
B E H AV I O U R A L P R O F I L E S

a relational approach to behaviour consistency

matthias weidlich

business process technology

hasso plattner institute , university of potsdam

potsdam , germany

dissertation

zur erlangung des grades eines

doktors der naturwissenschaften

– dr . rer . nat. –

july 2011

Published online at the

Institutional Repository of the University of Potsdam:

URL http://opus.kobv.de/ubp/volltexte/2011/5559/

URN urn:nbn:de:kobv:517‐opus‐55590

http://nbn‐resolving.de/urn:nbn:de:kobv:517‐opus‐55590

Pour L.H.O.O.Q.

A B S T R A C T

Business Process Management (BPM) emerged as a means to
control, analyse, and optimise business operations. Conceptual
models are of central importance for BPM. Most prominently,
process models define the behaviour that is performed to achieve
a business value. In essence, a process model is a mapping of
properties of the original business process to the model, created
for a purpose. Different modelling purposes, therefore, result in
different models of a business process. Against this background,
the misalignment of process models often observed in the field
of BPM is no surprise. Even if the same business scenario is con-
sidered, models created for strategic decision making differ in
content significantly from models created for process automa-
tion. Despite their differences, process models that refer to the
same business process should be consistent, i. e., free of contra-
dictions. Apparently, there is a trade-off between strictness of
a notion of consistency and appropriateness of process models
serving different purposes. Existing work on consistency ana-
lysis builds upon behaviour equivalences and hierarchical re-
finements between process models. Hence, these approaches are
computationally hard and do not offer the flexibility to gradually
relax consistency requirements towards a certain setting.

This thesis presents a framework for the analysis of behaviour
consistency that takes a fundamentally different approach. As a
first step, an alignment between corresponding elements of re-
lated process models is constructed. Then, this thesis conducts
behavioural analysis grounded on a relational abstraction of the
behaviour of a process model, its behavioural profile. Different
variants of these profiles are proposed, along with efficient com-
putation techniques for a broad class of process models. Using
behavioural profiles, consistency of an alignment between pro-
cess models is judged by different notions and measures. The
consistency measures are also adjusted to assess conformance
of process logs that capture the observed execution of a process.
Further, this thesis proposes various complementary techniques
to support consistency management. It elaborates on how to im-
plement consistent change propagation between process models,
addresses the exploration of behavioural commonalities and dif-
ferences, and proposes a model synthesis for behavioural pro-
files.

v

Z U S A M M E N FA S S U N G

Das Geschäftsprozessmanagement umfasst Methoden zur Steue-
rung, Analyse sowie Optimierung von Geschäftsprozessen. Es
stützt sich auf konzeptionelle Modelle, Prozessmodelle, welche
den Ablauf zur Erreichung eines Geschäftszieles beschreiben.
Demnach ist ein Prozessmodell eine Abbildung eines Geschäfts-
prozesses, erstellt hinsichtlich eines Modellierungsziels. Unter-
schiedliche Modellierungsziele resultieren somit in unterschied-
lichen Modellen desselben Prozesses. Beispielsweise unterschei-
den sich zwei Modelle erheblich, sofern eines für die strategi-
sche Entscheidungsfindung und eines für die Automatisierung
erstellt wurde. Trotz der in unterschiedlichen Modellierungszie-
len begründeten Unterschiede sollten die entsprechenden Mo-
delle konsistent, d.h. frei von Widersprüchen sein. Die Striktheit
des Konsistenzbegriffs steht hierbei in Konflikt mit der Eignung
der Prozessmodelle für einen bestimmten Zweck. Existierende
Ansätze zur Analyse von Verhaltenskonsistenz basieren auf Ver-
haltensäquivalenzen und nehmen an, dass Prozessmodelle in
einer hierarchischen Verfeinerungsrelation stehen. Folglich wei-
sen sie eine hohe Berechnungskomplexität auf und erlauben es
nicht, den Konsistenzbegriff graduell für einen bestimmten An-
wendungsfalls anzupassen.

Die vorliegende Arbeit stellt einen Ansatz für die Analyse von
Verhaltenskonsistenz vor, welcher sich fundamental von existie-
renden Arbeiten unterscheidet. Zunächst werden korrespondie-
rende Elemente von Prozessmodellen, welche den gleichen Ge-
schäftsprozess darstellen, identifiziert. Auf Basis dieser Korre-
spondenzen wird ein Ansatz zur Konsistenzanalyse vorgestellt.
Jener basiert auf einer relationalen Verhaltensabstraktion, dem
Verhaltensprofil eines Prozessmodells. Die Arbeit führt verschie-
dene Varianten dieses Profils ein und zeigt wie sie für bestimm-
te Modellklassen effizient berechnet werden. Mithilfe von Ver-
haltensprofilen werden Konsistenzbegriffe und Konsistenzmaße
für die Beurteilung von Korrespondenzen zwischen Prozessmo-
dellen definiert. Weiterhin werden die Konsistenzmaße auch für
den Anwendungsfall der Konformität angepasst, welcher sich
auf beobachtete Abläufe in Form von Ausführungsdaten bezieht.
Darüber hinaus stellt die Arbeit eine Reihe von Methoden vor,
welche die Analyse von Verhaltenskonsistenz ergänzen. So wer-
den Lösungen für das konsistente Übertragen von Änderungen
eines Modells auf ein anderes, die explorative Analyse von Ver-
haltensgemeinsamkeiten, sowie eine Modellsynthese für Verhal-
tensprofile vorgestellt.

vii

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the follow-
ing publications:

◦ Matthias Weidlich, Jan Mendling, Mathias Weske: Efficient
Consistency Measurement Based on Behavioral Profiles of
Process Models. IEEE Transactions on Software Engineering
(TSE) 37(3):410-429 (2011)
◦ Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan

Mendling, Mathias Weske: Process Compliance Analysis
based on Behavioural Profiles. Information Systems 36(7):
1009-1025 (2011)
◦ Matthias Weidlich, Jan Mendling: Perceived Consistency

between Process Models. Information Systems. In press.
DOI: http://dx.doi.org/10.1016/j.is.2010.12.004 (2011)

◦ Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, Math-
ias Weske: Causal Behavioural Profiles - Efficient Computa-
tion, Applications, and Evaluation. Fundamenta Informat-
icae. In press (2011)
◦ Sergey Smirnov, Matthias Weidlich, Jan Mendling: Business

Process Model Abstraction based on Synthesis from Well-
Structured Behavioral Profiles. Technical Report. Hasso
Plattner Institute (2011)
◦ Matthias Weidlich, Jan Mendling, Mathias Weske: A Found-

ational Approach for Managing Process Variability. CAiSE
2011:267-282

◦ Matthias Weidlich, Remco M. Dijkman, Jan Mendling: The
ICoP Framework: Identification of Correspondences between
Process Models. CAiSE 2010:483-498

◦ Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan
Mendling: Process Compliance Measurement Based on Be-
havioural Profiles. CAiSE 2010:499-514

◦ Sergey Smirnov, Matthias Weidlich, Jan Mendling: Business
Process Model Abstraction Based on Behavioral Profiles. IC-
SOC 2010:1-16

◦ Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, Math-
ias Weske: Efficient Computation of Causal Behavioural Pro-
files Using Structural Decomposition. Petri Nets 2010:63-83

◦ Matthias Weidlich, Felix Elliger, Mathias Weske: Generalised
Computation of Behavioural Profiles Based on Petri-Net Un-
foldings. WS-FM 2010:101-115

◦ Matthias Weidlich, Mathias Weske: Structural and behavi-
oural commonalities of process variants. ZEUS 2010:41-48

ix

http://dx.doi.org/10.1016/j.is.2010.12.004

◦ Matthias Weidlich, Mathias Weske: On the behavioural di-
mension of correspondences between process models. ZEUS
2010:65-72

◦ Matthias Weidlich, Mathias Weske, Jan Mendling: Change
Propagation in Process Models Using Behavioural Profiles.
IEEE SCC 2009:33-40

◦ Matthias Weidlich, Alistair P. Barros, Jan Mendling, Mathias
Weske: Vertical Alignment of Process Models - How Can We
Get There?. BMMDS/EMMSAD 2009:71-84

x

it’s the ending of a play
and soon begins another

hear the leaves applaud the wind

— Emiliana Torrini

A C K N O W L E D G M E N T S

Looking back, it is evident that a number of people have a sig-
nificant stake in this work. At this point, I would like to thank
them all for their guidance, support, and inspiration.

I am grateful to Mathias Weske, my supervisor, who suppor-
ted me in any respect during my PhD. His continuous encour-
agement and the offered freedom for my research have been es-
sential for me to complete this work, and to enjoy it. I owe
much to Jan Mendling, who virtually became a second super-
visor of mine. His insightful feedback along with his positive
spirit pushed me forward more than once. There are many more
people to thank for their support, in the one way or the other.
Alistair Barros convinced me that consistency matters, which
has been the starting point for this thesis. Collaborating with
Remco Dijkmann led to substantial progress in model matching,
thank you. Joint work on model understanding with Dirk Fah-
land, Jakob Pinggera, Hajo Reijers, Barbara Weber, and Stefan
Zugal was beneficial to see my research from a different per-
spective. Also, I am grateful to Wolfgang Reisig and Wil van der
Aalst, my reviewers, for their valuable feedback, especially with
respect to the positioning of my work.

A big thank you is due to all my colleagues and former col-
leagues from the Business Process Technology group for plenty
of inspiring discussions, stimulating collaborations, and a pleas-
ant work environment. Alex was a great office mate throughout
the last years, always eager to discuss scientific and not-so sci-
entific topics. I really enjoyed diving into the world of temporal
logics with Ahmed, fighting for formal results all evening long
with Artem, discussing language formalisations with Gero, in-
venting fancy metrics with Matthias, and reaching higher levels
of abstraction with Sergey. Thanks heaps for that!

xi

C O N T E N T S

i alignments of process models 1

1 introduction 3

1.1 The Essence of Modelling 3

1.2 Drivers of Process Modelling 5

1.3 Drivers of Consistency Analysis 8

1.4 Problem Statement 11

1.5 Contributions 13

1.6 Structure of this Thesis 14

2 process models 17

2.1 Process Description Languages 18

2.2 Net Systems 27

2.3 From Process Descriptions to Net Systems 35

2.4 Discussion 38

3 constructing alignments 41

3.1 Terminology 42

3.2 Model Matching 46

3.3 The ICoP Framework 55

3.4 Experimental Evaluation 65

3.5 Conclusion 68

ii foundations of behaviour consistency 71

4 behavioural profiles 73

4.1 The Notion of a Behavioural Profile 74

4.2 The Notion of a Causal Behavioural Profile 77

4.3 On Labelled Systems 80

4.4 Behavioural Profile Equivalences 83

4.5 Related Behavioural Concepts 86

4.6 Conclusion 92

5 computations of behavioural profiles 93

5.1 Computations for Sound Free-Choice WF-Systems 94

5.2 Computations using Structural Decomposition 104

5.3 Computations for Bounded Systems 118

5.4 Implementation & Experimental Results 135

5.5 Related Work 144

5.6 Conclusion 145

iii consistency analysis 147

6 deciding process model consistency 149

6.1 Consistency Notions 150

6.2 Behavioural Profile Consistency 157

6.3 Consistency Perception 162

6.4 Related Work 175

xiii

xiv contents

6.5 Conclusion 178

7 quantifying process model consistency 179

7.1 Consistency Quantification 180

7.2 Consistency Measures 183

7.3 Experimental Evaluation 190

7.4 Consistent Change Propagation 199

7.5 Related Work 209

7.6 Conclusion 213

8 exploring process model commonalities 215

8.1 Explorative Behavioural Analysis 216

8.2 A Set Algebra for Behavioural Profiles 219

8.3 Model Synthesis for Behavioural Profiles 229

8.4 Application 238

8.5 Experimental Evaluation 241

8.6 Related Work 244

8.7 Conclusion 250

9 analysing log conformance 251

9.1 Conformance Analysis 252

9.2 Behavioural Profiles for Cases 255

9.3 Conformance Measures 256

9.4 Diagnostics 266

9.5 Experimental Evaluation 270

9.6 Related Work 275

9.7 Conclusion 276

10 conclusions 279

10.1 Summary of the Results 280

10.2 Behavioural Profiles in the Broader Context 282

10.3 Limitations & Future Research 284

bibliography 287

L I S T O F F I G U R E S

Figure 1 The essence of modelling 5

Figure 2 The essence of process modelling 6

Figure 3 Consistency analysis 9

Figure 4 Thesis structure 15

Figure 5 BPMN process model 20

Figure 6 EPC process model 21

Figure 7 UML AD process model 24

Figure 8 BPEL process model 26

Figure 9 Example net system 29

Figure 10 Example state space 32

Figure 11 Net system classification 36

Figure 12 Alignment terminology 43

Figure 13 Alignments of net systems 45

Figure 14 ICoP architecture 56

Figure 15 Distance Doc Searcher 58

Figure 16 Fragment Doc Searcher 60

Figure 17 ICoP matching results 67

Figure 18 Behavioural profile examples 75

Figure 19 Self-concurrent enabling 77

Figure 20 Optionality and causality 78

Figure 21 System with L3-live transition 78

Figure 22 System with a dead transition 80

Figure 23 Labelled net system 81

Figure 24 Behavioural profile equivalence 85

Figure 25 Relational semantics 89

Figure 26 Computation of behavioural profiles 98

Figure 27 Computation of co-occurrences 103

Figure 28 RPST of a WF-system 105

Figure 29 Node-splitting for WF-nets 106

Figure 30 Example WF-tree 107

Figure 31 Pre-processing (decomposition) 110

Figure 32 Complete prefix unfolding 121

Figure 33 Pre-processing (unfolding) 127

Figure 34 Augmented net system 129

Figure 35 SAP RM: computation time 137

Figure 36 Health insurer: computation time 138

Figure 37 BIT PL: computation time 139

Figure 38 Size of unfoldings 141

Figure 39 Computation times (unfolding) 142

xv

xvi List of Figures

Figure 40 A lead-to-order process 151

Figure 41 Behavioural relations 154

Figure 42 Weak BP consistency 158

Figure 43 Consistency spectrum 161

Figure 44 Experiment objects 165

Figure 45 Experiment demographics 168

Figure 46 Experiment boxplots 170

Figure 47 A lead-to-order process 181

Figure 48 Consistency measures 184

Figure 49 Weighted measures 190

Figure 50 Trace measure 192

Figure 51 SAP RM consistency values 196

Figure 52 SAP RM, not consistent 197

Figure 53 SAP RM, partly consistent 198

Figure 54 Change propagation 201

Figure 55 Boundary transition reduction 205

Figure 56 Inter-boundary transition reduction 207

Figure 57 A lead-to-order process 217

Figure 58 Trace partitioning 220

Figure 59 Profile normalisation 222

Figure 60 Inclusion 224

Figure 61 Complement 226

Figure 62 Intersection 227

Figure 63 Well-structured net systems 231

Figure 64 Order relations graphs 232

Figure 65 Modular decomposition 233

Figure 66 Insertion of a trivial circuit 236

Figure 67 GCD and LCM net systems 239

Figure 68 SAP RM, behaviour subsumption 244

Figure 69 Conformance analysis 253

Figure 70 Types of noise (missing parts) 265

Figure 71 Types of noise (perturbation) 266

Figure 72 Violation rules (example) 269

Figure 73 SIMP model 271

Figure 74 Violations for SIMP cases 273

Figure 75 Violation rules (SIMP) 275

L I S T O F TA B L E S

Table 1 Descriptive statistics 169

Table 2 Support for hypotheses 169

Table 3 ANOVA model 171

Table 4 SAP RM, consistency results 194

Table 5 Clusters of aligned net systems 242

Table 6 Conformance results (example) 263

Table 7 Diagnostics (example) 267

Table 8 Violations (example) 268

Table 9 Conformance results (SIMP) 272

Table 10 Diagnostics (SIMP) 273

Table 11 Violations (SIMP) 274

xvii

Part I

A L I G N M E N T S O F P R O C E S S M O D E L S

1
I N T R O D U C T I O N

All models are wrong;
some models are useful.

— George E. P. Box [62]

Business is process-driven. Since process orientation emerged
as an organisation principle [165, 100, 195, 406], the last dec-

ades have seen a remarkable uptake of Business Process Man-
agement (BPM). BPM has been established as a means to con-
trol, analyse, and optimise business operations. This trend is ob-
served independent of any business domain and organisational
background.

Conceptual models are at the core of BPM. Among them, pro-
cess models describe the behaviour that is performed to achieve
a business value [513]. Pragmatics is an inherent feature of every
conceptual model. Mapping and reducing the reality can be seen
as the elementary steps of model creation [251]. The purpose of a
model answers the question of what to map and what to reduce.
Against this background, the misalignment of process models
often observed is no surprise. Even if the same business scen-
ario is considered, models created for strategic decision making
differ in content significantly from models created for process
automation. The well-known ‘Business-IT-Gap’ [70, 186, 388] is
only the most prominent incarnation of this problem. The ques-
tion of how to assess consistency between behavioural models is
fundamental.

In this chapter, we approach this question by reviewing the
essentials of model creation in Section 1.1. Then, we focus on
drivers for the creation of process models in Section 1.2 and
the need to assess behaviour consistency between them in Sec-
tion 1.3. This gives rise to the characterisation of the problem
addressed by this thesis in Section 1.4. Section 1.5 summarises
our contributions. Finally, we outline the structure of this thesis
in Section 1.6.

1.1 the essence of modelling

Abstraction is an essential task in Computer Science. Models are
created to cope with the complexity of real-world phenomena

3

4 introduction

and to establish a well-defined universe of discourse. Aho and
Ullman deduce a characterisation of Computer Science from the
notion of abstraction.

‘Computer Science is a science of abstraction, creating the
right model for a problem and devising the appropriate mech-
anizable techniques to solve it.’

— Alfred V. Aho and Jeffrey D. Ullman [14]

Despite their importance, well-established notions of a model
and an abstraction are missing even in a rather narrow domain,
such as model-driven engineering [251, 208, 252]. The ques-
tion of what constitutes a model has been debated extensively,
see [251, 208, 252, 53, 415, 289, 52]. The following three features
that are rooted in the model theory by Stachowiak [430] are com-
monly adopted for models in Computer Science, cf., [251, 289].

Mapping feature. A model is grounded on an original, may it be
an object or a phenomenon. The original is mapped to the
model. The original may be non-existent. It may be planned,
suspected, or fictitious [289].

Reduction feature. A model is a reduced representation of the
original. Only a selection of properties of the original is
mapped to the model.

Pragmatics feature. With respect to a certain purpose, the model
can be used as a replacement for the original. In other words,
the model is created for a dedicated purpose.

These features give rise to a generic characterisation of abstrac-
tion as the act of model creation. That is, abstraction is a projec-
tion applied to an original. The projection reduces the amount of
information by filtering properties of the original [251, 227]. The
question of what to project, in turn, is answered by the purpose
of the model, i. e., its pragmatic feature. The purpose guides the
selection and granularity of properties of the original that should
be contained in the model. Hence, the quality of a model is de-
termined by its ability to answer certain questions regarding the
original [278]. If the model is adequate, any deviation between
the answers obtained from the model and those given by the
original are of an acceptable extent [53, 251]. A model may be
imprecise or even incorrect with respect to certain properties of
the original. Still, it may be adequate, if conclusions drawn on
the original are valid within the required level of confidence.

The notions of a model and an abstraction are illustrated by
Figure 1. Taking the example of a space shuttle orbiter, the ori-
ginal is referred to by the upper picture in Figure 1. Below, there
are two models of the orbiter. Both are derived by abstraction

1.2 drivers of process modelling 5

Abstraction Abstraction

Model of Model of

© Historic Space Systems at www.space1.com

© National Aeronautics and Space Administration (NASA)

© The LEGO Group

O
ri

gi
na

l
M

od
el

 L
ev

el

Figure 1: The essence of modelling.

from the original object. Apparently, both models provide a
simplistic view on the original. Innumerable properties of the
original have not been mapped to the models. Nevertheless,
both models are adequate regarding a certain purpose. The toy
model of the orbiter in the lower left corner of Figure 1, for in-
stance, allows for moving the ailerons at the wings. Mapping
this property from the original to the model has been considered
to be relevant for a toy model. The construction plan in the lower
right corner of Figure 1 has been created for a different purpose.
It allows for drawing conclusions on the spatial dimensions of
the orbiter. Besides its simplicity, this example illustrates the im-
portance of pragmatics when creating a model from an original
object or phenomenon by abstraction.

1.2 drivers of process modelling

Process orientation is an organisational principle that has its
roots in business administration [165, 406] and organisational
redesign [100, 195]. It emphasises business processes – a col-
lection of activities performed in coordination to realize a busi-
ness goal – as the source of value creation. Business Process
Management (BPM) comprises means to support the design, ad-
ministration, configuration, enactment, and analysis of business
processes [513]. BPM relies on explicit representations of busi-
ness processes in order to implement these operations. To this
end, process models are commonly used. They describe a col-
lection of activity models along with their logical and temporal
order [40, 513].

Following the discussion of abstraction in the previous sec-
tion, process models are an abstraction of business operations,

6 introduction

O
rig

in
al

M
od

el
 L

ev
el

Abstraction Abstraction

Model of Model of

Known
Customer?

Take Call
Customer

Entry

Get Contact
Details

Approve
Quote

Approval
needed?File Quote

Se
rv

ic
e

De
sk

Gr
ou

p
M

an
ag

er

Submit
Quote

Close Deal

Schedule
Customer

Presentation

Enter
Quote
Details

Schedule Call

Contact from
Marketing

Request for Quote

Send Quote

Contact
from Fair

2 weeks

Pos.
Response

Neg. Response

File
Contract

Enter Loss
Report

Get Past
Counter-

Offers

Enter
Negotiation

Report

Attach Quote
Appendix

© Seattle Municipal Archives, © Kamer van Koophandel Limburg,
© Lauren Manning, © Jim Epler

Still interested

Figure 2: The essence of process modelling.

cf., Figure 2. There is a mapping of the essential properties of
a business process, which may be planned, suspected, or ficti-
tious, to a process model. Further, process models are a reduced
representation of a business process. Activities are captured at
a certain level of granularity and contextual information such as
involved roles, data artefacts, or information systems may be ex-
plicitly selected to be captured in the process model. Again, we
observe the pragmatic feature of a model. The purpose of the
process model answers the question of what to map and what
to reduce when capturing business processes.

Process models may be created for manifold purposes. In
the remainder of this section, we review applications of process
models. This overview does not aim at completeness or the iden-
tification of orthogonal application areas. Instead, it shall illus-
trate the spectrum of potential applications of process modelling
by some prominent examples.

Process Understanding & Communication. Process models are cre-
ated to document the way business operations are conduc-
ted. The aim is to arrive at a consistent understanding of
these operations and improve the communication of busi-
ness processes among different stakeholders [513, 40]. Col-
laboration within a large organisation requires a common
understanding of the business processes. Such a common
understanding is hindered by the different backgrounds of
process stakeholders. From the field of data schema model-
ling, it is known that ‘different user groups or designers adopt
their own viewpoints in modelling the same objects in the applic-
ation domain’ [34]. Process models are used as a means to
create a shared understanding and aim at bridging the local

1.2 drivers of process modelling 7

views of particular stakeholders on business processes. In
addition, process models may also be used in the design of
organisational positions or for employee training. We sum-
marise that process models created for this purpose can be
seen as artefacts for the knowledge management within an
organisation. As indicated by a recent Delphi study [218],
improved understanding and communication are among the
most prominent perceived benefits of process modelling.

Process Improvement. Process modelling is frequently motivated
by process improvement [100, 200]. According to the afore-
mentioned study [218], it is perceived to be the top benefit
of process modelling in practise. There is a large spectrum
of criteria that may be targeted when improving business
processes, such as cost or cycle-time reduction, or increased
quality of products or services. Process models are used at
different stages of process improvement initiatives. For in-
stance, they are leveraged for measuring the performance
of business processes to identify bottlenecks or quality prob-
lems. Further, process redesign efforts are guided by process
models depicting the as-is state and those that capture the
to-be state of a business process [377].

Process Simulation. To forecast the impact of changes in internal
or external parameters on business operations, business pro-
cesses are simulated [296, 403]. Process models that depict
the current or intended business processes are annotated
with simulation relevant data, such as execution costs, ex-
ecution times, process instantiation frequencies, or the avail-
ability of resources. Then, process simulation allows conclu-
sions to be drawn on the performance of a business process
before it is implemented or changed.

Process Automation. Process models are used as blueprints for
the design of process-aware information systems [134]. To
this end, process models capture business requirements that
have to be met by the supporting IT-infrastructure. As such,
they are intended to bridge the gap between business re-
quirements and system specifications [70, 186, 388]. Process
models are also used for process automation using workflow
technology [270, 439]. Workflow engines take a process de-
scription as input and execute it by enforcing the predefined
behaviour. Hence, a process model may define a concrete
technical orchestration of services realising the business pro-
cess.

Process Certification & Process Compliance. Certification and com-
pliance analysis of business operations is often conducted in
a process-oriented way. Various certification initiatives eval-

8 introduction

uate an organisation based on its processes. As an example,
the ISO-9001 standard1 relates to the quality management
system of an organisation and explicitly requires the docu-
mentation of business processes. Although not required for
certification, the ISO-9001 recommends capturing business
processes by process models. Recently, techniques emerged
to conduct process-oriented risk management [237, 537] and
compliance analysis [384, 3, 27]. Process models are used
to structure risk analysis and to check whether operations
adhere to policies, internal directives, and external regula-
tions. For instance, the Control Objectives for Information
and related Technology (COBIT) framework2 aims at man-
aging risks and adhering to compliance demands using a
process-oriented approach.

Business to Business (B2B) Integration. In recent years, the focus
of BPM shifted from a single organisation to cross-organisa-
tional integration, driven by information systems. Organisa-
tions outsource single business activities or even complete
business processes, which results in distributed value chains
that need to be coordinated [78]. Such coordination is typic-
ally process-driven. Process models are used to define the in-
terface and the protocol followed by different organisations
as part of their collaboration. For instance, the RosettaNet3

consortium standardised business processes between trad-
ing partners in the electronic commerce sector.

As stated above, this overview of drivers for process modelling
cannot be complete. Still, it illustrates that there is a whole spec-
trum of drivers for process modelling, from employee training to
B2B integration. The variety of purposes for process modelling
can be assumed to have a dramatic influence on the way process
models are created.

1.3 drivers of consistency analysis

The drivers of process modelling reviewed in the previous sec-
tion cannot be organised in a strict top-down fashion. Hence,
it is unrealistic to assume that the corresponding process mod-
els can always be derived through hierarchical refinement. Con-
sequently, and most likely, there will be a variety of differences
between models. Depending on the purpose of model creation,
there is a huge difference in the appropriate level of abstraction
of a business process, as well as the assumed perspective. As

1 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.

htm?csnumber=46486

2 http://www.isaca.org/cobit

3 http://www.rosettanet.org/

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=46486
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=46486
http://www.isaca.org/cobit
http://www.rosettanet.org/

1.3 drivers of consistency analysis 9

Process Model 1

Consistency
Analysis

Known
Customer?

Take Call
Customer

Entry

Get Contact
Details

Approve
Quote

Approval
needed?File Quote

Se
rv

ice
 D

es
k

G
ro

up

M
an

ag
er

Submit
Quote

Close Deal

Process Model 2

Schedule
Customer

Presentation

Enter
Quote
Details

Schedule
Call

Still interested

Contact from
Marketing

Request for Quote

Send Quote

Contact
from Fair

2 weeks

Pos.
Response

Neg. Response

File
Contract

Enter Loss
Report

Get Past
Counter-

Offers

Enter
Negotiation

Report

Attach Quote
Appendix

Figure 3: Consistency analysis of process models.

discussed for models in general, every process model has to be
appropriate – it must incorporate a reasonable level of detail, fo-
cus on certain properties of a business process, and neglect ir-
relevant aspects. Arguably, mismatches, i. e., differences in the
model structure or the specified behaviour, are in the nature of
process models that serve different purposes. Avoidance of such
mismatches may not only be impossible, it may also be unnat-
ural and counter-productive. That is to say that a resolution of
these mismatches may impact the adequacy of a process model
in a negative manner.

We focus on the purpose of modelling as the source of differ-
ences between process models that represent (overlapping parts
of) the same business process. However, differences may also
stem from other factors, e. g., related to the act of model creation.
The modelling methodology followed or the expressiveness of
the chosen modelling language may cause differences between
related process models, see [31] for factors that influence the
modelling process. Nevertheless, we emphasise that even con-
trolling all of these factors will not avoid the aforementioned
mismatches if process models are created for different purposes.

We illustrate differences between related process models with
a simple lead-to-order process. In essence, this process involves
establishing contact with a customer, submitting a quote, and
handling the customer’s response. The process models in Fig-

10 introduction

ure 3 illustrate that the way this process is represented differs
with respect to the modelling purpose. The upper model may be
used to illustrate the overall processing and to clarify organisa-
tional responsibilities. This model focusses on the major activit-
ies and decision points of the process. The lower model provides
a more fine-grained view of the operations. It aims at capturing
technical aspects, such as different instantiation scenarios and
the treatment of exceptional cases. This model may be used to
implement and configure supporting information systems.

Granted that there are multiple process models that capture
the same business process, their consistency has to be analysed.
The need to have consistent representations of business opera-
tions is inherent. Imagine that process models used as means of
communication are inconsistent with process models created for
process automation. Then, the benefit of creating a shared un-
derstanding among process stakeholders with the former model
is of limited use, as it deviates from the way operations are sup-
ported with information systems. We concretise drivers for con-
sistency analysis with the following use cases.

Validation. One process model is utilised as a specification. A
second, often more fine-grained model is validated against
the specification. This scenario is observed in the context
of business-centred organisational process models and im-
plementation-centred technical process models, see Figure 3.
However, validation is not restricted to such a setting. A
different example would be the validation of a model that
captures the non-technical process implementation in a cer-
tain organisational environment against a model represent-
ing compliance requirements that have to be obeyed.

Inter-Model Analysis. Process optimisation often relies on an ana-
lysis across multiple process models. Aspects that are cap-
tured in different models have to be related to each other to
draw conclusions on the overall processing. For the scenario
depicted in Figure 3, information on the actual processing
(e. g., processing times) obtained for the lower model, may
be related to the roles defined in the upper model.

Change Propagation. Business processes and, therefore, process
models continuously undergo changes. To keep different
representations of business operations in sync, changes ap-
plied to one process model may require updating all re-
lated models accordingly. Against the background of pro-
cess models assuming different abstraction levels and per-
spectives, automatic change propagation appears to be un-
realistic. Still, the identification of process models or pro-
cess model regions that are affected by a change would be a
major benefit.

1.4 problem statement 11

Addressing these use cases requires means for correlating ele-
ments of different process models. Such correspondences are es-
tablished between process model elements, or sets thereof. They
have to respect certain consistency criteria to be exploited for
model validation, analysis, or change propagation.

1.4 problem statement

This thesis takes the diverging drivers of process modelling and
the need to assess the consistency of related process models as
a starting point. Our focus is on the control flow perspective.
Even though state-of-art process modelling goes beyond pure
control flow specification, process models, first and foremost,
are behavioural models. The definition of a coordination of
activity execution is the very core of a process model. Hence,
it is reasonable to approach consistency analysis from the con-
trol flow perspective before taking additional perspectives, e. g.,
data flow modelling or resource assignments, into account. Fur-
ther, we concentrate on process models that are defined follow-
ing a procedural modelling paradigm. Recently, approaches to
process modelling that break with this paradigm have emerged,
e. g., declarative [452, 462, 327] or artefact-centric process model-
ling [89, 54]. To date, there has not been any significant uptake
of these approaches in practise [102, 210], though.

We focus on process models that represent the same business
process. Deciding whether two process models refer to the same
business process may not be straight-forward. The question of
what constitutes a business process – when is it initialised and
when does it complete? – is influenced, among other factors,
by the drivers of process modelling. Hence, it is likely that re-
lated process models are only partially overlapping in terms of
their coverage of business operations. However, this aspect is
of secondary importance for our work. When referring to pro-
cess models that capture the same business process, therefore,
we do not assume a unique characterisation of initialisation and
completion of the business process.

We phrase the research question of this thesis as follows.

How to assess behaviour consistency for process models

capturing the same business process?

According to Zelewski, consistency of process models refers to
a freedom of contradictions [533]. Still, a concrete operationalisa-
tion of this definition remains challenging. Evidently, there is a
trade-off between strictness of a consistency notion and appropri-
ateness of process models serving different purposes. A strict no-
tion, which requires all information of one model to be present

12 introduction

in another model as well, will result in models that are inappro-
priately tailored for their different purposes.

The manifold drivers for process modelling and consistency
analysis suggest that any criterion to assess behaviour consist-
ency must be defined in a relativistic manner. A single criterion
cannot satisfy the requirements for behaviour consistency in all
contexts. Such a relativistic angle is also acknowledged in the
literature on behaviour equivalences.

‘When semantic equivalences are used in the design of con-
current systems, or for verification purposes, they should be
chosen in such a way that two system descriptions are con-
sidered equivalent only if the described behaviours share the
properties that are essential in the context in which the sys-
tem will be embedded. It depends on this context and on the
interests of a particular user which properties are essential.’

— Robert J. van Glabbeek [475]

It is remarkable that the relevance of the context and the interests
of particular users, i. e., the purpose of applying an equivalence
notion, are emphasised even for the design and verification of
concurrent systems. In system design, a set of models jointly
specifies the system to be built. One would assume that the
consistency requirements are much stricter than for the case of
process models serving different purposes. Therefore, the ana-
lysis of related process models, a fortiori, requires a relativistic
assessment of behaviour consistency.

To narrow the scope of this thesis, we elaborate on require-
ments that shall be met when answering the research question.

Flexible Assessment. Behaviour consistency between related pro-
cess models has to take a relativistic angle. There have to
be means to adapt the consistency criterion towards a con-
crete setting or to interpret it against the background of the
considered models. A single Boolean criterion cannot be as-
sumed to be suited for all of the aforementioned contexts.
Instead, fine-granular criteria are needed.

Meaningful Feedback. Closely related to flexibility in the consist-
ency assessment is the need to provide meaningful feedback.
Given a consistency criterion, traceability of the consistency
assessment must be ensured. Sources of inconsistency have
to be identified and isolated to be able to interpret the con-
sistency result.

Efficient Computation. Change is the rule not the exception when
managing business operations. Business processes are con-
tinuously changing. Hence, models representing these pro-
cesses are also changing frequently, which impacts on the be-
haviour consistency between them. A consistency criterion

1.5 contributions 13

that is computed efficiently supports these changes. Consist-
ency analysis may be conducted in an online fashion and
helps to guide the adaptation of process models.

1.5 contributions

To answer the research question formulated in the previous sec-
tion, this thesis makes the following contributions.

(1) Identification of Complex Correspondences

Analysis of behaviour consistency of related process models re-
quires the identification of corresponding model elements. This
problem closely relates to a large body of work on data schema
and ontology matching. The identification of complex corres-
pondences – not single elements but sets of elements correspond
to each other – has been largely neglected in this research area,
though. For process models, there has not been any work in
this direction. Our contribution is a framework that defines a
system architecture for the definition of matchers to derive com-
plex correspondences between two process models. Besides the
architecture, we introduce a set of basic matching components
used to assemble such matchers.

(2) Definition of Behavioural Profiles

Our approach to behaviour consistency is based on an abstrac-
tion of the behaviour of a process model, the behavioural profile
of the model. Such a profile captures behavioural characteristics
by relations between pairs of activities. Our contribution is the
definition of different variants of these profiles for a generic be-
havioural model, i. e., net systems. Hence, behavioural profiles
induce a set of relational semantics for behavioural models.

(3) Computation of Behavioural Profiles

The abstraction of a behavioural profile can be computed effi-
ciently for a broad class of process models. For sound free-choice
WF-systems, we present formal results that allow for deriving be-
havioural profiles from the model structure in low polynomial
time. We also show how structural decomposition techniques
are applied to speed up the computation and support partial
computation of behavioural profiles. These results are comple-
mented by an approach to the computation of behavioural pro-
files from a complete prefix unfolding, which is computationally
hard but applicable in a more general case. Hence, our contribu-

14 introduction

tion is a set of techniques for the computation of behavioural
profiles tailored towards dedicated classes of process models.
We also present an extensive experimental evaluation of these
techniques using three model collections from industry.

(4) Consistency Analysis of Process Models

Using the notion of a behavioural profile, we present a frame-
work for the analysis of behaviour consistency of process models.
Starting with different Boolean notions of behaviour consistency,
we elaborate on how to quantify behaviour consistency, how to
support behaviour consistent change propagation between pro-
cess models, and how to explore behavioural commonalities and
inconsistencies. As part of that, we present a set algebra for
behavioural profiles and an approach to model synthesis from
behavioural profiles. Hence, our contribution is a set of integ-
rated techniques to manage behaviour consistency in a holistic
way. Our consistency criteria have been validated empirically
against the consistency perception of process modelling experts.
Further concepts have been evaluated in a series of experiments
using process models from industry.

(5) Consistency Analysis of Process Logs

All of the above contributions consider behaviour consistency
on the level of process models. Any conclusions drawn from
these results neglect the way business operations are actually
conducted, i. e., how well a process model represents these op-
erations. To take this aspect into account when interpreting con-
sistency results between process models, we show how to assess
consistency, aka conformance, of process logs that capture the
observed execution of a process. This approach is grounded on
the same formalism used to assess process model consistency –
we leverage behavioural profiles for conformance analysis. We
also report on findings from an evaluation of this approach in
an industrial case study.

1.6 structure of this thesis

We conclude this chapter with an overview of the structure of
this thesis. Figure 4 illustrates the structure. The thesis con-
sists of three parts. Although the order of parts and chapters
follows upon the procedure to assess behaviour consistency, cer-
tain chapters may be skipped in a first reading. We clarify de-
pendencies between chapters in the remainder of this section.

1.6 structure of this thesis 15

A B

C

D A1 A2

E

D

Process
Model

Process
Model

Part I
Alignments
of Process

Models

Construct
Alignment

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→

+

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E

→

→

A2
→

+
→

→ →

→
→

+

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

Compute
Profile

Behavioural
Profile

Behavioural
Profile

Decide Consistency

Compute
Profile

Quantify Consistency

Explore Commonalities

A D

A
D

A D
+

+
→

→

Synthesise Model

Process Log Process Log

Quantify
Conformance

Quantify
Conformance

Part II
Foundations
of Behaviour
Consistency

Part III
Consistency

Analysis

33

32

34

35

37

36

3839

Figure 4: Structure of this thesis. Encircled numbers relate to chapters.

Part I : Alignments of Process Models

The first part focusses on preliminaries for any kind of behaviour
consistency analysis. Chapter 2 gives on overview of common
process description languages and introduces the formal frame-
work for our work, i. e., the formalism of net systems. Readers
familiar with these languages and basic notations of net systems
may skip this chapter.

Chapter 3 deals with the construction of an alignment, the
identification of correspondences between process models. We
clarify terminology, review literature on model matching, and
introduce the ICoP framework for the identification of complex
correspondences between process models. Assuming an intuit-
ive understanding of the concept of a correspondence relation,
readers interested only in the behavioural analysis may skip this
chapter.

Part II : Foundations of Behaviour Consistency

The second part introduces the foundations for our approach
to behaviour consistency. Chapter 4 presents behavioural pro-

16 introduction

files as an abstraction of the behaviour defined by a process
model. As such, this chapter provides the basis for all remaining
chapters. In Chapter 5, we introduce techniques for the compu-
tation of behavioural profiles. The separation of the definition
of behavioural profiles in Chapter 4 from the computation tech-
niques in Chapter 5 allows the reader to skip the formal ground-
ings of the derivation of behavioural profiles. In contrast to the
definitions in Chapter 4, the techniques proposed in Chapter 5

are not required to understand the analysis introduced in the
third part of this thesis.

The description of behavioural profiles and their computation
in the second part is largely independent of our use case of beha-
vioural analysis of related process models. Behavioural profiles
have also been leveraged for further use cases, which we briefly
discuss in the conclusions of this thesis. Hence, the foundations
laid by Chapter 4 and Chapter 5 are independent of any use case
for the application of behavioural profiles.

Part III : Consistency Analysis

The third part focusses on the actual consistency analysis based
on behavioural profiles. First, Chapter 6 proposes different no-
tions of behaviour consistency that are based on behavioural pro-
files. We also present an empirical evaluation of these notions
with respect to the consistency perception of process modelling
experts. Chapter 7 extends these results by focussing on the
quantification of behaviour consistency. We propose measures to
assess the quality of an alignment and elaborate on techniques
to propagate changes between aligned process models that aim
at preserving the quality of the alignment. Once the alignment
quality has been assessed, further analysis on the behavioural
commonalities and differences is addressed in Chapter 8. We in-
troduce a set algebra for behavioural profiles to compute with be-
haviour and elaborate on the synthesis of a process model from
a behavioural profile. Chapter 9 turns the focus on conformance
between a process model and the observed execution of a pro-
cess. We introduce conformance measures based on behavioural
profiles and elaborate on techniques for the identification of root
causes of non-conformance.

Finally, Chapter 10 concludes this thesis. We give a summary
of our results and discuss their relevance in a broader context.
Further, we reflect on limitations and give an outlook on direc-
tions for future research.

2
P R O C E S S M O D E L S

A B

C

D A1 A2

E

D

Process
Model

Process
Model

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E

→

→

A2
→

+
→

→ →

→
→

+

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

A D

A
D

A D
+

+
→

→

Process models are explicit representations of business pro-
cesses. On an abstract level, a process model describes a

collection of activity models along with their logical and tem-
poral order [40, 513]. The act of creating a process model is in-
fluenced by a modelling technique. Following the terminology
of [312], a modelling technique comprises a modelling language
and a modelling method. The former provides a syntax (also
called grammar), semantics, and a notation for the creation of
process models, cf., [485, 199]. The latter defines a methodolo-
gical procedure in which the modelling language is used [485].

In this chapter, we review basic modelling languages and in-
troduce the formal framework used throughout this thesis. In
Section 2.1, we focus on process description languages commonly
used in practise. A complete discussion of these languages is
beyond the scope of our work. However, by introducing four
exemplary process description languages, we explicate common-
alities and differences in their syntax, semantics, and notations.

17

18 process models

In Section 2.2, we turn the focus on Petri net systems, a form-
alism for the definition of behaviour. Since this formalism well-
investigated and conceptually close to common process descrip-
tion languages, it is often used as the basis for behavioural ana-
lysis of process models. All results in the remainder of this thesis
are obtained for and presented with net systems. We elaborate
on the link between common process description languages and
net systems in Section 2.3. We conclude this chapter with a dis-
cussion in Section 2.4.

2.1 process description languages

We review four process description languages frequently used
in practise, the Business Process Model and Notation (BPMN),
Event-Driven Process Chains (EPCs), UML Activity Diagrams
(UML ADs), and the Web Service Business Process Execution
Language (BPEL). There exists a multitude of process descrip-
tion languages, so that we cannot provide an exhaustive over-
view. We selected the aforementioned languages since they are
widely used [102, 210], and nicely illustrate certain differences
that stem from their primary field of application. For instance,
EPCs have their roots in business administration, whereas UML
ADs fit well into the UML framework with a focus on software
engineering. Hence, the usage of one language or the other
is closely related to the purpose of process modelling, cf., Sec-
tion 1.2. All discussed languages have in common that they
follow a procedural modelling paradigm. This paradigm has
been questioned for certain scenarios, which led to alternative
approaches to process modelling, such as declarative process
modelling languages [452, 462, 327] or artefact-centric modelling
approaches [89, 54]. Since these approaches have not yet seen a
remarkable uptake in practise [102, 210], we focus on procedural
process description languages.

Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a widely
adopted standard for modelling business processes. It has been
proposed by the Business Process Management Initiative (BPMI)
and was later standardised by the Object Management Group
(OMG)1. Recently, OMG published the version 2.0 of the lan-
guage [2].

BPMN 2.0 introduces different types of process diagrams to
model business processes. High-level interactions between or-
ganisations are captured using conversation diagrams that define

1 http://www.omg.org/

http://www.omg.org/

2.1 process description languages 19

communications, a collection of message exchanges, between
participants. Interactions are modelled in detail using choreo-
graphy diagrams, which specify a protocol as the process of mes-
sage exchanges. Finally, the internal business processes of an
organisation are modelled using collaboration diagrams. We focus
on this type of model. It can be seen as the core of BPMN to
capture business processes. The diagrams that assume an inter-
organisational view have been presented only recently.

Collaboration diagrams provide a comprehensive set of ele-
ments to model business processes. A step as part of business op-
erations is captured by an activity. It may be atomic, then called
a task, or hierarchically structured, then referred to as a sub-
process. Further, BPMN introduces event constructs to model
the occurrence of real-world events. Those are classified along
two dimensions, their event type and their trigger. The former
relates to their role in the process, e. g., to start a process or to
interrupt a subprocess. The latter refers to the cause of event
occurrence, e. g., the reception of a message or the expiration
of a timer. BPMN also introduces pools and lanes to associate
activities to roles, and data objects to illustrate data flow in the
process.

A BPMN collaboration diagram has a graph structure. The
logical and temporal order between activities and events is mod-
elled using sequence flows. Control flow routing that goes bey-
ond sequencing is implemented by explicit gateways, which split
and join the control flow. Depending on its type, a gateway real-
ises exclusive disjunctive (XOR), inclusive disjunctive (OR), or
conjunctive (AND) semantics. Support for more advanced rout-
ing behaviour is achieved by complex and event-based gateways.
Further, BPMN control flow routing for exception handling and
compensation is grounded on event-based mechanisms.

With version 2.0, BPMN provides a complete, albeit informal,
characterisation of execution semantics for all model elements.
This characterisation is inspired by Petri nets and assumes a no-
tion of token flow. In previous versions of BPMN, there have
been issues in the definition of execution semantics, which led to
various formalisation efforts [125, 526, 57, 484]. This work partly
influenced the definition of execution semantics for BPMN 2.0,
which for instance, adopts the semantics proposed in [484] for
the converging OR gateway. Besides execution semantics, the
BPMN 2.0 specification also defines a serialisation format and
clarifies the way data and service bindings are established. Thus,
BPMN collaboration diagrams may be defined such that the pro-
cess is directly executed using a workflow engine.

An exhaustive discussion of BPMN modelling elements and
the language’s capabilities is beyond the scope of our work. For
introductions to BPMN, we refer the reader to [513, 515, 18, 164].

20 process models

Schedule
Cust.

Present.

Enter
Quote
Details

Schedule
Call

Still interested

Contact from
Marketing

Request for Quote

Send
Quote

Contact
from Fair

2 weeks

Pos.
Response

Neg.
Response

File
Contract

Enter Loss
Report

Get Past
Counter-

Offers

Enter
Negotiation

Report
Attach
Quote

Appendix

Figure 5: A model of a lead-to-order process depicted as a BPMN col-
laboration diagram.

Also, the Berliner BPM-Offensive published an overview of the
notational elements as a poster2 that is publicly available.

We illustrate the notation used for BPMN collaboration dia-
grams with an example. Figure 5 depicts a lead-to-order pro-
cess. In essence, this process involves establishing contact with
a customer, submitting a quote, and handling the response from
a potential customer. BPMN activities are depicted by rounded
rectangles, events are modelled by circles potentially with a sym-
bol highlighting the event trigger, and diamond shapes repres-
ent gateways. For the latter, a cross represents exclusive dis-
junctive behaviour, a plus sign represents conjunctive behaviour.
Figure 5 also illustrates some advanced BPMN concepts. For in-
stance, the gateway represented by a diamond that comprises a
pentagon models an event-based decision. It realises the deferred
choice pattern, cf., [456]. At this point, the process reacts to an
external decision – the customer replies positively or negatively,
or there is a time-out.

Event-Driven Process Chains

Event-Driven Process Chains (EPCs) [231, 336] are another pop-
ular notation for modelling business processes. They are of-
ten used to capture process models for communication. EPCs
are one puzzle piece in the Architecture of Integrated Informa-
tion Systems (ARIS) framework [405] for process management,
these days promoted by Software AG3. This framework provides
means to integrate organisational, functional, data, and service
modelling. The different dimensions are glued together by pro-
cess models in EPC notation.

EPC process models are a graph comprising functions and
events in alternating order. Functions describe elementary busi-
ness actions. Events capture the process state and, therefore,

2 http://www.bpmb.de/poster

3 http://www.softwareag.com/aris/

http://www.bpmb.de/poster
http://www.softwareag.com/aris/

2.1 process description languages 21

Get Contact
from

Marketing

Get Contact
from Fair

Get Past
Counter‐

Offers

Schedule
Cust.

Present.

Get
Request for

Quote

Enter &
Send

Quote

Attach
Quote

Appendix

Enter Neg.
Report

File
Contract

Enter Loss
Report

Schedule
Call

Marketing
Contact

Available

Fair
Contact

Available

XOR

V

V

XOR

Contact
Received

Info on
Quote

Available

XOR

No
Response

XOR

Potential
Customer

Loss

Negative
Response

Positive
Response

XOR

Neg.
Report

Available

Quote
Appendix
Available

XOR

Contract
Settled

Contract
Filed

Loss
Report

Created

Request
for Quote
Available

Figure 6: A model of a lead-to-order process depicted as an Event-
Driven Process Chain.

define the state before or after a function is executed. Control
flow dependencies are expressed using directed flow edges. Sim-
ilar to BPMN, control flow routing is realised by a dedicated
type of nodes, split and join connectors. Those are typed to rep-
resent an exclusive disjunction (XOR), an inclusive disjunction
(OR), or a conjunction (AND). The alternating order of functions
and events induces certain syntax rules that have to be respected
when building an EPC graph. For instance, an XOR split must

22 process models

not be followed by functions, but by events. A formal definition
of EPC syntax can be found in [313, 312].

To realise the integration with the organisational, functional,
data, and service modelling within the ARIS framework, ex-
tended EPCs (eEPCs) allow for annotating functions with ad-
ditional information, such as organisational units, data objects,
and information systems. Extended EPCs also introduce process
interfaces to structure a process model hierarchically.

There exist various formalisations of execution semantics for
EPCs [116, 236, 472, 312]. As for BPMN, semantics of the conver-
ging OR connector have been in the centre of interest. A com-
parison of EPC semantics can be found in [312]. Further, instan-
tiation semantics of EPCs may not be well defined if there are
multiple events without predecessors. These issues have been
investigated in detail in [109], a solution to identify sound in-
stantiation scenarios is described in [361].

We illustrate the EPC notation with the example depicted in
Figure 6. Functions are denoted by a rectangular shape, events
are visualised by hexagon shapes, and connectors are modelled
by circles that contain a marker indicating the connector type.
Again, the model captures a lead-to-order process. Even though
the modelled process is similar to the one captured in Figure 5

using BPMN, both models are not semantically equivalent. The
deferred choice pattern can only be approximated with an EPC
model. For the sake of simplicity, there are also differences in
how both models capture the negotiation phase.

The example illustrates that the basic constructs of EPCs have
corresponding elements in BPMN. This allows for transforma-
tions between models that use a shared set of concepts in many
cases. However, both languages also show syntactical differ-
ences, e. g., EPCs are bipartite graphs, and subtle semantic dif-
ferences, e. g., EPC events may represent states, whereas BPMN
events are associated to triggers. Transformation challenges that
stem from these differences have been investigated in [216, 114].

UML Activity Diagrams

The Unified Modeling Language (UML) [1] is a framework for
multi-perspective modelling in the context of object oriented
software engineering. Standardised by the Object Management
Group (OMG)4, UML is widely recognised and established for
the design of software systems. It is used in conjunction with
many software development methods and can be seen as the
de-facto standard in industry.

UML introduces 14 different types of models to support the
development of a software system. Structure diagrams, such as

4 http://www.omg.org/

http://www.omg.org/

2.1 process description languages 23

class diagrams, component diagrams, or object diagrams, are
used to model the static structure of a system – the system archi-
tecture. Behaviour diagrams, in turn, capture the system beha-
viour – the functionality of a system. The spectrum of behaviour
diagrams ranges from use case diagrams that model the system
functionality based on actors and their goals to sequence dia-
grams that capture the communication between objects through
sequences of messages.

We focus on UML Activity Diagrams (UML ADs), which are
primarily used to model operational business processes. An
Activity Diagram is a graph that comprises activities to depict
the essential steps of processing. Atomic activities are referred
to as actions. Activities may be assigned to roles via a swimlane
concept and objects are used to represent the processed data. Se-
quencing of activities is encoded by control flows, decision and
merge nodes model exclusive disjunctive splitting and merging
behaviour, fork and join nodes implement conjunctive behaviour.
There are initial nodes and final nodes to depict the initialisation
and completion of a business process. Exception handling is en-
coded by interruptible regions and interrupting edges.

As for BPMN collaboration diagrams, execution semantics of
UML ADs are defined informally and assume a notion of token
flow. In contrast to BPMN collaboration diagrams and EPCs,
UML ADs emphasise the coupling of control flow and data flow
aspects. Besides control flow, object flow is modelled between
activities, which incorporates objects to represent the data, pins
to model input and output data dependencies of activities, and
data streaming mechanisms. Further, the execution semantics
distinguishes control token and data tokens. Both token types
are handled differently by certain constructs. For instance, a
join node that merges parallel branches forwards all data tokens
separately, but synchronises control tokens.

Execution semantics of UML ADs have been (partially) form-
alised using abstract state machines [58]. Other work [146] relies
on the Statemate semantics of statecharts [198]. Further, there ex-
ists a partial formalisation using coloured Petri nets [431]. Still,
there is a notable gap between various high-level constructs of
UML ADs and Petri net concepts [433].

An introduction to the concepts of UML and their application
to business modelling, including but not restricted to Activity
Diagrams, can be found in [143]. We illustrate the notations
of UML ADs with Figure 7. Actions are denoted by rounded
rectangles. The initial node is depicted by a filled circle, the
final node is captured by a filled circle framed by another circle.
Decision and merge nodes are visualised by diamonds, fork and
join nodes by filled bars. Again, the model depicts a lead-to-

24 process models

Get Contact
from

Marketing

Get Contact
from Fair

Get Request
for Quote

Enter &
Send Quote

Schedule
Call

Enter Loss
Report

File
Contract

Get Past
Counter‐

Offers

Schedule
Cust.

Present.

[FC
Av.]

[RfQ
Available]

[MC
Available]

[Neg
Response]

[Timeout]
[Else]

[Pos Response]

[Else]

[Contract
Settled]

[Still interested]

Attach
Quote

Appendix

Enter Neg.
Report

Figure 7: A model of a lead-to-order process depicted as a UML Activ-
ity Diagram.

order process. It is similar, but not semantically identical to those
captured earlier in BPMN and as an EPC.

The relation between BPMN process models in terms of collab-
oration diagrams and UML Activity Diagrams has been invest-
igated in [86]. This work also introduces a basic model-to-model
transformation from BPMN to UML ADs.

Web Service Business Process Execution Language

The Web Service Business Process Execution Language [17], or
BPEL for short, has been standardised by the OASIS consor-
tium5. BPEL is an XML based language for the description of
business processes that is grounded on web service interactions.
Any functionality is imported and exported solely through web
service interfaces. Since BPEL models coordinate service interac-
tions, BPEL is often referred to as an orchestration language.

There are two kinds of BPEL process models. Non-executable
abstract BPEL processes focus on the business protocol. They
provide a partial specification and hide operational details. Ab-
stract BPEL processes are typically applied as role-models for
process implementations and serve as contracts between differ-
ent participants in a business interaction. Besides abstract pro-
cesses, there are fully-specified executable processes. Those cap-
ture the behaviour of a particular participant of a business inter-
action. Executable BPEL processes are intended to be deployed
and executed on a workflow engine. As a consequence, execut-
able BPEL processes contain all operational details, from a web
service binding and message correlation mechanism over a con-
trol flow specification to the data access handling. In the re-
mainder, we focus on the model elements to access functionality
and to capture the control flow.

Atomic functionality in BPEL processes is provided by basic
activities. Those enable to, synchronously or asynchronously,
call a web service (invoke), provide a web service (receive and
reply), update internal data (assign), trigger internal exceptions

5 http://www.oasis-open.org/

http://www.oasis-open.org/

2.1 process description languages 25

(throw and rethrow), or pause or terminate the execution (wait
and exit). The notion of a scope provides a concept for struc-
turing a BPEL process hierarchically and to control data access
along with exception, event, and termination handling. Further,
BPEL supports two conceptually different paradigms to define
control flow dependencies between basic activities. Historically,
these paradigms stem from the Web Services Flow Language
(WSFL) [269] and XLANG [440], which are two successors of
BPEL for the description of web service compositions. Follow-
ing on XLANG, BPEL allows for the well-structured specifica-
tion of control flow by nesting structured activities. Those are
typed to represent sequences (sequence), conditional execution
(if-then-else), repetitive behaviour (while and repeat until), se-
lective event processing (pick), concurrent execution (flow), or
branch processing (for each). On the other hand, BPEL supports
the definition of (acyclic) graph-structured control flow depend-
encies by control links between activities within a flow activity.
Hence, BPEL is not block-structured in the strict sense, but in-
herits graph-structured capabilities from WSFL.

The BPEL specification provides an informal description of ex-
ecution semantics. Formalisations of BPEL have been presented
in numerous papers, see [445] for an overview. BPEL formalisa-
tions have been grounded on abstract state machines [155, 158],
Petri nets [341, 211, 281], and process algebra [161, 496, 288].
Only a few formalisations, e. g., [281], aim at capturing the com-
plete spectrum of BPEL constructs.

BPEL has an XML-based syntax and does not standardise any
visual representation of the model elements. For illustration pur-
poses, we depict a simplified BPEL process in Figure 8. This
model shows only the skeleton of a process and does not contain
all details required for execution on a workflow engine. Using
the example of the lead-to-order process, it illustrates the basic
concepts to implement control flow dependencies in BPEL. We
use a pick activity to instantiate the process upon reception of a
message. Either a contact from marketing, a contact from a fair,
or a request for quote is expected. Note that we duplicated the
concurrent execution of the activities to check past offers and to
schedule a customer presentation. This keeps the control flow
structure clearly arranged. Then, the process continues by react-
ing to the customer’s choice or the time-out accordingly. Our
example relies on the block-structured concepts that BPEL inher-
its from XLANG. However, large parts of the process could also
be modelled following the graph-structured paradigm, by using
control links between activities.

In relation to the aforementioned languages, BPEL is often
perceived as the technical back-end. The definition of BPMN
in particular was motivated by the absence of any notation for

26 process models

<?xml version=’1.0’ encoding=’UTF-8’?>

<bp:process exitOnStandardFault=’yes’ name=’LeadToOrder’

suppressJoinFailure=’yes’ targetNamespace=’Example’

xmlns:bp=’http://docs.oasis-open.org/wsbpel/2.0/process/abstract’

xmlns:tns=’Example’>

<bp:sequence>

<bp:pick createInstance=’yes’>

<bp:onMessage name=’MarketingContact’>

<bp:sequence>

<bp:flow>

<bp:invoke name=’GetPastCounterOffers’/>

<bp:invoke name=’ScheduleCustomerPresentation’/>

</bp:flow>

</bp:sequence>

</bp:onMessage>

<bp:onMessage name=’FairContact’>

<bp:sequence>

<bp:flow>

<bp:invoke name=’GetPastCounterOffers’/>

<bp:invoke name=’ScheduleCustomerPresentation’/>

</bp:flow>

</bp:sequence>

</bp:onMessage>

<bp:onMessage name=’RequestForQuote’>

<bp:empty />

</bp:onMessage>

</bp:pick>

<bp:invoke name=’EnterQuoteDetails’/>

<bp:invoke name=’SendQuote’/>

<bp:repeatUntil>

<bp:pick>

<bp:onMessage name=’PositiveResponse’>

<bp:sequence>

<bp:while>

<bp:flow>

<bp:invoke name=’EnterNegotationReport’/>

<bp:invoke name=’AttachQuoteAppendix’/>

</bp:flow>

</bp:while>

<bp:invoke name=’FileContract’/>

</bp:sequence>

</bp:onMessage>

<bp:onMessage name=’NegativeResponse’>

<bp:invoke name=’EnterLossReport’/>

</bp:onMessage>

<bp:onAlarm name=’TwoWeeks’>

<bp:scope>

<bp:invoke name=’ScheduleCall’/>

</bp:scope>

</bp:onAlarm>

</bp:pick>

</bp:repeatUntil>

</bp:sequence>

</bp:process>

Figure 8: A lead-to-order process model in BPEL syntax.

2.2 net systems 27

BPEL process models, cf., [514]. Hence, the BPMN specifica-
tion sketched a transformation from BPMN to BPEL already
in its first version. The definition of a full-fledged transform-
ation from BPMN to BPEL, or even complete round-tripping,
turned out to be challenging and has been addressed in vari-
ous papers [373, 340, 339, 166, 497, 245]. With BPMN in its ver-
sion 2.0, the scope and applicability of such a transformation
has been clarified. Transformations between EPCs and BPEL
processes [244, 310], and between UML ADs and BPEL pro-
cesses [202, 240, 534, 482] have also been discussed extensively.

2.2 net systems

The process description languages discussed in the previous sec-
tion are widely used in industry. For an analysis of behaviour
consistency of related process models, however, these languages
are not well-suited. They are missing formal semantics and
techniques for their analysis. Therefore, we focus on a well-
established formalism for the description of process models, i. e.,
Petri net systems. This section is dedicated to the formal defin-
ition of net systems. First, we recall basic mathematical notions
and their notations. Then, we define the syntax and semantics of
net systems. Finally, we elaborate on structural and behavioural
classes of net systems.

Preliminaries

For the discussion of net systems, we need basic mathematical
notions. We shortly recall the notions and notations used in the
remainder of this thesis.

For a set S, we refer to its cardinality as |S|. The power set of S
is denoted by ℘(S). Given two sets, equivalence is denoted by =,
inclusion is denoted by ⊆, and proper inclusion by ⊂. Further,
∩ creates the intersection of two sets, ∪ creates the union of two
sets, and × creates the Cartesian product of a set.

The set of natural numbers, excluding 0, is denoted by N.
The natural numbers, including 0, are denoted by N0. We use
the following notations for Boolean algebra. The conjunction of
Boolean statements is denoted by ∧, the disjunction by ∨. By
⇒, we refer to an implication between Boolean statements, ⇔
denotes the equivalence of Boolean statements.

An n-ary relation R ⊆ (S1 × S2 × . . .× Sn), n ∈ N, is a set
of n-tuples, such that the k-th component, k ∈ N, k 6 n, of an
n-tuple is taken from Sk. For n = 2, R is called binary and is
a subset of the Cartesian product over which it is defined. For
(x,y) ∈ R, we also write x R y. For (x,y) /∈ R, in turn, we also
write x �R y. The identity relation idS over a set S is a binary

28 process models

relation, defined as idS = {(x, x) | x ∈ S}. For a relation R ⊆
(S1 × S2), the inverse relation R−1 is defined as R−1 = {(x,y) ∈
(S2 × S1) | y R x}.

A binary relation R ⊆ (S × S) over a set S is symmetric, if
∀ x,y ∈ S it holds (x R y)⇒ (y R x). The relation R is asymmetric,
if it is not symmetric. It is antisymmetric, if (x R y ∧ y R x)

implies x = y. The relation R is reflexive, if ∀ x ∈ S it holds x R x.
The relation R is irreflexive, if it is not reflexive. The relation R is
transitive, if ∀ x,y, z ∈ S it holds (x R y∧ y R z)⇒ (x R z). With
R+, we denote the irreflexive transitive closure of relation R and
with R∗ we refer to the reflexive transitive closure.

A binary relation R ⊆ (S1 × S2) is total from S1 to S2, if ∀ x ∈
S1 [∃ y ∈ S2 [x R y]]. The relation R is surjective, if it is total
from S2 to S1. The relation R is functional, if ∀ a ∈ S1, x,y ∈
S2 [(a R x)∧ (a R y) ⇒ (x = y)]. The relation R is injective, if
∀ a,b ∈ S1, x ∈ S2 [(a R x ∧ b R x)⇒ (a = b)]. The relation R is
bijective, if it is total in either direction, functional, and injective.

A binary relation f ⊆ (S1 × S2) is a function from S1 to S2,
denoted by f : S1 7→ S2, if it is total from S1 to S2 and functional.
For the function f, S1 is the domain and S2 is the codomain. For
(x,y) ∈ f with f being a function, we also write f(x) = y.

A binary relation R ⊆ (S1 × S2) may be identified by its char-
acteristic function fR : (S1 × S2) 7→ {0, 1}.

A function f : {1, . . . ,n} 7→ S is a finite sequence over a set S.
For a sequence f : {1, . . . ,n} 7→ S, we also write f = 〈s1, s2, . . . , sn〉
with f(i) = si, i ∈ N, and 1 6 i 6 n. The length of the se-
quence f is n. For a finite sequence f = 〈s1, s2, . . . , sn〉, g =

〈sj, sj+1, . . . , sk〉, j, k ∈N, 1 6 j 6 k 6 n, is a subsequence.

Net Syntax

Petri nets are grounded on the ideas Carl Adam Petri presented
in his seminal doctoral thesis [353] in 1962. Aiming at asyn-
chronous communication, he proposed a behavioural formalism
that knows only local actions that have local causes. Since then,
this theory of nets has seen a huge uptake in Computer Sci-
ence. There is a large body of results and analysis techniques
for Petri nets, see [329]. Further, they have been applied in
such diverse areas as hardware design [93] and bioinformat-
ics [347, 528]. Exhaustive introductions to Petri nets can be found
in [380, 382, 119, 381].

A Petri net, or net for short, is a bipartite directed graph con-
sisting of places and transitions. The directed edges, called flows,
connect places with transitions and transitions with places.

Definition 2.2.1 (Net)
A net is a tuple N = (P, T , F) with P and T as finite disjoint sets

2.2 net systems 29

Get Contact
from

Marketing

Get Contact
from Fair

Get Past
Counter‐

Offers Enter &
Send

Quote

Get Request for
Quote

Schedule Call

Enter Loss
Report

Enter
Neg.

Report

Attach
Quote

Appendix

File
Contract

Schedule
Cust.

Present.

(i) (o)

(t1)

(p1)

(t3)

(t15)

(t17)

(p2)

(p3)

(p4)
(t2)

(t4)

(t5)
(t6)

(t7)

(t8)

(t9)

(t10)

(t11)

(t12)

(t13)

(t14)

(t16)

Figure 9: A model of a lead-to-order process depicted as a marked net,
a net system.

of places and transitions, and F ⊆ (P × T) ∪ (T × P) as the flow
relation.

We illustrate the visualisation of nets with the example given
in Figure 9. This example takes up the lead-to-order process
that was used to exemplify process description languages in
the previous section. Figure 9 shows a marked net. Neglect-
ing the marking at this stage, the net comprises places, denoted
by circles, and transitions, denoted by rectangles, that are con-
nected by directed edges representing flows.

In our example, several transitions carry labels, e. g., ‘Get Con-
tact from Fair’, whereas others are not labelled at all and are
depicted by smaller rectangles. Throughout this thesis, we use
this convention to indicate which transitions carry a meaning ac-
cording to the domain of the model. Transitions that are present
in the model only for syntactical reasons are depicted without a
label and in smaller size. However, this is only a convention for
visualisation. Unless explicitly stated otherwise, we assume nets
with unique transitions as our formal model.

For a net N = (P, T , F), we write X = (P ∪ T) for all nodes. As
introduced earlier, we use F+ to denote the irreflexive transitive
closure of F. We define further basic syntactical concepts of nets
as follows.

Definition 2.2.2 (Net Syntax)
Let N = (P, T , F) be a net and X = (P ∪ T) all nodes.
◦ For a node x ∈ X, •x = {y ∈ X | (y, x) ∈ F} is the pre-set of x

and x• = {y ∈ X | (x,y) ∈ F} is the post-set of x.
◦ A tuple N′ = (P′, T ′, F′) is a subnet of a net N = (P, T , F), iff
P′ ⊆ P, T ′ ⊆ T , and F′ = F ∩ ((P′ × T ′) ∪ (T ′ × P′)). N′ is a
partial subnet of N, iff F′ ⊆ F∩ ((P′ × T ′)∪ (T ′ × P′)).
◦ A path of length n ∈ N, it holds n > 1, is a sequence πN =

〈x1, . . . , xn〉, which satisfies (x1, x2), . . . , (xn−1, xn) ∈ F. For
a path πN = 〈x1, . . . , xn〉, we also write πN(x1, xn). We write

30 process models

πN{x1, xn} = {x1, . . . , xn} for all nodes that are part of the
path πN(x1, xn).
◦ A subpath π′N of a path πN is a subsequence that is itself a

path.
◦ A path πN(x1, xn) is a circuit, iff (xn, x1) ∈ F and no node

occurs more than once in the path.

For the net in Figure 9, we annotated several places and trans-
itions with numbers for illustration purposes. For transition t1
the post-set contains a single place, p1. The pre-set of place p1
comprises two transitions, t1 and t2. The sequence of nodes
π1 = 〈t1,p1, t3,p2〉 is a path, the sequence π2 = 〈t1,p1〉 is a sub-
path of this path, the sequence 〈t1,p1,p2〉 is not a subpath of π1.
The path π3 = 〈p3, t15,p4, t17〉 is a circuit.

Net Semantics

Having defined the syntax of a net, we turn to its semantics.
Semantics of nets are defined as a token game. A state of a net
is described by a set of tokens that are distributed among its
places. Such a distribution of tokens is called marking of a net.
State transitions are represented by changes of the marking of a
net. A transition is enabled in a certain marking if the places of
its pre-set carry at least one token. Then, the transition can be
fired. Firing of a transition means consuming tokens from places
in the pre-set and producing tokens on places in the post-set of
the transition. As such, firing of a transition in a marking leads
to a new marking, i. e., it constitutes a state transition. Formally,
we define semantics as follows.

Definition 2.2.3 (Net Semantics)
Let N = (P, T , F) be a net.
◦ M : P 7→N0 is a marking of N, M denotes all markings of N.
M(p) returns the number of tokens in place p.

◦ For a place p ∈ P, Mp denotes the marking when place p
contains one token and all other places contain no tokens.
For a transition t ∈ T , Mp denotes the marking when all
places p ∈ •t contain one token and all other places contain
no tokens.
◦ For any two markings M,M′ ∈ M, we write M < M′, iff
M(p) < M′(p) for all places p ∈ P. We write M 6 M′, iff
M(p) 6M′(p) for all places p ∈ P.
◦ For any transition t ∈ T and any marking M ∈ M, t is

enabled in M, denoted by (N,M)[t〉, iff ∀ p ∈ •t [M(p) > 1].
◦ If t ∈ T is enabled in M, then it can fire. Firing of t, denoted

by (N,M)[t〉(N,M′), leads to a new marking M′. This mark-
ing M′ is defined by M′(p) =M(p) − fF(p, t) + fF(t,p), with
fF as the characteristic function of F, for each place p ∈ P.

2.2 net systems 31

◦ A sequence of transitions σ = 〈t1 . . . tn〉, n ∈ N0, is a firing
sequence, iff there exist markingsM0, . . . ,Mn ∈M, such that
for all 1 6 i 6 n it holds (N,Mi−1)[ti〉(N,Mi). We say that
σ is enabled in M0, denoted by (N,M0)[σ〉. For n = 0, we
refer to σ = 〈〉 as the empty firing sequence.
◦ For any two markings M,M′ ∈M, M′ is reachable from M in
N, denoted by M′ ∈ [N,M〉, iff there exists a firing sequence
σ leading from M to M′.

◦ A net system, or a system, is a pair (N,M0), where N is a net
and M0 is the initial marking of N.

A marking of a net system is visualised by depicting each token
with a black dot inside the circle of the respective place. In Fig-
ure 9, only the place i carries a token.

As stated before, semantics of a net system describe states and
state transitions. Hence, a net system describes a state space that
may also be captured by a labelled transition system (LTS). La-
belled transition systems are one of the most general behavioural
models. An LTS is a directed graph that comprises a set of states,
a set of actions, a transition relation that associates an action to
a source state and a target state, and an initial state. The LTS for
a net system contains a state for each reachable marking. The
initial marking of the system is the initial state of the LTS. Each
firing of an enabled transition in some marking in the net system
is represented by a transition in the LTS – the action references
the respective transition in the system and the source and target
states correspond to the markings before and after firing of the
transition, respectively.

Definition 2.2.4 (State Space of a Net System)
A labelled transition system is a tuple TS = (S, s0,Λ,F), such
that S is a set of states, s0 ∈ S is an initial state, Λ is a set of
labels, F ⊆ S×Λ× S is a labelled transition relation.
Let S = (N,M0) be a net system with N = (P, T , F). The state
space of S is a transition system TSS = (S, s0,Λ,F) derived as
follows.
◦ Each marking reachable from the initial marking is taken as

a state, S = [N,M0〉, and the initial marking is taken as the
initial state, s0 =M0.
◦ Each transition is taken as a label, Λ = T .
◦ Each transition that can be fired in a certain marking is taken

as a labelled state transition, (M, t,M′) ∈ F, iff there exists a
transition t ∈ T and (N,M)[t〉(N,M′).

The state space of a net system is also known as the reachability
graph of the net system. Figure 10 exemplifies the state space for
the example net system given in Figure 9. Here, circles denote
states and labelled edges represent state transitions with the ac-

32 process models

t1

t2
t5

t4 t5

t4
t7t3

t6

t8 t14

t10

t11

t12
t13t9

t15 t16
t17

s0

Figure 10: The state space of the net system depicted in Figure 9.

cording action. The initial state is highlighted with a small edge
pointing to state s0.

Besides state-based semantics, net systems may be interpreted
according to trace semantics [302, 121]. Then, the behaviour is
defined in terms of all firing sequences of a net system that start
in the initial marking. Such a firing sequence is referred to as a
trace of the net system. In other words, a trace is a path of the
state space of the net system.

Definition 2.2.5 (Traces of a Net System)
Let S = (N,M0) be a net system with N = (P, T , F). The set of
traces T of S contains all firing sequences σ, such that (N,M0)[σ〉.

The set of all traces is also called the system’s language. It cor-
responds to all paths of the state space of the net system. A
state space may comprise an infinite number of states. Even a
finite number of states, however, may result in an infinite set of
traces. The latter is illustrated by our example in Figure 9 and
Figure 10. Due to the circuit in the net system, there are infin-
itely many traces. Examples for traces are, e. g., σ1 = 〈t1〉, σ2 =

〈t1, t3, t4, t7, t9〉, and σ3 = 〈t1, t3, t4, t7, t9, t10, t11, t10, t11, t10〉.
Finally, we clarify the terminology with respect to net systems

that model a business process. We assume the following inter-
pretation. The net system is a process model, transitions are
either business activities or carry no semantics in terms of the
modelled business process, and a marking of a net corresponds
to a state of an instance of the process model. For a firing se-
quence of transitions of a net system, we speak of an execution
sequence of activities of a process model. We will use the Petri
net terminology and the process model terminology interchange-
ably in the remainder of this thesis. We discuss formal results
in Petri net terminology. At certain stages, however, we stick to
the terms process model and activities. That is to highlight that
our arguments should be understood in the context of using net
systems to model business processes.

Structural Classes of Net Systems

In this thesis, we use net systems that show certain structural
properties. These properties define structural classes of net sys-

2.2 net systems 33

tems. Several of our results are obtained for free-choice nets.
These nets show a separation of synchronisations and conflicts,
which led to a large theory on the analysis of their behavioural
properties. As such, they are often quoted as a good comprom-
ise between expressiveness and the ability to do efficient beha-
vioural analysis. Further, we consider two subclasses of free-
choice nets, i. e., T-nets and S-nets. Introductions to free-choiceness
and details on their properties can be found in [441, 49, 119].

Definition 2.2.6 (T-Net, S-Net, Free-Choice Net)
Let N = (P, T , F) be a net.
◦ The net N is a T-net, iff ∀ p ∈ P [| • p| 6 1 > |p • |].
◦ The net N is an S-net, iff ∀ t ∈ T [| • t| = 1 = |t • |].
◦ The net N is free-choice, iff ∀ p ∈ P, t ∈ T , (p, t) ∈ F implies
•t× p• ⊆ F.

A net system S = (N,M0) is a free-choice, S-, T-system, iff
N is a free-choice, S-, T-net. Note that our definition of free-
choiceness is commonly used [119], but historically referred to as
extended free-choiceness [49]. This stems from a definition of free-
choiceness that is more restrictive than the presented one. Still,
in terms of the ability to do efficient behavioural analysis, both
definition achieve the same effect. Any extended free-choice
net can be transformed into a behaviour equivalent free-choice
net [49] – here, behaviour equivalence assumes that transitions
inserted by this transformation are ignored. Hence, the term
free-choiceness is often used to refer to the presented definition.

We also rely on the notion of a workflow (WF-) net [447]. This
class has been proposed explicitly for modelling and analysing
business processes. WF-nets require the existence of a dedicated
initial place and a dedicated final place. Those represent initial-
isation and completion of the business process. The definition of
WF-nets also requires all nodes to be on a path from the initial
place to the final place. This requirement translates into strong
connectivity of the short-circuit net. The latter is obtained by
connecting the final place with the initial place through a fresh
transition.

Definition 2.2.7 (WF-Net)
A net N = (P, T , F) is a workflow (WF-) net, iff N has an initial
place i ∈ P with •i = ∅, N has a final place o ∈ P with o• = ∅,
and the short-circuit net N′ = (P, T ∪ {t∗}, F∪ {(o, t∗), (t∗, i)}) of N
is strongly connected.

The initial and the final place of a WF-net characterise an initial
and a final marking. A WF-system is a net system S = (N,Mi)

with N being a WF-net and i being its initial place. The marking
Mo of S is referred to as the final marking of S. For a WF-system
S = (N,Mi) and N′ as the short-circuit net of N, the system S′ =

34 process models

(N′,Mi) is the short-circuit system. The structural properties are
directly lifted to WF-systems. That is, a WF-system S = (N,Mi)

is free-choice, a workflow S-system, or a workflow T-system, iff
N is free-choice, an S-net, or a T-net.

The net system shown in Figure 9 is a free-choice WF-system.
We annotated the initial place with i and the final place with o.

Behavioural Properties of Net Systems

After we discussed structural classes of net systems, we recall
elementary behavioural properties that are of relevance for our
work. First, boundedness restricts the behaviour of a net system
to a set of finite markings. That is, the state space of the net
system is finite, i. e., the respective LTS has a finite number of
states. A different characterisation of boundedness assumes that
there is an upper bound for the number of tokens for any place
in all markings reachable from the initial marking. Safeness sets
this bound to one, i. e., no place is marked with more than one
token.

Definition 2.2.8 (Boundedness and Safeness)
Let S = (N,M0) be a net system with N = (P, T , F).
◦ The system S is bounded, iff the set [N,M0〉 is finite, and

unbounded otherwise.
◦ The system S is safe, iff for all markings M ∈ [N,M0〉 and

places p ∈ P it holds M(p) 6 1, and unsafe otherwise.

The net system depicted in Figure 9 is bounded and safe. Fur-
ther, we recall common properties related to liveness. A trans-
ition is dead in a marking, if it cannot be fired as part of any
firing sequence starting in this marking. A marking is dead, if it
does not enable any transition. A transition is live, if it may be
enabled from every marking reachable from the initial marking.
A net system is live, if every transition may be fired again, i. e.,
every transition is live.

Definition 2.2.9 (Liveness Properties)
Let S = (N,M0) be a net system with N = (P, T , F).
◦ A transition t ∈ T is dead in a marking M of S, iff for all

markings M′ ∈ [N,M〉 it holds that t is not enabled in M′.
◦ A markingM of S is dead, iff it does not enable any transition
t ∈ T .
◦ A transition t ∈ T is live, iff for all markings M ∈ [N,M0〉

there is a marking M′ ∈ [N,M〉 such that (N,M)[t〉.
◦ The system S is live, iff every transition t ∈ T is live.

Transition t4 of the net system depicted in Figure 9 is not dead
in the initial marking. Transition t4 is dead in the marking that
marks only place p3, reached, e. g., by the firing sequence σ =

2.3 from process descriptions to net systems 35

〈t6, t8〉. The markingMo that marks only the place o is dead. No
live net system shows a dead marking [119], so that our example
net system is not live.

Liveness and boundedness properties are particularly interest-
ing for the class of WF-systems, for which there exists the sound-
ness property. The latter requires WF-systems (1) to always ter-
minate, and (2) to have no transitions that are dead in the ini-
tial marking [448]. Both requirements imply proper termination
of the WF-systems, i. e., for all reachable markings holds that a
token in the final place implies the absence of tokens for all other
places.

Definition 2.2.10 (Soundness)
A WF-system (N,Mi) with the initial place i and the final place
o is sound, iff
◦ for all markings M ∈ [N,Mi〉 there is a firing sequence σ

such that (N,M)[σ〉(N,Mo), and
◦ for all transitions t ∈ T , there exists a marking M ∈ [N,Mi〉

and (N,M)[t〉.

The soundness property is closely related to the liveness and
boundedness properties introduced earlier. A system is sound,
if and only if the corresponding short-circuit system is live and
bounded [448, 467].

2.3 from process descriptions to

net systems

Net-based formalisations are available for all process description
languages mentioned earlier, for BPMN [125], EPCs [116, 472],
UML ADs [431], and BPEL [341, 211, 281]. Note that these form-
alisations of execution semantics differ with respect to their cov-
erage of the languages. An overview of net-based formalisations
of process description languages is provided in [283].

In the previous section, we introduced several structural and
behavioural properties that classify net systems. Figure 11 takes
up the properties that are most relevant for our work, in par-
ticular bounded net systems and sound free-choice WF-systems.
The properties are mostly orthogonal, apart from the fact that
soundness has been defined for WF-systems and boundedness
is a prerequisite for soundness. In the remainder of this sec-
tion, we discuss net-based formalisations of process description
languages against the dimensions illustrated in Figure 11. We
restrict the discussion to the control flow aspects. For details
on net-based formalisations of object life-cycles and data access
semantics we refer the reader to [451, 26]. Also, there are many
types of high-level Petri nets that consider data aspects, such
as coloured Petri nets (CPNs) [220], workflow nets with data

36 process models

Net Systems

Bounded Systems

WF-Systems

Free-Choice Systems

Sound WF-Systems
Sound

Free-Choice
WF-Systems

Figure 11: Classification of net systems by structural and behavioural
properties.

(WFD-nets) [419], or dual workflow nets (DFNs) [157]. To keep
the focus on the behavioural aspects, we use net systems as in-
troduced in the previous section.

Net Systems. Earlier, we clarified that transitions of net systems
are intended to model activities of a process model. In principle,
all constructs of a process model for which the behaviour can be
split up into atomic steps can be represented in this way. For
instance, events in BPMN or EPCs, the initial and final nodes in
UML ADs, or data assignments in BPEL can also be represented
by a net transition. If needed, even a more fine-grained form-
alisation is possible. Instead of representing an activity with a
single transition, all transitions of its life-cycle may be modelled
by separate transitions. The latter approach has been realised in
the Yet Another Workflow Language (YAWL) [439], a process de-
scription language that is inspired by the net system formalism.

The opposite case, abstracting a semantically rich construct
of a process description language by one or more transitions in
the net system, may also be required. High-level concepts, e. g.,
multi-instance activities configured towards a certain use case
or exception handling constructs, allow for expressing complex
behavioural dependencies in a process model. In many cases,
those cannot be represented in net systems directly. Then, one
solution is to approximate the concepts with a coarse-grained
formalisation, in which the respective behaviour is only partially
covered in the net system. For BPMN, EPCs, and BPEL several
formalisation challenges are discussed in [283].

WF-Systems. The workflow net structure imposes two require-
ments. First, there has to be a dedicated entry and a dedicated
exit that represent the initialisation and completion of a process,
i. e., an initial and a final place in the respective net. Some pro-
cess description languages explicitly enforce such a structure,
e. g., UML Activity Diagrams. Others, such as BPMN and EPCs,
support the definition of multiple start events and end events.
In these cases, restructuring techniques [480] may be applied to

2.3 from process descriptions to net systems 37

normalise the model structure before transforming it to a net sys-
tem. In certain cases, however, this may not be possible. On the
one hand, we mentioned that instantiation semantics may not be
well defined if there are multiple (EPC) start events [109]. A solu-
tion to this issue that selects sound instantiation scenarios can be
found in [361]. On the other hand, constructs that spawn execu-
tion if the process is in a certain region of states or non-local ter-
mination semantics can hardly be transformed to WF-systems.
The non-interruptive event handling mechanism of BPMN is an
example for the former. Also, a BPMN termination end event
leads to immediate termination of the process instance, inde-
pendent of the state of the instance. Encoding such behaviour
using net systems is challenging and may not be possible in all
cases.

Second, the workflow net structure requires that all nodes are
on a path from the entry to the exit of the process model. Once
potential issues related to the existence of such an entry and
an exit are resolved, this requirement is rarely an issue. Albeit
not enforced by all syntax definitions, it can be seen as common
practise to define a process model as a connected graph that is
even strongly connected when the exit is connected to the entry.

Free-Choice-Systems. Whether the net-based formalisation of a
process model yields a free-choice net mainly depends on the set
of used control flow routing elements. Means to encode disjunct-
ive (XOR) and conjunctive (AND) splitting or joining semantics
in process models are transformed to free-choice net constructs
in a straight-forward manner. Concepts to define inclusive dis-
junctive (OR) behaviour are often not transformed due to their
non-local semantics. If transformed, the resulting net is typically
non-free-choice since it represents all combinations of possible
activations, see [472]. Further, advanced control flow routing
needed to express exception handling and event processing of-
ten results in non-free-choice nets [283]. The formalisation of in-
terrupting events for subprocesses in BPMN proposed in [125] or
the formalisation of fault, compensation, and termination hand-
lers in BPEL presented in [281] are examples for transformations
that result in non-free-choiceness.

Boundedness & Soundness. The behavioural properties of a net
system follow directly from the process model that was trans-
formed into the net system. Since the net system should repres-
ent the same behaviour of the process model once data-related
aspects are neglected, unboundedness of the process model im-
plies unboundedness of the net system. Unboundedness of a
process model is not necessarily a behavioural anomaly that
should be avoided. Event-based mechanisms that allow for non-
interruptive instantiation of concurrent execution, e. g., non-in-
terruptive event handlers in BPMN and BPEL, may lead to an

38 process models

infinite state space of a process model. Such cases may require
abstracting from the possibility of infinitely many instantiations
to come to a bounded net system. Further, the definition of a
transformation for constructs that realise inclusive disjunctive
(OR) semantics is important in this regard. For instance, dif-
ferent net-based formalisations for the OR-connector of EPCs
have been presented, which create a potentially unbounded sys-
tem [116] or ensure safeness of the created net system [472].

Once a process model meets the requirements needed to trans-
form it into a WF-system, the soundness criterion can be lifted
to the process model. Having discussed boundedness already,
we turn the focus to properties related to liveness, i. e., there has
to be an option to complete the process from any reachable state
and every activity may be enabled in some reachable state. In
principle, these properties should be consistently satisfied or vi-
olated in the process model and the net system derived as its
formalisation once data-related aspects are neglected. For cer-
tain constructs, however, the operationalisation of the transform-
ation impacts on the soundness property. Again, the way inclus-
ive disjunctive (OR) semantics is encoded is an example for this
issue. The formalisation of the OR-connector of EPCs presen-
ted in [116] may result in a net system that shows a deadlock,
a dead marking that is not the final marking. Since this viol-
ates the soundness property, an adapted correctness criterion,
relaxed soundness, has been proposed [116]. However, under
certain assumptions, if OR-splitting and OR-merging constructs
are well-structured, a different formalisation may be applied.
Then, inclusive disjunctive constructs of a process model may
be transformed such that the resulting net system is sound.

2.4 discussion

In this chapter, we discussed the subjects of our work, process
models. We reviewed four process description languages often
used in practise to highlight their commonalities and differences.
To this end, our focus has been on the concepts to capture the
control flow between activities. We argued that models defined
in these languages are not suited for behavioural analysis. They
are missing formal execution semantics and established tech-
niques for their analysis. Therefore, we introduced the Petri net
formalism as the grounding of our work. Although net systems
may directly be used to model business processes – this has been
the motivation for the definition of workflow systems, a subclass
of generic net systems – they have seen little uptake in industry
for this purpose. Hence, models captured in languages such as
BPMN or EPCs have to be transformed into net systems before
analysis.

2.4 discussion 39

The essential control flow routing elements of the discussed
languages can be transformed into net system concepts in a
straight-forward manner. For some languages, there are even
formalisations that claim feature-completeness and consider ad-
vanced concepts. For instance, non-interruptive event-handling
as defined by BPEL has been formalised in [281]. We observe
a conceptual closeness of the presented process description lan-
guages and the net system formalism. They follow the same
procedural modelling paradigm. Further, the definition of se-
mantics is often inspired by the token flow concept known from
Petri nets. The conceptual closeness is also witnessed by the
Yet Another Workflow Language (YAWL) [439]. It emerged as
a process description language that is grounded on net systems
and extends them with features that are specific to business pro-
cesses, an OR-join to realise inclusive disjunctive merging of
behaviour, cancellation regions to implement exception hand-
ling, and dedicated multiple instance activities. Note that we
discussed exactly these concepts as being particularly challen-
ging for net-based formalisations. However, depending on the
purpose of process modelling, a large share of process models
observed in practise is created using solely elementary control
flow routing elements [538].

Besides the conceptual closeness, we chose net systems as our
formal basis since there is a large theory on their analysis along
with tool support. The Petri Nets World6 lists more than 8500

publications related to net systems along with a large number
of modelling and analysis tools. As such, the net system formal-
ism is unique. Other formalisms have been proposed to model
business processes or to formalise process models. Those may
have certain advantages for dedicated analysis questions, but
fall short of a comprehensive framework as it exists for net sys-
tems. As an example, consider the π-calculus [324, 323, 404], a
process algebra that gained remarkable attention in the field of
BPM around 2005 [367, 496, 288, 368, 331], also referred to as
the π-hype [468]. The name passing feature of the π-calculus al-
lows for modelling dynamic service binding in an intuitive way.
Representing dynamic service binding with net systems is much
more challenging and typically realised by extending the formal-
ism [111]. However, many of the aforementioned formalisation
issues are not solved in the π-calculus either. For instance, the
formalisation of inclusive disjunctive (OR) merging of behaviour
presented in [367] outsources the decision of which branches to
merge to a run time executing the model. Also, there are only
a few tools available that allow for analysing π-calculus models,
e. g., the Mobility Workbench7 and the Advanced Bisimulation

6 http://www.informatik.uni-hamburg.de/TGI/PetriNets/

7 http://www.it.uu.se/research/group/mobility/mwb/

http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.it.uu.se/research/group/mobility/mwb/

40 process models

Checker8. Therefore, we decided for net systems as the formal
foundation for our work.

8 http://sbriais.free.fr/tools/abc/

http://sbriais.free.fr/tools/abc/

3
C O N S T R U C T I N G A L I G N M E N T S

This chapter is based on results published in [498, 500, 495].

A B

C

D A1 A2

E

D

Construct
Alignment

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E

→

→

A2
→

+
→

→ →

→
→ +

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

A D

A
D

A D
+

+
→

→

Behavioural analysis of process models capturing the same
business process requires the construction of an alignment

between them. We have to identify correspondences between
process model elements, in particular between activities of both
models. In this chapter, we elaborate on the challenges of con-
structing an alignment and the techniques to address these chal-
lenges. In Section 3.1, we clarify terminology and define basic
concepts of an alignment for net systems. Then, Section 3.2 re-
views related work. We discuss different types of heterogeneity
observed between process models and techniques that aim at
avoiding such heterogeneity in the course of model creation. We
also include a discussion of work on textual, structural, and be-
havioural techniques to identify correspondences between pro-
cess models. This reveals a predominant focus on matching
single activities of different models. Complex correspondences

41

42 constructing alignments

between sets of activities are largely neglected. We address this
shortcoming with the ICoP framework in Section 3.3. It pro-
poses a system architecture for the definition of matchers that
derive complex correspondences between two process models.
The architecture is complemented by a set of basic matching
components used to assemble concrete matchers. We evaluate
the framework experimentally in Section 3.4. Finally, Section 3.5
concludes this chapter.

3.1 terminology

Alignment of business processes and process models, respect-
ively, has been discussed against diverse backgrounds in the
literature. Process models may be aligned, for instance, with
business objectives [205, 374, 290, 420, 23], compliance require-
ments [175, 226, 401, 286, 25, 292, 27], or information on process
execution [450, 395, 132]. As a consequence, clarification of the
basic concepts of an alignment in our setting is needed. We
start by introducing those concepts informally for general pro-
cess models. Then, we formally define those concepts for net
systems.

Basic Concepts

Our interpretation of an alignment is inspired by the alignment
of conceptual models as known from the area of data integra-
tion and ontology matching [370, 131, 418, 85]. An alignment
in this context refers to an association between semantically re-
lated entities of data schemas or ontologies. Nevertheless, a
common terminology is also missing in this field of research,
cf., [333, 224, 153]. For our purpose, we rely on the terminology
introduced in [153] and adapt it to the setting of process model
alignments.

Figure 12 illustrates the main concepts to discuss alignments
of process models. Process models are built of process model
elements, such as activities, control flow routing elements, or
additional artefacts. We aim at behavioural analysis of align-
ments, so that we restrict the discussion to alignments that are
defined for activities of process models. Figure 12 captures this
restricted view by defining a process model as a set of activ-
ities. A correspondence relates two non-empty sets of activities
to each other. Here, all activities of a given set necessarily be-
long to the same process model. Further, two sets that form
a correspondence must relate to distinct process models. For
a set of activities in one model, any set of activities of another
model that is associated by a correspondence is referred to as a
corresponding set of activities. We distinguish two types of cor-

3.1 terminology 43

1
1..*

2 0..*

/ aligns

1

0..*

first activity

1..* 0..*

/ first activity set

Process Model
(Net System) Alignment

Activity
(Transition) Correspondence

Complex
Correspondence

1..* 0..*

/ second activity set

1

0..*
second activity

0..1 2..*

0..1

1..*

Elementary
Correspondence

+ confidence

Figure 12: Relations between alignment concepts.

respondences. In the case of elementary correspondences, both sets
of activities that are associated to each other comprise a single
activity. Such a correspondence has a certain confidence. In the
case of complex correspondences, in turn, at least one of the sets
comprises two activities. Conceptually, a complex correspond-
ence is formed by multiple elementary correspondences, i. e., the
Cartesian product of the associated sets of activities is captured
by elementary correspondences. In other words, a certain set of
elementary correspondences – the set is maximal with respect
to set inclusion – is interpreted as a complex correspondence.
Hence, it suffices to base the concept of an alignment on ele-
mentary correspondences. An alignment is built from a set of
elementary correspondences for which the first activities all refer
to one process model and the second activities all refer to another
model. Thus, an alignment relates two process models to each
other. This relation is induced by the process models from which
the activities referenced in the respective correspondences are
originating.

Correspondences are a rather generic concept to express a re-
lation between activities. Different semantics may be defined for
a correspondence. For instance, a correspondence between two
activities may be interpreted as semantic equivalence. In this
case, corresponding activities in two process models would refer
to exactly the same pieces of work of the original business pro-
cess. This is rarely the case for correspondences between process
models that depict different perspectives on a business process,
cf., Section 1.3. A fine-grained analysis of the correspondence
semantics is beyond the scope of this work. Hence, we do not

44 constructing alignments

further discuss semantics of correspondences but assume an in-
terpretation driven by the purpose of the alignment.

The procedure of constructing an alignment between process
models is called matching, tools that support this procedure are
called matchers. The result of a matching procedure, i. e., a set
of elementary correspondences, may also be referred to as a
set of matches. In the context of our work, we use the term
matches solely for relations between characteristics of activities,
e. g., there is a match between the labels of two activities. Those
matches are at the core of the matching procedure. Once a rela-
tion between activities is established, however, we refer to this
relation as a correspondence.

Finally, an alignment between data schemas or ontologies is
called mapping if it is directed [153]. A directed relation is needed
to define transformations for the instances of data schemas or
ontologies. For instance, a 2:1 complex correspondence between
numeric data fields may induce a mapping, such that the sum
of two values from one schema corresponds to a single value
in the other schema. In contrast, relations on the instance level
can be deduced directly from the relations on the model level
in our case. A correspondence between two sets of activities of
two process models induces a correspondence relation between
the instances, i. e., the execution sequences of the process mod-
els. That is, the occurrences of the respective activities in an
execution sequence of one model correspond to the occurrences
of the corresponding activities in an execution sequence of the
other model. There is no need to define explicit mappings to
transform the instances of process models. Hence, it suffices to
focus on undirected alignments to assess behaviour consistency
between process models.

Alignments of Net Systems

Having discussed basic concepts of alignments between process
models, we formally define those concepts for net systems. We
introduced correspondences as a relation between activities of
process models. Against the background of modelling business
processes with net systems, correspondences between net sys-
tems are defined for those elements that represent activities, i. e.,
transitions. Transitions of net systems may not only represent
activities, but may also represent control flow routing elements
or may be required for syntactical reasons. However, this is not
an issue, as an alignment may be partial in any case.

We capture alignments between net systems by means of a cor-
respondence relation between their transitions and a confidence
function. The correspondence relation relates pairs of transitions
of two net systems to each other. Based on this relation, the

3.1 terminology 45

A A2A1

B2B1

B

A

AB

(b) (c) (d)(a)

A

B

Figure 13: Four aligned net systems.

notion of a correspondence is derived. A correspondence com-
prises two sets of transitions, for which the Cartesian product
of transitions is part of the correspondence relation. The con-
fidence function assigns a confidence value to each entry of the
correspondence relation. Further, we say that two correspond-
ences are overlapping, if there is an overlap of the respective
sets of transitions in at least one of the net systems.

Definition 3.1.1 (Alignment)
Let S1 = (N1,M1) and S2 = (N2,M2) be two net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2).
◦ A correspondence relation ∼ ⊆ T1 × T2 associates correspond-

ing transitions of both systems to each other.
◦ Let T ′1 ⊆ T1 and T ′2 ⊆ T2 be two sets of transitions such

that T ′1 × T ′2 ⊆ ∼. Let T ′1 and T ′2 be maximal with respect
to set inclusion, i. e., ∀ t1 ∈ (T1 \ T

′
1) [({t1}× T ′2) 6⊆ ∼] and

∀ t2 ∈ (T2 \ T
′
2) [(T ′1 × {t2}) 6⊆ ∼]. Then, c = (T ′1, T ′2) is

referred to as a correspondence and we also write T ′1 ∼ T
′
2.

◦ A confidence function ζ : ∼ 7→ [0, 1] assigns confidence val-
ues between zero and one to single pairs of corresponding
transitions.
◦ A correspondence c = (T ′1, T ′2) is called elementary, iff |T ′1| =

|T ′2| = 1, and complex otherwise.
◦ Two correspondences c1 = (T ′1, T ′2) and c2 = (T ′′1 , T ′′2) are

overlapping, iff T ′1 ∩ T ′′1 6= ∅ or T ′2 ∩ T ′′2 6= ∅.
◦ A correspondence relation ∼ ⊆ T1× T2 is overlapping, iff it in-

duces at least two overlapping correspondences. Otherwise,
it is non-overlapping.
◦ An alignment is a tuple (∼, ζ), such that ∼ is a correspondence

relation and ζ is a confidence function for ∼.

We illustrate the introduced concepts with the four net systems
depicted in Figure 13. The first alignment between systems (a)

and (b) comprises two elementary correspondences between the
equally labelled transitions. Between systems (b) and (c), we

46 constructing alignments

observe a complex 1:2 correspondence that associates the trans-
ition set {A} with the transition set {A1,A2}. It is represented
in the correspondence relation between both systems by two
entries, i. e., A ∼ A1 and A ∼ A2. Between both systems, there
is another complex 1:2 correspondence incorporating the sets
{B} and {B1,B2}, respectively. The two correspondences are non-
overlapping. For systems (c) and (d), there is a complex 2:2
correspondence between the sets {A1,A2} and {A,AB} and a
complex 2:1 correspondence between {B1,B2} and {AB}. In con-
trast to the aforementioned alignment, the two correspondences
between systems (c) and (d) are overlapping. Transition AB

in system (d) is part of both correspondences, whereas trans-
ition A in system (d) is related only to the set {A1,A2} in sys-
tem (c). Overlapping correspondences may be interpreted as
follows. Transitions that are part of the overlap would have to
be split up to achieve a clear separation between corresponding
sets of transitions. In our example, a part of transition AB corres-
ponds to the set {B1,B2} in system (c), whereas the remaining
part, together with transition A, corresponds to the set {A1,A2}
in system (c).

Using the terminology introduced for relations in Section 2.2,
we classify a correspondence relation ∼ between two net systems
S1 = (N1,M1) and S2 = (N2,M2) with N1 = (P1, T1, F1) and
N2 = (P2, T2, F2). It is said to be
◦ total from S1 to S2, if ∀ t1 ∈ T1 [∃ t2 ∈ T2 [t1 ∼ t2]],
◦ functional, if ∀ ta ∈ T1, tx, ty ∈ T2 [(ta ∼ tx)∧ (ta ∼ ty) ⇒

(tx = ty)],
◦ injective, if ∀ ta, tb ∈ T1, tx ∈ T2 [(ta ∼ tx)∧ (tb ∼ tx) ⇒

(ta = tb)],
◦ bijective, if it is total in both directions, functional, and inject-

ive.
Consider the alignments visualised in Figure 13 and assume that
the correspondence relations are defined such that the depic-
ted order of systems is respected. The correspondence relation
between systems (a) and (b) is total from (a) to (b), but not vice
versa, and functional and injective. For the systems (b) and (c),
the correspondence relation is not total in either direction. With
(b) as the first system and (c) as the second system of the cor-
respondence relation, it is not functional, but injective. The last
alignment is total from (d) to (c), but not vice versa. It is neither
functional nor injective.

3.2 model matching

Construction of an alignment between two conceptual models is
known as the matching problem [153]. This section reviews related
work on solving this problem. We start by summarising differ-

3.2 model matching 47

ent types of model heterogeneity and strategies to avoid them
during the creation of conceptual models, and process models,
in particular. Then, we review related work on identifying cor-
respondences between process models. This problem has been
extensively addressed in the field of data integration and on-
tology matching [370, 131, 418, 85], so that we cannot give an
exhaustive overview of this work. Instead, we focus on tech-
niques that are relevant for the identification of correspondences
between process models. Those are classified according to the
aspect of a process model that is considered during matching.
We review textual, structural, and behavioural techniques. Beha-
vioural techniques consider the execution semantics of process
models. Finally, we turn the focus on complex correspondences.

Model Heterogeneity

Solving the matching problem for a given pair of conceptual
models requires coping with different kinds of heterogeneity.
The purpose for which a model is created, cf., the drivers of pro-
cess modelling discussed in Section 1.2, is a common source of
model heterogeneity. In addition, heterogeneity may stem from
contextual factors, e. g., the background of the human creating a
process model [31]. Heterogeneity between conceptual models
covers syntactic, terminological, conceptual, or semiotic issues,
see [34, 417, 235, 483, 153] for further classifications of model
heterogeneity. Semiotic issues refer to different interpretations
of models by humans – a problem that cannot be addressed by
automated processing. Therefore, we do not further elaborate on
this kind of heterogeneity. Regarding the other types of hetero-
geneity, there is a multitude of approaches that aim at avoiding
heterogeneity between process models. In the remainder of this
section, we review the most important of these approaches.

Syntactic heterogeneity is observed when conceptual models are
defined in different languages. When reviewing process de-
scription languages in Section 2.1, we already mentioned several
transformations between these languages, e. g., [202, 240, 244,
216, 86, 310, 114, 534, 482]. Most prominently, a potential round-
tripping between BPMN collaboration diagrams and BPEL pro-
cesses has been investigated in several papers [373, 340, 339, 166,
497, 245]. Here, issues that stem from the conceptual differ-
ences of a graph-based or a block-based modelling paradigm
have been in the centre of interest. The core of this problem, the
question if and how an arbitrary process model can be restruc-
tured into a well-structured model that is behaviour equivalent,
was addressed recently [358, 361]. Despite those differences re-
lated to the modelling paradigm, pattern-based evaluations of
process description languages received much attention. For in-

48 constructing alignments

stance, most of the languages mentioned in Section 2.1 have
been evaluated based on the workflow patterns framework1 that
covers control flow [456], data flow [397], resources [398], and
exception handling [399], see [518, 519, 520] for detailed evalu-
ation results. We summarise that syntactic heterogeneity may be
bridged by transformations between different languages. How-
ever, varying expressiveness and conceptual differences impose
serious challenges for these transformations. In the remainder
of this work, we neglect this type of heterogeneity and assume
all process models to be defined as net systems.

Terminological heterogeneity is observed when different names
are used in conceptual models to refer to the same entities of
the original, cf., Section 1.1. In process models, terminological
heterogeneity may be observed for different kinds of model ele-
ments, e. g., activities, roles, and artefacts. Terminological het-
erogeneity is an issue not only for the creation of alignments
between process models. Labelling of process model elements,
and especially activities, is known to have a significant influence
on the understandability of process models [315, 317]. Hence, it
has been advocated to agree on key terms before the creation of
process models [391]. Further, there exists a large body of work
that aims at labelling support for process models. Conventions
such as the verb-object-style [321, 416, 297, 317] and grammat-
ical phrase structures [39] for naming model elements have been
suggested. Such techniques require controlled vocabularies of
objects and their relations. Object vocabularies may be groun-
ded on ontological concepts, see [188, 162, 442, 169, 490]. The
latter, a controlled vocabulary of object relations, has been ad-
dressed by semantic classifications of verb phrases [46, 432], cat-
egorisations of object relations [268, 319], and the integration of
linguistic theories, e. g., speech-acts theory [414], into the process
of modelling [76, 8]. Still, all these works require a coordinated
creation of process models to obviate terminological heterogen-
eity. Once process models have been created independent of
each other, therefore, this kind of heterogeneity needs to be ad-
dressed as part of the matching process.

Conceptual heterogeneity is observed when there are differences
in how the domain of interest is modelled. According to [44,
153], there are three reasons for conceptual heterogeneity, differ-
ences in coverage, granularity, and perspective.

Differences in coverage are observed when conceptual mod-
els describe different parts of the original. In terms of process
models, different parts of one or more business processes may
be captured. Scoping of process models depends on the scop-
ing of business processes, a question that has been around since
the functional breakdown of business functions has been intro-

1 See http://www.workflowpatterns.com for further details.

http://www.workflowpatterns.com

3.2 model matching 49

duced [365] and process orientation emerged as an organisation
principle [165, 100, 195, 406]. The question of how to scope pro-
cess models consistently to avoid differences in model coverage
is addressed by top-down modelling methodologies. Such ap-
proaches advocate the creation of process models from more
abstract descriptions, such as business models and value net-
works [178, 21, 516, 22, 179, 118], or goal descriptions [229, 242,
261, 182, 115, 23].

Differences in granularity refer to the assumed level of abstrac-
tion from the original. Two process models that cover the same
part of one or more business processes may comprise a differ-
ent amount of modelling concepts due to differences in the ab-
straction level. Many of the techniques discussed to avoid ter-
minological heterogeneity, such as controlled vocabularies and
ontologies, along with the aforementioned modelling methodo-
logies also aim at avoiding differences related to the modelling
granularity.

Differences in perspective refer to differences that are induced
by a certain modelling perspective when creating a conceptual
model. Often the modelling perspective is closely attached to
the purpose for which a model is created. The often quoted
‘Business-IT-Gap’ [70, 186, 388] would be an example that causes
differences between process models that are conceptual, but can-
not be attributed to coverage of the business process or the level
of granularity. Such heterogeneity is inherent for models serving
different purposes and resolution of the respective differences
may negatively affect the adequacy of a process model.

We conclude that differences related to conceptual heterogen-
eity can be controlled to some extent, but cannot be avoided once
process models are created in different contexts and for different
purposes. Hence, the construction of an alignment needs to cope
with all three kinds of conceptual heterogeneity.

Finally, there have been various attempts to classify differ-
ences that relate to conceptual heterogeneity between process
models. Differences between views on processes that are cap-
tured by object life-cycles are described in [366]. This work also
highlights that these differences stem from the independent cre-
ation of views for different purposes, as we discussed it for pro-
cess models in Section 1.2. Differences observed during process
evolution have been captured by change patterns [488]. These
patterns provide an overview of elementary model differences
mostly related to model coverage and granularity. Similar pat-
terns have also been presented in the context of similarity as-
sessment [123] or process enactment [206]. Finally, we presented
an overview of difference between process models that capture
different modelling perspectives in earlier work [498].

50 constructing alignments

Some of the mentioned heterogeneity issues are addressed
by guidelines for the creation of process models [248, 38, 318].
Still, such guidelines either focus on certain aspects only or are
defined on a rather abstract level. Hence, they may control some
heterogeneity issues, but cannot be assumed to generally avoid
heterogeneity between process models.

Textual Matching Techniques

Textual techniques are at the core of most matching approaches.
They aim at matching model elements based on their textual
description. String-based methods are used to assess the sim-
ilarity of element labels, which often involves preprocessing of
strings. Terms are normalised by considering all characters in
lowercase and replacing blanks and diacritics. Then, equality,
substring containment, the Hamming distance [196] to count dif-
ferent characters, or the number of equal substrings (n-grams)
is used to judge on similarity [153]. Two strings may also be
compared using an edit distance. The string edit distance [267]
counts the minimal number of atomic character operations (in-
sert, delete, update) needed to transform one string into another.
Other measures for string comparison consider the number and
proximity of shared characters or the length of common pre-
fixes, such as the Jaro measure [219] or the Jaro-Winkler meas-
ure [517]. See [88] for an overview on string distances metrics.
These techniques consider strings as a whole. However, strings
may be tokenised into a bag of terms [491] to represent them
as vectors in a space [402]. Then, each term represents a di-
mension of the space and the similarity of strings is traced back
to the similarity of vectors, e. g., measured by the Cosine sim-
ilarity [402] or one of the Minkowski distances, see also [153].
The creation of the vector space may reflect different weights for
terms. A common measure to assess term weights in a corpus is
the TF-IDF scheme [386]. It assigns high weights to terms that
occur frequently in one string (TF, term frequency) and rarely in
other strings (IDF, inverse document frequency). Still, these tech-
niques are sensitive to linguistic phenomena, such as synonymy
and homonymy. Techniques from the field of Natural Language
Processing [299] may be applied to overcome this shortcoming.
This involves term stemming [364], stop-word elimination [212],
or part-of-speech tagging [67]. In addition, external knowledge
in the sense of thesauri like WordNet [322] may be leveraged,
cf., [173, 346, 72].

Textual techniques are at the core of methods for searching
process model collections [136, 473, 127, 530, 129] or service
repositories [294, 525, 91, 144, 184], providing modelling sup-
port [142, 214, 421, 350], or managing different variants of a

3.2 model matching 51

process [330, 123, 271, 494, 258]. Most of these approaches in-
corporate one of the aforementioned string distances to judge
the similarity of element labels. In addition, various approaches
leverage synonym relations when comparing element labels on a
term basis, e. g., [91, 184, 142, 214, 473, 258, 129]. To this end, vir-
tually all approaches rely on WordNet [322], even though there
are differences in the concrete operationalisation. For instance,
synonym dependencies may be weighted relative to the overall
number of senses of the respective terms [142]. Part-of-speech
tagging has been applied to refactor labels of process model ele-
ments [266] or for aggregating element labels [422]. The latter
work uses the MIT Process Handbook [297], which can be seen
as an ontology for business processes. The MIT Process Hand-
book spans several business domains, e. g., sales or production.
Although these techniques do not directly contribute to an iden-
tification of correspondences, they allow for a normalisation of
labels before applying further matching techniques. Structural
characteristics of ontological annotations of process models have
also been exploited to identify correspondences [142, 68]. Fur-
ther, ontologies have been applied to identify correspondences
between service descriptions, mainly by relating input and out-
put specifications to each other [344, 47]. Matching based on
vector spaces has been used for process models and service de-
scriptions in [294, 285, 214]. To this end, terms of the textual
description of process model elements [214] or explicit feature
annotations [285], e. g., roles and IT systems, are interpreted
as dimensions of the vector space. Then, standard means for
judging the similarity of vectors are used to conclude on activity
correspondences.

Structural Matching Techniques

Structural matching techniques exploit the graph structure of
process models. In particular, techniques that built upon the no-
tions of a maximum common sub-graph isomorphism and the
graph edit distance have been used, see [74] for an overview of
graph matching techniques. The maximum common sub-graph
(MCS) problem refers to the identification of a maximal sub-
graph of two graphs. The graph edit distance (GED) defines the
minimal number of atomic graph operations (substitute node,
insert/delete node, (un)grouping nodes, substitute edge, inser-
t/delete edge) needed to transform one graph into another [75].
Both, the MCS and the GED problem, are closely related for a
certain class of cost functions for the edit operations [73]. Un-
fortunately, both problems are NP-hard [168]. This leads to the
application of search algorithms, such as the A∗ search [201], or
heuristics.

52 constructing alignments

Based on the graph edit distance, a similarity score may be
computed for a pair of aligned process models [128, 127]. Here,
only model elements that are part of correspondences are con-
sidered to be substituted, while the quality of substitution is
based on the similarity of the elements. The quality of the align-
ment is then measured relative to a hypothetical ideal align-
ment. The latter relates each element and each flow in one pro-
cess model to an element or a flow in the other process model
with an optimal substitution quality. Due to the computational
complexity of the GED problem, different heuristics have been
developed to identify the optimal alignment between two pro-
cess models [91, 128]. Matching approaches based on the graph
edit distance may be extended by considering characteristics of
process models, such as different element types [325]. Distin-
guishing different element types in process models, gives rise to
further matching techniques. A process model may be reduced
by reduction rules that consider different element types to assess
equivalence or subsumption with another model [285]. Other ap-
proaches customise the graph edit distance by considering high-
level and hierarchical change operations that go beyond simple
insertion, substitution, and deletion [271, 256]. To this end, rela-
tions between activities are exploited [271] or the process model
is structurally decomposed into fragments [256].

Besides graph matching, there are several structural strategies
to influence the similarity of process model elements to detect
correspondences between them. Elements may be classified ac-
cording to structural patterns depending on the cardinality con-
straints of their incoming and outgoing flows [530]. These fea-
tures influence the similarity when comparing two model ele-
ments. Contextual similarity as proposed in [473, 129] exploits
the share of directly preceding or succeeding elements that show
a high similarity. Following this idea, similarity flooding in-
troduced for matching data schemas [311] has been applied to
match process models [294]. It first judges the similarity of
model elements with a textual measure applied to the element
labels. Then, the similarity of elements is iteratively updated ac-
cording to the similarity of adjacent elements until a fixpoint is
reached [294].

Behavioural Matching Techniques

Behavioural matching techniques leverage the behaviour of pro-
cess models in terms of their execution semantics. Here, the type
of assumed behavioural semantics has to be considered, may
it be trace-based or using a labelled transition system, see Sec-
tion 2.2. Moreover, the chosen process description language af-
fects behavioural matching techniques. A close relation between

3.2 model matching 53

syntax and execution semantics allows us to draw conclusions
on execution semantics by looking at the model structure only.
Most business process description languages, however, are not
grounded on a small set of semantically orthogonal concepts, cf.,
the Orthogonality Principle of model formalisation [437]. Sev-
eral techniques aim at addressing this issue by transforming pro-
cess models in a normal form before applying structural means
to assess similarity. An example would be the splitting of activit-
ies that represent synchronous service calls into a sending activ-
ity and a receiving activity [91].

Under the assumption of trace semantics, similarity measures
may be defined directly on the language of a process model, i. e.,
the set of all traces. The size of the intersection of the languages
of process models relative to the overall number of traces would
be a straight-forward example for such a measure [136]. Follow-
ing on the idea of the string edit distance, edit distances have
also been defined for the behaviour of a process model in terms
of its language, an automaton encoding the language, or an n-
gram representation of the language [525]. A fine-granular vari-
ant of the latter measure considers not only all n-grams needed
to define the language, but also their cardinalities to control the
impact of control flow loops on the measure [523]. Experimental
results obtained with these measures in the context of service
retrieval can be found in [522, 524, 523]. Once the behaviour of a
process model is captured by a transition system, the degree to
which two systems simulate each other was proposed as a sim-
ilarity measure [427, 330]. Given a similarity measure for state
transitions, similarity of states is evaluated iteratively by consid-
ering the similarities of neighbouring state transitions and states.
This approach terminates after a fixpoint or an iteration bound-
ary is reached.

Behavioural abstractions that capture only dedicated behavi-
oural aspects may also be leveraged for the identification of cor-
respondences between process models. Behavioural relations
that are defined over elementary activities, e. g., order and ex-
clusiveness, provide a means to enrich structural matching with
behavioural information [144]. Those behavioural details may be
closely related to the model structure, as shown for BPEL pro-
cesses in [144]. Other works uses causal footprints as an approx-
imation of the process model behaviour to assess similarity [473].
Causal footprints capture causal dependencies for activities by
defining, for each activity, a set of causal predecessors and a set
of causal successors.

54 constructing alignments

On the Identification of Complex Correspondences

Once we reviewed basic matching techniques, the identification
of complex correspondences deserves further discussion. Diver-
ging modelling purposes as discussed in Section 1.2 are likely
to cause conceptual heterogeneity. Once different levels of ab-
straction are assumed, an alignment comprises complex corres-
pondences. The importance of complex correspondences is fur-
ther witnessed by the aforementioned classifications of differ-
ences between process models [366, 488, 123, 206, 498]. All of
these classifications contain patterns that capture refined activit-
ies, activity fragmentation, or activity aggregation. In Section 3.1,
we discussed that, conceptually, complex correspondences are
built from elementary correspondences. Nevertheless, complex
correspondences are typically identified directly. An identifica-
tion of all overlapping elementary correspondences that form a
complex correspondence is hardly feasible.

The identification of complex correspondences between pro-
cess models has been largely neglected in the literature. Virtu-
ally no work uses the introduced matching techniques to find
correspondences beyond elementary correspondences in a non-
overlapping alignment. Complex correspondence have only be
addressed in a narrow language-specific setting. Splitting up
BPEL activities that represent synchronous service calls into two
activities, see [91], is an example for such a heuristic. To the best
of our knowledge, there has not been any attempt to address
the issue of complex correspondences between process models
in general way.

Unfortunately, there has also been a predominant focus on ele-
mentary 1:1 correspondences in the schema and ontology match-
ing community, such that ‘1:n and n:m mappings [..] are cur-
rently hardly treated at all’ [370]. One of the rare exceptions is
the iMAP system [120]. iMap proposes to explore the space of
potential mapping expressions between arbitrary groups of ele-
ments using different search heuristics. Once potential element
mappings are identified, the similarity of target entities is ana-
lysed to select the final mapping. iMAP searchers exploit the
value distribution of instance data and also take domain know-
ledge, such as domain constraints, into account. Other work
on the identification of complex correspondences between data
schemas relies on the discovery of characteristics for instance
data and the application of domain ontologies that describe ex-
pected data values [529]. Further, the application of correlation
mining techniques was proposed in the DCM framework [203].
This framework mines web query interfaces to identify group-
ing attributes, i. e., attributes that tend to be co-occurring in web
interfaces. This knowledge is exploited to mine negative correla-

3.3 the icop framework 55

tions between groups of attributes. Those hint at potential com-
plex correspondences. There are further schema matching ap-
proaches that retrieve complex correspondences by just applying
a static similarity threshold for the selection of correspondences,
e. g., the Cupid matcher [293]. Given a similarity matrix for all
model elements, various combinations for a single element may
show similarity values above the threshold, such that complex
correspondences are derived. However, such an approach does
not hint at strategies that are used to identify complex corres-
pondences, as it assumes this knowledge to be already encoded
in the similarity matrix.

We summarize that the few existing approaches for identify-
ing complex correspondences between data schemas rely on in-
stance data and external knowledge. As the former is not al-
ways available for process models, these techniques cannot be
transferred to the setting of process models directly.

3.3 the icop framework

The review of existing matching techniques reveals that there is
virtually no work available on the identification of complex cor-
respondences between process models. Further, even in the field
of schema and ontology matching there has been a predomin-
ant focus on elementary correspondences, despite a few notable
exceptions. We argued that complex correspondences, however,
are essential for aligning process models for consistency analysis.
To address this issue, this section introduces the ICoP (Identi-
fication of Complex Correspondences between Process Models)
framework. It defines a system architecture for the definition
of matchers that derive complex correspondences between two
process models. Besides the architecture, it also introduces a set
of basic matching components used to assemble concrete match-
ers. These components focus on the identification of complex
1:n correspondences that are non-overlapping, as those corres-
pondences can be expected to occur frequently between process
models. Still, we also discuss how the components may be adap-
ted to consider complex n:m correspondences.

The ICoP framework is independent of any notion of a process
model or process description language. All discussed matching
components work purely on the textual and structural level. Al-
though we use net systems for illustration purposes, we do not
stick to the net system terminology but use the generic terms
process model and activity. In the remainder of this section,
we first present the overall architecture of the ICoP framework.
Then, we elaborate on four different types of components in de-
tail and present exemplary realisations.

56 constructing alignments

Pair Searchers

Searcher
1

Searcher
n

Score
for Set

Process
Model 2

Process
Model 1

Multiset
(overlapping)

Scored
Corresp. 1

Boosters

Booster
1

Booster
n

Set
(overlapping)

Set (non-overlapping)

Corresp. nCorresp. 1

Set
(non-overlapping)

Selector

Evaluator

Scored
Corresp. n

Scored
Corresp. 1

Scored
Corresp. n

Scored
Corresp. 1

Scored
Corresp. n

Figure 14: The architecture of the ICoP Framework.

Architecture

The overall architecture of the ICoP framework is motivated by
the observation that the number of complex correspondences
between two process models is potentially large. It is not feasible
to explore all possible correspondences exhaustively. Instead,
the ICoP framework proposes a multi-step approach, which is
illustrated in Figure 14. Given two process models, searchers
extract potential correspondences based on different similarity
measures and heuristics for the selection of activities. The res-
ult of the search stage is a multiset of correspondences – mul-
tiple searchers may identify the same potential correspondences.
Each correspondence is assigned a confidence score that reflects
the quality of the relation. It results from the scoring function
implemented by the searcher to select potential correspondences.
A searcher may use the knowledge about potential correspond-
ences that have been identified by other searchers already.

After completion of the search stage, the scored potential cor-
respondences are conveyed to boosters. These components boost
the correspondences that are returned by the searchers using
heuristics to aggregate or remove correspondences, or adapt the
score of a correspondence. As part of the boosting stage the
multiset of potential correspondences is transformed into a set of
potential correspondences by aggregating those that have been
identified by multiple searchers.

Then, a selector builds up the actual alignment from the set of
potential correspondences. It selects the best correspondences
from the set of potential correspondences. The selector compon-
ents presented later ensure that the constraint of non-overlapping
correspondences is satisfied. The selection of the best corres-
pondences is guided by two kinds of scores. On the one hand,
the individual scores of the potential correspondences are ex-
ploited. On the other hand, an evaluator is utilised, which as-
signs a single alignment score to an alignment. An evaluator may
use knowledge about the original process models to compute
this score. The selection is an iterative process. In each itera-

3.3 the icop framework 57

tion, the selector selects a set of correspondences, the evaluator
computes the score for this set, upon which the selector either
decides to modify the set of correspondences and continue the
selection, or to complete the selection. Once the selection proced-
ure completes, the selector produces the final alignment between
activities of the process models.

The presented architecture is inspired by the structure of the
iMAP system [120], which we discussed in the previous section.
It introduces the idea of searching the space of potential complex
correspondences. Besides the differences in the implementation
of the searcher components – those of the iMAP rely on instance
data – there is another conceptual difference of the ICoP archi-
tecture and the iMAP system. iMAP searchers derive textual,
numeric, or structural mapping expressions instead of pure ele-
ment correspondences. We elaborated in Section 3.1 on why the
detection of mapping expressions for transforming instances is
of minor importance in the context of process models.

Searchers

Searchers identify potential correspondences between two pro-
cess models along with a score, which represents the quality of
the correspondence. We denote a correspondence between two
activity sets A1 and A2 that holds with confidence c by a tuple
(A1,A2, c). This is a short-hand notation for the notions intro-
duced in Section 3.1. If the respective entries of the correspond-
ence relation (a1,a2) ∈ (A1 ×A2) have different confidence val-
ues assigned, we assume the score c to represent the arithmetic
mean of these confidence values.

As discussed in the previous section, identification of a cor-
respondence may be based on various aspects, including the la-
bels or descriptions of activities and structural or behavioural
relations between those elements. We introduce four searchers
that have been implemented in the ICoP framework. Two of
them focus on elementary correspondences, whereas the other
two search for complex 1:n correspondences. The latter may be
adapted to search for n:m correspondences at the expense of in-
creased computational complexity.

Similar Label Searcher. The purpose of this searcher is the iden-
tification of 1:1 correspondences based on a high syntactic sim-
ilarity of activity labels. It computes the Cartesian product of
activities of two process models and selects all pairs for which
the string edit similarity of their labels is above a threshold. For
two strings s1 and s2 the string edit similarity is defined as
sim(s1, s2) = 1 − (ed(s1, s2)/max(|s1|, |s2|)) with ed(s1, s2) as
the string edit distance [267]. String edit similarities can be seen
as rather strict criteria when applied to compare activity labels,

58 constructing alignments

Set up Laser
Component

Production (A)

Order
Mechanical

Parts (C)

Develop
Optical

Parts (B)

Assemble Laser
Component (D)

Configure
Laser

Component (E)

Run Test
Cases (F)

Final Laser
Installation

(G)

Test
Results

Set up incorporates identification of installation requirements and the creation of the specification
document. In case support agreements are also negotiated, the key‐account manager is involved.

Usually done
by a
subcontractor.

Component
Specification

(a)

Split A 1

Sequence D 2

A

B

C

D E F G

(b)

Virtual Document
(Sequence D 2)

assembl
laser (2)
configur
test (2)
compon (3)

run
result
case
specif

(c)

Figure 15: (a) Process model with annotations, data objects and data
associations; (b) the control flow structure of (a) along with
two groups as considered by the Distance Doc Searcher, (c)
virtual document for the group ‘Sequence D 2’.

not only words of such labels. They neglect different orders of
words and linguistic phenomena such as synonymy. Hence, the
potential matches are identified with high confidence, such that
the initial score for these matches is set to one by the searcher.
The run time complexity of this searcher depends solely on the
number of activities of the respective process models.

Distance Doc Searcher. This searcher follows a two step ap-
proach to identify potential 1:n correspondences. First, activit-
ies of both process models are grouped heuristically. Second,
the similarity between such a group of activities in one model
and all single activities in the other model is assessed. Although
this approach yields potential 1:n correspondences, groups of
activities of both models may also be exploited. Still, this would
increase the run time complexity of the searcher due to the im-
plied combinatorial problem. We illustrate the two steps using
the process model depicted in Figure 15a. Assuming that it is
more likely that activities that are closer to each other should be
in the same group, we use the graph distance to group activit-
ies. The graph distance between two activities is the number of
edges on the shortest path from one activity to the other [122].
Given a base activity and a distance, we look for four types of
groups:

3.3 the icop framework 59

◦ Sequences, which are determined by a base activity and the
activities on a directed path of the given length (distance)
from the base activity.
◦ Splits, which are determined by a base activity and the activ-

ities that can be reached from the base activity and that are
within the given distance. The base activity can or cannot
be considered in such groups, depending on whether the
routing is modelled explicitly by a control flow node.
◦ Joins, which are determined by a base activity and the activ-

ities from which the base activity can be reached and that are
within the given distance. The base activity can or cannot be
considered in such groups.
◦ Others, which are the groups that consist of all activities that

are within the given distance of a base activity (not consid-
ering the direction of edges). In contrast to sequences, these
activities are not necessarily on a path.

For the example model depicted in Figure 15a, Figure 15b shows
the control flow structure of the model along with two example
groups. The group ‘Split A 1’ is built by taking activity A as base
activity and by exploring all activities that may be reached with a
graph distance of one, i. e., activities B and C. Here, we compute
the graph distance solely based on activities. Therefore, only
flows between transitions and places are counted when comput-
ing the graph distance between transitions of the net system.
The example group ‘Split A 1’ illustrates the case, in which the
base activity is part of the group. Besides, the searcher would
also consider the group consisting of solely activities B and C

to account for the fact that the control flow routing is not mod-
elled with a separate node. The second example group is of
type sequence, takes activity D as base activity, and considers
all activities that are within a graph distance of two. The Dis-
tance Doc Searcher identifies all groups of activities in a process
model by taking each of the activities as a basis and creating each
possible type of group for each possible graph distance value. A
maximum distance value is set as a parameter.

Once groups of activities have been identified, their similarity
needs to be assessed. Besides labelled activities, a process model
may comprise additional information on, for instance, processed
data objects and textual annotations, as illustrated in Figure 15a.
To take such information into account, we use virtual documents
to score the similarity of activities or groups thereof. Virtual doc-
uments have been introduced for information retrieval [487], and
later been applied to identify alignments of ontologies [369]. A
virtual document of an ontology node consists of the words from
all textual information that is related to that node. Given two vir-
tual documents, their similarity is computed based on their dis-
tance in a vector space as discussed in the previous section. This

60 constructing alignments

P1

A

B

C

D E F G

B1 P2

P3

B2
P4

P5

(a)

P1

P2 P3

B1 B2

P4 P5

(b)

Figure 16: (a) Control flow structure of the model in Figure 15a along
with RPST fragments, (b) the corresponding RPST.

idea has already been transferred to annotated process models
to answer user queries against a model repository [214]. In our
setting, a virtual document for an activity consists of the terms
that are derived from the activity label and, if this information is
available, the labels of the roles that are authorized to perform
the activity, the assigned input and output data objects, and a
textual description of the activity. These terms are preprocessed
with the techniques described earlier, such as filtering of stop-
words [212] and term stemming [364]. The preprocessed terms
represent the dimensions of the vector space. Further, we rely
on the TF-IDF [386] scheme for weighting terms. For a group of
activities, the virtual document is derived by joining the docu-
ments of the respective nodes. Creating virtual documents from
process models can be seen as the reverse operation of gener-
ating a textual representation of a conceptual model [16, 194],
even though virtual documents are unstructured. Figure 15c
illustrates the terms of the virtual document for the group ‘Se-
quence D 2’ along with their numbers of occurrences. These
terms originate from activity labels and the labels of two data
objects. All terms have been preprocessed. The run time com-
plexity of this searcher is influenced by one parameter besides
size and structure of the models – the maximal graph distance
value for grouping activities.

Fragment Doc Searcher. This searcher resembles the distance
doc searcher, except for the strategy for grouping activities. We
leverage a structural decomposition technique, introduced as the
Refined Process Structure Tree (RPST) [481, 359]. Later, we form-
ally define the RPST for net systems when computing behavi-
oural relations from a process model. At this point, however, we
stick to an informal description of the characteristics of this de-
composition technique. The RPST parses a process model into
a hierarchy of fragments with a single entry node and a single
exit node. Figure 16a depicts these fragments for the process
model given in Figure 15a. The fragments are defined in such
a way that they do not overlap. Consequently, they form a tree-
structure, the RPST, which is illustrated in Figure 16b. We lever-
age the hierarchy of fragments to select groups of activities that

3.3 the icop framework 61

will be considered by the searcher. Starting with the leaf frag-
ments of the RPST, the tree is traversed upwards up to a height
that is given as a parameter. For the example in Figure 16b and a
height threshold of two, the searcher considers the fragments B1,
B2, P2, P3, P4 and P5. For all traversed fragments, the searcher
creates two virtual documents. One document comprises all
activities contained in the fragment. The second document con-
tains all these activities except for those that are boundary nodes
of the fragment. Again, implicit or explicit modelling of control
flow routing nodes is the motivation for considering both cases.
The similarity of the virtual documents is assessed using the vec-
tor space approach as introduced for the Distance Doc Searcher.
Therefore, this searcher also considers primarily 1:n correspond-
ences. Although it is possible to compare all groups of activities
in both models, the combinatorial problem would impact the
run time complexity. Apart from that, the run time complexity
of this searcher mainly depends, besides size and structure of
the models, on the height up to which the RPST is traversed
upwards for identifying groups of activities.

Wrapup Searcher. This searcher resembles the aforementioned
Similar Label Searcher. It also aims at deriving potential 1:1 cor-
respondences by analysing the string edit similarity for the la-
bels of activity pairs. In contrast to the Similar Label Searcher,
this searcher traverses only activities that are not part of poten-
tial correspondences retrieved by other searchers. The Wrapup
Searcher is run after all other searchers. Also, the threshold for
the similarity of two activity labels is set to a lower value than
for the Similar Label Searcher.

Boosters

After potential 1:1 and 1:n correspondences have been identified,
the multiset of scored correspondences is propagated to a set of
boosters. We implemented the following four boosters as part of
the ICoP framework.

Cardinality Booster. This booster reduces the multiset of po-
tential correspondences to a set by aggregating the confidence
scores for potential correspondences that associate the same (sets
of) activities to each other. Two correspondences (A1,A2, c1)
and (A3,A4, c2) with A1 = A3 and A2 = A4 are replaced by a
correspondences (A1,A2, ca). We define the aggregated confid-
ence score as ca := c1 + (1− c1) · c2. The first score is increased
by the second score relative to its current value. This operation is
symmetric and can iteratively be applied if more than two scores
need to be aggregated.

Subsumption Booster. The idea behind this booster is that a 1:n
correspondence (A1,A2, c1) may subsume another correspond-

62 constructing alignments

ences (A3,A4, c2), such that A3 ⊂ A1 or A4 ⊂ A2. Similarity
scoring based on the cosine angle in vector spaces tends to fa-
vour documents consisting of a small number of terms [222].
Large documents yield a large dimensionality of the represent-
ing vector, so that the scalar product between such a vector
and any other vector tends to be small. As a consequence, the
subsumed correspondences will have higher initial confidence
scores on average. To countervail this effect, we boost a 1:n cor-
respondence, if it subsumes other correspondences. If the corres-
pondence (A1,A2, c1) subsumes the correspondence (A3,A4, c2),
its confidence score is increased relative to the current value,
such that c1 := c1 + ws · (1 − c1) · c2 with 0 6 ws 6 1 as a
weighting factor.

Tree Depth Ratio Booster. In contrast to the aforementioned
boosters, this booster considers solely a single correspondence.
It boosts the confidence score of a correspondence, if the activ-
ities show a certain structural property that is evaluated based
on the RPST. Given a correspondence (A1,A2, c1), we determ-
ine the Lowest Common Ancestors (LCAs) of A1 and A2 in
the RPST of the respective process model, denoted by lca(A1)
and lca(A2). Let maxDepth1 and maxDepth2 be the maximal
depths of a fragment in the RPSTs of the two process models.
Then, we determine two ratios by relating the depth of the LCA
to the maximal depth of the tree, r1 = lca(A1)/maxDepth1 and
r2 = lca(A2)/maxDepth2. The confidence score of a corres-
pondence is boosted, if the average of the two ratios is above a
threshold. This indicates that both LCAs are relatively low in the
tree, which is interpreted as a hint for a good quality of the cor-
respondence. The underlying assumption is that activities that
form a correspondence are likely to be structurally close. If the
threshold is reached, the confidence score of the correspondence
is increased according to the average of the two ratios, relative to
the current score value, i. e., c1 := c1+(1− c1) ·wr · 0.5 · (r1+ r2)
with 0 6 wr 6 1 as a weighting factor.

Distance Ratio Booster. This booster also considers single cor-
respondences. Here, the structural property that is evaluated
relates to the graph distance. For each of the sets of activities
A1 and A2 of a correspondence (A1,A2, c1), we determine the
maximal distance between two activities of this set. For each
activity, we compute the distances from and to all other activit-
ies, and select the minimal distance. Then, the maximal value of
all these minimal distances is chosen, denoted by maxDist(A1)
and maxDist(A2), respectively. These values provide a meas-
ure for the spread of the activities of the correspondence. Let
maxDist1 and maxDist2 be the maximal distances that can be
observed between any two activities that are connected by a path
in the two process models. Those values provide a measure

3.3 the icop framework 63

for the spread of all activities in the process model. Then, we
define two ratios r1 = 1− (maxDist(A1)/maxDist1) and r2 =

1− (maxDist(A2)/maxDist2). If the average of both ratios is
above a threshold, the confidence score of the correspondence is
increased accordingly, i. e., c1 := c1 + (1− c1) ·wd · 0.5 · (r1 + r2).
Again, 0 6 wd 6 1 is a weighting factor.

Selectors

Once the confidence values of correspondences have been adap-
ted by boosters, a selector extracts an alignment from the set of
scored potential correspondences. As mentioned before, we re-
quire an alignment to satisfy the constraint of non-overlapping
correspondences in the ICoP framework. However, this implies
that the selection process is a computationally hard problem,
which is independent of the different notions of quality for an
alignment employed by the selectors. Due to overlapping poten-
tial correspondences, finding an alignment with maximal qual-
ity is an optimisation problem that may be addressed by search
algorithms, such as the A∗-algorithm [108]. Those algorithms
guarantee to find the optimal solution. However, experiments
on matching process models in a similar context revealed that
results obtained by a greedy search strategy are close to those ob-
tained with an exhaustive search [127]. Therefore, our selectors
follow a greedy or 1-look-ahead strategy. The ICoP framework
consists of the following selectors.

Correspondence Similarity Selector. This selector selects an align-
ment comprising non-overlapping correspondences solely based
on their confidence scores. The correspondence with the highest
confidence is selected – if there are multiple correspondences
with an equal score, one is randomly chosen – and all corres-
pondences that are overlapping with the selected one are re-
moved and not further considered. The alignment is construc-
ted iteratively until the highest confidence for a potential corres-
pondence is below a given threshold. In addition to this greedy
strategy, we also implemented a 1-look-ahead strategy. It op-
timises the score for the succeeding iteration in case there are
multiple correspondences with equal confidence scores.

Alignment Similarity Selector. This selector neglects the scores
assigned to potential correspondences and relies solely on the
score for a (partial) alignment as provided by an evaluator. Cor-
respondences are iteratively selected. In each step, we select
the correspondence leading to the maximal score for the align-
ment. If multiple correspondences meet this requirement, one is
chosen randomly. The procedure terminates once the alignment
score cannot be increased further. Again, we implemented this
greedy strategy and a 1-look-ahead variant. The latter selects the

64 constructing alignments

correspondence that leads to the maximal alignment score in the
succeeding iteration.

Combined Selector. This selector uses both, confidence scores of
correspondences and alignment scores as provided by an eval-
uator. In a first step, the highest confidence score among the
correspondences is determined. All potential correspondences
that have been assigned this value are then selected for the align-
ment. In case this is not possible due to overlapping correspond-
ences, the selection is conducted randomly. In a second step, the
alignment is iteratively extended with the correspondence that
maximises a combined score. This score is a weighted average of
the confidence of the correspondence and the alignment score as
computed by the evaluator. The procedure terminates if the com-
bined score cannot be increased any further. Again, the second
step of the selection process has been implemented as a greedy
and as a 1-look-ahead strategy.

Evaluators

A selector can use an evaluator to score alignments. Given a
(partial) alignment, the evaluators return a single score for the
quality of the alignment. Different notions of quality can be
considered. Within the ICoP framework, we implemented the
following two evaluators.

Graph Edit Distance Evaluator. This evaluator scores a given
alignment based on the graph edit distance [75, 74] of the two
original process models that is induced by the correspondences.
As discussed in Section 3.2, the graph edit distance can be lever-
aged to define a similarity score [128, 127]. The Graph Edit Dis-
tance Evaluator computes this similarity score and returns it as
a measure of the quality of the given alignment.

Path Relation Evaluator. This evaluator scores a given align-
ment based on whether the path relations are preserved for the
activities of a pair of correspondences of the alignment. Let
C1 = (A1,A2, c1) and C2 = (A3,A4, c2) be correspondences.
Then, we derive the number of preserved paths pre(C1,C2) =

|{(a1,a2,a3,a4) ∈ (A1 ×A2 ×A3 ×A4) | p(a1,a3)⇔ p(a2,a4)}|,
with p(x,y) being a predicate that denotes the existence of a path
from activity x to activity y. The score for the pair of correspond-
ences C1 and C2 is defined as s(C1,C2) = pre(C1,C2) / |A1 ×
A2 ×A3 ×A4|. The score for the alignment is computed by it-
erating over the Cartesian product of correspondences and com-
puting the average of their scores.

3.4 experimental evaluation 65

3.4 experimental evaluation

The previous section introduced the ICoP framework to identify
complex correspondences between process models. The architec-
ture of the ICoP framework is a generic schema for the definition
of matching components that may be reused in multiple match-
ers. In this section, we report on an experimental evaluation of
our framework. In this experiment, we aimed at constructing
alignments between process models that (1) capture similar pro-
cesses in different organisations and (2) represent reference pro-
cesses and their implementations. These use cases differ from
the one primarily investigated in this work – a common process
is captured for different purposes. Still, based on the experiment,
we are able to draw conclusions on the overall performance of
the ICoP framework.

Using the components introduced in the previous section, we
assembled matchers and compared the correspondences iden-
tified by them with the correspondences that process analysts
found in a collection of 20 pairs of process models. Three pairs
have been taken from a merger in a large electronics manufactur-
ing company. Each of these pairs represents two processes that
have to be merged. 17 pairs have been taken from Dutch mu-
nicipalities. Each of these pairs represents a standard process2

and an implementation of this standard process by a municipal-
ity. All process models have been available as net systems. Each
system from the collection has, on average, 31.1 nodes, with a
minimum of 9 nodes and a maximum of 81 nodes for a single
model. The average number of arcs pointing into or out of a
single node is 1.2 and the average number of words in the label
of a single node is 2.8. For the 20 process model pairs, pro-
cess analysts determined a total of 520 elementary correspond-
ences. Of these 520 elementary correspondences, 221 were part
of a complex correspondence. However, the distribution of these
complex correspondences in our model collection shows a high
variation. For instance, for three out of 20 model pairs – the
model pairs from the merger – more than 90% of the element-
ary correspondences are part of complex correspondences. In
turn, six out of 20 model pairs show only elementary corres-
pondences.

We evaluated the performance of the matchers in terms of
precision and recall [29]. Precision is the fraction of found ele-
mentary correspondences that that is correct, i. e., these corres-
pondences have also been found by process analysts. The re-
call is the fraction of correct elementary correspondences that
is found. The F-Score combines precision and recall in one
value. We also computed the Overall score, an alternative metric

2 Documentair structuurplan: http://www.model-dsp.nl/

http://www.model-dsp.nl/

66 constructing alignments

that has specifically been developed for measuring the quality
of schema matches [130]. All metrics are defined for element-
ary correspondences, so that complex correspondences are im-
plicitly covered. Still, we also distinguished the recall for ele-
mentary correspondences that are part of any complex corres-
pondences and those that are not. This allows for conclusion on
the ability of the matchers to detect complex correspondences.
All metrics are based on the following sets.

Ch Elementary correspondences identified
by process analysts.

CCh ⊆ Ch Elementary correspondences that are
part of a complex correspondence.

CEh := Ch \ CCh Elementary correspondences that are
not part of a complex correspondence.

Cm, CCm, CEm Analogously defined sets of corres-
pondences that are identified by
matcher m.

Based on these sets, the metrics for the evaluation of matchers
are defined as follows.

precision := |Cm ∩ Ch|/|Cm|

recall := |Cm ∩ Ch|/|Ch|
recall-elementary := |CEm ∩ CEh|/|CEh|
recall-complex := |CCm ∩ CCh|/|CCh|
F-score := 2 · (precision · recall)/(precision+ recall)

Overall := recall · (2− 1/precision)
For our evaluation, we created five matchers within the ICoP
framework.
Baseline Matcher. This matcher realises the greedy graph match-

er presented in [128] and consists of a Wrapup Searcher, a
Graph Edit Distance Evaluator, and a Mapping Similarity
Selector. This matcher identifies solely elementary corres-
pondences and does not consider potential complex corres-
pondences. Still, it finds these correspondences with high
precision and recall. Therefore, we use it as a baseline bench-
mark for our framework, which focusses on improving res-
ults with respect to complex correspondences.

Matcher A. This matcher comprises all presented searchers and
a Look Ahead Match Similarity Selector. It demonstrates the
pure performance of our searchers.

Matcher B. This matcher extends Matcher A by incorporating all
boosters introduced as part of the ICoP framework. This
matcher illustrates the impact of boosters on the matching
process.

Matcher C. This matcher consists of all searchers, but in contrast
to Matcher A, it takes the evaluation of (partial) alignments

3.4 experimental evaluation 67

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Baseline Matcher A Matcher B Matcher C Matcher D

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Precision Recall Recall
Elementary

Recall
Complex

F-Score Overall

Baseline Matcher A Matcher B Matcher C Matcher D

Figure 17: Metrics derived for the ICoP matchers.

into account when selecting an alignment. It relies on the
Path Relation Evaluator and a Look Ahead Combined Se-
lector.

Matcher D. This matcher consists of all searchers and evaluates
partial alignments, but uses another evaluator than Matcher
C, i. e., a Graph Edit Distance Evaluator.

Matchers A and B, as well as C and D, are similar. The first pair
of matchers relies on the confidence scores assigned to potential
correspondences to build up the alignment. The second pair of
matchers uses a combined approach that also utilises the scores
derived by evaluator components.

Figure 17 depicts the results of applying these five matchers
to all 20 model pairs. It shows the precision, recall, F-Score,
and Overall for one specific configuration of each matcher that
maximises the F-score for the whole model collection. It also
highlights the recall for elementary and complex correspond-
ences separately. Although the Baseline Matcher is not meant
to detect complex correspondences, it returns some. Several of
the identified elementary correspondences are actually part of a
complex correspondence.

The results show that the architecture works. It has an ad-
aptable modular setup and we have been able to reproduce the
results obtained by the more rigid matcher presented in [128].
The results also show that the architecture can be used to pro-
duce matchers that detect complex correspondences and that
their recall is better than that of our baseline matcher. Unfor-
tunately, the complex correspondences improved recall at the
expense of precision, leading to an F-Score that is slightly lower
than that of the baseline matcher. The comparison of the res-
ults for Matcher A and Matcher B reveals that the application
of boosters increased the precision, at the cost of decreased re-

68 constructing alignments

call. Similarly, the Path Relation Evaluator in Matcher C led
to a better precision than the Graph Edit Distance Evaluator in
Matcher D, which, again, is traded for recall to a certain extent.

We observed a large difference between the results with re-
spect to the origin of the process models. As indicated, three
model pairs stem from a comparison in a merger, while 17 ori-
ginate from a comparison of standard processes to their imple-
mentations. The results for the merger model pairs were much
worse – the F-Score has been around 0.3 – than the results for
the standard process comparison pairs. Qualitative analysis of
the results revealed that the modest performance of the matchers
for the merger scenario was caused by heterogeneous activity la-
bels. We conclude that, in order for the current matchers to work,
there must be some level of similarity between activity labels of
corresponding activities.

The models used in the experiment are different from those
that we expect in the context of behaviour consistency analysis.
In particular in the merger scenario, the models for which we
construct an alignment capture different business processes, i. e.,
different originals have been abstracted by the models. Hence, a
rather high terminological heterogeneity is no surprise for these
models. They are grounded on completely different vocabular-
ies of concepts as established in the organisations that should be
merged. This raises the question to which extent terminological
heterogeneity can be expected to hold for process models that
capture a common process for different purposes. The focus on
a common process within one organisation suggests that the ter-
minological heterogeneity between such models can be expected
to be less strong than observed for the merger scenario. However,
we miss any experimental evidence for this assumption.

3.5 conclusion

In this chapter, we focussed on the construction of an alignment
between process models – a prerequisite for any analysis of their
behaviour consistency. We clarified the basic concepts of align-
ments and formally defined them for net systems. Further, we
discussed the large body of work on model heterogeneity and
related it to the setting of process models. A review of matching
techniques for conceptual models in general revealed that there
has been hardly any work on the identification of complex cor-
respondences between model elements. For process models in
particular, we are not aware of any work addressing this prob-
lem.

This points to a severe issue. Even models created of a single
business process for the same purpose may show differences in
the assumed abstraction level. Once process models are created

3.5 conclusion 69

for different purposes, such conceptual heterogeneity is the rule
not the exception. Hence, there is great demand for techniques
that identify complex correspondences between process models.
Despite this fact, the problem has been largely neglected in re-
search.

The ICoP framework can be seen as a first step towards ad-
vancing the identification of correspondences between process
models. It provides a modular and adaptable architecture for
the implementation of matchers, by splitting up matchers into
searcher, booster, evaluator and selector components. This al-
lows for the development of matchers that detect complex 1:n
correspondences. It can be extended towards complex n:m cor-
respondences, even though this may require new heuristics to
select groups of activities for analysis. The combinatorial prob-
lem is increased even further for this kind of correspondences.

Our experimental results highlight that we are able to identify
a significant number of complex 1:n correspondences. Although
this demonstrates the potential of our framework for improving
matching results, we also explicated that, compared to existing
1:1 matchers, the increase in recall is often traded for a decrease
in precision. Finally, a minimal level of textual similarity for
similar activities is required for the matchers to produce accept-
able results. In our experiments, this requirement was met if
a standard process was matched with its implementations, but
not for the case of models stemming from different organisations.
Against the background of different modelling purposes, the ex-
tent to which correspondences may be discovered depends on
the impact of the modelling purpose on the used terminology.
For various modelling drivers, this impact can be assumed to be
rather modest. For instance, models created for documentation
and models created for automation are likely to refer to the same
business objects as standardised by the terminology of an organ-
isation. However, we can also think of exceptional cases. For
instance, models created for certification may explicitly deviate
from the terminology of an organisation and adopt the termino-
logy of the certification body.

We conclude that the construction of alignments between pro-
cess models is a conceptually challenging task. A full-fledged
automatic identification of complex correspondences does not
appear to be realistic. However, the ICoP framework shows that
at least semi-automated support for the identification of com-
plex correspondences can be achieved. As such, the framework
forms the basis for future investigations in this area.

Part II

F O U N D AT I O N S O F B E H AV I O U R
C O N S I S T E N C Y

4
B E H AV I O U R A L P R O F I L E S

This chapter is based on results published in [504, 505, 508].

A B

C

D A1 A2

E

D

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E

→

→

A2
→

+
→

→ →

→
→

+

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

Behavioural
Profile

Behavioural
Profile

A D

A
D

A D
+

+
→

→

Behavioural profiles are an abstraction of the behaviour of a
net system. Although the consistency analysis as proposed

in this work is grounded on these profiles, they are a generic
behavioural model and independent of a certain use case. This
chapter is dedicated to the definition of different variants of be-
havioural profiles along with a discussion of their properties.
Section 4.1 focusses on the notion of a behavioural profile. In
Section 4.2, we extend this notion, which yields the causal beha-
vioural profile. We lift both concepts to labelled net systems in
Section 4.3. Section 4.4 is devoted to equivalences that ground
in behavioural profiles. Section 4.5 reviews related behavioural
concepts, before Section 4.6 concludes this chapter.

73

74 behavioural profiles

4.1 the notion of a behavioural profile

This section presents basic definitions for behavioural profiles.
Once the notion of a behavioural profile has been introduced,
we elaborate on properties of such a profile.

Definitions

The behavioural profile captures behavioural characteristics of
a net system under the assumption of trace semantics. Behavi-
oural profiles capture the order of potential occurrences of trans-
itions. They define order dependencies on the level of pairs of
transitions. In particular, dependencies between all occurrences
of two transitions are considered.

The definition of a behavioural profile is grounded on the no-
tion of weak order. Informally, two transitions t1 and t2 are in
weak order, if there exists a firing sequence starting in the initial
marking in which t1 occurs before t2.

Definition 4.1.1 (Weak Order)
Let (N,M0) be a net system with N = (P, T , F) and T ′ ⊆ T a set
of transitions. A pair of transitions (x,y) ∈ (T ′ × T ′) is in the
weak order relation � over T ′, iff there exists a firing sequence σ =

〈t1, . . . , tn〉 with (N,M0)[σ〉 and indices j, k ∈ N, 1 6 j < k 6 n,
for which holds tj = x and tk = y.

Depending on how two transitions of a system are related by
weak order, we define three relations forming the behavioural
profile. The behavioural profile is defined over a set of trans-
itions of a net system.

Definition 4.1.2 (Behavioural Profile)
Let S = (N,M0) be a net system with N = (P, T , F) and T ′ ⊆ T a
set of transitions. A pair of transitions (x,y) ∈ (T ′ × T ′) can be
in the following profile relations:
◦ The strict order relation , iff x � y and y 6� x.
◦ The exclusiveness relation +, iff x 6� y and y 6� x.
◦ The interleaving order relation ||, iff x � y and y � x.

B = { ,+, ||} is the behavioural profile over T ′.

For a net system S = (N,M0) with N = (P, T , F), we refer to the
behavioural profile over T as the behavioural profile of S. The
exemplary net systems in Figure 18 illustrate the relations of the
behavioural profile for two dedicated transitions A and B. Fig-
ure 18a shows that the strict order relation enforces neither the
occurrence of the first transition, nor of the second transition.
For the two transitions in Figure 18a, it holds A B. Hence,
the strict order relation captures the fact that all occurrences of
both transitions, A and B, are ordered in all firing sequences

4.1 the notion of a behavioural profile 75

A

B

(a) Strict order.

A B

(b) Exclusiveness.

A B

(c) Exclusiveness.

A B

(d) Interleaving order.

A B

(e) Interleaving order.

Figure 18: Net systems that illustrate the relations of the behavioural
profile for two transitions A and B.

reachable from the initial marking. In the system in Figure 18b,
both transitions are exclusive to each other, A+ B. That is, both
transitions are never observed together in any firing sequence,
and there may be a firing sequence that contains none of them.
Even if the initial marking is dead, i. e., only the empty firing
sequence is reachable from the initial marking, transitions are re-
lated according to the behavioural profile. In this case, the weak
order relation is empty and all transitions are considered to be
exclusive to each other. This case is illustrated in Figure 18c. Fig-
ure 18d and Figure 18e exemplify two reasons for interleaving
order of two transitions, A||B. Potential concurrent enabling of
two transitions or multiple interleaved firings of two transitions
cause interleaving order between both transitions.

Properties

The introduced terminology for behavioural profiles is inspired
by common notions known from order theory [101]. Still, none
of the presented relations is a preorder, a partial order, or a total
order, if the behaviour of the net system is not restricted. In par-
ticular, the strict order relation is not a strict partial order since
it is not necessarily transitive for the generic class of net systems.
Despite this fact, the definition of the profile relations implies
certain properties. We observe that the relations are either anti-
symmetric and irreflexive, or symmetric.

76 behavioural profiles

Property 4.1.1. For any behavioural profile B = { ,+, ||} over a
set of transitions T ′ holds that the relation is antisymmetric
and irreflexive, whereas relations + and || are symmetric.

Let �−1= {(y, x) ∈ T ′ × T ′ | x � y} the inverse relation for �.
Then, this property follows immediately from the definition of
strict order as = � \ �−1, exclusiveness as + = (T ′ × T ′) \ (�
∪ �−1), and interleaving order as || = � ∩ �−1. This definition
also shows that the profile relations are mutually exclusive. In
other words, a pair of transitions is only in one of the behavi-
oural relations.

Property 4.1.2. For any behavioural profile B = { ,+, ||} over
a set of transitions T ′ holds that the relations , +, and || are
mutually exclusive.

We further define the inverse relation of the strict order relation
as −1 = {(y, x) ∈ (T ′ × T ′) | x y}. We refer to −1 as the
reverse strict order relation. Together with this relation, the profile
relations show another important property. The four relations
yield a partitioning of the Cartesian product of transitions over
which they are defined.

Property 4.1.3. For any behavioural profile B = { ,+, ||} over a
set of transitions T ′ holds that the relations , −1 , +, and ||

partition T ′ × T ′.
Again, this property is verified by the definition of the profile
relations based on the weak order relation. We earlier discussed
the characterisation of the three profile relations using the weak
order relation. Reverse strict order is defined as −1 = �−1 \ �.

Cyclic net structures affect the profile relations, as illustrated
by the example in Figure 18e. Here, transitions A and B are part
of a circuit. This yields interleaving order not only for the trans-
ition pair (A,B), but also for the self-relations of both transitions.
The identity relation over transitions is partitioned by interleav-
ing order and exclusiveness.

Property 4.1.4. For any behavioural profile B = { ,+, ||} over
a set of transitions T ′ holds that a transition t ∈ T ′ is either
exclusive to itself, t+ t, or in interleaving order to itself, t||t.

To verify this property, we have to consider two cases, (t, t) ∈ �
and (t, t) 6∈ �. For the former, it holds that (t, t) ∈ � implies
(t, t) ∈ �−1, which yields t||t. For the latter, we have the in-
verse implication, i. e., (t, t) 6∈ � implies (t, t) 6∈ �−1 and, there-
fore, t+ t. Consequently, the profile relations capture whether a
transition may occur at most once, t+ t, or whether it may occur
multiple times in a firing sequence of the net system, t||t.

Interleaving order as a self-relation may be caused by a cir-
cuit. However, it may also be due to potential self-concurrent
enabling of the transition. For instance, it holds A+A and B||B
in Figure 19.

4.2 the notion of a causal behavioural profile 77

B

A

Figure 19: System with potential self-concurrent enabling.

4.2 the notion of a causal behavioural profile

After we introduced the notion of a behavioural profile, this sec-
tion presents an extended variant of this behavioural abstrac-
tion. Behavioural profiles relate pairs of transitions according to
their order of potential occurrence. A behavioural profile provides
a rather coarse-grained behavioural abstraction. It is extended
to take optionality and causality of transition occurrences into
account.

Optionality of a transition is given, if there is a firing sequence
starting in the initial marking that does not contain the transition
and leads to a marking in which the transition is dead. Option-
ality can be lifted from single transitions to sets of transitions. A
set of transitions is considered to be jointly optional, if all trans-
itions are optional and any firing sequence starting in the initial
marking that contains at least one of the transitions must not
lead to a marking in which the remaining transitions are dead.
As illustrated in Figure 20a and Figure 20b, this property can-
not be derived from the knowledge about optionality of single
transitions. In both systems, B and C are optional, but only in
Figure 20b the set of transitions {B,C} is jointly optional.

Closely related to optionality is causality of transition occur-
rences. This property requires that one transition can only occur
after the occurrence of another transition. Hence, causality com-
prises two aspects, a certain order of occurrences and a causal
coupling of occurrences. The former is addressed by the beha-
vioural profile in terms of the strict order relation, whereas the
latter is not captured. For instance, B is a cause of C in Fig-
ure 20b, but not in Figure 20a, even though both models show
equal behavioural profiles.

We cope with causal dependencies between transition occur-
rences by extending the behavioural profile. The causal behavi-
oural profile is a more fine-grained behavioural abstraction that
provides a closer approximation of trace semantics. Technically,
the causal behavioural profile introduces a co-occurrence rela-
tion for pairs of transitions. Two transitions are co-occurring, if
any firing sequence starting in the initial marking that contains
the first transition either contains the second transition or can be

78 behavioural profiles

A

B

C

D

(a) B and C are op-
tional.

A

B

C

D

(b) B and C

are jointly
optional.

A

B

C

D

(c) Hidden
causality
for (B,C).

A

D

B C

(d) Hidden causality
for (B,C).

Figure 20: Net systems that illustrate the concepts of optionality and
causality of transition occurrences.

continued such that it contains the second transition eventually.
This relation captures only the joint occurrence, but does not im-
pose any restriction on the order of occurrence within a firing
sequence.

Definition 4.2.1 (Causal Behavioural Profile)
Let S = (N,M0) be a net system with N = (P, T , F), T ′ ⊆ T a set
of transitions, and B = { ,+, ||} the behavioural profile over T ′.
◦ A pair (x,y) ∈ (T ′ × T ′) is in the co-occurrence relation �, iff

for all firing sequences σ with (N,M0)[σ〉(N,M′) and x ∈ σ
it holds either y ∈ σ or y is not dead in M′.

◦ CB = { ,+, ||,�} is the causal behavioural profile over T ′.

For a net system S = (N,M0) with N = (P, T , F), we refer to
the causal behavioural profile over T as the causal behavioural
profile of S. Trivially, the co-occurrence relation subsumes the
identity relation over transitions. Hence, it holds t � t for all
transitions over which the causal behavioural profile is defined.

A

B

Figure 21: System with an L3-live transition, which can be fired infin-
itely often.

The definition of co-occurrence does not require any notion
of final states of the net system. Hence, co-occurrence can be

4.2 the notion of a causal behavioural profile 79

decided even if a state (or a set of states) is never left. As an
example, consider the net system in Figure 21. Here, transition B
is L3-live [329], meaning that it appears infinitely often in some
firing sequence starting in the initial marking. It holds B �
A as every firing sequence that contains transition B, contains
transition A as well. It holds A � B, because transition B is
not dead in the marking reached from the initial marking by
firing A.

The co-occurrence relation of the causal behavioural profile
allows for conclusions on optionality and causality. A single
transition t ∈ T of a net system S = (N,M0), N = (P, T , F), is
optional, if t0 6� t for some transition t0 enabled in the initial
marking, (N,M0)[t0〉. A set T ′ ⊆ T of transitions is optional,
if all transitions themselves are optional and they are pairwise
co-occurring to each other, (T ′ × T ′) ⊆ �. A causal dependency
between two transitions t1, t2 ∈ T is observed, if they are in strict
order, t1 t2, and occurrence of the second implies occurrence
of the first, t2 � t1.

In contrast to the behavioural profile, the causal behavioural
profile differs for both systems in Figure 20a and Figure 20b. Fur-
ther, we observe causality for transitions B and C in Figure 20b,
but not in Figure 20a according to the relations of the causal
behavioural profile. However, the systems in Figure 20c and
Figure 20d show equal profiles despite their different trace se-
mantics. The difference between these systems is not manifes-
ted in a dependency between all occurrences of a pair of trans-
itions. Instead, the difference stems from different interleavings
of transitions B and C, which is neglected by the relations of the
behavioural profile. As a consequence, the interpretation of caus-
ality based on causal behavioural profiles differs from common
definitions of causality. Those notions typically consider causal
dependencies between single occurrences of transitions, e. g., the
response / leads-to dependencies that are defined in temporal lo-
gic [342, 137, 452, 462]. Such a notion of causality between trans-
itions B and C in Figure 20c and Figure 20d is hidden when
using a behavioural abstraction such as causal behavioural pro-
files.

The co-occurrence relation of the causal behavioural profile is
largely independent of the relations of the behavioural profile.
The only two conclusions that can be drawn relate to the co-
occurrence of dead transitions and exclusive transitions.

Property 4.2.1. For any transition holds, if it is dead in the initial
marking, it is co-occurring with all other transitions of the net
system.

If a transition is dead in the initial marking of the net system,
it cannot be enabled in any reachable marking. Hence, there

80 behavioural profiles

A

B

Figure 22: System with a dead transition.

is no firing sequence comprising the transition, so that the co-
occurrence holds trivially regarding all other transitions.

We illustrate this property with the net system depicted in Fig-
ure 22. Here, transition B is dead. As there is a firing sequence
starting in the initial marking and containing transition A, we
arrive at A 6� B. However, it holds B � A. All firing sequences
containing transition B, contain transition A as well or lead to a
marking in which transition A is not dead. This requirement is
trivially satisfied by the absence of any firing sequence contain-
ing transition B.

Property 4.2.2. For any pair of transitions holds, if they are not
dead in the initial marking and exclusive according to the beha-
vioural profile, they are not co-occurring in either direction.

Since both transitions are not dead, each transition can be part
of at least one firing sequence that starts in the initial marking.
Then, this property follows immediately from the definition of
the respective relations. Exclusiveness requires the absence of
a firing sequence that starts in the initial marking of a net sys-
tem and comprises both transitions. Co-occurrence, in turn, re-
quires that such a firing sequence that contains one of the trans-
itions either contains the other transition or leads to a marking
in which the other transition is not dead. A pair of transitions
cannot satisfy both requirements.

The causal behavioural profile is an extension of the behavi-
oural profile. In the remainder of this thesis, therefore, we use
the term behavioural profile to refer to both concepts whenever
the difference between the causal and non-causal variant is not
of importance.

4.3 on labelled systems

Up to now, we discussed the concept of behavioural profiles
solely for unlabelled net systems. Still, behavioural profiles can
be lifted to labelled net systems to come to a behavioural abstrac-
tion over labels of a net system. In this section, we first introduce
preliminaries for labelled systems. Then, we define the behavi-

4.3 on labelled systems 81

A

E

B C

C B D

Figure 23: Labelled net system.

oural profile and the causal behavioural profile over the labels
of a net system.

Preliminaries

A labelled net system comprises a net system and labelling in-
formation for all transitions.

Definition 4.3.1 (Labelled Net System)
A labelled net is a tuple N = (P, T , F,Λ, λ), where (P, T , F) is a net,
Λ is a set of labels, and λ : T → Λ is a labelling function. A
system (N,M0) is called labelled net system, if N is a labelled net.

Figure 23 depicts an example labelled net system. This net sys-
tem comprises two pairs of transitions that carry equal labels,
B and C, respectively. For a labelled net system (N,M0) with
N = (P, T , F,Λ, λ), any firing sequence σ = 〈t1, . . . , tn〉 is inter-
preted as a sequence of labels σλ = 〈l1, . . . , ln〉 of the respective
transitions, λ(ti) = li for all 1 6 i 6 n. As a short-hand notation,
we write l ∈ σ with l ∈ Λ if there exists a transition t ∈ T with
t ∈ σ and λ(t) = l.

Behavioural Profile on Labels

To define the behavioural profile on labels, we lift the weak order
relation to labels as follows. Two labels are in weak order, if and
only if two transitions carrying those labels are in weak order.

Definition 4.3.2 (Weak Order on Labels)
Let S = (N,M0) be a labelled system with N = (P, T , F,Λ, λ), �
the weak order relation over T , and Λ′ ⊆ Λ a set of labels. A pair
of labels (l1, l2) ∈ (Λ′ ×Λ′) is in the weak order relation on labels
�Λ over Λ′, iff there are transitions x,y ∈ T such that λ(x) = l1,
λ(y) = l2, and x � y.

82 behavioural profiles

The relations of the behavioural profile are defined for labels as
follows.

Definition 4.3.3 (Behavioural Profile on Labels)
Let S = (N,M0) be a labelled system with N = (P, T , F,Λ, λ) and
Λ′ ⊆ Λ a set of labels. A pair of labels (l1, l2) ∈ (Λ′ ×Λ′) is in
the following profile relations on labels:
◦ The strict order relation Λ′ , if l1 �Λ′ l2 and l2 6�Λ′ l1.
◦ The exclusiveness relation +Λ′ , if l1 6�Λ′ l2 and l2 6�Λ′ l1.
◦ The interleaving order relation ||Λ′ , if l1 �Λ′ l2 and l2 �Λ′ l1.

The set BΛ′ = { Λ′ ,+Λ′ , ||Λ′} is the behavioural profile on labels
over Λ′.

We illustrate the relations of the behavioural profile on labels
with the example depicted in Figure 23. A transition labelled
with B is exclusive to a transition labelled with C. Once the
behavioural profile is lifted from transitions to labels, however,
both labels are in interleaving order. Even though there are mul-
tiple transitions carrying the label B, all of them are exclusive to
the transition labelled with D. Hence, the labels B and D are
exclusive according to the behavioural profile on labels.

The behavioural profile on labels is derived directly from the
behavioural profile of a net system. Consequently, it is com-
puted efficiently once the behavioural profile is known.

Proposition 4.3.1. The following problem can be solved in O(n2)
time with n as the number of transitions:
Given the behavioural profile of a labelled net system, to derive its be-
havioural profile on labels.

Proof. Both, deriving the weak order relation on labels and set-
ting the relations of the behavioural profile on labels, requires
iteration over the Cartesian product of transitions of the net sys-
tem. Assuming that each label relates to at least one transition,
the number of labels is smaller or equal than the number of
transitions. Thus, overall time complexity is O(n2) with n as the
number of transitions.

Causal Behavioural Profile on Labels

Similar to the behavioural profile, the co-occurrence relation of
the causal behavioural profile is lifted to labels of transitions.

Definition 4.3.4 (Causal Behavioural Profile on Labels)
Let S = (N,M0) be a labelled system with N = (P, T , F,Λ, λ),
Λ′ ⊆ Λ a set of labels, and BΛ′ = { Λ′ ,+Λ′ , ||Λ′} the behavioural
profile on labels over Λ′.
◦ A pair of labels (l1, l2) ∈ (Λ′ × Λ′) is in the co-occurrence

relation on labels�Λ′ , iff for all firing sequences σ starting in

4.4 behavioural profile equivalences 83

M0, (N,M0)[σ〉(N,M′), with l1 ∈ σ it holds either l2 ∈ σ or
there is a transition t ∈ T such that λ(t) = l2 and t is not
dead in M′.
◦ The set CBΛ′ = { Λ′ ,+Λ′ , ||Λ′ ,�Λ′} is the causal behavioural

profile on labels over Λ′.

For the example shown in Figure 23, for instance, co-occurrence
is observed from label B to label C, but not vice versa. Any
firing sequence starting in the initial marking that contains a
transition labelled with B, either contains a transition labelled
with C or can be continued with a transition labelled with C.
The opposite, C� B, does not hold true.

In contrast to the behavioural profile, the causal behavioural
profile on labels cannot be derived from the causal behavioural
profile directly. Co-occurrence of labels cannot be deduced from
co-occurrence of transitions when considering solely pairs of
transitions. Consider labels A and C in the net system in Fig-
ure 23. Both labels are co-occurring according to Definition 4.3.4
as every firing sequence starting in the initial marking that con-
tains the label A contains the label C or can be continued with
label C. However, there is no co-occurrence between the trans-
ition labelled with A and those that are labelled with C.

After we elaborated on the relation of behavioural profiles and
their counterparts on labels, we restrict the discussion to pro-
files for unlabelled net systems in the remainder of this thesis.
According to Proposition 4.3.1, however, all computations that
utilise non-causal behavioural profiles and are done for unla-
belled systems can be lifted to labelled systems with a minor
computational overhead.

4.4 behavioural profile equivalences

The abstraction of behavioural profiles may be utilised to com-
pare the behaviour of two net systems. This section introduces
equivalences based on behavioural profiles. Later, we discuss
their relation to common notions of behaviour equivalence.

Definitions

First, the notion of a behavioural profile that focusses on the
order of potential occurrence gives rise to a definition of equival-
ence. Two net systems are behavioural profile equivalent, if the
relations of their behavioural profiles coincide with each other.
We define this equivalence under the assumption of equal sets
of transitions of two systems. Still, the definition may be lifted
to any isomorphism between the transitions of two net systems.

84 behavioural profiles

Definition 4.4.1 (Behavioural Profile Equivalence)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems and B1 =

{ 1,+1, ||1} and B2 = { 2,+2, ||2} their behavioural profiles. S1
and S2 are behavioural profile equivalent denoted by S1 ≡ S2, iff
 1 = 2, +1 = +2, and ||1 = ||2.

In the same vein, an equivalence notion is grounded on the no-
tion of a causal behavioural profile. It requires all relations of
the causal behavioural profile of two net systems to coincide
with each other.

Definition 4.4.2 (Causal Behavioural Profile Equivalence)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems and
B1 = { 1,+1, ||1,�1} and B2 = { 2,+2, ||2,�2} their behavi-
oural profiles. S1 and S2 are causal behavioural profile equivalent
denoted by S1 ≡C S2, iff they are behavioural profile equivalent
and�1 =�2.

For both equivalence definitions, the characteristic properties of
an equivalence notion are indeed satisfied. That is, the presented
relations are reflexive, symmetric, and transitive.

Theorem 4.4.1. The relations ≡ and ≡C are equivalences.

Proof. Both relations are reflexive, symmetric, and transitive.
Reflexivity. For any net system S it holds S ≡ S and S ≡C S as

the relations of the (causal) behavioural profile are uniquely
derived from the existence of certain firing sequences.

Symmetry. Let S1 and S2 be net systems. Then, S1 ≡ S2 im-
plies S2 ≡ S1 and S1 ≡C S2 implies S1 ≡C S2. This follows
from the symmetry of set equivalence for the relations of
the (causal) behavioural profile in Definition 4.4.1 and Defin-
ition 4.4.2.

Transitivity. Let S1, S2, and S3 be net systems. Then, S1 ≡ S2
and S2 ≡ S3 implies S1 ≡ S3, and S1 ≡C S2 and S2 ≡C S3
implies S1 ≡C S3. This follows directly from the transitivity
of set equivalence for the relations of the (causal) behavi-
oural profile in Definition 4.4.1 and Definition 4.4.2.

Figure 24 illustrates equivalences based on (causal) behavioural
profiles. All three net systems show equal behavioural profiles.
The order of potential occurrence is equal for all pairs of trans-
itions. For instance, transitions A and E are in strict order Trans-
itions C and E are in interleaving order. Even though the three
systems show differences in terms of trace semantics related to
the circuits, i. e., transitions B, C, and E, the order dependencies
between all occurrences of two transitions are equal in all three
systems. In contrast, these differences partially affect the causal

4.4 behavioural profile equivalences 85

A

C

B

E

D

(a)

A

E

D

B C

(b)

A

E

D

CB

(c)

Figure 24: All three systems are behavioural profile equivalent; (a) and
(b) are causal behavioural profile equivalent.

behavioural profile. Only the systems in Figure 24a and Fig-
ure 24b are causal behavioural profile equivalent. Both systems
show co-occurrence for transitions B and C in both directions. In
the system in Figure 24c, both transitions are not co-occurring.
As an example, a firing sequence consisting of transitions A, B,
and D leads to a marking in which transition C is dead even
though it has not been fired. Hence, it holds B 6� C for the
system in Figure 24c.

Behaviour Equivalences

Behavioural profile equivalences relate to common notions of
behaviour equivalence that are grounded on different semantics
for behavioural models. The seminal work of van Glabbeek [474,
476] classifies these semantics in the linear time – branching
time spectrum, either for concrete sequential behavioural mod-
els [474] or for sequential behavioural models with silent trans-
itions [476]. We focus on the former, as behavioural profiles are
grounded on the observable behaviour of net systems.

The linear time – branching time spectrum for sequential be-
havioural models defines 11 semantics that yield 11 notions of
behaviour equivalence. Branching bisimulation is seen as the up-
per bound of this spectrum, which requires that two behavioural
models can simulate one another [478]. Hence, not only the ob-
servable behaviour, firing sequences in net systems, but also the
moment of choice is taken into account. The lower bound of this
spectrum is trace equivalence as introduced by Hoare [213]. Ap-
plied to net systems, it requires equivalence of the sets of firing
sequences. Besides these two poles, various equivalences have

86 behavioural profiles

been proposed [474] and advocated to be applied in the field of
business process analysis [209].

All the aforementioned equivalences assume sequential beha-
vioural models, also referred to as interleaving semantics. Equi-
valences that are based on non-sequential semantics [354, 177,
50] are typically neglected for the comparison of business pro-
cesses as all transitions may be split up into two transitions in-
dicating the start and the end of the transition, respectively. For
models extended in this way, equivalences for sequential behavi-
oural models are applied, cf., [234]. A survey of equivalences for
net systems under sequential and non-sequential semantics can
be found in [363].

Behavioural profiles are an abstraction of trace semantics. This
already suggests that equivalence of (causal) behavioural pro-
files is a weaker criterion for the comparison of two net systems
than trace equivalence. The two net systems depicted in Fig-
ure 24a and Figure 24b illustrate that equivalence of causal be-
havioural profiles does not coincide with trace equivalence. For
instance, the system in Figure 24b allows for the trace σ = 〈A,C〉,
which is not possible in the system in Figure 24a. Neverthe-
less, we observe that trace equivalence implies the equivalence
of causal behavioural profiles and, therefore, of behavioural pro-
files.

Proposition 4.4.2. Every two net systems that are trace equivalent
are also causal behavioural profile equivalent.

Proof. If two net systems have the same set of traces, they end
up with equal weak order relations as those are built on the ex-
istence of a certain trace. Both systems have equal co-occurrence
relations, as co-occurrence of transitions is decided by exploit-
ing all possible continuations for a certain trace. Hence, both
systems are causal behavioural profile equivalent.

4.5 related behavioural concepts

The abstraction of behavioural profiles is related to other beha-
vioural concepts. First, this section reviews approaches to re-
lational semantics for the creation and analysis of behavioural
models. Second, we focus on behavioural relations that have
been proposed in process mining. This section closes with a dis-
cussion of behavioural profiles in the light of other approaches
to behavioural abstraction.

Relational Semantics

Relational semantics have been proposed to reason on the con-
sistency of hardware specifications [393]. The control logic cir-

4.5 related behavioural concepts 87

cuit of such a specification may be represented by a labelled net
system, in which each transition refers to a state change of a bin-
ary variable. The authors of [393] classify transitions of a net
system to be sequential or parallel. Two transitions t1 and t2
are sequential, if t1 precedes t2 in all traces reachable from the
initial marking. A formal definition of the assumed notion of
precedence is not presented, even though an example suggests
an interpretation for single transition occurrences. Hence, two
transitions that may be fired multiple times in alternating order
as part of a circuit would be considered to be sequential by the
notion of [393], but in interleaving order according to the behavi-
oural profile. In [393], the sequential and parallel relations along
with an exclusiveness relation are also defined for operations of
a programming language. This language is block-structured and
limited to acyclic programs. Consequently, the relations are dir-
ectly assigned to common language constructs, e. g., if-then-else
constructs. Besides these differences, the ideas in [393] can be
seen as the conceptual roots of behavioural profiles.

Behavioural relations are used for matching service descrip-
tions in [144]. The authors define sequential, choice, and paral-
lel relations for activities of BPEL processes. These relations are
directly assigned to control flow routing constructs of BPEL pro-
cesses. To take potential repetition of activities into account, all
three relations may have multiplicity annotations. With these no-
tions, different types of services matches are introduced. Beha-
vioural profiles can be seen as a generalisation of these relations.
They are defined for a generic behavioural model, whereas the
relations in [144] are restricted by the underlying behavioural
model. On the one hand, this model simplifies control flow de-
pendencies by neglecting BPEL transition conditions and join
conditions. On the other hand, BPEL processes do not support
the definition of arbitrary cycles, cf., [456].

The notion of an order matrix has been introduced in the con-
text of managing process variants [271, 272, 273, 274]. For pairs
of activities, this matrix captures their behavioural dependencies
by predecessor, successor, AND-block, XOR-block, and loop re-
lations. These relations partition the Cartesian product of activ-
ities of a process model, apart from the self-relations. When
neglecting the latter, these relations virtually coincide with the
relations of the behavioural profile. Predecessors and successors
are captured by strict order, XOR-blocks correspond to exclusive-
ness and interleaving order combines the AND-block and loop
relation. Apart from this difference, the behavioural profile can
be seen as a generalisation of the order matrix, which is intro-
duced only for block-structured process models.

Capturing the behaviour of a system by a set of relations
is also at the core of declarative approaches to process model-

88 behavioural profiles

ling. These approaches specify a set of constraints, typically
grounded on Linear Temporal Logic [298], which restricts the
possible behaviour of a system. Most prominently, the DecSer-
Flow language [452, 462, 327] defines a large set of behavioural
constraints, such as mutual exclusiveness, precedence, and re-
sponse dependencies. These constraints are more fine-grained
than the relations of the behavioural profile and allow for the
definition of dependencies between single occurrences of trans-
itions. The constraints imposed by the relations of the behavi-
oural profile, therefore, may be encoded in DecSerFlow. The
idea to employ enabling and disabling constraints to define a
behavioural model was also incorporated in the AMBER lan-
guage [140]. Finally, relational semantics have been advocated
for the specification of choreography models that focus on the
interactions between different behavioural models on a global
level [112]. The Let’s Dance language [532, 531, 113] is based on
behavioural relations such as precedes or inhibits dependencies
that are defined between interactions.

Behavioural Relations in Process Mining

Relations similar to those of the behavioural profile are applied
in process mining, which aims at the construction of process
models from event logs, i. e., observed execution sequences [99,
11, 457, 460, 446]. Early work on process mining extracts depend-
ency graphs from an event log [99, 11]. In [99], such a graph
is derived by investigating the direct successorship of activity
execution. Then, a probabilistic strategy is used to identify the
most probable execution dependencies in the graph. Other work
builds a dependency graph from an indirect follows-relation
between pairs of activity executions [11]. This relation holds
between two activities, if the first terminates before the second
is started in all observed execution sequences. Hence, this rela-
tion resembles the weak order relation from which we derive the
behavioural profile.

The α-algorithm aims at the construction of a WF-system from
sequences of observed transition occurrences [457, 446]. It fol-
lows the idea of exploiting direct successorship of transition oc-
currences. A directly follows relation contains all transitions that
succeed each other without any other transition occurring in
between. Based on this relation, the α-algorithm defines three re-
lations, →, #, and ||. The three relations stem from the different
combinations of the directly follows relation for pairs of trans-
itions. Relation # holds between ‘pairs of transitions that never
follow each other directly’ [457]. A causal dependency → holds if
a transition follows another transition in some firing sequence,
but not vice versa. The relation || captures transition pairs for

4.5 related behavioural concepts 89

A

B

C E

G

D

F

(a)

A
B

A B

C

C D

D

#
E F

E
F

(M1) G

G

A
B

A B

C

C D

D

E F

E
F

(M2) G

G

A
B

A B

C

C D

D

E F

E
F

(M3) G

G

Fo
ot

pr
in

t
��

A
lg

or
ith

m
1�

Lo
ok

�A
he

ad

� � # # # #
#�

� �
�

#

�

#
#

#
#

#

||
||

#
#

�

� �
� �

�

#�

##

� � # � #
�

�

#

�

#
||

Be
ha

vi
ou

ra
l P

ro
fil

e
Fa

r�
Lo

ok
�A

he
ad

|| ��

#

�

||##

�

|| � �
||||�||

�

|| �
#

#
||||# �

�

#
#

���

+ � � ��

+ �+
|||| ��

||

�

�

�
+

||
� ��

�
�

�
�

� ||

� �

�||
||
||

�

||
||

||

||

�

�

|| ||
||

�

�

|| ��+

Fo
ot

pr
in

t
2�

Lo
ok

�A
he

ad

(b)

Figure 25: Overview of different relational semantics; (a) depicts an
example net system, (b) shows three different relational se-
mantics for this net system.

which the first follows the second, and vice versa. This is sim-
ilar to the profile relations, which are deduced from different
combinations of the weak order relation. Recently, these rela-
tions have been called footprint [446]. A footprint shows similar
properties as the behavioural profile. The relations are mutu-
ally exclusive and partition the Cartesian product of transitions.
Yet, the relations are different. The underlying directly follows
relation emphasises direct causal dependencies, whereas the pro-
file relations focus on indirect dependencies. Actually, there is
a whole spectrum of relational semantics between the relations
of the footprint and those of the behavioural profile, see Fig-
ure 25. For the firing sequences allowed for by the net system
depicted in Figure 25a, the matrix (M1) depicts the relations of
the α-algorithm. These relations implement a look-ahead of one
when evaluating whether there exists an order dependency. As
an example, it holds B # D as both transitions never occur to-
gether. Conceptually, we may increase the look-ahead when de-
riving the relations. Matrix (M2) in Figure 25a shows relations
that are grounded on a follows relation that contains all pairs of
transitions that follow each other directly or with just a single
transition in between. Hence, it implements a look-ahead of two.
Then, we observe an order dependency for the aforementioned
transitions, B→ D, as there exist a firing sequence in which B is
followed by first E and then D. However, we do not observe any

90 behavioural profiles

sequence in which D is followed by B directly or with just one
transition occurring in between (two transitions, E and F, have
to occur in between). Following this line, the relations of the
behavioural profile implement a far-look-ahead. Even though
transitivity of the strict order relation holds solely for behavi-
oural profiles of a certain class of net systems, the relations of
the behavioural profile may be thought of the transitive closure
of the order dependencies. Taking up the example again, we
observe interleaving order for both transitions, B||D, as an occur-
rence of Bmay be followed by an occurrence ofD, and vice versa.
Information on ordering in cyclic structures is lost, whereas we
obtain order dependencies that are independent of any trans-
ition occurrences that may happen in between. In contrast to
the footprint, the behavioural profile captures exclusiveness for
transitions do not occur together at all.

The look-ahead of one of the footprint also explains why the
α-algorithm does not discover certain control flow constructs,
such as loops of length one and two, and non-free-choice con-
structs. These constructs require increasing the look-ahead. Ex-
tended versions of the α-algorithm, the α+-algorithm and the
α++-algorithm, incorporate respective relations. To cope with
control flow loops of length two, the α+-algorithm redefines the
aforementioned footprint relations [104, 105]. By investigating
not only direct successorship of transition occurrences but se-
quences of three transitions, multiple interleaving occurrences
of two transitions and actual parallelism are distinguished. The
α++-algorithm aims at mining non-free-choice constructs and
introduces further behavioural relations [512]. In particular, this
algorithm leverages an indirect causality relation. It captures
pairs of transitions that follow each other indirectly. This rela-
tion is close to our indirect strict order relation, yet different. It
is sensitive to certain split and join patterns between the occur-
rences of two transitions, see [512]. The idea behind is to capture
only indirect dependencies that are actually causalities, whereas
our strict order relation also captures non-causal dependencies.

Further matrix-based representations of behaviour have been
proposed for process mining. Genetic mining leverages the no-
tion of a causal matrix [459, 106]. Such a matrix captures depend-
encies between net transitions by input and output condition
functions. Those associate subsets of preceding or succeeding
transitions to a single transition. Hence, they capture the com-
binations of transitions that must be fired to enable a certain
transition, or can be fired after a certain transition has been fired.
In contrast to our relations these relations assume a local per-
spective by focussing on direct predecessors and successors of
a transition. A global perspective is assumed by the follows and
precedes relations proposed to judge on the quality of mined pro-

4.5 related behavioural concepts 91

cess models [395]. For a pair of transitions, these relations cap-
ture whether the first is never, sometimes, or always followed
(preceded) by the second transition. There are various common-
alities between these relations and behavioural profiles. In fact,
the weak order relation underlying the behavioural profile cor-
responds to the follows relation with the values sometimes or
always. Two transitions in weak order follow each other either
in some or all firing sequences. As a consequence, the profile
relations can be derived from the follows and precedes relations.
For instance, two transitions that never follow and never precede
each other are exclusive in the behavioural profile. Transitions
that always follow or precede each other would by captured by
the co-occurrence relation of the causal behavioural profile.

We summarise that many relations proposed in the context of
process mining resemble the relations of the behavioural profile.
Still, process mining typically focusses on causal dependencies,
whereas the causal behavioural profile separates the order of
potential occurrences and co-occurrence dependencies.

Behavioural Abstractions

The approaches to relational semantics discussed earlier are not
intended to serve as a behavioural abstraction. In contrast, a
behavioural profile provides an abstraction of trace semantics of
a net system – a certain loss of behavioural detail is the desired
outcome.

Approximation of trace semantics of net systems has been the
motivation for the definition of causal footprints [470, 473]. Such
a footprint captures semantics for a set of transitions by two rela-
tions, look-back links and look-ahead links. For a transition t, a
look-back link defines a set of transitions of which one must have
occurred sometime before t. A look-ahead link for a transition t
defines a set of transitions, such that an occurrence of t is eventu-
ally followed by the occurrence of one of these transitions. A be-
havioural model is said to be consistent with a causal footprint, if
all firing sequences reachable from the initial marking satisfy the
constraints imposed by the footprint. Similar to behavioural pro-
files, causal footprints are a behavioural abstraction, so that net
systems with different trace semantics may show equal causal
footprints. However, unlike the notion of behavioural profiles,
there are also various causal footprints for a single net system.
It is suggested to address this issue by computing the closure
of causal footprints to obtain a ‘more informative footprint’ [470].
Still, this computation requires soundness of the underlying be-
havioural model and, therefore, is not applicable in the general
case.

92 behavioural profiles

A communication fingerprint is a behavioural abstraction that
focusses on potential interactions of a behavioural model [435,
337]. The concept has been defined for open net systems, i. e.,
net systems that are extended by means for synchronous and
asynchronous communication. The protocol induced by the net
system’s behaviour is abstracted by a communication fingerprint
as a set of constraints on message exchanges. In particular, mes-
sage occurrence counts are defined that impose boundaries and
dependencies regarding the cardinalities of consumed or pro-
duced messages. Communication fingerprints abstract from any
control flow dependencies and focus on the interactions. Hence,
this work is orthogonal to our work on behavioural profiles.

4.6 conclusion

This chapter introduced the notion of behavioural profiles. Beha-
vioural profiles capture behavioural characteristics of a net sys-
tem by relations between pairs of transitions. We introduced two
variants of behavioural profiles. The (non-causal) behavioural
profile focusses on the order of potential occurrences of trans-
itions. The causal behavioural profile extends the behavioural
profile by a relation that captures co-occurrence dependencies.

We showed that both notions are the basis for the definition
of equivalences. Behavioural profiles are an abstraction of the
trace semantics of a net system. Therefore, these equivalences
are weaker than trace equivalence.

5
C O M P U TAT I O N S O F B E H AV I O U R A L P R O F I L E S

This chapter is based on results published in [504, 505, 508, 502].

A B

C

D A1 A2

E

D

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E

→

→

A2
→

+
→

→ →

→
→

+

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

A D

A
D

A D
+

+
→

→

Compute
Profile

Compute
Profile

We introduced behavioural profiles as an abstraction of the
behaviour of a net system. The relations forming the be-

havioural profile follow from the existence of certain firing se-
quences. Hence, construction of a behavioural profile requires
the analysis of all firing sequences or of all paths of the state
space, respectively. This is known to require exponential space
and time for arbitrary net systems [279, 444]. For dedicated
classes of net systems, however, computation of behavioural pro-
files is efficient – requires low polynomial time.

In this chapter, we introduce techniques for the efficient com-
putation of behavioural profiles. In Section 5.1, we focus on
sound free-choice WF-systems. Systems in this class are known
to show a close relation between structure and semantics. We
leverage these results to derive behavioural profiles from the
net structure. Section 5.2 complements these results by showing
how structural decomposition of sound free-choice WF-systems

93

94 computations of behavioural profiles

is leveraged to support partial computation of behavioural pro-
files. Net systems that do not meet the assumption of soundness
and free-choiceness are addressed in Section 5.3. We introduce
the computation of behavioural profiles for a bounded net sys-
tem from its complete prefix unfolding. The latter refers to a
specific representation of the state space of the net system. Al-
though this technique is computationally hard, the underlying
formalism explicitly aims at representing the system’s behaviour
in a compact way. Then, we investigate the applicability of our
techniques in a real-world setting. Section 5.4 presents an imple-
mentation of all techniques for the computation of behavioural
profiles and reports on findings from experiments with model
collections from industry. Section 5.5 reviews work related to
the presented computation techniques. Finally, Section 5.6 con-
cludes this chapter.

5.1 computations for sound free-choice wf-systems

For the class of sound free-choice WF-systems, we derive the beha-
vioural profile directly from the net structure. Although we in-
troduced the soundness and free-choice property in Section 2.2,
the implications of these properties deserve further explanation.
Both properties together imply a tight coupling of syntax and
semantics of net systems [448, 234]. To discuss this coupling,
we need the notion of a home marking. For a net system S =

(N,M0), a marking M is a home marking of S, if it is reach-
able from every marking reachable from the initial marking, i. e.,
M ∈ [N,M′〉 for all markings M′ ∈ [N,M0〉.

In a live and bounded free-choice net system (N,M0), the
existence of a path from a place q to a place p, with Mp be-
ing a home marking, implies the existence of a firing sequence
that consists of all transitions on the path between q and p, cf.,
Lemma 4.2 in [234]. Soundness of a WF-system (N,Mi) implies
liveness of its short-circuit system (N′,Mi) [448]. All markings
reachable from the initial marking Mi in N are home markings
in (N′,Mi). Consequently, the result on the relation between the
existence of paths and according firing sequences is applicable
for paths in sound free-choice WF-systems. Further, our compu-
tations leverage that any sound free-choice WF-system is known
to be safe, cf., Lemma 1 in [448].

The soundness and free-choiceness properties are verified in
polynomial time. The free-choice property is decided based on
the structure of the net system, i. e., the flow relation. Soundness
of a net system is traced back to liveness and boundedness of the
short-circuit system. It is decided in polynomial time for free-
choice WF-systems [447]. Hence, deciding whether a given net

5.1 computations for sound free-choice wf-systems 95

system is a sound free-choice WF-system is done in polynomial
time to its size.

In the remainder of this section, first, we derive the relations of
the behavioural profile from the structure of a sound free-choice
WF-system. Second, we elaborate on the derivation of the co-
occurrence relation for sound free-choice WF-systems that are
S-systems, T-systems, or acyclic systems.

Derivation of the Profile Relations

To derive the relations of the behavioural profile, we need an aux-
iliary relation that captures concurrent enabling of transitions.
To this end, we rely on the concurrency relation as introduced
in [246, 247].

Definition 5.1.1 (Concurrency Relation)
Let (N,M0) be a net system with N = (P, T , F). The concurrency
relation ||co ⊆ T × T contains all transition pairs (x,y), such that
there is a marking M ∈ [N,M0〉 that enables them concurrently,
i. e., M >Mx +My.

Transitions that show interleaving order according to the behavi-
oural profile are not necessarily enabled concurrently in a mark-
ing reachable from the initial marking. Still, there is the follow-
ing dependency between interleaving order and the concurrency
relation.

Lemma 5.1.1. For any free-choice system holds, every pair of trans-
itions that is concurrent is also in interleaving order.

Proof. Let (N,M0) be a free-choice net system with N = (P, T , F),
x,y ∈ T , and x||coy. From the latter, we know that there is a
marking M ∈ [N,Mi〉 with M >Mx +My. There are two firing
sequences (N,M)[xy〉 and (N,M)[yx〉, which yields x � y and
y � x, i. e., interleaving order.

With this result, we relate structural relations between trans-
itions in sound free-choice WF-systems to the profile relations.
For a sound free-choice WF-system (N,Mi) with N = (P, T , F),
we say that two transitions x,y ∈ T are cyclic dependent, if x F+ y
and y F+ x. They are structurally ordered, if x F+ y and y��F

+ x,
and structurally exclusive, if x ��F

+ y and y ��F
+ x. Each of these

structural relations is close to one of the profile relations.

Lemma 5.1.2. For any sound free-choice WF-system holds, for every
two transitions that are not concurrent, interleaving order coincides
with cyclic dependency.

Proof. Let (N,Mi) be a sound free-choice WF-system with N =

(P, T , F), x,y ∈ T , and x��||coy.

96 computations of behavioural profiles

⇒ Let x||y and assume x��F+ y. Since it holds x||y, there is a fir-
ing sequence containing x before y. Let M1,M2 ∈ [N,Mi〉
be the markings before and after firing of x as part of this
firing sequence, i. e., (N,M1)[x〉(N,M2). Due to x ��F

+ y,
all places x• cannot affect the enabling of y. This, along
with soundness of the net system, implies that there is a
marking M3 ∈ [N,M2〉 enabling y for which holds M3 >
My +

∑
p∈x•(Mp). In other words, M3 is reachable from

M2, marks all places x•, and enables y. Then, there must
also be a marking M4 from which M3 is derived by firing of
transition x, (N,M4)[x〉(N,M3). Hence, M4 > Mx +My, a
contradiction with x��||coy. Following the same argument, the
assumption of y��F

+ x also results in a contradiction.
⇐ From x F+ y and y F+ x we know that, due to the soundness

and the free-choice property, there must be a firing sequence
containing both transitions in either order [234]. Hence, it
holds x � y and y � x, which yields interleaving order.

Structural exclusiveness is also related to the profile relations for
sound free-choice WF-systems.

Lemma 5.1.3. For any sound free-choice WF-system holds, for every
two transitions that are not concurrent, exclusiveness coincides with
structural exclusiveness.

Proof. Let (N,Mi) be a sound free-choice WF-system with N =

(P, T , F), x,y ∈ T , and x��||coy.
⇒ Let x+ y and assume x F+ y. Since x+ y, we know x 6� y.

As the system is sound, x must not be a dead transition. Let
M1,M2 ∈ [N,Mi〉 be the markings before and after firing
of x in a firing sequence, (N,M1)[x〉(N,M2). x F+ y im-
plies a firing sequence containing x and y due to the sound-
ness and the free-choice property [234]. There is a marking
M3 ∈ [N,M2〉 with M3 >My, i. e., y is enabled. This yields
a contradiction with x 6� y. The argument is followed in
reverse direction for the assumption of y F+ x.

⇐ Let x��F
+ y and assume x � y. x must not be a dead trans-

ition (soundness property). Thus, it is contained in a firing
sequence and there are two markings M1,M2 ∈ [N,Mi〉 be-
fore and after firing of x. To meet x � y, still, there has
to be a marking M3 ∈ [N,M2〉 that enables y. As before ,
x��F

+ y implies that all places x• cannot affect the enabling
of y. Thus, the marking M3 may enable y, while marking
all places x•, M3 >My +

∑
p∈x•(Mp). Consequently, there

is a marking M4 from which M3 is derived via firing of x,
(N,M4)[x〉(N,M3). Then, M4 > Mx +My, which is not in
line with x��||coy. The argument is followed in reverse direc-
tion for the assumption of y � x. Thus, we conclude x+ y.

5.1 computations for sound free-choice wf-systems 97

As a next step, structural order of transitions is related to the
profile relations for sound free-choice WF-systems.

Lemma 5.1.4. For any sound free-choice WF-system holds, for every
two transitions that are not concurrent, strict order coincides with
structural order.

Proof. Let (N,Mi) be a sound free-choice WF-system with N =

(P, T , F), x,y ∈ T , and x�
�||coy. Both directions of the Lemma

follow directly from Lemma 5.1.2 and Lemma 5.1.3, as both
transitions x and y must not be structurally exclusive or cyc-
lic dependent. Hence, strict order x y coincides with either
x F+ y and y ��F

+ x, or x ��F
+ y and y F+ x. The latter is not

possible as y F+ x would imply y � x due to soundness and
free-choiceness [234].

Finally, we are able to state that the profile relations are derived
from the concurrency relation and the flow relation of a sound
free-choice net system.

Theorem 5.1.5. For a sound free-choice WF-system, the behavioural
profile is computed from its concurrency relation and its flow relation.

Proof. Interleaving order is traced back to concurrency and cyclic
dependencies by Lemma 5.1.1 and Lemma 5.1.2. Exclusiveness
is derived from the flow relation using Lemma 5.1.3. Strict order
is derived according to Lemma 5.1.4. As the relations of the
behavioural profile partition the Cartesian product of transitions,
cf., Property 4.1.3, this yields the behavioural profile for a sound
free-choice WF-system.

Even though the concurrency relation captures behavioural as-
pects of a system, it is computed in low polynomial time for the
investigated class of systems. This enables efficient computation
of a behavioural profile for a sound free-choice WF-system.

Corollary 5.1.6. The following problem can be solved in O(n3) time
with n as the number of transitions and places of the system:
For a sound free-choice WF-system, to compute its behavioural profile.

Proof. Computation of the concurrency relation is done in O(n3)
time for any free-choice system with n as the number of trans-
itions and places of the system [247, 147]. Computation of the
transitive closure of a relation over a set with n elements takes
O(n3) time [486]. By Theorem 5.1.5, this suffices to derive the
behavioural profile.

We illustrate the presented results with the sound free-choice
WF-system depicted in Figure 26. Transitions C and D are in

98 computations of behavioural profiles

A

F

E

C DB

Figure 26: Example WF-system that is sound and free-choice.

the concurrency relation. Hence, we conclude interleaving or-
der as their profile relation. Transitions A and C are structurally
ordered, transitions C and F are cyclic dependent, and trans-
itions A and B are structurally exclusive. All these pairs are not
concurrent. Therefore, we derive strict order for transitions A
and C, interleaving order for transitions C and F, and exclusive-
ness for transitions A and B.

Derivation of the Co-occurrence Relation

Having addressed the relations of the behavioural profile, we
turn the focus on the co-occurrence relation of the causal beha-
vioural profile. To characterise co-occurring transitions we first
need an auxiliary result on the relation between co-occurrence
and conflict-free paths of a sound net system. As usual, given
a WF-net N = (P, T , F), a path πN(x1, xk) is forwards conflict-
free, if and only if xi ∈ (P ∩ πN{x1, xk}) implies |xi•| = 1 for
1 6 i < k. The path πN(x1, xk) is backwards conflict-free, if and
only if xi ∈ (P ∩ πN{x1, xk}) implies |•xi| = 1 for 1 < i 6 k.

Lemma 5.1.7. For any transitions x and y in a sound WF-system
holds,
◦ if there is a forwards conflict-free path from x to y, then x� y.
◦ if there is a backwards conflict-free path from x to y, then y� x.

Proof. Let (N,Mi) be a sound WF-system with N = (P, T , F) and
x,y ∈ T .
◦ Consider the case y ∈ (x•)•. Then, for all places p ∈ x•

on the path from x to y holds |p•| = 1. Therefore, p• =

{y}. Then, every firing sequence containing x either leads
to a marking that marks place p, or contains y as well. In
the former case, y is not dead as soundness guarantees the
reachability of Mo from any marking reachable from Mi.
Hence, it holds x � y. Consider the case y 6∈ (x•)• and let
t ∈ T be a transition with x F+ t and t F+ y. For all places
p ∈ •t holds |p•| = 1, so that p• = {t}. Consequently, for any

5.1 computations for sound free-choice wf-systems 99

two markings M1,M2 ∈ [N,Mi〉 with (N,M1)[σ〉(N,M2),
(N,M1)[t〉, and not (N,M2)[t〉 it holds t ∈ σ. Starting with
the transitions in (x•)•, all transitions in πN{x,y} have to be
fired once they have been enabled to empty the one or more
places of their pre-set. Again, soundness guarantees that
Mo may be reached from all markings reachable from Mi

that enable x. Consequently, any firing sequence containing
x either contains y or leads to a marking in which y is not
dead, i. e., x� y.
◦ The claim trivially holds by following the same argument in

the reverse direction.

With this result, we characterise co-occurrence for transitions of
sound workflow T-systems.

Theorem 5.1.8. For any sound workflow T-system holds, all pairs of
transitions are co-occurring.

Proof. Let (N,Mi) be a sound workflow T-system with N =

(P, T , F). Let i• = {ti} be the initial transition – there is only
one because of the structure of T-systems. For any transition
t ∈ T , any path πN(ti, t) is forwards conflict-free, so that ti � t

by Lemma 5.1.7. All firing sequences starting with ti either con-
tain transition t ∈ T or lead to a marking in which t is not dead.
Since every firing sequence starting in Mi contains ti, all trans-
itions are pairwise co-occurring.

For sound workflow S-systems, we derive co-occurrence using
the notions of dominators and post-dominators known from
graph theory [13, 284]. Let N = (P, T , F) be a WF-net with the
initial place i and the final place o. For two nodes x,y ∈ (T ∪ P),
x is a dominator of y, if and only if for all paths πN(i,y) it holds
x ∈ πN{i,y}. x is a post-dominator of y, if and only if for all
paths πN(y,o) it holds x ∈ πN{y,o}.

Theorem 5.1.9. For any sound workflow S-system holds, two distinct
transitions x and y are co-occurring, if and only if y is dominator or
post-dominator of x.

Proof. Let (N,Mi) be a sound workflow S-system with N =

(P, T , F) and x,y ∈ T . In a workflow S-system, every marking
M ∈ [N,Mi〉 marks exactly one place, as only i is marked ini-
tially and for all transitions t ∈ T we know |•t| = 1 = |t•|. There-
fore, for every firing sequence σ = 〈t1, . . . , tn〉 there is a path
πN(t1, tn) containing all transitions of σ in the respective order.
⇒ Let y be a dominator of x. Then, it holds y ∈ πN{i, x}

for every path πN(i, x). Thus, any firing sequence σ with
(N,Mi)[σ〉(N,M1) with (N,M1)[x〉 is required to contain y,
i. e., x � y. If y is a post-dominator of x, y is not dead in

100 computations of behavioural profiles

all markings M2 ∈ [N,M1〉 since all paths πN(x,o) contain
y and soundness guarantees that Mo is reachable from M2.

⇐ Let x � y and assume that y is neither a dominator nor a
post-dominator of x. Since x � y, a firing sequence σ with
x ∈ σ and (N,Mi)[σ〉(N,M1) either contains y or y is not
dead in M1. If y is not a dominator, y is not necessarily part
of σ. Then, any firing sequence starting inM1 and ending in
Mo (such a sequence exists by soundness) has to contain y.
Hence, all paths πN(x,o) have to contain y, a contradiction
with the assumption of y not being a post-dominator of x.

Finally, we consider sound free-choice WF-systems that are acyc-
lic. This class of systems does not subsume the two aforemen-
tioned classes. A sound workflow S-system may contain circuits.

In principle, we trace co-occurrence of transitions back to the
exclusiveness relation. The main idea is described as follows. If
there is no co-occurrence from one transition to another trans-
ition, a third transition is fired instead of the second transition
in some marking. Informally, this third transition represents the
detour that implements skipping of the second transition. In the
absence of a circuit, the detour is manifested in the behavioural
profile. The third transition is exclusive to the second transition,
but not to the first one.

In a sound WF-system, there are no dead transitions. Hence,
two transitions that are exclusive to each other cannot be co-
occurring, cf., Property 4.2.2. Therefore, we neglect this case in
the following statement.

Theorem 5.1.10. For any sound free-choice WF-system holds, two
distinct transitions x and y that are not exclusive, x��+y, and y is not
part of a circuit, y��F

+ y, are co-occurring, if and only if all transitions
exclusive to y are exclusive to x.

Proof. Let (N,Mi) be a sound free-choice WF-system with N =

(P, T , F), x,y ∈ T , x��+y, and y ��F
+ y. In this proof, we use the

results obtained in Lemmas 5.1.1 to 5.1.4 without referring to
the lemmas explicitly.
⇐ Let (t + y) ⇒ (t + x) for all transitions t ∈ T and assume
x 6� y. The relations of the behavioural profile partition the
set T × T . As it holds x��+y, we distinguish three cases of how
x and y may be related by profile relations.
(x y) It holds x F+ y and x��F+ y, such that there is a path
πN(x,y). If any path πN(x,y) is forwards conflict-free,
this yields x � y according to Lemma 5.1.7, a contradic-
tion with our assumption. If there is no path πN(x,y)
that is forwards conflict-free, there is a place p ∈ P with
p ∈ πN{x,y} for some πN(x,y), such that |p•| > 1. If
y ∈ p•, we know that there is a transition ty ∈ p• with

5.1 computations for sound free-choice wf-systems 101

ty 6= y and ty��F
+ y. Thus, it holds ty + y. From x F+ ty,

we get x��+ty, a contradiction. If y 6∈ p•, let t1 ∈ T be
a transition with t1 ∈ p•. We know x F+ t1 and, there-
fore, x��+t1. As y+ t1 would imply x+ t1, we derive y��+t1.
Thus, it holds either t1 y, t1 −1 y, or t1||y.
(t1 −1 y) It holds y F+ t1 and t1��F+ y. As p ∈ πN{x,y},

we have p F+ y. Thus, there must be a transition t2 ∈
p• with t2 F+ y. From y F+ t1, we get y F+ p1 for
some p1 ∈ •t1. Due to the free-choiceness of the net,
t1 and t2 share all places in their pre-set, such that also
p1 F

+ y, which yields a contradiction with y��F
+ y.

(t1||y) It holds either y F+ t1 and t1 F+ y, or y||cot1. The
former is not in line with the assumption of y ��F

+ y.
The latter is not possible either: let M ∈ [N,Mi〉 be a
marking with (N,M)[y〉 and (N,M)[t1〉. Due to p F+ y
either also p ∈ •y or the path implies a firing se-
quence (N,M)[σ〉(N,M2) due to soundness and free-
choiceness, such that all places of the pre-set of y are
marked at least twice. In both cases, the safeness prop-
erty that holds for sound free-choice systems is viol-
ated.

Therefore, it holds t1 y for all transitions t1 ∈ p•
for some p ∈ P and πN(x,y) with p ∈ πN{x,y} and
|p•| > 1. Then, it also holds t1 F+ y and y ��F

+ t1 for
all these transitions t1. Now, either one path πN(t1,y)
is forwards conflict-free, which yields t1 � y accord-
ing to Lemma 5.1.7, or there is a place p2 ∈ P with
p2 ∈ πN{t1,y} for some πN(t1,y), such that |p2•| > 1. In
this case, the argument for p can be applied recursively
for p2, as for all transitions t2 ∈ p2• it holds t2 F+ y.
Consequently, we arrive at t1 � y for all transitions
t1 ∈ p• for some p ∈ P and πN(x,y) with p ∈ πN{x,y}
and |p•| > 1. Therefore, we deduce x � y, a contradic-
tion.

(x −1 y) The argument for the case (x y) is followed in
reverse direction leading to a contradiction.

(x||y) It holds either x F+ y and y F+ x, or x||coy. Again, the
former is not in line with the assumption of y��F

+ y. As-
sume that it holds x||coy and consider two cases: whether
there is a path πN(i,y) that is forwards conflict-free. If
so, all firing sequences starting in Mi contain transition
y or lead to a marking in which y is not dead. Hence,
the assumption of x 6� y is violated. If not, there is a
place p ∈ P with p ∈ πN{i,y} for some πN(i,y), such that
|p•| > 1. For such a place p, we prove two properties.
1. If p F+ x, then for all transitions t1 ∈ p• it holds
t1��F

+ y ⇒ t1��F
+ x. Assume that this implication does

102 computations of behavioural profiles

not hold, i. e., there is a transition t1 ∈ p• with t1��F+ y
and t1 F+ x. From p F+ y we know that there must
be a transition t2 ∈ p• with either t2 = y or t2 F+ y.
The former leads to t1 + y due to y ��F

+ y. Therefore,
it holds t1 + x, yielding a contradiction with t1 F+ x.
If t2 F+ y, we know y ��F

+ p from y ��F
+ y. Further,

y��F
+ p implies y��F

+ t1. Hence, it holds either y+ t1
or y||t1. The latter implies the existence of a mark-
ing M ∈ [N,Mi〉 with (N,M)[y〉 and (N,M)[t1〉. With
p F+ y, this violates safeness of sound free-choice sys-
tems. Therefore, it holds y+ t1 and x+ t1, a contradic-
tion with t1 F+ x.

2. If p ��F
+ x, then for all transitions t1 ∈ p• it holds

t1 F
+ y. Assume that this is not the case, i. e., there

is a transition t1 ∈ p• with t1 ��F
+ y. From y��F

+ y we
get y ��F

+ p and, therefore, y ��F
+ t1. As for the previ-

ous property, y||t1 violates safeness of the system, so
that it holds y+ t1. From p��F

+ x, we get t1��F+ x, and
x��F

+ t1 holds as well to satisfy x��F+ y. Hence, it holds
either t1 + x or t1||x. Since x||coy, there is a marking
M ∈ [N,Mi〉 with (N,M)[y〉 and (N,M)[x〉. Hence,
there is also a marking M ∈ [N,Mi〉 with (N,M)[t1〉
and (N,M)[x〉, as p F+ y and t1 ∈ p•. Therefore, it
holds t1||x, which yields a contradiction since t1 + y
requires t1 + x.

Now, consider all places p on a path πN(i,y) that are
conflicts, |p•| > 1. If p F+ x, the first property ensures
that if y will not be part of the firing sequence due to
firing of t1 ∈ p• with t1 ��F

+ y, x cannot be part either,
that is, t1��F+ x holds true. We also know that x and y are
enabled concurrently in a marking reachable from the ini-
tial marking. Thus, once there is a conflict at place p on a
path πN(i,y) and p��F+ x, it has to be ensured that y is not
dead in a marking that marks place p. Here, the second
property guarantees t1 F+ y for all transitions t1 ∈ p•.
That, in turn, implies t2 � t1 for all transitions t2 ∈ •p
and, as the property holds for all respective places p, also
t2 � y. Consequently, it holds x � y, a contradiction
with our assumption.

⇒ Let x � y and assume that there is a transition t ∈ T with
t+ y and t��+x. Due to t��+x, there is a firing sequence σ with
(N,Mi)[σ〉(N,Mo) that contains both transitions, t and x.
From x � y, we know that also y ∈ σ. Then, x,y, t ∈ σ is a
contradiction with the assumption of t+ y.

Based on these results, computation of the causal behavioural
profile is efficient for the respective system classes.

5.1 computations for sound free-choice wf-systems 103

Corollary 5.1.11. The following problem can be solved in O(n3) time
with n as the number of transitions and places of the system:
For a sound WF-system that is a T- or S-system, or free-choice and
acyclic, to compute its causal behavioural profile.

Proof. Given any sound free-choice WF-system, the behavioural
profile is computed inO(n3) time with n as the number of nodes
of the system according to Corollary 5.1.6. For a sound T-system,
the co-occurrence relation is set directly by Theorem 5.1.8. For a
sound S-system, dominators and post-dominators are determ-
ined in linear time to the size of the net [20, 71]. Then, co-
occurrence is decided according to Theorem 5.1.9. For a sound
acyclic free-choice WF-system, co-occurrence is traced back to
exclusiveness by Theorem 5.1.10. This requires iteration over the
Cartesian product of transitions and analysis of all other trans-
itions for each transition pair. Hence, it requiresO(n3) time with
n as the number of transitions. The overall time complexity is
O(n3) with n as the number of nodes of the system.

B

C

A

ED

(a)

A

C

E

B D

(b)

Figure 27: Sound free-choice WF-systems that illustrate the derivation
of the co-occurrence relation.

We illustrate the presented results with the net systems depicted
in Figure 27. The system in Figure 27a is a sound workflow S-
system. Therefore, the co-occurrence relation is traced back to
dominators and post-dominators. For instance, transition A is a
dominator of transition C and transition E is a post-dominator of
transition B. Hence, we conclude C� A and B� E for the sys-
tem in Figure 27a. The system in Figure 27b is an acyclic sound
free-choice WF-system. As an example, consider transitions A
and C. Both are not exclusive. There exists a transition, namely
D, that is exclusive to C but not to A. Hence, the pair (A,C)
is not in the co-occurrence relation of the system in Figure 27b.
The opposite, C� A, holds true, as there is no transition that is
exclusive to transition A.

104 computations of behavioural profiles

5.2 computations using structural decomposition

The results introduced in the previous section allow for comput-
ing the behavioural profile for the Cartesian product of trans-
itions. Depending on the concrete use case, however, various
transitions may be irrelevant for analysis. If so, computation of
the profile relations for all pairs of transitions leads to a compu-
tational overhead. Therefore, this section introduces an altern-
ative approach for the computation of behavioural profiles for
the class of sound free-choice WF-systems. By leveraging struc-
tural decomposition techniques, the relations of the causal beha-
vioural profile are determined for a single pair of transitions in
linear time to the size of the net. The technique assumes both
transitions to be part of a structured region of the WF-system,
i. e., a region which shows a hierarchy of single-entry-single-exit
(SESE) subnets. Extending the results presented before, it allows
for the computation of co-occurrence for transitions in cyclic
sound free-choice WF-system, if the circuits are well-structured.

In the remainder of this section, first, we show how an exist-
ing decomposition technique, the Refined Process Structure Tree
(RPST) [481, 359], is applied to WF-nets. Second, we introduce
behavioural annotations for the RPST of sound free-choice WF-
systems. This yields the notion of a WF-tree. Third, we establish
the relation between the WF-tree of a net system and its causal
behavioural profile. The section closes with the discussion of a
computation algorithm for the derivation of causal behavioural
profiles that combines the results obtained by structural decom-
position with those introduced in the previous section.

The RPST of WF-nets

The Refined Process Structure Tree (RPST) [481, 359] is a tech-
nique for detecting the structure of a workflow graph. Such a
graph represents the control flow structure of a process model by
means of activities and routing elements. A workflow graph can
be parsed into a hierarchy of fragments with a single entry and
a single exit, such that the RPST is a containment hierarchy of
canonical fragments of the graph. The RPST is unique for a given
workflow graph and can be computed in linear time [481, 359].
Although the RPST has been introduced for workflow graphs, it
can be applied to other graph based models such as WF-nets in
a straight-forward manner. We define basic terms of the RPST
for WF-nets as follows.

Definition 5.2.1 (Flows, Entry, Exit, Canonical Fragment)
Let N = (P, T , F) be a WF-net and X = (P ∪ T) its set of nodes.

5.2 computations using structural decomposition 105

B

A

C

D

E

I

F

H

K

P1B1
P2

P3

P5

P4 B2 P6

P7

B3

P8

P9

P10

P11

P12

R1

G

J

(a) WF-system and its canonical fragments.

P1

B1

P4 P5 P6 P7

B2 B3

P2

P8

P9 P10
P11

R1

P3

P12

(b) The RPST of (a).

Figure 28: A WF-system, its canonical fragments, and its RPST.

◦ For a node x ∈ X of a net N = (P, T , F), inN(x) = {(n, x) ∈
F | n ∈ •x} are its incoming flows and outN(x) = {(x,n) ∈
F | n ∈ x•} are its outgoing flows.
◦ A node x ∈ X′ of a connected subnet N′ = (P′, T ′, F′) of a net
N is a boundary node, iff ∃ e ∈ inN(x) ∪ outN(x) [e /∈ F′]. If
x is a boundary node, it is an entry of N′, iff inN(x)∩ F′ = ∅
or outN(x) ⊆ F′, or an exit of N′, iff outN(x) ∩ F′ = ∅ or
inN(x) ⊆ F′.
◦ Any connected subnet ω of N is a fragment, iff it has exactly

two boundary nodes, one entry and one exit denoted by ω/

and ω., respectively.
◦ A fragment is place bordered (transition bordered), iff its bound-

ary nodes are places (transitions).
◦ A fragment ω = (Pω, Tω, Fω) is canonical in a set of all frag-

ments Σ ofN, iff ∀ γ = (Pγ, Tγ, Fγ) ∈ Σ [ω 6= γ⇒ (Fω∩Fγ =

∅)∨ (Fω ⊂ Fγ)∨ (Fγ ⊂ Fω)].

Figure 28 exemplifies the RPST for a WF-system. Figure 28a il-
lustrates the canonical fragments of a WF-system, each of them
formed by a set of flows enclosed in or intersecting the region
with a dotted border. Figure 28b provides an alternative view,
where each node represents a canonical fragment and edges hint
at the containment of fragments. A tree structure is obtained in
this view – the RPST. For instance, fragment B1 has two bound-
ary transitions: entry A and exit K, is contained in fragment P1,
and contains fragments P2 and P3. Note that trivial fragments
are not visualised.

106 computations of behavioural profiles

A A

Figure 29: Node-splitting for normalisation.

If the RPST is computed for a normalised workflow graph, i. e.,
a workflow graph that does not contain nodes with multiple
incoming and multiple outgoing flows, each canonical fragment
can be classified to one out of four structural classes [357, 359]: A
trivial (T) fragment consists of a single flow. A polygon (P) repres-
ents a sequence of nodes (fragments). A bond (B) stands for a col-
lection of fragments that share common boundary nodes. Any
other fragment is a rigid (R). We use fragment names that hint
at their structural class, e. g., R1 is a rigid fragment. Every work-
flow graph can be normalised by performing a node-splitting
pre-processing, illustrated for WF-nets in Figure 29. The WF-
system in Figure 28a is normalised.

The Notion of a WF-tree

The fragments derived by the RPST can be related to behavioural
properties of the underlying WF-system. We concretise RPST
fragments by annotating them with behavioural characteristics.
The containment hierarchy of annotated canonical fragments of
a WF-system is referred to as the WF-tree. The WF-tree is defined
for sound free-choice WF-systems as this class of systems shows
a tight coupling of syntax and semantics, cf., Section 5.1.

Definition 5.2.2 (WF-Tree)
Let (N,Mi) be a sound free-choice WF-system. The WF-Tree of
N is a tuple TN = (Ω,χ, t,b), where:
◦ Ω is a set of all canonical fragments of N,
◦ χ : Ω → ℘(Ω) is a function that assigns child fragments to

fragments, such that it holds ∀ ω,γ ∈ Ω [(χ(ω) ∩ χ(γ) 6=
∅)⇒ ω = γ].
◦ t : Ω → {T ,P,B,R} is a function that assigns a type to a

fragment,
◦ b : ΩB → {B◦,B�,L}, ΩB = {ω ∈ Ω | t(ω) = B}, is a function

that assigns a refined type to a bond fragment, where B◦, B�,
and L types stand for place bordered, transition bordered,
and loop bonds, respectively.

Further, we define auxiliary concepts for the WF-tree.

5.2 computations using structural decomposition 107

P1

B 1

P4 P5 P6 P7

L1 B○1

P2

P8

P9
P10

P11

R1

P3

P12

Figure 30: The WF-tree for the system in Figure 28.

Definition 5.2.3 (Parent, Child, Root, Ancestor, LCA, Path)
Let TN = (Ω,χ, t,b) be a WF-tree.
◦ For any fragment ω ∈ Ω, ω is a parent of γ and γ is a child

of ω, iff γ ∈ χ(ω). χ+ is the irreflexive transitive closure of
χ.

◦ The fragment ω ∈ Ω is a root of T, denoted by ωr, iff it has
no parent.
◦ The partial function ρ : Ω \ {ωr} → Ω assigns parents to

fragments.
◦ For any fragment ω ∈ Ω, ω is an ancestor of ϑ and ϑ is a

descendant of ω, if ϑ ∈ χ+(ω).
◦ For any two fragments ω,γ ∈ Ω their Lowest Common An-

cestor (LCA), denoted by lca(ω,γ), is the shared ancestor of
ω and γ that is located farthest from the root of the WF-tree.
By definition, lca(ω,ω) = ω.

◦ For any fragment ω1 ∈ Ω and its descendant ωn ∈ Ω, a
downward path from ω1 to ωn, denoted by πT(ω1,ωn), is
a sequence πT = 〈ω1, . . . ,ωn〉, such that ωi is a parent
of ωi+1 for all i ∈ N, 1 6 i < n. Further, we define
πT(ω1,ωn, i) = ωi to refer to an entry of the path and
πT{ω1,ωn} = {ω1, . . . ,ωn} to refer to all nodes on the path.

Figure 30 shows the WF-tree of the WF-system from Figure 28.
The WF-tree is isomorphic to the RPST of the WF-system. Given
the RPST, adding the behavioural annotation is a trivial task for
most fragments, except of the following cases: A bond fragment
γ = (Pγ, Tγ, Fγ) ∈ dom(b) of TN = (Ω,χ, t,b) is assigned the L
type, if γ/ = ω. withω being a child of γ. Otherwise, b(γ) = B◦
if γ/ ∈ Pγ, or b(γ) = B� if γ/ ∈ Tγ.

Children of a polygon fragment are arranged with respect to
their execution order. A partial function order : Ω ′ →N0, Ω ′ =
{ω ∈ Ω \ {ωr} | t(ρ(ω)) = P} assigns to children of polygon
fragments their respective order positions; order(ω) = 0, ifω/ =

γ/ with γ = ρ(ω) being the parent, and order(ω) = i, i ∈ N, if
ω/ = ϑ. for some ϑ ∈ Ω, such that order(ϑ) = i− 1. The orders
of two nodes are only comparable if they share a common parent.
For instance, in Figure 30, order(L1) = 1 and order(B◦1) = 2.
This means that the transitions of fragment L1 are located before

108 computations of behavioural profiles

the transitions of fragment B◦1 inside polygon P2. The layout of
child fragments of polygon fragments in Figure 30 hints at their
order relation.

Children of a loop fragment are classified as forward (⇒) or
backward (⇐). A partial function ` : Ω ′′ → {⇐,⇒} with Ω ′′ =
{ω ∈ Ω \ {ωr} | b(ρ(ω)) = L} assigns an orientation to children
of loop fragments. `(ω) =⇒ if ω/ = γ/ with γ = ρ(ω), other-
wise `(ω) =⇐. In Figure 30, P4 and P5 are forward and back-
ward fragments, which is visualised by the direction of edges.

We introduce two lemmas that prove the completeness of the
codomain of function b by showing that a bond fragment is
either place or transition bordered, and that each loop fragment
is place bordered. A rigid fragment bordered with a place and
a transition can still be free-choice and sound. An example for
such a net structure can be found in [455].

The following results leverage the notions of a handle and a
bridge. We shortly recall these notions following on [150]. For
a net N = (P, T , F) and a partial subnet N′ a path πN(x1, xk) of
N, k > 1 and all nodes xi on the path are distinct, is a handle of
N′, if and only if πN ∩ (P′ ∪ T ′) = {x1, xk}. For a net N = (P, T , F)
and two partial subnets N′, N′′ a path πN(x1, xk) of N, k > 1

and all nodes xi on the path are distinct, is a bridge from N′ to
N′′, if and only if πN ∩ (P′ ∪ T ′) = {x1} and πN ∩ (P′′ ∪ T ′′) = {xk}.
We speak of PP-, TT-, PT-, TP-handles and bridges, depending
on the type, place or transition, of the initial and the final node
of the respective path.

Lemma 5.2.1. Let TN = (Ω,χ, t,b) be the WF-tree of a sound free-
choice WF-system (N,Mi), N = (P, T , F). No bond fragment ω ∈ Ω,
t(ω) = B, has {p, t} boundary nodes, where p ∈ P and t ∈ T .

Proof. Assume ω is a bond fragment with {p, t} boundary nodes.
There exists a circuit Γ in a short-circuit net of N that contains
{p, t}. Let Γω be a subpath of Γ inside ω. There exists a child
fragment γ of ω that contains Γω. A bond fragment has k > 2
child fragments [357, 359]. Let ϑ be a child of ω, ϑ 6= γ. We
distinguish two cases:
◦ Let H be a path from p to t contained in ϑ. H is a PT-handle

of Γ . In a live and bounded free-choice system, H is bridged
to Γω through a TP-bridge K, see Proposition 4.2 in [150].
This implies that ϑ = γ; otherwise bond fragmentω contains
path K that is not inside of a single child fragment [357, 359].
Thus, ω has a single child fragment, a contradiction with the
assumption of ω being a bond fragment.
◦ Let H be a path from t to p contained in ϑ. H is a TP-handle

of Γ . In a live and bounded free-choice system, no circuit
has TP-handles, see Proposition 4.1 in [150], which yields a
contradiction with our assumptions.

5.2 computations using structural decomposition 109

Lemma 5.2.2. Let TN = (Ω,χ, t,b) be the WF-tree of a sound free-
choice WF-system, (N,Mi), N = (P, T , F). A loop fragment ω =

(Pω, Tω, Fω) ∈ Ω, b(ω) = L, is place bordered, i. e., {ω/,ω.} ⊆ P.

Proof. Because of Lemma 5.2.1, ω is either place or transition
bordered. Assume ω is transition bordered. There exists place
p ∈ P such that p ∈ (•ω/ ∩ Pω), Mi(p) = 0. Transition ω/

is enabled if there exists a marking M ∈ [N,Mi〉 with M(p) >

0. Since ω is a connected subnet, for all transitions t ∈ Tω \

{ω/,ω.} all flows are in ω, i. e., (inN(t) ∪ outN(t)) ⊆ Fω. Thus,
every path from i to p visits ω/. M(p) > 0 is only possible, if ω/

has fired before. We reached a contradiction. Transition ω/ is
never enabled and N is not live, and hence, not sound. Since any
loop fragment is not transition bordered, it is place bordered, cf.,
Lemma 5.2.1.

For sound free-choice WF-systems, the WF-tree can be derived
efficiently.

Proposition 5.2.3. The following problem can be solved in linear time.
Given a sound free-choice WF-system, to compute its WF-tree.

Proof. Given a workflow graph, its RPST can be computed in
time linear to the number of flows of the graph [359, 481]. The
number of canonical fragments in the RPST is linear to the num-
ber of flows in the workflow graph [37, 190, 359]. Given the RPST
of a WF-system, we iterate over all bond fragments and assign
the behavioural annotations. Here, it suffices to check the type
of the entry node, either a place or transition, and to determine
whether the entry is also the exit of a child fragment. That can be
decided in constant time for each fragment. Finally, child frag-
ments of a polygon can be ordered in linear time. We introduce a
hash function that returns a child fragment with the given node
as an entry and iterate over the children of the polygon.

Computations based on the WF-tree

For the computation of the causal behavioural profile for a pair
of transitions based on the WF-tree, we assume that each trans-
ition has one incoming and one outgoing flow arc. If this is not
the case, we apply the pre-processing illustrated in Figure 31,
which preserves the behaviour of the system [329] and, therefore,
does not change the causal behavioural profile. Let (N,Mi) be a
WF-system with N = (P, T , F) and TN = (Ω,χ, t,b) the WF-tree
of N. After pre-processing, each transition t ∈ T is a bound-
ary node of at most two trivial fragments of TN. Consequently,

110 computations of behavioural profiles

A A

A A

Figure 31: Pre-processing for structural decomposition.

it suffices to show how the relations of the causal behavioural
profile are determined for the entries of two trivial fragments.

In the absence of rigid fragments, the profile relations are com-
puted as follows. For the self-relation of two transitions, we
check whether there is a bond fragment of type loop that com-
prises both trivial fragments. For two distinct transitions, strict
order is derived if the LCA of the respective trivial fragments is
a polygon fragment and the transitions are not part of a circuit.
Exclusiveness holds between two transitions, if the LCA of the
respective trivial fragments is place-bordered acyclic bond frag-
ment and the transitions are not part of a circuit. If the trans-
itions are part of a circuit or if the according LCA is a transition-
bordered bond fragment, we conclude on interleaving order.

Theorem 5.2.4. Let TN = (Ω,χ, t,b) be a WF-tree, α,β ∈ Ω two
trivial fragments, γ = lca(α,β), and ∀ ω ∈ πT{ωr,γ} [t(ω) 6= R].

1. If α = β, then α/||β/, iff ∃ ω ∈ πT{ωr,γ} [b(ω) = L]. Other-
wise, α/ +β/.

2. If α 6= β, then it holds:
◦ α/ β/, if and only if (1) t(γ) = P ∧ order(πT(γ,α, 1)) <
order(πT(γ,β, 1)), and (2) ∀ ω ∈ πT{ωr,γ} [b(ω) 6= L].

◦ α/+β/, if and only if (1) b(γ) = B◦, and (2) ∀ω ∈ πT{ωr,γ}
[b(ω) 6= L].
◦ α/||β/, if and only if (1) b(γ) ∈ {B�,L}, or (2) ∃ω ∈ πT{ωr,γ}
[b(ω) = L].

Proof. Let TN, α, β, γ be defined as before, (N,Mi) the respective
WF-system, and ∀ ω ∈ πT{ωr,γ} [t(ω) 6= R].
1. Let α = β.
⇒ Let α/||β/ and assume ∀ ω ∈ πT{ωr,γ} [b(ω) 6= L]. Due to
α = β, also α/ = β/. Thus, it holds α/||α/. Due to safeness of
(N,Mi), α/||α/ cannot be traced back to concurrent enabling
of α/. According to Lemma 5.1.2, this implies α/ F

+ α/.
Circuits are part of B (if the bond is a loop fragment) or R
type fragments. Thus, there has to be a fragment ω, which
is an ancestor of α and t(ω) = R or b(ω) = L. As the LCA
of α is γ = α by definition, this yields a contradiction with
the assumptions.

⇐ Let ∃ ω ∈ πT{ωr,γ} [b(ω) = L] and assume α/ ��||β/. Since
α = β, it holds α/ = β/. One of the ancestors of α is a B type

5.2 computations using structural decomposition 111

fragment that is a loop, such that α/ F
+ α/. Since (N,Mi) is

safe, α/ cannot be enabled concurrently with itself, so that
α/||α/ by Lemma 5.1.2.

2. Let α 6= β.
⇒ Let α/ β/ and assume (1) order(πT(γ,α, 1)) > order

(πT(γ,β, 1)) or t(γ) 6= P, or (2) ∃ ω ∈ πT{ωr,γ} [b(ω) = L].
According to Lemma 5.1.4, α/ β/ implies α/ F

+ β/ and
β/ ��F

+ α/. Thus, assumption (2) cannot hold as an L type
fragment that is an ancestor of both, α and β, would imply
β/ F

+ α/. The first part of assumption (1) cannot hold either:
b(γ) = L contradicts with the flow dependencies between α/

and β/, whereas t(γ) = R, t(γ) = B and b(γ) ∈ {B◦,B�}, and
t(γ) = T (which would imply α = β) disqualify due to our
assumptions. Thus, it holds t(γ) = P. The order in a P
type fragment coincidences with the flow dependencies, i. e.,
α/ F

+ β/, which yields a contradiction.
Let α/ +β/ and assume (1) b(γ) 6= B◦ or (2) ∃ ω ∈ πT{ωr,γ}
[b(ω) = L]. According to Lemma 5.1.3, the former implies
α/ ��F

+ β/ and β/ ��F
+ α/. That, in turn, implies that assump-

tion (2) cannot hold and γ 6= P. Since γ 6= R and γ 6= T

(which would imply α = β), we conclude t(γ) = B. As the
flow dependencies preclude b(γ) = L, we assume b(γ) = B�.
Then, γ/ is a transition. Due to soundness, there are two
markings M1,M2 ∈ [N,Mi〉, such that (N,M1)[γ/〉(N,M2).
As γ is an ancestor of both, α and β, we know γ/ F

+ α/

and γ/ F+ β/. That implies that both transitions, α/ and β/,
might get enabled in a firing sequences starting in M2. That
is not in line with α/ +β/. Thus, b(γ) = B◦, a contradiction
with assumption (1).
Let α/||β/ and assume (1) b(γ) = B◦ and (2) ∀ ω ∈ πT{ωr,γ}
[b(ω) 6= L]. According to Lemma 5.1.2, α/||β/ implies con-
current enabling of a both transitions in a certain marking,
or α/ F

+ β/ and β/ F
+ α/. The latter is not possible due to

assumption (2). Thus, we assume concurrent enabling. Let
x ∈ γ/• be a successor of γ/. γ is the LCA of α and β. Con-
sequently, x F+ α/ implies x ��F

+ β/ and vice versa. Thus,
concurrent enabling of α/ and β/ requires γ/ to be a trans-
ition. That is a contradiction with assumption (1).

⇐ Let (1) t(γ) = P ∧ order(πT(γ,α, 1)) < order(πT(γ,β, 1)),
and (2) ∀ ω ∈ πT{ωr,γ} [b(ω) 6= L] and assume α/ 6 β/.
From (1) and (2), we conclude α/ F

+ β/ and β/��F
+ α/, which

is equivalent to α/ β/ by Lemma 5.1.4.
Let (1) b(γ) = B◦ and (2) ∀ ω ∈ πT{ωr,γ} [b(ω) 6= L],
and assume α/��+β/. From (1) and (2), we get α/ ��F

+ β/ and
β/ ��F

+ α/. Therefore, we assume that both transitions are
enabled concurrently. Due to b(γ) = B◦, γ/ is a place. Let
t ∈ γ/• be a successor of γ/. Due to soundness, there are two

112 computations of behavioural profiles

markings M1,M2 ∈ [N,Mi〉, such that (N,M1)[t〉(N,M2).
As γ is the LCA of both, we know that t F+ α/ implies
t��F

+ β/, and vice versa. Thus, any firing sequence starting
in M2 contains either α/, β/, or none of the two transitions.
As γ is the parent of both, α and β, γ/ is on every path from
the initial place i to α/ and β/. Therefore, there does not
exist a firing sequences containing both transitions, which
leads to α/ +β/.
Let (1) b(γ) ∈ {B�,L} or (2) ∃ ω ∈ πT{ωr,γ} [b(ω) = L], and
assume α/ ��||β/. From requirement (2), we get α/ F

+ β/ and
β/ F

+ α/. According to Lemma 5.1.2, this is equivalent to
α/||β/, which is not in line with our assumption. The same
holds true for b(γ) = L. Consider b(γ) = B�. Then, γ/ is
a transition. Let p1,p2 ∈ γ/• be two successors of γ/ with
p1 F

+ α/ and p2 F+ β/. The existence of these paths implies
the existence of a firing sequence, i. e., α/ and β/ can get
enabled concurrently. That, in turn, is equivalent to α/||β/

by Lemma 5.1.1, yielding a contradiction.

The co-occurrence relation of the causal behavioural profile is
computed in the absence of rigid fragments as follows. Given
a pair of transitions, we obtain the LCA of the respective trivial
fragments. Then, we investigate fragments on the path from the
LCA to the trivial fragment that is related to the second trans-
ition of the co-occurrence dependency. Co-occurrence holds, if
these fragments are of type polygon, transition-bordered bond,
or loop bond. For loop fragments, we also check whether they
show a single path from the entry to the exit that contains the
second transition of the co-occurrence dependency. Only in this
case, co-occurrence holds from the first to the second transition.

Theorem 5.2.5. Let TN = (Ω,χ, t,b) be a WF-tree and α,β ∈ Ω
two trivial fragments, α 6= β. Let γ = lca(α,β), Π = πT{γ,β},
and ∀ ω ∈ Π [t(ω) 6= R]. Then, α/ � β/, iff for all fragments
ω ∈ (Π \ {β}) one of the following conditions holds:

1. t(ω) = P,
2. t(ω) = B and b(ω) = B�, or
3. t(ω) = B, b(ω) = L, and with Θ = {ϑ ∈ χ(ω) | `(ϑ) =⇒} it

holds ∀ ϑ ∈ Θ [β ∈ χ+(ϑ)].

Proof. Let TN, α, β, γ, Π be defined as before, (N,Mi) the re-
spective WF-system, and ∀ ω ∈ Π [t(ω) 6= R]. For both direc-
tions of the proof, let δ = ρ(β) and η = ρ(δ) be the parents of β
and δ. Note that we know t(δ) = P and t(η) /∈ {R, T }.
⇒ Let α/ � β/ and assume that there is a fragment ω ∈ (Π \

{β}) with t(ω) 6= P or b(ω) 6= B� or if b(ω) = L then it holds
∃ ϑ ∈ Θ [β /∈ χ+(ϑ)] with Θ = {ϑ ∈ χ(ω) | `(ϑ) =⇒}. For all
fragments ω ∈ (Π \ {β}), we know t(ω) 6= R and t(ω) 6= T

5.2 computations using structural decomposition 113

(as β ∈ χ+(ω)). We first consider the LCA, i. e., fragment γ.
Let ε ∈ χ(γ) with α ∈ χ+(ε) be the child fragment of γ that
contains α (it holds ε 6= δ). We distinguish two cases.
(1) γ/ is a transition. Then, t(γ) ∈ {P,B}, and t(γ) = B

requires b(γ) = B�.
(2) γ/ is a place. Then, t(γ) ∈ {P,B}, and t(γ) = B requires

b(γ) ∈ {B◦,L}. We distinguish two cases (I) b(γ) = B◦
and (II) b(γ) = L.
(I) Let M1,M2 ∈ [N,Mi〉 be markings with M1(γ/) > 1

and M2(γ.) > 1. Let σ1,σ2 be two firing sequences with
(N,M1)[σ1〉(N,M2)[σ2〉(N,Mo), such that σ2 does not
contain any transition that is part of γ. As fragment ε
represents a path from γ/ to γ., σ1 might contain only
transitions that are part of ε. Then, it holds α/ ∈ σ1.
Since α/ � β/, also β/ ∈ σ1 (as β/ /∈ σ2). Therefore,
β ∈ χ+(ε), such that we arrived at a contradiction with
the definition of γ = lca(α,β).
(II) Let M1,M2 ∈ [N,Mi〉 be two markings as defined
for the previous case. Consider the case of ε having
forward orientation, `(ε) =⇒. Then, there are firing
sequences σ1,σ2 with (N,M1)[σ1〉(N,M2)[σ2〉(N,Mo),
such that σ1 contains only transitions that are part of
ε, whereas σ2 does not contain any transition that is
part of γ. Then, α/ might be part of σ1. As β/ /∈ σ2,
but α/ � β/, we conclude β/ ∈ σ1. Thus, it holds
β ∈ χ+(ε), which, again, yields a contradiction with
the definition of γ = lca(α,β). Consider the case of ε
having backward orientation, `(ε) =⇐. Then, there is a
firing sequence σ3 with (N,M1)[σ1〉(N,M2)[σ3〉(N,M1)

and (N,M1)[σ1〉(N,M2)[σ2〉(N,Mo), such that σ3 con-
tains solely transitions that are part of ε. Again, α/ can
be part of σ3. From β/ /∈ σ2 but α/ � β/, it follows
β/ ∈ σ1 or β/ ∈ σ3. The latter would imply β ∈ χ+(ε)
(a contradiction as earlier), which leads to β/ ∈ σ1. To
ensure α/ � β/, every firing sequence σ1 has to contain
β/. Therefore, all children of fragment γ that represent
paths from γ/ to γ., i. e., children with forward orient-
ation, have to contain β. As β can only be contained
in one child of fragment γ, there is only one child with
forward orientation.
We summarise that b(γ) 6= B◦, and b(γ) = L implies that
∀ ϑ ∈ Θ [β ∈ χ+(ϑ)] with Θ = {ϑ ∈ χ(γ) | `(ϑ) =⇒}.

For both cases, γ/ being a transition or a place, we see that
fragment γ does not satisfy the assumptions on a fragment
ω ∈ (Π \ {β}) as stated before. We now consider two cases,
η = γ or γ is an ancestor of η. Due to t(δ) = P, the former
yields a contradiction, as Π \ {β} = {γ, δ} and both fragments

114 computations of behavioural profiles

do not satisfy our assumption. For γ being an ancestor of η,
there is a fragment κ, such that κ ∈ χ(γ) and η ∈ χ+(κ).
Again, we distinguish two cases.
(1) κ/ is a transition. Then, t(κ) ∈ {P,B}, and t(κ) = B

requires b(κ) = B�.
(2) κ/ is a place. Now, we distinguish the three possible

types of fragments for γ.
(I) If t(γ) = P, without loss of generality, we assume γ/
and γ/ to be places (the single places of their post-set or
pre-set, respectively, would be taken if γ/ or γ/ would
be a transition). Let M1,M2 ∈ [N,Mi〉 be markings with
M1(γ/) > 1 and M2(γ.) > 1. Let σ1,σ2 be firing se-
quences with (N,M1)[σ1〉(N,M2)[σ2〉(N,Mo), such that
σ2 does not contain any transition that is part of γ. Due
to t(γ) = P, either κ. F+ ε/ and ε. ��F

+ κ/, or vice versa.
In both cases, α/ � β/ requires that a firing sequence σ3
between two markingsM3,M4 ∈ [N,Mi〉withM3(κ/) >

1 and M4(κ.) > 1 contains β/. That is due to firing se-
quences leading from M1 to M3, or from M4 to M2 that
contain no transition of fragment κ, but transition α/.
(II) If b(γ) = L, we know that ∀ ϑ ∈ Θ [β ∈ χ+(ϑ)] with
Θ = {ϑ ∈ χ(γ) | `(ϑ) =⇒}. As β can only be contained in
one child of fragment γ, i. e., fragment κ, we know that
`(κ) =⇒ and, in turn, `(ε) =⇐. Let M1, M2, σ1, and σ2
be defined as before. We may observe firing sequences
σ4,σ5 with (N,M1)[σ1〉(N,M2)[σ4〉(N,M1) and (N,M1)

[σ5〉(N,M2)[σ2〉(N,Mo), such that σ4 contains α/. Since
α/ � β/, firing sequence σ1 or σ5 must contain β/.
As in the previous case, it follows that any firing se-
quence σ3 between two markings M3,M4 ∈ [N,Mi〉
with M3(κ/) > 1 and M4(κ.) > 1 must contain β/.
(III) If b(γ) = B�, then ε/ and κ/ are places in the post-
set of transition γ/ (γ is a transition bordered bond). Let
M5,M6,M7 ∈ [N,Mi〉 be markings with M5(κ/) > 1,
M5(ε/) > 1, M6(κ/) > 1, M6(ε.) > 1, M7(κ.) > 1,
M7(ε.) > 1. Then any firing sequence from M5 to M6

might contain α/. Since α/ � β/, again, all firing se-
quences from M6 to M7 must contain β/.
For all three possible types of fragments for γ, we sum-
marise that we have to ensure that any firing sequence
leading from a marking that marks κ/ to a marking that
marks κ. must contain transition β/. Thus, for κ/ being
a place, we know that b(κ) 6= B◦, and b(κ) = L implies
that ∀ ϑ ∈ Θ [β ∈ χ+(ϑ)] with Θ = {ϑ ∈ χ(κ) | `(ϑ) =⇒},
cf., the argument for the very first case (2), if ε would be
an arbitrary child of κ.

5.2 computations using structural decomposition 115

For both cases, κ/ being a transition or a place, fragment κ
does not satisfy the assumptions on a fragmentω ∈ (Π \ {β}).
As this argument can be applied to all fragments on the path
πT(κ,η), we arrived at a contradiction with our assumption.

⇐ Let ∀ ω ∈ (Π \ {β}) either t(ω) = P or b(ω) = B�, or if
b(ω) = L then ∀ ϑ ∈ (χ(ω) ∩Π) [`(ϑ) =⇒] with Θ = {ϑ ∈
χ(ω) | `(ϑ) =⇒}. Assume α/ 6� β/. With δ as defined before,
one path πN(δ/,β/) is forwards conflict-free, i. e., δ/ � β/,
by Lemma 5.1.7. For fragment η, we distinguish two cases.
(1) η/ is a transition. Then, t(η) ∈ {P,B}, and t(η) = B

requires b(η) = B�. Both imply that one path πN(η/, δ/)
is forwards conflict-free, i. e., η/ � δ/. With δ/ � β/ we
also get η/ � β/.

(2) η/ is a place. Then, t(η) ∈ {P,B}, and t(η) = B requires
b(η) = L. For t(η) = P, we get t � δ/ for all transitions
t ∈ •η/. For t(η) = B, we have b(η) = L and ∀ ϑ ∈
Θ [β ∈ χ+(ϑ)] with Θ = {ϑ ∈ χ(η) | `(ϑ) =⇒}. As
only one child of fragment η can contain fragment β, i. e.,
fragment δ, we know |Θ| = 1. That is, there is only one
path from η/ to η., represented by fragment δ. Therefore,
t� δ/ for all transitions t ∈ •η/. For both cases, t(η) =
P or t(η) = B, it also holds t � β/ for all transitions
t ∈ •η/, since δ/ � β/.

We summarize that for both cases, we derive either η/ � β/,
or t� β/ for all transitions t ∈ •η/, respectively. Applying
this argument to all fragments on the path πT(γ,η) yields
γ/ � β/ or t � β/ for all transitions t ∈ •γ/, respectively.
Trivially, α/ � γ/ if γ/ is a transition or α/ � t for all trans-
itions t ∈ •γ/ if γ/ is a place, due to γ being an ancestor of
α. Thus, it holds α/ � β/, which is a contradiction with our
assumption.

We illustrate both results using our example from Figure 28. For
instance, transitions B and E are in strict order, B E, as the
LCA of the trivial fragments that have B and E as entries is the
polygon fragment P2, cf., Figure 30. Here, the order value for
the child fragment of P2 containing B is lower than the one for
the child fragment that contains E. Further, the path from the
root of the tree P1 to P2, i. e., πT(P1,P2), does not contain any
loop fragment. It holdsD+E for transitionsD and E. Their LCA
is the fragment B3 in Figure 28 or B◦1 in Figure 30, respectively.
The fragment B◦1 is a place bordered bond and, again, the path
πT(P1,B◦1) does not contain any loop fragment. Transitions B
and C, in turn, are an example for interleaving order, B||C, as
their LCA is fragment B2 in Figure 28. This fragment corres-
ponds to the loop type fragment L1 in Figure 30. Derivation of
the co-occurrence is illustrated using transitions B and C. We see

116 computations of behavioural profiles

that the path from the respective LCA (i. e., B2 in Figure 28, L1
in Figure 30) to the trivial fragments having B and C as entries
contains solely polygon fragments, P4 and P5, respectively. How-
ever, the LCA itself is a loop fragment, such that the orientation
of its child fragments P4 and P5 needs to be considered. There is
only one child with forward orientation, namely P4. It contains
transition B. Therefore, we derive C � B, but B 6� C according
to Theorem 5.2.5.

With these results, computation of the causal behavioural pro-
file for a pair of transitions in a sound free-choice WF-system is
done efficiently in the absence of rigid fragments.

Corollary 5.2.6. The following problem can be solved in linear time.
Given a sound free-choice WF-system (N,Mi) and its WF-tree TN, to
compute the causal behavioural profile for a pair of transitions (a,b) if
b is not contained in any rigid fragment.

Proof. Let a and b be transitions and β be a trivial fragment
of TN with b = β/. Computation of the relations according to
Theorem 5.2.4 and Theorem 5.2.5 requires analysis of fragments
on a subpath from the root of TN to β. The analysis of a single
fragment is performed in constant time. In the worst case, the
length of the subpath is linear in size to the number of fragments
in TN. The number of fragments in TN is linear to the number
of flows in the WF-system [37, 190, 359].

Complete Computation Algorithm

We integrate the results for the computation of causal behavi-
oural profiles based on structural decomposition with those ob-
tained in Section 5.1 in a comprehensive algorithm. The al-
gorithm expects a sound free-choice WF-system and a pair of
transitions as input. Given the input, the algorithm determines
the profile relation and checks the co-occurrence relation for the
pair of transitions. Besides the already presented theory, the al-
gorithm exploits the following result. It defines a link between
interleaving order for a pair of transitions and the existence of a
cyclic path that contains both transitions.

Lemma 5.2.7. Let (N,Mi), N = (P, T , F), be a sound free-choice WF-
system, TN = (Ω,χ, t,b) the WF-tree of N, and ω = (P′, T ′, F′),
ω ∈ Ω, a fragment of N. If there exists a path πN(ω.,ω/), then
t1||t2, for all transitions t1, t2 ∈ T ′.

Proof. The existence of a path πN(x,y), where x,y ∈ T ∪ P, im-
plies the existence of a firing sequence containing all transitions
on πN(x,y) due to free-choiceness and soundness [234]. The
claim immediately follows from the fact that there are two paths,
i. e., πN(ω.,ω/) and πN(ω/,ω.).

5.2 computations using structural decomposition 117

Finally, Algorithm 1 details the steps to take when computing
the relations of the causal behavioural profile for a pair of trans-
itions.

Algorithm 1: Computation of the causal behavioural pro-
file for a transition pair.

Input: A sound free-choice WF-system (N,Mi) with
N = (P, T , F) and two transitions x,y ∈ T .

Output: Causal behavioural profile relations for x and y.

1 TN = (Ω,χ, t,b), the WF-tree of N;
2 α ∈ Ω, a trivial fragment with entry x;
3 β ∈ Ω, a trivial fragment with entry y;
4 ωr ∈ Ω, the root fragment of TN;
5 γ = lca(α,β);

// Compute profile relation

6 if ∀ ω ∈ πT{ωr,γ} [t(ω) 6= R] then
7 Get profile relation for x and y using Theorem 5.2.4;
8 else
9 Check interleaving order for x and y by Lemma 5.2.7 on

subnet γ;
10 if not x || y, according to Lemma 5.2.7 then
11 Perform state space exploration for subnet γ to derive

profile relation for x and y;
12 end
13 end

// Check co-occurrence relation

14 if ∀ ω ∈ πT{γ,β} [t(ω) 6= R] then
15 Check co-occurrence relation for x and y by Theorem 5.2.5;
16 else
17 if γ is a T-net then
18 Check co-occurrence for x and y by Theorem 5.1.8;
19 else if γ is an S-net then
20 Check co-occurrence for x and y by Theorem 5.1.9;
21 else if γ is acyclic then
22 Check co-occurrence for x and y by Theorem 5.1.10;
23 else
24 Perform state space exploration to check co-occurrence

for x and y;
25 end
26 end

Algorithm 1 comprises three stages. First, required data struc-
tures are initialized (lines 1 to 5). Second, computation of the
behavioural profile relation for the given pair of transitions takes
place (lines 6 to 13). Last, the pair of transitions is checked for
being in the co-occurrence relation (lines 14 to 26). If there exists
no rigid fragment on the path from the root of the WF-tree to
fragment γ, the profile relation is derived using Theorem 5.2.4
(line 7); otherwise, the algorithm checks if the given transitions
are in interleaving order by Lemma 5.2.7 (line 9), or computes

118 computations of behavioural profiles

the relations for the whole fragment γ by state space exploration
and extracts the requested relation (line 11). As the profile rela-
tions are grounded on trace semantics, exploration of all traces
would be sufficient to derive the respective relation. Still, the set
of traces may be infinite. Therefore, we rely on the exploration of
the state space instead. Soundness of the WF-system guarantees
that the state space is finite. The check of the co-occurrence rela-
tion, in the absence of rigid fragments in the WF-tree on the path
from γ to β, relies on Theorem 5.2.5; otherwise the checks de-
pend on the structural class of fragment γ (lines 17 to 22). Lastly,
if γ does not meet the structural assumptions, again, state space
exploration is needed to decide whether the transition pair is
co-occurring (line 24).

5.3 computations for bounded systems

The methods for the computation of behavioural profiles intro-
duced in the previous sections impose structural and behavi-
oural assumptions on net systems. In Section 2.3, we discussed
that these assumptions hold for a broad class of net systems that
are derived from models captured in common process descrip-
tion languages. Still, we also presented some evidence that these
assumptions cannot be assumed to hold in all cases. Therefore,
this section introduces a more generic approach to the computa-
tion of behavioural profiles. It is applicable for all net systems
that are bounded. The behaviour of these systems is character-
ised by a finite set of states, i. e., markings. Any analysis of this
set of states has to cope with the state explosion problem [444].
Our approach leverages the notion of a complete prefix unfold-
ing, which has been proposed to address this problem [305, 149].
The generality of the proposed approach is traded for computa-
tional complexity. The computation of behavioural profiles for
bounded systems is computationally harder than the techniques
introduced in the previous sections. The construction of a com-
plete prefix unfolding, the preliminary step for our approach, is
known to be an NP-complete problem [204, 149].

In the remainder of this section, we first present basic defin-
itions for complete prefix unfoldings. Second, we establish the
relation between the behavioural profile and the complete pre-
fix unfolding, and present an algorithm for the derivation of the
behavioural profile. Finally, we focus on the causal behavioural
profile and introduce an algorithm for the computation of the
co-occurrence relation.

5.3 computations for bounded systems 119

Complete Prefix Unfoldings

The unfolding of a net system is another, potentially infinite net
system, which has a simpler, tree-like structure [305, 149]. We
recall definitions for unfoldings based on [151].

Definition 5.3.1 (Occurrence Net, Order Relations)
Let N = (P, T , F) be a net, X = (P ∪ T) its set of nodes, and F+

(F∗) the irreflexive (reflexive) transitive closure of F.
◦ A pair of nodes (x,y) ∈ (X× X) is in the conflict relation # ,

iff ∃ t1, t2 ∈ T [(t1 6= t2) ∧ (•t1 ∩ •t2 6= ∅) ∧ (t1 F
∗ x) ∧

(t2 F
∗ y)].

◦ N is an occurrence net, iff (1) N is acyclic, (2) ∀ p ∈ P [|•p| 6
1], and (3) for all x ∈ X it holds x �# x and the set {y ∈
X | y F+ x} is finite. In an occurrence net, transitions are
called events, and places are called conditions.

◦ If N is an occurrence net, the relation F+ is the causality
relation and denoted by <, F∗ is denoted by 6. A pair of
nodes (x,y) ∈ (X× X) of N is in the concurrency relation co,
if neither x 6 y, nor y 6 x, nor x # y.

◦ IfN is an occurrence net,Min(N) denotes the set of minimal
elements of X w.r.t. 6.

The relation between a net system S = (N,M0) withN = (P, T , F)
and an occurrence net O = (C,E,G) is defined as a homomorph-
ism h : (C ∪ E) 7→ (P ∪ T) such that h(C) ⊆ P and h(E) ⊆ T ;
for all e ∈ E, the restriction of h to •e is a bijection between
•e and •h(e); the restriction of h to e• is a bijection between e•
and h(e)•, the restriction of h to Min(O) is a bijection between
Min(O) and all places marked in M0; and for all e, f ∈ E, if
•e = •f and h(e) = h(f) then e = f.

A branching process of S = (N,M0) is a tuple π = (O,h) with
O = (C,E,G) being an occurrence net and h being a homo-
morphism from O to S as defined before. A branching process
π′ = (O′,h′) is a prefix, if O′ = (C′,E′,G′) is a subnet of O, such
that if e ∈ E′ and (c, e) ∈ G or (e, c) ∈ G then c ∈ C′; if c ∈ C′
and (e, c) ∈ G then e ∈ E′; h′ is the restriction of h to C′ ∪ E′.

The maximal branching process of S is called unfolding. The
unfolding of a net system can be truncated once all markings of
the original net system and all enabled transitions are represen-
ted. This yields the complete prefix unfolding.

Definition 5.3.2 (Complete Prefix Unfolding)
Let S = (N,M0) be a system and π = (O,h) a branching process
with N = (P, T , F), X = (P ∪ T), and O = (C,E,G).
◦ A set of events E′ ⊆ E is a configuration, iff ∀ e, f ∈ E′ [e �# f]

and ∀ e ∈ E′ [f < e⇒ f ∈ E′]. The local configuration dee for
an event e ∈ E is defined as {x ∈ X | x < e}.

120 computations of behavioural profiles

◦ A set of conditions C′ ⊆ C is called co-set, iff for all distinct
conditions c1, c2 ∈ C′ it holds c1 co c2. If C′ is maximal w.r.t.
set inclusion, then it is called a cut.
◦ For a finite configuration C′, Cut(C′) = (Min(O)∪C′•)\•C′

is a cut, and h(Cut(C′)) is a marking of S reachable fromM0,
denoted by Mark(C′).

◦ The branching process is complete, iff for every marking M ∈
[N,M0〉 there is a configuration C′ of π such that M =

Mark(C′) and for every transition t enabled in M there
is a finite configuration C′ and an event e /∈ C′ such that
M =Mark(C′), h(e) = t, and C′ ∪ {e} is a configuration.

◦ An adequate order / is a well-founded partial order on finite
configurations such that (1) for two configurations C′,C′′ of
π it holds that C′ ⊂ C′′ implies C′ / C′′ and (2) / is pre-
served by finite extensions, i. e., if C′ /C′′ and Mark(C′) =

Mark(C′′) then the futures of C′ and C′′, the suffixes of π
beginning with Cut(C′) and Cut(C′′), are isomorphic.
◦ An event e ∈ E is a cut-off event induced by /, iff there is a

corresponding event f ∈ E with Mark(dee) = Mark(dfe) and
dfe / dee.
◦ The branching process π is the complete prefix unfolding in-

duced by /, iff it is the greatest prefix of the unfolding of S
that does not contain any event after a cut-off event.

The definition of a cut-off event and, therefore, of the complete
prefix unfolding is parameterised by the definition of an ad-
equate order /. Multiple definitions have been proposed in the
literature [149]. The differences between these definitions can
be neglected for our approach. For the implementation and
experimental evaluation, we rely on the definition presented
in [151]. As we leverage the information on cut-off events in
our approach, we include them in the complete prefix for con-
venience.

Figure 32 illustrates the concept of an unfolding and its com-
plete prefix. Figure 32a depicts an example net system. This
system is not free-choice, so that the approaches to the computa-
tion of causal behavioural profiles introduced in Section 5.1 and
Section 5.2 are not applicable. Figure 32b depicts a part of the
unfolding of the net system. Here, the labelling of transitions
hints at the homomorphism between the two systems. For in-
stance, both events C1 and C2 in the prefix in Figure 32b relate
to the transition C of the original system in Figure 32a. The un-
folding is infinite, which is caused by the circuit in the original
net system. In Figure 32b, cut-off events are highlighted in grey
and the complete prefix unfolding is marked by dashed lines.

5.3 computations for bounded systems 121

A

C

D E

F

B

(a) Net system that is not free-choice.

A1

C1

D1 E2

F1

E1

C2

D2

F2

B1

...

...

...

...

C3

D3

...

...

(b) The complete prefix unfolding of (a).

Figure 32: A net system and its complete prefix unfolding.

Derivation of the Profile Relations

We derive the relations of the behavioural profile directly from
the relations of the complete prefix unfolding that have been
introduced for occurrence nets in Definition 5.3.1. The caus-
ality, conflict, and concurrency relation partition the Cartesian
product of events of the complete prefix unfolding. Although
this resembles the partitioning induced by the profile relations,
the relations of an occurrence net relate to events, i. e., occurrences
of transitions of the original net system.

We deduce the weak order relation from the concurrency and
the causality relation of the complete prefix unfolding. The ex-
istence of a firing sequence containing two transitions of the ori-
ginal system is reflected by two events in the prefix that relate to
these transitions and are concurrent or in causality. The former
represents two transitions that can be enabled concurrently in
the original system, such that there is a firing sequence contain-
ing both transitions in either order. Two events in causality in
the prefix, in turn, represent two transitions in the original net
that can occur in a firing sequence in the respective order.

Still, not all firing sequences are visible in the complete pre-
fix unfolding directly. Events that relate to two transitions may
not show causality or concurrency although the respective trans-

122 computations of behavioural profiles

itions may occur in a firing sequence. Consider, for instance,
transitions B and E of the system in Figure 32a. Even though
both transitions may be observed in some firing sequence, the
pairs of corresponding events B1 and E1 (B1 and E2, respect-
ively) are in conflict in the complete prefix unfolding in Fig-
ure 32b. In Figure 32b, the cuts of the local configurations of
the events A1 and B1 represent the same marking in the original
net system. This has to be taken into account when checking
for weak order, i. e., the existence of a firing sequence in the ori-
ginal net system. We address this issue by the notion of an event
continuation relation for the complete prefix unfolding. It holds
between two events, if they are directly related by concurrency
or causality, or if there is an indirect continuation between them
through cut-off and corresponding events.

Definition 5.3.3 (Event Continuation)
Let S = (N,M0) be a bounded system and π = (O,h) its com-
plete prefix unfolding including cut-off events with N = (P, T , F)
and O = (C,E,G). A pair of events (e1, e2) ∈ (E× E) is in the
event continuation relation ↪→, iff
◦ they are distinct and either causally related or concurrent,
(e 6= f)∧ ((e < f)∨ (e co f)), or
◦ there is a sequence of cut-off events (g1, . . . ,gn) with gi ∈ E

for 1 6 i 6 n and a sequence of corresponding events
(g′1, . . . ,g′n) with g′i ∈ E, such that all of the following re-
quirements are met:
− e 6 g1,
− g′j 6 gj+1 for 1 6 j < n,
− (g′n 6= f)∧ ((g′n < f)∨ (g′n co f)).

The existence of a continuation between two events in the com-
plete prefix unfolding coincides with the existence of a firing
sequence that comprises the transitions in the respective order
in the original net system. Hence, an event continuation allows
for concluding on weak order between the transitions.

Theorem 5.3.1. Let S = (N,M0) be a bounded system and π =

(O,h) its complete prefix unfolding including cut-off events with N =

(P, T , F) and O = (C,E,G). Then, two transitions x,y ∈ T are in
weak order, x � y, iff there are events e, f ∈ E with h(e) = x and
h(f) = y, such that e ↪→ f.

Proof. Let S = (N,M0) and π = (O,h) be defined as before and
let x,y ∈ T be transitions.
⇒ Let x � y. Then, there is a firing sequence in S starting

in M0 that contains transition x before y. As the prefix
is complete, both occurrences of transitions are represen-
ted by corresponding events e, f ∈ E with h(e) = x and
h(f) = y. If there is a configuration in O that contains e

5.3 computations for bounded systems 123

before f, they are distinct and causally related or concurrent,
i. e., (e 6= f)∧ ((e < f)∨ (e co f)) (first statement of the defin-
ition of an event continuation, Definition 5.3.3). If there is
no such configuration, then either e # f or f < e. If there
is no cut-off event k ∈ E in O with e < k, then the event f
cannot refer to the firing of transition y as the events E and f
either represent occurrences of transitions that cannot occur
together (e # f) or that may occur only in the reversed order
(f < e). Therefore, there has to be a cut-off event k with
either e 6 k or e co k. Assume that the sequence of cut-off
events is one. Then, to explain the occurrence of transition
y after transition x in a firing sequence in S, it holds that the
corresponding event k′ for k is related to f by either k′ < f,
f < k′, or f co k′. Coming back to the two cases, e 6 k

or e co k, we first consider the latter. If e co k, then the oc-
currence of transition x represented by e happens only after
the marking represented by the cut of dke is reached. To ex-
plain an occurrence of transition x before transition z, thus,
there has to be an event e′ with h(e) = h(e′) and e′ co k′ for
which holds (e′ 6= f)∧ ((e′ < f)∨ (e′ co f)). This, again, is
covered by the definition of an event continuation. Consider
e 6 k. Then, to explain the occurrence of transition y after
transition x in a firing sequence in S, it holds that the cor-
responding event k′ for k is distinct (k′ 6= f) to f and either
k′ < f, f < k′, or f co k′. To observe a firing of x before y, we
have to exclude f < k′ from the possible relations between f
and k′. That is because f < k′ implies that y is observed be-
fore the marking represented by the cut of dke is reached as
Mark(dke) = Mark(dk′e). Hence, we have k′ < f or k′ co f,
which is the second statement of the definition of an event
continuation, Definition 5.3.3. The same argument is applied
to all intermediate cut-off events in case the sequence of cut-
off events is longer than one. Here, the requirements for the
relation between events e and k (e 6 k) are enforced to all
intermediate events (g′j 6 gj+1).

⇐ For all events e, f ∈ E that meet h(e) = x and h(f) = y

let e ↪→ f. The latter translates into (1) (e 6= f) ∧ ((e <

f) ∨ (e co f)), or (2) there is a sequence of cut-off events
(g1, . . . ,gn) and corresponding events (g′1, . . . ,g′n) that satis-
fies the requirements given in Definition 5.3.3. Assume that
x 6� y. Let M1 be the marking in S represented by the cut
Cut(dfe). If e < f then event e is part of dfe. Hence, trans-
ition x has been fired to reach marking M1 in S, which is
a contradiction with x 6� y. If e co f and e 6= f, there must
be an event g in dfe with g < e and for every condition
cf ∈ •f there is a condition cg ∈ g• with cg < cf or cg = cf.
Since e co f, e 6= f, g < f, and g < e, we also know cg 6< e

124 computations of behavioural profiles

for all those conditions cg. Hence, these conditions cg are
part of the cut Cut(dee). Let M2 be the marking in S that is
represented by this cut. There is a firing sequence starting
in M2 that comprises all transitions that are represented by
the events dfe \ dee. Hence, there is a firing sequence start-
ing in M2 that contains transition y. This is a contradiction
with x 6� y. Consider case (2). Following on the argument
given in the previous case, we know that there is a firing
sequence in S that reaches a marking M3 and comprises
the transition h(e), i. e., transition x, before the transition
h(g1), if e 6= g1. For the corresponding event g′1, we know
Mark(dg1e) = Mark(dg′1e). Hence, M3 is also reached
in S through firing all transitions represented by events in
dg′1e. Assume that the sequence of cut-off events is one, i. e.,
(g′1 6= f)∧ ((g′1 < f)∨ (g′1 co f)). Then, there is a firing se-
quence in S starting in M3 that contains the transition h(g′1)
before the transition h(f), i. e., transition y. As M3 may be
reached by a firing sequence containing transition x, there is
a firing sequence comprising transition x before transition y.
We arrived at a contradiction with x 6� y. The same argu-
ment is applied to all intermediate cut-off events in case the
sequence of cut-off events is longer than one.

Algorithm 2 shows how the behavioural profile is computed
from the complete prefix unfolding of a bounded system.

First, we compute the order relations, i. e., the causality, con-
flict, and concurrency relation, for the complete prefix unfolding
(line 1). The respective algorithm can be found in [243].

Second, we identify cut-off and corresponding events (lines 2

to 7). The set Ecut is filled with all cut-off events, their corres-
ponding events are added to the set Ecor. We store the relation
between them in E.

Third, we build the event continuation relation for the com-
plete prefix unfolding (lines 8 to 21). For each pair of a corres-
ponding event of some cut-off event and another cut-off event,
we check whether they are identical or causally related. If so,
the relation between both events is also added to the relation E.
The intuition behind is that the transitive closure of E hints at
the existence of a sequence of cut-off and corresponding events,
cf., Definition 5.3.3.

Fourth, all pairs of events of the complete prefix unfolding
are assessed for the existence of an event continuation between
them (lines 22 to 25). If so, the weak order relation is captured
for the transitions that are represented by these events according
to Theorem 5.3.1.

Finally, the relations of the behavioural profile are derived
from the weak order relation (lines 26 to 31).

5.3 computations for bounded systems 125

Algorithm 2: Computation of the behavioural profile from
the complete prefix unfolding.

Input: S = (N,M0), a bounded system with N = (P, T , F).
π = (O,h), its complete prefix unfolding including
cut-off events with O = (C,E,G).

Output: B = { ,+, ||}, the behavioural profile of S.

1 Compute order relations <, # , and co of O;

// Compute cut-off events and corresponding events in π

2 Ecor,Ecut,E←− ∅;
3 foreach (e1, e2) ∈ (E× E) do
4 if (Mark(de1e) =Mark(de2e))∧ (de1e / de2e) then
5 Ecor ←− (e1); Ecut ←− (e2); E←− (e2, e1);
6 end
7 end

// Build event continuation relation of π

8 ↪→←− ∅;
9 foreach (ecor, ecut) ∈ (Ecor × Ecut) do

10 if ecor 6 ecut then E←− (ecor, ecut);
11 end
12 foreach (e1, e2) ∈ (E× E) do
13 if (e1 6= e2)∧ ((e1 < e2)∨ (e1 co e2)) then ↪→←− (e1, e2);
14 else
15 foreach (ecut, ecor) ∈ (Ecut × Ecor) do
16 if (e1 6 ecut) ∧ (ecut E

+ ecor) ∧

(ecor 6= e2)∧ ((ecor < e2)∨ (ecor co e2)) then
17 ↪→←− (e1, e2);
18 end
19 end
20 end
21 end

// Derive weak order for transitions of S

22 � ←− ∅;
23 foreach (e1, e2) ∈ (E× E) do
24 if (e1 ↪→ e2) then � ←− (h(e1),h(e2));
25 end

// Derive relations of behavioural profile of S

26 ,+, || ←− ∅;
27 foreach (t1, t2) ∈ (T × T) do
28 if (t1 � t2)∧ (t2 � t1) then || ←− (t1, t2);
29 else if t1 � t2 then ←− (t1, t2);
30 else + ←− (t1, t2);
31 end

126 computations of behavioural profiles

Proposition 5.3.2. Algorithm 2 terminates and after termination B =

{ ,+, ||} is the behavioural profile of S.

Proof. Termination: The algorithm iterates over sets that are de-
rived from E, C, Ecut ⊆ E, Ecor ⊆ E, and T . T is finite by
definition. Since the net system is bounded, the complete prefix
unfolding and, therefore, the sets of events E and conditions C
are finite as well. Hence, the algorithm terminates.
Result: Relation E is built such that it contains cut-off events
and their corresponding events. Further, it contains events that
are corresponding to a cut-off event along with all cut-off events
that are identical or in causality to the former event. Hence, the
transitive closure of E hints at the existence of a sequence of cut-
off events and corresponding events that are related as stated
in Definition 5.3.3. Further, the statements of Definition 5.3.3
are implemented directly to compute the event continuation re-
lation. Derivation of the weak order relation is realised accord-
ing to Theorem 5.3.1. Finally, derivation of the profile relations
based on weak order follows directly on the definition of the
behavioural profile.

The algorithm runs in polynomial time with respect to the size
of the complete prefix unfolding. The final step of the algorithm,
which sets the profile relations based on the weak order relation
for all pairs of transitions, is neglected at this point.

Corollary 5.3.3. The following problem can be solved in O(n4) time
with n as the number of events and conditions of the complete prefix
unfolding:
For a bounded net system and its complete prefix unfolding, to compute
the weak order relation for the net system.

Proof. We assume all relations used and created in the algorithm
to be represented by their characteristic functions, i. e., to be en-
coded as bi-dimensional arrays that map to either zero or one.
Then, adding an entry to a relation and checking membership
for a tuple takes constant time. Computation of the order re-
lations of the complete prefix unfolding is done in O(|E| · |C|)
time [243]. In the second step of the algorithm, we iterate over
E×E, which takes O(|E|2) time. In the third step, we iterate over
Ecut × Ecor. Since Ecut ⊆ E and Ecor ⊆ E, this takes O(|E|2)
time. Then, we iterate over E × E × Ecut × Ecor, which takes
O(|E|4) time. As a prerequisite for this step the transitive closure
of E is computed, which takes O(|E|3) time [486]. The iteration
over E× E to set weak order requires O(|E|2) time. Overall time
complexity is O(n4) with n as the number of events and condi-
tions of the complete prefix unfolding.

The algorithm runs in polynomial time to the size of the com-
plete prefix unfolding, not to the size of the net system. The

5.3 computations for bounded systems 127

adequate order presented in [151] to parameterise the definition
of a complete prefix unfolding has been shown to create com-
pact prefixes. Nevertheless, the prefixes may be large, at most
the size of the state space of the net system [151]. Hence, even a
polynomial time algorithm may result in a high computational
effort. Later, we will present experimental results to investigate
this issue.

Derivation of the Co-occurrence Relation

The previous section established the relation between the exist-
ence of a firing sequence containing two transitions and the re-
lations of the respective events in the complete prefix unfolding.
It suffices to investigate the existence of a firing sequence to de-
rive the relations of the behavioural profile. The computation of
the co-occurrence relation, in turn, requires investigation of all
possible firing sequences.

A

A

A*

pA

pIA pA*

Figure 33: Pre-processing for unfolding.

We tackle the computation of co-occurrences by augmenting
the original net system with additional transitions and places.
This transformation aims at making co-occurrences directly vis-
ible in the complete prefix unfolding. The idea is to have a ded-
icated place signalling that a certain transition has been fired at
least once. Adding a place to the post-set of a transition, how-
ever, may result in an unbounded net system. Any transition
that may be fired infinitely often, e. g., as part of a circuit, would
cause an infinite number of reachable markings. Therefore, we
apply the transformation illustrated in Figure 33 for all trans-
itions for which co-occurrence should be determined. For the
transition A, an additional transition A∗ is inserted. Informally,
this transition represents the first firing of transition A in the ori-
ginal system. After transition A∗ has been fired, two places, pA
and pA∗ , are marked. The former place ensures that transition A
can only be fired after the inserted transition A∗ has been fired
before. The latter place remains marked to signal that transition
A∗ has been fired. This, in turn, indicates that transition A in
the original system has been fired at least once. We define the
transformation that yields an augmented net system as follows.

128 computations of behavioural profiles

Definition 5.3.4 (Augmented Net System)
Let S = (N,M0) be a net system with N = (P, T , F) and t ∈ T a
transition.
◦ The augmented net system of S induced by t is a net system
Ŝ = (N̂, M̂0) with N̂ = (P̂, T̂ , F̂), such that
− T̂ = T ∪ {t∗} with t∗ being a fresh transition, t∗ /∈ T , t∗ is

called augmented transition for t,
− P̂ = P ∪ {pit,pt,pt∗} with pit, pt, and pt∗ being three

fresh places, pit,pt,pt∗ /∈ P, pt∗ is called augmented place
for t,

− F̂ = F∪ {(p, t∗) | (p, t) ∈ F}∪ {(t∗,p) | (t,p) ∈ F}∪ {(pit, t∗),
(t∗,pt), (t∗,pt∗), (t,pt), (pt, t)},

− M̂0 =M0 ∪ (pit, 1),
◦ For the augmented system Ŝ of S induced by t, and t∗ and
pt∗ as the augmented transition and place, the augmentation
function a : (P ∪ T)→ T is defined as

a(n) =

t, iff n = t∗ ∨ n = pt∗

⊥, else.

◦ The augmented net system of S induced by T ′ ⊆ T is derived
by a step-wise augmentation with all transitions t′ ∈ T ′.

For a net system S = (N,M0), N = (P, T , F), we refer to the aug-
mented net system of S induced by all transitions T as the aug-
mented system of S. We exemplify the augmentation of net sys-
tems with the example net introduced in Figure 32a. Figure 34a
shows the augmented net system that is induced by two trans-
itions, B and E. In this system, the places pB∗ and pE∗ indicate
that transitions B and E in the original net system in Figure 32a
have been fired. There is a close relation between the behaviour
of a system and the behaviour of the augmented system. To
show this relation, we introduce the notion of a corresponding
firing sequence.

Definition 5.3.5 (Corresponding Firing Sequence)
Let S = (N,M0) be a net system with N = (P, T , F). Let Ŝ =

(N̂, M̂0) be the augmented net system with N̂ = (P̂, T̂ , F̂) and
a the respective augmentation function. A firing sequence σ =

〈t1, . . . , tn〉 in S, (N,M0)[σ〉, corresponds to a firing sequence σ̂ =

〈s1, . . . , sn〉 in Ŝ, (N̂, M̂0)[σ̂〉, iff with 1 6 i 6 n it holds
◦ ti = a(si), if ∀ j ∈N, j < i [tj 6= ti], and
◦ ti = si, otherwise.

In fact, for each firing sequence in either system, there exists a
corresponding firing sequence.

Lemma 5.3.4. The relation between corresponding firing sequences of
a net system and of the augmented net system is a bijection.

5.3 computations for bounded systems 129

A C

D

F

B

B*

pB

pIB

E

E*

pE

pIEpB* pE*

(a) The augmented net system of the net system in Figure 32a
induced by transitions {B,E}.

A1

C1

D1 E*2

F1

E*1
pIE1

pE1

B*1

pB1pIB1

C3

D3 E*4

E*3

F2

pB*1

pE*1

pE2

pE*2

pE3

pE*3

pE4

pE*4

(b) The complete prefix unfolding of (a).

Figure 34: An augmented net system and its complete prefix unfolding

Proof. Let S = (N,M0) be a net system, N = (P, T , F), and
Ŝ = (N̂, M̂0) the augmented net system, N̂ = (P̂, T̂ , F̂). Let t ∈ T
be a transition. For this transition, the augmentation step adds
three places, pit, pt, and pt∗ , and one transition, t∗, to the ori-
ginal net structure. Place pit has an empty pre-set and is marked
initially. Transition t∗ is the only transition that consumes a
token from pit. Hence, transition t∗ fires at most once as part of
a firing sequence that starts in the initial marking. Transition t,
in turn, requires place pt to be marked, which is the case only
once transition t∗ has been fired. As all places in the pre- and
post-set of t are also in the pre- and post-set of t∗, every mark-
ing that enables t in S enables either t or t∗ in Ŝ, depending on
whether transition t∗ was fired to reach the respective marking.
Therefore, any firing sequence in S is rewritten such that the first
occurrence of transition t is replaced by an occurrence of t∗ to
yield a firing sequence in the augmented net system Ŝ. For any
firing sequence in Ŝ, the occurrence of transition t∗ is replaced by
an occurrence of t to yield a firing sequence in S. This argument
holds for all transitions t ∈ T .

130 computations of behavioural profiles

We established the relation between a system and the augmen-
ted system by means of corresponding firing sequences. Corres-
ponding firing sequences imply a relation between the markings
reached by firing them in both systems. We refer to these mark-
ings as corresponding markings.

We motivated the definition of the augmentation step by the
need to preserve boundedness of net systems. This property is
not affected by the transformation, indeed.

Lemma 5.3.5. For any bounded net system holds, the augmented net
system is bounded.

Proof. Let S = (N,M0) be a net system, N = (P, T , F), and
Ŝ = (N̂, M̂0) the augmented net system, N̂ = (P̂, T̂ , F̂) induced
by a transition t ∈ T . The augmentation step adds three places,
pit, pt, and pt∗ , to the original net structure. Place pit has an
empty pre-set and one transition, t∗, in its post-set. Place pit is
marked in M̂0, so that transition t∗ can fire at most once. Firing
of transition t∗ marks place pt∗ , which remains marked as it has
an empty post-set. Transition t∗ is the only transition that puts a
token into place pt without consuming a token from this place.
Place pt is not marked initially. Hence, in every reachable mark-
ing M̂ ∈ [N̂, M̂0〉 either place pit is marked or places pt and pt∗
are marked. All three places can be marked with at most one
token. Thus, any marking reachable in S has at most two reach-
able corresponding markings in Ŝ that mark either place pit or
places pt and pt∗ ; and are equal for all places p ∈ P. Hence, aug-
mentation induced by one transition at most duplicates the num-
ber of reachable markings in the augmented system compared
to the original system. Since, the latter is bounded and the set
of transitions exploited for augmentation is finite, the number of
reachable markings in the augmented system is finite.

Using the notion of an augmented net system, we decide co-
occurrence for two transitions of a bounded net system.

Theorem 5.3.6. Let S = (N,M0) be a bounded system with N =

(P, T , F) and x,y ∈ T two transitions. Let Ŝ = (N̂, M̂0) with N̂ =

(P̂, T̂ , F̂) be the augmented net system of S induced by {x,y} with a
as the augmentation function. Let π = (O,h) be the complete prefix
unfolding including cut-off events of Ŝ with O = (C,E,G). Then, x
and y are co-occurring, x � y, iff for all events e ∈ E with ∃ c ∈
Cut(dee) [a(h(c)) = x] it holds either
◦ there is a condition c ∈ Cut(dee) with a(h(c)) = y, or
◦ there is an event f ∈ E with a(h(f)) = y and (e = f)∨ (e ↪→ f).

Proof. Let S = (N,M0), Ŝ = (N̂, M̂0), and π = (O,h) be defined
as before and let x,y ∈ T be transitions.
⇒ Let x� y. Let σ be a firing sequence with (N,M0)[σ〉(N,M)

and x ∈ σ. Let σ̂ be the corresponding firing sequence of σ

5.3 computations for bounded systems 131

and M̂ the corresponding marking of M in the augmented
system Ŝ. Since x ∈ σ, it holds x∗ ∈ σ̂. Hence, the aug-
mented place px∗ , a(px∗) = x, is marked in M̂. As the only
transition that consumes a token from px∗ , i. e., transition
x, also produces a token in px∗ , this place is marked in all
markings M̂′ ∈ [N̂, M̂〉. Thus, any cut in O that represents
the marking M̂ or every marking M̂′ ∈ [N̂, M̂〉 comprises
a condition cx ∈ C with a(h(cx)) = x. Now consider two
cases that follow from x � y: (1) y ∈ σ or (2) y is not dead
in M.
(1) Following on the argument given for transition x, we

conclude that place py∗ is marked in M̂ and in all mark-
ings M̂′ ∈ [N̂, M̂〉. Then, every cut in O that represents
the marking M̂ or every marking M̂′ ∈ [N̂, M̂〉 also com-
prises a condition cy ∈ C with a(h(cy)) = y.

(2) Let y /∈ σ. Then, it holds y∗ /∈ σ̂. Since y is not dead
in M, y∗ is not dead in M̂. Hence, there is a firing se-
quence σ̂2 with (N̂, M̂)[σ̂2〉(N̂, M̂′) and y∗ ∈ σ̂2. Let t be
the last transition of the firing sequence σ̂ to reach the
marking M̂. Let e ∈ E be the event representing the oc-
currence of t in O, h(e) = t. Then, by Theorem 5.3.1, the
existence of the firing sequence σ̂2 implies that there is
an event f ∈ E with h(f) = y∗ and (e = f)∨ (e ↪→ f).

⇐ Let for all events e ∈ E with ∃ c ∈ Cut(dee) [a(h(c)) = x]

there be either a condition c ∈ Cut(dee) with a(h(c)) = y or
an event f ∈ E with h(f) = y∗ and (e = f)∨ (e ↪→ f). Let
M̂ ∈ [N̂, M̂0〉 be a marking in Ŝ in which place px∗ ∈ P̂ is
marked and which is reached by the firing sequence σ̂. Then,
the corresponding firing sequence σ in S contains transition
x ∈ T . Let t be the last transition of the firing sequence σ̂ to
reach the marking M̂. Let e ∈ E be the event representing
the occurrence of t in O, h(e) = t. Then, the cut Cut(dee)
comprises a condition cx ∈ C with a(h(cx)) = x. Consider
two cases:
(1) There is a condition c ∈ Cut(dee) with a(h(c)) = y.

Then, place py∗ is marked in σ̂. This place is not marked
in M̂0 and y∗ is the only transition puts a token into
place py∗ without consuming a token from this place.
Hence, it holds y∗ ∈ σ̂ and the corresponding firing se-
quence σ in S contains transition y ∈ T .

(2) There is an event f ∈ Ewith h(f) = y∗ and (e = f)∨ (e ↪→
f). By Theorem 5.3.1, the existence of an event con-
tinuation implies that there is a firing sequence σ̂2 with
(N̂, M̂)[σ̂2〉 and y∗ ∈ σ̂2. Therefore, y∗ is not dead in M̂.
Consequently, transition y is not dead in the correspond-
ing marking M in S.

132 computations of behavioural profiles

Algorithm 3: Computation of the co-occurrence relation
from the complete prefix unfolding of the augmented sys-
tem

Input: S = (N,M0), a bounded system with N = (P, T , F).
Ŝ = (N̂, M̂0), the augmented system of S with
N̂ = (P̂, T̂ , F̂) and a as the augmentation function.
π = (O,h), the complete prefix unfolding of Ŝ with
O = (C,E,G).

Output: �, the co-occurrence relation of S.

1 Compute order relations <, # , and co of O;

2 Compute event continuation relation ↪→ of π (see Algorithm 2);

/* Relate events to transitions for which the

occurrence is indicated by a condition related to

the augmented place */

3 T,CA←− ∅;
4 foreach e ∈ E do if a(h(e)) 6=⊥ then T ←− a(h(e)) ;
5 foreach (e, c) ∈ (E×C) do
6 if (c ∈ e•)∨ (e co c)∧ ((•c× {e} ⊆ <)∨ (•c = ∅)) then
7 if a(h(c)) 6=⊥ then CA←− (e,a(h(c))) ;
8 end
9 end

// Derive co-occurrence for transitions in S

10 �←− ∅;
11 foreach (t1, t2) ∈ (T × T) do
12 check←− true ;
13 foreach e ∈ E do
14 if (e CA t1)∧ (e��CA t2) then
15 found←− false ;
16 foreach f ∈ E do
17 if (a(h(f)) = t2)∧ ((e = f)∨ (e ↪→ f)) then

found←− true ;
18 end
19 if not found then check←− false ;
20 end
21 end
22 if check then �←− (t1, t2) ;
23 end
24 foreach (t1, t2) ∈ (T × T) do
25 if t1 /∈ T then �←− (t1, t2) ;
26 end

5.3 computations for bounded systems 133

Algorithm 3 shows how the co-occurrence relation is computed
for a bounded system given the complete prefix unfolding of the
augmented system induced by all of its transitions.

First, we compute the order relations, i. e., the causality, con-
flict, and concurrency relation, for the complete prefix unfolding
(line 1) along with the event continuation relation (line 2).

Second, we extract every transition for which the occurrence
of its augmented transition is indicated by a respective event in
the complete prefix unfolding (line 4). Here, the idea is to ex-
tract all transitions that are not dead in the initial marking of the
original net system. Then, we capture dependencies between
events and transitions (lines 5 to 9). We check all conditions
whether they belong to the cut induced by the event’s local con-
figuration. If so, we check whether the condition represents an
augmented place of a transition. If this is the case, the relation
between the event and the transition to which the augmented
place is related is stored in relation CA. The intuition behind
is to capture for each event, which transitions have occurred
already when the marking represented by the cut induced by
the local configuration of the event has been reached.

Third, we exploit the knowledge on this dependency to con-
clude on co-occurrence for transitions based on Theorem 5.3.6
(lines 10 to 23). That is, we check for all pairs of transitions that
are not dead in the initial marking, whether the requirements im-
posed for co-occurrence by Theorem 5.3.6 are satisfied. Finally,
we consider transitions that are dead in the initial marking sep-
arately (lines 24 to 26).

Proposition 5.3.7. Algorithm 3 terminates and after termination �
is the co-occurrence relation of S.

Proof. Termination: The algorithm iterates over sets that are de-
rived from C, E, and T. The size of set T is at most the size of
E (line 4). Since the net system is bounded, the augmented net
system is bounded by Lemma 5.3.5. Hence, the complete prefix
unfolding and the sets of events E and conditions C are finite.
Thus, the algorithm terminates.
Result: Relation CA links an event e ∈ E in the complete prefix
unfolding to a transition t ∈ T in S, if the cut induced by the local
configuration of e comprises a condition c ∈ C that represents
the augmented place pt∗ ∈ P̂ of t in Ŝ, i. e., a(h(c)) = t. Then,
we iterate over all pairs of transitions (t1, t2) ∈ (T × T) and all
events. We rely on relation CA to check if the cut induced by
the local configuration of an event e ∈ E comprises a condition
that represents the augmented place of the first transition t1. If
so, we check whether the requirements of Theorem 5.3.6 are sat-
isfied. Theorem 5.3.6 requires either (1) that the cut induced by
the local configuration of e comprises a condition that represents

134 computations of behavioural profiles

the augmented place of the second transition t2 or (2) that there
is an event f ∈ E with a(h(f)) = y and (e = f)∨ (e ↪→ f). Al-
gorithm 3 checks whether both requirements are violated. If no
violation is detected, the predicate check remains true and the
respective pair of transitions is added to the co-occurrence rela-
tion. Finally, transitions in S that are dead in the initial marking
of S are treated. For these transitions there is no event in the com-
plete prefix unfolding that represents the augmented transition.
Hence, these transitions are characterised as being not in T.

The algorithm runs in polynomial time with respect to the size of
the complete prefix unfolding of the augmented system. Again,
we neglect the final step of the algorithm, which sets the co-
occurrence relation for dead transitions of the original net sys-
tem. This is motivated by evaluating the time complexity solely
based on the size of the representation of the behaviour, which
may be independent from the size of the net system. Therefore,
we consider only lines 1 to 23 of Algorithm 3.

Corollary 5.3.8. The following problem can be solved in O(n4) time
with n as the number of events and conditions of the complete prefix
unfolding:
For a bounded net system and the complete prefix unfolding of its aug-
mented system, to compute the co-occurrence for all transition pairs of
the bounded net system that are not dead in its initial marking.

Proof. Again, we assume all relations used and created in the
algorithm to be encoded as bi-dimensional arrays that map to
either zero or one. This allows for adding a tuple to the rela-
tion or checking its membership in constant time. Computation
of the order relations of the complete prefix unfolding is done
in O(|E| · |C|) time [243]. By Corollary 5.3.3 the computation of
the event continuation relation takes O(n4) time with n as the
number of events and conditions of the complete prefix unfold-
ing. When relating events to transitions, we iterate over E× C,
which takes O(|E| · |C|) time. Then, we iterate over T × T. Since
it holds |T| 6 |E|, this takes O(|E|2) time. As part of an iteration,
we may iterate over E× E, which takes O(|E|2) time in addition.
Thus, overall, this part of the algorithm takes O(n4) time with
n as the number of events and conditions of the complete prefix
unfolding.

Again, the polynomial time complexity is relative to the size of
the complete prefix unfolding. The latter may be large in size,
at most the size of the state space of the net system [151]. Even
worse, the augmentation step increases the size of the state space
of the net system dramatically. Augmentation by a single trans-
ition at most doubles the size of the state space, cf., the reasoning

5.4 implementation & experimental results 135

in the proof of Lemma 5.3.5. Hence, augmentation by all trans-
itions may increase the size of the state space exponentially. This
affects the size of the complete prefix unfolding. At a later stage,
we will present experimental results to explore this issue.

5.4 implementation & experimental results

To evaluate the presented techniques, we implemented all ap-
proaches for the computation of behavioural profiles as part of
the jBPT library. The library is published under the GNU Gen-
eral Public License (GPL) and available for download1. With
this implementation, we tested the computation of behavioural
profiles for model collections from industry. These experiments
provide insights on the structural and behavioural characterist-
ics found for models in an industrial setting. Hence, we are
able to judge on the relevance of the assumptions with respect
to free-choiceness and soundness imposed by the techniques in-
troduced in Section 5.1 and Section 5.2. The observed absolute
computation times also illustrate for which model sizes behavi-
oural profiles are created instantaneously.

In the remainder of this section, we discuss three experiments
in detail. For each of the three model collections, we first dis-
cuss model characteristics with respect to free-choiceness and
soundness. Then, we present results from the application of our
techniques for the computation of behavioural profiles. We fo-
cus on the approaches for sound free-choice models discussed in
Section 5.1 and Section 5.2 for the first two experiments. For the
third model collection, we additionally apply the approach for
bounded models introduced in Section 5.3. Finally, we shortly
summarise the obtained results.

SAP Reference Model

The SAP reference model [95] describes the functionality of the
SAP R/3 system. It comprises 604 process diagrams, which are
expanded to 737 models in EPC notation as some diagrams con-
tain multiple disconnected EPCs. These EPC models capture
different functional aspects of an enterprise, such as sales or ac-
counting.

Model characteristics. A detailed evaluation of the SAP refer-
ence model using structural and behavioural measures can be
found in [312]. In the following paragraph, we focus on the char-
acteristics that have been relevant for our experimental setup.
23 models are trivial, i. e., they consist of solely one element.
Eight out of 737 models show syntax errors that cannot be in-

1 http://code.google.com/p/jbpt/

http://code.google.com/p/jbpt/

136 computations of behavioural profiles

terpreted unambiguously. Events or functions with more than
one incoming or outgoing flow arc are examples for this type
of error. Further, the instantiation semantics of EPCs are not
formally defined, which raises several questions for models with
multiple start events [109]. A class of EPCs with intuitive instan-
tiation semantics has been identified based on the notion of a
start join [109]. Models with multiple start events contain a start
join, if there is ‘a join connector such that for every other node n in
the EPC there is either a path from n to the start join or a path from
it to n.’ [109]. Models without start join may also have intuit-
ive instantiation semantics [361]. Still, investigating the instan-
tiation semantics of these models requires behavioural analysis,
whereas the existence of a start join can be decided structurally.
Therefore, we require models with multiple start events to have
a start join. This requirement is met by 572 process models.

For the models that are non-trivial and free of syntax errors
and instantiation issues, we normalised multiple start and end
events to create a dedicated entry and exit for each model. For
507 models, such a normalisation was possible without duplic-
ating start or end events. Several models comprise converging
OR-connectors, which cannot be mapped to free-choice Petri net
constructs, cf., Section 2.3. We replaced block-structured OR-
split and OR-join connectors with AND-connectors. This does
not affect the behavioural profile, but affects the co-occurrence
relation of the causal behavioural profile. Replacing the block-
structured OR-split and OR-join connectors with XOR-connec-
tors would have led to the opposite result. In this case, computa-
tion would be correct for the co-occurrence relation, but not for
the relations of the behavioural profile.

The SAP reference model comprises behavioural errors [472,
316]. From the 507 models that are non-trivial, free of syntax
errors and instantiation issues, and have normalised start and
end events, 14 models are not sound. We transformed all of
the remaining 493 models into sound free-choice WF-systems
following on common EPC formalisations [236]. Finally, we as-
sessed whether these systems satisfy the requirements on un-
structured net fragments needed to derive the co-occurrence re-
lation from the net structure, see Section 5.1. We encountered
two WF-systems that contain a rigid fragment. Both fragments
can be mapped to an S-system and, therefore, handled using the
presented results.

Computation results. We computed behavioural profiles over
all transitions of all 493 WF-systems separately. We grouped the
models according to their size, i. e., the number of transitions of
the WF-systems. Figure 35 shows the average computation time
for each model group in three experiment runs. First, we com-
puted the behavioural profile using the approach introduced in

5.4 implementation & experimental results 137

R² = 0,98

60

80

100

120

140

160

om
pu

ta
tio

n
Ti

m
e

(m
s)

BP - Net BP - Tree CBP
BP - Net (Pol) BP - Tree (Pol) CBP (Pol)

R² = 0,98

R² = 0,74

R² = 0,98

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Number of Transitions of WF-System

BP - Net BP - Tree CBP
BP - Net (Pol) BP - Tree (Pol) CBP (Pol)

Figure 35: SAP reference model: computation time relative to the size
of the WF-system.

Section 5.1 (BP-Net). Second, we derived the same profile using
WF-trees as introduced in Section 5.2 (BP-Tree). Third, we com-
puted the causal behavioural profile (including co-occurrence)
using WF-trees (CBP). For all three computations, Figure 35 de-
picts the polynomial least squares regression.

Focussing on the computation of behavioural profiles, the ex-
perimental results confirm that the usage of structural decom-
position techniques decreases the required computational effort.
Computation based on WF-trees (BP-Tree) is faster than lever-
aging the structure of the net systems directly (BP-Net). The
former still relies on the latter to handle rigid net fragments in
the system. Further, the computational overhead implied by the
co-occurrence relation of the causal behavioural profile is negli-
gible (BP-Tree vs. CBP). For this model collection, computation
is done in tens of milliseconds even for the largest models.

Process Models from a Health Insurance Company

The models used for this experiment have been provided by a
health insurance company. The models describe the business
functions from an organisational perspective and have mainly
been applied for staff planning. The collection comprises 1026
process diagrams in EPC notation. Some diagrams contain more
than one model, so that the diagrams are expanded to 1042 pro-
cess models.

Model characteristics. One model shows a syntax error and 16
models are trivial. A large number of models have multiple start
and end events. For all except six models, the model structure
can be normalised so that each model has a dedicated entry and
exit point without duplicating events or functions. All connect-
ors used in the model collection are of XOR- or AND-type. Most
models do not show concurrency. Only 48 models comprise

138 computations of behavioural profiles

AND-connectors. The models in this collection are virtually free
of behavioural errors. Only five models are not sound.

Against this background, we transformed 1014 out of 1042
models into sound free-choice WF-systems [236]. We evaluated
the structure of rigid fragments in these systems to see whether
the presented approach to the computation of the co-occurrence
relation is applicable. There are 142 systems that comprise at
least one rigid fragment. All of these fragments are acyclic or
can be traced back to S- or T-systems, respectively. Hence, we
were able to rely on the approaches for the efficient computation
of causal behavioural profiles for all net systems.

R² = 0,98

R² = 0,82

400

500

600

700

800

900

1000

om
pu

ta
tio

n
Ti

m
e

(m
s)

BP - Net BP - Tree CBP
BP - Net (Pol) BP - Tree (Pol) CBP (Pol)

R² = 0,98

R² = 0,74

R² = 0,82

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Number of Transitions of WF-System

BP - Net BP - Tree CBP
BP - Net (Pol) BP - Tree (Pol) CBP (Pol)

Figure 36: Process models from a health insurance company: compu-
tation time relative to the size of the WF-system.

Computation results. As in the previous experiment, we com-
puted the behavioural profiles over all transitions of 1014 WF-
systems. We grouped all systems according to their size, i. e., the
number of transitions. Figure 36 shows the average computation
time for each group of systems up to a size of 170 transitions.
Although the largest system contained 456 transitions, only 19
systems had more than 170 transitions and are not covered in
Figure 36. We computed behavioural profiles as introduced in
Section 5.1 (BP-Net) and Section 5.2 (BP-Tree). Computation of
the causal behavioural profile based on WF-trees corresponds to
the data series CBP. Figure 36 also depicts the polynomial least
squares regression for all three computations.

Again, the experimental results show that the application of
structural decomposition techniques speeds up the computation
of behavioural profiles. In contrast to the models of the SAP ref-
erence model, we observe an overhead for the computation of
the co-occurrence relation of the causal behavioural profile. De-
rivation of causal behavioural profiles takes significantly more
time than the computation of behavioural profiles. Nevertheless,
the absolute computation times are above one second solely for
the 19 large models (with more than 170 transitions) that are not
considered in Figure 36.

5.4 implementation & experimental results 139

BIT Process Library

The BIT process library comprises process models that were cre-
ated in process automation projects in the various industry do-
mains, such as financial services, automotive, telecommunica-
tions, construction, supply chain, health care, and customer re-
lationship management. These models were collected and used
for a study on soundness verification [156]. For the experiment,
we used the parts A, B1, B2, and C of the model collection, a
set of 965 models. Originally, all models were captured in the
IBM WebSphere Business Modeler2 in a notation similar to UML
activity diagrams. The authors of [156] already provided Petri
net formalisations for all models. In fact, all models of the col-
lection were already available as free-choice WF-systems.

Model characteristics. Around one-half of the net systems in this
collection are not sound [156]. For the 492 systems that meet the
soundness criterion, we investigated the characteristics of rigid
net fragments. 207 systems comprise at least one rigid fragment.
For 12 out of 207 systems, a least one rigid was cyclic or could
not be traced back to S- or T-systems. Hence, our approach to
derive the causal behavioural profiles from the net structure is
applicable for 476 net systems. Boundedness, the assumption
for the computation of behavioural profiles based on complete
prefix unfoldings, was met by 924 out of 965 systems.

R² = 0,98

R² = 0,74

R² = 0,82

400

500

600

700

800

900

1000

om
pu

ta
tio

n
Ti

m
e

(m
s)

BP - Net BP - Tree CBP
BP - Net (Pol) BP - Tree (Pol) CBP (Pol)

R² = 0,98

R² = 0,74

R² = 0,82

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Number of Transitions of WF-System

BP - Net BP - Tree CBP
BP - Net (Pol) BP - Tree (Pol) CBP (Pol)

Figure 37: BIT Process Library: computation time relative to the size
of the WF-system.

Computation results for sound free-choice WF-systems. We com-
puted the behavioural profiles over all transitions of all 476 WF-
systems and grouped the systems according to their size, i. e.,
the number of transitions of the WF-systems. Figure 37 shows
the average computation time for each group of systems up to a
size of 100 transitions. Only one system is larger. This system
comprises 285 transitions and is not considered in Figure 37. As
in the previous experiments, we computed behavioural profiles

2 http://www.ibm.com/software/integration/wbimodeler/entry/

http://www.ibm.com/software/integration/wbimodeler/entry/

140 computations of behavioural profiles

as introduced in Section 5.1 (BP-Net) and Section 5.2 (BP-Tree).
The data series CBP refers to the computation of the causal be-
havioural profile based on WF-trees. For all three computations,
Figure 37 depicts the polynomial least squares regression.

The plot supports the observations done for the previous ex-
periments. Computation of behavioural profiles is faster when
using the structural decomposition techniques compared to the
approach that leverages the net structure directly (BP-Tree vs.
BP-Net). Computation of the co-occurrence relation increases
the computational effort. Nevertheless, computation is done in
hundreds of milliseconds for all models considered in Figure 37.
For the largest model with 285 transitions, all computations took
around five to 20 seconds.

Computation results for bounded WF-systems. Since only one-half
of the models in this collection are sound, we also applied the
computation of behavioural profiles from a complete prefix un-
folding as introduced in Section 5.3. This approach is applicable
in a much more general case, since it requires only bounded-
ness of the WF-systems. This requirement is met by 924 out of
965 systems in this collection. The generality of the approach is
traded for computational complexity. Construction of the com-
plete prefix unfolding is an NP-complete problem [204, 149] and
the complete prefix unfoldings may be large in size, at most
the size of the state space of the system [151]. Further, aug-
mentation of WF-systems as used in Section 5.3 to compute the
co-occurrence relation from the complete prefix unfolding may
increase the size of the state space drastically.

In a first experiment, we focussed on the sizes of the complete
prefix unfoldings for the models in this collection. We used the
tool Mole3 to generate the prefixes. For three bounded net sys-
tems, creation of the prefix was intractable. The maximum size
of the derived prefix was around 500.000 nodes. Figure 38 gives
an overview of the results. Figure 38a illustrates that prefixes
can be an order of magnitude larger in size than the original net
systems (the scale is logarithmic). Still, the majority of complete
prefix unfoldings was rather small. 94% of the net systems had
a prefix with less than 800 nodes. Figure 38a also depicts the lin-
ear and exponential least square regressions. Both approximate
the relation between the size of the complete prefix unfoldings
and the size of the net systems equally well. The implications of
the augmentation of WF-systems to compute the co-occurrence
relation are illustrated in Figure 38b. For 19 net systems, com-
putation of the complete prefix unfolding was not possible after
augmentation. The maximum size of a prefix of an augmen-
ted system was around 900.000 nodes. Figure 38b shows that
the augmentation step leads to prefixes that are larger in size.

3 http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

5.4 implementation & experimental results 141

lin
R² = 0.46

exp
R² = 0,46

1000

10000

100000

1000000

10000000

Pr
ef

ix
 U

nf
ol

di
ng

 (#
 N

od
es

)

lin
R² = 0.46

exp
R² = 0,46

1

10

100

1000

10000

100000

1000000

10000000

0 200 400 600

Si
ze

 o
f C

om
pl

et
e

Pr
ef

ix
 U

nf
ol

di
ng

 (#
 N

od
es

)

Size of Net System (# Nodes)

(a) Size of the complete prefix un-
folding relative to the size of the
net system.

lin
R² = 0.32

exp
R² = 0,49

1000

10000

100000

1000000

10000000

U
nf

ol
di

ng
 o

f A
ug

m
en

te
d

Sy
st

em

(#
 N

od
es

)

lin
R² = 0.32

exp
R² = 0,49

1

10

100

1000

10000

100000

1000000

10000000

0 200 400 600

Si
ze

 o
f C

om
pl

et
e

Pr
ef

ix
 U

nf
ol

di
ng

 o
f A

ug
m

en
te

d
Sy

st
em

(#

 N
od

es
)

Size of Net System (# Nodes)

(b) Size of the complete prefix un-
folding of the augmented system
relative to the size of the net sys-
tem.

lin
R² = 0.46

1000

10000

100000

1000000

10000000

U
nf

ol
di

ng
 o

f A
ug

m
en

te
d

Sy
st

em
(#

 N
od

es
)

lin
R² = 0.46

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000

Si
ze

 o
f C

om
pl

et
e

Pr
ef

ix
 U

nf
ol

di
ng

 o
f A

ug
m

en
te

d
Sy

st
em

(#
 N

od
es

)

Size of Complete Prefix Unfolding (# Nodes)

(c) Size of the complete prefix unfolding
of the augmented system relative to
the size of the complete prefix unfold-
ing.

Figure 38: Size of the complete prefix unfoldings derived for the net
systems of the BIT Process Library.

Figure 38c directly relates the size of the prefix of the original
net systems to the size of the prefix of the augmented systems.
Apart from notable outliers, the relation is linear for most sys-
tems, though.

In a second experiment, we focussed on the actual computa-
tion of behavioural profiles from the complete prefix unfolding.
We used the implementation of the algorithms presented in Sec-
tion 5.3 that have been published as part of the jBPT library.
Those rely on the Unfolding-based Model Analyzer (UMA)4 to gen-
erate the complete prefix unfolding. For performance reasons,

4 http://www.service-technology.org/uma

http://www.service-technology.org/uma

142 computations of behavioural profiles

R² = 0,76

200

300

400

500

600

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

R² = 0,76

0

100

200

300

400

500

600

0 100 200 300 400 500 600
Co

m
pu

ta
tio

n
Ti

m
e

(m
s)

Number of Nodes of Complete Prefix Unfolding of WF-System

(a) Time for the computation of the behavioural profile relative to the size of
the complete prefix unfolding of the original net system.

R² = 0,6574

3000

4000

5000

6000

7000

8000

9000

10000

Co
m

pu
ta

tio
n

Ti
m

e
(m

s) R² = 0,6574

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Number of Nodes of Complete Prefix Unfolding of Augmented WF-System

(b) Time for the computation of the causal behavioural profile relative to the
size of the complete prefix unfolding of the augmented net system.

Figure 39: Computation times for (causal) behavioural profiles.

UMA was configured to abort unfolding of branching processes
once an unsafe place was encountered in the original net system.
Hence, the computed behavioural profiles are solely approxim-
ated for net systems that are bounded but unsafe. Apart from
this restriction, for 11 net systems the computation of the causal
behavioural profile turned out to be intractable. For the remain-
ing bounded net systems, Figure 39a and Figure 39b illustrate
the time needed to compute behavioural profiles (Figure 39a) or
causal behavioural profiles (Figure 39b) based on the prefix of
the original net system or its augmented counterpart. In either
case the computation times includes the time needed to create
the prefix. Both plots also show the exponential least squares
regression. Behavioural profiles could be computed in less than
a second for all considered net systems. This low computation
time is explained by the rather small size of the prefixes (less
than 600 nodes). The large prefixes observed in Figure 38 are not
completely unfolded by UMA. Computation of the causal beha-
vioural profile takes significantly longer, since the augmentation
step increases the size of the prefixes. Seven prefixes had more
than 2000 nodes, the largest having around 5500 nodes, and are

5.4 implementation & experimental results 143

not visualised in Figure 39b. The increase in prefix size leads to
computation times of up to several seconds. For the largest pre-
fix with around 5500 nodes, the computation took slightly less
than 30 seconds.

Summary of the Experimental Results

The motivation for the presented experiments was twofold. On
the one hand, we wanted to judge on the relevance of the as-
sumptions with respect to free-choiceness and soundness that
are required to compute behavioural profiles efficiently. On
the other hand, we wanted to investigate absolute computation
times.

Free-choiceness turned out to be non-critical. Only the SAP
reference model contained elements that require non-free-choice
constructs in the Petri net formalisation. However, those ele-
ments were only block-structured OR connectors, so that a re-
placement with AND-connectors (XOR-connectors) for the com-
putation of the behavioural profile (causal behavioural profile)
can be used as a workaround. Besides a few models in the
SAP reference model, the soundness criterion was violated in
a large scale solely in the BIT process library. Here, our efficient
algorithms could be applied to only one-half of the models. Fur-
ther, the normalisation of models to arrive at a single entry and
exit for a model (i. e., the WF-net structure) turned out to be a
problem. Several models in the SAP reference model could not
be treated due to their complex instantiation semantics (i. e., the
models without start join). As acknowledged by [109, 361], how-
ever, the question of how to interpret these models is a separate
research area. Looking at all three model collections, we con-
clude that our assumptions on free-choiceness and soundness
are met by the majority of models. Also, we observed only a fee
unstructured net fragments that are cyclic and cannot be traced
back to S-systems or T-systems. We conclude that the assump-
tions of the approach to compute causal behavioural profiles us-
ing WF-trees are of minor importance in practise.

Our experiments showed that behavioural profiles are com-
puted within milliseconds for WF-systems that are sound and
free-choice. Hence, for this class of models derivation of behavi-
oural profiles is done instantaneously. Our experiments with the
algorithms for bounded net systems revealed that computation
is done in less than two seconds if the complete prefix unfold-
ing has less than around 1000 nodes. Taking into account that
94% of the net systems of the BIT process library have a prefix
with less than 800 nodes, this approach works for the majority
of models. Nevertheless, we also faced several models for which
computation took several seconds or was even intractable.

144 computations of behavioural profiles

5.5 related work

The techniques for the computation of behavioural profiles intro-
duced in this chapter relate to techniques for the derivation of
other behavioural relations which we discussed in Section 4.5.

The behavioural relations introduced for the verification of
hardware specifications [393] are derived by parsing an acyclic
program into a program tree. This is similar to our approach
of leveraging the RPST decomposition technique to compute
behavioural profiles. Still, the causal behavioural profile com-
prises behavioural details that go beyond the relations intro-
duced in [393]. In addition, we also presented techniques for
the computation of behavioural profiles that are able to cope
with cyclic net systems. The relations used for service match
making [144] are also directly derived from a parse tree of a
BPEL process. Again, our technique based on the RPST decom-
position technique is close to this approach, whereas our other
techniques generalise the computation for net systems that are
not structured in terms of single-entry and single-exit subnets.

Behavioural relations that are used in the context of process
mining are typically derived from observed sequences of trans-
ition occurrences, not from a net system. Apparently, occurrence
sequences may be generated from a net system by means of play-
out [197, 446]. Assuming a certain level of completeness of the
generated behaviour, it allows for the derivation of behavioural
relations. Finding an appropriate level of completeness is known
as the rediscoverability problem in process mining [457, 446].
The causal matrix used in genetic process mining [459, 106] is
derived from the net structure. Given a transition, its directly
preceding and directly succeeding transitions are captured in
the causal matrix. For the follows and precedes relations used to
judge on the quality of mined process models [395], no efficient
computation algorithm is available to the best of our knowledge.

We already discussed that the order matrix [271, 272, 273, 274]
virtually coincides with the behavioural profile. The order mat-
rix is computed by directly traversing a block-structured pro-
cess model and extracting the respective relations in quadratic
time to the size of the model [274]. Following the ADEPT mod-
elling paradigm [97], such a block-structured process model is
sound by construction. Therefore, this class of process models
corresponds to sound free-choice net systems that do not show
unstructured net fragments. Our computation using structural
decomposition techniques goes beyond the results of [274], as it
allows for selective computation of the behavioural relations. We
are able to determine the relation for a single pair of transitions
in linear time to the size of the model.

5.6 conclusion 145

Computation of causal footprints leverages a set of structural
rules [470, 473]. As there is no unique causal footprint of a
model, it depends on the granularity of the intended behavi-
oural abstraction which techniques are selected for computation.
Starting with local rules that exploit the neighbourhood of nodes
that split or merge the control flow, computation of the closure
of causal footprints may be applied to obtain a richer causal
footprint [470]. This approach requires soundness of the model
and is computationally hard in the general case. The techniques
introduced in this chapter, in turn, provide a classification of re-
quirements on the net systems to achieve efficient computation
of the behavioural abstraction. In the class of sound free-choice
net systems all computations, except for co-occurrence in un-
structured cyclic subnets, are done in polynomial time to the
size of the net system.

Further related work comprises the application of the concepts
leveraged for the computation of behavioural profiles in other
contexts. The RPST has been introduced with the focus on a
mapping between process languages [481]. Tree-based decom-
positions have also been used to refactor process models [361,
480] and for control-flow analysis [223, 479, 360], process com-
parison [256], pattern application in process modelling [187],
and process model abstraction [357].

Since the unfolding technique has been introduced by McMil-
lan [305], it has been extended and investigated in a large num-
ber of publications, see [149] for a thorough discussion. The
unfolding technique has been applied for various purposes. Un-
foldings are used to check properties of net systems such as
reachability of certain markings, or for LTL model checking [148].
Also, domain specific problems, e. g., the analysis and synthesis
of asynchronous circuits [232] or restructuring of process mod-
els [361], have been addressed using the unfolding technique.

5.6 conclusion

We dedicated this chapter to the computation of behavioural pro-
files. Behavioural profiles are computed efficiently for sound
free-choice WF-systems. The relations of the behavioural profile
are determined in low polynomial time to the size of the net
system. The co-occurrence relation is computed efficiently for
T-systems, S-systems, and acyclic sound free-choice WF-systems.
We complemented these results by leveraging structural decom-
position techniques for the computation of behavioural profiles.
The combination of these techniques yields an algorithm that
computes the relation of the behavioural profile for a transition
pair of a sound free-choice WF-system in linear time to the size
of the net. If one restriction is satisfied – unstructured net frag-

146 computations of behavioural profiles

ments are T-systems, S-systems, or acyclic – we are able to com-
pute even the causal behavioural profile for a transition pair in
linear time to the size of the net.

For net systems that do not satisfy these requirements, we
presented an alternative computation technique. Under the as-
sumption of boundedness of the net system, we derive behavi-
oural profiles from the complete prefix unfolding. These pre-
fixes are a compact representation of the system’s state space.
The general applicability of this approach is bought for compu-
tational complexity. Creation of the complete prefix unfolding
is computationally hard. Further, the computation of the co-
occurrence relation relies on an augmentation of the net system,
which may increase the size of the state space exponentially. Fi-
nally, we tested the implementation of all techniques with three
model collections from industry. The results suggest that the
assumptions for the efficient computation techniques are met
by the majority of process models observed in practise. Using
these techniques, behavioural profiles are computed within mil-
liseconds. We also illustrated the applicability of the approach
based on the complete prefix unfolding of a net system. Al-
though we faced systems for which computation was intractable,
the majority of the tested net systems could be handled within
less than two seconds.

We conclude that a behavioural profile indeed provides an
abstraction of the behaviour of a net system that is computed
efficiently.

Part III

C O N S I S T E N C Y A N A LY S I S

6
D E C I D I N G P R O C E S S M O D E L C O N S I S T E N C Y

This chapter is based on results published in [505, 493].

A B

C

D A1 A2

E

D

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E →

→

A2
→

+
→

→ →→
→ +

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

Decide Consistency

A D

A
D

A D
+

+
→

→

This chapter introduces the first part of our framework for
the analysis of behaviour consistency. We focus on decid-

ing process model consistency using Boolean criteria based on
behavioural profiles. First, we motivate the application of behavi-
oural profiles in Section 6.1. To this end, we review different op-
tions for a formal grounding of consistency analysis, i. e., beha-
viour equivalences and behavioural relations. Then, Section 6.2
proposes several Boolean consistency criteria. Those leverage be-
havioural profiles and are interrelated. They define a spectrum
of consistency criteria. Section 6.3 turns the focus on the applic-
ation of these consistency notions in a concrete setting. For the
evaluation of consistency between business centred process mod-
els and technical workflow models, we report on findings from
an experiment on the consistency perception of process model-
ling experts. We review related work in Section 6.4 and conclude
this chapter in Section 6.5.

149

150 deciding process model consistency

6.1 consistency notions

This section first introduces a set of example net systems. Those
depict the same business operations and have been aligned by
correspondences between their transitions. For these process
models, behaviour consistency has to be assessed, e. g., for val-
idating whether the support provided by information systems
meets the business level concerns, see Section 1.3. As stated
before, consistency may be interpreted as the absence of contradic-
tions [533]. According to the same author, the question of how to
assess the absence of contradictions is a verification problem. After
we introduced the example net systems, we review elementary
properties that may be verified to conclude on behaviour consist-
ency. First, we focus on behaviour equivalences and their applic-
ation for consistency evaluation. Second, we elaborate on how
behavioural relations are used for consistency analysis. Third,
we narrow the scope to the application of behavioural profiles to
decide behaviour consistency.

An Example Setting

We illustrate the different options to decide behaviour consist-
ency with a lead-to-order process. Figure 40 depicts three net
systems, all capturing this process, along with correspondences
between (sets of) their transitions. The net systems show a sim-
ilar processing of a lead. Once the contact details have been
obtained, the potential customer is contacted and a quote sub-
mission is prepared. Then, the quote is submitted, which may
be followed by a negotiation phase. Assuming that the net sys-
tems have been created for different purposes, however, they
also show several differences. For instance, system (a) captures
the process only until the submission of a quote. Subsequent
steps such as the negotiation of a contract are neglected. Sys-
tems (b) and (c) capture the processing until a deal is settled.
Still, there are differences between both models. The reception
of a request for quote is captured in system (c), but neglected in
system (b).

Consistency Notions based on Behaviour Equivalences

To decide whether two process models show the same behaviour,
notions of behaviour equivalence may be applied. As discussed
in Section 4.4, these notions are classified in the linear time –
branching time spectrum [474, 476], see also [363, 209]. Beha-
viour equivalences compare process models that feature exactly
the same set of activities. Following the terminology introduced
in Section 3.1, this requires a correspondence relation between

6.1 consistency notions 151

Contact
Customer

Analyse
Competitors

Get
Contact

Submit
Quote

Negotiate
Contract

Create Loss
Report

Perform
Market Study

Establish
Contact

Create
Quote

Approve
Quote

Present
Products

Analyse
Requirements

Report to
Manager

Get Contact
from

Marketing

Get Contact
from Fair

Get Past
Counter-

Offers Enter &
Send

Quote

Get Request for
Quote

Schedule Call

Enter Loss
Report

Enter
Neg.

Report

Attach
Quote

Appendix
File

Contract

Schedule
Cust.

Present.

(a)

(b)

(c)

Notify Account
Manager

Close
Deal

Figure 40: Three net systems depicting a lead-to-order process that are
aligned by correspondences.

two process models to be bijective. The examples introduced
earlier illustrate that this requirement cannot be assumed to hold
in the general case. Two questions have to be answered, before
a notion of behaviour equivalence is applied to judge on pro-
cess model consistency: How to cope with activities that are not
aligned and how to cope with complex correspondences?

To approach these questions, we refer to the concepts of refine-
ment and extension, as they have been introduced for specialisa-
tions of behavioural models [410, 411, 412]. Refinement refers
to the definition of an activity (or a set thereof) in more detail.
Extension refers to the act of adding new activities. Hence, activ-
ities that are not part of any correspondence are an extension. A
complex 1:n correspondence can, to a certain extent, be inter-
preted as a refinement. This interpretation assumes that the cor-
respondence implies semantic equivalence of the related sets of
activities. Further, refinements are directed and hierarchical, i. e.,
they cannot explain overlapping correspondences. Despite these
differences, the notions of refinement and extension provide an
angle to review literature on the application of behaviour equi-
valences in our setting.

Extension. Common equivalences are not invariant under ex-
tensions, which can be seen as the dual operation of a forgetful
refinement [477]. Removing an activity from a process model
may break behaviour equivalence. The question of how to still

152 deciding process model consistency

assess behaviour equivalence in the presence of extensions has
mainly been addressed under the term behaviour inheritance. Be-
haviour inheritance aims at transferring the concept of inherit-
ance known for static structures, e. g., for class diagrams in UML,
to the level of behavioural models. In particular, behaviour in-
heritance has been investigated for object life cycles that describe
the behaviour of software artefacts.

Whether an extension of an object life cycle is behaviour pre-
serving is assessed either on the observed behaviour or the in-
vocable behaviour [138]. Following this line, Basten and van der
Aalst proposed two elementary notions of behaviour inheritance,
protocol inheritance and projection inheritance, and combinations
thereof for net systems [451, 33].

Informally, two systems satisfy projection inheritance, if they
are branching bisimilar once transitions that are not part of any
correspondence are considered to be silent. In other words,
transitions in one system that are without counterpart in the
other system are hidden. Branching bisimulation is insensitive to
silent transitions and, thus, closely related to stuttering equival-
ences known from model checking, see [69, 30].

Two systems satisfy protocol inheritance, informally speaking,
if they are branching bisimilar once transitions that are not part
of any correspondence are removed from the system. In con-
trast to projection inheritance, protocol inheritance requires all
transitions that are not part of any correspondence to be blocked.

Similar ideas have been presented by Schrefl and Stumptner
for Object Behavior Diagrams (OBDs) [410, 411, 412], a behavi-
oural model that comprises activities and explicit states. They in-
troduce observation consistency, which corresponds to projection
inheritance. Note that, in contrast to trace equivalence, obser-
vation consistency refers not only to transitions (OBD activities)
but also to states. Further, there exists the notion of invocation
consistency for OBDs, which is close to protocol inheritance.

Refinement. There is a large body of work on equivalence pre-
serving refinements for Petri nets, refer to [64] for a thorough
survey. Such a refinement is always assumed to be hierarchical.
A place or transition of a net system is replaced by a subnet,
so that the subnet is embedded into the original net [351, 329].
Hence, a refinement leads to equally directed non-overlapping
1:n correspondences. One may argue that complex correspond-
ences between process models that can be traced back to one
of the known refinement operations should be considered to
be consistent. Still, the operationalisation of such an approach
is challenging, if the set of transitions related to a correspond-
ence is not forming an isolated subnet. Therefore, behaviour
preserving reduction techniques [329] may be required to judge
whether those transitions can be traced back to a refinement op-

6.1 consistency notions 153

erator. We are not aware of any work that traces back arbitrary
correspondences between behavioural models to refinements.

One may think of a different approach to cope with com-
plex correspondences following on the idea of stuttering equival-
ences [69]. These equivalences acknowledge that a single state
transition may have been refined into a sequence of state trans-
itions. In our context, the occurrence of a set of transitions, all
belonging to one complex correspondence, could be traced back
to the occurrence of a single transition. In prior work [501], we
followed a similar approach. To lift the notions of behaviour in-
heritance to the level of complex correspondences, we used the
partitioning of traces that is induced by complex correspond-
ences. This approach does not impose any restrictions on the
cardinality or direction of correspondences. Still, it assumes
non-overlapping correspondences and considers only complete
traces, i. e., traces from the initial to the final state of the process.

We revisit the example net systems introduced in Figure 40.
Here, transitions that are not aligned by any correspondence
may be blocked or hidden as proposed by notions of behaviour
inheritance. Focussing on systems (a) and (b), we see that both
options often need to be combined. The unlabelled transition
merging three parallel branches in system (a) has to be projected,
as blocking it would stall the process. In contrast, transition ‘Re-
port to Manager’ in system (a) represents an alternative option
to continue processing, which is not captured in system (b). This
suggests blocking the transition for assessing behaviour consist-
ency. Further, the net systems show complex correspondences.
Some even involve sets of transitions that do not form an isol-
ated subnet, e. g., transitions ‘Create Quote’ and ‘Approve Quote’
in system (a). Hence, to decide whether these correspondences
can be traced back to behaviour preserving refinements is not
straight-forward. Apart from that, we may rely on the approach
that lifted behaviour inheritance to the setting of complex corres-
pondences based on a partitioning of traces [501]. Assuming a
suitable combination of hiding and blocking of transitions that
are not aligned, both alignments, between systems (a) and (b),
and between (b) and (c), are consistent.

We summarise that behaviour consistency may be decided
based on behaviour equivalences. Still, the presence of complex
correspondences imposes various challenges towards to the ap-
plication of behaviour equivalences, which have been addressed
only partially in the literature – overlapping correspondences
are not covered. Further, our examples illustrate that an appro-
priate combination of hiding and blocking of transitions that are
not aligned may be required to conclude on consistency.

154 deciding process model consistency

(b)(a)

A

B

A1

A2

C

B

A3 A4

B1 B2

(c)

Figure 41: Aligned net systems to illustrate the choice of behavioural
relations for consistency analysis.

Consistency Notions based on Behavioural Relations

Notions of behaviour consistency can be based on behavioural
relations instead of behaviour equivalences. Taking a certain
definition of relational semantics, consistency of aligned process
models is decided as follows. All relations for tuples of trans-
itions in one model are compared to the relations for tuples of
corresponding transitions in the other model. Although n-ary
behavioural relations may be considered in principle, most exist-
ing behavioural relations are binary; they are defined for pairs of
transitions. Hence, consistency assessment translates into com-
paring relations for all pairs of transitions that are part of corres-
pondences.

In Section 4.5, we reviewed several relational semantics. The
major difference between them is their focus on either direct
causal dependencies, e. g., the footprint comprising the relations
of the α-algorithm [457, 446], or indirect dependencies, such as
the behavioural profile. We explicated this difference with the
look-ahead that is assumed during computation of the relations.
We may exploit direct successorship, a look-ahead of one, or in-
direct dependencies, a far-look-ahead.

Against the background of alignments between related pro-
cess models, indirect dependencies seem to be more suited to
assess consistency. Alignments can be expected to be partial.
Activities that are not relevant regarding the modelling purpose
will not be captured in a process model, i. e., they are exten-
sions when comparing two related process models. However,
consistency assessment based on relations that focus on direct
successorship is sensitive to extensions. Indirect dependencies,
in turn, are not affected by extensions. Consider the alignment
between systems (a) and (b) depicted in Figure 41. The trans-

6.1 consistency notions 155

itionsA and B in system (a) correspond to the transitions {A1,A2}
and B in system (b). Relations that built upon direct successor-
ship capture an order dependency for the pair (A,B) in sys-
tem (a), A → B according to the footprint [446]. There is no
order dependency for any of the pairs of corresponding trans-
itions in system (b), A1 # B and A2 # B according to the footprint.
Systems (b) and (c) in Figure 41 also illustrate that complex cor-
respondences have to be considered separately. The dependency
A1 # B observed in system (b) is not mirrored by any of the pairs
of corresponding transitions in system (c).

These issues are avoided by using indirect dependencies. Tak-
ing the relations of the behavioural profile, the strict order de-
pendency between transitions A and B in system (a), is also ob-
served for all pairs of corresponding transitions in system (b),
A1 B and A2 B. The same holds for the alignment between
system (b) and (c). Hence, consistency assessment based on be-
havioural profiles is insensitive to extensions of process models
and can be applied for complex correspondences in a straight-
forward manner.

Behavioural profiles are a behavioural abstraction – the cap-
tured dependencies neglect causal dependencies between trans-
ition occurrences. This may be problematic for certain scenarios
of deciding behaviour consistency. The usage of causal behavi-
oural profiles countervails this effect. Still, these profiles provide
an abstraction and only approximate trace semantics. For illus-
tration, consider again Figure 41. Co-occurrence between trans-
itions A and B in system (a) is also observed between pairs of
corresponding transitions in system (b). In system (c), however,
we do not observe co-occurrence between the respective pairs of
transitions. In this system, co-occurrence is not manifested in a
binary relation.

Consistency Notions based on Behavioural Profiles

The application of a behavioural abstraction, such as behavioural
profiles, implies a certain information loss when deciding con-
sistency. Even if causal behavioural profiles are used, trace se-
mantics of the respective models is only approximated. How-
ever, there is evidence that even more coarse-grained abstrac-
tions are suited for consistency analysis.

Certain drivers of process modelling, such as process under-
standing and communication, tend to yield happy path process
models that only capture the most frequent execution sequence
of a process [291, 21, 320]. Such models abstract from altern-
ative branches that are of minor importance for understanding
the overall processing. For the setting in Figure 40, for instance,
such an alternative branch would be reception of a request for

156 deciding process model consistency

quote in system (c), which is without counterpart in systems (a)
and (b). Also, system (c) incorporates the possibility that a cus-
tomer is not answering to a submitted quote. System (b) ab-
stracts from this deviation from the standard processing. Captur-
ing such alternative branches potentially breaks causal depend-
encies between pairs of activities. ‘Contact Customer’ is a cause
of ‘Submit Quote’ in system (b), whereas there is no such de-
pendency between the corresponding transitions in system (c).
The usage of behavioural profiles for consistency analysis allows
for neglecting such dependencies explicitly. Extensions, such as
the reception of a request for quote in system (c), do not affect
the indirect order dependencies as defined by the behavioural
profile. This suggests exploiting only the relations of the be-
havioural profile, and to neglect co-occurrences, when deciding
behaviour consistency in a certain context.

The phenomenon of happy path process models also suggests
that repetitions are only modelled on a certain level of detail.
They may be abstracted in high-level business process models
that give an overview of business operations. Coupled repetitive
activities are a structural pattern occurring frequently in the re-
finement of process models [239]. Accordingly, information on
potential repetition may be neglected for consistency analysis.
This aspect is easily incorporated into the consistency assess-
ment based on behavioural profiles. All self-relations are ex-
cluded from the consistency analysis.

Coming back to the example in Figure 40, both alignments
respect the behavioural profiles. The dependencies observed
in one system, including self-relations, are also present for all
pairs of corresponding transitions in the other system. With re-
spect to co-occurrence, we observe several deviations. Besides
the aforementioned violations caused by extensions, however,
co-occurrence violations are also caused by complex correspond-
ences. For instance, the co-occurrence dependency between ‘Get
Contact’ and ‘Contact Customer’ in system (b) is not present for
the corresponding transitions in system (c).

To conclude, we discussed that consistency assessment may be
based on behaviour equivalences or behavioural relations. The
former imposes various challenges with respect to complex cor-
respondences. Approaches based on behaviour equivalences can
be expected to be computationally hard. In particular, the choice
to either block or hide transitions that are not aligned adds to the
computational complexity. As an alternative, behaviour consist-
ency may be decided using behavioural relations. To this end,
the presence of extensions and complex correspondences sug-
gests utilising indirect dependencies. Further, we motivated that
even a relatively coarse-grained behavioural abstraction may be
suited for consistency analysis.

6.2 behavioural profile consistency 157

6.2 behavioural profile consistency

The previous section sketched how behavioural profiles are used
to decide consistency of an alignment. This section is dedicated
to the formal definition of consistency notions. We show how be-
havioural profile equivalence introduced in Section 4.4 is applied
for net systems that are aligned by correspondences. Then, we
discuss a spectrum of consistency criteria based on behavioural
profiles. Finally, we focus on the interpretation of confidence val-
ues assigned to correspondences, see Section 3.1, when applying
the proposed consistency criteria.

Definitions of Consistency Criteria

The definition of consistency notions uses some auxiliary con-
cepts. We rely on the notion of a correspondence relation as it
has been introduced in Definition 3.1.1. Essentially, a corres-
pondence relation between two transitions associates pairs of
corresponding transitions of two net systems to each other. As
such, it defines elementary correspondences and, implicitly, also
complex correspondences, see Section 3.1.

First, we need the notion of aligned transitions. Those are
transitions of an aligned net system that are part of a corres-
pondence.

Definition 6.2.1 (Aligned Transitions)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), and ∼ ⊆ T1 × T2 a corres-
pondence relation. The set of aligned transitions T∼1 ⊆ T1 of S1 is
defined as T∼1 = {t1 ∈ T1 | ∃ t2 ∈ T2 [t1 ∼ t2]}. The set T∼2 of S2
is defined analogously.

Further, we need a notion of equivalence for the relations of
behavioural profiles of different net system. This equivalence
relates to the type of the profile relation and is defined for all
relations of the behavioural profile along with the reverse strict
order relation.

Definition 6.2.2 (Type Equivalence of Profile Relations)
Let B1 = { 1,+1, ||1} and B2 = { 2,+2, ||2} be behavioural pro-
files. Two relations R1 ∈ B1 ∪ { −1

1 } and R2 ∈ B2 ∪ { −1
2 } are

type equivalent, denoted by R1 ' R2, iff either
◦ R1 = 1 ∧ R2 = 2,
◦ R1 = −1

1 ∧ R2 =
−1
2 ,

◦ R1 = +1 ∧ R2 = +2, or
◦ R1 = ||1 ∧ R2 = ||2.

Using these concepts, we define consistency notions based on be-
havioural profiles. Given two aligned net systems, behavioural

158 deciding process model consistency

A4A3

B2B1

(b) (c)(a)

B

A1

A2

AB2

A1

AB1

Figure 42: Example net systems: all alignments are weak behavioural
profile consistent; only the alignment between (b) and (c)
is behavioural profile consistent; none of the alignments is
causal behavioural profile consistent.

profile consistency requires that the profile relations observed
for two transitions of different correspondences in one model are
type equivalent for all pairs of corresponding transitions in the
other model. As motivated in the previous section, there may be
reasons to relax this preservation of behaviour with respect to re-
peated execution of activities. Therefore, we first introduce weak
behavioural profile consistency, which neglects the self-relations
of aligned transitions.

Definition 6.2.3 (Weak Behavioural Profile Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), and B1 = { 1,+1, ||1} and
B2 = { 2,+2, ||2} their behavioural profiles. Let R1 ∈ B1 ∪ { −1

1

} and R2 ∈ B2 ∪ { −1
2 }. A correspondence relation ∼ ⊆ T1 ×

T2 is weak behavioural profile consistent, iff for all transition pairs
(tx, ty) ∈ (T∼1 × T∼1), tx 6= ty, and transitions ts, tt ∈ T∼2 , ts 6= tt,
tx ∼ ts, ty ∼ tt, it holds that either (1) (txR1ty ∧ tsR2tt) ⇒
R1 ' R2 or (2) tx ∼ tt and ty ∼ ts.

We illustrate weak behavioural profile consistency with the ex-
ample net systems depicted in Figure 42. Consider the sys-
tems (a) and (b). There are two complex correspondences, one
between the sets of transitions {A1,A2} and {A3,A4}, and one
between transitions {B} and {B1,B2}. In the presence of complex
correspondences, weak behavioural profile consistency requires
the preservation of behavioural relations for all transition pairs
that are induced by the complex correspondence. Every com-
bination of transitions that are part of different correspondences
is checked. For this example, we observe strict order between
transitions {A1,A2} and transition B in system (a). This is con-
sistent with system (b), as it holds A3 B1, A4 B1, A3 B2,
and A4 B2. The relation between transitions belonging to
the same correspondence is not considered. Although we ob-

6.2 behavioural profile consistency 159

serve A1 A2 in system (a) and A3 +A4 in system (b), this
difference does not affect the consistency criterion according to
Definition 6.2.3. Further, the difference in the behavioural pro-
file with respect to self-relations, B||B in system (a), but B1+ B1
and B2+ B2 in system (b), is neglected. The alignment between
systems (a) and (b) is weak behavioural profile consistent.

Weak behavioural profile consistency is also applicable in the
presence of overlapping correspondences. For illustration, con-
sider the systems (b) and (c) in Figure 42. Here, there are two
complex correspondences, one is defined between transitions
{A3,A4} and {A,AB1,AB2}, and one between transitions {B1,B2}
and {AB1,AB2}. Both overlap on transitions AB1 and AB2 in
system (c). Still, the alignment between systems (b) and (c) is
weak behavioural profile consistent. The strict order dependen-
cies between transitions {A3,A4} and {B1,B2} in system (b) are
also observed in system (c) for the respective transitions. Re-
lations between transitions that are part of the overlap are not
considered according to Definition 6.2.3. For instance, the rela-
tion between tx = A4 and ty = B2 in system (b) is not required
to hold for ts = AB2 and tt = AB1 in system (c) since it holds
A4 ∼ AB1 and B2 ∼ AB2.

We strengthen the consistency criterion to take potential re-
petition of activities into account. Behavioural profile consist-
ency extends weak behavioural profile consistency by consider-
ing also self-relations of transitions.

Definition 6.2.4 (Behavioural Profile Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), and B1 = { 1,+1, ||1} and
B2 = { 2,+2, ||2} their behavioural profiles. Let R1 ∈ B1 ∪ { −1

1

} and R2 ∈ B2 ∪ { −1
2 }. A correspondence relation ∼ ⊆ T1 × T2

is behavioural profile consistent, iff it is weak behavioural profile
consistent and for all transitions tx ∈ T∼1 and ts ∈ T∼2 , tx ∼ ts, it
holds (txR1tx ∧ tsR2ts)⇒ R1 ' R2.

Behavioural profile consistency requires the self-relations for all
transitions in one system to be type equivalent to the self-rela-
tions of the corresponding transitions in the other system. For
the examples depicted in Figure 42, this yields the following
results. The alignment between systems (a) and (b) is no longer
considered to be consistent. The potential repetition of transition
B in system (a) is not reflected in system (b), as transitions B1
and B2 may occur at most once. The potential repetition of one
of these transitions would not suffice to meet behavioural profile
consistency. The self-relations have to be type equivalent for all
corresponding transitions. The alignment between systems (b)
and (c) is behavioural profile consistent as all aligned transitions
of both systems may occur at most once.

160 deciding process model consistency

In the same vein, the co-occurrence relation of the causal be-
havioural profile may be required to hold for all corresponding
transitions of an alignment.

Definition 6.2.5 (Causal Behavioural Profile Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), and CB1 = { 1,+1, ||1,�1}
and CB2 = { 2,+2, ||2,�2} their causal behavioural profiles.
A correspondence relation ∼ ⊆ T1 × T2 is causal behavioural pro-
file consistent, iff it is behavioural profile consistent and for all
transition pairs (tx, ty) ∈ (T∼1 × T∼1), tx 6= ty, and transitions
ts, tt ∈ T∼2 , ts 6= tt, tx ∼ ts, ty ∼ tt, it holds that either (1)
tx �1 ty ⇔ ts �2 tt or (2) tx ∼ tt and ty ∼ ts.

Causal behavioural profile consistency extends behavioural pro-
file consistency by considering the co-occurrence relation for
pairs of aligned transitions. As the identity relation over trans-
itions of a net system is subsumed by the co-occurrence relation,
see Section 4.2, we refer only to pairs of distinct transitions.

Causal behavioural profile consistency implies a rather strict
interpretation of how to check the co-occurrence relation. For
sets of transitions that are part of a correspondence it induces an
all-or-none semantics. Given two correspondences c1 = (T ′1, T ′2)
and c2 = (T ′′1 , T ′′2), co-occurrence between two transitions t′1 ∈ T ′1
and t′2 ∈ T ′2, t′1 � t′2, requires that all pairs of correspond-
ing transitions t′′1 ∈ T ′′1 and t′′2 ∈ T ′′2 are co-occurring. This, in
turn, implicitly requires that also all transitions T ′1 × T ′2 are co-
occurring. Hence, either all or none of the pairs of transitions
of two sets of aligned transitions of a net system have to be co-
occurring. If this property is not met, causal behavioural profile
consistency cannot hold for an alignment that comprises com-
plex correspondences between two net systems.

One may think of a weaker interpretation of how to check co-
occurrences. Co-occurrence between two transitions of two cor-
respondences in one system may be required to hold only for one
pair of corresponding transitions in the other system. Since the
causal behavioural profile captures only co-occurrences between
pairs of transitions, however, this does not seem to be appropri-
ate. Taking systems (a) and (b) of Figure 42, the co-occurrence
from transition B to transitions A1 and A2 in system (a), would
be violated in system (b) as it holds B1 6� A3, B1 6� A4. This
may be considered to be an anomaly as one of the corresponding
transitions A3 or A4 has to occur before transition B1. However,
addressing this anomaly would require defining co-occurrences
over sets of transitions, e. g., the occurrence of B1 implies the
occurrence of one of the transitions {A3,A4}. This is not feasible
as n-ary co-occurrence relations may be observed. Hence, we
acknowledge this limitation and stick to the strict interpretation
of how to consider co-occurrence given in Definition 6.2.5.

6.2 behavioural profile consistency 161

Complex CorrespondenceNo Correspondence

Ca
us

al
 B

eh
av

io
ur

al
 P

ro
fil

e
Co

ns
ist

en
cy

N
o

Ca
us

al
 B

eh
av

io
ur

al
 P

ro
fil

e
Co

n.
Be

ha
vi

ou
ra

l P
ro

fil
e

Co
ns

ist
en

cy
N

on
e

of
 th

e
Cr

ite
ria

N
o

Be
ha

vi
ou

ra
l P

ro
fil

e
Co

n.
W

ea
k

Be
ha

vi
ou

ra
l P

ro
fil

e
Co

n.

A

B

A

B’

B’’

A

B

A

X

B

A

B

A

B’ B’’

A

B

A

B X

A

B

A

B

A

B’ B’’

A

B

B’

A

B’’

A

B

A

B X

A

B

X

Figure 43: Overview of the spectrum of consistency criteria. We as-
sume correspondences between the systems to be defined
according to the transition labels.

A Spectrum of Consistency Criteria

The consistency criteria introduced earlier step-wise increase the
amount of information, i. e., the number of transition pairs and
relations, on which the consistency analysis is based. As a con-
sequence, these criteria define a consistency spectrum.

We illustrate this spectrum in Figure 43. In each cell of the
table, this figure shows two small net systems for which we as-
sume correspondences to be defined according to the transition
labels. The first column shows examples in which one trans-
ition is not part of any correspondence, transition X. The second
column contains examples that comprise a complex correspond-
ence, between transition B and transitions {B′,B′′}. The align-

162 deciding process model consistency

ments in the first row violate all presented criteria. In both cases,
the strict order dependencies between transitions A and B is not
in line with the model that shows an additional transition X or
two transitions {B′,B′′} related to B.

The next column of Figure 43 shows examples for which the
correspondences satisfy the weakest consistency criterion, weak
behavioural profile consistency. For all models in this column,
we observe a strict order dependency between transition A and
transition B (or B′ and B′′). However, there are differences with
regard to the potential repetition of transition B (or B′ and B′′).

The third column shows examples for which the alignment is
behavioural profile consistent. All relations of the behavioural
profile of the first system coincide with the profile relations of
the second system for corresponding transitions. In both cases,
there are still differences related to co-occurrence.

The last column illustrates systems for which the alignment
satisfies also the strictest consistency criterion, causal behavi-
oural profile consistency.

Confidence of Deciding Consistency

The presented consistency criteria exploit behavioural relations
for all pairs of corresponding transitions that are defined by the
correspondence relation of an alignment.

In Chapter 3, we discussed that the construction of an align-
ment between process models typically leverages textual, struc-
tural, or behavioural similarities of model elements or parts of
the process models, respectively. This is considered in our notion
of an alignment, which comprises a correspondence relation and
a confidence function, see Section 3.1. The latter captures the
quality of an elementary correspondence. This value typically
directly follows from the similarity assessment that was used to
construct the alignment.

The introduced consistency criteria are Boolean notions. The
confidence associated to the decision taken by one of these con-
sistency criteria is the average of the confidence values for all ele-
mentary correspondences. In other words, the confidence in the
consistency decision directly follows from the confidence that
the correspondences between two net systems hold.

6.3 consistency perception

The previous section introduced a spectrum of formal notions
of behaviour consistency. These notions provide means to ad-
just consistency requirements towards a concrete setting. In this
section, we narrow our scope and focus on consistency between
process models that capture a business centred view on business

6.3 consistency perception 163

operations and those that have been created for process automa-
tion. We already discussed these two drivers for process model-
ling in Section 1.2. Models created for these two purposes are
likely to show a variety of differences. Those stem, among oth-
ers, from the constraints an IT infrastructure imposes on how the
goal of a business process is achieved, whereas business centred
modelling typically focusses on what needs to be done. The
missing fit between business centred process models and tech-
nical workflow models is often referred to as the ‘Business-IT
Gap’ [70, 186, 388]. Further, the focus on this kind of process
models results in a clear motivation for deciding consistency,
see the drivers of consistency analysis in Section 1.3. A busi-
ness centred process model is typically used as a specification
against which a workflow model is validated.

Within this scope, this section investigates the question of
which formal notion of behaviour consistency can best approximate
perceived consistency of modelling experts. In relation to formal no-
tions, we leverage the notions of the consistency spectrum out-
lined before. There has been anecdotal evidence for the proxim-
ity and remoteness of these various notions to the human consist-
ency perception. Eventually, however, the question of proximity
can only be validated from an empirical perspective involving
experts in process modelling. Addressing this demand, we re-
port the findings from an online experiment. This experiment
can be classified as a correlational study similar to [32, 154, 317].
We identified 69 expert statements from process analysts from
all over the world, and we analysed how the aforementioned
consistency criteria match the perceived consistency of our sub-
jects.

In the remainder of this section, we first derive a set of hy-
potheses on the proximity of the consistency criteria to the con-
sistency perception of modelling experts. Then, we present our
research design and introduce the results. Finally, we discuss
the results, reflect on potential threats to validity, and draw im-
plications.

Hypotheses on Consistency Notions

Our hypotheses refer to the outlined spectrum of consistency
criteria based on behavioural profiles. Here, causal behavioural
profile consistency can be seen as the baseline. It is the strict-
est criterion that most closely approximates trace semantics of
the models aligned by correspondences. In Section 6.1, we mo-
tivated the usage of weaker consistency criteria with the phe-
nomenon of happy path process models. Therefore, we invest-
igate the following consistency criteria, causal behavioural profile

164 deciding process model consistency

consistency, behavioural profile consistency, and weak behavioural pro-
file consistency.

We formalise our arguments in three hypotheses on the prox-
imity between the criteria and the perception of experts on the
consistency of a pair of process models.
H1: Pairs of process models that are causal behavioural profile con-

sistent will be perceived to be more consistent than pairs
that are not.

H2: Pairs of process models that are behavioural profile consistent
will be perceived to be more consistent than pairs that are
not.

H3: Pairs of process models that are weak behavioural profile con-
sistent will be perceived to be more consistent than pairs
that are not.

To assess these hypotheses in an experimental setup with mod-
elling experts, additional factors have to be taken into account.
It is well known that personal differences influence model com-
prehension [77]. In particular, modelling experience [352, 372]
and study background [315] have been found to be relevant
comprehension factors. It is important to check how these addi-
tional factors affect the results. Therefore, we aim to investigate
personal characteristics of the experts including work status in
academia or industry, work focus on business or IT, or time of
modelling experience. We formulate the following questions to
address the potential influence of personal differences.
◦ Does perceived consistency of academic and industry ex-

perts differ?
◦ Does perceived consistency of business and IT experts dif-

fer?
◦ Does perceived consistency of experts with longer modelling

experience differ from those with shorter modelling experi-
ence?

Answers to these questions allow us to conclude on the extent
to which our findings are independent of additional factors.

Research Setup

To test the set of introduced hypotheses, we conducted an exper-
iment on the perception of consistency notions using an online
questionnaire. In the following paragraphs, we introduce our
research setup. We elaborate on the target audience, the selec-
tion and creation of pairs of process models used in the ques-
tionnaire along with their characteristics concerning behaviour
consistency, and the experiment instrumentation.

Subjects / Target Audience. We aimed at testing the hypotheses
in the most general setting. Our target audience were practi-
tioners involved in the creation, analysis, or implementation of

6.3 consistency perception 165

Application
complete?

no

yes

Review
Application

Collect Missing
Documents

Review
Application

Collect Missing
Documents

Application
complete?

no

yes

Receive
Application

Receive
Application

Causal Behavioural Profile Consistency: False
Behavioural Profile Consistency: False
Weak Behavioural Profile Consistency: True

(a)

Scan
Application

Forward
Application
per E�Mail

Receive
Application Letter

Scan
Application

Forward
Application
per E�Mail

Receive
Application Letter

Receive
Application E�Mail

Causal Behavioural Profile Consistency: False
Behavioural Profile Consistency: True
Weak Behavioural Profile Consistency: True

(b)

Figure 44: Two objects of our experiment illustrating a difference re-
lated to an activity (event, respectively) that is (a) part of a
correspondence, (b) not part of a correspondence.

business process models that have significant real-world exper-
ience in process modelling. Thus, we decided to gather data
on their consistency perception using an online questionnaire
as timely access to a wide range of participants with different
backgrounds was crucial for the external validity of our invest-
igations. It was not feasible to approximate the entire audience
for the questionnaire. Hence, we could not select a representat-
ive sample and had to rely on convenient sampling and a self-
recruiting questionnaire design, following on the recommenda-
tions given in [87].

Objects / Pairs of Process Models. To assess the perception of the
subjects on process model consistency, the questionnaire com-
prised 11 pairs of process models, the objects of our experiment.
Each pair consisted of process models in BPMN [2], which con-
tained at most four activities and used only a small subset of
BPMN modelling constructs, such as plain and message start
events, activities, and XOR and AND gateways. These constructs
are widely used and can be seen as the common core of process
modelling languages [538]. For two models including a bound-
ary error event and a multiple-instance activity, we included an-
notations explaining the respective semantics. The objects have
been taken from two generally known domains to not have any
domain bias, namely processing of a purchase quote and pro-
cessing of a job application. However, activity labels have been
chosen rather abstract like ‘Create Quote’ or ‘Receive Applica-

166 deciding process model consistency

tion’. That, in turn, should ensure that participants are not influ-
enced by any process context.

In all 11 objects, the respective process models showed a slight
difference as illustrated in Figure 44. The selection of differences
has been guided by classifications of process model differences
available in related work, see [206, 123]. In prior work, we re-
viewed these classifications and identified nine common differ-
ences between process models that (1) relate to the activity or
control-flow perspective and (2) can be expected to be observed
between business centred process models and technical work-
flow models [498]. Examples for these differences are activity
fragmentation or decision distribution. Each difference may affect
behaviour consistency, so that each was covered by at least one
object in our experiment. Two differences were included twice.
Discussions with process modelling experts in a pre-test sugges-
ted considering these differences in two variants. Out of the 11
objects, six showed a difference related to activities that are part
of a correspondence. For the remaining five pairs, the difference
was related to activities that are not aligned by a correspondence.
Thus, we ensured that both types of differences are considered
equally. All objects used in the experiment can be found in [493].

Consistency Factors. For each object we determined, whether
the consistency criteria referred to in Hypotheses H1 to H3 hold.
This yields three dichotomous factors: Causal Behavioural Pro-
file (CBP) Consistency, Behavioural Profile (BP) Consistency, and
Weak Behavioural Profile (WBP) Consistency. We saw that five,
seven, and nine pairs of process models were CBP consistent,
BP consistent, and WBP consistent, respectively. Hence, all con-
sistency criteria are affected by the selection of process model
differences based on existing classifications. Concerning the dis-
tribution of the different criteria, our selection of models reflects
the fact that most process model pairs can be assumed to meet
at least the weakest criterion. On the other hand, our selection
is balanced for the strictest criterion, causal behavioural profile
consistency, which is satisfied by nearly one-half of the model
pairs.

Instrumentation. We conducted a pre-test that was succeeded
by a round of discussion with 8 practitioners. Their feedback
led to the adaptation of the pairs of process models, an update
of the introductory description, and revised annotations on exe-
cution semantics. We also used the feedback to choose the items
to be asked for each process model pair. We considered the
option that experts might judge the consistency of the process
models based on both, closeness and equivalence. Therefore, it
was found most appropriate to ask ‘I think the processes are
similar’ (strong disagreement to strong agreement) and ‘I think
the processes represent the same real-world process’ (strong dis-

6.3 consistency perception 167

agreement to strong agreement). By having these two separate
items, we aimed to avoid a bias towards a particular position
underlying the experts’ perceptions of consistency.

Once these changes were implemented accordingly, we pub-
lished the questionnaire online and left it available for three
months. An introductory text discussed the need of having dif-
ferent process models for different purposes of a common pro-
cess. No further information on notions of behaviour consist-
ency was given to the participants to focus on the pure consist-
ency perception. The Web site of the questionnaire was advert-
ised via channels having an affinity towards process modelling.
These included the SAP Developer Network, the German BPM-
Netzwerk, special interest groups on the social business plat-
form XING, BPMN-related blogs such as BPMN.info, academic
mailing lists as isworld and the German WI list, and finally via
process consulting and vendor companies.

Demographics & Results

In the following, we introduce the results obtained with the ex-
periment. We describe demographics, distribution of percep-
tions, hypotheses testing, and checks for potential interactions.

Demographics. The online questionnaire was filled out by 157
persons. We performed several steps to guarantee that the ana-
lysis data will be of high quality. We considered only answers of
participants who completed the full questionnaire. Then, we ex-
cluded those entries that where obviously filled out in a rush (an-
swer time less than 10minutes) and those where participants got
distracted by other tasks (answer time more than 100 minutes).
Our pre-test with 8 practitioners revealed that it is not possible
to reasonably complete the questionnaire in less than 10minutes.
Participants with more than 100 minutes obviously took a break,
which might distort their performance data. Further, we ex-
cluded those participants that classified themselves as students
since we aimed to get expert opinions. Finally, there were also
cases of persons giving the same consistency assessment to all
model pairs. Again, this pattern points to a thoughtless clicking
through the online questionnaire, such that we excluded these
answers.

The remaining data included the answers of 69 participants.
Those originated from 27 countries from all over the world with
a focus on the United States (15) and Germany (14). Each parti-
cipant assessed the 11 pairs of process models such that we have
759 data points altogether. 20% of the participants used the Ger-
man version of the questionnaire and 80% the English version. The
answer time varied between 11 and 85 minutes with a mean of
23 and a standard deviation of 15. Only four participants took

168 deciding process model consistency

��������	�
��
����
�
�����
������������

������
��
���
����

�������
���� ������
�

������
��
 !

"���
����
�
#�� $%
�
#��

'�����

(����

"�����
�	
�)���
����

Figure 45: Demographics for the participants of our experiment (ex-
pert statements).

more than 50 minutes. As illustrated in Figure 45, 30% of the
participants classified themselves as academics and 70% as prac-
titioners (answers by students were excluded). 60% stated they
would rather work on the business side of process management
and 40% rather on the IT side. Only 22% had less than two years,
whereas 78% had at least two years of modelling experience. These
numbers provide us with confidence that we actually collected
the assessments of experts.

Distribution of Perceptions. In the questionnaire, we asked for
two assessments for each model pair on a 1 to 5 Likert scale (‘I
think the processes are similar’ and ‘I think the processes rep-
resent the same real-world process’) to measure the consistency
perception. We observed that participants provided consistent
answers to these questions. Cronbach’s Alpha as a reliability
check yielded a good value of 0.76 such that we summed up the
two factors into one scale variable called Perceived Consistency
ranging from 2 to 10. Its mean value was rather central with
6.44 and with a standard deviation of 2.195. We performed the
Kolmogorov-Smirnov test, which indicated that its values are
normally distributed. This is an important criterion for making
analysis of variance (ANOVA) testing applicable.

Hypotheses Testing. To investigate Hypotheses H1 to H3, we
first derived descriptive statistics and constructed boxplots for
the Perceived Consistency and each of the three consistency no-
tions. Then, we inspected rank correlations and examined differ-
ences in variance of Perceived Consistency for each of the notions.

The boxplot for Perceived Consistency and Causal Behavioural
Profile Consistency indicates partial support for the theoretical
assumption behind Hypothesis H1, see Figure 46a. When con-
sidering the median, model pairs that meet the criterion are
perceived to be more consistent by the participants. However,
the range covered by the lower and upper quartiles is equal
and the mean value is virtually equal for the models that meet
the criterion and those that do not, see Table 1. The boxplot
and the descriptive statistics for Perceived Consistency and Beha-
vioural Profile Consistency are in line with Hypothesis H2, see

6.3 consistency perception 169

Table 1: Descriptive statistics for Perceived Consistency.

Mean Median Standard

Deviation

All Objects 6.44 6.00 2.195

Causal Behavioural Profile Consistency 6.47 7.00 2.136

No Causal Behavioural Profile Consistency 6.41 6.00 2.245

Behavioural Profile Consistency 6.55 7.00 2.170

No Behavioural Profile Consistency 6.23 6.00 2.228

Weak Behavioural Profile Consistency 6.62 7.00 2.167

No Weak Behavioural Profile Consistency 5.63 6.00 2.148

Table 2: Support for Hypotheses H1 to H3.

H1 H2 H3

F-Statistic 0.135 3.816 23.469

Significance .713 .051 .000

Support no support no support strong support

Figure 46b. The model pairs with consistent profile relations are
also perceived to be more consistent. A similar observation is
made for Weak Behavioural Profile Consistency, see Figure 46c
and Table 1. In contrast to the first boxplot in Figure 46a, the
plots for the criteria based on the non-causal behavioural pro-
file indicate a bigger variance in perception if the model pair is
inconsistent according to these criteria. In particular, the lower
quartile of the perceived consistency is larger meaning that more
participants tended to give low consistency values. This differ-
ence in the consistency perception is also reflected in the mean
values given in Table 1.

As a next step, we inspected whether the observed differ-
ences are significant from a statistical point of view. We identi-
fied a minimal positive Spearman rank correlation [429] between
Causal Behavioural Profile Consistency and Perceived Consistency
of 0.007 which is insignificant (p=.855). There is a positive cor-
relation between Behavioural Profile Consistency and Perceived
Consistency of 0.068 (p=.059), and also a significant positive cor-
relation between Weak Behavioural Profile Consistency and Per-
ceived Consistency of 0.171 (p=.001) at a significance level of 99%.
These facts are not in line with H1 and only partially with H2.
They comply with the assumptions of H3.

Additionally, we performed analysis of variance tests for each
of the consistency notions and Perceived Consistency, see Table 2.
None of the Levene statistics was significant, such that homogen-

170 deciding process model consistency

Causal Behavioural Profile Consistency

Pe
rc

ei
ve

d
Co

ns
is

te
nc

y

10

8

6

4

2

0

Page 1

10

(a)

 Behavioural Profile Consistency

10

Pe
rc

ei
ve

d
Co

ns
is

te
nc

y

10

8

6

4

2

0

Page 1

(b)

������Weak ������	
����
�	������	���������

�
��

��
��

��
�	

��
��

��
��

�

��

�

�

�

�

�

������

��

(c)

Figure 46: Perceived Consistency vs. (a) Causal Behavioural Profile
Consistency, (b) Behavioural Profile Consistency, and (c)
Weak Behavioural Profile Consistency.

eity of variance can be assumed. For Causal Behavioural Profile
Consistency and Perceived Consistency the difference is not signi-
ficant with p=.713 and an F of 0.135. This fact points to the re-
jection of H1. For Behavioural Profile Consistency and Perceived
Consistency the significance of the difference is below the 95%

6.3 consistency perception 171

Table 3: ANOVA model for Perceived Consistency.

CBP BP Weak BP

Consistency Consistency Consistency

F-Stat. 1.997 0.003 6.804

Sign. .158 .957 .009

Status F-Stat. 0.001 1.062 0.612 0.100

Sign. .976 .303 .434 .752

Focus F-Stat. 2.891 2.641 2.112 0.605

Sign. .035 .048 .097 .612

Modelling F-Stat. 0.504 0.321 0.050 1.313

Experience Sign. .680 .811 .985 .269

level with p=.051 and an F of 3.816. This does not support H2.
For Weak Behavioural Profile Consistency and Perceived Consist-
ency the difference is significant with p=.000 and an F of 23.469.
This fact supports H3 strongly.

Potential Interactions. Finally, we considered the set of moder-
ating factors and checked potential interactions between consist-
ency notions and the personal variables status (academic or prac-
titioner), focus (business or IT), and modelling experience (less than
two years or at least two years). For this purpose, we calculated
an ANOVA for Perceived Consistency using these three personal
variables and the three notions as input. Table 3 shows the most
important variables of this ANOVA model and their interactions.
It can be seen that Weak Behavioural Profile Consistency is the
most significant factor with more than 99% significance. Focus
is also significant as a factor. That stems from the fact that IT per-
sons gave slightly higher consistency perceptions than business
participants. There is no significant interaction effect of any of
these variables on the relation between each of the three consist-
ency notions and Perceived Consistency except for Causal Behavi-
oural Profile Consistency and focus. We inspected the data in
further detail and found that business people showed a slightly
positive correlation between consistency perceptions and Causal
Behavioural Profile Consistency, while there was no connection
for IT people (neither positive nor negative). Both correlations
were insignificant.

Even though only one of the background factors is significant
and there is only one significant interaction, our results show
that consistency perception is not entirely independent of the
personal background. As mentioned before, business people
tend to judge the consistency of our experiment objects on a
lower level. Against this background, it is remarkable that Hy-
pothesis H3 is still supported with more than 99% significance.

172 deciding process model consistency

The correlation between Perceived Consistency and Weak Behavi-
oural Profile Consistency is very strong, such that differences
with respect to Perceived Consistency between business and IT
people are of no consequence. The significant interaction related
to Causal Behavioural Profile Consistency and work focus can
be expected to stem from the same observation. There are fewer
objects that show Causal Behavioural Profile Consistency than
objects that show the other two consistency criteria. Hence, the
fact that business people gave lower consistency values yields a
correlation with Causal Behavioural Profile Consistency, which
is still not significant.

Discussion of Results

Our results on testing Hypothesis H1 suggest that causal beha-
vioural profile consistency is not suited to judge on the consist-
ency of business centred process models and technical workflow
models. Although this criterion is based on a behavioural ab-
straction, it turns out to be too strict in this context. Rejec-
tion of Hypothesis H1 suggests that causal behavioural profile
consistency and the consistency perception are not correlated.
Hence, consistency analysis of business centred process models
and technical workflow models based on this criterion may lead
to results that are not intuitive for process stakeholders.

In our experiment, aspects that are abstracted by the causal
behavioural profile with regard to trace semantics have not been
visible in the used objects. Consequently, all objects that were
causal behavioural profile consistent were also projection com-
patible [501]. The latter criterion is based on trace equivalence,
hides all activities that are not aligned following the idea of
projection inheritance [451, 33], and copes with complex corres-
pondences based on trace partitioning. As such, it lifts the trace
equivalence criterion directly to alignments of process models.
However, trace equivalence was introduced mainly for program
verification and investigations on the design of programming
languages [213]. These use cases impose different requirements
than the consistency analysis of business centred process models
and technical workflow models. The equivalence of programs re-
quires all execution paths to be available in both equivalent beha-
viour specifications. However, we already discussed that process
models designed for communication tend to focus at least par-
tially on the happy path [291, 21, 320]. Accordingly, as modelling
experts are aware that not all execution options are explicitly
captured, the perception of consistency seems to closer correlate
with the weaker notions of the consistency spectrum. Still, an
appropriate combination of blocking and hiding of activities as
discussed for the examples in Section 6.1 may be an alternative

6.3 consistency perception 173

way to cope with this issue. Blocking activities also excludes
certain execution paths when deciding behaviour equivalence.

The tests for the other two hypotheses illustrate that the cri-
teria that leverage only the relations of the non-causal behavi-
oural profile are more suited in our context. They better approx-
imate the consistency perception of process modelling experts.
Even though the tests for H2 are not significant at the 95% level,
weak behavioural profile consistency (H3) led to a highly signi-
ficant correlation with the perceived consistency. It is import-
ant to see that consistency requirements are relaxed by these
criteria in a well-motivated manner. The freedom of contradictions
between the behaviour of two process models is interpreted in a
way that the order of potential activity occurrences has to be re-
spected, whereas causal dependencies are considered to be neg-
ligible. Any conclusion in the sense ‘the more relaxed a notion
of consistency, the closer to expert judgement’, therefore, must
not be drawn.

Further, important findings of our experiment relate to the
personal background of the participants of the questionnaire.
The status (academia or industry) does not have an influence
on the consistency perception. The argument that people from
academia would be stricter in their consistency assessment po-
tentially due to a formal background and less experience with
real-world settings is not supported by our data. In addition,
modelling experience did not turn out to have an effect for our
results. Our results are twofold with respect to the fact, whether
a participant classifies their work to reside on the business side
or the IT side of process management. Although this difference
is often called to account for failing process management efforts,
its influence on the consistency perception of process models il-
lustrating these different perspectives is reflected solely in the
absolute level of consistency values. Hence, there seems to be a
common understanding with respect to the inevitability of cer-
tain differences between business centred process models and
technical workflow models. Nevertheless, business people tend
to give lower consistency values for our objects in general. We
consider this to be a remarkable, yet unexpected, observation. IT-
people are typically concerned with concrete implementations of
business processes, whereas business people stay on the rather
conceptual side. Hence, the latter could be expected to show a
more relaxed understanding of consistency.

Potential Threats to Validity

There are some threats to validity of our study. We want to high-
light self-recruitment and the selection of experiment objects.

174 deciding process model consistency

Earlier, we mentioned that we did not try to apply a random
sampling, but relied on self-recruitment. This implies a certain
threat to representativeness. Our strategy towards good external
validity was to make sure that the sample of participants that we
considered in our statistical evaluation can actually be regarded
as modelling experts with some confidence. Our assumption in
this context is that modelling experts in general share a common
understanding of what consistency is. If there were different
schools of thought that led to diverging perceptions on consist-
ency, there might be a bias in our data if these schools were not
covered in a representative way. However, we do not possess any
evidence that such differences exist. In our various discussions
with modelling experts, we observed a strong agreement among
them on consistency matters.

The selection of model pairs could introduce a potential threat
to validity. To investigate the consistency perception of process
modelling experts, we focussed on a concrete setting, i. e., be-
haviour consistency between business centred process models
and technical workflow models. Hence, we assume that the dif-
ferences presented in [206, 123, 498] are representative for the
deviations between models created for these two purposes. Two
of these classifications explicitly aim at capturing differences in
this context [206, 498]. We are not aware of an exhaustive val-
idation of their relevance and completeness, though. Further,
it may be the case that perceptions of consistency vary with the
size and complexity of process models. The pairs that we choose
were rather compact in this dimension. The choice was made for
different reasons. First, a pair of process models should show a
single difference as classified in related work [206, 123, 498]. In
this way, we ensured that any obligations of a participant to-
wards a dedicated difference would have a minor influence on
the result. In such a case, the perceived consistency would be af-
fected for one object instead of for multiple objects. Second, we
would have run into complex interactions if we had varied the
size and complexity of the pairs. It is well known from research
on process model metrics that size and complexity have a neg-
ative effect on process model comprehension [312]. This implies
that larger models would likely introduce a substantial level of
noise in the data, as the chance of bad comprehension and, there-
fore, inadequate consistency assessment rises with complexity.
Consequently, we selected rather small model pairs to limit the
cognitive effort of the participants and reduce the risk of parti-
cipants leaving the questionnaire without completion.

6.4 related work 175

Implications

We want to highlight major implications of our study. Those
relate to the application of behavioural abstractions for consist-
ency analysis, the importance of utility considerations for formal
criteria in Business Process Management (BPM), and the devel-
opment of process modelling tools.

We discussed in Section 6.1 that consistency analysis may also
be based on behaviour equivalences. However, our study re-
vealed that, in a certain context, rather weak consistency criteria
show a good approximation of experts’ consistency perceptions.
The extent to which this observation depends on the purpose for
which the process models have been created and on the driver
of consistency analysis has to be evaluated in further studies. It
will be interesting to see whether our observation can be con-
firmed in a different context.

Further, our research highlights the importance of empirical
research on formal correctness criteria for process management.
This observation is not limited to scenarios where consistency
matters. Many formal correctness criteria such as soundness [448]
or relaxed soundness [116] have been defined with a clear motiv-
ation of utility. This utility can be evaluated to a great share
using empirical research methods. Up until now, virtually no ex-
periments have been conducted to prove their utility. We foresee
that a feedback loop between research on formal properties and
the evaluation of their usefulness in a certain context may be of
great benefit to advance the field of BPM. Our results provide a
concrete starting point for further empirical research in this area.
The observation of business people evaluating the consistency
of process model pairs on a lower level than people with an IT
background clearly needs further investigation.

Finally, current process modelling tools rarely support the
definition of an alignment between models representing differ-
ent abstractions of a common process. If so, there are typically
no means of consistency analysis. Our findings can be seen as
a stimulus for the realisation of consistency analysis in commer-
cial process modelling tools based on behavioural relations.

6.4 related work

Our work on deciding consistency for aligned process models
relates to two streams of research, view-oriented approaches to
modelling of processes and systems, and interaction consistency.

176 deciding process model consistency

Model Views

We motivated the analysis of behaviour consistency with the
presence of multiple process models that capture (overlapping
parts of) the same business process. These models provide differ-
ent views on business operations, created for a certain purpose.
These views evolve independent of each other, which requires
constructing an alignment and deciding behaviour consistency
a posteriori.

View-oriented process modelling takes a different approach
to accommodate for the multitude of potential perspectives on
a business process. To this end, the existence of a holistic core
model is assumed. Then, the model is adapted towards a dedic-
ated purpose and group of stakeholders by deriving customised
process views [280, 145, 536, 55]. In the same vein, methodolo-
gies for integrated system design propose to derive technical
realisations from business models directly by means of refine-
ments [206, 21, 241]. Although these approaches do not start
with a core model, the final technical model can be seen as a
core model as well. Then, the business models are interpreted
as process views on the final technical model.

Views created by these approaches are consistent by construc-
tion. Consistency between a base model and a process view is
ensured, as the latter is derived by means of rules. Often these
rules concern the model structure. Sill, such structural consist-
ency is motivated by guaranteeing a certain degree of behaviour
consistency in terms of ‘activity orderings’ [280]. Albeit often not
mentioned explicitly, the latter is typically decided using notions
of behaviour equivalence. As a consequence, notions of beha-
viour inheritance that we reviewed in Section 6.1 are often im-
plicitly respected. This also holds for techniques that integrate
multiple views of a behavioural model, such as [366, 343, 314].

Similar observations can be made for Software Engineering
techniques that target the development of complex systems us-
ing multiple viewpoints, e. g., [167, 56, 61, 334, 163, 126]. View-
points realise a separation of concerns by focussing on different
aspects of the system to be built. For viewpoints, the authors
of [56, 61] advocate the application of behaviour equivalences
and partial preservation of traces as notions of behaviour consist-
ency. Behaviour equivalences are also used to assess consistency
in [126]. Other approaches favour the description of behavioural
dependencies imposed by each viewpoint in terms of logic state-
ments. Then, the conjunction of these statements is checked for
satisfiability [334, 163].

View-oriented modelling avoids the pitfalls addressed in this
thesis by restricting the evolution of related models. Once pro-
cess views or viewpoints are derived via a limited set of trans-

6.4 related work 177

formation rules, there is no need to construct an alignment and
decide behaviour consistency. However, these rules typically in-
duce only a certain type correspondences between model ele-
ments – hierarchical refinements. Then, correspondences are
non-overlapping and equally directed. Further, there are no n:m
complex correspondences and for 1:n correspondences the asso-
ciated set of activities is structurally restricted. The activities are
often required to form a single-entry single-exit region. In the
light of the variety of process modelling drivers, it does not seem
to be realistic to assume that such a restricted creation and evol-
ution of process models is feasible in all cases. It is interesting
to see that even in system design the inevitability of inconsist-
encies between different views on the system has been acknow-
ledged in the literature [163, 335, 238]. According to [238], ‘non-
hierarchical transformations are not rare exceptions. In the transition
from high-level models of the application domain to the implementation
model, we find them anywhere’.

Interaction Consistency

Behaviour consistency is also a central concept once the scope
of a single organisation is left and inter-organisational processes
are modelled, e. g., in the domain of business-to-business (B2B)
integration. Such a setting imposes consistency requirements
at different stages of the inter-organisational integration [409].
Public processes of interacting partners have to be consistent,
either [301]. Further, consistency must be ensured between these
public processes and their private implementations [300, 465].
Consistency of interactions has been studied extensively [532,
43, 300, 301, 110, 79, 535, 465, 282, 112].

There are fundamental differences between our notions of be-
haviour consistency and those used for interacting processes.
For interacting processes, the interaction protocol is in the centre
of interested when deciding the freedom of contradictions. Ensur-
ing that two protocols are not contradicting may require consid-
ering the moment of choice [478]. This suggests using rather
strict notions of behaviour equivalence. On the other hand, the
assumed communication model, see [230], may allow for cer-
tain behavioural deviations that are not in line with common
behaviour equivalences [110]. As an example, consider a pro-
tocol that defines a concurrent asynchronous sending of two
messages. A second protocol that specifies a sequential recep-
tion of these two messages will typically be considered to be
consistent. Hence, interaction consistency aims at guaranteeing
global properties, such as the absence of dead non-final states
and the reachability of the interaction goal. Consistency for pro-
cess models that abstract a common business process, in turn,

178 deciding process model consistency

aims at ensuring that there are no behavioural deviations for
corresponding activities. As a consequence, our consistency cri-
teria would not allow for parallelisation or sequentialisation of
activities that is visible in the behavioural abstraction.

6.5 conclusion

In this chapter, we focussed on the problem of deciding beha-
viour consistency for two process models that are aligned by
correspondences. We discussed two different approaches to as-
sess behaviour consistency, based on behaviour equivalences or
using behavioural relations. For the latter option, we motivated
the application of relations that capture indirect dependencies
with the existence of partial alignments. We proposed different
consistency notions that leverage behavioural profiles and span
a spectrum of consistency criteria. Then, we focussed on the
application of our consistency criteria for the evaluation of con-
sistency between business centred process models and technical
workflow models. We presented findings from an experiment on
the consistency perception of process modelling experts. For this
use case, the weak criteria of our consistency spectrum show a
good approximation of the human consistency perception. This
provides us with evidence that the proposed notions are mean-
ingful to modelling experts.

Behavioural profiles are a behavioural abstraction. On the
one hand, behavioural profiles can be computed efficiently for
a broad class of process models. On the other hand, the applica-
tion of a behavioural abstraction raises the question whether the
neglected behavioural aspects are crucial for deciding behaviour
consistency. For the investigated use case, this does not seem
to be the case. It is remarkable that the most abstract criterion
showed by far the best approximation of human consistency per-
ception. Again, we highlight that the abstraction of behaviour is
well-motivated. To conclude, our experimental results indicate
that the order of potential activity occurrence as captured by the
behavioural profile is essential for accessing behaviour consist-
ency.

7
Q U A N T I F Y I N G P R O C E S S M O D E L
C O N S I S T E N C Y

This chapter is based on results published in [505, 499].

A B

C

D A1 A2

E

D

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E

→

→

A2
→

+
→

→ →

→
→ +

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

A D

A
D

A D
+

+
→

→

Quantify Consistency

So far, we have addressed analysis of behaviour consistency
between aligned process models with Boolean consistency

criteria. In many cases, however, slight deviation even from
rather weak consistency criteria based on behavioural profiles
can be expected to hold in practise. Following the line of the con-
sistency notions presented in the previous chapter, this chapter
introduces consistency measures. Those allow for quantification
of behaviour consistency of an alignment between process mod-
els. As in the previous chapter, we first discuss behaviour equi-
valences and behavioural relations as different formal ground-
ings for consistency quantification in Section 7.1. Then, Sec-
tion 7.2 defines consistency measures based on behavioural pro-
files. We also discuss their properties and ways to consider con-
fidence values of correspondences during measurement. Sec-
tion 7.3 presents an experimental evaluation of the consistency

179

180 quantifying process model consistency

measures, in which we assess consistency between process mod-
els of a reference model. Then, we turn the focus on changes of
process models. Those are likely to affect behaviour consistency
between aligned process models. The question of how to sup-
port behaviour consistent propagation of changes is addressed
in Section 7.4. Finally, we review related work in Section 7.5 and
conclude the chapter in Section 7.6.

7.1 consistency quantification

To illustrate the need to quantify consistency we first take up
the example of a lead-to-order process introduced in the previ-
ous chapter. Following on the discussion of Boolean consistency
criteria, we elaborate on how to quantify consistency based on
behaviour equivalences and based on behavioural relations.

An Example Setting

For illustration purposes, we revisit the lead-to-order process
introduced in Section 6.1. Figure 47 depicts two net systems
that capture this process and are aligned by correspondences.
Again, we see that the overall processing of a lead is similar ac-
cording to both systems. In contrast to the examples discussed
in Section 6.1, the two systems in Figure 47 do not satisfy the
weakest consistency criterion based on behavioural profiles. We
observe different orders of potential occurrence for pairs of cor-
responding transitions. That is, transition ‘Analyse Competitors’
and ‘Submit Quote’ are in strict order in system (a), whereas
their counterparts are in interleaving order in system (b). There
may be different reasons for this deviation. On the one hand,
the interleaving order in the lower system may be explained by
the compound activity represented by transition ‘Enter & Send
Quote’. One may imagine that a system allows for entering
quote details first before the counter-offers are evaluated and the
quote is finally sent. Such a processing may be approximated by
the concurrent enabling of the transitions once entering the de-
tails and sending the quote are represented by one transition.
On the other hand, the history of counter-offers may be relevant
not for the quote submission, but only for the negotiation phase
in the lower system.

Regardless of the reason for this deviation, the behavioural dif-
ference violates all of the proposed Boolean consistency criteria.
Arguably, the deviation is minor and the overall processing is
similar. Consistency measures are required to judge on the ex-
tent of the behavioural deviation. Then, pairs of aligned process
models that show largely consistent behaviour are differentiated
from those that have virtually nothing in common.

7.1 consistency quantification 181

Contact
Customer

Analyse
Competitors

Get
Contact

Submit
Quote

Negotiate
Contract

Create Loss
Report

Get Contact
from

Marketing

Get Contact
from Fair

Enter &
Send

Quote
Get Request for

Quote

Schedule Call

Enter Loss
Report

Enter
Neg.

Report

Attach
Quote

Appendix

File
Contract

Schedule
Cust.

Present.

(a)

(b)

Close
Deal

Get Past
Counter‐

Offers

Figure 47: Two net systems depicting a lead-to-order process that are
aligned by correspondences.

Consistency Quantification based on Behaviour Equivalences

Consistency of aligned process models can be quantified based
on behaviour equivalences. Taking one of the notions of the
linear time – branching time spectrum, there are different ways
to capture the extent to which an equivalence notion is satisfied.

Following on the idea behind trace equivalence, the ratio of
shared (completed) traces and all (completed) traces of two net
systems may be applied as a measure if the sets of traces are
finite [107, 136]. This, again, raises the question of how to cope
with activities that are not aligned and with complex correspond-
ences. In principle, the (partial) solutions outlined in Section 6.1
can be applied, even though their operationalisation is challen-
ging. For instance, the decision to either block or hide activities
that are not aligned affects the measures. Hence, measuring be-
haviour consistency turns into an optimisation problem. The
degree of consistency depends on an optimal combination of
blocking and hiding activities. Our example in Figure 47 illus-
trates that both options have to be considered, ignoring that sets
of traces are not even finite. Assume that we neglect the circuits
by blocking the respective transitions without labels in both sys-
tems. Then, transitions ‘Get Request for Quote’ and ‘Schedule
Call’ in system (b) need to be blocked and all remaining trans-
itions without labels in both systems need to be hidden to obtain
a maximal consistency value.

Following on simulation equivalence, a different approach has
been proposed in [427]. Given two state spaces, simulation de-
cides whether each state transition in one state space can be
mirrored in the other state space. This notion may be adap-

182 quantifying process model consistency

ted, such that instead of mirroring a state transition, a stutter-
ing transition may be performed [427]. Taking such a stutter-
ing step is penalised based on a notion of similarity of state
transitions. This allows for conducting a weighted quantitative
simulation. It quantifies to which extend one state space simu-
lates another state space. Although this technique can cope with
transitions that are not aligned, it remains open how to deal
with complex correspondences. Quantification of the degree to
which two state spaces simulate each other was also addressed
in [330]. This work, again, leverages a similarity score for state
transitions. Then, the similarity of states is evaluated iteratively
by considering the similarities of neighbouring state transitions
and states. The approach terminates after a fixpoint or an iter-
ation boundary is reached. However, the treatment of complex
correspondences is not addressed.

These approaches illustrate that quantification of similar be-
haviour may be directly grounded on behaviour equivalences.
Nevertheless, the operationalisation of such approaches in the
context of partial alignments that comprise complex correspond-
ences is challenging and only partially addressed in the liter-
ature. Further, all of these approaches can be assumed to be
computationally hard in the general case as they exploit the sets
of (completed) traces or the state spaces, respectively.

Consistency Quantification based on Behavioural Relations

Behavioural relations allow for an alternative way to quantify
consistency of aligned process models. In the previous chapter,
we discussed consistency criteria that require all behavioural re-
lations between pairs of transitions in one system to be consist-
ent with the relations for pairs of corresponding transitions in
the other system. Different behavioural semantics qualify for
being the basis of these consistency criteria. We relied on behavi-
oural profiles and the type equivalence of profile relations. This
choice was motivated by the fact that indirect dependencies are
insensitive to extensions.

With the relations of the behavioural profile, consistency of
aligned process models can be quantified in a straight-forward
manner. As for the Boolean consistency criteria, we check for
all behavioural relations between pairs of transitions whether
they are type equivalent to the relations between pairs of corres-
ponding transitions. The ratio of transition pairs that show type
equivalent relations to all aligned transition pairs provides us
with a measure of consistency.

Referring to the alignment depicted in Figure 47, we will de-
rive a rather high consistency value. Most of the behavioural
relations between transition pairs in system (a) are type equival-

7.2 consistency measures 183

ent to the relations between pairs of corresponding transitions in
system (b). However, the aforementioned deviation, strict order
between transitions ‘Analyse Competitors’ and ‘Submit Quote’
in system (a) but interleaving for their counterparts in system (b),
will lead to a consistency value below one.

7.2 consistency measures

This section is dedicated to the formalisation of our approach to
consistency quantification. First, we introduce consistency meas-
ures. Second, we discuss their properties. Third, we elaborate
on how the confidence values of correspondences may be taken
into account when measuring behaviour consistency.

Definitions of Consistency Measures

In Section 6.2, we introduced a spectrum of consistency criteria
based on behavioural profiles. This spectrum is spanned by
three criteria, weak behavioural profile consistency, behavioural
profile consistency, and causal behavioural profile consistency.
The criteria differ with respect to the considered behavioural re-
lations. In this line, we also define three consistency measures.

We first define the set of behavioural profile consistent trans-
ition pairs. Given an alignment between two net systems, this set
contains all pairs of transitions that are part of a correspondence
and for which the corresponding transitions show type equival-
ent profile relations. Using the notion of aligned transitions in-
troduced in Definition 6.2.1, we define this set as follows.

Definition 7.2.1 (BP Consistent Transition Pairs)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), B1 = { 1,+1, ||1} and
B2 = { 2,+2, ||2, } their behavioural profiles, and ∼ ⊆ T1 × T2
a correspondence relation. Let R1 ∈ B1 ∪ { −1

1 } and R2 ∈
B2 ∪ { −1

2 }. The set of behavioural profile consistent transition pairs
CT∼1 ⊆ (T∼1 × T∼1) for S1 contains all pairs (tx, ty), such that
◦ if tx = ty, then ∀ ts ∈ T∼2 with tx ∼ ts it holds (txR1tx ∧

tsR2ts)⇒ R1 ' R2,
◦ if tx 6= ty, then ∀ ts, tt ∈ T∼2 with ts 6= tt, tx ∼ ts, and
ty ∼ tt it holds either (1) (txR1ty ∧ tsR2tt) ⇒ R1 ' R2 or
(2) tx ∼ tt and ty ∼ ts.

The set CT∼2 for S2 is defined analogously.

As for the Boolean consistency criteria introduced in Section 6.2,
the set of behavioural profile consistent transition pairs considers
the profile relations only for pairs of transitions that relate to dif-
ferent correspondences. Further, transition pairs that are part of

184 quantifying process model consistency

A4A3

B2B1

(b) (c)(a)

B

A1

A2

AB2

A1

AB1

C

C1

C2
E2E1

B

A

D

E
C C

(d)

Figure 48: Aligned net systems to illustrate the consistency measure-
ment.

an overlap of two correspondences are not taken into account
either.

Using the definition of behavioural profile consistent trans-
ition pairs, we are able to quantify the consistency of an align-
ment between two net systems. The main idea is to determine
the share of transition pairs, for which the corresponding trans-
itions have type equivalent behavioural relations. As the align-
ment may comprise complex correspondences with different car-
dinalities, our measures are based on consistent transition pairs
of both aligned net systems.

First, we define the degree of weak behavioural profile consist-
ency. It leverages the relations of the behavioural profile except
for the self-relations of transitions.

Definition 7.2.2 (Degree of Weak BP Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), and ∼ ⊆ T1 × T2 a cor-
respondence relation. The degree of weak behavioural profile consist-
ency of ∼ is defined as

WPC∼ =

∣∣CT∼1 \ idT∼
1

∣∣+ ∣∣CT∼2 \ idT∼
2

∣∣∣∣(T∼1 × T∼1) \ idT∼
1

∣∣+ ∣∣(T∼2 × T∼2) \ idT∼
2

∣∣ .
We illustrate this degree with Figure 48. For the alignment
between systems (a) and (b), we observe different behavioural
relations for the aligned transitions, even if self-relations are neg-
lected. The order of potential occurrence between transitions B
and C in system (a) is not mirrored in system (b), as it holds
C1||B2. Besides this deviation, most relations are type equivalent
for the respective pairs of transitions, so that we obtain a degree
of weak behavioural profile consistency of WPC = 10+28

12+30 ≈ 0.90.
The relation between transitions C1 and B2 in system (b) is also

7.2 consistency measures 185

inconsistent regarding the alignment with system (c). As sys-
tem (c) contains only three transitions that have counterparts in
system (b), the normalisation differs compared to the first align-
ment. For the alignment between systems (b) and (c), we obtain
a consistency value of WPC = 28+4

30+6 ≈ 0.89. The alignment
between systems (c) and (d) turns out to satisfy weak behavi-
oural profile consistency as introduced in the previous chapter,
see Section 6.2. This is also reflected in the degree of weak be-
havioural profile consistency, for which we obtain a value of
WPC = 12+30

12+30 = 1.
Quantification of consistency may also be done in the line of

the behavioural profile consistency criterion. Then, self-relations
also influence the consistency measure.

Definition 7.2.3 (Degree of BP Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), and ∼ ⊆ T1 × T2 a corres-
pondence relation. The degree of behavioural profile consistency of
∼ is defined as

PC∼ =

∣∣CT∼1 ∣∣+ ∣∣CT∼2 ∣∣∣∣T∼1 × T∼1 ∣∣+ ∣∣T∼2 × T∼2 ∣∣ .
We base the degree of behavioural profile consistency on the
Cartesian products of aligned transitions of both systems. As a
consequence, there is an implicit weighting of behavioural de-
pendencies. A pair of equal transitions is considered once. In
contrast, for any pair of distinct transitions, the reverse pair also
influences the consistency measure. If this would turn out to be
inappropriate in a certain context, however, our measures may
easily be adapted.

For the examples in Figure 48, we obtain the following results.
Consideration of self-relations affects the consistency measure-
ment for the alignment between systems (a) and (b). The poten-
tial repetition of transition B in system (a), B||B, is not respec-
ted by both corresponding transitions B1 and B2 in system (b).
For this alignment, we obtain a value of PC = 13+32

16+36 ≈ 0.87.
There are no deviations regarding self-relations for the align-
ments between systems (b) and (c). This leads to a slightly higher
consistency value compared to the degree of weak behavioural
profile consistency, that is PC = 34+7

36+9 ≈ 0.91. For the align-
ment between systems (c) and (d), again, we derive a value of
PC = 16+36

16+36 = 1.
Finally, quantification may be based on all relations of the

causal behavioural profile. To take co-occurrences into account,
we lift the notion of consistent transition pairs to causal beha-
vioural profiles. We capture all pairs of aligned transitions, for
which the corresponding transitions show type equivalent pro-
file relations and consistent co-occurrences.

186 quantifying process model consistency

Definition 7.2.4 (CBP Consistent Transition Pairs)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), CB1 = { 1,+1, ||1,�1} and
CB2 = { 2,+2, ||2,�2} their causal behavioural profiles, and
∼ ⊆ T1 × T2 a correspondence relation. Let CT∼1 be the set of
behavioural profile consistent transition pairs for S1. The set of
causal behavioural profile consistent transition pairs CCT∼1 ⊆ CT∼1
for S1 contains all pairs (tx, ty), such that if tx 6= ty then for all
transitions ts, tt ∈ T∼2 with ts 6= tt, tx ∼ ts, and ty ∼ tt it holds
either (1) tx �1 ty ⇔ ts �2 tt or (2) tx ∼ tt and ty ∼ ts. The set
CCT∼2 for S2 is defined analogously.

We define the degree of causal behavioural profile consistency
as follows.

Definition 7.2.5 (Degree of CBP Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), and ∼ ⊆ T1 × T2 a corres-
pondence relation. The degree of causal behavioural profile consist-
ency of ∼ is defined as

CPC∼ =

∣∣CCT∼1 ∣∣+ ∣∣CCT∼2 ∣∣∣∣T∼1 × T∼1 ∣∣+ ∣∣T∼2 × T∼2 ∣∣ .
Again, we refer to Figure 48 for illustration purposes. For the
alignment between systems (a) and (b), several co-occurrences
present in system (a) are not mirrored for corresponding trans-
itions in system (b). This is mainly caused by the application of
the binary co-occurrence relation, which provides an abstracted
view on the behaviour, see also the discussion in Section 6.1. For
instance, transitions A1 and B are co-occurring in both directions
in system (a), A1� B and B� A1. In system (b), co-occurrence
holds only for one direction as A1 � B1, A2 � B1, A1 � B2

and A2 � B2, but B1 6� A1, B1 6� A2, B2 6� A1, and B2 6� A2.
For this alignment, we obtain a degree of causal behavioural pro-
file consistency of CPC = 9+24

16+36 ≈ 0.63. Similar observations are
made for the alignment between systems (b) and (c). The co-
occurrence dependency B � A in system (c) is not mirrored in
system (b). In addition, transitions {B1,B2,C1,C2} are all pair-
wise co-occurring in system (b). These dependencies are only
partly satisfied in system (c), as it holds C� B but B 6� C. This
affects the degree of causal behavioural profile consistency, for
which we obtain a value of CPC = 19+5

36+9 ≈ 0.53. The alignment
between systems (c) and (d) satisfies even the strongest consist-
ency criteria introduced in Section 6.2, i. e., causal behavioural
profile consistency. Hence, we obtain a degree of causal behavi-
oural profile consistency of CPC = 16+36

16+36 = 1.

7.2 consistency measures 187

Properties of Consistency Measures

All three degrees to quantify consistency range between one and
zero. A degree of one guarantees that all dependencies are equal
for the aligned transitions of two net systems. The set of depend-
encies that influences the measure, in turn, is determined by the
applied behavioural abstraction.

Our measures quantify the quality of the correspondence rela-
tion of an alignment. Hence, their definition is independent of
the coverage of the net system by the correspondence relation.
The ratio of transitions that are aligned in both systems to all
transitions does not affect the measures. As a consequence, re-
moving a correspondence from an alignment may increase the
degree of consistency. The motivation for this operationalisation
directly follows from our use case. Process models created for
different purposes are likely to be partially overlapping in cov-
erage of business operations. Certain parts of operations are of
relevance only in a certain context. Thus, it will rarely be the
case that the correspondence relation is total from one model to
the other model.

Our focus on the quality of the correspondence relation has to
be seen as a major difference with respect to measure of process
model similarity. Those typically quantify the size of the overlap
in terms of similar activities of two process models. We further
discuss approaches to similarity measurement when reviewing
related work.

Despite these conceptual differences, our measures show cer-
tain properties that are closely related to the mathematical no-
tions of a similarity and a metric. According to [153], a similarity
satisfies the positiveness, maximality, and symmetry properties.
Positiveness and symmetry relate to the comparison of two net
systems and are satisfied by our measures.

Property 7.2.1. Given two net systems aligned by correspond-
ences, the degrees of weak behavioural profile consistency, beha-
vioural profile consistency, and causal behavioural profile con-
sistency are positive.

For all three degrees, the respective sets of consistent transitions
referenced in the numerators are subsets of the Cartesian products
of the aligned transitions referenced in the denominators. For a
correspondence relation ∼ ⊆ T1 × T2, it holds CT∼1 ,CCT∼1 ⊆ T∼1
and CT∼2 ,CCT∼2 ⊆ T∼2 . Hence, all degrees yield a positive value.

Property 7.2.2. Given two net systems aligned by correspond-
ences, the degrees of weak behavioural profile consistency, beha-
vioural profile consistency, and causal behavioural profile con-
sistency are symmetric.

188 quantifying process model consistency

Symmetry follows directly from the symmetry of the summation
operator applied for the set cardinalities in the numerators and
denominators of the degree computation.

The maximality property of a similarity states that the max-
imal value is assumed when comparing an entity with itself.
This property is not applicable in our context. It would require
a notion of an implicit self-alignment for net systems.

Closely related to similarities are distance metrics. A distance
metric, or dissimilarity, is often interpreted as the dual opera-
tion for similarity, defined as the similarity subtracted from one.
Our measures cannot be used as metrics for the comparison
of aligned net systems. In particular, any dissimilarity that is
grounded on our measures does not satisfy the triangle inequal-
ity. This property allows for concluding the minimal and max-
imal distance between two entities if their pairwise distance to a
third entity is known. The presented degrees are normalised by
the size of the alignment, i. e., the number of transitions that are
part of correspondences. Hence, our measures are independent
of the size of the respective net systems. That precludes any pos-
sibility of using them for the definition of distance metrics for
the comparison of net systems.

Confidence of Consistency Measures

The consistency measures introduces earlier, treat all aligned
transitions along with the behavioural relations between them
equally. All correspondences are equally important when evalu-
ating the consistency. In the previous chapter, we discussed how
confidence values for correspondences are interpreted against
the background of Boolean consistency notions. Any decision
taken based on such a consistency notion has a confidence that
is computed as the average of the confidence values for all ele-
mentary correspondences. In principle, this approach may also
be taken for the consistency measures. The degree of consist-
ency derived by one of the proposed measures is then associ-
ated with the confidence that the correspondences between two
net systems hold.

Once consistency is quantified, however, the confidence of cor-
respondences may also influence the measures directly. It can be
used to assign a weighting to correspondences. The motivation
behind is that equality of behavioural relations for correspond-
ing transitions is more important if we are highly confident that
the respective correspondences actually hold between both sys-
tems. On the other hand, violation of behavioural relations is
less harmful if there is a high uncertainty whether the respective
correspondences have been identified correctly.

7.2 consistency measures 189

Following this idea, we provide three weighted variants of
the proposed consistency measures. As an auxiliary notion, we
first define the average confidence function. For a single aligned
transition, this function aggregates the confidence values of ele-
mentary correspondences that refer to this transition by the arith-
metic mean. Again, we rely on the notion of aligned transitions
introduced in Definition 6.2.1.

Definition 7.2.6 (Average Confidence Function)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), and (∼, ζ) an alignment with
∼ ⊆ T1× T2. The average confidence function ζ̄ : (T∼1 ∪ T∼2) 7→ [0, 1]
is defined for a transition t ∈ (T∼1 ∪ T∼2) as

ζ̄(t) =

∑
(tx,ts)∈ ∼ ∧ (t=tx ∨ t=ts)

ζ(tx, ts)

|{(tx, ts) ∈ ∼ | t = tx ∨ t = ts}|
.

With the average confidence function, we adapt the three afore-
mentioned degrees of consistency.

Definition 7.2.7 (Weighted Degrees of Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), and ∼ ⊆ T1 × T2 a corres-
pondence relation.
The weighted degree of weak behavioural profile consistency of ∼ is

WPC∼
ζ =∑

(tx ,ty)∈(CT∼1 \idT∼
1
)(ζ̄(tx)+ζ̄(ty))+

∑
(ts ,tt)∈(CT∼2 \idT∼

2
)(ζ̄(ts)+ζ̄(tt))∑

(tx ,ty)∈((T∼1×T
∼
1
)\idT∼

1
)(ζ̄(tx)+ζ̄(ty))+

∑
(ts ,tt)∈((T∼2×T

∼
2
)\idT∼

2
)(ζ̄(ts)+ζ̄(tt))

.

The weighted degree of behavioural profile consistency of ∼ is

PC∼
ζ =∑

(tx ,ty)∈CT∼1
(ζ̄(tx)+ζ̄(ty))+

∑
(ts ,tt)∈CT∼2

(ζ̄(ts)+ζ̄(tt))∑
(tx ,ty)∈(T∼1×T

∼
1
)(ζ̄(tx)+ζ̄(ty))+

∑
(ts ,tt)∈(T∼2×T

∼
2
)(ζ̄(ts)+ζ̄(tt))

.

The weighted degree of causal behavioural profile consistency of ∼ is

CPC∼
ζ =∑

(tx ,ty)∈CCT∼1
(ζ̄(tx)+ζ̄(ty))+

∑
(ts ,tt)∈CCT∼2

(ζ̄(ts)+ζ̄(tt))∑
(tx ,ty)∈(T∼1×T

∼
1
)(ζ̄(tx)+ζ̄(ty))+

∑
(ts ,tt)∈(T∼2×T

∼
2
)(ζ̄(ts)+ζ̄(tt))

.

We illustrate the weighted measures with the example alignment
depicted in Figure 49. We showed both net systems already in
Figure 48, when discussing the non-weighted consistency meas-
ures. For the depicted alignment, we obtained consistency val-
ues of WPC ≈ 0.90, PC ≈ 0.87, and CPC ≈ 0.63. Figure 49 now
illustrates confidence values for the correspondences. For sim-
plicity, we assume all elementary correspondences that form a
complex correspondence to have equal confidence values. Ap-
parently, the correspondence between transition B in system (a)

190 quantifying process model consistency

A4A3

B2B1

(b)(a)

B

A1

A2

C

C1

C2

1.0

0.2

0.8

Figure 49: Aligned net systems with confidence values to illustrate the
weighted consistency measurement.

and transitions {B1,B2} in system (b) shows a rather high uncer-
tainty. Even though this correspondence may be removed from
the alignment due to the low confidence value, we rely on this
example for illustration purposes. Application of the weighted
consistency measures yields the following results, WPC ≈ 0.93,
PC ≈ 0.93, and CPC ≈ 0.69. All values are above those obtained
with the non-weighted measures. Most behavioural issues of
the alignment relate to transition B in system (a) and transitions
{B1,B2} in system (b). As the correspondence between them has
a low confidence value, all behavioural relations that refer to one
of these transitions have a lower influence on the consistency
evaluation compared to those that refer to other transitions.

7.3 experimental evaluation

We evaluated the introduced consistency measures with an ex-
perimental setup. Our experiment incorporated the models of
the SAP reference model [95]. We already used this model col-
lection to evaluate the different approaches to the computation
of behavioural profiles in Section 5.4. The SAP reference model
describes the functionality of the SAP R/3 system and captures
different functional aspects of an enterprise, such as sales or ac-
counting. However, the models are not orthogonal. There are
rather large clusters of models that show a functional overlap,
manifested in equally labelled functions and events in the EPCs.
We can only speculate on the reasons for this observation. On the
one hand, the models may refer to different variations of a busi-
ness process, i. e., different originals. On the other hand, they
may abstract a common process but assume the perspective of a
certain department on this process. As such, the process models

7.3 experimental evaluation 191

of this collection may not be a typical example for consistency
analysis as mainly investigated in this work. Nevertheless, an
evaluation of behaviour consistency provides insights on how
well the models in this collection are aligned.

Our experiment on behaviour consistency between models of
the SAP reference model focussed on the influence of causal de-
pendencies. In previous chapter, we discussed that such depend-
encies may be broken once only the happy path of business oper-
ations is captured. The behavioural profile focusses on the order
of potential occurrence and, therefore, explicitly neglects these
aspects. To investigate the influence of causal dependencies, our
experiment relied on two measures. As a baseline, we used a
measure that builds upon completed trace equivalence and the
idea of projection inheritance. It is based on completed trace se-
mantics of net systems and incorporates projection to cope with
transitions that are not aligned. As we will discuss later, con-
sidering only completed traces instead of all traces appears to
be particularly suited if transitions are projected. In addition,
we used the degree of behavioural profile consistency that neg-
lects causal dependencies. Note that for the net systems that we
evaluated, behavioural profile consistency coincided with weak
behavioural profile consistency. We considered only sound acyc-
lic net systems to be able to exploit the sets of completed traces
for our baseline measure.

The remainder of this section is structured as follows. First, we
formally define the baseline measure. Then, we summarise the
experimental setup and present the obtained consistency results.
Finally, we discuss the results with selected examples from the
model collection.

A Baseline Measure based on Projected Completed Trace Equivalence

Our baseline measure follows on completed trace equivalence.
Hence, we assume that a net system has a finite set of traces.
Completed trace equivalence requires two net systems to have
equal sets of completed traces. Those are characterised by firing
sequences that start in the initial marking of the net system and
end in a dead marking.

Definition 7.3.1 (Completed Traces)
Let S = (N,M0) be a net system with N1 = (P, T , F) that has
a finite set of traces T. The set of completed traces CT ⊆ T con-
tains a firing sequence σ ∈ T if the marking M1 reached by σ,
(N,M0)[σ〉(N,M1), is a dead marking.

To cope with transitions that are not aligned, we adapt the idea
of projection inheritance [451, 33]. That is, we hide these trans-
itions from the traces. We decided to adapt projection inherit-

192 quantifying process model consistency

(c)(a)

D

A

C

E

B

A

FD

B

D

E

(b)

Figure 50: Aligned net systems (elementary correspondences accord-
ing to transition labels) to illustrate the consistency meas-
urement based on projected completed traces.

ance as it lifts the completed trace equivalence criterion directly
to alignments of process models. In contrast to protocol inherit-
ance [451, 33], it considers all execution paths.

Given a correspondence relation, we define how projection is
applied to a firing sequence of one of the aligned net systems.
The following definition uses the notion of aligned transitions,
see Definition 6.2.1.

Definition 7.3.2 (Complete Trace Projection)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2) that have finite sets of
completed traces CT1 and CT2. Let ∼ ⊆ T1 × T2 a correspond-
ence relation.
◦ For a firing sequence σ ∈ CT1 of length n, the set of aligned

transitions up to index j ∈ N, 1 6 j 6 n, is defined as T∼σ|j =
{tx ∈ σ | x < j∧ tx ∈ T∼1 }.
◦ For a firing sequence σ ∈ CT1 of length n, the projection func-

tion τ∼ returns the projected firing sequence that contains

all aligned transitions of σ, i. e., τ∼(σ) =
⋃|T∼

σ|n|

i=0 (i, ti) with
ti ∈ T∼1 , such that ∃ j ∈N [(j, ti) ∈ σ∧ i = |T∼σ|j|].
◦ The set of projected completed traces CT∼

1 =
⋃
σ∈CT1 τ

∼(σ) of
S1 comprises all projected firing sequences.

We illustrate the notion of projected firing sequences with the
examples in Figure 50. Here, we assume elementary correspond-
ences to be defined according to the transition labels. Consider
the alignment between systems (a) and (b). In system (b), there
is a firing sequence σ = {(0,A), (1,C), (2,B), (3,D), (4,E)}, also
referred to as σ = 〈A,C,B,D,E〉, reachable from the initial mark-
ing. Transitions A, B, and C are not aligned with respect to
system (a). Hence, the respective projected firing sequence is
defined as τ(σ) = {(0,D), (1,E)}.

7.3 experimental evaluation 193

For any firing sequence that does not contain any aligned
transition, the projected firing sequence is the empty sequence.
This observation motivates the usage of completed traces instead
of relying on all traces for consistency analysis. Consider again
the systems (a) and (b) in Figure 50. For the firing sequence
σ = 〈A,C〉 in system (b), projection results in the empty se-
quence. Apparently, there is no firing sequence in system (a),
for which projection yields the empty sequence. To avoid such
anomalies, we consider only completed traces.

Using the concept of a trace projection, we can compare the
sets of completed traces of two aligned net systems if the cor-
respondence relation is functional and injective. The ratio of
shared completed traces to all completed traces of two net sys-
tems is used to quantify consistency. We define the degree of
trace consistency as follows.

Definition 7.3.3 (Degree of Trace Consistency)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2) that have finite sets of
completed traces CT1 and CT2. Let ∼ ⊆ T1× T2 a correspondence
relation and CT∼

1 , CT∼
2 the sets of projected completed traces.

◦ Two firing sequences σ1 ∈ CT∼
1 and σ2 ∈ CT∼

2 are consistent,
denoted by σ∼1 ' σ∼2 , iff σ∼1 = σ∼2 = ∅ or ∀ ti ∈ σ∼1 [∃ tj ∈
σ∼2 [i = j ∧ ti ∼ tj]].
◦ With CCT1 = {σ∼1 ∈ CT∼

1 | ∃ σ∼2 ∈ CT∼
2 [σ∼1 ' σ∼2]} and

CCT2 = {σ∼1 ∈ CT∼
2 | ∃ σ∼2 ∈ CT∼

1 [σ∼2 ' σ∼1]} the degree of trace
consistency of ∼ is

TC∼ =
|CCT1|+ |CCT2|

|CT∼
1 |+ |CT∼

2 |
.

For the example models given in Figure 50, we obtain the follow-
ing results. Consider the alignment between systems (a) and (b).
For both aligned net systems, the sets of projected completed
traces comprise solely a single firing sequence. As these firing se-
quences are consistent, this yields of degree of trace consistency
of TC = 1+1

1+1 = 1. For the alignment between systems (b) and (c),
we obtain a different result. The set of projected completed
traces for system (b) comprises one firing sequence σ = 〈A,B,D〉.
For the system (c), there are two firing sequences in the set of
projected completed traces, i. e., σ1 = 〈A,B,D〉 and σ2 = 〈A,B〉.
Since the latter is without consistent counterpart in system (b),
the degree of trace consistency is TC = 1+1

1+2 ≈ 0.67.

Experimental Setup

For our experiment, we extracted a subset of models of the SAP
reference model. This selection is similar to the one described

194 quantifying process model consistency

Table 4: Consistency results for alignments between two process mod-
els of the SAP reference model.

Category # Align. Avg. PC PC < 1.0 Avg. TC TC < 1.0

Functions 114 0.97 7 (6.14%) 0.89 37 (32.46%)

Events 695 0.95 71 (10.22%) 0.83 324 (46.62%)

All nodes 735 0.95 83 (11.29%) 0.81 357 (48.57%)

in Section 5.4. We selected only models that are non-trivial, free
of syntax errors, and have clear instantiation semantics. Further,
we excluded models that comprise OR-connectors and behavi-
oural anomalies. Our baseline measure assumes that the set of
traces of a process model is finite. Hence, cyclic process mod-
els were not further considered either. This selection leads to
a sample of 420 process models. We transformed these models
into sound acyclic free-choice WF-systems. As part of that, we
ensured that each EPC function and EPC event is represented by
a single transition.

We constructed alignments for the net systems that are built
from elementary correspondences between transitions represent-
ing EPC nodes with equal labels. Then, we extracted all pairs of
net systems that have been aligned by at least two correspond-
ences. For these alignments, we then computed the degrees of
trace consistency and behavioural profile consistency.

For the computation of the degree of behavioural profile con-
sistency, we relied on the techniques introduced in Section 5.1
and Section 5.2. We computed this degree within milliseconds
for an alignment. In contrast, the calculation of the degree of
trace consistency is computationally hard. We implemented this
computation in a prototype. Our implementation reduced the
size of the systems by a fusion of series places [329] connected by
transitions that are subject to projection. With the reduced net
systems, exploration of all traces works for the majority of align-
ments. For 18 alignments, the computation of the degree of trace
consistency turned out to be intractable. These alignments are
not further considered.

Experimental Results

A summary of the obtained consistency results is presented in
Table 4. We distinguish three different categories of alignments.
Correspondences are established either between transitions that
represent only EPC functions, only EPC events, or both node
types. The node type is considered in the latter category as well,

7.3 experimental evaluation 195

i. e., a correspondence between two transitions requires that both
represent the same type of EPC node. The second column of
Table 4 shows the number of pairs of net systems that are aligned
by at least two correspondences. There are significantly more
alignments if EPC events are taken into account. That is due to
the structure of the reference model. Single EPC models contain
a lot more events than functions. In addition, end events of one
EPC model reappear as start events of another EPC model.

Independent of the category, the average degree of behavi-
oural profile consistency (Avg. PC) is rather high. This observa-
tion is further underpinned by the low numbers of alignments
that are not behavioural profile consistent, i. e., that have a con-
sistency value below one (PC < 1.0). The degree of trace consist-
ency (Avg. TC), in turn, is lower than the degree of behavioural
profile consistency on average. A drastic difference is visible
once the shares of alignments that are fully consistent are com-
pared for both measures. If EPC events are considered, nearly
one-half of the alignments show a degree of trace consistency be-
low one. This yields more than 300 alignments in absolute terms.
To put it differently, the degree of trace consistency suggests a
high number of inconsistent alignments, whereas the degree of
profile consistency points to a rather high consistency.

We further explore the spectrum of consistency values in Fig-
ure 51. Figure 51a depicts the distribution of behavioural profile
consistency values against the degree of trace consistency.

Apparently, a degree of trace consistency of one implies that
the alignment is behavioural profile consistent. For alignments
that show a degree of trace consistency lower than one, we ob-
serve a spectrum of behavioural profile consistency with many
different consistency values. In particular, alignments with a de-
gree of trace consistency of zero are classified in a fine granular
manner by the degree of behavioural profile consistency.

The relation between behavioural profile consistency of an
alignment and the number of correspondences that form the
alignment is illustrated in Figure 51b. We see that low values
of behavioural profile consistency appear mainly for alignments
that comprise only a few correspondences. In these cases, a
single inconsistency has a bigger influence on the profile consist-
ency value than for alignments that comprises a large number of
correspondences.

Discussion of the Results

The presented results highlight that both measures may be used
to quantify behaviour consistency. On the other hand, we ob-
serve a significant difference between the measure based on pro-
jected completed traces and the one based on behavioural pro-

196 quantifying process model consistency

Degree of Trace Consistency

1.00.80.60.40.20.00

D
eg

re
e

of
 P

ro
fil

e
Co

ns
is

te
nc

y

1.00

.80

.60

.40

.20

Page 1

(a)

�������	
�Elementary Correspondences

���
���
�

�
��

��
��

	

��

�	

��

��
�	

��
��

��
��

�

��

��

��

��

��

(b)

Figure 51: Consistency values observed for alignments between two
process models of the SAP reference model.

files. Conceptually, both measures differ with respect to their
treatment of causal dependencies. We further investigate this
aspect with two exemplary alignments from the SAP reference
model.

The first example illustrates the need to judge on behaviour
consistency to evaluate the quality of an alignment. Figure 52

depicts (parts of) two EPC process models from the SAP refer-
ence model. Both models specify a shipping procedure. The
model in Figure 52a is part of the procurement handling sec-
tion of the reference model. The model in Figure 52b originates
from the sales and distribution processing. We cannot assess
whether both models represent different views on a common
business process or whether they capture different variations

7.3 experimental evaluation 197

Shipping
unit is to be

created

XOR

Material
has been

picked

Material is
removed

from stock

Picking

Shipping
unit is

created

XOR

Goods Issue
Processing

Material is
issued

Packing
Processing

(a)

Shipping
unit is to be

created

Material
has been

picked

Picking
needs to be
carried out

Picking
(Lean WM)

Goods Issue for
Consignment

Material is
issued

Packing
Processing

V

V

Shipping
unit is

created

Material
withdrawal is
to be posted

V

Goods
issue is
posted

Goods
receipt / issue
slip is printed

XOR

Transfer
order created

manually

Transfer
order created
automatically

...

(b)

Figure 52: EPCs from the SAP reference model that are overlapping,
but neither trace consistent nor behavioural profile consist-
ent.

of business operations. Nevertheless, both models show a not-
able overlap and specify how material shipping is implemented.
This is reflected by several nodes with identical labels. Other
elements show similar labels, e. g., ‘picking’ and ‘picking (lean
WM)’. Even though these elements are not considered in our
consistency analysis, they indicate high similarity of semantics.

An analysis of execution semantics of both models reveals seri-
ous differences. For instance, if the process has reached the state
‘material has been picked’, the model in Figure 52a specifies that
after conducting the ‘goods issue processing’, state ‘material is
issued’ is assumed directly. In contrast, the model in Figure 52b
defines that the state ‘material has been picked’ implies the need
for ‘packing processing’. What is an exclusive choice of states in

198 quantifying process model consistency

Substance
report is to
be created

V

Substance
Report

Processing

V

Shipping
(printing) of

reports is to be
triggered

Report
Shipping

Processing is
completed

Document
Temlate

Processing

Processing of
Substance Report

Generation
Variants

...

XOR

Attributes
are to be

formulated in
text form

Phrase
Processing

Phrases are to be
assigned to the
characteristics

of the substance
properties

Phrase Set
Processing

(a)

Create
standard
operating
procedure

V

Substance
Report

Processing

V

Shipping
(printing) of

reports is to be
triggered

Report
Shipping

Entering
data is

complete

Document
Temlate

Processing

Processing of
Substance Report

Generation
Variants

(b)

Figure 53: EPCs from the SAP reference model that are behavioural
profile consistent, but not trace consistent.

the one model, corresponds to a conjunction of states in the other
model. Although the ‘picking’ functions are not aligned, that
has to be regarded as an inconsistency. Therefore, consistency
of process models requires more than simply deriving the cor-
respondences between model elements. Analysis of behaviour
consistency has to be conducted. Both measures used in our ex-
periment reveal such inconsistencies. For the models depicted
in Figure 52, we obtain a degree of trace consistency of TC = 0

and a degree of behavioural profile consistency of PC = 0.6.
The second example focusses on the implications of the con-

ceptual differences of the measures. Figure 53 depicts two EPC
process models from the environment, health, and safety cat-
egory of the reference model. Both describe the creation of in-
cident reports and show several nodes with identical labels. The
model in Figure 53a goes beyond the procedure that is depicted
in the model in Figure 53b. It describes an alternative way of
creating the report, i. e., it extends the model in Figure 53b. This
may be caused by a focus on the most common execution path
in Figure 53b. To provide an overview of the processing the al-

7.4 consistent change propagation 199

ternative branches may be of minor importance and, therefore,
have been abstracted.

The difference between both models affects the degree of trace
consistency. Several causal dependencies defined between nodes
in Figure 53b are not observed for the corresponding nodes in
Figure 53a. For instance, function ‘report shipping’ is always pre-
ceded by function ‘document template processing’ in the model
in Figure 53b. This is not the case for the model in Figure 53a.
The degree of trace consistency for this example is TC = 0.93.
Although this value indicates only minor deviations, consider-
ation of the respective causal dependencies lowers the consist-
ency value. In contrast, there is no difference in the potential
order of execution as defined by the behavioural profile for the
corresponding nodes of both models. For instance, if function
‘document template processing’ and function ‘report shipping’
are part of the process execution, the former will always hap-
pen before the latter. The strict order between the two functions
holds in both models. For the models in Figure 53, we obtain
a degree of behavioural profile consistency of PC = 1, i. e., both
models are behavioural profile consistent.

To conclude, the first example in Figure 52 illustrates that be-
haviour consistency of an alignment has to be evaluated. Pure
identification of corresponding elements may lead to an align-
ment between process models that define contradictory beha-
viour. The second example in Figure 53 highlights that focussing
on the happy path of a process may introduce causal dependen-
cies that are not observed in other related process models. The
measure grounded on completed trace equivalence is sensitive
to these differences as it considers all possible execution paths
of a process. Instead, behavioural profile consistency enables
detection and quantification of behavioural inconsistencies of an
alignment, but is not affected by extensions of process models
as they are observed in practise. This suggests that behavioural
profile consistency is particularly suited to quantify behaviour
consistency of aligned process models. These findings are in
line with the results on consistency perception presented in Sec-
tion 6.3.

7.4 consistent change propagation

This section turns the focus on process model synchronisation.
In Section 1.3, we motivated the analysis of behaviour consist-
ency with, among other reasons, support of change propagation
between process models. As business operations continuously
undergo changes, process models capturing these operations
tend to drift apart.

200 quantifying process model consistency

In this section, we present a technique that supports consistent
change propagation in the line of the aforementioned measures.
First, we introduce an example and explain the general idea be-
hind our approach. Then, we elaborate on the major steps of our
approach in detail.

Overview of the Change Propagation Approach

Given two process models that are aligned by correspondences,
our approach addresses the question of how to support a process
analyst in keeping both models in sync. For a change in a source
model, we isolate a change region in the target model. In this way,
a process analyst can quickly assess the necessity to propagate
the change. If change propagation seems to be appropriate, the
change region spots the position where to update the process
model.

The general idea of our approach can be summarised as fol-
lows. A change operation in the source process model is reflec-
ted in its behavioural profile. Therefore, the profile relations
localise the change in the source model. Under the assumption
that a certain share of correspondences between both models is
consistent, the profile relations for corresponding activities in
the target model are exploited to localise the change region. Ini-
tially, the change region covers the whole target model. Then,
the change region is narrowed using two reductions. First, the
change region is reduced based on boundary transitions that dir-
ectly precede or succeed the change in strict order. Second,
reduction is based on inter-boundary transitions that are exclus-
ive or in interleaving order to the change. Our approach lever-
ages the relations of the behavioural profile and neglects the co-
occurrence relation of the causal behavioural profile. To localise
a certain transition, the relations on the order of potential oc-
currence are most important. At the end, we discuss informally
what can be gained by taking co-occurrences into account.

For illustration, consider the two net systems depicted in Fig-
ure 54. Both systems have been aligned by correspondences
between the highlighted transitions according to their labels. The
alignment is partial, e. g., transition J of system (b) is not aligned,
and comprises several complex correspondences. For instance,
there is a correspondence between transitions {C1,C2} of sys-
tem (a) and transitions {C3,C4} of system (b). The alignment
shows a rather high degree of behavioural profile consistency of
PC = 58+92

64+100 ≈ 0.91. Most profile relations between pairs of
aligned transitions are type equivalent to those observed for the
corresponding transitions. Nevertheless, the alignment is not be-
havioural profile consistent. We observe deviations in the two
behavioural profiles that relate to transition E in both systems.

7.4 consistent change propagation 201

A

B

C1

E

D X

F

G

H

C2

I

(a)

O HK N

FM

L

J

G1 G2

A

B1

C3

C4

B2 E

Q

P

(b)

Figure 54: Two aligned net systems. Correspondences between trans-
itions that are highlighted are indicated by the respective
labels. Net system (a) has just been changed by inserting
transition X.

Further, transition H is interleaving order to itself in system (a),
whereas the corresponding transition in system (b) is exclusive
to itself.

Assume that system (a) has just been changed by inserting
transition X. Then, the question of how to spot the respective
change region in system (b) has to be answered.

The Notions of a Change & a Change Region

As a first step, we discuss how a change is materialised in a net
system and introduce the notion of a change region. In general,
every change of the syntax of a net system may be considered for
change propagation. Against the background of process models
that serve different purposes, the question of what constitutes a
change may be answered on a more abstract level. That is, mul-
tiple changes of the syntax of a net system are often semantically
related and jointly realise a high-level change operation. Albeit
defined in the context of process instance adaptation, common
high-level changes have been classified as change patterns [488].

For our approach, we abstract from the actual implementation
of a change. We assume that a change can be localised by a ded-
icated transition, called change transition. This captures not only
insertion of transitions or subnets, but is also applicable for other
changes. For instance, removal of a transition or a subnet may
also be localised by a dedicated transition. Since we exploit the
relations of the behavioural profile for change propagation, we
also define a notion of a consistent change. A consistent change
is defined relative to a subset of transitions, for which the rela-

202 quantifying process model consistency

tions of the behavioural profile are not affected by the change
implementation. Hence, even complex change operations such
as the parallelisation of a whole sequence of transitions can be
addressed by our approach. Such a change just requires select-
ing one transition as the change transition and to identify the
transitions for which the relations of the behavioural profile are
not changed by the parallelisation.

Definition 7.4.1 (Change Transition, Consistent Change)
Let S1 = (N1,M1) be a net system with N1 = (P1, T1, F1). Im-
plementation of a change yields a system S2 = (N2,M2) with
N2 = (P2, T2, F2) and T1 ∩ T2 6= ∅. The transition t ∈ T2 rep-
resenting the change is referred to as the change transition. The
change from S1 to S2 is consistent over T ′ ⊆ T1 ∩ T2, if the beha-
vioural profile B1 of S1 over T ′ coincides with the behavioural
profile B2 of S2 over T ′.

For our example in Figure 54, the aforementioned change oper-
ation involved inserting a transition and two flows. This change
is localised by the change transition X. Further, the change is
consistent with respect to all transitions of the net system. The
relations of the behavioural profile have been not changed by the
insertion of transition X.

To propagate a change from the source net system to the target
net system, we identify a change region. Formally, such a change
region is captured by a subnet of the target net system. We
introduced the notion of a subnet in Section 2.2. For a net N =

(P, T , F), a place-bordered subnet may be characterised by a set
of transitions T ′ ⊆ T . The subnet induced by T ′ is defined as
N′ = (P′, T ′, F′) with P′ = {p ∈ P | ∃ t ∈ T ′ [p ∈ •t ∨ p ∈ t•]}
and F′ = F ∩ ((P′ × T ′) ∪ (T ′ × P′)). Our approach builds upon
change regions that are subnets induced by a set of transitions.
For brevity, therefore, we refer to a set of transitions as a change
region.

Extraction of a Consistent Sub-Alignment

To localise a change region in one system for a change in another
system, we exploit the relations of the behavioural profile for cor-
responding transitions. We may only exploit correspondences
for which the profile relations are consistent. Inconsistencies in
these relations would lead to contradicting information on how
to localise the change region.

We cope with this issue using the notion of a weak consistent
sub-alignment. Given an alignment between two net systems, a
weak consistent sub-alignment is a restriction of the correspond-
ence relation and the confidence function, such that the result-
ing alignment is weak behavioural profile consistent. We rely

7.4 consistent change propagation 203

on weak behavioural profile consistency as this criterion is suf-
ficient for consistent change propagation. Our approach does
not leverage self-relations, so that those are not required to be
consistent.

Definition 7.4.2 (Weak Consistent Sub-Alignment)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), and (∼, ζ) an alignment with
∼ ⊆ T1 × T2. The tuple (∼′, ζ′) is a weak consistent sub-alignment
of (∼, ζ), iff ∼′ ⊂ ∼, ∀ (tx, ty) ∈ ∼′ [ζ′(tx, ty) = ζ(tx, ty)], and ∼′

is weak behavioural profile consistent.

An inconsistent alignment may be restricted in different ways to
yield a weak consistent sub-alignment. It seems reasonable to
rely on sub-alignments that comprise a maximal number of ele-
mentary correspondences. However, there may be multiple sub-
alignments that show the maximal number of elementary corres-
pondences. Further, identification of maximal alignments is an
optimisation problem, which is computationally hard. Search
algorithms, such as the A∗-algorithm [108], may be used to find
maximal sub-alignments. Besides the number of elementary cor-
respondences, the sum of the confidence values related to the
correspondences may guide the selection of a sub-alignment.
Again, this can be seen as an optimisation problem. As a non-
optimal sub-alignment only lowers the amount of information
exploited to support change propagation, we do not consider
this to be a severe problem. Hence, non-optimal heuristics may
be applied to select a weak consistent sub-alignment.

As discussed earlier, we assume a change represented by a
change transition tx to be consistent over a certain set of trans-
itions T ′ of the source net system. All elementary correspond-
ences (t1, t2) ∈ ∼ that relate to inconsistent transitions, t1 /∈ T ′,
are removed from the alignment before a weak consistent sub-
alignment is selected. Hence, the set of correspondences that
may be exploited for change propagation is reduced twice –
once based on inconsistencies in the source system caused by
the change implementation and once based on inconsistencies
between the aligned net systems.

The change applied to system (a) in Figure 54, i. e., insertion
of transition X, is consistent. The alignment between both sys-
tems is not weak behavioural profile consistent, though. We in-
troduce formal means to identify a root cause of inconsistency
when focussing on behaviour consistency between a net system
and observed execution sequences. Now, we rely on manual
investigation of profile relations that are not type equivalent in
both systems. This reveals that the inconsistencies are mainly
caused by transition E in either system. Hence, we remove the
respective correspondence from the alignment. Actually, the ob-

204 quantifying process model consistency

tained sub-alignment is weak behavioural profile consistent and
can be leveraged for change propagation.

Reduction based on Boundary Transitions

Initially, we consider all transitions of the target system to form
the change region, i. e., to induce a place-bordered subnet in
which the according change shall be realised. The change region
is narrowed by reducing this set of transitions. The first reduc-
tion requires the identification of the closest aligned transitions
that are in strict order with the change transition in the source
system. We refer to these transitions as preceding or succeeding
boundary transitions. Here, closest means that there must not be
any aligned transitions between a boundary transition and the
change transition, which is also in strict order with the latter. We
capture boundary transitions, either of the source system or of
the target system, as follows.

Definition 7.4.3 (Boundary Transitions)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), B1 = { 1,+1, ||1} and B2 =

{ 2,+2, ||2, } their behavioural profiles, and ∼ ⊆ T1 × T2 a weak
behavioural profile consistent correspondence relation. Let tx be
a change transition of a consistent change in S1.
◦ The set of preceding boundary transitions PBT1 ⊆ T∼1 of S1

contains all aligned transitions that directly precede tx in
strict order, PBT1 = {t1 ∈ T∼1 | t1 1 tx ∧ ∀ t2 ∈ T∼1 [t2 1
tx ⇒ t1 6 1 t2]}. The set of succeeding boundary transitions
SBT1 of S1 is defined accordingly.
◦ The set of preceding boundary transitions PBT2 ⊆ T∼2 of S2 con-

tains all corresponding transitions for preceding boundary
transitions that are not succeeded in strict order by another
corresponding transition, PBT2 = {t1 ∈ T∼2 | ∃ t2 ∈ PB1 [t2 ∼
t1 ∧ ∀ t3 ∈ T∼2 [t2 ∼ t3 ⇒ t1 6 2 t3]]}. The set of succeeding
boundary transitions SBT2 of S2 is defined accordingly.

We illustrate the concept of boundary transitions using our run-
ning example depicted in Figure 54. System (a) shows three pre-
ceding boundary transitions, namely B, C1, and C2. All of them
are in strict order with the change transition X. Transition E

does not qualify to be a preceding boundary transition, as we
removed the respective correspondence from the alignment to
ensure weak behavioural profile consistency. Transition H is the
only succeeding boundary transition in system (a).

Using boundary transitions, the change region in the target
system is narrowed. The idea behind is that strict order between
boundary transitions and the change transition in the source sys-
tem has to be preserved for the boundary transitions and the

7.4 consistent change propagation 205

O HK N

FM

L

J

G1 G2

A

B1

C3

C4

B2 E

Q

P

Figure 55: The change region obtained by boundary transition reduc-
tion for the setting illustrated in Figure 54.

change region in the target system. A transition is removed from
the change region, if it meets one of the following requirements.
◦ It precedes a preceding boundary transition in strict order.
◦ It succeeds a succeeding boundary transition in reverse strict

order.
◦ It is exclusive to or in interleaving order with a boundary

transition.
Formally, we define this reduction of the change region as fol-
lows.

Definition 7.4.4 (Boundary Transition Reduction)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), B1 = { 1,+1, ||1} and
B2 = { 2,+2, ||2, } their behavioural profiles, and ∼ ⊆ T1 × T2
a correspondence relation. Let tx be a change transition in S1,
PBT2 and SBT2 the sets of preceding and succeeding boundary
transitions of S2, and B2 = PBT2 ∪ SBT2. The boundary transition
reduction creates a change region TC, such that

TC = T2 \ PT \ ST \BT with

PT = {t1 ∈ T2 | ∃ t2 ∈ PBT2 [t1 2 t2]}

ST = {t1 ∈ T2 | ∃ t2 ∈ SBT2 [t2 2 t1]}

BT = {t1 ∈ T2 | ∃ t2 ∈ B2 [(t1 +2 t2) ∨ (t1||2t2)]}

We illustrate the boundary transition reduction with our run-
ning example, introduced in Figure 54. Figure 55 depicts the
target system and highlights the change region once boundary
transition reduction has been applied to the set of all transitions
of the net system. For instance, transitions A and Q are removed
as they precede a preceding boundary transition, or succeed a
succeeding boundary transition, respectively. Transition P is re-
moved from the change region, as it is exclusive to the bound-
ary transition H. Further, all boundary transitions are not part
of the obtained region either. Technically, they are removed by
the reduction since their self-relation is either exclusiveness or
interleaving order.

206 quantifying process model consistency

Reduction based on Inter-Boundary Transitions

The second kind of reduction of the initial change region exploits
transitions that are in strict order with preceding and succeed-
ing boundary transitions in the source system, but not with the
change transition. We refer to these transitions as inter-boundary
transitions. Those transitions are between the boundary trans-
itions in terms of strict order and show exclusiveness or inter-
leaving order with respect to the change transition. To keep
the formalisation concise, we capture inter-boundary transitions
only for the target system.

Definition 7.4.5 (Inter-Boundary Transitions)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with N1 =
(P1, T1, F1) and N2 = (P2, T2, F2), B1 = { 1,+1, ||1} and B2 =

{ 2,+2, ||2, } their behavioural profiles, and ∼ ⊆ T1 × T2 a weak
behavioural profile consistent correspondence relation. Let tx be
a change transition of a consistent change in S1 and PBT2 and
SBT2 the sets of preceding and succeeding boundary transitions
of S2.
◦ The set of exclusive inter-boundary transitions EIT ⊆ T∼2 of
S2 contains all aligned transitions that precede and succeed
the boundary transitions and for which the corresponding
transitions are exclusive to the change transition, EIT = {t1 ∈
T∼2 | ∀ t2 ∈ T∼1 [t2 ∼ t1 ⇒ t2 +1 tx] ∧ ∀ tp ∈ PBT2, ts ∈
SBT2 [tp 2 t1 2 ts]}.
◦ The set of interleaving inter-boundary transitions IIT ⊆ T∼2 of
S2 contains all aligned transitions that precede and succeed
the boundary transitions and for which the corresponding
transitions are in interleaving order with the change trans-
ition, EIT = {t1 ∈ T∼2 | ∀ t2 ∈ T∼1 [t2 ∼ t1 ⇒ t2||1tx] ∧ ∀ tp ∈
PBT2, ts ∈ SBT2 [tp 2 t1 2 ts]}.

For our example, see Figure 54, we identify one inter-boundary
transition in system (b), i. e., transition F. It is located between
the boundary transitions with respect to strict order. Further,
the corresponding transition in system (a) is exclusive to the
change transition. Transitions G1 and G2 do not qualify as inter-
boundary transitions. Even though there is a strict order depend-
ency from all preceding boundary transitions to {G1,G2}, both
transitions are in interleaving order with the succeeding bound-
ary transition H.

As for boundary transition reduction, inter-boundary trans-
itions are leveraged to narrow the change region in the target
system. We remove a transition from the change region, if it
meets one of the following requirements.
◦ It is not exclusive to one of the exclusive inter-boundary

transitions.

7.4 consistent change propagation 207

O HK N

FM

L

J

G1 G2

A

B1

C3

C4

B2 E

Q

P

Figure 56: The change region obtained by inter-boundary transition re-
duction for the setting illustrated in Figure 54.

◦ It is not in interleaving order with one of the interleaving
inter-boundary transitions.
◦ It is an exclusive or interleaving inter-boundary transition.

We define the inter-boundary transition reduction as follows.

Definition 7.4.6 (Inter-Boundary Transition Reduction)
Let S1 = (N1,M1) and S2 = (N2,M2) be net systems with
N1 = (P1, T1, F1) and N2 = (P2, T2, F2), B1 = { 1,+1, ||1} and
B2 = { 2,+2, ||2, } their behavioural profiles, and ∼ ⊆ T1 × T2 a
correspondence relation. Let tx be a change transition of a con-
sistent change in S1 and EIT and IIT the sets of exclusive and
interleaving inter-boundary transitions of S2. The inter-boundary
transition reduction creates a change region TC, such that

TC = T2 \ EIT \ IIT \ ET \ IT with

ET = {t1 ∈ T2 | ∃ t2 ∈ EIT [(t1, t2) /∈ +2]}

IT = {t1 ∈ T2 | ∃ t2 ∈ IIT [(t1, t2) /∈ ||2]}

Applying the inter-boundary reduction to our examples yields
the change region highlighted in the target system in Figure 56.
Four transitions, {L,N,O,P}, are exclusive to the inter-boundary
transition F. The latter is not part of the change region. Hence,
the change region is the place-bordered subnet induced by the
transitions {L,N,O,P}.

Derivation of the Change Region

After we discussed the elementary steps of our approach, the
complete algorithm to derive the change region is shown in Al-
gorithm 4. Both reductions narrow the change region induced
by a set of transitions in the target system. Thus, the final change
region is the intersection of their results. Although both reduc-
tions are independent of each other, the result of one reduction
may be used as the input for the second reduction. Both reduc-
tions, however, are not redundant. This has been illustrated by
our running example. The change regions highlighted in Fig-
ure 55 and Figure 56 overlap only partially.

The result of our algorithm to derive the change region may
either be a set of transitions of the target system or an empty

208 quantifying process model consistency

Algorithm 4: Derivation of the change region for a given
change in one of two aligned net systems.

Input: S1 = (N1,M1), S2 = (N2,M2), net systems with
N1 = (P1, T1, F1), N2 = (P2, T2, F2), and
B1 = { 1,+1, ||1}, B2 = { 2,+2, ||2, } as their
behavioural profiles.
∼ ⊆ T1 × T2, a correspondence relation.
tx ∈ T1, a change transition.

Output: TC, the change region.

// Determine boundary and inter-boundary transitions

1 PBT1 ←− detPrecedingBoundTransSrc(S1,B1, ∼, tx) ;
2 SBT1 ←− detSucceedingBoundTransSrc(S1,B1, ∼, tx) ;
3 PBT2 ←− detPrecedingBoundTransTar(PBT1,S2,B2, ∼) ;
4 SBT2 ←− detSucceedingBoundTransTar(SBT1,S2,B2, ∼) ;

5 EIT ←− detExclIntBoundTrans(PBT2,SBT2,S1,S2,B1,B2, ∼) ;
6 IIT ←− detInterlIntBoundTrans(PBT2,SBT2,S1,S2,B1,B2, ∼);

// Narrow the change region by reductions

7 T1 ←− doBoundaryTransitionReduction(S2,B2,PBT2,SBT2);
8 T2 ←− doInterBoundaryTransitionReduction(S2,B2,EIT , IIT);

// Derive the change region

9 TC ←− T1 ∩ T2 ;

set. The former indicates that there are already transitions in
the system that meet the behavioural requirements with respect
to the potential change. These transitions do not necessarily in-
duce a connected subnet of the target system. Instead, there
may be multiple areas in the target system that qualify for the
realisation of the change. In case the set is empty, the target sys-
tem does not yet contain a transition satisfying the behavioural
requirements. In this case, the boundary transitions and inter-
boundary transitions guide the adaptation of the target system.
Boundary transitions impose requirements regarding the strict
order relation. Inter-boundary transitions guide the adaptation
based on the exclusiveness and interleaving order relations.

For implementing the change in the target system, the self-
relation of the change transition in the source system may be
exploited. Whether the change transition is exclusive to itself
or in interleaving order to itself provides additional information
on how to adapt the target system. Interleaving order hints at
potential multiple occurrences of the transition related to the
change in the source system. Such behaviour may be mirrored
in the target system.

Our approach of localising a change or a change region builds
upon the relations of the behavioural profile, as those specify or-
der dependencies between transitions. Nevertheless, the presen-
ted approach can be lifted to causal behavioural profiles. Then,
the change would be localised by order and co-occurrence de-

7.5 related work 209

pendencies. Both types of dependencies would be required to
be mirrored in the target system. However, this would require a
stricter notion of consistency for the alignment. The latter would
have to satisfy causal behavioural profile consistency, instead of
weak behavioural profile consistency. Against the results ob-
tained in our empirical investigation presented in Section 6.3
and the experimental evaluation done in Section 7.3, it seems
questionable whether this would be beneficial in the general
case. Extraction of a sub-alignment that satisfies causal behavi-
oural profile consistency can be assumed to exclude more corres-
pondences compared to the presented approach. Hence, change
propagation would have to rely on fewer correspondences and,
therefore, be less accurate. Still, co-occurrences may guide the
realisation of a change in the target model even if they are not
used to narrow the change region. Co-occurrences with bound-
ary transitions in the source system hint at how to implement
the change in the target system, similar to the aforementioned
self-relations.

7.5 related work

The concepts presented in this chapter mainly relate to three
streams of research. In the remainder of this section, we discuss
generic process model measures, measures for behavioural sim-
ilarity, and techniques for process model change management.

Process Model Measures

Process model measures aim at capturing structural or behavi-
oural characteristics of a process model. Based on these char-
acteristics, conclusions on their understandability, maintainabil-
ity, or correctness are drawn. Albeit often referred to as pro-
cess model metrics in the literature, most measures are no met-
rics in the mathematical sense. They do not show the charac-
teristic properties of a metric. Work on process model meas-
ures is inspired by work on measures for software complexity,
see [80, 303, 527, 207, 225]. For decades, research has been con-
ducted on complexity measures for software programs, starting
with simple measures such as the number of lines of code, to
measures that exploit the control flow graph and the coupling
of software modules.

Surveys on how these measures have been adapted for pro-
cess models can be found in [82, 263, 312]. Elementary struc-
tural measures include the number of activities (or places and
transitions for a net system, respectively) and the number of
flows [265]. Other structural measures consider, for instance,
the number of circuits, distinct paths, and hierarchy levels, or

210 quantifying process model consistency

the maximum of the minimal distances between two activities in
a process model [265, 332, 328, 262]. Behavioural measures may
be based on the size of the state space of a net system or the
average number of tokens over all reachable markings [265].

Besides these elementary measures, the cyclomatic number of
a control flow graph has been adapted. It refers to the num-
ber of linearly independent paths in the graph [303]. Using this
idea, the control-flow complexity (CFC) measure is based on the
splits of a process model [81], i. e., the elements that implement
the control flow routing. In contrast to the cyclomatic number,
the CFC measure takes different semantics of splits into account.
Further, the concepts of coupling and cohesion have been advoc-
ated as a grounding of process model measures [98, 378]. Co-
hesion measures may be based on the overlap of activities in
terms of their input and output dependencies [378]. Coupling
of activities of a process model was interpreted as the density of
the process model graph, i. e., the ratio of connected activities to
flows in the process model [378].

Many of the aforementioned measures have been evaluated
empirically towards their correlation with the understandability,
maintainability, or correctness of process models. An overview
of evaluations is given in [312].

Process model measures focus on a single process model and
do not aim at the comparison of two models or an alignment
between them. Nevertheless, we see a close relation between
these measures and our consistency measures for two reasons.
First, process model measures may support analysis of beha-
viour consistency. Given two aligned process models, a certain
measure may be computed for both process models. The delta
between the obtained values indicates how much both models
deviate in their general structure or behaviour. This analysis
cannot reveal behavioural contradictions that we aim to detect
with our measures. Instead, these measures quantify to which
extent a certain level of behaviour consistency correlates with
similar model structure or behaviour. This kind of analysis adds
an orthogonal dimension. Even if an alignment between two
process models is behaviour consistent, there may be differences
in how the respective behaviour is implemented. Second, we see
potential for building process model measures based on behavi-
oural profiles and relate them to understandability, maintainab-
ility, or correctness of process models as well. For instance, a
large amount of activity pairs in strict order in the behavioural
profile hints at a rather simple control flow structure. The lat-
ter can be assumed to correlate with the understandability and
maintainability of a process model.

7.5 related work 211

Behavioural Similarity Measures

We discussed measures for behavioural similarity in Section 3.2
when reviewing techniques for matching process models to con-
struct an alignment. In Section 7.2, we elaborated further on the
conceptual differences between consistency measures and sim-
ilarity measures. The former quantify the quality of the cor-
respondence relation of an alignment and are independent of
the shares of transitions that are aligned. In this section, we fo-
cus on the concrete operationalisation of behavioural similarity
measures.

Various similarity measures rely on the well-known Jaccard
coefficient. Given two sets A, B this coefficient defines their sim-
ilarity as sim(A,B) = |A∩B|

|A∪B| . Earlier, we mentioned that similar-
ity may be assessed based on this ratio defined for (completed)
traces of two net systems [107, 136]. The degree of trace con-
sistency used as a baseline in our experimental evaluation fol-
lows this idea. It just adds projection of transitions that are not
aligned to be applicable for partial alignments.

Similarities in the line of the Jaccard coefficient may be based
on behavioural relations. Actually, our consistency measures in-
corporate this idea. We quantify behaviour consistency by the
ratio of type equivalent behavioural relations to all relations
between aligned transitions. Once the behavioural relations are
mutually exclusive and partition a certain set of transitions, sim-
ilarity quantification may be seen as a matrix comparison. Given
two behavioural matrices, the ratio of consistent entries in both
matrices to the size of the matrices quantifies similarity. To this
end, various different matrix-based representations of behaviour
may be used, e. g., behavioural profiles, footprints comprising
the relations of the α-algorithm [457, 446], or causal matrices
that capture transitions that precede or follow each other dir-
ectly [459, 106] or indirectly [395].

Besides a ratio of traces or behavioural relations, edit distances
have been used as a formal grounding for behavioural similarity
measures. Following the idea of the string edit distance [267],
behavioural similarity may exploit an edit distance for the lan-
guage of a process model, an automata encoding this language,
or an n-gram representation of the language [525, 522, 524, 523].
This idea has also been lifted to the level of change operations
between process models. The authors of [271] measure similarity
based on the smallest number of high-level change operations,
built from change primitives, needed to transform one model
into another. Although the operations are structural, they are
guided by a matrix-based representation of the behaviour, an or-
der matrix. In Section 4.5, we argued that behavioural profiles
can be seen as a generalisation of the order matrix. Hence, the

212 quantifying process model consistency

similarity measures proposed in [271] may be ported to behavi-
oural profiles.

Once the behaviour of process models is described by a state
space, i. e., a labelled transition system, behavioural similarity
can be measured grounded on an optimal matching between
them [427, 330]. In Section 7.1, we discussed these approaches
in the light of our motivating example. Both similarities assume
the existence of an elementary similarity measure for state trans-
itions. Then, similarity is determined for paths in the state space
by considering the local similarity of state transitions and those
of neighbouring state transitions. Due to their grounding in state
spaces, the operationalisation of these similarities is not directly
transferable to behavioural profiles.

Another way to operationalise a measure for behaviour simil-
arity has been proposed for causal footprints [470, 473]. Causal
footprints capture semantics for a set of transitions by two rela-
tions, look-back links and look-ahead links, see also Section 4.5.
A vector space may be leveraged to assess the similarity of two
process models based on their causal footprints. The space is
spanned by taking all transitions, look-back links, and look-ahead
links as dimensions. Models are represented as vectors accord-
ing to their contained activities, and satisfied look-back and look-
ahead links. In principle, the idea of using a vector-space for
quantifying similarity can be transferred to any other relational
semantics, such as the behavioural profile. Then, the dimen-
sions of the vector space are derived not from look-back and
look-ahead links, but from entries of the profile relations.

Process Model Change Management

Change management for process models comprises three major
steps, i. e., (1) detection of differences, (2) analysis of their rela-
tions, and (3) resolution of differences [171].

Behavioural similarity measures as discussed earlier detect be-
havioural differences. Besides the detection that there is a beha-
vioural deviation, several approaches try classify the deviation
in terms of high-level or compound change operations [256, 124,
271, 171]. For instance, the approach presented in [256, 171]
identifies compound changes that are grounded on the tricon-
nected parse tree of a process model, the RPST [481, 359]. We
discussed the RPST for WF-nets in Section 5.2. The insertion of a
single-entry single-exit fragment would be an example for such
a change operation. Similar change operations are identified
in [271]. In [124], compound changes are identified by leveraging
trace semantics of process models. Trace patterns are linked to
an existing classification of process model differences [123].

7.6 conclusion 213

Once compound changes are identified, their relation may
be investigated. The detection of order or conflict dependen-
cies between different compound changes enables fine-granular
control of the change propagation [257]. Finally, the identified
changes are implemented to resolve the according process model
differences.

There are various conceptual differences between the tech-
niques for process model change management and the concepts
introduced in this chapter. As discussed for behavioural similar-
ities, change management considers process models as a whole,
whereas we focus on the aligned part only. Further, change man-
agement relies on well-defined change operations. In contrast,
we do not make any assumption on the structure of correspond-
ences. They may be n:m complex or overlapping. Nevertheless,
there are also various commonalities with respect to the essen-
tial steps of change management. Our consistency measures (1)
detect behavioural differences. Although those materialise in
different behavioural relations of pairs of corresponding trans-
itions of two aligned net systems, we do not aim at deriving
compound change operations. How this could be done in prin-
ciple was shown for the order matrix in [271]. Regarding step
(2), our notion of a consistent sub-alignment needed for change
propagation conceptually resembles the analysis of conflicting
changes. An inconsistent alignment could stem from conflicting
changes. Finally, step (3), the resolution of process model differ-
ences, is supported by our approach to change propagation.

Similar techniques for the detection of changes, the analysis
of their relations, and their resolution have been presented in
the context of process instance migration [376, 383, 488, 97]. Sev-
eral of the aforementioned techniques have their roots in process
evolution and adaptive process management.

In summary, our approach imposes fewer restrictions on the
relation between two process models than techniques for change
management. On the down side, the presented techniques do
not yield a concrete change operation, but are limited to guiding
the implementation of a change by identifying a change region.

7.6 conclusion

This chapter introduced consistency measures for aligned net
systems. Those leverage behavioural profiles and have been
defined in the spirit of the Boolean consistency criteria intro-
duced in the previous chapter. We evaluated these measures ex-
perimentally using process models of the SAP reference model.
The results suggest that the measure based on (non-causal) beha-
vioural profiles is particularly suited in this context. It provides a
fine-granular measure, but is insensitive to extensions of process

214 quantifying process model consistency

models as they are observed in practise. Finally, we focussed on
consistent change propagation between process models. Given
a change in one of two aligned models, we presented a tech-
nique to identify a change region in the other model. This sup-
ports a process analyst in assessing the necessity to propagate
the change and, if needed, implemented it.

We elaborated on the relation of measuring behaviour consist-
ency of an alignment and judging on behavioural similarity in
detail. The conceptual difference is the focus on aligned activ-
ities of consistency measures instead of the complete models
considered by similarities. Nevertheless, this difference is only
a question of the operationalisation of a measure. In principle,
techniques to address both questions may have similar roots and
rely on the very same idea to quantify behavioural deviation.
When reviewing related work, we outlined these commonalities.
We foresee that there is a large potential to adapt techniques in-
troduced for the field of consistency measurement for similarity
measurement, and vice versa. As a first step in this direction, we
recently proposed behavioural similarity metrics that are groun-
ded on behavioural profiles [254, 253]. Those are inspired by
the measures proposed in this chapter. Still, they focus on the
complete process models instead of only the aligned activities.
Further, these measures are proper metrics and, therefore, en-
abled the usage of efficient indexing techniques if applied for
process model search [253].

8
E X P L O R I N G P R O C E S S M O D E L
C O M M O N A L I T I E S

This chapter is based on results published in [506, 423, 425, 494].

A B

C

D A1 A2

E

D

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E →

→

A2
→

+
→

→ →→
→ +

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

Explore Commonalities

A D

A
D

A D
+

+
→

→

Synthesise Model

Deciding and quantifying consistency are essential tasks of
behavioural analysis. In the previous chapters, we presen-

ted a spectrum of consistency notions and measures, so that con-
sistency analysis can be gradually tailored towards a concrete
setting. Once a consistency result is obtained, exploration of be-
havioural commonalities and differences that caused the result
provides an added value. It allows for interpreting and explain-
ing the obtained consistency values. This chapter introduces
concepts and techniques that support such an explorative be-
havioural analysis. We start by discussing the need to perform
this kind of analysis in Section 8.1. Many analysis questions can
be answered using algebraic operations and relations. Those
have only partially been defined based on common behaviour
equivalences. To enable explorative behavioural analysis, Sec-
tion 8.2 defines a set algebra for behavioural profiles. It allows

215

216 exploring process model commonalities

for computing with the abstracted behaviour of process models.
Section 8.3 complements these results by a model synthesis for
behavioural profiles. Then, Section 8.4 combines algebraic con-
cepts and the model synthesis to address the analysis questions
raised in Section 8.1. In Section 8.5, we evaluate the set algebra
with an experimental setup. The experiment uses the SAP ref-
erence model known from the previous chapter. Section 8.6 re-
views related work. We conclude this chapter in Section 8.7.

8.1 explorative behavioural analysis

Once consistency is decided and quantified, exploration of be-
havioural commonalities and differences helps to interpret the
consistency results. An explorative behavioural analysis targets
the question whether the encountered differences are within ac-
ceptable boundaries or whether harmonisation of the models is
required. In this section, we illustrate the need for this kind of
analysis by an example setting and concrete analysis questions.
Then, we discuss different ways to approach these questions by
means of algebraic concepts. Those may be grounded on beha-
viour equivalences or on behavioural relations.

An Example Setting

We take up the lead-to-order process used for illustration in the
previous chapters. Figure 57 presents two more net systems that
depict the process and have been aligned by correspondences.
Again, both systems describe a similar processing of a lead. Nev-
ertheless, we also observe behavioural differences. In particular,
a quote may be updated, forwarded to other employees, and
approved multiple times in system (a), which is not possible in
system (b). These differences may stem from different model-
ling purposes that led to the creation of the respective models.
System (a) focusses on the major steps of processing from an or-
ganisational perspective and may be used for process document-
ation. System (b) depicts the steps that may be implemented in
an information system to support the lead-to-order process.

The behavioural differences between both systems are detec-
ted by the presented consistency measures. For the alignment
shown in Figure 57, we obtain a value of behavioural profile
consistency of PC = 28+50

36+64 = 0.78. Given such a consistency
value, a more detailed analysis is often needed to decide on the
severity of the detected behavioural deviations. This holds in
particular, once not only a pair of aligned process models, but a
set of aligned models is investigated.

8.1 explorative behavioural analysis 217

Establish
Contact

Submit
Quote(a)

(b)

Create
Quote

Clarify Quote
Hand Over

Revise Quote

Get
Approval

Enter
Contact
Details

Enter
Quote

Select
Existing
Contact

Request
Approval

Publish
Quote

Import
Request

for Quote

Update
Quote
Details

Send
Quote

Delegate
Quote

Handling

Figure 57: Two net systems depicting a lead-to-order process that are
aligned by correspondences.

Analysis Challenges

To support the interpretation of behavioural deviations for a set
of aligned process models, various challenges have to be ad-
dressed. We focus on four challenges, or analysis questions, re-
spectively. Even though other aspects may be relevant as well,
we consider the following questions to be common examples for
this kind of analysis.

C1: Given a set of aligned models, what are their commonalities in
terms of shared behaviour? This question relates to the challenge of
identifying the behaviour that is invariably agreed on by all re-
lated process models, i. e., the implemented invariant behaviour.

C2: Given a set of aligned models, what is the most general allowed
behaviour? The challenge to answer this question is to integrate
the behaviour defined by all process models, such that the most
general behaviour becomes visible. This resembles the notion
of a configurable process model, see [392, 181, 259], which sub-
sumes the behaviour defined in separate process models.

C3: Given a set of aligned models, what are their commonalities in
terms of shared forbidden behaviour? Similar to the first question,
also the shared forbidden behaviour is of interest to interpret
consistency results obtained for aligned process models.

C4: Given a set of aligned models, which process models are redund-
ant in terms of the specified behaviour? The challenge behind this
question is to identify models for which the specified behaviour
is subsumed by another process model. In that case, the exist-
ence of the former model may be challenged.

Answering these questions first requires us to choose a beha-
vioural model to capture commonalities and differences. Then,
the challenge is to come to an appropriate specification of formal

218 exploring process model commonalities

operations to support reasoning with the behaviour defined by
the process models. We argue that the essential questions of an
explorative behavioural analysis may be answered using set al-
gebraic operations, such as complementation, intersection, and
union, and set algebraic relations, such as equivalence and inclu-
sion. Hence, the question is how to define a behavioural algebra
for a certain behavioural model. As for consistency notions and
consistency measures, two fundamentally different approaches
may be taken to define algebraic concepts to compute with be-
haviour. Those may be grounded on behaviour equivalences or
behavioural relations.

Algebraic Concepts based on Behaviour Equivalences

In the previous chapters, we reviewed work on the application
of behaviour equivalences in the presence of extensions and re-
finements. These works can be related to particular subsets of a
behavioural algebra. The notions of behaviour inheritance [138,
451, 33, 412] provide an answer to the question of inclusion of
behaviour. A process model includes the behaviour of another
process model if both are behaviour equivalent once extensions
are blocked or hidden, cf., the discussion in Section 6.1.

Further, there has been significant work on the integration of
behaviour in the sense of a union or merge operation. In Sec-
tion 6.4, we discussed process views as a means to accommodate
for the multitude of potential perspectives on a business process.
Although process views are commonly derived from a holistic
core model, the latter may also be derived by integrating mul-
tiple views [366, 343, 314]. Merge operations have also been
proposed to consolidate collections of process models by config-
urable reference process models [330, 180, 379, 258, 259] or to
resolve version conflicts of process models [255]. The concrete
operationalisation of a merge operation typically depends on
whether the models are assumed to represent the same business
process [366, 180]. If so, they provide views that complement
each other and need to be synchronised, see [366, 343, 314]. Such
an operationalisation is close to work on merging partial behavi-
oural models, aka scenarios, used in Software Engineering [443].
In contrast to view integration, however, scenarios may not only
capture complementary, but also alternative behaviour of a pro-
cess. If the models are not assumed to represent the same busi-
ness process, the merged model implements choices between the
varying behaviour observed in different models. This kind of op-
erationalisation is followed in [366, 343, 330, 180, 379, 258, 259].
Recently, the extraction of a digest of the merged process model
has been proposed [259]. Given the merged model, this ap-
proach extracts the most recurrent elements of the original pro-

8.2 a set algebra for behavioural profiles 219

cess models. Hence, this digest can be seen as a notion of inter-
section.

Despite these partial results, we miss an overarching behavi-
oural algebra that incorporates the mentioned concepts. To the
best of our knowledge, the only attempt to define algebraic con-
cepts was reported in [343]. The authors introduce selection,
projection, join, union, and difference operators for net systems.
Still, the concepts are defined on the net system’s syntax, not its
semantics.

Under the assumption of finite sets of traces, one may imagine
to define a behavioural algebra using standard set algebraic op-
erations and relations applied to sets of traces. Nevertheless, the
question of how to cope with complex correspondences and with
activities that are not aligned must be addressed. In Section 6.1,
we discussed that this is far from trivial.

Algebraic Concepts based on Behavioural Relations

Behavioural relations are sets of ordered pairs of activities. Thus,
we may apply standard set algebraic operations and relations
directly to behavioural relations. However, this does not answer
the question of how to define algebraic concepts for a set of be-
havioural relations. We are not aware of any work that proposes
an algebra over behavioural relations of process models.

For the definition of algebraic concepts, again, different beha-
vioural semantics may be leveraged. We proposed consistency
notions and measures based on behavioural profiles. We mo-
tivated our choice for indirect dependencies by the observation
that those are insensitive to extensions. For the same reason, it
seems appropriate to define algebraic concepts based on beha-
vioural profiles to address the challenges of explorative behavi-
oural analysis in our context.

8.2 a set algebra for behavioural profiles

This section is dedicated to a formal definition of a set algebra for
behavioural profiles. Our algebra is based on non-causal behavi-
oural profiles and neglects co-occurrences of transitions. This is
motivated by the results obtained in Section 6.3 and Section 7.3.
We observed that causal dependencies between activities may
be broken once only the happy path of business operations is cap-
tured, which suggests to neglect co-occurrences when evaluat-
ing the quality of an alignment. Hence, exploring behavioural
commonalities and differences shall focus on the order of poten-
tial occurrence of activities, whereas causal dependencies are of
secondary importance.

220 exploring process model commonalities

(x||y)

(x←y) (x→y)
(x+y)

<…x…x…> <…x…>
<…y…><…y…x...x…>

<…y…x…>

<…x…y...y…>

<…x…y…>
<…>

<…y...x…y…> <…x...y…x…x…y...y>

<…x...y...x…y…> <…x...y...y…x…>

Figure 58: Sets of traces induced by the relations of the behavioural
profile for two transitions x and y.

Apart from that, the definition of algebraic concepts is challen-
ging only for the relations of the behavioural profile. The profile
relations are interrelated. This aspect has to be incorporated into
the definition of algebraic concepts. In contrast, co-occurrences
are captured in dichotomous way that is largely independent of
the profile relations. Therefore, standard set algebraic concepts
can be applied to cope with the co-occurrence relation of the
causal behavioural profile.

To compute with behaviour of aligned net systems, we first
discuss a notion of strictness of the relations of the behavioural
profile. This strictness is the foundation for the definition of the
set algebra. Second, we discuss a normalisation of behavioural
profiles. It abstracts from complex correspondences between
aligned net systems by identifying a dominating behavioural re-
lation for sets of transitions. Then, we introduce set-theoretic
relations and set-theoretic operations. Finally, we investigate
properties of the introduced operations.

Strictness of Behavioural Relations

The relations of the behavioural profile can be classified accord-
ing to their strictness. They allow different levels of freedom for
the occurrences of transitions in a firing sequence starting in the
initial marking of a net system. Interleaving order can be seen
as the absence of any restriction on the order of potential oc-
currence – the transitions are allowed to appear in an arbitrary
order. In contrast, (reverse) strict order defines a particular or-
der of occurrence for two transitions. Exclusiveness prohibits
the occurrence of two transitions together in one firing sequence.
Therefore, we consider interleaving order to be the weakest rela-
tion, and exclusiveness to be the strictest relation.

For a pair of transitions (x,y), this strictness is reflected in the
containment hierarchy of firing sequences that show either none,
one, or both transitions, illustrated in Figure 58. Here, all firing
sequences that conform to a specific relation of the behavioural
profile are part of the encircled set of firing sequences. A net

8.2 a set algebra for behavioural profiles 221

system that defines interleaving order between two transitions
x and y allows for any firing sequence. A firing sequence may
contain none, one, or both transitions in any order. A net system
that imposes exclusiveness for both transitions is most restrictive.
It allows for firing sequences that comprise none or only one of
the transitions. This set is a proper subset of the firing sequences
induced by interleaving order. Strict order and reverse strict
order are intermediate relations.

This notion of strictness is the foundation for the definition of
a set algebra for behavioural profiles. Our operations and rela-
tions are not defined based on sets of traces, but on the relations
of the behavioural profile. Still, the strictness of behavioural rela-
tions illustrated with sets of traces motivates the way we define
the set-algebraic relations and operations.

Normalisation of Behavioural Profiles

To compute with behavioural profiles of multiple aligned net
systems, we require the behavioural profiles to be defined only
over aligned transitions. Further, we assume that the correspond-
ence relation between net systems is functional and injective, i. e.,
there are no complex correspondences. As this requirement can
rarely be assumed to hold in practise, we define a normalisation
of a behavioural profile. Given two sets of transitions of one sys-
tem that are part of a complex correspondence defined between
this system and another system, the normalisation determines
their dominating behavioural relation.

The derivation of a dominating profile relation is formalised in
Algorithm 5. It takes a net system, its behavioural profile, two
sets transitions, and a normalisation threshold as input. The
algorithm then returns the dominating profile relation for the
sets of transitions.

Derivation of the dominating profile relation is based on the
strictness hierarchy discussed in the previous section. First, we
compute the share of transition pairs that is covered by the strict-
est relation, exclusiveness, or by the two strictest relations, ex-
clusiveness and (reverse) strict order (lines 2 to 4). Then, we
select the dominating profile relation according to these ratios
and a normalisation threshold (lines 5 to 8). The idea is to select
the strictest relation that is in line with the profile relations for
the requested share of transition pairs. For instance, a threshold
of t = 0.9 yields a dominating profile relation, such that 90% of
the profile relations between transition pairs are type equivalent
or stricter according to the aforementioned hierarchy.

Algorithm 5 defines how to determine a dominating profile
relation for two non-equal sets of transitions. These sets may be

222 exploring process model commonalities

Algorithm 5: Derivation of the dominating profile relation
for two sets of transitions.

Input: S = (N,M), a net system with N = (P, T , F) and
B = { ,+, ||} as its behavioural profile.
Tx, Ty ⊆ T , Tx 6= Ty, two sets of transitions.
t, normalisation threshold with 0 < t 6 1.

Output: R ∈ { , −1,+, ||}, the type of the dominating profile
relation for the pair (Tx, Ty).

1 TP ←− (Tx × Ty)∪ (Ty × Tx);

// Determine ratios for profile relations

2 r+ ←− |+ ∩ TP|
|TP|

;

3 r ←−
|(+ ∩ TP) ∪ (∩(Tx×Ty)) ∪ (−1∩(Ty×Tx))|

|TP|
;

4 r −1 ←− |(+ ∩ TP) ∪ (−1∩(Tx×Ty)) ∪ (∩(Ty×Tx))|
|TP|

;

// Select profile relation according to ratios

5 if r+ > t then return +;
6 if r > t then return ;
7 if r −1 > t then return −1;
8 return ||;

partially overlapping. This is the case, if the sets of transitions
are induced by overlapping correspondences of an alignment.

To normalise a behavioural profile, we also have to determine
a dominating self-relation for a set of transitions. A transition
is either exclusive or in interleaving order to itself. For a set
of transitions, we select the relation that is observed most fre-
quently as a self-relation for the respective transitions.

Normalisation of behavioural profiles of two aligned net sys-
tems results in behavioural profiles that are defined over sets
of transitions that are part of correspondences. We illustrate

B2 B3 B4

A B1

(a)

A
B1

A B1

B2

B2 B3

B3

+ �

+
||

�

�
�

�� �

�+
+
+

||

B4
�
�
+
+

B4

� �+ + +

||

(b)

A
B

A B
+ �

+�

(c)

Figure 59: Net system (a) and its behavioural profile (b). Normalisa-
tion of the behavioural profile for the sets of transitions {A}

and {B1,B2,B3,B4} yields the profile illustrated in (c).

8.2 a set algebra for behavioural profiles 223

this normalisation with the example depicted in Figure 59. Fig-
ure 59a shows a net system and Figure 59b depicts its behavi-
oural profile. Assume that the system is aligned with another net
system by two correspondences, one involving only transition A
and one comprising four transitions {B1,B2,B3,B4}. Then, we
normalise the behavioural profile for the sets of transitions {A}

and {B1,B2,B3,B4}. Taking a normalisation threshold of t = 0.7,
the resulting profile is depicted in Figure 59c. The strict order
dependency between transition A and each of the transitions
{B2,B3,B4} leads to strict order as the dominating relation for
the two sets of transitions. The interleaving order dependency
between transitions A and B1 is neglected. For a normalisation
threshold of t = 1, however, this relation would be considered.
Then, the normalisation yields an interleaving order dependency
as the dominating relation between the sets of transitions {A}

and {B1,B2,B3,B4}. Further, we decide on exclusiveness as the
self-relation for both sets of transitions. This stems from the
observation that most of the transitions {B1,B2,B3,B4} show ex-
clusiveness as their self-relation.

Normalisation may result in behavioural profiles that are in-
consistent in the sense that they specify contradicting inform-
ation. We discuss these issues in detail as part of the model
synthesis from a behavioural profile.

Set-Theoretic Relations

We start the definition of our algebra by introducing three rela-
tions, i. e., equivalence, inclusion, and emptiness for behavioural
profiles. We reason only on behavioural profiles that are defined
over aligned transitions that are part of at least one correspond-
ence. Transitions that are not aligned by any correspondence
are neglected. Further, we assume that behavioural profiles have
been normalised according to the correspondences between the
aligned net systems as discussed in the previous section. This
allows us to keep the formalisation concise by abstracting from
the actual correspondence relation. We assume corresponding
transitions to be identical.

Equivalence. Two behavioural profiles are equivalent, if they
enforce equal behavioural dependencies for all transitions. The
equivalence of behavioural profiles requires equivalence of the
profile relations. Note that the notion of behavioural profile equi-
valence for net systems as defined in Definition 4.4.1 imposes
the same requirements. Further, we discussed in Section 4.4 that
equivalence of behavioural profiles does not imply equal trace
semantics for two net systems.

Definition 8.2.1 (Equivalence of Behavioural Profiles)
Let B1 = { 1,+1, ||1} and B2 = { 2,+2, ||2} be behavioural pro-

224 exploring process model commonalities

A
B

A B
+ �

+�

A

B

(a)

A
B

A B
+

++
+

BA

(b)

Figure 60: The behavioural profile of net system (a) includes the one
of net system (b).

files over a finite set of transitions T . B1 equals B2, denoted by
B1 = B2, iff their relations are equal for all pairs of transitions,
 1= 2, +1 = +2, and ||1 = ||2.

Inclusion. An inclusion holds between two behavioural profiles,
if one profile subsumes the behavioural dependencies of another
profile according to the notion of strictness discussed earlier.

Definition 8.2.2 (Inclusion of Behavioural Profiles)
Let B1 = { 1,+1, ||1} and B2 = { 2,+2, ||2} be behavioural pro-
files over a finite set of transitions T . B1 includes B2, denoted by
B1 ⊆ B2, iff for all pairs of transitions (tx, ty) ∈ T × T it holds
that
◦ tx +1 ty implies tx +2 ty,
◦ tx 1 ty implies tx +2 ty or tx 2 ty,
◦ tx −1

1 ty implies tx +2 ty or tx −1
2 ty.

If B1 ⊆ B2, but not B1 = B2, we speak of proper inclusion,
denoted by B1 ⊂ B2.

Figure 60 illustrates inclusion of behavioural profiles. The profile
of the net system in Figure 60a includes the one of the net sys-
tem in Figure 60b, since the former is less restrictive. Here, we
neglect the unlabelled transition in Figure 60a which is without
counterpart in the other system. The profile in Figure 60a al-
lows for ordered occurrence of transitions A and B in a firing se-
quence starting in the initial marking. The profile in Figure 60b,
in turn, forbids any occurrence of both transitions in a firing se-
quence. This example illustrates that inclusion of behavioural
profiles does not imply inclusion of the respective sets of traces,
which stems from the assumed behavioural abstraction. Appar-
ently, the trace σ = 〈B〉 of the system in Figure 60b is not possible
in the system in Figure 60a.

The behavioural abstraction allows us to cope with behavi-
oural deviations as they are visible in our initial example in

8.2 a set algebra for behavioural profiles 225

Figure 57. In system (a), transition ‘Clarify Quote Hand Over’
may occur before ‘Get Approval’. Further, both transitions may
occur multiple times in a firing sequence starting in the initial
marking, so that they are in interleaving order according to the
behavioural profile. In contrast, the corresponding transitions
in system (b) are in reverse strict order. Hence, the behavioural
dependencies imposed by system (b) are included in the depend-
encies imposed by model (a). Most approaches that built upon
a trace-based assessment will fail to address such cases.

Emptiness. A behavioural profile is empty, if it defines all
pairs of transitions to be exclusive. Such a profile forbids the
occurrence of any two transitions. This definition is motivated
by the idea that one may add a transition to any net system
that carries no meaning but indicates initialisation of the busi-
ness process. Then, the exclusiveness of all transitions with this
transition would imply that no transition representing a business
activity is allowed to occur.

Definition 8.2.3 (Emptiness of a Behavioural Profile)
Let B = { ,+, ||} be a behavioural profile over a finite set of
transitions T . B is empty, iff all pairs of transitions are exclusive,
+ = T × T .

Set-Theoretic Operations

As a next step, we introduce three set operations for behavioural
profiles, i. e., complementation, intersection, and union. Again,
we abstract from a correspondence relation between net systems.
We assume that behavioural profiles are defined over identical
sets of transitions once more than one profile is considered.

Complementation. The complement operation is defined for a
single behavioural profile and returns a profile that specifies re-
verse relations for all transition pairs of the original profile.

Definition 8.2.4 (Complement of a Behavioural Profile)
Let B = { ,+, ||} be a behavioural profile over a finite set of trans-
itions T . The complement B = { ′,+′, ||′} of B is a behavioural
profile over T , such that for all pairs of transitions (tx, ty) ∈ T ×T
it holds that
◦ tx +′ ty, iff tx||ty,
◦ tx ′ ty, iff tx −1 ty,
◦ tx||′ty, iff tx + ty.

The complement operation is illustrated in Figure 61. The sys-
tem in Figure 61a and the one in Figure 61b show complement-
ary behavioural profiles. The profile of the one system is the
complement of the profile of the other system, and vice versa.
For instance, there is a strict order dependency between trans-

226 exploring process model commonalities

A

B C

A
B

A B

C

C
�

+�+
||

+
+

��

(a)

B C

A

A
B

A B

C

C
+

||
||
||

||�
�

� �

(b)

Figure 61: The behavioural profiles of both net systems are comple-
mentary.

itions A and B in the system in Figure 61a, whereas both trans-
itions are in reverse strict order in the profile of the system in
Figure 61b. Further, transition A may occur multiple times ac-
cording to the profile in Figure 61a, whereas it is exclusive to
itself in the profile in Figure 61b.

Intersection. Given two behavioural profiles, the intersection
operation yields a third behavioural profile that combines the
strictest relations of the behavioural profiles. Hence, the inter-
section represents the behavioural dependencies that are shared
by both profiles.

Definition 8.2.5 (Intersection of Behavioural Profiles)
Let B1 = { 1,+1, ||1} and B2 = { 2,+2, ||2} be behavioural pro-
files over a finite set of transitions T . The intersection of these
profiles is a behavioural profile B3 = { 3,+3, ||3} over T , de-
noted by B1 ∩ B2 = B3, such that for all pairs of transitions
(tx, ty) ∈ T × T it holds that
◦ tx+3 ty, iff either tx+1 ty, tx+2 ty, (tx 1 ty∧ tx −1

2 ty),
or (tx −1

1 ty ∧ tx 2 ty),
◦ tx 3 ty, iff either (tx 1 ty ∧ (tx 2 ty ∨ tx||2ty)) or
(tx 2 ty ∧ (tx 1 ty ∨ tx||1ty)),
◦ tx||3ty, iff tx||1ty and tx||2ty.

We illustrate the intersection of behavioural profiles with the sys-
tems depicted in Figure 62. The lower system (c) shows a beha-
vioural profile that corresponds to the intersection of the beha-
vioural profiles of the upper two systems (a) and (b). Consider,
for instance, transitions A and B. System (a) allows for interleav-
ing order between both transitions, whereas system (b) is more
restrictive and enforces strict order. Hence, the intersection also

8.2 a set algebra for behavioural profiles 227

(a)

A
B

A B

C

C D

D

+ → →→

+

→

→
→

→→+ →

→+
+
+

A
B

A B

C

C D

D

+ →

+
||

→

→
→

→→+ →

→+
+
+

|| A
B

A B

C

C D

D

+ →

+

→

→
→

→→+ →

→ +

→→

→→

A B C D

B

C

D

A

A B

C

D

(b)

(c)

Figure 62: The behavioural profile of system (c) corresponds to the in-
tersection of the behavioural profiles of systems (a) and (b).

defines strict order for both transitions. Due to the assumed be-
havioural abstraction, again, system (c) does not represent the
intersection of the sets of traces of systems (a) and (b).

Referring to our example in Figure 57, we may investigate be-
havioural commonalities by the intersection of shared completed
traces induced by the alignment. However, this intersection is
empty, even if we cope with transitions that are not aligned
by appropriate blocking or hiding and handle the complex cor-
respondences by a trace partitioning, cf., the discussion in Sec-
tion 6.1. The evident behavioural commonalities of both aligned
net systems are not revealed by a trace-based assessment. The
intersection of behavioural profiles allows us to address such
scenarios.

Union. The union operation for two behavioural profiles yields
a third behavioural profile that combines the weakest dependen-
cies of two behavioural profiles given as input parameters for all
pairs of transitions. We trace back the definition of the union op-
eration to complementation and intersection using De Morgan’s
rule. The union B3 of two behavioural profiles B1 and B2 over
a set of transitions T , denoted by B3 = B1 ∪ B2 is defined as
B3 = B1 ∩B2.

Properties of the Algebraic Operations

In Section 4.1, we defined behavioural profiles for net systems
under the assumption of trace semantics. As a consequence,
every behavioural profile shows certain properties. For instance,

228 exploring process model commonalities

strict order is antisymmetric, whereas exclusiveness and inter-
leaving order are symmetric relations. Further, the profile re-
lations, along with reverse strict order, partition the Cartesian
product of transitions over which the profile is defined.

In the remainder of this section, we show that the essential
properties of behavioural profiles are preserved by the set-theo-
retic operations introduced in the previous section. We start this
discussion with symmetry properties of the profile relations.

Property 8.2.1. The complement, intersection, and union opera-
tions yield a behavioural profile B = { ,+, ||} over a set of trans-
itions T ′, such that relation is antisymmetric, whereas rela-
tions + and || are symmetric.

The complement operation defines exclusiveness as the inverse
of interleaving order, and vice versa. Strict order is obtained
only for pairs in reverse strict order. Hence, the complement op-
eration satisfies the property. The intersection operations yields
exclusiveness for a transition pair if one of the profiles used as
operands shows exclusiveness. Also, exclusiveness is derived if
one profile shows strict order or reverse strict order, or vice versa.
Intersection yields interleaving order for a transition pair if both
profiles show interleaving order. Hence, the resulting exclusive-
ness relation and interleaving order relation are symmetric. For
the case of strict order, the intersection yields an antisymmet-
ric relation since it requires strict order in one of the operands,
and either strict order or interleaving order in the other operand.
Since complementation and intersection satisfy the symmetry re-
quirements, the union operation also satisfies the property.

Using the same arguments, we conclude immediately that the
operations yield a behavioural profile for which the profile rela-
tions are mutually exclusive.

Property 8.2.2. The complement, intersection, and union opera-
tions yield a behavioural profile B = { ,+, ||} over a set of trans-
itions T ′, such that the relations , +, and || are mutually exclus-
ive.

This property follows from the non-overlapping requirements
with respect to the operand (complementation) or the two oper-
ands (intersection) when deriving the profile relation for a trans-
ition pair. Again, the property also holds for the union as the
latter is traced back to complementation and intersection.

Further, the set-theoretic operations preserve the partition of
the Cartesian product of transitions by the profile relations.

Property 8.2.3. The complement, intersection, and union opera-
tions yield a behavioural profile B = { ,+, ||} over a set of trans-
itions T ′, such that the relations , −1 , +, and || partition
T ′ × T ′.

8.3 model synthesis for behavioural profiles 229

We already showed mutually exclusiveness of the profile rela-
tions. We verify the partitioning based on the completeness of
the requirements with respect to the operand (complementation)
or the two operands (intersection) when deriving the profile re-
lation for a transition pair. Indeed, every transition pair that is
part of the three profile relations or the reverse strict order rela-
tion is considered by the two operations. Hence, the partitioning
also holds for the operation result. Again, the union operation
preserves the property due to its grounding on complementation
and intersection.

Finally, we consider self-relations.

Property 8.2.4. The complement, intersection, and union opera-
tions yield a behavioural profile B = { ,+, ||} over a set of trans-
itions T ′, such that any transition t ∈ T ′ is either exclusive to
itself, t+ t, or in interleaving order to itself, t||t.

Complementation translates exclusiveness into interleaving or-
der, and vice versa. The intersection operation yields exclusive-
ness for transition pairs that are exclusive in one profile, or inter-
leaving order for pairs that are in interleaving order in both pro-
files used as operands. Hence, the property holds for the com-
plementation and intersection operations and, as a consequence,
for the union operation.

8.3 model synthesis for behavioural profiles

The algebra for behavioural profiles introduced in the previous
section allows for computing with the abstracted behaviour of
net systems. Explorative behavioural analysis may be supported
by visualising the computation results. To this end, this section
introduces a model synthesis for behavioural profiles. Given
a behavioural profile that meets certain assumptions, we show
how to construct a net system that shows this behavioural pro-
file.

We first clarify the assumptions of our technique that have
to be verified prior to model synthesis. Then, we present the
synthesis algorithm and elaborate on its correctness.

Well-Structured Behavioural Profiles

The operations of our algebra are defined locally. They oper-
ate on a pair of transitions independent of any other transition
pair. As a consequence, the operations may yield behavioural
profiles that show anomalies. Dependencies defined by the be-
havioural profile may be contradicting, so that there does not
exit any net system that satisfies all the dependencies. Whether
an according net system exists depends on the applied notion of

230 exploring process model commonalities

a net system and its structural and behavioural characteristics.
Consider, for instance, a cyclic strict order dependency between
three transitions tx, ty, and tz, i. e., tx ty, ty tz, and
tz tx. A sound free-choice WF-system cannot contain three
transitions that show such dependencies. Using the results on
the relation of the structure of sound free-choice WF-system and
their behavioural profile in Section 5.1, these dependencies yield
a contradiction. Once the behavioural profile is lifted to labels of
transitions of a labelled net system, cf., Section 4.3, however, cyc-
lic strict order dependencies are satisfiable. That is, there exists
an according net system.

We focus on behavioural profiles that enable the synthesis
of a sound well-structured free-choice WF-system. Well-struc-
turedness refers to a net topology, in which for every node with
multiple outgoing flows there is a node with multiple incoming
flows and both nodes isolate a single-entry single-exit (SESE)
subnet [233]. Well-structuredness turned out to be a desirable
property of process models. It supports understandability [264]
and enables the application of manifold analysis techniques, for
instance, for the computation of temporal constraints [90]. Since
many process description languages do not enforce well-struc-
tured modelling, techniques for restructuring process models
have been proposed recently [361, 358].

The notion of well-structuredness is closely related to the frag-
ments obtained by triconnected decomposition. In Section 5.2,
we discussed the RPST of a net system that is derived by tricon-
nected decomposition. Using this notion, we characterise well-
structuredness as the absence of any rigid fragment in the RPST.
In the following definition, we assume that the normalisation as
discussed in Section 5.2 has been applied. Hence, the net system
does not contain a node that has more than one incoming flow
and more than one outgoing flow.

Definition 8.3.1 (Well-Structured WF-System)
Let N = (P, T , F) be a normalised WF-net. N is well-structured, iff
the set of canonical fragments of the RPST of N does not contain
any rigid fragment. A WF-system S = (N,M0) is well-structured,
iff N is well-structured.

We illustrate the notion of a well-structured WF-system with
the examples in Figure 63. Systems (a) and (b) are not well-
structured. Both net structures contain SESE fragments that
form a rigid structure. Using restructuring techniques [361, 358],
system (a) cannot be transformed into a well-structured system
that is behaviour equivalent in terms of fully concurrent bisim-
ulation [51]. In contrast, system (b) may be restructured, which
yields system (c). System (c) is well-structured.

Our approach to the synthesis of a well-structured system for
a behavioural profile relies on the formalism and algorithm in-

8.3 model synthesis for behavioural profiles 231

A

D

B

E

C

(a)

A

C

B

D

E

(b)

C D

E

A B

(c)

Figure 63: The WF-systems (a) and (b) are not well-structured. The
WF-system (b) can be restructured, which results in the be-
haviour equivalent system (c).

troduced for restructuring process models in [361, 358, 362]. The
restructuring techniques leverage the order relations induced by
a complete prefix unfolding to guarantee the preservation of a
rather strong notion of behaviour equivalence. We discussed the
notion of a complete prefix unfolding as the basis for one tech-
nique to compute a behavioural profile in Section 5.3. As part
of that, we established the relation between the order relations
of the complete prefix unfolding and those of the behavioural
profile. In the following, we show how the synthesis approach
defined for the relations of the complete prefix unfolding can be
transferred to the relations of the behavioural profile.

To decide whether a sound well-structured free-choice WF-
system may be constructed for a behavioural profile, we need
the notion of an order relations graph. It has been introduced
in [358] for the order relations of a complete prefix unfolding.
We adapt the notion towards the relations of the behavioural
profile.

Definition 8.3.2 (Order Relations Graph)
Let B = { ,+, ||} be a behavioural profile over a finite set of
transitions T . The order relations graph G = (V ,E) of B comprises
all transitions as nodes, V = T , and the strict order and exclusive-
ness relations without self-relations as edges, E = ∪ + \ idT .

Edges in the order relations graph stem from strict order and ex-
clusiveness dependencies. Under the assumption that the strict
order relation is antisymmetric and the exclusiveness relation
is symmetric, both relations are distinguished in the order rela-
tions graph by unidirectional or bidirectional edges. Figure 64

illustrates the order relations graphs for the behavioural profiles

232 exploring process model commonalities

E

D

A

C

B

(a)

E

D

A

C

B

(b)

Figure 64: The order relations graphs for the systems depicted in Fig-
ure 63. The graph (a) captures the relations of system (a),
the graph (b) captures the relations for both systems (b)
and (c) shown in Figure 63.

of the net systems depicted in Figure 63. As system (b) and (c) in
Figure 63 are behaviour equivalent, they also have equal order
relations graphs. That is due to the fact that the notion of equi-
valence assumed for restructuring, fully concurrent bisimulation,
is stronger than behavioural profile equivalence, cf., Section 4.4.

The characteristics of a sound well-structured free-choice WF-
system are related to the structure of its order relations graph.
All canonical fragments of the RPST are of type trivial, polygon,
or bond, see Section 5.2. Those can be characterised in the order
relations graph by subgraphs that have uniform relations with
all remaining nodes of the graph. To detect such subgraphs,
called modules, we leverage modular decomposition [304]. This
technique decomposes a graph into a rooted hierarchy of max-
imal non-overlapping modules. This decomposition is unique.
Based on [358, 362], we formally define the concepts of the mod-
ular decomposition as follows.

Definition 8.3.3 (Modular Decomposition)
Let G = (V ,E) be an order relations graph.
◦ A module M ⊆ V is a non-empty set of nodes that have uni-

form relations with nodes in V \M, i. e., ∀ x,y ∈ M, z ∈
(V \M) it holds that (x, z) ∈ E⇔ (y, z) ∈ E and (z, x) ∈ E⇔
(z,y) ∈ E.
◦ Two modules M1,M2 ⊆ V overlap, iff they intersect and

neither is a subset of the other.
◦ A module M1 ⊆ V is strong, iff there exists no module M2 ⊆
V , such that M1 and M2 overlap.

◦ The modular decomposition tree is a tuple MDTG = (Ω,χ),
such that Ω is a set of all strong modules and χ : Ω→ ℘(Ω)

is a function that assigns child modules to modules, such
that ∀ ω,γ ∈ Ω [(χ(ω)∩ χ(γ) 6= ∅)⇒ ω = γ].

◦ Singletons of V are trivial modules.
◦ A non-trivial module M ⊆ V is complete, iff the subgraph of
G induced by M is complete or edgeless. If the subgraph is
complete, M is xor-complete. If the subgraph is edgeless, M
is and-complete.

8.3 model synthesis for behavioural profiles 233

E

D

A

C

B E

D

A

C

B E

D

A

C

B E

D

A

C

B

Figure 65: The step-wise modular decomposition of an order relations
graph.

◦ A non-trivial module M ⊆ V is linear, iff there exists a linear
order (v1, . . . , v|M|) of elements of M, such that (vi, vj) ∈ E
and (vj, vi) /∈ E for i, j ∈N, 1 6 i, j 6 |M| and i < j.
◦ A non-trivial module M ⊆ V is primitive, iff it is neither

complete nor linear.

We exemplify the modular decomposition in Figure 65. Here,
an order relations graph is step-wise decomposed into a hier-
archy of strong modules. Two sets of nodes {A,B} and {C,D}

are identified as strong modules that have equal relations to all
other nodes in the graph. Then, both groups together form an-
other module, as the former groups have equal relations to the
node E.

The modular decomposition of an order relations graph al-
lows for characterising behavioural profiles for which we may
construct an according sound well-structured free-choice WF-
system. That is, we check for the absence of a primitive module
in the modular decomposition. We implicitly assume that the
relational properties of a behavioural profile, e. g., with respect
to symmetry of certain relations, are satisfied. At the end of
the previous section, we showed that our algebraic operations
preserve these properties.

Definition 8.3.4 (Well-Structured Behavioural Profile)
Let B = { ,+, ||} be a behavioural profile over a finite set of
transitions T . B is well-structured, iff the modular decomposition
tree MDTG of the order relations graph G of B does not contain
any primitive module.

For the aforementioned example of three transitions tx, ty, and
tz with tx ty, ty tz, and tz tx the profile turns out
to be not well-structured. The modular decomposition of the re-
spective order relations graph comprises a primitive module that
covers all three nodes or transitions, respectively. For the three
net systems in Figure 63, we depicted the respective order rela-
tions graphs in Figure 64. The graph in Figure 64a does not rep-
resent a well-structured behavioural profile since the modular
decomposition tree contains a primitive module. For the graph
in Figure 64b, we exemplified the modular decomposition in Fig-
ure 65. As it does not show any primitive module, the graph in

234 exploring process model commonalities

Figure 64b represents a well-structured behavioural profile. We
conclude that system (a) in Figure 63 has a non-well-structured
behavioural profile, whereas the profile of systems (b) and (c),
both show the same profile, is well-structured.

Well-structuredness of a behavioural profile is verified effi-
ciently using results on the operationalisation of a modular de-
composition of a graph.

Proposition 8.3.1. The following problem can be solved in linear time:
For behavioural profile, to decide whether it is well-structured.

Proof. According to Definition 8.3.4, we need to create the mod-
ular decomposition tree of the order relations graph of the beha-
vioural profile. This is done in linear time [304]. The number of
strong modules in the modular decomposition tree is linear to
the size of the graph [304].

Finally, we show that well-structuredness of a behavioural pro-
file is indeed a necessary condition for the existence of a sound
well-structured free-choice WF-system that shows this profile.
We use the notion of a WF-tree of a net system to prove this
result. The WF-tree is an annotated RPST and has been defined
in Definition 5.2.2.

Lemma 8.3.2. The behavioural profile of a sound well-structured free-
choice WF-system is well-structured.

Proof. Let TN = (Ω,χ, t,b) be the WF-tree of a sound free-choice
WF-system S = (N,Mi), N = (P, T , F). Without loss of gener-
ality, we assume N to be pre-processed, so that each transition
x ∈ T is a boundary node of at most two trivial fragments of TN.
Let α,β ∈ Ω be trivial fragments for which the fragment entries
are two distinct transitions x,y ∈ T . Since S is well-structured,
the WF-tree does not contain any rigid fragment. Hence, the
profile relation for x and y is deduced from the type of the low-
est common ancestor (LCA) fragment, γ = lca(α,β), and the
existence of a loop fragment on the path from the root of the
tree to the LCA fragment γ by Theorem 5.2.4. As such, for
any fragment of the WF-tree, there is a module in the respect-
ive modular decomposition tree of the order relations graph of
the behavioural profile. If the trivial fragments α and β are part
of a loop fragment, the corresponding module is and-complete.
If they are not part of the loop fragment, the type of the LCA
fragment, γ = lca(α,β), determines the type of the module. A
polygon yields a linear module, a transition-bordered bond frag-
ment an and-complete module, a place-bordered acyclic bond
fragment an xor-complete module. Hence, MDTG does not con-
tain any primitive module and the behavioural profile is well-
structured.

8.3 model synthesis for behavioural profiles 235

Synthesis Algorithm

Once well-structuredness of a behavioural profile is verified, we
proceed with the model synthesis. The synthesis algorithm iter-
atively constructs a net system from the modules identified by
the modular decomposition. To this end, we largely rely on the
synthesis algorithm presented in [361, 358, 362] for a different
order relations graph.

Algorithm 6: Construction of a sound well-structured free-
choice WF-system from a well-structured behavioural pro-
file.

Input: B = { ,+, ||}, a well-structured behavioural profile over
a finite set of transitions T .

Output: S = (N,M0), a sound well-structured free-choice
WF-system.

// Construct the order relations graph

1 G = (V ,E)←− constructOrderRelGraph(B);

// Perform modular decomposition

2 MDTG = (Ω,χ)←− modDecomp(G);

// Construct acyclic net system

3 foreach ω ∈ Ω following on a postorder traversal using χ do
4 if ω is trivial then Add transition to N;
5 if ω is and-complete then
6 Construct transition-bordered bond in N;
7 end
8 if ω is xor-complete then
9 Construct place-bordered acyclic bond in N;

10 end
11 if ω is linear then
12 Construct trivial or polygon in N;
13 end
14 end

// Normalise to get WF-structure

15 if N is missing initial or final place then
16 Add initial and / or final place to N ;
17 end

// Insert trivial circuit

18 foreach t ∈ T such that t||t do
19 Insert control flow cyclic around t in N;
20 end

21 Set M0 as the initial marking that marks only the initial place
of N;

22 return S = (N,M0);

We outline the steps of the synthesis in Algorithm 6. First,
we construct the order relations graph of the behavioural profile
and perform the modular decomposition (lines 1 to 2). Then,
we iterate over all identified modules to construct the skeleton

236 exploring process model commonalities

of the net system (lines 2 to 14). Trivial modules contain only a
single transition, which is added to the net system. A complete
module leads to the creation of a transition-bordered bond or
a place-bordered acyclic bond that comprises all transitions, or
subnets, respectively, that are encapsulated by the module. A
linear module leads to the creation of a flow or a polygon to
connect the respective transitions or subnets. The construction
of all these subnets and their appropriate nesting is assumed to
respect the bipartite structure of net systems accordingly.

A A

Figure 66: Insertion of a place-bordered cyclic bond for a transition
with interleaving order as self-relation.

If the resulting net structure is transition-bordered, it is norm-
alised to satisfy the structural requirements of WF-nets (lines 15

to 17). For all transitions that have interleaving order as their
self-relation according to the behavioural profile, trivial circuits
are inserted into the created net structure (lines 18 to 20). Those
comprise a place-bordered cyclic bond and polygons. This trans-
formation step is illustrated in Figure 66. Here, the assumption
is that the construction of transition bordered bonds introduces
fresh transitions as boundary nodes. Therefore, all transitions
that are considered in the original behavioural profile have one
incoming and one outgoing flow in the derived net structure.
Finally, the algorithm sets the initial marking and returns the
WF-system.

We prove correctness of the synthesis as follows. We show
that the resulting net system is indeed a sound well-structured
free-choice WF-system. Further, we prove that the behavioural
profile used as input coincides with the behavioural profile of
the created model for the respective transitions.

Proposition 8.3.3. Algorithm 6 terminates and after termination S =

(N,M0) is a sound well-structured free-choice WF-system that shows
the behavioural profile used as input for the shared transitions.

Proof. Termination: The set of transitions of the behavioural pro-
file is finite, so that the order relations graph and the number of
modules identified in the decomposition are finite as well. As
we iterate over all transitions and all modules, the algorithm ter-
minates.
Result: We first consider the correctness of syntax and semantics.
Finally, we consider the correctness of the behavioural profile.
◦ Syntax: The algorithm creates a net system S = (N,M0) by

iterating over all modules following on a postorder traversal

8.3 model synthesis for behavioural profiles 237

of the modular decomposition tree. Hence, for all transitions
and places there is a path from (to) the node that represents
the entry (exit) of the fragment created for the root module.
If those nodes are transitions, the algorithm adds an initial
and a final place. Hence, N shows workflow structure. The
algorithm constructs only trivial, polygon, and bond frag-
ments (the trivial circuit is a bond as well). Further, the
insertion of trivial circuits ensures that the transition in the
post-set of the exit of the cyclic bond has no other places in
its pre-set (if this transition would be the exit of a transition-
bordered bond, the net would be non-free-choice). Hence, N
is also free-choice.
◦ Semantics: The net shows workflow structure, is construc-

ted by nesting trivial, polygon, and bond fragments, and
the initial marking marks the initial place. The bond frag-
ments constructed for modules are acyclic, either place or
transition-bordered. The construction of the trivial circuit
inserts polygons and a cyclic place-bordered bond. Trivial
and polygon fragments cannot cause unsoundness and the
created bonds satisfy the requirements for soundness dis-
cussed in Lemma 5.2.1 and Lemma 5.2.2. Hence, S is sound.
◦ Correctness of the Behavioural Profile: The constructed net

system S = (N,M0), N = (P, T , F), is sound well-structured,
and free-choice. By Lemma 8.3.2, the behavioural profile of
S is well-structured. That this behavioural profile coincides
with the behavioural profile used as input for the algorithm
follows from the types of the constructed fragments. Neg-
lecting the trivial circuits inserted at the end, the algorithm
creates a trivial, polygon, or bond fragment depending on
the type of the module, i. e., depending on the relations ob-
served between the nodes (transitions) of the module in the
order relations graph. For two distinct transitions x,y ∈ T ,
this fragment is the lowest common ancestor (LCA) of the
trivial fragments α,β ∈ Ω for which the fragment entries
are x and y, respectively. Neglecting the trivial circuits, the
type of the LCA fragment determines the profile relation by
Theorem 5.2.4. Insertion of trivial circuits does not impact
on the relation between two distinct transitions, as a circuit
comprises only one transition that is part of the original be-
havioural profile. Still, it leads to interleaving order as the
self-relation by Theorem 5.2.4 for such a transition. As such
a circuit is introduced only for transitions with interleaving
order as the self-relation, the behavioural profile of the con-
structed net system coincides with the behavioural profile
used as input for the algorithm for the shared transitions.

238 exploring process model commonalities

Corollary 8.3.4. The following problem can be solved in linear time:
Given a well-structured behavioural profile, to construct a WF-system
that shows the behavioural profile.

Proof. We assume all relations used in the algorithm to be repres-
ented by their characteristic functions, i. e., to be encoded as bi-
dimensional arrays that map to either zero or one. Then, adding
an entry to a relation and checking membership for a tuple takes
constant time. The order relations graph is built in linear time to
the size of the behavioural profile. The modular decomposition
tree of this graph is obtained in linear time either [304]. Further,
we iterate over the number of strong modules in the modular
decomposition tree, which is linear to the size of the graph [304].
Construction of the respective subnets takes linear time to the
size of the behavioural profile. Normalisation requires the check
for initial and final places, which also takes linear time. Insertion
of the trivial circuits takes linear time to the size of the behavi-
oural profile.

After we studied the relation between behavioural profiles and
the existence of a sound well-structured free-choice WF-system,
we conclude the following.

Theorem 8.3.5. There exists a sound well-structured free-choice WF-
system, if and only if, the behavioural profile is well-structured.

Proof. ⇒ follows from Lemma 8.3.2, ⇐ from Proposition 8.3.3.

8.4 application

In this section, we discuss how the set algebra and the synthesis
for behavioural profiles are applied to address the questions
raised for explorative behavioural analysis in Section 8.1. Let
B1, . . . ,Bn be a set of behavioural profiles of aligned process
models that have been normalised for the aligned activities.

C1: Shared behaviour: Greatest Common Divisor. The shared be-
haviour may be referred to as the Greatest Common Divisor (GCD),
cf., [449]. Given a set of aligned process models, the GCD is char-
acterised by a behavioural profile BGCD over the aligned activ-
ities. It is derived by computing the intersection of all profiles
B1, . . . ,Bn. Hence, the GCD integrates the dependencies shared
by all aligned models. The profile BGCD may be checked for
emptiness. If it is empty, all aligned process models impose con-
tradicting dependencies for the aligned activities. If the profile
BGCD is well-structured, we may synthesise a process model
that represents the GCD. Further, the behavioural commonal-
ity between a process model and the GCD may be quantified
using the degree of behavioural profile consistency defined in

8.4 application 239

Establish
Contact

Create
Quote

Revise
Quote

Get
Approval

Submit
Quote

Clarify Quo.
Hand Over

(a)

Submit
Quote

Clarify Quote
Hand Over

Establish
Contact

Create
Quote

Get Approval

Revise Quote

(b)

Figure 67: Net system (a) represents the GCD for the aligned net sys-
tems of Figure 57, net system (b) represents the respective
LCM. Both systems have been reduced by a fusion of series
places [329]. Further, we took the labels of system (a) in Fig-
ure 57 for the GCD and LCM transitions.

Section 7.2. Then, this degree quantifies how much additional
behaviour the process model allows for, relative to the behaviour
shared with all aligned process models.

Figure 67a illustrates the GCD for the aligned net systems of
our initial example, the lead-to-order process illustrated in Fig-
ure 57. To be able to compute with the behavioural profiles
of the net systems depicted in Figure 57, those have to be nor-
malised according to the transition sets that are part of com-
plex correspondences. Taking a normalisation threshold of one,
for instance, we identify strict order as the dominating relation
between the two transitions ‘Publish Quote’ and ‘Delegate Quote
Handling’, and transition ‘Send Quote’ in system (b) in Figure 57.
For the normalised behavioural profiles, we computed the inter-
section and synthesised a net system. The behavioural profile
of the GCD comprises all behavioural dependencies from sys-
tem (b) in Figure 57, as they are more restrictive than those im-
posed by system (a). The net system depicted in Figure 67a,
slightly reduced using a fusion of series places [329], has been syn-
thesised from the obtained behavioural profile. Hence, it visu-
alises the basic order dependencies of both aligned net systems.
Even though these dependencies all stem from system (b) in Fig-
ure 57, the system in Figure 67a is not identical to the former.
Neglecting the differences related to the normalisation and the
transition labels, we observe that there are differences in the spe-
cified causal dependencies. As an example, the causal depend-
ency between transitions ‘Establish Contact’ and ‘Create Quote’
in the GCD does not hold between the corresponding transitions

240 exploring process model commonalities

in system (b) in Figure 57. This difference is due to the behavi-
oural abstraction induced by behavioural profiles.

C2: Most general behaviour: Least Common Multiple. The most
general behaviour is referred to as the Least Common Multiple
(LCM) of a set of aligned process models, see also [449]. It is
characterised by a behavioural profile BLCM over the aligned
activities that is derived by computing the union of all profiles
B1, . . . ,Bn. The LCM imposes the weakest dependencies found
in the set of aligned models for a pair of activities. Again, the
LCM is visualised by synthesising a process model from BLCM
if the respective requirements are met.

For our example alignment, Figure 67b illustrates the LCM.
We normalised the behavioural profiles of the systems in Fig-
ure 57 as discussed earlier and computed the union of these pro-
files. Then, we synthesised a net system to visualise the LCM.
The concurrent enabling of three transitions is caused by the in-
terleaving order imposed by the LCM. As all of them may occur
multiple times – interleaving order is the self-relation – they are
also part of trivial circuits. The system in Figure 67b, again, has
been reduced by a fusion of series places [329].

C3: Shared forbidden behaviour: Complement of the LCM. To char-
acterise the behaviour that is forbidden by all aligned process
models, a behavioural profile BSFB over the aligned activities is
derived as the complement of the LCM, BSFB = BLCM. How-
ever, this profile does not directly capture all dependencies that
are not implemented in any process model due to the strictness
of behavioural relations discussed in Section 8.2. Conclusions
are drawn solely from the (reverse) strict order and interleaving
order relations of the profile BSFB. If BSFB defines interleaving
order between two activities, all aligned process models show ex-
clusiveness for these activities. Hence, the potentially arbitrary
order implied by the interleaving order dependency is forbidden
in all models. Similar conclusions are drawn for (reverse) strict
order dependencies in BSFB.

We illustrate this concept with the transitions ‘Revise Quote’
and ‘Get Approval’ of our initial example. For both transitions,
the LCM defines interleaving order, which yields exclusiveness
in the complement. As exclusiveness is the strictest relation,
we cannot draw any conclusions on shared forbidden behaviour.
For the transitions ‘Create Quote’ and ‘Get Approval’, the LCM
defines a strict order dependency from the former to the lat-
ter. Therefore, the reverse strict order dependency in the com-
plement is shared forbidden behaviour. The occurrence of the
transition ‘Get Approval’ before the transition ‘Create Quote’ is
not allowed in any of the aligned net systems.

C4: Redundancy of specified behaviour: Inclusion of behavioural pro-
files. Given the behavioural profiles B1 and B2 of two aligned

8.5 experimental evaluation 241

process models, the question whether the behaviour defined by
one model is captured in the other model for the aligned activ-
ities is traced back to the inclusion of their behavioural profiles,
i. e., B1 ⊆ B2. In this case, all dependencies imposed by the
first model would be equal or less strict than the dependencies
imposed by the second model. As a consequence, the behaviour
of the latter model, according to abstraction assumed by behavi-
oural profiles, is covered by the former model. That suggests in-
vestigating whether the two process models are indeed required
to serve the respective modelling purposes. It may be possible
to integrate the behaviour defined by subsumed model into the
subsuming model to reduce the number of process models cap-
turing the same business process.

Investigating the two net systems given in Figure 57, the be-
havioural profile of system (a) includes the profile of system (b)
for the aligned transitions, once normalisation has taken place.
Hence, when aiming at reducing the number of process models
that depict the lead-to-order process, the existence of model (b)
may be challenged.

8.5 experimental evaluation

As an evaluation, we review the models of the SAP reference
model [95]. Even though the models of this collection capture
different functional aspects of an enterprise, they are not ortho-
gonal. There are rather large clusters of models that show a
functional overlap. For pairs of models that overlap, we construc-
ted an alignment and investigated its consistency in Section 7.3.
Based on the obtained results, we argued that behavioural pro-
file consistency is particularly suited for measuring consistency
in this setting.

In this section, we go one step further and report on an explor-
ation the behavioural commonalities of clusters of aligned pro-
cess models. This analysis relies on the set algebra and the syn-
thesis for behavioural profiles. For each cluster, we computed
the most general behaviour, the Least Common Multiple (LCM)
of the aligned process models. In addition, we investigated be-
havioural subsumption relations among the models.

In the remainder of this section, we summarise the experi-
mental setup, present the obtained consistency results, and dis-
cuss the results.

Experimental Setup

For our analysis, we used the subset of models that was also
selected for the experiment on the computation of behavioural
profiles in Section 5.4. This subset contains all models that are

242 exploring process model commonalities

Table 5: Clusters of aligned net systems stemming from the SAP refer-
ence model.

Min Correspondences 4 6 8 10 12 14 16 18 20 22 24 26

Clusters 84 48 33 23 23 21 15 11 9 2 1 0

Avg Size of Clusters 3 3 3 3 3 2.6 2.4 2.3 2.3 2 2 0

Max Size of Clusters 10 9 8 8 7 6 4 4 4 2 2 0

Systems in Clusters 212 124 88 63 56 47 36 25 21 4 2 0

Subsumed Systems 127 73 55 41 35 28 20 14 12 2 1 0

non-trivial, free of syntax errors and instantiation issues, norm-
alised with respect to their entries and exists, and free of behavi-
oural anomalies. The subset comprises 493models that we trans-
formed into sound free-choice WF-systems. Our transformation
ensures that each EPC function and EPC event is represented by
a single transition.

As for the experiment on the quantification of consistency,
we constructed alignments for groups of net systems with ele-
mentary correspondences between transitions representing EPC
nodes with equal labels. We proceeded step-wise by increasing a
threshold for the number of correspondences that minimally has
to hold between all pairs of net systems in a group of models, re-
ferred to as a cluster. For all systems that are part of at least one
cluster, we computed behavioural profiles using the techniques
introduced in Section 5.1 and Section 5.2. Using the behavioural
profiles, we then computed the LCM for each cluster.

Experimental Results

Table 5 gives on overview of the observed clusters of aligned
net systems that stem from the SAP reference model. Given a
threshold for the required number of elementary correspond-
ences (# Min Correspondences), Table 5 depicts the number of
clusters, their average and maximal size, and the number of net
systems that are part of the clusters. For instance, requiring
the net systems of a cluster to be aligned by at least 12 corres-
pondences leads to 23 clusters, which comprise 56 distinct net
systems. The average size of these clusters is three net systems,
the maximum size is seven systems.

To explore the commonalities for all identified model clusters,
we derived the LCM from the behavioural profiles of the respect-
ive net systems. A manual inspection revealed that the LCM was
often equal to the profile of at least one system in the cluster.
Based on this observation, we checked for all clusters whether

8.5 experimental evaluation 243

the behavioural profile of one net system includes the profiles
of all other systems for the aligned transitions. This was the
case for all but two clusters. The significance of this observation
is also indicated by the absolute number of concerned net sys-
tems. The last row of Table 5 presents the absolute number of
net systems for which the behavioural profile is subsumed by
the profile of another net system in the same cluster.

Discussion of the Results

The structural clustering of process models in the SAP reference
model reveals that a large number of models show a functional
overlap. As discussed in Section 7.3, we have no information on
the reasons for this observation. Also, we do not know whether
the overlapping process models represent different perspectives
of a common business process or different variations of the pro-
cess. For an evaluation of behaviour consistency of correspond-
ences between equally labelled EPC nodes, however, this ques-
tion is of minor importance.

In any case, the presented approach helps to investigate be-
havioural commonalities. For the given model collection, the
computation of the LCM for each model cluster revealed various
behavioural subsumption relations between models, once the be-
haviour is abstracted by behavioural profiles. For illustration
purposes, Figure 68 depicts excerpts of two EPC models. Both
models are aligned by 16 elementary correspondences between
EPC nodes with equal labels, some of them are highlighted in
the excerpts. For the nodes that are part of correspondences,
both process models impose different behavioural dependencies.
Still, the behaviour of the model in Figure 68a includes the beha-
viour of the model in Figure 68b in terms of the profile relations
for pairs of corresponding EPC nodes. The question whether
both process models are still required to capture the respective
operations cannot be answered for the general case. Still, the de-
tection of subsumption relations points to process models that
may be integrated. Then, the number of related models that cap-
ture the same business process may be reduced. This ultimately
lowers the effort needed to construct alignments between mod-
els in this collection and to evaluate their behaviour consistency.
Also, our model collection is a reference model. Avoidance of
redundancy in the specified behaviour can be seen as a quality
criterion for the model collection.

244 exploring process model commonalities

Asset master
record is

incomplete

V

XOR

Creation of
group asset

Creation of
master record for

tangible assets

Fixed asset
created

XOR

Retirements to
be entered

Depreciation
should

be posted
regularly

Post�
capitalisation to

be posted

Depreciation
terms should
be changed

Cost center
plan was
changed

Several asset
master records

should be
changed

V

(a)

Creation of
leased asset

master record

Asset master
record is

incomplete

V

XOR

Leased asset
is created

Retirements to
be entered

Depreciation
should

be posted
regularly

Post�
capitalisation to

be posted

Several asset
master records

should be
changed

V

V XOR

Depreciation
terms should
be changed

Cost center
plan was
changed

(b)

Figure 68: Excerpts of two process models in the SAP reference model.

8.6 related work

We motivated the definition of algebraic concepts based on be-
havioural profiles with the need to explore commonalities and
differences. In Section 8.1, we discussed related work on algeb-
raic concepts based on behaviour equivalences. Here, work on
behaviour inheritance [138, 451, 33, 412] may be seen as a no-
tion of inclusion of behaviour. View integration [366, 343, 314]
and process model merging [330, 180, 258, 259] provide solutions
to the union of behaviour. As for a comprehensive algebra for
process models, existing work is restricted to the syntax of net
systems [343]. Hence, despite the aforementioned results, there
is no overarching behavioural algebra.

8.6 related work 245

Our general idea of defining a set algebra for computing with
behaviour is inspired by algebraic concepts for operating guide-
lines [228]. Operating guidelines are a formal concept for the
description of interaction behaviour. Even though this work also
defines set-theoretic relations and operations for a behavioural
model, the focus is on automata that describe interaction proto-
cols. Further, the goal of this algebra is to reason on whether two
services may interact successfully. In contrast, we aim at the ex-
plorative analysis of behavioural commonalities and differences
of process models.

Our work also relates to techniques for diagnosing process
model differences. Such diagnosis is an integral part of process
model change management. We reviewed the according related
concepts in Section 7.5.

In the remainder of this section, we review techniques for
modelling process variability. Finally, we discuss work on pro-
cess mining, which is close to the presented model synthesis
from a behavioural profile.

Modelling Process Variability

Process models that capture the same business process, but have
been created for different purposes are closely related to process
variants. Although there is a fundamental difference between
the two settings – either we refer to the same original or to dif-
ferent originals – the distinction is often blurred in practise. Ac-
tually, the relations between the respective process models are
very similar in both cases. The same holds true for the tech-
niques to detect, quantify, or manage process model differences.

Variability of business processes may be addressed at design
time or at run time. The former controls variability by expli-
citly considering it in the course of process modelling. The latter
refers to flexible and adaptable process automation. There is a
large body of work on flexible and adaptable process automa-
tion [375, 400, 454, 376, 383, 488, 287, 97]. An overview can be
found in [489]. The concepts introduced in this chapter are not
concerned with the automation of business processes. Hence, we
limit the discussion to concepts for modelling variability during
design time.

Approaches to modelling process variability are inspired by
work on modelling variability in Software Engineering [28]. In
particular, mechanisms from Software Product Line Engineering
(SPLE) [356, 35, 185] have been adapted. Most approaches for
modelling process variability incorporate the notion of a con-
figurable reference model. This model is configured by means
of well-defined operations to obtain a model for a process vari-
ant. As for these operations, process variants may be derived

246 exploring process model commonalities

from reference models through model projection [41, 379] or
explicit configuration mechanisms. Such mechanisms that ex-
tend process description languages with configuration capabil-
ities have been presented for EPCs [392, 389, 379], YAWL [181],
BPEL [181], UML activity diagrams [96, 407, 371], BPMN [407],
WF-systems [461], and well-structured process models within
the Provop framework [191, 193].

Configuration mechanisms allow for marking activities to be
excluded or to be skipped under certain conditions that are de-
termined at run time [392, 389]. Control flow routing elements
may be also be subject to configuration to restrict the possible
behaviour towards the process variant [392, 389]. Also, config-
uration of a reference model has been tackled based on block-
ing and hiding of activities as known from behaviour inherit-
ance [461, 181]. Inspired by the stereotyping functionality of
object oriented modelling languages, stereotypes that mark vari-
ation points have been proposed for BPMN process models and
UML activity diagrams [407, 371]. Then, configuration is groun-
ded on these variation points, e. g., optional activities or altern-
ative activities, or activities that extend the functionality of the
default activity may be plugged into a variation point. In ad-
dition, branching conditions can be parameterised as part of the
configuration [407]. Similarly, complete subgraphs of UML activ-
ity diagrams may be annotated according to their presence in a
certain process variant [96]. Configuration of reference models
within Provop [191, 193] is done differently. Provop relies on a
catalogue of change operations that may be applied to a refer-
ence model, see [488] for an overview of these patterns.

Since explicit configuration mechanisms increase the complex-
ity of a process model, several approaches also provide sup-
port for the configuration of a reference model. For instance,
configuration may be guided by questionnaires that, once com-
pleted, induce a set of configuration operations [389]. Other
work guides model configuration by product or service hier-
archies [379]. Feature diagrams [408] known from SPLE have
also been used as a means to control process model configura-
tion [407]. Further, many of the aforementioned approaches al-
low for modelling dependencies between configuration options.
For instance, configurations operations may be causally related
or mutually exclusive.

Similar to the properties that are preserved when generating a
member of a product line through refinement, cf., [36], most pro-
cess model configurations also define structural and behavioural
properties that are preserved. Here, the soundness property has
been in the centre of interest. Approaches that guarantee sound-
ness of the process variant obtained through configuration have

8.6 related work 247

been proposed for WF-systems [461], configurable EPCs [464],
and within the Provop framework [192].

Many of the discussed approaches incorporate algorithms to
construct a reference model from a given set of models repres-
enting process variants. Besides the aforementioned work on
process model merging [330, 180, 258, 259], the MinAdept pro-
ject deserve further discussion [272, 273, 275]. Taking the same
notion of well-structured process models as the Provop frame-
work, a configurable reference model is mined from a set of pro-
cess variants. This approach is based on order matrices. In Sec-
tion 4.5, we discussed that the behavioural profile can be seen
as a generalisation of such an order matrix. Order matrices of
process variants can be combined into an aggregated matrix that
associates weights to the entries of the behavioural relations. Us-
ing these concepts, two approaches may be used to come to a ref-
erence model. First, an existing process model is used as a start
and heuristic search algorithms are used to find adaptations of
its order matrix so that soundness and well-structuredness are
preserved and a change edit distance to all variants is minim-
ised [273]. An alternative approach computes an aggregated or-
der matrix from all matrices of process variants [272, 275]. Then,
activities are step-wise clustered and the matrix is adjusted ac-
cordingly until a complete model is synthesised. As such, this
approach works similar as computing a union of behavioural
profiles and then applying the presented model synthesis. In
contrast to our union operation for behavioural profiles that is
grounded on a notion of strictness of behavioural relations, the
aggregation of order matrix assigns weights to the different ob-
served relations. Further, we provide a characterisation of the
existence of a process model based on the behavioural relations.
Despite these differences, the stepwise clustering within the or-
der matrix performs a modular decomposition that is also lever-
aged in our approach.

In conclusion, work on process model variability offers means
to control the creation of process models representing different
variations of a business process. These techniques may in prin-
ciple be used to control the creation of process models that cap-
ture the same business process for different purposes. As dis-
cussed for process model views in Section 6.4, however, it is
at least questionable whether the variety of process modelling
drivers can be accommodated by such a controlled approach.
Therefore, our work takes a different approach by offering the
freedom to create process models independently at the expense
of investigating their consistency a posteriori. Instead of identi-
fying and explicitly representing the deviations between related
process models, we compute their commonalities and differences
once an alignment is established with the proposed set algebra.

248 exploring process model commonalities

Hence, we do not assume that deviations between two process
models can be traced back to variability mechanisms of a com-
mon root process model. Our algebraic operations are applic-
able in the general case. However, we compute with abstracted
behaviour whereas a configurable reference model is commonly
assumed to subsume all traces of all possible process variants.

Process Mining

The developed method for the construction of a net system from
a behavioural profile extends the family of process model syn-
thesis techniques. Process mining aims at the construction of
a process model from event logs, i. e., observed execution se-
quences [457, 460, 446]. Process mining received much attention
in the last decade. A large number of process mining techniques
and concepts supporting Business Intelligence have been presen-
ted, see [446] for an overview of the field.

Several process mining algorithms take a relational approach,
e. g., those proposed in [11, 99, 510, 457, 459, 511, 106]. That is,
the construction of a process models builds upon behavioural
relations that are derived from event logs. These relations are
close to those of the behavioural profile. Since we have discussed
the commonalities and differences of these relations in detail in
Section 4.5, we focus on the operationalisation of the synthesis
at this stage.

The relations of the α-algorithm rely on direct successership
of transition occurrences [457, 446]. This local perspective en-
ables the detection of certain control flow patterns. For instance,
a conflict between two transitions B and C following another
transition A is typically manifested in the relations of the α-
algorithm in terms of causality, A → B and A → C, and the
absence of any direct successership for transitions B and C, B#C.
Given such a combination of local dependencies between the
transitions, the α-algorithm constructs the place and the flows
implementing the conflict. Extensions of the α-algorithm, the
α+-algorithm [104, 105] and the α++-algorithm [512], are based
on the same basic principle. In addition, these algorithms ap-
ply preprocessing of event logs and post-processing of the cre-
ated model, or refine and extend the set of behavioural rela-
tions. More advanced mining algorithms, such as the heuristics
miner [510, 511] or the fuzzy miner [189], also follow this idea.
To cope with log incompleteness and noise, these approaches
take frequencies of the observed relations into account and apply
abstraction and aggregation heuristics to the observed events.

The synthesis presented for behavioural profiles works differ-
ently. Instead of identifying local dependencies that translate
directly into the net structure, we seek for groups of transitions

8.6 related work 249

that translate into well-structured subnets. Hence, conceptually,
our approach is similar to work on region-based approaches to
model synthesis. Once a state space has been constructed from
observed execution sequences, regions of states that are encap-
sulated in terms of entering, exiting, and contained transitions
are identified [141, 92, 83]. Then, a net system is constructed
based on these regions. The work reported in [466, 471] adapts
these ideas for process mining. The construction of a state space
from an event log may involve abstractions to achieve general-
isation [466]. Also, an iterative construction of a state space for
a large event log has been proposed [471]. Further, regions may
also be identified for the language induced by the observed ex-
ecution sequences. Then, an initial net system comprising all
transitions, but no places, is step-wise extended with places to
restrict the behaviour such that the system still allows for the ob-
served behaviour [45]. Following this idea, advanced methods
for the selection of such places have been presented in [469].

The presented operationalisation of model synthesis is motiv-
ated by the ability to decide on the existence of a sound net sys-
tem, which shows the respective behavioural profile, based on
the profile relations. The characterisation of the existence of a net
system can be decided efficiently. On the downside, this charac-
terisation is restricted to a dedicated class of net systems, sound
well-structured free-choice WF-systems. Arguably, soundness is
a desired property for net systems representing business pro-
cesses. Enforcing well-structuredness and free-choiceness, in
turn, have to be seen as limitations of the presented synthesis.
To overcome these restrictions, one may rely on the α-algorithm.
Following on the discussion presented in Section 4.5, the rela-
tions of the α-algorithm may be derived from the relations of
the behavioural profile. Since the behavioural profile is a beha-
vioural abstraction, derivation of the α-algorithm involves vari-
ous design decisions. As an example, consider three transitions
{A,B,C} that are in strict order, A B, A C, B C. The
strict order relation may directly be used as the causality rela-
tion of the α-algorithm. This yields a net system in which each
transition in the sequence may be bypassed by firing a silent
transition. However, we may also apply a transitive reduction
first. Then, only the relation obtained by transitive reduction is
used as the causality relation of the α-algorithm. In this case,
we would end up with a net system, in which an occurrence
of transition A cannot be followed directly by an occurrence of
transition C.

Although it would be possible to rely on the α-algorithm, we
are not aware of any characterisation of the existence of a net
system based on the relations of the α-algorithm, or one of its
extensions. This is problematic in our setting. We want to en-

250 exploring process model commonalities

sure that the net system synthesised from a behavioural pro-
file indeed shows this profile. If it cannot be decided a priori
whether there exists a respective net system, synthesis first has
to be conducted before the behavioural properties are verified.
Then, one may chose one of the options to derive the relations of
the α-algorithm from the behavioural profile and check the syn-
thesised model for soundness and adherence to the behavioural
profile used as input. Constructing a net system first (may be
multiple times) and then examining the profile of the construc-
ted system, apparently, increases the required computational ef-
fort for the synthesis.

In the line of such a trial and error approach, one may rely on
the principles of genetic mining [459, 106]. A set of candidate
net systems may evolve by crossover and mutation operations.
These operations are performed on the systems that show the
best approximation of the behavioural profile for which a model
should be synthesised. To quantify the closeness of two behavi-
oural profiles, one may rely on the consistency measures defined
in Section 7.2. In this way, a system that is close to the profile
used as input may be derived.

8.7 conclusion

Consistency notions and measures are at the core of any ana-
lysis of behaviour consistency of an alignment between process
models. Still, the analysis may be supported by means to ex-
plore behavioural commonalities and differences. This allows us
to interpret the results and ensures traceability of the obtained
consistency values. In this chapter, we illustrated this need by
a set of exemplary analysis questions. Then, we introduced a
set algebra based on behavioural profiles. It allows us to com-
pute with abstracted behaviour using set theoretic relations and
operations. As an auxiliary concept, we introduced a model
synthesis from a behavioural profile. We provided a character-
isation of the existence of a sound well-structured free-choice
WF-system based on the behavioural profile and introduced a
synthesis algorithm. Further, we showed how the set algebra
and the model synthesis are utilised to answer the analysis ques-
tions. Finally, we reported on findings of applying our algebraic
operations for an industry model collection.

The presented concepts enable multifaceted behavioural ana-
lysis. We restricted the discussion to a few exemplary analysis
questions. Having defined a comprehensive set algebra for the
abstracted behaviour of net systems, however, we are able to an-
swer all analysis questions that can be traced back to essential
algebraic concepts.

9
A N A LY S I N G L O G C O N F O R M A N C E

This chapter is based on results published in [503, 507].

A B

C

D A1 A2

E

D

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E →

→

A2
→

+
→

→ →→
→ +

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

A D

A
D

A D
+

+
→

→

Process Log Process Log

Quantify
Conformance

Quantify
Conformance

In the previous chapters, we concentrated on behaviour con-
sistency of process models. Conclusions drawn on the model

level raise the question of how well the models actually repres-
ent the abstracted original. If the original, the business process,
actually exists, this question may be approached on the basis of
observed execution sequences. Then, consistency between the
behaviour as defined by the model and as observed in reality
can be evaluated. However, the observed behaviour should not
be taken as the original. Actually, it also provides an abstracted
view on business operations in the sense of a mapping and a
reduction of the business process. There may be even different
sources of observed behaviour for a common business process,
which yield different models of observed behaviour.

In this chapter, we evaluate the consistency of observed be-
haviour with respect to a process model. This evaluation is
known as conformance analysis of process logs. A log can be

251

252 analysing log conformance

seen as a model of observed behaviour. Hence, we leverage the
same formalism used for evaluating consistency between pro-
cess models. This insures a uniform consistency evaluation for
all behavioural models of a common business process.

This chapter is structured as follows. In Section 9.1, we give
background details on analysing conformance of observed beha-
viour. Then, we define behavioural profiles for process logs in
Section 9.2. Using behavioural profiles of process models and
logs, we propose conformance measures in Section 9.3. These
measures allow for quantification of conformance. In practise,
feedback on non-conformance is crucial to be able to interpret
the obtained conformance values. We address this need in Sec-
tion 9.4. We provide means for root cause analysis for single
observed execution sequences, and on the level of a complete
log. All proposed concepts are applied in a case study using
real-world log data in Section 9.5. Finally, we review related
work in Section 9.6 and conclude in Section 9.7.

9.1 conformance analysis

Conformance analysis received considerable attention in recent
years. Various drivers, among them the increasing importance of
compliance management, led organisations seek for a better con-
trol of their processes. To this end, detection of non-conforming
processing is an essential step. Conformance analysis assumes
the existence of a process model that captures the expected be-
haviour. Further, information on the actual processing must be
available in the form of a process log (or log). A log comprises
cases that represent the observed behaviour in terms of execution
sequences of activities of the respective process model. Extract-
ing events from an IT-system and relating them to activities of
a process model may be a cumbersome task. Depending on the
logging facility, events may have to be filtered and aggregated, or
generated based on state changes on the database level, see [413].

In this section, we first discuss different dimensions of con-
formance analysis and introduce an example process model and
log. Then, we review conformance measurement based on log re-
play, before we turn the focus on the application of behavioural
relations for conformance assessment.

Analysis Dimensions

Once a process model and a process log is available, their rela-
tion is evaluated along a set of dimensions [396, 492]. Fitness,
also referred to as recall, measures to what degree the behaviour
of a single case (or a complete process log) is captured in a pro-
cess model. Other dimensions focus on the appropriateness of

9.1 conformance analysis 253

a process model with respect to a process log. In this case, the
degree to which the process model is restricted to the observed
behaviour (precision) or allows for additional behaviour (general-
ity) is quantified [466].

We focus on the fitness dimension. Fitness measures provide
feedback on cases that do not conform to the process model
and quantify any behavioural deviation. Precision and gener-
ality, in turn, aim at quantifying the quality of a process model
with respect to the observed behaviour. Hence, these metrics are
mainly used to judge on the quality of process models that are
discovered by mining algorithms [395].

I A

B

J

O

C D

E F

H

G

Figure 69: Example net system for conformance analysis.

We illustrate conformance measurement, in the sense of fit-
ness measurement, using the example process model depicted
in Figure 69. In a perfect setting, the cases of a log comply with
the behaviour defined by the process model. Then, the cases
are valid execution sequences, aka traces. In practise, however,
observed execution sequences often deviate from the predefined
behaviour. This may be a problem of the model when it does
not meet validity and completeness requirements [278]. When
the process model has a normative character, deviations may be
caused by information systems that record a log but do not expli-
citly enforce the execution order of activities. It is also possible
that people deliberately work around the system [460]. This may
result in cases for the process model in Figure 69, such as the fol-
lowing.
◦ Case c1 = 〈I,A,E,C,D, F,G,O〉
◦ Case c2 = 〈I,A,C,B,G, F,O〉
◦ Case c3 = 〈I,A,B, J,H,B,O,G〉
◦ Case c4 = 〈I,C,E〉
◦ Case c5 = 〈F,C,D,G〉

From these five cases, only the first one is also a valid execution
sequence of the net system. Still, the other cases capture a certain
share of the behaviour defined in the system. Such cases make
it necessary to measure conformance a posteriori.

254 analysing log conformance

Conformance based on Replay

Existing conformance measures mainly rely on state-based tech-
niques that involve replaying the cases of a process log, i. e.,
the single observed execution sequences [183, 511, 395, 107, 176].
Then, conformance may be computed as the share of cases of a
process log that can be replayed in the process model [183, 511].
More fine-granular measures try to replay a case step-wise in the
process model and quantify the number of execution steps that
are in line with the process model semantics [395, 107, 176].

The basic idea behind the classical fitness measure [107] can
be summarised in Petri net terms as follows. We count trans-
itions that are enabled in the model when they appear in the
case and relate them to the overall number of transitions. If a
transition is not enabled but occurs in the case, it is forced to
fire, which produces a token on each of its output places. Then,
we quantify conformance of a case against the process model as
a ratio of enabled transitions to the total number of transitions.
For the system in Figure 69, case c1 can be replayed and, there-
fore, has a conformance value of one. Instead, case c2 can be
replayed until transition B appears in the case. It is then fired
without being enabled, which also holds for transitions G and F.
Therefore, four firings are conforming out of seven firings alto-
gether, yielding a fitness value of 0.57. This approach leads to
conformance values of 0.63 for case c3, 0.33 for case c4, and 0.5
for case c5.

Quantifying conformance based on log replay has to cope with
certain challenges. If a transition is not enabled in a certain mark-
ing, it has to be checked whether it may be enabled by a firing a
sequence of silent transitions. This increases the needed compu-
tational effort, as a certain share of the state space of the system
has to be explored [395]. In addition, silent transitions may lead
to conformance values below one for valid execution sequences,
which has to be addressed separately [6].

Conformance based on Behavioural Relations

As for consistency assessment between two process models, re-
lational semantics may be used to judge conformance of a log.
Again, different sets of behavioural relations may be selected for
this kind of analysis. We address conformance analysis of pro-
cess logs as part of a uniform framework for consistency evalu-
ation. Conceptually, this framework treats all behavioural mod-
els, may they be process models or process logs, in the same way.
By leveraging the same formal grounding, behavioural profiles,
the results are comparable to a large extent, as biases caused by
varying expressiveness of the formalism are avoided.

9.2 behavioural profiles for cases 255

Conformance measurement using behavioural profiles works
as follows. For all pairs of activities, we evaluate to which ex-
tent the order dependencies of the behavioural profile and the
co-occurrence relation of the causal behavioural profile are re-
spected in a certain case. The ratio of relations obtained for
the process model that coincide with (or subsume, as we will
discuss later) the relations obtained for a case to all relations is
used to quantify conformance. Based on the conformance val-
ues obtained for single cases, conclusions on the conformance
of a log can be drawn. This approach works efficiently. Be-
havioural profiles are computed efficiently for a broad class of
process models. Even if a process model does not satisfy the cri-
teria for efficient computation of behavioural profiles, the effort
for the profile computation has to be invested only once. Hence,
this effort is independent of the number of cases for which con-
formance should be assessed, since the behavioural relations for
a single case are derived directly. This is a major difference com-
pared to the replay based conformance assessment. Replay of a
single case may require exploration of a part of the system’s state
space.

Recently, the idea of conformance measurement based on be-
havioural relations was also picked up for the footprint that com-
prises the relations of the α-algorithm [446]. This approach ex-
ploits direct successorship of transitions and compares the foot-
print of a process model and a process log. Grounding in a
complete process log, not single cases, is required as the foot-
print materialises only when the log meets certain completeness
assumptions. As such, this approach illustrates that many of the
concepts introduced in this chapter, e. g., those on root cause ana-
lysis, may also be transferred to conformance evaluation based
on a different relational semantics.

9.2 behavioural profiles for cases

This section introduces behavioural profiles for cases of a log.
First, we formally discuss the notion of a case. In the context of
net systems, a case is a non-empty observed sequence of trans-
ition occurrences. However, a case is not necessarily a valid fir-
ing sequences starting in the initial marking of the respective net
system. A log comprises many of such cases.

Definition 9.2.1 (Case, Log)
Let T be a finite set of transitions. A case c over T is a finite
sequence c = 〈t1, . . . , tn〉, n ∈N, with tj ∈ T for all 1 6 j 6 n. A
log over T is a finite set of cases C = {c1, . . . , cm}, m ∈N, over T .

256 analysing log conformance

To define causal behavioural profiles for cases, we first have to
clarify the notion of weak order for a case. Two transitions are
in weak order in a case, if the first occurs before the second.

Definition 9.2.2 (Weak Order (Case))
Let c = 〈t1, . . . , tn〉 be a case over T . A pair of transitions (x,y) ∈
(T × T) is in the weak order relation �c, iff there exists two indices
j, k ∈N, 1 6 j < k 6 n, for which holds tj = x and tk = y.

Using this relation, we define the behavioural profile of a case.

Definition 9.2.3 (Behavioural Profile (Case))
Let c = 〈t1, . . . , tn〉 be a case over T . A pair (x,y) ∈ (T × T) is in
the following profile relations:
◦ The strict order relation c, iff x �c y and y 6�c x.
◦ The exclusiveness relation +c, iff x 6�c y and y 6�c x.
◦ The interleaving order relation ||c, iff x �c y and y �c x.

Bc = { c,+c, ||c} is the behavioural profile of c.

As for the behavioural profile of a net system, a pair (x,y) is in
reverse strict order, denoted by x −1

c y, if and only if y c x.
We see that the properties discussed for a behavioural profile of
a net system, cf., Section 4.1, hold also for the behavioural pro-
file of a case. That is, the relations are mutually exclusive and,
along with reverse strict order partition the Cartesian product
of transitions of a case. In contrast to the profile of a net sys-
tem, exclusiveness between two transitions can be observed in
a case solely as a self-relation. For all pairs of transitions (x,y)
for which we observe x+ y in a case, it holds x = y. For illustra-
tion purposes, consider the example case c2 = 〈I,A,C,B,G, F,O〉.
Here, it holds, e. g., C c2 F, B

−1
c2
A, and A+c2 A.

As the last step, we define the causal behavioural profile of a
case. All transitions of a case are co-occurring.

Definition 9.2.4 (Causal Behavioural Profile (Case))
Let c = 〈t1, . . . , tn〉 be a case over T and Bc = { c,+c, ||c} the
behavioural profile of c.
◦ The co-occurrence relation �c= (T × T) contains all pairs of

transitions of the case.
◦ The set B+

c = Bc ∪ {�c} is the causal behavioural profile of c.

9.3 conformance measures

This section introduces conformance measures based on behavi-
oural profiles. First, we elaborate on the relation between the
behavioural profile of a net system and the behavioural profile
of a case. Second, we introduce measures for different conform-
ance aspects. Third, we aggregate these measures to arrive at
a single conformance value for a case. Finally, we discuss the
influence of common noise types on our measures.

9.3 conformance measures 257

Type Subsumption of Profile Relations

There is a fundamental difference between a behavioural profile
of a net system and of a case. The former defines relations based
on the set of all possible firing sequences, whereas the latter con-
siders only one observed sequence of transition occurrences. The
relation between two transitions in a net system may be caused
by different firing sequences. Hence, a different behavioural re-
lation may be observed once only a single case is considered.
For instance, transitions that may be enabled concurrently in a
net system, C and F in our example in Figure 69, are related by
interleaving order in the behavioural profile of the model, C||F.
However, they may be related by strict order or reverse strict or-
der in the profile of a case, even if the case represents a valid
firing sequence. In our example case c2 = 〈I,A,C,B,G, F,O〉,
we observe C c2 F as the behavioural relation for activities C
and F.

To cope with this issue, we leverage the hierarchy between the
relations of behavioural profiles (we neglect the co-occurrence re-
lation at this stage) as discussed in Section 8.2. For the purpose
of conformance analysis, we formalise this hierarchy between
behavioural relations by a notion of type subsumption. Two be-
havioural relations are in this relation, if and only if the first
relation is equal or weaker than the second. The following defin-
ition uses the notion of type equivalence of profile relations as
introduced in Definition 6.2.2.

Definition 9.3.1 (Type Subsumption of Profile Relations)
Let B1 = { 1,+1, ||1} and B2 = { 2,+2, ||2} be two behavioural
profiles. A relation R1 ∈ B1 ∪ { −1

1 } subsumes the type of a rela-
tion R2 ∈ B2 ∪ { −1

2 }, denoted by R1 w R2, iff either R1 ' R2,
R1 ∈ { 1, −1

1 } ∧ R2 = +2, or R1 = ||1.

We illustrate this concept using the net system in Figure 69 and
case c2 = 〈I,A,C,B,G, F,O〉. For transitions C and F, it holds
C||F in the profile of the net system and C c2 F in the profile
of the case. The former specifies that C and F may occur in any
order in a firing sequence, owing to the interleaving semantics
of transitions that are enabled concurrently. The latter captures
that the occurrences of C and F in the case are ordered. We
see that both relations are in the type subsumption relation, || w
 c2 . Hence, we conclude on conformance regarding the profile
relations for this particular pair of transitions.

Measures for Conformance Aspects

Our approach to conformance measurement separates two as-
pects. We assess whether the order of occurrence of transitions

258 analysing log conformance

in a case is valid based on the relations of the behavioural pro-
file. The question of which transitions should occur in a case is
addressed using the co-occurrence relation of the causal behavi-
oural profile.

The measures that we will introduce for conformance meas-
urement resemble those introduced in Section 7.2 for the quanti-
fication of consistency of an alignment between process models.
Yet, they are different. First and foremost, they are based on
the notion of type subsumption of profile relations instead of
type equivalence. This is allows us to cope with the conceptual
differences of behavioural profiles of process models and those
of logs. Further, we separately measure the conformance based
on the non-causal behavioural profile and on the co-occurrence
relation, since both measures are normalised differently.

Behavioural profile conformance. The order of occurrences of
transitions in a case should be in line with the behavioural re-
lations of the respective net system. We analyse the Cartesian
product of transitions in a case and determine whether the be-
havioural relation for a transition pair in the case is subsumed
by the relation specified in the net system. This takes distinct
transitions that are meant to be mutually exclusive into account.
Those transitions are related by the exclusiveness relation of the
behavioural profile of the net system. Once these transitions
occur in a case, they are related by (reverse) strict order or inter-
leaving order. Hence, the mutual occurrence defined by the net
system is counted as being violated.

We define two degrees of behavioural profile conformance
that differ in their normalisation. First, model-relative behavioural
profile conformance is defined as the ratio of consistent behavi-
oural relations relative to the number of transition pairings in
the case. This degree considers all transition pairs that occur in
the case. Hence, it directly depends on the number of transitions
of the net system that have occurred already. Second, we neglect
transition pairs that show interleaving order in the net system.
Following on the argumentation on a hierarchy of profile rela-
tions, cf., Section 8.2, interleaving order can be interpreted as
the absence of any order dependency. Interleaving order defined
by the net system for two transitions cannot be violated by any
case. We define constraint-relative behavioural profile conform-
ance that is independent of the number of transitions in the case,
but depends on the number of exclusiveness and strict order de-
pendencies imposed by the net system.

Definition 9.3.2 (Behavioural Profile Conformance)
Let S = (N,M0) be a net system with N = (P, T , F) and c =

〈t1, . . . , tn〉 a case over Tc with Tc ⊆ T . Let B = { ,+, ||} and
Bc = { c,+c, ||c} be the behavioural profiles of S and c.

9.3 conformance measures 259

◦ The set of profile consistent case pairs PCc ⊆ (Tc × Tc) contains
all transition pairs (x,y), for which the profile relation in P
subsumes the type of the relation in c, i. e., ∀ R ∈ (B∪ { −1

}),R′ ∈ (Bc ∪ { −1
c }) it holds (xRy∧ xR′y)⇒ (R w R′).

◦ The degree of model-relative behavioural profile conformance of
c to S is defined as

MBCc =
|PCc|

|Tc|2
.

◦ The degree of constraint-relative behavioural profile conformance
of c to S is defined as

CBCc =

1 if ||c = (Tc × Tc),
|PCc \ ||c|

|(Tc×Tc) \ ||c|
else.

Both conformance degrees are between zero, no conformance at
all, and one indicating full conformance. Computation of both
degrees requires iteration over the Cartesian product of trans-
itions in the case. Hence, the computation does not add to the
complexity needed to compute behavioural profiles for net sys-
tems. Given case c2 = 〈I,A,C,B,G, F,O〉 and the example in
Figure 69, an order dependency imposed by the model is not
satisfied. It holds F G according to the behavioural profile
of the net system, whereas we have F −1

c2
G in the profile of

the case. In addition, the given case violates mutual occurrence
of several transitions. The net system defines B+C, B+ F, and
B+G, whereas we have B −1

c2
C, B −1

c2
F, and B −1

c2
G in

the case.
Quantification of these violations relative to the number of

considered transitions yields a degree of model-relative behavi-
oural profile conformance of MBCc2 = 41

49 ≈ 0.84 for this par-
ticular case. Once interleaving order is neglected, we derive a
degree of constraint-relative behavioural profile conformance of
CBCc2 =

38
46 ≈ 0.83. Here, interleaving order between transitions

C and F, and for B in relation to itself, is not considered in the
conformance assessment.

Co-occurrence Conformance. Behavioural profile conformance
focusses on the order of occurrence as captured by the behavi-
oural profile. In Section 4.2, we discussed that the co-occurrence
relation of the causal behavioural profile is largely independent
of these relations. Hence, we consider co-occurrences of trans-
itions by a separate conformance degree. Informally, we check
whether all transitions for which the occurrence is implied by
the current state of the case are in the case as well.

The ratio of the co-occurrence dependencies imposed by the
net system that are satisfied by the case to all co-occurrence
dependencies would be a straight-forward measure for this as-
pect. However, we want to consider also cases that may not

260 analysing log conformance

have completed yet. Transitions that are missing according to
the co-occurrence relation may be added later on. Therefore,
we consider only those transitions that are required to occur in
the case by a co-occurrence dependency, for which we can de-
duce from the case that they should have already been observed.
The latter is captured by the strict order relation. Consider case
c4 = 〈I,C,E〉 of our running example. According to the net sys-
tem in Figure 69, any firing sequence that comprises transition
I either also contains transitions A and O or leads to a marking
in which both transitions are not dead. Transition A does not
occur in the case, although we know that it should have been ob-
served already owing to the strict order relation between A and
both transitions, C and E. Transition O, in turn, is not required
to occur in the case. The case does not contain any transition
that is in strict order with O.

Again, there are two ways to normalise the conformance de-
gree. First, the degree is normalised by the number of poten-
tial co-occurrence dependencies, i. e., the number of transitions
that occur in the case or can be expected to occur in the case.
We refer to this degree as model-relative co-occurrence conform-
ance. Second, the degree is normalised based on the number
of co-occurrence dependencies that are actually defined in the
behavioural profile of the net system. We refer to this degree as
constraint-relative co-occurrence conformance.

Definition 9.3.3 (Co-occurrence Conformance)
Let S = (N,M0) be a net system with N = (P, T , F) and c =

〈t1, . . . , tn〉 a case over Tc with Tc ⊆ T . Let B+ = { ,+, ||,�}

and B+
c = { c,+c, ||c,�c} be the causal behavioural profiles of

S and c.
◦ The set of expected case transitions ETc ⊆ T contains all trans-

itions that occur in the case or that can be expected to occur
in the case, i. e., ETc = Tc ∪ {t ∈ T | ∃ t1, t2 ∈ Tc [t
t2 ∧ t1 � t ∧ (t1 = t2 ∨ t1 t2)]}.
◦ The set of expected case transition pairs EPc ⊆ (T ×T) is defined

as EPc = (ETc × T) \ idT .
◦ The degree of model-relative co-occurrence conformance of c to
S is defined as

MCCc =
|(ETc × Tc) \ idTc ∩ � |+ |EPc \ � |

|EPc|
.

◦ The degree of constraint-relative co-occurrence conformance of
c to S is defined as

CCCc =

1 if �= ∅,
|(ETc×Tc)\idTc ∩ �|

|EPc ∩ �|
else.

Computation of both degrees requires determining the set of ex-
pected case transitions. These transitions are identified by ana-

9.3 conformance measures 261

lysing relations between three transitions, such that this step re-
quires at most iteration over all transition triples of the net sys-
tem. This takes cubic time with respect to the size of the net
system. Once this set is determined, the degrees are derived by
iterating at most over the Cartesian product of transitions of the
net system. We conclude that the computation of these degrees
does not add to the complexity needed to derive behavioural
profiles for net systems.

We illustrate co-occurrence conformance using our running ex-
ample and case c2 = 〈I,A,C,B,G, F,O〉. Here, the co-occurrence
C � D is not satisfied. This is penalised as the case contains
G and it holds D G in the net system. In other words, the
occurrence of G in the case provides us with evidence that we
should have observed D, too. The same holds true for trans-
ition E, which can be expected to be in the case. Computation of
the model-relative degree of co-occurrence conformance yields a
value of MCCc2 =

64
72 ≈ 0.89. Eight violations are considered, rel-

ative to the number of potential co-occurrence dependencies. As
an example, the transition pair (C,A) is considered for normal-
isation, although it holds C 6� A. Computation of the constraint-
relative degree of co-occurrence conformance yields a value of
CCCc2 = 36

44 ≈ 0.82. 36 out of 44 co-occurrence dependencies
of transitions that can be expected to be in the case are satis-
fied. For case c4 = 〈I,C,E〉, the absence of transition A is penal-
ised. Strict order between transitions A and B, A C, indicates
that transition A should have been observed already in the case.
For the example case c4, we compute conformance values of
MCCc4 =

9
12 = 0.75 and CCCc4 =

5
8 ≈ 0.63.

Note that the co-occurrence conformance degree may be over-
estimated. An example for this phenomenon would be the case
〈I,A, J〉 for the net system in Figure 69. This net system defines
a co-occurrence dependency J � B. In our analysis of co-oc-
currence conformance, the absence of transition B in the case
〈I,A, J〉 would not be penalised. There is no transition in the
case that is in strict order with B and, therefore, would provide
us with sufficient evidence that transition B should have already
been observed.

Aggregated Conformance Measures

The degrees for conformance aspects introduced earlier are the
foundation for aggregated conformance measures for a case. An
aggregated measure is defined as the sum of the enumerators di-
vided by the sum of the denominators of the respective degrees.
Hence, differences in the denominators are taken into account.
Those differences stem from transitions that do not occur in the
case but are expected to occur. These transitions are considered

262 analysing log conformance

in the co-occurrence conformance measures, but not in the beha-
vioural profile conformance measures. We first combine the two
model-relative measures.

Definition 9.3.4 (Model-Relative Case Conformance)
Let S = (N,M0) be a net system with N = (P, T , F) and c =

〈t1, . . . , tn〉 a case over Tc with Tc ⊆ T . Let B+ = { ,+, ||,�}

and B+
c = { c,+c, ||c,�c} be the causal behavioural profiles of

S and c, PCc the set of profile consistent case pairs, ETc the set
of expected case transitions, and EPc the set of expected case
transition pairs. The model-relative case conformance of c to S is
defined as

MCc =
|PCc| + |(ETc × Tc) \ idTc ∩ � |+ |EPc \ � |

|Tc|2 + |EPc|
.

Constraint-relative case conformance builds upon the constraint-
relative measures for behavioural profile conformance and co-
occurrence conformance.

Definition 9.3.5 (Constraint-Relative Case Conformance)
Let S = (N,M0) be a net system with N = (P, T , F) and c =

〈t1, . . . , tn〉 a case over Tc with Tc ⊆ T . Let B+ = { ,+, ||,�}

and B+
c = { c,+c, ||c,�c} be the causal behavioural profiles of

S and c, PCc the set of profile consistent case pairs, ETc the set
of expected case transitions, and EPc the set of expected case
transition pairs. The constraint-relative case conformance of c to S
is defined as

CCc =


1 if �= ∅ and

|| = (Tc × Tc),
|PCc \ ||c| + |(ETc×Tc)\idTc ∩ �|

|(Tc×Tc) \ ||c| + |EPc ∩ �|
else.

Table 6 illustrates the results for all conformance measures for
the net system and the five exemplary cases introduced in Sec-
tion 9.1. As expected, for the first case c1, which represents a
valid firing sequence of the net system, all measures indicate
full conformance. In contrast, the dependencies defined by the
relations of the behavioural profile of the net system are not
fully satisfied in the second case c2. For instance, the exclusive-
ness in the model between transitions B and C is broken in the
case. Co-occurrences, e. g., between transitions C and D, are not
completely respected either. For case c3, we make similar obser-
vations leading to overall conformance values between 0.74 and
0.85. Here, the difference in the normalisation of our two aggreg-
ated conformance measures becomes visible. An assessment
that is relative to the number of transitions leads to a higher con-
formance value. Pairs of transitions without explicit behavioural
dependency according to the profile of the net system lower the

9.3 conformance measures 263

Table 6: Conformance results for the example cases, see Section 9.1.

CBC MBC CCC MCC CC MC

Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel.

Beh. Profile Beh. Profile Co-occur. Co-occur. Conf. Conf.

c1 = 〈I,A,E,C,D, F,G,O〉
1.00 1.00 1.00 1.00 1.00 1.00

c2 = 〈I,A,C,B,G, F,O〉
0.83 0.84 0.82 0.89 0.82 0.87

c3 = 〈I,A,B, J,H,B,O,G〉
0.80 0.84 0.69 0.85 0.74 0.85

c4 = 〈I,C,E〉
1.00 1.00 0.63 0.75 0.80 0.86

c5 = 〈F,C,D,G〉
1.00 1.00 0.50 0.62 0.64 0.72

influence of transition pairs for which we detect a violation. Re-
garding case c4, we discussed that there are transitions missing
in the case. This deviation impacts on the conformance degrees
that are based on the co-occurrence relation. The degrees based
on the behavioural profile equal one, as case c4 does not viol-
ate any order or exclusiveness dependencies. Similarly, case c5
shows full behavioural profile conformance since the order of
occurrence of transitions is in line with the net system. Still, case
c5 is incomplete. It represents a subsequence of firing sequence
of the net system, such that the first part of the firing sequence
is missing, i. e., transitions I, A, and E. Consequently, various
co-occurrence dependencies are violated.

The conformance measures based on the relations of the beha-
vioural profile, CBC and MBC, are largely independent of those
that are grounded on the co-occurrence relation, CCC and MCC.
This follows from the fact that the respective behavioural rela-
tions are largely orthogonal, cf., Property 4.2.2 in Section 4.2.
Hence, the aggregated measures, CC and MC, shall be used to
take the complete spectrum of behavioural relations of the causal
behavioural profile into account.

Conclusions based on the actual conformance values can only
be drawn against the background of a concrete business process
and environment. There is a variety of factors that influence
the question whether a certain degree of non-conformance is ac-
ceptable. The severity of the implications that follow from non-
conforming behaviour and the reliability of the logging mechan-
ism would be examples for such factors.

264 analysing log conformance

Given the conformance values for single cases, conformance of
a complete log is evaluated based on the average conformance
values of all cases. The arithmetic mean of the conformance val-
ues along with its standard deviation indicate to which the de-
gree the cases deviate from the model and how these deviations
are distributed among the cases.

The Influence of Noise

Conformance measurement assumes that a normative process
model exists and that the log gives an accurate account of how
individual cases have been processed. Research on process min-
ing has acknowledged the existence of noise in real-world logs
and implemented measures to deal with it. Noise stems among
others from inaccurate logging mechanisms in information sys-
tems or race conditions when writing two log entries. Also, the
execution order of activities may not be enforced explicitly or
people may deliberately work around the system.

In the following paragraphs, we discuss the influence of noise
on the conformance measures introduced in the previous sec-
tion. This overview helps to pin down the computed conform-
ance values with respect to the noise that can be expected in a
certain setting. We discuss noise patterns along the classifica-
tion introduced in [510, 511], which has been extended in [174].
There are two major categories of noise: missing parts of cases and
perturbation.

Missing parts of a case are caused by a logging mechanism of
a process-aware information system that was not available for a
particular period of time. A missing head suggests that record-
ing started only after the case was already in processing; a miss-
ing trail can result from cases that are still processed when the
analysis period is closed; and a missing episode may stem from
a temporarily deactivated logging mechanism, see Figure 70.
These three patterns have in common that a part of the original
case is missing. This category of noise does not influence the
order between transition occurrences in the case. Therefore, the
behavioural profile conformance measures are not affected by
this kind of noise. The co-occurrence measures, in turn, pen-
alise the missing parts. This penalty depends on how many
co-occurrence dependencies exist between the transitions of the
missing part and the remainder of the case.

Perturbation involves a wrong recording of transition order,
the wrong recording of an additional event, or the recording of
alien events. These perturbations affect the conformance meas-
ures to a different degree. Consider the pattern that two events
are recorded in wrong order, for instance due to a race condi-
tion in the logging mechanism, Figure 71, top. If there is an or-

9.3 conformance measures 265

Original Case

Noisy Case

A B C D E F G H J K L M N

A B C D E F G H J Missing Tail

Original Case

Noisy Case

A B C D E F G H J K L M N

Missing Head E F G H J K L M N

Original Case

Noisy Case

A B C D E F G H J K L M N

Missing Episode K L M NA B C D

Figure 70: Types of noise with missing parts of a case, see also [174].

der dependency between these two transitions, we now observe
a violation for the perturbed case. If both were in interleaving
order anyway, then the conformance degree is not affected. In
the same vein, order dependencies between the two perturbed
transitions and the transitions that occur between them are af-
fected. We observe violation, if a transition was not in interleav-
ing order, but in strict order with one of the perturbed trans-
itions. Co-occurrence dependencies are not violated by this kind
of noise, since the set of transitions in the case does not change.
Figure 71, middle, shows the pattern of an additional recording
of an event. Here, the perturbed case shows violations for all
transitions between the first and the second record, if an order
dependency was defined between them and the repeated trans-
ition. Again, co-occurrences are not violated. If an alien event
is recorded, Figure 71, bottom, neither order relations nor co-
occurrence relations are violated.

To conclude, behavioural profile conformance turned out to be
robust against noise with missing parts of cases and alien events.
Co-occurrence conformance is robust against perturbation noise.

266 analysing log conformance

Original Case

Noisy Case

A B C D E F G H J K L M N

A B C K E F G H J

Perturbed Order

D L M N

Original Case

Noisy Case

A B C D E F G H J K L M

A B C B

Additional Event

D E F G H J K L M

Original Case

Noisy Case

A B C D E F G H J K L M

A B C X

Alien Event

D E F G H J K L M

Figure 71: Types of noise with perturbation, see also [174].

9.4 diagnostics

The measures introduced in Section 9.3 give an insight into the
conformance of a single case. To identify reasons for non-con-
forming processing, diagnostic information on conformance vi-
olations has to be derived. In particular, the root cause of a con-
formance violation should be isolated. In this section, we first
discuss concepts for root cause analysis on the level of a single
case. Then, we turn the focus on diagnostic information for a
log.

Root Cause Analysis for a Single Case

Non-conforming processing of a case causes violations of behavi-
oural dependencies. Those are given as a set of triples, referred
to as violation, each consisting of a pair of transitions along with
the violated relation of the causal behavioural profile. A set of vi-
olations may be traced back to a few transitions. Such transitions
have to be identified to highlight transition occurrences that are
most problematic as they heavily affect the overall conformance
assessment. The ratio between the violated dependencies that
relate to a transition to all violated dependencies is referred to
as the violation impact of the transition. This value measures how

9.4 diagnostics 267

Table 7: Feedback on non-conformance for case c3 of the example, see
Section 9.1.

Case c3 = 〈I,A,B, J,H,B,O,G〉

Violations (F,C,�),(C,F,�),(G,D,�),(F,E,�), (G,E,�),(D,F,�),

(F,D,�),(E,C,�),(E,D,�),(C,E,�),(G,F,�),(E,F,�),

(D,C,�),(G,C,�),(D,E,�),(C,D,�),(H,G,+),(J,G,+),

(B,G,+),(G,B,+),(G,J,+),(G,H,+),(O,G, −1),(G,O,)

Violation Impact VI(G) = 0.5

VI(D) = VI(E) = VI(C) = VI(F) = 0.29

VI(B) = VI(H) = VI(J) = VI(O) = 0.08

much of the observed non-conforming behaviour is related to
the respective transition.

Definition 9.4.1 (Violation and Violation Impact)
Let S = (N,M0) be a net system with N = (P, T , F) and c =

〈t1, . . . , tn〉 a case over Tc with Tc ⊆ T . Let B+ = { ,+, ||,�}

and B+
c = { c,+c, ||c,�c} be the causal behavioural profiles of

S and c, PCc the set of profile consistent case pairs, and ETc the
set of expected case transitions.
◦ The set of violation Vc ⊆ (T × T ×B+) for c contains all pairs

(x,y,R) such that (x R y) and either (x,y) /∈ PCc or (x ∈
ETc ∧ x�c y ∧ x 6= y ∧ y /∈ Tc).

◦ The violation impact of a transition t ∈ T is defined as

VI(t) =
|{(x,y,R) ∈ Vc | (x = t)∨ (y = t)}|

|Vc|
.

Table 6 showed that four out of five of the example cases have
overall conformance values below one. Taking case c3 as an
example, Table 7 illustrates the respective violations. Those in-
dicate the concrete problems that have been found for the case.
Table 7 also illustrates the violation impact of single transitions.
The occurrence of transition G turns out to be most problem-
atic for case c3. One-half of the violations relate to this trans-
ition. Its occurrence can be seen as the root cause for the non-
conformance of this particular case.

Root Cause Analysis for a Log

When investigating conformance of a log, feedback on violations
should not be limited to single cases. Instead, the frequency with
which a violation is observed has to be known to identify the
reasons for non-conforming processing in general. Dependen-

268 analysing log conformance

Table 8: Violations (support > 1) for the example log, see Section 9.1.

Violations Support

(C,E,�),(D,E,�),(G,E,�),(F,E,�) 3

(G,D,�),(B,G,+),(E,D,�),(C,D,�),(I,A,�), 2

(E,A,�),(F,D,�),(G,B,+),(C,A,�)

cies between violations are valuable feedback as well. A certain
violation may be caused by a violation that happened before.

We address the need for aggregated analytic information on
non-conformance using the notion of a violation as introduced
for a single case. Our analysis adapts the notions of support
and confidence known from the field of association rules min-
ing [10, 9]. Association rules mining identifies patterns that are
built of items given a set of transactions. These transactions, in
turn, are built of items. Adapted to our setting, a transaction
is represented by a case and an item is a violation, which may
be observed in a case. We define support for a violation as the
number of cases in a log, in which the violation is observed.

Definition 9.4.2 (Support for Violation)
Let S = (N,M0) be a net system with N = (P, T , F) and C =

{c1, . . . , cn} a log over TC with TC ⊆ T . Let B+ = { ,+, ||,�} be
the causal behavioural profiles of S.
◦ The set of logs supporting a violation v ∈ (T × T ×B+) in C

is defined as SU(v) = {ci ∈ C | v ∈ Vci}.
◦ The support for a violation v ∈ (T × T ×B+) in C is defined

as sup(v) = |SU(v)|.

Table 8 shows the violations for the cases of the example log, see
Section 9.1, which have a support larger than one. It illustrates
that there are four violations that are observed in three out of
five cases. All of them represent violations of co-occurrences that
imply the execution of transition E. This observation provides
a starting point for the analysis of the respective process. The
reasons for missing occurrences of transition E have to be de-
termined, as those are the root causes for non-conforming pro-
cessing.

The analysis of support for violations helps to separate fre-
quent and rare violations. Analysis of non-conformance is even
more effective if implications between violations are taken into
account. A deviation from the processing as specified in the net
system may cause several subsequent violations. Detection of
these implications allows us to focus on the actual cause of a
series of violations. To address this demand, we adopt the no-
tion of confidence of association rules. Confidence relates rules

9.4 diagnostics 269

between items to their statistical significance. Thus, it reflects
the strength of a rule. In our setting, a rule is an implication
between two violations.

Definition 9.4.3 (Confidence for Violation Rules)
Let S = (N,M0) be a net system with N = (P, T , F) and C =

{c1, . . . , cn} a log over TC with TC ⊆ T . Let B+ = { ,+, ||,�} be
the causal behavioural profiles of S. For two distinct violations
v1, v2 ∈ (T × T ×B+) the confidence for a violation rule from v1
to v2 is defined as

conf(v1 ⇒ v2) =

0 if sup(v1) = 0,
|SU(v1)∪SU(v2)|

sup(v1)
else.

Analysis of violation rules is reasonable solely for violations for
which the support exceeds a certain threshold in the log. Sim-
ilarly, only rules that exceed a certain threshold with respect to
their confidence shall be investigated.

I >> A

G >> D

C >> A

F >> D

B + G

F >> E

E >> A

C >> D

G >> E

G + B

C >> E

E >> D

D >> E

Figure 72: Rules between violations (confidence > 0.6) for the example
log, see Section 9.1.

Figure 72 depicts the rules between violations for the example
log introduced in Section 9.1. Nodes depict violations that show
a support larger than one, which have also been listed in Table 8.
The node size reflects the different support values. Edges rep-
resent rules between violations for which the confidence value
is above the threshold of 0.6. The edge strength depends on the
confidence value. In our example, all except one rule show a

270 analysing log conformance

confidence value of one. That is, the occurrence of the source vi-
olation implies the occurrence of the target violation. Note that
we did a transitive reduction for the edges in the graph. A trans-
itive reduction is not unique in case of a cyclic graph and iden-
tification of the minimal transitive reduction is an NP-complete
problem [390]. To provide an overview of the interplay of viola-
tions, however, the identification of one non-minimal reduction
is sufficient.

Figure 72 illustrates that there are two clusters of violations
that manifest in disconnected subgraphs. These clusters repres-
ent violations that occur independent of each other and, there-
fore, may be analysed separately. Focussing on the bigger sub-
graph, the violation related to the co-occurrence between trans-
itions C and D implies various other violations. Although this
violation cannot be seen as the only root cause – it is part of
a cycle of violation rules – there is some evidence that this vi-
olation is fundamental and many other violations are causally
dependent. Hence, the implementation of the process should be
investigated for reasons that break the co-occurrence between
transitions C and D.

We restricted our discussion on rules between two violations.
However, the introduced concepts may be lifted to rules between
more than two violations in a straight-forward manner.

9.5 experimental evaluation

To demonstrate and evaluate our approach to conformance ana-
lysis, we implemented all introduced concepts in a prototypical
tool and applied them in a case study on the Security Incident
Management Process (SIMP). In this section, first, we give back-
ground information on this process. Second, we present ana-
lysis results for a log using the proposed conformance measures.
Third, we apply the concepts introduced for root cause analysis
of non-conformance to the log.

SIMP Background

The Security Incident Management Process (SIMP) is an issue
management process operated by IBM’s global service delivery
centres. We focus on the SIMP as it is run in a service delivery
centre that provides infrastructure management and technical
support to customers. The process and the log have been min-
imally modified to remove confidential information. Figure 73

shows the SIMP as a net system solicited from domain experts.
When a customer reports a problem or requests a change, an

issue is created, spawning a new instance of the process. De-
tails about the issue may be updated, a plan to resolve the issue

9.5 experimental evaluation 271

Create
Issue (CRI)

Customer
Extension

(CE)

Issue
Details

(ID)

Resolution
Plan (RP)

Monitor
Target Dates

(MTD)
Risk

Management
(RM)

Proposal
to Close

(PTC)

Reject
Proposal

(RP)

Close
Issue (CI)

Change
Management

(CM)

Figure 73: Net system of the Security Incident Management Process
(SIMP).

must be created, and change management related activities may
be performed if required. Then, target dates for issue resolution
may be monitored and relevant risks may be documented. Con-
currently, a customer extension of target dates may be processed.
Once the steps for resolution are taken and verified, the resolver
must propose to close the issue. Based on the evidence that the
issue is indeed resolved, the issue creator may close the issue.
Otherwise, the proposal must be rejected.

For the SIMP, we analysed 852 cases each consisting of a set of
log entries. Such a log entry has a transition name, a description,
and the time-stamp marking the time of occurrence of the trans-
ition. Although the process is standardised and documented, it
is not orchestrated via workflow tools in the IBM’s global ser-
vice delivery centre under investigation. Instead, it is manually
carried out. Hence, employees are free to deviate from the pro-
cess. As a result, the cases may or may not specify valid firing
sequences of the net system. The log has been created using a
proprietary tool, in which an employee submits the execution of
a certain activity, i. e., the occurrence of a certain transition. Cor-
relation of log entries to cases has been managed explicitly by
the logging tool.

Conformance Measures

For each case, we analysed its conformance using the introduced
measures. Table 9 provides a summary of this analysis. It shows
the average conformance value of all cases (using the arithmetic
mean) along with the standard deviation, the observed minimal
and maximal conformance values, and the share of fully con-
forming cases (all conformance measures yield a value of one).
The conformance values were discussed with the manager of the
process. The average values reflect the manager’s perception
that SIMP is running satisfactory and most cases are handled

272 analysing log conformance

Table 9: Conformance results for the SIMP derived from 852 cases.

CBC MBC CCC MCC CC MC

Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel.

Beh. Profile Beh. Profile Co-occur. Co-occur. Conf. Conf.

Avg 0.98 0.99 0.96 0.96 0.97 0.97

StDev 0.06 0.04 0.11 0.09 0.08 0.069

Min 0.08 0.31 0.60 0.60 0.53 0.58

Max 1.00 1.00 1.00 1.00 1.00 1.00

Share of conforming Cases

78.64% 78.64% 84.39% 84.39% 76.29% 76.29%

in a conforming way. Although up to a quarter of the cases
are not in line with the model, the high average values and the
low standard deviation for our conformance measures indicate
that there are solely marginal deviations in most cases . Still, as
the minimum values show, it was also possible to identify cases
of low conformance. Behavioural profile conformance values of
0.08 or 0.31 represent outliers that have been caused by a case
that mixed the log entries for two separate process instances.
Moreover, the different normalisations of conformance degrees,
either based on the number of dependencies or the number of
considered transitions, does not affect the conformance measure-
ment for our case study significantly.

We are not able to directly compare our conformance results
with the fitness measure proposed in [107] and discussed in Sec-
tion 9.1. This is mainly due to the inherent complexity of the
partial state space exploration. Even a maximally reduced net
system of the SIMP contains a lot of silent transitions caused
by activities that may be skipped. This leads to a significant in-
crease of the size of the state space that must be investigated
when trying to replay a case. As a consequence, fitness compu-
tation with the fitness plugin in ProM [463] (version 5), was pos-
sible for all cases only with the most greedy strategy. However,
these results are of a limited validity. They highly underestim-
ate the conformance values. Further, computation of the compli-
ance values for the process log took around 15 seconds, whereas
computation of the proposed conformance measures was done
within milliseconds.

Root Cause Analysis

For all SIMP cases, we collected all observed violations. Fig-
ure 74 illustrates the amount of the collected violations and how

9.5 experimental evaluation 273

20

30

40

50

60

70

80

N
um

be
r o

f C
as

es

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r o

f C
as

es

Number of Violations

Figure 74: Number of SIMP cases (out of 852) relative to the number
of observed violations.

Table 10: Feedback on non-conformance for a dedicated SIMP case.

Violations (CLI,CLI,+),(CM,CE,�),(CRI,CE,�),

(RPTC,CE,�),(CLI,CE,�),(PTC,CE,�),(RP,CE,�)

Violation Impact VI(CE) = 0.86

VI(CLI) = 0.29

VI(RP) = VI(CM) = 0.14

VI(CRI) = VI(RPTC) = VI(PTC) = 0.14

they are distributed over the cases. For each number of viola-
tions, the chart depicts the number of SIMP cases that showed
an according number of violations. For nearly 70 cases we ob-
serve a single violation. At most 15 violations are detected in a
single case. We conclude that in our setting, the set of violations
for a single case can still be handled by a process analyst.

Table 10 illustrates the results of the root cause analysis for a
single case. It depicts the violations for a dedicated case along
with the violation impact of the respective transitions, see Fig-
ure 73 for the resolution of the transition abbreviations. The
chosen case has an overall conformance value of 0.86 or 0.91, de-
pending on the applied normalisation. Hence, it is a typical ex-
ample for a non-conforming case that shows minor behavioural
deviations from the behaviour as defined by the net system. For
this case, there is a single transition that participates in more
than 80% of the violations. The transition representing the cus-
tomer extension (CE) can, therefore, be seen as the root cause of
non-conformance of this case. The violated dependencies all re-
quire the occurrence of transition CE. Hence, the absence of this
transition causes most of the violations. Apart from the depend-
encies related to transition CE, exclusiveness as a self-relation for

274 analysing log conformance

Table 11: Violations (support > 20) observed in the set of 852 SIMP
cases.

Violations Support

(CLI,CLI,+) 177

(CRI,RP,�),(CE,RP,�),(CLI,RP,�),(PTC,RP,�) 109

(CRI,CE,�),(CLI,CE,�),(PTC,CE,�),(RP,CE,�) 74

(CM,CE,+) 35

(CM,RP,+) 34

transition close issue (CLI) is violated. The case comprises two log
entries that report an occurrence of this transition, whereas the
net system allows for at most one occurrence.

We discussed the root cause analysis just for one exemplary
case. However, a review of our results suggests that similar ob-
servations can be made for most of the non-conforming cases.

Turning the focus on the root cause analysis for the whole log,
Table 11 lists the violations with the highest support in the set of
852 SIMP cases. The most frequently observed violation relates
to the transition close issue (CLI). 177 cases record at least two
occurrences of this transition, which is not in line with the net
system, see Figure 73. In a large number of cases, co-occurrence
dependencies that require the presence of the transition repres-
enting resolution plan (RP) or customer extension (CE) are violated.
Although both transitions must occur to complete a case, they
are absent in a large number of cases.

With these results, the necessity to deviate from the standard
processing as illustrated can be evaluated by the management of
the Security Incident Management Process. Any judgement on
whether these deviations are acceptable can only be done once
the reasons for deviation have been investigated in the concrete
cases. Such investigations have not yet been complete for SIMP
as illustrated in this case study.

Finally, we visualise the identified implications between viol-
ations in Figure 75. In this graph, nodes depict violations with
a support larger than 20 in the collection of 852 cases. Edges
represent rules between them that have a confidence above the
threshold of 0.6. The node size reflects the support values and
the edge strength correlates with the confidence value. The
graph suggests that the violation related to the self-relation of
transition close issue (CLI) is independent of the other frequently
observed violations.

Violations of the co-occurrence dependencies involving trans-
itions RP and CE build clusters of rules of high confidence. Hence,
these violations always occur together in a case. Still, both clusters

9.6 related work 275

CLI >> CE

CLI >> RP

CLI + CLI

CRI >> RP

RP >> CE

PTC >> RP

CRI >> CE

CE >> RP

PTC >> CE

CM >> RP

CM >> CE

Figure 75: Rules between violations (confidence > 0.6) observed in the
set of 852 SIMP cases.

are rather independent of each other. We conclude that the
absence of transitions RP and CE, along with the repeated oc-
currence of transition CLI, have to be seen as independent root
causes of non-conforming behaviour in the SIMP log.

9.6 related work

Conformance measurement is at the core of process mining [11,
99, 457, 460, 446], which we discussed already in Section 8.6.

In Section 9.1, we mentioned various approaches for measur-
ing conformance of a process log by using a replay method [183,
511, 395, 107, 176]. Some approaches quantify conformance as
the share of cases of a log that can be replayed in the process
model [183, 511]. Other approaches replay a case step-wise in
the process model and quantify the number of valid execution
steps [395, 107, 176].

Replay based conformance analysis is continuously improved.
Recent work formulates the question of which is the optimal re-
play of a case as a search problem [6]. The latter is then solved
using standard search algorithms. Another trend is to increase
flexibility of conformance measures. In particular, activities may
be distinguished regarding their importance [7]. By assigning
costs to different deviations from the process model, conform-
ance measures may be customised towards a certain setting. For
instance, skipping a reporting step in a process may be con-
sidered to be less crucial than skipping a payment activity. Our

276 analysing log conformance

approach neglects such differences. However, similar extensions
can be realised by assigning costs to certain behavioural relations
(or to activities and, therefore, to all relations that relate to these
activities). This cost would then be considered as a weighting
factor when counting the violated behavioural relations.

Our concepts for root cause analysis relate to techniques for
the visualisation of log data to enable effective analysis. To this
end, dotted chart analysis to assess the performance of business
operations with a focus on their time dependencies has been ad-
vocated in [428]. Such a chart supports the manual analysis of
long-running instances. Another approach leverages multi se-
quence alignment techniques known from bioinformatics to con-
struct a trace alignment [59]. Once an alignment between cases
has been established, patterns of common behaviour and rare
deviations may be identified. The drawback of this approach is
its complexity. Finding an optimal alignment for a set of cases
is a computationally hard problem. Nevertheless, [59] already
showed the application of the technique in two case studies. An
alignment assumes a different perspective compared to our feed-
back on violations of behavioural dependencies. Hence, both
approaches can be seen as complementary.

The conformance of process execution with normative pro-
cess models is also an important aspect of role-based access
control (RBAC). In essence, role-based access control deals with
the specification and enforcement of constraints that relate to or-
der and exclusiveness of roles or subjects executing particular
activities. Such constraints include, among others, separation of
duty requirements. Separation of duty implies that either par-
ticular activities have to be exclusive altogether, or that those
roles or subjects executing a pair of activities have to be exclus-
ive (also referred to as four-eye principle) [276, 12, 160]. The
major share of research in this area has focussed on the specifica-
tion and verification of RBAC policies [48, 159, 338], among oth-
ers on consistency and satisfiability of constraint sets [436, 94],
and on engineering and enforcement by design [434]. Log files
have been used for mining roles in this area [250, 326], while
an a posteriori compliance control has only been considered re-
cently [152, 170, 5]. Our concepts inform this stream of research.
Once process models are annotated with RBAC constraints as
defined in [521] and a log includes role and subject information,
the relations of the causal behavioural profile can be leveraged
to check separation of duty constraints.

9.7 conclusion

This chapter introduced an approach to conformance measure-
ment based on behavioural profiles. We defined behavioural pro-

9.7 conclusion 277

files for cases of a process log and proposed a set of conformance
measures. In essence, these measures quantify to what degree
the behavioural relations as induced by the process model are
respected by the log. We discussed alternatives for normalising
our measures and also elaborated on the influence of common
noise patterns on them. Then, we focussed on concepts that
enable effective root cause analysis of non-conformance. Dia-
gnostic information is provided on the level of single cases, and
for a complete process log. We tested all concepts in a case study
with an international service provider.

Compared to existing work, we take a fundamentally different
approach to evaluate conformance of process logs. The applic-
ation of behavioural profiles has several strengths. First, it al-
lows us to give feedback on non-conformance directly in terms
of violated behavioural dependencies. This feedback supports
the interpretation of conformance values. For the SIMP of our
case study, for instance, we showed that a great share of non-
conformance stems from the repetition of the activity to close the
issue. Second, our approach largely avoids computation intens-
ive operations. Only the derivation of the behavioural profile
for the process model may require exponential time to the size
of the process model, if the assumptions for the efficient compu-
tation techniques are not met. Still, this effort is required only
once and not for every single case.

As for the consistency analysis of alignments between process
models, the efficiency of our approach is traded for accuracy.
Our approach is grounded on a behavioural abstraction that neg-
lects certain behavioural aspects. Only deviations that material-
ise in the behavioural relations can be detected and influence the
conformance measurement. Methods that are based on a replay
of cases, therefore, are sensitive also to non-conformance that
cannot be discovered by our approach. The level of accuracy of
our approach suffices to draw conclusion on how consistency
results obtained between process models relate to the observed
behaviour, as all measures have a unified formal grounding. For
other use cases of conformance analysis, however, the abstracted
aspects may turn out to be important. If so, there is potential
to combine the presented approach with replay based conform-
ance analysis. On the one hand, the efficiency of our approach
allows us to apply it first to isolate cases that show a large non-
conformance. Then, replay based methods are applied only for
a subset of cases. On the other hand, the feedback given by the
different approaches on non-conformance may be combined to
increase its usefulness for process analysts.

In this chapter, we introduced the techniques for root cause
analysis for the use case of conformance measurement. How-
ever, some of these concepts are also useful for consistency ana-

278 analysing log conformance

lysis of alignments. Consider, for instance, the presented no-
tion of violation impact of a transition. It measures how much
of the observed non-conforming behaviour is related to the re-
spective transition. It may be lifted to the setting of an align-
ment and the degrees of consistency as proposed in Section 7.2.
Then, the inconsistency that is related to a single transition of
an alignment can be quantified. As such, this information is
useful for the extraction of a consistent sub-alignment discussed
in Section 7.4 to support change propagation. To obtain a con-
sistent sub-alignment, we step-wise remove transitions from an
alignment according to their violation impact, starting with the
highest value.

10
C O N C L U S I O N S

A B

C

D A1 A2

E

D

Process
Model

Process
Model

Construct
Alignment

A
B

A B

C

C
+ →

→

D

D

+
→

→

|| →||
→ +

→

→

+
+

+

A
B

A B

C

C D

D

» » » »
» » » »
» » » »
» » » »

A1
A2

A1

D

+

→

E

→

→

A2
→

+
→

→ →

→
→

+

→

+
+

+

D E
A1
A2

A1

D
E

A2 D E
»»
»

»
»»»

»»

Compute
Profile

Behavioural
Profile

Behavioural
Profile

Decide Consistency

Compute
Profile

Quantify Consistency

Explore Commonalities

A D

A
D

A D
+

+
→

→

Synthesise Model

Process Log Process Log

Quantify
Conformance

Quantify
Conformance

The research presented in this thesis centred on the question
of to how to assess behaviour consistency of related process

models. Here, related means that the process models refer to the
same business process. To address this question, we came up
with an approach that starts with the construction of an align-
ment and ends with a manifold analysis of behaviour consist-
ency. To this end, we took a relational approach that builds on
the notion of a behavioural profile of a process model.

In this chapter, we briefly summarise our contributions in Sec-
tion 10.1. Then, we discuss the concept of a behavioural profile
in the broader context. In Section 10.2, we review several use
cases in which the formalism underlying our analysis of beha-
viour consistency has also been applied. Finally, we turn the fo-
cus on the limitations of our work. Section 10.3 discusses open
issues regarding the analysis of behaviour consistency and out-
lines directions for future research.

279

280 conclusions

10.1 summary of the results

This thesis presented a framework to assess behaviour consist-
ency of related process models. In the following, we briefly sum-
marise the main results proposed as part of this framework.

The ICoP Framework

The identification of complex correspondences between process
models is a challenging problem that has not been addressed
before. Taking up techniques known from the field of data in-
tegration and ontology matching, we presented the ICoP frame-
work. It provides a modular and adaptable architecture for the
implementation of matchers to detect complex 1:n correspond-
ences between process models. We validated the framework
experimentally and showed that the implemented matchers in-
deed discover complex correspondences. Even though the ICoP
framework has certain limitations, it is a first step towards (semi-
) automated support for process model matching that goes bey-
ond elementary 1:1 correspondences.

Behavioural Profiles and their Computation

Our approach to the analysis of behaviour consistency centres
on the concept of a behavioural profile. We introduced this
concept formally for net systems, elaborated on its properties,
and discussed commonalities and differences to various related
behavioural concepts. Further, to accommodate for different
requirements regarding behavioural analysis, we distinguished
two variations of the concept, behavioural profiles and causal
behavioural profiles.

A behavioural profile defines an abstraction of trace semantics
of a net system. It is computed efficiently once certain structural
and behavioural assumptions are satisfied. We presented formal
results that allow for the computation of behavioural profiles
for sound free-choice WF-systems in low polynomial time to the
size of the system. This approach is completed by algorithms
that compute behavioural profiles for the more generic class of
bounded net systems at the expense of increased computational
complexity. For all approaches, we presented experimental eval-
uations using three large model collections from industry.

Consistency Notions and Measures based on Behavioural Profiles

Using behavioural profiles, we introduced a spectrum of con-
sistency notions to judge behaviour consistency of an alignment

10.1 summary of the results 281

between two net systems. In the line of these consistency notions,
we also presented consistency measures that quantify behaviour
consistency. This spectrum of notions and measures allows for
gradually adapting the consistency requirements towards a ded-
icated setting. Further, we adjusted the consistency measures
also for the use case of conformance checking of process logs.

We evaluated the consistency notions and measures from dif-
ferent angles. On the one hand, we were able to show em-
pirically that certain consistency criteria based on behavioural
profiles show a good approximation of the human consistency
perception for a dedicated consistency setting. On the other
hand, experimental results obtained for behaviour consistency
between models of an industry reference model suggest that our
measures are also suited in this context.

Consistency Management based on Behavioural Profiles.

Appropriate consistency notions and measures are only one fa-
cet of an overarching consistency management of related process
models. With our work, we addressed various further dimen-
sions. We presented an approach to propagate changes between
aligned net systems. It aims at respecting the consistency re-
quirements imposed by the presented notions and measures. Ex-
ploration of behavioural commonalities and differences has been
addressed by the definition of a set algebra for behavioural pro-
files. It allows for computing with the abstracted behaviour of
net systems. We reported on findings obtained with the set-
algebraic operations for the alignments between models of an
industry reference model. Further, we introduced an approach
to model synthesis for behavioural profiles. Given a profile
that meets certain assumptions, we presented an algorithm that
yields an according net system. Finally, we proposed concepts
to support root-cause analysis for non-conformance of a process
log. The usefulness of these concepts has been shown in a case
study with an international service provider.

We conclude that the contribution of this thesis is twofold.
First, we introduced a novel behavioural model, a behavioural
profile, which is more abstract than those commonly used for be-
havioural analysis. Besides the pure definition, we came up with
supporting techniques ranging from the computation of behavi-
oural profiles, over means to compute with them, to an approach
to model synthesis. Second, we showed how this behavioural
model is used to judge behaviour consistency of process models
that capture the same business process. Many questions of be-
haviour consistency have been addressed before. To the best of

282 conclusions

our knowledge, however, no work approached these questions
following a relational approach as proposed in this thesis.

10.2 behavioural profiles in the broader context

The definition of behavioural profiles, along with techniques that
centre on this behavioural abstraction, is a contribution that is
rather independent of the analysis of behaviour consistency. Ac-
tually, the notion of a behavioural profile already proved to be
useful in a much broader context. Behavioural profiles provide
a way to consider execution semantics in a lightweight manner.
The relational semantics induced by behavioural profiles can be
seen as a compromise between the accuracy of the behavioural
model and the efficiency needed to reason with it. Behavioural
profiles are computed efficiently for a broad class of net systems.
Further, virtually all presented techniques that built on beha-
vioural profiles do not require complex computations. Hence,
behavioural profiles are well-suited whenever the implied ab-
straction is considered to be acceptable. Whether this is the case,
clearly depends on the use case. In some scenarios, the implied
abstraction is not harmful at all. For instance, if a technique
is optimised by using behavioural profiles, the abstraction only
limits the optimisation potential. In other scenarios, the implied
abstraction may not be negligible. Nevertheless, the application
of behavioural profiles allows for drawing initial conclusions ef-
ficiently. More accurate behavioural models that result in com-
putationally hard analysis are then applied only on demand for
a subset of the investigated models. As discussed in Section 9.7,
the combination of conformance analysis based on behavioural
profiles and based on a replay of cases would be an example for
such a scenario.

In the remainder of this section, we briefly review applications
of behavioural profiles. These applications illustrate a wide vari-
ety of use cases in the area of Business Process Management
(BPM). However, we do not consider the application of behavi-
oural profiles to be limited to the field of BPM.

Efficient Process Model Search

In Section 7.2, we introduced consistency measures based on
behavioural profiles for an alignment between related process
models. When reviewing the properties of these measures, we
highlighted that they are not suited to judge behavioural simil-
arity of process models. However, in recent work, we took up
the ideas of these consistency measures to define behavioural
similarity metrics based on behavioural profiles [254, 253]. In
essence, these metrics quantify process model similarity using

10.2 behavioural profiles in the broader context 283

the Jaccard coefficient defined over the profile relations of two
process models. Further, the hierarchy of behavioural relations
as discussed in Section 8.2 is taken into account. Since these sim-
ilarity measures are proper metrics, we have been able to com-
bine them with efficient indexing techniques for process model
search [253].

Modelling Support based on Glossaries

There are various aspects that impact the understandability of a
process model. In particular, the labelling has a strong influence
on the understandability [317]. Appropriate reuse and align-
ment of model labels, therefore, is a quality criterion of a single
model and a model collection. One approach to achieve these
goals is the application of a glossary, which provides a central-
ised terminology for a dedicated domain, in the course of mod-
elling [391]. In [349, 350], we showed how such a glossary may
be generated from an existing model collection, e. g., a reference
model, and how it is leveraged for modelling support. Besides
the terms, this glossary also considers behavioural dependencies
between them. To capture these dependencies, we utilised beha-
vioural profiles. The dependencies are used to assess labelling
quality of existing models, and provide rich modelling support
for the creation of new models. Consider, for instance, two la-
bels that are exclusive to each other in many models of a model
collection and, thus, in the glossary derived from this collection.
Those labels should not appear together in a model that is newly
created.

Action Patterns of Process Models

Another approach to extract knowledge hidden in large process
model collections builds on the notion of action patterns [421,
424, 426]. Action patterns capture reusable chunks of actions.
In essence, actions are the verbs of activity labels. However,
one may also consider different levels of generalisation of these
verbs [426] or varying sensitivity to business objects [424]. As
such, action patterns capture process knowledge that is more
generic than a domain-specific reference model, but more con-
crete than generic process patterns, such as the workflow pat-
terns1 [456]. Using the notion of an action, co-occurrence ac-
tion patterns and behavioural action patterns are derived from
a model collection by means of association rules mining. Co-
occurrence action patterns capture actions that are often observed
together. They allow conclusions to be drawn on what should be

1 See http://www.workflowpatterns.com for further details.

http://www.workflowpatterns.com

284 conclusions

covered by a process model. Behavioural action patterns capture
behavioural dependencies that define how the actions should be
applied. Since these dependencies have to be indirect, actions
are not necessarily direct successors, they have been captured
using behavioural profiles. Also, mining of action patterns be-
nefits from the methods for the efficient computation of behavi-
oural profiles.

Detection of Configuration Issues and Run Time Violations

Behavioural profiles have also been used to support the automa-
tion of business processes. Before an executable process model is
enacted using a workflow engine, an operational process model
is configured, i. e., it is enriched with all details needed for exe-
cution. As part of that, a data binding is introduced that assigns
create/read/update/delete (CRUD) operations on data objects
to activities. The data flow defined by these operations may be
contradicting with the control flow defined between activities,
e. g., access to data that may have not been created before yields
a missing data anomaly. To detect such inconsistencies the work
reported in [387] leverages behavioural profiles. Even though
not all inconsistencies may be detected due to the assumed be-
havioural abstraction, this approach provides efficient support
for the configuration of process models.

Behavioural profiles also proved valuable to detect control-
flow violations once a business process is executed in a complex
event processing environment. If a process models is not enacted
directly using workflow technology, supporting information sys-
tems may provide the flexibility to deviate from the normative
model. In [509], we proposed an approach to derive monitoring
queries that, applied to event streams signalling the process exe-
cution, identify control flow violations. In essence, these queries
encode violations of the behavioural dependencies as imposed
by the behavioural profile of a process model.

10.3 limitations & future research

Our framework to assess behaviour consistency spans various
aspects, from the creation of an alignment over consistency no-
tions and measures to techniques for consistency management.
Still, we also have to reflect on some limitations of our approach.
These limitations relate to the purpose of consistency analysis,
consistency preserving operators, and further process modelling
dimensions. In the following, we discuss these limitations and
outline directions for future research.

10.3 limitations & future research 285

The Purpose of Consistency Analysis

We argued that the variety of drivers of process modelling res-
ults in differences in the level of abstraction and the assumed per-
spective of process models, even if they capture the same busi-
ness process, cf., Section 1.2. Each model has to be appropriate
towards its purpose, which may result in mismatches. Despite
this fact, the models shall respect a certain notion of behaviour
consistency, a certain freedom of contradictions. We outlined
that the need for consistency is inherent to establish a shared un-
derstanding among process stakeholders. Further, we illustrated
the need to consider consistency by exemplary drivers of consist-
ency analysis, i. e., validation, inter-model analysis, and change
propagation, see Section 1.3.

We highlighted that the variety of drivers of process model-
ling and consistency analysis requires a relativistic assessment
of behaviour consistency. To accommodate for this requirement,
our framework comprises different notions and measures that
define a spectrum of consistency criteria. However, we largely
neglected the relation between these criteria and the purpose of
consistency analysis. The only exception to this has been our
investigation on the consistency perception of process analysts.
This part clearly relates to two dedicated drivers of process mod-
elling and consistency analysis for the purpose of validation.
Apart from that, our framework provides the flexibility to ad-
apt the consistency criteria towards a concrete setting. Still, we
do not provide any guidance on how to do this adaptation given
a dedicated purpose of consistency analysis. Most likely, only a
subset of the presented criteria is appropriate for a certain kind
of analysis. Hence, future work is required to investigate the
relation between the drivers of consistency analysis and consist-
ency requirements imposed by them. In the end, such research
may yield a method that guides the usage of the presented tech-
niques in a specific context.

Consistency Preserving Operators

The focus of our work has been on assessing behaviour consist-
ency a posteriori, once process models have been created inde-
pendent of each other. As we discussed in Section 6.1 and Sec-
tion 6.4, this is a major conceptual difference compared to work
on process views or model refinements. Further, we motivated
the weak criteria of our consistency spectrum with the presence
of non-hierarchical relations between process models serving
different purposes. This raises the question which transform-
ation operations – that go beyond well-known hierarchical re-
finements – actually preserve the presented consistency criteria.

286 conclusions

Once such transformations are available, they can guide the evol-
ution of process models. If an alignment between related pro-
cess models was shown to be consistent, consistency preserving
operators define how to best adapt the models without lower-
ing the alignment consistency. Finally, such operators may also
guide the creation of new process models, following a consist-
ent by design paradigm. As a first step towards the definition of
consistency preserving operators, transformations that preserve
behaviour inheritance [33] may be adapted for the presented con-
sistency criteria.

Towards Holistic Consistency Assessment

The presented framework is limited to the control flow perspect-
ive. Since an explicit coordination of activity execution is the
very core of a process model, we argued that it is reasonable to
first approach consistency analysis from this perspective. Albeit
reasonable, neglecting data and resource assignments is a lim-
itation of our work. Clearly, a holistic approach to consistency
assessment has to take the data and resource perspective into
account.

We foresee two directions to realise such an extension. First,
the influence of data and resources on the control flow may be
considered by including the respective modelling perspectives
directly in the formal model. Apparently, the data and resource
dependencies may affect the behavioural profile, e. g., activities
that are not constraint by any control flow dependency may com-
pete for a single resource. To this end, one can rely on work
on net-based formalisations of object life-cycles [451] and data
access semantics [26] or lift the presented techniques to high-
level Petri nets, such as coloured Petri nets (CPNs) [220], work-
flow nets with data (WFD-nets) [419], or dual workflow nets
(DFNs) [157]. Then, the presented analysis techniques can be
applied directly.

Second, different types of data access and resource assign-
ments of activities may be captured using a relational model,
similar to the profile relations. One can imagine multiple mutu-
ally exclusive data access relations, e. g., representing the CRUD
operations and the absence of any access, that partition the Car-
tesian product of activities and data objects. In the same vein, a
partitioning of the Cartesian product of activities and resources
may be defined by different types of assignment relations. Using
such a relational model, we foresee that many of the techniques
presented for the relations of behavioural profiles may be lifted
to the relational model for data access and resource assignments.

B I B L I O G R A P H Y

[1] Unified Modeling Language: Superstructure. Version 2.1.2. Technical
report, Object Management Group (OMG), November 2007. (Cited on
page 22.)

[2] Business Process Model and Notation (BPMN) Version 2.0. Technical
report, Object Management Group (OMG), January 2011. (Cited on
pages 18 and 165.)

[3] Norris Syed Abdullah, Shazia W. Sadiq, and Marta Indulska. Emerging
challenges in information systems research for regulatory compliance
management. In Pernici [348], pages 251–265. ISBN 978-3-642-13093-9.
(Cited on page 8.)

[4] Witold Abramowicz and Heinrich C. Mayr, editors. Business Information
Systems, 9th International Conference on Business Information Systems, BIS
2006, May 31 - June 2, 2006, Klagenfurt, Austria, volume 85 of LNI, 2006.
GI. ISBN 3-88579-179-X. (Cited on pages 306 and 317.)

[5] Rafael Accorsi and Claus Wonnemann. Auditing workflow executions
against dataflow policies. In Witold Abramowicz and Robert Tolks-
dorf, editors, BIS, volume 47 of Lecture Notes in Business Information Pro-
cessing, pages 207–217. Springer, 2010. ISBN 978-3-642-12813-4. (Cited
on page 276.)

[6] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst.
Towards robust conformance checking. In zur Muehlen and Su [539],
pages 122–133. ISBN 978-3-642-20510-1. (Cited on pages 254 and 275.)

[7] Arya Adriansyah, Natalia Sidorova, and Boudewijn F. van Dongen. Cost-
based fitness in conformance checking. In Proceedings of the 11th Inter-
national Conference on Application of Concurrency to System Design (ACSD
2011), 2011. To appear. (Cited on page 275.)

[8] Pär J. Ågerfalk and Owen Eriksson. Action-oriented conceptual model-
ling. EJIS, 13(1):80–92, 2004. (Cited on page 48.)

[9] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In Jorge B. Bocca, Matthias Jarke,
and Carlo Zaniolo, editors, VLDB, pages 487–499. Morgan Kaufmann,
1994. ISBN 1-55860-153-8. (Cited on page 268.)

[10] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining asso-
ciation rules between sets of items in large databases. In Peter Buneman
and Sushil Jajodia, editors, SIGMOD Conference, pages 207–216. ACM
Press, 1993. (Cited on page 268.)

[11] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining
process models from workflow logs. In Hans-Jörg Schek, Fèlix Saltor,
Isidro Ramos, and Gustavo Alonso, editors, EDBT, volume 1377 of Lec-
ture Notes in Computer Science, pages 469–483. Springer, 1998. ISBN 3-
540-64264-1. (Cited on pages 88, 248, and 275.)

[12] Gail-Joon Ahn and Ravi S. Sandhu. Role-based authorization constraints
specification. ACM Trans. Inf. Syst. Secur., 3(4):207–226, 2000. (Cited on
page 276.)

287

288 bibliography

[13] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.
ISBN 0-13-914556-7. (Cited on page 99.)

[14] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science.
Computer Science Press, New York, W. Freeman and Company, 1995.
(Cited on page 4.)

[15] Marco Aiello, Mikio Aoyama, Francisco Curbera, and Mike P. Papazo-
glou, editors. Service-Oriented Computing - ICSOC 2004, Second Interna-
tional Conference, New York, NY, USA, November 15-19, 2004, Proceedings,
2004. ACM. ISBN 1-58113-871-7. (Cited on pages 298 and 302.)

[16] Manoli Albert, Javier Muñoz, Vicente Pelechano, and Oscar Pastor.
Model to text transformation in practice: Generating code from rich
associations specifications. In John F. Roddick, V. Richard Benjamins,
Samira Si-Said Cherfi, Roger H. L. Chiang, Christophe Claramunt,
Ramez Elmasri, Fabio Grandi, Hyoil Han, Martin Hepp, Miltiadis D.
Lytras, Vojislav B. Misic, Geert Poels, Il-Yeol Song, Juan Trujillo, and
Christelle Vangenot, editors, ER (Workshops), volume 4231 of Lecture
Notes in Computer Science, pages 63–72. Springer, 2006. ISBN 3-540-47703-
9. (Cited on page 60.)

[17] Alexandre Alves et al. Web Services Business Process Execution Lan-
guage Version 2.0. Technical report, OASIS, January 2007. URL
www.oasis-open.org/committees/wsbpel/. (Cited on page 24.)

[18] Thomas Allweyer. BPMN 2.0: Introduction to the Standard for Business
Process Modeling. Books on Demand, 2010. (Cited on page 19.)

[19] Gustavo Alonso, Peter Dadam, and Michael Rosemann, editors. Busi-
ness Process Management, 5th International Conference, BPM 2007, Brisbane,
Australia, September 24-28, 2007, Proceedings, volume 4714 of Lecture Notes
in Computer Science, 2007. Springer. ISBN 978-3-540-75182-3. (Cited on
pages 290, 291, 301, 306, 308, 310, 316, and 325.)

[20] Stephen Alstrup, Dov Harel, Peter W. Lauridsen, and Mikkel Thorup.
Dominators in linear time. SIAM J. Comput., 28(6):2117–2132, 1999.
(Cited on page 103.)

[21] Birger Andersson, Maria Bergholtz, Ananda Edirisuriya, Tharaka
Ilayperuma, and Paul Johannesson. A declarative foundation of process
models. In Pastor and e Cunha [345], pages 233–247. ISBN 3-540-26095-1.
(Cited on pages 49, 155, 172, and 176.)

[22] Birger Andersson, Maria Bergholtz, Bertrand Grégoire, Paul Johan-
nesson, Michael Schmitt, and Jelena Zdravkovic. From business to pro-
cess models - a chaining methodology. In Pigneur and Woo [355]. (Cited
on page 49.)

[23] Birger Andersson, Paul Johannesson, and Jelena Zdravkovic. Aligning
goals and services through goal and business modelling. Inf. Syst. E-
Business Management, 7(2):143–169, 2009. (Cited on pages 42 and 49.)

[24] Danilo Ardagna, Massimo Mecella, and Jian Yang, editors. Business Pro-
cess Management Workshops, BPM 2008 International Workshops, Milano,
Italy, September 1-4, 2008. Revised Papers, volume 17 of Lecture Notes in
Business Information Processing, 2009. Springer. ISBN 978-3-642-00327-1.
(Cited on pages 293 and 301.)

www.oasis-open.org/committees/wsbpel/

bibliography 289

[25] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance
checking using BPMN-Q and temporal logic. In Dumas et al. [135],
pages 326–341. ISBN 978-3-540-85757-0. (Cited on page 42.)

[26] Ahmed Awad, Gero Decker, and Niels Lohmann. Diagnosing and re-
pairing data anomalies in process models. In Rinderle-Ma et al. [385],
pages 5–16. ISBN 978-3-642-12185-2. (Cited on pages 35 and 286.)

[27] Ahmed Awad, Matthias Weidlich, and Mathias Weske. Visually spe-
cifying compliance rules and explaining their violations for business
processes. J. Vis. Lang. Comput., 22(1):30–55, 2011. (Cited on pages 8

and 42.)

[28] Felix Bachmann and Leonard J. Bass. Managing variability in software
architectures. In SSR, pages 126–132, 2001. (Cited on page 245.)

[29] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. ACM Press, Addison-Wesley, New York, 1999. (Cited on
page 65.)

[30] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008. ISBN 978-0-262-02649-9. (Cited on page 152.)

[31] Wasana Bandara, Guy G. Gable, and Michael Rosemann. Factors and
measures of business process modelling: model building through a mul-
tiple case study. EJIS, 14(4):347–360, 2005. (Cited on pages 9 and 47.)

[32] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE Trans. Software
Eng., 22(10):751–761, 1996. (Cited on page 163.)

[33] Twan Basten and Wil M. P. van der Aalst. Inheritance of behavior. J. Log.
Algebr. Program., 47(2):47–145, 2001. (Cited on pages 152, 172, 191, 192,
218, 244, and 286.)

[34] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A compar-
ative analysis of methodologies for database schema integration. ACM
Comput. Surv., 18(4):323–364, 1986. (Cited on pages 6 and 47.)

[35] Don S. Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder.
Achieving extensibility through product-lines and domain-specific lan-
guages: A case study. ACM Trans. Softw. Eng. Methodol., 11(2):191–214,
2002. (Cited on page 245.)

[36] Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. IEEE Trans. Software Eng., 30(6):355–371, 2004. (Cited
on page 246.)

[37] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of
triconnected components with spqr-trees. Algorithmica, 15(4):302–318,
1996. (Cited on pages 109 and 116.)

[38] Jörg Becker, Michael Rosemann, and Christoph von Uthmann.
Guidelines of business process modeling. In van der Aalst et al. [453],
pages 30–49. ISBN 3-540-67454-3. (Cited on page 50.)

[39] Jörg Becker, Patrick Delfmann, Sebastian Herwig, Lukasz Lis, and
Armin Stein. Formalizing linguistic conventions for conceptual mod-
els. In Laender et al. [260], pages 70–83. ISBN 978-3-642-04839-5. (Cited
on page 48.)

290 bibliography

[40] Jörg Becker, Martin Kugeler, and Michael Rosemann, editors. Process
Management: A Guide for the Design of Business Processes. Springer, Berlin,
2003. (Cited on pages 5, 6, and 17.)

[41] Jörg Becker, Patrick Delfmann, and Ralf Knackstedt. Adaptive reference
modeling: Integrating configurative and generic adaptation techniques
for information models. In Jörg Becker and Patrick Delfmann, editors,
Reference Modeling, pages 27–58. Physica-Verlag HD, 2007. ISBN 978-3-
7908-1966-3. URL http://dx.doi.org/10.1007/978-3-7908-1966-3_2.
(Cited on page 246.)

[42] Zohra Bellahsene and Michel Léonard, editors. Advanced Information
Systems Engineering, 20th International Conference, CAiSE 2008, Montpel-
lier, France, June 16-20, 2008, Proceedings, volume 5074 of Lecture Notes
in Computer Science, 2008. Springer. ISBN 978-3-540-69533-2. (Cited on
pages 322 and 327.)

[43] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Representing,
analysing and managing web service protocols. Data Knowl. Eng., 58(3):
327–357, 2006. (Cited on page 177.)

[44] Massimo Benerecetti, Paolo Bouquet, and Chiara Ghidini. On the dimen-
sions of context dependence: Partiality, approximation, and perspective.
In Varol Akman, Paolo Bouquet, Richmond H. Thomason, and Roger A.
Young, editors, CONTEXT, volume 2116 of Lecture Notes in Computer
Science, pages 59–72. Springer, 2001. ISBN 3-540-42379-6. (Cited on
page 48.)

[45] Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser.
Process mining based on regions of languages. In Alonso et al. [19],
pages 375–383. ISBN 978-3-540-75182-3. (Cited on page 249.)

[46] Maria Bergholtz and Paul Johannesson. Classifying the semantics of
relationships in conceptual modeling by categorization of roles. In
Ana María Moreno and Reind P. van de Riet, editors, NLDB, volume 3

of LNI, pages 199–203. GI, 2001. ISBN 3-88579-332-6. (Cited on page 48.)

[47] Abraham Bernstein and Mark Klein. Towards high-precision service
retrieval. In Horrocks and Hendler [215], pages 84–101. ISBN 3-540-
43760-6. (Cited on page 51.)

[48] Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. The specifica-
tion and enforcement of authorization constraints in workflow manage-
ment systems. ACM Trans. Inf. Syst. Secur., 2(1):65–104, 1999. (Cited on
page 276.)

[49] Eike Best. Structure theory of Petri nets: The free choice hiatus. In Brauer
et al. [63], pages 168–205. ISBN 3-540-17905-4. (Cited on page 33.)

[50] Eike Best and Raymond R. Devillers. Sequential and concurrent beha-
viour in Petri net theory. Theor. Comput. Sci., 55(1):87–136, 1987. (Cited
on page 86.)

[51] Eike Best, Raymond R. Devillers, Astrid Kiehn, and Lucia Pomello. Con-
current bisimulations in Petri nets. Acta Inf., 28(3):231–264, 1991. (Cited
on page 230.)

[52] Jean Bézivin. On the unification power of models. Software and System
Modeling, 4(2):171–188, 2005. (Cited on page 4.)

http://dx.doi.org/10.1007/978-3-7908-1966-3_2

bibliography 291

[53] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the
OMG/MDA framework. In ASE, pages 273–280. IEEE Computer Society,
2001. ISBN 0-7695-1426-X. (Cited on page 4.)

[54] Kamal Bhattacharya, Richard Hull, and Jianwen Su. Handbook of Re-
search on Business Process Modeling, chapter A data-centric design meth-
odology for business processes, pages 503–531. Idea Group Reference,
2009. (Cited on pages 11 and 18.)

[55] Ralph Bobrik, Manfred Reichert, and Thomas Bauer. View-based pro-
cess visualization. In Alonso et al. [19], pages 88–95. ISBN 978-3-540-
75182-3. (Cited on page 176.)

[56] Eerke A. Boiten, Howard Bowman, John Derrick, Peter F. Linington, and
Maarten Steen. Viewpoint consistency in odp. Computer Networks, 34(3):
503–537, 2000. (Cited on page 176.)

[57] Egon Börger and Bernhard Thalheim. Modeling workflows, interac-
tion patterns, web services and business processes: The ASM-based
approach. In Egon Börger, Michael J. Butler, Jonathan P. Bowen, and
Paul Boca, editors, ABZ, volume 5238 of Lecture Notes in Computer Sci-
ence, pages 24–38. Springer, 2008. ISBN 978-3-540-87602-1. (Cited on
page 19.)

[58] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. An ASM se-
mantics for UML activity diagrams. In Teodor Rus, editor, AMAST,
volume 1816 of Lecture Notes in Computer Science, pages 293–308.
Springer, 2000. ISBN 3-540-67530-2. (Cited on page 23.)

[59] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Trace align-
ment in process mining: Opportunities for process diagnostics. In Hull
et al. [217], pages 227–242. ISBN 978-3-642-15617-5. (Cited on page 276.)

[60] Athman Bouguettaya, Ingolf Krüger, and Tiziana Margaria, editors.
Service-Oriented Computing - ICSOC 2008, 6th International Conference,
Sydney, Australia, December 1-5, 2008. Proceedings, volume 5364 of Lec-
ture Notes in Computer Science, 2008. ISBN 978-3-540-89647-0. (Cited on
pages 322 and 326.)

[61] Howard Bowman, Maarten Steen, Eerke A. Boiten, and John Derrick. A
formal framework for viewpoint consistency. Formal Methods in System
Design, 21(2):111–166, 2002. (Cited on page 176.)

[62] George E. P. Box. Robustness in the strategy of scientific model building.
In Robustness in Statistics: Proceedings of a Workshop, New York, 1979.
Academic Press. (Cited on page 3.)

[63] Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors.
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
Part I, Proceedings of an Advanced Course, Bad Honnef, 8.-19. September 1986,
volume 254 of Lecture Notes in Computer Science, 1987. Springer. ISBN 3-
540-17905-4. (Cited on pages 290 and 303.)

[64] Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of beha-
viour and equivalence preserving refinements of Petri nets. In Rozen-
berg [394], pages 1–46. ISBN 3-540-53863-1. (Cited on page 152.)

[65] Mario Bravetti and Tevfik Bultan, editors. Web Services and Formal Meth-
ods - 7th International Workshop, WS-FM 2010, Hoboken, NJ, USA, Septem-
ber 16-17, 2010. Revised Selected Papers, volume 6551 of Lecture Notes in
Computer Science, 2011. Springer. ISBN 978-3-642-19588-4. (Cited on
pages 313 and 324.)

292 bibliography

[66] Mario Bravetti, Manuel Núñez, and Gianluigi Zavattaro, editors. Web
Services and Formal Methods, Third International Workshop, WS-FM 2006
Vienna, Austria, September 8-9, 2006, Proceedings, volume 4184 of Lecture
Notes in Computer Science, 2006. Springer. ISBN 3-540-38862-1. (Cited on
pages 295, 320, and 326.)

[67] Eric Brill. A simple rule-based part of speech tagger. In ANLP, pages
152–155, 1992. (Cited on page 50.)

[68] Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis,
and Rudi Studer. Semantic alignment of business processes. In Yan-
nis Manolopoulos, Joaquim Filipe, Panos Constantopoulos, and José
Cordeiro, editors, ICEIS (3), pages 191–196, 2006. ISBN 972-8865-41-4.
(Cited on page 51.)

[69] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Charac-
terizing finite Kripke structures in propositional temporal logic. Theor.
Comput. Sci., 59:115–131, 1988. (Cited on pages 152 and 153.)

[70] Janis A. Bubenko Jr. and Benkt Wangler. Objective driven capture of
business rules and of information systems requirements. In Proceedings
of the IEEE Systems Man and Cybernetics ’93 Conference, pages 670–677, Le
Touquet, France, October 1993. (Cited on pages 3, 7, 49, and 163.)

[71] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery West-
brook. A new, simpler linear-time dominators algorithm. ACM Trans.
Program. Lang. Syst., 20(6):1265–1296, 1998. (Cited on page 103.)

[72] Alexander Budanitsky and Graeme Hirst. Evaluating WordNet-based
measures of lexical semantic relatedness. Computational Linguistics, 32

(1):13–47, 2006. (Cited on page 50.)

[73] Horst Bunke. On a relation between graph edit distance and max-
imum common subgraph. Pattern Recognition Letters, 18(8):689–694, 1997.
(Cited on page 51.)

[74] Horst Bunke. Graph matching: Theoretical foundations, algorithms, and
applications. In Proceedings of the International Conference on Vision In-
terface, pages 82–88, Montreal, Quebec, Canada, May 2000. (Cited on
pages 51 and 64.)

[75] Horst Bunke and Gudrun Allermann. Inexact graph matching for
structural pattern recognition. Pattern Recognition Letters, 1(4):245 – 253,
1983. ISSN 0167-8655. URL http://www.sciencedirect.com/science/

article/B6V15-48MPV00-1K/2/6f816d072c71e50b1a80858a8b488463.
(Cited on pages 51 and 64.)

[76] J. F. M. Burg and Reind P. van de Riet. The impact of linguistics on con-
ceptual models: Consistency and understandability. Data Knowl. Eng.,
21(2):131–146, 1997. (Cited on page 48.)

[77] Andrew Burton-Jones, Yair Wand, and Ron Weber. Guidelines for em-
pirical evaluations of conceptual modeling grammars. J. AIS, 10(6), 2009.
(Cited on page 164.)

[78] Christoph Bussler. B2B Integration: Concepts and Architecture. Springer,
2003. (Cited on page 8.)

[79] Carlos Canal, Ernesto Pimentel, and José M. Troya. Compatibility and
inheritance in software architectures. Sci. Comput. Program., 41(2):105–
138, 2001. (Cited on page 177.)

http://www.sciencedirect.com/science/article/B6V15-48MPV00-1K/2/6f816d072c71e50b1a80858a8b488463
http://www.sciencedirect.com/science/article/B6V15-48MPV00-1K/2/6f816d072c71e50b1a80858a8b488463

bibliography 293

[80] S. N. Cant, D. R. Jeffery, and B. Henderson-Sellers. A conceptual model
of cognitive complexity of elements of the programming process. Inform-
ation and Software Technology, 37(7):351–362, 1995. (Cited on page 209.)

[81] Jorge Cardoso. Business process control-flow complexity: Metric, evalu-
ation, and validation. Int. J. Web Service Res., 5(2):49–76, 2008. (Cited on
page 210.)

[82] Jorge Cardoso, Jan Mendling, Gustaf Neumann, and Hajo A. Reijers. A
discourse on complexity of process models. In Eder and Dustdar [139],
pages 117–128. ISBN 3-540-38444-8. (Cited on page 209.)

[83] Josep Carmona, Jordi Cortadella, and Michael Kishinevsky. New region-
based algorithms for deriving bounded Petri nets. IEEE Trans. Computers,
59(3):371–384, 2010. (Cited on page 249.)

[84] Les Carr, David De Roure, Arun Iyengar, Carole A. Goble, and Michael
Dahlin, editors. Proceedings of the 15th international conference on World
Wide Web, WWW 2006, Edinburgh, Scotland, UK, May 23-26, 2006, 2006.
ACM. ISBN 1-59593-323-9. (Cited on pages 303 and 314.)

[85] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology
mapping. SIGMOD Record, 35(3):34–41, 2006. (Cited on pages 42 and 47.)

[86] María Agustina Cibrán. Translating BPMN models into UML activities.
In Ardagna et al. [24], pages 236–247. ISBN 978-3-642-00327-1. (Cited
on pages 24 and 47.)

[87] Marcus Ciolkowski, Oliver Laitenberger, Sira Vegas, and Stefan Biffl.
Practical experiences in the design and conduct of surveys in empirical
software engineering. In Reidar Conradi and Alf Inge Wang, editors, ES-
ERNET, volume 2765 of Lecture Notes in Computer Science, pages 104–128.
Springer, 2003. ISBN 3-540-40672-7. (Cited on page 165.)

[88] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg.
A comparison of string distance metrics for name-matching tasks. In
Subbarao Kambhampati and Craig A. Knoblock, editors, IIWeb, pages
73–78, 2003. (Cited on page 50.)

[89] David Cohn and Richard Hull. Business artifacts: A data-centric ap-
proach to modeling business operations and processes. IEEE Data Eng.
Bull., 32(3):3–9, 2009. (Cited on pages 11 and 18.)

[90] Carlo Combi and Roberto Posenato. Controllability in temporal con-
ceptual workflow schemata. In Dayal et al. [103], pages 64–79. ISBN
978-3-642-03847-1. (Cited on page 230.)

[91] Juan Carlos Corrales, Daniela Grigori, and Mokrane Bouzeghoub. BPEL
processes matchmaking for service discovery. In Meersman and Tari
[306], pages 237–254. ISBN 3-540-48287-3. (Cited on pages 50, 51, 52, 53,
and 54.)

[92] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre
Yakovlev. Deriving Petri nets for finite transition systems. IEEE Trans.
Computers, 47(8):859–882, 1998. (Cited on page 249.)

[93] Jordi Cortadella, Alexandre Yakovlev, and Grzegorz Rozenberg, editors.
Concurrency and Hardware Design, Advances in Petri Nets, volume 2549

of Lecture Notes in Computer Science, 2002. Springer. ISBN 3-540-00199-9.
(Cited on page 28.)

294 bibliography

[94] Jason Crampton and Hemanth Khambhammettu. Delegation and satis-
fiability in workflow systems. In Indrakshi Ray and Ninghui Li, editors,
SACMAT, pages 31–40. ACM, 2008. ISBN 978-1-60558-129-3. (Cited on
page 276.)

[95] Thomas A. Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 Business
Blueprint: Understanding the Business Process Reference Model. Prentice
Hall, 1997. (Cited on pages 135, 190, and 241.)

[96] Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to mod-
els: A template approach based on superimposed variants. In Robert
Glück and Michael R. Lowry, editors, GPCE, volume 3676 of Lecture
Notes in Computer Science, pages 422–437. Springer, 2005. ISBN 3-540-
29138-5. (Cited on page 246.)

[97] Peter Dadam and Manfred Reichert. The ADEPT project: a decade of
research and development for robust and flexible process support. Com-
puter Science - R&D, 23(2):81–97, 2009. (Cited on pages 144, 213, and 245.)

[98] Maya Daneva, Ralf Heib, and August-Wilhelm Scheer. Benchmarking
business process models. Technical report, IWi Report 136, Saarland
University, 1996. (Cited on page 210.)

[99] Anindya Datta. Automating the discovery of as-is business process mod-
els: Probabilistic and algorithmic approaches. Information Systems Re-
search, 9(3):275–301, 1998. (Cited on pages 88, 248, and 275.)

[100] Thomas H. Davenport. Process Innovation: Reengineering Work Through
Information Technology. Harvard Business, 1992. (Cited on pages 3, 5, 7,
and 49.)

[101] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2nd edition, 2002. (Cited on page 75.)

[102] Islay Davies, Peter F. Green, Michael Rosemann, Marta Indulska, and
Stan Gallo. How do practitioners use conceptual modeling in practice?
Data Knowl. Eng., 58(3):358–380, 2006. (Cited on pages 11 and 18.)

[103] Umeshwar Dayal, Johann Eder, Jana Koehler, and Hajo A. Reijers, edit-
ors. Business Process Management, 7th International Conference, BPM 2009,
Ulm, Germany, September 8-10, 2009. Proceedings, volume 5701 of Lecture
Notes in Computer Science, 2009. Springer. ISBN 978-3-642-03847-1. (Cited
on pages 293, 296, 298, 303, 307, and 313.)

[104] Ana Karla A. de Medeiros, Wil M. P. van der Aalst, and A. J. M. M.
Weijters. Workflow mining: Current status and future directions. In
Meersman et al. [308], pages 389–406. ISBN 3-540-20498-9. (Cited on
pages 90 and 248.)

[105] Ana Karla A. de Medeiros, Boudewijn F. van Dongen, Wil M. P. van der
Aalst, and A. J. M. M. Weijters. Process mining for ubiquitous mobile
systems: An overview and a concrete algorithm. In Luciano Baresi,
Schahram Dustdar, Harald Gall, and Maristella Matera, editors, UM-
ICS, volume 3272 of Lecture Notes in Computer Science, pages 151–165.
Springer, 2004. ISBN 3-540-24100-0. (Cited on pages 90 and 248.)

[106] Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der
Aalst. Genetic process mining: an experimental evaluation. Data Min.
Knowl. Discov., 14(2):245–304, 2007. (Cited on pages 90, 144, 211, 248,
and 250.)

bibliography 295

[107] Ana Karla Alves de Medeiros, Wil M. P. van der Aalst, and A. J. M. M.
Weijters. Quantifying process equivalence based on observed behavior.
Data Knowl. Eng., 64(1):55–74, 2008. (Cited on pages 181, 211, 254, 272,
and 275.)

[108] Rina Dechter and Judea Pearl. Generalized best-first search strategies
and the optimality of A*. J. ACM, 32(3):505–536, 1985. (Cited on pages 63

and 203.)

[109] Gero Decker and Jan Mendling. Process instantiation. Data Knowl. Eng.,
68(9):777–792, 2009. (Cited on pages 22, 37, 136, and 143.)

[110] Gero Decker and Mathias Weske. Behavioral consistency for B2B process
integration. In Krogstie et al. [249], pages 81–95. ISBN 978-3-540-72987-7.
(Cited on page 177.)

[111] Gero Decker and Mathias Weske. Instance isolation analysis for service-
oriented architectures. In IEEE SCC (1), pages 249–256. IEEE Computer
Society, 2008. ISBN 978-0-7695-3283-7. (Cited on page 39.)

[112] Gero Decker and Mathias Weske. Interaction-centric modeling of pro-
cess choreographies. Inf. Syst., 36(2):292–312, 2011. (Cited on pages 88

and 177.)

[113] Gero Decker, Johannes Maria Zaha, and Marlon Dumas. Execution se-
mantics for service choreographies. In Bravetti et al. [66], pages 163–177.
ISBN 3-540-38862-1. (Cited on page 88.)

[114] Gero Decker, Willi Tscheschner, and Jörg Puchan. Migration von EPK
zu BPMN. In Markus Nüttgens, Frank J. Rump, Jan Mendling, and Nick
Gehrke, editors, GI-Workshop Geschäftsprozessmanagement mit Ereignis-
gesteuerten Prozessketten (EPK), volume 554 of WS-CEUR, pages 91–109,
Berlin, Germany, November 2009. In German. (Cited on pages 22

and 47.)

[115] Ken Decreus, Monique Snoeck, and Geert Poels. Practical challenges for
methods transforming i* goal models into business process models. In
RE, pages 15–23. IEEE Computer Society, 2009. ISBN 978-0-7695-3761-0.
(Cited on page 49.)

[116] Juliane Dehnert and Wil M. P. van der Aalst. Bridging the gap between
business models and workflow specifications. Int. J. Cooperative Inf. Syst.,
13(3):289–332, 2004. (Cited on pages 22, 35, 38, and 175.)

[117] Lois M. L. Delcambre, Christian Kop, Heinrich C. Mayr, John Mylo-
poulos, and Oscar Pastor, editors. Conceptual Modeling - ER 2005, 24th In-
ternational Conference on Conceptual Modeling, Klagenfurt, Austria, October
24-28, 2005, Proceedings, volume 3716 of Lecture Notes in Computer Science,
2005. Springer. ISBN 3-540-29389-2. (Cited on pages 316 and 325.)

[118] Zsófia Derzsi and Jaap Gordijn. A framework for business/IT alignment
in networked value constellations. In Pigneur and Woo [355]. (Cited on
page 49.)

[119] Jörg Desel and Javier Esparza. Free-Choice Petri Nets. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1995. (Cited
on pages 28, 33, and 35.)

[120] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, and
Pedro Domingos. iMAP: Discovering complex mappings between data-
base schemas. In Gerhard Weikum, Arnd Christian König, and Stefan
Deßloch, editors, SIGMOD Conference, pages 383–394. ACM, 2004. ISBN
1-58113-859-8. (Cited on pages 54 and 57.)

296 bibliography

[121] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces.
World Scientific, Singapore, 1995. (Cited on page 32.)

[122] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathem-
atics. Springer, 1997. (Cited on page 58.)

[123] Remco M. Dijkman. A classification of differences between similar busi-
ness processes. In EDOC, pages 37–50. IEEE Computer Society, 2007.
(Cited on pages 49, 51, 54, 166, 174, and 212.)

[124] Remco M. Dijkman. Diagnosing differences between business process
models. In Dumas et al. [135], pages 261–277. ISBN 978-3-540-85757-0.
(Cited on page 212.)

[125] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and
analysis of business process models in BPMN. Information & Software
Technology, 50(12):1281–1294, 2008. (Cited on pages 19, 35, and 37.)

[126] Remco M. Dijkman, Dick A. C. Quartel, and Marten van Sinderen.
Consistency in multi-viewpoint design of enterprise information sys-
tems. Information & Software Technology, 50(7-8):737–752, 2008. (Cited
on page 176.)

[127] Remco M. Dijkman, Marlon Dumas, and Luciano García-Bañuelos.
Graph matching algorithms for business process model similarity search.
In Dayal et al. [103], pages 48–63. ISBN 978-3-642-03847-1. (Cited on
pages 50, 52, 63, and 64.)

[128] Remco M. Dijkman, Marlon Dumas, Luciano García-Bañuelos, and Re-
ina Käärik. Aligning business process models. In EDOC, pages 45–
53. IEEE Computer Society, 2009. ISBN 978-0-7695-3785-6. (Cited on
pages 52, 64, 66, and 67.)

[129] Remco M. Dijkman, Marlon Dumas, Boudewijn F. van Dongen, Reina
Käärik, and Jan Mendling. Similarity of business process models: Met-
rics and evaluation. Inf. Syst., 36(2):498–516, 2011. (Cited on pages 50,
51, and 52.)

[130] Hong Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema
matching evaluations. In Akmal B. Chaudhri, Mario Jeckle, Erhard
Rahm, and Rainer Unland, editors, Web, Web-Services, and Database Sys-
tems, volume 2593 of Lecture Notes in Computer Science, pages 221–237.
Springer, 2002. ISBN 3-540-00745-8. (Cited on page 66.)

[131] AnHai Doan and Alon Y. Halevy. Semantic integration research in the
database community: A brief survey. AI Magazine, 26(1):83–94, 2005.
(Cited on pages 42 and 47.)

[132] Yurdaer N. Doganata and Francisco Curbera. Effect of using automated
auditing tools on detecting compliance failures in unmanaged processes.
In Dayal et al. [103], pages 310–326. ISBN 978-3-642-03847-1. (Cited on
page 42.)

[133] Eric Dubois and Klaus Pohl, editors. Advanced Information Systems Engin-
eering, 18th International Conference, CAiSE 2006, Luxembourg, Luxembourg,
June 5-9, 2006, Proceedings, volume 4001 of Lecture Notes in Computer Sci-
ence, 2006. Springer. ISBN 3-540-34652-X. (Cited on pages 312 and 316.)

[134] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede, ed-
itors. Process-Aware Information Systems: Bridging People and Software
Through Process Technology. John Wiley & Sons, 2005. (Cited on page 7.)

bibliography 297

[135] Marlon Dumas, Manfred Reichert, and Ming-Chien Shan, editors. Busi-
ness Process Management, 6th International Conference, BPM 2008, Milan,
Italy, September 2-4, 2008. Proceedings, volume 5240 of Lecture Notes in
Computer Science, 2008. Springer. ISBN 978-3-540-85757-0. (Cited on
pages 289, 296, 300, and 305.)

[136] Marlon Dumas, Luciano García-Bañuelos, and Remco M. Dijkman. Sim-
ilarity search of business process models. IEEE Data Eng. Bull., 32(3):
23–28, 2009. (Cited on pages 50, 53, 181, and 211.)

[137] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In ICSE, pages 411–
420, 1999. (Cited on page 79.)

[138] Jürgen Ebert and Gregor Engels. Observable or invocable behaviour -
you have to choose! Technical report, University of Koblenz, Germany,
1994. (Cited on pages 152, 218, and 244.)

[139] Johann Eder and Schahram Dustdar, editors. Business Process Man-
agement Workshops, BPM 2006 International Workshops, BPD, BPI, ENEI,
GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7, 2006, Proceed-
ings, volume 4103 of Lecture Notes in Computer Science, 2006. Springer.
ISBN 3-540-38444-8. (Cited on pages 293, 300, 304, and 310.)

[140] Henk Eertink, Wil Janssen, Paul Oude Luttighuis, Wouter B. Teeuw, and
Chris A. Vissers. A business process design language. In Jeannette M.
Wing, Jim Woodcock, and Jim Davies, editors, World Congress on Formal
Methods, volume 1708 of Lecture Notes in Computer Science, pages 76–95.
Springer, 1999. ISBN 3-540-66587-0. (Cited on page 88.)

[141] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-structures.
Part I: Basic notions and the representation problem, Part II: State spaces
of concurrent systems. Acta Inf., 27(4):315–368, 1989. (Cited on page 249.)

[142] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis. Measuring sim-
ilarity between semantic business process models. In John F. Roddick
and Annika Hinze, editors, APCCM, volume 67 of CRPIT, pages 71–
80. Australian Computer Society, 2007. ISBN 1-920-68248-1. (Cited on
pages 50 and 51.)

[143] Hans-Erik Eriksson and Magnus Penker. Business Modelling with UML:
Business Patterns at Work. John Wiley & Sons, 2000. (Cited on page 23.)

[144] Rik Eshuis and Paul W. P. J. Grefen. Structural matching of BPEL pro-
cesses. In ECOWS, pages 171–180. IEEE Computer Society, 2007. (Cited
on pages 50, 53, 87, and 144.)

[145] Rik Eshuis and Paul W. P. J. Grefen. Constructing customized process
views. Data Knowl. Eng., 64(2):419–438, 2008. (Cited on page 176.)

[146] Rik Eshuis and Roel Wieringa. A real-time execution semantics for UML
activity diagrams. In Heinrich Hußmann, editor, FASE, volume 2029 of
Lecture Notes in Computer Science, pages 76–90. Springer, 2001. ISBN 3-
540-41863-6. (Cited on page 23.)

[147] Javier Esparza. A polynomial-time algorithm for checking consistency
of free-choice signal transition graphs. Fundam. Inform., 62(2):197–220,
2004. (Cited on page 97.)

[148] Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL
model checking. In Ugo Montanari, José D. P. Rolim, and Emo Welzl,
editors, ICALP, volume 1853 of Lecture Notes in Computer Science, pages
475–486. Springer, 2000. ISBN 3-540-67715-1. (Cited on page 145.)

298 bibliography

[149] Javier Esparza and Keijo Heljanko. Unfoldings: A Partial-Order Approach
to Model Checking. Springer Berlin, 2008. (Cited on pages 118, 119, 120,
140, and 145.)

[150] Javier Esparza and Manuel Silva. Circuits, handles, bridges and nets.
In Rozenberg [394], pages 210–242. ISBN 3-540-53863-1. (Cited on
page 108.)

[151] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of
McMillan’s unfolding algorithm. Formal Methods in System Design, 20(3):
285–310, 2002. (Cited on pages 119, 120, 127, 134, and 140.)

[152] Sandro Etalle and William H. Winsborough. A posteriori compliance
control. In Volkmar Lotz and Bhavani M. Thuraisingham, editors,
SACMAT, pages 11–20. ACM, 2007. ISBN 978-1-59593-745-2. (Cited on
page 276.)

[153] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, Heidel-
berg (DE), 2007. ISBN 3-540-49611-4. (Cited on pages 42, 44, 46, 47, 48,
50, and 187.)

[154] Joerg Evermann. Theories of meaning in schema matching: An explor-
atory study. Inf. Syst., 34(1):28–44, 2009. (Cited on page 163.)

[155] Dirk Fahland and Wolfgang Reisig. ASM-based semantics for BPEL: The
negative control flow. In Abstract State Machines, pages 131–152, 2005.
(Cited on page 25.)

[156] Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels
Lohmann, Hagen Völzer, and Karsten Wolf. Instantaneous soundness
checking of industrial business process models. In Dayal et al. [103],
pages 278–293. ISBN 978-3-642-03847-1. (Cited on page 139.)

[157] Shaokun Fan, Wan-Chun Dou, and Jinjun Chen. Dual workflow nets:
Mixed control/data-flow representation for workflow modeling and
verification. In Kevin Chen-Chuan Chang, Wei Wang, Lei Chen 0002,
Clarence A. Ellis, Ching-Hsien Hsu, Ah Chung Tsoi, and Haixun Wang,
editors, APWeb/WAIM Workshops, volume 4537 of Lecture Notes in Com-
puter Science, pages 433–444. Springer, 2007. ISBN 978-3-540-72908-2.
(Cited on pages 36 and 286.)

[158] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. Specification
and validation of the business process execution language for web ser-
vices. In Wolf Zimmermann and Bernhard Thalheim, editors, Abstract
State Machines, volume 3052 of Lecture Notes in Computer Science, pages
78–94. Springer, 2004. ISBN 3-540-22094-1. (Cited on page 25.)

[159] David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A role-based
access control model and reference implementation within a corpor-
ate intranet. ACM Trans. Inf. Syst. Secur., 2(1):34–64, 1999. (Cited on
page 276.)

[160] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn,
and Ramaswamy Chandramouli. Proposed NIST standard for role-
based access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.
(Cited on page 276.)

[161] Andrea Ferrara. Web services: a process algebra approach. In Aiello
et al. [15], pages 242–251. ISBN 1-58113-871-7. (Cited on page 25.)

bibliography 299

[162] Christian Fillies, Gay Wood-Albrecht, and Frauke Weichhardt. Prag-
matic applications of the semantic web using SemTalk. Computer Net-
works, 42(5):599–615, 2003. (Cited on page 48.)

[163] Anthony Finkelstein, Dov M. Gabbay, Anthony Hunter, Jeff Kramer, and
Bashar Nuseibeh. Inconsistency handling in multperspective specifica-
tions. IEEE Trans. Software Eng., 20(8):569–578, 1994. (Cited on pages 176

and 177.)

[164] Jakob Freund and Bernd Rücker. Praxishandbuch BPMN. Hanser Fach-
buchverlag, 2010. (Cited on page 19.)

[165] Michael Gaitanides. Prozessorganisation. Entwicklung, Ansätze und Pro-
gramme prozessorientierter Organisationsgestaltung. Vahlen, 1983. (Cited
on pages 3, 5, and 49.)

[166] Luciano García-Bañuelos. Pattern identification and classification in the
translation from BPMN to BPEL. In Meersman and Tari [307], pages
436–444. ISBN 978-3-540-88870-3. (Cited on pages 27 and 47.)

[167] Javier Andrade Garda, Juan Ares Casal, Rafael García Vázquez, Juan
Pazos, Santiago Rodríguez Yánez, and Andrés Silva. A methodological
framework for viewpoint-oriented conceptual modeling. IEEE Trans.
Software Eng., 30(5):282–294, 2004. (Cited on page 176.)

[168] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman and Company, 1979.
(Cited on page 51.)

[169] Dragan Gasevic, Giancarlo Guizzardi, Kuldar Taveter, and Gerd Wagner.
Vocabularies, ontologies, and rules for enterprise and business process
modeling and management. Inf. Syst., 35(4):375–378, 2010. (Cited on
page 48.)

[170] Michael Gelfond and Jorge Lobo. Authorization and obligation policies
in dynamic systems. In Maria Garcia de la Banda and Enrico Pontelli,
editors, ICLP, volume 5366 of Lecture Notes in Computer Science, pages
22–36. Springer, 2008. ISBN 978-3-540-89981-5. (Cited on page 276.)

[171] Christian Gerth, Jochen Malte Küster, and Gregor Engels. Language-
independent change management of process models. In Andy Schürr
and Bran Selic, editors, MoDELS, volume 5795 of Lecture Notes in Com-
puter Science, pages 152–166. Springer, 2009. ISBN 978-3-642-04424-3.
(Cited on page 212.)

[172] Christian Gierds and Jan Sürmeli, editors. 2nd Central-European Workshop
on Services and their Composition, Services und ihre Komposition, ZEUS 2010,
Berlin, Germany, February 25-26, 2010. Proceedings, volume 563 of CEUR
Workshop Proceedings, 2010. CEUR-WS.org. (Cited on page 323.)

[173] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an
algorithm and an implementation of semantic matching. In Christoph
Bussler, John Davies, Dieter Fensel, and Rudi Studer, editors, ESWS,
volume 3053 of Lecture Notes in Computer Science, pages 61–75. Springer,
2004. ISBN 3-540-21999-4. (Cited on page 50.)

[174] Christian W. Günther. Process Mining in Flexible Environments. PhD thesis,
Eindhoven University of Technology, 2009. (Cited on pages 264, 265,
and 266.)

300 bibliography

[175] Stijn Goedertier and Jan Vanthienen. Designing compliant business pro-
cesses with obligations and permissions. In Eder and Dustdar [139],
pages 5–14. ISBN 3-540-38444-8. (Cited on page 42.)

[176] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Ro-
bust process discovery with artificial negative events. Journal of Machine
Learning Research, 10:1305–1340, 2009. (Cited on pages 254 and 275.)

[177] Ursula Goltz and Wolfgang Reisig. The non-sequential behavior of Petri
nets. Information and Control, 57(2/3):125–147, 1983. (Cited on page 86.)

[178] Jaap Gordijn and Roel Wieringa. A value-oriented approach to e-
business process design. In Johann Eder and Michele Missikoff, editors,
CAiSE, volume 2681 of Lecture Notes in Computer Science, pages 390–403.
Springer, 2003. ISBN 3-540-40442-2. (Cited on page 49.)

[179] Jaap Gordijn, Eric Yu, and Bas van der Raadt. E-service design using
i* and e3value modeling. IEEE Software, 23(3):26–33, 2006. (Cited on
page 49.)

[180] Florian Gottschalk, Wil M. P. van der Aalst, and Monique H. Jansen-
Vullers. Merging event-driven process chains. In Meersman and Tari
[307], pages 418–426. ISBN 978-3-540-88870-3. (Cited on pages 218, 244,
and 247.)

[181] Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers,
and Marcello La Rosa. Configurable workflow models. Int. J. Cooperative
Inf. Syst., 17(2):177–221, 2008. (Cited on pages 217 and 246.)

[182] Gemma Grau, Xavier Franch, and Neil A. M. Maiden. Prim: An i*-based
process reengineering method for information systems specification. In-
formation & Software Technology, 50(1-2):76–100, 2008. (Cited on page 49.)

[183] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà.
Mining expressive process models by clustering workflow traces. In
Honghua Dai, Ramakrishnan Srikant, and Chengqi Zhang, editors,
PAKDD, volume 3056 of Lecture Notes in Computer Science, pages 52–62.
Springer, 2004. ISBN 3-540-22064-X. (Cited on pages 254 and 275.)

[184] Daniela Grigori, Juan Carlos Corrales, and Mokrane Bouzeghoub. Be-
havioral matchmaking for service retrieval: Application to conversation
protocols. Inf. Syst., 33(7-8):681–698, 2008. (Cited on pages 50 and 51.)

[185] Martin L. Griss. Implementing product-line features with component
reuse. In William B. Frakes, editor, ICSR, volume 1844 of Lecture Notes
in Computer Science, pages 137–152. Springer, 2000. ISBN 3-540-67696-1.
(Cited on page 245.)

[186] Varun Grover, Kirk D. Fiedler, and James Teng. Exploring the suc-
cess of information technology enabled business process reengineering.
IEEE Transactions on Engineering Management, 41(3):1–8, 1994. (Cited on
pages 3, 7, 49, and 163.)

[187] Thomas Gschwind, Jana Koehler, and Janette Wong. Applying patterns
during business process modeling. In Dumas et al. [135], pages 4–19.
ISBN 978-3-540-85757-0. (Cited on page 145.)

[188] Giancarlo Guizzardi, Heinrich Herre, and Gerd Wagner. On the general
ontological foundations of conceptual modeling. In Stefano Spaccapi-
etra, Salvatore T. March, and Yahiko Kambayashi, editors, ER, volume
2503 of Lecture Notes in Computer Science, pages 65–78. Springer, 2002.
ISBN 3-540-44277-4. (Cited on page 48.)

bibliography 301

[189] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy mining -
adaptive process simplification based on multi-perspective metrics. In
Alonso et al. [19], pages 328–343. ISBN 978-3-540-75182-3. (Cited on
page 248.)

[190] Carsten Gutwenger and Petra Mutzel. A linear time implementation of
SPQR-trees. In Joe Marks, editor, Graph Drawing, volume 1984 of Lecture
Notes in Computer Science, pages 77–90. Springer, 2000. ISBN 3-540-41554-
8. (Cited on pages 109 and 116.)

[191] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Issues in mod-
eling process variants with Provop. In Ardagna et al. [24], pages 56–67.
ISBN 978-3-642-00327-1. (Cited on page 246.)

[192] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Guaranteeing
soundness of configurable process variants in Provop. In Birgit Hofreiter
and Hannes Werthner, editors, CEC, pages 98–105. IEEE Computer Soci-
ety, 2009. ISBN 978-0-7695-3755-9. (Cited on page 247.)

[193] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Capturing vari-
ability in business process models: the Provop approach. Journal of Soft-
ware Maintenance, 22(6-7):519–546, 2010. (Cited on page 246.)

[194] Terry A. Halpin and Matthew Curland. Automated verbalization for
ORM 2. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors,
OTM Workshops (2), volume 4278 of Lecture Notes in Computer Science,
pages 1181–1190. Springer, 2006. ISBN 3-540-48273-3. (Cited on page 60.)

[195] Michael Hammer and James Champy. Reengineering the Corporation:
A Manifesto for Business Revolution. HarperBusiness, 1993. (Cited on
pages 3, 5, and 49.)

[196] Richard W. Hamming. Error detection and error correction codes. The
Bell System Technical Journal, XXVI(2):147–160, 1950. (Cited on page 50.)

[197] David Harel and Rami Marelly. Specifying and executing behavioral
requirements: the play-in/play-out approach. Software and System Mod-
eling, 2(2):82–107, 2003. (Cited on page 144.)

[198] David Harel and Amnon Naamad. The statemate semantics of state-
charts. ACM Trans. Softw. Eng. Methodol., 5(4):293–333, 1996. (Cited on
page 23.)

[199] David Harel and Bernhard Rumpe. Meaningful modeling: What’s the
semantics of ‘semantics’? IEEE Computer, 37(10):64–72, 2004. (Cited on
page 17.)

[200] Paul Harmon. Business Process Change: A Guide for Business Managers
and BPM and Six Sigma Professionals. Morgan Kaufman, 2007. (Cited on
page 7.)

[201] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968. (Cited on page 51.)

[202] Rainer Hauser and Jana Koehler. Compiling process graphs into execut-
able code. In Gabor Karsai and Eelco Visser, editors, GPCE, volume 3286

of Lecture Notes in Computer Science, pages 317–336. Springer, 2004. ISBN
3-540-23580-9. (Cited on pages 27 and 47.)

[203] Bin He and Kevin Chen-Chuan Chang. Automatic complex schema
matching across web query interfaces: A correlation mining approach.
ACM Trans. Database Syst., 31(1):346–395, 2006. (Cited on page 54.)

302 bibliography

[204] Keijo Heljanko. Deadlock and reachability checking with finite com-
plete prefixes. Research Report A56, Helsinki University of Technology,
Department of Computer Science and Engineering, Laboratory for The-
oretical Computer Science, Espoo, Finland, December 1999. (Cited on
pages 118 and 140.)

[205] John C. Henderson and N. Venkatraman. Strategic alignment: Lever-
aging information technology for transforming organizations. IBM Sys-
tems Journal, 38(2/3):472–484, 1999. (Cited on page 42.)

[206] Martin Henkel, Jelena Zdravkovic, and Paul Johannesson. Service-based
processes: design for business and technology. In Aiello et al. [15], pages
21–29. ISBN 1-58113-871-7. (Cited on pages 49, 54, 166, 174, and 176.)

[207] Sallie M. Henry and Dennis G. Kafura. Software structure metrics based
on information flow. IEEE Trans. Software Eng., 7(5):510–518, 1981. (Cited
on page 209.)

[208] Wolfgang Hesse. More matters on (meta-)modelling: remarks on
Thomas Kühne’s “matters”. Software and System Modeling, 5(4):387–394,
2006. (Cited on page 4.)

[209] Jan Hidders, Marlon Dumas, Wil M. P. van der Aalst, Arthur H. M.
ter Hofstede, and Jan Verelst. When are two workflows the same? In
Mike D. Atkinson and Frank K. H. A. Dehne, editors, CATS, volume 41

of CRPIT, pages 3–11. Australian Computer Society, 2005. ISBN 1-
920682-23-6. (Cited on pages 86 and 150.)

[210] Janelle B. Hill, Michele Cantara, Marc Kerremans, and Daryl C. Plum-
mer. Magic Quadrant for Business Process Management Suites. Tech-
nical report, Gartner Research, February 2009. (Cited on pages 11

and 18.)

[211] Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming
BPEL to Petri nets. In van der Aalst et al. [458], pages 220–235. ISBN
3-540-28238-6. (Cited on pages 25 and 35.)

[212] Tin Kam Ho. Stop word location and identification for adaptive text
recognition. IJDAR, 3(1):16–26, 2000. (Cited on pages 50 and 60.)

[213] Charles A. R. Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, 1978. (Cited on pages 85 and 172.)

[214] Thomas Hornung, Agnes Koschmider, and Georg Lausen. Recommend-
ation based process modeling support: Method and user experience.
In Li et al. [277], pages 265–278. ISBN 978-3-540-87876-6. (Cited on
pages 50, 51, and 60.)

[215] Ian Horrocks and James A. Hendler, editors. The Semantic Web - ISWC
2002, First International Semantic Web Conference, Sardinia, Italy, June 9-12,
2002, Proceedings, volume 2342 of Lecture Notes in Computer Science, 2002.
Springer. ISBN 3-540-43760-6. (Cited on pages 290 and 312.)

[216] Volker Hoyer, Eva Bucherer, and Florian Schnabel. Collaborative e-
business process modelling: Transforming private EPC to public BPMN
business process models. In ter Hofstede et al. [438], pages 185–196.
ISBN 978-3-540-78237-7. (Cited on pages 22 and 47.)

[217] Richard Hull, Jan Mendling, and Stefan Tai, editors. Business Pro-
cess Management - 8th International Conference, BPM 2010, Hoboken, NJ,
USA, September 13-16, 2010. Proceedings, volume 6336 of Lecture Notes
in Computer Science, 2010. Springer. ISBN 978-3-642-15617-5. (Cited on
pages 291, 313, 323, and 324.)

bibliography 303

[218] Marta Indulska, Peter F. Green, Jan Recker, and Michael Rosemann.
Business process modeling: Perceived benefits. In Laender et al. [260],
pages 458–471. ISBN 978-3-642-04839-5. (Cited on page 7.)

[219] Matthew A. Jaro. Advances in record linking methodology as applied
to the 1985 census of Tampa Florida. Journal of the American Statistical
Society, 84(406):414–20, 1989. (Cited on page 50.)

[220] Kurt Jensen. Coloured Petri nets. In Brauer et al. [63], pages 248–299.
ISBN 3-540-17905-4. (Cited on pages 35 and 286.)

[221] Kurt Jensen and Wil M. P. van der Aalst, editors. Transactions on Petri
Nets and Other Models of Concurrency II, Special Issue on Concurrency
in Process-Aware Information Systems, volume 5460 of Lecture Notes in
Computer Science, 2009. Springer. ISBN 978-3-642-00898-6. (Cited on
pages 307 and 314.)

[222] Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. Finding similar questions
in large question and answer archives. In Otthein Herzog, Hans-Jörg
Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried Teiken, editors,
CIKM, pages 84–90. ACM, 2005. ISBN 1-59593-140-6. (Cited on page 62.)

[223] Richard Johnson, David Pearson, and Keshav Pingali. The program
structure tree: Computing control regions in linear time. In PLDI, pages
171–185, 1994. (Cited on page 145.)

[224] Yannis Kalfoglou and W. Marco Schorlemmer. Ontology mapping: The
state of the art. In Yannis Kalfoglou, W. Marco Schorlemmer, Amit P.
Sheth, Steffen Staab, and Michael Uschold, editors, Semantic Interoperab-
ility and Integration, volume 04391 of Dagstuhl Seminar Proceedings. IBFI,
Schloss Dagstuhl, Germany, 2005. (Cited on page 42.)

[225] Stephen H. Kan. Metrics and models in software quality engineering.
Addison-Wesley, 1995. ISBN 978-0-201-63339-9. (Cited on page 209.)

[226] Dimitris Karagiannis, John Mylopoulos, and Margit Schwab. Business
process-based regulation compliance: The case of the Sarbanes-Oxley
Act. In RE, pages 315–321. IEEE, 2007. ISBN 0-7695-2935-6. (Cited on
page 42.)

[227] Roland Kaschek. A little theory of abstraction. In Bernhard Rumpe and
Wolfgang Hesse, editors, Modellierung, volume 45 of LNI, pages 75–92.
GI, 2004. (Cited on page 4.)

[228] Kathrin Kaschner and Karsten Wolf. Set algebra for service behavior:
Applications and constructions. In Dayal et al. [103], pages 193–210.
ISBN 978-3-642-03847-1. (Cited on page 245.)

[229] Raman Kazhamiakin, Marco Pistore, and Marco Roveri. A framework
for integrating business processes and business requirements. In EDOC,
pages 9–20. IEEE Computer Society, 2004. ISBN 0-7695-2214-9. (Cited
on page 49.)

[230] Raman Kazhamiakin, Marco Pistore, and Luca Santuari. Analysis of
communication models in web service compositions. In Carr et al. [84],
pages 267–276. ISBN 1-59593-323-9. (Cited on page 177.)

[231] Gerhard Keller, Markus Nüttgens, and August-Wilhelm Scheer.
Semantische Prozeßmodellierung auf der Grundlage ‘Ereignis-
gesteuerter Prozeßketten (EPK)’. Technical Report 89, Veröffent-
lichungen des Instituts für Wirtschaftsinformatik, Saarbrücken,

304 bibliography

1992. URL http://www.uni-saarland.de/fileadmin/user_upload/

Fachrichtungen/fr13_BWL/professuren/PDF/heft89.pdf. (Cited on
page 20.)

[232] Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev. Logic syn-
thesis for asynchronous circuits based on STG unfoldings and incre-
mental sat. Fundam. Inform., 70(1-2):49–73, 2006. (Cited on page 145.)

[233] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Christoph Bussler.
On structured workflow modelling. In Benkt Wangler and Lars Berg-
man, editors, CAiSE, volume 1789 of Lecture Notes in Computer Science,
pages 431–445. Springer, 2000. ISBN 3-540-67630-9. (Cited on page 230.)

[234] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Wil M. P. van der
Aalst. Fundamentals of control flow in workflows. Acta Inf., 39(3):143–
209, 2003. (Cited on pages 86, 94, 96, 97, and 116.)

[235] Won Kim and Jungyun Seo. Classifying schematic and data heterogen-
eity in multidatabase systems. IEEE Computer, 24(12):12–18, 1991. (Cited
on page 47.)

[236] Ekkart Kindler. On the semantics of EPCs: Resolving the vicious circle.
Data Knowl. Eng., 56(1):23–40, 2006. (Cited on pages 22, 136, and 138.)

[237] Ralph L. Kliem. Risk management for business process reengineering
projects. IS Management, 17(4):1–3, 2000. (Cited on page 8.)

[238] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental
Modeling Concepts. Wiley, 2005. (Cited on page 177.)

[239] Jana Koehler, Giuliano Tirenni, and Santhosh Kumaran. From business
process model to consistent implementation: A case for formal verifica-
tion methods. In EDOC, pages 96–. IEEE Computer Society, 2002. ISBN
0-7695-1742-0. (Cited on page 156.)

[240] Jana Koehler, Rainer Hauser, Shane Sendall, and Michael Wahler. De-
clarative techniques for model-driven business process integration. IBM
Systems Journal, 44(1):47–66, 2005. (Cited on pages 27 and 47.)

[241] Jana Koehler, Rainer Hauser, Jochen Malte Küster, Ksenia Ryndina, Jussi
Vanhatalo, and Michael Wahler. The role of visual modeling and model
transformations in business-driven development. Electr. Notes Theor.
Comput. Sci., 211:5–15, 2008. (Cited on page 176.)

[242] George Koliadis, Aleksandar Vranesevic, Moshiur Bhuiyan, Aneesh
Krishna, and Aditya K. Ghose. Combining i* and BPMN for business
process model lifecycle management. In Eder and Dustdar [139], pages
416–427. ISBN 3-540-38444-8. (Cited on page 49.)

[243] Alex Kondratyev, Michael Kishinevsky, Alexander Taubin, and Sergei
Ten. Analysis of Petri nets by ordering relations in reduced unfoldings.
Formal Methods in System Design, 12(1):5–38, 1998. (Cited on pages 124,
126, and 134.)

[244] Oliver Kopp, Tobias Unger, and Frank Leymann. Nautilus Event-driven
Process Chains: Syntax, semantics, and their mapping to BPEL. In
Markus Nüttgens, Frank J. Rump, and Jan Mendling, editors, EPK,
volume 224 of CEUR Workshop Proceedings, pages 85–104. CEUR-WS.org,
2006. (Cited on pages 27 and 47.)

http://www.uni-saarland.de/fileadmin/user_upload/Fachrichtungen/fr13_BWL/professuren/PDF/heft89.pdf
http://www.uni-saarland.de/fileadmin/user_upload/Fachrichtungen/fr13_BWL/professuren/PDF/heft89.pdf

bibliography 305

[245] Oliver Kopp, Daniel Martin, Daniel Wutke, and Frank Leymann. The
difference between graph-based and block-structured business process
modelling languages. Enterprise Modelling and Information Systems Archi-
tectures, 4(1):3–13, 2009. (Cited on pages 27 and 47.)

[246] Andrei Kovalyov. Concurrency relations and the safety problem for Petri
nets. In Kurt Jensen, editor, Application and Theory of Petri Nets, volume
616 of Lecture Notes in Computer Science, pages 299–309. Springer, 1992.
ISBN 3-540-55676-1. (Cited on page 95.)

[247] Andrei Kovalyov and Javier Esparza. A polynomial algorithm to com-
pute the concurrency relation of free-choice signal transition graphs. In
R. Smedinga, M.P. Spathopoulos, and P. Kozák, editors, Proceedings of
the International Workshop on Discrete Event Systems (WODES), Edinburgh,
Scotland, UK, 1996. IEE Society. (Cited on pages 95 and 97.)

[248] John Krogstie, Guttorm Sindre, and Håvard D. Jørgensen. Process mod-
els representing knowledge for action: a revised quality framework.
EJIS, 15(1):91–102, 2006. (Cited on page 50.)

[249] John Krogstie, Andreas L. Opdahl, and Guttorm Sindre, editors. Ad-
vanced Information Systems Engineering, 19th International Conference,
CAiSE 2007, Trondheim, Norway, June 11-15, 2007, Proceedings, volume
4495 of Lecture Notes in Computer Science, 2007. Springer. ISBN 978-3-540-
72987-7. (Cited on pages 295 and 315.)

[250] Martin Kuhlmann, Dalia Shohat, and Gerhard Schimpf. Role mining -
revealing business roles for security administration using data mining
technology. In SACMAT, pages 179–186. ACM, 2003. ISBN 1-58113-681-
1. (Cited on page 276.)

[251] Thomas Kühne. Matters of (meta-)modeling. Software and System Model-
ing, 5(4):369–385, 2006. (Cited on pages 3 and 4.)

[252] Thomas Kühne. Clarifying matters of (meta-) modeling: an author’s
reply. Software and System Modeling, 5(4):395–401, 2006. (Cited on page 4.)

[253] Matthias Kunze, Matthias Weidlich, and Mathias Weske. Behavioral sim-
ilarity – a proper metric. In Proceedings of the 9th International Conference
on Business Process Management (BPM’11), Clermont-Ferrand, France,
2011. To appear. (Cited on pages 214, 282, and 283.)

[254] Matthias Kunze, Matthias Weidlich, and Mathias Weske. m3 – a be-
havioral similarity metric for business processes. In Daniel Eichhorn,
Agnes Koschmider, and Huayu Zhang, editors, Proceedings of the 3rd
Central-European Workshop on Services and their Composition (ZEUS’11),
volume 705 of CEUR Workshop Proceedings. CEUR-WS.org, 2011. (Cited
on pages 214 and 282.)

[255] Jochen M. Küster, Christian Gerth, Alexander Förster, and Gregor En-
gels. Process merging in business-driven development. Technical report,
IBM Research Report RZ 3703, IBM Zurich Research Laboratory, 2008.
(Cited on page 218.)

[256] Jochen Malte Küster, Christian Gerth, Alexander Förster, and Gregor En-
gels. Detecting and resolving process model differences in the absence
of a change log. In Dumas et al. [135], pages 244–260. ISBN 978-3-540-
85757-0. (Cited on pages 52, 145, and 212.)

[257] Jochen Malte Küster, Christian Gerth, and Gregor Engels. Dependent
and conflicting change operations of process models. In Richard F. Paige,

306 bibliography

Alan Hartman, and Arend Rensink, editors, ECMDA-FA, volume 5562

of Lecture Notes in Computer Science, pages 158–173. Springer, 2009. ISBN
978-3-642-02673-7. (Cited on page 213.)

[258] Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco M. Dijkman.
Merging business process models. In Meersman et al. [309], pages 96–
113. ISBN 978-3-642-16933-5. (Cited on pages 51, 218, 244, and 247.)

[259] Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco M. Dijkman.
Business process model merging: An approach to business process con-
solidation. Technical report, Queensland University of Technology, 2010.
(Cited on pages 217, 218, 244, and 247.)

[260] Alberto H. F. Laender, Silvana Castano, Umeshwar Dayal, Fabio Casati,
and José Palazzo Moreira de Oliveira, editors. Conceptual Modeling -
ER 2009, 28th International Conference on Conceptual Modeling, Gramado,
Brazil, November 9-12, 2009. Proceedings, volume 5829 of Lecture Notes
in Computer Science, 2009. Springer. ISBN 978-3-642-04839-5. (Cited on
pages 289 and 303.)

[261] Alexei Lapouchnian, Yijun Yu, and John Mylopoulos. Requirements-
driven design and configuration management of business processes. In
Alonso et al. [19], pages 246–261. ISBN 978-3-540-75182-3. (Cited on
page 49.)

[262] Antti M. Latva-Koivisto. Finding a complexity measure for business
process models. Technical report, Helsinki University of Technology,
2001. (Cited on page 210.)

[263] Ralf Laue and Volker Gruhn. Complexity metrics for business process
models. In Abramowicz and Mayr [4], pages 1–12. ISBN 3-88579-179-X.
(Cited on page 209.)

[264] Ralf Laue and Jan Mendling. Structuredness and its significance for
correctness of process models. Inf. Syst. E-Business Management, 8(3):
287–307, 2010. (Cited on page 230.)

[265] Gang Soo Lee and Jung-Mo Yoon. An empirical study on the complexity
metrics of Petri nets. Microelectronics and Reliability, 32(3):323–329, 1992.
(Cited on pages 209 and 210.)

[266] Henrik Leopold, Sergey Smirnov, and Jan Mendling. Refactoring of pro-
cess model activity labels. In Christina J. Hopfe, Yacine Rezgui, Elisabeth
Métais, Alun D. Preece, and Haijiang Li, editors, NLDB, volume 6177 of
Lecture Notes in Computer Science, pages 268–276. Springer, 2010. ISBN
978-3-642-13880-5. (Cited on page 51.)

[267] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, in-
sertions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966. (Cited
on pages 50, 57, and 211.)

[268] Beth Levin. English Verb Classes and Alternations: A Preliminary Invest-
igation. University of Chicago Press, Chicago, Illinois, 1993. (Cited on
page 48.)

[269] Frank Leymann. Web Services Flow Language (WSFL 1.0). Technical
report, IBM Software Group, May 2001. (Cited on page 25.)

[270] Frank Leymann and Dieter Roller. Production Work Flow: Concepts and
Techniques. Prentice Hall International, 1999. (Cited on page 7.)

bibliography 307

[271] Chen Li, Manfred Reichert, and Andreas Wombacher. On measuring
process model similarity based on high-level change operations. In Li
et al. [277], pages 248–264. ISBN 978-3-540-87876-6. (Cited on pages 51,
52, 87, 144, 211, 212, and 213.)

[272] Chen Li, Manfred Reichert, and Andreas Wombacher. Discovering ref-
erence process models by mining process variants. In ICWS, pages 45–
53. IEEE Computer Society, 2008. ISBN 978-0-7695-3310-0. (Cited on
pages 87, 144, and 247.)

[273] Chen Li, Manfred Reichert, and Andreas Wombacher. Discovering ref-
erence models by mining process variants using a heuristic approach.
In Dayal et al. [103], pages 344–362. ISBN 978-3-642-03847-1. (Cited on
pages 87, 144, and 247.)

[274] Chen Li, Manfred Reichert, and Andreas Wombacher. Representing
block-structured process models as order matrices: Basic concepts,
formal properties, algorithms. Technical report, University of Twente,
Enschede, The Netherlands, 2009. (Cited on pages 87 and 144.)

[275] Chen Li, Manfred Reichert, and Andreas Wombacher. The MinAdept
clustering approach for discovering reference process models out of pro-
cess variants. Int. J. Cooperative Inf. Syst., 19(3-4):159–203, 2010. (Cited
on page 247.)

[276] Ninghui Li, Mahesh V. Tripunitara, and Ziad Bizri. On mutually exclus-
ive roles and separation-of-duty. ACM Trans. Inf. Syst. Secur., 10(2), 2007.
(Cited on page 276.)

[277] Qing Li, Stefano Spaccapietra, Eric S. K. Yu, and Antoni Olivé, editors.
Conceptual Modeling - ER 2008, 27th International Conference on Concep-
tual Modeling, Barcelona, Spain, October 20-24, 2008. Proceedings, volume
5231 of Lecture Notes in Computer Science, 2008. Springer. ISBN 978-3-540-
87876-6. (Cited on pages 302 and 307.)

[278] Odd Ivar Lindland, Guttorm Sindre, and Arne Sølvberg. Understanding
quality in conceptual modeling. IEEE Software, 11(2):42–49, 1994. (Cited
on pages 4 and 253.)

[279] Richard Lipton. The reachability problem requires exponential space.
Technical Report 62, Computer Science Dept., Yale University, 1976.
(Cited on page 93.)

[280] Duen-Ren Liu and Minxin Shen. Workflow modeling for virtual pro-
cesses: an order-preserving process-view approach. Inf. Syst., 28(6):505–
532, 2003. (Cited on page 176.)

[281] Niels Lohmann. A feature-complete Petri net semantics for WS-BPEL
2.0. In Marlon Dumas and Reiko Heckel, editors, WS-FM, volume 4937

of Lecture Notes in Computer Science, pages 77–91. Springer, 2007. ISBN
978-3-540-79229-1. (Cited on pages 25, 35, 37, and 39.)

[282] Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg.
Analyzing interacting WS-BPEL processes using flexible model genera-
tion. Data Knowl. Eng., 64(1):38–54, 2008. (Cited on page 177.)

[283] Niels Lohmann, Eric Verbeek, and Remco M. Dijkman. Petri net trans-
formations for business processes - a survey. In T. Petri Nets and Other
Models of Concurrency Jensen and van der Aalst [221], pages 46–63. (Cited
on pages 35, 36, and 37.)

308 bibliography

[284] Edward S. Lowry and C. W. Medlock. Object code optimization. Com-
mun. ACM, 12(1):13–22, 1969. (Cited on page 99.)

[285] Ruopeng Lu and Shazia Wasim Sadiq. On the discovery of preferred
work practice through business process variants. In Christine Parent,
Klaus-Dieter Schewe, Veda C. Storey, and Bernhard Thalheim, editors,
ER, volume 4801 of Lecture Notes in Computer Science, pages 165–180.
Springer, 2007. ISBN 978-3-540-75562-3. (Cited on pages 51 and 52.)

[286] Ruopeng Lu, Shazia Wasim Sadiq, and Guido Governatori. Measure-
ment of compliance distance in business processes. IS Management, 25

(4):344–355, 2008. (Cited on page 42.)

[287] Ruopeng Lu, Shazia Wasim Sadiq, and Guido Governatori. On man-
aging business processes variants. Data Knowl. Eng., 68(7):642–664, 2009.
(Cited on page 245.)

[288] Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for
WS-BPEL. J. Log. Algebr. Program., 70(1):96–118, 2007. (Cited on pages 25

and 39.)

[289] Jochen Ludewig. Models in software engineering - an introduction. In-
form., Forsch. Entwickl., 18(3-4):105–112, 2004. (Cited on page 4.)

[290] Jerry N. Luftman. Assessing IT/business alignment. IS Management, 20

(4):9–15, 2003. (Cited on page 42.)

[291] Ken Lunn, Andrew Sixsmith, Ann Lindsay, and Marja Vaarama. Traceab-
ility in requirements through process modelling, applied to social care
applications. Information & Software Technology, 45(15):1045–1052, 2003.
(Cited on pages 155 and 172.)

[292] Linh Thao Ly, Stefanie Rinderle-Ma, and Peter Dadam. Design and
verification of instantiable compliance rule graphs in process-aware in-
formation systems. In Pernici [348], pages 9–23. ISBN 978-3-642-13093-9.
(Cited on page 42.)

[293] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Gen-
eric schema matching with Cupid. In Peter M. G. Apers, Paolo
Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, and
Richard T. Snodgrass, editors, VLDB, pages 49–58. Morgan Kaufmann,
2001. ISBN 1-55860-804-4. (Cited on page 55.)

[294] Therani Madhusudan, J. Leon Zhao, and Byron Marshall. A case-based
reasoning framework for workflow model management. Data Knowl.
Eng., 50(1):87–115, 2004. (Cited on pages 50, 51, and 52.)

[295] Paul P. Maglio, Mathias Weske, Jian Yang, and Marcelo Fantinato, edit-
ors. Service-Oriented Computing - 8th International Conference, ICSOC 2010,
San Francisco, CA, USA, December 7-10, 2010. Proceedings, volume 6470 of
Lecture Notes in Computer Science, 2010. ISBN 978-3-642-17357-8. (Cited
on pages 311 and 318.)

[296] Matteo Magnani and Danilo Montesi. BPMN: How much does it cost?
An incremental approach. In Alonso et al. [19], pages 80–87. ISBN 978-
3-540-75182-3. (Cited on page 7.)

[297] Thomas W. Malone, Kevin Crowston, and George A. Herman, editors.
Organizing Business Knowledge: The MIT Process Handbook. The MIT Press,
Cambridge, Massachusetts, 2003. (Cited on pages 48 and 51.)

bibliography 309

[298] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concur-
rent systems. Springer, New York, NY, USA, 1992. ISBN 0-387-97664-7.
(Cited on page 88.)

[299] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical
Natural Language Processing. The MIT Press, 1999. (Cited on page 50.)

[300] Axel Martens. Consistency between executable and abstract processes.
In EEE, pages 60–67. IEEE Computer Society, 2005. ISBN 0-7695-2073-1.
(Cited on page 177.)

[301] Axel Martens. Analyzing web service based business processes. In
Maura Cerioli, editor, FASE, volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer, 2005. ISBN 3-540-25420-X. (Cited on
page 177.)

[302] Antoni Mazurkiewicz. Concurrent program schemes and their interpret-
ations. Technical Report DAIMI Report PB-78, Department of Computer
Science, Aarhus University, Denmark, 1977. (Cited on page 32.)

[303] Thomas J. McCabe. A complexity measure. IEEE Trans. Software Eng., 2

(4):308–320, 1976. (Cited on pages 209 and 210.)

[304] Ross M. McConnell and Fabien de Montgolfier. Linear-time modular
decomposition of directed graphs. Discrete Applied Mathematics, 145:189–
209, 2005. (Cited on pages 232, 234, and 238.)

[305] Kenneth L. McMillan. A technique of state space search based on un-
folding. Formal Methods in System Design, 6(1):45–65, 1995. (Cited on
pages 118, 119, and 145.)

[306] Robert Meersman and Zahir Tari, editors. On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM Con-
federated International Conferences, CoopIS, DOA, GADA, and ODBASE
2006, Montpellier, France, October 29 - November 3, 2006. Proceedings, Part
I, volume 4275 of Lecture Notes in Computer Science, 2006. Springer. ISBN
3-540-48287-3. (Cited on pages 293, 325, and 326.)

[307] Robert Meersman and Zahir Tari, editors. On the Move to Meaningful
Internet Systems: OTM 2008, OTM 2008 Confederated International Con-
ferences, CoopIS, DOA, GADA, IS, and ODBASE 2008, Monterrey, Mexico,
November 9-14, 2008, Proceedings, Part I, volume 5331 of Lecture Notes
in Computer Science, 2008. Springer. ISBN 978-3-540-88870-3. (Cited on
pages 299, 300, 323, and 327.)

[308] Robert Meersman, Zahir Tari, and Douglas C. Schmidt, editors. On The
Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE -
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2003, Catania, Sicily, Italy, November 3-7, 2003, volume 2888 of Lecture
Notes in Computer Science, 2003. Springer. ISBN 3-540-20498-9. (Cited on
pages 294 and 314.)

[309] Robert Meersman, Tharam S. Dillon, and Pilar Herrero, editors. On
the Move to Meaningful Internet Systems: OTM 2010 - Confederated Inter-
national Conferences: CoopIS, IS, DOA and ODBASE, Hersonissos, Crete,
Greece, October 25-29, 2010, Proceedings, Part I, volume 6426 of Lecture
Notes in Computer Science, 2010. Springer. ISBN 978-3-642-16933-5. (Cited
on pages 306, 313, and 326.)

[310] Lucas O. Meertens, Maria-Eugenia Iacob, and Silja Eckartz. Feasibility of
EPC to BPEL model transformations based on ontology and patterns. In

310 bibliography

Rinderle-Ma et al. [385], pages 347–358. ISBN 978-3-642-12185-2. (Cited
on pages 27 and 47.)

[311] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity
flooding: A versatile graph matching algorithm and its application to
schema matching. In ICDE, pages 117–128. IEEE Computer Society, 2002.
ISBN 0-7695-1531-2. (Cited on page 52.)

[312] Jan Mendling. Metrics for Process Models: Empirical Foundations of Verific-
ation, Error Prediction, and Guidelines for Correctness, volume 6 of Lecture
Notes in Business Information Processing. Springer, 2008. ISBN 978-3-540-
89223-6. (Cited on pages 17, 22, 135, 174, 209, and 210.)

[313] Jan Mendling and Markus Nüttgens. EPC modelling based on implicit
arc types. In Mikhail Godlevsky, Stephen W. Liddle, and Heinrich C.
Mayr, editors, ISTA, volume 30 of LNI, pages 131–142. GI, 2003. ISBN
3-88579-359-8. (Cited on page 22.)

[314] Jan Mendling and Carlo Simon. Business process design by view in-
tegration. In Eder and Dustdar [139], pages 55–64. ISBN 3-540-38444-8.
(Cited on pages 176, 218, and 244.)

[315] Jan Mendling, Hajo A. Reijers, and Jorge Cardoso. What makes process
models understandable? In Alonso et al. [19], pages 48–63. ISBN 978-3-
540-75182-3. (Cited on pages 48 and 164.)

[316] Jan Mendling, H. M. W. Verbeek, Boudewijn F. van Dongen, Wil M. P.
van der Aalst, and Gustaf Neumann. Detection and prediction of errors
in EPCs of the SAP reference model. Data Knowl. Eng., 64(1):312–329,
2008. (Cited on page 136.)

[317] Jan Mendling, Hajo A. Reijers, and Jan Recker. Activity labeling in pro-
cess modeling: Empirical insights and recommendations. Inf. Syst., 35

(4):467–482, 2010. (Cited on pages 48, 163, and 283.)

[318] Jan Mendling, Hajo A. Reijers, and Wil M. P. van der Aalst. Seven
process modeling guidelines (7PMG). Information & Software Technology,
52(2):127–136, 2010. (Cited on page 50.)

[319] Christopher Menzel and Michael Grüninger. A formal foundation for
process modeling. In FOIS, pages 256–269, 2001. (Cited on page 48.)

[320] Derek Miers. Best practice (BPM). ACM Queue, 4(2):40–48, 2006. (Cited
on pages 155 and 172.)

[321] Lawrence D. Miles. Techniques of value analysis and engineering. McGraw-
Hill (New York), 1961. (Cited on page 48.)

[322] George A. Miller. WordNet: A lexical database for english. Commun.
ACM, 38(11):39–41, 1995. (Cited on pages 50 and 51.)

[323] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cam-
bridge University Press, 1999. ISBN 978-0-521-65869-0. (Cited on
page 39.)

[324] Robin Milner, Joachim Parrow, and David Walker. A calculus of mo-
bile processes, Part I and II. Inf. Comput., 100(1):1–77, 1992. (Cited on
page 39.)

bibliography 311

[325] Mirjam Minor, Alexander Tartakovski, and Ralph Bergmann. Represent-
ation and structure-based similarity assessment for agile workflows. In
Rosina Weber and Michael M. Richter, editors, ICCBR, volume 4626 of
Lecture Notes in Computer Science, pages 224–238. Springer, 2007. ISBN
978-3-540-74138-1. (Cited on page 52.)

[326] Ian Molloy, Ninghui Li, Tiancheng Li, Ziqing Mao, Qihua Wang, and
Jorge Lobo. Evaluating role mining algorithms. In Barbara Carminati
and James Joshi, editors, SACMAT, pages 95–104. ACM, 2009. ISBN
978-1-60558-537-6. (Cited on page 276.)

[327] Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani,
Paola Mello, and Sergio Storari. Declarative specification and verifica-
tion of service choreographiess. TWEB, 4(1), 2010. (Cited on pages 11,
18, and 88.)

[328] Sandro Morasca. Measuring attributes of concurrent software specific-
ations in Petri nets. In IEEE METRICS, pages 100–110. IEEE Computer
Society, 1999. ISBN 0-7695-0403-5. (Cited on page 210.)

[329] Tadao Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, 1989. (Cited on pages 28, 79, 109, 152, 194,
239, and 240.)

[330] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve M. Easter-
brook, and Pamela Zave. Matching and merging of statecharts specific-
ations. In ICSE, pages 54–64. IEEE Computer Society, 2007. (Cited on
pages 51, 53, 182, 212, 218, 244, and 247.)

[331] Uwe Nestmann and Frank Puhlmann. Process Algebra for Parallel and Dis-
tributed Computing, chapter Business Process Specification and Analysis,
pages 129–160. Boca Raton, Chapmann & Hall/CRC Press, 2009. (Cited
on page 39.)

[332] Mark E. Nissen. Valuing IT through virtual process measurement. In
ICIS, pages 309–323, 1994. (Cited on page 210.)

[333] Natalya Fridman Noy and Michel C. A. Klein. Ontology evolution:
Not the same as schema evolution. Knowl. Inf. Syst., 6(4):428–440, 2004.
(Cited on page 42.)

[334] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework
for expressing the relationships between multiple views in requirements
specification. IEEE Trans. Software Eng., 20(10):760–773, 1994. (Cited on
page 176.)

[335] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. Viewpoints:
meaningful relationships are difficult! In ICSE, pages 676–683. IEEE
Computer Society, 2003. (Cited on page 177.)

[336] Markus Nüttgens and Frank J. Rump. Syntax und Semantik Ereignis-
gesteuerter Prozessketten (EPK). In Jörg Desel and Mathias Weske, edit-
ors, Promise, volume 21 of LNI, pages 64–77. GI, 2002. ISBN 3-88579-350-
4. (Cited on page 20.)

[337] Olivia Oanea, Jan Sürmeli, and Karsten Wolf. Service discovery using
communication fingerprints. In Maglio et al. [295], pages 612–618. ISBN
978-3-642-17357-8. (Cited on page 92.)

[338] Sejong Oh, Ravi S. Sandhu, and Xinwen Zhang. An effective role ad-
ministration model using organization structure. ACM Trans. Inf. Syst.
Secur., 9(2):113–137, 2006. (Cited on page 276.)

312 bibliography

[339] Chun Ouyang, Marlon Dumas, Stephan Breutel, and Arthur H. M. ter
Hofstede. Translating standard process models to BPEL. In Dubois
and Pohl [133], pages 417–432. ISBN 3-540-34652-X. (Cited on pages 27

and 47.)

[340] Chun Ouyang, Marlon Dumas, Arthur H. M. ter Hofstede, and Wil M. P.
van der Aalst. From BPMN process models to BPEL web services. In
ICWS, pages 285–292. IEEE Computer Society, 2006. ISBN 0-7695-2669-1.
(Cited on pages 27 and 47.)

[341] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel,
Marlon Dumas, and Arthur H. M. ter Hofstede. Formal semantics and
analysis of control flow in WS-BPEL. Sci. Comput. Program., 67(2-3):162–
198, 2007. (Cited on pages 25 and 35.)

[342] Susan S. Owicki and Leslie Lamport. Proving liveness properties of con-
current programs. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.
(Cited on page 79.)

[343] Victor Pankratius and Wolffried Stucky. A formal foundation for work-
flow composition, workflow view definition, and workflow normaliza-
tion based on Petri nets. In Sven Hartmann and Markus Stumptner,
editors, APCCM, volume 43 of CRPIT, pages 79–88. Australian Com-
puter Society, 2005. ISBN 1-920682-25-2. (Cited on pages 176, 218, 219,
and 244.)

[344] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P.
Sycara. Semantic matching of web services capabilities. In Horrocks and
Hendler [215], pages 333–347. ISBN 3-540-43760-6. (Cited on page 51.)

[345] Oscar Pastor and João Falcão e Cunha, editors. Advanced Information
Systems Engineering, 17th International Conference, CAiSE 2005, Porto, Por-
tugal, June 13-17, 2005, Proceedings, volume 3520 of Lecture Notes in Com-
puter Science, 2005. Springer. ISBN 3-540-26095-1. (Cited on pages 288

and 316.)

[346] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Word-
Net: Similarity - measuring the relatedness of concepts. In Deborah L.
McGuinness and George Ferguson, editors, AAAI, pages 1024–1025.
AAAI Press / The MIT Press, 2004. ISBN 0-262-51183-5. (Cited on
page 50.)

[347] Mor Peleg, Iwei Yeh, and Russ B. Altman. Modelling biological pro-
cesses using workflow and Petri net models. Bioinformatics, 18(6):825–
837, 2002. (Cited on page 28.)

[348] Barbara Pernici, editor. Advanced Information Systems Engineering, 22nd
International Conference, CAiSE 2010, Hammamet, Tunisia, June 7-9, 2010.
Proceedings, volume 6051 of Lecture Notes in Computer Science, 2010.
Springer. ISBN 978-3-642-13093-9. (Cited on pages 287, 308, 317,
and 324.)

[349] Nicolas Peters and Matthias Weidlich. Using glossaries to enhance the
label quality in business process models. In Proceedings of the 8th GI-
Workshop Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten
(EPK), volume 554 of CEUR, pages 75–90, Berlin, Germany, November
2009. CEUR-WS.org. (Cited on page 283.)

[350] Nicolas Peters and Matthias Weidlich. Automatic generation of glossar-
ies for process modelling support. Enterprise Modelling and Information
Systems Architectures, 6(1):30–46, 2011. (Cited on pages 50 and 283.)

bibliography 313

[351] James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, 1977.
(Cited on page 152.)

[352] Marian Petre. Why looking isn’t always seeing: Readership skills and
graphical programming. Commun. ACM, 38(6):33–44, 1995. (Cited on
page 164.)

[353] Carl Adam Petri. Kommunikation mit Automaten. Schriften des IIM Nr. 2,
Institut für Instrumentelle Mathematik, Bonn, 1962. (Cited on page 28.)

[354] Carl Adam Petri. Non-sequential processes. Technical Report ISF-77-5,
GMD, St-Augustin, Germany, 1977. (Cited on page 86.)

[355] Yves Pigneur and Carson Woo, editors. Proceedings of the CAISE*06 Work-
shop on Business/IT Alignment and Interoperability BUSITAL ’06, Luxem-
burg, June 5-9, 2006, volume 237 of CEUR Workshop Proceedings, 2007.
CEUR-WS.org. (Cited on pages 288 and 295.)

[356] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software product
line engineering - foundations, principles, and techniques. Springer, 2005.
ISBN 978-3-540-24372-4. (Cited on page 245.)

[357] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. The triconnec-
ted abstraction of process models. In Dayal et al. [103], pages 229–244.
ISBN 978-3-642-03847-1. (Cited on pages 106, 108, and 145.)

[358] Artem Polyvyanyy, Luciano García-Bañuelos, and Marlon Dumas. Struc-
turing acyclic process models. In Hull et al. [217], pages 276–293. ISBN
978-3-642-15617-5. (Cited on pages 47, 230, 231, 232, and 235.)

[359] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified com-
putation and generalization of the refined process structure tree. In
Bravetti and Bultan [65], pages 25–41. ISBN 978-3-642-19588-4. (Cited
on pages 60, 104, 106, 108, 109, 116, and 212.)

[360] Artem Polyvyanyy, Matthias Weidlich, and Mathias Weske. The bicon-
nected verification of workflow nets. In Meersman et al. [309], pages
410–418. ISBN 978-3-642-16933-5. (Cited on page 145.)

[361] Artem Polyvyanyy, Luciano García-Bañuelos, and Marlon Dumas. Struc-
turing acyclic process models. Information Systems, 2011. To appear.
(Cited on pages 22, 37, 47, 136, 143, 145, 230, 231, and 235.)

[362] Artem Polyvyanyy, Luciano García-Bañuelos, Dirk Fahland, and Math-
ias Weske. Maximal structuring of acyclic process models. Technical
report, Hasso Plattner Institute, University of Potsdam, 2011. (Cited on
pages 231, 232, and 235.)

[363] Lucia Pomello, Grzegorz Rozenberg, and Carla Simone. A survey of
equivalence notions for net based systems. In Grzegorz Rozenberg, ed-
itor, Advances in Petri Nets: The DEMON Project, volume 609 of Lecture
Notes in Computer Science, pages 410–472. Springer, 1992. ISBN 3-540-
55610-9. (Cited on pages 86 and 150.)

[364] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–
137, 1980. (Cited on pages 50 and 60.)

[365] Michael F. Porter. Competitive Advantage: Creating and Sustaining Superior
Performance. Free Press, 1998. (Cited on page 49.)

[366] Günter Preuner, Stefan Conrad, and Michael Schrefl. View integration
of behavior in object-oriented databases. Data Knowl. Eng., 36(2):153–183,
2001. (Cited on pages 49, 54, 176, 218, and 244.)

314 bibliography

[367] Frank Puhlmann and Mathias Weske. Using the pi-calculus for form-
alizing workflow patterns. In van der Aalst et al. [458], pages 153–168.
ISBN 3-540-28238-6. (Cited on page 39.)

[368] Frank Puhlmann and Mathias Weske. A look around the corner: The
pi-calculus. In T. Petri Nets and Other Models of Concurrency Jensen and
van der Aalst [221], pages 64–78. (Cited on page 39.)

[369] Yuzhong Qu, Wei Hu, and Gong Cheng. Constructing virtual docu-
ments for ontology matching. In Carr et al. [84], pages 23–31. ISBN
1-59593-323-9. (Cited on page 59.)

[370] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4):334–350, 2001. (Cited on
pages 42, 47, and 54.)

[371] Maryam Razavian and Ramtin Khosravi. Modeling variability in busi-
ness process models using UML. In ITNG, pages 82–87. IEEE Computer
Society, 2008. (Cited on page 246.)

[372] Jan Recker and Alexander Dreiling. Does it matter which process mod-
elling language we teach or use? An experimental study on understand-
ing process modelling languages without formal education. In 18th Aus-
tralasian Conference on Information Systems (ACIS), pages 356–366, 2007.
(Cited on page 164.)

[373] Jan Recker and Jan Mendling. On the translation between BPMN and
BPEL: Conceptual mismatch between process modeling languages. In
Thibaud Latour and Michael Petit, editors, Proceedings 18th International
Conference on Advanced Information Systems Engineering. Proceedings of
Workshops and Doctoral Consortiums, pages 521–532, 2006. (Cited on
pages 27 and 47.)

[374] Blaize Horner Reich and Izak Benbasat. Factors that influence the social
dimension of alignment between business and information technology
objectives. MIS Quarterly, 24(1), 2000. (Cited on page 42.)

[375] Manfred Reichert and Peter Dadam. Adeptflex-supporting dynamic
changes of workflows without losing control. J. Intell. Inf. Syst., 10(2):
93–129, 1998. (Cited on page 245.)

[376] Manfred Reichert, Stefanie Rinderle, and Peter Dadam. On the common
support of workflow type and instance changes under correctness con-
straints. In Meersman et al. [308], pages 407–425. ISBN 3-540-20498-9.
(Cited on pages 213 and 245.)

[377] Hajo A. Reijers. Design and Control of Workflow Processes: Business Pro-
cess Management for the Service Industry, volume 2617 of Lecture Notes in
Computer Science. Springer, 2003. ISBN 3-540-01186-2. (Cited on page 7.)

[378] Hajo A. Reijers and Irene T. P. Vanderfeesten. Cohesion and coupling
metrics for workflow process design. In Jörg Desel, Barbara Pernici, and
Mathias Weske, editors, Business Process Management, volume 3080 of
Lecture Notes in Computer Science, pages 290–305. Springer, 2004. ISBN
3-540-22235-9. (Cited on page 210.)

[379] Hajo A. Reijers, R. S. Mans, and Robert A. van der Toorn. Improved
model management with aggregated business process models. Data
Knowl. Eng., 68(2):221–243, 2009. (Cited on pages 218 and 246.)

bibliography 315

[380] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of Monographs
in Theoretical Computer Science. An EATCS Series. Springer, 1985. ISBN
3-540-13723-8. (Cited on page 28.)

[381] Wolfgang Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fall-
studien. Vieweg+Teubner, 2010. ISBN 3-834-81290-0. (Cited on page 28.)

[382] Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the volumes are based on the Advanced
Course on Petri Nets, held in Dagstuhl, September 1996, volume 1491 of
Lecture Notes in Computer Science, 1998. Springer. ISBN 3-540-65306-6.
(Cited on pages 28 and 319.)

[383] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Disjoint
and overlapping process changes: Challenges, solutions, applications.
In Robert Meersman and Zahir Tari, editors, CoopIS/DOA/ODBASE
(1), volume 3290 of Lecture Notes in Computer Science, pages 101–120.
Springer, 2004. ISBN 3-540-23663-5. (Cited on pages 213 and 245.)

[384] Stefanie Rinderle-Ma, Linh Thao Ly, and Peter Dadam. Business process
compliance. EMISA Forum, 28(2):24–29, 2008. (Cited on page 8.)

[385] Stefanie Rinderle-Ma, Shazia Wasim Sadiq, and Frank Leymann, ed-
itors. Business Process Management Workshops, BPM 2009 International
Workshops, Ulm, Germany, September 7, 2009. Revised Papers, volume 43

of Lecture Notes in Business Information Processing, 2010. Springer. ISBN
978-3-642-12185-2. (Cited on pages 289 and 310.)

[386] Stephen Robertson and Karen S. Jones. Relevance weighting of search
terms. Journal of the American Society for Information Science, 27(3):129–146,
1976. (Cited on pages 50 and 60.)

[387] Andreas Rogge-Solti, Matthias Kunze, Ahmed Awad, and Mathias
Weske. Business process configuration wizard and consistency checker
for BPMN 2.0. In T. Halpin, S. Nurcan, J. Krogstie, P. Soffer, E. Proper,
R. Schmidt, and I. Bider, editors, Enterprise, Business-Process and In-
formation Systems Modeling. Proceedings of the 12th International Confer-
ence BPMDS 2011, and the 16th International Conference EMMSAD 2011.,
volume 81 of Lecture Notes in Business Information Processing, 2011. (Cited
on page 284.)

[388] Colette Rolland and Naveen Prakash. Bridging the gap between organ-
isational needs and ERP functionality. Requir. Eng., 5(3):180–193, 2000.
(Cited on pages 3, 7, 49, and 163.)

[389] Marcello La Rosa, Johannes Lux, Stefan Seidel, Marlon Dumas, and Ar-
thur H. M. ter Hofstede. Questionnaire-driven configuration of reference
process models. In Krogstie et al. [249], pages 424–438. ISBN 978-3-540-
72987-7. (Cited on page 246.)

[390] Donald J. Rose and Robert Endre Tarjan. Algorithmic aspects of vertex
elimination. In STOC, pages 245–254. ACM, 1975. (Cited on page 270.)

[391] M. Rosemann. Process Management: A Guide for the Design of Business Pro-
cesses, chapter Preparation of process modeling, pages 41–78. Springer,
Berlin, Germany, 2003. (Cited on pages 48 and 283.)

[392] Michael Rosemann and Wil M. P. van der Aalst. A configurable reference
modelling language. Inf. Syst., 32(1):1–23, 2007. (Cited on pages 217

and 246.)

316 bibliography

[393] Leonid Ya. Rosenblum and Alexandre Yakovlev. Analyzing semantics
of concurrent hardware specifications. In ICPP (3), pages 211–218, 1989.
(Cited on pages 86, 87, and 144.)

[394] Grzegorz Rozenberg, editor. Advances in Petri Nets 1990 [10th Interna-
tional Conference on Applications and Theory of Petri Nets, Bonn, Germany,
June 1989, Proceedings], volume 483 of Lecture Notes in Computer Science,
1991. Springer. ISBN 3-540-53863-1. (Cited on pages 291 and 298.)

[395] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of
processes based on monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.
(Cited on pages 42, 91, 144, 211, 253, 254, and 275.)

[396] Anne Rozinat, Ana Karla Alves de Medeiros, Christian W. Günther, A. J.
M. M. Weijters, and Wil M. P. van der Aalst. The need for a process
mining evaluation framework in research and practice. In ter Hofstede
et al. [438], pages 84–89. ISBN 978-3-540-78237-7. (Cited on page 252.)

[397] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P.
van der Aalst. Workflow data patterns: Identification, representation
and tool support. In Delcambre et al. [117], pages 353–368. ISBN 3-540-
29389-2. (Cited on page 48.)

[398] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and
David Edmond. Workflow resource patterns: Identification, representa-
tion and tool support. In Pastor and e Cunha [345], pages 216–232. ISBN
3-540-26095-1. (Cited on page 48.)

[399] Nick Russell, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede.
Workflow exception patterns. In Dubois and Pohl [133], pages 288–302.
ISBN 3-540-34652-X. (Cited on page 48.)

[400] Shazia W. Sadiq, Wasim Sadiq, and Maria E. Orlowska. Pockets of flex-
ibility in workflow specification. In Hideko S. Kunii, Sushil Jajodia, and
Arne Sølvberg, editors, ER, volume 2224 of Lecture Notes in Computer
Science, pages 513–526. Springer, 2001. ISBN 3-540-42866-6. (Cited on
page 245.)

[401] Shazia Wasim Sadiq, Guido Governatori, and Kioumars Namiri. Model-
ing control objectives for business process compliance. In Alonso et al.
[19], pages 149–164. ISBN 978-3-540-75182-3. (Cited on page 42.)

[402] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Commun. ACM, 18(11):613–620, 1975. (Cited on
page 50.)

[403] Partha Sampath and Martin Wirsing. Computing the cost of business
processes. In Jianhua Yang, Athula Ginige, Heinrich C. Mayr, and Ralf-
Detlef Kutsche, editors, UNISCON, volume 20 of Lecture Notes in Busi-
ness Information Processing, pages 178–183. Springer, 2009. ISBN 978-3-
642-01111-5. (Cited on page 7.)

[404] Davide Sangiorgi and David Walker. The pi-calculus: A Theory of Mobile
Processes. Cambridge University Press, 2003. (Cited on page 39.)

[405] August-Wilhelm Scheer and Markus Nüttgens. ARIS architecture and
reference models for business process management. In van der Aalst
et al. [453], pages 376–389. ISBN 3-540-67454-3. (Cited on page 20.)

[406] Hermann J. Schmelzer and Wolfgang Sesselmann. Geschäftsprozessman-
agement in der Praxis. Hanser Verlag, 2006. (Cited on pages 3, 5, and 49.)

bibliography 317

[407] Arnd Schnieders and Frank Puhlmann. Variability mechanisms in e-
business process families. In Abramowicz and Mayr [4], pages 583–601.
ISBN 3-88579-179-X. (Cited on page 246.)

[408] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. Generic semantics of feature diagrams. Computer Net-
works, 51(2):456–479, 2007. (Cited on page 246.)

[409] Andreas Schönberger and Guido Wirtz. Taxonomy on consistency re-
quirements in the business process integration context. In SEKE, pages
593–598. Knowledge Systems Institute Graduate School, 2008. ISBN 1-
891706-22-5. (Cited on page 177.)

[410] Michael Schrefl and Markus Stumptner. Behavior consistent extension
of object life cycles. In Mike P. Papazoglou, editor, OOER, volume 1021

of Lecture Notes in Computer Science, pages 133–145. Springer, 1995. ISBN
3-540-60672-6. (Cited on pages 151 and 152.)

[411] Michael Schrefl and Markus Stumptner. Behavior consistent refinement
of object life cycles. In David W. Embley and Robert C. Goldstein, edit-
ors, ER, volume 1331 of Lecture Notes in Computer Science, pages 155–168.
Springer, 1997. ISBN 3-540-63699-4. (Cited on pages 151 and 152.)

[412] Michael Schrefl and Markus Stumptner. Behavior-consistent specializa-
tion of object life cycles. ACM Trans. Softw. Eng. Methodol., 11(1):92–148,
2002. (Cited on pages 151, 152, 218, and 244.)

[413] Heiko Schuldt, Gustavo Alonso, Catriel Beeri, and Hans-Jörg Schek.
Atomicity and isolation for transactional processes. ACM Trans. Data-
base Syst., 27(1):63–116, 2002. (Cited on page 252.)

[414] John R. Searle. Speech acts: An essay in the philosophy of language. Cam-
bridge University Press, Cambridge, 1969. (Cited on page 48.)

[415] Ed Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003.
(Cited on page 4.)

[416] Alec Sharp and Patrick McDermott. Workflow Modeling: Tools for Process
Improvement and Application Development. Artech House, Boston, Mas-
sachusetts, 2001. (Cited on page 48.)

[417] Amit P. Sheth and James A. Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases. ACM
Comput. Surv., 22(3):183–236, 1990. (Cited on page 47.)

[418] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching
approaches. In Stefano Spaccapietra, editor, J. Data Semantics IV, volume
3730 of Lecture Notes in Computer Science, pages 146–171. Springer, 2005.
ISBN 3-540-31001-0. (Cited on pages 42 and 47.)

[419] Natalia Sidorova, Christian Stahl, and Nikola Trcka. Workflow sound-
ness revisited: Checking correctness in the presence of data while stay-
ing conceptual. In Pernici [348], pages 530–544. ISBN 978-3-642-13093-9.
(Cited on pages 36 and 286.)

[420] Sase Narine Singh and Carson Woo. Investigating business-IT alignment
through multi-disciplinary goal concepts. Requir. Eng., 14(3):177–207,
2009. (Cited on page 42.)

318 bibliography

[421] Sergey Smirnov, Matthias Weidlich, Jan Mendling, and Mathias Weske.
Action patterns in business process models. In Luciano Baresi, Chi-
Hung Chi, and Jun Suzuki, editors, ICSOC/ServiceWave, volume 5900

of Lecture Notes in Computer Science, pages 115–129, 2009. ISBN 978-3-
642-10382-7. (Cited on pages 50 and 283.)

[422] Sergey Smirnov, Remco M. Dijkman, Jan Mendling, and Mathias Weske.
Meronymy-based aggregation of activities in business process models.
In Jeffrey Parsons, Motoshi Saeki, Peretz Shoval, Carson C. Woo, and
Yair Wand, editors, ER, volume 6412 of Lecture Notes in Computer Science,
pages 1–14. Springer, 2010. ISBN 978-3-642-16372-2. (Cited on page 51.)

[423] Sergey Smirnov, Matthias Weidlich, and Jan Mendling. Business process
model abstraction based on behavioral profiles. In Maglio et al. [295],
pages 1–16. ISBN 978-3-642-17357-8. (Cited on page 215.)

[424] Sergey Smirnov, Matthias Weidlich, Jan Mendling, and Mathias Weske.
Object-sensitive action patterns in process model repositories. In zur
Muehlen and Su [539], pages 251–263. ISBN 978-3-642-20510-1. (Cited
on page 283.)

[425] Sergey Smirnov, Matthias Weidlich, and Jan Mendling. Business pro-
cess model abstraction based on synthesis from well-structured behavi-
oral profiles. Technical report, Hasso Plattner Institute, University of
Potsdam, 2011. (Cited on page 215.)

[426] Sergey Smirnov, Matthias Weidlich, Jan Mendling, and Mathias Weske.
Action patterns in business process model repositories. Technical report,
Hasso Plattner Institute, University of Potsdam, June 2011. (Cited on
page 283.)

[427] Oleg Sokolsky, Sampath Kannan, and Insup Lee. Simulation-based
graph similarity. In Holger Hermanns and Jens Palsberg, editors,
TACAS, volume 3920 of Lecture Notes in Computer Science, pages 426–
440. Springer, 2006. ISBN 3-540-33056-9. (Cited on pages 53, 181, 182,
and 212.)

[428] Minseok Song and Wil van der Aalst. Supporting process mining by
showing events at a glance. In K. Chari and A. Kumar, editors, Pro-
ceedings of 17th Annual Workshop on Information Technologies and Systems
(WITS), pages 139–145, Montreal, Canada, 2007. (Cited on page 276.)

[429] Charles Spearman. The proof and measurement of association between
two things. The American journal of psychology, 100(3/4):441–471, 1987.
(Cited on page 169.)

[430] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1974. (Cited on
page 4.)

[431] Tony Spiteri Staines. Intuitive mapping of UML 2 activity diagrams
into fundamental modeling concept Petri net diagrams and colored Petri
nets. In ECBS, pages 191–200. IEEE Computer Society, 2008. (Cited on
pages 23 and 35.)

[432] Veda C. Storey. Comparing relationships in conceptual modeling: Map-
ping to semantic classifications. IEEE Trans. Knowl. Data Eng., 17(11):
1478–1489, 2005. (Cited on page 48.)

[433] Harald Störrle and Jan Hendrik Hausmann. Towards a formal semantics
of UML 2.0 activities. In Peter Liggesmeyer, Klaus Pohl, and Michael
Goedicke, editors, Software Engineering, volume 64 of LNI, pages 117–
128. GI, 2005. ISBN 3-88579-393-8. (Cited on page 23.)

bibliography 319

[434] Mark Strembeck and Gustaf Neumann. An integrated approach to en-
gineer and enforce context constraints in rbac environments. ACM Trans.
Inf. Syst. Secur., 7(3):392–427, 2004. (Cited on page 276.)

[435] Jan Sürmeli. Profiling services with static analysis. In AWPN, volume
501 of CEUR Workshop Proceedings, pages 35–40. CEUR-WS.org, 2009.
(Cited on page 92.)

[436] Kaijun Tan, Jason Crampton, and Carl A. Gunter. The consistency of
task-based authorization constraints in workflow systems. In Proceedings
of the 17th IEEE Workshop on Computer Security Foundations (CSFW), 2004.
(Cited on page 276.)

[437] Arthur H. M. ter Hofstede and Henderik Alex Proper. How to formalize
it?: Formalization principles for information system development meth-
ods. Information & Software Technology, 40(10):519–540, 1998. (Cited on
page 53.)

[438] Arthur H. M. ter Hofstede, Boualem Benatallah, and Hye-Young Paik,
editors. Business Process Management Workshops, BPM 2007 International
Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws, Brisbane, Aus-
tralia, September 24, 2007, Revised Selected Papers, volume 4928 of Lecture
Notes in Computer Science, 2008. Springer. ISBN 978-3-540-78237-7. (Cited
on pages 302 and 316.)

[439] Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adams, and
Nick Russell, editors. Modern Business Process Automation: YAWL and its
Support Environment. Springer, 2009. (Cited on pages 7, 36, and 39.)

[440] Satish Thatte. XLANG Web Services for Business Process Design. Tech-
nical report, Microsoft Corporation, 2001. (Cited on page 25.)

[441] P. S. Thiagarajan and Klaus Voss. In praise of free choice nets. In
Grzegorz Rozenberg, Hartmann J. Genrich, and Gérard Roucairol, ed-
itors, European Workshop on Applications and Theory in Petri Nets, volume
188 of Lecture Notes in Computer Science, pages 438–454. Springer, 1984.
ISBN 3-540-15204-0. (Cited on page 33.)

[442] Oliver Thomas and Michael Fellmann. Semantic process modeling -
design and implementation of an ontology-based representation of busi-
ness processes. Business & Information Systems Engineering, 1(6):438–451,
2009. (Cited on page 48.)

[443] Sebastián Uchitel and Marsha Chechik. Merging partial behavioural
models. In Richard N. Taylor and Matthew B. Dwyer, editors, SIGSOFT
FSE, pages 43–52. ACM, 2004. ISBN 1-58113-855-5. (Cited on page 218.)

[444] Antti Valmari. The state explosion problem. In Reisig and Rozenberg
[382], pages 429–528. ISBN 3-540-65306-6. (Cited on pages 93 and 118.)

[445] Franck van Breugel and Maria Koshika. Models and verification of BPEL.
Technical report, York University, 2005. URL http://www.cse.yorku.ca/

~franck/research/drafts/tutorial.pdf. (Cited on page 25.)

[446] Wil van der Aalst. Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011. (Cited on pages 88, 89, 144,
154, 155, 211, 248, 255, and 275.)

[447] Wil M. P. van der Aalst. The application of Petri nets to workflow man-
agement. Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.
(Cited on pages 33 and 94.)

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

320 bibliography

[448] Wil M. P. van der Aalst. Workflow verification: Finding control-flow
errors using Petri-net-based techniques. In van der Aalst et al. [453],
pages 161–183. ISBN 3-540-67454-3. (Cited on pages 35, 94, and 175.)

[449] Wil M. P. van der Aalst. Inheritance of business processes: A journey
visiting four notorious problems. In Hartmut Ehrig, Wolfgang Reisig,
Grzegorz Rozenberg, and Herbert Weber, editors, Petri Net Technology for
Communication-Based Systems, volume 2472 of Lecture Notes in Computer
Science, pages 383–408. Springer, 2003. ISBN 3-540-20538-1. (Cited on
pages 238 and 240.)

[450] Wil M. P. van der Aalst. Business alignment: using process mining as
a tool for delta analysis and conformance testing. Requir. Eng., 10(3):
198–211, 2005. (Cited on page 42.)

[451] Wil M. P. van der Aalst and Twan Basten. Life-cycle inheritance: A Petri-
net-based approach. In Pierre Azéma and Gianfranco Balbo, editors,
ICATPN, volume 1248 of Lecture Notes in Computer Science, pages 62–81.
Springer, 1997. ISBN 3-540-63139-9. (Cited on pages 35, 152, 172, 191,
192, 218, 244, and 286.)

[452] Wil M. P. van der Aalst and Maja Pesic. Decserflow: Towards a truly
declarative service flow language. In Bravetti et al. [66], pages 1–23.
ISBN 3-540-38862-1. (Cited on pages 11, 18, 79, and 88.)

[453] Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, editors.
Business Process Management, Models, Techniques, and Empirical Studies,
volume 1806 of Lecture Notes in Computer Science, 2000. Springer. ISBN
3-540-67454-3. (Cited on pages 289, 316, and 320.)

[454] Wil M. P. van der Aalst, Paulo Barthelmess, Clarence A. Ellis, and
Jacques Wainer. Proclets: A framework for lightweight interacting work-
flow processes. Int. J. Cooperative Inf. Syst., 10(4):443–481, 2001. (Cited
on page 245.)

[455] Wil M. P. van der Aalst, Alexander Hirnschall, and H. M. W. (Eric) Ver-
beek. An alternative way to analyze workflow graphs. In Anne Banks
Pidduck, John Mylopoulos, Carson C. Woo, and M. Tamer Özsu, editors,
CAiSE, volume 2348 of Lecture Notes in Computer Science, pages 535–552.
Springer, 2002. ISBN 3-540-43738-X. (Cited on page 108.)

[456] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski,
and Alistair P. Barros. Workflow patterns. Distributed and Parallel Data-
bases, 14(1):5–51, 2003. (Cited on pages 20, 48, 87, and 283.)

[457] Wil M. P. van der Aalst, A.J.M.M. Weijters, and Laura Maruster. Work-
flow mining: Discovering process models from event logs. IEEE Trans.
Knowl. Data Eng., 16(9):1128–1142, 2004. (Cited on pages 88, 144, 154,
211, 248, and 275.)

[458] Wil M. P. van der Aalst, Boualem Benatallah, Fabio Casati, and Francisco
Curbera, editors. Business Process Management, 3rd International Confer-
ence, BPM 2005, Nancy, France, September 5-8, 2005, Proceedings, volume
3649, 2005. ISBN 3-540-28238-6. (Cited on pages 302 and 314.)

[459] Wil M. P. van der Aalst, Ana Karla A. de Medeiros, and A. J. M. M.
Weijters. Genetic process mining. In Gianfranco Ciardo and Philippe
Darondeau, editors, ICATPN, volume 3536 of Lecture Notes in Computer
Science, pages 48–69. Springer, 2005. ISBN 3-540-26301-2. (Cited on
pages 90, 144, 211, 248, and 250.)

bibliography 321

[460] Wil M. P. van der Aalst, Hajo A. Reijers, A. J. M. M. Weijters,
Boudewijn F. van Dongen, Ana Karla Alves de Medeiros, Minseok Song,
and H. M. W. (Eric) Verbeek. Business process mining: An industrial ap-
plication. Inf. Syst., 32(5):713–732, 2007. (Cited on pages 88, 248, 253,
and 275.)

[461] Wil M. P. van der Aalst, Marlon Dumas, Florian Gottschalk, Arthur
H. M. ter Hofstede, Marcello La Rosa, and Jan Mendling. Correctness-
preserving configuration of business process models. In José Luiz
Fiadeiro and Paola Inverardi, editors, FASE, volume 4961 of Lecture Notes
in Computer Science, pages 46–61. Springer, 2008. ISBN 978-3-540-78742-6.
(Cited on pages 246 and 247.)

[462] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative
workflows: Balancing between flexibility and support. Computer Science
- R&D, 23(2):99–113, 2009. (Cited on pages 11, 18, 79, and 88.)

[463] Wil M. P. van der Aalst, Boudewijn F. van Dongen, Christian W. Günther,
Anne Rozinat, Eric Verbeek, and A.J.M.M. Weijters. ProM: The process
mining toolkit. In Ana Karla A. de Medeiros and Barbara Weber, editors,
BPM (Demos), volume 489 of CEUR Workshop Proceedings. CEUR-WS.org,
2009. (Cited on page 272.)

[464] Wil M. P. van der Aalst, Marlon Dumas, Florian Gottschalk, Arthur H. M.
ter Hofstede, Marcello La Rosa, and Jan Mendling. Preserving correct-
ness during business process model configuration. Formal Asp. Comput.,
22(3-4):459–482, 2010. (Cited on page 247.)

[465] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl,
and Karsten Wolf. Multiparty contracts: Agreeing and implementing
interorganizational processes. Comput. J., 53(1):90–106, 2010. (Cited on
page 177.)

[466] Wil M. P. van der Aalst, Vladimir Rubin, H. M. W. Verbeek, Boudewijn F.
van Dongen, Ekkart Kindler, and Christian W. Günther. Process mining:
a two-step approach to balance between underfitting and overfitting.
Software and System Modeling, 9(1):87–111, 2010. (Cited on pages 249

and 253.)

[467] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede,
Natalia Sidorova, H. M. W. Verbeek, Marc Voorhoeve, and Moe Thandar
Wynn. Soundness of workflow nets: classification, decidability, and
analysis. Formal Asp. Comput., 23(3):333–363, 2011. (Cited on page 35.)

[468] Wil M.P. van der Aalst. Pi-calculus versus Petri nets: Let us eat humble
pie rather than further inflate the pi-hype. BPTrends, 3(5):1–11, May 2005.
(Cited on page 39.)

[469] Jan Martijn E. M. van der Werf, Boudewijn F. van Dongen, Cor A. J.
Hurkens, and Alexander Serebrenik. Process discovery using integer
linear programming. Fundam. Inform., 94(3-4):387–412, 2009. (Cited on
page 249.)

[470] Boudewijn F. van Dongen, Jan Mendling, and Wil M. P. van der Aalst.
Structural patterns for soundness of business process models. In EDOC,
pages 116–128. IEEE Computer Society, 2006. ISBN 0-7695-2558-X.
(Cited on pages 91, 145, and 212.)

[471] Boudewijn F. van Dongen, Nadia Busi, G. Michele Pinna, and Wil M.P.
van der Aalst. An iterative algorithm for applying the theory of regions
in process mining. In Wolfgang Reisig, Kees van Hee, and Karsten Wolf,

322 bibliography

editors, Proceedings of the Workshop on Formal Approaches to Business Pro-
cesses and Web Services (FABPWS’07), Siedlce, Poland, 2007. Publishing
House of University of Podlasie. (Cited on page 249.)

[472] Boudewijn F. van Dongen, Monique H. Jansen-Vullers, H. M. W. Ver-
beek, and Wil M. P. van der Aalst. Verification of the SAP reference
models using EPC reduction, state-space analysis, and invariants. Com-
puters in Industry, 58(6):578–601, 2007. (Cited on pages 22, 35, 37, 38,
and 136.)

[473] Boudewijn F. van Dongen, Remco M. Dijkman, and Jan Mendling.
Measuring similarity between business process models. In Bellahsene
and Léonard [42], pages 450–464. ISBN 978-3-540-69533-2. (Cited on
pages 50, 51, 52, 53, 91, 145, and 212.)

[474] Rob J. van Glabbeek. The linear time-branching time spectrum (exten-
ded abstract). In Jos C. M. Baeten and Jan Willem Klop, editors, CON-
CUR, volume 458 of Lecture Notes in Computer Science, pages 278–297.
Springer, 1990. ISBN 3-540-53048-7. (Cited on pages 85, 86, and 150.)

[475] Rob J. van Glabbeek. Comparative Concurrency Semantics and Refinement
of Actions. PhD thesis, Free University, Amsterdam, 1990. Introduction
available at http://theory.stanford.edu/~rvg/thesis.html. Second
edition available as CWI tract 109, CWI, Amsterdam 1996. (Cited on
page 12.)

[476] Rob J. van Glabbeek. The linear time - branching time spectrum ii. In
Eike Best, editor, CONCUR, volume 715 of Lecture Notes in Computer
Science, pages 66–81. Springer, 1993. ISBN 3-540-57208-2. (Cited on
pages 85 and 150.)

[477] Rob J. van Glabbeek and Ursula Goltz. Refinement of actions and equi-
valence notions for concurrent systems. Acta Inf., 37(4/5):229–327, 2001.
(Cited on page 151.)

[478] Rob J. van Glabbeek and W. P. Weijland. Branching time and abstrac-
tion in bisimulation semantics. J. ACM, 43(3):555–600, 1996. (Cited on
pages 85 and 177.)

[479] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and more
focused control-flow analysis for business process models through SESE
decomposition. In Bernd J. Krämer, Kwei-Jay Lin, and Priya Narasim-
han, editors, ICSOC, volume 4749 of Lecture Notes in Computer Sci-
ence, pages 43–55. Springer, 2007. ISBN 978-3-540-74973-8. (Cited on
page 145.)

[480] Jussi Vanhatalo, Hagen Völzer, Frank Leymann, and Simon Moser. Auto-
matic workflow graph refactoring and completion. In Bouguettaya
et al. [60], pages 100–115. ISBN 978-3-540-89647-0. (Cited on pages 36

and 145.)

[481] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process
structure tree. Data Knowl. Eng., 68(9):793–818, 2009. (Cited on pages 60,
104, 109, 145, and 212.)

[482] Anisha Vemulapalli and Nary Subramanian. Transforming functional
requirements from UML into BPEL to efficiently develop SOA-based
systems. In Robert Meersman, Pilar Herrero, and Tharam S. Dillon,
editors, OTM Workshops, volume 5872 of Lecture Notes in Computer Sci-
ence, pages 337–349. Springer, 2009. ISBN 978-3-642-05289-7. (Cited on
pages 27 and 47.)

http://theory.stanford.edu/~rvg/thesis.html

bibliography 323

[483] Pepijn Visser, Dean Jones, Trevor Bench-Capon, and Michael Shave. As-
sessing heterogeneity by classifying ontology mismatches. In Proc. 1st
International Conference on Formal Ontology in Information Systems (FOIS),
pages 148–162, Trento (IT), 1998. (Cited on page 47.)

[484] Hagen Völzer. A new semantics for the inclusive converging gateway in
safe processes. In Hull et al. [217], pages 294–309. ISBN 978-3-642-15617-
5. (Cited on page 19.)

[485] Yair Wand and Ron Weber. Research commentary: Information systems
and conceptual modeling - a research agenda. Information Systems Re-
search, 13(4):363–376, 2002. (Cited on page 17.)

[486] Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12,
1962. (Cited on pages 97 and 126.)

[487] Carolyn R. Watters. Information retrieval and the virtual document.
JASIS, 50(11):1028–1029, 1999. (Cited on page 59.)

[488] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change
patterns and change support features - enhancing flexibility in process-
aware information systems. Data Knowl. Eng., 66(3):438–466, 2008. (Cited
on pages 49, 54, 201, 213, 245, and 246.)

[489] Barbara Weber, Shazia Wasim Sadiq, and Manfred Reichert. Beyond
rigidity - dynamic process lifecycle support. Computer Science - R&D, 23

(2):47–65, 2009. (Cited on page 245.)

[490] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond soundness: on
the verification of semantic business process models. Distributed and
Parallel Databases, 27(3):271–343, 2010. (Cited on page 48.)

[491] Jonathan J. Webster and Chunyu Kit. Tokenization as the initial phase
in NLP. In COLING, pages 1106–1110, 1992. (Cited on page 50.)

[492] Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens.
A critical evaluation study of model-log metrics in process discovery.
In zur Muehlen and Su [539], pages 158–169. ISBN 978-3-642-20510-1.
(Cited on page 252.)

[493] Matthias Weidlich and Jan Mendling. Perceived consistency between
process models. Inf. Syst., 2011. URL http://dx.doi.org/10.1016/j.

is.2010.12.004. To appear. (Cited on pages 149 and 166.)

[494] Matthias Weidlich and Mathias Weske. Structural and behavioural com-
monalities of process variants. In Gierds and Sürmeli [172], pages 41–48.
(Cited on pages 51 and 215.)

[495] Matthias Weidlich and Mathias Weske. On the behavioural dimension of
correspondences between process models. In Gierds and Sürmeli [172],
pages 65–72. (Cited on page 41.)

[496] Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient analysis
of BPEL 2.0 processes using pi-calculus. In Jie Li, Minyi Guo, Qun
Jin, Yongbing Zhang, Liang-Jie Zhang, Hai Jin, Masahiro Mambo, Jiro
Tanaka, and Hiromu Hayashi, editors, APSCC, pages 266–274. IEEE,
2007. ISBN 0-7695-3051-6. (Cited on pages 25 and 39.)

[497] Matthias Weidlich, Gero Decker, Alexander Großkopf, and Mathias
Weske. BPEL to BPMN: The myth of a straight-forward mapping. In
Meersman and Tari [307], pages 265–282. ISBN 978-3-540-88870-3. (Cited
on pages 27 and 47.)

http://dx.doi.org/10.1016/j.is.2010.12.004
http://dx.doi.org/10.1016/j.is.2010.12.004

324 bibliography

[498] Matthias Weidlich, Alistair P. Barros, Jan Mendling, and Mathias Weske.
Vertical alignment of process models - how can we get there? In Terry A.
Halpin, John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, Pn-
ina Soffer, and Roland Ukor, editors, BMMDS/EMMSAD, volume 29 of
Lecture Notes in Business Information Processing, pages 71–84. Springer,
2009. ISBN 978-3-642-01861-9. (Cited on pages 41, 49, 54, 166, and 174.)

[499] Matthias Weidlich, Mathias Weske, and Jan Mendling. Change propaga-
tion in process models using behavioural profiles. In IEEE SCC, pages
33–40. IEEE Computer Society, 2009. (Cited on page 179.)

[500] Matthias Weidlich, Remco M. Dijkman, and Jan Mendling. The ICoP
framework: Identification of correspondences between process models.
In Pernici [348], pages 483–498. ISBN 978-3-642-13093-9. (Cited on
page 41.)

[501] Matthias Weidlich, Remco M. Dijkman, and Mathias Weske. Deciding
behaviour compatibility of complex correspondences between process
models. In Hull et al. [217], pages 78–94. ISBN 978-3-642-15617-5. (Cited
on pages 153 and 172.)

[502] Matthias Weidlich, Felix Elliger, and Mathias Weske. Generalised com-
putation of behavioural profiles based on Petri-net unfoldings. In
Bravetti and Bultan [65], pages 101–115. ISBN 978-3-642-19588-4. (Cited
on page 93.)

[503] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, and Jan Mendling.
Process compliance measurement based on behavioural profiles. In Per-
nici [348], pages 499–514. ISBN 978-3-642-13093-9. (Cited on page 251.)

[504] Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and Mathias
Weske. Efficient computation of causal behavioural profiles using struc-
tural decomposition. In Johan Lilius and Wojciech Penczek, editors,
Petri Nets, volume 6128 of Lecture Notes in Computer Science, pages 63–
83. Springer, 2010. ISBN 978-3-642-13674-0. (Cited on pages 73 and 93.)

[505] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient con-
sistency measurement based on behavioral profiles of process models.
IEEE Trans. Software Eng., 37(3):410–429, 2011. (Cited on pages 73, 93,
149, and 179.)

[506] Matthias Weidlich, Jan Mendling, and Mathias Weske. A founda-
tional approach for managing process variability. In Proceedings of the
23rd International Conference on Advanced Information Systems Engineering
(CAiSE’11), volume 6741 of Lecture Notes in Computer Science, pages 267–
282. Springer, 2011. (Cited on page 215.)

[507] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and
Mathias Weske. Process compliance analysis based on behavioural pro-
files. Inf. Syst., 36(7):1009–1025, 2011. (Cited on page 251.)

[508] Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and Mathias
Weske. Causal behavioural profiles - efficient computation, applications,
and evaluation. Fundam. Inform., 2011. To appear. (Cited on pages 73

and 93.)

[509] Matthias Weidlich, Holger Ziekow, Jan Mendling, Oliver Günther, Math-
ias Weske, and Nirmit Desai. Event-based monitoring of process execu-
tion violations. In Proceedings of the 9th International Conference on Busi-
ness Process Management (BPM’11), 2011. To appear. (Cited on page 284.)

bibliography 325

[510] A. J. M. M. Weijters and Wil M. P. van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integrated Computer-
Aided Engineering, 10(2):151–162, 2003. (Cited on pages 248 and 264.)

[511] A. J. M. M. Weijters, Wil M. P. van der Aalst, and Ana Karla Alves
de Medeiros. Process mining with the HeuristicsMiner algorithm. BETA
Working Paper Series WP 166, Eindhoven University of Technology,
2006. (Cited on pages 248, 254, 264, and 275.)

[512] Lijie Wen, Wil M. P. van der Aalst, Jianmin Wang, and Jiaguang Sun.
Mining process models with non-free-choice constructs. Data Min.
Knowl. Discov., 15(2):145–180, 2007. (Cited on pages 90 and 248.)

[513] Mathias Weske. Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 2007. ISBN 978-3-540-73521-2. (Cited on pages 3, 5, 6,
17, and 19.)

[514] Stephen A. White. Using BPMN to model a BPEL process:. Technical
report, BPTrends, March 2005. (Cited on page 27.)

[515] Stephen A. White and Derek Miers. BPMN Modeling and Reference Guide:
Understanding and Using BPMN. Future Strategies Inc, 2008. (Cited on
page 19.)

[516] Roel Wieringa and Jaap Gordijn. Value-oriented design of service
coordination processes: correctness and trust. In Hisham Haddad,
Lorie M. Liebrock, Andrea Omicini, and Roger L. Wainwright, edit-
ors, SAC, pages 1320–1327. ACM, 2005. ISBN 1-58113-964-0. (Cited
on page 49.)

[517] William E. Winkler. The state of record linkage and current research
problems. Technical report, Statistical Research Division, U.S. Census
Bureau, 1990. (Cited on page 50.)

[518] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M.
ter Hofstede. Analysis of web services composition languages: The case
of BPEL4WS. In Il-Yeol Song, Stephen W. Liddle, Tok Wang Ling, and
Peter Scheuermann, editors, ER, volume 2813 of Lecture Notes in Com-
puter Science, pages 200–215. Springer, 2003. ISBN 3-540-20299-4. (Cited
on page 48.)

[519] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter
Hofstede, and Nick Russell. Pattern-based analysis of the control-flow
perspective of UML activity diagrams. In Delcambre et al. [117], pages
63–78. ISBN 3-540-29389-2. (Cited on page 48.)

[520] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M.
ter Hofstede, and Nick Russell. On the suitability of BPMN for business
process modelling. In Schahram Dustdar, José Luiz Fiadeiro, and Amit P.
Sheth, editors, Business Process Management, volume 4102 of Lecture Notes
in Computer Science, pages 161–176. Springer, 2006. ISBN 3-540-38901-6.
(Cited on page 48.)

[521] Christian Wolter and Andreas Schaad. Modeling of task-based author-
ization constraints in BPMN. In Alonso et al. [19], pages 64–79. ISBN
978-3-540-75182-3. (Cited on page 276.)

[522] Andreas Wombacher. Evaluation of technical measures for workflow
similarity based on a pilot study. In Meersman and Tari [306], pages
255–272. ISBN 3-540-48287-3. (Cited on pages 53 and 211.)

326 bibliography

[523] Andreas Wombacher and Chen Li. Alternative approaches for workflow
similarity. In IEEE SCC, pages 337–345. IEEE Computer Society, 2010.
ISBN 978-0-7695-4126-6. (Cited on pages 53 and 211.)

[524] Andreas Wombacher and Maarten Rozie. Piloting an empirical study on
measures for workflow similarity. In IEEE SCC, pages 94–102. IEEE Com-
puter Society, 2006. ISBN 0-7695-2670-5. (Cited on pages 53 and 211.)

[525] Andreas Wombacher and Maarten Rozie. Evaluation of workflow simil-
arity measures in service discovery. In Mareike Schoop, Christian Hue-
mer, Michael Rebstock, and Martin Bichler, editors, Service Oriented Elec-
tronic Commerce, volume 80 of LNI, pages 51–71. GI, 2006. ISBN 3-88579-
174-9. (Cited on pages 50, 53, and 211.)

[526] Peter Y. H. Wong and Jeremy Gibbons. A process semantics for
BPMN. In Shaoying Liu, T. S. E. Maibaum, and Keijiro Araki, editors,
ICFEM, volume 5256 of Lecture Notes in Computer Science, pages 355–374.
Springer, 2008. ISBN 978-3-540-88193-3. (Cited on page 19.)

[527] Martin R. Woodward, Michael A. Hennell, and David Hedley. A meas-
ure of control flow complexity in program text. IEEE Trans. Software Eng.,
5(1):45–50, 1979. (Cited on page 209.)

[528] Jialiang Wu and Eberhard Voit. Hybrid modeling in biochemical sys-
tems theory by means of functional Petri nets. J. Bioinformatics and Com-
putational Biology, 7(1):107–134, 2009. (Cited on page 28.)

[529] Li Xu and David W. Embley. Discovering direct and indirect matches
for schema elements. In DASFAA, pages 39–46. IEEE Computer Society,
2003. (Cited on page 54.)

[530] Zhiqiang Yan, Remco M. Dijkman, and Paul Grefen. Fast business pro-
cess similarity search with feature-based similarity estimation. In Meers-
man et al. [309], pages 60–77. ISBN 978-3-642-16933-5. (Cited on pages 50

and 52.)

[531] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and Arthur
H. M. ter Hofstede. Let’s dance: A language for service behavior mod-
eling. In Meersman and Tari [306], pages 145–162. ISBN 3-540-48287-3.
(Cited on page 88.)

[532] Johannes Maria Zaha, Marlon Dumas, Arthur H. M. ter Hofstede,
Alistair P. Barros, and Gero Decker. Bridging global and local mod-
els of service-oriented systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 38(3):302–318, 2008. (Cited on pages 88 and 177.)

[533] Stephan Zelewski. Petrinetzbasierte Modellierung komplexer Produk-
tionssysteme - Eine Untersuchung des Beitrags von Petrinetzen zur
Prozeßkoordinierung in komplexen Produktionssystemen, insbeson-
dere Flexiblen Fertigungssystemen, Band 9: Beurteilung des Petrinetz-
Konzepts. Technical report, University of Leipzig, 1995. (in German).
(Cited on pages 11 and 150.)

[534] Man Zhang and Zhenhua Duan. From business process models to web
services orchestration: The case of UML 2.0 activity diagram to BPEL. In
Bouguettaya et al. [60], pages 505–510. ISBN 978-3-540-89647-0. (Cited
on pages 27 and 47.)

[535] Xiangpeng Zhao, Hongli Yang, and Zongyan Qiu. Towards the formal
model and verification of web service choreography description lan-
guage. In Bravetti et al. [66], pages 273–287. ISBN 3-540-38862-1. (Cited
on page 177.)

bibliography 327

[536] Xiaohui Zhao, Chengfei Liu, Wasim Sadiq, and Marek Kowalkiewicz.
Process view derivation and composition in a dynamic collaboration
environment. In Meersman and Tari [307], pages 82–99. ISBN 978-3-540-
88870-3. (Cited on page 176.)

[537] Michael zur Muehlen and Danny Ting-Yi Ho. Risk management in the
BPM lifecycle. In Christoph Bussler and Armin Haller, editors, Business
Process Management Workshops, volume 3812, pages 454–466, 2005. ISBN
3-540-32595-6. (Cited on page 8.)

[538] Michael zur Muehlen and Jan Recker. How much language is enough?
Theoretical and practical use of the business process modeling notation.
In Bellahsene and Léonard [42], pages 465–479. ISBN 978-3-540-69533-2.
(Cited on pages 39 and 165.)

[539] Michael zur Muehlen and Jianwen Su, editors. Business Process Man-
agement Workshops - BPM 2010 International Workshops and Education
Track, Hoboken, NJ, USA, September 13-15, 2010, Revised Selected Pa-
pers, volume 66 of Lecture Notes in Business Information Processing, 2011.
Springer. ISBN 978-3-642-20510-1. (Cited on pages 287, 318, and 323.)

All links were last followed on June 06, 2011.

	Title
	Imprint
	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Alignments of Process Models
	1 Introduction
	1.1 The Essence of Modelling
	1.2 Drivers of Process Modelling
	1.3 Drivers of Consistency Analysis
	1.4 Problem Statement
	1.5 Contributions
	1.6 Structure of this Thesis

	2 Process Models
	2.1 Process Description Languages
	2.2 Net Systems
	2.3 From Process Descriptions to Net Systems
	2.4 Discussion

	3 Constructing Alignments
	3.1 Terminology
	3.2 Model Matching
	3.3 The ICoP Framework
	3.4 Experimental Evaluation
	3.5 Conclusion

	Foundations of Behaviour Consistency
	4 Behavioural Profiles
	4.1 The Notion of a Behavioural Profile
	4.2 The Notion of a Causal Behavioural Profile
	4.3 On Labelled Systems
	4.4 Behavioural Profile Equivalences
	4.5 Related Behavioural Concepts
	4.6 Conclusion

	5 Computations of Behavioural Profiles
	5.1 Computations for Sound Free-Choice WF-Systems
	5.2 Computations using Structural Decomposition
	5.3 Computations for Bounded Systems
	5.4 Implementation & Experimental Results
	5.5 Related Work
	5.6 Conclusion

	Consistency Analysis
	6 Deciding Process Model Consistency
	6.1 Consistency Notions
	6.2 Behavioural Profile Consistency
	6.3 Consistency Perception
	6.4 Related Work
	6.5 Conclusion

	7 Quantifying Process Model Consistency
	7.1 Consistency Quantification
	7.2 Consistency Measures
	7.3 Experimental Evaluation
	7.4 Consistent Change Propagation
	7.5 Related Work
	7.6 Conclusion

	8 Exploring Process Model Commonalities
	8.1 Explorative Behavioural Analysis
	8.2 A Set Algebra for Behavioural Profiles
	8.3 Model Synthesis for Behavioural Profiles
	8.4 Application
	8.5 Experimental Evaluation
	8.6 Related Work
	8.7 Conclusion

	9 Analysing Log Conformance
	9.1 Conformance Analysis
	9.2 Behavioural Profiles for Cases
	9.3 Conformance Measures
	9.4 Diagnostics
	9.5 Experimental Evaluation
	9.6 Related Work
	9.7 Conclusion

	10 Conclusions
	10.1 Summary of the Results
	10.2 Behavioural Profiles in the Broader Context
	10.3 Limitations & Future Research

	Bibliography

