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Summary 

Plant metabolism is the main process of converting assimilated carbon to different crucial 

compounds for plant growth and therefore crop yield, which makes it an important research 

topic. Although major advances in understanding genetic principles contributing to metabolism 

and yield have been made, little is known about the genetics responsible for trait variation or 

canalization although the concepts have been known for a long time. In light of a growing 

global population and progressing climate change, understanding canalization of metabolism 

and yield seems ever-more important to ensure food security. Our group has recently found 

canalization metabolite quantitative trait loci (cmQTL) for tomato fruit metabolism, showing 

that the concept of canalization applies on metabolism. In this work two approaches to 

investigate plant metabolic canalization and one approach to investigate yield canalization are 

presented. 

In the first project, primary and secondary metabolic data from Arabidopsis thaliana and 

Phaseolus vulgaris leaf material, obtained from plants grown under different conditions was 

used to calculate cross-environment coefficient of variations or fold-changes of metabolite 

levels per genotype and used as input for genome wide association studies. While primary 

metabolites have lower CV across conditions and show few and mostly weak associations to 

genomic regions, secondary metabolites have higher CV and show more, strong metabolite to 

genome associations. As candidate genes, both potential regulatory genes as well as metabolic 

genes, can be found, albeit most metabolic genes are rarely directly related to the target 

metabolites, suggesting a role for both potential regulatory mechanisms as well as metabolic 

network structure for canalization of metabolism. 

In the second project, candidate genes of the Solanum lycopersicum cmQTL mapping are 

selected and CRISPR/Cas9-mediated gene-edited tomato lines are created, to validate the genes 

role in canalization of metabolism. Obtained mutants appeared to either have strong aberrant 

developmental phenotypes or appear wild type-like. One phenotypically inconspicuous mutant 

of a pantothenate kinase, selected as candidate for malic acid canalization shows a significant 

increase of CV across different watering conditions. Another such mutant of a protein 

putatively involved in amino acid transport, selected as candidate for phenylalanine 

canalization shows a similar tendency to increased CV without statistical significance. This 

potential role of two genes involved in metabolism supports the hypothesis of structural 

relevance of metabolism for its own stability. 
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In the third project, a mutant for a putative disulfide isomerase, important for thylakoid 

biogenesis, is characterized by a multi-omics approach. The mutant was characterized 

previously in a yield stability screening and showed a variegated leaf phenotype, ranging from 

green leaves with wild type levels of chlorophyll over differently patterned variegated to 

completely white leaves almost completely devoid of photosynthetic pigments. White mutant 

leaves show wild type transcript levels of photosystem assembly factors, with the exception of 

ELIP and DEG orthologs indicating a stagnation at an etioplast to chloroplast transition state. 

Green mutant leaves show an upregulation of these assembly factors, possibly acting as 

overcompensation for partially defective disulfide isomerase, which seems sufficient for proper 

chloroplast development as confirmed by a wild type-like proteome. Likely as a result of this 

phenotype, a general stress response, a shift to a sink-like tissue and abnormal thylakoid 

membranes, strongly alter the metabolic profile of white mutant leaves. As the severity and 

pattern of variegation varies from plant to plant and may be effected by external factors, the 

effect on yield instability, may be a cause of a decanalized ability to fully exploit the whole 

leaf surface area for photosynthetic activity. 

Zusammenfassung 

Der pflanzliche Stoffwechsel ist der Hauptprozess, der assimilierten Kohlenstoff in 

unterschiedliche Stoffe umwandelt, die wichtig für das Pflanzenwachstum und somit den 

Ertrag sind, weswegen es ein wichtiges Forschungsthema ist. Obwohl große Fortschritte beim 

Verständnis der genetischen Prinzipien, die zum Stoffwechsel und Ertrag beitragen, gemacht 

wurden, ist noch relativ wenig über die genetischen Prinzipien bekannt, die für die Variation 

oder Kanalisierung von Eigenschaften verantwortlich sind, obwohl diese Konzepte schon lange 

bekannt sind. In Anbetracht einer wachsenden Weltbevölkerung und des fortschreitenden 

Klimawandels, scheint es immer wichtiger zu sein, Kanalisierung von Metabolismus und 

Ertrag zu verstehen, um Ernährungssicherheit zu garantieren. Unsere Gruppe hat kürzlich 

metabolisch kanalisierte quantitative Merkmalsregionen für den Stoffwechsel von 

Tomatenfrüchten gefunden und damit gezeigt, dass sich das Konzept der Kanalisierung sich 

auf den Stoffwechsel anwenden lässt. In dieser Arbeit werden zwei Ansätze zu Untersuchung 

von Kanalisierung des pflanzlichen Stoffwechsels und ein Ansatz zur Untersuchung von 

Ertragskanalisierung präsentiert. 

Im ersten Projekt, wurden Daten von Primär- und Sekundärmetaboliten von Arabidopsis 

thaliana und Phaseolus vulgaris, gewonnen von Pflanzen, die unter unterschiedlichen 
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Bedingungen wuchsen, verwendet, um den Variationskoeffizient (VarK) oder die relative 

Änderung von Stoffgehalten umweltübergreifend für jeden Genotyp zu berechnen und als 

Eingabe für genomweite Assoziationsstudien verwendet. Während Primärmetabolite über 

unterschiedliche Umweltbedingungen einen geringeren VarK haben und nur wenige eher 

schwache Assoziationen zu genomischen Regionen zeigen, haben Sekundärstoffe einen 

höheren VarK und zeigen mehr und stärkere Assoziationen zwischen Metabolit und Genom. 

Als Kandidatengene können sowohl potenziell regulatorische, als auch metabolische Gene 

gefunden werden, jedoch sind metabolische Gene selten direkt zu den Zielmetaboliten 

verbunden, was für eine Rolle von sowohl regulatorischen Mechanismen als auch 

metabolischer Netzwerkstruktur für die Kanalisierung des Stoffwechsels spricht. 

Im zweiten Projekt wurden Kandidatengene aus der Solanum lycopersicum cmQTL-

Kartierung, ausgewählt und CRISPR/Cas9-vermittelte, genomeditierte Tomatenlinien 

erschaffen, um die Rolle dieser Gene in der Kanalisierung des Metabolismus zu validieren. 

Erhaltene Mutanten zeigten entweder starke Fehlentwicklungsphänotypen oder erschienen 

wildtypähnlich. Eine phänotypisch unauffällige Mutante einer Pantothensäurekinase, die als 

Kandidat für die Kanalisierung von Apfelsäure gewählt wurde, zeigte einen signifikanten 

Anstieg des VarK über unterschiedliche Bewässerungsbedingungen. Eine andere solche 

Mutante eines Proteins, welches mutmaßlich im Aminosäuretransport involviert ist, welches 

als Kandidat für die Kanalisierung von Phenylalanin gewählt wurde, zeigt eine ähnliche 

Tendenz zu einem erhöhten VarK ohne statistische Signifikanz. Diese potenzielle Rolle von 

zwei Genen, die im Stoffwechsel involviert sind, unterstützt die Hypothese einer strukturellen 

Relevanz des Metabolismus für seine eigene Stabilität. 

Im dritten Projekt wurde eine Mutante einer mutmaßlichen Disulfid-Isomerase, welche wichtig 

für die Thylakoidbiogenese ist, durch einen Multiomik Ansatz charakterisiert. Die Mutante 

wurde vorher in einer Ertragsstabilitäts-Selektierung charakterisiert und zeigte einen 

panaschierten Blattphänotyp, welcher von grünen Blättern mit Wildtyp Chlorophyllgehalt über 

unterschiedlich gemustert panaschierte Blätter bis zu komplett weißen Blätter reichte, die fast 

gar keine photosynthetischen Pigmente enthielten. Weiße Blätter der Mutante zeigen Wildtyp 

Transkriptlevel von Photosystem-Aufbaufaktoren, mit der Ausnahme von ELIP und DEG 

Orthologen, was indikativ für eine Stagnation in einer Etioplast-zu-Chloroplast-

Übergangsphase ist. Grüne Blätter der Mutante zeigen eine Hochregulierung dieser 

Aufbaufaktoren, was möglicherweise als Überkompensation für eine partiell defekte Disulfid-

Isomerase wirkt und letztlich ausreichend für Chloroplastenentwicklung zu sein scheint, was 
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wiederum durch ein wildtyp-ähnliches Proteom bestätigt wird. Wahrscheinlich als Effekt 

dieses Phänotyps ändern, eine generelle Stressantwort, eine Umschaltung zu einem Senke-

ähnlichen Gewebe und abnormale Thylakoidmembranen, stark das metabolische Profil von 

weißen Blättern der Mutante. Da der Schweregrad und das Muster der Panaschierung von 

Pflanze zu Pflanze unterschiedlich ist und durch äußere Faktoren beeinflusst sein könnte, 

könnte der Effekt auf die Ertragsstabilität eine Folge einer dekanalisierten Fähigkeit sein die 

ganze Blattoberfläche für photosynthetische Aktivität zu nutzen. 
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Chapter 1: General Introduction 

1.1. Plant metabolism 

As autotrophs, plants, green algae and cyanobacteria are all capable to use oxygenic 

photosynthesis, to convert solar energy into chemical energy and assimilate carbon dioxide 

(CO2) into organic matter (Knapp et al., 2014; Nelson & Ben-Shem, 2004). The sum of all 

energy fixed by autotrophs minus the energy needed for their own respiration is called net 

primary production (NPP) (Knapp et al., 2014). Terrestrial and marine net primary production, 

is estimated to be 56.4 Pg of C and 48.5 Pg of C respectively, and therefore each contribute 

about half to global net primary production (Field et al., 1998). Given that producers make up 

roughly 95% of terrestrial biomass and the fact that the terrestrial environment is considered to 

be dominated by plants, likely makes plants the most important primary producers on the planet 

(Bar-On et al., 2018; Delwiche & Cooper, 2015).  

The complex process which facilitates this production is photosynthesis, which can be divided 

into electron-driven light reactions, that generate ATP and NADPH and the Calvin-Benson 

cycle (CBC), which is fueled by these compounds to assimilate CO2 (Baslam et al., 2020). This 

process is arguably the most important biochemical reaction on the planet, given that it supports 

the growth of almost all organisms (Y. Wang et al., 2015). The reactions and metabolites 

involved in the CBC are just a few of the thousands, which together make up the network of 

plant metabolism (de Oliveira Dal’Molin et al., 2010). 

The core part of this network, called primary or central metabolism, gives rise to important 

compounds, which are crucial for plant survival (Pott et al., 2019). Branching from primary 

metabolite precursors, such as sugars and amino acids, plants also produce so-called secondary 

or specialized metabolites, which are more related to the plants capability to adapt to or interact 

with the environment (Maeda, 2019; Pott et al., 2019). The functions of specialized metabolites 

are extremely diverse, but they can roughly be attributed to protection against abiotic stresses 

and interaction with other organisms (Kessler & Kalske, 2018). So far 200000 specialized 

metabolites have already been described but the true number is estimated to be up to 1 million 

(S. Wang et al., 2019). 

Several methods and machines can be used to detect and qualitatively or quantitatively measure 

metabolites in plant tissue extracts. Methods are broadly separated into systems based on 

nuclear magnetic resonance (NMR) or mass spectrometry (MS) (Alseekh & Fernie, 2018). 

NMR measures the absorbed and re-emitted electromagnetic radiation of atoms in a strong 
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magnetic field and uses it to identify atoms in molecules (Fernie & Tohge, 2017). Mass 

spectrometry on the other hand uses their mass to charge-ratio to identify compounds 

(Nalbantoglu, 2019). 

There are three basic steps to the most common MS-based workflows, namely separation, 

ionization and detection, for each of which different approaches are available (Nalbantoglu, 

2019). Although separation-free methods also exist, gas chromatography (GC) or liquid 

chromatography (LC) is often used as a first step to make up for the lack of separation in the 

mass spectrometers and to eliminate interactions of the analyzed compounds with the 

background (Ren et al., 2018). Different ionization methods can be used, depending on the aim 

and separation method. Electron impact ionization can be used to connect gas chromatography 

with mass spectrometry (Fernie & Tohge, 2017). For LC-MS for example, the electrospray 

ionization source (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric 

pressure photo-ionization (APPI) can be used (Pitt, 2009). Finally, ionized metabolites are 

captured by different detectors, like “time of flight” (TOF), quadrupole, ion trap and orbitrap 

mass analyzers (Nalbantoglu, 2019). 

Both central and specialized metabolism of plants have been studied well for differing reasons. 

As central metabolism is directly connected to plant growth, understanding and engineering it 

promises the possibility to improve crop yield (Sweetlove et al., 2017). Specialized metabolites 

on the other hand are not only beneficial for the plant, but many so-called phytonutrients are 

suggested to help in the prevention of diseases (Martin, 2013), while other compounds are 

important flavor components (Tieman et al., 2006). 

While, early metabolomics experiments dealt with profiling of transgenic plants or trying to 

find biomarkers for plant performance, recent research has shifted towards establishing 

metabolite-to-gene associations (Alseekh & Fernie, 2018). These associations were studied, 

through knock-out studies, quantitative trait loci (QTL) mapping and genome wide association 

studies (GWAS) (Alseekh & Fernie, 2018). As causal genes for the level of certain metabolites, 

often enzymes, relevant in their biosynthesis or degradation, or transporters were discovered 

(S. Wu et al., 2016; Zhao et al., 2019). Other mapping studies sometimes also found 

transcription factors, involved in the regulation of metabolites (Wen et al., 2014; Ye et al., 

2019). 

Despite this knowledge, engineering primary metabolism has proven difficult so far, likely due 

to its multilevel regulation and high interconnectivity of metabolites (Sweetlove et al., 2017). 
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In specialized metabolic pathways however, some successes could already be obtained. 

Recently, it has been achieved to significantly increase the level of anthocyanins in tomato 

fruit, by expressing two snapdragon transcription factors (Butelli et al., 2008). Another 

engineering effort, resulted in tomato fruit accumulating L-DOPA, when expressing a beetroot 

enzyme, which is normally part of the pathway of betalain production (Breitel et al., 2021). 

1.2. QTL mapping and GWAS 

Genetic and phenotypic variance within a species, can be used to find a genotype to phenotype 

relationship. The two main methods used to establish this connection are quantitative trait loci 

(QTL) mapping and genome wide association studies (GWAS) (Korte & Farlow, 2013). QTL 

mapping uses introduced genetic variation from recombination, which results from crossing 

two parental lines followed by selfing or sibling mating the resulting population to create an F2 

generation, which can be directly used or further propagated to create recombinant inbred lines 

(Takuno et al., 2012). GWAS on the other hand uses genetic variation, which is already present 

in the form of single nucleotide polymorphisms (SNPs), which makes it also very suitable for 

human population genetics (Bush & Moore, 2012). Both GWAS and QTL mapping work 

through similar principles. In GWAS a linear model or χ2-like model is used to calculate an 

association between phenotypic variation and genomic variants (Burghardt et al., 2017). In 

QTL mapping, quantitative trait variation is associated with markers, by interval mapping 

combined with multiple regression (Zeng, 1994). 

Both methods have widely been used in plant biology. In Arabidopsis thaliana for example, 

QTL mapping has helped to discover candidate genes related to flowering time and plant 

growth (Koornneef et al., 2004). Similarly GWAS has for example been used to investigate 

primary and secondary metabolism (S. Wu et al., 2016, 2018). Recently, the two methods have 

also been used in conjunction, which facilitates a more accurate candidate gene selection 

(Asekova et al., 2021; He et al., 2017). A prerequisite for conducting these experiments, 

however is the availability of suitable model plants, which will be discussed in the next section. 

1.3. Model plants for metabolomics 

The self-pollinating, flowering plant Arabidopsis thaliana, which can easily be cultivated 

under controlled conditions, has 5 chromosomes, a relatively small genome (~28000 genes) 

and a generation time of 6-8 weeks, making it an ideal model species for plant science (Serino 

& Marzi, 2018). The continued collaborative effort of the Arabidopsis thaliana research 

community, has given rise to a large pool of resources, including stock centers and databases 



Chapter 1: General Introduction 

4 

 

(Diaz, 2019; Koornneef & Meinke, 2010). To date, more than a thousand wild ecotypes from 

around the world have been fully sequenced, which largely facilitates comparative genetic 

experiments (Alonso-Blanco et al., 2016). These available genetic resources have for example 

been exploited in genome wide association studies for both primary and secondary metabolites, 

which identified novel associations (S. Wu et al., 2016, 2018). By using enzyme activity as 

input, GWAS has also identified trans-QTL which are suggested to have regulatory roles 

(Fusari et al., 2017). A library of T-DNA insertions across the whole genome, which contains 

insertional mutants of a large portion of all genes, has been generated, which has played an 

important role in Arabidopsis research (Alonso et al., 2003; O’Malley et al., 2015). 

Another plant, which has widely been used for metabolomics experiments is the cultivated 

tomato Solanum lycopersicum (G. Zhu et al., 2018). With roughly 35000 genes (Hosmani et 

al., 2019) and a regular plant size of more than one meter and a roughly 4 month generation 

time, of most cultivars (Campos et al., 2010), may make tomato appear as a less desirable, 

model plant. Biologically speaking, a distinct feature of tomato, however is that it produces 

fleshy fruit, which is why it is a suitable model plant for fruit bearing crops (Kimura & Sinha, 

2008). Fresh tomato fruits, or products thereof, like tomato ketchup, paste or sauce, make up a 

major part of the daily diet in many countries, which has made tomato the most highly produced 

vegetable worldwide with a large economic importance (Anwar et al., 2019). As arable land 

per person decreases, new vertical farming technologies are employed (Benke & Tomkins, 

2017) and new tomato varieties are being developed, to grow under these space-restricting 

conditions (Kwon et al., 2020), which could lead to another increase in overall tomato 

production. 

Within the Solanum genus, the cultivated tomato Solanum lycopersicum belongs to the 

Lycopersicon section together with 12 other wild relative species and 4 more species in the 

sections Lycopersicoides and Juglandifolia (Peralta et al., 2008). In order to regain some of the 

genetic diversity that tomato varieties have lost during their domestication, cultivated varieties 

are commonly crossed back to wild varieties (Menda et al., 2014). However, this availability 

of wild relatives has not only been key for exploiting genetic diversity for the breeding of 

modern varieties (Mata-Nicolás et al., 2020), but it has also facilitated the development of 

different mapping populations (Canady et al., 2005; Eshed & Zamir, 1994; Ofner et al., 2016). 

By crossing the cultivated tomato Solanum lycopersicum to its wild green-fruited relative 

Solanum pennellii followed by several backcrosses and selfings, a so-called introgression line 
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(IL) population was created, originally consisting of 50 lines with single, marker-defined, 

homozygous substitutions of the cultivated tomato genome background, by homologous 

Solanum pennellii genomic content (Eshed & Zamir, 1994). Another mapping population, has 

been generated in a similar fashion by several rounds of backcrosses and selfing, leading to 

446 lines with several but much smaller genomic introgressions, resulting in a higher mapping 

resolution (Ofner et al., 2016). These mapping populations have widely been used to study 

agronomical traits, like total yield and total soluble solids content but also leaf morphology and 

flowering time (Eshed & Zamir, 1995; Fulop et al., 2016; Gur et al., 2011; Gur & Zamir, 2015). 

Similarly, our own group has used these resources extensively for metabolomics experiments 

(Alseekh et al., 2015, 2017; Kuhalskaya et al., 2020; Schauer et al., 2006, 2008). Besides 

primary and secondary metabolites, an interesting group of compounds produced by tomato 

fruits are volatile compounds and increasing efforts are allocated to understanding their 

regulation and production as they are major components contributing to flavor (Rambla et al., 

2014, 2017). 

Another staple crop of high economic and nutritional importance is, the common bean 

Phaseolus vulgaris, which serves as a major protein source, especially in South America and 

Eastern and Southern Africa (Broughton et al., 2003). Common bean is an annual herbaceous 

plant, with a diploid genome, which makes it a suitable model plant for other legumes like 

soybean (Glycine max) (Nadeem et al., 2021). As a shift towards more plant-based diets has 

been identified as an important tool to mitigate global warming and to fight malnutrition, 

studying legumes, which are a suitable substitute for animal-based food, seems ever more 

important (Ferreira et al., 2021). Besides the protein, beans also contain, carbohydrates, 

secondary metabolites and a low amount of lipids (Martino et al., 2012). Common bean is 

believed to have undergone two separate domestication events in Mesoamerica and the Andes 

mountains, leading to two separate genepools, which have been hybridized during their 

introduction into Europe, leading to even greater genetic diversity (Raggi et al., 2019). 

Currently, around 10000 accessions have genotyping-by-sequencing (GBS) information and 

220 accessions have whole genome sequencing information, while several other panels exist, 

genotyped by different approaches (Cortinovis et al., 2021). Although plenty of traits in 

common bean have been studied through GWAS approaches (Oladzad 2019) and protein and 

oil content has been assessed in soybean by GWAS (Hwang et al., 2014), the application of 

GWAS for metabolites of common bean has not yet been thoroughly exploited . Recently 



Chapter 1: General Introduction 

6 

 

however, beans are also starting to be used for metabolomics studies (Niron et al., 2020; Souza 

et al., 2019). 

1.4. Phenotypic plasticity, canalization, variation 

On purpose, the preceding paragraphs were focused on looking at traits in general as a single 

fixed or mean value. However in reality each trait will have a certain variation, depending from 

which angle I look on it. An early perspective to look at variation was offered by Waddington 

with the term canalization (Waddington, 1942). He described developmental processes as 

generally canalized, as they converge to a certain final state, irrespective of minor variations in 

the conditions during the development. A more general look on variation of any phenotype and 

their sources are provided by (Laitinen & Nikoloski, 2018). If I consider plants from different 

genotypes, grown under different environments, I can observe 3 types of variation for any 

specific quantitative trait (Figure 1). 

 

Figure 1: Types of variation between individuals, genotypes and environments (Laitinen & Nikoloski, 2018) 

As an example, let us think about growing tomato plants from two cultivars (genotype) in two 

different locations (environment) and measuring a trait like fruit yield per plant (phenotype 

value). First of all, I will observe some variation of fruit yield between plants of the same 

genotype, within one environment. As the plants are genetically identical, this variation will 

likely be due to stochastic factors. The second type of variation, is the difference of the mean 

level of the trait between the two cultivars in either of the environments, which is due to genetic 

factors. The third type of variation is the variation of the trait level between the two 
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environments for each of the two cultivars. This type of variation is also referred to as 

phenotypic plasticity (Laitinen & Nikoloski, 2018). While there are many different ways to 

estimate variation, a relatively simple metric is the so-called coefficient of variation (CV), 

which is a dimensionless value consisting of the standard deviation divided by the mean of a 

certain trait (Laitinen & Nikoloski, 2018). 

Variation and robustness has been studied from simple organisms like bacteria or yeasts to 

more complex organisms like crop plants. For example, in bacterial chemotaxis, the adaptation 

precision remains robust under varying concentrations of one key protein of the adaptation 

mechanism, while two other traits, adaptation time and steady-state tumbling frequency, 

change plastically (Alon et al., 1999). In yeast it has been shown by knocking out non-essential 

genes, that environmental, genetic and stochastic robustness are correlated (Lehner, 2010). 

Another study in yeast found out, by reducing gene expression of essential genes, that they are 

even more important, than non-essential genes for phenotypic robustness (Bauer et al., 2015). 

A study in Arabidopsis thaliana found that variation of hypocotyl length in dark grown 

seedlings is mediated by a gene from the BZR/BEH gene family, likely in connection to HSP90 

(Lachowiec et al., 2018). In both archived tomato mapping data and a “crop garden” 

experiment, with additional plants like eggplant, watermelon, sunflower and maize, a bimodal 

distribution of stable and plastic traits was found (Fisher et al., 2017). In a large experiment of 

976 maize hybrids, grown under 11 environments, the plasticity of 12 agronomic traits were 

mapped, yielding hundreds of QTL responsible for phenotypic plasticity (N. Liu et al., 2021). 

This phenotypic plasticity, studied in crop plants, is especially interesting for the application in 

agriculture. Not only is it interesting to breed cultivars for different regions of the world or for 

different applications, as to maximize production efficiency, but it may also become more and 

more important to breed crops which have a certain robustness to changing climates, as 

increasing climate variability is connected to decreasing yield stability (Reckling et al., 2021). 

A large metastudy has shown that already, around a third of global yield variability of maize, 

wheat, rice and soybean, can be attributed to climate variation (Ray et al., 2015). Considering 

the same crops, which provide around 75% of globally consumed calories, a different study 

has projected already median yield losses of 3%-12% mid-century, under a rigorous warming 

scenario (Wing et al., 2021). 

Our group has wondered, whether the variation of metabolites between different environments 

can also be traced back to genomic regions of plants. For that purpose, metabolomics data from 



Chapter 1: General Introduction 

8 

 

the tomato introgression line population grown in three seasons in the field, were used together 

with the genetic information to perform QTL mapping (Alseekh et al., 2017). Not using 

metabolite level, but its variation, several loci could be identified which had a significant 

correlation to the variation of a metabolite (Figure 2). 

 

Figure 2: Identified cmQTL across chromosomes of tomato using data from multiple field trials of S. pennellii ILs. To account 
for multiple hypothesis testing bonferroni correction was applied. Metabolites which had significant cmQTL even after the 

correction at a significance threshold of 0.05 are marked in blue.  (Alseekh et al., 2017) 

Chromosome 10 seemed to have some hotspots, which had associations to several metabolites. 

A subset of the backcross inbred line population has been used to validate the findings and 

narrow down the relatively large genomic loci with a significant correlation to metabolite 

variation. This yielded loci, containing 20-40 genes, which are prime candidate genes for 

further validation (Alseekh et al., 2017). This experiment proved that the concept of 

canalization could also be applied to metabolism. 

1.5. Aim of the thesis 

Building on the knowledge gained from the previously mentioned experiments, I wanted to 

further understand canalization of metabolism, but also yield and on this basis three projects 

were developed. 
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First of all I wanted to replicate the aforementioned procedure of cmQTL mapping in other 

species and populations with a GWA approach. Secondly I wanted to select candidate genes 

from the already found cmQTLs and try to validate their role in metabolic canalization. Finally 

I wanted to investigate a yield canalization mutant, discovered by our collaborator. In the 

following chapters I am addressing these projects one-by-one.
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Chapter 2: cmGWAS 

2.1. Introduction 

Genome wide association studies (GWAS) and its traditional counterpart linkage analysis are 

the most commonly used strategies to identify causal genes of trait variation, not only in plants 

but also in animals and humans (Sukumaran & Yu, 2014). In principle both methods associate 

trait variance with different markers across the genome (Alseekh et al., 2021; Takuno et al., 

2012). Different kinds of genetic markers exist. Early markers like restriction fragment length 

polymorphism (RFLP), were followed by PCR-based markers and finally SNP-based markers, 

which have widely become available with the ever-decreasing costs for sequencing through 

next-generation sequencing technologies (NGS) (Zargar et al., 2015).  

In contrast to traditional QTL mapping, GWA approaches are not as limited in terms of allelic 

diversity and mapping resolution defined by the parental lines, but face additional limitations 

(Korte & Farlow, 2013). While GWAS is suitable to find the genetic basis for traits with a 

simple genetic architecture, traits with a more complex architecture (e.g. rare variants or small 

effect sizes) may be difficult to be elucidated by GWAS (Korte & Farlow, 2013). As groups of 

individuals may be more closely related, due to their geographical origin or local adaptation, 

this can lead to an unequal genetic relationship between those groups and if this population 

structure is left unaccounted for, this could lead to false positive results (Sukumaran & Yu, 

2014). Several different single-locus or multi-locus models can be used to calculate 

associations between trait variation and SNPs (Kaler et al., 2020). Mixed linear models (MLM) 

are able to correct for bias in population stratification and inflation from many small genetic 

loci and are therefore the most popular method for GWAS (Fang & Luo, 2019). 

GWAS and QTL mapping have both widely been used to investigate many traits in different 

sections of plant science (Fang & Luo, 2019; Koornneef et al., 2004). Recently, using 

quantitative genetic experiments to study the robustness of traits across varying environments 

or between different individuals is also starting to gain more attention (Jimenez-Gomez et al., 

2011; Kikuchi et al., 2017; Tan et al., 2020). GWAS has also widely been used to elucidate 

metabolic pathways. Studies have shown that content of primary metabolites is usually 

determined by many small effect loci, while secondary metabolite content is determined by 

few large effect loci (Fang & Luo, 2019). Both enzymes and transcription factors have been 

found as causal genes for metabolite content, by GWAS (Fusari et al., 2017; S. Wu et al., 2016, 

2018; Ye et al., 2019). However the potential of genomic mapping to study the robustness of 
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metabolism across different environments has so far remained underexploited (Alseekh et al., 

2017). 

In the following chapter I am using the coefficient of variation or fold-change of metabolic 

content of both primary and secondary metabolism in Arabidopsis thaliana and Phaseolus 

vulgaris across different environments as an estimator for metabolic canalization. I use this 

estimator as an input for a genome wide association study to discover novel loci, which may 

be responsible for the control of metabolite levels in regard to different environments.  

2.2. Materials and Methods 

2.2.1. Ecotypes 

Different sets of ecotypes were used for GWAS. For the Arabidopsis thaliana GWAS, the 

HapMap Panel consisting of 350 natural accessions (Thoen et al., 2017) was used, which is a 

subset of the larger RegMap Panel consisting of 1307 natural accessions(Horton et al., 2012; 

Y. Li et al., 2010). From the RegMap Panel, which had previously been used for mGWAS (S. 

Wu et al., 2016, 2018), 315 ecotypes could be grown until maturity and used for analysis. For 

the common bean GWAS a set of 200 Phaseolus vulgaris landraces, containing 100 American 

and 100 European landraces, was selected for which whole genome sequencing data was 

available (Bellucci et al., in preparation). 

2.2.2. Growth conditions 

Growth conditions varied, depending on the specific experiment. The first experiment was 

planned and started by Fayezeh Arabi and partly analyzed by myself. In this experiment 

concerning acclimation to high light, 315 Arabidopsis thaliana ecotypes were sown onto soil. 

After germination, 2 plants per ecotype were transplanted into individual pots and cultivated 

for 6 weeks under a controlled environment of a York walk-in Phytochamber (York 

International/Johnson Controls; Cork, Ireland). During this time, plants received 150 µmol m-

2 s-1 of light in a day/night cycle, with an 8h/16h photoperiod and a 22°C/16°C temperature 

regime. After 6 weeks, one plant of each ecotype was transferred to a phytochamber supplying 

600 µmol m-2 s-1 and acclimated for 3 hours. After that time, for each ecotype, a single 

biological replicate from both light conditions was collected as a sample. 

A separate experiment was performed by Feng Zhu and recently published (F. Zhu et al., 2021). 

In this experiment concerning metabolite catabolism under extended darkness, a similar set of 

288 Arabidopsis thaliana ecotypes was used. In autumn 2018, plants were sown to soil in a 

controlled chamber of the MPIMP greenhouse (Potsdam-Golm, Germany) and transplanted to 
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individual pots after 2 weeks and cultivated for 3 more weeks. Plants were grown under short 

day conditions with an 8h light/16h dark short day photoperiod, at 250 µmol m-2 s-1 of light a 

20°C/16°C day/night temperature and 60%/70% humidity. After 35 days one plant per 

genotype was harvested as a control and each one after 3 days and 6 days of darkness. This 

experiment was repeated independently in spring 2019. Samples of the same ecotype in both 

experiments were treated as two biological replicates. 

Three separate experiments were conducted with 201 landraces of Phaseolus vulgaris grown 

in a Polytunnel with drought conditions or in a greenhouse with long day (16 h) or short day 

conditions (8h) (Bellucci et al., in preparation). Samples were collected from 1-3 biological 

replicates. 

2.2.3. Sample collection 

Plant tissue samples were generally, shock frosted after collection and stored at -80°C until 

further processing. For Arabidopsis thaliana experiments, the root was cut at soil level and the 

whole leaf rosette was collected and for Phaseolus vulgaris experiments a single leaflet per 

plant was collected. 

2.2.4. Metabolite extraction 

Frozen plant tissue was ground to powder using a Mixer Mill (Retsch; Haan, Germany) at 30 

Hz for 1 min. Aliquots of 50 mg were used for metabolite extraction, as described before 

(Salem et al., 2016). Here, 1 ml of pre-cooled MTBE-MeOH (3:1;vol/vol) extraction buffer is 

added to each sample and samples are incubated 10 minutes on an orbital shaker at 4°C. 

Samples are sonicated for 10 minutes in an ice bath before 0.5 ml of MeOH-H2O (3:1; vol/vol) 

is added and samples are centrifuged at 14000 rpm for 5 minutes at 4°C, leading to a phase 

separation. An aliquot of the upper (apolar) phase was taken for lipid analysis, the rest of the 

upper phase was aspirated with the BVC fluid aspiration system (Vacuubrand Inc; Essex, CT, 

U.S.A.) and two aliquots of the lower (polar) phase were taken for GC-MS and LC-MS. 

Extracts were dried in a Scan Speed 40 centrifugal vacuum concentrator (Labogene; Allerød, 

Denmark) coupled to a Scanvac CoolSafe cryo unit (Labogene; Allerød, Denmark) with 1000 

g and 30°C for 3h or overnight. Dried extracts were kept at -80°C until further use. 

2.2.5. Metabolite profiling 

Primary metabolites were analyzed as described before (Lisec et al., 2006). For the analysis 

via GC-MS-TOF a dried aliquot of the polar phase was derivatized by adding 40 µL of (20 mg 

* mL-1) methoxyamine hydrochloride and incubating at 37°C first for 2 h followed by addition 
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of 70 µL of MSTFA and continued incubation at 37°C for 30 min. The samples were injected 

by an autosampler Gerstel Multi-Purpose system (Gerstel GmbH & Co.KG, Mülheim an der 

Ruhr, Germany) into a gas chromatograph coupled to a time-of-flight mass spectrometer (Leco 

Pegasus HT TOF-MS) (LECO Corporation; St. Joseph, MI, U.S.A.). Analysis of secondary 

metabolites followed a previously described protocol (Giavalisco et al., 2009). Here a dried 

aliquot of the polar phase was resuspended in 150 µl H2O:MeOH (50:50) and samples injected 

to an Acquity UPLC system (Waters Corporation; Milford, MA, U.S.A.) coupled to an 

Exactive Orbitrap mass detector (ThermoFisher Scientific; Waltham, MA, U.S.A.) via a heated 

electrospray source (ThermoFisher Scientific; Waltham, MA, U.S.A.) . Mass spectra were 

obtained by running samples in negative ionization mode. For analysis of lipophilic compounds 

a previously established protocol was used (Hummel et al., 2011). An aliquot of the dried 

organic phase was resuspended in 100 µL of UPLC-grade acetonitrile:isopropanol (70:30) mix, 

of which 2 µl were injected onto an Acquity UPLC system (Waters Corporation; Milford, MA, 

U.S.A.) equipped with an RP C8 column (Hummel et al., 2011). Mass spectra were obtained 

by running samples in positive ionization mode on an Orbitrap high-resolution mass 

spectrometer: Fourier-transform mass spectrometer (FT-MS) coupled with a linear ion trap 

(LTQ) Orbitrap XL (ThermoFisher Scientific; Waltham, MA, U.S.A.).  

2.2.6. Peak picking/Area calculation 

For targeted analysis peaks were picked manually and peak area calculated with Xcalibur 

Version 4.2.47 (ThermoFisher Scientific; Waltham, MA, U.S.A.). Non-targeted analysis was 

performed with Genedata Expressionist ® 14.0.5 (Genedata; Basel, Switzerland). 

2.2.7. Metabolite data normalization 

Missing values were imputed by the half-minimum of a certain metabolic feature in the 

respective run or by using a QRILC approach as suggested by literatures (Wei et al., 2018). 

Raw peak area of each metabolic feature was then normalized to the area of an internal standard 

(ribitol for GC-MS and isovitexin for LC-MS) if applicable. To account for batch and drift 

effects a simple linear model was fitted to pooled quality control samples in each batch, which 

were regularly injected. For slopes with a p-value ≤ 0.05 and an adjusted R2 ≥ 0.75 or 0.8 the 

predicted values were used for a normalization, otherwise the median value of the pooled 

quality control samples was used. Further normalization, was done by resuspension volume 

and sample weight. Values of each metabolite were subjected to Box-Cox transformation (Box 

& Cox, 1964) to bring them closer to a normal distribution. 
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2.2.8. SNP data source 

For GWAS in Arabidopsis thaliana publicly available imputed SNPs with an imputation 

accuracy of ≥ 95% (Arouisse et al., 2020) was used and filtererd for a minor allele frequency 

of 0.05, leaving around 1.2 million SNPs. For GWAS in Phaseolus vulgaris an as of yet 

unpublished set of whole genome sequencing markers was used, containing around 3.6 million 

polymorphic SNPs when filtering for a minor allele of 0.05. 

2.2.9. GWAS  

A mixed-linear model was used to calculate phenotype-to-genotype associations. Variance 

components were estimated by the efficient mixed model association (“EMMA”) method, 

which corrects for population structure and genetic relatedness of the sample population (Kang 

et al., 2008).  

2.2.10. Computational analysis and used packages 

All analysis was performed using R statistical software v4.0.2 in the RStudio environment or 

on a unix-based high performance computing cluster. Code was written in base R or with the 

help of the packages tidyverse, broom, data.table, modelr (Dowle et al., 2021; Robinson et al., 

2021; Wickham et al., 2019; Wickham & RStudio, 2020). GWAS was performed using rMVP 

v1.0.6 (L. Yin et al., 2021). Imputation by QRILC was done with the package imputeLCMD 

(Lazar, 2015). Heatmaps were created with the pheatmap package (Kolde, 2019). 

2.3. Results 

From the available datasets, I generated different new datasets, by calculating the metabolite 

fold-change or CV of each ecotype across the selected conditions. Table 1 gives an overview 

of the datasets from the different experiments, which were conducted. 

Table 1: Available datasets, which were combined as input for GWAS 

Species Experiment Condition # genotypes 

A. thaliana Light acclimation Normal light 310 

High light 

Darkness 0 days (control) 264 

3 days 

6 days 

P. vulgaris Day length Short day 201 

Long day 
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Drought Drought 

I used these datasets to carry out individual GWAS. I always considered associations at a strict 

bonferroni cut-off and a more relaxed LOD threshold corresponding to –log10(1/number of 

markers), as it has been suggested that the bonferroni cut-off may be too strong and this marker-

defined threshold has been shown to allow detecting true positive results (S. Wu et al., 2016). 

2.3.1. Arabidopsis thaliana primary metabolites CV across darkness conditions 

For the first dataset I calculated the ecotype-wise CV across the conditions of 0, 3 and 6 days. 

Average values of the CV range from 0.14 to 1.64, with only 8 compounds with a CV higher 

than 1 (Figure 3). 

 

Figure 3: Boxplot of raw CV values of metabolites across 0, 3 and 6 days of darkness of all used ecotypes. The red horizontal 
line denotes a CV of 1. Numbers along the x-axis show mean CV. 

 Individual values range however from close to 0 to around 1.7 (Figure 4). Different clusters 

of metabolites with different CV profiles can be seen. The highest CV values can be found in 

the lowest cluster containing only carbohydrates and carboxylic acids. The cluster above this 

mainly contains amino acids with moderately low to moderately high CV values. The largest 

cluster with a diverse set of metabolites has majorly low to very low CVs across all ecotypes. 

The last cluster also contains diverse compounds with a higher variation between low and 

moderate CV values in addition to a few extreme outliers (Figure 4). 
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Figure 4: Heatmap of raw CV values of metabolites across 0, 3 and 6 days of darkness of all used ecotypes 

To see if there is any connection between CV values of different metabolites, I correlated 

metabolite CV values to each other (Figure 5). As can be seen, many amino acids cluster 

together with moderate to high positive correlation values. The amino acids valine, leucine, 

isoleucine and β-alanine have moderate to high positive correlation values to each other but 

low positive to moderately negative correlation to most other amino acids (Figure 5). Also 

fructose, glucose and glucose-6-phosphate show moderate to high positive correlations to each 

other.  
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Figure 5: Heatmap of pearson-correlation coefficient of metabolites across 0, 3 and 6 days of darkness 

After transformation, the ecotype-wise CV values were also used as input for the GWAS 

model. Although no association passed the strict bonferroni cut-off I could see some 

associations at the lower threshold. 

For fucose I detected a significant association on chromosome 1 (Figure 6). 

 

Figure 6: Manhattan plot of association of fucose CV to genomic regions. The x-axis shows the genomic position of the SNPs 

organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line shows the 
bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to the color 
legend at the top right. The red arrow points to the discussed locus. 
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The closest gene to the lead SNP is AT1G52330, which is a late embryogenesis abundant 

(LEA) hydroxyproline-rich glycoprotein family. Closely next to this gene is ABA2 

(AT1G52340), which is a gene related to aba production and glucose signalling (Rook et al., 

2001). 

I found an even stronger association between aspartic acid levels and a locus on chromosome 

2 (Figure 7). 

 

Figure 7: Manhattan plot of association of aspartic acid CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 

shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 
the color legend at the top right. The red arrow points to the discussed locus. 

The closest gene is AT2G36860, which codes for a pre-tRNA. In the same locus, nearby is 

AT2G36870, which is a xyloglucan endotransglucosylase/hydrolase 32. In a locus on 

chromosome 3 with significant association to CV of glutamine levels (Figure 8), the gene 

closest to the leading SNP is a gene of unknown function AT3G27390. However, in the same 

locus I also find a gene from the pectin lyase-like superfamily (AT3G27370) and succinate 

dehydrogenase 2-1 (AT3G27380). 
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Figure 8: Manhattan plot of association of glutamine CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 
shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 

the color legend at the top right. The red arrow points to the discussed locus. 

I also found a weak association between, lysine CV and another locus on chromosome 3 

(Figure 9).  

 

Figure 9: Manhattan plot of association of lysine CV to genomic regions. The x-axis shows the genomic position of the SNPs 

organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line shows the 
bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to the color 
legend at the top right. The red arrow points to the discussed locus. 

The gene closest to the leading SNP is a lysophosphatidyl acyl transferase (AT3G57640). In 

vicinity are a gene coding for U2.2; snRNA (AT3G57650) and nuclear RNA polymerase 

(AT3G57660) 

Finally, I also found a close association between malic acid and a region on chromosome 4 

(Figure 10).  



Chapter 2: cmGWAS 

20 

 

 

Figure 10: Manhattan plot of association of malic acid CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 
shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 

the color legend at the top right. The red arrow points to the discussed locus. 

The leading SNP resides in AT4G13920 as well as AT4G13918, which are a receptor-like 

protein, and a potential natural antisense locus, respectively. The locus also contains a serine 

hydroxymethyltransferase4 (AT4G13930). 

In total, for this dataset I found here 5 cmQTL for 5 different metabolites on 4 chromosomes. 

2.3.2. Arabidopsis thaliana primary metabolites CV across darkness and light 

conditions 

To explore an even more complex scenario, I included data from another experiment with 

normal and high light conditions and again calculated the ecotype-wise CV across all 

environments.  

On average the CV values range from 0.27 for pyroglutamic acid to 1.5 for ornithine (Figure 

11) while individual values range from close to 0 to over 2 (Figure 12). 
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Figure 11: Boxplot of raw CV values of metabolites across 0, 3 and 6 days of darkness, normal light and high light conditions 
of all used ecotypes. The red horizontal line denotes a CV of 1. Numbers along the x-axis show mean CV. 

Again I can see a metabolite-dependent CV value profile (Figure 12). 

 

Figure 12: Heatmap of raw CV values of metabolites across 0, 3 and 6 days of darkness, normal light and high light conditions 
of all used ecotypes 
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With more than half of the compounds with a CV higher than 1, CV values are in this 

combination much higher as the ones in the dataset containing the 3 darkness treatments 

(Figure 3, Figure 11). Additionally, the cluster with the highest CV values here contains 

galactinol and the amino acids, asparagine, ornithine and proline (Figure 12). Glycine, alanine, 

sucrose and glucose form a small subcluster in a larger cluster with metabolites that all have a 

CV around 1 or higher. All other metabolites, which all have a CV lower than 1, form another 

large cluster together (Figure 12). 

Also here I used the raw CV values to calculate Pearson’s correlation coefficients between 

metabolites (Figure 13). 

 

Figure 13: Heatmap of pearson-correlation coefficient of metabolites across 0, 3 and 6 days of darkness, normal light and 
high light conditions 

Again I can see a high number of amino acids which show a moderate to high positive 

correlation to each other. The cluster between the amino acids valine, leucine, isoleucine and 

β-alanine, with moderate to high positive correlations to each, which I observed earlier in the 

dataset containing only the darkness treatments also persists here (Figure 5, Figure 13). Further 

on, aspartate, malate and citrate show a moderately high positive correlation pattern (Figure 

13). 

After transformation of the raw CV values, I used this dataset as input for the GWAS model. 

Again no associations breach the strict bonferroni cut-off, but I find associations at the marker-
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defined threshold. The strongest association is one I found already in both individual conditions 

of the normal and high light experiment, which are not discussed in this thesis. This locus 

resides on chromosome 4 and associates to the CV of tyramine (Figure 14).  

 

Figure 14: Manhattan plot of association of tyramine CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 

shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 
the color legend at the top right. The red arrow points to the discussed locus. 

However in this case the gene closest to the leading SNP is not the known causal gene tyrosine 

decarboxylase (AT4G28680), but a gene coding for an RmlC-like cupins superfamily protein 

(AT4G28703). For the CV of methionine levels, I found an association to two genomic loci; 

one on chromosome 1 and one on chromosome 5 (Figure 15). 

 

Figure 15: Manhattan plot of association of methionine CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 
shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 
the color legend at the top right. The red arrow point to the discussed loci. 
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The locus on chromosome 1 has a methionine gamma-lyase (AT1G64660) as the gene closest 

to the leading SNP and the locus on chromosome 5 has a Defensin-like (DEFL) family protein 

gene (AT5G23212) closest to the leading SNP. Other genes in the locus on chromosome 1 are 

a gene coding for a major facilitator superfamily protein (AT1G64650) and a gene coding for 

an alpha/beta-Hydrolases superfamily protein (AT1G64670). In the QTL on chromosome 5 I 

find a gene annotated as serine carboxypeptidase-like 34 (AT5G23210) and two 

nicotinamidases (AT5G23220 + AT5G23230). 

For the CV of glycine I found an association to a SNP on chromosome 1 (Figure 16). 

 

Figure 16: Manhattan plot of association of tyramine CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 
shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 
the color legend at the top right. The red arrow points to the discussed locus. 

Closest to the SNP is a gene coding for a protein of unknown function (AT1G70750). Also 

close by is a the gene CRR23 (AT1G70760), which codes for a subunit of the chloroplast 

NAD(P)H dehydrogenase complex (Shimizu et al., 2008). 

The CV of asparagine showed an association to a locus on chromosome 2 (Figure 17). The 

gene closest to the leading SNP is a transposable element gene. Interestingly, within around 20 

kb up- and downstream of the leading SNP I find 7 more transposable element genes. 
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Figure 17: Manhattan plot of association of asparagine CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 
shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 

the color legend at the top right. The red arrow points to the discussed locus. 

On a locus on chromosome 3, I found an association, to the CV of malic acid (Figure 18).  

 

Figure 18: Manhattan plot of association of malic acid CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 
shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 

the color legend at the top right. The red arrow points to the discussed locus. 

The closest gene is a Major facilitator superfamily gene and upstream, within ~13 kb of the 

leading SNP, there are 2 more genes of this superfamily. Downstream, close to the SNP I also 

find a Phosphoglycerate mutase family gene (AT3G05170).  

Finally, I find an association between a locus on chromosome 5 and the CV of urea (Figure 

19). 
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Figure 19: Manhattan plot of association of urea CV to genomic regions. The x-axis shows the genomic position of the SNPs 
organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line shows the 
bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to the color 

legend at the top right. The red arrow points to the discussed locus. 

Also here I found a major facilitator superfamily gene (AT5G65687) as the gene closest to the 

leading SNP. The next closest gene is phosphoenolpyruvate carboxykinase 2 (AT5G65690). 

In total in this dataset I found 7 cmQTLs of 6 metabolites, across all chromosomes. 

2.3.3. Arabidopsis thaliana primary metabolites CV across light and control 

conditions 

Since the starvation condition under the dark treatment, may have influenced our results I tried 

to combine the two datasets from the normal and high light condition, with the control set of 

the darkness experiment, which had not been subjected to dark. 

In this combination the average CV values range from 0.18 for adenine to 1.57 for ornithine 

(Figure 20). Here only 2 metabolites have a CV higher than 1, asparagine and ornithine (I 

picked two peaks for ornithine, which both have a high CV). The two ornithine peaks build a 

distinct small cluster with very high CV values (Figure 21). A large cluster contains many 

metabolites with mostly very low CVs. Another large cluster contains metabolites with CVs, 

which show greater variation between ecotypes. Within this cluster tyramine shows a very high 

CV for some ecotypes and on the other hand very low CV for most other ecotypes (Figure 21). 
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Figure 20: Boxplot of raw CV values of metabolites across normal light and high light and control conditions of the darkness 
experiment of all used ecotypes. The red horizontal line denotes a CV of 1. Numbers along the x-axis show mean CV. 

 

Figure 21: Heatmap of raw CV values of metabolites across normal light and high light and control conditions of the darkness 
experiment of all used ecotypes 

When correlating CVs between metabolites, I can see a similar pattern as before (Figure 22). 
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Figure 22: Heatmap of pearson-correlation coefficient of metabolites across normal light and high light and control conditions 
of the darkness experiment 

Many amino acids show a positive correlation although only some with higher and most with 

relatively low coefficients. Leucine and isoleucine show a strong positive correlation (0.77). 

Also aspartate, malate and citrate show moderately strong positive correlations (Figure 22). 

When using the transformed CV values as input for the GWAS model, I again detected the 

association between the tyrosine decarboxylase locus on chromosome 4 and the CV of 

tyramine, this time even surpassing the bonferrroni cut-off. 

For the CV of leucine I found a cmQTL on chromosome 2 (Figure 23).  
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Figure 23: Manhattan plot of association of leucine CV to genomic regions. The x-axis shows the genomic position of the 
SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. The red line 
shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, according to 

the color legend at the top right. The red arrow points to the discussed locus. 

The closest gene to the lead SNP is beta glucosidase 17 (AT2G44480). Upstream are 3 more 

beta glucosidases and downstream a glycosyl hydrolase (AT2G44490).  

Additionally I found cmQTLs for the CV of isoleucine, benzyl alcohol and trehalose as 

summarized in Table 2.   
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Table 2: Selection of putative candidate genes controlling the CV of primary metabolites across different light conditions 

# Distance 

to best 

SNP 

LOD Gene ID Gene annotation Metabolite 

1 -5050 6.25 AT2G01630 O-Glycosyl hydrolases family 17 protein tyrosine 

-680 6.25 AT2G01650 plant UBX domain-containing protein 2 

3430 6.23 AT2G01660 plasmodesmata-located protein 6 

2 -17021 6.10 AT2G44450 beta glucosidase 15 leucine 

-10904 6.10 AT2G44460 beta glucosidase 28 

-2191 6.10 AT2G44470 beta glucosidase 29 

0 6.10 AT2G44480 beta glucosidase 17 

3886 6.10 AT2G44490 Glycosyl hydrolase superfamily protein 

13422 6.10 AT2G44500 O-fucosyltransferase family protein 

3 -262 6.36 AT3G01140 myb domain protein 106 isoleucine 

-262 6.36 AT3G01142 Potential natural antisense gene 

4 -655 6.52 AT3G45210 Protein of unknown function, DUF584 benzyl 
alcohol 

5 0 9.65 AT4G28680 L-tyrosine decarboxylase tyramine 

6 -20208 6.38 AT5G33424 transposable element gene trehalose 

-17602 6.38 AT5G33427 transposable element gene 

-6897 6.38 AT5G33428 transposable element gene 

8381 6.76 AT5G33431 transposable element gene 

-4849 6.38 AT5G33432 transposable element gene 

4831 6.76 AT5G33433 transposable element gene 

11268 6.76 AT5G33434 transposable element gene 

0 6.76 AT5G33436 pseudogene 

18037 6.76 AT5G33438 transposable element gene 

4415 6.76 AT5G33439 other RNA 

2596 6.76 AT5G33441 pseudogene 

21158 6.76 AT5G33442 transposable element gene 

 

In these loci I find a myb transcription protein, along with a potential natural antisense gene, a 

gene of unknown function, pseudogenes and several transposable element genes. In total in this 

dataset I was able to find 6 cmQTL from 6 metabolites across 4 chromosomes. 

2.3.4. Arabidopsis thaliana secondary metabolites fold change between low and 

high light conditions 

For the Arabidopsis normal and high light experiment, I also looked at secondary metabolites. 

Since only data from two conditions were available, I used the metabolite fold-change as input 

for the GWAS. 
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I found a significant association of one unannotated metabolite to a locus on chromosome 2 

(Figure 24).  

 

Figure 24: Manhattan plot of association of the fold-change of an unknown compound  to genomic regions. The x-axis shows 
the genomic position of the SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated 
association. The red line shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 
Mb windows, according to the color legend at the top right. The red arrow points to the discussed locus. 

The lead SNP is close to a gene coding for a DNAJ heat shock N-terminal domain-containing 

protein (AT2G05230) and another gene with the same annotation is around 14 kb apart 

(AT2G05250). 

A locus on chromosome 3 showed a significant association to 4 glucosinolates (4-

pentenylglucosinolate, 3-butenylglucosinolate, 6-methylsulfinylhexyl glucosinolate, 1-

methoxy-3-indolylmethyl-glucosinolate) as well as one unannotated compound (Figure 25). In 

the case of 4-pentenylglucosinolate the LOD score is even above the bonferroni threshold. 
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Figure 25: Manhattan plot of association of the CV of 4 glucosinolates (A: 4-pentenylglucosinolate; B: 3-butenylglucosinolate; 
C: 6-methylsulfinylhexyl glucosinolate; D: 1-methoxy-3-indolylmethyl-glucosinolate; E: unknown compound) to genomic 
regions. The x-axis shows the genomic position of the SNPs organized into chromosomes, while the y-axis displays the –
log10(p-value) of a calculated association. The red line shows the bonferroni threshold. Colors in the bottom panel show the 
marker density binned into 1 Mb windows, according to the color legend at the top right. The red rounded rectangle encloses 
the discussed locus. 

The closest gene to the lead SNP is a transposable element gene (AT3G31904), which may be 

a pseudogene for a helicase. In that region (~10 kb up- and downstream) I find several other 

transposable element genes and pseudogenes. The nearest protein coding gene, with a predicted 

function is an ATP-dependent helicase family gene (AT3G31900). 

I found another locus on chromosome 3 showing an association to a glucosinolate (4-

methylsulfinylbutyl glucosinolate) (Figure 26). 
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Figure 26: Manhattan plot of association of the CV of 4-methylsulfinylbutyl glucosinolate. The x-axis shows the genomic 
position of the SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a calculated association. 
The red line shows the bonferroni threshold. Colors in the bottom panel show the marker density binned into 1 Mb windows, 

according to the color legend at the top right. The red arrow points to the discussed locus. 

The lead SNP was closest to a gene coding for Cam interacting protein 111 (AT3G56690). 

Also very close was the gene for fatty acid reductase 6 (AT3G56700). 

All other associations do not surpass the bonferroni threshold, but are significant at a marker-

defined threshold. A list of selected putative candidate genes is shown in Table 3. 
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Table 3: Selection of putative candidate genes controlling the fold change of secondary metabolites across normal light and 
high light conditions 

# Distance 

(best 

SNP) 

LOD 

(nearest 

SNP) 

Gene ID gene_syn Putative Metabolites 

1 0 6.58 AT1G18500 methylthioalkylmalate synthase-like 4 unannotated#74 

2 -1196 6.37 AT1G30260 NA glucoiberin 

1933 6.37 AT1G30270 CBL-interacting protein kinase 23 

3 -620 6.64 AT1G34490 MBOAT (membrane bound O-acyl transferase) family protein guanosine 

523 6.64 AT1G34500 MBOAT (membrane bound O-acyl transferase) family protein 

4 -6568 6.30 AT1G64760 O-Glycosyl hydrolases family 17 protein quercitrin 

-352 6.30 AT1G64780 ammonium transporter 1;2 

5 0 6.57 AT1G65440 global transcription factor group B1 7,8-Dihydroxycoumarin 

6 2423 6.15 AT2G01190 Octicosapeptide/Phox/Bem1p family protein Indole-3-acetyl-L-

aspartic acid 5465 6.15 AT2G01200 indole-3-acetic acid inducible 32 

7 0 6.15 AT2G03340 WRKY DNA-binding protein 3 2,3-DHBAG peak2 

6465 6.15 AT2G03360 Glycosyltransferase family 61 protein 

8 297 7.58 AT2G05230 DNAJ heat shock N-terminal domain-containing protein 2,5-DHBAX peak1 

14128 7.58 AT2G05250 DNAJ heat shock N-terminal domain-containing protein 

9 123 6.27 AT2G07788 transposable element gene tryptophan 

4977 6.27 AT2G07789 transposable element gene 

10 -564 6.66 AT2G13280 transposable element gene unannotated#52 

0 6.66 AT2G13290 beta-1,4-N-acetylglucosaminyltransferase family protein 

11 0 6.18 AT2G15910 CSL zinc finger domain-containing protein 4-pentenylglucosinolate 

1294 6.18 AT2G15920 transposable element gene 

12 -808 6.46 AT2G16790 P-loop containing nucleoside triphosphate hydrolases 

superfamily protein 

glucoraphanin 

0 6.46 AT2G16800 high-affinity nickel-transport family protein 

13 -291 6.22 AT2G22830 squalene epoxidase 2 unannotated#8 

14 -1091 6.82 AT3G24180 Beta-glucosidase, GBA2 type family protein unannotated#25 

437 6.82 AT3G24190 Protein kinase superfamily protein 

15 0 6.40 AT3G25805 
 

glucoalyssin 

16 -13023 8.20 AT3G31900 ATP-dependent helicase family protein 4-pentenylglucosinolate, 

gluconapin, 6-

methylsulfinylhexyl 

glucosinolate, 6-

methylthiohexylglucosin

olate, unannotated#60 

0 8.20 AT3G31904 transposable element gene 

17 151 6.79 AT3G44610 Protein kinase superfamily protein unannotated#60 

18 -247 8.10 AT3G56690 Cam interacting protein 111 glucoraphanin 

789 8.10 AT3G56700 fatty acid reductase 6 

19 208 6.47 AT3G57070 Glutaredoxin family protein unannotated#92 

20 -3414 6.81 AT3G59850 Pectin lyase-like superfamily protein 2,5-DHBAG peak 1+2 

-115 6.81 AT3G59860 transposable element gene 

21 -3005 6.48 AT4G06550 transposable element gene 
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1565 6.48 AT4G06551 transposable element gene Kaempferol 3-O-

glucosyl-glucoside 7-O-

rhamnoside 

22 0 6.38 AT4G22770 AT hook motif DNA-binding family protein 2,5-DHBAG peak 1+2 

23 315 6.62 AT5G39580 Peroxidase superfamily protein 6-methylsulfinylhexyl 

glucosinolate, 

unannotated#45 

24 -483 6.15 AT5G43020 Leucine-rich repeat protein kinase family protein unannotated#70 

25 -2806 6.11 AT5G50915 basic helix-loop-helix (bHLH) DNA-binding superfamily 

protein 

unannotated#70 

26 2326 6.59 AT5G54520 Transducin/WD40 repeat-like superfamily protein unannotated#10 

8537 6.59 AT5G54530 Protein of unknown function, DUF538 

 

2.3.5. Phaseolus vulgaris secondary metabolites CV across short and long day 

and drought conditions 

Switching from Arabidopsis to common bean, I also investigated secondary metabolism. Data 

from 3 previous experiments was available, where beans were grown under short day, long day 

and drought conditions. As a first step, I matched the metabolic features, by their closest match 

in retention time and m/z-value to a list of manually checked chromatogram peaks and filtered 

out all features, where more than 50% of values were missing. The remaining 169 features are 

listed in Table 4. 

For these features, I calculated the CV across conditions. The average CV values range from 

0.34 to 1.73, with most features having a mean CV higher than 1 (Figure 27). 
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Table 4: Matched metabolic features detected in polar LC-MS of samples of common bean from short day, long day and 
drought conditions; RT: retention time; m/z: mass-charge ratio 

Feature RT m/z Feature RT m/z Feature RT m/z Feature RT m/z 

m_2 2.48 295.1 m_51 5.89 295.05 m_96 7.85 491.08 m_143 11.51 591.34 

m_3 2.48 337.08 m_52 6 295.05 m_97 7.92 565.23 m_144 11.51 839.37 

m_4 2.48 369.1 m_53 6.08 433.21 m_98 7.92 609.22 m_145 11.71 1097.52 

m_5 2.92 309.12 m_54 6.08 625.14 m_100 8.04 533.09 m_146 11.71 1143.52 

m_6 2.92 381.13 m_55 6.08 755.2 m_101 8.04 839.34 m_147 11.71 837.36 

m_7 2.99 309.12 m_56 6.15 741.19 m_102 8.13 677.28 m_148 11.76 1229.6 

m_9 3.2 331.07 m_57 6.17 609.15 m_104 8.2 429.18 m_149 11.95 635.3 

m_10 3.28 371.06 m_58 6.23 755.21 m_105 8.2 497.16 m_150 11.95 1213.6 

m_11 3.38 371.06 m_59 6.28 433.21 m_106 8.33 561.2 m_151 11.99 1081.52 

m_12 3.57 315.07 m_60 6.34 431.19 m_107 8.33 605.19 m_152 11.99 1127.53 

m_13 3.62 371.06 m_61 6.39 613.18 m_108 8.36 457.21 m_153 12.09 627.3 

m_14 3.69 305.09 m_62 6.43 595.13 m_109 8.36 411.2 m_154 12.09 1081.52 

m_15 3.74 329.09 m_63 6.41 535.19 m_110 8.44 463.26 m_156 12.18 441.25 

m_16 3.87 371.06 m_64 6.58 427.2 m_111 8.44 679.28 m_157 12.32 953.48 

m_17 3.96 311.04 m_65 6.58 523.22 m_112 8.52 677.28 m_158 12.32 999.48 

m_18 4.06 311.04 m_66 6.6 547.16 m_113 8.62 467.21 m_160 12.37 343.26 

m_20 4.15 311.04 m_67 6.64 725.2 m_114 8.69 579.21 m_163 12.44 987.52 

m_22 4.37 323.13 m_68 6.75 279.05 m_115 8.71 675.27 m_164 12.91 1067.54 

m_24 4.25 371.06 m_69 6.75 581.09 m_116 8.96 675.27 m_165 12.91 1113.55 

m_25 4.25 203.08 m_70 6.75 889.2 m_117 8.75 579.21 m_167 13.06 1097.55 

m_27 4.51 355.07 m_71 6.81 609.15 m_118 8.97 371.13 m_168 13.06 1119.54 

m_28 4.63 385.08 m_72 6.89 431.1 m_119 8.83 467.21 m_171 13.34 789.35 

m_29 4.63 447.19 m_73 6.93 279.05 m_120 9.19 771.4 m_172 13.39 328.21 

m_30 4.68 599.16 m_74 6.93 559.11 m_121 9.39 577.21 m_173 13.43 562.32 

m_31 4.68 299.08 m_75 6.93 581.09 m_122 9.39 492.23 m_174 13.47 721.37 

m_32 4.68 621.14 m_76 6.93 859.19 m_123 9.39 781.29 m_175 13.54 562.32 

m_33 4.83 295.05 m_77 6.99 477.07 m_124 9.44 805.33 m_176 13.58 593.27 

m_34 4.96 385.08 m_78 6.99 955.14 m_125 9.51 569.35 m_177 13.58 319.14 

m_35 5.05 325.09 m_79 6.99 1433.22 m_126 9.72 629.28 m_178 13.91 559.31 

m_36 5.05 651.19 m_80 7.14 193.05 m_127 9.72 652.28 m_179 14.12 416.37 

m_37 5.12 433.21 m_81 7.14 309.06 m_128 9.88 1259.57 m_180 14.17 540.33 

m_38 5.12 771.2 m_82 7.14 619.13 m_130 10.2 377.18 m_181 14.27 221.15 

m_39 5.32 325.06 m_83 7.17 593.15 m_131 10.23 855.37 m_182 14.42 505.26 

m_40 5.36 371.23 m_84 7.28 309.06 m_132 10.6 753.39 m_183 14.42 265.15 

m_41 5.45 355.1 m_85 7.38 593.15 m_133 10.67 855.37 m_184 14.81 311.2 

m_42 5.57 399.09 m_86 7.38 661.14 m_134 10.67 753.39 m_185 15.28 356.19 

m_43 5.57 447.15 m_87 7.38 839.34 m_135 10.8 403.2 
   

m_44 5.65 387.17 m_88 7.42 429.18 m_136 10.8 855.37 
   

m_45 5.65 583.2 m_89 7.52 623.16 m_137 11.05 643.28 
   

m_46 5.73 433.21 m_90 7.56 429.18 m_138 11.08 837.36 
   

m_47 5.73 493.06 m_91 7.62 461.07 m_139 11.11 242.18 
   

m_48 5.73 583.2 m_92 7.62 692.11 m_140 11.37 643.28 
   

m_49 5.8 431.19 m_94 7.62 1154.69 m_141 11.37 593.35 
   

m_50 5.89 591.1 m_95 7.82 429.18 m_142 11.37 839.37 
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Figure 27: Boxplot of raw CV values of features across short day long day and drought conditions of all used ecotypes. The 
red horizontal line denotes a CV of 1. 

 

Figure 28: Heatmap of raw CV values of metabolites from Phaseolus vulgaris leaf samples across short day, long day and 
drought conditions of all used ecotypes. Rows show metabolites and columns show ecotypes 
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In addition to generally having a higher CV than primary metabolites, features of secondary 

metabolism also seem to have a higher variation of the CV between the ecotypes. I can 

subdivide the features into two clusters (Figure 28). In the upper cluster, where features 

generally have a high CV, it seems that the cause for the variation are few ecotypes, which 

have a relatively low CV. In the lower cluster, which has a few features with a much lower CV, 

the variation seems to be more equally distributed, between several ecotypes. 

When calculating the Pearson’s correlation coefficient I can also see some correlation patterns 

(Figure 29). 

 

Figure 29: Heatmap of pearson-correlation coefficient of metabolites across normal light and high light and control conditions 
of the darkness experiment 

Generally I can see several cluster with positive correlations along the diagonal. A cluster to 

the lower right contains mostly positive or no correlation values but only few negative ones. 
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I also used the transformed CV values as input for the GWAS model. I found one significant 

association between a locus on chromosome 5 and the CV of 2 metabolites (Figure 30). 

 

Figure 30: Manhattan plot of association of the CV of two features (A: m_126; B: m_127) to genomic regions. The x-axis 
shows the genomic position of the SNPs organized into chromosomes, while the y-axis displays the –log10(p-value) of a 
calculated association. The red line shows the bonferroni threshold. The red rounded rectangle points to the discussed locus. 

The gene closest to the leading SNP is annotated as an 11-oxo-beta-amyrin 30-oxidase 

(Phvul.005G063200). In the vicinity of this gene I found 2 more genes with the same putative 

annotation. 
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One cmQTL on chromosome 6 was particularly interesting, as it mapped 8 different features.

 

Figure 31: Manhattan plot of association of the CV of two features (A: m_47, B: m_91, C:  m_79, D: m_77, E: m_92, F: m_55, 
G: m_56, H: m_78) to genomic regions. The x-axis shows the genomic position of the SNPs organized into chromosomes, 
while the y-axis displays the –log10(p-value) of a calculated association. The red line shows the bonferroni threshold. The red 
rounded rectangle points to the discussed locus. 

The closest gene to the lead SNP is Phvul.006G200700, which codes for a U3 small nucleolar 

RNA-associated protein 18 (UTP18). In proximity is also Phvul.006G201100, which is a gene 

coding for a Flavonol 3-O-glucosyltransferase. I found several other cmQTL, many with more 

than one feature mapping to them and also many above the bonferrroni cut-off. A selection of 

the highest associations are shown in Table 5.  
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Table 5: Selection of putative candidate genes controlling the CV of secondary metabolites in Phaseolus vulgaris across short 
day, long day and drought conditions 

# LOD 

(best 

SNP) 

Distance 

(best 

SNP) 

Gene ID Gene annotation Metabolites mapping 

to this locus 

6 8.34 0 Phvul.001G182100 UDP-glucosyl transferase 73C m_86, m_55, m_85 

11 8.74 -2770 Phvul.002G025800 MAJOR POLLEN ALLERGEN-LIKE PROTEIN  m_52, m_80, m_50, 

m_72, m_84 

13 9.05 4362 Phvul.002G134300 ESCRT-II complex subunit VPS25 m_97, m_98 

14 9.33 0 Phvul.002G135000 Domain of unknown function (DUF4219)  m_97, m_55, m_98 

18 8.67 0 Phvul.002G139200 Phosphoenolpyruvate carboxykinase m_97 

27 8.53 0 Phvul.003G041700 CELL DIVISION CONTROL PROTEIN 48 HOMOLOG B m_61 

32 9.42 -6684 Phvul.003G142400 Core-2/I-Branching enzyme (Branch) m_59 

40 8.52 19083 Phvul.003G151700 EamA-like transporter family (EamA) m_55 

59 8.53 0 Phvul.005G005200 CHLORIDE CHANNEL PROTEIN CLC-F m_61 

60 8.89 2379 Phvul.005G031150 
 

m_53, m_49, m_61 

63 8.43 -13436 Phvul.005G036200 
 

m_53 

93 8.00 -13482 Phvul.005G061132 GENOMIC DNA, CHROMOSOME 3, P1 CLONE:MJM20 m_126, m_127 

94 8.04 0 Phvul.005G061200 GIBBERELLIN 2-BETA-DIOXYGENASE 1 m_126, m_135, m_127 

95 9.38 1734 Phvul.005G063200 11-oxo-beta-amyrin 30-oxidase / CYP72A154 m_126, m_127, m_135 

95 9.38 37105 Phvul.005G063300 11-oxo-beta-amyrin 30-oxidase / CYP72A154 m_126, m_127, m_135 

96 8.89 9482 Phvul.005G063650 RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) m_126, m_127 

98 8.44 249 Phvul.005G064000 
 

m_126, m_127 

99 8.66 13236 Phvul.005G064100 11-oxo-beta-amyrin 30-oxidase / CYP72A154 m_126, m_127 

100 8.89 -10899 Phvul.005G064300 
 

m_126, m_127 

101 8.89 18425 Phvul.005G057920 phosphatidylglycerophosphatase GEP4 (GEP4) m_126, m_127 

103 8.75 12318 Phvul.005G064400 CARBOHYDRATE-BINDING X8 DOMAIN-CONTAINING 

PROTEIN-RELATED 

m_126, m_127, m_135 

364 11.74 0 Phvul.006G200700 U3 small nucleolar RNA-associated protein 18 (UTP18) m_47, m_91, m_79, 

m_77, m_92, m_55, 

m_56, m_78 

370 12.84 0 Phvul.007G016500 
 

m_18, m_85 

371 11.19 -5952 Phvul.007G018300 PROTEIN PHOSPHATASE 2C 64-RELATED m_18 

378 8.33 -7943 Phvul.007G090901 RNA SPLICING PROTEIN MRS2, MITOCHONDRIAL m_55, m_119 

380 8.39 -9388 Phvul.007G093900 ATH SUBFAMILY PROTEIN ATH8 m_55, m_119 

402 8.30 -1430 Phvul.007G228800 
 

m_61 

403 8.30 -5996 Phvul.007G228900 AN1-TYPE ZINC FINGER PROTEIN m_61 

404 10.47 -211 Phvul.007G230700 B3 DOMAIN-CONTAINING TRANSCRIPTION FACTOR VAL3 m_55 

406 20.77 -5354 Phvul.008G004000 SNARE associated Golgi protein (SNARE_assoc) m_61 

407 9.01 -601 Phvul.008G028800 
 

m_116 

408 12.15 1272 Phvul.008G032501 Isoflavone-7-O-beta-glucoside 6''-O-malonyltransferase m_116 

409 8.94 514 Phvul.008G034000 Cyanohydrin beta-glucosyltransferase m_116 

411 8.24 0 Phvul.008G060100 FERRIC REDUCTION OXIDASE 2-RELATED m_55 

413 8.41 -2777 Phvul.008G087901 ENTH/VHS/GAT FAMILY PROTEIN m_55, m_58 

414 9.07 1035 Phvul.008G089400 
 

m_55 
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434 9.18 0 Phvul.008G290800 
 

m_55 

444 8.71 -3443 Phvul.009G093500 PHOSPHOLIPASE D ALPHA 1-RELATED m_61 

451 8.13 0 Phvul.009G127900 
 

m_86, m_55 

456 14.78 -2328 Phvul.009G258600 Anthranilate N-methyltransferase m_114, m_117 

463 8.41 0 Phvul.011G016400 RNA polymerase primary sigma factor (SIG1, rpoD) m_46 

464 16.06 0 Phvul.011G021800 Assimilatory sulfite reductase (ferredoxin) m_46, m_119 

471 8.12 0 Phvul.011G088200 PROTEIN ARGONAUTE 5 m_62 

472 8.12 4458 Phvul.011G088900 
 

m_62 

515 9.17 -13706 Phvul.011G157000 IQ-DOMAIN 9 PROTEIN m_56 

519 11.36 -3574 Phvul.011G158700 PROTEIN SUPPRESSOR OF PHYA-105 1 m_56, m_62 

520 9.65 3543 Phvul.011G160100 
 

m_56, m_62 

522 8.96 14831 Phvul.011G161100 11-oxo-beta-amyrin 30-oxidase / CYP72A154 m_56, m_62 

523 11.70 -2088 Phvul.011G162200 RAB3-GAP REGULATORY DOMAIN m_56, m_62 

526 8.12 0 Phvul.011G180700 ZINC FINGER CCCH DOMAIN-CONTAINING PROTEIN 37-

RELATED 

m_58, m_86, m_85 

527 8.93 0 Phvul.L001785 SF7 - GB m_135, m_86 

 

2.4. Discussion 

To estimate variation of metabolic content across different environments I reutilized metabolic 

data from different experiments. I used the coefficient of variation or fold-change between 

conditions as a measure of metabolic canalization or lack thereof. 

It should be mentioned at this point that combining the datasets was in reality connected with 

rather large challenges. In order to be able to calculate a sensible coefficient of variation, it is 

necessary to arrive at a sensible normalized value first. Such normalization is necessary, to 

overcome technical variation, which can appear as batch variation or machine drift and several 

methods have been developed to correct these confounding factors (Alseekh et al., 2018; Dunn 

et al., 2011; Fan et al., 2019; Rusilowicz et al., 2016). Unfortunately, there is always the risk 

of removing the wanted biological variation within one experiment along with the unwanted 

variation (Livera et al., 2015), so one can easily imagine it to be more difficult to additionally 

remove unwanted technical variation between experiments and retain true differences. I tried 

out several methods, which I did not show here and finally settled with a linear model based 

on the quality control (QC) values as described in the methods section. More promising 

methods certainly exist, but a higher number of QC samples is either required or at least 

suggested (Dunn et al., 2011; Fan et al., 2019), therefore using those methods with a small 

number of QCs may have added additional unwanted variation. The QC samples from the 

Arabidopsis thaliana datasets were all based on pooled extracts from Col-0 ecotype, which 

gives me a fairly high confidence that I have normalized experiments to a sensible baseline. 
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However for the Phaseolus vulgaris datasets I only have experiment specific pooled QCs, 

which meant that data had to be rescaled after normalization. I used the median of metabolic 

abundance as a rescaling factor for the median-centered normalized values. Even though this 

is a plausible approach and similar approaches have been suggested before in literature 

(Rusilowicz et al., 2016), this limitation should be kept in mind. Due to this difficulty of relative 

values for investigation of variation, obtaining absolute values could be very valuable. 

Absolute quantification via GC-MS is possible, but requires the availability of standard 

compounds for the creation of standard curves (Rosado-Souza et al., 2019). Alternatively, 

several metabolites such as starch, sucrose, malate, fumarate as well other organic acids and 

sugars can be absolutely quantified with enzymatic assays, although satisfactory time-

efficiency and accuracy may only be achievable with a robotized system (Cross et al., 2006; 

Gibon, Blaesing, et al., 2004; Nunes-Nesi et al., 2007). 

In the datasets containing primary metabolites, the CV seemed to be both metabolite and 

context dependent. For example metabolites like adenine or pyroglutamic acid had relatively 

low mean CVs in all combinations. On the other end of the spectrum, metabolites with high 

CV were represented by carbohydrates in the darkness treatment dataset, but contained amino 

acids like ornithine and asparagine, when data from the normal and high light conditions were 

included. This effect can easily be explained. It is well known that carbohydrates are tightly 

controlled in a diurnal manner, with starch almost but not completely used up at the end of the 

night and sucrose and glucose maintained at a more or less regular level, independent of the 

photoperiod (Sulpice et al., 2014). However if the night is just extended by 6 hours, starch is 

not detectable anymore and sucrose decreases 3-fold (Gibon, Bläsing, et al., 2004). An even 

longer darkness will likely have more detrimental effects to carbohydrate levels, which would 

explain the high CV levels. Similarly it could be possible that the levels of amino acids change 

with different conditions. For example, it has been shown that urea cycle compounds like 

ornithine accumulate under low CO2 conditions likely through increase of photorespiration 

(Blume et al., 2019). As photorespiration is in general light-dependent (Peterhansel et al., 

2010), it may be possible that differences in light conditions between our experiments, could 

explain the high CV of urea cycle metabolites. 

I also investigated the correlation of metabolite CVs to each other. A high degree of correlation 

between different compound groups like amino acids, has already been shown in Arabidopsis 

thaliana, tomato and maize (Schauer et al., 2006; Sulpice et al., 2010; Toubiana et al., 2016). 
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Here, I also found the CV especially of amino acids to show some degree of correlation in 

different combinations of conditions. 

In the GWAS for primary metabolites I only found a relatively small number of cmQTLs, most 

of which also do not surpass the bonferroni cut-off. As the basis of metabolic canalization is 

not well-understood, it is difficult to determine, which gene within the cmQTL is the causal 

regulator of the respective metabolite. However, in light of previous experiments I anticipated 

to find potential genes with clear regulatory functions (Alseekh et al., 2015). Although I do 

find several genes, that have known regulatory functions, I also find many enzymes in the 

cmQTL. Then again, only some of these enzymes are known to be directly involved in the 

production or degradation of the compounds they are associated to. For example in the dataset 

for the 3 darkness conditions I found an association of the CV of glutamine and a succinate 

dehydrogenase, which converts succinate to fumarate in the TCA cycle. Even though glutamate 

and from this glutamine can be synthesized from the TCA cycle metabolite 2-oxoglutarate, it 

is at least 4 conversion steps apart. However, there are some candidate enzymes, which seem 

even further apart from the metabolite for which I found an association. For the 3 amino acids, 

leucine, tyrosine and aspartic acid, I found different glucosidases and glycosylhydrolases, 

which are related to carbohydrate metabolic processes. Nevertheless I also found some 

examples of enzymes, which are directly related to the associated metabolites. The most 

pervasive association is the one of tyramine to tyrosine decarboxylase. The association of 

tyramine level to this gene has been discovered before (S. Wu et al., 2016) and I also found it 

in both individual conditions of the GWAS with normal and high light conditions as well as 

the CV datasets including these conditions. This could mean that this enzyme is not only 

important for the mean level of tyramine, but also for the robustness or plasticity across 

different environments. Tyrosine decarboxylase has been shown to be upregulated upon 

wounding and drought stress (Lehmann & Pollmann, 2009). Similarly, in apple plants, 

overexpression of tyrosine decarboxylase mediates tolerance to drought and alkalinity stress 

(Gao et al., 2021; X. Liu et al., 2021). How the enzyme itself is regulated, is not known but the 

results found here, could mean that it regulates itself for example by feedback inhibition or by 

its own mRNA levels. Another enzyme as potential candidate gene for the CV of its metabolite 

is methionine gamma-lyase (AT1G64660). This enzyme has previously been shown to be 

involved in the catabolism of methionine and is suggested to be responsible for methionine 

homeostasis (Rébeillé et al., 2006). The notion that methionine levels are highly controlled, 

has also been confirmed in soybean, where methionine gamma-lyase (MGL) activity seems to 
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be responsible for control of methionine levels and if insufficient, leads to the 

hyperaccumulation of S-methylmethionine, through a separate enzyme (Teshima et al., 2020). 

In Arabidopsis thaliana mutation of MGL leads to accumulation of methionine and other amino 

acids in flowers and may even affect transcription of other methionine biosynthesis genes 

(Joshi & Jander, 2009). MGL has also been shown to be upregulated by dual nematode and 

water stress and overexpression of the gene seems to confer resistance against nematodes 

(Atkinson et al., 2013). 

Another group of genes I found in several cmQTLs of primary metabolites are major facilitator 

superfamily proteins. This protein family is together with the ATP-binding cassette (ABC) 

superfamily one of the major transporter families (Pao et al., 1998). These transporters use 

electrochemical gradients to transport small molecules across membranes and in Arabidopsis 

thaliana major facilitator superfamily proteins are suggested to be important for plant tolerance 

of environmental stresses (Niño-González et al., 2019). 

Other putative candidate genes, could also be found, which are related to stress responses but 

not directly involved in primary metabolism, such as the LEA family protein, ABA2 and the 

myb family protein. LEA proteins are a diverse protein family, which is suggested to play an 

important role for stress tolerance, especially in regard to desiccation (Hundertmark & Hincha, 

2008). ABA2 is involved in the production of abscisic acid (ABA), which is a plant hormone, 

that regulates different physiological processes but also stress responses (González-Guzmán et 

al., 2002). MYB proteins are a diverse family of transcription factors, which are involved in 

transcriptional regulation of many processes including metabolism and stress responses (Dubos 

et al., 2010). 

Regarding the fold-change of secondary metabolites in Arabidopsis thaliana I found even more 

significant associations. Among the putative candidate genes are again different enzymes and 

transcription factors. Interestingly, among the enzymes, I could not find any enzyme, which 

have a direct known role in the metabolism of the associated compound. Although 

AT1G64760, a putative candidate gene for an association to quercitrin, has a beta-1-3-

glucanase activity, it seems rather related to tissue morphogenesis than metabolism (Vaddepalli 

et al., 2017). The most striking association I found was one between a locus on chromosome 3 

and 4 different glucosinolates and one unannotated compound. The closest protein coding gene 

is an ATP-dependent helicase family protein (AT3G31900). Unfortunately not much is known 

about the gene but besides the helicase activity it also has a GO annotation for “gene silencing 
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by RNA-directed DNA methylation”(At3g31900 - ATP-Dependent Helicase Family Protein - 

Arabidopsis Thaliana (Mouse-Ear Cress) - At3g31900 Gene & Protein, n.d.). Since helicases 

generally unwind RNA or DNA, they can be involved in many processes like DNA 

recombination and repair or transcription and RNA splicing (Abdelhaleem, 2010), it is 

conceivable that they may have a regulatory effect. Interesting in regard to this locus and also 

some of the other loci is that I found many transposable element genes. As mobile and repetitive 

DNA sequences, transposable elements, are believed to be major drivers of genome evolution 

and contributors to genetic diversification (Domínguez et al., 2020; Quesneville, 2020). In 

Arabidopsis thaliana two transposable elements have been found, which seem to have been 

targets of positive selection and may have been involved in the adaptation of the plant (Z.-W. 

Li et al., 2018).  

Among the putative candidate genes, I also found some genes belonging to two known 

transcription factor groups, namely WRKY3 and a basic helix-loop-helix (bHLH) DNA-

binding superfamily protein (Qu & Zhu, 2006). WRKY proteins are a large family of 

transcription factors, involved in response to various abiotic stresses and WRKY3 specifically 

has been shown to play a role in response to salt and MeJA stress(P. Li et al., 2021). The gene 

annotated as bHLH protein I found, has recently been described as a cytokinin-responsive 

growth regulator, which regulates cell expansion and cell cycle progression (Park et al., 2021). 

The CV of metabolic features in the bean dataset is generally much higher than the CV I 

obtained for primary metabolites in Arabidopsis thaliana. Distributions are generally 

considered low variance or high variance if their CV is lower or higher than 1, respectively 

(Ospina & Marmolejo-Ramos, 2019). Given that a large fraction of metabolic features have a 

CV higher than one I can conclude that they have a rather large variance. Although there may 

of course also be a species effect, the difference is likely caused by less stringent control of 

secondary metabolism in contrast to primary metabolism, which is more tightly controlled (Pott 

et al., 2019). The observation that the CV approaches a limit of ~1.73 may seem like a technical 

artifact, but is actually delimited by the number of conditions across which the CV is calculated. 

Due to the relationship of standard deviation and mean, the CV always has a ceiling at the 

square root of the number of individual values (Supplementary Formula 1). 

In the candidate gene list from our bean dataset I can find again many genes coding for 

enzymes. A good example are the genes coding for the CYP72A154 enzymes, which I found 

in multiple cmQTL. This enzyme has been characterized to be involved in the production of 
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glycyrhizzin, which is a triterpenoid saponin, present in underground parts of Glycyrrhiza 

plants (Seki et al., 2011). Saponins are well known to occur in beans and other legume plants 

(Fenwick & Oakenfull, 1983). An interesting locus is also the one which mapped to 8 different 

features. As I did not perform any proper annotation, I do not know what metabolites they may 

be. However as a gene in this locus close to the leading SNP was Phvul.006G201100, which is 

a gene coding for a Flavonol 3-O-glucosyltransferase, it is possible that some of these features 

are flavonoids. For example the feature m_47 for example could be the formic acid adduct of 

astragalin, which has previously been identified in red and pinto bean (Hu et al., 2006) and the 

feature m_77 could be isorhamnetin 3-O glucoside as identified in elderflower (Lin & Harnly, 

2007). Phvul.006G201100 has been found to be part of a Flavonoid 3‐O‐glycosyltransferases 

(F3GT) cluster, enzymes of which in Arabidopsis thaliana transfers glucosyl, rhamnosyl and 

arabinosyl units to flavonoids (Souza et al., 2019). Another interesting candidate gene may be 

the gene which codes for an Isoflavone-7-O-beta-glucoside 6''-O-malonyltransferase. This 

enzyme has already been characterized in 1984 in roots of chickpeas, to transfer malonyl 

residues onto the 7-O-glycosides of biochanin A and formononetin (Koester et al., 1984). The 

candidate gene has recently also been identified in a GWAS for bean pod color (García-

Fernández et al., 2021). Another candidate gene in a locus with a strong association was an 

Anthranilate N-methyltransferase (Phvul.009G258600). So far this enzyme has only been 

characterized as part of the biosynthesis of acridone alcaloids, specific to the Rutaceae family 

(Rohde et al., 2008), but maybe the enzyme has a different function in common bean. The 

strongest association I found was of one feature and a locus on chromosome 8, producing a 

LOD score over 20. Although the closest gene codes for a SNARE associated golgi protein, a 

gene annotated as Heparan-alpha-glucosaminide N-acetyltransferase (Phvul.008G004100) is 

also in this locus. Although not well characterized, this gene seems to be orthologous to genes, 

that have been lost in plant lineages that have abandoned arbuscular mycorrhizal symbiosis 

(Radhakrishnan et al., 2020), so maybe it is responsible for producing a compound essential 

for this association. 

Besides enzymatic genes, I also found some genes, which could have a regulatory role. For 

example in one locus I found a gene coding for Protein Argonaute 5 (Phvul.011G088200). 

Argonaute proteins are well known for transcriptional and posttranscriptional gene silencing 

and Argonaute 5 seems to be involved in legume nodulation (Reyero-Saavedra et al., 2017), 

but it may well have other regulatory functions. Another candidate gene with potential role in 

transcriptional regulation is RNA polymerase primary sigma factor (SIG1, rpoD). In 
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Arabidopsis thaliana SIG1 is important for transcription of a small set of plastidic genes 

(Macadlo et al., 2020). 

In summary I can say that I found many associations between the CV or fold change of 

metabolic features and genomic regions. Even with a threshold less conservative then the 

bonferroni cut-off I do not find a large number of associations for the primary metabolites of 

Arabidopsis thaliana. For the fold-change of secondary metabolites and the CV of secondary 

metabolites of common bean I find however a higher number of associations as I do for the 

primary metabolite datasets. This is in agreement with the observation from regular mGWAS, 

where primary metabolism has been shown to be controlled by many small effect loci and 

secondary metabolism by few large effect loci (Fang & Luo, 2019). This is likely due to the 

fact that central metabolism is generally more tightly regulated and interconnected, then 

specialized metabolism (Pott et al., 2019). This may even be more relevant when considering 

the CV of metabolites, as primary metabolites will likely be more constant under different non-

stress environments, while secondary metabolites could allow for a fine-tuning adaptation to a 

specific environment. 

Considering putative candidate genes I find both enzymatic and regulatory genes, that could 

plausibly be causal for the canalization of metabolite content across different environments 

which is in agreement with findings from a cmQTL mapping approach in tomato introgression 

lines (Alseekh et al., 2017). In contrast to that study however, I found much fewer associations 

in total and I did not find a hotspot for regulatory function of several primary metabolites. The 

reason for this may be related to the different mapping approaches. Firstly, the tomato 

introgression line mapping population may have synthetically decanalized metabolites in some 

lines, by replacing genome segments of the domesticated tomato with those of the wild species 

where not all genes are homologous. In fact, a closely investigated cmQTL for phenylalanine 

was characterized, by several presence-absence variants in the S. pennellii genome (Alseekh et 

al., 2015). Such replacements would lead to a much larger genetic variability. On the other 

hand with a GWAS approach, I am limited to genetic variation and connected to that 

phenotypic variation that is already present in the population. Considering that primary 

metabolites are needed for growth under all conditions, the natural variation and therefore the 

CV of the respective metabolite might be relatively low in the whole population. In secondary 

metabolism however, where I generally find much more variation, I am also able to find 

stronger associations. Here also, both in Arabidopsis thaliana and Phaseolus vulgaris I find 

some loci with multiple metabolites associating. Not always do I find apparent enzymatic genes 
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in those loci, which could mean, that there are key regulatory factors, which are responsible for 

the robustness of several metabolites simultaneously. Given the relatively large amount of 

enzymatic genes I find, albeit not always directly related to the associated metabolite, one may 

consider that enzymes or metabolism itself confers a certain amount of canalization to 

metabolites. The observation that the CV of metabolites like amino acids show moderate to 

high correlations to each other may support this hypothesis. 

In conclusion, based on our results, I hypothesize that metabolic robustness may be mediated, 

both by the inherent robustness of metabolic networks and regulatory genes. However, there 

may be even more mechanisms responsible for canalization of metabolism, which has yet to 

be uncovered.
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Chapter 3: cmQTL validation 

3.1. Introduction 

The previous chapter dealt with finding new candidate genes, responsible for mediating 

canalization of metabolism. In this chapter I am describing experiments to validate some 

candidate genes that were found in a previous cmQTL mapping experiment (Alseekh et al., 

2017). This experiment found several cmQTL for the variation of tomato pericarp metabolites 

across different conditions and is one of the first to show that the concept of canalization can 

be applied to metabolism. Genomic loci, could be strongly reduced to only several genes, which 

builds a great basis for further validation of potential candidate genes.  

Before candidate genes can be validated, the relevant candidate genes first have to be selected, 

which can be quite challenging, especially if a priori knowledge is limited. Once suitable 

candidate genes are determined, they can be validated by different reverse genetic tools like 

gene silencing, insertional mutagenesis or transgene overexpression (Ben-Amar et al., 2016). 

A newer technique, which is now commonly used for gene validation is CRISPR/Cas9 (Curtin 

et al., 2017). The clustered regularly interspaced short palindromic repeat (CRISPR) DNA 

sequences and CRISPR associated (Cas) genes are part of a bacterial immune system against 

invading bacteriophages(Garneau et al., 2010). The endogenous immune system works by first 

integrating short viral sequences, so-called protospacers next to repeats of the host genome, 

which are then used together to produce CRISPR RNA (crRNA), which hybridize with 

complementary protospacers and are silenced by Cas proteins (Jinek et al., 2012). Although 

canonically, a transactivating crRNA (tracrRNA), that hybridizes with crRNA is needed for 

Cas9 cleavage, it was soon discovered that this duplex can be replaced by a chimeric single 

self-pairing RNA, that contains both the crRNA and tracrRNA parts (Jinek et al., 2012). As 

this allowed to target essentially any desired DNA sequence, this discovery widely opened the 

door for CRISPR/Cas9 as a biotechnological tool (Adli, 2018).  

Besides its original function of introducing double-strand breaks, the CRISPR/Cas9 system has 

further been developed to be used for gene activation or repression, epigenome editing, DNA 

imaging and base editing and has since become a versatile tool for molecular biology as well 

as a promising strategy for precision plant breeding, promising to substantially cut down on 

development time of elite plant varieties (Chen et al., 2019). In order to ensure food security 

for a growing population under additional challenges posed by climate change, a tool allowing 

the quick development may prove quite helpful (Massel et al., 2021). 
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In this chapter I am selecting candidate genes and are using a CRISPR/Cas9 system, with a 

double target approach, to try to introduce larger deletions into these candidate genes in tomato 

plants, thereby rendering the genes unfunctional. By measuring the metabolite profile of tomato 

pericarp of different knock-out lines, grown under different water conditionsI am able to test 

whether their function was relevant for robustness of metabolites. 

3.2. Materials and Methods 

3.2.1. Orthology search 

Orthology search between Arabidopsis thaliana (TAIR10), Solanum lycopersicum (ITAG3.2), 

Solanum tuberosum (PGSC v3.4) and Solanum pennellii (Spenn v2) was performed by 

OrthoFinder v2.0.0 (Emms & Kelly, 2019). Data was obtained from TAIR 

(https://www.arabidopsis.org/) and Solgenomics (https://www.solgenomics.net/).  

3.2.2. Candidate gene selection 

Candidate genes for cmQTL validation were selected from previously characterized cmQTLs 

(Alseekh et al., 2017), by a combination of a correlation approach and a manual curation. For 

the correlation approach a permutation correlation test was performed between the CV of 

metabolite values and gene expression values available in the tomato functional genomics 

database (Fei et al., 2011) at http://ted.bti.cornell.edu/. 

3.2.3. guideRNA design 

The webtool CRISPR-P 2.0 (http://crispr.hzau.edu.cn/CRISPR2/) (H. Liu et al., 2017) was 

used to design sequence-specific guide RNAs. Two guide RNAs per target were selected, 

which were ~40-200 bp apart, while considering low off-target and high on-target scores. 

3.2.4. Cloning 

Cloning was performed as described previously (Reem & Van Eck, 2019). The cloning 

procedure, uses a two-step Golden Gate Cloning reaction, to assemble two guideRNA-

expressing cassettes, a kanamycin resistance gene, and the Cas9 nuclease in the final vector, 

which is transferred to Agrobacterium tumefaciens. 

3.2.5. Plant transformation 

Plant transformation was performed as a service by the greenteam of the MPIMP, similar to 

previously published literature (Van Eck et al., 2019). For the transformation, cotyledon 

segments of Solanum lycopersicum cv. Money Maker, are co-cultivated with Agrobacterium 

tumefaciens GV 2260, carrying the respective CRISPR/Cas9 vector and then regenerated to 

https://www.arabidopsis.org/
https://www.solgenomics.net/
http://ted.bti.cornell.edu/
http://crispr.hzau.edu.cn/CRISPR2/
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calli on sterile medium. Calli are transferred several times onto different sterile selection media 

until shoots can be generated, and transferred to rooting medium. 

3.2.6. Genotyping/Sequencing 

After plant transformation, shoots from well-rooted putatively transformed tomato plants are 

cut and transferred to fresh sterile media containing containing agar (6.8% m/v), MS, sucrose 

(2% m/v) and 125 µg/ml Ticarcillin, to eliminate residual Agrobacterium tumefaciens. Plants 

are cultivated for 4-6 weeks under sterile conditions, until they have rooted again and grown 

back to the original size. This process is repeated at least 2 more times. At the last transfer step, 

leaf samples are collected and DNA is extracted, similarly as previously reported (Lu, 2011). 

A first PCR amplifying the chromosomal rpoB gene of Agrobacterium tumefaciens GV2260, 

to check for residual agrobacterial contamination. A second PCR is performed with primers 

specific to the Cas9 gene. The third PCR amplifies a region ranging from ~100 bp upstream of 

the first gRNA to ~100 bp downstream of the second gRNA. PCR fragments are separated on 

an agarose gel (4% m/v in TAE), to detect large or small indels. If bands from putative genome-

edited plants could not be distinguished from bands of wild type plants, PCR fragments were 

subjected to a heteroduplex mobility assay, as described previously (Bhattacharya & Meir, 

2019). If bands were still indiscernible, PCR fragments were send for Sanger sequencing to 

LGC Genomics (LGC Genomics GmbH, Berlin, Germany). Agrobacterium-free, Cas9-

positive, genome-edited plants were transferred to the greenhouse for propagation and 

investigation. 

3.2.7. Growth conditions 

Putative transformants were kept under sterile conditions in a tissue culture chamber (York 

International/Johnson Controls; Cork, Ireland) with ~35 µmol m-2 s-1 of light in a (16h/8h)-

(22°C/22°C)-(day/night) cycle. Selected transgenic plants were propagated under standard 

greenhouse conditions for seed production.  

Seeds were generally first sown on soil in a young plant phytotron (York International/Johnson 

Controls; Cork, Ireland) with 150 µmol m-2 s-1 of light in a (16h/8h)-(22°C/18°C)-(70% 

RH/70%RH)-(day/night) cycle and transplanted into individual pots after cotyledon were fully 

expanded. After 4 weeks, seedlings were transplanted into bigger pots and transferred to 

greenhouse chambers. Plants were fertilized once after transplanting to big pots and once at 

flowering. Axillary meristems were continuously removed and the primary shoots were 

trimmed off after development of the 4th truss. During growth, pots are watered multiple times 
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daily by an automated drip irrigation system. Standard greenhouse settings are a (16h/8h)-

(22°C/20°C)-(50% RH/50%RH)-(day/night) cycle. 

In an experiment to test the mutant’s effect on metabolic canalization, different watering 

regimes were applied. Plants were watered with 100%, 80%, 60% and 40% of the standard 

watering amount. 

3.2.8. Phenotyping 

Different phenotypic traits were assessed. Plants were checked every 2 days and the time of 

the first red ripe fruit was documented. At fruit harvest, all ripe and unripe fruits per plant were 

counted and, weighed on a scale (Sartorius; Göttingen, Germany). Average fruit weight per 

plant was calculated by dividing, total fruit weight per plant by the number of fruits. After fruit 

harvest, the remaining above-ground biomass was weighed (Sartorius; Göttingen, Germany) 

to estimate shoot fresh weight. Total biomass and harvest index were calculated as the sum and 

the ratio, respectively, of total fruit weight and shoot fresh weight. Shoot dry weight was 

estimated after drying the fresh shoots in an oven at 70°C for 3 days. 

3.2.9. Sample collection 

Leaf samples were collected from mature non-senescing plants and pericarp samples were 

collected from red ripe tomato fruits, when 80%-100% of fruits were ripe. 

3.2.10. Metabolite extraction 

Frozen plant tissue was ground to powder using a Mixer Mill (Retsch; Haan, Germany) at 30 

Hz for 1 min. Aliquots of 50 mg were used for metabolite extraction, as described before 

(Salem et al., 2016). Here, 1 ml of pre-cooled MTBE-MeOH (3:1; vol/vol) extraction buffer is 

added to each sample and samples are incubated 10 minutes on an orbital shaker at 4°C. 

Samples are sonicated for 10 minutes in an ice bath before 0.5 ml of MeOH-H2O (3:1; vol/vol) 

is added and samples are centrifuged at 14000 rpm for 5 minutes at 4°C, leading to a phase 

separation. An aliquot of the upper (apolar) phase was taken for lipid analysis, the rest of the 

upper phase was aspirated with the BVC fluid aspiration system (Vacuubrand Inc; Essex, CT, 

U.S.A.) and two aliquots of the lower (polar) phase were taken for GC-MS and LC-MS. 

Extracts were dried in a Scan Speed 40 centrifugal vacuum concentrator (Labogene; Allerød, 

Denmark) coupled to a Scanvac CoolSafe cryo unit (Labogene; Allerød, Denmark) with 1000 

g and 30°C for 3h or overnight. Dried extracts were kept at -80°C until further use. 
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3.2.11. Metabolite profiling 

Primary metabolites were analyzed as described before (Lisec et al., 2006). For the analysis 

via GC-MS-TOF a dried aliquot of the polar phase was derivatized by adding 40 µL of (20 mg 

* mL-1) methoxyamine hydrochloride and incubating at 37°C first for 2 h followed by addition 

of 70 µL of MSTFA and continued incubation at 37°C for 30 min. The samples were injected 

by an autosampler Gerstel Multi-Purpose system (Gerstel GmbH & Co.KG, Mülheim an der 

Ruhr, Germany) into a gas chromatograph coupled to a time-of-flight mass spectrometer (Leco 

Pegasus HT TOF-MS) (LECO Corporation; St. Joseph, MI, U.S.A.). Analysis of secondary 

metabolites followed a previously described protocol (Giavalisco et al., 2009). Here a dried 

aliquot of the polar phase was resuspended in 150 µl H2O:MeOH (50:50) and samples injected 

to an Acquity UPLC system (Waters Corporation; Milford, MA, U.S.A.) coupled to an 

Exactive Orbitrap mass detector (ThermoFisher Scientific; Waltham, MA, U.S.A.) via a heated 

electrospray source (ThermoFisher Scientific; Waltham, MA, U.S.A.) . Mass spectra were 

obtained by running samples in negative ionization mode. For analysis of lipophilic compounds 

a previously established protocol was used (Hummel et al., 2011). An aliquot of the dried 

organic phase was resuspended in 100 µL of UPLC-grade acetonitrile:isopropanol (70:30) mix, 

of which 2 µl were injected onto an Acquity UPLC system (Waters Corporation; Milford, MA, 

U.S.A.) equipped with an RP C8 column (Hummel et al., 2011). Mass spectra were obtained 

by running samples in positive ionization mode on an Orbitrap high-resolution mass 

spectrometer: Fourier-transform mass spectrometer (FT-MS) coupled with a linear ion trap 

(LTQ) Orbitrap XL (ThermoFisher Scientific; Waltham, MA, U.S.A.).  

3.2.12. Peak picking/Area calculation 

For targeted analysis peaks were picked manually and peak area calculated with Xcalibur 

Version 4.2.47 (ThermoFisher Scientific; Waltham, MA, U.S.A.). Non-targeted analysis was 

performed with Genedata Expressionist ® 14.0.5 (Genedata; Basel, Switzerland). 

3.2.13. Metabolite data normalization 

Missing values were imputed by the half-minimum of a certain metabolic feature in the 

respective run or by using a QRILC approach as suggested by literatures (Wei et al., 2018). 

Raw peak area of each metabolic feature was then normalized to the area of an internal standard 

(ribitol for GC-MS and isovitexin for LC-MS) if applicable. To account for batch and drift 

effects pooled quality control samples were regularly injected in between samples as a basis 

for a QC-based locally estimated scatterplot smoothing. Further normalization, was done by 

sample weight. 
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3.2.14. Computational analysis, data visualization and used packages 

All analysis was performed using R statistical software v4.0.2 in the RStudio environment or 

on a unix-based high performance computing cluster. Code was written in base R or with the 

help of the packages tidyverse, broom, data.table, modelr, ggpubr, ggtext, glue and cowplot 

(Dowle et al., 2021; Hester, 2020; Kassambara, 2020; Robinson et al., 2021; Wickham et al., 

2019; Wickham & RStudio, 2020; Wilke, 2020a, 2020b). Imputation by QRILC was done with 

the package imputeLCMD (Lazar, 2015). Heatmaps were created with the pheatmap package 

(Kolde, 2019). I am using the bootstrap::jackknife function to generate jack-values, which I am 

using for statistical analysis (original et al., 2019). 

3.3. Results 

I selected putative candidate genes, responsible for canalization of metabolites out of 

previously identified cmQTLs, resulting from a QTL mapping in tomato ILs, which were 

further narrowed down by the BIL population (Alseekh et al., 2017). An example for 

phenylalanine is shown below (Figure 32). I chose three separate cmQTL from chromosome 

ten for experimental validation. The first cmQTL showed an association to phenylalanine, the 

second one to malate and the third one for fructose-6-phosphate, glucose-6-phosphate and 

maltose (Table 6). 

 

Figure 32: cmQTL for phenylalanine validated by BIL population (Figure 6 from (Alseekh et al., 2017)) 

3.3.1. Candidate gene selection 

I correlated metabolite CV with gene expression values from pericarp of the ILs with a 

permutation correlation test. I additionally selected two genes based on their expression, amino 

acid identity, promoter conservation and orthology comparing the cultivated tomato S. 

lycopersicum and its wild relative S. pennellii. The results are shown in Table 6. 
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Table 6: Candidate genes selected by permutation correlation test and manual selection 

IL segment Metabolite Gene ID Annotation Name p-value  Correlation value 

10-1 Fru6p, Glu6p, 

Maltose 

Solyc10g007190 Transposon protein TRANSP1 

Manual selection 
10-1 Fru6p, Glu6p, 

Maltose 

Solyc10g007340 Unknown protein UP1 

10-1 Fru6p, Glu6p, 

Maltose 

Solyc10g007350 Multiprotein bridging factor 1 MBF1 0.014/0.017 -0.29/-0.28 

10-1 Malate Solyc10g074590 Pantothenate kinase 4  PANK4 0.05185 0.23 

10-1 Malate Solyc10g074630 ADP-ribosylation factor ARLB 0.00835 -0.31 

10-1 Malate Solyc10g074720 Cell division protein kinase 2  CDKB1;2 0.0275 -0.26 

10-3 Phenylalanine Solyc10g086080 RING finger protein B  LOG2 0.05 -0.23 

10-3 Phenylalanine Solyc10g086190 Adenosine kinase ADK1 0.03855 0.24 

 

I used results from an orthology search between tomato, potato, Solanum pennellii and 

Arabidopsis thaliana to check if anything is already known about orthologues of the selected 

genes. Solyc10g007190 is annotated to code for a transposon protein, but it has no orthologues 

in Arabidopsis thaliana. Solyc10g007340 codes for an unknown protein, with no orthologues 

in Arabidopsis thaliana. Solyc10g007350 is orthologous to AT2G42680 (MBF1A) and 

AT3G58680 (MBF1B), which are transcriptional coactivators, induced by several stresses 

(Sugikawa et al., 2005). Solyc10g074590 is orthologous to the genes AT2G17320, 

AT2G17340 and AT4G35360 annotated as pantothenate kinases. The protein structure of the 

product of AT2G17320 has been determined and the C-terminal domain has been identified as 

homologous to PANK2 and it is therefore possibly also a pantothenate kinase, which 

phosphorylates pantothenate to 4`-phosphopantothenate (Bitto et al., 2005; Tilton et al., 2006). 

Solyc10g074630 is homologous to the ARF-like GTPase AT5G52210 (ARLB) (Paul et al., 

2014). Solyc10g074720 is a cell division protein kinase, orthologous to AT2G38620. In an as 

of yet unpublished study it occurred as a differentially expressed gene in a mutant plant with 

chlorotic leaves (Gu et al., 2020). The gene Solyc10g086080 is orthologous to AT3G09770 

(LOG2) and AT3G53410 (LUL2). LOG2 (LOSS OF GDU2) is a RING-type E3 ubiquitin 

ligase and together with GDU1 (GLUTAMINE DUMPER1) associates to membranes and is 

suggested to be involved in the regulation of amino acid export from plant cells (Pratelli et al., 

2012). Solyc10g086190 is annotated as adenosine kinase and is orthologous to AT3G09820 

(ADK1) and AT5G03300 (ADK2). Both these genes have been shown to be relevant for 

cytokinin interconversion (Schoor et al., 2011). 
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After selecting the candidate genes I designed two guide RNAs per construct, for the 

CRISPR/Cas9-mediated knock-out of the genes and cloned the constructs after which they 

were transformed into Solanum lycopersicum cv. MoneyMaker via Agrobacterium-mediated 

transformation. After regeneration I tested putative transformants for the presence of Cas9 and 

for potential indels at the target loci.  

3.3.2. Transformation and gene-editing efficiency 

Although I was always able to identify several transformed plants per line, sometimes only one 

of them actually had a gene-edit (Figure 33, Figure 34). 

 

Figure 33: Combined boxplot and dot plot of transformation and gene-editing efficiency. Cyan: Total number of plants; 
Magenta: Efficiency in %; TF: transformation, GE: gene-editing 

As indicated in the figure, the transformation efficiency was lower than the gene-editing 

efficiency (Figure 33). Either way I obtained several lines, which had a gene-edit confirmed by 

DNA sequencing of the target region (Figure 34). 
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Figure 34: Overview of genes and DNA edits (left) and proteins and resulting amino acid changes (right) in the .corresponding 
mutants. Boxes represent exons and whole proteins respectively. Insertions and deletions are marked with red arrowheads. 
Exons and introns as well as proteins are not drawn to scale and positions for mutations and amino acid changes are 
approximate to support readability. fs: frame shift; *: stop codon 

Not all of these lines were included in further investigations for differing reasons. Not always 

could homozygous plants be found in the initial screening, which is why their analysis has been 

put on hold. In the case of Solyc10g007340 one line did not produce any seeds, which is why 

I could not analyze it. In the case of Solyc10g007350 I could unfortunately only find gene-

edits in the first intron, which resulted in no alteration of the amino acid sequence. The 

chromatograms of the adk1-1 mutant still showed some unreadable sections, which makes it 

impossible to determine the exact change to the DNA sequence. 

3.3.3. Screening of T1 generation 

After obtaining seeds from the initial T0 transformants, I strived to screen for homozygous 

gene-edited plants. Optimally plants also did not have any Cas9 gene anymore, to prevent any 

future off-target editing. For screening T1 seedlings, literature recommends using at least 50 

plants per line (Reem & Van Eck, 2019). As this is a relatively large number of plants, I 

implemented a heteroduplex mobility assay, originally developed for screening of gene-edited 

mice, that reduces the need for sequencing (Bhattacharya & Meir, 2019). With this method I 

was able to detect indels with a combined minimum length of only 5 bp (Figure 35). 
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Figure 35: Example of a successful heteroduplex mobility assay, confirmed by Sanger sequencing. A: Image of gel-
electrophoresis after additional heteroduplex inducing cycle. The red arrow points to the additional band caused by the 

heteroduplex. B: Sequencing chromatogram of sample 1 in A; M: Marker for DNA 

In the example shown above I can see that the gene-editing introduced a 4 bp and 1 bp deletion 

into the Solyc10g007190 gene (Figure 35). 

3.3.4. Morphological phenotypes 

The lines I generated can be divided into two groups, with some showing a clearly visible 

phenotype and some, which look wild type-like. The lines arlb1-1 and arlb1-2 for example 

showed a slightly dwarfish phenotype and some outgrowth at nodes of leaflets (Figure 36). 
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Figure 36: Phenotype of arlb1 mutant lines compared to wildt ype. A: Whole plant B: Close-up on leafs at leaflet branching 
points. 

It can be seen, that the heterozygous plants show an intermediate phenotype, concerning the 

outgrowth. Further on, the fruits from these plants also showed scarring of the cuticle (Figure 

37). 

 

Figure 37: Phenotype of arlb1 mutant lines compared to wild type. A: All fruits of one plant B: Close-up of individual fruits 
with the stylar end facing upwards 
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In this case the fruits from heterozygous plants did not show an intermediate phenotype but 

were rather wild type-like (Figure 37). The fruits from the adk1-1 line also showed a clear 

phenotype, as they were relatively small and most of them were completely seedless (Figure 

38). The cdkb1;2-1 line on the other hand had pale leaves and a few, small fruits (Figure 38).. 

Although fruits produced some seeds, attempts at propagating the next generation have so far 

failed, as seedlings do not survive the seedling stage, even under tissue culture conditions and 

therefore vegetative propagations have been performed. 

 

Figure 38: Phenotypes of gene-edited mutant lines. A: fruits of adk1-1 plants; B: Cross-section of seedless adk1-1 fruits; C: 
Pale green leaves from cdkb1;2-1; D: Small fruits of cdkb1;2-1 on the plant 

I grew plants in two experiments. The first experiment was performed with the lines showing 

no clear morphological or developmental phenotype. I used different watering conditions, with 

40%, 60%, 80% and 100% of the standard optimal watering amount per day. 

3.3.5. Drought experiment 

Before investigating the metabolite profile, I measured whole plant phenotypic traits, like 

average fruit weight and days until ripening. 

3.3.5.1. Whole plant phenotypic traits 

During the growth period and at fruit harvest I measured several phenotypic traits (Figure 39). 
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Figure 39: Mean level of several phenotypic traits under 0.4, 0.6, 0.8 and 1x the optimal watering condition. Shown are mean 
values ± the standard error. Shapes: empty circle: Money Maker; empty triangle panK4-1; filled square: log2-1; filled 
diamond: transp1-1 

As expected, for all genotypes, I see an increasing trend of traits like total fruit weight, when 

increasing watering amount. Interestingly, most of the traits peak at the 80% condition, which 

may indicate that the optimal watering amount may have been overestimated and plants 

actually suffered some mild water stress when receiving the full amount. 

The ANOVA shows that genotype and environment have a significant effect on all traits, but 

only for the total fruit number per plant and the average fruit weight do I find a genotype-by-

environment interaction (Table 7). 

Table 7: P-values resulting on ANOVA of measured phenotypic traits. P-values lower than 0.05 are shaded in red. G: genotype, 

E: environment (here:irrigation); GxE: genotype-by-environment interaction. 

Trait G E GxE 

Total fruit number per plant 1.96E-04 3.85E-14 1.94E-02 

Total fruit weight per plant/ g 2.69E-05 1.32E-15 8.83E-01 

Average fruit weight/ g 8.92E-07 1.91E-03 2.03E-03 

Days until ripe fruit 7.68E-03 1.38E-06 9.53E-01 

Shoot fresh weight/ g 5.33E-09 1.50E-10 2.59E-01 

Harvest index 4.75E-07 1.13E-02 2.92E-01 

Biomass 8.50E-04 1.37E-18 9.54E-01 

Shoot dry weight/ g 5.07E-09 9.43E-05 2.94E-01 
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When taking a closer look on the individual genotypes I can see that all of them have 

statistically significant higher total fruit weight per plant and lower shoot fresh weight and as 

a consequence a higher harvest index (Table 8). 

Table 8: Adjusted p-values from TukeyHSD on significant effects of individual genotypes compared to MoneyMaker. P-values 
lower than 0.05 are shaded in red. 

Trait panK4-1 log2-1 transp1-1 

Total fruit number per plant 1.99E-03 9.98E-01 6.25E-02 

Total fruit weight per plant/ g 6.63E-04 2.67E-05 2.07E-02 

Average fruit weight/ g 7.59E-01 2.86E-06 9.10E-01 

Days until ripe fruit 4.73E-01 5.54E-01 3.80E-03 

Shoot fresh weight/ g 2.74E-02 7.82E-08 2.36E-07 

Harvest index 1.57E-04 1.04E-06 3.41E-05 

Biomass 3.61E-03 1.88E-03 2.75E-01 

Shoot dry weight/ g 1.53E-01 1.04E-08 2.65E-05 

 

Some traits are only significant for one or two lines. For example the time until the first ripe 

fruit was significantly reduced in the transp1-1 line and average fruit weight was significantly 

increased in the panK4-1 line. However, as already indicated by the genotype-by-environment 

effect, only few traits showed significant differences at individual conditions, between the 

gene-edited lines and wild type plants. Two traits that are significantly increased in the log2-1 

mutant, compared to wild type plants, are total and average fruit weight at 80% water (Figure 

40) 
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Figure 40: Whole plant traits under different irrigation conditions of MoneyMaker and mutant plants. A: Total fruit weight 
per plant; B: Average fruit weight; Panels show irrigation condtions from 0.4x to 1x of the standard optimal irrigation amount. 
Shown is the mean ± standard error; *: p-value ≤ 0.05 in TukeyHSD 

By jackknifing conditions, I was also able to get values to perform statistical tests for the CV 

of different traits. One can see that the CV of average fruit weight is statistically reduced in 

panK4-1 compared to MoneyMaker (Figure 41). Further on the CV of the harvest index is 

statistically reduced in all mutant lines in comparison to the wild type (Figure 41).  
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Figure 41: Mean CV of whole plant traits calculated across different irrigation conditions of MoneyMaker and mutant plants. 
A: Average fruit weight; B: Harvest weight; Shown is the mean ± standard error; *: p-value ≤ 0.05 in TukeyHSD 

In summary I can say that the mutations seemed to have marked effects on several phenotypic 

traits. 

3.3.5.2. Metabolomics 

During the growth period I took leaf samples and after harvesting tomato fruits, I also collected 

samples from the pericarp. I extracted metabolites from both tissues and subjected them to 

metabolomics analysis. 

3.3.5.2.1. Primary metabolism 

I found a few metabolites, which show changes at individual conditions, both in leaves and 

fruits (Supplementary Figure 1). However, compared to the wild type, most changes are 

relatively mild (Figure 42). 
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Figure 42: Heatmap of primary metabolites. Values correspond to log2-fold changes in relation to wild-type samples of the 
same tissue and irrigation condition. Crosses show significant differences in comparison to the respective wild type samples. 

Significance was tested by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

I then calculated the CV of metabolite means across conditions for MoneyMaker to get an 

estimation of the general level of metabolite CVs (Figure 43). 
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Figure 43: CV of metabolites across conditions for MoneyMaker samples in fruits and leaves. The red horizontal line denotes 
a CV of 1. CV is grouped into bins of 0.1 

As one can see both in leaves and fruits the CV values are relatively low, with most values not 

surpassing a CV of 1. When jackknifing values across conditions and comparing wild type 

samples to mutant samples, I can see significant changes in a few more even than for the mean 

levels of the metabolites (Figure 44). 
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Figure 44: Heatmap of CV of primary metabolites across different conditions. Values correspond to log2-fold changes in 
relation to wild-type samples of the same tissue and. crosses show significant differences in comparison to the respective wild 

type samples. Significance was tested by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

Although there are some changes in samples from leaves, most changes seem to be occurring 

in fruit samples. Further on, there seem to be more significant downregulations than 

upregulations (Figure 44). 

Since I was primarily interested in the metabolites, for which cmQTLs were detected on the 

basis of which I created the gene-edited lines, I directed my focus towards these metabolites. 

The PanK4-1 candidate gene from the cmQTL of malic acid, was the target for one of our gene-

edits, which is why I anticipated malic acid to be decanalized across environments. Although 

malic acid levels in tomato fruit of the panK4-1 mutant compared to the wild type show no 
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significant changes under any irrigation condition, I can see that the CV of malic acid is 

significantly higher in the mutant than in the wild type (Figure 45). 

 

Figure 45: Average malic acid level under different irrigation conditions (A) and CV of malate across different irrigation 
conditions of MoneyMaker and mutant plants (B). Panels in A show irrigation condtions from 0.4x to 1x of the standard 
optimal irrigation amount. Shown is the mean fold-change in relation to MoneyMaker mean at standard optimal conditions 
or mean CV of malate ± standard error; *: p-value ≤ 0.05 in two-sided student’s t-test after bonferroni correction, n = 7-8 

I can see that wild type levels of malic acid fluctuate somewhat across conditions, while in the 

panK4-1 mutant levels of malic acids seem to decrease towards the lowest irrigation condition, 

which results in a roughly 2-fold increase of the CV. Meanwhile, CV of uracil, beta-alanine 

valine and pyruvate are significantly decreased (not shown). 

The LOG2 gene was selected as a candidate gene for the canalization of phenylalanine and I 

therefore checked phenylalanine levels and cross-condition CV in the log2-1 mutant compared 

to wild type samples (Figure 46).  
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Figure 46: Average phenylalanine level under different irrigation conditions (A) and CV of phenylalanine across different 
irrigation conditions of MoneyMaker and mutant plants (B). Panels in A show irrigation condtions from 0.4x to 1x of the 
standard optimal irrigation amount. Shown is the mean fold-change in relation to MoneyMaker mean at standard optimal 
conditions or mean CV of malate ± standard error; *: p-value ≤ 0.05 in two-sided student’s t-test after bonferroni correction, 

n = 7-8, Phe: Phenylalanine 

Although I do see an increase in phenylalanine levels in pericarp of log2-1 plants under the 

lowest irrigation conditions and therefore a higher CV, none of these changes are statistically 

significant (Figure 46). Similarly for the transp1-1 line I see no changes in the CV of glucose-

6-phosphate, fructose-6-phosphate or maltose (Figure 47).  

 

Figure 47: Mean fold-change of CV of fructose-6-phosphate (A), glucose-6-phosphate (B) and maltose (C) across different 
irrigation conditions of mutant plants compared to MoneyMaker plants. Shown is the mean fold-change of the CV in relation 
to MoneyMaker CV ± standard error; *: p-value ≤ 0.05 in two-sided student’s t-test after bonferroni correction, n = 7-8, F6P: 
fructose-6-phosphate; G6P: glucose-6-phosphate 
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3.3.5.2.2. Secondary metabolism 

Regarding the general level of secondary metabolites, I see most changes between gene-edited 

lines and wild type plants in the leaves (Supplementary Figure 2, Figure 48). 

 

Figure 48: Heatmap of secondary metabolites. Values correspond to log2-fold changes in relation to wild-type samples of the 
same tissue and irrigation condition. Crosses show significant differences in comparison to the respective wild type samples. 
Significance was tested by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

I also found that most changes are significant upregulations of metabolites compared to the 

wild type, rather than downregulations (Figure 48). Also here I calculated the CV of 

metabolites across conditions for MoneyMaker samples (Figure 49). 
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Figure 49: CV of secondary metabolites across conditions for MoneyMaker samples in fruits and leaves. The red horizontal 
line denotes a CV of 1. CV is grouped into bins of 0.1 

As one can see, CV is generally low and only few metabolites have a CV higher than one 

(Figure 49). 

When I look at the CV of these metabolites across the different watering conditions, however, 

I can see, significant changes in leaves and fruits and I see metabolites with increased CVs, but 

even more with decreased CVs (Figure 50).  
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Figure 50: Heatmap of CV of secondary metabolites across different conditions. Values correspond to log2-fold changes in 
relation to wild-type samples of the same tissue and. crosses show significant differences in comparison to the respective wild 

type samples. Significance was tested by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

In the leaves, I see a set of several dipeptides with significantly reduced CVs in most gene-

edited lines compared to the wild type. The same metabolites show only minor changes in the 

fruits (Figure 50). Other changes in CV do not seem to be dominated by any compound class. 

Noteworthy, only one of the dipeptides shows significant changes between gene-edited lines 

and wild type plants for the metabolite level, as well as the CV (Figure 51). 
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Figure 51: Average Tyr-Pro dipeptide level under different irrigation conditions (A) and CV of Tyr-Pro dipeptide across 
different irrigation conditions of MoneyMaker and mutant plants (B). Panels in A show irrigation condtions from 0.4x to 1x 
of the standard optimal irrigation amount. Shown is the mean fold-change in relation to MoneyMaker mean at standard 
optimal conditions or mean CV of Tyr-Pro dipeptide ± standard error; *: p-value ≤ 0.05 in two-sided student’s t-test after 

bonferroni correction, n = 7-8 

All other dipeptides only show significant changes in the CV (Figure 52). 

 

Figure 52: Mean fold-change of CV of different dipeptides across different irrigation conditions of mutant plants compared 
to MoneyMaker plants. Shown is the mean fold-change of the CV in relation to MoneyMaker CV ± standard error; *: p-value 
≤ 0.05 in two-sided student’s t-test after bonferroni correction, n = 7-8 

The LC data give us another shot at estimating phenylalanine. Similarly as observed for the 

GC-MS data, phenylalanine levels increase towards the lowest irrigation condition in wild type 

samples but even more strongly in log2-1 plants, leading to a slightly increased CV (Figure 

53). However, the differences are not strong enough to be statistically significant. 
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Figure 53: Average phenylalanine level under different irrigation conditions (A) and CV of phenylalanine across different 
irrigation conditions of MoneyMaker and mutant plants (B). Panels in A show irrigation condtions from 0.4x to 1x of the 
standard optimal irrigation amount. Shown is the mean fold-change in relation to MoneyMaker mean at standard optimal 
conditions or mean CV of malate ± standard error; *: p-value ≤ 0.05 in two-sided student’s t-test after bonferroni correction, 

n = 7-8 

3.3.5.2.3. Lipid metabolism 

Again I see most significant changes of the mean level of metabolites in the leaves and most 

of these changes seem to be increases in the level of a metabolite (Supplementary Figure 3, 

Figure 54). 
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Figure 54: Heatmap of lipids. Values correspond to log2-fold changes in relation to wild-type samples of the same tissue and 
irrigation condition. Crosses show significant differences in comparison to the respective wild type samples. Significance was 

tested by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

Another pattern that I observe is that most changes seem to occur under the more severe 

watering reduction conditions of 40% and 60% (Figure 54). Also a large set of triacylglycerides 

are significantly upregulated in leaves grown under the 40% watering condition of the log2-1 

line, compared to respective MoneyMaker samples (Figure 55). 
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Figure 55: Average TAG levels in leaves of MoneyMaker plants and mutant lines under different irrigation conditions (A) 
TAG 48:1; (B) TAG 48:3; (C) TAG 48:4; (D) TAG 50:3; (E) TAG 50:4; (F) TAG 54:4 Shown is the mean fold-change in 
relation to MoneyMaker mean at standard optimal conditions ± standard error; *: p-value ≤ 0.05 in two-sided student’s t-test 
after bonferroni correction, n = 7-8 

Again I am calculating the CV lipid values for MoneyMaker samples across all conditions 

(Figure 56). Interestingly the CV is generally very low and neither leaves nor fruits have any 

metabolite with a CV higher than 1. 
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Figure 56: CV of lipids across conditions for MoneyMaker samples in fruits and leaves. The red horizontal line denotes a CV 
of 1. CV is grouped into bins of 0.1 

When looking at the CV of lipids across the different conditions in mutant plants compared to 

wild type plants I can now see most changes in the fruits (Figure 57). 
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Figure 57: Heatmap of CV of lipids across different conditions. Values correspond to log2-fold changes in relation to wild-
type samples of the same tissue and. crosses show significant differences in comparison to the respective wild type samples. 
Significance was tested by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

Among the lipids with significantly changed CV are many TAGs (Figure 57). While most of 

them show a lower CV in gene-edited plants compared to the wild type, some also show a 

higher variation. In the leaves, there are four TAGs which show a reduced CV in all gene-

edited lines compared to the wild type (Figure 58). 
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Figure 58: Mean fold change of TAG CV in leaves of MoneyMaker plants and mutant lines across different irrigation 
conditions (A) TAG 50:7; (B) TAG 52:0; (C) TAG 52:7; (D) TAG 54:0. Shown is the mean fold-change of the CV in relation 
to MoneyMaker CV ± standard error; *: p-value ≤ 0.05 in two-sided student’s t-test after bonferroni correction, n = 7-8 

In summary, I can say that the metabolic profile between wild type and mutant plants is often 

similar at normal conditions but significant differences can often be found at stronger drought 

stress conditions. While significant changes are generally scarce for primary metabolite, they 

appear both in leaves and fruits. For secondary metabolites and lipids I can find much more 

significant differences between wild type and mutant plants occurring in the leaves. Concerning 

the CV, I generally find much more significant differences than for the level of metabolites, 

for all metabolic classes. 

3.3.5.3. Standard conditions experiment 

In the second experiment I only grew plants under optimal conditions, because some lines were 

still screened for homozygousity at the start of the experiment and sufficient samples of the 

same zygousity could not have been found for multiple conditions. Further on, it could not be 

predicted whether plants with a strong phenotype would be able to produce fruit under adverse 

conditions. 

3.3.5.3.1. Metabolomics normal conditions 

3.3.5.3.1.1. Primary metabolism 

The profile of primary metabolites shows some strong changes between the mutant lines and 

wild type plants (Figure 59).  
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Figure 59: Heatmap of primary metabolites. Values correspond to log2-fold changes in relation to wild-type samples of the 
same tissue. Crosses show significant differences in comparison to the respective wild type samples. Significance was tested 
by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

The most significant changes can be found in the leaf samples of arlb1-1 compared to wild 

type samples, mostly in amino acids and carboxylic acids (Figure 59). Fruit samples from 

cdkb1;2-1 plants also have some decreased levels of different carbohydrates like glucose, 

fructose, sucrose and levoglucosan (Figure 60). 
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Figure 60: Average metabolite levels in fruits of MoneyMaker plants and mutant lines (A) levoglucosan; (B) fructose; (C) 
glucose; (D) sucrose.  Shown is the mean fold-change in relation to MoneyMaker mean ± standard error; *: p-value ≤ 0.05 
in two-sided student’s t-test after bonferroni correction, n = 7-8 

A different set of carbohydrates is downregulated in the leaves of adk1-1 mutants compared to 

wild type plants (Figure 61). 

 

Figure 61: Average metabolite levels in leaves of MoneyMaker plants and mutant lines (A) maltose; (B) rhamnose; (C) fucose; 
(D) cellobiose. Shown is the mean fold-change in relation to MoneyMaker mean ± standard error; *: p-value ≤ 0.05 in two-
sided student’s t-test after bonferroni correction, n = 7-8 

3.3.5.3.1.2. Secondary metabolism 

In the secondary metabolism, again I see the most changes in leaf samples of the arlb1-1 line 

(Figure 62). 
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Figure 62: Heatmap of secondary metabolites. Values correspond to log2-fold changes in relation to wild-type samples of the 
same tissue. Crosses show significant differences in comparison to the respective wild type samples. Significance was tested 
by a two-sided student’s t-test, with trait-wise bonferroni correction; n = 7-8 

As some plants from the arlb1-2 line, turned out to be heterozygous, it contains a mixture of 

samples from hetero- and homozygous plants. This probably explains, why leaf samples from 

arlb1-2 plants show much fewer significant changes in the metabolic profile (Figure 62). Fruit 

samples from both lines however, generally show a more similar change in the metabolic 

profile (Figure 62). The line adk1-1 shows several metabolites, which are strongly 

downregulated in the leaves. The cdkb1;2-1 line for which I only had fruit samples shows some 

upregulated flavonoids in the fruits (Figure 62). 
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3.3.5.3.1.3. Lipid metabolism 

In the lipid profile I can also see many changes in leaves of the arlb1-1 line, but also of the 

adk1-1 line (Figure 63). 

 

Figure 63: Heatmap of lipids. Values correspond to log2-fold changes in relation to wild-type samples of the same tissue. 
Crosses show significant differences in comparison to the respective wild type samples. Significance was tested by a two-sided 
student’s t-test, with trait-wise bonferroni correction; n = 7-8 

Several TAGs, which show a significant downregulation in leaves of adk1-1, show the opposite 

response in fruits (Figure 63). 

In summary of the metabolomics profiling I can say that I can see many changes in the 

metabolic profile of these mutant lines, which also showed strong morphological phenotypes, 

compared to wild type plants. 
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3.4. Discussion 

In this chapter I selected putative candidate genes for which I was able to generate gene-edited 

lines via CRISPR/Cas9. Unfortunately the transformation and gene-editing efficiency was 

lower than what was reported in similar experiments (Brooks et al., 2014; S. Sun et al., 2015), 

but nonetheless I obtained at least one line per construct. 

I documented any visible phenotypes, measured several whole plant traits and measured the 

metabolic profile of fruit and leaf samples to estimate the role of the respective genes in 

canalization of metabolism. 

Several mutant lines did not show any obvious abnormal phenotypes. In the greenhouse 

experiments the mutant lines performed better in several phenotypic traits of agricultural 

importance. For example the total fruit weight per plant was significantly different for all 

mutant lines compared to wild type plants. The average fruit weight also was more robust 

across different watering conditions, in the panK4-1 line compared to MoneyMaker plants. 

For the metabolomics part, I again needed to find an appropriate normalization strategy to deal 

with batch variation and machine drift (Alseekh et al., 2018). Since the total sample number 

here was not too large, I was here able to incorporate many more QC samples, than I had 

available for the GWAS datasets. For the first experiment with different watering conditions, I 

always used two QCs at the start of every batch followed by four blocks of 12 samples and two 

QCs, amounting to a total of 10 QCs per 58 sample batch. This allowed me to use a batch-wise 

QC-based LOESS signal correction. LOESS signal corrections have successfully been used in 

literature to account for batch- and drift-variation (Dunn et al., 2011; Fan et al., 2019; Kyle et 

al., 2021). With a test samples to QC-ratio of roughly 5:1 this dataset, could also be suitable 

for normalization by a recently developed normalization method, based on the random forest 

machine learning algorithm (Fan et al., 2019), which may further reduce unwanted variation. 

The putative pantothenate kinase (Solyc10g074590) was selected as a candidate gene 

responsible for the canalization of malate levels across different environments. Indeed, the 

mutant line panK4-1 showed a significant increase of the CV of malate in fruit extracts across 

different watering conditions, which validates the role of the gene in canalization of malate 

levels. I can only speculate however how exactly this is achieved. The orthologous genes in 

Arabidopsis thaliana code for pantothenate kinases, which are involved in coenzyme A 

biosynthesis (Tilton et al., 2006). As CoA is an important cofactor which is needed for many 

metabolic reactions, especially in the TCA cycle, this may be a reason why PanK4 is important 
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for canalization of malate (Coxon et al., 2005). In plants pantothenate is synthesized from beta-

alanine, which can in turn be synthesized from uracil, but also needs contribution from a 

pathway starting with valine, although a clear enzyme converting keto-pantoate to pantoate has 

not yet been found in plants (Ottenhof et al., 2004). Interestingly the CV for uracil, valine and 

beta-alanine were all decreased in panK4-1 plants, which may indicate a more controlled flux 

towards pantothenate, to compensate for a reduction in the downstream processing towards 

coenzyme A. In fact pantothenate levels were slightly lower under all conditions in fruits of 

the panK4-1 compared to wild type plants, but not statistically significant. 

The gene Solyc10g086080 was chosen as a candidate for canalization of phenylalanine levels. 

An orthologous gene in Arabidopsis thaliana LOG2 was characterized as E3 ubiquitin ligase, 

interacting with GDU1 to regulate amino acid export from plant cells (Pratelli et al., 2012). 

Plants overexpressing GDU1 show a selective increase of glutamine in hydathode secretion 

(Pilot et al., 2004). It may be possible that LOG2 has additional interaction partners, which 

could be relevant for transport of phenylalanine. Both GC-MS and LC-MS indicated an 

increase of the mean level of phenylalanine in fruits of log2-1 plants at the lowest irrigation 

condition, but neither the mean level nor the CV showed statistically significant differences 

when compared to wild type samples. It may be possible that either even the most drastic 

drought condition, was not strong enough or that orthologues may compensate for the reduced 

activity in the log2-1 plant. LOG2 is also known under the name ABA-insensitive RING 

protein 3 (AIRP3) and has been suggested to play a dual role in the ABA-mediated drought 

stress response and amino acid transport (Kim & Kim, 2013). 

A gene annotated to code for a transposon protein (Solyc10g007190) was selected as candidate 

gene for the canalization of maltose, glucose-6-phosphate and fructose-6-phosphate. The 

transp1-1 mutant of this gene did however not show any changes in level or CV of these 

metabolites and is therefore likely not related in the canalization of them. While metabolism 

seems not strongly affected in transp1-1 plants, the days until the first ripe fruit was slightly 

reduced under all conditions and the ANOVA showed a significant effect. Anecdotally, I also 

noticed that all later fruits on transp1-1 plants ripened earlier and more uniformly than fruit on 

wild type plants, similar to a determinate tomato cultivar. Transposable element insertion 

polymorphisms (TIPs) in tomato have been shown to be disproportionately located within or 

adjacent to genes with environmental responses and a GWAS has shown a robust association 

of these TIPs with variation in major agronomic traits and secondary metabolites (Domínguez 

et al., 2020). 
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Aside from these lines which had a wild type-like appearance, some lines also showed strong 

abnormal phenotypes. 

As a second candidate gene for phenylalanine canalization I had chosen Solyc10g086190, 

annotated as an adenosine kinase. The adk1-1 line only had few mostly seedless fruits. In 

Arabidopsis thaliana, silencing of orthologous genes also resulted in abnormal growth 

phenotypes like altered silique size and a changed profile of cytokinin derivates, which is why 

ADK is suggested to contribute to cytokinin homeostasis (Schoor et al., 2011). The metabolic 

profile of both fruits and leaves of adk1-1 plants was strongly altered, which may be a result 

of the general growth phenotype. 

For malate I selected two more candidate genes (Solyc10g074630 and Solyc10g074720). 

Solyc10g074630 has been shown to be homologous to the ARF-like GTPase AT5G52210 

(ARLB) (Paul et al., 2014). ADP-ribosylation factors (ARFs) have known roles in vesicle 

coating and uncoating in eukaryotes, while related proteins, ARF-like proteins (ARLs), have 

various functions (Gebbie et al., 2005). Homozygous plants from arlb1-1 and arlb1-2 lines 

showed small outgrowths at leaflet sections as well as scars on the cuticle. Heterozygous plants 

from arlb1-2 showed much smaller but still visible outgrowths and wild type-like fruit. The 

outgrowth phenotype may be comparable to reduced apical dominance, which has been 

observed in some antisense lines of ARF genes in Arabidopsis thaliana (Gebbie et al., 2005). 

I also saw a strongly altered metabolic profile of arlb1-1 plants. Especially TAG contents was 

generally reduced in leaf of mutant plants, while some were increased in fruits. 

Solyc10g074720 is annotated as a cell division protein kinase and is orthologous to cyclin-

dependent kinase b 1;2. In Arabidopsis CDKB1s seem to be crucial for guard mother cell 

division (J. Yin et al., 2019). The cdkb1;2 mutant line displayed light-yellow-green leaves. 

Although no such phenotype seems to have been observed before in Arabidopsis thaliana, an 

unpublished study found the gene differentially expressed in another chlorotic leaf mutant (Gu 

et al., 2020). In the metabolic profile of cdkb1;2-1 fruits I could see a decrease of several 

carbohydrates, like glucose and sucrose, while several amino acids were increased. 

For the first set of mutants which appear wild-type like by their general appearance I could at 

least confirm one candidate gene with a less environmentally robust CV of the target 

metabolite. The panK4-1 showed a significantly increased CV of malate across different 

irrigation conditions. The log2-1 mutant shows some tendency towards an increased 
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phenylalanine CV but the results are not statistically significant. The transp1-1 mutant shows 

no clear changes of maltose, glucose-6-phosphate or fructose-6-phosphate. 

For the second set of mutants with clear morphological abnormalities I do see some differences 

in the metabolic profile of these lines, but these results are only first estimations. Some lines 

only produced a few plants and I therefore used technical replicates to have enough values to 

estimate proper mean values and perform statistical tests. In some cases I also included samples 

which were originally grown in a different experiment. In the case of the arlb1-2 line I did not 

obtain enough homozygous plants and therefore also included heterozygous plants for the 

metabolic profiling. Given the sometimes drastic phenotypes and the large difference of the 

estimated values it is however likely that follow-up experiments will confirm the observations 

I made here. I can of course at this point also not be sure, whether the canalization of the target 

metabolites across different environments is also affected. It remains to be seen, whether I will 

at all be able to cultivate these mutants under less than optimal conditions, given the relative 

difficulty just growing them at optimal conditions. 

Applying the appropriate stress conditions to make differences in robustness visible generally 

proved to be quite challenging. In consultation with a greenhouse staff member, experienced 

in tomato cultivation, I decided to not lower the irrigation conditions below 40% of the standard 

optimal conditions. Indeed plants only produced few small fruits at this condition and may 

likely not have fruited at all under conditions with even lower irrigation. However, as I see the 

most drastic changes of the metabolic profile at low irrigation conditions and because an 

increase of irrigation beyond 80% of the standard optimal conditions did not result in any 

further performance increase it may be worthwhile to consider generally lower watering 

conditions for future experiments, to get a better resolution of the more drastic effects under 

low water availability. Another possibility may be to grow all plants under normal conditions 

until fruit set and then apply even more drastic drought scenarios. 

Of course I will try to test any untested promising mutant lines for metabolic canalization. For 

further investigations it would also be interesting to introduce gene-edits in orthologues of 

genes, where a modification showed a metabolic or morphological phenotype or a tendency 

towards one. Creating double mutants, may enable to detect changes in metabolic canalization, 

which remain obscured in single mutants, although the time consumption would be 

considerable in tomato.
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Chapter 4: CANA1 

4.1. Introduction 

Through oxygenic photosynthesis, plants are able to capture sunlight, convert it into chemical 

energy in the form of ATP and NADPH, which can consecutively be used to assimilate carbon 

dioxide into organic matter (Baslam et al., 2020; Nelson & Ben-Shem, 2004). As mentioned 

earlier, I can consider this photosynthetic carbon metabolism as one of the most important 

biochemical processes on the planet, given that its products ultimately support almost all life 

forms (Y. Wang et al., 2015). In order to fuel the carbon dioxide assimilating Calvin Cycle, 

ATP and NADPH must first be generated in the photosynthetic electron transport chain 

(Baslam et al., 2020). 

The photosynthetic electron transport chain is constituted by four major protein complexes, 

photosystem I and II, the cytochrome-b6f complex and F-ATPase, embedded into the thylakoid 

membranes of chloroplasts (Nelson & Ben-Shem, 2004). To summarize this highly complex 

reaction, I can say that captured solar energy is transferred onto reaction centers of photosystem 

I and II, which induces a cyclic or linear electron flow over several electron carriers to NADP+ 

and the concomitant transmembrane proton transport, which generates a proton motive force, 

driving ATP production (Nelson & Ben-Shem, 2004; Tang & Blankenship, 2013). 

Due to their complex multi-protein composition, photosystem I and II need to be accurately 

assembled through a finely controlled mechanism (Lu, 2016; Nellaepalli et al., 2018). Although 

already more than 30 factors are for example already known to be relevant for the assembly of 

photosystem II, it is likely that more will be found and the exact function of the discovered 

ones remains mostly unclear (Eaton-Rye & Sobotka, 2017). The importance of such assembly 

factors for functioning photosystems can easily be demonstrated by the fact, that some of them 

were originally discovered by the visual phenotypes like pale or variegated leaves of mutants 

lacking these factors (Moore et al., 2000; Shimada et al., 2007; Sundberg et al., 1997; Zagari 

et al., 2017). 

A gene, which, if impaired, leads to pale cotyledons in Arabidopsis thaliana and variegated 

leaves in Lotus japonicus is the so-called “snowy cotyledons 2” SCO2 (Zagari et al., 2017). 

SCO2 codes for a protein disulfide isomerase, carrying a conserved C4-like zinc finger domain, 

similar to E. coli DnaJ (Shimada et al., 2007). In vitro studies have shown that this domain is 

critical for its catalytic activity and that the protein uses glutathione as an electron donor 

(Muranaka et al., 2012). Further on, SCO has been shown to interact with LHCB1 proteins and 
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likely also associates to other thylakoid proteins (Shimada et al., 2007; Tanz et al., 2012). 

Mutants of SCO2 also form chloroplasts with abnormal thylakoids (Shimada et al., 2007). Due 

to these observations it has been concluded that SCO2 is a factor, important for thylakoid 

biogenesis and chloroplast development (Albrecht et al., 2008; Tanz et al., 2012). 

In the following chapter I am describing the characterization of a variegated tomato mutant line 

by a multi-omics approach. The line was created by an EMS screening for yield stability, by 

our collaborator and was found to harbor a point mutation in an orthologous gene of SCO2 

(Fisher & Zamir; under revision) . In field trials the mutant displayed an increased yield 

variability in relation to drought stress. I characterized the mutant with transcriptomics, 

proteomics and metabolomics and are here presenting our findings. 

4.2. Materials and Methods 

4.2.1. Genotyping/Sequencing 

After plant transformation, shoots from well-rooted putatively transformed tomato plants are 

cut and transferred to fresh sterile media containing containing agar (6.8% m/v), MS, sucrose 

(2% m/v) and 125 µg/ml Ticarcillin, to eliminate residual Agrobacterium tumefaciens. Plants 

are cultivated for 4-6 weeks under sterile conditions, until they have rooted again and grown 

back to the original size. This process is repeated at least 2 more times. At the last transfer step, 

leaf samples are collected and DNA is extracted, similarly as previously reported (Lu, 2011). 

A first PCR amplifying the chromosomal rpoB gene of Agrobacterium tumefaciens GV2260, 

to check for residual agrobacterial contamination. A second PCR is performed with primers 

specific to the Cas9 gene. The third PCR amplifies a region ranging from ~100 bp upstream of 

the first gRNA to ~100 bp downstream of the second gRNA. PCR fragments are separated on 

an agarose gel (4% m/v in TAE), to detect large or small indels. If bands from putative genome-

edited plants could not be distinguished from bands of wild type plants, PCR fragments were 

subjected to a heteroduplex mobility assay, as described previously (Bhattacharya & Meir, 

2019). If bands were still indiscernible, PCR fragments were send for Sanger sequencing to 

LGC Genomics (LGC Genomics GmbH, Berlin, Germany). Agrobacterium-free, Cas9-

positive, genome-edited plants were transferred to the greenhouse for propagation and 

investigation. 

4.2.2. Growth conditions 

Putative transformants were kept under sterile conditions in a tissue culture chamber (York 

International/Johnson Controls; Cork, Ireland) with ~35 µmol m-2 s-1 of light in a (16h/8h)-
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(22°C/22°C)-(day/night) cycle. Selected transgenic plants were propagated under standard 

greenhouse conditions for seed production.  

Seeds were generally first sown on soil in a young plant phytotron (York International/Johnson 

Controls; Cork, Ireland) with 150 µmol m-2 s-1 of light in a (16h/8h)-(22°C/18°C)-(70% 

RH/70%RH)-(day/night) cycle and transplanted into individual pots after cotyledon were fully 

expanded. After 4 weeks, seedlings were transplanted into bigger pots and transferred to 

greenhouse chambers. Plants were fertilized once after transplanting to big pots and once at 

flowering. Axillary meristems were continuously removed and the primary shoots were 

trimmed off after development of the 4th truss. During growth, pots are watered multiple times 

daily by an automated drip irrigation system. Standard greenhouse settings are a (16h/8h)-

(22°C/20°C)-(50% RH/50%RH)-(day/night) cycle. 

For drought conditions plants received 50% of the standard optimal water amount. 

4.2.3. Sample collection 

Leaf samples were collected from mature non-senescing plants and pericarp samples were 

collected from red ripe tomato fruits, when 80%-100% of fruits were ripe. 

4.2.4. Metabolite extraction 

Frozen plant tissue was ground to powder using a Mixer Mill (Retsch; Haan, Germany) at 30 

Hz for 1 min. Aliquots of 50 mg were used for metabolite extraction, as described before 

(Salem et al., 2016). Here, 1 ml of pre-cooled MTBE-MeOH (3:1; vol/vol) extraction buffer is 

added to each sample and samples are incubated 10 minutes on an orbital shaker at 4°C. 

Samples are sonicated for 10 minutes in an ice bath before 0.5 ml of MeOH-H2O (3:1; vol/vol) 

is added and samples are centrifuged at 14000 rpm for 5 minutes at 4°C, leading to a phase 

separation. An aliquot of the upper (apolar) phase was taken for lipid analysis, the rest of the 

upper phase was aspirated with the BVC fluid aspiration system (Vacuubrand Inc; Essex, CT, 

U.S.A.) and two aliquots of the lower (polar) phase were taken for GC-MS and LC-MS. 

Extracts were dried in a Scan Speed 40 centrifugal vacuum concentrator (Labogene; Allerød, 

Denmark) coupled to a Scanvac CoolSafe cryo unit (Labogene; Allerød, Denmark) with 1000 

g and 30°C for 3h or overnight. Dried extracts were kept at -80°C until further use. 

4.2.5. Pigment measurement 

The pigment aliquot was diluted 10-fold with methanol and measured spectrophotometically 

in an Epoch2 96-well plate reader (Biotek/Agilent; Santa Clara, CA, USA) at 470 nm, 652 nm 
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and 665 nm. Pigment concentrations were calculated as reported previously with a pathlength 

correction of 0.51 assuming a pure methanolic extract (Lichtenthaler & Buschmann, 2001; 

Warren, 2008) 

4.2.6. Metabolite profiling 

Primary metabolites were analyzed as described before (Lisec et al., 2006). For the analysis 

via GC-MS-TOF a dried aliquot of the polar phase was derivatized by adding 40 µL of (20 mg 

* mL-1) methoxyamine hydrochloride and incubating at 37°C first for 2 h followed by addition 

of 70 µL of MSTFA and continued incubation at 37°C for 30 min. The samples were injected 

by an autosampler Gerstel Multi-Purpose system (Gerstel GmbH & Co.KG, Mülheim an der 

Ruhr, Germany) into a gas chromatograph coupled to a time-of-flight mass spectrometer (Leco 

Pegasus HT TOF-MS) (LECO Corporation; St. Joseph, MI, U.S.A.). Analysis of secondary 

metabolites followed a previously described protocol (Giavalisco et al., 2009). Here a dried 

aliquot of the polar phase was resuspended in 150 µl H2O:MeOH (50:50) and samples injected 

to an Acquity UPLC system (Waters Corporation; Milford, MA, U.S.A.) coupled to an 

Exactive Orbitrap mass detector (ThermoFisher Scientific; Waltham, MA, U.S.A.) via a heated 

electrospray source (ThermoFisher Scientific; Waltham, MA, U.S.A.) . Mass spectra were 

obtained by running samples in negative ionization mode. For analysis of lipophilic compounds 

a previously established protocol was used (Hummel et al., 2011). An aliquot of the dried 

organic phase was resuspended in 100 µL of UPLC-grade acetonitrile:isopropanol (70:30) mix, 

of which 2 µl were injected onto an Acquity UPLC system (Waters Corporation; Milford, MA, 

U.S.A.) equipped with an RP C8 column (Hummel et al., 2011). Mass spectra were obtained 

by running samples in positive ionization mode on an Orbitrap high-resolution mass 

spectrometer: Fourier-transform mass spectrometer (FT-MS) coupled with a linear ion trap 

(LTQ) Orbitrap XL (ThermoFisher Scientific; Waltham, MA, U.S.A.).  

4.2.7. Peak picking/Area calculation 

For targeted analysis peaks were picked manually and peak area calculated with Xcalibur 

Version 4.2.47 (ThermoFisher Scientific; Waltham, MA, U.S.A.). Non-targeted analysis was 

performed with Genedata Expressionist ® 14.0.5 (Genedata; Basel, Switzerland). 

4.2.8. Computational analysis and used packages 

All analysis was performed using R statistical software v4.0.2 in the RStudio environment or 

on a unix-based high performance computing cluster. Code was written in base R or with the 

help of the packages tidyverse, broom, cowplot, ggpubr (Kassambara, 2020; Robinson et al., 
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2021; Wickham et al., 2019; Wickham & RStudio, 2020; Wilke, 2020b). Imputation by QRILC 

was done with the package imputeLCMD (Lazar, 2015). Heatmaps were created with the 

pheatmap package (Kolde, 2019). I am using the bootstrap::jackknife function to generate jack-

values, which I am using for statistical analysis (original et al., 2019). Bubble plots were created 

by a custom script but inspired by the package GOplot (Walter et al., 2015). 

4.2.9. RNA isolation 

RNA isolation was performed similarly to a previously described protocol (Bugos et al., 1995), 

Plant tissue was ground to a fine powder by a Retsch mill (Retsch, Haan, Germany), 100 mg 

was aliquoted into a tube. Vortexing after each step, the following chemicals were added 

consecutively: 280 µl extraction buffer (100 mM Tris HCl pH 9, 200 mM NaCl, 15 mM EDTA 

pH 8, 0.5% sarcosyl, 8 µl/ml β-mercaptoethanol), 280 µl phenol, 56 µl chloroform-

isoamylalcohol (24:1) and 19.6 µl 3M NaOAc (pH 5.2). After 15 minutes incubation on ice, 

samples were centrifuged for 10 min at 10000 rpm and the supernatant was transferred to a 

new tube. Now 280 µl phenol-chloroform-isoamylacohol (25:24:1) was added, the sample 

vortexed, centrifuged for 10 min at 10000 rpm and the upper phase supernatant transferred to 

a new tube until no white interphase could be detected. RNA was precipitated for 30 minutes 

– 2 hours. The sample was centrifuged and the pellet washed with 500 µl 80% ethanol/DEPC, 

before drying the pellet at room temperature. The pellet was resuspended in 200 µl sterile 

H2O/DEPC and centrifuged to remove any particulate. In a new tube the supernatant was mixed 

with 100 µl 8M LiCl, by inverting the tube and RNA was precipitated overnight. The sample 

was centrifuged 15 min at 10000 rpm at 4°C and the pellet washed with 250 µl 70% 

ethanol/DEPC. After the supernatant was discarded, the pellet was resuspended in 50 µl 

H2O/DEPC. RNA concentration was measured with a NanoDropTM One spectrophotometer 

(Thermo Fisher Scientific; Waltham, MA, U.S.A.). Residual DNA was digested with the 

Invitrogen Turbo DNAse free kit (Invitrogen/Thermo Fisher Scientific; Waltham, MA, 

U.S.A.). Exact RNA quality and quantity was measured with the Bioanalyzer 2100 (Agilent; 

Santa Clara, CA, U.S.A.). 

4.2.10. RNA sequencing 

RNA was sequenced as a service of the MPIPZ (Cologne, Germany). Samples were run on a 

Illumina HiSeq 3000 RNA sequencing machine (Illumina; San Diego, CA, U.S.A.). RNA 

library preparation included a polyA enrichment. Per sample 20 million paired-end reads were 

sequenced. 
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4.2.11. Orthology search 

Orthologues between Arabidopsis thaliana (TAIR10) and Solanum lycopersicum (ITAG4.0) 

were searched by OrthoFinder v2.5.2 using the DIAMOND ultra-sensitive setting (Emms & 

Kelly, 2019). Data was obtained from TAIR (https://www.arabidopsis.org/) and Solgenomics 

(https://www.solgenomics.net/).  

4.2.12. RNA read mapping 

RNA reads were mapped to the genome with the LSTRAP pipeline as described previously 

(Proost et al., 2017). 

4.2.13. Differential gene expression analysis 

Differential gene expression analysis was performed by the package deseq2. Genes were 

considered differentially expressed, when they had a log2FC >= 1 and an adjusted p-value <= 

0.1 as suggested by literature (Conesa et al., 2016; Lamarre et al., 2018). Normalized counts 

after deseq2 processing were used for further analysis. 

4.2.14. Proteomics analysis 

Proteins were isolated from the pellet of MTBE-extracted samples, processed and analyzed 

with minor modifications as described previously without fractionation (Salem et al., 2020; 

Sokolowska et al., 2019). The amount of denaturation buffer was limited to 50 µL and samples 

were adjusted to 40 µg of protein. Data was analyzed with the proteus package (Gierlinski et 

al., 2018) and the help of the package limma for quantile normalization (Ritchie et al., 2015; 

Smyth & Speed, 2003). Proteins were considered differentially expressed, when they had a 

log2FC >= 1 and an adjusted p-value <= 0.1.  

4.2.15. Gene ontology enrichment analysis 

Gene ontology enrichment analysis was performed with the package topGO (Alexa & 

Rahnenfuhrer, 2021). 

4.2.16. Data integration 

Transcriptomic and metabolomics data was integrated and visualized with pathview (Luo & 

Brouwer, 2013). 

 

https://www.arabidopsis.org/
https://www.solgenomics.net/
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4.3. Results 

4.3.1. Phenotype 

Plants from the cana1 line show a variety of differently pigmented leaves, from completely 

white, over differently patterned variegated until completely green (Figure 64). 

 

Figure 64: Variegation phenotype of cana1 leaves ranging from (almost) completely green (A) over variegated (B) to 
completely white (C) 

I wanted to quantify the pigment content and therefore extracted pigments and measured them 

spectrophotometrically (Figure 65). 

 

Figure 65: Content of different pigments and chlorophyll a/b ration in green and white leaves of cana1 compared to wild type 
leaves; *: p-value ≤ 0.05 in pairwise wilcox-test, n = 9-27 

White leaves of cana1 plants were almost completely devoid of any chlorophyll and 

carotenoids, whereas green leaves showed wild type levels of pigments (Figure 65). 

I also measured pigment content in stem tissue, where I detected a strongly reduced amount, 

compared to wild-type stems (Figure 66). 
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Figure 66: Content of different pigments and chlorophyll a/b ration in stems of cana1 compared to wild type stems; *: p-value 
≤ 0.05 in pairwise student’s t-test, n = 7-21 

4.3.2. RNAseq 

To investigate processes at the transcriptional level, I extracted RNA from leaves and stems of 

cana1 and wild-type plants and sent it for RNA sequencing. 

The PCA nicely separates tissues on the first PC and genotypes on the second PC 

(Supplementary Figure 4). I performed differential gene expression analysis and discovered 

many differentially expressed genes (DEGs), both comparing mutant and wild type leaves, but 

also when comparing white and green leaves of cana1 plants (Supplementary Figure 5). I found 

the most DEGs in the comparison of white mutant leaves to green wild-type leaves, with 2284 

DEGs exclusive to this comparison (Supplementary Figure 5). I went on, and performed gene 

ontology enrichment analysis on the different contrasts. 
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Figure 67: Bubble plot of overrepresented GO terms in transcripts, when comparing cana1 mutant white leaves to wild type 
green leaves. The x-axis shows the z-score and the y axis shows the –log10(adj. p-value). The dotted horizontal line indicates 

a p-value of 0.05. 

In the comparison of mutant white leaves vs wild-type green leaves I can find many terms 

related to photosynthesis, but also related to DNA-binding, as well the term “protein disulfide 

oxidoreductase activity” (Figure 67). When comparing white and green leaves from cana1 

plants I can see an even stronger enrichment of photosynthesis terms, however photosynthesi-

related terms barely surpass a p-value threshold of 0.05 in the comparison of green mutant and 

wild type leaves (Supplementary Figure 6+7). On the other hand the term “aminoacyl-tRNA 

ligase activity” is strongly enriched in this comparison (Supplementary Figure 7). 
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Figure 68: Bubble plot of overrepresented GO terms in transcripts, when comparing cana1 mutant stems to wild type stems. 
The x-axis shows the z-score and the y axis shows the –log10(adj. p-value). The dotted horizontal line indicates a p-value of 

0.05. 

When comparing DEGs of stems of mutant and wild type I mostly found terms, which are 

likely related to the general growth of the stem, like “lignin catabolic process”, “cell wall 

biogenesis” and “xyloglucan metabolic process” (Figure 68). I also found the term “DNA-

binding transcription factor activity”. 

To get a better understanding of which genes are exactly up- or downregulated, I took a closer 

look at the expression profile of genes related to some of the discovered terms. 

First of all I was interested to see, whether the mutated gene showed any changed expression 

(Figure 69).  
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Figure 69: Expression of Solyc01g108200 (CANA1) in leaves (A) and stems (B) of wild type and cana1 mutant plants. Upper 
panel shows normalized counts and lower panel tpm values; student’s t-test was performed by ggpubr::stat_compare_means, 
P-values are annotated as *: p ≤ 0.05; **; p≤ 0.01; ***: p≤ 0.001; ****: p≤ 0.0001 n = 3 

 

For both tissues, I could not detect any significant changes. If anything, the raw reads of mutant 

green leaves appear slightly increased, although not significantly (Figure 69). 

As the CANA1 gene is a putative photosystem assembly factor (Zagari et al., 2017), I  was 

interested in the expression of other assembly factors and photosystem components. I gathered 

known genes from Arabidopsis thaliana from different sources (Hankamer et al., 1997; Jensen 
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et al., 2007; Lu, 2016; Shi et al., 2012; Yang et al., 2015)(Supplementary Table 1) and used 

them to investigate corresponding tomato orthologs. First I investigated the expression of other 

known assembly factors (Figure 70).  

 

 

Figure 70: Expression of assembly factors in leaves (A) and stems (B) of wild type and cana1 mutant plants normalized to 
wild type levels. Left panel shows normalized counts and right panel tpm values; student’s t-test was performed by 

ggpubr::stat_compare_means, P-values are annotated as *: p ≤ 0.05; **; p≤ 0.01; ***: p≤ 0.001; ****: p≤ 0.0001. 

One can see that green mutant leaves have an increased expression, when compared to wild-

type leaves, as do mutant stems compared to wild-type stems (Figure 70). White mutant leaves 

however have, based on raw reads, an expression comparable to wild-type leaves, although 
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some genes seem to have some extreme outliers (Figure 70). I was interested to see, which 

these genes were and therefore extracted them and checked their expression (Figure 71).  

 

 

Figure 71: Expression of Solyc03g043660, Solyc09g082690 and Solyc09g082700 of wild type and cana1 mutant plants 
normalized to wild type levels. Upper panel shows normalized counts and lower panel tpm values; student’s t-test was 
performed by ggpubr::stat_compare_means, P-values are annotated as *: p ≤ 0.05; **; p≤ 0.01; ***: p≤ 0.001; ****: p≤ 
0.0001, n = 3 

The genes with high expression in white leaves, I extracted from the assembly components, 

were orthologs of early-light inducible proteins (ELIPs) and a DEG protease, which are 

important for thylakoid development and degradation of thylakoid proteins (Casazza et al., 

2005; T. Sun et al., 2019; X. Sun et al., 2010). 

If I filter out these genes, I can now see a clearer expression pattern (Figure 72). 
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Figure 72: Expression of assembly factors in leaves of wild type and cana1 mutant plants normalized to wild type levels after 
removal of ELIP and DEG orthologs. Left panel shows normalized counts and right panel tpm values; student’s t-test was 
performed by ggpubr::stat_compare_means, P-values are annotated as *: p ≤ 0.05; **; p≤ 0.01; ***: p≤ 0.001; ****: p≤ 
0.0001. 

I can see a clear upregulation of the remaining photosystem assembly genes in green cana1 

leaves compared to green M82 leaves (Figure 72). If I look at the tpm-based expression profile, 

I can see that a similar amount of transcripts are produced in white mutant leaves as in green 

mutant leaves, in relation to the total amount of transcripts (Figure 72). 

If I now look at all the genes, which make up components of the final photosystems, I can see 

a similar pattern (Figure 73). 
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Figure 73: Expression of photosystem components in leaves of wild type and cana1 mutant plants normalized to wild type 
levels. Left panel shows normalized counts and right panel tpm values; student’s t-test was performed by 
ggpubr::stat_compare_means, P-values are annotated as *: p ≤ 0.05; **; p≤ 0.01; ***: p≤ 0.001; ****: p≤ 0.0001. 

Green leaves from cana1 plants show a significant increase in the expression of photosystem 

components, while white leaves even show a decrease in expression, when compared to M82 

leaves (Figure 73). 

As I found the term “protein disulfide oxidoreductase activity” in some of the contrasts of the 

GO enrichment, I wondered whether any compensatory mechanisms may be elicited by the 

reduction in function of the disulfide isomerase CANA1 in the mutant tissues. I therefore 

extracted all DEGs, with the GO term “protein disulfide oxidoreductase activity”, as this was 

the term I found before and also because no other DEG had a GO annotation to the term 

“protein disulfide isomerase activity”. I then compared the summarized relative expression of 

these genes of cana1 and wild type plants (Figure 74). 
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Figure 74: Expression of genes annotated with the GO term protein disulfide oxidoreductase activity in leaves of wild type 
and cana1 mutant plants normalized to wild type levels. 

As I can see, these genes show a 2-fold induction in cana1 green leaves and a roughly 5-fold 

induction in cana1 white leaves, when compared to leaves of M82. Although this is just a 

summary of many genes and some genes may show a different pattern, I found a group of genes 

which consistently show an increased expression in white mutant leaves (Figure 75). 
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Figure 75: Expression of a subset of genes annotated with the GO term protein disulfide oxidoreductase in leaves of wild type 
and cana1 mutant plants normalized to wild type levels; student’s t-test was performed by ggpubr::stat_compare_means, P-

values are annotated as *: p ≤ 0.05; **; p≤ 0.01; ***: p≤ 0.001; ****: p≤ 0.0001, n=3 

Interestingly an orthology search showed that all these 14 genes seem to be orthologs of each 

other with no orthologs in Arabidopsis thaliana. However, TAIR lists the genes GRXS1 

(AT1G03020) and GRXS6 (AT3G62930) homologs of these genes. Either way, the genes 

belong to a Glutaredoxin//Thioredoxin superfamily and seem to be responsible for arsenate 

detoxification 

(https://solcyc.solgenomics.net/gene?orgid=LYCO&id=SOLYC04G011800.1#tab=TU). 

https://solcyc.solgenomics.net/gene?orgid=LYCO&id=SOLYC04G011800.1#tab=TU
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4.3.3. Proteomics 

I used another aliquot of the plant material I had sent for RNA sequencing, to extract proteins 

and subject it to proteomics analysis. Also here I investigated differential expression of proteins 

and analyzed the data with a similar pipeline as the RNAseq data. The results largely confirm 

our observations of the transcriptomic analyses. For example, when I compare white cana1 

leaves with M82 leaves, I see an enrichment of proteins related to “chloroplast thylakoid 

membrane” and many other photosynthesis-related terms (Figure 76).  

 

Figure 76: Bubble plot of overrepresented GO terms in proteomics, when comparing cana1 mutant white leaves to wild type 
green leaves. The x-axis shows the z-score and the y axis shows the –log10(adj. p-value). The dotted horizontal line indicates 
a p-value of 0.05. 

Additionally, I can see other ontology terms enriched, which are related to protein folding or 

degradation and nucleic acid binding and splicing (Figure 76). The enrichment profile of the 

contrast between white and green mutant leaves, looks very similar to the previously described 

one (Supplementary Figure 8). Again I find terms related to photosynthesis, protein folding 

and degradation, as well as nucleic acid binding. This may be a first hint that the proteomic 

profile of mutant and wild-type green leaves is very similar. In fact, when I did compare those 

two tissues, I did not find a single significantly enriched term. I only found one differentially 

expressed protein (A0A3Q7EIF5), which is annotated as a subunit of the oxygen-evolving 

system of photosystem II. 
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To get a visual representation of the expression of photosystem-related genes in green and 

white mutant leaves compared to green wild-type leaves, I utilized the expression data to 

generate a KEGG graph (Figure 77). 

 

Figure 77: Pathview image of Photosynthesis. Proteins are shown as rectangles. Protein nodes are split in the middle to 
simultaneously show two comparisons. Changes are the log2-fold change of mutant green leaves (left) or mutant white leaves 
(right) in comparison to wild type green leaves. Blank nodes could either be not mapped or are not known. 

As I can see, almost all proteins, for which I had expression values, show a strong 

downregulation in mutant white leaves, while no changes can be seen in mutant green leaves 

(Figure 77). In the comparison of cana1 stems and M82 stems, I also find many enriched terms 

related to photosynthesis (Supplementary Figure 9). 

4.3.4. Metabolomics 

I also extracted metabolites from plants grown in 3 seasons under control and drought 

conditions. First I investigated primary metabolites (Figure 78). As expected, I see the strongest 

changes again in the white leaves of cana1 plants. Many amino acids are strongly upregulated, 

while a few carboxylic acids are downregulated. The strongest change can be seen in 

asparagine (Figure 79). 
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Figure 78: Heatmap of primary metabolites of cana1 and M82 samples as well as samples from cana1 on M82 and M82 on 
cana1 grafted plants from 3 independent experiments. Values correspond to log2-fold changes in relation to M82 samples of 
the same tissue and condition. Crosses show significant differences in comparison to the respective wild type samples. 
Significance was tested by a pairwise wilcox-test, with trait-wise FDR correction 

 

Figure 79: Mean fold-change of asparagine levels in leaves of cana1 and grafted plants relative to M82 levels. Data combines 
values from 3 independent experiments; *: p-value ≤ 0.05 in pairwise wilcox-test after metabolite-wise FDR-correction. The 
y-axis was set to a log10-scale to show differences in magnitude 
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In green leaves the amount of asparagine is already significantly increased, but I can see much 

stronger changes in white leaves of cana1 were the content is more than 100-fold increased 

and white leaves from cana1 plants grafted onto M82 rootstocks even show a more than 600-

fold increase (Figure 79). 

When I look at the polar LC-MS data, I see a similar picture but with milder changes (Figure 

80). I was also able to detect some amino acids here, which show again a strong increase in 

white leaves of mutant plants. The strongest change can be detected for the level of tyrosine 

(Figure 81). Additionally a few flavonoids and dipeptides show an upregulation in white cana1 

leaves, while other flavonoids and some cinnamic acids are downregulated (Figure 80). 

However, no clear pattern emerges in the expression profile of specialized metabolites. 

 

Figure 80: Heatmap of secondary metabolites of cana1 and M82 samples as well as samples from cana1 on M82 and M82 on 
cana1 grafted plants from 3 independent experiments. Values correspond to log2-fold changes in relation to M82 samples of 
the same tissue and condition. Crosses show significant differences in comparison to the respective wild type samples. 
Significance was tested by a pairwise wilcox-test, with trait-wise FDR correction. 
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Figure 81: Mean fold-change of tyrosine levels in leaves of cana1 and grafted plants relative to M82 levels. Data combines 
values from 3 independent experiments; *: p-value ≤ 0.05 in pairwise wilcox-test after metabolite-wise FDR-correction.  

When I look at the lipidomic profile, the pattern looks much clearer (Figure 82). 
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Figure 82: Heatmap of lipophilic compounds of cana1 and M82 samples as from 2 independent experiments. Values 
correspond to log2-fold changes in relation to M82 samples of the same tissue and condition. Crosses show significant 
differences in comparison to the respective wild type samples. Significance was tested by a pairwise wilcox-test, with trait-
wise FDR correction. 

In the white leaves and to a lesser extent also in stems, I can see many TAGs, MGDGs and 

DGDGs significantly reduced in cana1 plants (Figure 82). On the other hand, phospholipids, 

are upregulated in white leaves of mutant plants. The largest upregulation can be found in the 

glucosylceramide GlcCer d18:1/h16:0, which shows a more than 300-fold induction in white 

leaves of the mutant (Figure 83). 
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Figure 83: Mean fold-change of tyrosine levels in leaves of cana1 plants relative to M82 levels. Data combines values from 2 
independent experiments; *: p-value ≤ 0.05 in pairwise wilcox-test after metabolite-wise FDR-correction.  

4.3.5. Integration 

I integrated metabolic and transcriptomic data from a few pathways, which showed a KEGG 

enrichment, with KEGG graphs. First I investigated starch and sucrose metabolism (Figure 84). 

 

Figure 84: Pathview image of starch and sucrose metabolism. Metabolites are shown as circles and genes are shown as 
rectangles. Metabolite and gene nodes are split in the middle to simultaneously show two comparisons. Changes are the log2-
fold change of mutant green leaves (left) or mutant white leaves (right) in comparison to wild type green leaves. Blank nodes 
could either be not mapped or are not known. 
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It can be seen that while cana1 green leaves show mostly wild type levels of metabolites and 

transcripts, white leaves of the mutant show strong changes. Sucrose levels are moderately and 

glucose levels are strongly depleted. I can also see that catabolic genes leading to the generation 

of glucose are upregulated, while anabolic genes that lead away from glucose are 

downregulated (Figure 84). 

When looking at biosynthesis of different amino acids, the picture looks very different (Figure 

85, Figure 86). Many amino acids are moderately and strongly upregulated in green and white 

leaves of cana1 plants respectively. As I highlighted earlier asparagine is strongly upregulated 

but also aspartate, alanine, glutamate and glutamine (Figure 85). 

 

Figure 85 Pathview image of alanine, aspartate and glutamate metabolism. Metabolites are shown as circles and genes are 
shown as rectangles. Metabolite and gene nodes are split in the middle to simultaneously show two comparisons. Changes are 
the log2-fold change of mutant green leaves (left) or mutant white leaves (right) in comparison to wild type green leaves. Blank 
nodes could either be not mapped or are not known. 



Chapter 4: CANA1 

114 

 

Valine, leucine and isoleucine are all increased in white cana1 leaves, while green cana1 leaves 

show wild type levels (Figure 86). Transcripts for biosynthetic genes are upregulated in both 

mutant samples, although in several cases stronger in white leaves. 

 

Figure 86: Pathview image valine, leucine and isoleucine metabolism. Metabolites are shown as circles and genes are shown 
as rectangles. Metabolite and gene nodes are split in the middle to simultaneously show two comparisons. Changes are the 
log2-fold change of mutant green leaves (left) or mutant white leaves (right) in comparison to wild type green leaves. Blank 

nodes could either be not mapped or are not known. 

4.4. Discussion 

In this chapter I characterized the variegation mutant cana1 that had been shown to display less 

robustness to yield in a drought stress scenario. The leaf phenotype ranges from completely 

white leaves over varying degrees of variegation to completely green leaves. These results are 

similar to the phenotype the ljsco2 mutants in Lotus japonicus, which also displays variegation 
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on true leaves, but are in contrast to the phenotypes of mutants in Arabidopsis thaliana where 

only cotyledons are pale but not variegated (Zagari et al., 2017). Unsurprisingly white leaves 

of cana1 plants were almost completely devoid of chlorophyll a and b. Green leaves of mutant 

plants however had wild type level photosynthetic pigments. 

As expected RNAseq results yielded many gene ontology terms related to photosynthesis 

enriched, but also terms related to transcription and translation. A deeper investigation of 

photosynthetic genes, shows that while white mutant leaves show wild-type levels of 

transcription of several photosystem assembly factors, green leaves show an even higher level. 

The exception to this are orthologues to ELIPs and DEG7. ELIPs (early light inducible 

proteins) accumulate during etioplast to chloroplast transition and are suggested to temporarily 

bind free chlorophylls until antenna proteins are synthesized (Casazza et al., 2005; T. Sun et 

al., 2019). Since ELIP transcript and protein abundance has been shown to increase under rising 

light intensity they may also bind chlorophyll released as a result of photoinhibition, which 

would give them a photoprotective function (Lu, 2016). However, since the light-sensitivity 

phenotypes of mutant lacking ELIPs appear wild type-like the exact function of these proteins 

needs to be further investigated (Casazza et al., 2005). In either case due to the importance of 

ELIPs in early chloroplast development, their upregulation might suggest that white leaf sectors 

of cana1 mutant plants get stuck at a pre-thylakoid formation step. Since the stromal DEG7 is 

known to cleave photodamaged PSII proteins and is therefore suggested to be relevant for PSII 

repair (X. Sun et al., 2010) its upregulation may be indicative of persisting photodamage in 

white mutant leaf sectors. The overshoot of transcription in assembly factors in green leaf 

sectors of cana1 plants may be a compensation mechanism that finally enables development 

of properly assembled thylakoids. 

Proteomic experiments largely confirm results from RNAseq, with many photosynthesis-

related terms as enriched. Further on, I can find almost no difference between green M82 leaves 

and green cana1 leaves on a proteomic level. This fits to our theory, that the overcompensation 

of transcription allows normal thylakoid biogenesis, through adequate levels of photosystem 

proteins. The mutation in the CANA1 gene is located close to but not within the conserved zinc 

finger domain, which has been shown crucial for its catalytic activity (Muranaka et al., 2012). 

It seems therefore likely that the mutant protein retains some functionality and if enough total 

catalytic activity is available proper thylakoids can be assembled. This fits to a threshold model, 

proposed in the immutans (IM) variegation mutant (D. Wu et al., 1999). This model suggested 

a threshold of IM activity, needed for chloroplast biogenesis. However, due to the phenotype 
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of null im plants, which are still variegated and not albino, the model was updated to be 

dependent on a threshold of electron transport (D. Wu et al., 1999). A similar model suggests 

a threshold of FtsH complexes needed for normal chloroplast development (Aluru et al., 2006). 

In a similar way it could be possible that enough CANA1 activity is needed to build functioning 

thylakoids and I have reason to believe that this activity cannot be easily be compensated for 

by another protein. First of all the only orthologue of CANA1 seems to be a pseudogene. 

Secondly I could not find a clear candidate in the transcript or protein analysis of green leaf 

sectors of cana1 plants that would explain a compensation of CANA1 activity in these cells. 

Lastly, although anecdotally at this point, I may add that I have another allelic version of the 

same gene, which carries a point mutation within the conserved zinc finger domain and displays 

an even more severe phenotype. I also know that our collaborator generated several CRISPR-

mediated knock-out lines, one of which showed pale cotyledons but did not survive the seedling 

stage, suggesting that the protein is crucial for chloroplast development. 

In the metabolomics analysis I found a strongly changed metabolite profile in white leaves of 

mutant plants. I found several amino acids, like asparagine strongly induced in white leaves. 

Asparagine has been associated to several stress responses before (Lea et al., 2007). Tomato 

leaves accumulated large quantities of asparagine after bacterial infection (Pérez-García et al., 

1998). Meanwhile glucose pools were strongly depleted and transcripts for catabolic enzymes 

leading to its production were upregulated. As I would normally expect mature leaves to act as 

source organs, supplying carbon to other parts of the plant (Chang & Zhu, 2017), I could 

classify white leaves as sinks for carbohydrates, which seems plausible given their inability to 

photosynthesize properly. The change of the lipidomic profile is mostly characterized by a 

decrease of MGDGs, DGDGs and TAGs. The decrease of MGDGs and DGDGs can easily be 

explained by the fact that they make up large fractions of thylakoid membranes (Kobayashi, 

2016), which are likely abnormal in white leaves of mutant plants. In connection with that, the 

accumulation of phospholipids seems plausible, as MGDGs and DGDGs are synthesized over 

DAG, which is partly generated from phospholipids (J. Li et al., 2020). Therefore the drastic 

shift of the metabolic profile is likely an effect of the general phenotype and may be indicative 

of a source-sink shift and a general stress response. 

In summary I can say that the CANA1 protein is crucial for chloroplast biogenesis in tomato 

and likely acts in a similar way as has been found for SCO2 in Arabidopsis thaliana. The 

general difference between Arabidopsis thaliana and other plants like Lotus japonicus as well 

as tomato as I described it here, is that mutants show pale cotyledons and variegated true leaves 
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respectively (Zagari et al., 2017). In Arabidopsis thaliana it has been suggested that this effect 

is caused by two separate pathways for thylakoid formation; a SCO2-dependent transport 

vesicle-mediated pathway predominantly active during germination and a SRP proteins-

dependent pathway predominantly active in developed leaves (Tanz et al., 2012). In conclusion 

I can hypothesize that in tomato the vesicle-mediated pathway is still needed for thylakoid 

formation in mature true leaves. 

Unfortunately I cannot contribute much mechanistic understanding to the exact function of the 

protein disulfide isomerase investigated here and the in-depth investigation may exceed our 

specialized expertise on metablism.I am still also interested in how exactly the leaf variegation 

has caused the observed yield destabilization. I could hypothesize that the variegation pattern, 

which seems random at first sight may be actually influenced by external factors during the 

development of chloroplasts. Given that newly synthesized complexes of PSII seem to be 

especially vulnerable to photodamage in comparison to mature photosystems (Shevela et al., 

2019), it may be possible that other abiotic factors like for example drought stress could 

destabilize photosystem assembly. 

Despite the fact that the mutation of CANA1 of course truly affects yield canalization, in 

respect to drought stress one may still be cautious in calling CANA1 a true canalization gene. 

As pointed out previously, mutants may fail to construct a certain phenotype, which leads to a 

higher variance, but does not point to a mechanism for robustness (Félix & Barkoulas, 2015). 

Then again, it was precisely the fact that developmental processes seem to bring about a definite 

final state, that made Waddington to consider them canalized (Waddington, 1942). Either way, 

it is true that the total amount of photosynthetically active leaf surface area is always dependent 

on the concrete pattern and distribution of variegation and shows some plant-to-plant variation. 

In conclusion, I could say that a lack of CANA1 leads to a destabilization of the mean level of 

photosynthetically active area across the whole leaf surface area, which likely manifests in the 

observed yield variability. To test if an increased abundance of CANA1 can confer even 

stronger robustness to yield under normal or stress conditions, I generated transgenic tomato 

lines overexpressing CANA1 and are currently investigating them. 

Chloroplast biogenesis is a complex process influenced by many different factors. As embryos 

develop into seedling, light is perceived by photoreceptors and organelles need to coordinate, 

one must consider temporal, cellular and environmental factors that all affect chloroplast 

biogenesis (Pogson & Albrecht, 2011). Due to this multi-factorial scenario likely a higher 
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temporal and spatial resolution of the cellular processes is needed to get a better understanding 

of the exact mechanism of chloroplast biogenesis.
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Chapter 5: General discussion 

In this work, I have applied multiple approaches to investigate canalization of metabolism and 

yield. Previous chapters have described them individually and here I am discussing the results 

in synthesis. 

In the first project I calculated the CV of metabolic abundance in leaf tissue of Arabidopsis 

thaliana and Phaseolus vulgaris across different conditions. In the datasets for primary 

metabolites of Arabidopsis thaliana I generally found lower CVs for metabolites than for 

secondary metabolites of Phaseolus vulgaris, which may be a characteristic of secondary 

metabolism, but may also include a species and condition effect. CVs of closely related primary 

metabolites showed moderate to high correlation values. When using the CV as input for the 

mixed linear model in a genome wide association approach, I find several canalized metabolic 

QTL. Several candidate genes with known regulatory roles or unknown function, which may 

ultimately prove to be of a regulatory nature can be found. However, several metabolic 

enzymes that are either directly, more distantly or apparently not at all related to the respective 

metabolites can also be found. Together with the correlation pattern of metabolite CVs this 

may point to an inherent role of metabolism to its own stability. 

In an attempt to validate putative candidates for canalization found in a cmQTL mapping of 

metabolite variation of tomato pericarp across three seasons, I created CRISPR/Cas9-mediated 

gene-edited tomato lines. While several plants show no apparent abnormal phenotype, other 

lines show strong alterations in leaf pigmentation, fruit size and seed number or additional 

meristems. Unfortunately I was so far not able to generate enough offspring of the latter, to test 

the variation of metabolism across different conditions, but in comparison to wild type plants 

they already show strong metabolic shifts under standard conditions. Under the morphological 

inconspicuous mutants one line which has a gene-edit in pantothenate kinase, chosen as a 

putative candidate gene for malate variation, indeed shows a higher CV of its target metabolite 

across different watering conditions. Another mutant of a candidate gene for phenylalanine 

variation, the orthologue of which is known to be involved in amino acid transport in 

Arabidopsis thaliana, shows some tendency to an increase of phenylalanine CV but no 

statistically significant results. With both of these genes related to production or transport of 

metabolites, our second approach also points to at least some relevance of metabolism for its 

own stability. 
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In a third project I investigated an EMS tomato mutant with a variegated leaf phenotype, 

previously shown to have a reduced yield stability in response to drought stress. The 

orthologous gene is known from Arabidopsis thaliana, where it has been characterized as a 

protein disulfide isomerase crucial for thylakoid biogenesis. When comparing mutant green 

leaves to wild type green leaves, I can see an upregulation of transcripts of photosystem 

assembly factors in the former, while the proteomic profile looks wild type-like. I therefore 

hypothesize the need for a compensation for a partially impaired enzyme. If assembly factors 

are upregulated, cells may surpass a threshold of enzyme activity or stable protein complexes 

needed for thylakoid biogenesis and can develop proper chloroplasts. Similar versions of a 

threshold model have been suggested for other variegation mutants (Aluru et al., 2006; D. Wu 

et al., 1999). Although metabolism is strongly altered in white sectors of mutant leaves, it is 

likely an effect of the phenotype, which may alter lipid abundance through abnormal thylakoid 

membranes and carbon metabolism as an effect of their inability to photosynthesize. As to the 

yield stability sensitive to drought stress, I can hypothesize it as a function of the variation of 

total photosynthetically active leaf area. I have yet to design a proper experiment to test this 

hypothesis.  

Based on our results here I can hypothesize that besides previously anticipated regulatory genes 

(Alseekh et al., 2017), also enzymes or metabolism itself may play a significant role in 

canalization of metabolism. Together with other features, such robust architectures have been 

suggested as a key characteristic of robust biological networks and several examples are known 

(Whitacre, 2012). For example, in gene networks it is known that connectivity of network 

nodes gives rise to network robustness with most nodes of low connectivity and a few so-called 

hub nodes with high connectivity (Lachowiec et al., 2016). Similarly, it has been shown that 

metabolic networks, have many metabolites with low connectivity and a few hub metabolites, 

like ATP and NADPH, which participate in many reactions (Pfeiffer et al., 2005). Additionally, 

this metabolic network robustness is mediated by another feature of biological robustness, 

namely redundancy, which in metabolic networks occurs on two levels, via duplicate genes 

and alternative pathways (Blank et al., 2005; Whitacre, 2012). 

I should admit at this point that because of my specialized focus on and familiarity with 

metabolism, I may be biased towards finding metabolic genes as causative for metabolic 

canalization and cannot exclude, that I may have overlooked some genes of a specific function 

that could explain the variance. It would be interesting to direct my attention towards potential 

regulatory genes, that were originally found in the tomato cmQTL mapping and hold the 
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potential to increase metabolic robustness, without affecting the metabolite level (Alseekh et 

al., 2017), but which I have difficulties detecting here. As mentioned earlier a clear difference 

between this original approach and the cmGWAS approach presented here is the level and 

character of the variation. Although genetic variation within a population, which can be 

exploited by GWAS is suitable to connect genetic to phenotypic variation (Alonso-Blanco et 

al., 2016), it seems plausible that it can only utilize genetic variation already present in the 

population. Mapping populations such as the ILs used in the cmQTL mapping carry genetic 

variation introduced from the wild Solanum penellii relative of tomato (Eshed & Zamir, 1995), 

may however introduce novel genetic variation. In conclusion it could be possible that, 

although I do see some variation of metabolite CV between ecotypes in the GWAS dataset, it 

may only be explained by genetic variation residing on rare alleles. As I filtered out all alleles 

with a minor allele frequency lower than 0.05, in order to prevent additional confounding 

effects known to be caused by such alleles (Brachi et al., 2011), it is possible, that I missed a 

few interesting true positives. The observation that mean values of CVs were generally low for 

most primary metabolites in the GWAS datasets of Arabidopsis thaliana and also the data from 

the cmQTL validation experiment of tomato fruits and leaves, could also point to the fact that 

metabolism is inherently canalized across different environments. Following that hypothesis, 

it also seems plausible that some sort of disruption, could decanalize metabolism and enable 

finding the genetic determinants, like it was shown for the tomato fruit metabolism (Alseekh 

et al., 2017). Both for the cmQTL mapping in tomato fruits and for our cmGWAS approaches 

it may be that any results found in such mapping approaches may be species or tissue-specific 

and thus I may not be able to directly compare them to results from other organisms and organs 

(Alseekh et al., 2017). Fruits are for example generally considered a sink-tissue while mature 

leaves can be considered a source-tissue (Chang & Zhu, 2017), so metabolism could be 

differently canalized in these tissues. Then again, when reconsidering the cmQTL mapping in 

tomato, I should note that a few metabolic genes were found, which are directly related to their 

target compound, like phenylalanine ammonia lyase in the constrained cmQTL region of 

phenylalanine (Alseekh et al., 2017). In conclusion the presence of enzymatic genes directly or 

more distantly related to the respective target compound, emerges as a common feature at least 

for Arabidopsis thaliana and common bean leaves as well as tomato fruits. 

Regarding yield canalization, the gene I characterized here is important for the construction of 

a regular green leaf phenotype. As mentioned earlier there is no clear consensus in the 

community, whether mutants with such pleiotropic effects point to a robustness mechanism, 
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although in my own opinion it goes along the original canalization concept of Waddington, 

highlighting any developmental phenotype as normally canalized under wild type conditions 

(Waddington, 1942). Although I did not investigate the variation of metabolism across 

conditions in the cana1 mutant, metabolite levels were strongly altered, predominantly in the 

white leaf sectors. This alteration is most likely an indirect effect of the phenotype. It has been 

suggested however that hub genes may affect an organisms overall plasticity (Laitinen & 

Nikoloski, 2018). One such example of a potential hub gene is the molecular chaperone HSP90, 

which has been found to affect several morphological phenotypes in different eukaryotic 

species (Sangster et al., 2008). Since this highly connected and evolutionarily conserved 

protein keeps other proteins poised in a metastable state, it seems plausible, that the lack of it 

leads to an increase in phenotypic variation (Lachowiec et al., 2016; Queitsch et al., 2002). In 

conclusion, it could also be that the genes, which resulted in a strong phenotype when edited 

in the cmQTL validation experiment, may have some relevance for metabolic canalization, 

although I could not yet test this. Either way it may be difficult to disentangle cause and effect 

in such pleiotropic phenotypes. It has been suggested to investigate mean and variance along 

dose-response curves to interpret changes in variance (Félix & Barkoulas, 2015). To achieve 

different dosages of gene-expression, I could apply a similar CRISPR/Cas9 strategy as 

employed here, but instead of targeting the exons to create loss-of-function mutants, it may be 

possible to target the promoter region, to generate knock-down mutants with varying degree of 

transcript abundance (Elison et al., 2017). However, even more sophisticated methods could 

be used, which modulate gene expression by altering methylation status of promoter regions 

via a modified Cas9-system (Kang et al., 2008). Similarly, it would be interesting to see the 

effects of overexpressing genes with a putative function in canalization, to see if it can increase 

trait canalization beyond wild type levels. For the CANA1 gene I have generated 

overexpression lines and will soon analyze the first results. 

Of course it would be also interesting to explore possibilities of using other metrics suggested 

by literature (Laitinen & Nikoloski, 2018) to estimate variation across different environments. 

I was using the coefficient of variation here. Similarly, so-called mean-scaled variance, which 

is equal to the square of the CV can also be used to estimate variation (Pélabon et al., 2011). 

Although the CV has been suggested as an appropriate measure to estimate variation there may 

be confounding effects of the mean (Laitinen & Nikoloski, 2018). Also as I saw here, the CV 

is limited by the square-root of the number of values it is calculated over. In the specific case 

of the cmQTL validation it may be possible to also use the Levene’s transformed metabolite 
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values to test for variation as it was done in the study leading to cmQTLs (Alseekh et al., 2017). 

Further on Finlay-Wilkinson regression has been suggested and is already being used to study 

plasticity of plant phenotypes (Laitinen & Nikoloski, 2018; N. Liu et al., 2021). 

5.1. Conclusion 

The study of canalization or variation is a very interesting and important but also challenging 

endeavor, as I was hopefully able to show in this work. I gathered evidence pointing to both 

regulatory genes but even more obviously metabolic genes acting directly or indirectly towards 

canalization of metabolism. The relevance of metabolism for its own stability fits to previous 

observations of stability mediated by network structure and architecture. Canalization of yield 

may be mediated by a proper development of photosynthetic tissue. Although for metabolism 

and yield stability, further work needs to be done to confirm and mechanistically explain these 

theories, I hope that my work has made a small contribution towards a better understanding of 

trait canalization. 
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