fluctuations between years. The normal distribution was defined by the mean
and SD derived from empirical data, cut at minimum and maximum of empirically observed
values (Table 4.2). Key outputs monitored from the model are population size, probability of

extinction by time t (proportion of replicate runs that went extinct), area size, mean elevation,

and mean population centre (lon/lat).

Table 4.2. IBM parameters.

Parameter Value Description
pleadYoung 0.6 £0.09 probability of a hen to lead young during
(min, max) (0.39, 0.77) simulation year
p(x)Fledglings 0.103/1,0.198/2, 0.270/3, 0.249/4, probability to produce x fledglings (given
0.124/5, 0.037/6, 0.013/7, 0.004/8, as probability/clutch size)
0.002/9
pFemale 0.5 probability to be female at birth
pDispersal 0.81 probability of juveniles to emigrate
meanDist 8 mean dispersal distance [km]
rangeDist 1.0-29.0 range dispersal distance [km]
pSurv 0.5 probability to survive the simulation year
Kmax 10 maximum carrying capacity [km™]
MaxAge 10 maximum age

Initialisation: Initially, 8000 individuals were randomly distributed in suitable habitat, and
were assigned a random age (between 1 and 3 years), which is in accordance with data from
the Swiss Breeding Bird Atlas (Schmid et al. 1998). The initial habitat suitability map is
obtained from the species distribution model run with current climate. The model ‘spinned
up’ for 25 years to exclude initialisation effects (Rossmanith et al. 2007). After this ‘spin-up’
climate change was initiated with annual timesteps.

Input data: For each time step, a habitat suitability map is derived from the species
distribution model described above given the environmental input layers (climate and land
cover).

Submodels: Detailed descriptions of submodels implementing the modelled processes are

provided in Supplementary material Text S1. The entire IBM was implemented in C++.

4.3.6 Sensitivity analysis

We evaluated three major sources of uncertainty in range predictions: underlying species
distribution models (SDM), climate scenarios (RCM), and demographic parameters of the

individual-based model. In a preliminary local sensitivity analysis we found that IBM
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parameters affecting survival and reproduction, namely survival probability (pSurv), the
probability to be female at birth (pFemale) and the probability of a hen to lead young
(pleadYoung), were the most sensitive parameters for range predictions while others such as
dispersal parameters had little effect on population fate. This is not unexpected because as
black grouse range contracts and retrieves to higher elevations of the Swiss Alps in response
to warmer regional temperatures the species’ fate is more restricted by local persistence
ability and successful establishment at higher elevations than by dispersal. Thus, in
subsequent sensitivity analysis we concentrated on the three above-mentioned survival and
reproduction parameters and varied them in a 3k factorial design (low, intermediate, and high
values given by default parameters in Table 4.2 £ 5%). As pleadYoung is drawn from a
normal distribution we manipulated both position and shape of this distribution by shifting the
entire distribution by + 5% and by varying the standard deviation of this distribution by + 5%
(resulting in a more peaked or more flattened distribution). Our sensitivity analysis thus
crossed three different SDM techniques, five different climate scenarios, and four different
demographic parameters (note that pleadYoung counts twice) with three levels each resulting
in a total of 1215 different model configurations. For each of these we performed 35
replicates (McCarthy et al. 1995). We quantified the sensitivity in the years 2001, 2050 and
2100 for five different model outputs (population size, probability of extinction by year t, area
size, mean elevation, and mean population centre). First, for each parameter combination we
calculated the mean values of the five key model outputs from the 35 replicate simulations.
Then, for each model output and for each uncertainty component we performed univariate
linear regressions with the respective model output as dependent variable and the respective
uncertainty component as independent variable (cf. Dormann et al. 2008). The relative
contribution of each uncertainty component to variability in predictions was then given by the
explained variance R2 of the linear regression models. Additionally, we ran ‘control’
simulations with default IBM parameterisation across the different SDM algorithms and
climate scenarios with 100 replicates each to obtain an estimate of variation in model outputs
due to stochasticity. All analyses of IBM output were carried out in R version 2.12.1 (R

Development Core Team 2010).
4.4 Results

4.4.1 Statistical modelling and range predictions

All three SDM techniques fitted consistent relationships between black grouse occurrence and
environmental predictors (Fig. 4.1) although differences were also apparent, mainly in areas
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of the environmental space with lower data coverage. Mean annual temperature was by far the
most important variable (Fig. C.2), followed by grassland cover type which mainly described
species absences, and followed by bushy and scattered forest and unproductive vegetation
which were more important for describing species presence. In the split-sample validation
(n=100) we found only slight differences in model performance between methods. All three
SDMs showed excellent discrimination in terms of AUC (approx. 0.95), very good accuracy
in terms of TSS (approx. 0.78), high rates of correctly predicted presences (sensitivity: 0.93-
0.95) and absences (specificity: 0.84-0.86), and excellent calibration (calibration slope and
intercept near one and zero; Table C.1). BRT showed highest scores for all measures except
for sensitivity, which was highest for GLM (although differences were not pronounced).
Overall, SDMs explained between 57.2 and 59 % of the deviance in black grouse occurrence

(Table C.1).

Table 4.3. Model output for Default IBM parameterisation, averaged across different SDM algorithms

and climate scenarios.

Output Year Mean SE Median

Population size 2001 5,508 56 5,144
2050 2,318 36 1,998
2100 974 21 703

Area size [km2] 2001 3,221 27 3,090
2050 1,478 20 1,323
2100 662 14 504

Mean elevation [m] 2001 1,791 1 1,791
2050 2,039 15 2,026

2100 2,217 32 2,171

GLM predicted greatest total area size of potentially suitable habitat for black grouse under
current environmental conditions, BRT smallest (Year 2001; GLM 11,690 km2, GAM 11,240
km?2, BRT 10,590 km?2). Predictions of habitat suitability changes under climate change were
very similar across all three SDMs. Differences did not emerge until the end of the 21st
century when predictions varied considerably across climate change scenarios with great and
abrupt habitat losses under the more extreme scenarios H-al and M-al (Fig. C.3). For these
extreme cases, also differences between SDMs became more apparent with greatest losses
predicted by GAM, lowest by GLM. Altitudinal ranges were predicted to shift uphill from

mean elevations of approx. 1,800 m a.s.l. in 2001 to mean elevations of approx. 2,200 m a.s.1.

71



- Chapter 4 - Results

by 2100 (Fig. 4.2 and Table 4.3). BRT predicted accompanying range contractions while
GLM and GAM predicted an eastward shift in suitable habitat. Range contractions were
predicted in the western Prealps primarily due to elevational limits (Fig. 4.3). Consensus on

black grouse presence was high for the Central and Eastern Swiss Alps (Fig. C.4).
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Figure 4.1. Partial dependence plots for all eight environmental predictors and for the three different

SDM algorithms (BRT, GAM, GLM).

4.4.2 Population dynamics

The IBM predicted mean population sizes of ca. 5,500 female black grouse for current
environmental conditions and for default IBM parameterisation (Fig. 4.4 and Table 4.3).
Population size was predicted to gradually decline over the century (Fig. 4.4). By the end of
the century, black grouse population sizes were predicted to drop to 12 — 22 % of their initial

size. The strong population decline mainly resulted from a negative population growth rate
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given the demographic rates (Table 4.2). For comparison, we manipulated the parameter
survival probability so that current population trend was stable (pSurv = 0.51). This resulted
in higher predicted population sizes and moderate declines which were similar in trend yet not

identical in shape to habitat trajectory (Fig. C.5).
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Figure 4.2. Mean elevation occupied by black grouse for scenarios of climate change. Bottom: Grey lines
show mean elevations across all simulations, coloured lines those for default IBM parameterisation (cf.
Table 4.2) across different SDMs and climate scenarios. Top: Boxplots depict variation of mean elevations

predicted for the end of 21* century (2100) and for different SDMs and climate scenarios.

4.4.3 Sensitivity analysis

The relative contribution of each uncertainty component to variation in predictions differed
for the different time slices considered and for the different model outputs. Great variations
across simulations were found in predictions of population dynamic features such as
population and occupied area sizes as well as for probabilities of extinction. Variation in
predicted population size due to uncertainty in demographic parameters was approximately
one order of magnitude greater than variation due to environmental and demographic
stochasticity and due to uncertainty in SDMs and climate scenarios (Tables 4.3 and 4.4). On
the other hand, geographic features like mean population centre, range extent, and mean
elevation showed comparably low variation across simulations. Different climate scenarios
had no considerable effect on population dynamic features, yet they were the most important
uncertainty component for geographic features. Specifically, the variation in mean elevation
was best explained by climate scenarios (Table 4.4 and Fig. 4.2). Also, the choice of SDM

algorithms had no effect on population dynamic features, but explained a considerable
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amount of variance in mean population centres and in mean elevation. Probability of survival

proved to be the most crucial demographic parameter (Table 4.4). For example, the linear

models fitted to the results of the sensitivity analysis estimated that an increase in survival

probability of 0.01 would cause an increase in population size of 3,000 to 4,000 individuals

(compare Fig. C.5).

Table 4.4. Sensitivity analysis of model outputs based on n=1,215 model configurations.

Explained variance R® by uncertainty
components and direction of influence (in

parentheses)
SDM RCM  pSurv  pFemale pleadYoung
Output Year Mean SE Median N mean
Population 2001 15,430 558 5,127 1,215 0 0 0.55 0.14 0.10
size (+) H H
2050 17,330 618 2,207 1,215 0 0 0.60 0.11 0.08
(+) H H
2100 13,770 521 856 1,215 0 0.04 0.52 0.09 0.07
(+) H H
Probability 2001 0 0 0 1,215
of 2050 0.23 001 O 1,215 0 0 0.44 0.10 0.08
extinction ) “) “)
2100 0.38 001 0 1,215 0 0 0.59 0.08 0.07
) ) )
Area size 2001 4,462 120 3,022 1,215 0 0 0.68 0.12 0.09
[km’] @ @ )
2050 4,339 138 1,389 1,215 0 0 0.63 0.09 0.07
(+) H H
2100 3,685 126 585 1,215 0 0.02 0.56 0.08 0.07
(+) ) )
Mean 2001 1,788 0.19 1,790 1,215 0.18 0.13 0.14 0.05 0.03
elevation () ) )
[m] 2050 2,014 2.33 2,013 1,102 0.08 0.40 0.11 0.01 0.01
(+) ) )
2100 2,199 439 2,159 900 0.14 063 0.03 0 0
(+)
Mean 2001 683,600 57 684,000 1,215 0.18 O 0.21 0.05 0.03
population  Easting (+) ) )
centre 2001 160,000 20 159,800 1,215 0.50 0 0 0 0
Northing
2050 694,800 422 697,000 1,102 0.01 0.01 0.10 0 0
Easting +)
2050 158,400 176 158,200 1,102 0.01 0.0l 0.01 0 0
Northing )
2100 707,200 581 706,700 900 0.05 0.13 0.01 0 0
Easting (+)
2100 157,400 187 157,200 900 0.06 O 0.02 0 0
Northing )
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Figure 4.3. Mean population centres of black grouse for scenarios of climate change. Small symbols show
mean population centres predicted for different SDMs (from top to bottom) and for the years 2050 (left)
and 2100 (right) across different climate scenarios and model parameterisations. Thereby, dark triangles
depict current population centre, dark circles depict default IBM parameterisation (cf. Table 4.2), light
circles depict all simulated population centres for the respective time slice. Ellipses depict 1.5 directional
standard deviation. Black ellipses depict current black grouse range; coloured ellipses depict default IBM
parameterisation grey ellipses depict all simulated ranges for the respective time slice.

Under current climate, survival probability alone represented 55 % of variation in population
size and even 68 % of variation in occupied area size. While probability of extinction by 2100
was zero for the default IBM parameterisation, decreases in the demographic parameters
especially survival probability led to black grouse extinction in up to 90% of the simulations
on average (Fig. 4.5). Conversely, increases in the demographic parameters reversed climate-
induced population declines and even led to temporarily increasing population sizes (Fig.
4.4). The shape of the probability distribution of pleadYoung (more flattened or more peaked;
determined by standard deviation of the Gaussian distribution, see Table 4.2) and, thus, the
magnitude of environmental stochasticity, had no effect on the mean predictions but only
resulted in slightly increased variability between replicates of simulations. We calculated a

consensus map across all simulations as the fraction of simulations (n = 1,215) that predicted
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black grouse to be present at a site (Fig. 4.6). Under current climate, consensus about black
grouse presence was very high (> 80 %) in the Swiss Alps and intermediate (20 - 60 %) for
most parts of the Jura mountains where black grouse are in fact absent (Schmid et al. 1998).
With ongoing climate change, consensus on presence sites decreased considerably as

extinction probability increased for many model configurations.
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Figure 4.4. Population size relative to 2001 (current climate). Bottom: Grey lines show relative population
trajectories across all simulations, black lines those for Default IBM parameterisation (cf. Table 4.2)
across different SDMs and climate scenarios. Top: Boxplots depict population size ratio of year 2100

relative to 2001 for different demographic parameters.

4.5 Discussion

In this study, we integrated correlative species distribution models and a simple, spatially
explicit individual-based model to predict climate-induced range dynamics of black grouse in
the Swiss Alps and evaluated variability introduced by different uncertainty components. By
this, we were able to better understand important features of range predictions and current as
well as transient population dynamics. Our results clearly show that extinction risks cannot
simply be approximated by expected changes in suitable habitat (Ak¢akaya et al. 2006, Brook
et al. 2009, Keith et al. 2008). Rather, the expected population trajectory seems to result from
a complex interplay between available habitat and demographic processes. Our study also
underscores the necessity of sensitivity analyses in dynamic range predictions. Predicted
population response to environmental change may be highly variable, both quantitatively as
well as qualitatively. Thus, robustness of modelling results can only be assessed if the

inherent uncertainty is explicitly considered.
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Figure 4.5. Effects of different uncertainty components on probability of extinction for the years 2001
(current climate), 2050 and 2100. Symbols indicate mean values; errors bars show 99 percent confidence

interval.

4.5.1 Black grouse population and range dynamics

We were very careful in choosing SDM algorithms and climate scenarios that were both
realistic and reflected a range of predictions reaching from pessimistic to optimistic. Overall,
all three SDMs produced congruent predictions of habitat change (Fig. C.3). Absolute area
size of suitable habitat, however, differed slightly and differences became more pronounced
with ongoing climate change. This both corroborates and contradicts findings of previous
studies. On the one hand, differences between predictions become more pronounced the
further we project into the future which is in line with earlier findings (Buisson et al. 2010,
Pearson et al. 2006, Thuiller 2004). Consensus between SDM predictions was still remarkably
high though (Fig. C.4) while earlier studies partially reported highly contrasting predictions
(e.g. Buisson et al. 2010). Nevertheless, further research is needed regarding why method
performance and predictions differ (Elith and Graham 2009) and to provide general guidelines

on appropriate model choice.
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By the end of the 21st century, differences in suitable area were larger between climate
scenarios than between SDMs. Considerable loss in suitable habitat was predicted for two out
of five climate scenarios, namely for the more extreme climate scenarios with mean
temperature increases between 4°C and 5°C. Current trends in CO2 emissions and global air
temperature indicate that expected increases in temperature may be at the upper end of current
climate projections or even above (Rahmstorf et al. 2007). Thus, while absolute area size of
suitable habitat is predicted to remain more or less unchanged until the middle of the century,
in the second half of the century abrupt losses in suitable area of 40 % are not unlikely to
expect. However, our results also clearly demonstrate that suitable and actual habitat are not
directly related and, thus, population trajectory may take a different course than suitable
habitat (Fig. C.5).

In the dynamic model runs, the area of suitable habitat was not completely occupied by black
grouse. Under current environmental conditions, the high sensitivity of occupied area size to
survival probability indicated high site turnover where suitable habitat frequently became
unoccupied. Higher survival probabilities and, thus, higher local persistence ability led to
lower site turnover, more complete range filling, and consequently to greater area occupied
and less fragmented ranges. Although the model predicted only small declines and shifts in
suitable habitat early in the 21st century, gradual declines in black grouse population and
occupied area sizes were predicted across all climate scenarios and underlying SDMs. This
primarily resulted from a negative trend in population growth given the observed
demographic rates (Fig. 4.4). On the other hand, Schmid et al. (1998) judged the population to
be stable but these estimates rely only on rather short time periods. The strong fluctuation and
high site turnover predicted by our model suggest that longer observation periods are needed
to accurately assess black grouse population status. Reassuringly, however, even with the
negative trend in current population growth rate, population size is predicted to not fall below
1000 hens by 2100 which is a decent population size especially as that population is predicted
to strive in continuous areas (Fig. 4.6).

Our results underscore that inferring extinction risks simply from quantity of suitable habitat
might be misleading (Fig. C.5; Ak¢akaya et al. 2006, Brook et al. 2009, Keith et al. 2008). A
non-dynamic approach might considerably underestimate extinction risks because important
interactions between life history traits and habitat suitability would be ignored. Expected
mean abundance is only indirectly related to habitat suitability through demographic functions
which determine site turnover and, thus, how much of available habitat is maximally occupied

at the time (Table 4.4). Considering the differences between habitat suitability predictions by
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different SDM algorithms and the associated population dynamics (Fig. C.5), expected mean
abundance also depends on spatial distribution of available habitat and on the degree of

fragmentation.

100
80
60
40

20

0

Figure 4.6. Consensus on black grouse presence for years 2001 (top), 2050 (centre) and 2100 (bottom);
calculated as the fraction of all simulations (n=1212) predicting black grouse to be present. (Note that zero

percent consensus on presence equal 100 percent consensus on black grouse absence.)

4.5.2 Robustness of range predictions

Our study not only highlights the benefits of a dynamic approach to range predictions but also
underlines that we have to deal with immense additional prediction uncertainty when
modelling population dynamics and that robustness of model results needs to be explicitly
assessed. Here, quantitative predictions of absolute population and occupied area size as well

as probability of extinction showed great variations across simulations (Table 4.4). This is in
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accordance with previous criticism on spatially explicit simulation models (SEPM, Dunning
et al. 1995) and related population viability analysis (PVA) expressing concerns about taking
predictions, for example probabilities of extinction, at face value (Beissinger and Westphal
1998, McCarthy et al. 2003). Alternatively, we could have made qualitative predictions by
evaluating relative differences among model outputs. However, previous SEPM and PVA
discussions focused on equilibrium population dynamics opposed to transient dynamics as
expected under environmental change. In our black grouse system, also predictions of relative
population size were fragile across parameter space and rather sensitive to demographic
parameters and available habitat (Fig. 4.4). We believe this is a symptom of two general
problems when using such simple SEPMs in combination with SDMs in environmental
change context. First, it is difficult to determine reasonable error margins for the highly
aggregated demographic parameters to be used in robustness analysis of model predictions.
Second, if the structure of the demographic model is very simple this may lead to high
parameter sensitivity and thus large prediction uncertainty.

For the sensitivity analysis of the demographic parameters, we chose a heuristic rather than
applied view by perturbing the parameters in fixed intervals of =5 % instead of choosing error
margins that could be expected in the field. One reason for this was simply because such error
margins were difficult to evaluate for Swiss black grouse, which probably holds for the
majority of populations/species. On the other hand, longer-term predictions are inherently
risky for example due to unforeseeable fluctuations induced by the environment and that way
current error margins for demographic parameters might not be very meaningful under
climate change. In this respect, we find it reasonable to heuristically choose the parameter
space as it allows theoretically circumscribing possible population outcomes given these
boundary conditions. Although, we believe that the fixed interval of £5 % of the respective
demographic rate is greater than the error range that could reasonably be expected in
Switzerland for these highly aggregated parameters, for example survival probability.

It 1s known from PVA that very simple population models generally exhibit high parameter
sensitivity and thus large prediction uncertainty (Beissinger and Westphal 1998, Grimm and
Storch 2000). Arguably, combined population — SDM models should be as simple as possible
because they have to cover a wide range of habitat types and environmental conditions. Due
to its simplicity the model presented here is also highly general and - especially in
conjunction with extensive sensitivity analysis - it provides valuable insights into possible
population outcomes for Swiss black grouse. However, the large parameter sensitivity in the

demographic model may in part arise because important mechanisms shaping population
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response are missing or inadequately represented in the model structure. For example, Grimm
et al. (2005b) suggested that simple population models may overestimate extinction risk
because they lack certain buffer mechanisms that reduce environmental stochasticity.
Thereby, the most simple and general buffer mechanism that could be considered is individual
variability such that individuals differing in fitness are not equally affected by environmental
fluctuations (Rossmanith et al. 2006). Also, the exact form of density dependence and
carrying capacity may strongly affect predicted extinction risks (Beissinger and Westphal
1998). Although assuming a linear link between demographic parameters (here, carrying
capacity) and predicted habitat suitability is the only practicable approach given general data
limitations, this is not fully supported by empirical findings and further research is required in

this field (Gallien et al. 2010).

4.5.3 Challenges in species distribution modelling

By integrating predictions of habitat suitability made by correlative species distribution
models with spatially explicit, dynamic population models we are able to overcome some
limitations associated with SDMs. For example, by relaxing the equilibrium assumption such
combined models allow the prediction of transient population response to environmental
change. However, spatially explicit population models do not solve all problems associated
with correlative SDMs in global change context. Most importantly, we still assume constant
species-environment relationships (niche conservatism, Pearman et al. 2008). This assumption
underlies both the correlative model producing habitat suitability maps and it also underlies
the constant demographic rates in the population model. Thus, spatially explicit population
models like our black grouse IBM are only valid as long as environmental change only shifts
the environmental conditions in space. Changes in biotic interactions as well as ecological and
behavioural adaptations will violate this assumption of niche conservatism. Also,
demographic rates might change in response to changing environmental conditions, for
example if environmental stress regimes change. As we have shown, possible population
outcomes for changing boundary conditions (e.g. demographic rates) can be assessed via
sensitivity analyses.

More realistic model assumptions can be achieved by including demographic rates and
behavioural adaptations that are ecophysiologically informed and based on first principles.
For example, biophysical or mechanistic SDMs could provide biophysical calculations as key
input data for dynamic population models and include e.g. climate-dependent vital rates,
movement potential and sex ratios (Kearney and Porter 2009). Moreover, the individual-based

perspective taken here allows easy implementation of diverse behavioural responses such as
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feeding location or prey selection (e.g. Railback and Harvey 2002, Stillman and Goss-Custard
2010), consideration of spatial characteristics such as resource heterogeneity and direct
interactions between these two, for example through resource depletion (Grimm and
Railsback 2005). Also, selective pressures and genetic adaptation can easily be incorporated
(e.g. Burton et al. 2010). Thus, various processes could be included in our model framework
potentially increasing realism in the model. Dynamic models that are based on first principles
can be designed to predict the response of demographic parameters to the full range of
environmental conditions of concern, even including conditions for which no demographic
data exist (e.g. Goss-Custard et al. 2008). Such models require considerable resources for
development and testing, and certainly cannot be developed for all species. However, once
such a model exists, it can be relatively straightforward to adopt its design to similar species
(Stillman 2008). Both simple and more complex population models can be valuable for
predicting species distributions. The right choice depends on how important model
predictions are for supporting decision making, and on how much resources one is able, or
willing, to invest.

A crucial issue for mechanistic range predictions is the availability of data for model
parameterisation as well as validation. For making sensitivity analyses of range predictions, a
standard tool has the benefit that also indirect sources can be utilised for model
parameterisation without sacrificing robustness or reliability of model results. Indirect sources
may include life history data obtained from different subpopulations or from related species
(Keith et al. 2008) or demographic parameters derived from allometric relationships (Cheung
et al. 2009). Pattern-oriented modelling is a general strategy for systematically exploiting the
information contained in such multiple, often qualitative, patterns observed at different scales
and levels of organization (Grimm et al. 2005a, Wiegand et al. 2003). One important element
of this approach, parameterisation by Monte-Carlo filtering of parameter combinations, can
be complemented by Bayesian parameterisation methods (Martinez et al. 2011, Hartig et al.
2011).

One source of uncertainty that we did not include in our case study is land use and land cover
change. Further investigations are needed to understand the role land use change may play for
the persistence of black grouse in the Swiss Alps. For example, black grouse are known to
respond sensitively to abandonment of alpine summer pastures with accompanying shrub
encroachment and reforestation. Here, we included land use variables as static predictors only.

In future studies, the interactions of land use and climate change should be evaluated.
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4.5.4 Conclusions

Integrating correlative species distribution models into spatially explicit population models
for predictions of large-scale range dynamics allows for a more direct, multi-faceted view of
complex, spatiotemporal species’ response to environmental change and related extinction
risks. However, without explicit assessment of robustness of predictions, for example by
means of sensitivity analysis, the task remains of more theoretical nature. The merit of
developing dynamic population models for climate impact studies only becomes apparent and
the effort justified when this undertaking is accompanied by explicit investigation of
sensitivity and robustness of the results. This substantially increases the confidence in range
predictions and, as a more direct benefit, increases our mechanistic understanding of the
studied ecological system and the expected population response. Further research is needed to
provide general guidelines for models predicting climate-induced range dynamics. Thereby,
challenges remain for both static and dynamic modelling components and include, for
example, the choice of appropriate SDM algorithms, the role of land use and climate change,
model structure and complexity, or the design of robustness analysis. Addressing these
challenges will help to establish this comparably new avenue of climate impact assessment as

a feasible and reliable tool.
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S Predicting to new environments: tools for
visualising model behaviour and impacts on

mapped distributions’

* A manuscript with equivalent content has been conditionally accepted in Diversity and Distributions:
Zurell, D., Elith, J. and Schroder, B. conditionally accepted. Predicting to new environments: tools for

visualising model behaviour and impacts on mapped distributions.
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5.1 Abstract

Data limitations can lead to unrealistic fits of predictive species distribution models (SDMs)
and spurious extrapolation to novel environments. Here, we want to draw attention to novel
combinations of environmental predictors that are within the sampled range of the individual
predictors but are nevertheless outside the sample space. These tend to be overlooked when
visualising model behaviour. They may be a cause of differing model transferability and
environmental change predictions between methods, a problem described in some studies but
generally not well understood. We here use a simple simulated data example to illustrate the
problem and provide new and complementary visualisation techniques to explore model
behaviour and predictions to novel environments. We then apply these in a more complex real
world example. Our results underscore the necessity of scrutinising model fits, ecological

theory and environmental novelty.

5.2 Introduction

Predictive species distribution models (SDMs, Guisan and Zimmermann 2000, Elith and
Leathwick 2009) have become a prominent technique in conservation biogeography and are
increasingly used as prediction tools for environmental change forecasts and invasive species
research (Franklin 2010). Numerous SDM algorithms exist with varying degrees of model
complexity (Elith et al. 2006, Heikkinen et al. 2006). Several studies have shown that these
algorithms can predict substantially different future potential ranges even if current
predictions are largely congruent (Thuiller 2004, Buisson et al. 2010). Explanations for
varying behaviour usually point to the extent to which the environmental range was covered
by the training data and to the specific assumptions made by each algorithm when
extrapolating beyond that range (Thuiller et al. 2004, Pearson et al. 2006, Elith and Graham
2009). Williams and Jackson (2007) argued that data limitations may impede extrapolation to
novel environments because the species’ niche may not be fully represented by data (here,
termed ‘truncated niches’) and, depending on the direction of environmental change, currently
unobserved portions of the niche may open up. Fitzpatrick and Hargrove (2009) contended
that predictions should not be attempted to environmental conditions without analogues to the
combinations under which the model was calibrated, or at least that maps should indicate
where extrapolation has occurred.

Useful ideas are emerging for probing models and predictions, enabling users to understand
model behaviour in novel space. For instance environmental spaces have been compared

using principal component analyses and metrics summarising differences between niches
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(Broennimann et al. 2007, Warren et al. 2008, Medley 2010), impacts of sample design on
environmental and niche coverage have been explored and related to models and their
predictions (Albert et al. 2010), and methods for mapping novel environments in geographic
space have been suggested (Williams et al. 2007, Platts et al. 2008, Elith et al. 2010). Here
we add to these by focussing on the issue of combinations of variables that are within the
sampled range of each predictor treated individually, but are nevertheless outside of the
sampled environmental space (Fig. 5.1, hatched areas). These tend to be overlooked in

visualisation methods (cf. Fitzpatrick and Hargrove 2009).

E2

El

Figure 5.1. Conceptual diagram illustrating three situations how species niche may be represented in
sampled environmental space (dotted ellipse): i) a species niche is entirely represented by sample space
(species 1) (ii) the niche is ‘truncated’ because samples do not exist for part of one or more environmental
gradients (species 2), and (iii) the edge of the niche abuts the edge of the sampled space, and no samples
exist beyond it (species 3). The hatched square represents the ‘implied’ sample space that is implicitly
assumed to be known when focussing on the sampled, univariate ranges of all environmental predictors
individually instead of explicitly focussing on the multivariate combinations of environmental predictors
represented in the sample.

For instance, partial dependence functions (i.e., plots of the fitted functions that show the
effect of a variable on the response after accounting for the average effects of all other
variables in the model) are plotted along the full gradient of each variable represented in the
data, regardless of the coverage along that gradient of other environmental dimensions.
MaxEnt's multivariate environmental similarity surface (MESS, Elith et al. 2010) takes a
related box-like or envelope viewpoint by analysing environmental coverage one variable at a
time, and reporting as novel those conditions outside the environmental hyper-dimensional
rectangle. However, not all multivariate combinations of the environmental conditions may be

represented in the data. We define those parts of the environmental space that are within that
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box but nevertheless outside the sample space as ‘implied sample space’ (hatched areas of
Fig. 5.1). Here we show that existing methods can fail to clarify why predictions differ, and

we provide new and complementary visualisation techniques that will be relevant for many
species modelling problems.

5.3 Demonstrating prediction problems: simulated species

Fig. 5.1 illustrates three situations that can arise when sampling in geographic space
(Williams and Jackson 2007, Albert et al. 2010). For species 2 and 3, no samples exist for
parts of the environmental niche or for the niche edges. These may not be problematic if the
intention is simply to model the distribution of that species in the sampled space, but as soon

as models to these data are used for prediction to new times and places which might contain
environments outside of the training sample, difficulties arise
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Figure 5.2. Simulated data example for species 2 with truncated niche. (a) True response surface. (b)
Partial dependence plots for GAM and BRT. (c¢) and (d) show fitted response surfaces for GAM and BRT.
Grey dots at p=0 in panels (a), (c) and (d) represent sampled absences, black dots at p=1 represent

sampled presences.
To simulate data representing the situations of Fig. 5.1, a virtual species (Zurell et al. 2010,
chapter 2) was created (using logistic regression) that exhibited a unimodal response to

temperature and a positive linear response to percent woodland cover (Fig. 5.2a; for details
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see Appendix D.2 in Supporting Information). The entire simulation study was built in R (R
Development Core Team 2010), and we provide code in Appendix D.1. For each situation,
1000 samples were drawn and converted to binary observations by using the simulated
response (varying from 0 to 1) as the success rate for one sample of the binomial distribution.
For species 1, samples cover the entire environmental space while for species 2 (truncated
niche), the samples cover the full univariate range of each environmental variable
individually, but combinations of the two are missing (Fig. 5.2a). SDMs were fitted to these
samples using generalised additive models (GAMs) with cubic smoothing splines, four
degrees of freedom and no interactions, and boosted regression trees (BRTs) with tree
complexity of 1 (tree stumps; note that in our examples higher tree complexity results in
similar extrapolation behaviour). We chose these methods as examples of the range of current
methods, spanning standard regression techniques to advanced machine learning methods (for
overviews see Elith et al. 2006, Heikkinen et al. 2006). The models were then used to predict
across the full environmental space spanned by the environmental gradients of the individual
predictors, meaning that for species 2, predictions were made to new combinations of
variables.

For species 1 (entire niche sampled), both methods were successful in fitting the true response
(Fig. D.1). Because the environmental niche of the species was truncated in the training data
for species 2, predictions for the unsampled combinations required extrapolation. As a result
of the way our cubic splines and regression trees extrapolate, GAM continued the fitted trend
to ‘unknown’ sites while BRT predicted a constant value from the last ‘known’ site leading to
inaccurate model predictions in those parts of the unsampled environment space with high
woodland cover, and particularly those that also have lower or higher than optimal
temperatures (Fig. 5.2d, Fig. D.2). The latter is not obvious from the usual partial dependence
plots (Fig. 5.2b) because these are derived at average values of other predictors, for which this
model performs reasonably well. Similar extrapolation errors also occur if niche edges

coincide with the limits of the recorded environmental space (species 3; Fig. D.3).

5.4 New tools for visualisation

The simulation study was simple, and use of three-dimensional plots (e.g. Fig. 5.2d) was
sufficient to demonstrate the model fit and its implications for predictions to unsampled
combinations of predictors (cf. Fig. D.2). In most situations, though, models have more than
two covariates and predictions are also mapped. Hence we suggest two new tools that will

highlight predictions to new combinations of variables.
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First, we propose to ‘inflate’ conventional response curves (partial dependence plots) by
visualising the effects of all variables in the model over their full range, and at the same time
plotting the available data in that space. Basically, inflated response curves are an abstracted
2D version of multidimensional response surfaces. These show the effect of a variable on the
response while accounting not only for the average effects of the other variables but also for
minimum and maximum (and median and quartile) values. Thus, the response plot for any
one variable consists of many response curves representing all possible combinations of all
other variables in the model (for code see Appendix D.1; for detailed description see
Appendix D.3). Because the number of combinations grows exponentially with the number of
variables and restricts computational feasibility, we use Latin hypercube sampling to reduce
dimensionality for large numbers of variables. This is simply a means to efficiently sample a
representative subset from all possible combinations of environmental predictors (Carnell
2009).

Second, we propose to extend the idea of MESS maps by not only focussing on the
environmental range of predictors individually but also on combinations of environmental
predictors. By that we are able to identify those parts of the environmental space that are
within the sampled, univariate range of the individual predictors but nevertheless represent
new multivariate combinations of these (‘implied sample space’ of Fig. 5.1). This
‘environmental overlap’ (or ‘environmental gap’ if one wants to emphasise that certain parts
of the prediction space may not be represented in the sample space) can be determined by
splitting the training or reference data into a specified number of bins where each bin holds a
unique combination of environmental predictor values. Any bins in test or prediction data that
do not overlap with these reference bins are defined as novel environments. An environmental
overlap mask can be used to highlight predictions where the model must extrapolate to novel
environments (cf. ‘null prediction’ in Fitzpatrick and Hargrove 2009), e.g. within inflated
response curves and in prediction maps (for code see Appendix D.1; for detailed method
description see Appendix D.3). Note that a bin number of one equates to the border that
distinguishes novel space (negative values) in MESS maps.

We illustrate the usefulness of these two methods for black grouse (Tetrao tetrix) in
Switzerland (Zurell et al. 2011, chapter 4, for more details see Appendix D.4). Conceptually
the problem is slightly different to that of the simulated species. Clearly, we do not know the
true niche of the species. But we know the environmental space covered by the sample, and
could suppose that for predictions to other times or places, there may be combinations of

environments not present in the training data. Hence, we are interested in how the model
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predicts to such new combinations outside the training data space (as we were for the

simulated species).

Oceurrence probabilities
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Figure 5.3. Swiss black grouse example. (a) shows the partial dependence of back grouse occurrence to

mean annual temperature for GAM and BRT. (b)-(c) show the respective inflated response curves. Light

grey lines and dotted dark grey lines depict the temperature effects over the full range of the other

predictors (minimum, maximum, median, mean and quartiles). Light grey lines indicate combinations of

environmental predictors that were observed in the sample space while dotted dark grey lines indicate

extrapolations to novel, unsampled combinations. The plots represent n=150 Latin hypercube samples

from all possible combinations of environmental predictors.

Again, we used a GAM with cubic smoothing splines, four degrees of freedom and no

interactions and BRT with tree complexity of 1 to estimate the species environment

relationship. We included six environmental predictors that covered large gradients yet only
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portions of all possible combinations were present (Fig. D.4). In consequence, GAM and BRT
exhibited distinctly different extrapolation behaviour in the unsampled parts of the
multivariate environmental space, particularly in those parts with high temperatures. These
differences were not evident in conventional response plots plotted on the scale of the
response, but were nicely represented by inflated response curves (Fig. 5.3; Figs. D.5, D.6).
We see the advantages of the inflated curves as: (1) they are explicit about the shape of the
response at different values of other variables. Whilst in additive models this might be
deduced, especially if partial plots are fitted on the scale of the link function, it requires some
careful thought and is much more apparent with our methods, especially in the case of
truncated responses; (2) they make clear the responses if interactions are included in the
models. The increasing popularity of methods that can optionally fit interactions if detected
in the data (e.g. tree-based methods), of ensembles that might include such models, and of all
subsets regression where interactions are potentially allowed mean that model structure might
not be superficially apparent. We believe that this increasing complexity of model structure
requires tools that allow exploration and understanding. Here, we believe that black grouse
response fitted by GAM is more plausible than that fitted by BRT. From an ecological
perspective, it seems more intuitive to assume that species response to a bioclimatic variable
such as mean annual temperature gradually decreases towards physiological limits (Thuiller et
al. 2004).

However, different extrapolation behaviour will only constitute a problem to model
transferability if models are used to extrapolate to places with non-analogue environments in
which currently unobserved portions of the environmental niche become available for
prediction (Williams and Jackson 2007, Fitzpatrick and Hargrove 2009, Dobrowski et al.
2011). We demonstrate in Fig. D.7 that plotting fitted values along each variable and
comparing those obtained for training and prediction data can provide useful insights.
Mapping these predictions and using environmental overlap masks to explicitly show
predictions in sampled and non-analogue environmental spaces emphasises where differences
in predictions are due to extrapolation behaviour of the models. Fig. 5.4 shows the mapped
predictions of Swiss black grouse occurrence probability from GAM and BRT models. While
predictions for the current environment are similar for GAM and BRT (year 2001; Fig. 5.4a,
e), the mapped predictions for the year 2100 under climate change differ substantially (Fig.
5.4b,f). Using environmental overlap masks (with default number of 5 bins per environmental
variable), we can distinguish between predictions in geographic space that are within the

sampled environmental space (Fig. 5.4c,g) where the model is, in fact, interpolating, and
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predictions to novel environmental space (i.e., to environmental conditions beyond the
sampled ranges of the variables as in MESS maps, and to novel combinations of
environmental variables; Fig. 5.4d,h) where the model is, in fact, extrapolating. For our Swiss
black grouse example we see that main differences between GAM and BRT predictions for
the scenario of climate change indeed occur in those parts of the geographic space that exhibit

novel environmental conditions compared to the sample space.
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Figure 5.4. Predicted distributions of black grouse in Switzerland made by GAM (a-d) and BRT (e-h). (a)
and (e) show current predictions while (b) and (f) show predictions to climate change scenario for the year
2100 (A1F1 scenario from HadCM3 with average temperature increase of 7.7 °C and average
precipitation increase of 48 mm for Switzerland). Predicted distributions are logistic outputs from low
(grey) to high values (black). Environmental overlap masks (with default number of 5 bins per
environmental variable) are used for highlighting predictions to sampled (c)+(g) and to novel
environmental space (d)+(h).

We do not intend these results as general advice about SDM algorithms. GAMs will not
always extrapolate well (e.g. Elith et al. 2010) and BRTs might fit responses that extrapolate
in ecologically realistic ways. The important issue is that using SDMs to predict to unsampled
parts of the environmental space is inherently risky, and uncertainty in models as well as in
predictions and maps need to be carefully assessed (Rocchini et al. 2011). The plots and maps
presented here were useful for visualising the environmental space in more than one
dimension and for understanding the predicted responses in this space. Plausibility of SDM
fits needs to be judged individually for any species modelled and should comply with
ecological theory and prior knowledge on the species (Guisan and Thuiller 2005, Austin
2007). As environmental variables generally correlate, linearly and non-linearly, we will
rarely find all possible combinations in any one region (or the world). Also, species may be
precluded from portions of their fundamental niche because of dispersal limitations,

disturbance or biotic interactions (Colwell and Rangel 2009). In invasive species research, it
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has also been demonstrated that the realised niche in the native and invaded range may differ
(Broennimann and Guisan 2008). Extrapolation behaviour may be improved by model
smoothing (Elith et al. 2010) or by forcing the predicted probabilities to gradually approach
zero outside observed environment (Thuiller et al. 2004). More research on the effect of
including interactions in models used for extrapolation is needed; it may complicate
extrapolation, and alternate means of representing the ecological response (e.g. by careful

construction of predictors) might be preferable.

5.5 Summary

SDMs would yield reliable predictions under environmental change, if the entire niche was
encompassed by data meaning that samples exist for all environmental conditions the species
can occur in. However, truncated or edge niches are probably common, as not all possible
environmental combinations are currently present. This may lead to erroneous predictions
when extrapolating to novel environments, depending on how the model extrapolates. Thus,
whenever prediction is the aim, we need to rule out unrealistic extrapolation behaviour of our
models or at the very least indicate where extrapolation has occurred. The tools we provide

here help to explore cases that were previously difficult to visualise.
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6 Synthesis

95



- Chapter 6 - Summary of achievements

6.1 Summary of achievements

This thesis focused on the ways dynamic and statistical modelling components can be
integrated to improve current predictions of climate-induced range dynamics. I assembled
different pieces of evidence which both provide momentum for predictive modelling of range
dynamics but also call for more care and further research in applied as well as theoretical
modelling issues.

Broadly, one can break down the key results of this thesis into three lessons. The first lesson
deals with the benefits of simulation studies and, in particular, with the virtual ecologist (VE)
approach as a rigorous evaluation tool for our analysis and modelling methods and the unique
opportunities this approach holds in global change context. Lessons two and three concern
uncertainty in predictions of range dynamics and deal with more practical problems we are
facing in predictive modelling of species distributions for scenarios of environmental change.
Throughout this thesis, I approached this complex issue from very different angles. First of
all, I employed a VE approach to better understand how prediction accuracy of correlative
species distribution models (SDMs) is affected by transient dynamics as well as ecological
properties and processes (Zurell et al. 2009, chapter 3). Then, in order to improve predictions
by explicitly depicting persistence and extinction rates as well as colonisation success in
space and time I aimed to supplement projections of potential future habitat for black grouse
in Switzerland with an individual-based model (IBM) that described demographic processes
and dispersal (Zurell et al. 2011, chapter 4). Finally, I set out to identify reasons for
fundamental differences in predictions across SDM algorithms (chapter 5). For ease of
understanding, in lessons two and three I will summarise and discuss results separately for

range predictions made by purely correlative models and by dynamic models.

6.1.1 Virtual ecologists

The VE approach played a prominent role throughout this thesis (chapters 2, 3 and 5) and, in
fact, deserves more attention in theoretical as well as applied ecology. In chapter 2 (Zurell et
al. 2010), I reviewed many published examples of the VE approach which underlined its wide
practicality and the overall benefits. VE is a powerful evaluation tool that can foster the
integration of theoretical and empirical work, it can help to design field studies and interpret
data, and it can provide a means to explore new scientific questions and theories. Especially
in the field of climate impact research VE holds great potential as chapters 3 and 5 nicely
demonstrated. Predictive modelling of environmentally forced range dynamics is not yet fully

explored although most methods employed have been around for decades. Much criticism and
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many questions remain regarding, for example, the applicability of different ecological
modelling types in non-equilibrium situations, the ability of different models to appropriately
capture the underlying species environment relationships or the interactive effect of sampling
bias among others (Austin 2002, Guisan and Thuiller 2005, Elith and Leathwick 2009). These
questions are difficult to approach because hardly any species is understood in every detail,
long-term data of range dynamics may not be available or these data may be biased itself.
Here, VE provides the means to conduct systematic experiments, test hypotheses and assess
model behaviour under controlled conditions. Thus, VE allows approaching questions that are
outside experimental manipulation in the real world. The study presented in chapter 3 (Zurell
et al. 2009) is the first I am aware of to rigorously assess the potential impact of dispersal,
demographic processes and biotic interactions on the prediction accuracies of SDMs when
applied under different climate change scenarios. It therefore makes an important contribution
to better understanding range dynamics and predictive modelling tools in conservation
biogeography. Similarly, the simplified VE approach in chapter 5 allowed to theoretically
exploring one possible cause of differing environmental change predictions across SDM
algorithms which have been reported repeatedly but so far are not well understood (cf. Elith
and Graham 2009).

For the future, I envision more model competitions like that presented in chapter 3 to describe
the applicability of different modelling frameworks. For example, the same setting could be
used to evaluate different approaches to consensus forecasting (Araujo and New 2007,
Marmion et al. 2009, Thuiller et al. 2009), or to evaluate in how far models and subsequent
predictions may be biased if the models are fitted in non-equilibrium situations (Zurell 2007).
Also, a similar setting could be used to run competitions between correlative and mechanistic
models. Such an approach has recently been employed by Pagel and Schurr (2011) who used
a Hierachical Bayesian framework to fit a demography-based, spatially explicit dynamic
population model to species occurrence and abundance data while accounting for the
confounding effects of species environment relationship, population dynamics and observer
effort. The authors used a VE approach to demonstrate the feasibility of the framework and
compared predictions made by the process-based model and those obtained from simple
SDMs (using generalised linear models, GLMs). However, their approach was not (and was
not meant to be) a fair competition between SDMs and process-based models as the virtual
data were sampled from the same dynamic population model that they aimed to fit within the
Bayesian framework. In their case, VE simply served as a means to test the fitting procedure

itself and to demonstrate its capability to model transient dynamics. To theoretically assess
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the applicability of correlative models opposed to mechanistic models in a fair competition,
we would need to build a sufficiently complex, dynamic simulation model and, ideally, only
pass virtually sampled data along with basic ecological knowledge about the virtual species
on to independent modellers who will then build the models that are to compete. Such
competitions may help to derive rules of thumb for optimal model choice for different
situations and species groups. With the case studies and literature examples provided here, I
hope that this thesis will call attention to the usefulness of VE in a wide array of ecological
disciplines and, in particular, that it will inspire many researchers to more rigorously evaluate
their prediction tools and explore theoretical questions related to environmentally forced

range dynamics.

6.1.2 Range predictions by correlative models

In this thesis, I primarily employed theoretical approaches to assess prediction accuracy of
SDMs. Thereby results were both reassuring and unsettling. First of all, in chapter 3 (Zurell et
al. 2009), I used a VE approach to explicitly investigate model performance for transient
range dynamics and the complicating effects of ecological properties and processes. As
expected, it became evident that under environmental change we may not be able to make
reliable predictions in time if dispersal and persistence ability are ignored in our models.
These effects are confounded by species’ ecological traits and other ecological processes as
well as the direction and magnitude of environmental change. For example, SDM predictions
will be better the faster the species is able to track climate change. Also, transient range
dynamics may merely cause a time lag between potential range and occupied range. If
environmental conditions remain static long enough for the species to fill its entire (new)
range, then predictions made by SDMs can be quite accurate. If, on the other hand,
environmental conditions shift continuously we can expect discrepancies between occupied
and potential range to increase. Nevertheless, the models yielded useful predictions in most of
the tested situations indicating that SDMs can in fact predict fairly well under climate change.
However, these results were obtained under ideal conditions of a virtual world without taking
into account other complicating ecological processes like (behavioural or phenotypic and
genotypic) adaptation or changing community structures which are likely to influence species
response under climate. For example, the results in chapter 3 also show that all becomes more
complicated for strong biotic interactions because in such cases SDM prediction accuracy not
only depends on ecological traits of the focal species but also on ecological traits of the
species it is interacting with. If we can include information on biotic interactions in our

models and are able to predict these satisfactorily, then predictions may render reasonably
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accurate. However, to date general guidelines and also practical modelling frameworks to
account for biotic interactions in range dynamics are still rare and further research is needed
in this field.

Many authors have highlighted that different SDM algorithms can lead to contrasting
predictions under environmental change (Thuiller 2004, Pearson et al. 2006, Dormann et al.
2008, Buisson et al. 2010). Throughout this thesis, I repeatedly compared different SDM
algorithms and got very different results in the various situations. Thereby, I employed widely
used SDM algorithms representing different levels of flexibility ranging from standard
regression techniques to advanced machine learning methods (Elith et al. 2006, Heikkinen et
al. 2006), namely: generalised linear models (GLMs, cf. chapters 3 to 5), generalised additive
models (GAMs, cf. chapter 4) and boosted regression trees (BRTs, cf. chapters 3 to 5). In the
VE approach in chapter 3 (Zurell et al. 2009), I found that prediction accuracies achieved by
BRTs increased for range contractions of the (virtual) butterflies because the absences were
predicted with high precision while GLMs overpredicted the contracting ranges. However,
these results are not generalisable but rather situational and should be regarded with great
care. First of all, we have to note that the sample data from the virtual world were complete in
coverage and that the SDM techniques hence merely reproduced the patterns in the data
(according to model specification and algorithmic specific assumptions). Then, I suspect that
it was the nature of the species environment relationship of the butterfly that played into the
hands of BRTs. Because the butterfly depended on temperature both directly and indirectly
(through its host plant), the apparent species-temperature relationship was rather crooked.
Now, due to their flexibility BRTs are able to depict even such crooked, highly non-linear
relationships accurately while GLMs aim to fit parametric, monotone relationships that are
not able to depict such crookedness. In chapter 4 (Zurell et al. 2011), predictions of habitat
suitability for Swiss black grouse were highly consistent across SDM algorithms. Only small
differences between predictions became apparent and this only for the more extreme climate
change scenarios. In chapter 5, I used simulated data to show the effect of having data that do
not capture all aspects of the multidimensional niche. If the data do not represent all possible
combinations of environmental conditions the species can occur in, then prediction to these
combinations not represented in the data requires extrapolation. This may be a cause for
controversial range predictions reported in the literature. My results are important in several
ways. First, they call for more care in sampling, in model building and in appropriate model
choice within an ensemble framework which also underscores the necessity of scrutinising

model behaviour for any single species for which predictions are to be derived. To this end, it
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is crucial to not only assess model fit under current conditions but also to judge realism of
model extrapolation behaviour and of predictions using for example inflated response curves
as suggested in chapter 5. Inspecting the fitted response for scenarios of environmental
change can also be informative. Unfortunately, in many instances we will not be able to do
anything about the restrictedness of the data simply because not all possible environmental
combinations currently exist on Earth, because the species is dispersal limited or because
disturbance precludes it. In the first case, we may find ways and confidence to incorporate
expert knowledge in our models, for example by defining expert-derived physiological limits
for the species. In the other cases, a mechanistic determination of the niche (Pulliam 2000)
may be more appropriate, for example by means of dynamic range models as introduced by

Pagel and Schurr (2011).

6.1.3 Range predictions by dynamic models

Results from the VE study in chapter 3 (Zurell et al. 2009) indicated that in order to depict
transient population dynamics more accurately we need to account for dispersal and
persistence ability in our range predictions. This has been suggested by several authors before
(Guisan and Thuiller 2005, Aratjo and Guisan 2006, Heikkinen et al. 2006, Thuiller et al.
2008) and has spurred some attempts to integrate SDMs and spatially explicit population
models (SEPMs, Dunning et al. 1995) to predict range dynamics for scenarios of
environmental change (habitat-based SEPMs sensu Akgakaya 2000; for climate change
applications see Keith et al. 2008, Anderson et al. 2009, Cheung et al. 2009). The rationale is
‘to provide more realistic forecasts of population change, habitat fragmentation and extinction
risk under climate change’ (Brook et al. 2009). The study in chapter 4 (Zurell et al. 2011)
showed that population trajectory of black grouse under climate change will be approximately
proportional to expected changes in suitable habitat if the current population is stable. From
this one might conclude that relative population change may well be inferred from available
habitat alone if demographic rates are sufficient to sustain a stable population, thus giving
support to SDMs as useful tools for vulnerability assessments under climate change.
However, due to high site turnover mean density of black grouse across entire Switzerland
was predicted to be below one individual per km® although local densities of up to 10
individuals per km” were possible. Thus, expected mean abundance and habitat suitability are
not directly related but demographic functions determine how much of available habitat is
maximally occupied at the time. Thereby, it seems also important how available habitat is
distributed in space and how connected or fragmented it is. This corroborates previous views

and findings that extinction risk may not directly relate to range size but that each species
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(and population) will show a distinct relationship between these (Jablonski 1986, Buckley and
Roughgarden 2004). Also, sensitivity analysis showed that variability in predictions
introduced through uncertainty in demographic parameters is much greater than variability
across different climate scenarios or SDM algorithms. If initial population status was only
slightly declining, then inferring extinction probabilities simply from quantity of suitable
habitat strongly underestimated extinction risk. In this light, my results support a general
movement away from purely correlative approaches to more dynamic simulation models in
order to predict species vulnerability to environmental change more realistically.
Nevertheless, the results also call for great care when designing and applying SEPMs in this
context. If we aim at more directly assessing relative population change from dynamic
population models then we have to start by obtaining reliable estimates of current population
status and expected range of demographic rates under environmental change. Sensitivity or
robustness analysis within ‘reasonable’ error margins can then help to target the most likely
areas of species colonisation and persistence for a given range of demographic rates. Further
research is needed to determine such ‘reasonable’ error margins and to define rules of thumb
for predictions of range dynamics. Such rules of thumb may refer to model building and
analysis steps as well as to appropriate model choice for specific situations and contingent on
species’ traits.

The study in chapter 4 (Zurell et al. 2011) further underscores the more direct benefit of
spatially explicit simulation models to test or improve current mechanistic understanding of a
specific system and to test the response to different scenarios of environmental change
(Jeltsch and Moloney 2002). Black grouse in Switzerland have been studied for a long time
and are fairly well understood (e.g. Zbinden and Salvioni 2003, 2004). Yet, some questions
remain regarding for example the precision of population size estimates and population status
(Schmid et al. 1998). My modelling results show that given existing knowledge on
demographic functions and rates the Swiss black grouse population may well be declining
instead of being stable as was estimated by Schmid et al. (1998). The strong fluctuations in
population size and the high site turnover rates predicted by the model suggest that longer
observation periods are needed to accurately assess black grouse population status.
Furthermore, my results show that even slightly decreased demographic rates, especially a
lower survival rate, may result in considerable population declines over the 21* century.
Survival and reproduction rates both constitute rewarding parameters to focus management
on. Both may be improved through habitat restoration or, by any means, negative impact

through further habitat destruction should be avoided. In the future, the relative impact of
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different land use scenarios on black grouse population and interactions with climate change

should be tested.

6.2 Challenges in dynamic range predictions

There are many pressing questions in the prediction of environmentally forced range
dynamics, several of which I have successfully addressed in this thesis. Nevertheless,
although providing important conclusions and notions for conservation biogeography the
work presented here merely scratches the surface of the complex issue of predicting
environmental change-induced range dynamics. My thesis probably raised as many questions
as it answered. Several of these open questions were brought up in the preceding chapters.
Here, I want to provide some additional considerations about underlying assumptions and
consequent application domains of the models presented in this thesis as well as current

shortcomings in data availability.

6.2.1 Niche conservatism

My thesis provides further evidence that our models need to become more dynamic in order
to predict transient range and population dynamics more realistically and provide more direct
assessments of species vulnerability (cf. Guisan and Thuiller 2005, Thuiller et al. 2008, Brook
et al. 2009). Nevertheless, we need to be aware that some assumptions of SDMs are also
common to demography-based SEPMs and the hybrids between them which may hamper
their overall applicability under environmental change, in particular for unprecedented
environmental conditions (including non-analogue climate and land use as well as changing
community structures among others). One fundamental assumption is that of niche
conservatism as I have discussed in chapter 4 (Zurell et al. 2011). According to this the
demographic model parameters are only valid for the environmental conditions under which
they were measured or estimated. For non-analogue environments, demographic rates of
species may change as they emerge from the complex interplay of environment and
physiological as well as behavioural traits (Kearney 2006, Grimm et al. 2007). Moreover,
Oliver et al. (2009) showed British butterfly species to exhibit varying habitat specificity
throughout their range with constrained habitat associations at range boundaries. Their results
also imply that population dynamics at leading range boundaries may differ from those
towards the range core because of a more limited range of climatically suitable habitat types
which should hence be taken into account when predicting range dynamics. Also, Burton et

al. (2010) showed in a theoretical study that during range expansion different selection
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pressures between range core and expanding range edge can lead to varying demographic

rates throughout the range.

6.2.2 Circularity

Some authors raised concerns about potential circularity problems in habitat-based SEPMs: as
we aim to describe dispersal or biotic interactions using the dynamic population model but the
underlying SDM may implicitly account for these factors as well, we may in fact account for
these factors twice (Gallien et al. 2010, Thuiller and Miinkemiiller 2010). For example, if
current species distribution is strongly affected by source-sink dynamics or dispersal barriers
then ignoring these processes may bias the fitted SDM and, consequently, the dynamic
population model as well (Thuiller et al. 2008, Thuiller and Miinkemiiller 2010). One
suggested solution to this problem is to simultaneously fit the dynamic population model and
underlying SDM within the same statistical framework. Pagel and Schurr (2011) only recently
presented dynamic range models (DRMs) that are fitted within a hierarchical Bayesian
framework and jointly estimate species niches and spatiotemporal population dynamics from
occurrence records and local abundance time series. I believe that circularity may pose a
problem in some but not in all species. Hence, the approaches of DRMs and habitat-based
SEPMs as presented in chapter 4 (Zurell et al. 2011) could be complementary and useful for
specific situations depending on species’ traits, specific population dynamics, site history and
quality of data among others. In the future, it would be desirable to assess and specify
application domains for these frameworks. For example, in Switzerland black grouse are not
dispersal limited and broad-scale distribution patterns do not seem to be biased by population
dynamics in contrast to local abundances which may fluctuate widely due to high site
turnover. The grouse system thus seems a good candidate for such a habitat-based SEPM as
presented here where environmental correlations are used to describe large-scale distribution
while independently observed demographic rates are used to describe population dynamics.
For species that exhibit, for example, post-glacial dispersal limitations (cf. Svenning and Skov

2004) a framework like that presented by Pagel and Schurr (2011) may be more appropriate.

6.2.3 Model specification

One recurrent problem of all models correlative and mechanistic alike is uncertainty in model
structure. Any model is a simplification of reality and, thus, any model makes artificial
assumptions (Levins 1966). To account for model misspecification we can build several
alternative models each with different simplifications and compare model results (Aratjo and
New 2007). Then, ‘our truth is the intersection of independent lies’ (Levins 1966). Thereby, I
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believe that care must be taken which ‘lies’ we assemble to get to the truth. As mentioned
earlier in this thesis, the interesting question in model comparisons is why predictions differ
(Elith and Graham 2009). SDM algorithms differ, for example, in their degree of flexibility or
in whether interactions are modelled implicitly or need to be specified explicitly. Therefore,
different algorithms may deal with problems differently and our task will be to disentangle
problems and problem-makers (cf. chapter 5). One problem I see for model specification is
the problem of multicollinearity in environmental predictors, in particular high correlation
between two causal predictors (Dormann et al., unpublished manuscript). Envision a butterfly
that depends on temperature directly and also indirectly through its host plant. In this case,
SDMs are not able to estimate the butterfly’s relationship to temperature independently of the
host plant-temperature relationship. If the temperature niches of butterfly and host plant
drifted apart due to climate change (Williams and Jackson 2007), then SDM predictions might
be fallacious (but see Schweiger et al. 2008 who suggested disentangling climate effects of
butterfly and host plant by restricting the butterfly SDM to areas where the host plant is
currently present). Results of chapter 5 also call for more care in model specification and
integration of ecological theory. Sometimes, seemingly strong patterns in the data, for
example strong interactions between environmental variables, may be delusive and rather the
result of data limitations.

Of course, when making dynamic predictions of range changes then we should also consider
uncertainty in the structure of the dynamic model. The dynamic model presented in chapter 4
(Zurell et al. 2011) is fairly simple and many processes are subsumed in demographic or
environmental stochasticity. When adding processes (submodels) to make the model more
realistic, then the structure and processes should be validated for example by means of

pattern-oriented modelling (Grimm et al. 2005a).

6.2.4 Model complexity

At this stage, I need to spend some more words on the issue of model complexity. Generally,
model building should follow the principle of parsimony which is also known as Occam’s
razor: ‘Pluralitas non est ponenda sine necessitas’ (‘Plurality should not be assumed without
necessity’, William of Ockham 14™ century). Thereby, we have to trade off bias against
variance. Too simple models may be inaccurate because they are too rigid to capture the true
relationship and, thus, show large bias (Grimm and Railsback 2005). Too complex models
may be inaccurate because they represent peculiarities of the data too closely and, thus, show
large variance. Surely, model complexity is also a matter of scale which has been discussed

elsewhere (e.g. Scott et al. 2002) and which I do not explicitly cover throughout this thesis. In
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environmental change context, SDMs have often been the tool of choice because they are
easy-to-use, widely available, have comparably low data requirements and can, hence, easily
be applied to a wide array of species (cf. chapter 1). The rationale behind habitat-based
SEPMs is in part to keep this simplicity while being able to capture transient dynamics
(Gallien et al. 2010). Hence, the dynamic population models are deliberately kept simple (cf.
Zurell et al. 2011, chapter 4 of this thesis). However, we thereby have to keep in mind that
this simplicity may hamper the reliability of such SEPMs in environmental change context. It
is generally known from population viability analyses that in very simple population models
even comparably small changes in parameter values can strongly affect population growth
rate and predicted extinction risk (Beissinger and Westphal 1998, Grimm and Storch 2000) as
was also apparent in the black grouse case study of chapter 4 (Zurell et al. 2011). However,
systematic investigation of the likely causes is lacking. It may well be that high parameter
sensitivity occurs because important mechanisms shaping population response are missing in
the model structure or are inadequately taken into account. For example, the exact form of
density dependence and carrying capacity can strongly affect predicted extinction risks
(Beissinger and Westphal 1998). Moreover, Grimm et al. (2005b) raised concerns that simple
population models might overestimate extinction risks because they do not include buffer
mechanisms that reduce environmental stochasticity and because high environmental noise
causes higher extinction risks (Wissel et al. 1994, Wichmann et al. 2003). In the future, more
research should focus on investigating the effects of density dependence, carrying capacity
and environmental stochasticity in more detail and efforts should be targeted at providing the

necessary data base for model verification.

6.2.5 Response vs. effect traits

If we think of species not only responding to their environment but also actively shaping and
exploiting it (cf. response and effect traits, Lavorel and Garnier 2002), a more direct
limitation to the use of habitat-based SEPMs becomes apparent. So far, only one-way
interactions between species and environment are incorporated in SDMs and associated
habitat-based SEPMs (Gallien et al. 2010, Thuiller and Miinkemiiller 2010). Yet, two-way
interactions in the models are necessary to account for species’ effect traits on the
environment, for example the depletion of a resource or interspecific effects. If a species
expands or shifts its range due to climate change then it will at the same time invade new
places with potentially large effects on available resources or on native species (for a nice
anecdote about invasive wasps simply removing native ants from food resource see Grangier

and Lester 2011). To account for species’ effects on their abiotic as well as biotic
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environment we will need a numerical framework in which both the state of the species and
the state of the environment are updated at each model time step. Explicit modelling of both
response and effect traits (two-way interactions between species and environment) will, thus,
require predictions of environmental change- induced development of resources as well (for
SDM application, see for example Schweiger et al. 2008, 2011). Future research is required in
this field to establish frameworks and guidelines how to model resource depletion and
especially biotic interactions. For example, what will the appropriate scale be to model the
interactions between a predator (e.g. Eagle) and its prey (e.g. hares), the scale of the Eagle’s

home range or that of the hares?

6.2.6 Data availability

We need to keep in mind that often in SDMs the environmental predictors are only proxies for
the resources themselves. For example in the black grouse case study in chapter 4 (Zurell et
al. 2011), I aimed to include only those climate and land use predictors that are relevant to the
species biology. Unfortunately, the choice of potential predictors is also determined by
availability and resolution of the data. Clearly, the land cover variable scattered forest is not
the direct resource for black grouse but a proxy for shelter and for the availability of resources
like Ericaceae and Vaccinium in particular. When predicting range dynamics for scenarios of
environmental change then the choice of variables in our models is not only restricted by
availability of current climate or vegetation data, but also by wvariables available in
environmental change scenarios. Thus, refining environmental data and scenarios will be a
crucial step in modelling of future species range changes. However, it is important to
acknowledge that we may buy more realism in our species’ models at the cost of larger
uncertainties in environmental change scenarios which will also propagate through to
predictions of range dynamics. While global circulation models are fairly consistent in their
projections of future climate, downscaling of these global scenarios proves more difficult and
finer scale projections carry larger uncertainties than broad scale projections (Schroter et al.
2005). Derivation of land use scenarios is even more problematic as these have to consider
political, economic, demographic and technological developments as well as interactions with
climate change (Holman et al. 2005a,b, Dormann 2007).

A crucial step for wide applications of dynamic models predicting range changes is the
availability of demographic data to parameterise the models. In the future, more efforts should
be targeted at assembling existing data (or at least metadata) in extensive trait databases (for
an example see LEDA Traitbase, Kleyer et al. 2008). To achieve this we will also need to

improve mutual understanding between empiricists and theoreticians. Often, theoreticians are
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not aware of the enormous data treasures already acquired by empiricists, partly because
information (metadata) is missing. At the same time, empiricists may not be aware of the
value their data may have for modellers. Also, a good portion of scepticism remains on the
empiricist side that their data may not be handled correctly or that they may lose control over
their data. Improving the exchange between empiricists and theoreticians may also have
additional value for both parties. Empiricist could then acquire (additional) data that may be
more meaningful for modelling purposes. At the same time models and predictions can serve
as eye catchers for the general public and could make the hard empirical work more visible.

Unfortunately, for most species we currently lack truly independent data to validate our model
predictions on. As outlined in chapter 1, today we often rely on resampling methods for
model validation (Aragjo et al. 2005, Thuiller et al. 2009, for application see Zurell et al.
2011, chapter 4). However, resampled data do not actually resemble truly independent test
data. Rather, in such cases training and test data still share the same (or at least similar)
statistical properties. That way, model validation may provide a performance measure of how
good the model depicts current distribution but it does by no means provide a measure of
model robustness against the full range of environmental conditions that we may expect under
environmental change. The VE approach constitutes a powerful evaluation framework as
shown in chapters 2, 3 (Zurell et al. 2009, 2010) and 5. Thereby, it may help in answering
theoretical questions of models’ application domains but does not lend itself as a general tool
for robustness analysis. Yet, as anthropogenic environmental change has been going on for
decades, we are now entering a stage at which we can validate our models on contemporary
changes (Hill et al. 1999, Willis et al. 2009). For example, my black grouse case study was
parameterised for the turn of the millenium and predictions could be validated on observed
changes in the beginning of the 21* century as soon as the new breeding bird survey will be
completed for Switzerland in a couple of years. New insights about species response and
resilience could then also be used to update existing models, for example in a Bayesian
framework the species environment relationships estimated on current data can be used as

priors in second-generation models (Clark and Gelfand 2006).

6.3 Quo vadis?

Where to go from here? Predicting environmental change-induced range dynamics is a story
with many facets. Among the different ecological model types discussed here, there are no
clear winners or losers. Each family of models has its benefits and limitations which make the

models more or less suitable for specific applications. Therefore, the biggest task I see for the
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near future is not primarily to further improve existing model systems. Rather, we need to
develop conceptual guidelines and rules of thumb regarding general modelling strategies,
model verification, necessary process detail and model application domains (cf. Gallien et al.
2010, Franklin 2010). Thereby, we do not have to reinvent the wheel. Many guidelines and
general strategies already exist for species distribution modelling (e.g. Guisan and
Zimmermann 2000, Guisan and Thuiller 2005, Elith and Leathwick 2009) and also for
population modelling (e.g. Beissinger and Westphal 1998, Lindenmayer et al. 2003, Grimm et
al. 2005a, Grimm and Railsback 2005). However, in global change context we may have to
rethink these guidelines and translate them for ecological systems that are changing rapidly
and possibly in unprecedented manner.

For predicting environmental change-induced species’ range dynamics we can follow a
simple-to-complex strategy:

1. Use phenomenological models for screening purposes of potential impacts on
available habitat. Instead of relying on ‘one-step’ projections as commonly done in
SDM studies, I recommend a ‘multi-step’ approach with discrete time steps (cf.
Midgley et al. 2006, Zurell et al. 2009, chapter 3). Step lengths should be as small as
possible and/or determined by temporal patterns and rates of expected environmental
change. Overlaying predicted habitat suitability maps by SDMs may provide a first
indication of potential core areas of species’ range and, thus, for nature conservation
(cf. Osborne and Suarez-Seoane 2007).

2. For expected range shifts and range expansions, simple estimates of migration rates
can provide valuable insights about potentially colonisable areas (cf. Midgley et al.
2006, Franklin 2010).

3. If adequate demographic data are available for the population(s) under study,
demography-based, spatially explicit population models can be developed to explicitly
model colonisation success and local persistence of populations (cf. Zurell et al. 2011,
chapter 4).

4. In the rare cases where enough data and expert knowledge are available, mechanistic
models (based on first principles, behaviour-based population models, cf. chapter 1)
can be developed that account for ecophysiological and behavioural mechanisms and
are, thus, able to predict to novel environments. To reduce computational burdens,
such fully mechanistic models can be combined with demography-based SEPMs
(Grimm et al. 2007). Thereby, the mechanistic models can be used to predict

population-level demographic functions for a wide range of environmental conditions.
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The resulting ranges of population-level demographic rates can then be used to set the
boundary conditions for robustness analysis of demography-based population models
to explore long-term and large-scale population response and associated extinction
risks.
All modelling attempts should be accompanied by explicit sensitivity and robustness analysis
to quantify prediction uncertainty. In SDM context, this can be achieved by comparing
outputs from different SDM algorithms (ensemble framework, Aratjo and New 2007,
Thuiller et al. 2009; Zurell et al. 2011, chapter 4). Thereby, great differences between SDM
predictions should alarm us to scrutinise model behaviour more thoroughly (Elith and Graham
2009) in order to exclude, for example, ecologically implausible extrapolation behaviour
(chapter 5). I recommend scanning future environmental change scenarios for novel
environmental conditions without contemporary analogue (e.g. by means of multivariate
environmental similarity surface, MESS, Elith et al. 2010). We could then provide reliability
maps for habitat suitability that delineate SDM predictions for analogue environment against
predictions for non-analogue environment which require extrapolation to environmental
conditions outside the calibrated parameter range (chapter 5). Assessing similarity between
current and future environment may also help in determining error margins of demographic
rates that could be expected under environmental change.
The above strategy on model choice for predicting environmental change-induced range
dynamics is rather general and primarily guided by data quality and data availability as well
as effort required for model development. In the future, more research is needed for better
integration of ecological theory and on developing conceptual guidelines regarding
application domains of specific modelling frameworks. Thereby, I see three different key
challenges that we need to address in order to make best use of existing models, and to make
models and predictions more reliable and also more worthwhile.

I. We need to address questions regarding applicability and feasibility of specific model
frameworks. Thereby, a rather general question concerns the optimum in prediction
improvement that could possibly be achieved considering general restrictions in data
availability and quality as well as the trade-off between parameterisation effort and
process detail (Jeltsch et al. 2008)? More specific questions may ask, for example, under
which circumstances and for what kind of data will circularity in habitat-based SEPMs
pose a problem. As first approximations, VE studies may help to theoretically answer

such questions. Extensive VE model competitions may provide valuable insights how
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performance of different model frameworks is affected by species’ traits and prevailing
ecological and environmental processes (cf. chapters 2 and 3).

II. More empirical effort to improve available data bases is needed as well as better
integration and digital processing of existing data and knowledge. Extensive, high
quality process-level data are required concerning species’ traits such as dispersal and
persistence capacity, reproduction, behavioural adaptability, phenotypic and genotypic
plasticity, genetic adaptability as well as historic and/or current population dynamics
among others. On the one hand, such data are needed for efficient parameterisation of
more realistic, mechanistic models of species’ range dynamics. On the other hand, better
understanding of species’ traits and ecological as well as evolutionary processes will
help us to determine the process detail required for modelling species-specific response
to environmental change. Also, this may facilitate derivation of functional types (Gitay
and Noble 1997) or response and effect groups (Lavorel and Garnier 2002), and provide
generalised answers of how species respond to environmental change (Jeltsch et al.
2008).

III. For deriving long-term conservation and management options, models and predictions
need to become more accessible to politicians and practitioners. This can be achieved by
improving model description and documentation including information about theoretical
foundations and underlying assumptions, boundary conditions and subsequent
application domain (e.g. ODD protocol for describing individual-/agent-based models,
Grimm et al. 2006, 2010). On the other hand, free software applications can be
developed with quite general models and submodels that can easily be adjusted for
different species or functional groups (e.g. BioMove platform for dynamic simulation of
plant species’ response to environmental change, Midgley et al. 2010). Thereby, results
from (I) and (IT) can guide optimal model and submodel choices for given species and,
thus, facilitate better informed and, ultimately, more reliable predictions.

I believe that these steps will aid to overall feasibility and applicability of dynamic range

predictions and that by making model conceptualisation and descriptions more transparent

also model reliability will increase. At the end, I want to cite some smart words by Levins

(1966) that I could not better phrase: ‘All models are both true and false. Almost any

plausible proposed relation among aspects of nature is likely to be true in the sense that it

occurs (although rarely and slightly). Yet all models leave out a lot and are in that sense false,
incomplete, inadequate. The validation of a model is not that it is ‘true’ but that it generates

good testable hypotheses relevant to important problems.” Of course, making more reliable
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predictions of environmental change-induced range dynamics is a primary goal in
conservation biogeography. But above that, models also facilitate conceptual understanding of
ecological systems and of species’ response to environmental change. In that sense, making
models more realistic by adding processes should go hand in hand with applying theoretical
models to further investigate basic principles and derive general hypotheses regarding

species’ distributions and range dynamics.
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and observers — Supplementary material
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B.1 Submodels of dynamic population model

In the following, the processes occurring in each time step of the dynamic population model

are described. Respective parameter values are given in Table 3.1.

B.1.1 Process 1: Climate states

At the beginning of each time step, the climate state, characterised by temperature and
moisture, was updated. Each cell’s temperature was calculated by climatological downscaling
of mean summer temperature considering altitudinal differences, the adiabatic gradient 77,

and radiation (Bellasio et al. 2005; Moore et al. 1993; Wilson and Gallant 2000):

Z.. 1
T,=T-T,.|——|+|S, —— B.1
i lapse(loooj [ ij SUJ ( )

with z; being the elevation of the grid cell, Sj the ratio between the insolation of the cell and
the horizontal surface. The insolation was truncated to the cosine of the solar illumination
angle i:
cos(i) = cos(b,) +sin(6, ) sin(slope) cos(¢p — A) (B.2)

with the solar zenith angle 8y = 78.25° and the solar azimuth ¢y = 180°, 4 was the aspect and
slope the surface slope (Dubayah and Loechel 1997). Potential soil moisture was
approximated by the topographic wetness index (Beven and Kirkby 1979; O'Neill et al. 1997),
standardised for a precipitation rate of 500 m/a:

area,, 1
tan(slope;) ) 500

where area;; was the drainage area above the cell. Flow directions were assigned using the D8
method, i.e. flow occurred in steepest down-slope direction to one of the cell’s eight
neighbours, either adjacent or diagonal (Wilson and Gallant 2000). Thus, W; could be
interpreted as the proportion of rainwater each cell was able to retain. Actual soil moisture

was then calculated by multiplying the proportion of retained water with actual rainfall.

B.1.2 Process 2: Habitat state

The butterfly depended on the presence and abundance of the plant which induced a carrying
capacity K in each lattice cell. K was proportional to the plant foliage projective cover F, with
the maximum carrying capacity K,.. F was determined by temperature and moisture
conditions of a cell, each representing a one-dimensional resource spectrum. The

physiological response of the plant was described by a Gaussian utilisation function with the
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mean being the preferred position in the spectrum and a characteristic variance (May and Mac
Arthur 1972). Following Liebig’s law of the Minimum which says that growth is controlled
by the scarcest resource, the limiting factor, F* was calculated by multiplying the degree of
utilisation of each resource. Resource competition at plant level was introduced by adding a
second plant species, the competitor, whose fundamental niche overlapped with that of the
host plant, and which did not serve as a host plant for the butterfly. The competitor always
outcompeted the host plant resulting in a narrower, realised niche of the latter (Fig. 3.1). To
simulate environmental stochasticity, the actual physiological response was drawn from a
Normal distribution with mean F and a variance o°F.

Global dispersal was assumed for host plant and competitor plant. Too abrupt changes in the
plant distribution were avoided by incorporating a simple memory effect such that the actual
capacity of the new time step was the arithmetic mean between the calculated capacity of time
step ¢+ and the old capacity of time ¢. This simple memory effect resulted in a time lag of

several years.

B.1.3 Process 3: Dispersal

Early in each year, on emergence, a proportion of adult butterflies and parasitoids left their
natal patch to colonise other cells in the lattice. Local dispersal was assumed, i.e. the
dispersers were concentrated around the area in which they developed as juveniles. The
probability p; that an individual dispersed from cell i to j over the integer distance d;; was
described by a two-parameter Weibull distribution allowing different dispersal strategies

(Sondgerath and Schroder 2002):
_exp(-ad,”) B4
pij - B ( . )
Z j cXp (_ad{j )

with the shape parameter £, and the scale parameter o determining the dispersal distance. A

high value of a indicated short-range dispersal, a low one large-range dispersal. At a=0 the
dispersers would be evenly distributed throughout the lattice (global dispersal). The integer
distance dj; between cells depended on the applied neighbourhood rule, in this case an 8-cell
(Moore) neighbourhood (Hogeweg 1988). Individuals dispersing to unsuitable habitats, i.e.

cells without butterfly and plants respectively, died.

B.1.4 Process 4: Reproduction and parasitism

The generalised form of the difference-equation framework for the reproduction and

parasitism phase was as follows:
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Nt+1 :mtg(Nt)f(B)
P, =cN,[1-f(R)]

where N and P were the population abundances of the susceptible butterfly stage and the

(B.5)

searching adult female parasitoid, respectively, in generations ¢ and ¢+/, A the net finite rate of
increase of the butterfly population, g(N,) the density-dependent survival of the butterflies
progeny, f(P;) the proportion of butterflies escaping parasitism, ¢ included the average number
of adult female parasitoids emerging from each butterfly parasitised. The parasitoids’
functional response was linear (type I functional response) and the attacks were randomly
distributed amongst the butterfly population (Nicholson 1933; Nicholson and Bailey 1935).
The fraction of butterflies escaping parasitism was given by the zero term of a Poisson

distribution (Eq. B.6) with mean aP, where a was the area of discovery:

f(B) =exp(—aF)) (B.6)
Density dependence of butterfly reproduction entered the model system via g(&V;) (Eq. B.7), a
discrete version of the logistic equation (Hassell 2000; Ricker 1954):

g(V,) =exp[‘h;<”) N,j (B.7)

The intrinsic butterfly population growth rate 4 was modelled temperature-dependent to
reflect its metabolic dependence. To simulate the generally humped-shaped and left-skewed
relationship between physiological rates and temperature, a Gumbel distribution was used
with T,, as location parameter, a scale parameter o, and a maximum growth rate Aq..
Butterfly population growth rate was additionally restrained by introducing a simple but
strong Allee effect (Allee 1931). Below a critical population size N,y the extinction

threshold, no reproduction occurred and the local butterfly population went extinct.
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C Uncertainty in predictions of range dynamics:
black grouse climbing the Swiss Alps —
Supplementary Material
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C.1 Submodels of individual-based model

C.1.1 Carrying capacity

Carrying capacity is a function of habitat area and suitability (Keith et al. 2008), and is
updated at the beginning of each time step. Habitat suitability is defined as black grouse
occurrence probability determined by the statistical species distribution models. Suitable
habitat is defined by a threshold minimum value of habitat suitability. This threshold is given
by the present-day prevalence of black grouse (Liu et al. 2005). We assumed that habitat
suitability was a direct surrogate of carrying capacity whenever the modelled habitat
suitability exceeded this threshold (for examples see Anderson et al. 2009, Araujo et al. 2002,
Keith et al. 2008). Maximum carrying capacity was defined as the maximum density of black
grouse per km” that can be expected in Switzerland given the home range requirements of the
species.

Individuals may persist for some time under suboptimal conditions. This is realised by a
simple memory effect incorporated in the habitat suitability index. If the SDM prediction for
a cell is lower than the cell’s habitat suitability of the preceding time step, then habitat
suitability of the actual time step is the mean of the preceding habitat suitability and the
current SDM prediction. This simple memory effect prevents too abrupt shifts in habitat

suitability.

C.1.2 Reproduction

The probability of a hen to reproduce successfully and lead young is pleadYoung. Some may
fail to reproduce because eggs do not hatch or nests are predated or deserted. We calculated
these probabilities from empirical data (Zbinden and Salvioni 2003, Zbinden unpublished
data).

C.1.3 Fledging

Upon successful reproduction the probability of a hen to lead a certain number of young birds
1s p(x)Fledglings. Probabilities were calculated from empirically observed distribution of
brood sizes (Zbinden and Salvioni 2003, Zbinden unpublished data). The probability for a

fledgling to be female is pYoungFemale, otherwise it is a male and is subsequently ignored.

C.1.4 Natal dispersal

In autumn, first-year hens disperse from their natal patch with a probability pDispersal

(Caizergues and Ellison 2002). Dispersal is assumed to be equally likely in eight directions,
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and subsequently each dispersing individual is assigned a random direction (N, NE, E, SE, S,
SW, W, and NW). The expected mean natal dispersal distance of female black grouse
meanDist and the range of dispersal distances rangeDist were compiled from Caizergues and
Ellison (2002). These two values were used to draw the individual dispersal distances from an
empirical model for natal dispersal distances in birds which was proposed by Sutherland et al.
(2000, Equ. 2) and is based on the negative exponential distribution. In our model, individual
birds perceive the environment as heterogeneous and avoid to settle in or to traverse wide
stretches of unsuitable habitat (Zbinden, unpublished data). Hence, they will not settle in cells
without any resources available. This is the case when habitat suitability is so low that
carrying capacity K < 1, or when the cell is crowded and N > K. Dispersers will then search
the (eight) nearest neighbour cells for better suited habitat or, if this search is of no avail, will
make a second dispersal attempt. Individuals will not cross widely unsuitable areas, i.e. more
than ten cells (i.e. max. 10 km) with carrying capacity K < 1. If they encounter such a stretch
of unsuitable habitat, they will sidestep it and resume their original direction as soon as

possible (cf. Graf et al. 2007).

C.1.5 Mortality and density dependence

All sources of mortality are subsumed under an annual survival probability (pSurv), the
probability of an individual hen to survive until early spring (Zbinden and Salvioni 2003).

Mortality and emigration may increase with density due to increased predation risk or simply
due to shortage of resources. As no information is available for density dependence in Alpine
black grouse populations, we assumed carrying capacity K to have a ceiling effect on the local
population. If the number of adults in a cell exceeds K, random individuals are removed from
this cell according to two rules: (1) Individuals will be randomly assigned to the (eight)
nearest neighbour cells, if these are not crowded (N < K). Thereby, we accounted for some
adaptability of home ranges. Then, (2) if local population size N still exceeds K, random
individuals will be removed from the cell until the local population size is equal to K (Grimm

and Storch 2000).
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C.2 Supplementary Tables and Figures

110
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Figure C.1. Predicted mean temperature and precipitation changes for scenarios of climate change. For

abbreviations see Table 4.1.

Table C.1. SDM evaluation statistics (mean + SD of 100 split-sample runs).
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Performance criterion BRT GAM GLM
AUC 0.950 £ 0.01 0.949 £ 0.01 0.946 £ 0.01
Explained deviance R 0.590 £ 0.02 0.583 +0.03 0.572 £ 0.03
TSS 0.785+0.02 0.784 +0.02 0.782+£0.02
Sensitivity (True presences) 0.926 £ 0.01 0.939+£0.01 0.947 £ 0.01
Specificity (True absences) 0.859 £ 0.01 0.845+£0.01 0.836 £ 0.01
Calibration slope (Spread) 1.005 £ 0.07 0.975+£0.10 0.955+0.13
Calibration intercept (Bias) 0.003 £0.14 0.006 £ 0.14 0.013+0.14
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Figure C.2. Relative variable contribution in SDMs.
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Figure C.3. Predicted suitable area size for scenarios of climate change and different SDM algorithms.
Solid lines indicate predictions made by BRT, dashed lines GAM and dotted lines GLM. Suitable area is
defined as the sum of all 1 km® cells with habitat suitability exceeding the prevalence threshold. For

abbreviations see Table 4.1.
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Figure C.4. Consensus on black grouse presence across different SDMs and climate scenarios for years
2001, 2050 and 2100 (from top to bottom), calculated as fraction of simulations (n = 15) predicting black
grouse to be present. IBM was run with default parameterisation. (Note that zero percent consensus on

presence equal 100 % consensus on black grouse absence).
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Figure C.5. Predicted suitable area size and population size for scenarios of climate change, different SDM
algorithms and different IBM parameterisations. Suitable area is defined as the sum of all 1 km’ cells with
habitat suitability exceeding the prevalence threshold. Population size with current status ‘declining’ is
predicted by running the IBM with default parameterisation. Population size is with current status
‘stable’ is predicted by increasing survival probability in IBM (pSurv=0.51). For abbreviations of climate

scenarios see Table 4.1.
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D.1 Code for simulated data and inflated response curves

The subsequent code is written for R (R Development Core Team 2010) under Windows XP

Professional.

# example with simulated data:

# species' occurrence described by species' tolerance to temperature, woodland;

# three cases with different data coverage of two-dimensional environmental niche:

# (1) species niche entirely encompassed by data;

# (2) species niche truncated, i.e. portions of the niche are not represented in data;

# (3) species niche abuts environmental data, i.e. niche edge coincides with data limits;

# For all cases, different SDMs are estimated on training data, and fitted values are compared.

# Then, predictions are made for changing climate (=warmer temperature while land cover remains constant)
# and again fitted values for future climate are compared.

#**********************************************

# set working directory
setwd("...")

# load libraries

library(Design)

library(boot)

library(gam)

library(gbm)

source("brt.functions.R") #this is extra code provided in Elith et al. (2008) JAnimEcol 77:802-813
# note that the inflated.response() function will additionally require the package 'lhs' to be installed

ot s e st st s e st st e sheste s s skeste st st stestesi st stesteskosteste stk stestololostekosiolokokokoskoloskoloskolokosiolkokokoiokok

# some functions for creating species data, for evaluation and plotting
# define species (Irm)
species=function(temp,wood,sdev=3){
return(inv.logit(-170+40*temp-2.5*temp” 2+
.35*wood+
rnorm(max(length(temp),length(wood)),0,sdev)))}

#

7

# plot fitted values for all three predictors + true response curve

myplot<- function(x,y,main,thresh=F,ylab="Occurrence probability"){
plot(x$temp,y,xlab="Temperature",ylab=ylab,main=main,ylim=c(0,1),xlim=c(3,16))
i=seq(3,16,length=100)
lines(i,species(i,70,sdev=0),Ity="solid",col="grey80",lwd=2)
plot(x$woodlandCover,y,xlab="Woodland cover",ylab="",main=main,ylim=c(0,1))
i=seq(min(x$woodlandCover),max(x$woodlandCover),length=100)
lines(i,species(8,i,sdev=0),lty="solid",col="grey80",lwd=2)
}

# plot 'inflated' response curves - 'inflated' partial dependence plots
inflated.response=function(object,predictors,select.columns=NULL,label=NULL,len=50,lhsample=100,lwd=1,
ylab="COccurrence probabilities",method="stat3",disp="all" ,overlay.mean=T,
col.curves='grey',col.novel='grey',col. mean="black',Iwd . known=2 lwd.mean=2,...) {

# plot inflated response curves;

# plot effect of one variable over range of other predictors;

# method determines at which values the other predictors are held constant:

# method="mean' corresponds to conventional partial dependence plots,

# method='stat3' (Default) considers minimum, mean and maximum values of predictors,

# method='stat6' considers min,mean,median,max and quartiles.

# for 'stat3' and 'stat6' effects of one variables is plotted for all possible

# combinations of remaining predictors - as the number of combinations increases exponentially,

# the maximum number of combinations can be set with lhsample. Whenever lhsample is exceeded,
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# candidate combinations are drawn by latin hypercube sampling.

# len determines the number of intervals along the environmental gradient plotted,

# i.e. smoothness of response curves.

# disp can take options 'all' or 'eo.mask’ - in the latter case, eo.mask() is used

# to distinguish between areas of the estimated environmental niche / plotting areas

# that are supported by data and those that require extrapolation.

# if overlay.mean is true, then the mean response curve is overlaid on the inflated plot.

if (is.null(select.columns)) select.columns=1:ncol(predictors)

require(lhs,quietly=T)
for (i in select.columns)
{
summaries=data.frame(matrix(0,6,ncol(predictors)))
for (iz in 1:ncol(predictors)) summaries[,iz]=summary(predictors[,iz])
if (method=="stat3") {summaries.j=as.matrix(summaries[c(1,4,6),-i],ncol=(ncol(predictors)-
1));comb=min(lhsample,3"(ncol(predictors)-1));nc=3} else
if (method=="stat6") {summaries.j=as.matrix(summaries[,-i],ncol=(ncol(predictors)-
1));comb=min(lhsample,6"(ncol(predictors)-1));nc=6} else
if (method=="mean") {summaries.j=as.matrix(summaries[4,-i],ncol=(ncol(predictors)-
1));comb=1;nc=1;overlay.mean=F}
dummy.j=as.matrix(predictors[ 1:len,-i],ncol=(ncol(predictors)-1))
if (comb<lhsample) {
mat=vector("list",ncol(dummy.j))
for (m in 1:ncol(dummy.j)) mat[[m]]=1:nc
mat=expand.grid(mat)
} else
mat=round(qunif(randomLHS(lhsample,ncol(dummy.j)),1,nrow(summaries.j)),0)
if (is.null(label)) label=names(predictors)

for (r in 1:nrow(mat))

for (j in 1:ncol(dummy.j))
{

dummy.j[,j]=as.vector(rep(summaries.j[mat[r,j],j],len))

dummy=data.frame(seq(min(predictors[,i]),max(predictors[,i]),length=len),dummy.j)
names(dummy)[-1]=names(predictors)[-i]
names(dummy)[ 1 |[=names(predictors)|i]

if (is(object,"gbm")) curves<-predict.gbm(object, dummy,n.trees=object$gbm.call$best.trees,
type="response") # when using brt code from Elith et al. (2008) JAnimEcol

else if (is(object,"glm")) curves<-predict(object, dummy, type="response")

else if (is(object,"randomForest")) curves<-predict(object,dummy)

else if (is(object,"tree")) curves<-predict(object,dummy)

else if (is(object,"list")) curves<-mars.predict(object, dummy)$prediction[[1]] #when using mars code from
Elith and Leathwick (2007) Div Distr

else if (is(object,"fda")) curves<-predict(object,dummy,type="post")[,2]

else if (is(object,"nnet")) curves<-predict(object,dummy,type="raw")

else {print("SDM class unknown");break}

# display all lines in same type

if (disp=="all")

{

if (r==1)

{

if (i==1) plot(dummy[,names(predictors)[i]],
curves,type="1",ylim=c(0, 1),xlab=label[i],ylab=ylab,
Iwd=lwd,col=col.curves,...)

else plot(dummy[,names(predictors)[i]],
curves,type="1",ylim=c(0,1),xlab=label[i],ylab="",Iwd=Iwd,col=col.curves,...)
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else lines(dummy[,names(predictors)[i]],
curves,lwd=lwd,col=col.curves,...)

}

# highlight extrapolation to novel environmental conditions
if (disp=="eo.mask’)

{

novel=eo.mask(predictors,dummy)

curves.known=curves

curves.known[novel==1]=NA

curves.novel=curves

curves.novel[novel==0]=NA

if (r==1)

{

if (i==1) {plot(dummy[,names(predictors)[i]],
curves.known,type="1",ylim=c(0,1),xlab=label[i],ylab=ylab,
Iwd=lwd.known,col=col.curves,...)
lines(dummy/[,names(predictors)[i]],
curves.novel,lwd=Iwd,col=col.novel,Ity="dotted',...)}

else {plot(dummy[,names(predictors)[i]],
curves.known,type="1",ylim=c(0,1),xlab=label[i],ylab="",lwd=lwd.known,col=col.curves,...)
lines(dummy[,names(predictors)[i]],
curves.novel,lwd=Iwd,col=col.novel,Ity="dotted',...)}

else {lines(dummy[,names(predictors)[i]],
curves.known,lwd=Iwd.known,col=col.curves,...)
lines(dummy/[,names(predictors)[i]],
curves.novel,lwd=Iwd,col=col.novel,lty="dotted',...)}

}

}

# now, this is for overlaying mean response curve

if (overlay.mean==T)

{

dummy=predictors[1:len,]
dummy[,i]=seq(min(predictors[,i]),max(predictors[,i]),length=Ilen)
for (j in l:ncol(predictors))

{

if (j!=i)
{
dummy[,j]=rep(mean(predictors[,j]),len)
}

}

if (is(object,"gbm")) curves<-predict.gbm(object, dummy,n.trees=object$gbm.call$best.trees,
type="response")

else if (is(object,"glm")) curves<-predict(object, dummy, type="response")

else if (is(object,"randomForest")) curves<-predict(object,dummy)

else if (is(object,"tree")) curves<-predict(object,dummy)

else if (is(object,"list")) curves<-mars.predict(object, dummy)$prediction[[1]]

else if (is(object,"fda")) curves<-predict(object,dummy,type="post")[,2]

else if (is(object,"nnet")) curves<-predict(object,dummy,type="raw")

else {print("SDM class unknown");break}

lines(dummy[,names(predictors)[i]],
curves,lwd=lwd.mean,col=col.mean,...)

}
1
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# calculate environmental overlap mask
# extension of MESS that was proposed by Elith et al. 2010 MethodsEcolEvol 1:330-342.

eo.mask=function(traindata,newdata,nbin=5,type="EO")
{
# a bin size of one corresponds to MESS
# type 'EO' returns a vector of zeros and ones for analog(0) and novel(1) environments
# type 'ID' returns a character vector defining the combination of bins each data entry
# belongs to - this may help finding the problem maker parts of the prediction space

train.minima=apply(traindata,2,min)
train.maxima=apply(traindata,2,max)

train.ids=apply(apply(ceiling(apply(round(
sweep(sweep(traindata, 2, train.minima, "-"), 2, train.maxima - train.minima, "/")*nbin,4),
¢(1,2),FUN=function(x) {if(x==0)x=1 else x=x})),
¢(1,2),FUN=function(x) {if(x<1)x=0 else if(x>nbin)x=nbin+1 else x=x}),1,paste,collapse=".")

new.ids=apply(apply(ceiling(apply(round(
sweep(sweep(newdata[ ,names(train.minima)], 2, train.minima, "-"), 2, train.maxima - train.minima,
"/")*nbin,4),
c(1,2),FUN=function(x){if(x==0)x=1 else x=x})),
c(1,2),FUN=function(x){if(x<1)x=0 else if(x>nbin)x=nbin+1 else x=x}),1,paste,collapse=".")

if (type=="ID") return(new.ids)
else if (type=="EQ") return(sapply(new.ids%in%train.ids,FUN=function(x) {if(x==T) x=0 else if(x==F)x=1}))
}

#****************************************************************************
#****************************************************************************

#****************************************************************************

# global variables:
minTemp=3
maxTemp=13
minWood=0
maxWood=70

e e st st s e st st s ke stestese s sk st sk s st stesieste e sttt stestesiesteste sttt steokostostesteotoloskostoiolototokolkokokoloskolostololokokoiolokokoiokokokolokolokolokokok

#assumed response surface (Irm)
temperature<-seq(minTemp,maxTemp,length=25)
woodland<-seq(minWood,maxWood,length=25)

dat=data.frame(expand.grid(woodlandCover=woodland,temp=temperature))
response=inv.logit(-170+40*dat$temp-2.5*dat$temp”2+.35*dat$woodlandCover)
windows()
wireframe(response~dat$woodlandCover*dat$temp,,
scales=list(arrows=F tck=.6,distance=.7,z=list(at=c(0,.5,1),labels=c("0.0","","1.0"),cex=2),
x=list(at=c(10,30,50,70),cex=2),y=list(cex=2),col="black"),
zlim=c(0,1),zlab=list('True response',rot=94,cex=2),
xlab=list("Woodland cover [%]",rot=33,cex=2),ylab=list(" Temperature [°C]",rot=-26,cex=2),
par.settings = list(axis.line = list(col = "transparent™)), screen=list(z=50,x=-70,y=0),
alpha.regions=.7)

rm(list=c("woodland","temperature","dat","response"))

#*************************************************************************
#*************************************************************************

e e st st s e steste s ste st st s sestesi s sestesie skt stesteste ke sttt sestesiestoste sttt stesteolkostostokotolostotosiolokokokoskokokoloskoloskololokokolokokokokokoksokok

# case 1: species niche entirely encompassed by data;
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# training data + future
CurrentTemperature=runif(1000,min=minTemp,max=maxTemp)
woodlandCover=runif(1000,min=minWood,max=maxWood)
occurrence=species(CurrentTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
trainl=data.frame(occurrence,temp=CurrentTemperature,woodlandCover)
plot(trainl)

cor(trainl)

FutureTemperature=CurrentTemperature+3
occurrence=species(FutureTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
futurel=data.frame(occurrence,temp=Future Temperature,woodlandCover)

# independent test data for current conditions
CurrentTemperature=runif(1000,min=minTemp,max=maxTemp)
woodlandCover=runif(1000,min=minWood,max=maxWood)
occurrence=species(CurrentTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
test1=data.frame(occurrence,temp=CurrentTemperature,woodlandCover)

s R R R Rk s R s R R R R R R SRk R ok

# fit models

# generalised additive model

gaml=gam(occurrence~s(temp)+s(woodlandCover),binomial,data=train1)

# boosted regression tree

brtl <- gbm.step(data=trainl,gbm.x = ¢(2:3),gbm.y = 1,family = "bernoulli",
tree.complexity = 1,learning.rate = 0.02,bag.fraction = 0.75)

st R s R R R R RS R Rk R s RS R R R RS R SRRk R sk RSk sk ok
# predictions under current conditions
pred.gam=predict(gam],newdata=test1,type="response")
pred.brt=predict.gbm(brtl,newdata=testl,n.trees=brt1 $gbm.call$best.trees, type="response")

# plot fitted values

windows()

par(mfrow=c(2,2))
myplot(testl,pred.gam,main="GAM - current")
myplot(testl,pred.brt,main="BRT - current")

# plot response curves

windows()

par(mfrow=c(2,2))
inflated.response(gaml,train1[,2:3],main="GAM",method="stat6")
inflated.response(brt1,trainl[,2:3],main="BRT",method="stat6")

# projections into future
pred.gam=predict(gam1,newdata=futurel,type="response")
pred.brt=predict.gbm(brt1,newdata=futurel,n.trees=brt1$gbm.call$best.trees, type="response")

# plot fitted values

windows()

par(mfrow=c(2,2))
myplot(futurel,pred.gam,main="GAM - future")
myplot(futurel,pred.brt,main="BRT - future")
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#*****************************************************************************
#********************$********************************************************

#$****************************************************************************

# case 2: species niche truncated

# training data + future
CurrentTemperature=runif(1000,min=minTemp,max=maxTemp)
woodlandCover=numeric(1000)
# woodland occurs above 3°C and below 13°C with maximum woodland cover between 7 and 9°C
woodlandCover[CurrentTemperature>3&CurrentTemperature<=7]=
sapply((CurrentTemperature[ CurrentTemperature>3&CurrentTemperature<=7]-3)*maxWood/4,
function(x) {runif(1,min=minWood,max=x)})
woodlandCover[CurrentTemperature>7&CurrentTemperature<9]=

runif(length(woodlandCover[ CurrentTemperature>7&CurrentTemperature<9]),min=minWood ,max=maxWood)
woodlandCover[CurrentTemperature>9&CurrentTemperature<13]=
sapply((13-CurrentTemperature[ CurrentTemperature>9&CurrentTemperature<13])*maxWood/4,
function(x) {runif(1,min=minWood,max=x)})
occurrence=species(CurrentTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
train2=data.frame(occurrence,temp=CurrentTemperature,woodlandCover)
plot(train2)
cor(train2)

FutureTemperature=CurrentTemperature+3
occurrence=species(FutureTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
future2=data.frame(occurrence,temp=FutureTemperature,woodlandCover)
plot(future2)

cor(future2)

# test data current conditions
CurrentTemperature=runif(1000,min=minTemp,max=maxTemp)
woodlandCover=numeric(1000)
woodlandCover[CurrentTemperature>3&CurrentTemperature<=7]=
sapply((CurrentTemperature[ CurrentTemperature>3&CurrentTemperature<=7]-3)*maxWood/4,
function(x) {runif(1,min=minWood,max=x)})
woodlandCover[CurrentTemperature>7&CurrentTemperature<9]=

runif(length(woodlandCover[ CurrentTemperature>7&CurrentTemperature<9]),min=minWood,max=maxWood)
woodlandCover[CurrentTemperature>9&CurrentTemperature<13]=

sapply((13-CurrentTemperature[ CurrentTemperature>9&CurrentTemperature<13])*maxWood/4,

function(x) {runif(1,min=minWood,max=x)})
occurrence=species(CurrentTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
test2=data.frame(occurrence,temp=CurrentTemperature,woodlandCover)

#**************$******************$*****

# fit models

# generalised additive model

gam2=gam(occurrence~s(temp)+s(woodlandCover),binomial,data=train2)

# boosted regression tree

brt2 <- gbm.step(data=train2,gbm.x = ¢(2:3),gbm.y = 1,family = "bernoulli",
tree.complexity = 1,learning.rate = 0.01,bag.fraction = 0.75)

#*********************************************
# predictions under current conditions
pred.gam=predict(gam2,newdata=test2,type="response")
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pred.brt=predict.gbm(brt2,newdata=test2,n.trees=brt2$gbm.call$best.trees, type="response")

# plot fitted values

windows()

par(mfrow=c(2,2))
myplot(test2,pred.gam,main="GAM - current")
myplot(test2,pred.brt,main="BRT - current")

# plot response curves

windows()

par(mfrow=c(2,2))
inflated.response(gam2,train2[,2:3],main="GAM",method="stat6",disp="co.mask’)
inflated.response(brt2,train2[,2:3],main="BRT",method="stat6" ,disp="co.mask’)

#*******************$$****************************

# projections into future
pred.gam=predict(gam?2,newdata=future2,type="response")
pred.brt=predict.gbm(brt2,newdata=future2,n.trees=brt2$gbm.call$best.trees, type="response")

# plot fitted values

windows()

par(mfrow=c(2,2))
myplot(future2,pred.gam,main="GAM - future")
myplot(future2,pred.brt,main="BRT - future")

#****************************************************************************
#****************************************************************************

#****************************************************************************

# case 3: edge niche

# training data + future

CurrentTemperature=runif(1000,min=minTemp,max=maxTemp)

woodlandCover=numeric(1000)

woodlandCover[CurrentTemperature<10.5]=
runif(length(woodlandCover[CurrentTemperature<10.5]),min=minWood,max=maxWood)

occurrence=species(CurrentTemperature,woodlandCover)

occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})

train3=data.frame(occurrence,temp=CurrentTemperature,woodlandCover)

plot(train3)

cor(train3)

FutureTemperature=CurrentTemperature+3
occurrence=species(FutureTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
future3=data.frame(occurrence,temp=FutureTemperature,woodlandCover)
plot(future3)

cor(future3)

# test data current conditions
CurrentTemperature=runif(1000,min=minTemp,max=maxTemp)
woodlandCover=numeric(1000)
woodlandCover[CurrentTemperature<10.5]=
runif(length(woodlandCover[CurrentTemperature<10.5]),min=minWood,max=maxWood)
occurrence=species(CurrentTemperature,woodlandCover)
occurrence<-sapply(occurrence,function(x) {rbinom(1,1,x)})
test3=data.frame(occurrence,temp=CurrentTemperature,woodlandCover)

e stk s ke steste st ste stk sttt stestosiolkokostokolokoloiokoskokosiokoskokolokok sk
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# fit models

# generalised additive model

gam3=gam(occurrence~s(temp)+s(woodlandCover),binomial,data=train3)

# boosted regression tree

brt3 <- gbm.step(data=train3, gbm.x = ¢(2:3), gbm.y = 1, family = "bernoulli",
tree.complexity = 1, learning.rate = 0.02, bag.fraction = 0.75)

# predictions under current conditions

pred.gam=predict(gam3,newdata=test3,type="response")
pred.brt=predict.gbm(brt3,newdata=test3,n.trees=brt3$gbm.call$best.trees, type="response")

# plot fitted values

windows()

par(mfrow=c(2,2))
myplot(test3,pred.gam,main="GAM - current")
myplot(test3,pred.brt,main="BRT - current")

# plot response curves

windows()

par(mfrow=c(2,2))
inflated.response(gam3,train3[,2:3],main="GAM",method="stat6",disp="c0.mask")
inflated.response(brt3,train3[,2:3],main="BRT",method="stat6" ,disp="co.mask")

# projections into future
pred.gam=predict(gam3,newdata=future3,type="response")
pred.brt=predict.gbm(brt3,newdata=future3,n.trees=brt3$gbm.call$best.trees, type="response")

# plot fitted values

windows()

par(mfrow=c(2,2))
myplot(future3,pred.gam,main="GLM - future")
myplot(future3,pred.brt,main="BRT - future")

D.2 Details for simulated data example

We simulated a virtual species (Zurell et al. 2010, chapter 2) from a logistic regression model
with two environmental variables, temperature and woodland cover. The virtual species
showed a unimodal response to temperature and a linear positive response to percent

woodland cover, in an additive model (cf. Fig. 5.2a):

Y, = Bernoulli(p,)

ln(—p : J = a+ b, xtemperature, + b, x (temperature,)’ + b, x woodland , + &

1-p,
a=-170 min(temperature) =3
b, =40 max( temperature) =13
! i =1--1000 o temp ) £~N(u=0,0=3)
b,=-25 min(woodland ) = 0
b, =0.35 max( woodland ) =70
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Three species were created whose niches were differently covered by data representing the
situations of Fig. 5.1. (1) The niche of species 1 was entirely represented by data.
Temperature and percent woodland cover at site i were drawn from uniform distributions
between their minimum and maximum values (Fig. D.1). (2) The niche of species 2 was
truncated meaning that no samples existed for parts of the environmental niche of the species.
Here, we assumed that high percent woodland cover would only occur within a specific
temperature range (7-9 °C) and would linearly decline towards extreme temperatures (Fig.
5.2). (3) The niche of species 3 coincided with the edge of the sampled environmental space.
In this case, we assumed zero percent woodland cover for all sites i with temperatures >10.5
°C (Fig. D.3). Significant correlations between environmental variables were only found for

species 3 (o =—-0.46). For all three cases, climate warming was simulated by increasing the

temperature values of sites 7 in the training data by +3 °C. The entire code necessary to repeat

the simulated data example is contained in Appendix D.1.

Fitted response GAM
Fitted response BRT

Figure D.1. Response surfaces for simulated species 1 whose niche is entirely encompassed within sample
space. Both methods, GAM (left) and BRT (right), show congruent model behaviour.
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(right) for predictions to current environment (a-d) and for predictions under climate warming (+3 °C; e-

h). Grey lines depict true response of species 2.
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Figure D.3. Response surfaces for simulated species 3 whose niche edge coincides with edge of sample
space. BRT (right) shows erroneous extrapolation behaviour in those parts of the environment space

where no samples exist beyond the species niche edge.
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D.3 Method descriptions for visualisation tools

Here, we describe the environmental overlap masks and inflated response curves in more

details. Respective R codes are contained in Appendix D.1.

Environmental overlap mask

Function call: eo.mask( )

Description: The environmental overlap mask is an extension of MaxEnt’s multivariate
environmental similarity surface (MESS) maps (Elith et al., 2010). The latter are BIOCLIM-
style estimates that take the full gradients of the environmental variables that are covered by
data, extend these into a hyper-dimensional rectangle and define all environmental conditions
outside that rectangle or box as novel conditions. We could think of these boxes as ‘implied
sample space’ because they pretend that all possible combinations of environmental variables
within the box are represented in the sample data which may not be the case (Fig. 5.1). Now,
the environmental overlap mask splits these hyper-dimensional rectangles or boxes into
smaller bins. Then, it compares the bins in the test or prediction data set to the bins in the
training data and defines all non-overlapping bins as novel environmental conditions. Thus,
depending on the number of bins the box is split into, the environmental overlap mask will
also allow identifying those parts of the box that are within the sampled ranges of each
predictor variable treated individually but are nevertheless outside the sample space. Note that
a bin number of one equates to the border that distinguishes novel space (negative values) in
MESS maps.

Arguments: eo.mask( ) takes four arguments, two of which are obligatory.

- traindata must be a data.frame (obligatory)

- newdata must be a data.frame (obligatory)

- nbin determines the number of bins the environmental gradients are split into
(default nbin=5). Thereby, nbin refers to the number of bins each univariate
predictor is split into. The actual number of bins is then nbin" where n is the
number of predictors.

- type defines the output. This could either be a vector of length nrow(newdata)
containing for each entry in newdata zeros for analogue environments and ones for
novel environments (type="EQ’, the default) or a character vector returning for
each entry in newdata a unique identifier for the bin the data point belongs to
(type="ID’). The latter may help distinguishing data entries from sample space,

‘implied sample space’ or novel space beyond that.
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Required R packages: base.

Inflated response curves

Function call: inflated.response( )

Description: Inflated response curves are an abstracted 2D version of multidimensional
response surfaces that help to visualise the combined effects of all variables in the model over
their full range. They show the effect of a variable on the response while accounting not only
for the average effects of the other variables but also for minimum and maximum (and
median and quartile) values. Thus, the response plot for any one variable consists of many
response curves representing all possible combinations of all other variables in the model.
Because the number of combinations grows exponentially with the number of variables and
restricts computational feasibility, we use Latin hypercube sampling to reduce dimensionality
for large numbers of variables. This is simply a means to efficiently sample a representative
subset from all possible combinations of environmental predictors (Carnell, 2009). Note that
due to stochasticity different replicates of inflated response plots may differ depending on the
number of variables and the Latin hypercube sample size.

Arguments: inflated.response( ) takes 17 arguments, two of which are obligatory.

- object denotes the model object for which response plots are desired, e.g. a GAM
model (obligatory)

- predictors is as data.frame containing the predictor variables of object (usually the
training data) (obligatory)

- select.columns allows to determine a subset of predictors for which inflated response
plots are to be drawn (defaults to NULL meaning that one plot is made for each
column of predictors)

- label can be a character vector of names used to label the x axes of the plots (defaults
to NULL meaning that column names of predictors are used for labelling)

- ylab takes a character string for labelling the y axis (defaults to ‘Occurrence
probabilities’).

- len determines the number of data points used to draw the response curves (defaults to
50)

- lhsample determines the number of Latin hypercube samples (defaults to 100 meaning
that 100 LH samples are drawn if more than 100 combinations of environmental

predictor values exist)
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- method determines the summary statistics that are used to characterise the predictors.
‘mean’ corresponds to conventional partial dependence plots. ‘stat3’ (the default)
considers mean, minimum and maximum values of predictors. ‘stat6’ considers min,
mean, median, max and quartiles. Thus, 3™! combinations of environmental predictor
values exist for ‘stat3’ and 6™ for ‘stat6’ where n is the number of predictors in
object.

- disp can take options ‘all’ (the default) or ‘co.mask’. In the latter case, eo.mask( ) is
used to mask all combinations outside the sample space as novel conditions. These
parts of the response curves can then be displayed differently.

- overlay.mean takes a Boolean value determining whether the mean response should be
overlayed over the inflated response curves (defaults to ‘True’)

- col.curves (defaults to ‘grey’), col.novel (defaults to ‘grey’), col.mean (defaults to
‘black’) are graphic parameters determining the color of the response curves, those
parts of the curves that are identified as novel by eo.mask( ), and the overlayed mean
response curve.

- lwd (defaults to 1), Iwd.mean (defaults to 2), Iwd.known (defaults to 2) are graphic
parameters. If disp="all’ then lwd determines the line width of all curves. If
disp="eo.mask’ then lwd determines the line width of the novel parts and Iwd.known
the line width for those predictor combinations present in the sample space. Iwd.mean
determines the line width of the overlayed mean response curve.

- ylim sets the y axis limits (defaults to c(0,1))

Required R packages: base, lhs (Latin Hypercube Sample package), any packages relating to
specific SDM methods one wants to include (e.g. gam or gbm library), additional code for

eo.mask( ).

D.4 Swiss black grouse example

A case study for Swiss black grouse was developed in Zurell et al. (2011; chapter 4) and we
here give only a very brief description of the species and data. In the Swiss Alps, black grouse
(Tetrao tetrix) mainly occur in treeline habitats at altitudes of up to 2500 m above sea level.
Species distribution data at 1 km resolution were obtained from the Swiss Breeding Bird Atlas
(Schmid et al. 1998). Environmental predictors included climatic variables as well as land use
and vegetation data at 1 km resolution. These were pre-selected so that bivariate Spearman
correlations were below [r|=0.7. Climate data were derived from the BIOCLIM database

(Swiss Federal Research Institute WSL). We here used only the most important climatic
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predictors, namely mean annual temperature, potential solar radiation in summer months
(June-August) and winter precipitation (sums December-February). Land use and vegetation
data were compiled from the land use and land cover database GEOSTAT (Swiss Federal
Statistical Office). From these, we chose the three most important predictors namely
percentage cover of scattered forest, bushy forest and grassland (Fig. D.4). For illustrative
purposes, we chose a rather extreme climate change scenario from the HadCM3 global
circulation model which corresponded to the socio-economic scenario A1F1 for the year 2100
downscaled to a 1 km resolution (Swiss Federal Research Institute WSL). For this scenario,

mean annual temperature increased by +7.7 °C and winter precipitation increased by +48 mm

on average.
18000 26000 0 20 40 €0
it O Y s O o | | | | |_ o
Mean _—
annual . - =
temperature| | e . ¥ L o=
[°C] S .

Summer
radiation

Wyinter
precipitation
[mm]

0 100

Scattered
forest
[%]

Biushry L.
forest

(%] <
B [

Grassland
[%]

0 20 40 B0

Figure D.4. Scatterplots of black grouse presences (dark grey) and absences (light grey) along
environmental gradients. Although the single environmental predictors cover large gradients, only

portions of all possible combinations were present in the sample.
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Figure D.S5. Inflated response curves for GAM along the sampled environmental gradients. Bold black
lines show the mean effects as provided by conventional partial dependence plots. Light grey lines and
dotted dark grey lines depict predictor effects over the full range of the other predictors (minimum,
maximum, median, mean and quartiles). Light grey lines indicate combinations of environmental
predictors that were observed in the sample space while dotted dark grey lines indicate extrapolations to
novel, unsampled combinations. The plots represent n=150 Latin hypercube samples from all possible

combinations of environmental predictors.
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Figure D.6. Inflated response curves for BRT along the sampled environmental gradients. Bold black lines
show the mean effects as provided by conventional partial dependence plots. Light grey lines and dotted
dark grey lines depict predictor effects over the full range of the other predictors (minimum, maximum,
median, mean and quartiles). Light grey lines indicate combinations of environmental predictors that
were observed in the sample space while dotted dark grey lines indicate extrapolations to novel,
unsampled combinations. The plots represent n=150 Latin hypercube samples from all possible
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Figure D.7. Predictions for Swiss black grouse. Panels show the fitted values of GAM (a, ¢) and BRT (b, d)

plotted along the environmental gradients for predictions to current environment (a-b) and for

predictions to climate change scenario for the year 2100 (A1F1 scenario from HadCM3 with average

temperature increase of 7.7 °C and average precipitation increase of 48 mm for Switzerland). While fitted

values are largely congruent for current predictions (a-b), we see marked differences in fitted values for

the climate change scenario (c-d) most noticeably in the temperature and forest predictors. While GAM

predicts low occurrence probabilities for high temperatures (c) as is also suggested by current fits (a) and

which could imply a physiological limit to temperature, BRT predicts high occurrence probabilities even

for high temperatures (d).
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