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ABSTRACT

Business Process Management (BPM) emerged as a means to
control, analyse, and optimise business operations. Conceptual
models are of central importance for BPM. Most prominently,
process models define the behaviour that is performed to achieve
a business value. In essence, a process model is a mapping of
properties of the original business process to the model, created
for a purpose. Different modelling purposes, therefore, result in
different models of a business process. Against this background,
the misalignment of process models often observed in the field
of BPM is no surprise. Even if the same business scenario is con-
sidered, models created for strategic decision making differ in
content significantly from models created for process automa-
tion. Despite their differences, process models that refer to the
same business process should be consistent, i.e., free of contra-
dictions. Apparently, there is a trade-off between strictness of
a notion of consistency and appropriateness of process models
serving different purposes. Existing work on consistency ana-
lysis builds upon behaviour equivalences and hierarchical re-
finements between process models. Hence, these approaches are
computationally hard and do not offer the flexibility to gradually
relax consistency requirements towards a certain setting.

This thesis presents a framework for the analysis of behaviour
consistency that takes a fundamentally different approach. As a
first step, an alignment between corresponding elements of re-
lated process models is constructed. Then, this thesis conducts
behavioural analysis grounded on a relational abstraction of the
behaviour of a process model, its behavioural profile. Different
variants of these profiles are proposed, along with efficient com-
putation techniques for a broad class of process models. Using
behavioural profiles, consistency of an alignment between pro-
cess models is judged by different notions and measures. The
consistency measures are also adjusted to assess conformance
of process logs that capture the observed execution of a process.
Further, this thesis proposes various complementary techniques
to support consistency management. It elaborates on how to im-
plement consistent change propagation between process models,
addresses the exploration of behavioural commonalities and dif-
ferences, and proposes a model synthesis for behavioural pro-
files.






ZUSAMMENFASSUNG

Das Geschiftsprozessmanagement umfasst Methoden zur Steue-
rung, Analyse sowie Optimierung von Geschéftsprozessen. Es
stiitzt sich auf konzeptionelle Modelle, Prozessmodelle, welche
den Ablauf zur Erreichung eines Geschiftszieles beschreiben.
Demnach ist ein Prozessmodell eine Abbildung eines Geschéfts-
prozesses, erstellt hinsichtlich eines Modellierungsziels. Unter-
schiedliche Modellierungsziele resultieren somit in unterschied-
lichen Modellen desselben Prozesses. Beispielsweise unterschei-
den sich zwei Modelle erheblich, sofern eines fiir die strategi-
sche Entscheidungsfindung und eines fiir die Automatisierung
erstellt wurde. Trotz der in unterschiedlichen Modellierungszie-
len begriindeten Unterschiede sollten die entsprechenden Mo-
delle konsistent, d.h. frei von Widerspriichen sein. Die Striktheit
des Konsistenzbegriffs steht hierbei in Konflikt mit der Eignung
der Prozessmodelle fiir einen bestimmten Zweck. Existierende
Ansitze zur Analyse von Verhaltenskonsistenz basieren auf Ver-
haltensdquivalenzen und nehmen an, dass Prozessmodelle in
einer hierarchischen Verfeinerungsrelation stehen. Folglich wei-
sen sie eine hohe Berechnungskomplexitidt auf und erlauben es
nicht, den Konsistenzbegriff graduell fiir einen bestimmten An-
wendungsfalls anzupassen.

Die vorliegende Arbeit stellt einen Ansatz fiir die Analyse von
Verhaltenskonsistenz vor, welcher sich fundamental von existie-
renden Arbeiten unterscheidet. Zunédchst werden korrespondie-
rende Elemente von Prozessmodellen, welche den gleichen Ge-
schaftsprozess darstellen, identifiziert. Auf Basis dieser Korre-
spondenzen wird ein Ansatz zur Konsistenzanalyse vorgestellt.
Jener basiert auf einer relationalen Verhaltensabstraktion, dem
Verhaltensprofil eines Prozessmodells. Die Arbeit fithrt verschie-
dene Varianten dieses Profils ein und zeigt wie sie fiir bestimm-
te Modellklassen effizient berechnet werden. Mithilfe von Ver-
haltensprofilen werden Konsistenzbegriffe und Konsistenzmafse
fiir die Beurteilung von Korrespondenzen zwischen Prozessmo-
dellen definiert. Weiterhin werden die Konsistenzmafse auch fiir
den Anwendungsfall der Konformitidt angepasst, welcher sich
auf beobachtete Abldufe in Form von Ausfiihrungsdaten bezieht.
Dartiber hinaus stellt die Arbeit eine Reihe von Methoden vor,
welche die Analyse von Verhaltenskonsistenz ergénzen. So wer-
den Losungen fiir das konsistente Ubertragen von Anderungen
eines Modells auf ein anderes, die explorative Analyse von Ver-
haltensgemeinsamkeiten, sowie eine Modellsynthese fiir Verhal-
tensprofile vorgestellt.
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Part1

ALIGNMENTS OF PROCESS MODELS






INTRODUCTION

All models are wrong;
some models are useful.
— George E. P. Box [62]

USINESS is process-driven. Since process orientation emerged
B as an organisation principle [165, 100, 195, 406], the last dec-
ades have seen a remarkable uptake of Business Process Man-
agement (BPM). BPM has been established as a means to con-
trol, analyse, and optimise business operations. This trend is ob-
served independent of any business domain and organisational
background.

Conceptual models are at the core of BPM. Among them, pro-
cess models describe the behaviour that is performed to achieve
a business value [513]. Pragmatics is an inherent feature of every
conceptual model. Mapping and reducing the reality can be seen
as the elementary steps of model creation [251]. The purpose of a
model answers the question of what to map and what to reduce.
Against this background, the misalignment of process models
often observed is no surprise. Even if the same business scen-
ario is considered, models created for strategic decision making
differ in content significantly from models created for process
automation. The well-known ‘Business-IT-Gap’ [70, 186, 388] is
only the most prominent incarnation of this problem. The ques-
tion of how to assess consistency between behavioural models is
fundamental.

In this chapter, we approach this question by reviewing the
essentials of model creation in Section 1.1. Then, we focus on
drivers for the creation of process models in Section 1.2 and
the need to assess behaviour consistency between them in Sec-
tion 1.3. This gives rise to the characterisation of the problem
addressed by this thesis in Section 1.4. Section 1.5 summarises
our contributions. Finally, we outline the structure of this thesis
in Section 1.6.

1.1 THE ESSENCE OF MODELLING

Abstraction is an essential task in Computer Science. Models are
created to cope with the complexity of real-world phenomena
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and to establish a well-defined universe of discourse. Aho and
Ullman deduce a characterisation of Computer Science from the
notion of abstraction.

‘Computer Science is a science of abstraction, creating the
right model for a problem and devising the appropriate mech-
anizable techniques to solve it.”

— Alfred V. Aho and Jeffrey D. Ullman [14]

Despite their importance, well-established notions of a model
and an abstraction are missing even in a rather narrow domain,
such as model-driven engineering [251, 208, 252]. The ques-
tion of what constitutes a model has been debated extensively,
see [251, 208, 252, 53, 415, 289, 52]. The following three features
that are rooted in the model theory by Stachowiak [430] are com-
monly adopted for models in Computer Science, cf., [251, 289].

Mapping feature. A model is grounded on an original, may it be
an object or a phenomenon. The original is mapped to the
model. The original may be non-existent. It may be planned,
suspected, or fictitious [289].

Reduction feature. A model is a reduced representation of the
original. Only a selection of properties of the original is
mapped to the model.

Pragmatics feature. With respect to a certain purpose, the model
can be used as a replacement for the original. In other words,
the model is created for a dedicated purpose.

These features give rise to a generic characterisation of abstrac-
tion as the act of model creation. That is, abstraction is a projec-
tion applied to an original. The projection reduces the amount of
information by filtering properties of the original [251, 227]. The
question of what to project, in turn, is answered by the purpose
of the model, i.e., its pragmatic feature. The purpose guides the
selection and granularity of properties of the original that should
be contained in the model. Hence, the quality of a model is de-
termined by its ability to answer certain questions regarding the
original [278]. If the model is adequate, any deviation between
the answers obtained from the model and those given by the
original are of an acceptable extent [53, 251]. A model may be
imprecise or even incorrect with respect to certain properties of
the original. Still, it may be adequate, if conclusions drawn on
the original are valid within the required level of confidence.
The notions of a model and an abstraction are illustrated by
Figure 1. Taking the example of a space shuttle orbiter, the ori-
ginal is referred to by the upper picture in Figure 1. Below, there
are two models of the orbiter. Both are derived by abstraction
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Original

Abstraction Abstraction

Model Level

Figure 1: The essence of modelling.

from the original object. Apparently, both models provide a
simplistic view on the original. Innumerable properties of the
original have not been mapped to the models. Nevertheless,
both models are adequate regarding a certain purpose. The toy
model of the orbiter in the lower left corner of Figure 1, for in-
stance, allows for moving the ailerons at the wings. Mapping
this property from the original to the model has been considered
to be relevant for a toy model. The construction plan in the lower
right corner of Figure 1 has been created for a different purpose.
It allows for drawing conclusions on the spatial dimensions of
the orbiter. Besides its simplicity, this example illustrates the im-
portance of pragmatics when creating a model from an original
object or phenomenon by abstraction.

1.2 DRIVERS OF PROCESS MODELLING

Process orientation is an organisational principle that has its
roots in business administration [165, 406] and organisational
redesign [100, 195]. It emphasises business processes — a col-
lection of activities performed in coordination to realize a busi-
ness goal — as the source of value creation. Business Process
Management (BPM) comprises means to support the design, ad-
ministration, configuration, enactment, and analysis of business
processes [513]. BPM relies on explicit representations of busi-
ness processes in order to implement these operations. To this
end, process models are commonly used. They describe a col-
lection of activity models along with their logical and temporal
order [40, 513].

Following the discussion of abstraction in the previous sec-
tion, process models are an abstraction of business operations,
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Original

Abstraction Abstraction

Model of Model of

Model Level

Figure 2: The essence of process modelling.

cf., Figure 2. There is a mapping of the essential properties of
a business process, which may be planned, suspected, or ficti-
tious, to a process model. Further, process models are a reduced
representation of a business process. Activities are captured at
a certain level of granularity and contextual information such as
involved roles, data artefacts, or information systems may be ex-
plicitly selected to be captured in the process model. Again, we
observe the pragmatic feature of a model. The purpose of the
process model answers the question of what to map and what
to reduce when capturing business processes.

Process models may be created for manifold purposes. In
the remainder of this section, we review applications of process
models. This overview does not aim at completeness or the iden-
tification of orthogonal application areas. Instead, it shall illus-
trate the spectrum of potential applications of process modelling
by some prominent examples.

Process Understanding & Communication. Process models are cre-
ated to document the way business operations are conduc-
ted. The aim is to arrive at a consistent understanding of
these operations and improve the communication of busi-
ness processes among different stakeholders [513, 40]. Col-
laboration within a large organisation requires a common
understanding of the business processes. Such a common
understanding is hindered by the different backgrounds of
process stakeholders. From the field of data schema model-
ling, it is known that ‘different user groups or designers adopt
their own viewpoints in modelling the same objects in the applic-
ation domain’ [34]. Process models are used as a means to
create a shared understanding and aim at bridging the local
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views of particular stakeholders on business processes. In
addition, process models may also be used in the design of
organisational positions or for employee training. We sum-
marise that process models created for this purpose can be
seen as artefacts for the knowledge management within an
organisation. As indicated by a recent Delphi study [218],
improved understanding and communication are among the
most prominent perceived benefits of process modelling.

Process Improvement. Process modelling is frequently motivated
by process improvement [100, 200]. According to the afore-
mentioned study [218], it is perceived to be the top benefit
of process modelling in practise. There is a large spectrum
of criteria that may be targeted when improving business
processes, such as cost or cycle-time reduction, or increased
quality of products or services. Process models are used at
different stages of process improvement initiatives. For in-
stance, they are leveraged for measuring the performance
of business processes to identify bottlenecks or quality prob-
lems. Further, process redesign efforts are guided by process
models depicting the as-is state and those that capture the
to-be state of a business process [377].

Process Simulation. To forecast the impact of changes in internal
or external parameters on business operations, business pro-
cesses are simulated [296, 403]. Process models that depict
the current or intended business processes are annotated
with simulation relevant data, such as execution costs, ex-
ecution times, process instantiation frequencies, or the avail-
ability of resources. Then, process simulation allows conclu-
sions to be drawn on the performance of a business process
before it is implemented or changed.

Process Automation. Process models are used as blueprints for
the design of process-aware information systems [134]. To
this end, process models capture business requirements that
have to be met by the supporting IT-infrastructure. As such,
they are intended to bridge the gap between business re-
quirements and system specifications [70, 186, 388]. Process
models are also used for process automation using workflow
technology [270, 439]. Workflow engines take a process de-
scription as input and execute it by enforcing the predefined
behaviour. Hence, a process model may define a concrete
technical orchestration of services realising the business pro-
cess.

Process Certification & Process Compliance. Certification and com-
pliance analysis of business operations is often conducted in
a process-oriented way. Various certification initiatives eval-
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uate an organisation based on its processes. As an example,
the ISO-goo1 standard’ relates to the quality management
system of an organisation and explicitly requires the docu-
mentation of business processes. Although not required for
certification, the ISO-goo1 recommends capturing business
processes by process models. Recently, techniques emerged
to conduct process-oriented risk management [237, 537] and
compliance analysis [384, 3, 27]. Process models are used
to structure risk analysis and to check whether operations
adhere to policies, internal directives, and external regula-
tions. For instance, the Control Objectives for Information
and related Technology (COBIT) framework® aims at man-
aging risks and adhering to compliance demands using a
process-oriented approach.

Business to Business (B2B) Integration. In recent years, the focus
of BPM shifted from a single organisation to cross-organisa-
tional integration, driven by information systems. Organisa-
tions outsource single business activities or even complete
business processes, which results in distributed value chains
that need to be coordinated [78]. Such coordination is typic-
ally process-driven. Process models are used to define the in-
terface and the protocol followed by different organisations
as part of their collaboration. For instance, the RosettaNet3
consortium standardised business processes between trad-
ing partners in the electronic commerce sector.

As stated above, this overview of drivers for process modelling
cannot be complete. Still, it illustrates that there is a whole spec-
trum of drivers for process modelling, from employee training to
B2B integration. The variety of purposes for process modelling
can be assumed to have a dramatic influence on the way process
models are created.

1.3 DRIVERS OF CONSISTENCY ANALYSIS

The drivers of process modelling reviewed in the previous sec-
tion cannot be organised in a strict top-down fashion. Hence,
it is unrealistic to assume that the corresponding process mod-
els can always be derived through hierarchical refinement. Con-
sequently, and most likely, there will be a variety of differences
between models. Depending on the purpose of model creation,
there is a huge difference in the appropriate level of abstraction
of a business process, as well as the assumed perspective. As

1 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=46486

2 http://www.isaca.org/cobit

3 http://www.rosettanet.org/
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Figure 3: Consistency analysis of process models.

discussed for models in general, every process model has to be
appropriate — it must incorporate a reasonable level of detail, fo-
cus on certain properties of a business process, and neglect ir-
relevant aspects. Arguably, mismatches, i.e., differences in the
model structure or the specified behaviour, are in the nature of
process models that serve different purposes. Avoidance of such
mismatches may not only be impossible, it may also be unnat-
ural and counter-productive. That is to say that a resolution of
these mismatches may impact the adequacy of a process model
in a negative manner.

We focus on the purpose of modelling as the source of differ-
ences between process models that represent (overlapping parts
of) the same business process. However, differences may also
stem from other factors, e. g., related to the act of model creation.
The modelling methodology followed or the expressiveness of
the chosen modelling language may cause differences between
related process models, see [31] for factors that influence the
modelling process. Nevertheless, we emphasise that even con-
trolling all of these factors will not avoid the aforementioned
mismatches if process models are created for different purposes.

We illustrate differences between related process models with
a simple lead-to-order process. In essence, this process involves
establishing contact with a customer, submitting a quote, and
handling the customer’s response. The process models in Fig-

9
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ure 3 illustrate that the way this process is represented differs
with respect to the modelling purpose. The upper model may be
used to illustrate the overall processing and to clarify organisa-
tional responsibilities. This model focusses on the major activit-
ies and decision points of the process. The lower model provides
a more fine-grained view of the operations. It aims at capturing
technical aspects, such as different instantiation scenarios and
the treatment of exceptional cases. This model may be used to
implement and configure supporting information systems.

Granted that there are multiple process models that capture
the same business process, their consistency has to be analysed.
The need to have consistent representations of business opera-
tions is inherent. Imagine that process models used as means of
communication are inconsistent with process models created for
process automation. Then, the benefit of creating a shared un-
derstanding among process stakeholders with the former model
is of limited use, as it deviates from the way operations are sup-
ported with information systems. We concretise drivers for con-
sistency analysis with the following use cases.

Validation. One process model is utilised as a specification. A
second, often more fine-grained model is validated against
the specification. This scenario is observed in the context
of business-centred organisational process models and im-
plementation-centred technical process models, see Figure 3.
However, validation is not restricted to such a setting. A
different example would be the validation of a model that
captures the non-technical process implementation in a cer-
tain organisational environment against a model represent-
ing compliance requirements that have to be obeyed.

Inter-Model Analysis. Process optimisation often relies on an ana-
lysis across multiple process models. Aspects that are cap-
tured in different models have to be related to each other to
draw conclusions on the overall processing. For the scenario
depicted in Figure 3, information on the actual processing
(e.g., processing times) obtained for the lower model, may
be related to the roles defined in the upper model.

Change Propagation. Business processes and, therefore, process
models continuously undergo changes. To keep different
representations of business operations in sync, changes ap-
plied to one process model may require updating all re-
lated models accordingly. Against the background of pro-
cess models assuming different abstraction levels and per-
spectives, automatic change propagation appears to be un-
realistic. Still, the identification of process models or pro-
cess model regions that are affected by a change would be a
major benefit.
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Addressing these use cases requires means for correlating ele-
ments of different process models. Such correspondences are es-
tablished between process model elements, or sets thereof. They
have to respect certain consistency criteria to be exploited for
model validation, analysis, or change propagation.

1.4 PROBLEM STATEMENT

This thesis takes the diverging drivers of process modelling and
the need to assess the consistency of related process models as
a starting point. Our focus is on the control flow perspective.
Even though state-of-art process modelling goes beyond pure
control flow specification, process models, first and foremost,
are behavioural models. The definition of a coordination of
activity execution is the very core of a process model. Hence,
it is reasonable to approach consistency analysis from the con-
trol flow perspective before taking additional perspectives, e. g.,
data flow modelling or resource assignments, into account. Fur-
ther, we concentrate on process models that are defined follow-
ing a procedural modelling paradigm. Recently, approaches to
process modelling that break with this paradigm have emerged,
e.g., declarative [452, 462, 327] or artefact-centric process model-
ling [89, 54]. To date, there has not been any significant uptake
of these approaches in practise [102, 210], though.

We focus on process models that represent the same business
process. Deciding whether two process models refer to the same
business process may not be straight-forward. The question of
what constitutes a business process — when is it initialised and
when does it complete? - is influenced, among other factors,
by the drivers of process modelling. Hence, it is likely that re-
lated process models are only partially overlapping in terms of
their coverage of business operations. However, this aspect is
of secondary importance for our work. When referring to pro-
cess models that capture the same business process, therefore,
we do not assume a unique characterisation of initialisation and
completion of the business process.

We phrase the research question of this thesis as follows.

How TO ASSESS BEHAVIOUR CONSISTENCY FOR PROCESS MODELS
CAPTURING THE SAME BUSINESS PROCESS?

According to Zelewski, consistency of process models refers to
a freedom of contradictions [533]. Still, a concrete operationalisa-
tion of this definition remains challenging. Evidently, there is a
trade-off between strictness of a consistency notion and appropri-
ateness of process models serving different purposes. A strict no-
tion, which requires all information of one model to be present

11
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in another model as well, will result in models that are inappro-
priately tailored for their different purposes.

The manifold drivers for process modelling and consistency
analysis suggest that any criterion to assess behaviour consist-
ency must be defined in a relativistic manner. A single criterion
cannot satisfy the requirements for behaviour consistency in all
contexts. Such a relativistic angle is also acknowledged in the
literature on behaviour equivalences.

‘When semantic equivalences are used in the design of con-
current systems, or for verification purposes, they should be
chosen in such a way that two system descriptions are con-
sidered equivalent only if the described behaviours share the
properties that are essential in the context in which the sys-
tem will be embedded. It depends on this context and on the
interests of a particular user which properties are essential.’

— Robert J. van Glabbeek [475]

It is remarkable that the relevance of the context and the interests
of particular users, i.e., the purpose of applying an equivalence
notion, are emphasised even for the design and verification of
concurrent systems. In system design, a set of models jointly
specifies the system to be built. One would assume that the
consistency requirements are much stricter than for the case of
process models serving different purposes. Therefore, the ana-
lysis of related process models, a fortiori, requires a relativistic
assessment of behaviour consistency.

To narrow the scope of this thesis, we elaborate on require-
ments that shall be met when answering the research question.

Flexible Assessment. Behaviour consistency between related pro-
cess models has to take a relativistic angle. There have to
be means to adapt the consistency criterion towards a con-
crete setting or to interpret it against the background of the
considered models. A single Boolean criterion cannot be as-
sumed to be suited for all of the aforementioned contexts.
Instead, fine-granular criteria are needed.

Meaningful Feedback. Closely related to flexibility in the consist-
ency assessment is the need to provide meaningful feedback.
Given a consistency criterion, traceability of the consistency
assessment must be ensured. Sources of inconsistency have
to be identified and isolated to be able to interpret the con-
sistency result.

Efficient Computation. Change is the rule not the exception when
managing business operations. Business processes are con-
tinuously changing. Hence, models representing these pro-
cesses are also changing frequently, which impacts on the be-
haviour consistency between them. A consistency criterion
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that is computed efficiently supports these changes. Consist-
ency analysis may be conducted in an online fashion and
helps to guide the adaptation of process models.

1.5 CONTRIBUTIONS

To answer the research question formulated in the previous sec-
tion, this thesis makes the following contributions.

(1) Identification of Complex Correspondences

Analysis of behaviour consistency of related process models re-
quires the identification of corresponding model elements. This
problem closely relates to a large body of work on data schema
and ontology matching. The identification of complex corres-
pondences — not single elements but sets of elements correspond
to each other — has been largely neglected in this research area,
though. For process models, there has not been any work in
this direction. Our contribution is a framework that defines a
system architecture for the definition of matchers to derive com-
plex correspondences between two process models. Besides the
architecture, we introduce a set of basic matching components
used to assemble such matchers.

(2) Definition of Behavioural Profiles

Our approach to behaviour consistency is based on an abstrac-
tion of the behaviour of a process model, the behavioural profile
of the model. Such a profile captures behavioural characteristics
by relations between pairs of activities. Our contribution is the
definition of different variants of these profiles for a generic be-
havioural model, i.e., net systems. Hence, behavioural profiles
induce a set of relational semantics for behavioural models.

(3) Computation of Behavioural Profiles

The abstraction of a behavioural profile can be computed effi-
ciently for a broad class of process models. For sound free-choice
WF-systems, we present formal results that allow for deriving be-
havioural profiles from the model structure in low polynomial
time. We also show how structural decomposition techniques
are applied to speed up the computation and support partial
computation of behavioural profiles. These results are comple-
mented by an approach to the computation of behavioural pro-
files from a complete prefix unfolding, which is computationally
hard but applicable in a more general case. Hence, our contribu-
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tion is a set of techniques for the computation of behavioural
profiles tailored towards dedicated classes of process models.
We also present an extensive experimental evaluation of these
techniques using three model collections from industry.

(4) Consistency Analysis of Process Models

Using the notion of a behavioural profile, we present a frame-
work for the analysis of behaviour consistency of process models.
Starting with different Boolean notions of behaviour consistency,
we elaborate on how to quantify behaviour consistency, how to
support behaviour consistent change propagation between pro-
cess models, and how to explore behavioural commonalities and
inconsistencies. As part of that, we present a set algebra for
behavioural profiles and an approach to model synthesis from
behavioural profiles. Hence, our contribution is a set of integ-
rated techniques to manage behaviour consistency in a holistic
way. Our consistency criteria have been validated empirically
against the consistency perception of process modelling experts.
Further concepts have been evaluated in a series of experiments
using process models from industry.

(5) Consistency Analysis of Process Logs

All of the above contributions consider behaviour consistency
on the level of process models. Any conclusions drawn from
these results neglect the way business operations are actually
conducted, i.e., how well a process model represents these op-
erations. To take this aspect into account when interpreting con-
sistency results between process models, we show how to assess
consistency, aka conformance, of process logs that capture the
observed execution of a process. This approach is grounded on
the same formalism used to assess process model consistency —
we leverage behavioural profiles for conformance analysis. We
also report on findings from an evaluation of this approach in
an industrial case study.

1.6 STRUCTURE OF THIS THESIS

We conclude this chapter with an overview of the structure of
this thesis. Figure 4 illustrates the structure. The thesis con-
sists of three parts. Although the order of parts and chapters
follows upon the procedure to assess behaviour consistency, cer-
tain chapters may be skipped in a first reading. We clarify de-
pendencies between chapters in the remainder of this section.
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Part I : Alignments of Process Models

The first part focusses on preliminaries for any kind of behaviour
consistency analysis. Chapter 2 gives on overview of common
process description languages and introduces the formal frame-
work for our work, i.e., the formalism of net systems. Readers
familiar with these languages and basic notations of net systems
may skip this chapter.

Chapter 3 deals with the construction of an alignment, the
identification of correspondences between process models. We
clarify terminology, review literature on model matching, and
introduce the ICoP framework for the identification of complex
correspondences between process models. Assuming an intuit-
ive understanding of the concept of a correspondence relation,
readers interested only in the behavioural analysis may skip this
chapter.

Part 11 : Foundations of Behaviour Consistency

The second part introduces the foundations for our approach
to behaviour consistency. Chapter 4 presents behavioural pro-
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files as an abstraction of the behaviour defined by a process
model. As such, this chapter provides the basis for all remaining
chapters. In Chapter 5, we introduce techniques for the compu-
tation of behavioural profiles. The separation of the definition
of behavioural profiles in Chapter 4 from the computation tech-
niques in Chapter 5 allows the reader to skip the formal ground-
ings of the derivation of behavioural profiles. In contrast to the
definitions in Chapter 4, the techniques proposed in Chapter 5
are not required to understand the analysis introduced in the
third part of this thesis.

The description of behavioural profiles and their computation
in the second part is largely independent of our use case of beha-
vioural analysis of related process models. Behavioural profiles
have also been leveraged for further use cases, which we briefly
discuss in the conclusions of this thesis. Hence, the foundations
laid by Chapter 4 and Chapter 5 are independent of any use case
for the application of behavioural profiles.

Part 111 : Consistency Analysis

The third part focusses on the actual consistency analysis based
on behavioural profiles. First, Chapter 6 proposes different no-
tions of behaviour consistency that are based on behavioural pro-
files. We also present an empirical evaluation of these notions
with respect to the consistency perception of process modelling
experts. Chapter 7 extends these results by focussing on the
quantification of behaviour consistency. We propose measures to
assess the quality of an alignment and elaborate on techniques
to propagate changes between aligned process models that aim
at preserving the quality of the alignment. Once the alignment
quality has been assessed, further analysis on the behavioural
commonalities and differences is addressed in Chapter 8. We in-
troduce a set algebra for behavioural profiles to compute with be-
haviour and elaborate on the synthesis of a process model from
a behavioural profile. Chapter g turns the focus on conformance
between a process model and the observed execution of a pro-
cess. We introduce conformance measures based on behavioural
profiles and elaborate on techniques for the identification of root
causes of non-conformance.

Finally, Chapter 10 concludes this thesis. We give a summary
of our results and discuss their relevance in a broader context.
Further, we reflect on limitations and give an outlook on direc-
tions for future research.
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PROCESS models are explicit representations of business pro-
cesses. On an abstract level, a process model describes a
collection of activity models along with their logical and tem-
poral order [40, 513]. The act of creating a process model is in-
fluenced by a modelling technique. Following the terminology
of [312], a modelling technique comprises a modelling language
and a modelling method. The former provides a syntax (also
called grammar), semantics, and a notation for the creation of
process models, cf., [485, 199]. The latter defines a methodolo-
gical procedure in which the modelling language is used [485].
In this chapter, we review basic modelling languages and in-
troduce the formal framework used throughout this thesis. In
Section 2.1, we focus on process description languages commonly
used in practise. A complete discussion of these languages is
beyond the scope of our work. However, by introducing four
exemplary process description languages, we explicate common-
alities and differences in their syntax, semantics, and notations.
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In Section 2.2, we turn the focus on Petri net systems, a form-
alism for the definition of behaviour. Since this formalism well-
investigated and conceptually close to common process descrip-
tion languages, it is often used as the basis for behavioural ana-
lysis of process models. All results in the remainder of this thesis
are obtained for and presented with net systems. We elaborate
on the link between common process description languages and
net systems in Section 2.3. We conclude this chapter with a dis-
cussion in Section 2.4.

2.1 PROCESS DESCRIPTION LANGUAGES

We review four process description languages frequently used
in practise, the Business Process Model and Notation (BPMN),
Event-Driven Process Chains (EPCs), UML Activity Diagrams
(UML ADs), and the Web Service Business Process Execution
Language (BPEL). There exists a multitude of process descrip-
tion languages, so that we cannot provide an exhaustive over-
view. We selected the aforementioned languages since they are
widely used [102, 210], and nicely illustrate certain differences
that stem from their primary field of application. For instance,
EPCs have their roots in business administration, whereas UML
ADs fit well into the UML framework with a focus on software
engineering. Hence, the usage of one language or the other
is closely related to the purpose of process modelling, cf., Sec-
tion 1.2. All discussed languages have in common that they
follow a procedural modelling paradigm. This paradigm has
been questioned for certain scenarios, which led to alternative
approaches to process modelling, such as declarative process
modelling languages [452, 462, 327] or artefact-centric modelling
approaches [89, 54]. Since these approaches have not yet seen a
remarkable uptake in practise [102, 210], we focus on procedural
process description languages.

Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a widely
adopted standard for modelling business processes. It has been
proposed by the Business Process Management Initiative (BPMI)
and was later standardised by the Object Management Group
(OMG)". Recently, OMG published the version 2.0 of the lan-
guage [2].

BPMN 2.0 introduces different types of process diagrams to
model business processes. High-level interactions between or-
ganisations are captured using conversation diagrams that define

1 http://www.omg.org/
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communications, a collection of message exchanges, between
participants. Interactions are modelled in detail using choreo-
graphy diagrams, which specify a protocol as the process of mes-
sage exchanges. Finally, the internal business processes of an
organisation are modelled using collaboration diagrams. We focus
on this type of model. It can be seen as the core of BPMN to
capture business processes. The diagrams that assume an inter-
organisational view have been presented only recently.

Collaboration diagrams provide a comprehensive set of ele-
ments to model business processes. A step as part of business op-
erations is captured by an activity. It may be atomic, then called
a task, or hierarchically structured, then referred to as a sub-
process. Further, BPMN introduces event constructs to model
the occurrence of real-world events. Those are classified along
two dimensions, their event type and their trigger. The former
relates to their role in the process, e.g., to start a process or to
interrupt a subprocess. The latter refers to the cause of event
occurrence, e.g., the reception of a message or the expiration
of a timer. BPMN also introduces pools and lanes to associate
activities to roles, and data objects to illustrate data flow in the
process.

A BPMN collaboration diagram has a graph structure. The
logical and temporal order between activities and events is mod-
elled using sequence flows. Control flow routing that goes bey-
ond sequencing is implemented by explicit gateways, which split
and join the control flow. Depending on its type, a gateway real-
ises exclusive disjunctive (XOR), inclusive disjunctive (OR), or
conjunctive (AND) semantics. Support for more advanced rout-
ing behaviour is achieved by complex and event-based gateways.
Further, BPMN control flow routing for exception handling and
compensation is grounded on event-based mechanisms.

With version 2.0, BPMN provides a complete, albeit informal,
characterisation of execution semantics for all model elements.
This characterisation is inspired by Petri nets and assumes a no-
tion of token flow. In previous versions of BPMN, there have
been issues in the definition of execution semantics, which led to
various formalisation efforts [125, 526, 57, 484]. This work partly
influenced the definition of execution semantics for BPMN 2.0,
which for instance, adopts the semantics proposed in [484] for
the converging OR gateway. Besides execution semantics, the
BPMN 2.0 specification also defines a serialisation format and
clarifies the way data and service bindings are established. Thus,
BPMN collaboration diagrams may be defined such that the pro-
cess is directly executed using a workflow engine.

An exhaustive discussion of BPMN modelling elements and
the language’s capabilities is beyond the scope of our work. For
introductions to BPMN, we refer the reader to [513, 515, 18, 164].
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Also, the Berliner BPM-Offensive published an overview of the
notational elements as a poster? that is publicly available.

We illustrate the notation used for BPMN collaboration dia-
grams with an example. Figure 5 depicts a lead-to-order pro-
cess. In essence, this process involves establishing contact with
a customer, submitting a quote, and handling the response from
a potential customer. BPMN activities are depicted by rounded
rectangles, events are modelled by circles potentially with a sym-
bol highlighting the event trigger, and diamond shapes repres-
ent gateways. For the latter, a cross represents exclusive dis-
junctive behaviour, a plus sign represents conjunctive behaviour.
Figure 5 also illustrates some advanced BPMN concepts. For in-
stance, the gateway represented by a diamond that comprises a
pentagon models an event-based decision. It realises the deferred
choice pattern, cf., [456]. At this point, the process reacts to an
external decision — the customer replies positively or negatively,
or there is a time-out.

Event-Driven Process Chains

Event-Driven Process Chains (EPCs) [231, 336] are another pop-
ular notation for modelling business processes. They are of-
ten used to capture process models for communication. EPCs
are one puzzle piece in the Architecture of Integrated Informa-
tion Systems (ARIS) framework [405] for process management,
these days promoted by Software AG3. This framework provides
means to integrate organisational, functional, data, and service
modelling. The different dimensions are glued together by pro-
cess models in EPC notation.

EPC process models are a graph comprising functions and
events in alternating order. Functions describe elementary busi-
ness actions. Events capture the process state and, therefore,

2 http://www.bpmb.de/poster
3 http://www.softwareag.com/aris/
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Figure 6: A model of a lead-to-order process depicted as an Event-
Driven Process Chain.

define the state before or after a function is executed. Control
flow dependencies are expressed using directed flow edges. Sim-
ilar to BPMN, control flow routing is realised by a dedicated
type of nodes, split and join connectors. Those are typed to rep-
resent an exclusive disjunction (XOR), an inclusive disjunction
(OR), or a conjunction (AND). The alternating order of functions
and events induces certain syntax rules that have to be respected
when building an EPC graph. For instance, an XOR split must
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not be followed by functions, but by events. A formal definition
of EPC syntax can be found in [313, 312].

To realise the integration with the organisational, functional,
data, and service modelling within the ARIS framework, ex-
tended EPCs (eEPCs) allow for annotating functions with ad-
ditional information, such as organisational units, data objects,
and information systems. Extended EPCs also introduce process
interfaces to structure a process model hierarchically.

There exist various formalisations of execution semantics for
EPCs [116, 236, 472, 312]. As for BPMN, semantics of the conver-
ging OR connector have been in the centre of interest. A com-
parison of EPC semantics can be found in [312]. Further, instan-
tiation semantics of EPCs may not be well defined if there are
multiple events without predecessors. These issues have been
investigated in detail in [109], a solution to identify sound in-
stantiation scenarios is described in [361].

We illustrate the EPC notation with the example depicted in
Figure 6. Functions are denoted by a rectangular shape, events
are visualised by hexagon shapes, and connectors are modelled
by circles that contain a marker indicating the connector type.
Again, the model captures a lead-to-order process. Even though
the modelled process is similar to the one captured in Figure 5
using BPMN, both models are not semantically equivalent. The
deferred choice pattern can only be approximated with an EPC
model. For the sake of simplicity, there are also differences in
how both models capture the negotiation phase.

The example illustrates that the basic constructs of EPCs have
corresponding elements in BPMN. This allows for transforma-
tions between models that use a shared set of concepts in many
cases. However, both languages also show syntactical differ-
ences, e.g., EPCs are bipartite graphs, and subtle semantic dif-
ferences, e. g., EPC events may represent states, whereas BPMN
events are associated to triggers. Transformation challenges that
stem from these differences have been investigated in [216, 114].

UML Activity Diagrams

The Unified Modeling Language (UML) [1] is a framework for
multi-perspective modelling in the context of object oriented
software engineering. Standardised by the Object Management
Group (OMG)4, UML is widely recognised and established for
the design of software systems. It is used in conjunction with
many software development methods and can be seen as the
de-facto standard in industry.

UML introduces 14 different types of models to support the
development of a software system. Structure diagrams, such as

4 http://www.omg.org/
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class diagrams, component diagrams, or object diagrams, are
used to model the static structure of a system — the system archi-
tecture. Behaviour diagrams, in turn, capture the system beha-
viour — the functionality of a system. The spectrum of behaviour
diagrams ranges from use case diagrams that model the system
functionality based on actors and their goals to sequence dia-
grams that capture the communication between objects through
sequences of messages.

We focus on UML Activity Diagrams (UML ADs), which are
primarily used to model operational business processes. An
Activity Diagram is a graph that comprises activities to depict
the essential steps of processing. Atomic activities are referred
to as actions. Activities may be assigned to roles via a swimlane
concept and objects are used to represent the processed data. Se-
quencing of activities is encoded by control flows, decision and
merge nodes model exclusive disjunctive splitting and merging
behaviour, fork and join nodes implement conjunctive behaviour.
There are initial nodes and final nodes to depict the initialisation
and completion of a business process. Exception handling is en-
coded by interruptible regions and interrupting edges.

As for BPMN collaboration diagrams, execution semantics of
UML ADs are defined informally and assume a notion of token
flow. In contrast to BPMN collaboration diagrams and EPCs,
UML ADs emphasise the coupling of control flow and data flow
aspects. Besides control flow, object flow is modelled between
activities, which incorporates objects to represent the data, pins
to model input and output data dependencies of activities, and
data streaming mechanisms. Further, the execution semantics
distinguishes control token and data tokens. Both token types
are handled differently by certain constructs. For instance, a
join node that merges parallel branches forwards all data tokens
separately, but synchronises control tokens.

Execution semantics of UML ADs have been (partially) form-
alised using abstract state machines [58]. Other work [146] relies
on the Statemate semantics of statecharts [198]. Further, there ex-
ists a partial formalisation using coloured Petri nets [431]. Still,
there is a notable gap between various high-level constructs of
UML ADs and Petri net concepts [433].

An introduction to the concepts of UML and their application
to business modelling, including but not restricted to Activity
Diagrams, can be found in [143]. We illustrate the notations
of UML ADs with Figure 7. Actions are denoted by rounded
rectangles. The initial node is depicted by a filled circle, the
final node is captured by a filled circle framed by another circle.
Decision and merge nodes are visualised by diamonds, fork and
join nodes by filled bars. Again, the model depicts a lead-to-
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order process. It is similar, but not semantically identical to those
captured earlier in BPMN and as an EPC.

The relation between BPMN process models in terms of collab-
oration diagrams and UML Activity Diagrams has been invest-
igated in [86]. This work also introduces a basic model-to-model
transformation from BPMN to UML ADs.

Web Service Business Process Execution Language

The Web Service Business Process Execution Language [17], or
BPEL for short, has been standardised by the OASIS consor-
tium>. BPEL is an XML based language for the description of
business processes that is grounded on web service interactions.
Any functionality is imported and exported solely through web
service interfaces. Since BPEL models coordinate service interac-
tions, BPEL is often referred to as an orchestration language.

There are two kinds of BPEL process models. Non-executable
abstract BPEL processes focus on the business protocol. They
provide a partial specification and hide operational details. Ab-
stract BPEL processes are typically applied as role-models for
process implementations and serve as contracts between differ-
ent participants in a business interaction. Besides abstract pro-
cesses, there are fully-specified executable processes. Those cap-
ture the behaviour of a particular participant of a business inter-
action. Executable BPEL processes are intended to be deployed
and executed on a workflow engine. As a consequence, execut-
able BPEL processes contain all operational details, from a web
service binding and message correlation mechanism over a con-
trol flow specification to the data access handling. In the re-
mainder, we focus on the model elements to access functionality
and to capture the control flow.

Atomic functionality in BPEL processes is provided by basic
activities. Those enable to, synchronously or asynchronously,
call a web service (invoke), provide a web service (receive and
reply), update internal data (assign), trigger internal exceptions

5 http://www.o0asis-open.org/
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(throw and rethrow), or pause or terminate the execution (wait
and exit). The notion of a scope provides a concept for struc-
turing a BPEL process hierarchically and to control data access
along with exception, event, and termination handling. Further,
BPEL supports two conceptually different paradigms to define
control flow dependencies between basic activities. Historically,
these paradigms stem from the Web Services Flow Language
(WSFL) [269] and XLANG [440], which are two successors of
BPEL for the description of web service compositions. Follow-
ing on XLANG, BPEL allows for the well-structured specifica-
tion of control flow by nesting structured activities. Those are
typed to represent sequences (sequence), conditional execution
(if-then-else), repetitive behaviour (while and repeat until), se-
lective event processing (pick), concurrent execution (flow), or
branch processing (for each). On the other hand, BPEL supports
the definition of (acyclic) graph-structured control flow depend-
encies by control links between activities within a flow activity.
Hence, BPEL is not block-structured in the strict sense, but in-
herits graph-structured capabilities from WSFL.

The BPEL specification provides an informal description of ex-
ecution semantics. Formalisations of BPEL have been presented
in numerous papers, see [445] for an overview. BPEL formalisa-
tions have been grounded on abstract state machines [155, 158],
Petri nets [341, 211, 281], and process algebra [161, 496, 288].
Only a few formalisations, e.g., [281], aim at capturing the com-
plete spectrum of BPEL constructs.

BPEL has an XML-based syntax and does not standardise any
visual representation of the model elements. For illustration pur-
poses, we depict a simplified BPEL process in Figure 8. This
model shows only the skeleton of a process and does not contain
all details required for execution on a workflow engine. Using
the example of the lead-to-order process, it illustrates the basic
concepts to implement control flow dependencies in BPEL. We
use a pick activity to instantiate the process upon reception of a
message. Either a contact from marketing, a contact from a fair,
or a request for quote is expected. Note that we duplicated the
concurrent execution of the activities to check past offers and to
schedule a customer presentation. This keeps the control flow
structure clearly arranged. Then, the process continues by react-
ing to the customer’s choice or the time-out accordingly. Our
example relies on the block-structured concepts that BPEL inher-
its from XLANG. However, large parts of the process could also
be modelled following the graph-structured paradigm, by using
control links between activities.

In relation to the aforementioned languages, BPEL is often
perceived as the technical back-end. The definition of BPMN
in particular was motivated by the absence of any notation for
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<?xml version='1.0"' encoding='UTF-8'?>
<bp:process exitOnStandardFault='yes’ name='LeadToOrder’
suppressJoinFailure="yes’' targetNamespace='Example’
xmlns:bp="http://docs.oasis-open.org/wsbpel/2.0/process/abstract’
xmlns:tns='Example’'>
<bp:sequence>
<bp:pick createInstance='yes’'>
<bp:onMessage name='MarketingContact’>
<bp:sequence>
<bp: flow>
<bp:invoke name='GetPastCounterOffers’'/>
<bp:invoke name=’ScheduleCustomerPresentation’/>
</bp: flow>
</bp:sequence>
</bp:onMessage>
<bp:onMessage name='FairContact’>
<bp:sequence>
<bp: flow>
<bp:invoke name=’GetPastCounterQffers’/>
<bp:invoke name=’ScheduleCustomerPresentation’/>
</bp: flow>
</bp:sequence>
</bp:onMessage>
<bp:onMessage name='RequestForQuote’>
<bp:empty />
</bp:onMessage>
</bp:pick>
<bp:invoke name='EnterQuoteDetails’/>
<bp:invoke name='SendQuote’/>
<bp:repeatUntil>
<bp:pick>
<bp:onMessage name='PositiveResponse’>
<bp:sequence>
<bp:while>
<bp: flow>
<bp:invoke name='EnterNegotationReport’/>
<bp:invoke name=’'AttachQuoteAppendix’/>
</bp: flow>
</bp:while>
<bp:invoke name='FileContract’/>
</bp:sequence>
</bp:onMessage>
<bp:onMessage name='NegativeResponse’>
<bp:invoke name='EnterLossReport’/>
</bp:onMessage>
<bp:onAlarm name='TwoWeeks'>
<bp:scope>
<bp:invoke name='ScheduleCall’/>
</bp:scope>
</bp:onAlarm>
</bp:pick>
</bp:repeatUntil>
</bp:sequence>
</bp:process>

Figure 8: A lead-to-order process model in BPEL syntax.
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BPEL process models, cf., [514]. Hence, the BPMN specifica-
tion sketched a transformation from BPMN to BPEL already
in its first version. The definition of a full-fledged transform-
ation from BPMN to BPEL, or even complete round-tripping,
turned out to be challenging and has been addressed in vari-
ous papers [373, 340, 339, 166, 497, 245]. With BPMN in its ver-
sion 2.0, the scope and applicability of such a transformation
has been clarified. Transformations between EPCs and BPEL
processes [244, 310], and between UML ADs and BPEL pro-
cesses [202, 240, 534, 482] have also been discussed extensively.

2.2 NET SYSTEMS

The process description languages discussed in the previous sec-
tion are widely used in industry. For an analysis of behaviour
consistency of related process models, however, these languages
are not well-suited. They are missing formal semantics and
techniques for their analysis. Therefore, we focus on a well-
established formalism for the description of process models, i.e.,
Petri net systems. This section is dedicated to the formal defin-
ition of net systems. First, we recall basic mathematical notions
and their notations. Then, we define the syntax and semantics of
net systems. Finally, we elaborate on structural and behavioural
classes of net systems.

Preliminaries

For the discussion of net systems, we need basic mathematical
notions. We shortly recall the notions and notations used in the
remainder of this thesis.

For a set S, we refer to its cardinality as |S|. The power set of S
is denoted by p(S). Given two sets, equivalence is denoted by =,
inclusion is denoted by C, and proper inclusion by C. Further,
N creates the intersection of two sets, U creates the union of two
sets, and x creates the Cartesian product of a set.

The set of natural numbers, excluding 0, is denoted by IN.
The natural numbers, including 0, are denoted by INo. We use
the following notations for Boolean algebra. The conjunction of
Boolean statements is denoted by /\, the disjunction by V. By
=, we refer to an implication between Boolean statements, <
denotes the equivalence of Boolean statements.

An n-ary relation R C (S7 xSz x...x Sp), n € N, is a set
of n-tuples, such that the k-th component, k € IN, k < n, of an
n-tuple is taken from Sy. For n = 2, R is called binary and is
a subset of the Cartesian product over which it is defined. For
(x,y) € R, we also write x Ry. For (x,y) ¢ R, in turn, we also
write x R y. The identity relation ids over a set S is a binary
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relation, defined as ids = {(x,x) | x € S}. For a relation R C
(S7 x S3), the inverse relation R~ is defined as R~ = {(x,y) €
(S2xS1) [y Rx}.

A binary relation R C (S x S) over a set S is symmetric, if
Vx,y € Sitholds (x Ry) = (y Rx). The relation R is asymmetric,
if it is not symmetric. It is antisymmetric, if (x Ry /A y R x)
implies x = y. The relation R is reflexive, if V x € S it holds x R x.
The relation R is irreflexive, if it is not reflexive. The relation R is
transitive, if V x,y,z € S it holds (x Ry Ay R z) = (x R z). With
R*, we denote the irreflexive transitive closure of relation R and
with R* we refer to the reflexive transitive closure.

A binary relation R C (S x S,) is total from Sy to S, if V x €
S1[3dy € Sy [x Ry ll. The relation R is surjective, if it is total
from S, to Sq. The relation R is functional, if V a € Sy,x,y €
S2[(aRx)A(aRy) = (x =y)]. The relation R is injective, if
Va,beSy,xeSy[(aRx AbRx) = (a=D>b)]. Therelation R is
bijective, if it is total in either direction, functional, and injective.

A binary relation f C (S7 x S;) is a function from Sy to S,
denoted by f: S; — S;, if it is total from S; to S, and functional.
For the function f, S; is the domain and S> is the codomain. For
(x,y) € f with f being a function, we also write f(x) =y.

A binary relation R C (S7 x S;) may be identified by its char-
acteristic function fr : (S71 x S2) — {0, 1}.

A function f : {1,...,n} — S is a finite sequence over a set S.
For asequence f:{1,...,n}+— S, we also write f = (s1,82,...,5n)
with f(i) = si, 1 € N, and 1 < i < n. The length of the se-
quence f is n. For a finite sequence f = (s1,82,...,8n), g =
(8§,841,--+,5k), k€ N, 1 <j <k <n,is a subsequence.

Net Syntax

Petri nets are grounded on the ideas Carl Adam Petri presented
in his seminal doctoral thesis [353] in 1962. Aiming at asyn-
chronous communication, he proposed a behavioural formalism
that knows only local actions that have local causes. Since then,
this theory of nets has seen a huge uptake in Computer Sci-
ence. There is a large body of results and analysis techniques
for Petri nets, see [329]. Further, they have been applied in
such diverse areas as hardware design [93] and bioinformat-
ics [347, 528]. Exhaustive introductions to Petri nets can be found
in [380, 382, 119, 381].

A Petri net, or net for short, is a bipartite directed graph con-
sisting of places and transitions. The directed edges, called flows,
connect places with transitions and transitions with places.

Definition 2.2.1 (Net)
A net is a tuple N = (P, T,F) with P and T as finite disjoint sets
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Figure 9: A model of a lead-to-order process depicted as a marked net,
a net system.

of places and transitions, and F C (P x T) U (T x P) as the flow
relation.

We illustrate the visualisation of nets with the example given
in Figure 9. This example takes up the lead-to-order process
that was used to exemplify process description languages in
the previous section. Figure 9 shows a marked net. Neglect-
ing the marking at this stage, the net comprises places, denoted
by circles, and transitions, denoted by rectangles, that are con-
nected by directed edges representing flows.

In our example, several transitions carry labels, e. g., ‘Get Con-
tact from Fair’, whereas others are not labelled at all and are
depicted by smaller rectangles. Throughout this thesis, we use
this convention to indicate which transitions carry a meaning ac-
cording to the domain of the model. Transitions that are present
in the model only for syntactical reasons are depicted without a
label and in smaller size. However, this is only a convention for
visualisation. Unless explicitly stated otherwise, we assume nets
with unique transitions as our formal model.

For anet N = (P, T,F), we write X = (PUT) for all nodes. As
introduced earlier, we use F' to denote the irreflexive transitive
closure of F. We define further basic syntactical concepts of nets
as follows.

Definition 2.2.2 (Net Syntax)
Let N = (P, T,F) be anet and X = (PUT) all nodes.

o For anode x € X, ex ={y € X | (y,x) € F} is the pre-set of x
and xe = {y € X | (x,y) € F} is the post-set of x.

o A tuple N = (P, T/,¥) is a subnet of a net N = (P, T, F), iff
PCP,TCT,and ¥ =FN((PPxTHU(T' xP)). Nisa
partial subnet of N, iff F C FN ((P' x T") U (T" x P")).

o A path of length n € IN, it holds n > 1, is a sequence mn =
(X1,...,%xn), which satisfies (x1,%x2),..., (xn—1,%xn) € F. For
apath iy = (x1,...,%Xn), we also write 7N (X1, X, ). We write
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in{X1, Xn} = {X1,...,xn} for all nodes that are part of the
path 7N (X1, X1 ).

o A subpath Tty of a path my is a subsequence that is itself a
path.

o A path mn(x1,%xn) is a circuit, iff (xn,x1) € F and no node
occurs more than once in the path.

For the net in Figure 9, we annotated several places and trans-
itions with numbers for illustration purposes. For transition t1
the post-set contains a single place, p1. The pre-set of place p1
comprises two transitions, t1 and t2. The sequence of nodes
m = (t1,p1,13,p2) is a path, the sequence 7, = (t1,p1) is a sub-
path of this path, the sequence (t1,p1,p2) is not a subpath of ;.
The path 3 = (p3,t15,p4,t17) is a circuit.

Net Semantics

Having defined the syntax of a net, we turn to its semantics.
Semantics of nets are defined as a token game. A state of a net
is described by a set of tokens that are distributed among its
places. Such a distribution of tokens is called marking of a net.
State transitions are represented by changes of the marking of a
net. A transition is enabled in a certain marking if the places of
its pre-set carry at least one token. Then, the transition can be
fired. Firing of a transition means consuming tokens from places
in the pre-set and producing tokens on places in the post-set of
the transition. As such, firing of a transition in a marking leads
to a new marking, i.e., it constitutes a state transition. Formally,
we define semantics as follows.

Definition 2.2.3 (Net Semantics)
Let N = (P, T,F) be a net.

o M: P Ny is a marking of N, M denotes all markings of N.
M(p) returns the number of tokens in place p.

o For a place p € P, M, denotes the marking when place p
contains one token and all other places contain no tokens.
For a transition t € T, M,, denotes the marking when all
places p € ot contain one token and all other places contain
no tokens.

o For any two markings M, M’ € M, we write M < M/, iff
M(p) < M/(p) for all places p € P. We write M < M/, iff
M(p) < M/(p) for all places p € P.

o For any transition t € T and any marking M € M, t is
enabled in M, denoted by (N,M)[t), iff Vp c ot [M(p) > 1 ].

o If t € T is enabled in M, then it can fire. Firing of t, denoted
by (N, M)[t)(N, M’), leads to a new marking M’. This mark-
ing M’ is defined by M/(p) = M(p) — fr(p, t) + fr(t, p), with
fr as the characteristic function of F, for each place p € P.
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o A sequence of transitions 0 = (t;...tn), n € Ny, is a firing
sequence, iff there exist markings My, ..., My € M, such that
for all 1 < i< nitholds (N,M;i_1)[ti)(N, M;). We say that
o is enabled in My, denoted by (N, My)[o). For n = 0, we
refer to 0 = () as the empty firing sequence.

o For any two markings M, M’ € M, M/ is reachable from M in
N, denoted by M’ € [N, M), iff there exists a firing sequence
o leading from M to M'.

o A net system, or a system, is a pair (N, M), where N is a net
and My is the initial marking of N.

A marking of a net system is visualised by depicting each token
with a black dot inside the circle of the respective place. In Fig-
ure 9, only the place i carries a token.

As stated before, semantics of a net system describe states and
state transitions. Hence, a net system describes a state space that
may also be captured by a labelled transition system (LTS). La-
belled transition systems are one of the most general behavioural
models. An LTS is a directed graph that comprises a set of states,
a set of actions, a transition relation that associates an action to
a source state and a target state, and an initial state. The LTS for
a net system contains a state for each reachable marking. The
initial marking of the system is the initial state of the LTS. Each
firing of an enabled transition in some marking in the net system
is represented by a transition in the LTS — the action references
the respective transition in the system and the source and target
states correspond to the markings before and after firing of the
transition, respectively.

Definition 2.2.4 (State Space of a Net System)
A labelled transition system is a tuple TS = (8,50, /A, J), such
that § is a set of states, sp € 8 is an initial state, A is a set of
labels, ¥ C 8§ x A x 8 is a labelled transition relation.
Let S = (N, My) be a net system with N = (P, T,F). The state
space of S is a transition system TSs = (§,so, A, F) derived as
follows.
o Each marking reachable from the initial marking is taken as
a state, 8§ = [N, My), and the initial marking is taken as the
initial state, so = M.
o Each transition is taken as a label, A =T.
o Each transition that can be fired in a certain marking is taken
as a labelled state transition, (M, t, M’) € F, iff there exists a
transition t € T and (N, M)[t)(N, M').

The state space of a net system is also known as the reachability
graph of the net system. Figure 10 exemplifies the state space for
the example net system given in Figure 9. Here, circles denote
states and labelled edges represent state transitions with the ac-
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Figure 10: The state space of the net system depicted in Figure 9.

cording action. The initial state is highlighted with a small edge
pointing to state so.

Besides state-based semantics, net systems may be interpreted
according to trace semantics [302, 121]. Then, the behaviour is
defined in terms of all firing sequences of a net system that start
in the initial marking. Such a firing sequence is referred to as a
trace of the net system. In other words, a trace is a path of the
state space of the net system.

Definition 2.2.5 (Traces of a Net System)
Let S = (N, My) be a net system with N = (P, T,F). The set of
traces T of S contains all firing sequences o, such that (N, My)[o).

The set of all traces is also called the system’s language. It cor-
responds to all paths of the state space of the net system. A
state space may comprise an infinite number of states. Even a
finite number of states, however, may result in an infinite set of
traces. The latter is illustrated by our example in Figure 9 and
Figure 10. Due to the circuit in the net system, there are infin-
itely many traces. Examples for traces are, e.g., 01 = (t1), 02 =
(t1,13,t4,17,19), and 03 = (t1,t3,t4,17,t9,t10,t11,t10,t11,t10).

Finally, we clarify the terminology with respect to net systems
that model a business process. We assume the following inter-
pretation. The net system is a process model, transitions are
either business activities or carry no semantics in terms of the
modelled business process, and a marking of a net corresponds
to a state of an instance of the process model. For a firing se-
quence of transitions of a net system, we speak of an execution
sequence of activities of a process model. We will use the Petri
net terminology and the process model terminology interchange-
ably in the remainder of this thesis. We discuss formal results
in Petri net terminology. At certain stages, however, we stick to
the terms process model and activities. That is to highlight that
our arguments should be understood in the context of using net
systems to model business processes.

Structural Classes of Net Systems

In this thesis, we use net systems that show certain structural
properties. These properties define structural classes of net sys-
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tems. Several of our results are obtained for free-choice nets.
These nets show a separation of synchronisations and conflicts,
which led to a large theory on the analysis of their behavioural
properties. As such, they are often quoted as a good comprom-
ise between expressiveness and the ability to do efficient beha-
vioural analysis. Further, we consider two subclasses of free-
choice nets, i. e., T-nets and S-nets. Introductions to free-choiceness
and details on their properties can be found in [441, 49, 119].

Definition 2.2.6 (T-Net, S-Net, Free-Choice Net)
Let N = (P, T,F) be a net.
o Thenet Nisa T-net, iff Vp cP[|ep|/<T1>=pe]l.
o Thenet Nisan S-net, iff Vte T [|et|=1=|te]|].
o The net N is free-choice, ifft V p € P,t € T, (p,t) € F implies
ot X pe C F.

A net system S = (N,Mp) is a free-choice, S-, T-system, iff
N is a free-choice, S-, T-net. Note that our definition of free-
choiceness is commonly used [119], but historically referred to as
extended free-choiceness [49]. This stems from a definition of free-
choiceness that is more restrictive than the presented one. Still,
in terms of the ability to do efficient behavioural analysis, both
definition achieve the same effect. Any extended free-choice
net can be transformed into a behaviour equivalent free-choice
net [49] — here, behaviour equivalence assumes that transitions
inserted by this transformation are ignored. Hence, the term
free-choiceness is often used to refer to the presented definition.

We also rely on the notion of a workflow (WF-) net [447]. This
class has been proposed explicitly for modelling and analysing
business processes. WF-nets require the existence of a dedicated
initial place and a dedicated final place. Those represent initial-
isation and completion of the business process. The definition of
WF-nets also requires all nodes to be on a path from the initial
place to the final place. This requirement translates into strong
connectivity of the short-circuit net. The latter is obtained by
connecting the final place with the initial place through a fresh
transition.

Definition 2.2.7 (WF-Net)

A net N = (P, T,F) is a workflow (WF-) net, iff N has an initial
place i € P with ei = (), N has a final place o € P with oe = (),
and the short-circuit net N’ = (P, TU{t*}, FU{(o, t*), (t*,1)}) of N
is strongly connected.

The initial and the final place of a WF-net characterise an initial
and a final marking. A WF-system is a net system S = (N, M;)
with N being a WF-net and i being its initial place. The marking
M, of S is referred to as the final marking of S. For a WF-system
S = (N, M;) and N’ as the short-circuit net of N, the system S’ =
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(N’, M) is the short-circuit system. The structural properties are
directly lifted to WE-systems. That is, a WF-system S = (N, M)
is free-choice, a workflow S-system, or a workflow T-system, iff
N is free-choice, an S-net, or a T-net.

The net system shown in Figure 9 is a free-choice WF-system.
We annotated the initial place with i and the final place with o.

Behavioural Properties of Net Systems

After we discussed structural classes of net systems, we recall
elementary behavioural properties that are of relevance for our
work. First, boundedness restricts the behaviour of a net system
to a set of finite markings. That is, the state space of the net
system is finite, i.e., the respective LTS has a finite number of
states. A different characterisation of boundedness assumes that
there is an upper bound for the number of tokens for any place
in all markings reachable from the initial marking. Safeness sets
this bound to one, i.e., no place is marked with more than one
token.

Definition 2.2.8 (Boundedness and Safeness)
Let S = (N, My) be a net system with N = (P, T, F).
o The system S is bounded, iff the set [N, My) is finite, and
unbounded otherwise.
o The system S is safe, iff for all markings M € [N, My) and
places p € P it holds M(p) < 1, and unsafe otherwise.

The net system depicted in Figure 9 is bounded and safe. Fur-
ther, we recall common properties related to liveness. A trans-
ition is dead in a marking, if it cannot be fired as part of any
firing sequence starting in this marking. A marking is dead, if it
does not enable any transition. A transition is live, if it may be
enabled from every marking reachable from the initial marking.
A net system is live, if every transition may be fired again, i.e.,
every transition is live.

Definition 2.2.9 (Liveness Properties)
Let S = (N, My) be a net system with N = (P, T, F).
o A transition t € T is dead in a marking M of §, iff for all
markings M’ € [N, M) it holds that t is not enabled in M.
o A marking M of S is dead, iff it does not enable any transition
teT.
o A transition t € T is live, iff for all markings M € [N, My)
there is a marking M’ € [N, M) such that (N, M)[t).
o The system S is live, iff every transition t € T is live.

Transition t4 of the net system depicted in Figure 9 is not dead
in the initial marking. Transition t4 is dead in the marking that
marks only place p3, reached, e.g., by the firing sequence o =
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(t6,18). The marking M, that marks only the place o is dead. No
live net system shows a dead marking [119], so that our example
net system is not live.

Liveness and boundedness properties are particularly interest-
ing for the class of WF-systems, for which there exists the sound-
ness property. The latter requires WF-systems (1) to always ter-
minate, and (2) to have no transitions that are dead in the ini-
tial marking [448]. Both requirements imply proper termination
of the WF-systems, i.e., for all reachable markings holds that a
token in the final place implies the absence of tokens for all other
places.

Definition 2.2.10 (Soundness)
A WF-system (N, M;) with the initial place i and the final place
o is sound, iff
o for all markings M € [N, M;) there is a firing sequence o
such that (N, M)[0)(N, M,), and
o for all transitions t € T, there exists a marking M € [N, M;)
and (N, M)[t).

The soundness property is closely related to the liveness and
boundedness properties introduced earlier. A system is sound,
if and only if the corresponding short-circuit system is live and
bounded [448, 467].

2.3 FROM PROCESS DESCRIPTIONS TO
NET SYSTEMS

Net-based formalisations are available for all process description
languages mentioned earlier, for BPMN [125], EPCs [116, 472],
UML ADs [431], and BPEL [341, 211, 281]. Note that these form-
alisations of execution semantics differ with respect to their cov-
erage of the languages. An overview of net-based formalisations
of process description languages is provided in [283].

In the previous section, we introduced several structural and
behavioural properties that classify net systems. Figure 11 takes
up the properties that are most relevant for our work, in par-
ticular bounded net systems and sound free-choice WF-systems.
The properties are mostly orthogonal, apart from the fact that
soundness has been defined for WF-systems and boundedness
is a prerequisite for soundness. In the remainder of this sec-
tion, we discuss net-based formalisations of process description
languages against the dimensions illustrated in Figure 11. We
restrict the discussion to the control flow aspects. For details
on net-based formalisations of object life-cycles and data access
semantics we refer the reader to [451, 26]. Also, there are many
types of high-level Petri nets that consider data aspects, such
as coloured Petri nets (CPNs) [220], workflow nets with data
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Figure 11: Classification of net systems by structural and behavioural
properties.

(WFD-nets) [419], or dual workflow nets (DFNs) [157]. To keep
the focus on the behavioural aspects, we use net systems as in-
troduced in the previous section.

Net Systems. Earlier, we clarified that transitions of net systems
are intended to model activities of a process model. In principle,
all constructs of a process model for which the behaviour can be
split up into atomic steps can be represented in this way. For
instance, events in BPMN or EPCs, the initial and final nodes in
UML ADs, or data assignments in BPEL can also be represented
by a net transition. If needed, even a more fine-grained form-
alisation is possible. Instead of representing an activity with a
single transition, all transitions of its life-cycle may be modelled
by separate transitions. The latter approach has been realised in
the Yet Another Workflow Language (YAWL) [439], a process de-
scription language that is inspired by the net system formalism.

The opposite case, abstracting a semantically rich construct
of a process description language by one or more transitions in
the net system, may also be required. High-level concepts, e. g.,
multi-instance activities configured towards a certain use case
or exception handling constructs, allow for expressing complex
behavioural dependencies in a process model. In many cases,
those cannot be represented in net systems directly. Then, one
solution is to approximate the concepts with a coarse-grained
formalisation, in which the respective behaviour is only partially
covered in the net system. For BPMN, EPCs, and BPEL several
formalisation challenges are discussed in [283].

WE-Systems. The workflow net structure imposes two require-
ments. First, there has to be a dedicated entry and a dedicated
exit that represent the initialisation and completion of a process,
i.e., an initial and a final place in the respective net. Some pro-
cess description languages explicitly enforce such a structure,
e.g., UML Activity Diagrams. Others, such as BPMN and EPCs,
support the definition of multiple start events and end events.
In these cases, restructuring techniques [480] may be applied to
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normalise the model structure before transforming it to a net sys-
tem. In certain cases, however, this may not be possible. On the
one hand, we mentioned that instantiation semantics may not be
well defined if there are multiple (EPC) start events [109]. A solu-
tion to this issue that selects sound instantiation scenarios can be
found in [361]. On the other hand, constructs that spawn execu-
tion if the process is in a certain region of states or non-local ter-
mination semantics can hardly be transformed to WF-systems.
The non-interruptive event handling mechanism of BPMN is an
example for the former. Also, a BPMN termination end event
leads to immediate termination of the process instance, inde-
pendent of the state of the instance. Encoding such behaviour
using net systems is challenging and may not be possible in all
cases.

Second, the workflow net structure requires that all nodes are
on a path from the entry to the exit of the process model. Once
potential issues related to the existence of such an entry and
an exit are resolved, this requirement is rarely an issue. Albeit
not enforced by all syntax definitions, it can be seen as common
practise to define a process model as a connected graph that is
even strongly connected when the exit is connected to the entry.

Free-Choice-Systems. Whether the net-based formalisation of a
process model yields a free-choice net mainly depends on the set
of used control flow routing elements. Means to encode disjunct-
ive (XOR) and conjunctive (AND) splitting or joining semantics
in process models are transformed to free-choice net constructs
in a straight-forward manner. Concepts to define inclusive dis-
junctive (OR) behaviour are often not transformed due to their
non-local semantics. If transformed, the resulting net is typically
non-free-choice since it represents all combinations of possible
activations, see [472]. Further, advanced control flow routing
needed to express exception handling and event processing of-
ten results in non-free-choice nets [283]. The formalisation of in-
terrupting events for subprocesses in BPMN proposed in [125] or
the formalisation of fault, compensation, and termination hand-
lers in BPEL presented in [281] are examples for transformations
that result in non-free-choiceness.

Boundedness & Soundness. The behavioural properties of a net
system follow directly from the process model that was trans-
formed into the net system. Since the net system should repres-
ent the same behaviour of the process model once data-related
aspects are neglected, unboundedness of the process model im-
plies unboundedness of the net system. Unboundedness of a
process model is not necessarily a behavioural anomaly that
should be avoided. Event-based mechanisms that allow for non-
interruptive instantiation of concurrent execution, e.g., non-in-
terruptive event handlers in BPMN and BPEL, may lead to an
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infinite state space of a process model. Such cases may require
abstracting from the possibility of infinitely many instantiations
to come to a bounded net system. Further, the definition of a
transformation for constructs that realise inclusive disjunctive
(OR) semantics is important in this regard. For instance, dif-
ferent net-based formalisations for the OR-connector of EPCs
have been presented, which create a potentially unbounded sys-
tem [116] or ensure safeness of the created net system [472].

Once a process model meets the requirements needed to trans-
form it into a WF-system, the soundness criterion can be lifted
to the process model. Having discussed boundedness already,
we turn the focus to properties related to liveness, i. e., there has
to be an option to complete the process from any reachable state
and every activity may be enabled in some reachable state. In
principle, these properties should be consistently satisfied or vi-
olated in the process model and the net system derived as its
formalisation once data-related aspects are neglected. For cer-
tain constructs, however, the operationalisation of the transform-
ation impacts on the soundness property. Again, the way inclus-
ive disjunctive (OR) semantics is encoded is an example for this
issue. The formalisation of the OR-connector of EPCs presen-
ted in [116] may result in a net system that shows a deadlock,
a dead marking that is not the final marking. Since this viol-
ates the soundness property, an adapted correctness criterion,
relaxed soundness, has been proposed [116]. However, under
certain assumptions, if OR-splitting and OR-merging constructs
are well-structured, a different formalisation may be applied.
Then, inclusive disjunctive constructs of a process model may
be transformed such that the resulting net system is sound.

2.4 DISCUSSION

In this chapter, we discussed the subjects of our work, process
models. We reviewed four process description languages often
used in practise to highlight their commonalities and differences.
To this end, our focus has been on the concepts to capture the
control flow between activities. We argued that models defined
in these languages are not suited for behavioural analysis. They
are missing formal execution semantics and established tech-
niques for their analysis. Therefore, we introduced the Petri net
formalism as the grounding of our work. Although net systems
may directly be used to model business processes — this has been
the motivation for the definition of workflow systems, a subclass
of generic net systems — they have seen little uptake in industry
for this purpose. Hence, models captured in languages such as
BPMN or EPCs have to be transformed into net systems before
analysis.
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The essential control flow routing elements of the discussed
languages can be transformed into net system concepts in a
straight-forward manner. For some languages, there are even
formalisations that claim feature-completeness and consider ad-
vanced concepts. For instance, non-interruptive event-handling
as defined by BPEL has been formalised in [281]. We observe
a conceptual closeness of the presented process description lan-
guages and the net system formalism. They follow the same
procedural modelling paradigm. Further, the definition of se-
mantics is often inspired by the token flow concept known from
Petri nets. The conceptual closeness is also witnessed by the
Yet Another Workflow Language (YAWL) [439]. It emerged as
a process description language that is grounded on net systems
and extends them with features that are specific to business pro-
cesses, an OR-join to realise inclusive disjunctive merging of
behaviour, cancellation regions to implement exception hand-
ling, and dedicated multiple instance activities. Note that we
discussed exactly these concepts as being particularly challen-
ging for net-based formalisations. However, depending on the
purpose of process modelling, a large share of process models
observed in practise is created using solely elementary control
flow routing elements [538].

Besides the conceptual closeness, we chose net systems as our
formal basis since there is a large theory on their analysis along
with tool support. The Petri Nets World® lists more than 8500
publications related to net systems along with a large number
of modelling and analysis tools. As such, the net system formal-
ism is unique. Other formalisms have been proposed to model
business processes or to formalise process models. Those may
have certain advantages for dedicated analysis questions, but
fall short of a comprehensive framework as it exists for net sys-
tems. As an example, consider the 7-calculus [324, 323, 404], a
process algebra that gained remarkable attention in the field of
BPM around 2005 [367, 496, 288, 368, 331], also referred to as
the m-hype [468]. The name passing feature of the 7-calculus al-
lows for modelling dynamic service binding in an intuitive way.
Representing dynamic service binding with net systems is much
more challenging and typically realised by extending the formal-
ism [111]. However, many of the aforementioned formalisation
issues are not solved in the 7-calculus either. For instance, the
formalisation of inclusive disjunctive (OR) merging of behaviour
presented in [367] outsources the decision of which branches to
merge to a run time executing the model. Also, there are only
a few tools available that allow for analysing m-calculus models,
e.g., the Mobility Workbench” and the Advanced Bisimulation

6 http://www.informatik.uni-hamburg.de/TGI/PetriNets/
7 http://www.it.uu.se/research/group/mobility/mwb/
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Checker8. Therefore, we decided for net systems as the formal
foundation for our work.

8 http://sbriais.free.fr/tools/abc/
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CONSTRUCTING ALIGNMENTS

This chapter is based on results published in [198, 500, 495].

Construct
Alignment

—
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EHAVIOURAL analysis of process models capturing the same
business process requires the construction of an alignment
between them. We have to identify correspondences between
process model elements, in particular between activities of both
models. In this chapter, we elaborate on the challenges of con-
structing an alignment and the techniques to address these chal-
lenges. In Section 3.1, we clarify terminology and define basic
concepts of an alignment for net systems. Then, Section 3.2 re-
views related work. We discuss different types of heterogeneity
observed between process models and techniques that aim at
avoiding such heterogeneity in the course of model creation. We
also include a discussion of work on textual, structural, and be-
havioural techniques to identify correspondences between pro-
cess models. This reveals a predominant focus on matching
single activities of different models. Complex correspondences
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between sets of activities are largely neglected. We address this
shortcoming with the ICoP framework in Section 3.3. It pro-
poses a system architecture for the definition of matchers that
derive complex correspondences between two process models.
The architecture is complemented by a set of basic matching
components used to assemble concrete matchers. We evaluate
the framework experimentally in Section 3.4. Finally, Section 3.5
concludes this chapter.

3.1 TERMINOLOGY

Alignment of business processes and process models, respect-
ively, has been discussed against diverse backgrounds in the
literature. Process models may be aligned, for instance, with
business objectives [205, 374, 290, 420, 23], compliance require-
ments [175, 226, 401, 286, 25, 292, 27], or information on process
execution [450, 395, 132]. As a consequence, clarification of the
basic concepts of an alignment in our setting is needed. We
start by introducing those concepts informally for general pro-
cess models. Then, we formally define those concepts for net
systems.

Basic Concepts

Our interpretation of an alignment is inspired by the alignment
of conceptual models as known from the area of data integra-
tion and ontology matching [370, 131, 418, 85]. An alignment
in this context refers to an association between semantically re-
lated entities of data schemas or ontologies. Nevertheless, a
common terminology is also missing in this field of research,
cf., [333, 224, 153]. For our purpose, we rely on the terminology
introduced in [153] and adapt it to the setting of process model
alignments.

Figure 12 illustrates the main concepts to discuss alignments
of process models. Process models are built of process model
elements, such as activities, control flow routing elements, or
additional artefacts. We aim at behavioural analysis of align-
ments, so that we restrict the discussion to alignments that are
defined for activities of process models. Figure 12 captures this
restricted view by defining a process model as a set of activ-
ities. A correspondence relates two non-empty sets of activities
to each other. Here, all activities of a given set necessarily be-
long to the same process model. Further, two sets that form
a correspondence must relate to distinct process models. For
a set of activities in one model, any set of activities of another
model that is associated by a correspondence is referred to as a
corresponding set of activities. We distinguish two types of cor-
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Figure 12: Relations between alignment concepts.

respondences. In the case of elementary correspondences, both sets
of activities that are associated to each other comprise a single
activity. Such a correspondence has a certain confidence. In the
case of complex correspondences, in turn, at least one of the sets
comprises two activities. Conceptually, a complex correspond-
ence is formed by multiple elementary correspondences, i.e., the
Cartesian product of the associated sets of activities is captured
by elementary correspondences. In other words, a certain set of
elementary correspondences — the set is maximal with respect
to set inclusion — is interpreted as a complex correspondence.
Hence, it suffices to base the concept of an alignment on ele-
mentary correspondences. An alignment is built from a set of
elementary correspondences for which the first activities all refer
to one process model and the second activities all refer to another
model. Thus, an alignment relates two process models to each
other. This relation is induced by the process models from which
the activities referenced in the respective correspondences are
originating.

Correspondences are a rather generic concept to express a re-
lation between activities. Different semantics may be defined for
a correspondence. For instance, a correspondence between two
activities may be interpreted as semantic equivalence. In this
case, corresponding activities in two process models would refer
to exactly the same pieces of work of the original business pro-
cess. This is rarely the case for correspondences between process
models that depict different perspectives on a business process,
cf., Section 1.3. A fine-grained analysis of the correspondence
semantics is beyond the scope of this work. Hence, we do not
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further discuss semantics of correspondences but assume an in-
terpretation driven by the purpose of the alignment.

The procedure of constructing an alignment between process
models is called matching, tools that support this procedure are
called matchers. The result of a matching procedure, i.e., a set
of elementary correspondences, may also be referred to as a
set of matches. In the context of our work, we use the term
matches solely for relations between characteristics of activities,
e.g., there is a match between the labels of two activities. Those
matches are at the core of the matching procedure. Once a rela-
tion between activities is established, however, we refer to this
relation as a correspondence.

Finally, an alignment between data schemas or ontologies is
called mapping if it is directed [153]. A directed relation is needed
to define transformations for the instances of data schemas or
ontologies. For instance, a 2:1 complex correspondence between
numeric data fields may induce a mapping, such that the sum
of two values from one schema corresponds to a single value
in the other schema. In contrast, relations on the instance level
can be deduced directly from the relations on the model level
in our case. A correspondence between two sets of activities of
two process models induces a correspondence relation between
the instances, i. e., the execution sequences of the process mod-
els. That is, the occurrences of the respective activities in an
execution sequence of one model correspond to the occurrences
of the corresponding activities in an execution sequence of the
other model. There is no need to define explicit mappings to
transform the instances of process models. Hence, it suffices to
focus on undirected alignments to assess behaviour consistency
between process models.

Alignments of Net Systems

Having discussed basic concepts of alignments between process
models, we formally define those concepts for net systems. We
introduced correspondences as a relation between activities of
process models. Against the background of modelling business
processes with net systems, correspondences between net sys-
tems are defined for those elements that represent activities, i. e.,
transitions. Transitions of net systems may not only represent
activities, but may also represent control flow routing elements
or may be required for syntactical reasons. However, this is not
an issue, as an alignment may be partial in any case.

We capture alignments between net systems by means of a cor-
respondence relation between their transitions and a confidence
function. The correspondence relation relates pairs of transitions
of two net systems to each other. Based on this relation, the
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Figure 13: Four aligned net systems.

notion of a correspondence is derived. A correspondence com-
prises two sets of transitions, for which the Cartesian product
of transitions is part of the correspondence relation. The con-
fidence function assigns a confidence value to each entry of the
correspondence relation. Further, we say that two correspond-
ences are overlapping, if there is an overlap of the respective
sets of transitions in at least one of the net systems.

Definition 3.1.1 (Alignment)
Let S1 = (Ny,Mj) and S; = (N2, M) be two net systems with
Ny = (P, T1,F1) and N2 = (P2, T2, F2).

o A correspondence relation ~ C Ty x T, associates correspond-
ing transitions of both systems to each other.

oLet T} € Ty and Tj; C T, be two sets of transitions such
that T x T; C ~. Let T{ and T, be maximal with respect
to set inclusion, i.e., V t1 € (Ty\Ty) [ ({t1} x T}) € ~ ] and
Vit e (To\TH) [ (T x{t2})) € ~ 1. Then, c = (T{,T}) is
referred to as a correspondence and we also write T; ~ T5.

o A confidence function { : ~ + [0,1] assigns confidence val-
ues between zero and one to single pairs of corresponding
transitions.

o A correspondence ¢ = (T;,T;) is called elementary, iff |Tj| =
IT5| =1, and complex otherwise.

o Two correspondences ¢; = (T7,T5) and ¢, = (T{,T{) are
overlapping, iff Ty NT{ # 0 or T, N T4 # 0.

o A correspondence relation ~ C Ty x T; is overlapping, iff it in-
duces at least two overlapping correspondences. Otherwise,
it is non-overlapping.

o Analignment is a tuple (~, ¢), such that ~ is a correspondence
relation and C is a confidence function for ~.

We illustrate the introduced concepts with the four net systems
depicted in Figure 13. The first alighment between systems (a)
and (b) comprises two elementary correspondences between the
equally labelled transitions. Between systems (b) and (c), we
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observe a complex 1:2 correspondence that associates the trans-
ition set {A} with the transition set {A1,A2}. It is represented
in the correspondence relation between both systems by two
entries, i.e., A ~ A7 and A ~ A;. Between both systems, there
is another complex 1:2 correspondence incorporating the sets
{B} and {B1, B2}, respectively. The two correspondences are non-
overlapping. For systems (c) and (d), there is a complex 2:2
correspondence between the sets {A1,A2} and {A,AB} and a
complex 2:1 correspondence between {B1, B2} and {AB}. In con-
trast to the aforementioned alignment, the two correspondences
between systems (c) and (d) are overlapping. Transition AB
in system (d) is part of both correspondences, whereas trans-
ition A in system (d) is related only to the set {A1, A2} in sys-
tem (c). Overlapping correspondences may be interpreted as
follows. Transitions that are part of the overlap would have to
be split up to achieve a clear separation between corresponding
sets of transitions. In our example, a part of transition AB corres-
ponds to the set {B1,B2} in system (c), whereas the remaining
part, together with transition A, corresponds to the set {A1, A2}
in system (c).

Using the terminology introduced for relations in Section 2.2,
we classify a correspondence relation ~ between two net systems
S1 = (N7,M7) and S; = (N3, M) with N7y = (P4,Tq,F;) and
N, = (P2, Ty, Fy). It is said to be

o total from S;to Sy, if Ve Ti [Tt eTh [ty ~t2 1],

o functional, if V tq € Ty, ty, ty € To [ (ta ~ tx) N\ (ta ~ ty) =

(tx = ty) 1,
o injective, if V tq,ty € Ti,tx € To [ (ta ~ tx) A(ty ~ tx) =
(ta = tb) 1,
o bijective, if it is total in both directions, functional, and inject-
ive.
Consider the alignments visualised in Figure 13 and assume that
the correspondence relations are defined such that the depic-
ted order of systems is respected. The correspondence relation
between systems (a) and (b) is total from (a) to (b), but not vice
versa, and functional and injective. For the systems (b) and (c),
the correspondence relation is not total in either direction. With
(b) as the first system and (c) as the second system of the cor-
respondence relation, it is not functional, but injective. The last
alignment is total from (d) to (c), but not vice versa. It is neither
functional nor injective.

3.2 MODEL MATCHING

Construction of an alignment between two conceptual models is
known as the matching problem [153]. This section reviews related
work on solving this problem. We start by summarising differ-
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ent types of model heterogeneity and strategies to avoid them
during the creation of conceptual models, and process models,
in particular. Then, we review related work on identifying cor-
respondences between process models. This problem has been
extensively addressed in the field of data integration and on-
tology matching [370, 131, 418, 85], so that we cannot give an
exhaustive overview of this work. Instead, we focus on tech-
niques that are relevant for the identification of correspondences
between process models. Those are classified according to the
aspect of a process model that is considered during matching.
We review textual, structural, and behavioural techniques. Beha-
vioural techniques consider the execution semantics of process
models. Finally, we turn the focus on complex correspondences.

Model Heterogeneity

Solving the matching problem for a given pair of conceptual
models requires coping with different kinds of heterogeneity.
The purpose for which a model is created, cf., the drivers of pro-
cess modelling discussed in Section 1.2, is a common source of
model heterogeneity. In addition, heterogeneity may stem from
contextual factors, e. g., the background of the human creating a
process model [31]. Heterogeneity between conceptual models
covers syntactic, terminological, conceptual, or semiotic issues,
see [34, 417, 235, 483, 153] for further classifications of model
heterogeneity. Semiotic issues refer to different interpretations
of models by humans — a problem that cannot be addressed by
automated processing. Therefore, we do not further elaborate on
this kind of heterogeneity. Regarding the other types of hetero-
geneity, there is a multitude of approaches that aim at avoiding
heterogeneity between process models. In the remainder of this
section, we review the most important of these approaches.
Syntactic heterogeneity is observed when conceptual models are
defined in different languages. When reviewing process de-
scription languages in Section 2.1, we already mentioned several
transformations between these languages, e.g., [202, 240, 244,
216, 86, 310, 114, 534, 482]. Most prominently, a potential round-
tripping between BPMN collaboration diagrams and BPEL pro-
cesses has been investigated in several papers [373, 340, 339, 166,
497, 245]. Here, issues that stem from the conceptual differ-
ences of a graph-based or a block-based modelling paradigm
have been in the centre of interest. The core of this problem, the
question if and how an arbitrary process model can be restruc-
tured into a well-structured model that is behaviour equivalent,
was addressed recently [358, 361]. Despite those differences re-
lated to the modelling paradigm, pattern-based evaluations of
process description languages received much attention. For in-
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stance, most of the languages mentioned in Section 2.1 have
been evaluated based on the workflow patterns framework" that
covers control flow [456], data flow [397], resources [398], and
exception handling [399], see [518, 519, 520] for detailed evalu-
ation results. We summarise that syntactic heterogeneity may be
bridged by transformations between different languages. How-
ever, varying expressiveness and conceptual differences impose
serious challenges for these transformations. In the remainder
of this work, we neglect this type of heterogeneity and assume
all process models to be defined as net systems.

Terminological heterogeneity is observed when different names
are used in conceptual models to refer to the same entities of
the original, cf., Section 1.1. In process models, terminological
heterogeneity may be observed for different kinds of model ele-
ments, e.g., activities, roles, and artefacts. Terminological het-
erogeneity is an issue not only for the creation of alignments
between process models. Labelling of process model elements,
and especially activities, is known to have a significant influence
on the understandability of process models [315, 317]. Hence, it
has been advocated to agree on key terms before the creation of
process models [391]. Further, there exists a large body of work
that aims at labelling support for process models. Conventions
such as the verb-object-style [321, 416, 297, 317] and grammat-
ical phrase structures [39] for naming model elements have been
suggested. Such techniques require controlled vocabularies of
objects and their relations. Object vocabularies may be groun-
ded on ontological concepts, see [188, 162, 442, 169, 490]. The
latter, a controlled vocabulary of object relations, has been ad-
dressed by semantic classifications of verb phrases [46, 432], cat-
egorisations of object relations [268, 319], and the integration of
linguistic theories, e. g., speech-acts theory [414], into the process
of modelling [76, 8]. Still, all these works require a coordinated
creation of process models to obviate terminological heterogen-
eity. Once process models have been created independent of
each other, therefore, this kind of heterogeneity needs to be ad-
dressed as part of the matching process.

Conceptual heterogeneity is observed when there are differences
in how the domain of interest is modelled. According to [44,
153], there are three reasons for conceptual heterogeneity, differ-
ences in coverage, granularity, and perspective.

Differences in coverage are observed when conceptual mod-
els describe different parts of the original. In terms of process
models, different parts of one or more business processes may
be captured. Scoping of process models depends on the scop-
ing of business processes, a question that has been around since
the functional breakdown of business functions has been intro-

1 See http://www.workflowpatterns.com for further details.
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duced [365] and process orientation emerged as an organisation
principle [165, 100, 195, 406]. The question of how to scope pro-
cess models consistently to avoid differences in model coverage
is addressed by top-down modelling methodologies. Such ap-
proaches advocate the creation of process models from more
abstract descriptions, such as business models and value net-
works [178, 21, 516, 22, 179, 118], or goal descriptions [229, 242,
261, 182, 115, 23].

Differences in granularity refer to the assumed level of abstrac-
tion from the original. Two process models that cover the same
part of one or more business processes may comprise a differ-
ent amount of modelling concepts due to differences in the ab-
straction level. Many of the techniques discussed to avoid ter-
minological heterogeneity, such as controlled vocabularies and
ontologies, along with the aforementioned modelling methodo-
logies also aim at avoiding differences related to the modelling
granularity.

Differences in perspective refer to differences that are induced
by a certain modelling perspective when creating a conceptual
model. Often the modelling perspective is closely attached to
the purpose for which a model is created. The often quoted
‘Business-IT-Gap’ [70, 186, 388] would be an example that causes
differences between process models that are conceptual, but can-
not be attributed to coverage of the business process or the level
of granularity. Such heterogeneity is inherent for models serving
different purposes and resolution of the respective differences
may negatively affect the adequacy of a process model.

We conclude that differences related to conceptual heterogen-
eity can be controlled to some extent, but cannot be avoided once
process models are created in different contexts and for different
purposes. Hence, the construction of an alignment needs to cope
with all three kinds of conceptual heterogeneity.

Finally, there have been various attempts to classify differ-
ences that relate to conceptual heterogeneity between process
models. Differences between views on processes that are cap-
tured by object life-cycles are described in [366]. This work also
highlights that these differences stem from the independent cre-
ation of views for different purposes, as we discussed it for pro-
cess models in Section 1.2. Differences observed during process
evolution have been captured by change patterns [488]. These
patterns provide an overview of elementary model differences
mostly related to model coverage and granularity. Similar pat-
terns have also been presented in the context of similarity as-
sessment [123] or process enactment [206]. Finally, we presented
an overview of difference between process models that capture
different modelling perspectives in earlier work [498].
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Some of the mentioned heterogeneity issues are addressed
by guidelines for the creation of process models [248, 38, 318].
Still, such guidelines either focus on certain aspects only or are
defined on a rather abstract level. Hence, they may control some
heterogeneity issues, but cannot be assumed to generally avoid
heterogeneity between process models.

Textual Matching Techniques

Textual techniques are at the core of most matching approaches.
They aim at matching model elements based on their textual
description. String-based methods are used to assess the sim-
ilarity of element labels, which often involves preprocessing of
strings. Terms are normalised by considering all characters in
lowercase and replacing blanks and diacritics. Then, equality,
substring containment, the Hamming distance [196] to count dif-
ferent characters, or the number of equal substrings (n-grams)
is used to judge on similarity [153]. Two strings may also be
compared using an edit distance. The string edit distance [267]
counts the minimal number of atomic character operations (in-
sert, delete, update) needed to transform one string into another.
Other measures for string comparison consider the number and
proximity of shared characters or the length of common pre-
fixes, such as the Jaro measure [219] or the Jaro-Winkler meas-
ure [517]. See [88] for an overview on string distances metrics.
These techniques consider strings as a whole. However, strings
may be tokenised into a bag of terms [491] to represent them
as vectors in a space [402]. Then, each term represents a di-
mension of the space and the similarity of strings is traced back
to the similarity of vectors, e.g., measured by the Cosine sim-
ilarity [402] or one of the Minkowski distances, see also [153].
The creation of the vector space may reflect different weights for
terms. A common measure to assess term weights in a corpus is
the TF-IDF scheme [386]. It assigns high weights to terms that
occur frequently in one string (TF, term frequency) and rarely in
other strings (IDF, inverse document frequency). Still, these tech-
niques are sensitive to linguistic phenomena, such as synonymy
and homonymy. Techniques from the field of Natural Language
Processing [299] may be applied to overcome this shortcoming.
This involves term stemming [364], stop-word elimination [212],
or part-of-speech tagging [67]. In addition, external knowledge
in the sense of thesauri like WordNet [322] may be leveraged,
cf., [173, 346, 72].

Textual techniques are at the core of methods for searching
process model collections [136, 473, 127, 530, 129] or service
repositories [294, 525, 91, 144, 184], providing modelling sup-
port [142, 214, 421, 350], or managing different variants of a
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process [330, 123, 271, 494, 258]. Most of these approaches in-
corporate one of the aforementioned string distances to judge
the similarity of element labels. In addition, various approaches
leverage synonym relations when comparing element labels on a
term basis, e. g., [91, 184, 142, 214, 473, 258, 129]. To this end, vir-
tually all approaches rely on WordNet [322], even though there
are differences in the concrete operationalisation. For instance,
synonym dependencies may be weighted relative to the overall
number of senses of the respective terms [142]. Part-of-speech
tagging has been applied to refactor labels of process model ele-
ments [266] or for aggregating element labels [422]. The latter
work uses the MIT Process Handbook [297], which can be seen
as an ontology for business processes. The MIT Process Hand-
book spans several business domains, e. g., sales or production.
Although these techniques do not directly contribute to an iden-
tification of correspondences, they allow for a normalisation of
labels before applying further matching techniques. Structural
characteristics of ontological annotations of process models have
also been exploited to identify correspondences [142, 68]. Fur-
ther, ontologies have been applied to identify correspondences
between service descriptions, mainly by relating input and out-
put specifications to each other [344, 47]. Matching based on
vector spaces has been used for process models and service de-
scriptions in [294, 285, 214]. To this end, terms of the textual
description of process model elements [214] or explicit feature
annotations [285], e.g., roles and IT systems, are interpreted
as dimensions of the vector space. Then, standard means for
judging the similarity of vectors are used to conclude on activity
correspondences.

Structural Matching Techniques

Structural matching techniques exploit the graph structure of
process models. In particular, techniques that built upon the no-
tions of a maximum common sub-graph isomorphism and the
graph edit distance have been used, see [74] for an overview of
graph matching techniques. The maximum common sub-graph
(MCS) problem refers to the identification of a maximal sub-
graph of two graphs. The graph edit distance (GED) defines the
minimal number of atomic graph operations (substitute node,
insert/delete node, (un)grouping nodes, substitute edge, inser-
t/delete edge) needed to transform one graph into another [75].
Both, the MCS and the GED problem, are closely related for a
certain class of cost functions for the edit operations [73]. Un-
fortunately, both problems are NP-hard [168]. This leads to the
application of search algorithms, such as the A* search [201], or
heuristics.
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Based on the graph edit distance, a similarity score may be
computed for a pair of aligned process models [128, 127]. Here,
only model elements that are part of correspondences are con-
sidered to be substituted, while the quality of substitution is
based on the similarity of the elements. The quality of the align-
ment is then measured relative to a hypothetical ideal align-
ment. The latter relates each element and each flow in one pro-
cess model to an element or a flow in the other process model
with an optimal substitution quality. Due to the computational
complexity of the GED problem, different heuristics have been
developed to identify the optimal alignment between two pro-
cess models [91, 128]. Matching approaches based on the graph
edit distance may be extended by considering characteristics of
process models, such as different element types [325]. Distin-
guishing different element types in process models, gives rise to
further matching techniques. A process model may be reduced
by reduction rules that consider different element types to assess
equivalence or subsumption with another model [285]. Other ap-
proaches customise the graph edit distance by considering high-
level and hierarchical change operations that go beyond simple
insertion, substitution, and deletion [271, 256]. To this end, rela-
tions between activities are exploited [271] or the process model
is structurally decomposed into fragments [256].

Besides graph matching, there are several structural strategies
to influence the similarity of process model elements to detect
correspondences between them. Elements may be classified ac-
cording to structural patterns depending on the cardinality con-
straints of their incoming and outgoing flows [530]. These fea-
tures influence the similarity when comparing two model ele-
ments. Contextual similarity as proposed in [473, 129] exploits
the share of directly preceding or succeeding elements that show
a high similarity. Following this idea, similarity flooding in-
troduced for matching data schemas [311] has been applied to
match process models [294]. It first judges the similarity of
model elements with a textual measure applied to the element
labels. Then, the similarity of elements is iteratively updated ac-
cording to the similarity of adjacent elements until a fixpoint is
reached [294].

Behavioural Matching Techniques

Behavioural matching techniques leverage the behaviour of pro-
cess models in terms of their execution semantics. Here, the type
of assumed behavioural semantics has to be considered, may
it be trace-based or using a labelled transition system, see Sec-
tion 2.2. Moreover, the chosen process description language af-
fects behavioural matching techniques. A close relation between
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syntax and execution semantics allows us to draw conclusions
on execution semantics by looking at the model structure only.
Most business process description languages, however, are not
grounded on a small set of semantically orthogonal concepts, cf.,
the Orthogonality Principle of model formalisation [437]. Sev-
eral techniques aim at addressing this issue by transforming pro-
cess models in a normal form before applying structural means
to assess similarity. An example would be the splitting of activit-
ies that represent synchronous service calls into a sending activ-
ity and a receiving activity [91].

Under the assumption of trace semantics, similarity measures
may be defined directly on the language of a process model, i.e.,
the set of all traces. The size of the intersection of the languages
of process models relative to the overall number of traces would
be a straight-forward example for such a measure [136]. Follow-
ing on the idea of the string edit distance, edit distances have
also been defined for the behaviour of a process model in terms
of its language, an automaton encoding the language, or an n-
gram representation of the language [525]. A fine-granular vari-
ant of the latter measure considers not only all n-grams needed
to define the language, but also their cardinalities to control the
impact of control flow loops on the measure [523]. Experimental
results obtained with these measures in the context of service
retrieval can be found in [522, 524, 523]. Once the behaviour of a
process model is captured by a transition system, the degree to
which two systems simulate each other was proposed as a sim-
ilarity measure [427, 330]. Given a similarity measure for state
transitions, similarity of states is evaluated iteratively by consid-
ering the similarities of neighbouring state transitions and states.
This approach terminates after a fixpoint or an iteration bound-
ary is reached.

Behavioural abstractions that capture only dedicated behavi-
oural aspects may also be leveraged for the identification of cor-
respondences between process models. Behavioural relations
that are defined over elementary activities, e.g., order and ex-
clusiveness, provide a means to enrich structural matching with
behavioural information [144]. Those behavioural details may be
closely related to the model structure, as shown for BPEL pro-
cesses in [144]. Other works uses causal footprints as an approx-
imation of the process model behaviour to assess similarity [473].
Causal footprints capture causal dependencies for activities by
defining, for each activity, a set of causal predecessors and a set
of causal successors.
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On the Identification of Complex Correspondences

Once we reviewed basic matching techniques, the identification
of complex correspondences deserves further discussion. Diver-
ging modelling purposes as discussed in Section 1.2 are likely
to cause conceptual heterogeneity. Once different levels of ab-
straction are assumed, an alignment comprises complex corres-
pondences. The importance of complex correspondences is fur-
ther witnessed by the aforementioned classifications of differ-
ences between process models [366, 488, 123, 206, 498]. All of
these classifications contain patterns that capture refined activit-
ies, activity fragmentation, or activity aggregation. In Section 3.1,
we discussed that, conceptually, complex correspondences are
built from elementary correspondences. Nevertheless, complex
correspondences are typically identified directly. An identifica-
tion of all overlapping elementary correspondences that form a
complex correspondence is hardly feasible.

The identification of complex correspondences between pro-
cess models has been largely neglected in the literature. Virtu-
ally no work uses the introduced matching techniques to find
correspondences beyond elementary correspondences in a non-
overlapping alignment. Complex correspondence have only be
addressed in a narrow language-specific setting. Splitting up
BPEL activities that represent synchronous service calls into two
activities, see [91], is an example for such a heuristic. To the best
of our knowledge, there has not been any attempt to address
the issue of complex correspondences between process models
in general way.

Unfortunately, there has also been a predominant focus on ele-
mentary 1:1 correspondences in the schema and ontology match-
ing community, such that ‘1z:n and n:m mappings [..] are cur-
rently hardly treated at all’ [370]. One of the rare exceptions is
the iMAP system [120]. iMap proposes to explore the space of
potential mapping expressions between arbitrary groups of ele-
ments using different search heuristics. Once potential element
mappings are identified, the similarity of target entities is ana-
lysed to select the final mapping. iMAP searchers exploit the
value distribution of instance data and also take domain know-
ledge, such as domain constraints, into account. Other work
on the identification of complex correspondences between data
schemas relies on the discovery of characteristics for instance
data and the application of domain ontologies that describe ex-
pected data values [529]. Further, the application of correlation
mining techniques was proposed in the DCM framework [203].
This framework mines web query interfaces to identify group-
ing attributes, i. e., attributes that tend to be co-occurring in web
interfaces. This knowledge is exploited to mine negative correla-
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tions between groups of attributes. Those hint at potential com-
plex correspondences. There are further schema matching ap-
proaches that retrieve complex correspondences by just applying
a static similarity threshold for the selection of correspondences,
e.g., the Cupid matcher [293]. Given a similarity matrix for all
model elements, various combinations for a single element may
show similarity values above the threshold, such that complex
correspondences are derived. However, such an approach does
not hint at strategies that are used to identify complex corres-
pondences, as it assumes this knowledge to be already encoded
in the similarity matrix.

We summarize that the few existing approaches for identify-
ing complex correspondences between data schemas rely on in-
stance data and external knowledge. As the former is not al-
ways available for process models, these techniques cannot be
transferred to the setting of process models directly.

3.3 THE ICOP FRAMEWORK

The review of existing matching techniques reveals that there is
virtually no work available on the identification of complex cor-
respondences between process models. Further, even in the field
of schema and ontology matching there has been a predomin-
ant focus on elementary correspondences, despite a few notable
exceptions. We argued that complex correspondences, however,
are essential for aligning process models for consistency analysis.
To address this issue, this section introduces the ICoP (Identi-
fication of Complex Correspondences between Process Models)
framework. It defines a system architecture for the definition
of matchers that derive complex correspondences between two
process models. Besides the architecture, it also introduces a set
of basic matching components used to assemble concrete match-
ers. These components focus on the identification of complex
1:n correspondences that are non-overlapping, as those corres-
pondences can be expected to occur frequently between process
models. Still, we also discuss how the components may be adap-
ted to consider complex n:m correspondences.

The ICoP framework is independent of any notion of a process
model or process description language. All discussed matching
components work purely on the textual and structural level. Al-
though we use net systems for illustration purposes, we do not
stick to the net system terminology but use the generic terms
process model and activity. In the remainder of this section,
we first present the overall architecture of the ICoP framework.
Then, we elaborate on four different types of components in de-
tail and present exemplary realisations.
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Figure 14: The architecture of the ICoP Framework.

Architecture

The overall architecture of the ICoP framework is motivated by
the observation that the number of complex correspondences
between two process models is potentially large. It is not feasible
to explore all possible correspondences exhaustively. Instead,
the ICoP framework proposes a multi-step approach, which is
illustrated in Figure 14. Given two process models, searchers
extract potential correspondences based on different similarity
measures and heuristics for the selection of activities. The res-
ult of the search stage is a multiset of correspondences — mul-
tiple searchers may identify the same potential correspondences.
Each correspondence is assigned a confidence score that reflects
the quality of the relation. It results from the scoring function
implemented by the searcher to select potential correspondences.
A searcher may use the knowledge about potential correspond-
ences that have been identified by other searchers already.

After completion of the search stage, the scored potential cor-
respondences are conveyed to boosters. These components boost
the correspondences that are returned by the searchers using
heuristics to aggregate or remove correspondences, or adapt the
score of a correspondence. As part of the boosting stage the
multiset of potential correspondences is transformed into a set of
potential correspondences by aggregating those that have been
identified by multiple searchers.

Then, a selector builds up the actual alignment from the set of
potential correspondences. It selects the best correspondences
from the set of potential correspondences. The selector compon-
ents presented later ensure that the constraint of non-overlapping
correspondences is satisfied. The selection of the best corres-
pondences is guided by two kinds of scores. On the one hand,
the individual scores of the potential correspondences are ex-
ploited. On the other hand, an evaluator is utilised, which as-
signs a single alignment score to an alignment. An evaluator may
use knowledge about the original process models to compute
this score. The selection is an iterative process. In each itera-
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tion, the selector selects a set of correspondences, the evaluator
computes the score for this set, upon which the selector either
decides to modify the set of correspondences and continue the
selection, or to complete the selection. Once the selection proced-
ure completes, the selector produces the final alignment between
activities of the process models.

The presented architecture is inspired by the structure of the
iMAP system [120], which we discussed in the previous section.
It introduces the idea of searching the space of potential complex
correspondences. Besides the differences in the implementation
of the searcher components — those of the iMAP rely on instance
data — there is another conceptual difference of the ICoP archi-
tecture and the iMAP system. iMAP searchers derive textual,
numeric, or structural mapping expressions instead of pure ele-
ment correspondences. We elaborated in Section 3.1 on why the
detection of mapping expressions for transforming instances is
of minor importance in the context of process models.

Searchers

Searchers identify potential correspondences between two pro-
cess models along with a score, which represents the quality of
the correspondence. We denote a correspondence between two
activity sets A7 and A, that holds with confidence c by a tuple
(Aq,A>,c). This is a short-hand notation for the notions intro-
duced in Section 3.1. If the respective entries of the correspond-
ence relation (a1, az) € (A7 x A;) have different confidence val-
ues assigned, we assume the score c to represent the arithmetic
mean of these confidence values.

As discussed in the previous section, identification of a cor-
respondence may be based on various aspects, including the la-
bels or descriptions of activities and structural or behavioural
relations between those elements. We introduce four searchers
that have been implemented in the ICoP framework. Two of
them focus on elementary correspondences, whereas the other
two search for complex 1:n correspondences. The latter may be
adapted to search for n:m correspondences at the expense of in-
creased computational complexity.

Similar Label Searcher. The purpose of this searcher is the iden-
tification of 1:1 correspondences based on a high syntactic sim-
ilarity of activity labels. It computes the Cartesian product of
activities of two process models and selects all pairs for which
the string edit similarity of their labels is above a threshold. For
two strings s; and s, the string edit similarity is defined as
sim(s1,s2) = 1 — (ed(s1,s2)/ max(|s1l,]s2])) with ed(sq,s2) as
the string edit distance [267]. String edit similarities can be seen
as rather strict criteria when applied to compare activity labels,
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Figure 15: (a) Process model with annotations, data objects and data
associations; (b) the control flow structure of (a) along with
two groups as considered by the Distance Doc Searcher, (c)
virtual document for the group ‘Sequence D 2’.

not only words of such labels. They neglect different orders of
words and linguistic phenomena such as synonymy. Hence, the
potential matches are identified with high confidence, such that
the initial score for these matches is set to one by the searcher.
The run time complexity of this searcher depends solely on the
number of activities of the respective process models.

Distance Doc Searcher. This searcher follows a two step ap-
proach to identify potential 1:n correspondences. First, activit-
ies of both process models are grouped heuristically. Second,
the similarity between such a group of activities in one model
and all single activities in the other model is assessed. Although
this approach yields potential 1:n correspondences, groups of
activities of both models may also be exploited. Still, this would
increase the run time complexity of the searcher due to the im-
plied combinatorial problem. We illustrate the two steps using
the process model depicted in Figure 15a. Assuming that it is
more likely that activities that are closer to each other should be
in the same group, we use the graph distance to group activit-
ies. The graph distance between two activities is the number of
edges on the shortest path from one activity to the other [122].
Given a base activity and a distance, we look for four types of
groups:
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o Sequences, which are determined by a base activity and the
activities on a directed path of the given length (distance)
from the base activity.

o Splits, which are determined by a base activity and the activ-
ities that can be reached from the base activity and that are
within the given distance. The base activity can or cannot
be considered in such groups, depending on whether the
routing is modelled explicitly by a control flow node.

o Joins, which are determined by a base activity and the activ-
ities from which the base activity can be reached and that are
within the given distance. The base activity can or cannot be
considered in such groups.

o Others, which are the groups that consist of all activities that
are within the given distance of a base activity (not consid-
ering the direction of edges). In contrast to sequences, these
activities are not necessarily on a path.

For the example model depicted in Figure 15a, Figure 15b shows
the control flow structure of the model along with two example
groups. The group ‘Split A 1’ is built by taking activity A as base
activity and by exploring all activities that may be reached with a
graph distance of one, i. e., activities B and C. Here, we compute
the graph distance solely based on activities. Therefore, only
flows between transitions and places are counted when comput-
ing the graph distance between transitions of the net system.
The example group ‘Split A 1’ illustrates the case, in which the
base activity is part of the group. Besides, the searcher would
also consider the group consisting of solely activities B and C
to account for the fact that the control flow routing is not mod-
elled with a separate node. The second example group is of
type sequence, takes activity D as base activity, and considers
all activities that are within a graph distance of two. The Dis-
tance Doc Searcher identifies all groups of activities in a process
model by taking each of the activities as a basis and creating each
possible type of group for each possible graph distance value. A
maximum distance value is set as a parameter.

Once groups of activities have been identified, their similarity
needs to be assessed. Besides labelled activities, a process model
may comprise additional information on, for instance, processed
data objects and textual annotations, as illustrated in Figure 15a.
To take such information into account, we use virtual documents
to score the similarity of activities or groups thereof. Virtual doc-
uments have been introduced for information retrieval [487], and
later been applied to identify alignments of ontologies [369]. A
virtual document of an ontology node consists of the words from
all textual information that is related to that node. Given two vir-
tual documents, their similarity is computed based on their dis-
tance in a vector space as discussed in the previous section. This
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Figure 16: (a) Control flow structure of the model in Figure 15a along
with RPST fragments, (b) the corresponding RPST.

idea has already been transferred to annotated process models
to answer user queries against a model repository [214]. In our
setting, a virtual document for an activity consists of the terms
that are derived from the activity label and, if this information is
available, the labels of the roles that are authorized to perform
the activity, the assigned input and output data objects, and a
textual description of the activity. These terms are preprocessed
with the techniques described earlier, such as filtering of stop-
words [212] and term stemming [364]. The preprocessed terms
represent the dimensions of the vector space. Further, we rely
on the TF-IDF [386] scheme for weighting terms. For a group of
activities, the virtual document is derived by joining the docu-
ments of the respective nodes. Creating virtual documents from
process models can be seen as the reverse operation of gener-
ating a textual representation of a conceptual model [16, 194],
even though virtual documents are unstructured. Figure 15¢
illustrates the terms of the virtual document for the group ‘Se-
quence D 2’ along with their numbers of occurrences. These
terms originate from activity labels and the labels of two data
objects. All terms have been preprocessed. The run time com-
plexity of this searcher is influenced by one parameter besides
size and structure of the models — the maximal graph distance
value for grouping activities.

Fragment Doc Searcher. This searcher resembles the distance
doc searcher, except for the strategy for grouping activities. We
leverage a structural decomposition technique, introduced as the
Refined Process Structure Tree (RPST) [481, 359]. Later, we form-
ally define the RPST for net systems when computing behavi-
oural relations from a process model. At this point, however, we
stick to an informal description of the characteristics of this de-
composition technique. The RPST parses a process model into
a hierarchy of fragments with a single entry node and a single
exit node. Figure 16a depicts these fragments for the process
model given in Figure 15a. The fragments are defined in such
a way that they do not overlap. Consequently, they form a tree-
structure, the RPST, which is illustrated in Figure 16b. We lever-
age the hierarchy of fragments to select groups of activities that
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will be considered by the searcher. Starting with the leaf frag-
ments of the RPST, the tree is traversed upwards up to a height
that is given as a parameter. For the example in Figure 16b and a
height threshold of two, the searcher considers the fragments B1,
B2, P2, P3, P4 and P5. For all traversed fragments, the searcher
creates two virtual documents. One document comprises all
activities contained in the fragment. The second document con-
tains all these activities except for those that are boundary nodes
of the fragment. Again, implicit or explicit modelling of control
flow routing nodes is the motivation for considering both cases.
The similarity of the virtual documents is assessed using the vec-
tor space approach as introduced for the Distance Doc Searcher.
Therefore, this searcher also considers primarily 1:n correspond-
ences. Although it is possible to compare all groups of activities
in both models, the combinatorial problem would impact the
run time complexity. Apart from that, the run time complexity
of this searcher mainly depends, besides size and structure of
the models, on the height up to which the RPST is traversed
upwards for identifying groups of activities.

Wrapup Searcher. This searcher resembles the aforementioned
Similar Label Searcher. It also aims at deriving potential 1:1 cor-
respondences by analysing the string edit similarity for the la-
bels of activity pairs. In contrast to the Similar Label Searcher,
this searcher traverses only activities that are not part of poten-
tial correspondences retrieved by other searchers. The Wrapup
Searcher is run after all other searchers. Also, the threshold for
the similarity of two activity labels is set to a lower value than
for the Similar Label Searcher.

Boosters

After potential 1:1 and 1:n correspondences have been identified,
the multiset of scored correspondences is propagated to a set of
boosters. We implemented the following four boosters as part of
the ICoP framework.

Cardinality Booster. This booster reduces the multiset of po-
tential correspondences to a set by aggregating the confidence
scores for potential correspondences that associate the same (sets
of) activities to each other. Two correspondences (Aj,Az,cq)
and (A3, Ay4,c2) with A1 = Az and A, = A4 are replaced by a
correspondences (A1,A2,cq). We define the aggregated confid-
ence score as Cq := ¢ + (1 —cq) - c2. The first score is increased
by the second score relative to its current value. This operation is
symmetric and can iteratively be applied if more than two scores
need to be aggregated.

Subsumption Booster. The idea behind this booster is that a 1:n
correspondence (A1,A2,c1) may subsume another correspond-
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ences (A3, Ay, c2), such that A3 C A7 or A4 C A,. Similarity
scoring based on the cosine angle in vector spaces tends to fa-
vour documents consisting of a small number of terms [222].
Large documents yield a large dimensionality of the represent-
ing vector, so that the scalar product between such a vector
and any other vector tends to be small. As a consequence, the
subsumed correspondences will have higher initial confidence
scores on average. To countervail this effect, we boost a 1:n cor-
respondence, if it subsumes other correspondences. If the corres-
pondence (A1, A3, c1) subsumes the correspondence (A3, A4, c2),
its confidence score is increased relative to the current value,
such that ¢c; == ¢y +ws-(1—cq7)-c2 with 0 < wg < 1 as a
weighting factor.

Tree Depth Ratio Booster. In contrast to the aforementioned
boosters, this booster considers solely a single correspondence.
It boosts the confidence score of a correspondence, if the activ-
ities show a certain structural property that is evaluated based
on the RPST. Given a correspondence (A1, A3, c1), we determ-
ine the Lowest Common Ancestors (LCAs) of A; and A; in
the RPST of the respective process model, denoted by lca(Aq)
and lca(A;). Let maxDepthy; and maxDepth;, be the maximal
depths of a fragment in the RPSTs of the two process models.
Then, we determine two ratios by relating the depth of the LCA
to the maximal depth of the tree, r1 = lca(A7)/maxDepth; and
12 = lca(Az)/maxDepth,. The confidence score of a corres-
pondence is boosted, if the average of the two ratios is above a
threshold. This indicates that both LCAs are relatively low in the
tree, which is interpreted as a hint for a good quality of the cor-
respondence. The underlying assumption is that activities that
form a correspondence are likely to be structurally close. If the
threshold is reached, the confidence score of the correspondence
is increased according to the average of the two ratios, relative to
the current score value, i.e., ci :=c1+(1—c7) - wWy-05-(r1 +712)
with 0 < w, < 1 as a weighting factor.

Distance Ratio Booster. This booster also considers single cor-
respondences. Here, the structural property that is evaluated
relates to the graph distance. For each of the sets of activities
A7 and A; of a correspondence (A1,A2,c1), we determine the
maximal distance between two activities of this set. For each
activity, we compute the distances from and to all other activit-
ies, and select the minimal distance. Then, the maximal value of
all these minimal distances is chosen, denoted by maxDist(A1)
and maxDist(A;), respectively. These values provide a meas-
ure for the spread of the activities of the correspondence. Let
maxDist; and maxDist; be the maximal distances that can be
observed between any two activities that are connected by a path
in the two process models. Those values provide a measure
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for the spread of all activities in the process model. Then, we
define two ratios r1 = 1 — (maxDist(A7)/maxDist;) and 1 =
1 — (maxDist(Az)/maxDist,). If the average of both ratios is
above a threshold, the confidence score of the correspondence is
increased accordingly, i.e., ¢y :=c1+(1—c1) -wq-0.5-(r1 +712).
Again, 0 < wg < 1 is a weighting factor.

Selectors

Once the confidence values of correspondences have been adap-
ted by boosters, a selector extracts an alignment from the set of
scored potential correspondences. As mentioned before, we re-
quire an alignment to satisfy the constraint of non-overlapping
correspondences in the ICoP framework. However, this implies
that the selection process is a computationally hard problem,
which is independent of the different notions of quality for an
alignment employed by the selectors. Due to overlapping poten-
tial correspondences, finding an alignment with maximal qual-
ity is an optimisation problem that may be addressed by search
algorithms, such as the A*-algorithm [108]. Those algorithms
guarantee to find the optimal solution. However, experiments
on matching process models in a similar context revealed that
results obtained by a greedy search strategy are close to those ob-
tained with an exhaustive search [127]. Therefore, our selectors
follow a greedy or 1-look-ahead strategy. The ICoP framework
consists of the following selectors.

Correspondence Similarity Selector. This selector selects an align-
ment comprising non-overlapping correspondences solely based
on their confidence scores. The correspondence with the highest
confidence is selected — if there are multiple correspondences
with an equal score, one is randomly chosen — and all corres-
pondences that are overlapping with the selected one are re-
moved and not further considered. The alignment is construc-
ted iteratively until the highest confidence for a potential corres-
pondence is below a given threshold. In addition to this greedy
strategy, we also implemented a 1-look-ahead strategy. It op-
timises the score for the succeeding iteration in case there are
multiple correspondences with equal confidence scores.

Alignment Similarity Selector. This selector neglects the scores
assigned to potential correspondences and relies solely on the
score for a (partial) alignment as provided by an evaluator. Cor-
respondences are iteratively selected. In each step, we select
the correspondence leading to the maximal score for the align-
ment. If multiple correspondences meet this requirement, one is
chosen randomly. The procedure terminates once the alignment
score cannot be increased further. Again, we implemented this
greedy strategy and a 1-look-ahead variant. The latter selects the
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correspondence that leads to the maximal alignment score in the
succeeding iteration.

Combined Selector. This selector uses both, confidence scores of
correspondences and alignment scores as provided by an eval-
uator. In a first step, the highest confidence score among the
correspondences is determined. All potential correspondences
that have been assigned this value are then selected for the align-
ment. In case this is not possible due to overlapping correspond-
ences, the selection is conducted randomly. In a second step, the
alignment is iteratively extended with the correspondence that
maximises a combined score. This score is a weighted average of
the confidence of the correspondence and the alignment score as
computed by the evaluator. The procedure terminates if the com-
bined score cannot be increased any further. Again, the second
step of the selection process has been implemented as a greedy
and as a 1-look-ahead strategy.

Evaluators

A selector can use an evaluator to score alignments. Given a
(partial) alignment, the evaluators return a single score for the
quality of the alignment. Different notions of quality can be
considered. Within the ICoP framework, we implemented the
following two evaluators.

Graph Edit Distance Evaluator. This evaluator scores a given
alignment based on the graph edit distance [75, 74] of the two
original process models that is induced by the correspondences.
As discussed in Section 3.2, the graph edit distance can be lever-
aged to define a similarity score [128, 127]. The Graph Edit Dis-
tance Evaluator computes this similarity score and returns it as
a measure of the quality of the given alignment.

Path Relation Evaluator. This evaluator scores a given align-
ment based on whether the path relations are preserved for the
activities of a pair of correspondences of the alignment. Let
Cy = (A1,A2,c1) and C2 = (A3,A4,c2) be correspondences.
Then, we derive the number of preserved paths pre(Cy,Cz) =
{(a1,a2,a3,a4) € (A1 x A2 x A3 x Agq)|plar,a3) < plaz, as)l,
with p(x,y) being a predicate that denotes the existence of a path
from activity x to activity y. The score for the pair of correspond-
ences Cy and C; is defined as s(Cy,Cy) = pre(Cy,C2) / |A1 X
A2 x Az x Ag4l. The score for the alignment is computed by it-
erating over the Cartesian product of correspondences and com-
puting the average of their scores.
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3.4 EXPERIMENTAL EVALUATION

The previous section introduced the ICoP framework to identify
complex correspondences between process models. The architec-
ture of the ICoP framework is a generic schema for the definition
of matching components that may be reused in multiple match-
ers. In this section, we report on an experimental evaluation of
our framework. In this experiment, we aimed at constructing
alignments between process models that (1) capture similar pro-
cesses in different organisations and (2) represent reference pro-
cesses and their implementations. These use cases differ from
the one primarily investigated in this work —a common process
is captured for different purposes. Still, based on the experiment,
we are able to draw conclusions on the overall performance of
the ICoP framework.

Using the components introduced in the previous section, we
assembled matchers and compared the correspondences iden-
tified by them with the correspondences that process analysts
found in a collection of 20 pairs of process models. Three pairs
have been taken from a merger in a large electronics manufactur-
ing company. Each of these pairs represents two processes that
have to be merged. 17 pairs have been taken from Dutch mu-
nicipalities. Each of these pairs represents a standard process?
and an implementation of this standard process by a municipal-
ity. All process models have been available as net systems. Each
system from the collection has, on average, 31.1 nodes, with a
minimum of 9 nodes and a maximum of 81 nodes for a single
model. The average number of arcs pointing into or out of a
single node is 1.2 and the average number of words in the label
of a single node is 2.8. For the 20 process model pairs, pro-
cess analysts determined a total of 520 elementary correspond-
ences. Of these 520 elementary correspondences, 221 were part
of a complex correspondence. However, the distribution of these
complex correspondences in our model collection shows a high
variation. For instance, for three out of 20 model pairs — the
model pairs from the merger — more than 90% of the element-
ary correspondences are part of complex correspondences. In
turn, six out of 20 model pairs show only elementary corres-
pondences.

We evaluated the performance of the matchers in terms of
precision and recall [29]. Precision is the fraction of found ele-
mentary correspondences that that is correct, i.e., these corres-
pondences have also been found by process analysts. The re-
call is the fraction of correct elementary correspondences that
is found. The F-Score combines precision and recall in one
value. We also computed the Overall score, an alternative metric

2 Documentair structuurplan: http://www.model-dsp.nl/
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that has specifically been developed for measuring the quality
of schema matches [130]. All metrics are defined for element-
ary correspondences, so that complex correspondences are im-
plicitly covered. Still, we also distinguished the recall for ele-
mentary correspondences that are part of any complex corres-
pondences and those that are not. This allows for conclusion on
the ability of the matchers to detect complex correspondences.
All metrics are based on the following sets.

Cn

CCr CCh

Gé’,h = Gh \ G(‘Zh

Cm, CCm, C&m

Elementary correspondences identified
by process analysts.

Elementary correspondences that are
part of a complex correspondence.

Elementary correspondences that are
not part of a complex correspondence.

Analogously defined sets of corres-
pondences that are identified by
matcher m.

Based on these sets, the metrics for the evaluation of matchers
are defined as follows.

precision :=|Cy N CHI/ICm]

recall = |Cm N CrI/ICH]

recall-elementary :=[CE, N CEL|/ICEY]
recall-complex = |CCH N CCHI/ICCH]

F-score :=2- (precision - recall)/(precision + recall)
Overall :=recall- (2—1/precision)

For our evaluation, we created five matchers within the ICoP

framework.

Baseline Matcher. This matcher realises the greedy graph match-
er presented in [128] and consists of a Wrapup Searcher, a
Graph Edit Distance Evaluator, and a Mapping Similarity
Selector. This matcher identifies solely elementary corres-
pondences and does not consider potential complex corres-
pondences. Still, it finds these correspondences with high
precision and recall. Therefore, we use it as a baseline bench-

mark for our framework, which focusses on improving res-

ults with respect to complex correspondences.
Matcher A. This matcher comprises all presented searchers and
a Look Ahead Match Similarity Selector. It demonstrates the
pure performance of our searchers.
Matcher B. This matcher extends Matcher A by incorporating all
boosters introduced as part of the ICoP framework. This
matcher illustrates the impact of boosters on the matching

process.

Matcher C. This matcher consists of all searchers, but in contrast
to Matcher A, it takes the evaluation of (partial) alignments
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Precision Recall Recall Recall F-Score Overall
Elementary Complex

Figure 17: Metrics derived for the ICoP matchers.

into account when selecting an alignment. It relies on the
Path Relation Evaluator and a Look Ahead Combined Se-
lector.
Matcher D. This matcher consists of all searchers and evaluates
partial alignments, but uses another evaluator than Matcher
C, i.e., a Graph Edit Distance Evaluator.
Matchers A and B, as well as C and D, are similar. The first pair
of matchers relies on the confidence scores assigned to potential
correspondences to build up the alignment. The second pair of
matchers uses a combined approach that also utilises the scores
derived by evaluator components.

Figure 17 depicts the results of applying these five matchers
to all 20 model pairs. It shows the precision, recall, F-Score,
and Overall for one specific configuration of each matcher that
maximises the F-score for the whole model collection. It also
highlights the recall for elementary and complex correspond-
ences separately. Although the Baseline Matcher is not meant
to detect complex correspondences, it returns some. Several of
the identified elementary correspondences are actually part of a
complex correspondence.

The results show that the architecture works. It has an ad-
aptable modular setup and we have been able to reproduce the
results obtained by the more rigid matcher presented in [128].
The results also show that the architecture can be used to pro-
duce matchers that detect complex correspondences and that
their recall is better than that of our baseline matcher. Unfor-
tunately, the complex correspondences improved recall at the
expense of precision, leading to an F-Score that is slightly lower
than that of the baseline matcher. The comparison of the res-
ults for Matcher A and Matcher B reveals that the application
of boosters increased the precision, at the cost of decreased re-
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call. Similarly, the Path Relation Evaluator in Matcher C led
to a better precision than the Graph Edit Distance Evaluator in
Matcher D, which, again, is traded for recall to a certain extent.

We observed a large difference between the results with re-
spect to the origin of the process models. As indicated, three
model pairs stem from a comparison in a merger, while 17 ori-
ginate from a comparison of standard processes to their imple-
mentations. The results for the merger model pairs were much
worse — the F-Score has been around 0.3 — than the results for
the standard process comparison pairs. Qualitative analysis of
the results revealed that the modest performance of the matchers
for the merger scenario was caused by heterogeneous activity la-
bels. We conclude that, in order for the current matchers to work,
there must be some level of similarity between activity labels of
corresponding activities.

The models used in the experiment are different from those
that we expect in the context of behaviour consistency analysis.
In particular in the merger scenario, the models for which we
construct an alignment capture different business processes, i.e.,
different originals have been abstracted by the models. Hence, a
rather high terminological heterogeneity is no surprise for these
models. They are grounded on completely different vocabular-
ies of concepts as established in the organisations that should be
merged. This raises the question to which extent terminological
heterogeneity can be expected to hold for process models that
capture a common process for different purposes. The focus on
a common process within one organisation suggests that the ter-
minological heterogeneity between such models can be expected
to be less strong than observed for the merger scenario. However,
we miss any experimental evidence for this assumption.

3.5 CONCLUSION

In this chapter, we focussed on the construction of an alignment
between process models — a prerequisite for any analysis of their
behaviour consistency. We clarified the basic concepts of align-
ments and formally defined them for net systems. Further, we
discussed the large body of work on model heterogeneity and
related it to the setting of process models. A review of matching
techniques for conceptual models in general revealed that there
has been hardly any work on the identification of complex cor-
respondences between model elements. For process models in
particular, we are not aware of any work addressing this prob-
lem.

This points to a severe issue. Even models created of a single
business process for the same purpose may show differences in
the assumed abstraction level. Once process models are created
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for different purposes, such conceptual heterogeneity is the rule
not the exception. Hence, there is great demand for techniques
that identify complex correspondences between process models.
Despite this fact, the problem has been largely neglected in re-
search.

The ICoP framework can be seen as a first step towards ad-
vancing the identification of correspondences between process
models. It provides a modular and adaptable architecture for
the implementation of matchers, by splitting up matchers into
searcher, booster, evaluator and selector components. This al-
lows for the development of matchers that detect complex 1:n
correspondences. It can be extended towards complex n:m cor-
respondences, even though this may require new heuristics to
select groups of activities for analysis. The combinatorial prob-
lem is increased even further for this kind of correspondences.

Our experimental results highlight that we are able to identify
a significant number of complex 1:n correspondences. Although
this demonstrates the potential of our framework for improving
matching results, we also explicated that, compared to existing
1:1 matchers, the increase in recall is often traded for a decrease
in precision. Finally, a minimal level of textual similarity for
similar activities is required for the matchers to produce accept-
able results. In our experiments, this requirement was met if
a standard process was matched with its implementations, but
not for the case of models stemming from different organisations.
Against the background of different modelling purposes, the ex-
tent to which correspondences may be discovered depends on
the impact of the modelling purpose on the used terminology.
For various modelling drivers, this impact can be assumed to be
rather modest. For instance, models created for documentation
and models created for automation are likely to refer to the same
business objects as standardised by the terminology of an organ-
isation. However, we can also think of exceptional cases. For
instance, models created for certification may explicitly deviate
from the terminology of an organisation and adopt the termino-
logy of the certification body.

We conclude that the construction of alignments between pro-
cess models is a conceptually challenging task. A full-fledged
automatic identification of complex correspondences does not
appear to be realistic. However, the ICoP framework shows that
at least semi-automated support for the identification of com-
plex correspondences can be achieved. As such, the framework
forms the basis for future investigations in this area.
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BEHAVIOURAL PROFILES

This chapter is based on results published in [504, 505, 508].
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EHAVIOURAL profiles are an abstraction of the behaviour of a
B net system. Although the consistency analysis as proposed
in this work is grounded on these profiles, they are a generic
behavioural model and independent of a certain use case. This
chapter is dedicated to the definition of different variants of be-
havioural profiles along with a discussion of their properties.
Section 4.1 focusses on the notion of a behavioural profile. In
Section 4.2, we extend this notion, which yields the causal beha-
vioural profile. We lift both concepts to labelled net systems in
Section 4.3. Section 4.4 is devoted to equivalences that ground
in behavioural profiles. Section 4.5 reviews related behavioural
concepts, before Section 4.6 concludes this chapter.
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4.1 THE NOTION OF A BEHAVIOURAL PROFILE

This section presents basic definitions for behavioural profiles.
Once the notion of a behavioural profile has been introduced,
we elaborate on properties of such a profile.

Definitions

The behavioural profile captures behavioural characteristics of
a net system under the assumption of trace semantics. Behavi-
oural profiles capture the order of potential occurrences of trans-
itions. They define order dependencies on the level of pairs of
transitions. In particular, dependencies between all occurrences
of two transitions are considered.

The definition of a behavioural profile is grounded on the no-
tion of weak order. Informally, two transitions t; and t, are in
weak order, if there exists a firing sequence starting in the initial
marking in which t; occurs before t;.

Definition 4.1.1 (Weak Order)

Let (N, Mp) be a net system with N = (P, T,F) and T' C T a set
of transitions. A pair of transitions (x,y) € (T’ x T’) is in the
weak order relation - over T', iff there exists a firing sequence o =
(t1,...,tn) with (N, Mp)[o) and indices j, k e N, 1 <j <k < n,
for which holds t; = x and tx =y.

Depending on how two transitions of a system are related by
weak order, we define three relations forming the behavioural
profile. The behavioural profile is defined over a set of trans-
itions of a net system.

Definition 4.1.2 (Behavioural Profile)
Let S = (N, My) be a net system with N = (P,T,F)and T' C T a
set of transitions. A pair of transitions (x,y) € (T’ x T’) can be
in the following profile relations:

o The strict order relation ~-, iff x > y and y ¥ x.

o The exclusiveness relation +, iff x ¥ y and y # x.

o The interleaving order relation ||, iff x >y and y > x.
B ={~,+,||} is the behavioural profile over T'.

For a net system S = (N, M) with N = (P, T, F), we refer to the
behavioural profile over T as the behavioural profile of S. The
exemplary net systems in Figure 18 illustrate the relations of the
behavioural profile for two dedicated transitions A and B. Fig-
ure 18a shows that the strict order relation enforces neither the
occurrence of the first transition, nor of the second transition.
For the two transitions in Figure 18a, it holds A ~» B. Hence,
the strict order relation captures the fact that all occurrences of
both transitions, A and B, are ordered in all firing sequences
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:

(a) Strict order. (b) Exclusiveness. (c) Exclusiveness.

(d) Interleaving order. (e) Interleaving order.

Figure 18: Net systems that illustrate the relations of the behavioural
profile for two transitions A and B.

reachable from the initial marking. In the system in Figure 18b,
both transitions are exclusive to each other, A + B. That is, both
transitions are never observed together in any firing sequence,
and there may be a firing sequence that contains none of them.
Even if the initial marking is dead, i.e., only the empty firing
sequence is reachable from the initial marking, transitions are re-
lated according to the behavioural profile. In this case, the weak
order relation is empty and all transitions are considered to be
exclusive to each other. This case is illustrated in Figure 18c. Fig-
ure 18d and Figure 18e exemplify two reasons for interleaving
order of two transitions, A[[B. Potential concurrent enabling of
two transitions or multiple interleaved firings of two transitions
cause interleaving order between both transitions.

Properties

The introduced terminology for behavioural profiles is inspired
by common notions known from order theory [101]. Still, none
of the presented relations is a preorder, a partial order, or a total
order, if the behaviour of the net system is not restricted. In par-
ticular, the strict order relation is not a strict partial order since
it is not necessarily transitive for the generic class of net systems.
Despite this fact, the definition of the profile relations implies
certain properties. We observe that the relations are either anti-
symmetric and irreflexive, or symmetric.
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Property 4.1.1. For any behavioural profile B = {~+,+, [} over a
set of transitions T’ holds that the relation ~~ is antisymmetric
and irreflexive, whereas relations + and || are symmetric.

Let = '= {(y,x) € T"x T | x = y} the inverse relation for >.
Then, this property follows immediately from the definition of
strict order as ~» = > \ ="', exclusiveness as + = (T' x T') \ (>
U>="1),and interleaving order as || = > N >=—1. This definition
also shows that the profile relations are mutually exclusive. In
other words, a pair of transitions is only in one of the behavi-
oural relations.

Property 4.1.2. For any behavioural profile B = {~»,+,|[} over
a set of transitions T’ holds that the relations ~, +, and || are
mutually exclusive.

We further define the inverse relation of the strict order relation
as ~1 = {(y,x) € (T"xT) | x ~ y}. We refer to ~~~ as the
reverse strict order relation. Together with this relation, the profile
relations show another important property. The four relations
yield a partitioning of the Cartesian product of transitions over
which they are defined.

Property 4.1.3. For any behavioural profile B = {~+,+, [} over a
set of transitions T’ holds that the relations ~, ~»—' , +, and ||
partition T x T'.
Again, this property is verified by the definition of the profile
relations based on the weak order relation. We earlier discussed
the characterisation of the three profile relations using the weak
order relation. Reverse strict order is defined as ~»~! = ="1\ ~.
Cyclic net structures affect the profile relations, as illustrated
by the example in Figure 18e. Here, transitions A and B are part
of a circuit. This yields interleaving order not only for the trans-
ition pair (A, B), but also for the self-relations of both transitions.
The identity relation over transitions is partitioned by interleav-
ing order and exclusiveness.

Property 4.1.4. For any behavioural profile B = {~+,+,|[} over
a set of transitions T’ holds that a transition t € T’ is either
exclusive to itself, t + t, or in interleaving order to itself, t||t.

To verify this property, we have to consider two cases, (t,t) € >
and (t,t) ¢ >. For the former, it holds that (t,t) € > implies
(t,t) € =", which yields t|[t. For the latter, we have the in-
verse implication, i.e., (t,t) ¢ > implies (t,t) ¢ >~—1 and, there-
fore, t +t. Consequently, the profile relations capture whether a
transition may occur at most once, t + t, or whether it may occur
multiple times in a firing sequence of the net system, t[t.

Interleaving order as a self-relation may be caused by a cir-
cuit. However, it may also be due to potential self-concurrent
enabling of the transition. For instance, it holds A + A and B|/B
in Figure 19.
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Figure 19: System with potential self-concurrent enabling.

4.2 THE NOTION OF A CAUSAL BEHAVIOURAL PROFILE

After we introduced the notion of a behavioural profile, this sec-
tion presents an extended variant of this behavioural abstrac-
tion. Behavioural profiles relate pairs of transitions according to
their order of potential occurrence. A behavioural profile provides
a rather coarse-grained behavioural abstraction. It is extended
to take optionality and causality of transition occurrences into
account.

Optionality of a transition is given, if there is a firing sequence
starting in the initial marking that does not contain the transition
and leads to a marking in which the transition is dead. Option-
ality can be lifted from single transitions to sets of transitions. A
set of transitions is considered to be jointly optional, if all trans-
itions are optional and any firing sequence starting in the initial
marking that contains at least one of the transitions must not
lead to a marking in which the remaining transitions are dead.
As illustrated in Figure 20a and Figure 20b, this property can-
not be derived from the knowledge about optionality of single
transitions. In both systems, B and C are optional, but only in
Figure 20b the set of transitions {B, C} is jointly optional.

Closely related to optionality is causality of transition occur-
rences. This property requires that one transition can only occur
after the occurrence of another transition. Hence, causality com-
prises two aspects, a certain order of occurrences and a causal
coupling of occurrences. The former is addressed by the beha-
vioural profile in terms of the strict order relation, whereas the
latter is not captured. For instance, B is a cause of C in Fig-
ure 20b, but not in Figure 20a, even though both models show
equal behavioural profiles.

We cope with causal dependencies between transition occur-
rences by extending the behavioural profile. The causal behavi-
oural profile is a more fine-grained behavioural abstraction that
provides a closer approximation of trace semantics. Technically,
the causal behavioural profile introduces a co-occurrence rela-
tion for pairs of transitions. Two transitions are co-occurring, if
any firing sequence starting in the initial marking that contains
the first transition either contains the second transition or can be
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(@) Band Careop- (b)B and C (c) Hidden (d) Hidden causality
tional. are jointly causality for (B, C).
optional. for (B, C).

Figure 20: Net systems that illustrate the concepts of optionality and
causality of transition occurrences.

continued such that it contains the second transition eventually.
This relation captures only the joint occurrence, but does not im-
pose any restriction on the order of occurrence within a firing
sequence.

Definition 4.2.1 (Causal Behavioural Profile)
Let S = (N, M) be a net system with N = (P, T,F), T" C T a set
of transitions, and B = {~+,+, |} the behavioural profile over T'.
o A pair (x,y) € (T x T') is in the co-occurrence relation >, iff
for all firing sequences o with (N, My)[o)(N,M’) and x € ¢
it holds either y € o or y is not dead in M.
o CB ={~,+,Il,>} is the causal behavioural profile over T'.

For a net system S = (N, M) with N = (P, T,F), we refer to
the causal behavioural profile over T as the causal behavioural
profile of S. Trivially, the co-occurrence relation subsumes the
identity relation over transitions. Hence, it holds t > t for all
transitions over which the causal behavioural profile is defined.

Figure 21: System with an L3-live transition, which can be fired infin-

itely often.

The definition of co-occurrence does not require any notion
of final states of the net system. Hence, co-occurrence can be
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decided even if a state (or a set of states) is never left. As an
example, consider the net system in Figure 21. Here, transition B
is L3-live [329], meaning that it appears infinitely often in some
firing sequence starting in the initial marking. It holds B >
A as every firing sequence that contains transition B, contains
transition A as well. It holds A > B, because transition B is
not dead in the marking reached from the initial marking by
firing A.

The co-occurrence relation of the causal behavioural profile
allows for conclusions on optionality and causality. A single
transition t € T of a net system S = (N,My), N = (P, T,F), is
optional, if top » t for some transition ty enabled in the initial
marking, (N,Mo)[to). A set T" C T of transitions is optional,
if all transitions themselves are optional and they are pairwise
co-occurring to each other, (T" x T’) C >>. A causal dependency
between two transitions t1,t, € T is observed, if they are in strict
order, t; ~ t2, and occurrence of the second implies occurrence
of the first, t; > t;.

In contrast to the behavioural profile, the causal behavioural
profile differs for both systems in Figure 20a and Figure 20b. Fur-
ther, we observe causality for transitions B and C in Figure 20b,
but not in Figure 20a according to the relations of the causal
behavioural profile. However, the systems in Figure 20c and
Figure 20d show equal profiles despite their different trace se-
mantics. The difference between these systems is not manifes-
ted in a dependency between all occurrences of a pair of trans-
itions. Instead, the difference stems from different interleavings
of transitions B and C, which is neglected by the relations of the
behavioural profile. As a consequence, the interpretation of caus-
ality based on causal behavioural profiles differs from common
definitions of causality. Those notions typically consider causal
dependencies between single occurrences of transitions, e. g., the
response / leads-to dependencies that are defined in temporal lo-
gic [342, 137, 452, 462]. Such a notion of causality between trans-
itions B and C in Figure 20c and Figure 20d is hidden when
using a behavioural abstraction such as causal behavioural pro-
files.

The co-occurrence relation of the causal behavioural profile is
largely independent of the relations of the behavioural profile.
The only two conclusions that can be drawn relate to the co-
occurrence of dead transitions and exclusive transitions.

Property 4.2.1. For any transition holds, if it is dead in the initial
marking, it is co-occurring with all other transitions of the net
system.

If a transition is dead in the initial marking of the net system,
it cannot be enabled in any reachable marking. Hence, there
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Figure 22: System with a dead transition.

is no firing sequence comprising the transition, so that the co-
occurrence holds trivially regarding all other transitions.

We illustrate this property with the net system depicted in Fig-
ure 22. Here, transition B is dead. As there is a firing sequence
starting in the initial marking and containing transition A, we
arrive at A » B. However, it holds B > A. All firing sequences
containing transition B, contain transition A as well or lead to a
marking in which transition A is not dead. This requirement is
trivially satisfied by the absence of any firing sequence contain-
ing transition B.

Property 4.2.2. For any pair of transitions holds, if they are not
dead in the initial marking and exclusive according to the beha-
vioural profile, they are not co-occurring in either direction.

Since both transitions are not dead, each transition can be part
of at least one firing sequence that starts in the initial marking.
Then, this property follows immediately from the definition of
the respective relations. Exclusiveness requires the absence of
a firing sequence that starts in the initial marking of a net sys-
tem and comprises both transitions. Co-occurrence, in turn, re-
quires that such a firing sequence that contains one of the trans-
itions either contains the other transition or leads to a marking
in which the other transition is not dead. A pair of transitions
cannot satisfy both requirements.

The causal behavioural profile is an extension of the behavi-
oural profile. In the remainder of this thesis, therefore, we use
the term behavioural profile to refer to both concepts whenever
the difference between the causal and non-causal variant is not
of importance.

4.3 ON LABELLED SYSTEMS

Up to now, we discussed the concept of behavioural profiles
solely for unlabelled net systems. Still, behavioural profiles can
be lifted to labelled net systems to come to a behavioural abstrac-
tion over labels of a net system. In this section, we first introduce
preliminaries for labelled systems. Then, we define the behavi-
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Figure 23: Labelled net system.

oural profile and the causal behavioural profile over the labels
of a net system.

Preliminaries

A labelled net system comprises a net system and labelling in-
formation for all transitions.

Definition 4.3.1 (Labelled Net System)

A labelled net is a tuple N = (P, T,F, A, A), where (P, T, F) is a net,
A is a set of labels, and A : T — A is a labelling function. A
system (N, My) is called labelled net system, if N is a labelled net.

Figure 23 depicts an example labelled net system. This net sys-
tem comprises two pairs of transitions that carry equal labels,
B and C, respectively. For a labelled net system (N, M) with
N = (P, T,F, A, A), any firing sequence o = (t1,...,tn) is inter-
preted as a sequence of labels o) = (ly,..., 1) of the respective
transitions, A(t;) = 1; for all T <1 < n. As a short-hand notation,
we write 1 € o with 1 € A if there exists a transition t € T with
teoand A(t) =1

Behavioural Profile on Labels

To define the behavioural profile on labels, we lift the weak order
relation to labels as follows. Two labels are in weak order, if and
only if two transitions carrying those labels are in weak order.

Definition 4.3.2 (Weak Order on Labels)

Let S = (N, M) be a labelled system with N = (P, T,F, A, A), >~
the weak order relation over T, and A’ C A a set of labels. A pair
of labels (11,1,) € (A’ x A’) is in the weak order relation on labels
= over A/, iff there are transitions x,y € T such that A(x) = 15,
Aly) =1y, and x > y.
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The relations of the behavioural profile are defined for labels as
follows.

Definition 4.3.3 (Behavioural Profile on Labels)
Let S = (N, My) be a labelled system with N = (P, T,F, A,A) and
A’ C A a set of labels. A pair of labels (11,1;) € (A’ x A’) is in
the following profile relations on labels:

o The strict order relation ~> s, if 11 =ar 12 and 13 # A 14.

o The exclusiveness relation + s, if 11 #ar 12 and 1 # A 11

o The interleaving order relation ||as, if 11 =/ 12 and 1o >/ 15.
The set Bor = {~>ar, a7, la} is the behavioural profile on labels
over \.

We illustrate the relations of the behavioural profile on labels
with the example depicted in Figure 23. A transition labelled
with B is exclusive to a transition labelled with C. Once the
behavioural profile is lifted from transitions to labels, however,
both labels are in interleaving order. Even though there are mul-
tiple transitions carrying the label B, all of them are exclusive to
the transition labelled with D. Hence, the labels B and D are
exclusive according to the behavioural profile on labels.

The behavioural profile on labels is derived directly from the
behavioural profile of a net system. Consequently, it is com-
puted efficiently once the behavioural profile is known.

Proposition 4.3.1. The following problem can be solved in O(n?)
time with n as the number of transitions:

Given the behavioural profile of a labelled net system, to derive its be-
havioural profile on labels.

Proof. Both, deriving the weak order relation on labels and set-
ting the relations of the behavioural profile on labels, requires
iteration over the Cartesian product of transitions of the net sys-
tem. Assuming that each label relates to at least one transition,
the number of labels is smaller or equal than the number of
transitions. Thus, overall time complexity is O (n?) with n as the
number of transitions. O

Causal Behavioural Profile on Labels

Similar to the behavioural profile, the co-occurrence relation of
the causal behavioural profile is lifted to labels of transitions.

Definition 4.3.4 (Causal Behavioural Profile on Labels)
Let S = (N, M) be a labelled system with N = (P, T,F, A, A),
A’ C A aset of labels, and B = {~ A/, +/, || A/} the behavioural
profile on labels over A’.
o A pair of labels (11,12) € (A’ x A’) is in the co-occurrence
relation on labels > ps, iff for all firing sequences o starting in
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Mo, (N, Mo)[o)(N, M), with 1; € o it holds either 1, € o or
there is a transition t € T such that A(t) = 1, and t is not
dead in M.

o The set CBAr = {~ a7, + a7, [Ia7, > s} is the causal behavioural
profile on labels over A'.

For the example shown in Figure 23, for instance, co-occurrence
is observed from label B to label C, but not vice versa. Any
firing sequence starting in the initial marking that contains a
transition labelled with B, either contains a transition labelled
with C or can be continued with a transition labelled with C.
The opposite, C > B, does not hold true.

In contrast to the behavioural profile, the causal behavioural
profile on labels cannot be derived from the causal behavioural
profile directly. Co-occurrence of labels cannot be deduced from
co-occurrence of transitions when considering solely pairs of
transitions. Consider labels A and C in the net system in Fig-
ure 23. Both labels are co-occurring according to Definition 4.3.4
as every firing sequence starting in the initial marking that con-
tains the label A contains the label C or can be continued with
label C. However, there is no co-occurrence between the trans-
ition labelled with A and those that are labelled with C.

After we elaborated on the relation of behavioural profiles and
their counterparts on labels, we restrict the discussion to pro-
files for unlabelled net systems in the remainder of this thesis.
According to Proposition 4.3.1, however, all computations that
utilise non-causal behavioural profiles and are done for unla-
belled systems can be lifted to labelled systems with a minor
computational overhead.

4.4 BEHAVIOURAL PROFILE EQUIVALENCES

The abstraction of behavioural profiles may be utilised to com-
pare the behaviour of two net systems. This section introduces
equivalences based on behavioural profiles. Later, we discuss
their relation to common notions of behaviour equivalence.

Definitions

First, the notion of a behavioural profile that focusses on the
order of potential occurrence gives rise to a definition of equival-
ence. Two net systems are behavioural profile equivalent, if the
relations of their behavioural profiles coincide with each other.
We define this equivalence under the assumption of equal sets
of transitions of two systems. Still, the definition may be lifted
to any isomorphism between the transitions of two net systems.
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Definition 4.4.1 (Behavioural Profile Equivalence)

Let S1 = (N7,M7) and S, = (N2, M) be net systems and B =
{~1,+1,lh1} and B2 = {~2,+2, 2} their behavioural profiles. S
and S, are behavioural profile equivalent denoted by S; = S, iff
~1 =2, +1 =42, and |1 = 2.

In the same vein, an equivalence notion is grounded on the no-
tion of a causal behavioural profile. It requires all relations of
the causal behavioural profile of two net systems to coincide
with each other.

Definition 4.4.2 (Causal Behavioural Profile Equivalence)

Let St = (Ny,M1) and S, = (Nz,M;) be net systems and
B1 = {~1,+1,lli,>1} and By = {~2,+2,ll2,>2} their behavi-
oural profiles. S7 and S, are causal behavioural profile equivalent
denoted by S1 =¢ S, iff they are behavioural profile equivalent
and > = >).

For both equivalence definitions, the characteristic properties of
an equivalence notion are indeed satisfied. That is, the presented
relations are reflexive, symmetric, and transitive.

Theorem 4.4.1. The relations = and =c are equivalences.

Proof. Both relations are reflexive, symmetric, and transitive.

Reflexivity. For any net system S it holds S =S and S =¢ S as
the relations of the (causal) behavioural profile are uniquely
derived from the existence of certain firing sequences.

Symmetry. Let S; and S; be net systems. Then, S; = S, im-
plies S; = Sy and S1 =¢ S, implies S1 =c¢ S;. This follows
from the symmetry of set equivalence for the relations of
the (causal) behavioural profile in Definition 4.4.1 and Defin-
ition 4.4.2.

Transitivity. Let Sq, Sz, and S3 be net systems. Then, S1 = S
and S, = Sz implies S7 = S3, and S1 =¢ Sz and S, =¢ S3
implies S1 =¢ S3. This follows directly from the transitivity
of set equivalence for the relations of the (causal) behavi-
oural profile in Definition 4.4.1 and Definition 4.4.2.

O

Figure 24 illustrates equivalences based on (causal) behavioural
profiles. All three net systems show equal behavioural profiles.
The order of potential occurrence is equal for all pairs of trans-
itions. For instance, transitions A and E are in strict order Trans-
itions C and E are in interleaving order. Even though the three
systems show differences in terms of trace semantics related to
the circuits, i. e., transitions B, C, and E, the order dependencies
between all occurrences of two transitions are equal in all three
systems. In contrast, these differences partially affect the causal
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Figure 24: All three systems are behavioural profile equivalent; (a) and
(b) are causal behavioural profile equivalent.

behavioural profile. Only the systems in Figure 24a and Fig-
ure 24b are causal behavioural profile equivalent. Both systems
show co-occurrence for transitions B and C in both directions. In
the system in Figure 24c, both transitions are not co-occurring.
As an example, a firing sequence consisting of transitions A, B,
and D leads to a marking in which transition C is dead even
though it has not been fired. Hence, it holds B % C for the
system in Figure 24c.

Behaviour Equivalences

Behavioural profile equivalences relate to common notions of
behaviour equivalence that are grounded on different semantics
for behavioural models. The seminal work of van Glabbeek [474,
476] classifies these semantics in the linear time — branching
time spectrum, either for concrete sequential behavioural mod-
els [474] or for sequential behavioural models with silent trans-
itions [476]. We focus on the former, as behavioural profiles are
grounded on the observable behaviour of net systems.

The linear time — branching time spectrum for sequential be-
havioural models defines 11 semantics that yield 11 notions of
behaviour equivalence. Branching bisimulation is seen as the up-
per bound of this spectrum, which requires that two behavioural
models can simulate one another [478]. Hence, not only the ob-
servable behaviour, firing sequences in net systems, but also the
moment of choice is taken into account. The lower bound of this
spectrum is trace equivalence as introduced by Hoare [213]. Ap-
plied to net systems, it requires equivalence of the sets of firing
sequences. Besides these two poles, various equivalences have
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been proposed [474] and advocated to be applied in the field of
business process analysis [209].

All the aforementioned equivalences assume sequential beha-
vioural models, also referred to as interleaving semantics. Equi-
valences that are based on non-sequential semantics [354, 177,
50] are typically neglected for the comparison of business pro-
cesses as all transitions may be split up into two transitions in-
dicating the start and the end of the transition, respectively. For
models extended in this way, equivalences for sequential behavi-
oural models are applied, cf., [234]. A survey of equivalences for
net systems under sequential and non-sequential semantics can
be found in [363].

Behavioural profiles are an abstraction of trace semantics. This
already suggests that equivalence of (causal) behavioural pro-
files is a weaker criterion for the comparison of two net systems
than trace equivalence. The two net systems depicted in Fig-
ure 24a and Figure 24b illustrate that equivalence of causal be-
havioural profiles does not coincide with trace equivalence. For
instance, the system in Figure 24b allows for the trace o = (A, C),
which is not possible in the system in Figure 24a. Neverthe-
less, we observe that trace equivalence implies the equivalence
of causal behavioural profiles and, therefore, of behavioural pro-
files.

Proposition 4.4.2. Every two net systems that are trace equivalent
are also causal behavioural profile equivalent.

Proof. If two net systems have the same set of traces, they end
up with equal weak order relations as those are built on the ex-
istence of a certain trace. Both systems have equal co-occurrence
relations, as co-occurrence of transitions is decided by exploit-
ing all possible continuations for a certain trace. Hence, both
systems are causal behavioural profile equivalent. O

4.5 RELATED BEHAVIOURAL CONCEPTS

The abstraction of behavioural profiles is related to other beha-
vioural concepts. First, this section reviews approaches to re-
lational semantics for the creation and analysis of behavioural
models. Second, we focus on behavioural relations that have
been proposed in process mining. This section closes with a dis-
cussion of behavioural profiles in the light of other approaches
to behavioural abstraction.

Relational Semantics

Relational semantics have been proposed to reason on the con-
sistency of hardware specifications [393]. The control logic cir-
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cuit of such a specification may be represented by a labelled net
system, in which each transition refers to a state change of a bin-
ary variable. The authors of [393] classify transitions of a net
system to be sequential or parallel. Two transitions t; and t;
are sequential, if t; precedes t; in all traces reachable from the
initial marking. A formal definition of the assumed notion of
precedence is not presented, even though an example suggests
an interpretation for single transition occurrences. Hence, two
transitions that may be fired multiple times in alternating order
as part of a circuit would be considered to be sequential by the
notion of [393], but in interleaving order according to the behavi-
oural profile. In [393], the sequential and parallel relations along
with an exclusiveness relation are also defined for operations of
a programming language. This language is block-structured and
limited to acyclic programs. Consequently, the relations are dir-
ectly assigned to common language constructs, e. g., if-then-else
constructs. Besides these differences, the ideas in [393] can be
seen as the conceptual roots of behavioural profiles.

Behavioural relations are used for matching service descrip-
tions in [144]. The authors define sequential, choice, and paral-
lel relations for activities of BPEL processes. These relations are
directly assigned to control flow routing constructs of BPEL pro-
cesses. To take potential repetition of activities into account, all
three relations may have multiplicity annotations. With these no-
tions, different types of services matches are introduced. Beha-
vioural profiles can be seen as a generalisation of these relations.
They are defined for a generic behavioural model, whereas the
relations in [144] are restricted by the underlying behavioural
model. On the one hand, this model simplifies control flow de-
pendencies by neglecting BPEL transition conditions and join
conditions. On the other hand, BPEL processes do not support
the definition of arbitrary cycles, cf., [456].

The notion of an order matrix has been introduced in the con-
text of managing process variants [271, 272, 273, 274]. For pairs
of activities, this matrix captures their behavioural dependencies
by predecessor, successor, AND-block, XOR-block, and loop re-
lations. These relations partition the Cartesian product of activ-
ities of a process model, apart from the self-relations. When
neglecting the latter, these relations virtually coincide with the
relations of the behavioural profile. Predecessors and successors
are captured by strict order, XOR-blocks correspond to exclusive-
ness and interleaving order combines the AND-block and loop
relation. Apart from this difference, the behavioural profile can
be seen as a generalisation of the order matrix, which is intro-
duced only for block-structured process models.

Capturing the behaviour of a system by a set of relations
is also at the core of declarative approaches to process model-
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ling. These approaches specify a set of constraints, typically
grounded on Linear Temporal Logic [298], which restricts the
possible behaviour of a system. Most prominently, the DecSer-
Flow language [452, 462, 327] defines a large set of behavioural
constraints, such as mutual exclusiveness, precedence, and re-
sponse dependencies. These constraints are more fine-grained
than the relations of the behavioural profile and allow for the
definition of dependencies between single occurrences of trans-
itions. The constraints imposed by the relations of the behavi-
oural profile, therefore, may be encoded in DecSerFlow. The
idea to employ enabling and disabling constraints to define a
behavioural model was also incorporated in the AMBER lan-
guage [140]. Finally, relational semantics have been advocated
for the specification of choreography models that focus on the
interactions between different behavioural models on a global
level [112]. The Let’s Dance language [532, 531, 113] is based on
behavioural relations such as precedes or inhibits dependencies
that are defined between interactions.

Behavioural Relations in Process Mining

Relations similar to those of the behavioural profile are applied
in process mining, which aims at the construction of process
models from event logs, i.e., observed execution sequences [99,
11, 457, 460, 446]. Early work on process mining extracts depend-
ency graphs from an event log [99, 11]. In [99], such a graph
is derived by investigating the direct successorship of activity
execution. Then, a probabilistic strategy is used to identify the
most probable execution dependencies in the graph. Other work
builds a dependency graph from an indirect follows-relation
between pairs of activity executions [11]. This relation holds
between two activities, if the first terminates before the second
is started in all observed execution sequences. Hence, this rela-
tion resembles the weak order relation from which we derive the
behavioural profile.

The o-algorithm aims at the construction of a WE-system from
sequences of observed transition occurrences [457, 446]. It fol-
lows the idea of exploiting direct successorship of transition oc-
currences. A directly follows relation contains all transitions that
succeed each other without any other transition occurring in
between. Based on this relation, the «-algorithm defines three re-
lations, —, #, and ||. The three relations stem from the different
combinations of the directly follows relation for pairs of trans-
itions. Relation # holds between ‘pairs of transitions that never
follow each other directly’ [457]. A causal dependency — holds if
a transition follows another transition in some firing sequence,
but not vice versa. The relation || captures transition pairs for
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Figure 25: Overview of different relational semantics; (a) depicts an
example net system, (b) shows three different relational se-
mantics for this net system.

which the first follows the second, and vice versa. This is sim-
ilar to the profile relations, which are deduced from different
combinations of the weak order relation. Recently, these rela-
tions have been called footprint [446]. A footprint shows similar
properties as the behavioural profile. The relations are mutu-
ally exclusive and partition the Cartesian product of transitions.
Yet, the relations are different. The underlying directly follows
relation emphasises direct causal dependencies, whereas the pro-
file relations focus on indirect dependencies. Actually, there is
a whole spectrum of relational semantics between the relations
of the footprint and those of the behavioural profile, see Fig-
ure 25. For the firing sequences allowed for by the net system
depicted in Figure 25a, the matrix (M1) depicts the relations of
the x-algorithm. These relations implement a look-ahead of one
when evaluating whether there exists an order dependency. As
an example, it holds B # D as both transitions never occur to-
gether. Conceptually, we may increase the look-ahead when de-
riving the relations. Matrix (M2) in Figure 25a shows relations
that are grounded on a follows relation that contains all pairs of
transitions that follow each other directly or with just a single
transition in between. Hence, it implements a look-ahead of two.
Then, we observe an order dependency for the aforementioned
transitions, B — D, as there exist a firing sequence in which B is
followed by first E and then D. However, we do not observe any



90

BEHAVIOURAL PROFILES

sequence in which D is followed by B directly or with just one
transition occurring in between (two transitions, E and F, have
to occur in between). Following this line, the relations of the
behavioural profile implement a far-look-ahead. Even though
transitivity of the strict order relation holds solely for behavi-
oural profiles of a certain class of net systems, the relations of
the behavioural profile may be thought of the transitive closure
of the order dependencies. Taking up the example again, we
observe interleaving order for both transitions, B||D, as an occur-
rence of B may be followed by an occurrence of D, and vice versa.
Information on ordering in cyclic structures is lost, whereas we
obtain order dependencies that are independent of any trans-
ition occurrences that may happen in between. In contrast to
the footprint, the behavioural profile captures exclusiveness for
transitions do not occur together at all.

The look-ahead of one of the footprint also explains why the
a-algorithm does not discover certain control flow constructs,
such as loops of length one and two, and non-free-choice con-
structs. These constructs require increasing the look-ahead. Ex-
tended versions of the «-algorithm, the ot-algorithm and the
ot T-algorithm, incorporate respective relations. To cope with
control flow loops of length two, the " -algorithm redefines the
aforementioned footprint relations [104, 105]. By investigating
not only direct successorship of transition occurrences but se-
quences of three transitions, multiple interleaving occurrences
of two transitions and actual parallelism are distinguished. The
ot *-algorithm aims at mining non-free-choice constructs and
introduces further behavioural relations [512]. In particular, this
algorithm leverages an indirect causality relation. It captures
pairs of transitions that follow each other indirectly. This rela-
tion is close to our indirect strict order relation, yet different. It
is sensitive to certain split and join patterns between the occur-
rences of two transitions, see [512]. The idea behind is to capture
only indirect dependencies that are actually causalities, whereas
our strict order relation also captures non-causal dependencies.

Further matrix-based representations of behaviour have been
proposed for process mining. Genetic mining leverages the no-
tion of a causal matrix [459, 106]. Such a matrix captures depend-
encies between net transitions by input and output condition
functions. Those associate subsets of preceding or succeeding
transitions to a single transition. Hence, they capture the com-
binations of transitions that must be fired to enable a certain
transition, or can be fired after a certain transition has been fired.
In contrast to our relations these relations assume a local per-
spective by focussing on direct predecessors and successors of
a transition. A global perspective is assumed by the follows and
precedes relations proposed to judge on the quality of mined pro-
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cess models [395]. For a pair of transitions, these relations cap-
ture whether the first is never, sometimes, or always followed
(preceded) by the second transition. There are various common-
alities between these relations and behavioural profiles. In fact,
the weak order relation underlying the behavioural profile cor-
responds to the follows relation with the values sometimes or
always. Two transitions in weak order follow each other either
in some or all firing sequences. As a consequence, the profile
relations can be derived from the follows and precedes relations.
For instance, two transitions that never follow and never precede
each other are exclusive in the behavioural profile. Transitions
that always follow or precede each other would by captured by
the co-occurrence relation of the causal behavioural profile.

We summarise that many relations proposed in the context of
process mining resemble the relations of the behavioural profile.
Still, process mining typically focusses on causal dependencies,
whereas the causal behavioural profile separates the order of
potential occurrences and co-occurrence dependencies.

Behavioural Abstractions

The approaches to relational semantics discussed earlier are not
intended to serve as a behavioural abstraction. In contrast, a
behavioural profile provides an abstraction of trace semantics of
a net system — a certain loss of behavioural detail is the desired
outcome.

Approximation of trace semantics of net systems has been the
motivation for the definition of causal footprints [470, 473]. Such
a footprint captures semantics for a set of transitions by two rela-
tions, look-back links and look-ahead links. For a transition t, a
look-back link defines a set of transitions of which one must have
occurred sometime before t. A look-ahead link for a transition t
defines a set of transitions, such that an occurrence of t is eventu-
ally followed by the occurrence of one of these transitions. A be-
havioural model is said to be consistent with a causal footprint, if
all firing sequences reachable from the initial marking satisfy the
constraints imposed by the footprint. Similar to behavioural pro-
files, causal footprints are a behavioural abstraction, so that net
systems with different trace semantics may show equal causal
footprints. However, unlike the notion of behavioural profiles,
there are also various causal footprints for a single net system.
It is suggested to address this issue by computing the closure
of causal footprints to obtain a ‘more informative footprint” [470].
Still, this computation requires soundness of the underlying be-
havioural model and, therefore, is not applicable in the general
case.
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A communication fingerprint is a behavioural abstraction that
focusses on potential interactions of a behavioural model [435,
337]. The concept has been defined for open net systems, i.e.,
net systems that are extended by means for synchronous and
asynchronous communication. The protocol induced by the net
system’s behaviour is abstracted by a communication fingerprint
as a set of constraints on message exchanges. In particular, mes-
sage occurrence counts are defined that impose boundaries and
dependencies regarding the cardinalities of consumed or pro-
duced messages. Communication fingerprints abstract from any
control flow dependencies and focus on the interactions. Hence,
this work is orthogonal to our work on behavioural profiles.

4.6 CONCLUSION

This chapter introduced the notion of behavioural profiles. Beha-
vioural profiles capture behavioural characteristics of a net sys-
tem by relations between pairs of transitions. We introduced two
variants of behavioural profiles. The (non-causal) behavioural
profile focusses on the order of potential occurrences of trans-
itions. The causal behavioural profile extends the behavioural
profile by a relation that captures co-occurrence dependencies.

We showed that both notions are the basis for the definition
of equivalences. Behavioural profiles are an abstraction of the
trace semantics of a net system. Therefore, these equivalences
are weaker than trace equivalence.
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This chapter is based on results published in [504, 505, 508, 502].
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E introduced behavioural profiles as an abstraction of the
behaviour of a net system. The relations forming the be-
havioural profile follow from the existence of certain firing se-
quences. Hence, construction of a behavioural profile requires
the analysis of all firing sequences or of all paths of the state
space, respectively. This is known to require exponential space
and time for arbitrary net systems [279, 444]. For dedicated
classes of net systems, however, computation of behavioural pro-
files is efficient — requires low polynomial time.

In this chapter, we introduce techniques for the efficient com-
putation of behavioural profiles. In Section 5.1, we focus on
sound free-choice WF-systems. Systems in this class are known
to show a close relation between structure and semantics. We
leverage these results to derive behavioural profiles from the
net structure. Section 5.2 complements these results by showing
how structural decomposition of sound free-choice WF-systems
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is leveraged to support partial computation of behavioural pro-
files. Net systems that do not meet the assumption of soundness
and free-choiceness are addressed in Section 5.3. We introduce
the computation of behavioural profiles for a bounded net sys-
tem from its complete prefix unfolding. The latter refers to a
specific representation of the state space of the net system. Al-
though this technique is computationally hard, the underlying
formalism explicitly aims at representing the system’s behaviour
in a compact way. Then, we investigate the applicability of our
techniques in a real-world setting. Section 5.4 presents an imple-
mentation of all techniques for the computation of behavioural
profiles and reports on findings from experiments with model
collections from industry. Section 5.5 reviews work related to
the presented computation techniques. Finally, Section 5.6 con-
cludes this chapter.

5.1 COMPUTATIONS FOR SOUND FREE-CHOICE WF-SYSTEMS

For the class of sound free-choice WF-systems, we derive the beha-
vioural profile directly from the net structure. Although we in-
troduced the soundness and free-choice property in Section 2.2,
the implications of these properties deserve further explanation.
Both properties together imply a tight coupling of syntax and
semantics of net systems [448, 234]. To discuss this coupling,
we need the notion of a home marking. For a net system S =
(N,My), a marking M is a home marking of S, if it is reach-
able from every marking reachable from the initial marking, i.e.,
M € [N, M) for all markings M’ € [N, My).

In a live and bounded free-choice net system (N, M), the
existence of a path from a place q to a place p, with M,, be-
ing a home marking, implies the existence of a firing sequence
that consists of all transitions on the path between q and p, cf,,
Lemma 4.2 in [234]. Soundness of a WF-system (N, M) implies
liveness of its short-circuit system (N’, M) [448]. All markings
reachable from the initial marking M; in N are home markings
in (N, M;). Consequently, the result on the relation between the
existence of paths and according firing sequences is applicable
for paths in sound free-choice WF-systems. Further, our compu-
tations leverage that any sound free-choice WF-system is known
to be safe, cf., Lemma 1 in [448].

The soundness and free-choiceness properties are verified in
polynomial time. The free-choice property is decided based on
the structure of the net system, i. e., the flow relation. Soundness
of a net system is traced back to liveness and boundedness of the
short-circuit system. It is decided in polynomial time for free-
choice WE-systems [447]. Hence, deciding whether a given net
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system is a sound free-choice WF-system is done in polynomial
time to its size.

In the remainder of this section, first, we derive the relations of
the behavioural profile from the structure of a sound free-choice
WF-system. Second, we elaborate on the derivation of the co-
occurrence relation for sound free-choice WF-systems that are
S-systems, T-systems, or acyclic systems.

Derivation of the Profile Relations

To derive the relations of the behavioural profile, we need an aux-
iliary relation that captures concurrent enabling of transitions.
To this end, we rely on the concurrency relation as introduced

in [246, 247].

Definition 5.1.1 (Concurrency Relation)

Let (N, My) be a net system with N = (P, T, F). The concurrency
relation ||co € T x T contains all transition pairs (x,y), such that
there is a marking M € [N, M) that enables them concurrently,
ie, M > M, +M,y.

Transitions that show interleaving order according to the behavi-
oural profile are not necessarily enabled concurrently in a mark-
ing reachable from the initial marking. Still, there is the follow-
ing dependency between interleaving order and the concurrency
relation.

Lemma 5.1.1. For any free-choice system holds, every pair of trans-
itions that is concurrent is also in interleaving order.

Proof. Let (N, My) be a free-choice net system with N = (P, T, F),
x,y € T, and x||coy. From the latter, we know that there is a
marking M € [N, M;) with M > M, + M. There are two firing
sequences (N, M)[xy) and (N, M)[yx), which yields x > y and
y > X, i.e,, interleaving order. ]

With this result, we relate structural relations between trans-
itions in sound free-choice WF-systems to the profile relations.
For a sound free-choice WF-system (N, M;) with N = (P, T,F),
we say that two transitions x,y € T are cyclic dependent, if x F* y
and y F* x. They are structurally ordered, if x F* y and y F* x,
and structurally exclusive, if x F*y and y F* x. Each of these
structural relations is close to one of the profile relations.

Lemma 5.1.2. For any sound free-choice WF-system holds, for every
two transitions that are not concurrent, interleaving order coincides
with cyclic dependency.

Proof. Let (N, M) be a sound free-choice WF-system with N =
(P,T,F),x,y €T, and XMy.
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= Let x|ly and assume x )zl y. Since it holds x||y, there is a fir-
ing sequence containing x before y. Let M1, M, € [N, My)
be the markings before and after firing of x as part of this
firing sequence, i.e., (N,Mj)[x)(N,M;). Due to x )zl y,
all places x* cannot affect the enabling of y. This, along
with soundness of the net system, implies that there is a
marking M3z € [N, M;) enabling y for which holds M3 >
My + Zpex'(Mp)- In other words, M3 is reachable from
M;, marks all places x°®, and enables y. Then, there must
also be a marking My from which M3 is derived by firing of
transition x, (N, M4)[x)(N, M3). Hence, M4y > M, +My, a
contradiction with xMy. Following the same argument, the
assumption of y F* x also results in a contradiction.
< From x F© y and y F™ x we know that, due to the soundness
and the free-choice property, there must be a firing sequence
containing both transitions in either order [234]. Hence, it
holds x > y and y > x, which yields interleaving order.
O

Structural exclusiveness is also related to the profile relations for
sound free-choice WF-systems.

Lemma 5.1.3. For any sound free-choice WF-system holds, for every
two transitions that are not concurrent, exclusiveness coincides with
structural exclusiveness.

Proof. Let (N, M;) be a sound free-choice WF-system with N =

(P,T,F),x,y €T, and x%y.

= Let x +y and assume x F' y. Since x +y, we know x # y.
As the system is sound, x must not be a dead transition. Let
Mi,M; € [N, M;) be the markings before and after firing
of x in a firing sequence, (N, Mj)[x)(N,Mz). x Ft y im-
plies a firing sequence containing x and y due to the sound-
ness and the free-choice property [234]. There is a marking
M3z € [N, M;) with M3 > My, i.e, y is enabled. This yields
a contradiction with x # y. The argument is followed in
reverse direction for the assumption of y F* x.

< Let x Py and assume x > y. x must not be a dead trans-
ition (soundness property). Thus, it is contained in a firing
sequence and there are two markings M, M, € [N, M;) be-
fore and after firing of x. To meet x > vy, still, there has
to be a marking M3 € [N, M;) that enables y. As before ,
x ¥y implies that all places x* cannot affect the enabling
of y. Thus, the marking M3 may enable y, while marking
all places x*, M3 > My + 3 ,c\+(M;). Consequently, there
is a marking M4 from which M3 is derived via firing of x,
(N, M4)[x)(N,M3). Then, My > M, + M, which is not in
line with xl¢gy. The argument is followed in reverse direc-
tion for the assumption of y > x. Thus, we conclude x + .
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O

As a next step, structural order of transitions is related to the
profile relations for sound free-choice WF-systems.

Lemma 5.1.4. For any sound free-choice WF-system holds, for every
two transitions that are not concurrent, strict order coincides with
structural order.

Proof. Let (N, M;) be a sound free-choice WF-system with N =
(P,T,F), x,y € T, and XMy. Both directions of the Lemma
follow directly from Lemma 5.1.2 and Lemma 5.1.3, as both
transitions x and y must not be structurally exclusive or cyc-
lic dependent. Hence, strict order x ~» y coincides with either
x Ff yand y P x, or x ¥ y and y F© x. The latter is not
possible as y F* x would imply y > x due to soundness and
free-choiceness [234]. O

Finally, we are able to state that the profile relations are derived
from the concurrency relation and the flow relation of a sound
free-choice net system.

Theorem 5.1.5. For a sound free-choice WF-system, the behavioural
profile is computed from its concurrency relation and its flow relation.

Proof. Interleaving order is traced back to concurrency and cyclic
dependencies by Lemma 5.1.1 and Lemma 5.1.2. Exclusiveness
is derived from the flow relation using Lemma 5.1.3. Strict order
is derived according to Lemma 5.1.4. As the relations of the
behavioural profile partition the Cartesian product of transitions,
cf., Property 4.1.3, this yields the behavioural profile for a sound
free-choice WE-system. O

Even though the concurrency relation captures behavioural as-
pects of a system, it is computed in low polynomial time for the
investigated class of systems. This enables efficient computation
of a behavioural profile for a sound free-choice WF-system.

Corollary 5.1.6. The following problem can be solved in O(n3) time
with n as the number of transitions and places of the system:
For a sound free-choice WF-system, to compute its behavioural profile.

Proof. Computation of the concurrency relation is done in O(n3)
time for any free-choice system with n as the number of trans-
itions and places of the system [247, 147]. Computation of the
transitive closure of a relation over a set with n elements takes
O(n3) time [486]. By Theorem 5.1.5, this suffices to derive the
behavioural profile. ]

We illustrate the presented results with the sound free-choice
WE-system depicted in Figure 26. Transitions C and D are in
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Figure 26: Example WEF-system that is sound and free-choice.

the concurrency relation. Hence, we conclude interleaving or-
der as their profile relation. Transitions A and C are structurally
ordered, transitions C and F are cyclic dependent, and trans-
itions A and B are structurally exclusive. All these pairs are not
concurrent. Therefore, we derive strict order for transitions A
and C, interleaving order for transitions C and F, and exclusive-
ness for transitions A and B.

Derivation of the Co-occurrence Relation

Having addressed the relations of the behavioural profile, we
turn the focus on the co-occurrence relation of the causal beha-
vioural profile. To characterise co-occurring transitions we first
need an auxiliary result on the relation between co-occurrence
and conflict-free paths of a sound net system. As usual, given
a WF-net N = (P,T,F), a path 7in(x1, %) is forwards conflict-
free, if and only if x; € (PN an{x1,xk}) implies |x;o] = 1 for
1 <1< k. The path nin(x1,xk) is backwards conflict-free, if and
only if x; € (P N7n{x1,xx}) implies [exi| =1 for 1 <i< k.

Lemma 5.1.7. For any transitions x and y in a sound WF-system
holds,

o if there is a forwards conflict-free path from x to y, then x > y.

o if there is a backwards conflict-free path from x to y, then y > x.

Proof. Let (N, M;) be a sound WEF-system with N = (P, T, F) and
x,yeT.

o Consider the case y € (xe)e. Then, for all places p € xe
on the path from x to y holds [pe|] = 1. Therefore, pe =
{y}. Then, every firing sequence containing x either leads
to a marking that marks place p, or contains y as well. In
the former case, y is not dead as soundness guarantees the
reachability of M, from any marking reachable from M;.
Hence, it holds x > y. Consider the case y ¢ (xe)e and let
t € T be a transition with x F" t and t F* y. For all places
p € ot holds |pe| = 1, so that pe = {t}. Consequently, for any
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two markings M1, M, € [N, M;) with (N, Mj)[o)(N,M,),
(N, M;j)[t), and not (N, M;)[t) it holds t € 0. Starting with
the transitions in (xe)e, all transitions in 7tn{x, y} have to be
tired once they have been enabled to empty the one or more
places of their pre-set. Again, soundness guarantees that
M, may be reached from all markings reachable from M;
that enable x. Consequently, any firing sequence containing
x either contains y or leads to a marking in which y is not
dead, i.e., x >y.
o The claim trivially holds by following the same argument in
the reverse direction.
t

With this result, we characterise co-occurrence for transitions of
sound workflow T-systems.

Theorem 5.1.8. For any sound workflow T-system holds, all pairs of
transitions are co-occurring.

Proof. Let (N,M;) be a sound workflow T-system with N =
(P, T,F). Let ie = {ti} be the initial transition — there is only
one because of the structure of T-systems. For any transition
t € T, any path 7ty (4, 1) is forwards conflict-free, so that t; > t
by Lemma 5.1.7. All firing sequences starting with t; either con-
tain transition t € T or lead to a marking in which t is not dead.
Since every firing sequence starting in M; contains t;, all trans-
itions are pairwise co-occurring. ]

For sound workflow S-systems, we derive co-occurrence using
the notions of dominators and post-dominators known from
graph theory [13, 284]. Let N = (P, T,F) be a WF-net with the
initial place i and the final place o. For two nodes x,y € (TUP),
x is a dominator of y, if and only if for all paths 7tn (i, y) it holds
x € min{i,y). x is a post-dominator of y, if and only if for all
paths 7ty (y, 0) it holds x € in{y, ol

Theorem 5.1.9. For any sound workflow S-system holds, two distinct
transitions x and y are co-occurring, if and only if y is dominator or
post-dominator of x.

Proof. Let (N,M;) be a sound workflow S-system with N =
(P,T,F) and x,y € T. In a workflow S-system, every marking
M € [N, M;) marks exactly one place, as only i is marked ini-
tially and for all transitions t € T we know |et| = 1 = [te|. There-
fore, for every firing sequence o = (tj,...,tn) there is a path
nin (t1, tn) containing all transitions of o in the respective order.
= Let y be a dominator of x. Then, it holds y € mn{i, x}

for every path nin(i,x). Thus, any firing sequence o with

(N, Mi)[o)(N, M) with (N, M1)[x) is required to contain y,

i.e, x > vy. If y is a post-dominator of x, y is not dead in
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all markings M, € [N, My) since all paths 71N (x, 0) contain
y and soundness guarantees that M,, is reachable from M,.
< Let x > y and assume that y is neither a dominator nor a
post-dominator of x. Since x > y, a firing sequence o with
x € o and (N, M;)[o)(N,M;) either contains y or y is not
dead in M. If y is not a dominator, y is not necessarily part
of 0. Then, any firing sequence starting in M and ending in
M, (such a sequence exists by soundness) has to contain y.
Hence, all paths 71 (X, 0) have to contain y, a contradiction

with the assumption of y not being a post-dominator of x.
O

Finally, we consider sound free-choice WF-systems that are acyc-
lic. This class of systems does not subsume the two aforemen-
tioned classes. A sound workflow S-system may contain circuits.

In principle, we trace co-occurrence of transitions back to the
exclusiveness relation. The main idea is described as follows. If
there is no co-occurrence from one transition to another trans-
ition, a third transition is fired instead of the second transition
in some marking. Informally, this third transition represents the
detour that implements skipping of the second transition. In the
absence of a circuit, the detour is manifested in the behavioural
profile. The third transition is exclusive to the second transition,
but not to the first one.

In a sound WF-system, there are no dead transitions. Hence,
two transitions that are exclusive to each other cannot be co-
occurring, cf., Property 4.2.2. Therefore, we neglect this case in
the following statement.

Theorem 5.1.10. For any sound free-choice WF-system holds, two
distinct transitions x and y that are not exclusive, x4y, and y is not
part of a circuit, y ¥y, are co-occurring, if and only if all transitions
exclusive to y are exclusive to x.

Proof. Let (N, M;) be a sound free-choice WF-system with N =
(P,T,F), x,y € T, x4y, and y ¥ y. In this proof, we use the
results obtained in Lemmas 5.1.1 to 5.1.4 without referring to
the lemmas explicitly.

< Let (t+y) = (t+x) for all transitions t € T and assume

x % y. The relations of the behavioural profile partition the

set T x T. As it holds x#y, we distinguish three cases of how

x and y may be related by profile relations.

(x ~»y) Ttholds x F* y and x Py, such that there is a path
nin(x,y). If any path mn(x,y) is forwards conflict-free,
this yields x > y according to Lemma 5.1.7, a contradic-
tion with our assumption. If there is no path 7n(x,y)
that is forwards conflict-free, there is a place p € P with
P € mn{x,y} for some 7N (X, y), such that [pe| > 1. If
y € pe, we know that there is a transition ty; € pe with
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ty #y and ty F*y. Thus, it holds t, +y. From x F* t,,

we get x#t,, a contradiction. If y ¢ pe, let t; € T be

a transition with t; € pe. We know x F™ t; and, there-

fore, x#t1. Asy+t; would imply x +t1, we derive y#t;.

Thus, it holds either t; ~» y, t1 ~~"y, or t1]y.

(t; ~"'y) Itholdsy F* t; and t; J?*Zy. Asp € nin{x, y},
we have p F™ y. Thus, there must be a transition t; €
pe with t; F© y. From y F" t;, we get y F" p; for
some pj € oty. Due to the free-choiceness of the net,
t1 and t; share all places in their pre-set, such that also
p1 F' y, which yields a contradiction with y .

(t1]ly) Tt holds either y F* t; and t; F" y, or yl|coty. The
former is not in line with the assumption of y .
The latter is not possible either: let M € [N, M;) be a
marking with (N, M)[y) and (N, M)[t;). Duetop F" y
either also p € ey or the path implies a firing se-
quence (N, M)[o)(N, M;) due to soundness and free-
choiceness, such that all places of the pre-set of y are
marked at least twice. In both cases, the safeness prop-
erty that holds for sound free-choice systems is viol-
ated.

Therefore, it holds t; ~» y for all transitions t; € pe

for some p € P and 7mn(x,y) with p € 7min{x,y} and

Ipe| > 1. Then, it also holds t; F© y and y P t; for

all these transitions t;. Now, either one path 7N (t1,y)

is forwards conflict-free, which yields t; > y accord-
ing to Lemma 5.1.7, or there is a place p, € P with

P2 € min{ty, y} for some 7N (t1,y), such that [poe] > 1. In

this case, the argument for p can be applied recursively

for py, as for all transitions t; € pye it holds t; F' y.

Consequently, we arrive at t; > y for all transitions

t; € pe for some p € P and 7N (x,y) with p € min{x, y}

and |pe| > 1. Therefore, we deduce x > y, a contradic-

tion.

(x ~~"y) The argument for the case (x ~ y) is followed in
reverse direction leading to a contradiction.

(x/ly) It holds either x F© y and y F' x, or x||coy. Again, the
former is not in line with the assumption of y F*y. As-
sume that it holds x||coy and consider two cases: whether
there is a path 7y (i,y) that is forwards conflict-free. If
so, all firing sequences starting in M; contain transition
y or lead to a marking in which y is not dead. Hence,
the assumption of x % y is violated. If not, there is a
place p € P with p € nin{i, y} for some 7 (1,y), such that
Ipe| > 1. For such a place p, we prove two properties.

1. If p F™ x, then for all transitions t; € pe it holds
t1 B Yy =1 F* x. Assume that this implication does
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not hold, i. e., there is a transition t; € pe with t; J?’/y
and t; F* x. From p F" y we know that there must
be a transition t; € pe with either t; =y or t; F© y.
The former leads to t; +y due to y F* y. Therefore,
it holds t; + x, yielding a contradiction with t; F x.
If t, F* y, we know y F¥ p from y ¥ y. Further,
yF p implies y F* t1. Hence, it holds either y + t;
or y|[ty. The latter implies the existence of a mark-
ing M € [N, M;) with (N, M)[y) and (N, M)[t;). With
p F' vy, this violates safeness of sound free-choice sys-
tems. Therefore, it holds y 4t and x + t1, a contradic-
tion with t; F© x.

2. If p F* x, then for all transitions t; € pe it holds
t; F* y. Assume that this is not the case, i.e., there
is a transition t; € pe with t; Vy. From y ,F/’/y we
get y B p and, therefore, y F* t1. As for the previ-
ous property, yl[t; violates safeness of the system, so
that it holds y 4+ t;. From p F* x, we get t; F* x, and
x ¥ t1 holds as well to satisfy x B y. Hence, it holds
either t; + x or t1[|x. Since x||coy, there is a marking
M € [N,M;) with (N,M)[y) and (N,M)[x). Hence,
there is also a marking M € [N, M;) with (N, M)[ty)
and (N,M)[x), as p F" y and t; € pe. Therefore, it
holds t1[x, which yields a contradiction since t; +y
requires ty + x.

Now, consider all places p on a path 7y (i,y) that are

conflicts, [pe| > 1. If p F' x, the first property ensures

that if y will not be part of the firing sequence due to
firing of t; € pe with t; F* vy, x cannot be part either,
that is, t; F* x holds true. We also know that x and y are
enabled concurrently in a marking reachable from the ini-

tial marking. Thus, once there is a conflict at place p on a

path N (1, y) and p F* x, it has to be ensured that y is not

dead in a marking that marks place p. Here, the second
property guarantees t; F y for all transitions t; € pe.

That, in turn, implies t; > t; for all transitions t, € ep

and, as the property holds for all respective places p, also

t, > y. Consequently, it holds x > y, a contradiction

with our assumption.

= Let x > y and assume that there is a transition t € T with
t +y and t#x. Due to t#%, there is a firing sequence o with
(N, Mi)[0)(N,M,) that contains both transitions, t and x.
From x > y, we know that also y € 0. Then, x,y,t € ois a
contradiction with the assumption of t +y.

O]

Based on these results, computation of the causal behavioural
profile is efficient for the respective system classes.
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Corollary 5.1.11. The following problem can be solved in O(n>) time
with n as the number of transitions and places of the system:

For a sound WE-system that is a T- or S-system, or free-choice and
acyclic, to compute its causal behavioural profile.

Proof. Given any sound free-choice WE-system, the behavioural
profile is computed in O(n?) time with n as the number of nodes
of the system according to Corollary 5.1.6. For a sound T-system,
the co-occurrence relation is set directly by Theorem 5.1.8. For a
sound S-system, dominators and post-dominators are determ-
ined in linear time to the size of the net [20, 71]. Then, co-
occurrence is decided according to Theorem 5.1.9. For a sound
acyclic free-choice WF-system, co-occurrence is traced back to
exclusiveness by Theorem 5.1.10. This requires iteration over the
Cartesian product of transitions and analysis of all other trans-
itions for each transition pair. Hence, it requires O(n3) time with
n as the number of transitions. The overall time complexity is

O(n3?) with n as the number of nodes of the system. O
O
L2 | ‘ |
Q Q |
Lol [e]

(@)

Figure 27: Sound free-choice WF-systems that illustrate the derivation
of the co-occurrence relation.

We illustrate the presented results with the net systems depicted
in Figure 27. The system in Figure 27a is a sound workflow S-
system. Therefore, the co-occurrence relation is traced back to
dominators and post-dominators. For instance, transition A is a
dominator of transition C and transition E is a post-dominator of
transition B. Hence, we conclude C > A and B > E for the sys-
tem in Figure 27a. The system in Figure 27b is an acyclic sound
free-choice WF-system. As an example, consider transitions A
and C. Both are not exclusive. There exists a transition, namely
D, that is exclusive to C but not to A. Hence, the pair (A, C)
is not in the co-occurrence relation of the system in Figure 27b.
The opposite, C > A, holds true, as there is no transition that is
exclusive to transition A.
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5.2 COMPUTATIONS USING STRUCTURAL DECOMPOSITION

The results introduced in the previous section allow for comput-
ing the behavioural profile for the Cartesian product of trans-
itions. Depending on the concrete use case, however, various
transitions may be irrelevant for analysis. If so, computation of
the profile relations for all pairs of transitions leads to a compu-
tational overhead. Therefore, this section introduces an altern-
ative approach for the computation of behavioural profiles for
the class of sound free-choice WF-systems. By leveraging struc-
tural decomposition techniques, the relations of the causal beha-
vioural profile are determined for a single pair of transitions in
linear time to the size of the net. The technique assumes both
transitions to be part of a structured region of the WF-system,
i.e., a region which shows a hierarchy of single-entry-single-exit
(SESE) subnets. Extending the results presented before, it allows
for the computation of co-occurrence for transitions in cyclic
sound free-choice WE-system, if the circuits are well-structured.

In the remainder of this section, first, we show how an exist-
ing decomposition technique, the Refined Process Structure Tree
(RPST) [481, 359], is applied to WF-nets. Second, we introduce
behavioural annotations for the RPST of sound free-choice WF-
systems. This yields the notion of a WF-tree. Third, we establish
the relation between the WF-tree of a net system and its causal
behavioural profile. The section closes with the discussion of a
computation algorithm for the derivation of causal behavioural
profiles that combines the results obtained by structural decom-
position with those introduced in the previous section.

The RPST of WF-nets

The Refined Process Structure Tree (RPST) [481, 359] is a tech-
nique for detecting the structure of a workflow graph. Such a
graph represents the control flow structure of a process model by
means of activities and routing elements. A workflow graph can
be parsed into a hierarchy of fragments with a single entry and
a single exit, such that the RPST is a containment hierarchy of
canonical fragments of the graph. The RPST is unique for a given
workflow graph and can be computed in linear time [481, 359].
Although the RPST has been introduced for workflow graphs, it
can be applied to other graph based models such as WF-nets in
a straight-forward manner. We define basic terms of the RPST
for WF-nets as follows.

Definition 5.2.1 (Flows, Entry, Exit, Canonical Fragment)
Let N = (P, T,F) be a WE-net and X = (PUT) its set of nodes.
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(a) WE-system and its canonical fragments.
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(b) The RPST of (a).

Figure 28: A WE-system, its canonical fragments, and its RPST.

o Foranode x € Xof anet N = (P,T,F), inn(x) =
F | n € ex} are its incoming flows and outn(x) = {(x,n) €
F | n € xe} are its outgoing flows.

o A node x € X’ of a connected subnet N’ = (P/, T/,F/) of a net
N is a boundary node, iff 3 e € inn(x) Uoutn(x) [e ¢ F ], If
x is a boundary node, it is an entry of N/, iff inn(x) NF =0
or outn(x) € F, or an exit of N/, iff outn(x) NF = 0 or
iT’LN (X) - F.

o Any connected subnet w of N is a fragment, iff it has exactly
two boundary nodes, one entry and one exit denoted by w,
and wy,, respectively.

o A fragment is place bordered (transition bordered), iff its bound-
ary nodes are places (transitions).

o A fragment w = (P, Tw, Fw) is canonical in a set of all frag-
ments L of N, iff Vy = (P, T,,F,) e L[w#vy = (FuoNF, =
MV (F, CFy)V(Fy CFu)l

Figure 28 exemplifies the RPST for a WF-system. Figure 28a il-
lustrates the canonical fragments of a WF-system, each of them
formed by a set of flows enclosed in or intersecting the region
with a dotted border. Figure 28b provides an alternative view,
where each node represents a canonical fragment and edges hint
at the containment of fragments. A tree structure is obtained in
this view — the RPST. For instance, fragment B1 has two bound-
ary transitions: entry A and exit K, is contained in fragment P1,
and contains fragments P2 and P3. Note that trivial fragments
are not visualised.
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A= obd
s ool

Figure 29: Node-splitting for normalisation.

If the RPST is computed for a normalised workflow graph, i.e.,
a workflow graph that does not contain nodes with multiple
incoming and multiple outgoing flows, each canonical fragment
can be classified to one out of four structural classes [357, 359]: A
trivial (T) fragment consists of a single flow. A polygon (P) repres-
ents a sequence of nodes (fragments). A bond (B) stands for a col-
lection of fragments that share common boundary nodes. Any
other fragment is a rigid (R). We use fragment names that hint
at their structural class, e. g., R1 is a rigid fragment. Every work-
flow graph can be normalised by performing a node-splitting
pre-processing, illustrated for WF-nets in Figure 29. The WEF-
system in Figure 28a is normalised.

The Notion of a WF-tree

The fragments derived by the RPST can be related to behavioural
properties of the underlying WF-system. We concretise RPST
fragments by annotating them with behavioural characteristics.
The containment hierarchy of annotated canonical fragments of
a WEF-system is referred to as the WF-tree. The WF-tree is defined
for sound free-choice WE-systems as this class of systems shows
a tight coupling of syntax and semantics, cf., Section 5.1.

Definition 5.2.2 (WF-Tree)
Let (N, M) be a sound free-choice WF-system. The WF-Tree of
N is a tuple Tn = (Q, %, t, b), where:

o () is a set of all canonical fragments of N,

o x:Q — p(Q) is a function that assigns child fragments to
fragments, such that it holds V w,y € O [ (x(w) Nx(y) #
0)=w=vyl

ot:Q — {T,P,B,R} is a function that assigns a type to a
fragment,

ob:0Qg —{B,,B,, L}, Qg ={w € Q| t(w) = B}, is a function
that assigns a refined type to a bond fragment, where B, B,
and L types stand for place bordered, transition bordered,
and loop bonds, respectively.

Further, we define auxiliary concepts for the WEF-tree.
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Figure 30: The WE-tree for the system in Figure 28.

Definition 5.2.3 (Parent, Child, Root, Ancestor, LCA, Path)
Let Tn = (Q, x, t,b) be a WE-tree.
o For any fragment w € Q, w is a parent of y and vy is a child
of w, iff y € x(w). x™ is the irreflexive transitive closure of
X-
o The fragment w € Q) is a root of T, denoted by w., iff it has
no parent.
o The partial function p : Q\ {w,} — Q assigns parents to
fragments.
o For any fragment w € Q, w is an ancestor of ¥ and ¥ is a
descendant of w, if ¥ € x (w).
o For any two fragments w,y € Q their Lowest Common An-
cestor (LCA), denoted by lca(w, ), is the shared ancestor of
w and vy that is located farthest from the root of the WEF-tree.
By definition, lca(w, w) = w.
o For any fragment w; € Q and its descendant w,, € Q, a
downward path from wi to wy, denoted by 7y (w7, wy), is

a sequence My = (Wj,...,Wn), such that w; is a parent
of wiy1 foralli € N, 1T < i < n. Further, we define
ny(wi, wn,1) = wj to refer to an entry of the path and

ng{wr, wn} ={w1,..., wn} to refer to all nodes on the path.

Figure 30 shows the WEF-tree of the WF-system from Figure 28.
The WF-tree is isomorphic to the RPST of the WF-system. Given
the RPST, adding the behavioural annotation is a trivial task for
most fragments, except of the following cases: A bond fragment
v = (Py, Ty, Fy) € dom(b) of Tn = (Q,x, t,b) is assigned the L
type, if y4 = w,, with w being a child of y. Otherwise, b(y) = B,
ifyqa€Py,orb(y) =BsifyqeT,.

Children of a polygon fragment are arranged with respect to
their execution order. A partial function order: Q' — Ny, Q' =
{w e O\{wy} | tlp(w)) = P} assigns to children of polygon
fragments their respective order positions; order(w) =0, if wy =
Y« with v = p(w) being the parent, and order(w) =1, i € N, if
wq =B, for some ¥ € Q, such that order(d) =1— 1. The orders
of two nodes are only comparable if they share a common parent.
For instance, in Figure 30, order(L1) = 1 and order(B,1) = 2.
This means that the transitions of fragment L1 are located before
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the transitions of fragment B, 1 inside polygon P2. The layout of
child fragments of polygon fragments in Figure 30 hints at their
order relation.

Children of a loop fragment are classified as forward (=) or
backward («<). A partial function ¢ : Q" — {<,=} with Q" =
{w e O\{w:} | b(p(w)) = L} assigns an orientation to children
of loop fragments. {(w) == if wq = v with y = p(w), other-
wise {(w) =<«. In Figure 30, P4 and P5 are forward and back-
ward fragments, which is visualised by the direction of edges.

We introduce two lemmas that prove the completeness of the
codomain of function b by showing that a bond fragment is
either place or transition bordered, and that each loop fragment
is place bordered. A rigid fragment bordered with a place and
a transition can still be free-choice and sound. An example for
such a net structure can be found in [455].

The following results leverage the notions of a handle and a
bridge. We shortly recall these notions following on [150]. For
anet N = (P, T,F) and a partial subnet N" a path 7tny (%1, xk) of
N, k > 1 and all nodes x; on the path are distinct, is a handle of
N’, if and only if Ty N (P’ UT') ={x1,xx}. For anet N = (P, T, F)
and two partial subnets N/, N” a path 7tn(x7,%x) of N, k > 1
and all nodes x; on the path are distinct, is a bridge from N’ to
N”, if and only if 7ty N (P UT') = {x1} and 7ty N (P UT") = {xk}.
We speak of PP-, TT-, PT-, TP-handles and bridges, depending
on the type, place or transition, of the initial and the final node
of the respective path.

Lemma 5.2.1. Let Ty = (Q,x,t,b) be the WF-tree of a sound free-
choice WFE-system (N, Mi), N = (P, T,F). No bond fragment w € Q,
t(w) = B, has {p, t} boundary nodes, where p € Pand t € T.

Proof. Assume w is a bond fragment with {p, t} boundary nodes.
There exists a circuit I' in a short-circuit net of N that contains
{p,t}. Let TI'y, be a subpath of T inside w. There exists a child
fragment vy of w that contains I'y,. A bond fragment has k > 2
child fragments [357, 359]. Let ¥ be a child of w, & # y. We
distinguish two cases:

o Let H be a path from p to t contained in 9. H is a PT-handle
of I'. In a live and bounded free-choice system, H is bridged
to Iy, through a TP-bridge K, see Proposition 4.2 in [150].
This implies that ¥ = y; otherwise bond fragment w contains
path K that is not inside of a single child fragment [357, 359].
Thus, w has a single child fragment, a contradiction with the
assumption of w being a bond fragment.

o Let H be a path from t to p contained in 9. H is a TP-handle
of I In a live and bounded free-choice system, no circuit
has TP-handles, see Proposition 4.1 in [150], which yields a
contradiction with our assumptions.
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O

Lemma 5.2.2. Let Ty = (Q, X, t,b) be the WF-tree of a sound free-
choice WF-system, (N,Mi), N = (P,T,F). A loop fragment w =
(Pw, Tw, Fw) € Q, b(w) =L, is place bordered, i.e., {wq, wy} C P.

Proof. Because of Lemma 5.2.1, w is either place or transition
bordered. Assume w is transition bordered. There exists place
p € P such that p € (ewqNPy), Mi(p) = 0. Transition wy
is enabled if there exists a marking M € [N, M;) with M(p) >
0. Since w is a connected subnet, for all transitions t € T, \
{wg, wst all flows are in w, i.e., (inn(t) Uoutyn(t)) € F. Thus,
every path from i to p visits wg4. M(p) > 0 is only possible, if w4
has fired before. We reached a contradiction. Transition wg is
never enabled and N is not live, and hence, not sound. Since any
loop fragment is not transition bordered, it is place bordered, cf.,
Lemma 5.2.1. O

For sound free-choice WE-systems, the WF-tree can be derived
efficiently.

Proposition 5.2.3. The following problem can be solved in linear time.
Given a sound free-choice WF-system, to compute its WF-tree.

Proof. Given a workflow graph, its RPST can be computed in
time linear to the number of flows of the graph [359, 481]. The
number of canonical fragments in the RPST is linear to the num-
ber of flows in the workflow graph [37, 190, 359]. Given the RPST
of a WF-system, we iterate over all bond fragments and assign
the behavioural annotations. Here, it suffices to check the type
of the entry node, either a place or transition, and to determine
whether the entry is also the exit of a child fragment. That can be
decided in constant time for each fragment. Finally, child frag-
ments of a polygon can be ordered in linear time. We introduce a
hash function that returns a child fragment with the given node
as an entry and iterate over the children of the polygon. O

Computations based on the WF-tree

For the computation of the causal behavioural profile for a pair
of transitions based on the WF-tree, we assume that each trans-
ition has one incoming and one outgoing flow arc. If this is not
the case, we apply the pre-processing illustrated in Figure 31,
which preserves the behaviour of the system [329] and, therefore,
does not change the causal behavioural profile. Let (N, M) be a
WF-system with N = (P, T,F) and Ty = (Q,x, t,b) the WE-tree
of N. After pre-processing, each transition t € T is a bound-
ary node of at most two trivial fragments of Tn. Consequently,
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Figure 31: Pre-processing for structural decomposition.

it suffices to show how the relations of the causal behavioural
profile are determined for the entries of two trivial fragments.
In the absence of rigid fragments, the profile relations are com-
puted as follows. For the self-relation of two transitions, we
check whether there is a bond fragment of type loop that com-
prises both trivial fragments. For two distinct transitions, strict
order is derived if the LCA of the respective trivial fragments is
a polygon fragment and the transitions are not part of a circuit.
Exclusiveness holds between two transitions, if the LCA of the
respective trivial fragments is place-bordered acyclic bond frag-
ment and the transitions are not part of a circuit. If the trans-
itions are part of a circuit or if the according LCA is a transition-
bordered bond fragment, we conclude on interleaving order.

Theorem 5.2.4. Let Tn = (Q, %, t,b) be a WF-tree, o, 3 € Q two
trivial fragments, vy = lca(e, ), and V w € ngp{wy, v} [t(w) #R].
1. If o = B, then oqllBo, iff 3 w € mg{wy, v} [b(w) = L]. Other-
wise, otq + Pq.
2. If & # B, then it holds:
o oq ~ By ifand only if (1) t(y) =P A order(my(y, &, 1)) <
order(mts(vy, B, 1)), and (2) V w € nig{w,, v} [b(w) #£ L].
o aq+Bq ifand onlyif (1) b(y) = Bo, and (2) ¥V w € ng{w,, v}
[blw) #LI
o ayllBa, ifand only if (1) b(y) € {Bs, L}, or (2) 3w € ng{wy, v}
[b(w)=L].

Proof. Let TN, «, 3, v be defined as before, (N, M) the respective

WF-system, and V w € mg{w,, v} [ t(w) #R .

1. Let o = f3.

= Let aq/|f4 and assume V w € mtig{w;, v} [ b(w) # L]. Due to
o = B, also &g = B4. Thus, it holds a||x4. Due to safeness of
(N, M), aqllg cannot be traced back to concurrent enabling
of aq. According to Lemma 5.1.2, this implies ag F" aq.
Circuits are part of B (if the bond is a loop fragment) or R
type fragments. Thus, there has to be a fragment w, which
is an ancestor of & and t(w) = R or b(w) = L. As the LCA
of « is vy = « by definition, this yields a contradiction with
the assumptions.

< Let 3 w € ig{wy, v} [ b(w) = L ] and assume ocqwiq. Since
o = 3, it holds oty = 4. One of the ancestors of x is a B type
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fragment that is a loop, such that o F™ otg. Since (N, M) is
safe, a4 cannot be enabled concurrently with itself, so that
oglloeg by Lemma 5.1.2.

2. Let ot # 3.

= Let ag ~ P4 and assume (1) order(my(y, o, 1)) > order
(m7(y,B,1)) or t(y) # P, or (2) 3 w € my{wr, v} [blw) =L].
According to Lemma 5.1.4, oq ~ B4 implies g F* B4 and
B« F* . Thus, assumption (2) cannot hold as an L type
fragment that is an ancestor of both, & and 3, would imply
B F" og. The first part of assumption (1) cannot hold either:
b(y) = L contradicts with the flow dependencies between o
and B4, whereas t(y) =R, t(y) = B and b(y) € {B,, B,}, and
t(y) = T (which would imply « = ) disqualify due to our
assumptions. Thus, it holds t(y) = P. The order in a P
type fragment coincidences with the flow dependencies, i.e.,
oq FT B, which yields a contradiction.
Let aq 4+ B4 and assume (1) b(y) # B, or (2) 3 w € {wy, v}
[ b(w) =L ]. According to Lemma 5.1.3, the former implies
oq P Bgand B4 P «q. That, in turn, implies that assump-
tion (2) cannot hold and v # P. Since y 2 Randy # T
(which would imply « = 3), we conclude t(y) = B. As the
flow dependencies preclude b(y) = L, we assume b(y) = B..
Then, v, is a transition. Due to soundness, there are two
markings M1, M; € [N, M;), such that (N, M;)[yq)(N, M2).
As 7y is an ancestor of both, « and 3, we know v, Ft oy
and y4 F B.. That implies that both transitions, o and f,
might get enabled in a firing sequences starting in M,. That
is not in line with og + f4. Thus, b(y) = B,, a contradiction
with assumption (1).
Let aq||f4 and assume (1) b(y) = B, and (2) V w € m{w~, v}
[ b(w) # L]. According to Lemma 5.1.2, a4||B4 implies con-
current enabling of a both transitions in a certain marking,
or aq F* B and Bg F™ ag. The latter is not possible due to
assumption (2). Thus, we assume concurrent enabling. Let
X € yq® be a successor of y4. v is the LCA of « and p. Con-
sequently, x F* ay implies x F* B4 and vice versa. Thus,
concurrent enabling of a4 and 4 requires v to be a trans-
ition. That is a contradiction with assumption (1).

< Let (1) t(y) = P A order(ngy(y, o, 1)) < order(my (v, B,1)),
and (2) V w € nig{wy, v} [ b(w) # L] and assume aq + Bq.
From (1) and (2), we conclude o F* p4and po F* g, which
is equivalent to ag ~» 4 by Lemma 5.1.4.
Let (1) b(y) = B, and (2) V w € nig{w,, v} [ b(w) # L],
and assume x #B4. From (1) and (2), we get aq F* Bg and
B F* . Therefore, we assume that both transitions are
enabled concurrently. Due to b(y) = B,, v« is a place. Let
t € y4@ be a successor of y4. Due to soundness, there are two
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markings M7, M3 € [N, Mi>, such that (N, M; )[t>(N, Ma>).
As vy is the LCA of both, we know that t F* oy implies
t ¥ B4, and vice versa. Thus, any firing sequence starting
in M contains either &, 4, or none of the two transitions.
As vy is the parent of both, « and (3, v is on every path from
the initial place i to «g and 4. Therefore, there does not
exist a firing sequences containing both transitions, which
leads to aq + PB«.
Let (1) b(y) € {Bs, L} or (2) 3 w € mg{w,, v} [b(w) =L], and
assume ochfiq‘ From requirement (2), we get aq F* B4 and
Ba F' g, According to Lemma 5.1.2, this is equivalent to
®4l[B4, which is not in line with our assumption. The same
holds true for b(y) = L. Consider b(y) = B,. Then, vy is
a transition. Let py,p2 € y<® be two successors of y4 with
p1 F' og and p2 FF Bo. The existence of these paths implies
the existence of a firing sequence, i.e., a4 and 34 can get
enabled concurrently. That, in turn, is equivalent to o[
by Lemma 5.1.1, yielding a contradiction.

J

The co-occurrence relation of the causal behavioural profile is
computed in the absence of rigid fragments as follows. Given
a pair of transitions, we obtain the LCA of the respective trivial
fragments. Then, we investigate fragments on the path from the
LCA to the trivial fragment that is related to the second trans-
ition of the co-occurrence dependency. Co-occurrence holds, if
these fragments are of type polygon, transition-bordered bond,
or loop bond. For loop fragments, we also check whether they
show a single path from the entry to the exit that contains the
second transition of the co-occurrence dependency. Only in this
case, co-occurrence holds from the first to the second transition.

Theorem 5.2.5. Let Ty = (Q,x,t,b) be a WF-tree and «,3 € Q
two trivial fragments, o # B. Let v = lca(x, B), TT = 7wg{y, B},
and ¥V w € TT [ t(w) # R]. Then, aq > P, iff for all fragments
w € (TT\{B}) one of the following conditions holds:

1. t(w) =P,

2. t(w) =Band b(w) = By, or

3. t(w) = B, b(w) =L, and with ©® = {9 € x(w) | L{(D) ==} it

holdsV 9 € ® [ B exT(9)]

Proof. Let Tn, «, B, v, T be defined as before, (N, M;) the re-

spective WE-system, and V w € TT [ t(w) # R ]. For both direc-

tions of the proof, let 6 = p() and n = p(d) be the parents of 3

and 6. Note that we know t(8) = P and t(n) ¢ {R, T}.

= Let a4 > P4 and assume that there is a fragment w & (IT\
{B}) with t(w) # P or b(w) # B, or if b(w) = L then it holds
39O [B¢x (D) ]with®={d e x(w)|{H) ==} Forall
fragments w € (IT\ {B}), we know t(w) # R and t(w) # T
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(as B € x"(w)). We first consider the LCA, i.e., fragment .
Let € € x(v) with & € xT (e) be the child fragment of y that
contains « (it holds e # 0). We distinguish two cases.

(1) v« is a transition. Then, t(y) € {P,B}, and t(y) = B
requires b(y) = B.

(2) v« is a place. Then, t(y) € {P,B}, and t(y) = B requires
b(y) € {Bo,L}. We distinguish two cases (I) b(y) = B,
and (II) b(y) = L.

(I) Let My, M, € [N, M;) be markings with My (yq) > 1
and M;(vs) > 1. Let 01, 02 be two firing sequences with
(N, M1)[o1)(N,M3)[02)(N,M,), such that o, does not
contain any transition that is part of y. As fragment e
represents a path from vy, to vy, 07 might contain only
transitions that are part of €. Then, it holds a4 € o7.
Since og > P4, also B4 € 071 (as B4 ¢ 02). Therefore,
B € x"(e), such that we arrived at a contradiction with
the definition of v = lca(«, B).

(I) Let M1,M; € [N, M;) be two markings as defined
for the previous case. Consider the case of e having
forward orientation, {(e) ==-. Then, there are firing
sequences 01,02 with (N, M;j)[o71)(N,M;)[02)(N, M,),
such that o7 contains only transitions that are part of
€, whereas 0, does not contain any transition that is
part of y. Then, ag might be part of 01. As B4 ¢ 02,
but agy > B4, we conclude 4 € o7. Thus, it holds
B € x*(e), which, again, yields a contradiction with
the definition of v = lca(x, ). Consider the case of €
having backward orientation, {(e) =<«. Then, there is a
firing sequence o3 with (N, Mj)[o1)(N, Mz)[o3)(N, M)
and (N,M1)[o7)(N,M2z)[02)(N,M,), such that o3 con-
tains solely transitions that are part of €. Again, a4 can
be part of 03. From 4 ¢ 02 but g > B, it follows
Bq € o7 or By € 03. The latter would imply B € x*(e)
(a contradiction as earlier), which leads to 4 € o7. To
ensure &g > (4, every firing sequence o has to contain
Ba. Therefore, all children of fragment y that represent
paths from vy, to v, i.e., children with forward orient-
ation, have to contain 3. As 3 can only be contained
in one child of fragment vy, there is only one child with
forward orientation.

We summarise that b(y) # B,, and b(y) = L implies that
VoeO[Bex(®)]with® ={cx(y) | {d) ==}

For both cases, v, being a transition or a place, we see that

fragment y does not satisfy the assumptions on a fragment

w € (TT\ {B}) as stated before. We now consider two cases,

1 = 7y or v is an ancestor of . Due to t(8) = P, the former

yields a contradiction, as TT\ {B} = {y, 8} and both fragments

113



114

COMPUTATIONS OF BEHAVIOURAL PROFILES

do not satisfy our assumption. For y being an ancestor of 1,
there is a fragment k, such that k € x(y) and n € x* (k).
Again, we distinguish two cases.

(1)
(@)

Kq is a transition. Then, t(k) € {P,B}, and t(k) = B
requires b(k) = B,.

Kq is a place. Now, we distinguish the three possible
types of fragments for .

(D) If t(y) = P, without loss of generality, we assume vy
and v to be places (the single places of their post-set or
pre-set, respectively, would be taken if y, or y4 would
be a transition). Let M1, M, € [N, M) be markings with
Mi(y«) > 1 and M;(ys) > 1. Let 01,02 be firing se-
quences with (N, My)[o1)(N, M;z)[02)(N, M,), such that
02 does not contain any transition that is part of y. Due
to t(y) = P, either «, F' €4 and e, F* ka, or vice versa.
In both cases, «, > (34 requires that a firing sequence o3
between two markings M3, My € [N, M) with M3(kq) >
1 and M4(ky) > 1 contains 4. That is due to firing se-
quences leading from M; to M3, or from My to M; that
contain no transition of fragment «, but transition o
(I If b(y) =L, we know that V9 € © [ B € xT(9) ] with
O =9 e x(y) | £{(¥) ==}. As 3 can only be contained in
one child of fragment v, i.e., fragment k, we know that
{(k) == and, in turn, {(e) =<. Let My, M3, 01, and 03
be defined as before. We may observe firing sequences
04,05 with (N, My)[o7)(N, M2)[o4)(N,M7) and (N, M)
[05)(N, M3)[02)(N, M,), such that 04 contains «. Since
xg > Pg, firing sequence o7 or o5 must contain P.
As in the previous case, it follows that any firing se-
quence o3 between two markings M3, My € [N, M)
with M3(kyq) > 1 and M4(ky) > 1 must contain .

(III) If b(y) = B,, then e4 and k4 are places in the post-
set of transition y4 (v is a transition bordered bond). Let
Ms, Mg, M7 € [N, M;) be markings with M5(kq) > 1,
Ms(eq) > 1, Mg(kq) > 1, Mg(es) > 1, My(x) > 1,
M7 (es) > 1. Then any firing sequence from M5 to Mg
might contain ay. Since ag > B, again, all firing se-
quences from Mg to M7 must contain ..

For all three possible types of fragments for v, we sum-
marise that we have to ensure that any firing sequence
leading from a marking that marks k4 to a marking that
marks k, must contain transition 34. Thus, for kg being
a place, we know that b(k) # B, and b(k) = L implies
that V9 e O [B € xT(9) ] with® ={d € x(k) | {(d) ==},
cf., the argument for the very first case (2), if € would be
an arbitrary child of «.
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For both cases, k4 being a transition or a place, fragment «
does not satisfy the assumptions on a fragment w € (TT\ {3}).
As this argument can be applied to all fragments on the path
ny(k,m), we arrived at a contradiction with our assumption.
< Let V w € (IT\ {B}) either t(w) = P or b(w) = B,, or if
b(w)=LthenVd € (x(w)NTT) [LD) == ] with® = {8 €
x(w) [£(¥) ==}. Assume o % B4 With b as defined before,
one path 7N (84, B«) is forwards conflict-free, i.e., 54 > B,
by Lemma 5.1.7. For fragment 1, we distinguish two cases.
(1) ng is a transition. Then, t(n) € {P,B}, and t(n) = B
requires b(n) = B,. Both imply that one path 7tn (14, 84)
is forwards conflict-free, i.e., Nq > 64. With 8, > 4 we
also get g > Ba.
(2) N« is a place. Then, t(n) € {P, B}, and t(n) = B requires
b(m) = L. For t(n) = P, we get t > 0 for all transitions
t € eng. For tin) = B, we have b(n) = Land V & €
O[Bex ™ ®]with® =3 cxn)|Ld) ==} As
only one child of fragment 1) can contain fragment 3, i.e.,
fragment 5, we know |©| = 1. That is, there is only one
path from ng to 1, represented by fragment 5. Therefore,
t > &4 for all transitions t € en,. For both cases, t(n) =
P or t(n) = B, it also holds t > (4 for all transitions
t € eng, since 64> ..
We summarize that for both cases, we derive either ng > B,
or t > B, for all transitions t € e, respectively. Applying
this argument to all fragments on the path mg(y,n) yields
Ya > Bgort > Bg for all transitions t € ey, respectively.
Trivially, ¢ > v if v4 is a transition or «, > t for all trans-
itions t € ey if v, is a place, due to y being an ancestor of
«. Thus, it holds oy > 4, which is a contradiction with our
assumption.
O

We illustrate both results using our example from Figure 28. For
instance, transitions B and E are in strict order, B ~~ E, as the
LCA of the trivial fragments that have B and E as entries is the
polygon fragment P2, cf., Figure 30. Here, the order value for
the child fragment of P2 containing B is lower than the one for
the child fragment that contains E. Further, the path from the
root of the tree P1 to P2, i.e., m3(P1,P2), does not contain any
loop fragment. It holds D + E for transitions D and E. Their LCA
is the fragment B3 in Figure 28 or B, 1 in Figure 30, respectively.
The fragment B, 1 is a place bordered bond and, again, the path
mig(P1,B.1) does not contain any loop fragment. Transitions B
and C, in turn, are an example for interleaving order, BJ|C, as
their LCA is fragment B2 in Figure 28. This fragment corres-
ponds to the loop type fragment L1 in Figure 30. Derivation of
the co-occurrence is illustrated using transitions B and C. We see
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that the path from the respective LCA (i.e., B2 in Figure 28, L1
in Figure 30) to the trivial fragments having B and C as entries
contains solely polygon fragments, P4 and P5, respectively. How-
ever, the LCA itself is a loop fragment, such that the orientation
of its child fragments P4 and P5 needs to be considered. There is
only one child with forward orientation, namely P4. It contains
transition B. Therefore, we derive C > B, but B % C according
to Theorem 5.2.5.

With these results, computation of the causal behavioural pro-
file for a pair of transitions in a sound free-choice WF-system is
done efficiently in the absence of rigid fragments.

Corollary 5.2.6. The following problem can be solved in linear time.
Given a sound free-choice WF-system (N, My) and its WF-tree T, to
compute the causal behavioural profile for a pair of transitions (a, b) if
b is not contained in any rigid fragment.

Proof. Let a and b be transitions and 3 be a trivial fragment
of Tn with b = 4. Computation of the relations according to
Theorem 5.2.4 and Theorem 5.2.5 requires analysis of fragments
on a subpath from the root of Ty to 3. The analysis of a single
fragment is performed in constant time. In the worst case, the
length of the subpath is linear in size to the number of fragments
in Tn. The number of fragments in Ty is linear to the number
of flows in the WE-system [37, 190, 359]. O

Complete Computation Algorithm

We integrate the results for the computation of causal behavi-
oural profiles based on structural decomposition with those ob-
tained in Section 5.1 in a comprehensive algorithm. The al-
gorithm expects a sound free-choice WF-system and a pair of
transitions as input. Given the input, the algorithm determines
the profile relation and checks the co-occurrence relation for the
pair of transitions. Besides the already presented theory, the al-
gorithm exploits the following result. It defines a link between
interleaving order for a pair of transitions and the existence of a
cyclic path that contains both transitions.

Lemma 5.2.7. Let (N, M;), N = (P, T,F), be a sound free-choice WF-
system, Ty = (Q,x,t,b) the WF-tree of N, and w = (P, T',F),
w € O, a fragment of N. If there exists a path nin (W, wy), then
t1llt2, for all transitions ty,t; € T'.

Proof. The existence of a path 7N (x,y), where x,y € TUP, im-
plies the existence of a firing sequence containing all transitions
on 7N (x,y) due to free-choiceness and soundness [234]. The
claim immediately follows from the fact that there are two paths,
i.e., N (wp, wq) and 7N (Wy, Wp). O
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Finally, Algorithm 1 details the steps to take when computing
the relations of the causal behavioural profile for a pair of trans-
itions.

Algorithm 1: Computation of the causal behavioural pro-
file for a transition pair.

o e NN o

11

12

13

14
15
16
17
18
19
20
21
22
23
24

25
26

Input: A sound free-choice WF-system (N, M) with
N = (P, T, F) and two transitions x,y € T.
Output: Causal behavioural profile relations for x and y.

TN = (Q, %, t,b), the WE-tree of N;

« € Q, a trivial fragment with entry x;
B € Q, a trivial fragment with entry y;
wy € Q, the root fragment of Ty;

Y = leale, B);

// Compute profile relation
if Vw e ng{ws, v} [ t(w) # R] then
‘ Get profile relation for x and y using Theorem 5.2.4;

else

Check interleaving order for x and y by Lemma 5.2.7 on

subnet y;

if not x || y, according to Lemma 5.2.7 then
Perform state space exploration for subnet y to derive
profile relation for x and y;

end

end

// Check co-occurrence relation
if Vw e nig{y, B} [ t(w) # R ] then
‘ Check co-occurrence relation for x and y by Theorem 5.2.5;
else
if vy is a T-net then
‘ Check co-occurrence for x and y by Theorem 5.1.8;
else if 'y is an S-net then
‘ Check co-occurrence for x and y by Theorem 5.1.9;
else if v is acyclic then
‘ Check co-occurrence for x and y by Theorem 5.1.10;
else
Perform state space exploration to check co-occurrence
for x and y;
end

end

Algorithm 1 comprises three stages. First, required data struc-
tures are initialized (lines 1 to 5). Second, computation of the
behavioural profile relation for the given pair of transitions takes
place (lines 6 to 13). Last, the pair of transitions is checked for
being in the co-occurrence relation (lines 14 to 26). If there exists
no rigid fragment on the path from the root of the WF-tree to
fragment vy, the profile relation is derived using Theorem 5.2.4
(line 7); otherwise, the algorithm checks if the given transitions
are in interleaving order by Lemma 5.2.7 (line 9), or computes
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the relations for the whole fragment y by state space exploration
and extracts the requested relation (line 11). As the profile rela-
tions are grounded on trace semantics, exploration of all traces
would be sufficient to derive the respective relation. Still, the set
of traces may be infinite. Therefore, we rely on the exploration of
the state space instead. Soundness of the WF-system guarantees
that the state space is finite. The check of the co-occurrence rela-
tion, in the absence of rigid fragments in the WF-tree on the path
from vy to (3, relies on Theorem 5.2.5; otherwise the checks de-
pend on the structural class of fragment y (lines 17 to 22). Lastly,
if v does not meet the structural assumptions, again, state space
exploration is needed to decide whether the transition pair is
co-occurring (line 24).

5.3 COMPUTATIONS FOR BOUNDED SYSTEMS

The methods for the computation of behavioural profiles intro-
duced in the previous sections impose structural and behavi-
oural assumptions on net systems. In Section 2.3, we discussed
that these assumptions hold for a broad class of net systems that
are derived from models captured in common process descrip-
tion languages. Still, we also presented some evidence that these
assumptions cannot be assumed to hold in all cases. Therefore,
this section introduces a more generic approach to the computa-
tion of behavioural profiles. It is applicable for all net systems
that are bounded. The behaviour of these systems is character-
ised by a finite set of states, i.e., markings. Any analysis of this
set of states has to cope with the state explosion problem [444].
Our approach leverages the notion of a complete prefix unfold-
ing, which has been proposed to address this problem [305, 149].
The generality of the proposed approach is traded for computa-
tional complexity. The computation of behavioural profiles for
bounded systems is computationally harder than the techniques
introduced in the previous sections. The construction of a com-
plete prefix unfolding, the preliminary step for our approach, is
known to be an NP-complete problem [204, 149].

In the remainder of this section, we first present basic defin-
itions for complete prefix unfoldings. Second, we establish the
relation between the behavioural profile and the complete pre-
fix unfolding, and present an algorithm for the derivation of the
behavioural profile. Finally, we focus on the causal behavioural
profile and introduce an algorithm for the computation of the
co-occurrence relation.
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Complete Prefix Unfoldings

The unfolding of a net system is another, potentially infinite net
system, which has a simpler, tree-like structure [305, 149]. We
recall definitions for unfoldings based on [151].

Definition 5.3.1 (Occurrence Net, Order Relations)
Let N = (P, T,F) be a net, X = (PUT) its set of nodes, and F"
(F*) the irreflexive (reflexive) transitive closure of F.

o A pair of nodes (x,y) € (X x X) is in the conflict relation #,
iff 3t9,t2 € T (t1 # t2)A(etyNety # O)A(t7 F¥ x)A
(t2 F*y) |

o N is an occurrence net, iff (1) N is acyclic, (2) Vp € P [ |op| <
11, and (3) for all x € X it holds x # x and the set {y €
X |y F' x} is finite. In an occurrence net, transitions are
called events, and places are called conditions.

o If N is an occurrence net, the relation F* is the causality
relation and denoted by <, F* is denoted by <. A pair of
nodes (x,y) € (X x X) of N is in the concurrency relation co,
if neither x <y, nor y < x, nor x # y.

o If N is an occurrence net, Min(N) denotes the set of minimal
elements of X w.r.t. <.

The relation between a net system S = (N, M) with N = (P, T, F)
and an occurrence net O = (C, E, G) is defined as a homomorph-
ism h: (CUE) — (PUT) such that h(C) € P and h(E) C T;
for all e € E, the restriction of h to ee is a bijection between
ec and eh(e); the restriction of h to ee is a bijection between ee
and h(e)e, the restriction of h to Min(O) is a bijection between
Min(O) and all places marked in My; and for all e, f € E, if
ec — of and h(e) = h(f) then e = f.

A branching process of S = (N, My) is a tuple m = (O, h) with
O = (C,E,G) being an occurrence net and h being a homo-
morphism from O to S as defined before. A branching process
' = (O, 1) is a prefix, if O’ = (C',E’,G’) is a subnet of O, such
thatif e € E/ and (c,e) € G or (e,c) € Gthenc € C’;if c € C’
and (e,c) € G then e € E/; I is the restriction of h to C' UFE/.

The maximal branching process of S is called unfolding. The
unfolding of a net system can be truncated once all markings of
the original net system and all enabled transitions are represen-
ted. This yields the complete prefix unfolding.

Definition 5.3.2 (Complete Prefix Unfolding)
Let S = (N, My) be a system and 7t = (O, h) a branching process
with N = (P,T,F), X=(PUT),and O = (C,E, G).
o A set of events E/ C E is a configuration, iff Ve, f € B/ [ e #f]
andVect [f<e= feckt ] Thelocal configuration [e] for
an event e € E is defined as {x € X | x < e}.
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o A set of conditions C’ C C is called co-set, iff for all distinct
conditions c1,c2 € C’ it holds cq co ¢y. If C’' is maximal w.r.t.
set inclusion, then it is called a cut.

o For a finite configuration C’, Cut(C’) = (Min(O)uUC’e)\ oC’
is a cut, and h(Cut(C’)) is a marking of S reachable from M,,
denoted by Mark(C’).

o The branching process is complete, iff for every marking M €
[N, My) there is a configuration C’ of 7 such that M =
Mark(C’) and for every transition t enabled in M there
is a finite configuration C’ and an event e ¢ C’ such that
M = Mark(C’), h(e) =t, and C’' U{e} is a configuration.

o An adequate order < is a well-founded partial order on finite
configurations such that (1) for two configurations C’, C" of
7t it holds that C’ ¢ C” implies C’' < C” and (2) < is pre-
served by finite extensions, i.e., if C’<C” and Mark(C’) =
Mark(C”) then the futures of C’ and C”, the suffixes of 7
beginning with Cut(C’) and Cut(C”), are isomorphic.

o An event e € E is a cut-off event induced by <, iff there is a
corresponding event f € E with Mark([e]) = Mark([f]) and
[f]<Te].

o The branching process 7 is the complete prefix unfolding in-
duced by <, iff it is the greatest prefix of the unfolding of S
that does not contain any event after a cut-off event.

The definition of a cut-off event and, therefore, of the complete
prefix unfolding is parameterised by the definition of an ad-
equate order <. Multiple definitions have been proposed in the
literature [149]. The differences between these definitions can
be neglected for our approach. For the implementation and
experimental evaluation, we rely on the definition presented
in [151]. As we leverage the information on cut-off events in
our approach, we include them in the complete prefix for con-
venience.

Figure 32 illustrates the concept of an unfolding and its com-
plete prefix. Figure 32a depicts an example net system. This
system is not free-choice, so that the approaches to the computa-
tion of causal behavioural profiles introduced in Section 5.1 and
Section 5.2 are not applicable. Figure 32b depicts a part of the
unfolding of the net system. Here, the labelling of transitions
hints at the homomorphism between the two systems. For in-
stance, both events C; and C; in the prefix in Figure 32b relate
to the transition C of the original system in Figure 32a. The un-
folding is infinite, which is caused by the circuit in the original
net system. In Figure 32b, cut-off events are highlighted in grey
and the complete prefix unfolding is marked by dashed lines.
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Figure 32: A net system and its complete prefix unfolding.

Derivation of the Profile Relations

We derive the relations of the behavioural profile directly from
the relations of the complete prefix unfolding that have been
introduced for occurrence nets in Definition 5.3.1. The caus-
ality, conflict, and concurrency relation partition the Cartesian
product of events of the complete prefix unfolding. Although
this resembles the partitioning induced by the profile relations,
the relations of an occurrence net relate to events, i. e., occurrences
of transitions of the original net system.

We deduce the weak order relation from the concurrency and
the causality relation of the complete prefix unfolding. The ex-
istence of a firing sequence containing two transitions of the ori-
ginal system is reflected by two events in the prefix that relate to
these transitions and are concurrent or in causality. The former
represents two transitions that can be enabled concurrently in
the original system, such that there is a firing sequence contain-
ing both transitions in either order. Two events in causality in
the prefix, in turn, represent two transitions in the original net
that can occur in a firing sequence in the respective order.

Still, not all firing sequences are visible in the complete pre-
fix unfolding directly. Events that relate to two transitions may
not show causality or concurrency although the respective trans-
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itions may occur in a firing sequence. Consider, for instance,
transitions B and E of the system in Figure 32a. Even though
both transitions may be observed in some firing sequence, the
pairs of corresponding events By and E; (By and E;, respect-
ively) are in conflict in the complete prefix unfolding in Fig-
ure 32b. In Figure 32b, the cuts of the local configurations of
the events A7 and B represent the same marking in the original
net system. This has to be taken into account when checking
for weak order, i. e., the existence of a firing sequence in the ori-
ginal net system. We address this issue by the notion of an event
continuation relation for the complete prefix unfolding. It holds
between two events, if they are directly related by concurrency
or causality, or if there is an indirect continuation between them
through cut-off and corresponding events.

Definition 5.3.3 (Event Continuation)
Let S = (N, My) be a bounded system and n = (O, h) its com-
plete prefix unfolding including cut-off events with N = (P, T, F)
and O = (C,E,G). A pair of events (e7,e2) € (E x E) is in the
event continuation relation <, iff
o they are distinct and either causally related or concurrent,
(e£f)A((e<f)V (ecof)),or
o there is a sequence of cut-off events (g1,...,gn) with g; € E
for T < 1 < n and a sequence of corresponding events
(g7,...,9%) with g} € E, such that all of the following re-
quirements are met:
— ex g1,
— gg < gjpr for1<j<m,
— (gh # A ((gn, < )V (gh co 1))

The existence of a continuation between two events in the com-
plete prefix unfolding coincides with the existence of a firing
sequence that comprises the transitions in the respective order
in the original net system. Hence, an event continuation allows
for concluding on weak order between the transitions.

Theorem 5.3.1. Let S = (N,My) be a bounded system and m =
(O, h) its complete prefix unfolding including cut-off events with N =
(P,T,F) and O = (C,E,G). Then, two transitions x,y € T are in
weak order, x > vy, iff there are events e,f € E with h(e) = x and
h(f) =y, such that e — f.

Proof. Let S = (N, Mp) and 7 = (O, h) be defined as before and

let x,y € T be transitions.

= Let x > y. Then, there is a firing sequence in S starting
in My that contains transition x before y. As the prefix
is complete, both occurrences of transitions are represen-
ted by corresponding events e,f € E with h(e) = x and
h(f) = y. If there is a configuration in O that contains e
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before f, they are distinct and causally related or concurrent,
i.e, (e£Tf)A((e < f)V(ecof)) (first statement of the defin-
ition of an event continuation, Definition 5.3.3). If there is
no such configuration, then either e # f or f < e. If there
is no cut-off event k € E in O with e < k, then the event f
cannot refer to the firing of transition y as the events E and f
either represent occurrences of transitions that cannot occur
together (e # f) or that may occur only in the reversed order
(f < e). Therefore, there has to be a cut-off event k with
either e < k or e co k. Assume that the sequence of cut-off
events is one. Then, to explain the occurrence of transition
y after transition x in a firing sequence in S, it holds that the
corresponding event k’ for k is related to f by either k' < f,
f < K/, or f co k. Coming back to the two cases, e < k
or e co k, we first consider the latter. If e co k, then the oc-
currence of transition x represented by e happens only after
the marking represented by the cut of [k] is reached. To ex-
plain an occurrence of transition x before transition z, thus,
there has to be an event ¢’ with h(e) = h(e’) and e’ co k' for
which holds (e’ # f) A ((e/ < f)V (¢’ co f)). This, again, is
covered by the definition of an event continuation. Consider
e < k. Then, to explain the occurrence of transition y after
transition x in a firing sequence in S, it holds that the cor-
responding event k’ for k is distinct (k' # f) to f and either
k' < f, f <k, orfcok'. To observe a firing of x before y, we
have to exclude f < k’ from the possible relations between f
and k’. That is because f < k’ implies that y is observed be-
fore the marking represented by the cut of [k] is reached as
Mark([k]) = Mark([k’]). Hence, we have k/ < f or k/ co f,
which is the second statement of the definition of an event
continuation, Definition 5.3.3. The same argument is applied
to all intermediate cut-off events in case the sequence of cut-
off events is longer than one. Here, the requirements for the
relation between events e and k (e < k) are enforced to all
intermediate events (g; < gj+1)-

For all events e, f € E that meet h(e) = x and h(f) = y
let e — f. The latter translates into (1) (e # ) A((e <
f) V (e co f)), or (2) there is a sequence of cut-off events
(g1,...,9n) and corresponding events (g}, ..., gy, ) that satis-
fies the requirements given in Definition 5.3.3. Assume that
x # y. Let My be the marking in S represented by the cut
Cut([f]). If e < f then event e is part of [f]. Hence, trans-
ition x has been fired to reach marking M; in S, which is
a contradiction with x ¥ y. If e co f and e # f, there must
be an event g in [f] with g < e and for every condition
ct € of there is a condition ¢y € ge with ¢y < ¢f or cg = cy.
Since e co f, e #f, g < f,and g < e, we also know c4 £ e
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for all those conditions c4. Hence, these conditions cg4 are
part of the cut Cut([e]). Let M, be the marking in S that is
represented by this cut. There is a firing sequence starting
in M, that comprises all transitions that are represented by
the events [f] \ [e]. Hence, there is a firing sequence start-
ing in M, that contains transition y. This is a contradiction
with x # y. Consider case (2). Following on the argument
given in the previous case, we know that there is a firing
sequence in S that reaches a marking M3 and comprises
the transition h(e), i.e., transition x, before the transition
h(g1), if e # g1. For the corresponding event g/, we know
Mark([g1]) = Mark([g}]). Hence, M3 is also reached
in S through firing all transitions represented by events in
[g7]. Assume that the sequence of cut-off events is one, i.e.,
(g7 # f) A ((g) < f)V (g} co f)). Then, there is a firing se-
quence in S starting in M3 that contains the transition h(g})
before the transition h(f), i.e., transition y. As M3 may be
reached by a firing sequence containing transition x, there is
a firing sequence comprising transition x before transition y.
We arrived at a contradiction with x % y. The same argu-
ment is applied to all intermediate cut-off events in case the
sequence of cut-off events is longer than one.

O

Algorithm 2 shows how the behavioural profile is computed
from the complete prefix unfolding of a bounded system.

First, we compute the order relations, i.e., the causality, con-
flict, and concurrency relation, for the complete prefix unfolding
(line 1). The respective algorithm can be found in [243].

Second, we identify cut-off and corresponding events (lines 2
to 7). The set €.t is filled with all cut-off events, their corres-
ponding events are added to the set £.,r. We store the relation
between them in €.

Third, we build the event continuation relation for the com-
plete prefix unfolding (lines 8 to 21). For each pair of a corres-
ponding event of some cut-off event and another cut-off event,
we check whether they are identical or causally related. If so,
the relation between both events is also added to the relation €.
The intuition behind is that the transitive closure of € hints at
the existence of a sequence of cut-off and corresponding events,
cf., Definition 5.3.3.

Fourth, all pairs of events of the complete prefix unfolding
are assessed for the existence of an event continuation between
them (lines 22 to 25). If so, the weak order relation is captured
for the transitions that are represented by these events according
to Theorem 5.3.1.

Finally, the relations of the behavioural profile are derived
from the weak order relation (lines 26 to 31).
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Algorithm 2: Computation of the behavioural profile from
the complete prefix unfolding.

Input: S = (N, M), a bounded system with N = (P, T, F).
7 = (O, h), its complete prefix unfolding including
cut-off events with O = (C, E, G).

Output: B = {~~,+,]|}, the behavioural profile of S.

1 Compute order relations <, #, and co of O;

// Compute cut-off events and corresponding events in =
EcorsEcut, & — 0;
foreach (eq,e;) € (E x E) do

N

3
4 | if (Mark([er]) = Mark([ez2])) A ([er1]<[ez]) then
5 ‘ Ecor +— (e1); Ecut +— (e2); € +— (ez,e1);
6 end
» end

// Build event continuation relation of 7
8 — <+ 0;
9 foreach (ecor,ecut) € (Ecor X Ecut) do
10 ‘ if ecor < ecut then & +— (ecor, €cut);
11 end
1z foreach (eq,e2) € (E x E) do
13 if (e7 Ze2) N\ ((e1 <ez2)V(e1coez)) then — «— (eq,e2);
14 else
15 foreach (ecut, ecor) € (Ecut X Ecor) do
16 if (e1 <ecut) A (ecut €7 ecor) A

(ecor 7 €2) A ((ecor < €2)V (ecor co e2)) then

17 | = (e1,€2);
18 end
19 end
20 end
21 end

// Derive weak order for transitions of S

22 = @,‘

23 foreach (eq,e2) € (E x E) do

24 ‘ if (e; <> ez) then > «— (h(ey),h(e2));
25 end

// Derive relations of behavioural profile of S
26 ~,+, || «— 0;
2y foreach (t1,t2) € (T xT) do
28 if (t7 = t2) A(ty = t7) then || +— (ty,t2);
29 else if t; > ty then ~ «+— (t7,12);
30 else + «— (tq,t2);
31 end

125



126

COMPUTATIONS OF BEHAVIOURAL PROFILES

Proposition 5.3.2. Algorithm 2 terminates and after termination B =
{~,+, I} is the behavioural profile of S.

Proof. Termination: The algorithm iterates over sets that are de-
rived from E, C, Ecut € E, Ecor € E, and T. T is finite by
definition. Since the net system is bounded, the complete prefix
unfolding and, therefore, the sets of events E and conditions C
are finite as well. Hence, the algorithm terminates.

Result: Relation € is built such that it contains cut-off events
and their corresponding events. Further, it contains events that
are corresponding to a cut-off event along with all cut-off events
that are identical or in causality to the former event. Hence, the
transitive closure of € hints at the existence of a sequence of cut-
off events and corresponding events that are related as stated
in Definition 5.3.3. Further, the statements of Definition 5.3.3
are implemented directly to compute the event continuation re-
lation. Derivation of the weak order relation is realised accord-
ing to Theorem 5.3.1. Finally, derivation of the profile relations
based on weak order follows directly on the definition of the
behavioural profile. O

The algorithm runs in polynomial time with respect to the size
of the complete prefix unfolding. The final step of the algorithm,
which sets the profile relations based on the weak order relation
for all pairs of transitions, is neglected at this point.

Corollary 5.3.3. The following problem can be solved in O(n*) time
with n as the number of events and conditions of the complete prefix
unfolding:

For a bounded net system and its complete prefix unfolding, to compute
the weak order relation for the net system.

Proof. We assume all relations used and created in the algorithm
to be represented by their characteristic functions, i.e., to be en-
coded as bi-dimensional arrays that map to either zero or one.
Then, adding an entry to a relation and checking membership
for a tuple takes constant time. Computation of the order re-
lations of the complete prefix unfolding is done in O(|E| - |C])
time [243]. In the second step of the algorithm, we iterate over
E x E, which takes O(|E|?) time. In the third step, we iterate over
Eeut X Ecor. Since Ecut € E and E.or C E, this takes O(|E|?)
time. Then, we iterate over E x E x .yt X Ecor, Which takes
O(|E|*) time. As a prerequisite for this step the transitive closure
of € is computed, which takes O([E|?) time [486]. The iteration
over E x E to set weak order requires O(|E|?) time. Overall time
complexity is O(n*) with n as the number of events and condi-
tions of the complete prefix unfolding. O

The algorithm runs in polynomial time to the size of the com-
plete prefix unfolding, not to the size of the net system. The
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adequate order presented in [151] to parameterise the definition
of a complete prefix unfolding has been shown to create com-
pact prefixes. Nevertheless, the prefixes may be large, at most
the size of the state space of the net system [151]. Hence, even a
polynomial time algorithm may result in a high computational
effort. Later, we will present experimental results to investigate
this issue.

Derivation of the Co-occurrence Relation

The previous section established the relation between the exist-
ence of a firing sequence containing two transitions and the re-
lations of the respective events in the complete prefix unfolding.
It suffices to investigate the existence of a firing sequence to de-
rive the relations of the behavioural profile. The computation of
the co-occurrence relation, in turn, requires investigation of all
possible firing sequences.

A b
oo B

Figure 33: Pre-processing for unfolding.

We tackle the computation of co-occurrences by augmenting
the original net system with additional transitions and places.
This transformation aims at making co-occurrences directly vis-
ible in the complete prefix unfolding. The idea is to have a ded-
icated place signalling that a certain transition has been fired at
least once. Adding a place to the post-set of a transition, how-
ever, may result in an unbounded net system. Any transition
that may be fired infinitely often, e. g., as part of a circuit, would
cause an infinite number of reachable markings. Therefore, we
apply the transformation illustrated in Figure 33 for all trans-
itions for which co-occurrence should be determined. For the
transition A, an additional transition A* is inserted. Informally,
this transition represents the first firing of transition A in the ori-
ginal system. After transition A* has been fired, two places, pa
and p A+, are marked. The former place ensures that transition A
can only be fired after the inserted transition A* has been fired
before. The latter place remains marked to signal that transition
A™* has been fired. This, in turn, indicates that transition A in
the original system has been fired at least once. We define the
transformation that yields an augmented net system as follows.
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Definition 5.3.4 (Augmented Net System)
Let S = (N, Mp) be a net system with N = (P, T,Fjandt € T a
transition.
o The augmented net system of S induced by t is a net system
S =(N,My) with N = (P, T,F), such that
— T =Tu{t*} with t* being a fresh transition, t* ¢ T, t* is
called augmented transition for t,
—P=v U {pit, P+, pt=} with pit, pt, and py- being three
fresh places, pit, pt, pt+ € P, pi~ is called augmented place
for t,
— F=Fu{lp,t) | (p,t) € BU{(t",p) | (t,p) € BU{(pir, t*),
(:C*/Pt)/ (t*, pes), (t,pe), (e, )},
— Mo =MoU (pir, 1), A
o For the augmented system S of S induced by t, and t* and
pi+ as the augmented transition and place, the augmentation
function a: (PUT) — T is defined as

t, lffn:t*\/n:‘pt*
a(n) =

1, else.

o The augmented net system of S induced by T" C T is derived
by a step-wise augmentation with all transitions t’ € T'.

For a net system S = (N, My), N = (P, T, F), we refer to the aug-
mented net system of S induced by all transitions T as the aug-
mented system of S. We exemplify the augmentation of net sys-
tems with the example net introduced in Figure 32a. Figure 34a
shows the augmented net system that is induced by two trans-
itions, B and E. In this system, the places pg+ and pg+ indicate
that transitions B and E in the original net system in Figure 32a
have been fired. There is a close relation between the behaviour
of a system and the behaviour of the augmented system. To
show this relation, we introduce the notion of a corresponding
firing sequence.

Definition 5.3.5 (Corresponding Firing Sequence)
Let S = (N,Mp) be a net system with N = (P, T,F). Let S =
(N, M) be the augmented net system with N = (P, T,F) and
a the respective augmentation function. A firing sequence o =
(t1,...,tn)in S, (N, My)[o), corresponds to a firing sequence & =
(s1,...,5n) In S, (N, Mo)[6>, iff with 1 <1 < n it holds
oti=a(sy),ifVjeN,j<i[t; #1ti] and
o t; = si, otherwise.

In fact, for each firing sequence in either system, there exists a
corresponding firing sequence.

Lemma 5.3.4. The relation between corresponding firing sequences of
a net system and of the augmented net system is a bijection.
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(a) The augmented net system of the net system in Figure 32a
induced by transitions {B, E}.
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(b) The complete prefix unfolding of (a).

Figure 34: An augmented net system and its complete prefix unfolding

Proof. Let S = (N,Mg) be a net system, N = (P,T,F), and
S = (N, M) the augmented net system, N=(PTF). LetteT
be a transition. For this transition, the augmentation step adds
three places, pit, pt, and p¢+, and one transition, t*, to the ori-
ginal net structure. Place pi¢ has an empty pre-set and is marked
initially. Transition t* is the only transition that consumes a
token from pi¢. Hence, transition t* fires at most once as part of
a firing sequence that starts in the initial marking. Transition t,
in turn, requires place p: to be marked, which is the case only
once transition t* has been fired. As all places in the pre- and
post-set of t are also in the pre- and post-set of t*, every mark-
ing that enables t in S enables either t or t* in S, depending on
whether transition t* was fired to reach the respective marking.
Therefore, any firing sequence in S is rewritten such that the first
occurrence of transition t is replaced by an occurrence of t* to
yield a firing sequence in the augmented net system S. For any
firing sequence in S, the occurrence of transition t* is replaced by
an occurrence of t to yield a firing sequence in S. This argument
holds for all transitions t € T. O
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We established the relation between a system and the augmen-
ted system by means of corresponding firing sequences. Corres-
ponding firing sequences imply a relation between the markings
reached by firing them in both systems. We refer to these mark-
ings as corresponding markings.

We motivated the definition of the augmentation step by the
need to preserve boundedness of net systems. This property is
not affected by the transformation, indeed.

Lemma 5.3.5. For any bounded net system holds, the augmented net
system is bounded.

Proof. Let S = (N,Mp) be a net system, N = (P,T,F), and
S = (N, M) the augmented net system, N = (P, T,F) induced
by a transition t € T. The augmentation step adds three places,
Pit, Pt, and py+, to the original net structure. Place pi¢ has an
empty pre-set and one transition, t*, in its post-set. Place pi: is
marked in My, so that transition t* can fire at most once. Firing
of transition t* marks place p¢+, which remains marked as it has
an empty post-set. Transition t* is the only transition that puts a
token into place p; without consuming a token from this place.
Place p¢ is not marked initially. Hence, in every reachable mark-
ing M e [N, M0> either place pi¢ is marked or places p; and p-
are marked. All three places can be marked with at most one
token. Thus, any marking reachable in S has at most two reach-
able corresponding markings in S that mark either place pi; or
places py and py+; and are equal for all places p € P. Hence, aug-
mentation induced by one transition at most duplicates the num-
ber of reachable markings in the augmented system compared
to the original system. Since, the latter is bounded and the set
of transitions exploited for augmentation is finite, the number of
reachable markings in the augmented system is finite. O

Using the notion of an augmented net system, we decide co-
occurrence for two transitions of a bounded net system.

Theorem 5.3.6. Let S = (N, My) be a bounded system with N =
(P,T,F) and x,y € T two transitions. Let S = (N, M) with N =
(P, T,F) be the augmented net system of S induced by {x,y} with a
as the augmentation function. Let = (O, h) be the complete prefix
unfolding including cut-off events of S with O = (C,E,G). Then, x
and y are co-occurring, x >y, iff for all events e € E with 3 ¢ €
Cut([e]) [ a(h(c)) = x ] it holds either

o there is a condition ¢ € Cut([e]) with a(h(c)) =y, or

o there is an event f € E with a(h(f)) =y and (e =)V (e — f).

Proof. Let S = (N, My), S = (N, My), and 7t = (O, h) be defined

as before and let x,y € T be transitions.

= Let x > y. Let o be a firing sequence with (N, My)[0)(N, M)
and x € o. Let 6 be the corresponding firing sequence of o
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and M the corresponding marking of M in the augmented

system §. Since x € o, it holds x* € 6. Hence, the aug-

mented place py+, a(px+) = x, is marked in M. As the only
transition that consumes a token from py-, i.e., transition

x, also produces a token in py-, this place is marked in all

markings M’ € [N, M). Thus, any cut in O that represents

the marking M or every marking M’ € [N, M) comprises

a condition cx € C with a(h(cy)) = x. Now consider two

cases that follow from x > y: (1) y € o or (2) y is not dead

in M.

(1) Following on the argument given for transition x, we
conclude that place py- is marked in M and in all mark-
ings M/ € [N, M). Then, every cut in O that represents
the marking M or every marking M’ € [N, M) also com-
prises a condition ¢y € C with a(h(cy)) =y.

(2) Lety ¢ o. Then, it holds y* ¢ 6. Since y is not dead
in M, y* is not dead in M. Hence, there is a firing se-
quence &, with (N, M)[62)(N, M) and y* € 6,. Let t be
the last transition of the firing sequence & to reach the
marking M. Let e € E be the event representing the oc-
currence of t in O, h(e) = t. Then, by Theorem 5.3.1, the
existence of the firing sequence 6, implies that there is
an event f € E with h(f) =y* and (e =f) V (e — f).

Let for all events e € E with 3 ¢ € Cut([e]) [ a(h(c)) = x ]

there be either a condition ¢ € Cut([e]) with a(h(c)) =y or

an event f € E with h(f) = y* and (e = f)V (e < f). Let

M € [N,Mo> be a marking in $ in which place px+ € P is

marked and which is reached by the firing sequence &. Then,

the corresponding firing sequence o in S contains transition

x € T. Let t be the last transition of the firing sequence 6 to

reach the marking M. Let e € E be the event representing

the occurrence of t in O, h(e) = t. Then, the cut Cut([e])
comprises a condition cx € C with a(h(cx)) = x. Consider
two cases:

(1) There is a condition ¢ € Cut([e]) with a(h(c)) = y.
Then, place py- is marked in &. This place is not marked
in My and y* is the only transition puts a token into
place py+ without consuming a token from this place.
Hence, it holds y* € & and the corresponding firing se-
quence o in S contains transitiony € T.

(2) Thereisanevent f € Ewith h(f) =y*and (e =f)V (e —
f). By Theorem 5.3.1, the existence of an event con-
tinuation implies that there is a firing sequence 6, with
(N, 1\71)[62> and y* € &,. Therefore, y* is not dead in M.
Consequently, transition y is not dead in the correspond-
ing marking M in S.

O
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Algorithm 3: Computation of the co-occurrence relation
from the complete prefix unfolding of the augmented sys-
tem

® N o U s W

10
11
12
13
14
15
16
17

18
19
20
21

22

Input: S = (N, My), a bounded system with N = (P, T, F).
= (N, My), the augmented system of S with

N = (P,T,F) and a as the augmentation function.
7t = (O, h), the complete prefix unfolding of S with
0 =(C,E, G).

Output: >, the co-occurrence relation of S.

S
S

Compute order relations <, #, and co of O;
Compute event continuation relation < of 7 (see Algorithm 2);

/* Relate events to transitions for which the
occurrence is indicated by a condition related to

the augmented place */
T,CA +— 0;
foreach e € E do if a(h(e)) #L then T +— a(h(e));
foreach (e,c) € (E x C) do

if (c cee)V (ecoc) /N ((ec x{e} C <)V (ec =0)) then

‘ if a(h(c)) #L then CA <— (e, a(h(c)));

end

end

// Derive co-occurrence for transitions in S

> 0;

foreach (tq,t2) € (Tx T) do

check <— true ;

foreach e € E do

if (e CAt1)/\ (e BA ty) then

found +— false ;

foreach f € E do
if (a(h(f)) =t2) A ((e="1)V (e — f)) then
found <— true;

end

if not found then check +— false ;

end
end
if check then ><«— (t1,t2);

end
foreach (tq,t2) € (T xT) do

| ift; ¢ Tthen >«— (t1,t2);
end
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Algorithm 3 shows how the co-occurrence relation is computed
for a bounded system given the complete prefix unfolding of the
augmented system induced by all of its transitions.

First, we compute the order relations, i.e., the causality, con-
flict, and concurrency relation, for the complete prefix unfolding
(line 1) along with the event continuation relation (line 2).

Second, we extract every transition for which the occurrence
of its augmented transition is indicated by a respective event in
the complete prefix unfolding (line 4). Here, the idea is to ex-
tract all transitions that are not dead in the initial marking of the
original net system. Then, we capture dependencies between
events and transitions (lines 5 to 9). We check all conditions
whether they belong to the cut induced by the event’s local con-
figuration. If so, we check whether the condition represents an
augmented place of a transition. If this is the case, the relation
between the event and the transition to which the augmented
place is related is stored in relation CA. The intuition behind
is to capture for each event, which transitions have occurred
already when the marking represented by the cut induced by
the local configuration of the event has been reached.

Third, we exploit the knowledge on this dependency to con-
clude on co-occurrence for transitions based on Theorem 5.3.6
(lines 10 to 23). That is, we check for all pairs of transitions that
are not dead in the initial marking, whether the requirements im-
posed for co-occurrence by Theorem 5.3.6 are satisfied. Finally,
we consider transitions that are dead in the initial marking sep-
arately (lines 24 to 26).

Proposition 5.3.7. Algorithm 3 terminates and after termination >
is the co-occurrence relation of S.

Proof. Termination: The algorithm iterates over sets that are de-
rived from C, E, and 7. The size of set T is at most the size of
E (line 4). Since the net system is bounded, the augmented net
system is bounded by Lemma 5.3.5. Hence, the complete prefix
unfolding and the sets of events E and conditions C are finite.
Thus, the algorithm terminates.

Result: Relation CA links an event e € E in the complete prefix
unfolding to a transition t € T in S, if the cut induced by the local
configuration of e comprises a condition ¢ € C that represents
the augmented place p+ € Poftin§, ie, a(h(c)) = t. Then,
we iterate over all pairs of transitions (t1,t2) € (T x T) and all
events. We rely on relation CA to check if the cut induced by
the local configuration of an event e € E comprises a condition
that represents the augmented place of the first transition t;. If
so, we check whether the requirements of Theorem 5.3.6 are sat-
isfied. Theorem 5.3.6 requires either (1) that the cut induced by
the local configuration of e comprises a condition that represents
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the augmented place of the second transition t, or (2) that there
is an event f € E with a(h(f)) =y and (e = f)V (e — f). Al-
gorithm 3 checks whether both requirements are violated. If no
violation is detected, the predicate check remains true and the
respective pair of transitions is added to the co-occurrence rela-
tion. Finally, transitions in S that are dead in the initial marking
of S are treated. For these transitions there is no event in the com-
plete prefix unfolding that represents the augmented transition.
Hence, these transitions are characterised as being notin 7. [

The algorithm runs in polynomial time with respect to the size of
the complete prefix unfolding of the augmented system. Again,
we neglect the final step of the algorithm, which sets the co-
occurrence relation for dead transitions of the original net sys-
tem. This is motivated by evaluating the time complexity solely
based on the size of the representation of the behaviour, which
may be independent from the size of the net system. Therefore,
we consider only lines 1 to 23 of Algorithm 3.

Corollary 5.3.8. The following problem can be solved in O(n*) time
with n as the number of events and conditions of the complete prefix
unfolding:

For a bounded net system and the complete prefix unfolding of its aug-
mented system, to compute the co-occurrence for all transition pairs of
the bounded net system that are not dead in its initial marking.

Proof. Again, we assume all relations used and created in the
algorithm to be encoded as bi-dimensional arrays that map to
either zero or one. This allows for adding a tuple to the rela-
tion or checking its membership in constant time. Computation
of the order relations of the complete prefix unfolding is done
in O(|E[ - |C|) time [243]. By Corollary 5.3.3 the computation of
the event continuation relation takes O(n*) time with n as the
number of events and conditions of the complete prefix unfold-
ing. When relating events to transitions, we iterate over E x C,
which takes O(|E|-|C|) time. Then, we iterate over T x J. Since
it holds |T| < |E|, this takes O(|E|?) time. As part of an iteration,
we may iterate over E x E, which takes O(|E]?) time in addition.
Thus, overall, this part of the algorithm takes O(n*) time with
n as the number of events and conditions of the complete prefix
unfolding. O]

Again, the polynomial time complexity is relative to the size of
the complete prefix unfolding. The latter may be large in size,
at most the size of the state space of the net system [151]. Even
worse, the augmentation step increases the size of the state space
of the net system dramatically. Augmentation by a single trans-
ition at most doubles the size of the state space, cf., the reasoning
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in the proof of Lemma 5.3.5. Hence, augmentation by all trans-
itions may increase the size of the state space exponentially. This
affects the size of the complete prefix unfolding. At a later stage,
we will present experimental results to explore this issue.

5.4 IMPLEMENTATION & EXPERIMENTAL RESULTS

To evaluate the presented techniques, we implemented all ap-
proaches for the computation of behavioural profiles as part of
the jBPT library. The library is published under the GNU Gen-
eral Public License (GPL) and available for download®. With
this implementation, we tested the computation of behavioural
profiles for model collections from industry. These experiments
provide insights on the structural and behavioural characterist-
ics found for models in an industrial setting. Hence, we are
able to judge on the relevance of the assumptions with respect
to free-choiceness and soundness imposed by the techniques in-
troduced in Section 5.1 and Section 5.2. The observed absolute
computation times also illustrate for which model sizes behavi-
oural profiles are created instantaneously.

In the remainder of this section, we discuss three experiments
in detail. For each of the three model collections, we first dis-
cuss model characteristics with respect to free-choiceness and
soundness. Then, we present results from the application of our
techniques for the computation of behavioural profiles. We fo-
cus on the approaches for sound free-choice models discussed in
Section 5.1 and Section 5.2 for the first two experiments. For the
third model collection, we additionally apply the approach for
bounded models introduced in Section 5.3. Finally, we shortly
summarise the obtained results.

SAP Reference Model

The SAP reference model [95] describes the functionality of the
SAP R/3 system. It comprises 604 process diagrams, which are
expanded to 737 models in EPC notation as some diagrams con-
tain multiple disconnected EPCs. These EPC models capture
different functional aspects of an enterprise, such as sales or ac-
counting.

Model characteristics. A detailed evaluation of the SAP refer-
ence model using structural and behavioural measures can be
found in [312]. In the following paragraph, we focus on the char-
acteristics that have been relevant for our experimental setup.
23 models are trivial, i.e., they consist of solely one element.
Eight out of 737 models show syntax errors that cannot be in-

1 http://code.google.com/p/jbpt/
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terpreted unambiguously. Events or functions with more than
one incoming or outgoing flow arc are examples for this type
of error. Further, the instantiation semantics of EPCs are not
formally defined, which raises several questions for models with
multiple start events [109]. A class of EPCs with intuitive instan-
tiation semantics has been identified based on the notion of a
start join [109]. Models with multiple start events contain a start
join, if there is ‘a join connector such that for every other node n in
the EPC there is either a path from n to the start join or a path from
it to n.” [109]. Models without start join may also have intuit-
ive instantiation semantics [361]. Still, investigating the instan-
tiation semantics of these models requires behavioural analysis,
whereas the existence of a start join can be decided structurally.
Therefore, we require models with multiple start events to have
a start join. This requirement is met by 572 process models.

For the models that are non-trivial and free of syntax errors
and instantiation issues, we normalised multiple start and end
events to create a dedicated entry and exit for each model. For
507 models, such a normalisation was possible without duplic-
ating start or end events. Several models comprise converging
OR-connectors, which cannot be mapped to free-choice Petri net
constructs, cf., Section 2.3. We replaced block-structured OR-
split and OR-join connectors with AND-connectors. This does
not affect the behavioural profile, but affects the co-occurrence
relation of the causal behavioural profile. Replacing the block-
structured OR-split and OR-join connectors with XOR-connec-
tors would have led to the opposite result. In this case, computa-
tion would be correct for the co-occurrence relation, but not for
the relations of the behavioural profile.

The SAP reference model comprises behavioural errors [472,
316]. From the 507 models that are non-trivial, free of syntax
errors and instantiation issues, and have normalised start and
end events, 14 models are not sound. We transformed all of
the remaining 493 models into sound free-choice WF-systems
following on common EPC formalisations [236]. Finally, we as-
sessed whether these systems satisfy the requirements on un-
structured net fragments needed to derive the co-occurrence re-
lation from the net structure, see Section 5.1. We encountered
two WEF-systems that contain a rigid fragment. Both fragments
can be mapped to an S-system and, therefore, handled using the
presented results.

Computation results. We computed behavioural profiles over
all transitions of all 493 WE-systems separately. We grouped the
models according to their size, i. e., the number of transitions of
the WF-systems. Figure 35 shows the average computation time
for each model group in three experiment runs. First, we com-
puted the behavioural profile using the approach introduced in
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®  BP-Net ¢ BP-Tree A CBP
———BP-Net(Pol) = -e-ee- BP - Tree (Pol) CBP (Pol)
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Figure 35: SAP reference model: computation time relative to the size
of the WF-system.

Section 5.1 (BP-Net). Second, we derived the same profile using
WE-trees as introduced in Section 5.2 (BP-Tree). Third, we com-
puted the causal behavioural profile (including co-occurrence)
using WF-trees (CBP). For all three computations, Figure 35 de-
picts the polynomial least squares regression.

Focussing on the computation of behavioural profiles, the ex-
perimental results confirm that the usage of structural decom-
position techniques decreases the required computational effort.
Computation based on WF-trees (BP-Tree) is faster than lever-
aging the structure of the net systems directly (BP-Net). The
former still relies on the latter to handle rigid net fragments in
the system. Further, the computational overhead implied by the
co-occurrence relation of the causal behavioural profile is negli-
gible (BP-Tree vs. CBP). For this model collection, computation
is done in tens of milliseconds even for the largest models.

Process Models from a Health Insurance Company

The models used for this experiment have been provided by a
health insurance company. The models describe the business
functions from an organisational perspective and have mainly
been applied for staff planning. The collection comprises 1026
process diagrams in EPC notation. Some diagrams contain more
than one model, so that the diagrams are expanded to 1042 pro-
cess models.

Model characteristics. One model shows a syntax error and 16
models are trivial. A large number of models have multiple start
and end events. For all except six models, the model structure
can be normalised so that each model has a dedicated entry and
exit point without duplicating events or functions. All connect-
ors used in the model collection are of XOR- or AND-type. Most
models do not show concurrency. Only 48 models comprise
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AND-connectors. The models in this collection are virtually free
of behavioural errors. Only five models are not sound.

Against this background, we transformed 1014 out of 1042
models into sound free-choice WF-systems [236]. We evaluated
the structure of rigid fragments in these systems to see whether
the presented approach to the computation of the co-occurrence
relation is applicable. There are 142 systems that comprise at
least one rigid fragment. All of these fragments are acyclic or
can be traced back to S- or T-systems, respectively. Hence, we
were able to rely on the approaches for the efficient computation
of causal behavioural profiles for all net systems.

®  BP-Net ¢ BP-Tree A CBP
——-BP-Net(Pol) = -ee-ee- BP - Tree (Pol) CBP (Pol)
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Figure 36: Process models from a health insurance company: compu-
tation time relative to the size of the WF-system.

Computation results. As in the previous experiment, we com-
puted the behavioural profiles over all transitions of 1014 WEF-
systems. We grouped all systems according to their size, i. e., the
number of transitions. Figure 36 shows the average computation
time for each group of systems up to a size of 170 transitions.
Although the largest system contained 456 transitions, only 19
systems had more than 170 transitions and are not covered in
Figure 36. We computed behavioural profiles as introduced in
Section 5.1 (BP-Net) and Section 5.2 (BP-Tree). Computation of
the causal behavioural profile based on WFE-trees corresponds to
the data series CBP. Figure 36 also depicts the polynomial least
squares regression for all three computations.

Again, the experimental results show that the application of
structural decomposition techniques speeds up the computation
of behavioural profiles. In contrast to the models of the SAP ref-
erence model, we observe an overhead for the computation of
the co-occurrence relation of the causal behavioural profile. De-
rivation of causal behavioural profiles takes significantly more
time than the computation of behavioural profiles. Nevertheless,
the absolute computation times are above one second solely for
the 19 large models (with more than 170 transitions) that are not
considered in Figure 36.
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BIT Process Library

The BIT process library comprises process models that were cre-
ated in process automation projects in the various industry do-
mains, such as financial services, automotive, telecommunica-
tions, construction, supply chain, health care, and customer re-
lationship management. These models were collected and used
for a study on soundness verification [156]. For the experiment,
we used the parts A, B1, B2, and C of the model collection, a
set of 965 models. Originally, all models were captured in the
IBM WebSphere Business Modeler? in a notation similar to UML
activity diagrams. The authors of [156] already provided Petri
net formalisations for all models. In fact, all models of the col-
lection were already available as free-choice WF-systems.

Model characteristics. Around one-half of the net systems in this
collection are not sound [156]. For the 492 systems that meet the
soundness criterion, we investigated the characteristics of rigid
net fragments. 207 systems comprise at least one rigid fragment.
For 12 out of 207 systems, a least one rigid was cyclic or could
not be traced back to S- or T-systems. Hence, our approach to
derive the causal behavioural profiles from the net structure is
applicable for 476 net systems. Boundedness, the assumption
for the computation of behavioural profiles based on complete
prefix unfoldings, was met by 924 out of 965 systems.

®  BP-Net ¢ BP-Tree A CBP
———BP-Net(Pol) - BP - Tree (Pol)

CBP (Pol)
1000

900
800
700
600
500
400

Computation Time (ms)

300
200
100

0 10 20 30 40 50 60 70 80 %0 100
Number of Transitions of WF-System

Figure 37: BIT Process Library: computation time relative to the size
of the WF-system.

Computation results for sound free-choice WF-systems. We com-
puted the behavioural profiles over all transitions of all 476 WF-
systems and grouped the systems according to their size, i.e.,
the number of transitions of the WF-systems. Figure 37 shows
the average computation time for each group of systems up to a
size of 100 transitions. Only one system is larger. This system
comprises 285 transitions and is not considered in Figure 37. As
in the previous experiments, we computed behavioural profiles

2 http://www.ibm.com/software/integration/wbimodeler/entry/
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as introduced in Section 5.1 (BP-Net) and Section 5.2 (BP-Tree).
The data series CBP refers to the computation of the causal be-
havioural profile based on WEF-trees. For all three computations,
Figure 37 depicts the polynomial least squares regression.

The plot supports the observations done for the previous ex-
periments. Computation of behavioural profiles is faster when
using the structural decomposition techniques compared to the
approach that leverages the net structure directly (BP-Tree vs.
BP-Net). Computation of the co-occurrence relation increases
the computational effort. Nevertheless, computation is done in
hundreds of milliseconds for all models considered in Figure 37.
For the largest model with 285 transitions, all computations took
around five to 20 seconds.

Computation results for bounded WF-systems. Since only one-half
of the models in this collection are sound, we also applied the
computation of behavioural profiles from a complete prefix un-
folding as introduced in Section 5.3. This approach is applicable
in a much more general case, since it requires only bounded-
ness of the WF-systems. This requirement is met by 924 out of
965 systems in this collection. The generality of the approach is
traded for computational complexity. Construction of the com-
plete prefix unfolding is an NP-complete problem [204, 149] and
the complete prefix unfoldings may be large in size, at most
the size of the state space of the system [151]. Further, aug-
mentation of WF-systems as used in Section 5.3 to compute the
co-occurrence relation from the complete prefix unfolding may
increase the size of the state space drastically.

In a first experiment, we focussed on the sizes of the complete
prefix unfoldings for the models in this collection. We used the
tool Mole3 to generate the prefixes. For three bounded net sys-
tems, creation of the prefix was intractable. The maximum size
of the derived prefix was around 500.000 nodes. Figure 38 gives
an overview of the results. Figure 38a illustrates that prefixes
can be an order of magnitude larger in size than the original net
systems (the scale is logarithmic). Still, the majority of complete
prefix unfoldings was rather small. 94% of the net systems had
a prefix with less than 800 nodes. Figure 38a also depicts the lin-
ear and exponential least square regressions. Both approximate
the relation between the size of the complete prefix unfoldings
and the size of the net systems equally well. The implications of
the augmentation of WE-systems to compute the co-occurrence
relation are illustrated in Figure 38b. For 19 net systems, com-
putation of the complete prefix unfolding was not possible after
augmentation. The maximum size of a prefix of an augmen-
ted system was around 900.000 nodes. Figure 38b shows that
the augmentation step leads to prefixes that are larger in size.

3 http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
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Figure 38: Size of the complete prefix unfoldings derived for the net
systems of the BIT Process Library.

Figure 38c directly relates the size of the prefix of the original
net systems to the size of the prefix of the augmented systems.
Apart from notable outliers, the relation is linear for most sys-
tems, though.

In a second experiment, we focussed on the actual computa-
tion of behavioural profiles from the complete prefix unfolding.
We used the implementation of the algorithms presented in Sec-
tion 5.3 that have been published as part of the jBPT library.
Those rely on the Unfolding-based Model Analyzer (UMA)* to gen-
erate the complete prefix unfolding. For performance reasons,

4 http://www.service-technology.org/uma
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(b) Time for the computation of the causal behavioural profile relative to the
size of the complete prefix unfolding of the augmented net system.

Figure 39: Computation times for (causal) behavioural profiles.

UMA was configured to abort unfolding of branching processes
once an unsafe place was encountered in the original net system.
Hence, the computed behavioural profiles are solely approxim-
ated for net systems that are bounded but unsafe. Apart from
this restriction, for 11 net systems the computation of the causal
behavioural profile turned out to be intractable. For the remain-
ing bounded net systems, Figure 39a and Figure 39b illustrate
the time needed to compute behavioural profiles (Figure 39a) or
causal behavioural profiles (Figure 39b) based on the prefix of
the original net system or its augmented counterpart. In either
case the computation times includes the time needed to create
the prefix. Both plots also show the exponential least squares
regression. Behavioural profiles could be computed in less than
a second for all considered net systems. This low computation
time is explained by the rather small size of the prefixes (less
than 600 nodes). The large prefixes observed in Figure 38 are not
completely unfolded by UMA. Computation of the causal beha-
vioural profile takes significantly longer, since the augmentation
step increases the size of the prefixes. Seven prefixes had more
than 2000 nodes, the largest having around 5500 nodes, and are
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not visualised in Figure 39b. The increase in prefix size leads to
computation times of up to several seconds. For the largest pre-
fix with around 5500 nodes, the computation took slightly less
than 30 seconds.

Summary of the Experimental Results

The motivation for the presented experiments was twofold. On
the one hand, we wanted to judge on the relevance of the as-
sumptions with respect to free-choiceness and soundness that
are required to compute behavioural profiles efficiently. On
the other hand, we wanted to investigate absolute computation
times.

Free-choiceness turned out to be non-critical. Only the SAP
reference model contained elements that require non-free-choice
constructs in the Petri net formalisation. However, those ele-
ments were only block-structured OR connectors, so that a re-
placement with AND-connectors (XOR-connectors) for the com-
putation of the behavioural profile (causal behavioural profile)
can be used as a workaround. Besides a few models in the
SAP reference model, the soundness criterion was violated in
a large scale solely in the BIT process library. Here, our efficient
algorithms could be applied to only one-half of the models. Fur-
ther, the normalisation of models to arrive at a single entry and
exit for a model (i.e., the WF-net structure) turned out to be a
problem. Several models in the SAP reference model could not
be treated due to their complex instantiation semantics (i. e., the
models without start join). As acknowledged by [109, 361], how-
ever, the question of how to interpret these models is a separate
research area. Looking at all three model collections, we con-
clude that our assumptions on free-choiceness and soundness
are met by the majority of models. Also, we observed only a fee
unstructured net fragments that are cyclic and cannot be traced
back to S-systems or T-systems. We conclude that the assump-
tions of the approach to compute causal behavioural profiles us-
ing WE-trees are of minor importance in practise.

Our experiments showed that behavioural profiles are com-
puted within milliseconds for WF-systems that are sound and
free-choice. Hence, for this class of models derivation of behavi-
oural profiles is done instantaneously. Our experiments with the
algorithms for bounded net systems revealed that computation
is done in less than two seconds if the complete prefix unfold-
ing has less than around 1000 nodes. Taking into account that
94% of the net systems of the BIT process library have a prefix
with less than 800 nodes, this approach works for the majority
of models. Nevertheless, we also faced several models for which
computation took several seconds or was even intractable.
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5.5 RELATED WORK

The techniques for the computation of behavioural profiles intro-
duced in this chapter relate to techniques for the derivation of
other behavioural relations which we discussed in Section 4.5.

The behavioural relations introduced for the verification of
hardware specifications [393] are derived by parsing an acyclic
program into a program tree. This is similar to our approach
of leveraging the RPST decomposition technique to compute
behavioural profiles. Still, the causal behavioural profile com-
prises behavioural details that go beyond the relations intro-
duced in [393]. In addition, we also presented techniques for
the computation of behavioural profiles that are able to cope
with cyclic net systems. The relations used for service match
making [144] are also directly derived from a parse tree of a
BPEL process. Again, our technique based on the RPST decom-
position technique is close to this approach, whereas our other
techniques generalise the computation for net systems that are
not structured in terms of single-entry and single-exit subnets.

Behavioural relations that are used in the context of process
mining are typically derived from observed sequences of trans-
ition occurrences, not from a net system. Apparently, occurrence
sequences may be generated from a net system by means of play-
out [197, 446]. Assuming a certain level of completeness of the
generated behaviour, it allows for the derivation of behavioural
relations. Finding an appropriate level of completeness is known
as the rediscoverability problem in process mining [457, 446].
The causal matrix used in genetic process mining [459, 106] is
derived from the net structure. Given a transition, its directly
preceding and directly succeeding transitions are captured in
the causal matrix. For the follows and precedes relations used to
judge on the quality of mined process models [395], no efficient
computation algorithm is available to the best of our knowledge.

We already discussed that the order matrix [271, 272, 273, 274]
virtually coincides with the behavioural profile. The order mat-
rix is computed by directly traversing a block-structured pro-
cess model and extracting the respective relations in quadratic
time to the size of the model [274]. Following the ADEPT mod-
elling paradigm [97], such a block-structured process model is
sound by construction. Therefore, this class of process models
corresponds to sound free-choice net systems that do not show
unstructured net fragments. Our computation using structural
decomposition techniques goes beyond the results of [274], as it
allows for selective computation of the behavioural relations. We
are able to determine the relation for a single pair of transitions
in linear time to the size of the model.
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Computation of causal footprints leverages a set of structural
rules [470, 473]. As there is no unique causal footprint of a
model, it depends on the granularity of the intended behavi-
oural abstraction which techniques are selected for computation.
Starting with local rules that exploit the neighbourhood of nodes
that split or merge the control flow, computation of the closure
of causal footprints may be applied to obtain a richer causal
footprint [470]. This approach requires soundness of the model
and is computationally hard in the general case. The techniques
introduced in this chapter, in turn, provide a classification of re-
quirements on the net systems to achieve efficient computation
of the behavioural abstraction. In the class of sound free-choice
net systems all computations, except for co-occurrence in un-
structured cyclic subnets, are done in polynomial time to the
size of the net system.

Further related work comprises the application of the concepts
leveraged for the computation of behavioural profiles in other
contexts. The RPST has been introduced with the focus on a
mapping between process languages [481]. Tree-based decom-
positions have also been used to refactor process models [361,
480] and for control-flow analysis [223, 479, 360], process com-
parison [256], pattern application in process modelling [187],
and process model abstraction [357].

Since the unfolding technique has been introduced by McMil-
lan [305], it has been extended and investigated in a large num-
ber of publications, see [149] for a thorough discussion. The
unfolding technique has been applied for various purposes. Un-
foldings are used to check properties of net systems such as
reachability of certain markings, or for LTL model checking [148].
Also, domain specific problems, e. g., the analysis and synthesis
of asynchronous circuits [232] or restructuring of process mod-
els [361], have been addressed using the unfolding technique.

5.6 CONCLUSION

We dedicated this chapter to the computation of behavioural pro-
files. Behavioural profiles are computed efficiently for sound
free-choice WF-systems. The relations of the behavioural profile
are determined in low polynomial time to the size of the net
system. The co-occurrence relation is computed efficiently for
T-systems, S-systems, and acyclic sound free-choice WF-systems.
We complemented these results by leveraging structural decom-
position techniques for the computation of behavioural profiles.
The combination of these techniques yields an algorithm that
computes the relation of the behavioural profile for a transition
pair of a sound free-choice WF-system in linear time to the size
of the net. If one restriction is satisfied — unstructured net frag-
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ments are T-systems, S-systems, or acyclic — we are able to com-
pute even the causal behavioural profile for a transition pair in
linear time to the size of the net.

For net systems that do not satisfy these requirements, we
presented an alternative computation technique. Under the as-
sumption of boundedness of the net system, we derive behavi-
oural profiles from the complete prefix unfolding. These pre-
fixes are a compact representation of the system’s state space.
The general applicability of this approach is bought for compu-
tational complexity. Creation of the complete prefix unfolding
is computationally hard. Further, the computation of the co-
occurrence relation relies on an augmentation of the net system,
which may increase the size of the state space exponentially. Fi-
nally, we tested the implementation of all techniques with three
model collections from industry. The results suggest that the
assumptions for the efficient computation techniques are met
by the majority of process models observed in practise. Using
these techniques, behavioural profiles are computed within mil-
liseconds. We also illustrated the applicability of the approach
based on the complete prefix unfolding of a net system. Al-
though we faced systems for which computation was intractable,
the majority of the tested net systems could be handled within
less than two seconds.

We conclude that a behavioural profile indeed provides an
abstraction of the behaviour of a net system that is computed
efficiently.
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DECIDING PROCESS MODEL CONSISTENCY

This chapter is based on results published in [505, 493].
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HIs chapter introduces the first part of our framework for
the analysis of behaviour consistency. We focus on decid-
ing process model consistency using Boolean criteria based on
behavioural profiles. First, we motivate the application of behavi-
oural profiles in Section 6.1. To this end, we review different op-
tions for a formal grounding of consistency analysis, i.e., beha-
viour equivalences and behavioural relations. Then, Section 6.2
proposes several Boolean consistency criteria. Those leverage be-
havioural profiles and are interrelated. They define a spectrum
of consistency criteria. Section 6.3 turns the focus on the applic-
ation of these consistency notions in a concrete setting. For the
evaluation of consistency between business centred process mod-
els and technical workflow models, we report on findings from
an experiment on the consistency perception of process model-
ling experts. We review related work in Section 6.4 and conclude
this chapter in Section 6.5.
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6.1 CONSISTENCY NOTIONS

This section first introduces a set of example net systems. Those
depict the same business operations and have been aligned by
correspondences between their transitions. For these process
models, behaviour consistency has to be assessed, e.g., for val-
idating whether the support provided by information systems
meets the business level concerns, see Section 1.3. As stated
before, consistency may be interpreted as the absence of contradic-
tions [533]. According to the same author, the question of how to
assess the absence of contradictions is a verification problem. After
we introduced the example net systems, we review elementary
properties that may be verified to conclude on behaviour consist-
ency. First, we focus on behaviour equivalences and their applic-
ation for consistency evaluation. Second, we elaborate on how
behavioural relations are used for consistency analysis. Third,
we narrow the scope to the application of behavioural profiles to
decide behaviour consistency.

An Example Setting

We illustrate the different options to decide behaviour consist-
ency with a lead-to-order process. Figure 40 depicts three net
systems, all capturing this process, along with correspondences
between (sets of) their transitions. The net systems show a sim-
ilar processing of a lead. Once the contact details have been
obtained, the potential customer is contacted and a quote sub-
mission is prepared. Then, the quote is submitted, which may
be followed by a negotiation phase. Assuming that the net sys-
tems have been created for different purposes, however, they
also show several differences. For instance, system (a) captures
the process only until the submission of a quote. Subsequent
steps such as the negotiation of a contract are neglected. Sys-
tems (b) and (c) capture the processing until a deal is settled.
Still, there are differences between both models. The reception
of a request for quote is captured in system (c), but neglected in
system (b).

Consistency Notions based on Behaviour Equivalences

To decide whether two process models show the same behaviour,
notions of behaviour equivalence may be applied. As discussed
in Section 4.4, these notions are classified in the linear time —
branching time spectrum [474, 476], see also [363, 209]. Beha-
viour equivalences compare process models that feature exactly
the same set of activities. Following the terminology introduced
in Section 3.1, this requires a correspondence relation between
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Figure 40: Three net systems depicting a lead-to-order process that are
aligned by correspondences.

two process models to be bijective. The examples introduced
earlier illustrate that this requirement cannot be assumed to hold
in the general case. Two questions have to be answered, before
a notion of behaviour equivalence is applied to judge on pro-
cess model consistency: How to cope with activities that are not
aligned and how to cope with complex correspondences?

To approach these questions, we refer to the concepts of refine-
ment and extension, as they have been introduced for specialisa-
tions of behavioural models [410, 411, 412]. Refinement refers
to the definition of an activity (or a set thereof) in more detail.
Extension refers to the act of adding new activities. Hence, activ-
ities that are not part of any correspondence are an extension. A
complex 1:n correspondence can, to a certain extent, be inter-
preted as a refinement. This interpretation assumes that the cor-
respondence implies semantic equivalence of the related sets of
activities. Further, refinements are directed and hierarchical, i. e.,
they cannot explain overlapping correspondences. Despite these
differences, the notions of refinement and extension provide an
angle to review literature on the application of behaviour equi-
valences in our setting.

Extension. Common equivalences are not invariant under ex-
tensions, which can be seen as the dual operation of a forgetful
refinement [477]. Removing an activity from a process model
may break behaviour equivalence. The question of how to still
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assess behaviour equivalence in the presence of extensions has
mainly been addressed under the term behaviour inheritance. Be-
haviour inheritance aims at transferring the concept of inherit-
ance known for static structures, e. g., for class diagrams in UML,
to the level of behavioural models. In particular, behaviour in-
heritance has been investigated for object life cycles that describe
the behaviour of software artefacts.

Whether an extension of an object life cycle is behaviour pre-
serving is assessed either on the observed behaviour or the in-
vocable behaviour [138]. Following this line, Basten and van der
Aalst proposed two elementary notions of behaviour inheritance,
protocol inheritance and projection inheritance, and combinations
thereof for net systems [451, 33].

Informally, two systems satisfy projection inheritance, if they
are branching bisimilar once transitions that are not part of any
correspondence are considered to be silent. In other words,
transitions in one system that are without counterpart in the
other system are hidden. Branching bisimulation is insensitive to
silent transitions and, thus, closely related to stuttering equival-
ences known from model checking, see [69, 30].

Two systems satisfy protocol inheritance, informally speaking,
if they are branching bisimilar once transitions that are not part
of any correspondence are removed from the system. In con-
trast to projection inheritance, protocol inheritance requires all
transitions that are not part of any correspondence to be blocked.

Similar ideas have been presented by Schrefl and Stumptner
for Object Behavior Diagrams (OBDs) [410, 411, 412], a behavi-
oural model that comprises activities and explicit states. They in-
troduce observation consistency, which corresponds to projection
inheritance. Note that, in contrast to trace equivalence, obser-
vation consistency refers not only to transitions (OBD activities)
but also to states. Further, there exists the notion of invocation
consistency for OBDs, which is close to protocol inheritance.

Refinement. There is a large body of work on equivalence pre-
serving refinements for Petri nets, refer to [64] for a thorough
survey. Such a refinement is always assumed to be hierarchical.
A place or transition of a net system is replaced by a subnet,
so that the subnet is embedded into the original net [351, 329].
Hence, a refinement leads to equally directed non-overlapping
1:n correspondences. One may argue that complex correspond-
ences between process models that can be traced back to one
of the known refinement operations should be considered to
be consistent. Still, the operationalisation of such an approach
is challenging, if the set of transitions related to a correspond-
ence is not forming an isolated subnet. Therefore, behaviour
preserving reduction techniques [329] may be required to judge
whether those transitions can be traced back to a refinement op-
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erator. We are not aware of any work that traces back arbitrary
correspondences between behavioural models to refinements.

One may think of a different approach to cope with com-
plex correspondences following on the idea of stuttering equival-
ences [69]. These equivalences acknowledge that a single state
transition may have been refined into a sequence of state trans-
itions. In our context, the occurrence of a set of transitions, all
belonging to one complex correspondence, could be traced back
to the occurrence of a single transition. In prior work [501], we
followed a similar approach. To lift the notions of behaviour in-
heritance to the level of complex correspondences, we used the
partitioning of traces that is induced by complex correspond-
ences. This approach does not impose any restrictions on the
cardinality or direction of correspondences. Still, it assumes
non-overlapping correspondences and considers only complete
traces, i. e., traces from the initial to the final state of the process.

We revisit the example net systems introduced in Figure 4o0.
Here, transitions that are not aligned by any correspondence
may be blocked or hidden as proposed by notions of behaviour
inheritance. Focussing on systems (a) and (b), we see that both
options often need to be combined. The unlabelled transition
merging three parallel branches in system (a) has to be projected,
as blocking it would stall the process. In contrast, transition ‘Re-
port to Manager” in system (a) represents an alternative option
to continue processing, which is not captured in system (b). This
suggests blocking the transition for assessing behaviour consist-
ency. Further, the net systems show complex correspondences.
Some even involve sets of transitions that do not form an isol-
ated subnet, e. g., transitions ‘Create Quote” and “Approve Quote’
in system (a). Hence, to decide whether these correspondences
can be traced back to behaviour preserving refinements is not
straight-forward. Apart from that, we may rely on the approach
that lifted behaviour inheritance to the setting of complex corres-
pondences based on a partitioning of traces [501]. Assuming a
suitable combination of hiding and blocking of transitions that
are not aligned, both alignments, between systems (a) and (b),
and between (b) and (c), are consistent.

We summarise that behaviour consistency may be decided
based on behaviour equivalences. Still, the presence of complex
correspondences imposes various challenges towards to the ap-
plication of behaviour equivalences, which have been addressed
only partially in the literature — overlapping correspondences
are not covered. Further, our examples illustrate that an appro-
priate combination of hiding and blocking of transitions that are
not aligned may be required to conclude on consistency.
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Figure 41: Aligned net systems to illustrate the choice of behavioural
relations for consistency analysis.

Consistency Notions based on Behavioural Relations

Notions of behaviour consistency can be based on behavioural
relations instead of behaviour equivalences. Taking a certain
definition of relational semantics, consistency of aligned process
models is decided as follows. All relations for tuples of trans-
itions in one model are compared to the relations for tuples of
corresponding transitions in the other model. Although n-ary
behavioural relations may be considered in principle, most exist-
ing behavioural relations are binary; they are defined for pairs of
transitions. Hence, consistency assessment translates into com-
paring relations for all pairs of transitions that are part of corres-
pondences.

In Section 4.5, we reviewed several relational semantics. The
major difference between them is their focus on either direct
causal dependencies, e. g., the footprint comprising the relations
of the x-algorithm [457, 446], or indirect dependencies, such as
the behavioural profile. We explicated this difference with the
look-ahead that is assumed during computation of the relations.
We may exploit direct successorship, a look-ahead of one, or in-
direct dependencies, a far-look-ahead.

Against the background of alignments between related pro-
cess models, indirect dependencies seem to be more suited to
assess consistency. Alignments can be expected to be partial.
Activities that are not relevant regarding the modelling purpose
will not be captured in a process model, i.e., they are exten-
sions when comparing two related process models. However,
consistency assessment based on relations that focus on direct
successorship is sensitive to extensions. Indirect dependencies,
in turn, are not affected by extensions. Consider the alignment
between systems (a) and (b) depicted in Figure 41. The trans-
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itions A and B in system (a) correspond to the transitions {A1, A2}
and B in system (b). Relations that built upon direct successor-
ship capture an order dependency for the pair (A,B) in sys-
tem (a), A — B according to the footprint [446]. There is no
order dependency for any of the pairs of corresponding trans-
itions in system (b), A1 # B and A2 # B according to the footprint.
Systems (b) and (c) in Figure 41 also illustrate that complex cor-
respondences have to be considered separately. The dependency
A1 # B observed in system (b) is not mirrored by any of the pairs
of corresponding transitions in system (c).

These issues are avoided by using indirect dependencies. Tak-
ing the relations of the behavioural profile, the strict order de-
pendency between transitions A and B in system (a), is also ob-
served for all pairs of corresponding transitions in system (b),
Al ~ B and A2 ~» B. The same holds for the alignment between
system (b) and (c). Hence, consistency assessment based on be-
havioural profiles is insensitive to extensions of process models
and can be applied for complex correspondences in a straight-
forward manner.

Behavioural profiles are a behavioural abstraction — the cap-
tured dependencies neglect causal dependencies between trans-
ition occurrences. This may be problematic for certain scenarios
of deciding behaviour consistency. The usage of causal behavi-
oural profiles countervails this effect. Still, these profiles provide
an abstraction and only approximate trace semantics. For illus-
tration, consider again Figure 41. Co-occurrence between trans-
itions A and B in system (a) is also observed between pairs of
corresponding transitions in system (b). In system (c), however,
we do not observe co-occurrence between the respective pairs of
transitions. In this system, co-occurrence is not manifested in a
binary relation.

Consistency Notions based on Behavioural Profiles

The application of a behavioural abstraction, such as behavioural
profiles, implies a certain information loss when deciding con-
sistency. Even if causal behavioural profiles are used, trace se-
mantics of the respective models is only approximated. How-
ever, there is evidence that even more coarse-grained abstrac-
tions are suited for consistency analysis.

Certain drivers of process modelling, such as process under-
standing and communication, tend to yield happy path process
models that only capture the most frequent execution sequence
of a process [291, 21, 320]. Such models abstract from altern-
ative branches that are of minor importance for understanding
the overall processing. For the setting in Figure 40, for instance,
such an alternative branch would be reception of a request for
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quote in system (c), which is without counterpart in systems (a)
and (b). Also, system (c) incorporates the possibility that a cus-
tomer is not answering to a submitted quote. System (b) ab-
stracts from this deviation from the standard processing. Captur-
ing such alternative branches potentially breaks causal depend-
encies between pairs of activities. ‘Contact Customer’ is a cause
of ‘Submit Quote” in system (b), whereas there is no such de-
pendency between the corresponding transitions in system (c).
The usage of behavioural profiles for consistency analysis allows
for neglecting such dependencies explicitly. Extensions, such as
the reception of a request for quote in system (c), do not affect
the indirect order dependencies as defined by the behavioural
profile. This suggests exploiting only the relations of the be-
havioural profile, and to neglect co-occurrences, when deciding
behaviour consistency in a certain context.

The phenomenon of happy path process models also suggests
that repetitions are only modelled on a certain level of detail.
They may be abstracted in high-level business process models
that give an overview of business operations. Coupled repetitive
activities are a structural pattern occurring frequently in the re-
finement of process models [239]. Accordingly, information on
potential repetition may be neglected for consistency analysis.
This aspect is easily incorporated into the consistency assess-
ment based on behavioural profiles. All self-relations are ex-
cluded from the consistency analysis.

Coming back to the example in Figure 40, both alignments
respect the behavioural profiles. The dependencies observed
in one system, including self-relations, are also present for all
pairs of corresponding transitions in the other system. With re-
spect to co-occurrence, we observe several deviations. Besides
the aforementioned violations caused by extensions, however,
co-occurrence violations are also caused by complex correspond-
ences. For instance, the co-occurrence dependency between ‘Get
Contact” and ‘Contact Customer’ in system (b) is not present for
the corresponding transitions in system (c).

To conclude, we discussed that consistency assessment may be
based on behaviour equivalences or behavioural relations. The
former imposes various challenges with respect to complex cor-
respondences. Approaches based on behaviour equivalences can
be expected to be computationally hard. In particular, the choice
to either block or hide transitions that are not aligned adds to the
computational complexity. As an alternative, behaviour consist-
ency may be decided using behavioural relations. To this end,
the presence of extensions and complex correspondences sug-
gests utilising indirect dependencies. Further, we motivated that
even a relatively coarse-grained behavioural abstraction may be
suited for consistency analysis.
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6.2 BEHAVIOURAL PROFILE CONSISTENCY

The previous section sketched how behavioural profiles are used
to decide consistency of an alignment. This section is dedicated
to the formal definition of consistency notions. We show how be-
havioural profile equivalence introduced in Section 4.4 is applied
for net systems that are aligned by correspondences. Then, we
discuss a spectrum of consistency criteria based on behavioural
profiles. Finally, we focus on the interpretation of confidence val-
ues assigned to correspondences, see Section 3.1, when applying
the proposed consistency criteria.

Definitions of Consistency Criteria

The definition of consistency notions uses some auxiliary con-
cepts. We rely on the notion of a correspondence relation as it
has been introduced in Definition 3.1.1. Essentially, a corres-
pondence relation between two transitions associates pairs of
corresponding transitions of two net systems to each other. As
such, it defines elementary correspondences and, implicitly, also
complex correspondences, see Section 3.1.

First, we need the notion of aligned transitions. Those are
transitions of an aligned net system that are part of a corres-
pondence.

Definition 6.2.1 (Aligned Transitions)

Let S1 = (Ny,M;7) and S; = (N2, M;) be net systems with
Ni = (P, Ty,F1) and N, = (P2, T,,F>), and ~ C Ty x T2 a corres-
pondence relation. The set of aligned transitions T; C Ty of Sy is
defined as Ty ={t; € Ty |3t € To [t1 ~t2 ]}. The set T; of S,
is defined analogously.

Further, we need a notion of equivalence for the relations of
behavioural profiles of different net system. This equivalence
relates to the type of the profile relation and is defined for all
relations of the behavioural profile along with the reverse strict
order relation.

Definition 6.2.2 (Type Equivalence of Profile Relations)
Let By ={~1,+1,ll1} and B, = {~»2,+2, 2} be behavioural pro-
files. Two relations Ry € B U{wf} and R, € B, U{w?} are
type equivalent, denoted by Ry ~ Ry, iff either

o Ry =~1 ARz =,

o Ry :W1_1 A Ry :WZ],

o Ry =47 AN Ry =+,,0r

o Ri=I[h ARy =]

Using these concepts, we define consistency notions based on be-
havioural profiles. Given two aligned net systems, behavioural
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Figure 42: Example net systems: all alignments are weak behavioural
profile consistent; only the alignment between (b) and (c)
is behavioural profile consistent; none of the alignments is
causal behavioural profile consistent.

profile consistency requires that the profile relations observed
for two transitions of different correspondences in one model are
type equivalent for all pairs of corresponding transitions in the
other model. As motivated in the previous section, there may be
reasons to relax this preservation of behaviour with respect to re-
peated execution of activities. Therefore, we first introduce weak
behavioural profile consistency, which neglects the self-relations
of aligned transitions.

Definition 6.2.3 (Weak Behavioural Profile Consistency)

Let S1 = (N1,M7) and S; = (N2, M) be net systems with Nj =
(P1,T1,F1) and Ny = (P2, T2, F2), and By = {~7,+1,[1} and
B, ={~»2,+2,I2} their behavioural profiles. Let Ry € B U{WT]
}and Ry € B, U{w?}. A correspondence relation ~ C Ty x
T, is weak behavioural profile consistent, iff for all transition pairs
(tx, ty) € (T x T7), tx # ty, and transitions ts, t¢ € T, ts # ty,
tx ~ ts, ty ~ tt, it holds that either (1) (txRity A tsRoty) =
Ry ~ Rj or (2) tx ~ ty and ty ~ ts.

We illustrate weak behavioural profile consistency with the ex-
ample net systems depicted in Figure 42. Consider the sys-
tems (a) and (b). There are two complex correspondences, one
between the sets of transitions {A1, A2} and {A3, A4}, and one
between transitions {B} and {B1, B2}. In the presence of complex
correspondences, weak behavioural profile consistency requires
the preservation of behavioural relations for all transition pairs
that are induced by the complex correspondence. Every com-
bination of transitions that are part of different correspondences
is checked. For this ex