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0Abstract
Complex networks like the Internet or social networks are fundamental parts of
our everyday lives. It is essential to understand their structural properties and
how these networks are formed. A game-theoretic approach to network design
problems has become of high interest in the last decades. The reason is that
many real-world networks are the outcomes of decentralized strategic behavior
of independent agents without central coordination. Fabrikant, Luthra, Maneva,
Papadimitriou, and Schenker [Fab+03] proposed a game-theoretic model aiming
to explain the formation of the Internet-like networks. In this model, called
the Network Creation Game, agents are associated with nodes of a network.
Each agent seeks to maximize her centrality by establishing costly connections
to other agents. The model is relatively simple but shows a high potential in
modeling complex real-world networks. In this thesis, we contribute to the line
of research on variants of the Network Creation Games. Inspired by real-world
networks, we propose and analyze several novel network creation models. We
aim to understand the impact of certain realistic modeling assumptions on the
structure of the created networks and the involved agents’ behavior.

The first natural additional objective that we consider is the network’s robust-
ness. We consider a game where the agents seek to maximize their centrality
and, at the same time, the stability of the created network against random edge
failure.

Our second point of interest is a model that incorporates an underlying ge-
ometry. We consider a network creation model where the agents correspond
to points in some underlying space and where edge lengths are equal to the
distances between the endpoints in that space. The geometric setting captures
many physical real-world networks like transport networks and fiber-optic
communication networks.

We focus on the formation of social networks and consider two models that
incorporate particular realistic behavior observed in real-world networks. In the
first model, we embed the anti-preferential attachment link formation. Namely,
we assume that the cost of the connection is proportional to the popularity
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of the targeted agent. Our second model is based on the observation that the
probability of two persons to connect is inversely proportional to the length of
their shortest chain of mutual acquaintances.
For each of the four models above, we provide a complete game-theoretical

analysis. In particular, we focus on distinctive structural properties of the equi-
libria, the hardness of computing a best response, the quality of equilibria in
comparison to the centrally designed socially optimal networks. We also analyze
the game dynamics, i.e., the process of sequential strategic improvements by the
agents, and analyze the convergence to an equilibrium state and its properties.
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0Zusammenfassung

Komplexe Netzwerke, wie das Internet oder soziale Netzwerke, sind funda-
mentale Bestandteile unseres Alltags. Deshalb ist es wichtig, ihre strukturellen
Eigenschaften zu verstehen und zu wissen, wie sie gebildet werden. Um dies zu
erreichen, wurden in den letzten Jahrzehnten spieltheoretische Ansätze für Netz-
werkdesignprobleme populär. Der Grund dafür ist, dass viele reale Netzwerke
das Ergebnis von dezentralem strategischem Verhalten unabhängiger Agenten
ohne zentrale Koordination sind. Fabrikant, Luthra, Maneva, Papadimitriou und
Schenker [Fab+03] haben ein solches spieltheoretisches Modell vorgeschlagen,
um die Entstehung von internetähnlichen Netzwerken zu erklären.

In diesem Modell, dem sogenannten Network Creation Game, repräsentieren
die Agenten die Knoten eines Netzwerks. Jeder Agent versucht, durch den Kauf
von Verbindungen zu anderen Agenten seine Zentralität im erzeugten Netzwerk
zu maximieren. Dieses Modell ist relativ einfach, aber es hat ein großes Potenzial,
reale Netzwerke modellieren zu können. In der vorliegenden Arbeit tragen wir
zur aktuellen Forschungsrichtung, die sich der Untersuchung von Varianten der
Network Creation Games widmet, bei. Inspiriert von realen Netzwerken, schla-
gen wir verschiedene neuartige Netzwerkbildungsmodelle vor und analysieren
diese. Wir wollen hierbei die Auswirkungen bestimmter realistischer Modellier-
ungsannahmen auf die Struktur der erstellten Netzwerke und das Verhalten der
beteiligten Agenten verstehen.

Die erste natürliche zusätzliche Modellierungsannahme, die wir betrachten,
ist ein Fokus auf die Robustheit des erzeugten Netzwerks. In diesem Modell
haben die Agenten das Ziel, ihre Zentralität zu maximieren und gleichzeitig das
erstellte Netzwerk robust gegenüber zufällige Verbindungsausfälle zu machen.

Das zweite neue Modell, das wir hier betrachten, bezieht eine zu Grunde
liegende Geometrie mit ein. Hierbei entspricht jeder Agent einem Punkt in einem
gegebenen Raum und die Länge einer Netzwerkverbindung entspricht der Dis-
tanz zwischen den jeweiligen Endpunkten in diesem Raum. Diese geometrische
Variante erlaubt die Modellierung vieler realer physischer Netzwerke, wie z.B.
Transportnetzwerke und Glasfaserkommunikationsnetzwerke.
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Des Weiteren fokussieren wir uns auf die Bildung von sozialen Netzwerken
und betrachten zwei Modelle, die ein bestimmtes realistisches Verhalten einbe-
ziehen, das in realen sozialen Netzwerken beobachtet werden kann. Das erste
Modell basiert auf einer anti-präferentiellen Kantenerzeugung. Dabei nehmen
wir an, dass die Kosten einer Verbindung proportional zur Popularität des Agen-
ten am anderen Endpunkt sind. Das zweite betrachtete Modell basiert auf der
Beobachtung, dass die Wahrscheinlichkeit, dass zwei Personen verbunden sind,
proportional zur Länge ihrer kürzesten Kette von gegenseitigen Bekanntschaften
ist.
Für jedes der vier oben genannten Modelle liefern wir eine komplette spiel-

theoretische Analyse. Insbesondere fokussieren wir uns auf charakteristische
strukturelle Eigenschaften der spieltheoretischen Gleichgewichte, die Komplexi-
tät der Berechnung einer optimalen Strategie und die Qualität der Gleichgewichte
im Vergleich zu den zentral entworfenen sozial optimalen Netzwerken. Außer-
dem analysieren wir auch die Spieldynamik, d.h. den Prozess von sequentiellen
verbessernden Strategieänderungen der Agenten. Dabei untersuchen wir die
Konvergenz zu einem Gleichgewichtszustand und die Eigenschaften solcher
Konvergenzprozesse.
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1 Introduction

1.1 Motivation

Networks accompany all fields of our life. Social networks represent our rela-
tionships with other people; transport networks are essential vessels delivering
people and goods; the World Wide Web represents a global information space;
mobile networks and the Internet help us keep in touch with other people.
Clearly, it is important to keep-up the functionality and efficiency of these net-
works to provide economic stability and the well-being of our world. Two core
questions are facing modern science: understanding the process of real-world
network formation and a relationship between the network behavior and its
structure.

Many exciting results and valuable progress in resolving these problems have
been performed in Operations Research, Economics, and Theoretical Computer
Science [GK11; Jac10]. High interest in network design problems has also kindled
the interdisciplinary field of Network Science [Bar16], which is devoted to
analyzing and understanding real-world networks. Most of the results and
studied models assume that the considered networks are controlled by a central
authority that can perform any kind of structural modifications to the network
and that has all data about the network’s current state. However, many real-
world networks such as social networks and the Internet are maintained and
developed by independent agents where each agent aims to satisfy her personal
interests.

Therefore, the focus of this thesis is a game-theoretic approach to network for-
mation. Here, independent agents corresponding to nodes establish connections
between each other to minimize their payoff. The union of all agents’ strategies
defines the outcome of the game, i.e., the network structure. Equilibrium net-
works, i.e., states of the game where no agent can perform an improvement of her
strategy, is of particular interest since it can be seen as a result of a decentralized
process of network formation. Moreover, an analysis of the quality of equilibria
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Chapter 1 Introduction

in the game can help to understand how the lack of a central authority can
influence a system’s infrastructure and functionality.

The pioneering work by Myerson [Mye77] joined two different fields, Graph
Theory and Game Theory, and introduced a new form of a game where agents
are nodes of a network who can establish connections in pairwise cooperation to
minimize their cost. The idea of strategic network formation became very popular
and has been considered and analyzed in many scientific works. One of the
seminal papers has been introduced by Fabrikant, Luthra, Maneva, Papadimitriou,
and Shenker [Fab+03]. Their model, called the Network Creation Game (NCG),
aims at modeling the formation of the Internet-like networks. In this game,
agents are nodes who can establish incident costly connections to maximize
their centrality at the minimum price. For its simplicity but at the same time
intriguing properties of equilibria, the game attracted much attention in the
Algorithmic Game Theory field. Later, Chun et al. [Chu+04] performed a series of
experiments with various modifications of the game. They showed the potential
of the NCG in modeling real-world networks by varying the cost function. In this
thesis, we extend the research on the NCGs and show what basic principles are
necessary ingredients for the NCG to model a behavior of real-world networks.
Moreover, we perform a rigorous theoretical analysis of the games’ outcomes.

1.2 Thesis Outline

In Chapter 2 we introduce the necessary game-theoretic notation and give a
detailed definition of the original Network CreationGame. Moreover, this chapter
provides an overview of the related recent results on the network formation
models.
In Chapter 3, we investigate a network creation model where agents aim

to form connections that guarantee robustness against random edge failure.
The model aims to understand the structure and quality of the selfishly created
networks and to compare the results with the outcomes of the classical Network
Creation Game outcomes. In particular, we will show that similar to the NCG,
the equilibria have bounded diameter, but the class of optimum and equilibrium
networks is much more diverse compared to the classic NCG.

In Chapter 4 we present a generalized Network Creation Game with arbitrary
edge weights. We mainly focus on the geometric setting where the weights equal
the metric distances between the nodes induced by an underlying geometry. The
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Thesis Outline Section 1.2

model naturally replicates real-world infrastructure networks like road networks
and electricity networks. In contrast to the classical NCG with uniform edge
weights, even the problem of of settling the existence of an equilibrium state
is a big challenge in the model with weighted edges. We provide a rigorous
analysis of the game for different metric spaces and answer questions regarding
the convergence to an equilibrium state, the hardness of computing the best
strategy, and the quality of the equilibrium networks. The most surprising result
of this chapter is that the quality of the worst equilibrium does not depend on
the geometry.

Chapters 5 and 6 present a novel class of NCGs with dynamic edge costs. Both
models are inspired by real-world social networks. In Chapter 5 we consider a
model based on a natural principle that the cost for the formation of an edge
is proportional to the popularity of the targeted node. We consider different
versions of the game by incorporating locality, i.e., we assume that that agents
can only form edges in their local neighborhood. In addition to the standard
game-theoretical analysis focusing on the properties and the quality of equilibria,
we study the game dynamics. In particular, we analyze the convergence speed to
a stable state if agents sequentially perform improving edge additions starting
from some particular initial configurations.
The definition of the model presented in Chapter 6 incorporates several nat-

ural properties of social networks. We assume that edge formation is bilateral
and that the edge cost is proportional to the distance between the nodes in
the network without this edge. This assumption is based on the observation
that a connection between two friends of a common friend is more likely than
between two more remote persons in real-world social networks. We analyze
the structure and quality of the pairwise stable networks in the game and show
theoretically and experimentally that the stable networks mimic many real-world
network properties like low diameter, high clustering, and a power-law degree
distribution.

We conclude with Chapter 7 where we emphasize the most important findings
and observations of this thesis and give an overview on the most promising
future research directions and open questions.
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2 Preliminaries

Algorithmic Game Theory is a relatively young research area that attracted
much attention because it advances a dialogue between Theoretical Computer
Science and the real world. The pioneering work by von Neumann and Morgen-
stern [MV44] introduced Utility Theory which allowed modeling the behavior
of selfish agents. Each agent chooses a strategy to maximize her utility function,
which is a mapping of the observed outcome of the game to a real number. In
the last decades, focus on different concepts, questions, and application domains
gave birth to different research directions within Algorithmic Game Theory. We
focus on only one if this directions in this work, namely Network Creation Games

(NCG). For an overview of other areas, we refer to the books byMyerson [Mye91],
Nisan et al. [Nis+07], and by Shoham and Leyton-Brown [SL08].

In the following, we will define the original Network Creation Game [Fab+03]
and all terms and notions necessary to understand the thesis.

We assume that the reader is familiar with basics concepts of Graph Theory
and refer to the book by West [Wes01] for omitted definitions. However, we
recap certain key notation. We use the standard graph-theoretic notation and
denote a network on a set of nodes 𝑉 and an edge set 𝐸 as 𝐺 = (𝑉 , 𝐸). We use
𝑢𝑣 to denote an undirected edge between the nodes 𝑢 and 𝑣 in a network. The
degree of a node 𝑢, i.e., its number of neighbors, in a network 𝐺 is denoted as
𝑑𝑒𝑔𝐺 (𝑢). A node of degree one is called a leaf. For a network 𝐺 = (𝑉 , 𝐸), the
network 𝐺 + 𝑢𝑣 (respectively, 𝐺 − 𝑢𝑣) denotes the network 𝐺 in which the edge
𝑢𝑣 has been added (respectively, deleted). We denote as 𝑁𝑘 (𝑢) the neighborhood
of a node 𝑢 (nodes at distance at most 𝑘), and we denote as 𝐵𝑘 (𝑢) the set of
nodes at distance exactly 𝑘 from 𝑢. We highlight some special networks that we
will need later on: a clique K𝑛 on 𝑛 nodes is a network where every two distinct
nodes are adjacent; a star S𝑛 with 𝑛 nodes is a network that contains one central
node connected to 𝑛 − 1 leaves.
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Chapter 2 Preliminaries

2.1 The Network Creation Game

In 2003, Fabrikant, Luthra, Maneva, Papadimitriou, and Shenker [Fab+03] pro-
posed a model of decentralized network formation. The model is called Network
Creation Game, and we will refer to it as the classical Network Creation Game

(NCG). It has been proposed as a game-theoretic model of real-world network
formation with no central coordination. The model can be seen as a simplified
variant of the Connection Game by Jackson & Wolinsky [JW96]. Formally, the
NCG is defined as follows. Given a set of 𝑛 agents𝑉 = {𝑣1, . . . , 𝑣𝑛} corresponding
to nodes of a network. Each agent can individually decide to what subset of
nodes she buys the edges in order to maximize her centrality. More precisely, let
s := (𝑆𝑣1, . . . , 𝑆𝑣𝑛 ) denote the strategy profile, where 𝑆𝑢 ⊆ 𝑉 \ {𝑢} corresponds
to the pure strategy of an agent 𝑢. The strategy 𝑆𝑢 specifies the edges owned by
agent 𝑢. Every edge has price 𝛼 ∈ R>0, where 𝛼 is some fixed parameter of the
game. The strategy profile uniquely specifies the network 𝐺 (s) = (𝑉 , 𝐸) with
𝐸 = {𝑢𝑣 |𝑢, 𝑣 ∈ 𝑉 ,𝑢 ∈ 𝑆𝑣 ∨ 𝑣 ∈ 𝑆𝑢}. If 𝑣 ∈ 𝑆𝑢 , then we call agent 𝑢 the owner of
the undirected edge 𝑢𝑣, and 𝑢 has to pay the full edge price. Note that if 𝑣 ∈ 𝑆𝑢
and 𝑢 ∈ 𝑆𝑣, then both agents have to pay the full edge price. However, in this
case, one of the agents could improve her current situation in the network by
not buying the edge 𝑢𝑣, which implies that every edge has exactly one owner in
any equilibrium or social optimum network.

We will omit the reference to s when it is clear from a context. Note that all
edges are undirected, but we use directed edges on the figures to illustrate the
edge ownership (an arrow directs away from its owner).

Let 𝑑𝐺 (𝑢, 𝑣) be the hop-distance between two nodes 𝑢 and 𝑣 in 𝐺 , which is
equal to the number of edges on the shortest path between𝑢 and 𝑣 in𝐺 . If there is
no 𝑢-𝑣 path, then 𝑑𝐺 (𝑢, 𝑣) = +∞. We use 𝑑𝐺 (𝑢,𝑈 ) to denote the sum of distances
from the node 𝑢 to all nodes in𝑈 ⊆ 𝑉 in𝐺 , i.e., 𝑑𝐺 (𝑢,𝑈 ) := ∑

𝑣∈𝑈
𝑑𝐺 (𝑢, 𝑣). We call

𝑑𝐺 (𝑢,𝑉 ) the distance cost and 𝛼 · |𝑆𝑢 | the edge cost of agent 𝑢. Each agent aims
at minimizing her cost, that is the agent’s distance cost plus her edge cost:

𝑐𝑜𝑠𝑡 (𝑢, s) := 𝛼 · |𝑆𝑢 | + 𝑑𝐺 (s) (𝑢,𝑉 ).

When a strategy profile is clear from the context, we can establish a bijection
between the network𝐺 (s) and the pair (𝑉 , s). In this case, we can use s and 𝐺
interchangeably. Hence, the cost of an agent 𝑢 is denoted as 𝑐𝑜𝑠𝑡 (𝑢,𝐺).
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Chapter 2 Preliminaries

• Greedy equilibrium (GE). A network is in greedy equilibrium if no agent
can unilaterally improve her strategy by adding, deleting, or swapping
one own incident edge. This concept has been introduced by Lenzner in
[Len12].

• 𝛽-approximate equilibrium. A network is in 𝛽-approximate equilibrium
if no agent can unilaterally change her strategy to improve her cost by
more than a factor of 𝛽 . The concept has been first defined by Chien and
Sinclair in [CS11] for the class of congestion games. Note that this concept
can be used in combination to the mentioned equilibrium variant.

We introduce a new solution concept, called add-only equilibrium (AE). We say
that a network is in add-only equilibrium if no agent can unilaterally improve
her strategy by adding one incident edge. This concept is even simpler than
Greedy equilibrium since every agent can compute her best response in O(𝑛)
steps by trying all possibilities. Observe, that the add-only agent’s behavior
naturally models social networks where a connection between two nodes means
that two persons know each other.
Apart from the above mentioned solution concepts, the asymmetric swap

equilibrium [MS12], where improving moves are restricted to a swap of one edge
owned by an agent, the swap equilibrium [Alo+13] where improving moves are
restricted to a swap of one incident edge, and the strong equilibrium [AFM09],
where no coalition of agents can improve their strategies via a joint strategy
change, have been studied.
Aside from the above defined equilibrium concepts, there is the concept of

pairwise stability [JW96]. Formally, a network 𝐺 = (𝑉 , 𝐸) is pairwise stable if
and only if the following conditions hold:

1. for any edge 𝑢𝑣 ∈ 𝐸, 𝑐𝑜𝑠𝑡 (𝑢,𝐺 − 𝑢𝑣) ≥ 𝑐𝑜𝑠𝑡 (𝑢,𝐺) and 𝑐𝑜𝑠𝑡 (𝑣,𝐺 − 𝑢𝑣) ≥
𝑐𝑜𝑠𝑡 (𝑣,𝐺);

2. for every edge 𝑢𝑣 ∉ 𝐸, 𝑐𝑜𝑠𝑡 (𝑢,𝐺 + 𝑢𝑣) ≥ 𝑐𝑜𝑠𝑡 (𝑢,𝐺) or 𝑐𝑜𝑠𝑡 (𝑣,𝐺 + 𝑢𝑣) ≥
𝑐𝑜𝑠𝑡 (𝑣,𝐺).

In the simplest terms, a network is pairwise stable if every edge in𝐺 is beneficial
for both endpoints, and for every edge not in 𝐺 , at least one of its endpoints
blocks the edge because it does not decrease her cost. This concept is prevalent
in economics research. Moreover, it is a natural concept for modeling real-world
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NCG is an objective function called social cost, which is the sum of the costs of
all agents:

SC(𝐺) =
∑︁
𝑢∈𝑉

𝑐𝑜𝑠𝑡 (𝑢,𝐺).

To measure the loss of efficiency due to selfishness of agents, two measures
have been established, the Price of Anarchy (PoA) [KP99] and the Price of Stability
(PoS) [Ans+08a]. Let 𝑤𝑜𝑟𝑠𝑡𝑛 (respectively, 𝑏𝑒𝑠𝑡𝑛) be the highest (respectively,
lowest) possible social cost of an equilibrium network obtained by 𝑛 agents. Let,
𝑂𝑃𝑇𝑛 be a network of 𝑛 nodes with the minimum social cost. Then we define:

• the Price of Anarchy is 𝑤𝑜𝑟𝑠𝑡𝑛
SC(𝑂𝑃𝑇𝑛) ,

• the Price of Stability is 𝑏𝑒𝑠𝑡𝑛
SC(𝑂𝑃𝑇𝑛) .

Simply put, the Price of Anarchy evaluates how bad selfishly created networks
can be in contrast to a socially optimal network designed by a central authority.
Bounding the PoA is an important but challenging problem. A long line of
research [Alb+14; ÀM17; ÀM18; ÀM19; BL20; Dem+12; Fab+03; MMM15; MS13]
has established that the PoA of the NCG is constant for almost all 𝛼 , and it is
conjectured that this holds for all 𝛼 [Alo+13; Fab+03; MMM15; MS12].

The Price of Stability considers the ratio between the social cost of an equilib-
rium and a social optimum in a more optimistic way. For instance, a statement
that a game has the 𝑃𝑜𝑆 = 1 implies that there always exists an equilibrium state
with minimum possible social cost. It holds for the classical NCG for 𝛼 ≥ 2, as a
center-sponsored star is in equilibrium and a social optimum [Fab+03].

Another important question to study is the hardness of computing a best
response. Computing the best possible strategy of an agent in the NCG was
shown to be NP-hard [Fab+03], and this also holds for many NCG variants [CL15;
MS12]. However, restricted variants with efficient best response computation
also exist [Alo+13; BG00; Fri+17; Len12].

To measure the quality of stable networks we analyze their graph theoretic
properties, like the network diameter, structural properties, and the average
clustering coefficient.
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2.3 Game Dynamics

So far, we focused on the analysis of equilibrium states. In this case, the game
is considered a one-shot game. It means that for a given initial state, agents
can simultaneously perform only one improving move. However, the NCGs
allow us to model a process of network formation if we take a more constructive
sequential view of the game. More precisely, we want to study the process of how
the networks evolve over time if we start from a non-stable configuration and let
the agents sequentially play improving moves. If the process converges to a state
where no agent can perform an improving move, an equilibrium is found. Hence,
these game dynamics are an algorithm for computing stable networks. However,
it is a challenging problem to prove (or disprove) convergence to a stable state.
To specify the game dynamics, the initial configuration, the agents’ activation
order, the type of the move (improving or best move) should be defined.

Strategic games can be classified according to their dynamics. We focus on
one well-known class: games with the finite improving property. Formally, a
game has the finite improving property (FIP) if starting from any strategy vector,
any sequence of improving moves is finite. It is equivalent to the game being an
ordinal potential game [MS96]. According to the definition, a game is an ordinal
potential game if there exists a generalized ordinal potential function that maps
a strategy profile to a real number and has the property that if the active agent’s
cost decreases, then the potential function decreases as well. If a game with a
finite set of feasible strategies comes to the initial state after several steps of an
improving response dynamic, then the process is cyclic. The cycle is called an
improving response cycle (IRC) (respectively, best response cycle (BRC)) in case of
the improving (respectively, best) response dynamics. The existence of an IRC
or BRC disproves that the respective game has an ordinal potential function.

The FIP is a potent property that not only guarantees convergence of game
dynamics but also proves the existence of an equilibrium state. However, the
speed of convergence of such distributed local search can be exponential [FPT04;
SV08].

For the classical NCG and some variants of the game, it has been proven [KL13;
Len11] that there is no ordinal potential function, i.e., natural convergence proto-
cols like iterated improving response dynamics have no convergence guarantee.

11
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2.4 Related Work

This section will list the latest game-theoretic models for the formation of net-
works with realistic properties. Note that there can be two ways of modeling
real-world networks: either by considering models with realistic properties or by
developing models that guarantee that the stable networks in this model mimic
real-world networks.

Extensive research, e.g. [AJB99; BA99; Bar16; Bro+00; Kle00; LKF05; NBW11],
on real-world networks from many different domains like communication net-
works, social networks, and metabolic networks. has revealed the astonishing
fact that most of these real-world networks share the following basic properties:

• Small-world property: The diameter and average distances are at most
logarithmic in number of nodes.

• High clustering: Two nodes with a common neighbor have a high prob-
ability of being neighbors, i.e., there is an abundance of triangles and
small cliques. More formally, let 𝛥 (𝑣) denote the number of triangles in
𝐺 that contain the node 𝑣. The local clustering coefficient 𝐶𝐶 (𝑣) of node
𝑣 in 𝐺 is the probability that two randomly selected neighbors of 𝑣 are
neighbors, i.e., 𝐶𝐶 (𝑣) := 2𝛥 (𝑣)

𝑑𝑒𝑔 (𝑣) (𝑑𝑒𝑔 (𝑣)−1) if 𝑑𝑒𝑔(𝑣) ≥ 2, and 0 otherwise.
The average local clustering coefficient CC of a network 𝐺 with 𝑛 nodes
is the average of the local clustering coefficients over all nodes 𝑣, i.e.,
𝐶𝐶 (𝐺) = 1

𝑛

∑
𝑣∈𝑉 𝐶𝐶 (𝑣). It was observed that the average local clustering

coefficient in real-world networks depends on the node’s degree 𝑘 and
roughly is 𝑘−1, and that the average local clustering coefficient is relatively
high [Bar16].

• Power-law degree distribution: if the probability that a node has degree 𝑘
is proportional to 𝑘−𝛽 , the degree distribution follows a power-law. For
2 ≤ 𝛽 ≤ 3, networks with a power-law degree distribution are called
scale-free networks.

The phenomenon that real-world networks from different domains are very
similar calls for a scientific explanation, i.e., there is a high interest in formal
models that generate networks with the above properties from simple rules.
Many models that generate networks with the above properties following a

simple protocol have been proposed. Most prominent models are the preferential
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attachment model [BA99], Chung-Lu random graphs [CL02], hyperbolic random
graphs [FK15; Kri+10], and geometric inhomogeneous random graphs [BKL19].
However, all these models describe a purely random process while many real-
world networks evolved by an interaction of rational agents. For example, in
(online) social networks [Jac10] the selfish agents correspond to people or firms
that choose carefully with whom to maintain a connection. Thus, a model
with higher explanatory power should consider rational selfish agents who use
and modify the network to their advantage [Pap01]. It explains the need for a
game-theoretic model to explain the process of real-world network formation.

So far, the NCG can explain the small-world property. That is, it has been
proven that the diameter of all equilibrium networks is small [Dem+12]. Other
game-theoretic models usually embed the desired properties in the agents’ cost
function to guarantee the real-world properties for any game outcome. For
example, the island connection model [JR05] assumes that groups of agents are
based on islands and that the edge cost within an island is much lower than
across islands. This yields equilibria with low diameter and high clustering but
no realistic degree distribution.

Another promising model considers the World Wide Web creation [Kou+15].
In this model, nodes strategically choose outgoing links and click probabilities
to maximize their utility, which is proportional to the traffic on the node and the
node’s quality. The resulting Nash equilibria have many features of real-world
content networks.

In the next model, called the network navigation game [Gul+15], agents are
randomly sampled points in the hyperbolic plane. Each agent selfishly decides
which edges to add to ensure the performance of greedy routing in the formed
network. The equilibrium networks indeed have a power-law degree distribution
and high clustering. However, the main reason for this is not the agents’ strategic
behavior but the fact that the agents correspond to uniformly sampled points in
the hyperbolic plane.

Since the classical NCG has been introduced, many researchers tried to modify
the model to incorporate more realistic constraints. One natural direction is to
model a formation of physical networks by embedding weighted networks in
the model [Alb+14; Dem+09]. In the particular case, when the edge weights
satisfy the triangle inequality, we have a geometric network. One fundamental
property of many efficient geometric networks is the low stretch factor. The
stretch is the maximum of the ratio of the shortest path length in the network

13



Chapter 2 Preliminaries

and the geometric distance over all pairs of nodes. Strategic network formation
where each agent seeks to minimize her total stretch has been studied in [AQ19;
MSW06; MSW11]. A more detailed literature overview related to the topic can
be found in Chapter 4.
One of the main critiques of the classical NCG is that it neglects the locality

of the agents’ knowledge about the network. Usually, agents cannot observe
the entire network to calculate their best strategy optimally. Several versions
of the definition of the NCGs with locality have been proposed. In [Bil+14b;
Bil+16; YY20] the authors consider agents with local knowledge, i.e., when agents
can observe only a local part of the network and have to perform a strategy
calculation based on their worst case assumption about the unseen part of the
network. A more optimistic definition of locality has been considered in [CL15]
where agents have a global knowledge about the network but can performmoves
only within their local neighborhood.
The model can be augmented by restricting the allowed strategy changes,

i.e., by choosing a specific solution concept. For example, pairwise stability is a
natural way to model real-world social networks, while add-only equilibria can
mimic network formation in co-authorship networks. Other solution concepts,
as well as the related work, have been introduced earlier in this chapter.

Apart from the mentioned models, there is one model which incorporates one
of the real-world network properties in the utility function, called the clustering
coefficient network formation model [BK11]. This approach can guarantee a high
local clustering coefficient of the agents in the equilibrium networks. However,
it has been shown that the NEs can have a large diameter, i.e., the small-world
property does not hold.
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3 On Selfish Creation

of Robust Networks

Robustness is one of the critical properties of nowadays networks. However,
robustness cannot be simply enforced by design or regulation since many im-
portant networks, most prominently the Internet, are not created and controlled
by a central authority. Instead, Internet-like networks emerge from strategic
decisions of many selfish agents. Despite this fact, the Internet seems robust
against node or edge failures, which hints that a socially beneficial property like
network robustness may emerge from selfish behavior.
To investigate this phenomenon we present in this chapter a simple model

for selfish network creation, which explicitly incorporates agents striving for a
central position in the network while at the same time protecting themselves
against random edge-failure. We show that networks in our model are more
diverse than in the original NCGmodel. We also show the versatility of ourmodel
by adapting various properties and techniques from the non-robust versions.
In combination with the interesting structural properties of stable networks
claiming that the amount of edge-overbuilding due to the adversary is limited,
we prove an upper bound on the Price of Anarchy of O(1 + 𝛼/

√
𝑛). Another

positive statement for our model provides a constant bound for the Price of
Stability that implies that the selfish agents’ behavior can lead to efficient and
stable networks. Moreover, we analyze the computational hardness of finding
best possible strategies and investigate the game dynamics of our model.

3.1 Model and Notation

We consider the Network Creation Game (NCG) by Fabrikant et al. [Fab+03]
augmented with the uniform edge-deletion adversary from Kliemann [Kli11]
and we call our model Adversary NCG (Adv-NCG). More specifically, in an Adv-
NCG there are 𝑛 selfish agents which correspond to the nodes of an undirected
multi-graph𝐺 = (𝑉 , 𝐸). A pure strategy 𝑆𝑢 of agent 𝑢 ∈ 𝑉 (𝐺) is any multi-set
over elements from𝑉 \ {𝑢}. If 𝑣 is contained 𝑘 times in 𝑆𝑢 then this encodes that
agent 𝑢 wants to create 𝑘 undirected edges to node 𝑣. Moreover we say that 𝑢 is
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the owner of all edges to the nodes in 𝑆𝑢 . Given an 𝑛-dimensional vector of pure
strategies for all agents, then the union of all the edges encoded in all agents’
pure strategies defines the edge set 𝐸 of the multi-graph 𝐺 .

The agents prepare for an adversarial attack on the network after creation.
This attack deletes one edge uniformly at random. Hence, agents try to minimize
the attack’s impact on themselves by minimizing their expected cost. Let 𝐺 − 𝑒
denote the network𝐺 where edge 𝑒 is removed. We define the expected distance
cost for an agent 𝑢 as

𝛿𝐺 (𝑢,𝑉 ) =
1

|𝐸 |
∑︁
𝑒∈𝐸

𝑑𝐺−𝑒 (𝑢,𝑉 (𝐺 − 𝑒)) = 1

|𝐸 |
∑︁
𝑒∈𝐸

∑︁
𝑣∈𝑉

𝑑𝐺−𝑒 (𝑢, 𝑣) .

The expected cost of agent 𝑢 in a network𝐺 (s) = (𝑉 , 𝐸) with the edge price 𝛼 is
defined as

𝑐𝑜𝑠𝑡 (𝑢,𝐺) = 𝛼 · |𝑆𝑢 | + 𝛿𝐺 (𝑢,𝑉 ),

where 𝛼 · |𝑆𝑢 | is the edge cost of the agent 𝑢. Thus, compared to the original
NCG [Fab+03], the distance cost term is replaced by the expected distance cost
with respect to uniform edge deletion.

The social cost of a network 𝐺 (s) is defined in a standard way as

𝑆𝐶 (𝐺 (s)) =
∑︁
𝑢∈𝑉

𝑐𝑜𝑠𝑡 (𝑢,𝐺 (s)) .

3.2 Related Work

For more than two decades network security is a hot topic in the game theory
field. Many models and approaches have been introduced (see [EB19; LX12;
Mor+20; Roy+10] for an overview) but most of them focus on the interaction
between two agents, attacker and defender, on a given network. The defender
chooses its strategy to keep the network stable against the strategic attacks of the
opponent. However, this approach assumes that the defender can observe and
control the entire network, while our main focus is on the network formation
process where agents can modify only incident connections. To the best of
our knowledge, only a few network formation models have been studied that
incorporate edge-failure.

The paper byMeirom et al. [MMO15] is the only centrality network connection
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model2 which incorporates edge-failures. The authors consider two types of
agents, major-league and minor-league agents, which maintain that the network
remains 2-connected while trying to minimize distances, which are a linear
combination of the length of a shortest path and the length of a best possible
vertex disjoint backup path. Under some specific assumptions, e.g. that there are
significantly more minor-league than major-league agents, they prove various
structural properties of equilibrium networks and investigate the corresponding
game-dynamics. In contrast to this, we will investigate a much simpler model
with homogeneous agents which is more suitable for analyzing networks created
by equal peers. Our results can be understood as zooming in on the sub-network
formed by the major-league agents (i.e., top tier ISPs).

In reachability models the service quality of an agent is simply defined as
the number of reachable agents and distances are ignored completely. For
reachability models the works of Kliemann [Kli11; Kli17; KSS17] and the paper
by Goyal et al. [Goy+16] explicitly incorporate a notion of network robustness
in the utility function of every agent. All models consider an external adversary
who strikes after the network is built. In [Kli11; Kli17] the adversary randomly
removes a single edge and the agents try to maximize the expected number
of reachable nodes post attack. Two versions of the adversary are analyzed:
edge removal uniformly at random or removal of the edge which hurts the
society of agents most. For the former adversary a constant Price of Anarchy
is shown, whereas for the latter adversary this positive result is only true if
edges can be created unilaterally. In [KSS17] the authors extended the previous
Kleimann’s adversary model to the node-failure case but focus on the swap
equilibrium concept only. In [Goy+16] nodes are attacked (and killed) and this
attack spreads virus-like to neighboring nodes unless they are protected by
a firewall. Interestingly also this model has a low Price of Anarchy and the
authors prove a tight linear bound on the amount of edge-overbuilding due to
the adversary. A similar model is considered in [Che+19]. Here, once a network
is formed, the attack kills one node chosen uniformly at random and then spreads
through the network according to the independent cascade model. The authors
mostly focus on the structural properties of equilibria, in particular on the edge
density. Another interesting result from the paper is that there are equilibrium

2 In centrality models for network formation the agents’ service quality in the created network
depends on their centrality measure, i.e., the distances to other nodes.
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two, these two models are entirely different since the quality of a strategy is
measured by different means.

3.3 Optimal Networks

Clearly, every optimal network must be 2-edge connected. Thus, every optimal
network must have at least 𝑛 edges, e.g., imagine a cycle. We first prove the
intuitive fact that if edges get more expensive, then the number of edge in the
optimum networks cannot increase.

◮ Theorem 3.1. Consider two positive values 𝛼 and 𝛼 ′ such that 𝛼 ′
> 𝛼 . Let

𝐺 = (𝑉 , 𝐸) and 𝐺 ′
= (𝑉 , 𝐸 ′) be optimal networks on 𝑛 nodes in the Adv-NCG

for 𝛼 and 𝛼 ′, respectively. Then |𝐸 | ≥ |𝐸 ′ |. ◭

Proof. We prove the statement by contradiction. Assume that 𝛼 ′
> 𝛼 holds and

that network𝐺 ′
= (𝑉 , 𝐸 ′) has strictly more edges than network 𝐺 = (𝑉 , 𝐸). Let

𝛥 = |𝐸 ′ | − |𝐸 | denote this difference.
On the one hand, since𝐺 ′ is an optimal network for edge price 𝛼 ′, then the

social cost of (𝐺 ′, 𝛼 ′) must be at most the social cost of (𝐺, 𝛼 ′). For an edge cost
parameter 𝛼 and a network𝐺 , we denote the total edge cost of𝐺 in as 𝑒𝑑𝑔𝑒 (𝐺, 𝛼),
the total distance cost as 𝑑𝑖𝑠𝑡 (𝐺), and the social cost of 𝐺 as SC(𝐺, 𝛼). Thus we
have

SC(𝐺 ′, 𝛼 ′) ≤ SC(𝐺, 𝛼 ′)
𝑒𝑑𝑔𝑒 (𝐺 ′, 𝛼 ′) + 𝑑𝑖𝑠𝑡 (𝐺 ′) ≤ 𝑒𝑑𝑔𝑒 (𝐺, 𝛼 ′) + 𝑑𝑖𝑠𝑡 (𝐺)

𝑒𝑑𝑔𝑒 (𝐺 ′, 𝛼 ′) − 𝑒𝑑𝑔𝑒 (𝐺, 𝛼 ′) ≤ 𝑑𝑖𝑠𝑡 (𝐺) − 𝑑𝑖𝑠𝑡 (𝐺 ′)
𝛥 · 𝛼 ′ ≤ 𝑑𝑖𝑠𝑡 (𝐺) − 𝑑𝑖𝑠𝑡 (𝐺 ′).

On the other hand, since 𝐺 is an optimal network for 𝛼 , we have

SC(𝐺, 𝛼) ≤ SC(𝐺 ′, 𝛼)
𝑒𝑑𝑔𝑒 (𝐺, 𝛼) + 𝑑𝑖𝑠𝑡 (𝐺) ≤ 𝑒𝑑𝑔𝑒 (𝐺 ′, 𝛼) + 𝑑𝑖𝑠𝑡 (𝐺 ′)
𝑑𝑖𝑠𝑡 (𝐺) − 𝑑𝑖𝑠𝑡 (𝐺 ′) ≤ 𝑒𝑑𝑔𝑒 (𝐺 ′, 𝛼) − 𝑒𝑑𝑔𝑒 (𝐺, 𝛼)
𝑑𝑖𝑠𝑡 (𝐺) − 𝑑𝑖𝑠𝑡 (𝐺 ′) ≤ 𝛥 · 𝛼.

Hence, we have 𝛥𝛼 ′ ≤ 𝑑𝑖𝑠𝑡 (𝐺) − 𝑑𝑖𝑠𝑡 (𝐺 ′) ≤ 𝛥𝛼 , which implies 𝛼 ′ ≤ 𝛼 . This
contradicts our assumption that 𝛼 ′

> 𝛼 . �
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◮Remark 3.2. Note that the above proof works for any function𝑑 : 𝑉×𝑉 → ℝ+
and any edge cost function of the form 𝛼 · 𝑓 (𝑥) where 𝑓 : 𝑉 ×𝑉 → ℝ+, that is,
in particular also for the NCG. ◭

In the following, we show that the landscape of optimum networks is much
richer in the Adv-NCG, compared to the NCG where the optimum is either a
clique or a star, depending on 𝛼 . In particular, we prove that there are 𝛺 (𝑛2)
different optimal topologies. We consider the following types of networks: Here

DK7
K7 F7 C7DK7,3 DS7

Figure 3.2: Different candidates for optimum networks.

DK𝑛 is a clique of 𝑛 nodes where we have a double edge between all pairs of
nodes. Let DK𝑛,𝑘 be a 𝑛 node clique with exactly 𝑘 pairs of nodes which are
connected with double edges. Thus, DK𝑛,0 = K𝑛 and DK𝑛,(𝑛2) = DK𝑛 . Moreover,
let F𝑛 denote a fan graph on 𝑛 nodes which is a collection of triangles that all
share a single node, and let DS𝑛 denote a star on 𝑛 nodes where all connections
between the center and the leaves are double edges. Finally, let C𝑛 be a cycle of
length 𝑛.
Clearly, if 𝛼 = 0, then the optimum network on 𝑛 nodes must be a double

clique DK𝑛 since in this network no edge deletion by the adversary has any
effect. Moreover, since edges are for free, the distances between the nodes are
minimized.
Now consider what happens if one pair of agents, say 𝑢 and 𝑣, are just con-

nected via a single edge instead of a double edge. The probability that the
adversary removes this edge is 1

𝑛 (𝑛−1)−1 . The removal would cause an increase

in distance cost of 1 between 𝑢 and 𝑣 and between 𝑣 and 𝑢. Thus, if 𝛼 <
2

𝑛 (𝑛−1)−1 ,
then, for agent 𝑢 and 𝑣, it would be better to buy another edge between each
other. Thus, we have the following observation.

◮ Observation 3.3. If 0 ≤ 𝛼 ≤ 2
𝑛 (𝑛−1)−1 , then OPTn = DK𝑛 . ◭
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◮ Lemma 3.4. If 2𝑛 (𝑛−1)
((𝑛2)+𝑘) ((𝑛2)+𝑘+1)

≤ 𝛼 ≤ 2𝑛 (𝑛−1)
((𝑛2)+𝑘) ((𝑛2)+𝑘−1)

, for 1 ≤ 𝑘 ≤
(𝑛
2

)
− 1,

then the network DK𝑛,𝑘 is a social optimum. For 4
(𝑛2)+1

≤ 𝛼 < 2 − 2
(𝑛2)

, a clique

K𝑛 is a social optimum. ◭

Proof. Consider network DK𝑛,𝑘 = (𝑉 , 𝐸) with k double edges. Let 𝑢𝑖 denote a
node with exactly 𝑖 incident single edges. We have

𝑐𝑜𝑠𝑡 (𝑢𝑖 ,DK𝑛,𝑘 ) = 𝛼 · |𝑆𝑢𝑖 | +
(|𝐸 | − 𝑖) (𝑛 − 1) + 𝑖 · 𝑛

|𝐸 | = 𝛼 · 𝑆𝑢𝑖 + (𝑛 − 1) + 𝑖

|𝐸 | ,

because the distance between 𝑢𝑖 and any other node increases only if the ad-
versary deletes any of 𝑢𝑖 ’s incident single edges. The social cost of DK𝑛,𝑘 is

SC(DK𝑛,𝑘 ) =
(𝑛2)−𝑘∑
𝑖=0

𝑎𝑖 · 𝑐𝑜𝑠𝑡 (𝑢𝑖 ,DK𝑛,𝑘 ), where 𝑎𝑖 is the number of nodes having

exactly 𝑖 incident single edges. Note, that
(𝑛2)−𝑘∑
𝑖=0

𝑎𝑖 = 𝑛. Thus, SC(DK𝑛,𝑘 ) is

𝛼 |𝐸 | +
(𝑛2)−𝑘∑︁
𝑖=0

𝑎𝑖

(
𝑛 − 1 + 𝑖

|𝐸 |

)
= 𝛼 |𝐸 | + 𝑛(𝑛 − 1) + 1

|𝐸 |

(𝑛2)−𝑘∑︁
𝑖=0

𝑎𝑖 · 𝑖 .

Now we simplify the above cost function. Consider the induced sub-graph
𝐺 = (𝑉 , 𝐸 ′) of network DK𝑛,𝑘 which contains only the single edges of DK𝑛,𝑘 . By

the Handshake Lemma, we obtain
(𝑛2)−𝑘∑
𝑖=0

𝑎𝑖 · 𝑖 =
∑
𝑢∈𝑉

𝑑𝑒𝑔𝐺 (𝑢) = 2|𝐸 ′ | = 2
( (𝑛

2

)
− 𝑘

)
,

where 𝑑𝑒𝑔𝐺 (𝑢) is 𝑢’s degree in 𝐺 . Hence, we have

SC(DK𝑛,𝑘 ) = 𝛼 |𝐸 | + 𝑛(𝑛 − 1) +
2(

(𝑛
2

)
− 𝑘)(𝑛

2

)
+ 𝑘

.

Now, if look at the cost difference between DK𝑛,𝑘−1 and DK𝑛,𝑘 we get

SC(DK𝑛,𝑘 ) − SC(DK𝑛,𝑘−1) = 𝛼 −
2(

(𝑛
2

)
− 𝑘 + 1)(𝑛

2

)
+ 𝑘 − 1

+
2(

(𝑛
2

)
− 𝑘)(𝑛

2

)
+ 𝑘

.
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The cost difference between DK𝑛,𝑘 and DK𝑛,𝑘+1 is

SC(DK𝑛,𝑘 ) − SC(DK𝑛,𝑘+1) = −𝛼 −
2(

(𝑛
2

)
− 𝑘)(𝑛

2

)
+ 𝑘

+
2(

(𝑛
2

)
− 𝑘 − 1)(𝑛

2

)
+ 𝑘 + 1

.

Thus, if 𝛼 = 𝛼𝑘 where

2(
(𝑛
2

)
− 𝑘)(𝑛

2

)
+ 𝑘

−
2(

(𝑛
2

)
− 𝑘 − 1)(𝑛

2

)
+ 𝑘 + 1

≤ 𝛼𝑘 ≤
2(

(𝑛
2

)
− 𝑘 + 1)(𝑛

2

)
+ 𝑘 − 1

−
2(

(𝑛
2

)
− 𝑘)(𝑛

2

)
+ 𝑘

,

then upgrading a single edge to a double edge or downgrading a double edge to
a single edge in DK𝑛,𝑘 does not decrease the social cost.

We observe that OPTn has diameter 1. Indeed, consider a network 𝐺 ′′
=

(𝑉 , 𝐸 ′′) that has diameter 2. Then there are two agents 𝑢 and 𝑣 with the expected
distance at least 2 between each other. The new edge 𝑢𝑣 makes their expected
distance equal to 1 + 1

|𝐸′′ |+1 . This yields a decrease in social distance cost of at

least 2
(
2 −

(
1 + 1

|𝐸′′ |+1

))
= 2 − 2

|𝐸′′ |+1 ≥ 2 − 2
𝑛
. Since 𝛼𝑘 <

8
𝑛2 < 2 − 2

𝑛
for 𝑛 ≥ 3,

it follows that OPTn for 𝛼 = 𝛼𝑘 has diameter 1.

Since for 𝛼𝑘 OPTn has diameter 1, we know that we can obtain OPTn from
DK𝑛,𝑘 by either downgrading some double edges to single edges or by upgrading
some single edges to double edges. We have chosen 𝛼𝑘 such that downgrading
one double edge to a single edge or upgrading one single edge to a double edge
does not decrease the social cost. Since downgrading or upgrading edges only
affects the distance costs of the incident agents it follows that if downgrading
or upgrading one edge does not decrease the social cost, then downgrading or
upgrading more than one edge cannot decrease the social cost as well. Thus,
DK𝑛,𝑘 is the optimal network for 𝛼𝑘 .

Finally, if 4
(𝑛2)+1

≤ 𝛼 < 2 − 2
(𝑛2)

, a social optimum has diameter 1 and has no

double edges, i.e., it is a clique. �

We also remark that we conjecture that Figure 3.2 resembles a snapshot
of optimum networks for increasing 𝛼 from left to right. In fact, extensive
simulations indicate that the optimum changes from 𝐺𝑛 to 𝐷𝑆𝑛 and then, for
slightly larger 𝛼 to F𝑛 . After this the cycles in the fan-graph increase and get
fewer in number until, finally, for 𝛼 ∈ 𝛺 (𝑛3) the cycle appears as optimum.
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3.4 Computing Best Responses and Game Dynamics

In this section we investigate computational aspects of the Adv-NCG. First
we analyze the hardness of computing a best response and the hardness of
computing a best possible multi-swap. Then we analyze a natural process for
finding an equilibrium network by sequentially performing improving moves.

3.4.1 Hardness of Best Response Computation

We first introduce useful properties for ruling out multi-buy or multi-delete
moves. The proof is similar to the proof of Lemma 1 in [Len12].

◮ Proposition 3.5. If an agent cannot decrease her expected cost by buying
(deleting) one edge in the Adv-NCG, then buying (deleting) 𝑘 > 1 edges cannot
decrease the agent’s expected cost. ◭

◮ Lemma 3.6. Consider an agent 𝑢 in a network 𝐺 = (𝑉 , 𝐸). If 1 − 1
|𝐸 |+1 <

𝛼 < 1 + 1
|𝐸 | ( |𝐸 |−1) and if the agent 𝑢 is not an endpoint of any double-edge in 𝐺 ,

then buying the minimum number of edges such that 𝑢’s expected distance to
all nodes in 𝑉 \ 𝑁1(𝑢) is at most 2 and to nodes in 𝑁1(𝑢) is 1 + 1

|𝐸 | is 𝑢’s best
response. ◭

Proof. Consider a network 𝐺 = (𝑉 , 𝐸) where 𝑢’s expected distance to all nodes
in 𝑉 \ 𝑁1(𝑢) is 2 and to all nodes in 𝑁1(𝑢) is 1 + 1

|𝐸 | .
Buying an additional edge to some 𝑣 ∈ 𝑁1(𝑢) in 𝐺 creates a double edge, i.e.,

it decreases 𝑢’s expected distance to 𝑣 by 1 + 1
|𝐸 | −

|𝐸 |+1
|𝐸 |+1 =

1
|𝐸 | . Buying an edge

towards a node𝑤 ∉ 𝑁1(𝑢) decreases𝑢’s expected distance to𝑤 by 1− 1
|𝐸 |+1 >

1
|𝐸 | .

Thus if 𝛼 > 1 − 1
|𝐸 |+1 , then buying a single edge does not decrease 𝑢’s expected

cost. Thus by Proposition 3.5, agent 𝑢 cannot improve her expected cost in 𝐺 by
buying more than one edge.

Swapping an edge to some 𝑣 ∈ 𝑁1(𝑢) decreases 𝑢’s expected distance to 𝑣 by
1
|𝐸 | but increases 𝑢’s expected distance to some 𝑤 ∈ 𝑁1(𝑢) by 1 − 1

|𝐸 | . Swapping

an edge towards a node𝑤 ∉ 𝑁1(𝑢) decreases𝑢’s expected distance to𝑤 by 1− 1
|𝐸 |

but increases the expected distance to 𝑤 ∈ 𝑁1(𝑢) by at least 1 − 1
|𝐸 | .

Assume 𝑢 has bought the minimum number of edges such that 𝑢’s expected
distance to all nodes in 𝑉 \ 𝑁1(𝑢) is 2 and to all nodes in 𝑁1(𝑢) is 1 + 1

|𝐸 | . Then
deleting an edge 𝑢𝑣 for some 𝑣 ∈ 𝑁1(𝑢) increases 𝑢’s expected distance to 𝑣 by at
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least 1 + 1
|𝐸 | ( |𝐸 |−1) since after deleting the edge the expected distance between 𝑢

and 𝑣 is 2 + 1
|𝐸 |−1 . Thus, if 𝛼 < 1 + 1

|𝐸 | ( |𝐸 |−1) , then deleting a single edge does not
decrease 𝑢’s expected cost. Thus, by Proposition 3.5, agent 𝑢 cannot decrease
her expected cost by deleting more than one edge. �

Now we show that computing the best possible strategy-change is intractable.

◮ Theorem 3.7. The problem of computing a best response is NP-hard in the
Adv-NCG. ◭

Proof. We prove both statements by reduction from Minimum-𝑚-connected 𝑘-

dominating set (Min-(m, k)-CDS) [Sha+07] which is defined as follows: Given
a network 𝐺 = (𝑉 , 𝐸) and two natural numbers𝑚 and 𝑘 , find a subset 𝑆 ⊆ 𝑉 of
minimum size such that every vertex in 𝑉 /𝑆 is adjacent to at least 𝑘 nodes in 𝑆
and the induced sub-graph of 𝑆 is𝑚-connected.
More precisely, we provide the reduction from Min-(1, 2)-CDS. Consider

an instance 𝐺 ′
= (𝑉 ∪ {𝑢}, 𝐸). We prove that the best response for agent 𝑢

corresponds to the minimum 1-connected 2-dominating set 𝑆 . For any 1− 1
|𝐸 |+1 <

𝛼 < 1 + 1
|𝐸 | ( |𝐸 |−1) , and since no other agent has an edge to 𝑢, then, by Lemma 3.6,

the best response for 𝑢 is to buy edges to all the nodes in the 𝑆 . Indeed, in that
case the expected eccentricity of 𝑢 will be at most 2 since every node 𝑤 ∉ 𝑆

is adjacent to at least two nodes in 𝑆 . Moreover, since 𝑆 is connected, 𝑢 has
expected distance at most 1 + 1

|𝐸 | to all nodes in 𝑆 . �

3.4.2 Game Dynamics

For the game dynamics of the Adv-NCGwe prove the strongest possible negative
result, which essentially shows that there is no hope for convergence if agents
stick to performing improving moves only. In particular, we prove that the order
of the agents’ moves or any tie-breaking between different improving moves
does not help for achieving convergence. This result is even stronger than the
best known non-convergence results for the NCG [KL13].

◮ Theorem 3.8. The Adv-NCG is not weakly acyclic. ◭

Proof sketch. We provide a best response cycle 𝐺1, . . . ,𝐺7, where 𝐺1 = 𝐺7 and
𝐺𝑖+1 is obtained from 𝐺𝑖 by an improving move of one agent in 𝐺𝑖 . Our best
response cycle has the special features that in every step of the cycle there is
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edge deletions. In DK𝑛 every agent has expected distance cost 𝑛 − 1. Deleting
1 ≤ 𝑘 ≤ 𝑛 − 1 edges yields expected distance cost of

(𝑛(𝑛 − 1) − 2𝑘) (𝑛 − 1) + 𝑘𝑛
𝑛(𝑛 − 1) − 𝑘 = 𝑛 − 1 + 𝑘

𝑛(𝑛 − 1) − 𝑘 ≥ 𝑛 − 1 + 1

𝑛(𝑛 − 1) − 1
.

Thus, if 𝛼 ≤ 1
𝑛 (𝑛−1)−1 , then deleting one or more edges is not an improving move.

Next, we show that the double star 𝐷𝑆𝑛 with an arbitrary edge-ownership is
in Nash equilibrium if 𝛼 ≥ 1 − 1

2𝑛−1 .

Clearly, no agent can delete edges since this destroys the 2-edge-connectedness
of the network and hence induces infinite cost. Moreover, no agent can swap
edges since this does not change the edge cost but increases the expected distance
cost. Thus, we are left to analyze edge purchases. Clearly the center of the double
star cannot buy edges to decrease its cost. Hence, we analyze edge additions
by non-center nodes of 𝐷𝑆𝑛 . Every such agent has expected distance cost of
1 + 2(𝑛 − 2) = 2𝑛 − 3.

Let 𝑢 be a non-center agent and let 𝑆𝑢 be 𝑢’s current strategy in 𝐺 := 𝐷𝑆𝑛 .
Assume that agent 𝑢 can change her strategy from 𝑆𝑢 to 𝑆 ′𝑢 and thereby strictly
decrease her cost. Let 𝐷𝑆 ′𝑛 be the network𝐺 after 𝑢’s strategy-change from 𝑆𝑢 to
𝑆 ′𝑢 . We claim that if 𝛼 >

1
𝑛−1 and if 𝐺 ′ contains at least three edges between the

center node and 𝑢 or if there are at least two edges between 𝑢 and some other
non-center node 𝑣, then agent 𝑢 has a strategy 𝑆 ′′𝑢 , which strictly outperforms
strategy 𝑆 ′𝑢 and where the corresponding network 𝐺 ′′ has exactly two edges
between the center node and 𝑢 and at most one edge between 𝑢 and any other
non-center node. Thus, we can assume that if agent 𝑢 has an improving strategy-
change, then there exists an improving strategy-change towards a strategy which
buys only additional single edges towards other non-center nodes. After proving
the above claim, we will prove that no such improving strategy-change exists if
𝛼 ≥ 1 − 1

2𝑛−1 >
1

𝑛−1 , which then implies that 𝐷𝑆𝑛 is in Nash Equilibrium for all
𝛼 ≥ 1 − 1

2𝑛−1 .

Now we prove the claim: We first show that strategy 𝑆 ′𝑢 can be improved if
𝐺 ′ contains at least three edges between the center node and 𝑢. In this case this
implies that 𝑢 owns at least one edge to the center node and that agent 𝑢 could
remove one edge from 𝐺 ′ to ensure that at least two edges between the agent
and the center node remain. Let 𝐺 ′′ be the network 𝐺 ′ after the edge-removal,
and let 𝑆 ′′𝑢 be the new strategy of 𝑢. This removal would save 𝛼 in the edge
cost. If 𝑢 has no single edges towards any non-center vertex, then her expected

26



Analysis of Networks in Nash Equilibrium Section 3.5

distance cost in 𝐺 ′′ would not increase compared to her expected distance cost
in𝐺 ′ by the edge-removal since all edges on all her shortest paths are backed up
by another parallel edge. Since 𝛼 > 0, strategy 𝑆 ′′𝑢 strictly outperforms strategy
𝑆 ′𝑢 . If𝑢 has 1 ≤ 𝑘 ≤ 𝑛−2 single edges towards 𝑘 different non-center nodes in𝐺 ′,
then the edge-removal of one edge between 𝑢 and the center node increases the
probability that one of the 𝑘 edges is destroyed by the adversary. The probability
increases by

𝑘

𝑚(𝑚 − 1) ≤ 𝑛 − 2

2𝑛(2𝑛 − 1) <

1

𝑛 − 1
,

where𝑚 ≥ 2𝑛 is the number of edges in 𝐺 ′. Thus, agent 𝑢’s expected distance
cost in𝐺 ′′ increases by at most 1

4𝑛
compared to her expected distance cost in𝐺 ′.

Since 𝛼 >
1

𝑛−1 , it follows that 𝑆
′′
𝑢 strictly outperforms 𝑆 ′𝑢 . If 𝐺

′′ contains more
than three edges between 𝑢 and the center vertex, then we can apply the above
argument iteratively to obtain a strategy 𝑆 ′′𝑢 which strictly outperforms 𝑆 ′𝑢 and
a corresponding network 𝐺 ′′ which has exactly two edges between 𝑢 and the
center vertex.

Now we show that strategy 𝑆 ′𝑢 can be improved if 𝐺 ′ contains at least two
edges between 𝑢 and some other non-center node 𝑣. Note that in this case all
edges between 𝑢 and 𝑣 are bought by agent 𝑢.

It is possible that in the network𝐺 ′ there is no edge or only one edge between
𝑢 and the center node. If there is no edge between 𝑢 and the center node, then
agent 𝑢 could swap two edges from 𝑣 to the center node and thereby strictly
decrease her cost. This is true since this swap would decrease 𝑢’s expected
distance to every node 𝑤 ≠ 𝑣 by at least 1, and it only increases her expected
distance to 𝑣 by 1. If there is exactly one edge between 𝑢 and the center node,
then agent𝑢 could swap one edge from 𝑣 to the center node and thereby decrease
her cost. This swap may create a single edge towards 𝑣, but if this edge is attacked
by the adversary, then this only increases 𝑢’s distance to 𝑣 by 1, whereas in𝐺 ′ an
attack on the single edge between 𝑢 and the center node increases 𝑢’s distances
to 𝑛 − 2 nodes by at least 1. Hence, if there is no edge or only one edge between
𝑢 and the center node, then in both cases there is a strategy 𝑆 ′′𝑢 which strictly
outperforms strategy 𝑆 ′𝑢 and where the corresponding network 𝐺 ′′ has exactly
two edges between 𝑢 and the center node. Thus, we will assume in the following
that there are exactly two edges between 𝑢 and the center vertex and at least
two edges between 𝑢 and some non-center node 𝑣.

Let 𝐺 ′′ be the network obtained from network 𝐺 ′ by removing one of the
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edges between 𝑢 and 𝑣 and let 𝑆 ′′𝑢 be 𝑢’s strategy obtained by removing 𝑣 from
𝑆 ′𝑢 . If there are at least two edges between 𝑢 and 𝑣 in 𝐺 ′′, then an analogous
argument as above yields that 𝑆 ′′𝑢 strictly outperforms 𝑆 ′𝑢 if 𝛼 >

1
𝑛−1 >

𝑛−3
2𝑛 (2𝑛+1) .

Note that in this case 𝐺 ′ has at least 2𝑛 + 1 many edges. If there is a single edge
between 𝑢 and 𝑣 in 𝐺 ′′, then the number of non-center nodes to which 𝑢 has a
single edge increases by 1 from 𝑘 to 𝑘 + 1 for some 0 ≤ 𝑘 ≤ 𝑛 − 3. Thus, her
expected distance cost compared to network 𝐺 ′ increases by

𝑘 + 1

2𝑛 − 1
− 𝑘

2𝑛
=

2𝑛 + 𝑘
2𝑛(2𝑛 − 1) ≤ 1

2𝑛 − 1
+ 𝑛 − 3

2𝑛(2𝑛 − 1) <

1

𝑛 − 1
,

which implies that 𝑆 ′′𝑢 strictly outperforms strategy 𝑆 ′𝑢 if 𝛼 >
1

𝑛−1 .

Having settled the claim, we now analyze the case where a non-center agent
𝑢 buys 1 ≤ 𝑘 ≤ 𝑛 − 2 single edges to 𝑘 other non-center nodes. In this case 𝑢’s
expected distance cost is

2(𝑛 − 1) (𝑘 + 1 + 2(𝑛 − 2 − 𝑘)) + 𝑘 (𝑘 + 2(𝑛 − 2 − 𝑘 + 1))
2(𝑛 − 1) + 𝑘

=2𝑛 − 3 − 𝑘 + 𝑘

2(𝑛 − 1) + 𝑘 .

Since −𝑘 + 𝑘
2(𝑛−1)+𝑘 ≥ −1 + 1

2(𝑛−1)+1 = −1 + 1
2𝑛−1 for 1 ≤ 𝑘 ≤ 𝑛 − 2, it follows that

the expected distance cost after buying 1 ≤ 𝑘 ≤ 𝑛 − 2 single edges is at least
2𝑛 − 3− 1 + 1

2(𝑛−1)+1 . Thus if 𝛼 ≥ 1− 1
2𝑛−1 , then buying one or more single edges

is not an improving move for any non-center agent.

Since 𝛼 ≥ 1 − 1
2𝑛−1 >

1
4𝑛
, it follows that no non-center vertex can buy one or

more edges in network 𝐷𝑆𝑛 to strictly decrease her cost. �

3.5.1 Relation between the Diameter and the Social Cost

We prove a property which relates the diameter of a network with its social cost.
With this, we prove that one of the most useful tools for analyzing NE in the
NCG [Fab+03] can be carried over to the Adv-NCG.

Before we start, we analyze the diameter increase induced by removing a
single edge in a 2-edge-connected network.

◮ Lemma 3.10. Let 𝐺 = (𝑉 , 𝐸) be any 2-edge-connected network having
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𝑣𝑙+1𝑣𝑙+2. First of all, note that these new edges have not been present in network
𝐺 before the insertion since otherwise {𝑣𝑙𝑣𝑙+1, 𝑣𝑙+1𝑣𝑙+2} cannot be a cut of𝐺 . We
claim that both new edges are 2-cut-edges and that the cycle 𝐶 is divided into
two new cut-cycles 𝑣1, . . . , 𝑣𝑙 , 𝑣𝑙+2, . . . , 𝑣𝑘 , 𝑣1 and 𝑣𝑙+1, 𝑣𝑙+2, 𝑣𝑙+1. Indeed, there are
at least two bridges 𝑣𝑙+1𝑣𝑙+2 and 𝑣𝑘𝑣𝑘+1 in the cut-cycle 𝐶 after deleting 𝑣𝑙𝑣𝑙+1,
and both of them end up in different new cut-cycles. Hence, deleting any of the
newly inserted edges 𝑣𝑙𝑣𝑙+2 or 𝑣𝑙+1𝑣𝑙+2 implies that 𝑣𝑘𝑣𝑘+1 or 𝑣𝑙+1𝑣𝑙+2 becomes a
bridge. Thus, both new edges are 2-cut-edges and both of the new cycles are
cut-cycles.
If there are three pairwise non-adjacent 2-cut-edges 𝑣𝑙𝑣𝑙+1, 𝑣𝑚𝑣𝑚+1, 𝑣𝑝𝑣𝑝+1 in

cycle 𝐶 , then delete one 2-cut-edge 𝑣𝑙𝑣𝑙+1 and insert two new edges 𝑣𝑙𝑣𝑝+2 and
𝑣𝑙+1𝑣𝑚+1. Analogous to above, both new edges cannot be already present in 𝐺
and both are 2-cut-edges because deleting any of them renders edge 𝑣𝑚𝑣𝑚+1 or
𝑣𝑝𝑣𝑝+1 a bridge. Moreover, cut-cycle 𝐶 is divided into two new cut-cycles.

Finally, we claim that the maximum number of cut-cycles in any 𝑛-node
network 𝐺 is at most 𝑛 − 1. Since we know that every such cut-cycle contains
exactly two 2-cut-edges this then implies that there can be at most 2(𝑛 − 1)
2-cut-edges in any network 𝐺 .

Nowwe prove the above claim. Note that applying our transformation does not
disconnect the network. Thus, we know that network𝐺 after all transformations
is connected. Now we iteratively choose any cut-cycle 𝐶 in 𝐺 and we delete the
two 2-cut-edges contained in𝐶 . This deletion increases the number of connected
components of the current network by exactly 1. We repeat this process until
we have destroyed all cut-cycles in 𝐺 . Note that deleting edges from 𝐺 may
create new cut-cycles, but we never destroy more than one of them at a time.
Thus, since each iteration increases the number of connected components of the
network by 1, it follows that there can be at most 𝑛 − 1 iterations since network
𝐺 with 𝑛 nodes cannot have more than 𝑛 connected components. �

◮ Remark 3.12. Lemma 3.11 is tight, since a path of length 𝑛 − 1, where all
neighboring nodes are connected via double edges, has exactly 2(𝑛 − 1) 2-cut-
edges. ◭

Now we relate the diameter with the social cost.

◮ Theorem3.13. Let𝐺 = (𝑉 , 𝐸) be anyNE network on𝑛 nodes having diameter
𝐷 and let OPTn𝑛 be the corresponding optimum network for some 𝛼 > 0. Then

SC(𝐺)
SC(OPTn𝑛) ∈ O(𝐷) . ◭
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Proof. Since OPTn is 2-edge-connected, it has at least 𝑛 edges. Moreover, the
minimum expected distance between each pair of nodes in OPTn is at least 1.
Thus, we have that SC(𝑂𝑃𝑇𝑛) ∈ 𝛺 (𝛼 · 𝑛 + 𝑛2).

Nowwe analyze the social cost of the NE network𝐺 = (𝑉 , 𝐸). We will evaluate
the edge cost and the distance cost of 𝐺 separately.

Since𝐺 has diameter 𝐷 , and since𝐺 is 2-edge-connected, Lemma 3.10 implies
that the expected distance between each pair of nodes in 𝐺 is at most 2𝐷 . Thus,
we have that O(𝑛2 · 𝐷) .

Now we analyze the edge cost. By Lemma 3.11 we have at most 2𝑛 many
2-cut-edges in 𝐺 . Buying all those edges yields cost of at most 2𝑛 · 𝛼 .

We proceed with bounding the number of non-2-cut-edges in 𝐺 . We consider
an agent 𝑣 and analyze how many non-2-cut-edges agent 𝑣 can have bought. We
claim that this number is in O

(
𝑛𝐷
𝛼

)
, which yields the total edge cost of O(𝑛𝐷) for

agent 𝑣. Summing up over all 𝑛 agents, this yields the total edge cost of O(𝑛2𝐷)
for all non-2-cut-edges of 𝐺 . This implies an upper bound of O(𝛼 · 𝑛 + 𝑛2𝐷) on
the social cost of 𝐺 which finishes the proof.

Now we prove our claim. Fix any non-2-cut-edge 𝑒 = 𝑣𝑤 of𝐺 which is owned
by agent 𝑣. Let 𝑉𝑒 ⊂ 𝑉 be the set of nodes of 𝐺 to which all shortest paths from
𝑣 traverse the edge 𝑒 .

We first show that removing the edge 𝑒 increases agent 𝑣’s expected distance
to any node in 𝑉𝑒 to at most 4𝐷 . By Lemma 3.10, removing edge 𝑒 increases the
diameter of 𝐺 from 𝐷 to at most 2𝐷 . Since 𝑒 is a non-2-cut-edge, we have that
𝐺 − 𝑒 is still 2-edge-connected. Thus, again by Lemma 3.10, it follows that agent
𝑣’s expected distance to any other node in 𝐺 − 𝑒 is at most 4𝐷 .

However, removing edge 𝑒 not only increases 𝑣’s expected distance towards
all nodes in 𝑉𝑒 , instead, since𝐺 − 𝑒 has a fewer edges than𝐺 , agent 𝑣’s expected
distance to all other nodes in 𝑉 \ (𝑉𝑒 ∪ {𝑣}) increases as well. We now proceed
to bound this increase in the expected distance cost.

We compare agent 𝑣’s expected distance cost in network 𝐺 and in network
𝐺 −𝑒 . Let𝑚 denote the number of edges in𝐺 . Thus,𝐺 −𝑒 has𝑚− 1 many edges.
For network 𝐺 agent 𝑣’s expected distance cost is

𝛿𝐺 (𝑣,𝑉 ) =
1

𝑚

∑︁
𝑓 ∈𝐸

𝑑𝐺−𝑓 (𝑣,𝑉 ) =
1

𝑚

∑︁
𝑓 ∈𝐸\{𝑒 }

𝑑𝐺−𝑓 (𝑣,𝑉 ) +
𝑑𝐺−𝑒 (𝑣,𝑉 )

𝑚
.

In network 𝐺 − 𝑒 , we have 𝛿𝐺−𝑒 (𝑣,𝑉 ) =
1

𝑚−1
∑

𝑓 ∈𝐸\{𝑒 } 𝑑𝐺−𝑒−𝑓 (𝑣,𝑉 ). Now we
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upper bound the increase in expected distance cost for agent 𝑣 due to removal of
edge 𝑒 from 𝐺 . The expected distance cost difference 𝛿𝐺−𝑒 (𝑣,𝑉 ) − 𝛿𝐺 (𝑣,𝑉 ) is

1

𝑚 − 1

∑︁
𝑓 ∈𝐸\{𝑒 }

𝑑𝐺−𝑒−𝑓 (𝑣,𝑉 ) −
©­«
1

𝑚

∑︁
𝑓 ∈𝐸\{𝑒 }

𝑑𝐺−𝑓 (𝑣,𝑉 ) +
𝑑𝐺−𝑒 (𝑣,𝑉 )

𝑚

ª®¬
=

∑︁
𝑓 ∈𝐸\{𝑒 }

(
𝑑𝐺−𝑒−𝑓 (𝑣,𝑉 )

𝑚 − 1
−
𝑑𝐺−𝑓 (𝑣,𝑉 )

𝑚

)
− 𝑑𝐺−𝑒 (𝑣,𝑉 )

𝑚
.

We have that 𝑑𝐺−𝑒−𝑓 (𝑣,𝑉 ) ≤ 𝑑𝐺−𝑓 (𝑣,𝑉 ) + |𝑉𝑒 | · 4𝐷 , since in 𝐺 − 𝑒 − 𝑓 only the
distances to nodes in 𝑉𝑒 increase, compared to the network 𝐺 − 𝑓 and since 𝑒 is
a non-2-cut-edge in𝐺 . Moreover, by Lemma 3.10, the distances to nodes in𝑉𝑒 in
𝐺 − 𝑒 − 𝑓 increase to at most 4𝐷 for each node in 𝑉𝑒 . Thus, we have that

𝛿𝐺−𝑒 (𝑣,𝑉 ) − 𝛿𝐺 (𝑣,𝑉 )

=

∑︁
𝑓 ∈𝐸\{𝑒 }

(
𝑑𝐺−𝑒−𝑓 (𝑣,𝑉 )

𝑚 − 1
−
𝑑𝐺−𝑓 (𝑣,𝑉 )

𝑚

)
− 𝑑𝐺−𝑒 (𝑣,𝑉 )

𝑚

≤
∑︁

𝑓 ∈𝐸\{𝑒 }

(
𝑑𝐺−𝑓 (𝑣,𝑉 ) + |𝑉𝑒 |4𝐷

𝑚 − 1
−
𝑑𝐺−𝑓 (𝑣,𝑉 )

𝑚

)

= |𝑉𝑒 |4𝐷 +
∑︁

𝑓 ∈𝐸\{𝑒 }

𝑑𝐺−𝑓 (𝑣,𝑉 )
𝑚(𝑚 − 1) ≤ |𝑉𝑒 |4𝐷 +

∑︁
𝑓 ∈𝐸\{𝑒 }

2𝐷 · 𝑛
𝑛(𝑚 − 1)

≤ |𝑉𝑒 |4𝐷 + 4𝐷 = ( |𝑉𝑒 | + 1)4𝐷.

Since𝐺 is in Nash Equilibrium, we know that removing edge 𝑒 is not an improv-
ing move for agent 𝑣. Thus, we have that

𝛼 ≤ (|𝑉𝑒 | + 1)4𝐷 ⇐⇒ |𝑉𝑒 | ≥
𝛼

4𝐷
− 1.

Hence, for all non-2-cut-edges 𝑒 which are bought by agent 𝑣, we have that
|𝑉𝑒 | ∈ 𝛺 ( 𝛼

𝐷
). Since all these sets𝑉𝑒 are disjoint, it follows that 𝑣 can have bought

at most 𝑛
𝛺 ( 𝛼

𝐷
) ∈ O(𝑛𝐷

𝛼
) many non-2-cut-edges. �
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3.5.2 Price of Stability and Price of Anarchy

◮ Theorem 3.14. For 𝛼 ≤ 1
𝑛 (𝑛−1)−1 , PoS = 1. For 1

𝑛 (𝑛−1)−1 < 𝛼 <
2

𝑛 (𝑛−1)−1 , the

PoS is strictly larger than 1, and for 𝛼 >
1

𝑛 (𝑛−1)−1 , the PoS is at most 2. ◭

Proof. By Theorem 3.9 and Observation 3.3, network DK𝑛 is optimal, and it is
a Nash equilibrium when 𝛼 ≤ 1

𝑛 (𝑛−1)−1 . Thus, the Price of Stability is 1 for this
range of 𝛼 .

Consider the case when 1
𝑛 (𝑛−1)−1 < 𝛼 <

2
𝑛 (𝑛−1)−1 . Network DK𝑛 is the unique

optimum for this range of alpha but any agent can delete an edge and thereby
increase her expected distance cost by 1

𝑛 (𝑛−1)−1 . Thus, if
1

𝑛 (𝑛−1)−1 < 𝛼 ≤ 2
𝑛 (𝑛−1)−1 ,

the edge-deletion is an improving move which shows that DK𝑛 is not a NE, and
the PoS is strictly larger than 1.
We observe that for 𝛼 <

2
𝑛 (𝑛−1)−1 , any NE has diameter 1. Indeed, consider a

network 𝐺 = (𝑉 , 𝐸) such that there are two agents 𝑢 and 𝑣 at distance 2. The
expected distance between the agents in 𝐺 is at least 2. Hence, the addition of
the edge 𝑢𝑣 decreases the expected distance by 2 − |𝐸 |+2

|𝐸 |+1 = 1 − 1
|𝐸 |+1 . Therefore,

since the cost of the new edge 𝛼 <
2

𝑛 (𝑛−1)−1 ≤ 1 − 1
𝑛
≤ 1 − 1

|𝐸 |+1 , the addition of
𝑢𝑣 is profitable. It contradicts the assumption that 𝐺 is in NE. It implies that the
PoS can be upper bounded by the ratio

SC(K𝑛)
SC(DK𝑛)

=

1
2
𝛼 · 𝑛(𝑛 − 1) + 𝑛2

𝛼 · 𝑛(𝑛 − 1) + 𝑛(𝑛 − 1) ≤ 2.

The third part of the statement follows from Theorem 3.9 and the simple lower
bound on the expected social cost of the optimum from the proof of Theorem 3.13.

Thus, for 𝛼 > 1 − 1
2𝑛−1 the PoS is at most 𝑐𝑜𝑠𝑡 (𝐷𝑆𝑛)

𝑛𝛼+𝑛2 =
2(𝑛−1)𝛼+2(𝑛−1)2

𝑛𝛼+𝑛2 ≤ 2. �

We now show how to adapt two techniques from the NCG for bounding the
diameter of equilibrium networks to our adversarial version. This can be un-
derstood as a proof of concept showing that the Adv-NCG can be analyzed as
rigorously as the NCG. However, carrying over the currently strongest general

diameter bound of 2O(
√
log𝑛) due to Demaine et al. [Dem+12], which is based on

interleaved region-growing arguments seems challenging due to the fact that
we can only work with expected distances.

We start with a simple diameter upper bound based on [Fab+03].

◮ Theorem 3.15. The diameter of any NE network is in O(
√
𝛼). ◭
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Proof. We prove the statement by contradiction. Assume that there are agents
𝑢 and 𝑣 in network 𝐺 with 𝑑𝐺 (𝑢, 𝑣) ≥ 4ℓ , for some ℓ . Since expected distances
cannot be shorter than distances in𝐺 , it follows that 𝑢’s expected distance to 𝑣 is
at least 4ℓ . If 𝑢 buys an edge to 𝑣 for the price of 𝛼 then 𝑢’s decrease in expected
distance cost is at least |𝐸 |

|𝐸 |+1 (4ℓ − 1 + 4ℓ − 3 + · · · + 1) = |𝐸 |
|𝐸 |+12ℓ

2.

Thus, if 𝑑𝐺 (𝑢, 𝑣) > 4
√
𝛼 , then 𝑢 ′𝑠 decrease in expected distance cost by buying

the edge 𝑢𝑣 is at least |𝐸 |
|𝐸 |+12𝛼 > 𝛼 . Thus, if the diameter of 𝐺 is at least 4

√
𝛼 ,

then there is some agent who has an improving move. �

Together with Theorem 3.13 this yields the following statement:

◮ Corollary 3.16. The Price of Anarchy in the Adv-NCG is in O(
√
𝛼). ◭

Next, we show how to adapt a technique by Albers et al. [Alb+14] to get a
stronger statement, which implies constant PoA for 𝛼 ∈ O(

√
𝑛).

◮ Theorem 3.17. The Price of Anarchy in the Adv-NCG is in O
(
1 + 𝛼√

𝑛

)
. ◭

Proof. We use Theorem 3.13 and give an improved bound on the expected diam-
eter of any NE network. Let 𝑑 be the expected diameter of the network. Consider
two nodes 𝑢 and 𝑣 which have expected distance 𝑑 .
Let 𝐵 be the set of nodes in the network which are at expected distance of

𝑑 ′ =
⌊
𝑑−1
8

⌋
from node𝑢. First, we analyze the change in expected distance cost of

agent 𝑣 if she buys an edge towards 𝑢. Consider any node𝑤 ∈ 𝐵. By Lemma 3.10
we have that without edge 𝑣𝑢 agent 𝑣 has expected distance of at least 𝑑

2
− 𝑑 ′

towards 𝑤. After buying the edge 𝑣𝑢, agent 𝑣’s expected distance to 𝑤 is at most
(1+𝑑′) |𝐸 |+𝑑

|𝐸 |+1 . Thus, agent 𝑣’s expected distance to 𝑤 decreases by at least

𝑑

2
− 𝑑 ′ −

(
|𝐸 |𝑑 ′ + |𝐸 | + 𝑑

|𝐸 | + 1

)
≥ 𝑑

2
− 2𝑑 ′ − 2 >

𝑑 − 8

4
.

It implies that after buying the edge 𝑣𝑢 agent 𝑣’s expected distance cost decreases
by at least 𝑑−8

4
|𝐵 |. Since 𝐺 is in NE, it follows that 𝛼 ≥ (𝑑−8

4
) |𝐵 |.

Now consider node 𝑢 which has expected distance of at most 𝑑 ′ to any node 𝐵.
Thus, by Lemma 3.10, and since 𝑑𝐺 (𝑢, 𝑣) ≥ 𝑑

2
, we know that there must be nodes

𝑤 ∈ 𝐵 with 𝑑𝐺 (𝑢,𝑤) = 𝑑′

2
. Let 𝐵′ be a set of all nodes 𝑤 in 𝐵 with 𝑑𝐺 (𝑢,𝑤) ≤ 𝑑′

2
.

For any node 𝑤 ∈ 𝐵′ denote

𝑆𝑤 := {𝑥 | 𝑤 is the last node in 𝐵′ on a shortest path from 𝑢 to 𝑥}.
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If 𝑆𝑤 is non-empty, then 𝑑𝐺 (𝑢,𝑤) is 𝑑′

2
. Since there are 𝑛 − |𝐵′ | nodes outside of

𝐵′ it follows that there must be some node 𝑤 with |𝑆𝑤 | ≥ 𝑛−|𝐵′ |
|𝐵′ | . If 𝑢 buys the

edge {𝑢,𝑤}, then 𝑢’s expected distance cost decreases by at least(
𝑑 ′

2
−

|𝐸 | + 𝑑′

2

|𝐸 | + 1

)
|𝑆𝑤 | ≥

(
𝑑 ′

4
− 1

2

)
|𝑆𝑤 |.

Since𝐺 is an NE, it follows that 𝛼 ≥
(
𝑑′

4
− 1

2

)
|𝑆𝑤 | ≥

(
𝑑′

4
− 1

2

)
𝑛−|𝐵′ |
|𝐵′ | . By rearrang-

ing we get

|𝐵′ |2𝛼 ≥ |𝐵′ |
(
𝛼 +

(
𝑑 ′

4
− 1

2

))
≥

(
𝑑 ′

4
− 1

2

)
𝑛,

where the first inequality holds since 𝛼 ≥ 𝑑 >
𝑑′−2
4

because𝐺 is in NE. Thus, we
have |𝐵 | ≥ |𝐵′ | ≥ (𝑑 ′ − 2) 𝑛

8𝛼
.

From 𝛼 ≥ (𝑑−8
4
) |𝐵 |, we get 𝛼 ≥

(
𝑑−8
4

) (
𝑑′−2
8𝛼

)
𝑛 ⇐⇒ 8𝛼2 > (𝑑

2
− 2) (𝑑 ′ − 2)𝑛.

Since 𝑑
2
> 𝑑 ′ we have

8𝛼2 ≥ (𝑑 ′ − 2)2𝑛 ⇐⇒
√︂

8

𝑛
𝛼 ≥ 𝑑 ′ − 2 ≥ 𝑑 − 1

8
− 3.

Hence, we have 25 + 8
√
8𝛼√
𝑛

≥ 𝑑. �

◮ Theorem 3.18. The Price of Anarchy of the Adv-NCG is at least 2 and for
very large 𝛼 this bound is tight. ◭

Proof. Consider an arbitrary large 𝛼 , e.g., 𝛼 = 2𝑛 . In that case the optimum
network must be a cycle whereas, by Theorem 3.9, the double-star network
𝐷𝑆𝑛 is in Nash Equilibrium for this 𝛼 . Since 𝐷𝑆𝑛 has 2(𝑛 − 1) edges and since
in this range of alpha the edge cost term dominates the social cost, the lower
bound follows. The tight upper bound for large 𝛼 follows from Lemma 3.11,
since 2-cut-edges cannot be deleted without creating a bridge. �

3.6 Conclusion

We presented a simple and accessible model for selfish network creation incor-
porating both centrality and robustness aspects. In essence we proved that many
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4 Geometric Network

Creation Games

Network formation is studied from two different perspectives in the game theory
filed. One branch of the research is about Network Creation Games, and the
second is about Network Design Games (NDGs), e.g., [Ans+08a; Ans+08b]. In
contrast to NCGs, in NDGs a given network with weighted edges serves as the
host network and every agent has a pair of terminal nodes in the host network
she wants to connect. For this, agents select a connecting path in the host
network and pay a cost proportional to the length of the path for its usage. If
edges are used by several agents, then the cost of the edge is split among these
agents.

Thus in NCGs the distances between all pairs of nodes are important, whereas
in NDGs the focus is on simply connecting the terminal pairs. Moreover, the
former assume a complete unweighted host network, whereas the latter assume
a weighted not necessarily complete host network. Hence, NCGs are suitable to
model the formation of social networks or the AS-level network of the Internet,
where using the hop-distance is more natural and where agents want to be
central, i.e., close to all other agents. But, since NCGs crucially rely on an un-
weighted host network, these models cannot be used to investigate the creation
of physical communication networks, where edges, e.g., fiber-optic cables, have
lengths. NDGs are well-equipped to model the creation of physical communica-
tion networks between given terminal pairs, e.g., a network connecting many
clients to a server or access point, where only connectivity matters. However,
NDGs are not suited for studying settings where the agents are interested in
communicating with all other agents and where agents are restricted to buying
only incident edges.

To overcome these shortcomings of NCGs and NDGs, we propose and inves-
tigate a model which is a generalization of NCGs but which also shares some
aspects with NDGs and therefore allows to model the creation of physical com-
munication networks where the goal is to achieve an efficient communication
between all pairs of nodes at low cost. That is, we are interested in the decentral-
ized creation of edge-weighted networks which minimize the pairwise distances
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between agents and the total cost of all built edges. This can be seen as the
game-theoretic analogue of the well-known Network Design Problem [GJ02;
JLK78; MW84], where a weighted network and budgets for buying edges and
the total routing cost between all pairs are given and the goal is to select a sub-
network which respects both budgets. For this, we consider a variant of the NCG,
where the given host network is an arbitrary weighted network and the prices
for buying and using an edge are proportional to its weight. For example, with
this we can model the realistic geometric setting where agents have a position
in some metric space and the given weighted host network uses the distance
between the positions of the involved agents as edge weights. To the best of our
knowledge, this is the first variant of a NCG with weighted edges.

In stark contrast to the state-of-the-art for the unit-weight version, where the
Price of Anarchy is conjectured to be constant and where resolving this is a major
open problem, we prove a tight non-constant bound on the Price of Anarchy for
the metric version and an asymptotically tight bound for the non-metric case.
Moreover, we analyze the existence of equilibria, the computational hardness,
and the game dynamics for several natural metrics. As we discussed earlier, the
model we propose can be seen as the game-theoretic analogue of the classical
Network Design Problem. Thus, low-cost equilibria of our game correspond to
decentralized and stable approximations of the optimal network design.

4.1 Model and Notation

We consider a generalization of the Network Creation Game by Fabrikant et
al. [Fab+03]. In our game, called the Generalized Network Creation Game (GNCG),
we consider a given host network𝐻 = (𝑉 , 𝐸 (𝐻 )), which is a complete undirected
weighted network on𝑛 nodes 𝑣1, . . . , 𝑣𝑛 with arbitrary non-negative edge weights
𝑤 : 𝐸 (𝐻 ) → ℝ

+.
Every node of𝐻 corresponds to a selfish agent who wants to participate in the

network formation. As in the original NCG, agents strategically decide which
subset of incident edges to buy, i.e., a strategy 𝑆𝑢 of an agent𝑢 is any node subset
of 𝑉 \ {𝑢} towards which agent 𝑢 wants to create edges. We assume that the
edge price of any edge 𝑢𝑣 is proportional to its weight 𝑤 (𝑢, 𝑣). In particular, we
assume that the edge price for any edge 𝑢𝑣 is 𝛼 ·𝑤 (𝑢, 𝑣), where 𝛼 > 0 is a fixed
parameter of the game which allows to model different trade-offs between the
cost for buying and for using edges.
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The strategy profile s = (𝑆𝑣1, . . . , 𝑆𝑣𝑛 ) uniquely determines a sub-network
𝐺 (s) = (𝑉 , 𝐸 (s)) of the host network 𝐻 = (𝑉 , 𝐸 (𝐻 )), where 𝐸 (s) = {𝑢𝑣 | 𝑢 ∈
𝑉 , 𝑣 ∈ 𝑆𝑢}.

Let 𝑑𝐺 (𝑢, 𝑣) be the distance between two nodes 𝑢 and 𝑣 in the network 𝐺 =

(𝑉 , 𝐸), which is equal to the total weight of the shortest path between 𝑢 and
𝑣, or +∞ if such a path does not exist. To simplify the notation we will use
𝑤 (𝑢,𝑈 ) := ∑

𝑢𝑣∈𝐸:𝑣∈𝑈 𝑤 (𝑢, 𝑣) as the sum of the weights of the edges between 𝑢
and 𝑈 ⊆ 𝑉 in 𝐺 . Then 𝑑𝐺 (𝑢,𝑉 ) is the distance cost and 𝛼 · 𝑤 (𝑢, 𝑆𝑢) is the edge
cost of the agent 𝑢.
Given any strategy profile s and its corresponding network 𝐺 (s), then the

cost of agent 𝑢 in 𝐺 (s) is defined as

𝑐𝑜𝑠𝑡 (𝑢,𝐺 (s)) = 𝛼 ·𝑤 (𝑢, 𝑆𝑢) + 𝑑𝐺 (s) (𝑢,𝑉 ) .

The social cost of network 𝐺 (s), denoted SC(𝐺 (s)), is defined as the sum of the
cost of all agents, i.e., SC(𝐺 (s)) = ∑

𝑢∈𝑉 𝑐𝑜𝑠𝑡 (𝑢,𝐺 (s)).
For any host network 𝐻 , we say that the social optimum sub-network OPTn =

OPTn(𝐻 ) of 𝐻 is the network 𝐺 (s∗) = (𝑉 , 𝐸 (s∗)) which minimizes 𝑐𝑜𝑠𝑡 (𝐺 (s∗))
among all possible strategy profiles. Thus,𝑂𝑃𝑇 minimizes𝛼 ·∑(𝑢,𝑣) ∈𝐸 (s∗) 𝑤 (𝑢, 𝑣)+∑

𝑢∈𝑉 𝑑𝐺 (s∗) (𝑢,𝑉 ).
As a solution concept we consider the pure Nash Equilibrium (NE) and the

Greedy Equilibrium (GE). Additionally, we say that 𝐺 (s) is in 𝛽-approximate NE

(𝛽-NE) if no agent 𝑢 can change her strategy to decrease her cost to less than
1/𝛽 · 𝑐𝑜𝑠𝑡 (𝑢,𝐺 (s)). A 𝛽-approximate GE (𝛽-GE) is defined analogously.

Model Variants

Besides the GNCG, where the game is played on a complete host network𝐻 with
arbitrary non-negative edge weights, we also consider several interesting special
cases (See Figure 4.1 for an overview). In the metric GNCG (M–GNCG) the edge
weights of 𝐻 satisfy the triangle inequality. Besides the general metric version,
we consider three versions where the edge weights of 𝐻 are defined by specific
metrics. In the simplest case, the 1-2–GNCG, the edge weights of𝐻 are restricted
to the set {1, 2}. We also consider the variant where the metric edge weights of
𝐻 are derived from the shortest path distances in a given weighted tree, the T–
GNCG. Finally, we consider the variant R𝑑–GNCG, where the agents are points in
R
𝑑 and the edge weights of𝐻 correspond to their 𝑝-norm distances. The original
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is 𝛩 ( 5
√
𝛼) and is achieved for 𝛼 = 𝑛

5
3 . Unfortunately, the proof techniques in

[Dem+09] crucially rely on edge weights in {1,∞} and can therefore not be
carried over to our model. However, their lower bound construction yields
a lower bound of 𝛺 ( 5

√
𝛼) for the general non-metric case of our model. Also

related is the work of Bilò et al. [Bil+12] who investigated the max-version of
the NCG [Dem+12], where agents try to minimize their maximum distance, on
a general unweighted host network.

One of the distinctive features of our model is the non-uniform edge price. A
few other models with this feature have been proposed, e.g., [MMO14; MMO15],
but they all use unit-weight edges. In themodel by Cord-Landwehr et al. [CMH14]
agents can choose different quality levels of an edge for different prices, i.e., the
paid price influences the edge length. With this, the model is incomparable to
our approach.

Also related are network formation games where not centrality but some other
property is the goal of each agent. There are games where agents simply want
to be connected to all other agents, e.g. [BG00; Goy+16; Kli11]. Among them,
the work by Eidenbenz et al. [EKZ06] is closely related to our work. In their
wireline strong connectivity game agents are points in the Euclidean plane who
strategically buy incident edges to create a connected network. The edge price
equals the length of the edge. This is similar to our model in the Euclidean plane
with 𝛼 = 1 but the focus on connectivity changes the game completely. Another
related geometric game was proposed by Moscibroda et al. [MSW06; MSW11].
Also there the agents are points in some metric space but agents pay a fixed
price for each edge and try to minimize the total stretch towards all other agents.
Gulyás et al. [Gul+15] considered a network formation game in the hyperbolic
plane where agents strive for maximum navigability. This is also a geometric
model but drastically different from our approach.

Network Design Games have been proposed in [Ans+08a; Ans+08b]. Their
most important feature is that they are potential games [MS96], which al-
ready shows the contrast to Network Creation Games. Interestingly, Hoefer &
Krysta [HK05] proposed and analyzed a geometric version.

There are many classical optimization problems related to network design, e.g.,
see the survey by Magnanti & Wong [MW84]. Many of them are NP-complete,
e.g., all the problems labeled “ND” in [GJ02]. Our model is closely related to the
Network Design Problem [Sco67] and the Optimum Communication Spanning
Tree Problem (ND7 in [GJ02]). In particular, finding the social optimum network
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corresponds to a variant of the Network Design Problem, where, instead of
having a budget for buying edges to minimize the routing cost, the total sum of
edge costs and routing costs is to be minimized.

4.3 Our Contribution

In this paper we investigate the Network Creation Game on edge-weighted host
networks. This variant allows modeling the decentralized creation of networks,
like fiber-optic communication networks or many variants of overlay networks,
by selfish agents, e.g., ISPs. In such settings, the nodes in a network have
a physical location and the edge weights and also the cost for creating and
maintaining them depend on these locations. In particular, we focus on specific
natural metrics, e.g., network and tree metrics as well as the geometric setting
where the agents correspond to points in R

𝑑 .
We show that computing a best response strategy is NP-hard for all variants

of our model and we prove for the 1-2–GNCG that deciding if a given strategy
profile is in NE is NP-hard as well. The latter is the first result of this type in the
realm of NCGs. Moreover, we prove that all our models do not have the finite
improvement property. On the positive side, we give an efficient algorithm for
computing a social optimum network for the 1-2–GNCG and we show how to
trivially obtain the social optimum in the T–GNCG.
Our main focus is a rigorous study of the quality of the induced equilibrium

networks of our models. For this we show that NE exist in the 1-2–GNCG and
the T–GNCG and that the more general M–GNCG always admits a (𝛼 + 1)-
approximate NE. The main contribution of this chapter is a collection of bounds
on the Price of Anarchy, i.e., we bound the loss in social welfare due to selfishness
and to the lack of central coordination. We prove a tight PoA bound of (𝛼 + 2)/2
for the M–GNCG and the T–GNCG. This bound is remarkable, since it is non-
constant and much higher than the previously known upper bounds for the NCG
or the inherently non-metric 1-∞–GNCG. This shows that allowing weighted
edges completely changes the picture. Moreover, in contrast, settling the PoA
for the original NCG, which is a special case of all our models, is a major open
problem in the field. For the model variant which is closest to the NCG, the
1-2–GNCG, we prove a tight constant bound on the PoA for 𝛼 ≤ 1 and show that
the PoA is in O(

√
𝛼) for 𝛼 > 1. Hence, this model behaves very similar to the

NCG. For the variant with points in R
𝑑 , the R𝑑–GNCG, we show a 1-dimensional
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Table 4.1: Overview of our results and comparison with related work.

Model PoA Existence of Equilibrium

NCG∗
O(

√
𝛼) [Fab+03],

NE exists [Fab+03]
𝑜 (𝑛𝜖 ) [Dem+12]

1-∞–GNCG∗ 𝛩
(

5
√
𝛼
)
[Dem+09] ?

1-2–GNCG

𝛼 <
1
2

= 1 (Thm. 4.17) NE exists (Thm. 4.17)
1
2
≤ 𝛼 < 1 =

3
𝛼+2 (Thm. 4.16+4.15)

NE exists (Thm. 4.12)
𝛼 = 1 = 3

2
(Thm. 4.16+4.4)

1 < 𝛼 < 3
O(

√
𝛼) (Thm. 4.20)

AE is (𝛼 + 1)-GE (Thm. 4.5)

GE is 3-NE (Thm. 4.7)

𝛼 ≥ 3 NE exists (Thm. 4.18)

T–GNCG =
𝛼+2
2

(Thm. 4.25+4.4) NE exists (Cor. 4.22)

R
𝒅–GNCG

0 < 𝛼 < 2 𝛩 (1) (Thm. 4.30+4.4),

AE is (𝛼 + 1)-GE (Thm. 4.5)𝛼 ≥ 2 𝛩 (𝛼) (Thm. 4.29+4.4)

GE is 3-NE (Thm. 4.7)
1-norm

≥ 1 + 𝛼
2+𝛼/(2𝑑−1) (Thm. 4.31),

≤ 𝛼+2
2

(Thm. 4.4)

M–GNCG =
𝛼+2
2

(Thm. 4.25+4.4)
AE is (𝛼 + 1)-GE (Thm. 4.5)

GE is 3-NE (Thm. 4.7)

GNCG
≥ 𝛼+2

2
(Thm. 4.25)

(𝛼 + 1)-NE exists (Prop.4.32)
≤ 𝛼 + 1 (Thm. 4.33)
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Table 4.2: Overview of our results and comparison with related work.

Model Complexity FIP

NCG∗ BR NP-hard [Fab+03] no [KL13]

1-∞–GNCG∗ BR NP-hard (Cor. 4.1) no (Cor. 4.1)

1-2–GNCG
BR NP-hard (Cor. 4.1),

no (Cor. 4.1)
Dec. NE NP-hard (Thm. 4.10)

T–GNCG BR NP-hard (Thm. 4.23) no (Thm. 4.24)

R
𝒅–GNCG

𝑝-norm, 𝑝 ≥ 2
BR NP-hard (Thm. 4.26)

?

1-norm no (Thm. 4.27)

M–GNCG
BR NP-hard (Cor. 4.1)

no (Cor. 4.1)
Dec. NE NP-hard (Thm. 4.10)

GNCG
BR NP-hard (Cor. 4.1)

no (Cor. 4.1)
Dec. NE NP-hard (Thm. 4.10)

Notation used in the tables: BR – a problem of computing a best response; Dec. NE – a
problem of deciding if a given strategy profile is in NE; FIP – finite improving property;

construction which delivers a lower bound for the PoA that asymptotically meets
the upper bound of O(𝛼). Moreover, we show how to embed the lower bound
construction from the T–GNCG. This yields a tight PoA bound if 𝑑 tends to
infinity. Finally, for the most general case, the GNCG, we show that the PoA is
between (𝛼 + 2)/2 and 𝛼 + 1, i.e., the bound is asymptotically tight.

See Table 4.1 and Table 4.2 for an overview over the majority of our results
and the most relevant results for the earlier models which are marked with the
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star symbol. All results on the Price of Anarchy with an equality sign are tight
bounds.

4.4 Preliminaries

We start by clarifying the relation of the models we investigate. Figure 4.1 shows
which models are special cases of other models. These relationships and the
facts that computing a best response strategy is NP-hard for the NCG [Fab+03]
and that the NCG does not have the FIP [KL13] directly yields the following
corollary.

◮ Corollary 4.1. Computing a best response strategy is NP-hard for the 1-2–
GNCG, 1-∞–GNCG, the M–GNCG and the GNCG. Additionally, these models
do not have the FIP. ◭

Let 𝑡 ≥ 1. We say that a sub-network 𝐺 of 𝐻 is a 𝑡-spanner if 𝑑𝐺 (𝑢, 𝑣) ≤
𝑡𝑑𝐻 (𝑢, 𝑣) for every pair of vertices 𝑢, 𝑣 ∈ 𝑉 . Next, we show a useful property,
which holds for any host network.

◮ Lemma 4.2. For any host network 𝐻 any add-only equilibrium is a (𝛼 + 1)-
spanner. ◭

Proof. First, we consider edges 𝑢𝑣 with 𝑤 (𝑢, 𝑣) = 𝑑𝐻 (𝑢, 𝑣), that is, a shortest
path between 𝑢 and 𝑣 in the host network 𝐻 uses the direct edge. We claim
for such pairs 𝑢 and 𝑣 that in any NE network 𝐺 we have 𝑑𝐺 (𝑢, 𝑣) ≤ (𝛼 +
1)𝑑𝐻 (𝑢, 𝑣) = (𝛼 + 1)𝑤 (𝑢, 𝑣). To see this, assume towards a contradiction that
𝑑𝐺 (𝑢, 𝑣) > (𝛼 + 1)𝑑𝐻 (𝑢, 𝑣), which implies that (𝑢, 𝑣) ∉ 𝐸 (𝐺). Now consider what
happens if agent 𝑢 buys the edge 𝑢𝑣: Agent 𝑢 additionally has to pay 𝛼 ·𝑤 (𝑢, 𝑣)
for creating the edge and then her distance to 𝑣 is guaranteed to be𝑤 (𝑢, 𝑣). Thus
her total cost for buying the edge 𝑢𝑣 and reaching node 𝑣 is (𝛼 + 1)𝑤 (𝑢, 𝑣). Since
𝑑𝐺 (𝑢, 𝑣) > (𝛼 + 1)𝑤 (𝑢, 𝑣), buying the edge 𝑢𝑣 is an improving move for agent 𝑢.

Now we consider two arbitrary agents 𝑢 and 𝑣 in𝐺 and let 𝑃𝑢𝑣 = 𝑥1, 𝑥2, . . . , 𝑥𝑘
with 𝑢 = 𝑥1 and 𝑥𝑘 = 𝑣 be a shortest path between 𝑢 and 𝑣 in the host network
𝐻 . It follows that 𝑑𝐻 (𝑢, 𝑣) = 𝑤 (𝑥1, 𝑥2) +𝑤 (𝑥2, 𝑥3) + · · · +𝑤 (𝑥𝑘−1, 𝑥𝑘 ). Since 𝑃𝑢𝑣 is
a shortest path in 𝐻 and since any subpath of a shortest path must be a shortest
path itself, it follows that for all pairs 𝑥𝑖 and 𝑥𝑖+1, with 1 ≤ 𝑖 ≤ 𝑘 − 1, the equality
𝑤 (𝑥𝑖 , 𝑥𝑖+1) = 𝑑𝐻 (𝑥𝑖 , 𝑥𝑖+1) holds. Thus, in any NE 𝐺 on the host network 𝐻 we
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have that 𝑑𝐺 (𝑥𝑖 , 𝑥𝑖+1) ≤ (𝛼 + 1)𝑤 (𝑥𝑖 , 𝑥𝑖+1) holds for all 1 ≤ 𝑖 ≤ 𝑘 − 1. Thus, the
distance between 𝑢 and 𝑣 in any NE 𝐺 is

𝑑𝐺 (𝑢, 𝑣) ≤ (𝛼 + 1)𝑤 (𝑥1, 𝑥2) + (𝛼 + 1)𝑤 (𝑥2, 𝑥3) + · · · + (𝛼 + 1)𝑤 (𝑥𝑘−1𝑥𝑘 )
= (𝛼 + 1)𝑑𝐻 (𝑢, 𝑣) .

Since we considered only additions of edges, the statement holds for a more
general add-only equilibrium concept. �

With a similar technique we get an analogous statement for the social optimum
network 𝑂𝑃𝑇 .

◮ Lemma 4.3. The social optimum network OPTn(𝐻 ) is a
(
𝛼
2 + 1

)
-spanner for

any connected host network 𝐻 . ◭

Proof. The proof is analogous to the proof of Lemma 4.2. Let 𝑂𝑃𝑇 (𝐻 ) be the
sub-network of 𝐻 which minimizes the social cost. We start by considering
edges 𝑢𝑣 in 𝑂𝑃𝑇 (𝐻 ) where 𝑤 (𝑢, 𝑣) = 𝑑𝐻 (𝑢, 𝑣), that is, a shortest path between 𝑢
and 𝑣 in the host network 𝐻 uses the direct edge. We claim for such pairs 𝑢 and
𝑣 that in 𝑂𝑃𝑇 (𝐻 ) we have

𝑑𝑂𝑃𝑇 (𝐻 ) (𝑢, 𝑣) ≤
(𝛼
2
+ 1

)
𝑑𝐻 (𝑢, 𝑣) =

(𝛼
2
+ 1

)
𝑤 (𝑢, 𝑣) .

To see this, assume towards a contradiction that 𝑑𝑂𝑃𝑇 (𝐻 ) (𝑢, 𝑣) >
(
𝛼
2 + 1

)
·𝑤 (𝑢, 𝑣),

which implies that (𝑢, 𝑣) ∉ 𝐸 (𝑂𝑃𝑇 (𝐻 )). Now consider what happens if the edge
(𝑢, 𝑣) is added to𝑂𝑃𝑇 (𝐻 ): The social cost increases by 𝛼 ·𝑤 (𝑢, 𝑣) for creating the
additional edge. Moreover, the creation of the edge 𝑢𝑣 ensures that the distance
between 𝑢 and 𝑣 is 𝑤 (𝑢, 𝑣). Thus, the distance from 𝑢 to 𝑣 is decreased by more
than

(
𝛼
2 + 1

)
𝑤 (𝑢, 𝑣) −𝑤 (𝑢, 𝑣) =

(
𝛼
2

)
𝑤 (𝑢, 𝑣). The same holds true for the distance

from 𝑣 to 𝑢. Thus, the total distance decrease induced by the addition of the edge
𝑢𝑣 to 𝑂𝑃𝑇 (𝐻 ) is more than 2

(
𝛼
2

)
𝑤 (𝑢, 𝑣) = 𝛼 · 𝑤 (𝑢, 𝑣). Since the total distance

decrease is strictly larger than the edge cost of the edge 𝑢𝑣, this implies that the
network 𝑂𝑃𝑇 (𝐻 ) augmented by the edge 𝑢𝑣 has strictly less social cost than
𝑂𝑃𝑇 (𝐻 ). This contradicts the assumption that 𝑂𝑃𝑇 (𝐻 ) minimizes the social
cost.

Now we consider two arbitrary agents𝑢 and 𝑣 in𝑂𝑃𝑇 (𝐻 ). Let 𝑃𝑢𝑣 = 𝑥1, . . . , 𝑥𝑘
with 𝑢 = 𝑥1 and 𝑥𝑘 = 𝑣 be a shortest path between 𝑢 and 𝑣 in the host network
𝐻 . It follows that 𝑑𝐻 (𝑢, 𝑣) = 𝑤 (𝑥1, 𝑥2) + 𝑤 (𝑥2, 𝑥3) + · · · + 𝑤 (𝑥𝑘−1, 𝑥𝑘 ). Since
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𝑃𝑢𝑣 is a shortest path in 𝐻 and since any subpath of a shortest path must be a
shortest path itself, it follows that for all pairs 𝑥𝑖 and 𝑥𝑖+1, with 1 ≤ 𝑖 ≤ 𝑘 − 1,
the equality 𝑤 (𝑥𝑖 , 𝑥𝑖+1) = 𝑑𝐻 (𝑥𝑖 , 𝑥𝑖+1) holds. Thus, in 𝑂𝑃𝑇 (𝐻 ) we have that
𝑑𝑂𝑃𝑇 (𝐻 ) (𝑥𝑖 , 𝑥𝑖+1) ≤

(
𝛼
2
+ 1

)
𝑤 (𝑥𝑖 , 𝑥𝑖+1) holds for all 1 ≤ 𝑖 ≤ 𝑘 − 1. Thus, the

distance between 𝑢 and 𝑣 in 𝑂𝑃𝑇 (𝐻 ) is

𝑑𝑂𝑃𝑇 (𝐻 ) (𝑢, 𝑣) ≤
(𝛼
2
+ 1

)
𝑤 (𝑥1, 𝑥2) +

(𝛼
2
+ 1

)
𝑤 (𝑥2, 𝑥3) + . . .

+
(𝛼
2
+ 1

)
𝑤 (𝑥𝑘−1𝑥𝑘 ) =

(𝛼
2
+ 1

)
𝑑𝐻 (𝑢, 𝑣). �

4.5 Host Networks with Metric Weights

In this section we investigate the NCG on complete host networks with edge
weights which satisfy the triangle inequality. After giving some general results,
we focus on specific natural metrics.

4.5.1 General Results for the M–GNCG

◮ Theorem 4.4. The PoA in the M–GNCG is at most 𝛼+2
2

for any host network
for which a NE exists. ◭

Proof. Let 𝐺 be a NE and let 𝑢 and 𝑣 be two distinct nodes. Let 𝑥 and 𝑥∗ be two
Boolean variables such that 𝑥 = 1 if and only if 𝑢𝑣 is an edge of 𝐺 and 𝑥∗ = 1

if and only if 𝑢𝑣 is an edge of the social optimum 𝑂𝑃𝑇 . We prove the claim by
showing that

𝜎 :=
𝛼 ·𝑤 (𝑢, 𝑣) · 𝑥 + 2𝑑𝐺 (𝑢, 𝑣)

𝛼 ·𝑤 (𝑢, 𝑣) · 𝑥∗ + 2𝑑𝑂𝑃𝑇 (𝑢, 𝑣)
≤ 𝛼 + 2

2
.

Essentially 𝜎 is the ratio of the social cost contribution of every pair of nodes in
the NE and in OPT. If the ratio for every pair of nodes is bounded by (𝛼 + 2)/2
then this also holds for their sum.

Now we prove the claim. If 𝑥 = 1 then 𝑑𝐺 (𝑢, 𝑣) = 𝑤 (𝑢, 𝑣) and hence

𝜎 ≤ (𝛼 + 2) · 𝑤 (𝑢, 𝑣)
2𝑑𝑂𝑃𝑇 (𝑢, 𝑣)

≤ (𝛼 + 2) · 𝑤 (𝑢, 𝑣)
2𝑤 (𝑢, 𝑣) =

𝛼 + 2

2
.

If 𝑥 = 0 and 𝑥∗ = 1 then 𝜎 ≤ 2(𝛼 + 1)/(𝛼 + 2) ≤ (𝛼 + 2)/2 since, by Lemma 4.2,
𝑑𝐺 (𝑢, 𝑣) ≤ (𝛼 + 1)𝑤 (𝑢, 𝑣).
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It remains to prove 𝜎 ≤ (𝛼+2)/2when 𝑥 = 0 and 𝑥∗ = 0. This means that there
is a vertex 𝑧 with 𝑧 ≠ 𝑢 and 𝑧 ≠ 𝑣 along a fixed shortest path in 𝑂𝑃𝑇 between
𝑢 and 𝑣. Clearly, both edges As 𝐺 is a NE, neither 𝑢 nor 𝑣 has an incentive to
buy the edge towards 𝑧. If 𝑢 bought the edge 𝑢𝑧 at the price of 𝛼 · 𝑤 (𝑢, 𝑧), her
distances towards 𝑧 would be at most 𝑤 (𝑢, 𝑧) and, by the triangle inequality,
her distance towards 𝑣 would be at most 𝑤 (𝑢, 𝑧) + 𝑑𝐺 (𝑧, 𝑣). Since this is not an
improvement, we have

𝑑𝐺 (𝑢, 𝑧) + 𝑑𝐺 (𝑢, 𝑣) ≤ 𝛼 ·𝑤 (𝑢, 𝑧) + 𝑑𝐺+(𝑢,𝑧) (𝑢, 𝑧) + 𝑑𝐺+(𝑢,𝑧) (𝑢, 𝑣)
≤ (𝛼 + 2)𝑑𝑂𝑃𝑇 (𝑢, 𝑧) + 𝑑𝐺 (𝑧, 𝑣) = (𝛼 + 2)𝑤 (𝑢, 𝑧) + 𝑑𝐺 (𝑧, 𝑣)

and hence

𝑑𝐺 (𝑢, 𝑧) + 𝑑𝐺 (𝑢, 𝑣) ≤ (𝛼 + 2)𝑑𝑂𝑃𝑇 (𝑢, 𝑧) + 𝑑𝐺 (𝑧, 𝑣) . (4.1)

Analogously for agent 𝑣, we get

𝑑𝐺 (𝑣, 𝑧) + 𝑑𝐺 (𝑣,𝑢) ≤ 𝛼 ·𝑤 (𝑣, 𝑧) + 𝑑𝐺+(𝑣,𝑧) (𝑣, 𝑧) + 𝑑𝐺+(𝑣,𝑧) (𝑣,𝑢)
≤ (𝛼 + 2)𝑑𝑂𝑃𝑇 (𝑣, 𝑧) + 𝑑𝐺 (𝑧,𝑢) ≤ (𝛼 + 2)𝑤 (𝑣, 𝑧) + 𝑑𝐺 (𝑧,𝑢),

which yields

𝑑𝐺 (𝑣, 𝑧) + 𝑑𝐺 (𝑣,𝑢) ≤ (𝛼 + 2)𝑑𝑂𝑃𝑇 (𝑣, 𝑧) + 𝑑𝐺 (𝑧,𝑢) . (4.2)

By summing up the inequalities (4.1) and (4.2), we obtain

2𝑑𝐺 (𝑢, 𝑣) ≤ (𝛼 + 2)𝑑𝑂𝑃𝑇 (𝑢, 𝑧) + (𝛼 + 2)𝑑𝑂𝑃𝑇 (𝑣, 𝑧) = (𝛼 + 2)𝑑𝑂𝑃𝑇 (𝑢, 𝑣).

Note that the inequalities (4.1) and (4.2) hold as well if any of two edges, 𝑢𝑧 or 𝑣𝑧,
exist in 𝐺 . Clearly, in case both edges are in 𝐺 , 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝑂𝑃𝑇 (𝑢, 𝑣). Therefore,
also the last case yields 𝜎 ≤ (𝛼 + 2)/2. �

Existence of Nash Equilibria

It is an interesting open question if NE always exist for the M–GNCG. Here we
prove a weaker result which essentially states that there always is an outcome
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of the add-only game where no agent can greedily improve (i.e., by a single
addition, deletion, or swap) by a high multiplicative factor.

◮ Theorem 4.5. Any add-only equilibrium network in the M–GNCG is in
(𝛼 + 1)-GE. ◭

Proof. Consider a network 𝐺 = (𝑉 , 𝐸) which is in AE. Clearly, 𝐺 always exists
since any complete host network 𝐻 is in AE. By the definition of a (𝛼 + 1)-GE
we need to evaluate the maximal improvement of the cost function which can
be made by a deletion or swap of any edge in 𝐺 .

First, we consider a deletion. Compare the cost function value of some agent
𝑢 ∈ 𝑉 before and after an improving deletion of one of her edge 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐺):

𝑐𝑜𝑠𝑡 (𝑢,𝐺)
𝑐𝑜𝑠𝑡 (𝑢,𝐺 ′) =

𝛼 ·𝑤 (𝑢, 𝑆𝑢) + 𝑑𝐺 (𝑢,𝑉 )
𝛼 ·𝑤 (𝑢, 𝑆 ′𝑢) + 𝑑𝐺′ (𝑢,𝑉 ) ,

where𝐺 ′ is the network obtained from𝐺 by applying new strategy 𝑆 ′𝑢 = 𝑆𝑢 \ {𝑣},
i.e. 𝐸 (𝐺 ′) = 𝐸 (𝐺) \ {𝑢𝑣}. In the worst case, the deletion of the edge 𝑢𝑣 does not
change the distance between the nodes 𝑢 and 𝑣, i.e., 𝑤 (𝑢, 𝑣) = 𝑑𝐺′ (𝑢, 𝑣). This
yields

𝑐𝑜𝑠𝑡 (𝑢,𝐺)
𝑐𝑜𝑠𝑡 (𝑢,𝐺 ′) =

𝛼 ·𝑤 (𝑢, 𝑆𝑢) + 𝑑𝐺 (𝑢,𝑉 )
𝛼 ·𝑤 (𝑢, 𝑆 ′𝑢) + 𝑑𝐺 (𝑢,𝑉 )

=
𝛼 ·𝑤 (𝑢, 𝑣) + 𝛼 ·𝑤 (𝑢, 𝑆𝑢 \ {𝑣}) + 𝑑𝐺 (𝑢,𝑉 )

𝛼 ·𝑤 (𝑢, 𝑆𝑢 \ {𝑣}) + 𝑑𝐺 (𝑢,𝑉 )

= 1 + 𝛼 ·𝑤 (𝑢, 𝑣)
𝛼 ·𝑤 (𝑢, 𝑆𝑢 \ {𝑣}) + 𝑑𝐺 (𝑢,𝑉 )

≤ 1 + 𝛼 ·𝑤 (𝑢, 𝑣)
𝑑𝐺 (𝑢,𝑉 )

≤ 1 + 𝛼 ·𝑤 (𝑢, 𝑣)
𝑤 (𝑢, 𝑣) = 1 + 𝛼. (4.3)

Now we consider an improvement which can be made by one swap. Let agent
𝑢 ∈ 𝑉 (𝐺) be an agent that can improve her cost by swap an edge 𝑢𝑣 to 𝑢𝑤, and
let𝐺𝑠𝑤𝑎𝑝 be the new network. Compare the cost function after the swap with
the cost value after the sequential addition of the edge 𝑢𝑤 and the deletion of
the edge 𝑢𝑣. Let 𝐺𝑎𝑑𝑑 and 𝐺𝑑𝑒𝑙 be the corresponding networks. Thus,

𝐸 (𝐺𝑠𝑤𝑎𝑝) = 𝐸 (𝐺𝑑𝑒𝑙 ) = 𝐸 (𝐺𝑎𝑑𝑑 ) \ {𝑢𝑤} = (𝐸 (𝐺) ∪ {𝑢𝑣}) \ {𝑢𝑤}.

51



Chapter 4 Geometric Network Creation Games

Then, by the inequality (4.3) and because 𝐺 is in AE, we have:

𝑐𝑜𝑠𝑡 (𝑢,𝐺𝑠𝑤𝑎𝑝) = 𝑐𝑜𝑠𝑡 (𝑢,𝐺𝑑𝑒𝑙 ) ≥
1

𝛼 + 1
𝑐𝑜𝑠𝑡 (𝑢,𝐺𝑎𝑑𝑑 ) ≥

1

𝛼 + 1
𝑐𝑜𝑠𝑡 (𝑢,𝐺) . (4.4)

Finally, by (4.3) and (4.4), we get that 𝐺 is in (𝛼 + 1)-GE. �

In the above proof, we observed that a complete host network𝐻 is in (𝛼+1)-GE.
It is easy to show an even stronger result that the host network is in (𝛼 + 1)-NE.

◮ Proposition 4.6. Every host network𝐻 is in (𝛼 +1)-NE in the M–GNCG. ◭

Proof. Since 𝐻 is a clique, the only improving move an agent can perform is
an edge deletion. Consider a subnetwork 𝐻 ′ obtained from 𝐻 after an agent
𝑢 improved her strategy by deleting some edges. Since the deletion of edges
increases the distance cost, we have that 𝑐𝑜𝑠𝑡 (𝑢,𝐻 ′) ≥ 𝑑𝐻 ′ (𝑢,𝑉 ) ≥ 𝑑𝐻 (𝑢,𝑉 ).
Hence, we get

𝑐𝑜𝑠𝑡 (𝑢,𝐻 )
𝑐𝑜𝑠𝑡 (𝑢,𝐻 ′) ≤ 𝛼 ·𝑤 (𝑢, 𝑆𝑢) + 𝑑𝐻 (𝑢,𝑉 )

𝑑𝐻 (𝑢,𝑉 )
≤ (𝛼 + 1)𝑑𝐻 (𝑢,𝑉 )

𝑑𝐻 (𝑢,𝑉 )
= 𝛼 + 1. �

Now, we adapt the technique from [Len12] to relate GE and 𝛽-NE.

◮ Theorem 4.7. In the M–GNCG every network in GE is in 3-NE. ◭

Proof. We prove the claim by a "locality gap preserving" reduction to the Unca-
pacitated Metric Facility Location problem (UMFL). Roughly speaking, in UMFL
we are given a set of facilities, each of which has a non-negative opening cost, a
set of clients, and a distance between each client and each facility (the distances
satisfy the triangle inequality). The task in UMFL it to open a set of facilities and
assign each client to the closest opened facility in such a way that the overall cost
– i.e., the overall cost of the opened facilities plus the overall sum of client-to-
assigned-facility distances – is minimized. Since it was shown in [Ary+04] that
the locality gap of UMFL is 3, that means that any UMFL solution that cannot be
improved by a single move, i.e., by opening, closing or swapping one facility, is
a 3-approximation of the optimal solution.
Consider a network 𝐺 = (𝑉 , 𝐸). Let 𝑢 ∈ 𝑉 be an agent in (𝐺, 𝛼) and let

𝑍 ⊂ 𝑉 be the set of nodes which own an edge to 𝑢. Consider the sub-network
𝐺 ′

= (𝑉 , 𝐸 ′) of 𝐺 which does not contain edges owned by the agent 𝑢. Denote
𝑆 (𝑢) be the set of 𝑢’s pure strategies in (𝐺 ′, 𝛼). We construct an instance 𝐼 (𝐺 ′)
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for UMFL from the network 𝐺 ′ as follows: let 𝐹 = 𝐶 = 𝑉 \ {𝑢}, where 𝐹 is
the set of facilities, 𝐶 is the set of clients; we define for all facilities 𝑓 ∈ 𝑍 ∩ 𝐹
the opening cost 𝑐 (𝑓 ) to be 0, and 𝑐 (𝑓 ) = 𝛼 ·𝑤 (𝑓 ,𝑢) for all other facilities. We
define distances for all 𝑖 ∈ 𝐹, 𝑗 ∈ 𝐶 to be 𝑑𝑖 𝑗 = 𝑑𝐺′ (𝑖, 𝑗) + 𝑤 (𝑖, 𝑢). If there is no
path connecting 𝑖 and 𝑗 in 𝐺 ′, then 𝑑𝑖 𝑗 = +∞. Since the distances and the edge
weights in 𝐺 ′ are metric, the distances in 𝐼 (𝐺 ′) satisfy the triangle inequality.

Nowwe construct a map 𝜋 : 𝑆 (𝑢) → 𝑆UMFL, where 𝑆UMFL is the set of solutions
of the UMFL for the instance 𝐼 (𝐺 ′), as follows: for any 𝑆 ∈ 𝑆 (𝑢), define 𝜋 (𝑆) =
𝑆 ∪ 𝑍 and for any 𝐹𝑆 ∈ 𝑆UMFL, 𝜋−1(𝐹𝑆 ) = 𝐹𝑆 \ 𝑍 . Since the opening cost for any
𝑓 ∈ 𝑍 ∩ 𝐹 is 0, we can assume that 𝑆UMFL contains only solutions 𝐹𝑆 such that
𝑍 ⊆ 𝐹𝑆 . Then the strategy 𝑆 ′ = 𝜋−1(𝐹𝑆 ) exists, and for any two strategies 𝑆1 ≠ 𝑆2,
𝜋 (𝑆1) ≠ 𝜋 (𝑆2). Therefore, the map 𝜋 is a bijection. To prove the statement of the
theorem we need to show that if agent 𝑢 cannot improve her strategy by adding,
deleting or swapping one edge, then the corresponding solution 𝐹𝑆 = 𝜋 (𝑆) for
UMFL cannot be improved by opening, closing or swapping one facility.

First, we show that the cost of agent𝑢 is equal to the cost of the corresponding
UMFL solution 𝐹𝑆 . Indeed,

𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆)) = 𝛼 ·𝑤 (𝑢, 𝑆) +
∑︁

𝑣∈𝑉 \{𝑢 }

(
min

𝑥 ∈𝑆∪𝑍
(𝑑𝐺′ (𝑥, 𝑣) +𝑤 (𝑢, 𝑥))

)

= 𝛼 ·𝑤 (𝑢, 𝑆 \ 𝑍 ) + 0 ·𝑤 (𝑢, 𝑍 ) +
∑︁

𝑣∈𝑉 \{𝑢 }

(
min

𝑥 ∈𝑆∪𝑍
𝑑𝑥𝑣

)

=

∑︁
𝑓 ∈𝐹𝑆\𝑍

𝑐 (𝑓 ) +
∑︁
𝑓 ∈𝑍

𝑐 (𝑓 ) +
∑︁
𝑣∈𝐶

(
min
𝑥 ∈𝐹𝑆

𝑑𝑥𝑣

)

= 𝑐𝑜𝑠𝑡 (𝐹𝑆 ) .

Next we show that 𝐹𝑠 = 𝜋 (𝑆) cannot be decreased by opening, closing or
swapping one facility. For the sake of contradiction, assume that the solution 𝐹𝑆
can be improved by a single step. Denote 𝐹 ′𝑆 be an improved solution. Note that
no facility 𝑧 ∈ 𝑍 is included in an opening, closing or swapping step. Indeed,
by construction, 𝑍 ⊆ 𝐹𝑆 and the opening cost of each facility in 𝑍 is zero,
hence we only need to consider closing of one of the facilities from 𝑍 in 𝐹 ′𝑆 .
If there is a facility 𝑧 ∈ 𝐹𝑆 \ 𝐹 ′𝑆 , then there is at least one client 𝑐 ∈ 𝐶 such
that 𝑑𝑐𝑧 ≤ min

𝑓 ∈𝐹𝑆
𝑑𝑐 𝑓 , thus, closing the facility 𝑧 does not decrease 𝑐𝑜𝑠𝑡 (𝐹𝑆 ) and,
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therefore, 𝑧 ∈ 𝐹 ′𝑆 . Thus, and because 𝜋 is a bijection, we have that there is a
strategy 𝑆 ′ = 𝜋−1(𝐹 ′𝑆 ) such that 𝑆 ′ ≠ 𝑆 . Therefore, we have 𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆 ′)) =

𝑐𝑜𝑠𝑡 (𝐹 ′𝑆 ) < 𝑐𝑜𝑠𝑡 (𝐹𝑆 ) = 𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆)). Hence, there is the better strategy 𝑆 ′ for
the agent 𝑢, which contradicts with the assumption that there is no one step
improvement of the strategy 𝑆 .

Finally, applying the result by Arya et al.[Ary+04], we get

𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆)) ≤ 3 𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆∗))

where 𝑆∗ is an optimal strategy in (𝐺 ′, 𝛼). �

4.5.2 1-2-networks

Here we consider the M–GNCG for the special case where for every pair of nodes
𝑢 and 𝑣 we have either 𝑤 (𝑢, 𝑣) = 1 or 𝑤 (𝑢, 𝑣) = 2. We call an edge of weight 1 or
2 a 1-edge or 2-edge, respectively. We call such networks 1-2-networks.

Studying 1-2-networks is especially interesting since this class of host net-
works is the simplest generalization of the unweighted host networks from the
NCG and the edge weights are guaranteed to satisfy the triangle inequality.
1-2-networks are commonly used as the simplest non-trivial metric special case,
e.g., when studying the TSP [AMP18; BK06; Kar72], and hence they are a natural
starting point.

We start with a simple statement about 1-edges. We show that for 𝛼 < 1 any NE
must contain all the 1-edges from the host network. If 𝛼 = 1, then there always
exists a NE which contains all 1-edges.

◮ Lemma 4.8. For 𝛼 = 1 in any NE network in the 1-2–GNCG buying any
additional 1-edge is cost neutral for the buyer. For 𝛼 < 1 any NE network
contains all 1-edges from the host network. ◭

Proof. Consider a network 𝐺 which is in NE in the 1-2–GNCG. Assume there is
an edge 𝑢𝑣 of weight 1 which is not in 𝐺 . Thus, 𝑑𝐺 (𝑢, 𝑣) ≥ 2. Then buying the
edge by one of its endpoint costs 𝛼 while the distance cost decreases by at least
2 − 1. Hence, if 𝛼 < 1, the decrease of the distance cost exceeds the increase in
the edge cost, which means that this is an improving move for the buying agent.
If 𝛼 = 1, the cost for the buying agent does not change. �
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Hardness

Here we discuss the hardness of deciding if a given strategy profile is in NE
for the 1-2–GNCG. Note that the NP-hardness of computing a best response
strategy for some agent, which is guaranteed by Corollary 4.1, does not directly
imply the NP-hardness of the NE decision problem.
First, we take a detour via the Vertex Cover problem. A vertex cover of an

undirected network 𝐺 is a subset 𝐶 of nodes of 𝐺 such that, for every edge 𝑢𝑣
of 𝐺 , 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶 . It is well-known that computing a minimum vertex cover
of a subcubic network is NP-hard. For the sake of completeness, we start with
the result that claims that there is no polynomial time algorithm that decides if
there is a vertex cover of less size than a given vertex cover.

◮ Lemma 4.9. Unless P=NP, there is no polynomial time algorithm that, given
a network𝐺 and a vertex cover of𝐺 of size 𝑘 , decides whether𝐺 admits a vertex
cover of size at most 𝑘 − 1. ◭

Proof. We prove the claim by showing that the existence of such an algorithm
would imply the existence of a polynomial time algorithm for computing a vertex
cover of 𝐺 of size at most 𝑘 − 1, assuming it exists. Therefore, by reiterating
the algorithm at most 𝑘 times, we might be able to compute a minimum vertex
cover of 𝐺 in polynomial time, thus proving that P=NP. Let 𝐶 be a vertex cover
of 𝐺 of size 𝑘 .

The algorithm works as follows. First of all, we query the algorithm to under-
stand whether 𝐺 admits a vertex cover of size strictly better than 𝑘 . In case of a
“no” answer, we know that 𝐶 is an optimal vertex cover and therefore 𝐺 does
not admit a vertex cover of size 𝑘 − 1. So, we assume that the algorithm answers
“yes”. This implies that there is a vertex cover of size 𝑘 − 1. In the following we
show how to compute a vertex cover of size (at most) 𝑘 − 1 in polynomial time.
Let 𝐺 − 𝑣 be the network obtained from 𝐺 without the vertex 𝑣 (and all the

edges incident to 𝑣). For every vertex 𝑣 of 𝐶 , we query the algorithm using the
network 𝐺 − 𝑣 and the cover 𝐶 − 𝑣 (so we want to know whether 𝐺 − 𝑣 has a
vertex cover of size 𝑘 − 2). If all the 𝑘 answers returned by the algorithm are
“no”, then 𝑉 (𝐺) \𝐶 is a vertex cover of size strictly smaller than 𝑘 . Indeed, the
answer “no” for 𝑣 means that there is no vertex cover of size 𝑘 − 1 that contains
𝑣. However, since a vertex cover of size 𝑘 − 1 exists, such a vertex cover has to
contain the entire neighborhood of 𝑣 (otherwise some edges incident in 𝑣 would
remain uncovered).
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First of all, we observe that the eccentricity of each node, i.e., the maximum
distance between a node to all other nodes, is at most 3. Therefore, every agent
other than 𝑢 is actually playing a best response. We claim that for any improving
move of 𝑢, there exists another improving move in which agent 𝑢 buys only
the edges towards the vertex nodes that correspond to a vertex cover of size at
most 𝑘 − 1 w.r.t. the Vertex Cover instance. The claim then would follow from
Lemma 4.9.

Consider any improving move 𝑆𝑢 for 𝑢. We prove the claim by first showing
the existence of an alternative improving move consisting only of edges towards
vertex nodes. Indeed, if 𝑢 bought an edge towards an edge node in 𝑆𝑢 , w.l.o.g.
say 𝑝 𝑗 , then 𝑢 would not buy the edge towards any vertex node 𝑎𝑖 such that 𝑣𝑖 is
an endpoint of 𝑒 𝑗 in the Vertex Cover instance. This is simply because the edge
𝑢𝑎𝑖 would improve distances to more nodes than the edge 𝑢𝑝 𝑗 . Moreover, either
𝑝 ′𝑗 would be at distance 4 from 𝑢 or 𝑢 would have also bought the edge towards
𝑝 ′𝑗 . In either case, 𝑢 would want to delete the edge towards 𝑝 𝑗 – as well as the
edge towards 𝑝 ′𝑗 , if she has bought it – and in buying the edge towards a vertex
node 𝑎𝑖 , with 𝑣𝑖 being an endpoint of 𝑒 𝑗 , thus, decreasing her overall cost by at
least 1.

Now we show that for any improving move 𝑆𝑢 in which 𝑢 buys only edges
towards vertex nodes, there is another improving move in which 𝑢 buys only
edges towards vertex nodes that correspond to a vertex cover of the Vertex Cover
instance. Indeed, if this is not the case, then there exist two nodes, say 𝑝 𝑗 and
𝑝 ′𝑗 , which are at distance 4 from 𝑢. Let 𝑎𝑖 be a vertex node such that 𝑣𝑖 is an
endpoint of 𝑒 𝑗 . Clearly, the distance from 𝑢 to 𝑎𝑖 is 3. Therefore, by buying the
edge towards 𝑎𝑖 the cost of 𝑢 would decrease by at least 1.

As a consequence, we can restrict the strategy space for agent 𝑢 only to
improving moves that correspond to vertex covers of the Vertex Cover instance.
Let 𝑘 ′ be the number of edges bought by 𝑢 in any strategy of the restricted
strategy space for 𝑢, and let 𝑁 and𝑚 be the number of nodes and edges of the
Vertex Cover instance, respectively, The cost of 𝑢 is equal to 2𝑘 ′ + 2𝑘 ′ + 3(𝑁 −
𝑘 ′) + 6𝑚 = 3𝑁 + 6𝑚 + 𝑘 ′. Since 𝑁 and𝑚 are fixed, we observe that the cost of 𝑢
is minimized when 𝑘 ′ is minimized. Hence, any improving move for 𝑢 would
define a vertex cover of size of at most 𝑘 − 1. �
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1-2-networks for 𝜶 ≤ 1

Here we study the 1-2–GNCG with 𝛼 ≤ 1. We prove that in this case a NE
network always exists. In contrast to the corresponding result for the original
NCG [Fab+03] we do not prove this via a generic construction. Moreover,
we provide a simple algorithm which computes a social optimum network in
polynomial time and we provide tight bounds on the PoA.

Existence of Nash Equilibria

In the following we prove an interesting connection between existence of a NE
for the 1-2–GNCG with 𝛼 ≤ 1 and 𝑘-spanners. The weight of a 𝑘-spanner is the
total sum of its edge weights. The following results are inspired by Lemma 4.3.

◮ Lemma 4.11. Let 1
2
≤ 𝛼 ≤ 1, and let 𝐺 be a 3

2
-spanner of minimum weight.

Then 𝐺 contains all the edges of the host network 𝐻 of weight 1 and has a
diameter of at most 3. ◭

Proof. Let 𝑢𝑣 be any edge of 𝐻 . Since 𝑑𝐺 (𝑢, 𝑣) ≤ 3/2 · 𝑑𝐻 (𝑢, 𝑣) ≤ 3/2 · 𝑤 (𝑢, 𝑣)
and all edge weights are in the set {1, 2}, we have that 𝑑𝐺 (𝑢, 𝑣) ≤ 3; furthermore,
if 𝑤 (𝑢, 𝑣) = 1, then 𝑑𝐺 (𝑢, 𝑣) = 1, i.e., 𝑢𝑣 is contained in 𝐺 . Therefore,𝐺 contains
all the edges of 𝐻 of weight 1 and has a diameter of at most 3. �

◮ Theorem 4.12. Let 1
2
≤ 𝛼 ≤ 1 and let 𝐺 be a 3

2
-spanner of minimal weight.

There is an edge ownership assignment in 𝐺 such that 𝐺 is in NE. ◭

Proof. The claim is proved by contradiction. Consider any edge ownership
assignment in 𝐺 which induces strategy profile s and assume there is an agent
𝑢 ∈ 𝑉 who can improve on her strategy 𝑆𝑢 in s. We will show that if there
is a better strategy 𝑆 ′𝑢 for agent 𝑢, then |𝑆 ′𝑢 | ≤ |𝑆𝑢 | − 1 and that 𝑆 ′𝑢 contains
strictly less 2-edges than 𝑆𝑢 . Then we prove that for any edge 𝑢𝑣, which would
be removed by agent 𝑢 in the strategy change from 𝑆𝑢 to 𝑆 ′𝑢 , we can exchange
the ownership of its endpoint such that the new owner 𝑣 cannot improve on
her strategy, or we can apply a combination of the two strategies 𝑆 ′𝑢 and 𝑆 ′𝑣 to
𝐺 which yields a new network which is a 3/2-spanner with less total weight,
which contradicts that 𝐺 is a 3/2-spanner of minimum weight. Therefore, the
edge ownership can be chosen such that network 𝐺 is in NE.
First, we prove that |𝑆 ′𝑢 | ≤ |𝑆𝑢 | − 1 and that 𝑆 ′𝑢 contains less 2-edges than

𝑆𝑢 . Towards this we claim that the change from 𝑆𝑢 to 𝑆 ′𝑢 can only consist of a
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change of the 2-edges which are bought by 𝑢 and, if 𝛼 = 1, possibly the removal
of some 1-edges. This is true since by Lemma 4.11 we have that all 1-edges are
contained in𝐺 and removing any 1-edge is not an improving move. In particular,
removing a 1-edge is a cost neutral move if 𝛼 = 1. Using the latter, we can
define a new strategy 𝑆 ′′𝑢 which is identical to 𝑆 ′𝑢 but still has all the 1-edges
which are contained in 𝑆𝑢 . Thus, 𝑆 ′′𝑢 \ 𝑆 ′𝑢 only consists of 1-edges which are cost
neutral for agent 𝑢 under strategy 𝑆 ′𝑢 . Hence, 𝑐𝑜𝑠𝑡 (𝑢, 𝑆 ′′𝑢 ) = 𝑐𝑜𝑠𝑡 (𝑢, 𝑆 ′𝑢) and we
have |𝑆 ′′𝑢 | ≥ |𝑆 ′𝑢 |. Let 𝑆𝑢+ = {𝑣 ∈ 𝑉 : 𝑣 ∈ 𝑆 ′′𝑢 \ 𝑆𝑢} be the set of nodes to which
new edges have been added, 𝑆𝑢− = {𝑣 ∈ 𝑉 : 𝑣 ∈ 𝑆𝑢 \ 𝑆 ′′𝑢 } be the set of nodes to
which the edges have been deleted and let 𝐺 ′′ be the network obtained from 𝐺

by exchanging agent 𝑢’s strategy 𝑆𝑢 with 𝑆 ′′𝑢 . Since the diameter of 𝐺 is 3, then,
after changing the strategy from 𝑆𝑢 to 𝑆 ′′𝑢 , only distances between 𝑢 and nodes at
hop-distance 2 from 𝑢 might increase. Indeed, if there is a node at hop-distance
3, then a shortest path to this node contains only 1-edges. Since only 2-edges
will be deleted after the strategy change, the path of 1-edges does not change.
Thus, if there is a node 𝑣 ∈ 𝑆𝑢 \ 𝑆 ′′𝑢 such that 𝑑𝐺′′ (𝑢, 𝑣) ≥ 4 or 𝑑𝐺′′ (𝑢, 𝑥) ≥ 4,
where 𝑥 is at distance 1 from 𝑣, then the deletion of 𝑣 from strategy 𝑆𝑢 is not an
improvement for 𝑢. This means that for any node 𝑣 ∈ 𝑉 we have 𝑑𝐺′′ (𝑢, 𝑣) ≤ 3.
Therefore, the new strategy 𝑆 ′′𝑢 decreases agent 𝑢’s edge cost by 2𝛼 · ( |𝑆𝑢 | − |𝑆 ′′𝑢 |),
increases her distance to all nodes in 𝑆𝑢− by 1 and decreases her distance by 1
for |𝑆𝑢+ | many nodes. Since we assume that 𝑐𝑜𝑠𝑡 (𝑢, 𝑆𝑢) > 𝑐𝑜𝑠𝑡 (𝑢, 𝑆 ′′𝑢 ), then

0 > −2𝛼 · ( |𝑆𝑢 | − |𝑆 ′′𝑢 |) + |𝑆𝑢+ | − |𝑆𝑢− | = (2𝛼 + 1) ( |𝑆𝑢+ | − |𝑆𝑢− |),

thus, |𝑆𝑢+ | ≤ |𝑆𝑢− | − 1. Hence, |𝑆 ′′𝑢 | ≤ |𝑆𝑢 | − 1, i.e., 𝑆 ′′𝑢 contains strictly less
2-edges than 𝑆𝑢 . Since |𝑆 ′′𝑢 | ≥ |𝑆 ′𝑢 |, we have |𝑆 ′𝑢 | ≤ |𝑆𝑢 | − 1.

Let𝐺 ′ be the network obtained from𝐺 by exchanging agent 𝑢’s strategy 𝑆𝑢
with strategy 𝑆 ′𝑢 . Since the number of edges in𝐺 ′ is strictly less than the number
of edges in 𝐺 and since 𝐺 ′ has strictly less 2-edges than𝐺 , it follows that if the
diameter of 𝐺 ′ is 3, then 𝐺 ′ is a 3/2-spanner of total weight less than the total
weight of𝐺 and we get a contradiction. But it might happen that there are at least
two nodes 𝑥,𝑦 ∈ 𝑉 at distance 4 in𝐺 ′. Note that if the distance between 𝑥 and 𝑦
increased because of removing the edge𝑢𝑣 ,i.e., 𝑑 (𝑥,𝑦) = 𝑑 (𝑥,𝑢)+𝑤 (𝑢, 𝑣)+𝑑 (𝑣,𝑦),
then𝑤 (𝑢, 𝑣) = 2. Indeed, if𝑢𝑣 was a 1-edge, then the distance between 𝑢 and 𝑦 as
well as the distance between 𝑢 and 𝑣 would increase by 1. Therefore, the 1-edge
𝑢𝑣 would not be a neutral edge and its removing is not an improving move, i.e.,
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𝑣 ∈ 𝑆 ′𝑢 . Hence, any edge whose deletion influences the distance between not
only its endpoints must be a 2-edge.

Note that for any 𝑣 ∈ 𝑉 we have 𝑑𝐺′′ (𝑢, 𝑣) ≤ 3. Also note that𝐺 ′′ and𝐺 ′ only
differ in 1-edges bought by agent 𝑢, and the removal of any such 1-edge by 𝑢
increases the distance only to the edge’s endpoint. Hence, for any 𝑣 ∈ 𝑉 we
have 𝑑𝐺′ (𝑢, 𝑣) ≤ 3. Since the diameter of 𝐺 is 3 and since for any 𝑣 ∈ 𝑉 we have
𝑑𝐺′ (𝑢, 𝑣) ≤ 3, then 𝑥 must be a neighbor of 𝑢 which is connected by a 1-edge
and 𝑦 ∈ 𝑆𝑢 \ 𝑆 ′𝑢 . For each such edge 𝑢𝑦 we can invert the ownership.
Now we prove that after the inversion of the edge ownership for each edge

𝑢𝑦, for all 𝑦 ∈ 𝑆𝑢 \ 𝑆 ′𝑢 , any improving strategy for 𝑦 contains 𝑢. Assume towards
a contradiction that𝑈 is the non-empty set of nodes 𝑦, which have an improving
strategy 𝑆 ′𝑦 which does not contain 𝑢. We apply all improving strategies 𝑆 ′𝑦 , for
all 𝑦 ∈ 𝑈 , and 𝑆 ′𝑢 to 𝐺 and obtain a new network 𝐺∗. Note that if there are two
nodes 𝑥,𝑦 such that there is a 2-edge 𝑥𝑦 ∈ 𝐸 (𝐺), the edge can be removed by one
of the endpoints, say 𝑥 . This move does not influence the strategy of the agent
𝑦, since otherwise there must be a node 𝑣 ∈ 𝑉 , which is at distance 1 from 𝑥 and
𝑑𝐺 (𝑦, 𝑣) = 𝑤 (𝑦, 𝑥) +𝑤 (𝑥, 𝑣) = 2 + 1, and then we could assign the ownership of
𝑥𝑦 to agent 𝑦 and then the edge 𝑥𝑦 would not be removed from 𝐺 . Therefore,
all the strategies can intersect only in pairs of nodes that want to add the same
edge.

Note that for any 𝑦 ∈ 𝑈 we have 𝑆𝑦+ ∩ 𝑆𝑢+ = ∅ and 𝑆𝑦− ∩ 𝑆𝑢− = {𝑢𝑦}, and for
all 𝑣 ∈ 𝑉 , we have 𝑑𝐺∗ (𝑢, 𝑣) ≤ 3 and 𝑑𝐺∗ (𝑦, 𝑣) ≤ 3. The number of edges in 𝐺 is

|𝐸 (𝐺) | =
��𝐸 ∪

⋃
𝑦∈𝑈

𝑆𝑦− ∪ 𝑆𝑢−
�� = |𝐸 | +

∑︁
𝑦∈𝑈

|𝑆𝑦− | + |𝑆𝑢− | − |𝑈 |,

where 𝐸 ⊂ 𝐸 (𝐺) is a set of edges which are both in 𝐺 and in 𝐺∗. On the other
hand,

|𝐸 (𝐺∗) | =
��𝐸 ∪

⋃
𝑦∈𝑈

𝑆𝑦+ ∪ 𝑆𝑢+
��

≤ |𝐸 | +
∑︁
𝑦∈𝑈

|𝑆𝑦+ | + |𝑆𝑢+ | ≤ |𝐸 | +
∑︁
𝑦∈𝑈

(
|𝑆𝑦− | − 1

)
+ |𝑆𝑢+ | − 1

= |𝐸 | +
∑︁
𝑦∈𝑈

|𝑆𝑦− | + |𝑆𝑢+ | − |𝑈 | − 1 < |𝐸 (𝐺) |.

Hence, since only 2-edges were modified, the new network 𝐺∗ is a 3/2-spanner
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with less weight than the weight of the spanner 𝐺 , which contradicts that𝐺 is
a 3/2-spanner with minimum weight. Therefore, the edge ownership can be
chosen such that the network 𝐺 is in NE. �

Optimal networks

Now we consider how to compute a social optimum network.

Algorithm 1: social optimum for the 1-2–GNCG

1 input A complete network 𝐺 = K𝑛 ;
2 while there is 1-1-2 triangle in 𝐺 do

3 Remove the edge of weight 2 from the triangle;

◮ Theorem 4.13. For any 𝛼 ≤ 1, Algorithm 1 produces an optimal network in
polynomial time. ◭

Proof. Let 𝐺∗ be an optimal network. We first prove that there is an optimal
network of diameter 2. We assume that 𝐺∗ has diameter strictly greater than 2.
Let 𝑢 and 𝑣 be the nodes at distance greater than or equal to 3 in 𝐺∗. We show
that𝐺∗ + (𝑢, 𝑣) is also an optimal network. Indeed, the cost of adding the edge to
the network is at most 2𝛼 ≤ 2, while the sum of the all-to-all distances decreases
by at least 2 as the distance between 𝑢 and 𝑣 decreases by at least 1.
Next, we show that the social optimum contains all 1-edges. Indeed, if one

1-edge, say 𝑢𝑣, were missing in𝐺∗, then𝐺∗ + (𝑢, 𝑣) would be a network which is
cheaper than 𝐺 , because its edge cost is at most 1 plus the edge cost of 𝐺 , while
its distance cost is at most the distance cost of 𝐺 minus 2.

Now, observe that the network𝐺 produced by Algorithm 1 has diameter equal
to 2 and contains all 1-edges. The claim follows by observing that every network
of diameter 2 that contains all the 1-edges has to contain all the edges of 𝐺 .
Finally, it is easy to see that the algorithm runs in polynomial time. Indeed,

a network contains O(𝑛3) triangles, and the algorithm checks each triangle at
most once. �

Price of Anarchy

We start with the following technical lemma observing a relation between stable
networks and the corresponding optimum.
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◮ Lemma 4.14. Consider 0 < 𝛼 ≤ 1. Let 𝐺∗ be the social optimum obtained
by Algorithm 1 and let 𝐺 be a stable network. Then 𝐸 (𝐺) ⊆ 𝐸 (𝐺∗). Moreover,
𝑑𝐺 (𝑢, 𝑣) = 2 for every 1-edge 𝑢𝑣 ∉ 𝐸 (𝐺) and 𝑑𝐺 (𝑢, 𝑣) ≤ 3 for every 2-edge
𝑢𝑣 ∉ 𝐸 (𝐺∗). ◭

Proof. We observe that𝐺∗ contains all the 1-edges and has diameter 2. So, every
1-edge contained in 𝐺 is also contained in 𝐺∗. Let 𝑢𝑣 be a 1-edge that is not
contained in𝐺 . We have 𝑑𝐺 (𝑢, 𝑣) = 2, as otherwise𝑢 could buy the edge towards
𝑣 to improve her cost by at least 1.

Let 𝑢𝑣 be a 2-edge of𝐺 . We show by contradiction that 𝑢𝑣 is also contained in
𝐺∗. Assume that 𝑢𝑣 is not contained in 𝐺∗. Since 𝐺∗ has diameter 2, there exists
a node 𝑥 such that 𝑢𝑥 and 𝑣𝑥 are two 1-edges. First of all, we observe that 𝐺
cannot contain both the edges 𝑢𝑥 and 𝑣𝑥 as otherwise the agent that is buying
the 2-edge 𝑢𝑣 would remove such an edge without increasing any point-to-point
distance in the network and thus saving 2𝛼 of her edge cost. We split the proof
into two cases, according to whether exactly one of the two edges between 𝑢𝑥
and 𝑣𝑥 is contained in 𝐺 , or not, and we show how to obtain a contradiction in
either case.
We consider the case in which either 𝑢𝑥 or 𝑣𝑥 is an edge of 𝐺 . W.l.o.g., we

assume that 𝑢𝑥 is an edge of 𝐺 . Since 𝑑𝐺 (𝑣, 𝑥) = 2, there is a node, say 𝑦, such
that 𝑥𝑦 and 𝑦𝑣 are two 1-edges of 𝐺 . If the edge 𝑢𝑣 is bought by 𝑣, then 𝑣 can
improve her cost by swapping the edge𝑢𝑣 with the edge 𝑥𝑣. By this the edge cost
decreases by 𝛼 and no distances from 𝑣 towards all the other nodes increases.
Therefore, the edge 𝑢𝑣 is bought by agent 𝑢. Because 𝐺 is stable, there is a node
𝑧 such that the unique shortest path from 𝑢 to 𝑧 passes through 𝑣, as otherwise
𝑢 would never have bought the edge towards 𝑣. Therefore, we have

1 + 𝑑𝐺 (𝑥, 𝑧) = 𝑑𝐺 (𝑢, 𝑧) + 𝑑𝐺 (𝑥, 𝑧) ≥ 𝑑𝐺 (𝑢, 𝑣) + 𝑑𝐺 (𝑣, 𝑧) + 1 = 𝑑𝐺 (𝑣, 𝑧) + 3

which implies that 𝑑𝐺 (𝑥, 𝑧) ≥ 𝑑𝐺 (𝑣, 𝑧) + 2. But in this case, 𝑥 can improve on
her cost by buying the 1-edge towards 𝑣. By this, her edge cost increases by at
most 1 while both the distances towards 𝑣 and 𝑧 decrease by at least 1. Hence,𝐺
could not be stable.
We consider the case in which neither 𝑢𝑥 nor 𝑣𝑥 is an edge of 𝐺 . Since

𝑑𝐺 (𝑢, 𝑥) = 𝑑𝐺 (𝑣, 𝑥) = 2, there are two nodes, say 𝑦 and 𝑧, such that 𝑢𝑦,𝑦𝑥 , 𝑥𝑧,
and 𝑧𝑣 are four 1-edges in 𝐺 . We claim that 𝑑𝐺 (𝑢, 𝑧) = 𝑑𝐺 (𝑣,𝑦) = 2. We prove
the claim for 𝑑𝐺 (𝑢, 𝑧) as the proof for 𝑑𝐺 (𝑣,𝑦) uses similar arguments. The claim
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is proved by contradiction. If 𝑑𝐺 (𝑢, 𝑧) = 1, then the agent buying the edge 𝑢𝑣
may remove such an edge, without increasing any point-to-point distance, and
thus saving a cost of 2𝛼 . If 𝑑𝐺 (𝑢, 𝑧) ≥ 3, then 𝑢 can improve on her cost by
buying the 1-edge towards 𝑥 . By this, the edge cost increases by at most 1 while
both the distances towards 𝑥 and 𝑧 decrease by 1. As a consequence, there is a
vertex 𝑤 such that the unique shortest path from 𝑢 to 𝑤 in 𝐺 passes through 𝑣,
as otherwise 𝑢 would never bought the edge towards 𝑣. Therefore, we have

2 + 𝑑𝐺 (𝑥,𝑤) = 𝑑𝐺 (𝑢, 𝑥) + 𝑑𝐺 (𝑥,𝑤) ≥ 𝑑𝐺 (𝑢, 𝑣) + 𝑑𝐺 (𝑣,𝑤) + 1 = 𝑑𝐺 (𝑣, 𝑧) + 3

which implies that 𝑑𝐺 (𝑥,𝑤) ≥ 𝑑𝐺 (𝑣, 𝑧) + 1. But in this case 𝑥 can improve on her
cost by buying the 1-edge towards 𝑣. Indeed, by this the edge cost increases by
at most 1 while both the distances towards 𝑣 and 𝑤 decrease by at least 1. Hence,
𝐺 could not be stable.

To complete the proof, it remains to show that 𝑑𝐺 (𝑢, 𝑣) ≤ 3 for every 2-edge
𝑢𝑣 that is not in 𝐺∗. Let 𝑢𝑣 be a 2-edge that is not in 𝐺∗. Since 𝐸 (𝐺) ⊆ 𝐸 (𝐺∗),
𝑢𝑣 is not contained in 𝐺 . We prove by contradiction that 𝑑𝐺 (𝑢, 𝑣) ≤ 3. For the
sake of contradiction, assume that 𝑑𝐺 (𝑢, 𝑣) ≥ 4. Since 𝐺∗ has diameter 2, there
is a vertex 𝑥 such that 𝑢𝑥 and 𝑣𝑥 are two 1-edges. Since 𝑑𝐺 (𝑢, 𝑥), 𝑑𝐺 (𝑣, 𝑥) ≤ 2,
both edges 𝑢𝑥 and 𝑥𝑣 are missing from 𝐺 . Furthermore, there are two nodes,
say 𝑦 and 𝑧, such that 𝑢𝑦,𝑦𝑥, 𝑥𝑧, and 𝑧𝑣 are 1-edges in 𝐺 . Because 𝑑𝐺 (𝑢, 𝑣) ≥ 4,
we have that 𝑑𝐺 (𝑢, 𝑧) ≥ 3. In this case, 𝑢 can improve her cost by buying the
edge towards 𝑥 . By this, the edge cost increases by 𝛼 ≤ 1 while all the distances
towards 𝑥 , 𝑧, and 𝑣 decrease by 1. �

◮ Theorem 4.15. For 1/2 ≤ 𝛼 < 1, the PoA is at most 3/(𝛼 + 2). ◭

Proof. First of all, we observe that both the social optimum and any NE contain
all the 1-edges.

Let 𝐺 be a NE and let 𝑢 and 𝑣 be two distinct nodes. Let 𝑥 and 𝑥∗ be two
Boolean variables such that 𝑥 = 1 iff 𝑢𝑣 is an edge of 𝐺 , and 𝑥∗ = 1 iff 𝑢𝑣 is an
edge of the social optimum OPTn. We prove the claim by showing that

𝜎 :=
𝛼 ·𝑤 (𝑢, 𝑣)𝑥 + 2𝑑𝐺 (𝑢, 𝑣)

𝛼 ·𝑤 (𝑢, 𝑣)𝑥∗ + 2𝑑OPTn (𝑢, 𝑣)
≤ 3

𝛼 + 2
.

First of all, we observe that if 𝑤 (𝑢, 𝑣) = 1, then 𝑥 = 𝑥∗ = 1. Furthermore, if
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𝑥 = 𝑥∗ = 1, then 𝜎 = 1. Therefore, we only need to prove the claim for the case
in which 𝑤 (𝑢, 𝑣) = 2 and 𝑥 and 𝑥∗ that cannot be both equal to 1.

Let𝐺 ′ be the network induced by all the 1-edges. We observe that if𝑑𝐺′ (𝑢, 𝑣) =
2, then neither OPTn nor 𝐺 contains the edge 𝑢𝑣 since 𝐺 ′ is a sub-network of
both OPTn and𝐺 . Therefore, we assume that 𝑑𝐺′ (𝑢, 𝑣) ≥ 3. In this case, we have
that 𝑥∗ = 1: indeed, the addition of the edge 𝑢𝑣 to OPTn would increase the edge
cost by 2𝛼 , but would decrease the overall sum of all-to-all distances by at least 2.
Similarly, if 𝑑𝐺′ (𝑢, 𝑣) ≥ 4, then 𝑥 = 1. Since we are considering the case in which
𝑥 and 𝑥∗ cannot be both equal to 1, but 𝑥∗ = 1, it follows that 𝑥 = 0. Therefore,
𝑑𝐺′ (𝑢, 𝑣) = 3 and thus, 𝑑𝐺 (𝑢, 𝑣) = 3. Hence, 𝜎 ≤ 6/(2𝛼 + 4) = 3/(𝛼 + 2). The
claim follows. �

We proceed with a lower bound on the PoA which matches the upper bounds
given in Theorem 4.4 and Theorem 4.15.

◮ Theorem 4.16. For every constant 𝜖 > 0,

𝑃𝑜𝐴 ≥
{
3/2 − 𝜀 if 𝛼 = 1;

3/(𝛼 + 2) − 𝜀 if 1/2 ≤ 𝛼 < 1.

◭

Proof. We prove the lower bound for 𝛼 = 1 first. Consider the host network
𝐻 contains a clique 𝐾 of 𝑁 nodes formed by 1-edges only. Each node 𝑣 of the
clique is the center of star 𝑋𝑣 made of 1-edges only and whose leaves are 𝑁 new
nodes. Finally, there is a new node, that we call 𝑢, that is connected to every
other node by a 1-edge. Thus, the overall number of nodes of the host network
is 𝑛 = 𝑁 2 + 𝑁 + 1. All other edges are 2-edges.
We observe that the social optimum corresponds to exactly the subnetwork

induced by the 1-edges. Therefore, the edge cost of the social optimum is𝑂 (𝑁 2),
while the distance cost is at most 2𝑁 4 + 2𝑁 2. Therefore, the social cost of the
social optimum is at most 2𝑁 4 +𝑂 (𝑁 2).
We claim that the sub-network induced by all the 1-edges, except for those

among 𝑢 and the leaves of each of the 𝑋𝑣, is a NE. Indeed, since the resulting
network has diameter 3, no agent has an incentive to buy a 2-edge. Furthermore,
no agent has an incentive in removing a 1-edge. Finally, neither 𝑢 nor any leaf
of any star 𝑋𝑣 has an incentive in buying the leftover 1-edge connecting them.
The edge cost of the stable network is 𝑂 (𝑁 2), while the distance cost is at least
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there is a 2-edge 𝑢𝑣, which is not in𝐺 and does not form a 1-1-2 triage in𝐺 +𝑢𝑣,
then the addition of𝑢𝑣 improves the distance cost by𝑑𝐺 (𝑢, 𝑣)−𝑤 (𝑢, 𝑣) ≥ 3−2 = 1

and increases the edge cost by 2𝛼 < 1, i.e., it implies an improvement for an
owner of the edge. Finally, it is clear that 𝐺 does not contain 1-1-2 triangles
because removing a 2-edge from such triangle does not change the distance cost.
Therefore, 𝐺 is equal to the social optimum obtained by Algorithm 1. �

1-2-networks for 𝜶 > 1

In this section we show that the 1-2–GNCG for 𝛼 > 1 behaves very similar to
the original NCG.

◮ Theorem 4.18. For 𝛼 ≥ 3 any star network is in NE. ◭

Proof. Consider a star network 𝑆𝑛 that has 𝑛 − 1 edges. Assume that the central
node 𝑢 is an owner of all edges in the star. Then 𝑢 cannot improve her strategy.
Let 𝑣, 𝑧 be two leaf nodes. The only possible strategy improvement for a leaf
node is an edge addition. In the worst case 𝑤 (𝑣,𝑢) = 𝑤 (𝑧,𝑢) = 2 and 𝑤 (𝑧, 𝑣) = 1,
thus, adding an edge 𝑧𝑣 improves the distance only between the edge endpoints
by 3 and costs 𝛼 ≥ 3. Therefore, there is no strategy improvement for any agent.
This implies that 𝑆𝑛 is in NE. �

Price of Anarchy

We use the proof technique from [Fab+03] to show that the PoA may be bounded
by the same value as in the original proof. We start with the bounding the social
cost of the NE.

◮ Lemma 4.19. Consider anyNE network𝐺 in the 1-2–GNCG. If𝐺 has diameter
𝐷 , then its social cost is at most𝑂 (𝐷) times the social cost of the optimal network
𝑂𝑃𝑇 . ◭

Proof. First, we evaluate the social cost of the optimal network. Since the network
should be connected and each edge has length at least 1, the total cost is in
𝛺 (𝛼 · 𝑛 + 𝑛2).

Now we analyze the social cost of𝐺 = (𝑉 , 𝐸) which is in NE. The distance cost
is trivially in 𝑂 (𝐷𝑛2) since each pair of nodes is in distance 𝐷 in 𝐺 . To evaluate
the edge cost we consider cut edges, whose removal disconnects 𝐺 . There are at
most 𝑛 − 1 cut edges in the network, thus, the edge cost is at most 𝑂 (𝛼 (𝑛 − 1))
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plus the edge cost of the non-cut edges. Now consider a node 𝑣 in 𝐺 which has
at least one non-cut edge. We claim that the number of the non-cut edges of 𝑣 is
at most 𝑛(2𝐷 + 1)/𝛼 , thus, the total edge cost of all non-cut edges in𝐺 is at most
2𝑛2(2𝐷 + 1), which implies that 𝑐𝑜𝑠𝑡 (𝐺) ∈ 𝑂 (𝛼 (𝑛 − 1) + 2𝑛2(2𝐷 + 1) + 𝐷𝑛2) =
𝑂 (𝛼𝑛 +𝐷𝑛2). And therefore we conclude that the ratio between 𝑐𝑜𝑠𝑡 (𝐺) and the
cost of the optimal solution is in 𝑂 (𝐷).
Consider an edge 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐺), owned by the agent 𝑢. Let 𝑉𝑒 be the set of

nodes 𝑤, such that the edge 𝑒 is in the shortest path from 𝑢 to 𝑤. Let 𝐺 ′ be the
network 𝐺 without the edge 𝑒 . Since 𝐺 is stable, we have

0 ≤ 𝑐𝑜𝑠𝑡𝐺′ (𝑢) − 𝑐𝑜𝑠𝑡𝐺 (𝑢) ≤ −𝛼 ·𝑤 (𝑢, 𝑣) + (𝑑𝐺′ (𝑢, 𝑣) −𝑤 (𝑢, 𝑣)) · |𝑉𝑒 |.

We claim that 𝑑𝐺′ (𝑢, 𝑣) ≤ 2𝐷 . Indeed, consider a cycle which consists of the
shortest path from 𝑢 to 𝑣 in𝐺 ′ and the edge 𝑢𝑣. Let 𝑣 ′ ∈ 𝑉𝑒 be the node which is
furthest away from node 𝑣 in the cycle and let𝑢 ′𝑣 ′ be its incident edge in the cycle
such that𝑢 ′ ∉ 𝑉𝑒 . The node𝑢 ′ exists because clearly, not all nodes of the cycle are
in 𝑉𝑒 . Since 𝑢 ′ ∉ 𝑉𝑢𝑣, we have 𝑑𝐺′ (𝑢,𝑢 ′) = 𝑑𝐺 (𝑢,𝑢 ′) ≤ 𝐷 , and since 𝑣 ′ ∈ 𝑉𝑒 we
get𝑑𝐺′ (𝑣, 𝑣 ′) = 𝑑𝐺 (𝑣, 𝑣 ′) ≤ 𝐷 . Thus, 𝑑 ′𝐺 (𝑢, 𝑣) ≤ 𝑑𝐺′ (𝑢,𝑢 ′)+𝑤 (𝑢 ′, 𝑣 ′)+𝑑𝐺′ (𝑣 ′, 𝑣) ≤
2𝐷 + 2. Therefore, we get

0 ≤ −𝛼 ·𝑤 (𝑢, 𝑣) + (𝑑𝐺′ (𝑢, 𝑣) −𝑤 (𝑢, 𝑣)) · |𝑉𝑒 | ≤ −𝛼 + (2𝐷 + 2 − 1) |𝑉𝑒 |.

It follows that |𝑉𝑒 | ≥ 𝛼/(2𝐷 + 1). Thus, the total number of non-cut edges of 𝑣
in 𝐺 is at most 𝑛(2𝐷 + 1)/𝛼 . This completes the proof. �

With the above lemma we can easily get the following.

◮ Theorem 4.20. The 1-2–GNCG with 𝛼 > 1 has a 𝑃𝑜𝐴 ∈ 𝑂 (
√
𝛼) for any host

network for which a NE exists. ◭

Proof. Using Lemma 4.19, we only need to prove that the diameter of the NE is at
most

√
𝛼 . We consider a pair of nodes𝑢, 𝑣 in the network𝐺 , which is in NE and has

diameter 𝐷 . Assume that 𝑑𝐺 (𝑢, 𝑣) = 𝐷 . Since𝐺 is in NE, the addition of the edge
𝑢𝑣 does not yield an improvement for agent𝑢. Thus, 0 ≤ 𝑐𝑜𝑠𝑡𝐺+(𝑢,𝑣) (𝑢)−𝑐𝑜𝑠𝑡𝐺 (𝑢).
Let 𝑃 := 𝑣 = 𝑣1, 𝑣2, . . . , 𝑣𝑚−1, 𝑣𝑚 = 𝑢 be the shortest𝑢−𝑣 path in𝐺 and let 𝑘 = 𝐷/5.
We observe that the distances from𝑢 to 𝑣1, . . . , 𝑣𝑘 will all change after the addition
of the edge 𝑢𝑣. Thus, taking into account that each edge has length at most 2,
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we have:

0 ≤ 𝑐𝑜𝑠𝑡𝐺+𝑢𝑣 (𝑢) − 𝑐𝑜𝑠𝑡𝐺 (𝑣)

≤ 𝛼 ·𝑤 (𝑢, 𝑣) +
𝑘∑︁
𝑖=1

(
𝑤 (𝑢, 𝑣) + 𝑑𝐺+𝑢𝑣 (𝑣, 𝑣𝑖) − 𝑑𝐺 (𝑢, 𝑣𝑖)

)

≤ 2𝛼 +
𝑘∑︁
𝑖=1

(
2𝑖 − (𝐷 − 2𝑘)

)
≤ 2𝛼 +

𝑘∑︁
𝑖=1

(4𝑘 − 𝐷) ≤ 2𝛼 − 𝐷2

25

It follows that 𝐷 ∈ 𝑂 (
√
𝛼). �

We are convinced that also other proof techniques from the NCG can be carried
over to the 1-2–GNCG. Thus, the PoA should be constant for almost all 𝛼 and in
𝑜 (𝑛𝜀) for the remaining range.

4.5.3 Tree Metrics

This section is devoted to the study of tree metrics. We assume that the host
network 𝐻 = (𝑉 , 𝐸) is defined as the metric closure of an edge-weighted tree 𝑇 .
More precisely, 𝑤 (𝑢, 𝑣) = 𝑑𝑇 (𝑢, 𝑣) for every two nodes 𝑢 and 𝑣.

Existence of Nash Equilibria

The first result is about the structure of any NE. Differently for general metrics
and 1-2-networks, we prove that any NE in T–GNCG is as sparse as possible.

◮ Theorem 4.21. In the T–GNCG any NE is a tree. ◭

Proof. Consider a network𝐺 = (𝑉 , 𝐸) which is in NE. For the sake of contradic-
tion, we assume that 𝐺 contains a cycle. Clearly, this cycle has at least one edge,
say 𝑢𝑣, which is not contained in the tree 𝑇 . Without loss of generality, assume
𝑢 be the owner of the edge 𝑢𝑣. Consider a vertex 𝑥 ∈ 𝑉 such that the edge 𝑥𝑣 is
in the unique shortest 𝑢-𝑣–path in 𝑇 . Note that 𝑥𝑣 ∉ 𝐸 (𝐺), otherwise swapping
the edge 𝑢𝑣 to 𝑢𝑥 is an improving move that contradicts with 𝐺 being in NE.
Consider two possible situations: 𝑑𝐺 (𝑢, 𝑥) > 𝑤 (𝑢, 𝑥) and 𝑑𝐺 (𝑢, 𝑥) = 𝑤 (𝑢, 𝑥).
In case 𝑑𝐺 (𝑢, 𝑥) > 𝑤 (𝑢, 𝑥), consider a network 𝐺 ′

= (𝑉 , 𝐸 ′) obtained from 𝐺

by swapping the edge 𝑢𝑣 to 𝑢𝑥 by agent 𝑢. Denote by 𝑍 = {𝑧 ∈ 𝑉 : 𝑑𝐺 (𝑢, 𝑧) <
𝑑𝐺′ (𝑢, 𝑧)} the set of nodes to which the distance from 𝑢 has increased. Note that
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𝑍 is not an empty set because 𝑣 ∈ 𝑍 . Since 𝐺 is in NE, 𝛼 · 𝑤 (𝑢, 𝑥) + 𝑤 (𝑢, 𝑥) +
𝑑𝐺′ (𝑢, 𝑍 ) ≥ 𝛼 ·𝑤 (𝑢, 𝑣)+𝑑𝐺 (𝑢, 𝑥)+𝑑𝐺 (𝑢, 𝑍 ), whereas the left part of the inequality
is at most 𝛼 · 𝑤 (𝑢, 𝑥) + 𝑤 (𝑢, 𝑥) + |𝑍 | · 𝑤 (𝑢, 𝑥) + 𝑑𝐺 (𝑥, 𝑍 ), and the right part is
equal to 𝛼 ·𝑤 (𝑢, 𝑣) + 𝑑𝐺 (𝑢, 𝑥) + |𝑍 | ·𝑤 (𝑢, 𝑣) + 𝑑𝐺 (𝑣, 𝑍 ). Since 𝑑𝐺 (𝑢, 𝑥) > 𝑤 (𝑢, 𝑥),
we get

𝛼 ·𝑤 (𝑢, 𝑥) + |𝑍 | ·𝑤 (𝑢, 𝑥) + 𝑑𝐺 (𝑥, 𝑍 ) > 𝛼 ·𝑤 (𝑢, 𝑣) + |𝑍 | ·𝑤 (𝑢, 𝑣) + 𝑑𝐺 (𝑣, 𝑍 ).

In case 𝑑𝐺 (𝑢, 𝑥) = 𝑤 (𝑢, 𝑥), consider deletion of the edge 𝑢𝑣. Since 𝑢𝑣 is in the
cycle, the deletion does not increase any distance in 𝐺 ′ to infinity. We use the
same notation: 𝐺 ′

= (𝑉 , 𝐸 ′) is a network after modification, 𝑍 is a set of nodes
to which the distance from 𝑢 has increased. As before, 𝑍 ≠ ∅ because otherwise
deletion of the edge 𝑢𝑣 is an improving move for agent 𝑢. Since 𝐺 is stable,

|𝑍 | ·𝑤 (𝑢, 𝑥) + 𝑑𝐺 (𝑥, 𝑍 ) ≥ 𝑑𝐺′ (𝑢, 𝑍 ) ≥ 𝛼 ·𝑤 (𝑢, 𝑣) + 𝑑𝐺 (𝑢, 𝑍 )
= 𝛼 ·𝑤 (𝑢, 𝑣) + |𝑍 | ·𝑤 (𝑢, 𝑣) + 𝑑𝐺 (𝑣, 𝑍 ) .

Adding positive term 𝛼 ·𝑤 (𝑢, 𝑥) to the left part of the inequality, we get the same
inequality as in the previous case:

𝛼 ·𝑤 (𝑢, 𝑥) + |𝑍 | ·𝑤 (𝑢, 𝑥) + 𝑑𝐺 (𝑥, 𝑍 ) > 𝛼 ·𝑤 (𝑢, 𝑣) + |𝑍 | ·𝑤 (𝑢, 𝑣) + 𝑑𝐺 (𝑣, 𝑍 ).

Note that the agent 𝑥 does not buy the edge 𝑥𝑣. Therefore, for the new
network𝐺 ′′

= (𝑉 , 𝐸 ′′) obtained after the modification, 𝛼 ·𝑤 (𝑥, 𝑣) + |𝑍 | ·𝑤 (𝑥, 𝑣) +
𝑑𝐺 (𝑣, 𝑍 ) ≥ 𝑐𝑜𝑠𝑡 (𝑥,𝐺 ′′) ≥ 𝑐𝑜𝑠𝑡 (𝑥,𝐺) ≥ 𝑑𝐺 (𝑥, 𝑍 ). We sum up this inequality with
the inequality we obtained by analyzing swapping and deletion, and we get

𝛼 (𝑤 (𝑥, 𝑣) +𝑤 (𝑢, 𝑥)) + |𝑍 | (𝑤 (𝑥, 𝑣) +𝑤 (𝑢, 𝑥)) + 𝑑𝐺 (𝑥, 𝑍 ) + 𝑑𝐺 (𝑣, 𝑍 )
> 𝛼 ·𝑤 (𝑢, 𝑣) + |𝑍 | ·𝑤 (𝑢, 𝑣) + 𝑑𝐺 (𝑣, 𝑍 ) + 𝑑𝐺 (𝑥, 𝑍 ) .

Simplifying and taking into account that 𝑤 (𝑢, 𝑥) +𝑤 (𝑥, 𝑣) = 𝑤 (𝑢, 𝑣), we get that
(𝛼 + |𝑍 |) ·𝑤 (𝑢, 𝑣) > (𝛼 + |𝑍 |) ·𝑤 (𝑢, 𝑣), that is a contradiction. Therefore, 𝐺 has
no cycles. Obviously,𝐺 is connected since otherwise any agent can improve her
strategy by adding edges to other components. This implies that 𝐺 is a tree. �

The next result follows by observing that the tree 𝑇 that defines the metric is
the network with cheapest total edge cost that preserves all the distances of the
host network at the same time.
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◮ Proposition 4.22. In the T–GNCG the tree 𝑇 which defines the metric is
both the social optimum and in NE. ◭

Proposition 4.22 claims that the cheapest NE is also a social optimum. This is
equivalent to say that the Price of Stability – the ratio between the cost of the
cheapest NE and the cost of a social optimum – is 1.

Hardness

We prove that the problem of computing the best response of an agent is NP-hard
for the (T–GNCG).

◮ Theorem 4.23. It is NP-hard to compute a best response of an agent in the
T–GNCG. ◭

Proof. We perform the proof by a reduction from the Minimum Set Cover prob-
lem, which is well-known to be NP-hard. The problem is defined as follows:
for a given universe 𝑈 = {1, 2, . . . , 𝑘} and a collection of non-empty subsets

X = {𝑋1, . . . , 𝑋𝑚} such that for any 1 ≤ 𝑖 ≤ 𝑚 we have 𝑋𝑖 ⊆ 𝑈 and
𝑚⋃
𝑖=1
𝑋𝑖 = 𝑈 .

It is required to find minimum number of subsets covering𝑈 .
We define the corresponding instance of the best response problem in the

T–GNCG with 𝛼 = 1 as follows: Consider a tree 𝑇 = (𝑉 , 𝐸𝑇 ) which defines
metric such that

𝑉 = {𝑢, 𝑐} ∪ {𝑎1, . . . , 𝑎𝑚} ∪ {𝑏1, . . . , 𝑏𝑚} ∪ {𝑝1, . . . , 𝑝𝑘 }

and

𝐸 = {𝑐𝑢} ∪
𝑚⋃
𝑖=1

(
{𝑏𝑖𝑢, 𝑐𝑎𝑖} ∪ {𝑎𝑖𝑝 𝑗 | 𝑝 𝑗 ∈ 𝑋𝑖}

)
,

where each 𝑝 𝑗 represents one element of the universe𝑈 and each 𝑎𝑖 corresponds
to one subset 𝑋𝑖 . All nodes 𝑐, 𝑏1, . . . , 𝑏𝑚 are connected with 𝑢 and each edge 𝑢𝑏𝑖
has length 1

2
(𝐿 − 𝛽), whereas the edge 𝑢𝑐 is of length 𝐿 − 𝜀. Each of set nodes

𝑎1, . . . , 𝑎𝑚 is connected with 𝑐 by an edge of length 𝜀. Furthermore, all edges
between the element nodes 𝑝1, . . . , 𝑝𝑚 and the set nodes are of length 𝐿 and each
set element node is connected with only one set node. We assume throughout
the proof that 𝐿 >> 𝜀 holds. Moreover, we assume that each edge 𝑏𝑖𝑢 is owned
by the respective node 𝑏𝑖 . Finally, note that agent 𝑢 does not own any edges in
𝐺 . See the right side Figure 4.4 for the illustration of the constructed network.
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Finally, we show that 𝑆∗𝑢 corresponds to a minimum set cover. Consider two
strategies 𝑆1𝑢, 𝑆

2
𝑢 corresponding to two different set covers of all elements. Assume

𝛥 := |𝑆2𝑢 | − |𝑆1𝑢 | > 0. Thus, the difference in the agent’s 𝑢 cost with strategy 𝑆1𝑢
compared with the strategy 𝑆2𝑢 is

−𝛥 · 𝐿 + (𝐿 − 𝛽)𝛥 + 2𝑘𝜀 = −𝛥𝛽 + 2𝑘𝜀 < 0. �

Dynamic Properties

The following theorem shows that the network dynamics consisting of best
responses only may never converge to a NE for the T–GNCG and thus also for
the M–GNCG.

◮ Theorem 4.24. The T–GNCG is not a potential game. ◭

Proof. Consider the weighted tree depicted in Figure 4.5 (left). With this tree
defining the metric distances, we can construct an improving response cycle3 of
length 4 for 𝛼 = 1. See Figure 4.5 (right)).

In the first step (𝐺1 → 𝐺2), the agent 𝑎0 swaps the edge 𝑎0𝑎3 to 𝑎0𝑎4. It is an
improving move because the edge 𝑎0𝑎3 saves the distance from 𝑎0 to only two
nodes, 𝑎3 and 𝑎4. Then this move changes the cost of 𝑎0 by

𝑐𝑜𝑠𝑡 (𝑎0,𝐺2) − 𝑐𝑜𝑠𝑡 (𝑎0,𝐺1) ≤ − 𝛼 ·𝑤 (𝑎0, 𝑎3) + 𝛼 ·𝑤 (𝑎0, 𝑎4) + 𝑑𝐺2
(𝑎0, 𝑎3)

− 𝑑𝐺1
(𝑎0, 𝑎3) + 𝑑𝐺2

(𝑎0, 𝑎4) − 𝑑𝐺1
(𝑎0, 𝑎4)

= − 12 + 18 + 18 − 12 + 18 − 32 < 0.

In the next step (𝐺2 → 𝐺3), the edge 𝑎2𝑎3 is deleted by 𝑎2. Since the edge 𝑎2𝑎3
contains in a shortest path from 𝑎2 to 𝑎3 only. Hence, it is an improving move
because

𝑐𝑜𝑠𝑡 (𝑎2,𝐺3) − 𝑐𝑜𝑠𝑡 (𝑎2,𝐺2) ≤ −𝑤 (𝑎2, 𝑎3) + 𝑑𝐺3
(𝑎2, 𝑎3) − 𝑑𝐺2

(𝑎2, 𝑎3)
= −2 · 10 + 18 < 0.

In the step𝐺3 → 𝐺4, the agent 𝑎0 swaps the edge 𝑎0𝑎4 back to 𝑎0𝑎3. This move

3 It is enough to show that an improving response cycle exists. However, it is possible to show
that the cycle is a best-response cycle.
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Then, for sufficiently large 𝑛, the ratio between he social costs of the NE network
𝑆𝑛 and the optimum 𝑆∗𝑛 is 𝛼+2

2
− 𝜀. �

4.5.4 Points in R
𝒅

In this section we consider the M–GNCG with the assumption that all nodes are
points in R

𝑑 and that distances are measured via the 𝑝-norm, i.e., for any two
points 𝑢 = (𝑢1, . . . , 𝑢𝑑 ), 𝑣 = (𝑣1, . . . , 𝑣𝑑 ) the weight of the corresponding edge
between them is defined as

𝑤𝑝 (𝑢, 𝑣) :=
(

𝑑∑︁
𝑖=1

|𝑢𝑖 − 𝑣𝑖 |𝑝
)1/𝑝

.

Further, we omit the subscript 𝑝 if its value does not play any role.

Hardness

We start with investigating the hardness of computing the best response of an
agent in the R𝑑–GNCG.

◮ Theorem 4.26. It is NP-hard to compute a best response of an agent in the
R
𝑑–GNCG under any 𝑝-norm. ◭

Proof. We perform the proof by a reduction from the Minimum Set Cover prob-
lem analogously to the proof of the Theorem 4.23. We define the corresponding
instance of the best response problem in the R𝑑–GNCG with 𝛼 = 1 as follows:
Consider a network 𝐺 = (𝑉 , 𝐸) such that

𝑉 = {𝑢} ∪ {𝑎1, . . . , 𝑎𝑚} ∪ {𝑏1, . . . , 𝑏𝑚} ∪ {𝑝1, . . . , 𝑝𝑘 }

and

𝐸 =

𝑚⋃
𝑖=1

{𝑏𝑖𝑢,𝑏𝑖𝑎𝑖} ∪
𝑚⋃
𝑖=1

⋃
𝑝 𝑗 ∈𝑋𝑖

{𝑎𝑖𝑝 𝑗 },

where each 𝑝 𝑗 represents one element of the universe𝑈 and each 𝑎𝑖 corresponds
to one subset 𝑋𝑖 . We locate nodes on the plane such that all points 𝑎1, . . . , 𝑎𝑚 are
at the same distance 𝐿 from 𝑢 and equally spaced on the circle segment of length
equal to some arbitrary small value 𝜀 > 0. All points 𝑝1, . . . , 𝑝𝑘 are equispaced on
the circle segment of the same length 𝜀 and are at distance 2𝐿 from 𝑢. We assume

75





Host Networks with Metric Weights Section 4.5

the edge 𝑢𝑝 𝑗 because it decreases her edge cost by at least 2𝐿 and increases her
distance cost by at most 𝜀, since only the distance to the nodes 𝑝 𝑗 can increase
by at most 𝜀, since for any 1 ≤ 𝑟 ≤ 𝑚 holds 𝑤 (𝑎𝑖 , 𝑎𝑟 ) ≤ 𝜀.

Since 𝐿 >> 𝜀, deleting 𝑢𝑝 𝑗 would be an improving move for agent 𝑢. If there
is no node 𝑎𝑖 ∈ 𝑆∗𝑢 such that 𝑎𝑖𝑝 𝑗 ∈ 𝐸 (𝐺∗), then the swap of the edge 𝑢𝑝 𝑗 to
𝑢𝑎𝑟 improves agent 𝑢’s cost by at least 2𝐿 − 𝜀 − 𝛽 since this move improves 𝑢’s
distance to at least node 𝑎𝑟 by 𝐿 − 𝛽 , increases 𝑢’s distance only to the nodes
𝑝 𝑗 by 𝜀, respectively, and improves 𝑢’s total edge cost by 𝐿. Hence, 𝑆∗𝑢 cannot
contain 𝑝 𝑗 nodes.

Next, we show that every 𝑝𝑖 node is adjacent to some node 𝑎𝑖 ∈ 𝑆∗𝑢 , i.e., that
the corresponding set of subsets {𝑋𝑖 | 𝑎𝑖 ∈ 𝑆∗𝑢} is a set cover of𝑈 . For the sake of
contradiction, assume that there is a node 𝑝 𝑗 for which there is no node 𝑎𝑖 ∈ 𝑆∗𝑢
such that 𝑎𝑖𝑝 𝑗 ∈ 𝐸 (𝐺∗). Clearly, there must be a path from 𝑢 to 𝑝 𝑗 in 𝐺∗ since
otherwise agent 𝑢 would have infinite cost. Let 𝑎𝑟 ∉ 𝑆∗𝑢 be any set node, for
which 𝑎𝑟𝑝 𝑗 ∈ 𝐸 (𝐺∗). Such a node 𝑎𝑟 must exist, since

⋃
𝑋𝑖 = 𝑈 . Thus, we have

that 𝑑𝐺∗ (𝑢, 𝑝 𝑗 ) ≥ 3𝐿 − 𝛽 , since there is a path from 𝑢 to 𝑝 𝑗 via 𝑏𝑟 and 𝑎𝑟 . We
claim that agent 𝑢 could buy the edge 𝑢𝑎𝑟 and thereby strictly decrease her cost.
The edge 𝑢𝑎𝑟 costs 𝐿 and decreases agent 𝑢’s distances to 𝑎𝑟 by 𝐿 − 𝛽 and to
each of the nodes 𝑝 𝑗 by at least 𝐿 − 𝛽 . Thus, this yields a cost decrease for agent
𝑢. Note, that this implies that agent 𝑢 can improve on any strategy 𝑆𝑢 , where
the corresponding set of subsets {𝑋𝑖 | 𝑎𝑖 ∈ 𝑆𝑢} does not cover all elements of𝑈 .
Thus, the set of subsets {𝑋𝑖 | 𝑎𝑖 ∈ 𝑆∗𝑢} must be a set cover of𝑈 .

We finish the proof by showing that the best response strategy of agent 𝑢
corresponds to a minimum set cover of the given set cover instance. For this,
consider two arbitrary strategies 𝑆1𝑢 and 𝑆2𝑢 of agent 𝑢, such that the correspond-
ing sets {𝑋𝑖 | 𝑎𝑖 ∈ 𝑆1𝑢} and {𝑋𝑖 | 𝑎𝑖 ∈ 𝑆2𝑢} both cover all elements of 𝑈 . Now
we show that if |𝑆1𝑢 | < |𝑆2𝑢 | then 𝑢’s cost with strategy 𝑆1𝑢 is strictly less than
𝑢’s cost with strategy 𝑆2𝑢 . This implies that agent 𝑢’s best response strategy 𝑆∗𝑢
corresponds to a minimum set cover.

Let 𝛥 = |𝑆2𝑢 | − |𝑆1𝑢 |. Hence, the difference between agent 𝑢’s edge cost with
strategy 𝑆1𝑢 and 𝑢’s edge cost with strategy 𝑆2𝑢 is exactly −𝛥 · 𝐿. Since both
strategies correspond to set covers and since 𝑤 (𝑎1, 𝑎𝑚) = 𝜀, the distances of 𝑢 to
any 𝑝 𝑗 node under the strategies 𝑆1𝑢 and 𝑆

2
𝑢 can differ by at most 𝜀. Moreover, with

strategy 𝑆1𝑢 agent 𝑢 has distance 𝐿 to exactly |𝑆1𝑢 | many 𝑎𝑖 nodes and distance
2𝐿 − 𝛽 to all the other 𝑎𝑖 nodes. Analogously, with strategy 𝑆2𝑢 agent 𝑢 has
distance 𝐿 to |𝑆2𝑢 | many 𝑎𝑖 nodes and distance 2𝐿 − 𝛽 to the other 𝑎𝑖 nodes. Thus,
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Consider a star network 𝑆 := 𝑆𝑛+1 on the same set of nodes with the following
edge weights

𝑤 (𝑣0, 𝑣𝑖) = 𝑑𝑃 (𝑣0, 𝑣𝑖) =
𝑖∑︁
𝑗=1

𝑤 (𝑣 𝑗−1, 𝑣 𝑗 ) = 1 + 2

𝛼
·

𝑖∑︁
𝑗=2

(
1 + 2

𝛼

) 𝑗−2

= 1 + 2

𝛼
·
((
1 + 2

𝛼

)𝑖−1
− 1

)
· 𝛼
2
=

(
1 + 2

𝛼

)𝑖−1
.

See Figure 4.9 for the construction.

First, we show that the star network 𝑆𝑛 is in NE. Since no deletions or swaps
are possible, we need to prove that no addition of any new edge is profitable for
its owner. Indeed, consider a agent 𝑣𝑖 , which can buy an edge (𝑣𝑖 , 𝑣 𝑗 ) such that
𝑗 ≤ 𝑖 − 1. This move decreases distance cost of the agent by𝑤 (𝑣𝑖 , 𝑣0) +𝑤 (𝑣0, 𝑣 𝑗 ) −
𝑤 (𝑣𝑖 , 𝑣 𝑗 ) = 2𝑤 (𝑣0, 𝑣 𝑗 ) = 2

(
1 + 2

𝛼

) 𝑗−1
. At the same time, the edge cost increases

by

𝛼 ·𝑤 (𝑣𝑖 , 𝑣 𝑗 ) = 𝛼 ·
𝑖∑︁

𝑘=𝑗+1
𝑤 (𝑣𝑘−1, 𝑣𝑘 ) = 𝛼 · 2

𝛼

(
1 + 2

𝛼

) 𝑗−1
·
((

2

𝛼
+ 1

)𝑖−𝑗
− 1

)
· 𝛼
2

= 𝛼 ·
(
1 + 2

𝛼

) 𝑗−1 ((
2

𝛼
+ 1

)𝑖−𝑗
− 1

)
≥ 𝛼 ·

(
1 + 2

𝛼

) 𝑗−1
·
(
2

𝛼
+ 1 − 1

)

≥ 𝛼 ·
(
1 + 2

𝛼

) 𝑗−1
· 2
𝛼
= 2 ·

(
1 + 2

𝛼

) 𝑗−1
.

Thus, this move is not an an improvement for the agent 𝑣𝑖 . If 𝑗 > 𝑖 , distance cost

is 2
(
1 + 2

𝛼

)𝑖−1
, whereas the edge cost is

𝛼 ·𝑤 (𝑣𝑖 , 𝑣 𝑗 ) = 𝛼 ·
𝑗∑︁

𝑘=𝑖+1
𝑤 (𝑣𝑘−1, 𝑣𝑘 ) = 𝛼 ·

(
1 + 2

𝛼

)𝑖−1 ((
2

𝛼
+ 1

) 𝑗−𝑖
− 1

)

≥ 𝛼 ·
(
1 + 2

𝛼

)𝑖−1 (
2

𝛼
+ 1 − 1

)
≥ 𝛼 ·

(
1 + 2

𝛼

)𝑖−1
· 2
𝛼

= 2 ·
(
1 + 2

𝛼

)𝑖−1
.
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Thus, the star network is in NE. The social cost of 𝑆𝑛+1 is

(2𝑛 + 𝛼) ·
∑︁

𝑢𝑣∈𝐸 (𝑆𝑛)
𝑤 (𝑢, 𝑣) = (2𝑛 + 𝛼)

𝑛∑︁
𝑖=1

(
1 + 2

𝛼

)𝑖−1

= (2𝑛 + 𝛼) · 𝛼
2

((
1 + 2

𝛼

)𝑛
− 1

)
since 𝑛 ≥ 𝛼 − 1, we have

≥ (2𝑛 + 𝛼) · 𝛼
2

(
1 + 2

𝛼
(𝛼 − 1) − 1

)

= (2𝑛 + 𝛼) · 𝛼
2

(
2 − 2

𝛼

)
≥ (3𝛼 − 2) · 𝛼, for 𝛼 ≥ 𝑛 ≥ 2.

The social optimum is a path network 𝑃𝑛+1. An edge cost is 𝛼 · 𝑤 (𝑣0, 𝑣𝑛) =
𝛼
(
1 + 2

𝛼

)𝑛−1
. To calculate the distance cost we count for each edge how many

shortest paths it participates, i.e., its betweenness centrality.

∑︁
𝑣∈𝑉

𝑑𝑃𝑛 (𝑣,𝑉 ) = 2

𝑛∑︁
𝑖=1

𝑤 (𝑣𝑖−1, 𝑣𝑖)𝑖 (𝑛 − 𝑖 + 1) = 2

⌊𝑛/2⌋∑︁
𝑘=0

(𝑛 − 2𝑘)
𝑛−𝑘∑︁
𝑖=𝑘+1

𝑤 (𝑣𝑖−1, 𝑣𝑖)

= 2𝑛

𝑛∑︁
𝑖=1

𝑤 (𝑣𝑖−1, 𝑣𝑖) + 2

⌊𝑛/2⌋∑︁
𝑘=1

(𝑛 − 2𝑘)
𝑛−𝑘∑︁
𝑖=𝑘+1

𝑤 (𝑣𝑖−1, 𝑣𝑖)

= 2𝑛 ·
(
1 + 2

𝛼

)𝑛−1
+ 4

𝛼

⌊𝑛/2⌋∑︁
𝑘=1

(𝑛 − 2𝑘)
𝑛−𝑘∑︁
𝑖=𝑘+1

(
1 + 2

𝛼

)𝑖−2

= 2𝑛 ·
(
1 + 2

𝛼

)𝑛−1
+ 2

⌊𝑛/2⌋∑︁
𝑘=1

(𝑛 − 2𝑘)
(
1 + 2

𝛼

)𝑘−1 ((
1 + 2

𝛼

)𝑛−2𝑘
− 1

)

≤ 2𝑛 ·
(
1 + 2

𝛼

)𝑛−1
+ 2𝑛

⌊𝑛/2⌋∑︁
𝑘=1

(
1 + 2

𝛼

)𝑛−𝑘−1

= 2𝑛 ·
(
1 + 2

𝛼

)𝑛−1
+ (𝛼 + 2) · 𝑛 ·

(
1 + 2

𝛼

)𝑛−2 (
1 −

(
1 + 2

𝛼

)−⌊𝑛/2⌋)
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< 2𝑛 ·
(
1 + 2

𝛼

)𝑛−1
+ (𝛼 + 2) · 𝑛 ·

(
1 + 2

𝛼

)𝑛−2
·
(
1 −

(
1 + 2

𝛼

)−1)

≤ 2𝑛 ·
(
1 + 2

𝛼

)𝑛−1
+ 2𝑛 ·

(
1 + 2

𝛼

)𝑛−2

= 2𝑛 ·
(
1 + 2

𝛼

)𝑛−2
·
(
2 + 2

𝛼

)
.

Thus, an upper bound of the social cost of the social optimum is

𝑐𝑜𝑠𝑡 (𝑃𝑛) ≤
(
1 + 2

𝛼

)𝑛−2
·
(
𝛼

(
1 + 2

𝛼

)
+ 2𝑛

(
2 + 2

𝛼

))
.

Note that the first factor in the above inequality is upper bounded by a constant
value. Indeed,

(
1 + 2

𝛼

)𝑛−2
=

(
1 +

2 · 𝑛−2
𝛼

𝑛 − 2

)𝑛−2
≤ exp

(
𝑛 − 2

𝛼

)
≤ exp(2) .

Next, we simplify the second factor with the assumption 𝑛 = ⌊𝛼⌋:

𝛼

(
1 + 2

𝛼

)
+ 2𝑛

(
2 + 2

𝛼

)
≤ 5𝛼 + 6.

Therefore, for any 𝛼 ≥ 3, there is a set of 𝑛 = ⌊𝛼⌋ points such that the PoA
ratio is at least:

𝑐𝑜𝑠𝑡 (𝑆𝑛)
𝑐𝑜𝑠𝑡 (𝑃𝑛)

≥ (3𝛼 − 2) · 𝛼
(5𝛼 + 6) exp(2) ∈ 𝛺 (𝛼) .

Hence, 𝑃𝑜𝐴 ∈ 𝛺 (𝛼). �

The above lower bound construction also works for small values of 𝛼 . In the
next statement we show that the PoA is strictly larger than 1 for any 𝛼 > 0.

◮ Theorem 4.30. In the R𝑑–GNCG under any 𝑝-norm with 𝑝 ≥ 1 the PoA is
strictly larger than 1. More precisely,

PoA ≥
3𝛼3 + 24𝛼2 + 40𝛼 + 24

𝛼3 + 10𝛼2 + 32𝛼 + 24
> 1 .
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◭

Proof. We prove the claim for the 1-dimensional case, then the result immediately
follows for higher dimensions.

Consider the same construction as in the proof of Lemma 4.29 restricted to 4
nodes 𝑣0, 𝑣1, 𝑣2, 𝑣3. The ratio between the cost of the star network, which is in
NE, and the social optimum is

𝑐𝑜𝑠𝑡 (𝑆4)
𝑐𝑜𝑠𝑡 (𝑃4)

=

(6 + 𝛼) · 𝛼
2
·
( (
1 + 2

𝛼

)3 − 1
)

(6 + 𝛼)
(
1 + 2

𝛼

)2 + 4
𝛼

=
3𝛼3 + 24𝛼2 + 40𝛼 + 24

𝛼3 + 10𝛼2 + 32𝛼 + 24
.

�

In contrast to other 𝑝-norms, where 𝑝 ≥ 2, the 1-norm allows us to embed
a reduced version of our lower bound construction from the T–GNCG. With
increasing number of dimensions we can embed more and more of our construc-
tion. The following statement shows that for arbitrary large 𝑑 the lower bound
of the PoA approaches the upper bound of 𝛼+2

2
.

◮ Theorem 4.31. In a 1-norm 𝑑-dimensional space the PoA is at least

1 +
𝛼

2 + 𝛼/(2𝑑 − 1) .

◭

Proof. Consider a set of 𝑛 = 2𝑑 + 1 points 𝑣0 = (0, . . . , 0), 𝑣1 = (1, 0, . . . , 0),
𝑣2 = (− 2

𝛼
, 0 . . . , 0), 𝑣𝑖+1 = (0, . . . , 0

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

𝑖−1

, 2
𝛼
, 0, . . . , 0), 𝑣𝑖+𝑑 = (0, . . . , 0

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

𝑖−1

,− 2
𝛼
, 0, . . . , 0) for

𝑖 ∈ {2, . . . , 𝑑}.
On the one hand it is easy to see that the star network 𝑆∗𝑛 with a center in 𝑣0 is
an optimal network. On the other hand, the star network 𝑆𝑛 with its center in
𝑣1 such that 𝑣1 is the owner of all edges in the star, is in NE. Indeed, since the
distances are measured via the 1-norm, the construction is exactly the same as
in the proof of Theorem 4.25. See Figure 4.10 for the construction in R

3. Thus,
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4.6.2 Price of Anarchy

◮ Theorem 4.33. For any host network for which a NE exists, the PoA in the
GNCG is at most 𝛼 + 1. ◭

Proof. Consider a host network 𝐻 = (𝑉 , 𝐸 (𝐻 )), a stable network𝐺 = (𝑉 , 𝐸) and
an optimum network 𝐺∗

= (𝑉 , 𝐸∗). To simplify a notation in the proof, for any
two nodes 𝑥,𝑦 ∈ 𝑉 , we denote the shortest path in the network 𝐺 as 𝜋𝐺 (𝑥,𝑦).
We partition the set of edges 𝐸 in two sets. Let 𝐸1 ≔

⋃
𝑢𝑣∈𝐸∗{𝜋𝐺 (𝑢, 𝑣)} be

a set of edges in 𝐺 appearing in the shortest 𝑢-𝑣 path 𝜋𝐺 (𝑥,𝑦) in 𝐺 for each
𝑢𝑣 ∈ 𝐸∗, i.e., for every edge 𝑢𝑣 in the social optimum, 𝐸1 contains all edges from
the shortest path between 𝑢 and 𝑣 in 𝐺 . We denote the rest of the edges in 𝐺 as
𝐸2 ≔ 𝐸 \ 𝐸1.
First we analyze the cost of all edges in 𝐸1. Since 𝐺 is a (𝛼 + 1)-spanner, we

have:

𝛼 ·𝑤 (𝐸1) = 𝛼 ·𝑤
( ⋃
𝑢𝑣∈𝐸∗

𝜋𝐺 (𝑢, 𝑣)
)
≤ 𝛼

∑︁
𝑢𝑣∈𝐸∗

𝑑𝐺 (𝑢, 𝑣)

≤ 𝛼 (𝛼 + 1)
∑︁
𝑢𝑣∈𝐸∗

𝑑𝐻 (𝑢, 𝑣) ≤ 𝛼 (𝛼 + 1)𝑤 (𝐸∗). (4.5)

Consider all agents who own at least one edge in 𝐸2. We denote this set as
𝑉2 ≔ {𝑣 : ∃𝑢𝑣 ∈ 𝐸2and 𝑢𝑣 is owned by 𝑢} ⊆ 𝑉 . Next, we compute the costs for
all agents in 𝑉2. Consider an agent 𝑢 ∈ 𝑉2. Since 𝐺 is a NE, deleting all edges to
the nodes in 𝑉2 ∩ 𝑆𝑢 is not an improving move for 𝑢. Hence,

𝛼𝑤 (𝑢,𝑉2 ∩ 𝑆𝑢) + 𝑑𝐺 (𝑢,𝑉 ) ≤ 𝑑𝐺−𝐸2 (𝑢,𝑉 ),

where 𝐺 − 𝐸2 is the network obtained after the deletion. Note that if we sum up
all inequalities for all 𝑢 ∈ 𝑉 that own at least one edge in 𝐸2, we get an upper
bound on the total cost of all such agents:

𝛼𝑤 (𝐸2) +
∑︁
𝑢∈𝑉2

𝑑𝐺 (𝑢,𝑉 ) ≤
∑︁
𝑢∈𝑉2

𝑑𝐺−𝐸2 (𝑢,𝑉 ) .

Next we will evaluate the left part of the inequality, i.e., the agents’ distance
cost after deleting all edges from 𝐸2 set. For this we will show that the obtained
network 𝐺 − 𝐸2 is an (𝛼 + 1) spanner.
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Consider a node 𝑣 ≠ 𝑢 from𝑉 . Note that𝑑𝐺−𝐸2 is equal to the distance between
𝑢 and 𝑣 in the network 𝐺 restricted on the edge set 𝐸1. Consider a shortest path
𝜋𝐺∗ (𝑢, 𝑣) in the optimum network𝐺∗. By definition, for each edge 𝑥𝑦 ∈ 𝜋𝐺∗ (𝑢, 𝑣),
set 𝐸1 contains a shortest path 𝜋𝐺 (𝑥,𝑦) of the length

𝑑𝐺−𝐸2 (𝑥,𝑦) ≤ (𝛼 + 1)𝑑𝐻 (𝑥,𝑦) ≤ (𝛼 + 1)𝑑𝐺∗ (𝑥,𝑦).

Thus,

𝑑𝐺−𝐸2 (𝑢, 𝑣) ≤
∑︁

𝑥𝑦∈𝜋𝐺∗ (𝑢,𝑣)
𝑑𝐺−𝐸2 (𝑥,𝑦)

≤ (𝛼 + 1) ·
∑︁

𝑥𝑦∈𝜋𝐺∗ (𝑢,𝑣)
𝑑𝐺∗ (𝑥,𝑦) = (𝛼 + 1)𝑑𝐺∗ (𝑢, 𝑣).

The total cost of the agents in the set 𝑉2 is

𝛼𝑤 (𝐸2) +
∑︁
𝑢∈𝑉2

𝑑𝐺 (𝑢,𝑉 ) ≤
∑︁
𝑢∈𝑉2

𝑑𝐺−𝐸2 (𝑢,𝑉 ) ≤ (𝛼 + 1)
∑︁
𝑢∈𝑉2

𝑑𝐺∗ (𝑢,𝑉 ). (4.6)

Note that the total distance cost in the equilibrium network𝐺 is
∑
𝑢∈𝑉

𝑑𝐺 (𝑢,𝑉 ) =∑
𝑢∈𝑉 \𝑉2

𝑑𝐺 (𝑢,𝑉 ) +
∑

𝑢∈𝑉2
𝑑𝐺 (𝑢,𝑉 ). Since𝐺 is a (𝛼 + 1)-spanner (by Lemma 4.2),

we evaluate the second term as follows:∑︁
𝑢∈𝑉 \𝑉2

𝑑𝐺 (𝑢,𝑉 ) ≤ (𝛼 + 1)
∑︁

𝑢∈𝑉 \𝑉2

𝑑𝐻 (𝑢,𝑉 ) ≤ (𝛼 + 1)
∑︁

𝑢∈𝑉 \𝑉2

𝑑𝐺∗ (𝑢,𝑉 ) (4.7)

A combination of inequalities 4.5, 4.6, and 4.7 let us evaluate the PoA as follows:

SC(𝐺)
SC(𝐺∗) =

𝛼𝑤 (𝐸1) +
∑

𝑢∈𝑉 \𝑉2

𝑑𝐺 (𝑢,𝑉 ) + 𝛼𝑤 (𝐸2) +
∑

𝑢∈𝑉2

𝑑𝐺 (𝑢,𝑉 )

𝛼𝑤 (𝐸∗) + ∑
𝑢∈𝑉

𝑑𝐺∗ (𝑢,𝑉 )

≤
𝛼 (𝛼 + 1)𝑤 (𝐸∗) + (𝛼 + 1) ∑

𝑢∈𝑉 \𝑉2

𝑑𝐺∗ (𝑢,𝑉 ) + (𝛼 + 1) ∑
𝑢∈𝑉2

𝑑𝐺∗ (𝑢,𝑉 )

𝛼𝑤(𝐸∗) + ∑
𝑢∈𝑉

𝑑𝐺∗ (𝑢,𝑉 )

=

(𝛼 + 1) (𝛼𝑤 (𝐸∗) + ∑
𝑢∈𝑉

𝑑𝐺∗ (𝑢,𝑉 ))

𝛼𝑤 (𝐸∗) + ∑
𝑢∈𝑉

𝑑𝐺∗ (𝑢,𝑉 ) = 𝛼 + 1. �
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Even though the above upper bound for the PoA asymptotically meets the lower
bound (Theorem 4.25), it would be highly interesting to close the gap. Several
attempts to find an instance of equilibrium such that its cost is strictly higher
than 𝛼+2

2
have failed. Therefore, we conjecture that the PoA for GNCG should

be the same as the PoA for M–GNCG.

◮ Conjecture 4.34. For any host network for which a NE exists, the PoA for
the GNCG is 𝛼+2

2
. ◭

4.7 Conclusion

In this section we have analyzed the Network Creation Game on weighted
complete host networks. We think this is a significant step towards a more
realistic game-theoretic model for the decentralized creation of networks, like
fiber-optic or overlay networks. We showed that the weighted version of these
games behaves similarly to the unit-weight NCG in terms of the hardness of
computing a best response and in its dynamic properties. However, the Price
of Anarchy is radically different. Whereas in the original NCG the PoA is
conjectured to be constant and actually proven to be constant for almost all 𝛼 ,
we have shown that the PoA, even for the restricted metric case of the T–GNCG,
is linear in 𝛼 . Since 𝛼 is a parameter for adjusting the trade-off between edge cost
and distance cost, this implies that for settings where the edge cost dominates,
i.e., if 𝛼 is high, coordination is needed to guarantee socially efficient outcomes.

For understanding the impact of coordination, the next step should be to ana-
lyze the Price of Stability, i.e., the social cost ratio of the best equilibrium network
and the social optimum. Another challenging task is to prove or refute that pure
Nash equilibria always exist and to find a way to guide the agents to stable states
with preferably low social cost. Besides this, naturally Conjecture 4.34, calls for
further investigation.
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5 Selfish Network Creation with

Degree Dependent Edge Cost

The original Network Creation Game as well as many of its follow up versions
have the drawback that edges are treated uniformly, i.e., every edge has the
same cost. This common parameter heavily influences the outcomes and the
analysis of these games. We take a radical departure from this assumption by
proposing and analyzing a variant of the Network Creation Game in which the
agents follow an anti-preferential attachment rule. In particular, the cost of an
edge between agent 𝑢 and 𝑣 which is bought by agent 𝑢 is proportional to 𝑣’s
degree in the network, i.e., edge costs are proportional to the degree of the other
endpoint involved in the edge. Thus, we introduce individual prices for edges
and at the same time we obtain a simple model which is parameter-free.
Our model is inspired by social networks in which the nodes usually have

very different levels of popularity which is proportional to their degree. In such
networks connecting to a celebrity usually is expensive. Hence, we assume
that establishing a link to a popular high degree node has higher cost than
connecting to an unimportant low degree node. Moreover, in social networks
links are formed mostly locally, e.g., between agents with a common neighbor,
and it rarely happens that links are removed, on the contrary, such networks
tend to get denser over time [LKF05]. This motivates two other extensions of
our model which consider locality and edge additions only.

5.1 Model Definition

We consider unweighted undirected networks 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set
of nodes and 𝐸 is the set of edges of 𝐺 . Since edges are unweighted, the dis-
tance 𝑑𝐺 (𝑢, 𝑣) between two nodes 𝑢, 𝑣 in 𝐺 is the number of edges on a shortest
path between 𝑢 and 𝑣. For a given node 𝑢 in a network 𝐺 let 𝑁𝑘 (𝑢) be the set of
nodes which are at distance at most 𝑘 from node 𝑢 in 𝐺 and let 𝐵𝑘 (𝑢) be the set
of nodes which are at exactly distance 𝑘 from node 𝑢 (the distance-𝑘 ball around
𝑢).

We investigate a natural variant of the Network Creation Game (NCG) which
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Related Work Section 5.2

of the degNCG, which we call the degree price add-only game (degAOG) and the 𝑘-
local version deg𝑘AOG. In these games, agents can only add edges to the network,
whereas removing edges is impossible. This mirrors social networks where an
edge means that both agents know each other. Hence, losing a connection would
mean forgetting the prior known person, which is not realistic.

To simplify the notation, we say that a result holds for the deg(𝑘)NCG (resp.
deg(𝑘)AOG) if it holds for the global and the 𝑘-local version of the degree price
game (resp. degree price add-only game).

5.2 Related Work

A distinctive feature of the model discussed in this chapter is its topology de-
pendent edge cost, i.e., the model is parameter-free. Removing the parameter
𝛼 by restricting the agents to edge swaps was studied in [Alo+13; MS12]. The
obtained results are similar to the results for the original Network Creation

Game: the best known upper bound on the PoA is 2O(
√
log𝑛) , there cannot exist a

potential function [Len11], and computing a best response is NP-hard. However,
allowing only swaps leads to the unnatural effects that the number of edges
cannot change and that the sequential version heavily depends on the initial
network.

To the best of our knowledge, there are very few related papers that analyze
the NCG with non-uniform edge price. In [CMH14] agents can buy edges of
different quality, which corresponds to their length, and the edge price depends
on the edge quality. Distances are measured in the induced weighted network.
Closer to our model is [MMO14] where heterogeneous agents, important and
unimportant ones, are considered, and both classes of agents have different
edge costs. Here, links are formed with bilateral agreement [CP05; JW96] and
important nodes have a higher weight, which increases their attractiveness.

In our model we assume that the edge cost is proportional to the degree of its
non-owning endpoint, like in social networks, connections to celebrities are less
likely than links to less famous persons. The idea of having nodes with different
popularity is discussed in the so-called celebrity games [Àlv+16; ÀM16]. There,
nodes have a given popularity, and agents buy fixed-price edges to get highly
popular nodes within some given distance bound. Hence, this model differs
heavily from our model.

The idea to use node popularity in the link-formation mechanism to describe
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Chapter 5 Selfish Network Creation with Degree Dependent Edge Cost

a network formation process is actively studied outside of the game theory
community. The Preferential Attachment model [BA99] is known for claims that
the resulting networks generated by the mechanism exhibit real-world network
properties. Here, each new arriving node creates an edge to an existing node
with probability proportional to the node’s degree. There is a vast literature on
variations of the preferential attachment model. We refer to the book by Van der
Hofstand [Van16] for an overview. Note that we use the reverse rule in our model,
i.e., we assume that agents avoid linking with high-degree nodes. This approach
has two arguments of support. First, as we discussed earlier, this assumption is
natural for social networks. Second, a recent paper [DPS20] investigated that a
network growing with a mix of preferential and anti-preferential attachment
where the anti-preferential mechanism dominates results in a network with
real-world properties.

Among other things, in this chapter, we actively study the influence of locality
on the structure of equilibria by comparing the global and the local versions
of the game. There are several versions for augmenting the NCG with locality
that have been proposed and analyzed recently. It was shown that the PoA
may deteriorate heavily if agents only know their local neighborhood or only a
shortest path tree of the network [Bil+14a; Bil+14b], and even if strategy changes
are restricted to edge swaps [YY20]. In contrast, a global view with a restriction
to only local edge-purchases yields only a moderate increase of the PoA [CL15].
Therefore, we focus on the last, more ”optimistic", case where agents can observe
the entire network while performing local moves.

5.3 Results Overview

We introduce and analyze the first parameter-free variants of Network Creation
Games [Fab+03] which incorporate non-uniform edge cost. In almost all known
versions the outcomes of the games and their analysis heavily depend on the
edge cost parameter 𝛼 . We depart from this by assuming that the cost of an
edge solely depends on structural properties of the network, in particular, on
the degree of the endpoint to which the edge is bought. Essentially, our models
incorporate that the cost of an edge is proportional to the popularity of the node
to which it connects. This appears to be a realistic feature, e.g., for modeling
social networks.

On the first glance, introducing non-uniform edge cost seems to be detrimental
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Model Complexity PoA Diameter Dynamics

degNCG
BR NP-hard

O(1) (Thm.5.14) ≤ 3 (Cor.5.6)
no FIP

(Thm.5.1) (Thm.5.18)

deg𝒌NCG
BR NP-hard

𝑘 = 2: 𝑘 = 2:

no FIP

(Thm.5.3)

O(
√
𝑛) (Cor.5.16) O(

√
𝑛) (Thm.5.8)

(Thm.5.18)
𝑘 = 3:

𝑘 ≥ 3: ≤ 5 (Thm.5.9)

O(1) (Thm.5.14) 𝑘 ≥ 4:

≤ 3 (Cor.5.7)

degAOG
BR NP-hard

Θ(𝑛) (Thm.5.17) ≤ 3 (Cor.5.6)
FIP

(Thm.5.1) (Sec.5.6.2)

deg𝒌AOG
BR NP-hard

Θ(𝑛) (Thm.5.17)

𝑘 = 2:

FIP

(Thm.5.3)

O(
√
𝑛) (Thm.5.8)

(Sec.5.6.2)
𝑘 = 3:

≤ 5 (Thm.5.9)

𝑘 ≥ 4:

≤ 3 (Cor.5.7)

Table 5.1: Overview of the properties of the deg(𝑘)NCG and the deg(𝑘)AOG.

to the analysis of the model. However, in contrast to this, we give a simple proof
that the PoA of the degNCG is actually constant. Besides this strongest possible
bound on the PoA, which we also generalize to arbitrary linear functions of a
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node’s degree and to the 3-local version, we prove a PoA upper bound of O(
√
𝑛)

for the deg2NCG, where agents are restricted to act within their 2-neighborhood,
andwe show for that computing a best response strategy is NP-hard for deg𝑘NCG.
Moreover, we investigate the dynamic properties of the deg(𝑘)NCG and prove
that improving response dynamics may not converge to an equilibrium, that is,
there cannot exist a generalized ordinal potential function.

We contrast these negative convergence results by analyzing a version where
agents can only add edges, i.e., the deg(2)AOG, where convergence of the sequen-
tial version is trivially guaranteed, and by analyzing the speed of convergence
for different agent activation schemes. The restriction to only edge additions has
severe impact on the PoA, yielding a𝛩 (𝑛) bound. However, we show that the
diameter of equilibrium networks is constant for any 𝑘 ≥ 3. Hence, unlike in the
degNCG model, the non-constant PoA is explained not by the upper bound for
the network diameter but by the high edge cost of the worst-case equilibrium.
We also show that the impact of the add-only restriction on the social cost is
low, if round-robin dynamics starting from a path are considered, where agents
buy their best possible single edge in each step.
See Table 5.1 for a comparison of the results for the different versions of the

model.

5.4 Hardness

In this section we investigate the computational hardness of computing a cost
minimizing strategy, i.e., a best response, in the deg(𝑘)NCG and deg(𝑘)AOG.
First, we provide a hardness reduction for the general version of the model.

Note that the construction used in the reduction has diameter 4. It implies that
the reduction works for the local version of the model where agents can add
edges to nodes within a distance four or more.

◮ Theorem 5.1. The problem of computing a best response is NP-hard in the
deg(𝑘)NCG and the deg(𝑘)AOG for 𝑘 ≥ 4. ◭

Proof. We provide a polynomial time reduction from the Exact Cover by 3-Sets
problem which is known to be NP-complete [Pap03]. The problem is defined
as follows: given a collection A = {𝐴1, . . . , 𝐴ℓ } of subsets of a universal set
𝑈 = {1, . . . , 𝑛}, such that 𝑛 = 3𝑚 for some 𝑚 ∈ N and |𝐴𝑖 | = 3 for all 𝑖 . The
problem is to determine whether there are𝑚 sets in 𝐴 that are pairwise disjoint
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since it improves her edge cost by 9 + 𝑘 (where 𝑘 is the number of set nodes
connected with 𝑣𝑟𝑖 ; note that 𝑘 ≥ 1). Also, this move increases the distance by
at most 𝑘 . In case there is no set node in 𝑆∗𝑢 such that the corresponding set
contains the element 𝑖 , then the agent 𝑢 can improve the strategy by swapping
𝑣𝑟𝑖 with some set node 𝑎 𝑗 such that 𝑖 ∈ 𝐴 𝑗 . Indeed, this move changes the edge
cost by 9 − (9 + 𝑘) and the distance cost increases by 1 to the node 𝑣𝑟𝑖 and 𝑘 − 1

set nodes adjacent to it, i.e., the cost improves by −𝑘 + 𝑘 − 1 = −1. Thus, there
are no element nodes in the best response of agent 𝑢.

Now, assume that there is a node 𝑝𝑟𝑖 𝑗 ∈ 𝑆∗𝑢 . In case none of the set nodes which
"covers" the element 𝑗 is in 𝑆∗𝑢 , there is a better strategy 𝑆

′
𝑢 = 𝑆∗𝑢 \ {𝑝𝑟𝑖 𝑗 } ∪ {𝑎𝑘 }

where 𝑎𝑘 corresponds to the set 𝐴𝑘 containing the element 𝑖 ∈ 𝑈 . Indeed, in the
worst case, such a strategy move changes the distance to 𝑝𝑟𝑖 𝑗 and 𝑎𝑘 only. Thus,
the distance cost decreases by at least 1, whereas the edge cost decreases by 1
since 𝑑𝑒𝑔(𝑝𝑟𝑖 𝑗 ) = 10 = 𝑑𝑒𝑔(𝑎𝑘 ) + 1 in𝐺 . In case there is a set node 𝑎𝑘 ∈ 𝑆∗𝑢 which
"covers" the element 𝑖 , node 𝑝𝑟𝑖 𝑗 can be removed from the 𝑢’s strategy 𝑆∗𝑢 . Indeed,
it improves the edge cost by 9 and increases the distance only to node 𝑝𝑟𝑖 𝑗 , i.e.,
it improves agent 𝑢’s cost by 8. Therefore, the best response 𝑆∗𝑢 contains only
set nodes. Moreover, if there are two set nodes 𝑎𝑖 , 𝑎 𝑗 ∈ 𝑆∗𝑢 which cover the same
element 𝑘 ∈ 𝑈 , then one of two set nodes, say 𝑎 𝑗 , can be removed from 𝑆∗𝑢 . Note
that this move can increase distances to sets of element nodes corresponding
to the elements from 𝐴 𝑗 \𝐴𝑖 and the set nodes adjacent to them. In case such a
set node 𝑎𝑘 exists, i.e., there is a set node 𝑎𝑘 , 𝑘 ≠ 𝑗 to which the distance from 𝑢

increases after removing the edge 𝑢𝑎 𝑗 , then there is no other set node 𝑎𝑘′ ∈ 𝑆∗𝑢
such that 𝐴𝑘 ∩𝐴𝑘′ ≠ ∅. Thus, 𝑢 can improve on the strategy 𝑆∗𝑢 by replacing 𝑎 𝑗
with 𝑎𝑘 . It does not change the edge cost of 𝑢 and improves the distance cost by
at least 3, i.e., it is an improving strategy change. In case 𝑎 𝑗 is the only set node
to which the distance increases after removing the edge 𝑢𝑎 𝑗 , there is the better
strategy 𝑆 ′𝑢 = 𝑆∗𝑢 \ {𝑎 𝑗 } which gives an improvement of the edge cost by 9 and
increases the distance cost to only two sets of element nodes and 𝑎 𝑗 by at most
8 in total.

This implies that 𝑆∗𝑢 corresponds to the solution of the Exact Cover by 3-

Sets problem. Let 𝑚′ be the number of nodes in 𝑆∗𝑢 . Then the cost of 𝑢 is
9 ·𝑚′ +𝑚′ + 3(ℓ −𝑚′) + 2 · 3𝑚′ + 3 · 3(𝑛 −𝑚′) + 2 · 27𝑛 + 9 = 4𝑚′ + 3ℓ + 63𝑛 + 9.
Since ℓ and 𝑛 are fixed parameters, the cost is minimized if 𝑚′ is minimized.
Thus, if there is any better strategy for agent 𝑢, this implies an existence of a
better solution for the Exact Cover by 3-Sets problem. �
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To complete this section, we need to prove the NP-hardness of computing a
best response in the deg𝑘AOG and the deg𝑘NCG for 𝑘 equals two and three.
For this case we consider a problem similar to the Exact Cover by 3-Sets

which is called Exact-𝑞-Set Cover and prove that it is NP-hard via a reduction
from Dominating Set in 𝑞-regular graphs. The Exact-𝑞-Set Cover problem
is defined as follows: Given a universal set𝑈 = {1, 2, . . . , 𝑛} and a collection of
sets A = {𝐴1, · · ·𝐴ℓ } where ∀𝐴𝑖 ∈ A, 𝐴𝑖 ⊆ 𝑈 and |𝐴𝑖 | = 𝑞 with 𝑞 ≥ 4; the task
is to find the minimum subset of A which covers𝑈 .

◮ Lemma 5.2. Exact-𝑞-Set Cover is NP-hard. ◭

Proof. We give a polynomial time reduction from Dominating Set in 𝑞-regular
graphs, which is known to be NP-hard [AK00], to Exact-(𝑞 + 1)-Set Cover.
Given a 𝑞-regular graph𝐺 = (𝑉 , 𝐸) with𝑉 = {1, · · · , 𝑛}, construct an instance of
Exact-(𝑞 + 1)-Set Cover as follows: the universe is𝑈 = 𝑉 and the collection of
sets isA = {𝐴1, · · ·𝐴𝑛} such that𝐴𝑖 consists of node 𝑖 and the nodes adjacent to
node 𝑖 . Since𝐺 is𝑞-regular, we have that |𝐴𝑖 | = 𝑞+1. Now 𝑆 is an optimal solution
for Exact-(𝑞+1)-Set Cover for the instance (𝑈 ,A) if and only if𝑅 = {𝑖 | 𝐴𝑖 ∈ 𝑆}
is a minimum dominating set for the graph 𝐺 . �

◮ Theorem 5.3. Computing a best response in the deg𝑘NCG and deg𝑘AOG is
NP-hard for 𝑘 ∈ {2, 3}. ◭

Proof. We prove the theorem by giving a polynomial time reduction from the NP-
hard Exact-𝑞-Set Cover problem to the problem of computing a best response
of an agent𝑢 in an instance of the deg𝑘NCG. Consider an instance 𝐼 of the Exact-
𝑞-Set Cover problem with universal set 𝑈 = {1, 2, . . . , 𝑛} and a collection of
sets A = {𝐴1, · · ·𝐴ℓ }, where 𝐴𝑖 ⊆ 𝑈 for all 𝐴𝑖 ∈ A and |𝐴𝑖 | = 𝑞. We create a
corresponding instance𝐺 = (𝑉 , 𝐸) of the best response problem in the deg𝑘NCG,
where the network 𝐺 = (𝑉 , 𝐸) is defined as follows:

𝑉 =

𝑛⋃
𝑖=1

{𝑣𝑖} ∪
𝑛⋃
𝑖=1

{
𝑝1𝑖 , . . . , 𝑝

𝑞+1
𝑖

}
∪

ℓ⋃
𝑖=1

{𝑎𝑖} ∪
𝑘−1⋃
𝑖=1

{𝑥𝑖} ∪ {𝑢},

where each 𝑣𝑖 corresponds to 𝑖 ∈ 𝑈 and each 𝑎𝑖 corresponds to 𝐴𝑖 ∈ A. The
edge set 𝐸 is defined as follows:

𝐸 =
{
𝑣𝑖𝑎 𝑗 | 𝑖 ∈ 𝐴 𝑗

}
∪

{
𝑣𝑖𝑝

𝑟
𝑖 | 𝑖 ∈ 𝑈 and 1 ≤ 𝑟 ≤ 𝑞 + 1

}
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Since in the above reduction the best response of agent 𝑢 consists of only
buying edges, this implies NP-hardness for the deg𝑘AOG. �

5.5 Analysis of Equilibria

We start with the most fundamental statement about equilibria which is their
existence. We use the center sponsored spanning star 𝑆𝑛 for the proof.

◮ Theorem 5.4. The center sponsored star 𝑆𝑛 is a (k)NE for the deg(k)NCG
and the deg(k)AOG for any 𝑘 . ◭

Proof. In the center sponsored spanning star 𝑆𝑛 the center agent cannot delete or
swap any edge since this would disconnect the network. Since the center already
has bought the maximum number of edges, no edge purchases are possible.
Moreover, no leaf agent can profit from buying any number of edges because
only edges to other leaves can be bought, which is a 2-local move. Such edges
have cost of 1 which equals the maximum possible distance improvement. Thus,
no agent has an improving move for any 𝑘 which implies that 𝑆𝑛 is in (𝑘)NE. �

5.5.1 Bounding the Diameter of Equilibrium Networks

In this section we investigate the diameter of (2)NE networks. As in most NCGs,
bounding the diameter plays an important role in bounding the PoA.

◮ Theorem 5.5. Consider a generalization of the degAOG and the degNCG
where the price of an edge 𝑢𝑣 bought by agent 𝑢 is a linear function of 𝑣’s degree
in𝐺 , i.e., the edge price is 𝛽 · 𝑑𝑒𝑔𝐺 (𝑠) (𝑣) + 𝛾 , where 𝛽,𝛾 ∈ ℝ. Then the diameter
of any NE network is constant. ◭

Proof. We consider a NE network 𝐺 = (𝑉 , 𝐸) and assume that the diameter 𝐷
of 𝐺 is at least 4. Then there exist two nodes 𝑎, 𝑏 ∈ 𝑉 , such that 𝑑𝐺 (𝑎, 𝑏) = 𝐷 .
Therefore, the distance cost of an agent𝑎 in𝐺 is at least𝐷+|𝐵1(𝑏) | (𝐷−1)+|𝑁2(𝑎) |.
Thus, if agent 𝑎 buys the edge 𝑎𝑏, then it improves 𝑎’s distance cost by at least
𝐷−1+|𝐵1(𝑏) | (𝐷−3). Since the network𝐺 is in NE, the distance cost improvement
must be at most the agent 𝑢’s cost for buying the edge 𝑎𝑏:

𝐷 − 1 + |𝐵1(𝑏) | (𝐷 − 3) ≤ 𝛽 · 𝑑𝑒𝑔𝐺 (𝑏) + 𝛾
⇐⇒ 𝐷 − 1 + (𝐷 − 3) · 𝑑𝑒𝑔𝐺 (𝑏) ≤ 𝛽 · 𝑑𝑒𝑔𝐺 (𝑏) + 𝛾 .
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by buying edges towards nodes in lower layers. Thus we have

𝐷 − (𝑖 − 1) ≤ 𝑑𝑒𝑔𝐺 (𝑣𝑖) ≤ |𝐿𝑖−1 | + (|𝐿𝑖 | − 1) + |𝐿𝑖+1 |

and
𝐷 − (𝑖 − 1) ≤ 𝑑𝑒𝑔𝐺 (𝑣𝐷−𝑖) ≤ |𝐿𝐷−𝑖−1 | + (|𝐿𝐷−𝑖 | − 1) + |𝐿𝐷−𝑖+1 |

for any 2 ≤ 𝑖 ≤
⌊
𝐷
2

⌋
− 1. Summing up all inequalities yields:

2

⌊𝐷
2 ⌋−1∑︁
𝑖=2

(
𝐷 − (𝑖 − 1)

)
≤ 3

(
𝐷∑︁
𝑖=1

|𝐿𝑖 | − (𝐷 − 1)
)
.

For the left side we have

3𝐷2

4
− 4𝐷 − 3 <

(⌊
𝐷

2

⌋
− 2

) (
2𝐷 + 1 −

⌊
𝐷

2

⌋)
= 2

⌊𝐷
2 ⌋−1∑︁
𝑖=2

(
𝐷 − (𝑖 − 1)

)

and the right side gives 3

(
𝐷∑
𝑖=1

|𝐿𝑖 | − (𝐷 − 1)
)
≤ 3𝑛 − 3𝐷 + 3, which yields

3𝐷2

4
− 4𝐷 − 3 < 3𝑛 − 3𝐷 + 3 ⇒ 𝐷 <

2

3

(
1 +

√
9𝑛 + 19

)
∈ O(

√
𝑛).

�

Clearly, the statement above holds for any 𝑘NE network, but we can prove a
stronger statement that the diameter of 3NE networks is constant.

◮ Theorem 5.9. The diameter of any 3NE network is at most 5. ◭

Proof. Consider a 3NE network 𝐺 = (𝑉 , 𝐸). Assume to the contrary, that 𝐺 has
diameter at least 6. Then there are two nodes 𝑎 and 𝑏 at distance 6. Consider
a node 𝑣 at distance 3 from 𝑎 on the 𝑎-𝑏 shortest path. For 𝑖 = 2, 3, 4, let 𝑉𝑖 be
a set of nodes incident to 𝑣 and at distance 𝑖 from 𝑎. Since 𝑑𝐺 (𝑎, 𝑏) = 6, the
distance between 𝑏 and any node 𝑥 ∈ 𝑉𝑖 is at least 6 − 𝑖 . Now we consider two
possible moves, that is the addition of 𝑎𝑣 edge by agent 𝑎 and the addition of
𝑏𝑣 edge by 𝑏. The difference of the cost obtained by 𝑎 after the move is at most
𝑑𝑒𝑔𝐺 (𝑣) − |𝑉3 | − 2|𝑉4 | − 4 that is at least 0 since𝐺 is in 3NE. From the other side,
the cost difference for the agent 𝑏 after the addition of the edge 𝑏𝑣 is at most
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𝑑𝑒𝑔𝐺 (𝑣) − |𝑉3 | − 2|𝑉2 | − 4 that is again at least 0. Summing up two inequalities
gives us:

8 + 2|𝑉2 | + 2|𝑉3 | + 2|𝑉4 | ≤ 2𝑑𝑒𝑔𝐺 (𝑣) . (5.2)

Since |𝑉2 | + |𝑉3 | + |𝑉4 | = 𝑑𝑒𝑔𝐺 (𝑣), we get a contradiction. Therefore, the
diameter of the 3NE networks is at most 5. �

Our extensive experiments and attempts on constructing a high diameter 2NE
indicate that the diameter of all 2-local equilibria is at most 5. It leads us to the
conjecture that all Nash equilibria have a constant diameter. This argument is
also supported by the fact that a high diameter yields high degrees of all nodes
on the diameter shortest path. Therefore, there is always an agent who can
improve her distance to many nodes "incident" to the shortest path. However,
a high degree means a high price of connection that makes the proof of the
conjecture quite challenging.

◮ Conjecture 5.10. The diameter of any 2NE network is constant. ◭

5.5.2 Price of Stability

For analyzing the Price of Stability, we have to investigate the network which
has the minimum possible social cost.

◮ Lemma 5.11. The center sponsored spanning star 𝑆𝑛 is a social optimum in
the deg(𝑘)NCG and the deg(𝑘)AOG for any 𝑘 ≥ 2. ◭

Proof. Consider an optimal network 𝐺 = (𝑉 , 𝐸) with𝑚 edges and 𝑛 nodes. As
𝐺 has to be connected, we have𝑚 ≥ 𝑛 − 1. Now, all the pairs which are not
connected by an edge are at distance of at least 2, and there are 𝑛(𝑛 − 1) − 2𝑚
many such pairs. Adding the remaining 2𝑚 pairs with distance 1 yields the
distance cost of 2(𝑛(𝑛 − 1) − 2𝑚) + 2𝑚 = 2𝑛(𝑛 − 1) − 2𝑚 which is also the lower
bound on the distance cost of any graph. Since 𝑆𝑛 has diameter 2 and all edges
cost zero because every leaf node has degree 1, the social cost of the center
sponsored spanning star 𝑆𝑛 meets the above lower bound. �

We have shown in the proof of Theorem 5.4 that the center sponsored spanning
star 𝑆𝑛 is in (𝑘)NE for any 𝑘 . With Lemma 5.11 this yields the following PoS
result.

◮ Corollary 5.12. The Price of Stability in the deg(𝑘)NCG and the deg(𝑘)AOG
is 1. ◭
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5.5.3 Price of Anarchy

For investigating the quality of the equilibria of our games, we first adapt an
important lemma by Fabrikant et al. [Fab+03] to our setting.

◮ Lemma 5.13. If a (k)NE network 𝐺 in the deg(𝑘)NCG has diameter 𝐷 , then
its social cost is at most O(𝐷) times the minimum possible social cost. ◭

Proof. The minimum possible social cost is at least𝑛2−1 ∈ 𝛺 (𝑛2), as the network
is connected and every pair of nodes is at least in distance 1. To bound the social
cost of the (𝑘)NE in 𝐺 , we bound the social distance cost and social edge cost
separately. A trivial upper bound for the social distance cost is 𝑛2𝐷 , since 𝐺 has
diameter 𝐷 .
For bounding the social edge cost we first consider bridges of 𝐺 , which are

edges whose removal will disconnect𝐺 . There are at most 𝑛−1 bridges, so the to-
tal edge cost of all bridges is at most 𝛥 (𝑛−1) ∈ O(𝑛2) with 𝛥 = max𝑣∈𝑉 𝑑𝑒𝑔𝐺 (𝑣).
Now we will argue that the cost of all non-bridges bought by any agent 𝑢 is in
O(𝑛𝐷), which implies that the total edge cost of all edges is in O(𝑛2𝐷). This
yields an upper bound on the social cost of O(𝑛2𝐷 + 𝑛2 + 𝑛2𝐷) = O(𝑛2𝐷),
completing the proof.
Consider an agent 𝑢 and fix agent 𝑢’s shortest path tree 𝑇𝑢 , that is, we fix a

shortest path from 𝑢 to all other nodes in 𝐺 . Let 𝑢𝑣 be any non-bridge edge
bought by agent 𝑢. Let 𝑅𝑣 be the set of nodes 𝑤, where the shortest path from 𝑢

to 𝑤 in 𝑇𝑢 contains the node 𝑣.
We first argue that the distance between𝑢 and 𝑣 is at most 2𝐷 if agent𝑢 would

remove the edge 𝑢𝑣. Note that removing 𝑢𝑣 cannot disconnect the network,
since 𝑢𝑣 is not a bridge. Let 𝑥𝑤 be the edge on some shortest path from 𝑢 to
𝑣 in 𝐺 = (𝑉 , 𝐸 \ 𝑢𝑣) where 𝑥 ∉ 𝑅𝑣 and 𝑤 ∈ 𝑅𝑣. As the diameter of 𝐺 is 𝐷
and since 𝑥 ∉ 𝑅𝑣 there must be a path of length at most 𝐷 between 𝑢 and 𝑥 in
𝐺 = (𝑉 , 𝐸 \ 𝑢𝑣). Moreover, there exists a path of length at most 𝐷 − 1 between 𝑣
and𝑤 in𝐺 . This is true since 𝑑𝐺 (𝑢,𝑤) ≤ 𝐷 . Since 𝑥 is a neighbor of𝑤, it follows
that the distance between every node 𝑧 ∈ 𝑅𝑣 and 𝑥 is at most 𝐷 . Thus, removing
the edge 𝑢𝑣 increases the diameter to at most 2𝐷 and agent 𝑢’s total distance
cost by at most 2𝐷 |𝑅𝑣 |.
We know that 𝐺 is in (𝑘)NE in the deg(𝑘)NCG. Hence, buying the edge 𝑢𝑣

must be profitable for agent𝑢, that is, deg𝐺 (𝑣)−1 ≤ 2𝐷 |𝑅𝑣 |. Let 𝑆 (𝑢) be the set of
nodes to which agent 𝑢 bought a non-bridge edge. Summing up the inequalities
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for all nodes in 𝑆 (𝑢) yields∑︁
𝑣∈𝑆 (𝑢)

(
deg𝐺 (𝑣) − 1

)
≤ 2𝐷

∑︁
𝑣∈𝑆 (𝑢)

|𝑅𝑣 | < 2𝑛𝐷,

where the last inequality holds since all sets 𝑅𝑣 are disjoint. This implies that
the total edge cost in any (𝑘)NE network 𝐺 is at most 2𝑛2𝐷 + 𝛥 (𝑛 − 1), which
concludes the proof. �

From Corollary 5.6 and 5.7, and Theorem 5.9 we know that the diameter of any
(𝑘)NE is constant for all 𝑘 ≥ 3 in the deg(𝑘)NCG. Also, from Lemma 5.13 we
know that the social cost of any NE network 𝐺 is at most O(𝐷 (𝐺)) times the
minimum possible social cost. This implies the following statement.

◮ Theorem 5.14. The PoA is in O(1) in the deg(𝑘)NCG for 𝑘 ≥ 3. ◭

A straightforward adaptation of Lemma 5.13 together with Theorem 5.5 yields:

◮ Corollary 5.15. The Price of Anarchy in the variants of the deg(𝑘)NCG
where the price of any edge 𝑢𝑣 bought by agent 𝑢 is linear in 𝑣’s degree in 𝐺 , is
constant. ◭

Theorem 5.8 and Lemma 5.13 yields the following statement.

◮ Corollary 5.16. The Price of Anarchy is in O(
√
𝑛) in the deg2NCG . ◭

We conclude this section with analyzing the PoA in the deg(𝑘)AOG. The trivial
upper bound for the PoA is in O(𝑛), since the edge cost and the distance cost
of an equilibrium are in O(𝑛2). By Lemma 5.11, the center sponsored star is a
social optimum and has social cost in 𝛺 (𝑛). Therefore, the implication holds.
Note that a clique provides a matching lower bound since it is in (𝑘)NE in the
deg(𝑘)AOG for any 𝑘 . We obtained the following result.

◮ Theorem 5.17. The PoA is in𝛩 (𝑛) in the deg(𝑘)AOG for any 𝑘 ≥ 2. ◭

5.6 Dynamics

In this section we consider the dynamic properties of the sequential version of
the deg(𝑘)NCG and the deg(𝑘)AOG. Namely, we consider improving response
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dynamics (IRD), which starts with some initial strategy vector s and its cor-
responding initial network 𝐺 (s) and then agents are activated one at a time
according to some activation scheme, e.g., a random, adversarially chosen move
order, or round-robin activation. At each activation, an active agent is allowed
to myopically update her current strategy. The respective agent will do so only
if the new strategy yields strictly less cost than her current strategy. For the
deg(2)AOG we will also consider the best single edge dynamics, which is a special
case of the improving response dynamics, in which active agents buy the best
possible single edge if this strictly decreases their current cost.

5.6.1 Dynamics in the deg(𝒌)NCG

We investigate the convergence properties of the deg(𝑘)NCG and prove that the
deg(𝑘)NCG may not converge under improving move dynamics.

◮ Theorem 5.18. For any 𝑘 ≥ 2, the deg(𝑘)NCG does not admit the FIP,
which implies that these games cannot have a generalized ordinal potential
function. ◭

Proof. We prove the statement by providing an improving response cycle, which
is a cyclic sequence of networks where neighboring networks differ only by the
strategy of one agent and this strategy change is an improving response for the
respective agent. See Figure 5.7.
The improving move cycle consists of six steps𝐺1, . . . ,𝐺6 and the transition

from step 𝐺𝑖 to 𝐺𝑖+1 mod 6 is an improving local move by some agent. Since
all these improving moves are 2-local, this proves the statement for both the
deg𝑘NCG and the degNCG for any 𝑘 ≥ 2.

In network 𝐺1 agent 𝑒 has edge cost of 1 and distance cost of 23 which yields
a total cost of 24. By buying the edge to node 𝑖 and removing the edge to node
ℎ (𝑒 “swaps” her edge from ℎ to 𝑖), agent 𝑒 can decrease her cost by 1 since her
edge cost in 𝐺2 is 3 and her distance cost is 20.

In network 𝐺2 agent 𝑏 has edge cost of 6 and distance cost of 14 which yields
a total cost of 20. By buying the edge to node ℎ and removing the edge to node 𝑖 ,
agents 𝑏’s edges cost decreases to 4 and her distance cost increases to 15, which
yields a total decrease of 1.

In network𝐺3 agent 𝑗 has edge cost of 4 and distance cost of 19 giving a total
cost 23. By performing the swap from 𝑖 to ℎ, agent 𝑗 ’s edge cost does not change
but her distance cost decreases by 1.
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with the number of bought edges serving as a generalized ordinal potential
function.
Since convergence is guaranteed, we focus on investigating the speed of

convergence and the quality of the obtained networks. For the latter, Observa-
tion 5.17 yields a devastating result. However, we contrast this for the deg2AOG
by proving that if round-robin best single edge dynamics starting on a path as
initial network are used, then the social cost is actually close to the best possible
achievable social cost.

◮ Theorem 5.20. Let 𝑃𝑛 = {𝑣1 · · · 𝑣𝑛}, a path of length 𝑛 with 𝑣1 and 𝑣𝑛 as leaf
nodes, be the initial network for the deg(𝑘)AOG:

1. If in any step the active agent is chosen uniformly at random then IRD in
the deg(𝑘)AOG converge in O(𝑛3) steps in expectation.

2. If in any step the active agent and her improving response is chosen
adversarially (see Algorithm 2) then IRD in the deg(𝑘)AOG converge in
𝛩 (𝑛2) steps.

3. If round-robin best single edge dynamics are used in the deg2AOG, the
process converges in at most O(𝑛 log𝑛) steps to a network with diameter
O(1).

◭

Proof. 1. Consider the following procedure: At any time 𝑡 ≥ 1 let 𝐺𝑡 =

(𝑉 , 𝐸𝑡 ) be the graph in the process where 𝐺0 = 𝑃𝑛 , and let 𝑣 ∈ 𝑉 be an
active node chosen uniformly at random. If 𝑣 in𝐺𝑡 has an improving move
then 𝑣 adds a profitable edge. Otherwise it does nothing and another node
is chosen. The process repeats until no agent has an improving move.

Consider the stochastic process {𝑋𝑡 }𝑡 ≥0, where 𝑋𝑡 = |𝐸𝑡 |. Now if the
graph 𝐺𝑡 is not in equilibrium, then the probability 𝑃𝑟 (𝑋𝑡 < 𝑋𝑡+1) ≥ 1

𝑛

and 𝑃𝑟 (𝑋𝑡 = 𝑋𝑡+1) = 1 − 𝑃𝑟 (𝑋𝑡 < 𝑋𝑡+1). This implies that the expected
number of steps until an improving response is played in the process
{𝑋𝑡 }𝑡 ≥0 is dominated by the geometric random variable 𝐺

( 1
𝑛

)
. In the

process {𝑋𝑡 }𝑡 ≥0 the absorbing state corresponds to a (𝑘)NE network. Since
𝑛− 1 ≤ 𝑋𝑡 ≤ 𝑛 (𝑛−1)

2 , for any 𝑡 , it follows that the expected number of steps
needed to reach a (𝑘)NE is at most O(𝑛3).
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2. Consider the adversarial scheme in Algorithm 2 which is illustrated in
Figure 5.8. First we prove that each addition of an edge induced by this
scheme is an improving response.

Consider line 2 to 5 of the algorithm. At each step of the loop the degree
of any node is at most ⌈𝑛

2
⌉ and the distance improves by at least ⌈𝑛

2
⌉ + 1.

Thus every edge addition in the loop is an improving response for the
activated node. Now in the next loop, line 6–7, only node 𝑣 ⌈𝑛

2
⌉ is active

and each of its additions is an improving response since all bought edges
have a cost of 2 and the distance cost improvement is 𝑛 − 𝑖 + 1 ≥ 3. The
edge added in line 8 is an improving response as it costs 3 and the distance
cost improvement is at least 𝑛 − 2.

Now after this step we note that the network is in 2NE. Indeed, any
two nodes from {𝑣1, . . . , 𝑣𝑛−2} are in distance at most 2 to each other and
adding an edge to 𝑣𝑛−1 or 𝑣𝑛 improves the distance cost by only 1. Note that
adding the edges 𝑣𝑛−1𝑣𝑛−3,𝑣𝑛−1𝑣 ⌈𝑛

2
⌉−1, 𝑣𝑛−1𝑣𝑛−3, or 𝑣𝑛−1𝑣 ⌈𝑛

2
⌉−1 still may be

an improvement. But buying an edge to 𝑣 ⌈𝑛
2
⌉−1 costs 𝑛− 3 and the distance

cost improvement is at most 𝑛 − 4. At the same time adding 𝑣𝑛−1𝑣𝑛−3
shortcuts the distance to the nodes 𝑣𝑛−3 and 𝑣𝑛−4, thus this move improves
the distance cost by 2 and has a cost of at least 3. Hence the graph is in
2NE after line 8.

Next, we prove that the remaining edge additions are improving responses
in the degAOG. In line 11 the added edge yields an improvement for the
active agent since it costs 2 and improves the distance to node 𝑣𝑛−1 by 2
and to node 𝑣𝑛 by 1. In the next loop, line 13 to 15, node 𝑣𝑛−1 is active
and it buys an edge to 𝑣 ⌈𝑛

2
⌉+3 and to every third node starting from there.

These additions are improving responses since the degree of each node 𝑣𝑖
is 3 and adding an edge to them improves 𝑣𝑛−1’s distance to 𝑣𝑖 , 𝑣𝑖−1 and
𝑣𝑖−2 by 2, 1 and 1, respectively. After this step the diameter of the network
is 3 and the degree of every node, except 𝑣𝑛 , is at least 3, hence no agent
can improve further, which implies that the network is in (𝑘)NE, where
𝑘 ≥ 3 .

Note that already in the first loop, line 2 to 5, 𝛩 (𝑛2) many improving
responses are played. Therefore, the algorithm can be simplified, and steps
after the first loop can be chosen arbitrarily.

3. Let 𝐺 = 𝑃𝑛 . For 𝑖, 𝑗 = 1, . . . , 𝑛, if 𝑖 < 𝑗 , we call an edge 𝑣𝑖𝑣 𝑗 a forward edge,
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Algorithm 2: Adversarial Scheme for the deg(𝑘)AOG

1 input undirected path 𝑃𝑛 = (𝑉 , 𝐸) from 𝑣1 to 𝑣𝑛 ;
2 for 𝑖 := 1 to ⌈𝑛

2
⌉ − 3 do

3 activate 𝑣𝑖 and add the edge 𝑣𝑖𝑣𝑖+2 to 𝐸 ;
4 for 𝑗 = 𝑖 − 1 to 1 do

5 activate 𝑣 𝑗 and add the edge 𝑣 𝑗𝑣𝑖+2 to 𝐸;

6 for 𝑖 = ⌈𝑛
2
⌉ + 1 to 𝑛 − 2 do

7 activate 𝑣 ⌈𝑛
2
⌉−1 and add the edge 𝑣 ⌈𝑛

2
⌉−1𝑣𝑖 ;

8 activate 𝑣𝑛 and add the edge 𝑣𝑛𝑣𝑛−2 to 𝐸;
9 if the model under consideration is the deg2AOG then

10 go to line 16;

11 activate 𝑣 ⌈𝑛
2
⌉ and add the edge 𝑣 ⌈𝑛

2
⌉𝑣𝑛−1 ;

12 𝑖 := ⌈𝑛
2
⌉ + 3 ;

13 while 𝑖 ≤ 𝑛 − 5 do

14 activate 𝑣𝑛−1 and add the edge 𝑣𝑛−1𝑣𝑖 to 𝐸;
15 𝑖 := 𝑖 + 3;

16 return Graph 𝐺 = (𝑉 , 𝐸);

otherwise, if 𝑖 > 𝑗 , a backward edge. We consider round-robin activation
in the order 𝑣1, 𝑣2, . . . , 𝑣𝑛 .

Starting with 𝑣1, 𝑣2, . . . , 𝑣𝑛−4 every agent 𝑣𝑖 can buy a forward edge to node
𝑣𝑖+2 since 𝑑𝑒𝑔𝐺 (𝑣𝑖+2) = 2 and the improvement in distance cost is 𝑛− (𝑖+1).
Another possibility for 𝑣𝑖 is to buy a backward edge to 𝑣𝑖−3 then it improves
her distance to every second node in 𝑣1, . . . , 𝑣𝑖−4 and to node 𝑣𝑖−3 by 1, i.e.,
the distance cost improvement is at most 𝑖−2

2
. At the same time buying

a backward edge to 𝑣𝑖−4 costs 4 and improves the distance cost by 𝑖 − 4.
Hence, buying a forward edge is the best single edge addition for 𝑣𝑖 if
𝑛 − (𝑖 + 1) − 2 ≥ (𝑖 − 4) − 4. Thus the best single edge addition of agent
𝑣 ⌈𝑛+5

2
⌉ is an edge to 𝑣 ⌈𝑛−3

2
⌉ .

Now agent 𝑣 ⌈𝑛+5
2

⌉+1 can buy an edge to 𝑣 ⌈𝑛+5
2

⌉+2, 𝑣 ⌈𝑛+5
2

⌉−3, 𝑣 ⌈𝑛+5
2

⌉−4 or to
𝑣 ⌈𝑛+5

2
⌉−5. Observe that buying a backward edge to the node with the

lowest possible index maximizes the distance cost improvement. Adding
the edge 𝑣 ⌈𝑛+5

2
⌉𝑣 ⌈𝑛+5

2
⌉−5 costs 5 and it improves the distance towards all

110







Dynamics Section 5.6

high degree node with lowest index have bought a forward edge to the
high degree node with lowest index, it follows that the best single edge of
the high degree node with the second lowest index connects to the high
degree node with lowest index. Analogously, all high degree nodes with
higher index will also buy an edge to the high degree node with lowest
index. Thus, all high degree nodes after any round will form a clique. It
follows that the distance of any node with higher index than the current
high degree node with lowest index to the latter node is at most 3.

Since the diameter of the forward edge region halves in every round there
can be at most O(log𝑛) rounds until the diameter of the network is in
O(1). At this point all nodes with lower index than the lowest index of
the clique nodes can possibly buy an improving forward edge to all clique
nodes but no improving backward edge can be bought by any agent. Thus,
there can be O(log𝑛) additional rounds and the total number of additional
edges is in O(𝑛 log𝑛).
In total the dynamics needed O(log𝑛) rounds and O(𝑛 log𝑛) best single
edge improvements are made.

�

We contrast the upper bounds by showing that convergence in O(𝑛) many
improving responses is possible.

◮ Theorem 5.21. Let 𝑃𝑛 = {𝑣1 · · · 𝑣𝑛} be the path of length 𝑛, with 𝑣1 and 𝑣𝑛 as
leaf nodes, then there exists a sequence of improving responses which takes

1. 𝑛 − 2 + 𝑛−7
3 steps to obtain a NE network in the degAOG;

2. 𝑛 − 1 steps to obtain a 2NE network in the deg2AOG.

◭

Proof. 1. Consider a path 𝑃𝑛 = 𝑣1, · · · , 𝑣𝑛 . We activate 𝑣1 and sequentially
buy the edges 𝑣1𝑣𝑖 for each 3 ≤ 𝑖 ≤ 𝑛 − 2. Afterwards we activate 𝑣𝑛−1 and
sequentially buy the edges 𝑣𝑛−1𝑣𝑖+3 with 0 ≤ 𝑖 ≤ 𝑛 − 8. Each edge addition
is an improving move since 𝑣1 pays 2 to improve the distance cost by at
least 3 and 𝑣𝑛 pays 3 and improves her distance cost by 4 to the nodes 𝑣𝑖+2,
𝑣𝑖+3 and 𝑣𝑖+4. After that no edge addition is possible as each edge costs at
least 3 whereas the possible distance cost improvement is at most 3. Thus
the network is in NE after 𝑛 − 2 + 𝑛−7

3 = 𝛩 (𝑛) many steps.
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2. Consider the following activation scheme in which node 𝑣1 buys an edge
to each node 𝑣𝑖 where 3 ≤ 𝑖 ≤ 𝑛 − 2. Every single edge purchase is
an improving response because the edge cost is 2 and the distance cost
improvement is at least 3. Next, we activate 𝑣𝑛 and add the edge 𝑣𝑛𝑣𝑛−2.
This is improving for 𝑣𝑛 , since the edge costs 3 and it decreases the distance
cost by 𝑛 − 2.

All nodes {𝑣1, . . . , 𝑣𝑛−2} are in distance at most 2 towards each other, thus
there are no possible further improving edge additions between these
agents. Buying an edge to 𝑣𝑛−1 and 𝑣𝑛 costs 2 and 1, respectively, whereas
the distance cost improvement is also 2 and 1, respectively. The nodes 𝑣𝑛−1
and 𝑣𝑛 do not want to buy an edge to 𝑣1 as it costs 𝑛 − 3 and the distance
cost improvement is 𝑛 − 4. There is no other local improving response for
both nodes as each node in their 2-neighborhood costs 3 and the distance
cost improvement is just 1. Therefore the network is in 2NE after 𝑛 − 1

many steps.
�

Finally, we investigate the quality of the (2)NE networks which can be obtained
by improving move dynamics starting from the path 𝑃𝑛 . For this we introduce
a measure which is similar to the Price of Anarchy. Let 𝐺0 be any initial con-
nected network and let 𝑍 (𝐺0) be the set of networks which can be obtained via
improving response dynamics in the deg(2)AOG. Let 𝐵𝑒𝑠𝑡 (𝐺0) ∈ 𝑍 (𝐺0) be the
reachable network with the minimum social cost among all networks in 𝑍 (𝐺0).
We can now measure the quality of any network𝐺 ∈ 𝑍 (𝐺0) by investigating the
ratio 𝜌 (𝐺,𝐺0) = 𝑐𝑜𝑠𝑡 (𝐺)

𝑐𝑜𝑠𝑡 (𝐵𝑒𝑠𝑡 (𝐺0)) .

◮ Theorem 5.22.

1. Let 𝐺 be any network in 𝑍 (𝐺0) then 𝜌 (𝐺,𝐺0) ∈ O(𝑛).

2. There is a network 𝐺 ∈ 𝑍 (𝑃𝑛) with 𝜌 (𝐺, 𝑃𝑛) ∈ 𝛩 (𝑛) in the deg(2)AOG.

3. Let 𝐺∗ be the network obtained by the round-robin best single edge dy-
namics in the deg2AOG, then we have 𝜌 (𝐺∗, 𝑃𝑛) ∈ O(log𝑛).

◭

Proof. 1. To provide an upper bound on 𝜌 (𝐺,𝐺0) we evaluate an upper bound
on the social cost of𝐺 . Let 𝐷 be the diameter of𝐺 . Then the total distance
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cost of all agents is at most 𝐷𝑛2 ≤ 𝑛3. The total edge cost of all agents is in
O(𝑛3). The social cost of 𝐵𝑒𝑠𝑡 (𝐺0) is at least 𝑛(𝑛 − 1), since the diameter
of 𝐵𝑒𝑠𝑡 (𝐺0) is at least 1. Hence, 𝜌 (𝐺,𝐺0) ∈ O(𝑛).

2. The upper bound follows from the first part of the proof. The matching
lower bound follows from the example network 𝐺 given in the second
part of the proof of Theorem 5.20. 𝐺 has𝛩 (𝑛2) many edges which all have
cost in𝛩 (𝑛). It yields that the social cost of 𝐺 is in𝛩 (𝑛3). Now consider
the activation scheme in the proof of Theorem 5.21. In the constructed
equilibrium network𝐺 ′, the total edge cost is in𝛩 (𝑛). Thus, the social cost
of 𝐺 ′ is in𝛩 (𝑛2), which is an upper bound on the social cost of 𝐵𝑒𝑠𝑡 (𝑃𝑛).
Hence, 𝜌 (𝐺, 𝑃𝑛) ∈ 𝛺 (𝑛).

3. We prove the upper bound on 𝜌 (𝐺∗, 𝑃𝑛) by providing an upper bound on
the social cost of 𝐺∗ and the lower bound on 𝐵𝑒𝑠𝑡 (𝑃𝑛).
From the third part of Theorem 5.20 we know that the total number of
edges and the diameter of𝐺∗ is in O(𝑛 log𝑛) and O(1), respectively. Since
the diameter of𝐺∗ is in O(1), the total distance cost can be upper bounded
by O(𝑛2). The total edge cost of𝐺∗ is upper bounded by O(𝑛2 log𝑛), since
there are O(log𝑛) many high degree nodes with degree𝛩 (𝑛), and almost
all edges are bought towards these high degree nodes and thus each have
cost in𝛩 (𝑛). Hence, 𝐺∗ has a social cost in O(𝑛2 log𝑛).
On the other hand, a trivial lower bound on the social cost of 𝐵𝑒𝑠𝑡 (𝑃𝑛) is
𝑛(𝑛 − 1), which then yields 𝜌 (𝐺∗, 𝑃𝑛) ∈ O(log𝑛).

�

5.7 Conclusion

We have introduced natural variants of the classic NCG, which have the dis-
tinctive features that they are parameter-free and at the same time incorporate
non-uniform edge costs. Besides proving that computing a best response is
NP-hard and that improving response dynamics may never converge to an
equilibrium, we have also established that the degNCG has a constant Price of
Anarchy. This strong statement holds whenever the edge price is any linear
function of the degree of the non-owner endpoint of the edge or if agents are
allowed to buy edges to nodes in their 3-neighborhood. For the version which
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includes stronger locality, i.e., the deg2NCG, we have shown that the PoA is
in O(

√
𝑛) and, as a contrast, for the add-only version the PoA is in 𝛩 (𝑛). We

also demonstrate how to circumvent the latter negative result by using suitable
activation schemes on a sparse initial network.

Studying the bilateral version of our model, where both endpoints of the edge
have to agree and pay proportionally to the degree of the other endpoint for
establishing an edge, is an obvious future research direction. For this version,
we have already established that most of our proofs can be easily adapted, which
implies that our results, with minor modifications, still hold. Another interesting
extension would be to consider an edge price function which depends on the
degree of both involved nodes. This could be set up such that edges between
nodes of similar degree are cheap and edges become expensive when the degree
of both nodes differs greatly.

116



6 Selfish Creation of

Social Networks

In this chapter, we propose and analyze a simple and very general game-theoretic
model which is inspired by real-world social networks. It was observed that
in real-world social networks connections are often established by recommen-
dations from common acquaintances or by a chain of such recommendations.
Thus establishing and maintaining a contact with a friend of a friend is easier
than connecting to complete strangers. This explains one of the core properties
of real-world networks, the high clustering, i.e., the abundance of triangles. To
model this situation in terms of the NCGs, we consider a network creation game
where selfish agents bilaterally form costly links to increase their centrality.
The cost of each link is proportional to the distance of the endpoints before
establishing the connection. We provide results for generic cost functions, which
essentially only must be convex functions in the distance of the endpoints with-
out the respective edge. For this broad class of cost functions, we provide many
structural properties of equilibrium networks and prove (almost) tight bounds
on the diameter, the Price of Anarchy and the Price of Stability. Moreover, as
a proof-of-concept we show via experiments that the created equilibrium net-
works of our model indeed closely mimic real-world social networks. We observe
degree distributions that seem to follow a power-law, high clustering, and low
diameters. Hence, our model promises to be the first game-theoretic network
formation model which predicts networks that exhibit all core properties of
real-world networks.

6.1 Model and Notation

We consider a new model, called the Social Network Creation Game (SNCG),
which is related to the bilateral network creation game [CP05]. The set of 𝑛
selfish agents𝑉 corresponds to the nodes of a network and the agents’ strategies
determine the edge-set of the formed network 𝐺 . Each agent 𝑢 tries to optimize
a cost function 𝑐𝑜𝑠𝑡 (𝑢,𝐺 (s)), which depends on the structure of the network 𝐺 .

In real-world social networks new connections are formed by a bilateral agree-
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ment of both endpoints while an existing connection can be unilaterally removed
by any one of the involved endpoints. Following this idea, we consider only
single edge additions with consent of both endpoints or single edge deletions as
possible (joint) strategy changes of the agents. As equilibrium concept we adopt
the well-known solution concept called pairwise stability [JW96]. Intuitively, a
network𝐺 is pairwise stable if every edge of𝐺 is beneficial for both endpoints of
the edge and for every non-edge of 𝐺 , at least one endpoint of that edge would
not decrease her cost by creating the edge. More formally,𝐺 = (𝑉 , 𝐸) is pairwise
stable if and only if the following conditions hold:

1. for every edge𝑢𝑣 ∈ 𝐸, we have 𝑐𝑜𝑠𝑡 (𝑢,𝐺−𝑢𝑣) ≥ 𝑐𝑜𝑠𝑡 (𝑢,𝐺) and 𝑐𝑜𝑠𝑡 (𝑣,𝐺−
𝑢𝑣) ≥ 𝑐𝑜𝑠𝑡 (𝑣,𝐺);

2. for every non-edge 𝑢𝑣 ∉ 𝐸, we have 𝑐𝑜𝑠𝑡 (𝑢,𝐺 + 𝑢𝑣) ≥ 𝑐𝑜𝑠𝑡 (𝑢,𝐺) or
𝑐𝑜𝑠𝑡 (𝑣,𝐺 + 𝑢𝑣) ≥ 𝑐𝑜𝑠𝑡 (𝑣,𝐺).

Created edges are bidirectional and can be used by all agents, but the cost of
each edge is equally shared by its two endpoints.

The main novel feature of our model is the definition of the cost of any edge
𝑢𝑣 ∈ 𝐸, which is proportional to the distance of both endpoints without the
respective edge, i.e., proportional to𝑑𝐺−𝑢𝑣 (𝑢, 𝑣). This is motivated by the fact that,
in social networks, the probability of establishing a new connection between two
parties is inversely proportional to their degree of separation. More precisely, let
𝜎 : ℕ → ℝ+ be a monotonically increasing convex function such that 𝜎 (0) = 0.
The cost of the edge 𝑢𝑣 in network 𝐺 is equal to

𝑐𝐺 (𝑢𝑣) =
{
𝜎 (𝑑𝐺−𝑢𝑣 (𝑢, 𝑣)) if 𝑑𝐺−𝑢𝑣 (𝑢, 𝑣) ≠ +∞,

𝜎 (𝑛) otherwise,

where𝑑𝐺 (𝑢, 𝑣) is the hop-distance between𝑢 and 𝑣 in𝐺 = (𝑉 , 𝐸), i.e., the number
of edges in a shortest path between 𝑢 and 𝑣 in𝐺 . We assume that 𝑑𝐺 (𝑢, 𝑣) = +∞
if no path between 𝑢 and 𝑣 exists in 𝐺 .
We call an edge 𝑢𝑣 a 𝑘-edge if 𝑑𝐺−𝑢𝑣 (𝑢, 𝑣) = 𝑘 , and a bridge (or 𝑛-edge) if

𝑑𝐺−𝑢𝑣 (𝑢, 𝑣) = +∞. If the network is clear from the context, we will sometimes
omit the reference to𝐺 and we still simply write 𝑐 (𝑢𝑣) to denote the cost of edge
𝑢𝑣. Note that by definition, any bridge in 𝐺 , i.e., any edge whose removal would
increase the number of connected components of 𝐺 , has cost 𝜎 (𝑛) > 𝜎 (𝑛 − 1)
and thus any bridge has higher cost than any other non-bridge edge. The latter
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centrality [BK11]. This model yields various sparse equilibrium networks with
high clustering but these can have a large diameter and a homogeneous degree
distribution.

The SNCG incorporates a robustness aspect since bridge-edges are expen-
sive. This fits to a recent research trend for studying robust network forma-
tion [Che+19; Ech+20; Goy+16; MMO15].

Despite the variety of studied network formation models, to the best of our
knowledge, no simple game-theoretic model exists, which predicts a low di-
ameter, a power-law degree distribution and high clustering in its equilibrium
networks. We are also not aware of any simulation results in this direction. How-
ever, there are two promising but very specialized candidates in that direction.
The first candidate, which is particularly tailored to the web graph [Kou+15],
yields directed equilibrium networks that share many features of real-world
content networks. The second candidate uses a game-theoretic framework and
hyperbolic geometry to generate networks with real-world features. In the net-
work navigation game [Gul+15], agents correspond to randomly sampled points
in the hyperbolic plane and they strategically create edges to ensure greedy
routing in the created network. It is shown that the equilibrium networks indeed
have a power-law degree distribution and high clustering. However, the main
reason for this is not the strategic behavior of the agents but the fact that the
agents correspond to uniformly sampled points in the hyperbolic plane. It is
known that the closely related hyperbolic random graphs [Kri+10] indeed have
all core properties of real-world networks.

6.3 Properties of Equilibrium Networks

In this section we prove structural properties satisfied by all connected pairwise
stable networks that will be useful in proving our main results. We first provide
a nice property satisfied by the function 𝜎 following from its convexity.

◮ Proposition 6.1. Fix a positive real value 𝑥 . Let 𝑥1, . . . , 𝑥𝑘 , with 0 ≤ 𝑥𝑖 ≤ 𝑥 ,
be 𝑘 ≥ 2 positive real values and let 𝜆1, . . . , 𝜆𝑘 , with 𝜆 ∈ [0, 1], such that
𝑥 =

∑𝑘
𝑖=1(𝜆𝑖𝑥𝑖). Then 𝜎 (𝑥) ≥

∑𝑘
𝑖=1

(
𝜆𝑖𝜎 (𝑥𝑖)

)
. ◭
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Proof. We show that 𝜎 (𝑥𝑖) ≤ 𝑥𝑖𝜎 (𝑥)
𝑥

. This is enough to prove the claim since

𝑘∑︁
𝑖=1

(
𝜆𝑖𝜎 (𝑥𝑖)

)
≤ 𝜎 (𝑥)

𝑥

𝑘∑︁
𝑖=1

(𝜆𝑖𝑥𝑖) ≤ 𝜎 (𝑥) .

Let 𝑥𝑖 = 𝜆𝑖𝑥 , i.e., 𝜆𝑖 =
𝑥𝑖
𝑥
, and observe that 𝜆𝑖 ∈ [0, 1]. By convexity of 𝜎 we have

that
𝜎 (𝑥𝑖) = 𝜎

(
(1 − 𝜆𝑖)0 + 𝜆𝑖𝑥

)
≤ (1 − 𝜆𝑖)0 + 𝜆𝑖𝜎 (𝑥) =

𝑥𝑖

𝑥
𝜎 (𝑥) . �

In the next statement we claim that nodes can be incident to at most one expen-
sive edge. Hence, the number of such edges is limited. This property implies a
high number of triangles (induced cycles of size 3) in stable networks.

◮ Proposition 6.2. In any pairwise stable network, any node has at most one
incident edge of cost at least 𝜎 (4). If 2𝜎 (2) ≤ 𝜎 (3) holds, any node in a pairwise
stable network has at most one incident edge of cost at least 𝜎 (3). ◭

Proof. Let 𝑢𝑣 and 𝑣𝑤 be two distinct edges of 𝐺 that are incident to 𝑣. We prove
the claim by showing that at most one of these edges can have a cost of at least
2𝜎 (2). This implies the claim since, by Proposition 6.1, 𝜎 (4) ≥ 2𝜎 (2).
Note that the edge 𝑢𝑤 ∉ 𝐸 (𝐺) because otherwise, it implies that costs of all

edges equal 𝜎 (2). If both edges 𝑢𝑣 and 𝑣𝑤 have a cost of at least 2𝜎 (2) each, then
𝐺 is not pairwise stable as, by adding the edge 𝑢𝑤, the total edge cost of both
agent 𝑢 and agent 𝑤 does not increase, while the total distance cost of each of
the two agents decreases by at least 1. In fact, the edge cost of each edge 𝑢𝑣, 𝑢𝑤,
and 𝑣𝑤 in 𝐺 + 𝑢𝑤 is equal to 𝜎 (2). �

Next, we establish that all pairwise stable networks contain almost no bridges.
This property can be observed in most real-world social networks.

◮ Theorem 6.3. Any pairwise stable network contains at most three bridges.
◭

Proof. We prove that any network 𝐺 with four or more bridges cannot be pair-
wise stable. First, we show that in this case there are two bridges at a distance
of at most 𝑛/2 − 2 in 𝐺 , i.e., two nodes 𝑢1 and 𝑢2 that are incident to 2 distinct
bridges 𝑒1 = 𝑢1𝑣1 and 𝑒2 = 𝑢2𝑣2 such that 𝑑𝐺 (𝑢1, 𝑢2) ≤ 𝑛

2
− 2. We observe that

this is enough to prove the claim. Indeed, w.l.o.g., let 𝑑𝐺 (𝑣1, 𝑣2) = 2 + 𝑑𝐺 (𝑢1, 𝑢2).
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We have that 𝑑𝐺 (𝑣1, 𝑣2) ≤ 𝑛
2
. By adding the edge 𝑣1𝑣2 to𝐺 the total distance cost

of both agents 𝑣1 and 𝑣2 decreases by at least 1, while their total edge cost differs
by 𝜎 (𝑛/2) − 1

2
𝜎 (𝑛) ≤ 0 as, by Proposition 6.1, 𝜎 (𝑛) ≥ 2𝜎 (𝑛/2). Hence,𝐺 cannot

be pairwise stable.
We now complete the proof by showing that there are two bridges at a distance

of at most 𝑛
2
− 2.

Let T be the block-cut tree decomposition of 𝐺 , i.e., a decomposition of 𝐺
into maximal 2-connected components and cut nodes.6 Notice that each bridge
𝑢𝑣 is represented in T as a 2-connected component that is connected with
the two cut nodes 𝑢 and 𝑣. Let T ′ be a minimal connected subtree of T that
contains exactly four 2-connected components that are bridges, and let 𝐺 ′ be
the sub-network of 𝐺 whose block-cut tree decomposition is represented by
T ′. Let 𝑒𝑖 = 𝑢𝑖𝑣𝑖 , with 𝑖 = 1, 2, 3, 4, be the four bridges of 𝐺 ′. We denote by
𝑑 (𝑒𝑖 , 𝑒 𝑗 ) = min

{
𝑑𝐺′ (𝑢𝑖 , 𝑢 𝑗 ), 𝑑𝐺′ (𝑢𝑖 , 𝑣 𝑗 ), 𝑑𝐺′ (𝑣𝑖 , 𝑢 𝑗 ), 𝑑𝐺′ (𝑣𝑖 , 𝑣 𝑗 )

}
the distance in 𝐺 ′

between the two bridges 𝑒𝑖 and 𝑒 𝑗 . We shall prove that min1≤𝑖< 𝑗≤4 𝑑 (𝑒𝑖 , 𝑒 𝑗 ) ≤
𝑛
2 − 2.
Since each edge 𝑒𝑖 = 𝑢𝑖𝑣𝑖 is a bridge, we can assume that it is represented by

an edge 𝑢𝑖𝑣𝑖 in T ′. Let 𝑃𝑖, 𝑗 denote the (unique) simple path in T ′ between the
representatives of the edges 𝑒𝑖 and 𝑒 𝑗 . The proof divides into two complementary
cases, depending on the structures of the paths 𝑃𝑖, 𝑗 , with 1 ≤ 𝑖 < 𝑗 ≤ 4.
The first case is when at least two paths in {𝑃𝑖, 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 4} are node

disjoint. W.l.o.g., we assume that 𝑃1,2 is node disjoint w.r.t. 𝑃3,4, and that the
overall number of nodes of the 2-connected components corresponding to the
nodes in 𝑃1,2 is at most 𝑛/2. It is well-known that a 2-edge-connected network
with 𝑛 nodes has diameter of at most 2

3𝑛 < 𝑛 [CS92]. Hence we have that

min
1≤𝑖< 𝑗≤4

𝑑 (𝑒𝑖 , 𝑒 𝑗 ) ≤ 𝑑 (𝑒1, 𝑒2) ≤
2

3

(𝑛
2
− 2

)
<

𝑛

2
− 2.

The second case is when there are no two node disjoint paths in {𝑃𝑖, 𝑗 | 1 ≤
𝑖 < 𝑗 ≤ 4}. This can happen only if there is exactly one 2-connected component,

6 A node 𝑥 of a connected network 𝐺 is a cut node if its removal from 𝐺 results in a network
that is not connected. A 2-connected network is a connected network with no cut node. A
2-connected component of 𝐺 is a maximal (w.r.t. node insertion) 2-connected sub-network of
𝐺 . A block-cut tree T of 𝐺 is a tree where each tree node represents either a cut node or a
2-connected component of 𝐺 . More precisely, there is an edge between the representative of a
cut node 𝑥 of 𝐺 and the representative of a 2-connected component 𝐺 ′ of 𝐺 if and only if 𝑥 is
a node of 𝐺 ′.
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say𝐶 that is traversed by all the four paths 𝑃𝑖, 𝑗 . Let 𝑛𝐶 := |𝐶 | denote the number
of nodes of 𝐶 in 𝐺 ′. For 𝑖 = 1, 2, 3, 4, let 𝑛𝑖 be the overall number of nodes of
the 2-connected components corresponding to the nodes in the (unique) simple
path in T ′ from the node that represents 𝑒𝑖 to the node that represents the
2-connected components right before𝐶 . Clearly, 𝑛1, 𝑛2, 𝑛3, 𝑛4 ≥ 2 and 𝑛𝐶 ≤ 𝑛−4.
W.l.o.g., we assume that 𝑛1 ≤ 𝑛2 ≤ 𝑛3 ≤ 𝑛4. We prove that 𝑑 (𝑒1, 𝑒2) ≤ 𝑛

2
− 2. It is

well known that the diameter of any 2-connected network with 𝑛 nodes is at
most

⌈
𝑛−1
2

⌉
[CS92]. We divide the proof into three sub-cases. The first sub-case

is when 𝑛1 = 𝑛2 = 2. This implies that

𝑑 (𝑒1, 𝑒2) ≤
⌈
𝑛𝐶 − 1

2

⌉
≤

⌈
𝑛 − 4 − 1

2

⌉
≤ 𝑛

2
− 2.

The second sub-case is when 𝑛1 = 2 and 𝑛2 > 2. In this case, we have that
𝑛2, 𝑛3, 𝑛4 ≥ 4. Moreover, 𝑛𝐶 + 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 ≤ 𝑛 + 4 from which we derive
𝑛𝐶 ≤ 𝑛 + 2 − 3𝑛2. The diameter of 𝐶 is at most ⌈(𝑛𝐶 − 1)/2⌉ as 𝐶 is 2-connected.
Moreover, all the other 2-connected components traversed by 𝑃1,2, except for 𝑒1
and 𝑒2 and 𝐶 , form a 2-edge-connected networks of diameter at most 2

3
(𝑛2 − 1).

Therefore, we have that

𝑑 (𝑒1, 𝑒2) ≤
⌈
𝑛𝐶 − 1

2

⌉
+ 2

3
(𝑛2 − 1) ≤ 𝑛𝐶

2
+ 2

3
𝑛2 −

2

3

≤ 𝑛

2
+ 1 − 3

2
𝑛2 +

2

3
𝑛2 − 1 ≤ 𝑛

2
− 5

6
𝑛2

<

𝑛

2
− 2.

The third and last sub-case is when 𝑛1, 𝑛2 > 2. In this case, we have that
𝑛1, 𝑛2, 𝑛3, 𝑛4 ≥ 4. Moreover, 𝑛𝐶 + 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 ≤ 𝑛 + 4 from which we derive

𝑛𝐶 ≤ 𝑛 + 4 − 2(𝑛1 + 𝑛2) ≤ 𝑛 + 4 − 4

3
(𝑛1 + 𝑛2) −

2 · 8
3

= 𝑛 − 4

3
(𝑛1 + 𝑛2) −

4

3
.

The diameter of 𝐶 is at most ⌈(𝑛𝐶 − 1)/2⌉ as 𝐶 is 2-connected. Moreover, all the
other 2-connected components traversed by 𝑃1,2, except for 𝑒1 and 𝑒2 and𝐶 , form
two 2-edge-connected networks of diameter at most 2

3
(𝑛1 − 1) and 2

3
(𝑛2 − 1),
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respectively. Therefore, we have that

𝑑 (𝑒1, 𝑒2) ≤
⌈
𝑛𝐶 − 1

2

⌉
+ 2

3
(𝑛1 − 1) + 2

3
(𝑛2 − 1)

≤ 𝑛𝐶

2
+ 2

3
(𝑛1 + 𝑛2) −

4

3

≤ 𝑛

2
− 2

3
(𝑛1 + 𝑛2) −

2

3
+ 2

3
(𝑛1 + 𝑛2) −

4

3

=
𝑛

2
− 2.

This completes the proof. �

The following theorem shows an upper bound on the diameter of any pairwise
stable network that only depends on the cost of edges which close a triangle.

◮ Theorem 6.4. The diameter of any pairwise stable network in the SNCG is
at most 𝜎 (2) + 1. ◭

Proof. Consider a pairwise stable network 𝐺 of diameter 𝐷 . Let 𝑣0, 𝑣1, . . . , 𝑣𝐷
be a diametral path of 𝐺 . Consider the addition of the edge between 𝑣 ⌊𝐷/2⌋−1
and 𝑣 ⌊𝐷/2⌋+1 to network 𝐺 . Each node 𝑣0, . . . , 𝑣 ⌊𝐷/2⌋−1 becomes 1 unit closer to
𝑣 ⌊𝐷/2⌋+1; similarly, each node 𝑣 ⌊𝐷/2⌋+1, . . . , 𝑣𝐷 becomes 1 unit closer to 𝑣 ⌊𝐷/2⌋−1.
In both cases, the distance cost of the considered agent decreases by at least
⌊𝐷/2⌋. Since the network is pairwise stable, both agents 𝑣 ⌊𝐷/2⌋−1 and 𝑣 ⌊𝐷/2⌋+1
have no incentive in buying the considered edge. Therefore, 𝜎 (2)/2− ⌊𝐷/2⌋ ≥ 0.
Since ⌊𝐷/2⌋ ≥ 𝐷−1

2
, we get 𝐷 ≤ 𝜎 (2) + 1. �

Finally, we prove an upper bound on the cost of non-bridge edges. This implies
that all pairwise stable networks contain only small minimal cycles, i.e., cycles
where the shortest path between two nodes in the cycle is along the cycle.

◮ Proposition 6.5. In a pairwise stable network, for all 𝑘 ∉ {2, 3, 𝑛}, the cost
of any 𝑘-edge is 𝜎 (𝑘) < 𝑛𝜎 (2). If 𝜎 (2) ≤ 1

2
𝜎 (3) holds, for all 𝑘 ∉ {2, 𝑛}, the cost

of any 𝑘-edge is 𝜎 (𝑘) ≤ 𝑛𝜎 (2). ◭

Proof. Consider a pairwise stable network𝐺 . Assume to the contrary that there
is a non-bridge 𝑘-edge 𝑢𝑣 in 𝐺 of cost 𝜎 (𝑘). Consider the deletion of the edge
𝑢𝑣 by one of its endpoints, say 𝑢. Let 𝑉𝑣 (resp., 𝑉𝑢 ) be a subset of nodes such
that all shortest paths between 𝑢 (resp., 𝑣) and any node in 𝑉𝑣 (resp., 𝑉𝑢 ) goes
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through the edge 𝑢𝑣. By Proposition 6.2, all other edges incident to either 𝑢 or 𝑣
are 2-edges and 3-edges. As a consequence, the deletion of the edge 𝑢𝑣 does not
increase the cost of the edges incident to 𝑢 and 𝑣. Therefore, the edge cost of 𝑢
(resp., 𝑣) decreases by 1

2
𝑐𝐺 (𝑢𝑣), while the distance cost of 𝑢 increases by at most

|𝑉𝑣 | (𝑑𝐺−𝑢𝑣 (𝑢, 𝑣) − 1) = |𝑉𝑣 | (𝑘 − 1) (resp., |𝑉𝑢 | (𝑘 − 1)). Since 𝐺 is pairwise stable,
the𝑢’s (resp., 𝑣) cost difference is greater than zero, i.e., −𝜎 (𝑘)/2+ |𝑉𝑣 | (𝑘 −1) ≥ 0

(resp., −𝜎 (𝑘)/2 + |𝑉𝑢 | · (𝑘 − 1) ≥ 0). We sum up the two inequalities and
get 𝜎 (𝑘) ≤ (|𝑉𝑣 | + |𝑉𝑢 |) · (𝑘 − 1). Note that 𝑉𝑣 ∩ 𝑉𝑢 = ∅. Indeed, if there is
𝑥 ∈ 𝑉𝑣 ∩𝑉𝑢 , then 𝑑𝐺 (𝑢, 𝑥) = 1 + 𝑑𝐺 (𝑣, 𝑥) = 1 + 1 + 𝑑𝐺 (𝑢, 𝑥), i.e., 0 = 2. Therefore,
𝜎 (𝑘) ≤ 𝑛(𝑘 − 1).

If we assume 𝜎 (2) ≤ 1
2
𝜎 (3), each node has at most one incident 3-edge

according to Proposition 6.2. Similarly to the above proof, we obtain 𝜎 (3) ≤ 2𝑛.
Now we consider the addition of a 2-edge 𝑢 ′𝑣 in the minimal cycle of length

(𝑘 +1) that contains the edge 𝑢𝑣 by the node 𝑣 and a neighbor 𝑢 ′ of 𝑢 in the cycle.
First, we consider 𝑘 ≥ 4. For both endpoints, this move improves the distance to
at least 𝑘+1−3

2
nodes in the cycle. Moreover, by Proposition 6.2, all other of 𝑣’s

incident edges are 2- or 3-edges; therefore 𝑣 has at least one neighbor 𝑣 ′ that is
not in the cycle and 𝑑𝐺 (𝑢 ′, 𝑣 ′) ≥ 𝑘 − 1 ≥ 3 (otherwise, it would not be a 𝑘-edge).
Analogously, 𝑢 ′ has a neighbor outside of the cycle at distance at least 3 from
𝑣. This implies that both endpoints of the edge 𝑢 ′𝑣 will improve their distance
to at least 𝑘−2

2
+ 1 nodes by 1 after adding the edge. Since 𝐺 is pairwise stable,

this move is not profitable, i.e., 𝜎 (2)
2

− 𝑘−2
2

− 1 ≥ 0. Hence, 𝜎 (2) ≥ 𝑘 . Combining
this inequality with the inequality 𝜎 (𝑘) ≤ 𝑛(𝑘 − 1) from the first part of the
proof, we get 𝜎 (𝑘) < 𝑛𝜎 (2), if 𝑘 ≥ 4. If 𝑘 = 3 and 𝜎 (2) ≤ 1

2
𝜎 (3), the addition

of a 2-edge can improve the distance to only one node. Since we assume that
𝐺 is pairwise stable, 1

2
𝜎 (2) − 1 ≥ 0, i.e., 𝜎 (2) ≥ 2. Combining this inequality

with the above inequality for 3-edges, we get 𝜎 (3) ≤ 2𝑛 ≤ 𝑛𝜎 (2). The statement
follows. �

6.4 Equilibrium Existence and Social Optima

Clique and fan networks play an important role since, as we will prove, the
former are social optima when 𝜎 (2) ≤ 2, while the latter are social optima when
𝜎 (2) ≥ 2. Furthermore, we also show that complete networks are pairwise stable
whenever 𝜎 (2) ≤ 2, while (almost) fan networks are pairwise stable whenever
𝜎 (2) ≥ 2.
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bound. Hence, for 𝜎 (2) < 2, K𝑛 is the unique social optimum. For the case
𝜎 (2) = 2, we have that the value 𝐿𝐵(𝑚) = 2𝑛(𝑛 − 1) is matched by any network
of diameter 2 that contains only 2-edges. Hence, all and only such networks are
social optima.

Nowwe prove the theorem statement for the remaining case inwhich𝜎 (2) > 2.
We have to show that F𝑛 is the unique social optimum. First of all we observe that
𝐿𝐵(𝑚) is minimized when𝑚 is minimized. Since the social cost of F𝑛 matches
the lower bound 𝐿𝐵(𝑚′) with𝑚′

= 𝑛− 1+
⌈
𝑛−1
2

⌉
, we have that𝑚 ≤ 𝑛− 1+ ⌈𝑛−1

2
⌉.

Moreover, the social cost of the network is bounded only if the network is
connected. This implies that𝐺 is connected, which in turn implies that𝑚 ≥ 𝑛−1.
Therefore, to prove that F𝑛 is the unique social optimum, it is enough to prove
that any network with𝑚 edges, with 𝑛 − 1 ≤ 𝑚 ≤ 𝑛 − 1 +

⌈
𝑛−1
2

⌉
, has a social

cost that is strictly larger than 2𝑛(𝑛 − 1) + (𝜎 (2) − 2)
(
(𝑛 − 1) +

⌈
𝑛−1
2

⌉)
, unless it

is isomorphic to F𝑛 .

For the rest of the proof we can also assume that 𝑛 ≥ 4. In fact, for 𝑛 = 2

it is clear that F2 = K2 is the social optimum since this is the only connected
network of 2 nodes. Moreover, for 𝑛 = 3 we have that F3 = K3 is again the only
social optimum. Indeed, F3 has a social cost of 3𝜎 (2) + 6, while the unique other
connected network – i.e., the path of length 2 – has a social cost of 2𝜎 (3) + 8.
Since by Proposition 6.1, 𝜎 (3) ≥ 3

2
𝜎 (2) (indeed 3 ≥ 1 · 2 + 0.5 · 2), it follows that

2𝜎 (3) + 8 ≥ 3𝜎 (2) + 8 > 3𝜎 (2) + 6.

Moreover, we can also assume that 𝐺 is 2-edge-connected. Indeed, let 𝐺 be
a network that contains a bridge, say 𝑢𝑣. W.l.o.g., let 𝑢 ′ ≠ 𝑣 be a neighbor of
𝑢, whose existence is guaranteed since 𝑛 ≥ 4. The distance cost of 𝐺 + 𝑢 ′𝑣 is
strictly smaller than the distance cost of𝐺 . Moreover, the edge cost of𝐺 +𝑢 ′𝑣 is
at most the edge cost of 𝐺 . In fact, the cost of the bridge 𝑢𝑣 in 𝐺 is at least 𝜎 (4),
while the cost of the two edges 𝑢𝑣 and 𝑢 ′𝑣 in 𝐺 + 𝑢 ′𝑣 is at most 2𝜎 (2) and, by
Proposition 6.1, we have that 𝜎 (4) ≥ 2𝜎 (2). As a consequence, the social cost of
𝐺 + 𝑢 ′𝑣 is strictly smaller than the social cost of 𝐺 .

We divide the proof into two cases, depending on whether𝑚 < 𝑛 − 1 +
⌈
𝑛−1
2

⌉
or not.

We consider the case in which𝑚 < 𝑛 − 1 +
⌈
𝑛−1
2

⌉
. Consider the subgraph 𝐻 of

𝐺 that is induced by 2-edges only. Such a subgraph contains 𝑘 ≥ 1 connected
components, ℎ of which are singleton nodes. Let 𝐶1, . . . ,𝐶𝑘−ℎ be the non-trivial
connected components of 𝐻 . Each𝐶𝑖 contains 𝑛𝑖 ≥ 3 nodes and𝑚𝑖 edges, where
𝑚𝑖 ≥ 𝑛𝑖 − 1 +

⌈
𝑛𝑖−1
2

⌉
. Indeed, each 𝐶𝑖 can be generated starting from a triangle,
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i.e., K3, and by iteratively adding either one or two nodes so as the resulting
induced subgraph contains at least one more triangle than before.

Clearly, at each step, we add either one node and at least two edges or two
nodes and at least three edges. Obviously, the number of edges is minimized
when we add two new nodes and exactly three edges at each step. Therefore,
when 𝑛𝑖 is odd, i.e., 𝑛𝑖 −3 is even, we add at least three edges for every two nodes;
when 𝑛𝑖 is even, i.e., 𝑛𝑖 −3 is odd, we add at least three edges for every two nodes
except one node and at least two edges for the remaining node. As a consequence,
when 𝑛𝑖 is odd, we have𝑚𝑖 ≥ 3 + 3

𝑛𝑖−3
2

= 𝑛𝑖 − 1 +
⌈
𝑛𝑖−1
2

⌉
; when 𝑛𝑖 is even, we

have𝑚𝑖 ≥ 3 + 3
𝑛𝑖−4
2

+ 2 = 𝑛𝑖 − 1 +
⌈
𝑛𝑖−1
2

⌉
. In either case,𝑚𝑖 ≥ 𝑛𝑖 − 1 +

⌈
𝑛𝑖−1
2

⌉
.

First of all, we observe that 𝑛 = ℎ + ∑𝑘−ℎ
𝑖=1 𝑛𝑖 . Furthermore, since we are

assuming𝑚 < 𝑛 − 1 +
⌈
𝑛−1
2

⌉
it must be the case that 𝑘 ≥ 2. Indeed, for 𝑘 = 1,

ℎ would be equal to 0 and therefore𝑚1 ≥ 𝑛 − 1 +
⌈
𝑛−1
2

⌉
. Finally, since we are

assuming that 𝐺 is 2-edge-connected, there are at least 𝑘 edges of 𝐺 each of
which connects a node of one connected component with a node of another
connected component. Clearly, the cost of each of these 𝑘 edges is at least 𝜎 (3)
each. Therefore, since by Proposition 6.1, we have that 𝜎 (3) ≥ 3

2
𝜎 (2), the overall

edge cost of the network 𝐺 is lower bounded by

𝑘𝜎 (3) + 𝜎 (2)
𝑘−ℎ∑︁
𝑖=1

𝑚𝑖 ≥
3

2
𝑘𝜎 (2) + 𝜎 (2)

𝑘−ℎ∑︁
𝑖=1

(
3

2
(𝑛𝑖 − 1)

)

=
3

2
𝑘𝜎 (2) + 3

2
(𝑛 − 𝑘)𝜎 (2)

>

(
𝑛 − 1 +

⌈
𝑛 − 1

2

⌉)
𝜎 (2).

As the distance cost of 𝐺 is lower bounded by 2𝑛(𝑛 − 1) − 2𝑚, the overall social
cost of 𝐺 is strictly larger than 2𝑛(𝑛 − 1) + (𝜎 (2) − 2)

(
(𝑛 − 1) +

⌈
𝑛−1
2

⌉)
, i.e., the

social cost of F𝑛 . Therefore, no network with𝑚 < 𝑛 − 1 +
⌈
𝑛−1
2

⌉
can be a social

optimum.

We now consider the remaining case in which𝑚 = 𝑛−1+
⌈
𝑛−1
2

⌉
and show that

𝐺 is isomorphic to F𝑛 . First of all we observe that the social cost of 𝐺 cannot be
smaller than the social cost of F𝑛 as the social cost of F𝑛 matches the value 𝐿𝐵(𝑚).
This implies that F𝑛 is a social optimum. For the sake of contradiction, assume
that 𝐺 is not isomorphic to F𝑛 . We show that 𝐺 must satisfy some structural
properties, based on three important observations. The first observation is that
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node of 𝐵 ∪𝐶 as otherwise the edge 𝑢 ′𝑏 would not be a 2-edge. Furthermore,
since 𝐺 has diameter 2, it must be the case that for any two nodes 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 either 𝑎𝑏 is an edge of 𝐺 or there is common neighbor 𝑧 ∈ 𝐶 such that 𝑎𝑧
and 𝑧𝑏 are both edges of 𝐺 .
If we assume the existence of an edge 𝑎𝑏 for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then we can

lower bound the number of edges of 𝐺 with𝑚 ≥ 1 + 𝑛 + |𝐶 | +
⌈
|𝐴 |
2

⌉
+

⌈
|𝐵 |
2

⌉
≥

𝑛 + 1 +
⌈
𝑛−3
2

⌉
> 𝑛 − 1 +

⌈
𝑛−1
2

⌉
=𝑚.

If we assume that no edge 𝑎𝑏 with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 exists, then |𝐶 | ≥ 1 and
we can lower bound the number of edges of 𝐺 with𝑚 ≥ 𝑛 + |𝐶 | + |𝐴| + |𝐵 | =
𝑛 + (𝑛 − 3) > 𝑛 − 1 +

⌈
𝑛−1
2

⌉
=𝑚, as 𝑛 ≥ 3 + |𝐴| + |𝐵 | + |𝐶 | > 6.

In either case, we have obtained a contradiction. Hence, F𝑛 is the unique social
optimum when 𝜎 (2) > 2. �

Now we prove the existence of pairwise stable networks. For this we consider a
modified fan graph F

′
𝑛 that is equal to F𝑛 if 𝑛 is odd. If 𝑛 is even, F′𝑛 consists of

F𝑛−1 and one additional node connected to the center.

◮ Theorem 6.7. For 𝜎 (2) ≥ 2, a modified fan graph F
′
𝑛 is a pairwise stable

network, otherwise a clique K𝑛 is the unique pairwise stable network. ◭

Proof. First we show that if 𝜎 (2) < 2, any pairwise stable network is a clique.
Assume to the contrary that there is a network 𝐺 that is pairwise stable but at
least one edge is missing. Adding any missing 2-edge costs 𝜎 (2)/2 for both its
endpoints and improves the distance cost by at least 1. Thus, if 𝜎 (2) < 2, this
move is an improvement.
Next, we prove that the modified fan graph is pairwise stable for 𝜎 (2) ≥ 2.

Assume 𝑛 ≥ 3, otherwise F′𝑛 is trivially stable. If 𝑛 is odd, deletion of any edge
from F

′
𝑛 increases the edge cost by (𝜎 (𝑛) − 2𝜎 (2))/2 > 0 and increases distance

between its endpoints by 1. Thus, any edge removal is not an improvement. On
the other hand, buying any edge which is not present in F

′
𝑛 costs 𝜎 (2)/2 and

improves the distance only between its endpoints, i.e., it improves the distance
cost by 1. Hence, since 𝜎 (2) ≥ 2, an addition of any extra edge to the modified
fan graph is not an improvement.

If 𝑛 is even, then the pairwise stability of F′𝑛 follows from an analogous proof
as for odd 𝑛 and from the observation that creating an edge with a leaf is not
profitable. �
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6.5 PoA and PoS

Here we prove upper and lower bounds on the PoA and PoS.

◮ Theorem 6.8. The PoA of the SNCG is in O
(
min{𝜎 (2), 𝑛} + 𝜎 (𝑛)

𝑛max{𝜎 (2),𝑛}

)
.

For the class of 2-edge-connected networks the PoA is in O
(
min{𝜎 (2), 𝑛}

)
. ◭

Proof. By Theorem 6.6 and Theorem 6.7, we only need to focus on the case
𝜎 (2) ≥ 2. Indeed, when 𝜎 (2) < 2, K𝑛 is the unique pairwise stable network as
well as the unique social optimum and, therefore, the PoA is equal to 1.

For the rest of the proof we assume that 𝜎 (2) ≥ 2. By Theorem 6.6, F𝑛 is a
social optimum of cost𝛺

(
𝑛2 +𝜎 (2)𝑛

)
= 𝛺

(
𝑛max{𝜎 (2), 𝑛}

)
. Consider a pairwise

stable network 𝐺 of maximum social cost for a given number of nodes 𝑛. Let 𝐷
be the diameter of 𝐺 . A trivial upper bound for the distance cost of the network
is 𝑛(𝑛 − 1) · 𝐷 . By Theorem 6.4, the network diameter is at most 𝜎 (2) + 1, hence
the distance cost of 𝐺 is at most (𝜎 (2) + 1) · 𝑛(𝑛 − 1).

Now we will show an upper bound for the edge cost. Let 𝑘𝑖 denote the number
of 𝑖-edges in 𝐺 . By Theorem 6.3, 𝐺 has at most 3 bridges. Hence, for any
pairwise stable network we have that 𝑘𝑛 ≤ 3; if the network is additionally
2-edge-connected, then 𝑘𝑛 = 0. We consider two cases, depending on whether
2𝜎 (2) ≤ 𝜎 (3) or not.

We consider the case 2𝜎 (2) ≤ 𝜎 (3). By Proposition 6.2, each node has at most
one incident 𝑖-edge where 3 ≤ 𝑖 < 𝑛. Moreover, by Proposition 6.5, we have
𝜎 (𝑖) ≤ 𝑛𝜎 (2) for any 𝑖 ≥ 3. Then the overall edge-cost of the network is at most

𝑘2 · 𝜎 (2) +
𝑛−1∑︁
𝑖=3

(𝜎 (𝑖) · 𝑘𝑖) + 𝑘𝑛𝜎 (𝑛)

≤
(
𝑛(𝑛 − 1)

2
−

𝑛−1∑︁
𝑖=3

𝑘𝑖

)
· 𝜎 (2) + 𝑛𝜎 (2)

𝑛−1∑︁
𝑖=3

𝑘𝑖 + 𝑘𝑛𝜎 (𝑛)

≤ 𝜎 (2) · 𝑛(𝑛 − 1)
2

+ (𝑛 − 1)𝜎 (2) · 𝑛
2
+ 𝑘𝑛𝜎 (𝑛)

≤ 𝜎 (2)𝑛2 + 𝑘𝑛𝜎 (𝑛).

As a consequence, the PoA is at most in 𝜎 (2)𝑛2+𝑘𝑛𝜎 (𝑛)
𝛺
(
𝑛max{𝜎 (2),𝑛}

) . Thus, the PoA is in
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O
(
min{𝜎 (2), 𝑛} + 𝜎 (𝑛)

𝑛max{𝜎 (2),𝑛}

)
, while for the class of 2-edge-connected net-

works, the PoA is in O
(
min{𝜎 (2), 𝑛}

)
.

If 2𝜎 (2) > 𝜎 (3), the upper bound for the edge cost from Proposition 6.5 holds
for all 𝑖-edges such that 4 ≤ 𝑖 ≤ 𝑛 − 1. To estimate the number of 3-edges, we
use result from extremal graph theory. By Mantel’s Theorem [Man07] we have
𝑘3 ≤ 𝑛2

4 . Then the edge cost of 𝐺 is at most

𝑘2 · 𝜎 (2) + 𝑘3 · 𝜎 (3) +
𝑛−1∑︁
𝑖=4

(𝜎 (𝑖) · 𝑘𝑖) + 𝑘𝑛𝜎 (𝑛)

≤
(
𝑛2

2
−

𝑛−1∑︁
𝑖=3

𝑘𝑖

)
· 𝜎 (2) + 𝑛

2

4
𝜎 (3) + 𝑛𝜎 (2)𝑛

2
+ 𝑘𝑛𝜎 (𝑛)

< 𝜎 (2) · 𝑛2 + 𝑛
2

4
· 𝜎 (2) + 𝑘𝑛𝜎 (𝑛)

=
5

4
𝜎 (2) · 𝑛2 + 𝑘𝑛𝜎 (𝑛) .

As in the previous case, we get that the PoA is in O
(
min{𝜎 (2), 𝑛} + 𝜎 (𝑛)

𝑛max{𝜎 (2),𝑛}

)
,

while for the class of 2-edge-connected networks, the PoA is O
(
min{𝜎 (2), 𝑛}

)
.
�

It is worth noticing that the high inefficiency of worst case pairwise stable
networks in Theorem 6.8 follows from the existence of bridges in a network. The
PoA is much better in bridge-free pairwise stable networks. Such networks can
for example evolve via edge additions starting from a 2-edge-connected network.
A real-world example for this would be co-authorship networks of authors with
at least two papers.

We now prove lower bounds on the PoA. We start with the construction of a
pairwise stable 2-edge-connected network with high social cost and a diameter
in 𝛺 (𝜎 (2)).

◮ Lemma 6.9. There are 2-edge-connected pairwise stable networks with
𝑛 = 𝛺 (𝜎 (2)) nodes, social cost in 𝛺

(
𝜎 (2)𝑛2

)
, and diameter of at least 𝜎 (2)

4 . ◭

Proof. Let 𝑘 ≥ 2 be an integer and 𝑛 = 2
⌈
𝜎 (2)
8

⌉
𝑘 + 1. The pairwise stable network

𝐺 of 𝑛 nodes is obtained from a spider graph S with center 𝑥 , with
⌈
𝜎 (2)
8

⌉
𝑘 + 1
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the distance cost of 𝑢 would decrease by at most

2

(⌈
𝜎 (2)
8

⌉
− 𝑗

)
( 𝑗 − 𝑖 − 1) + 2

⌊
𝑗−𝑖−1

2

⌋∑︁
ℓ=1

ℓ

≤ 2

(
𝜎 (2)
8

+ 1 − 𝑗

)
( 𝑗 − 𝑖) + 1

4
( 𝑗 − 𝑖)2

≤ 𝜎 (2)
4

( 𝑗 − 𝑖) ≤ 1

2
𝜎 ( 𝑗 − 𝑖),

where the last inequality holds by Proposition 6.1, while the last but one inequal-
ity holds because 𝑗 ≥ 2. Thus, 𝑢 would not agree to adding the edge 𝑢𝑣.
If 𝑢 and 𝑣 are in different legs of the spider, then, by adding 𝑢𝑣 the edge cost

of 𝑢 would increase by 1
2
𝜎 (𝑖 + 𝑗), while the distance cost of 𝑢 would decrease by

at most

𝜇 := 2

(⌈
𝜎 (2)
8

⌉
− 𝑗

)
( 𝑗 + 𝑖 − 1) + 2

⌊
𝑗+𝑖−1
2

⌋∑︁
ℓ=1

ℓ .

When 𝑖 = 𝑗 = 1, the value 𝜇 is upper bounded by 𝜎 (2)
4
, and therefore it is not

convenient for 𝑢 to add the edge 𝑢𝑣. When 𝑗 ≥ 2, i.e., 𝑖 + 𝑗 ≥ 3, the value 𝜇 is
upper bounded by

𝜇 ≤ 2

(
𝜎 (2)
8

+ 1 − 𝑗

)
( 𝑗 + 𝑖 − 1) + 1

2
( 𝑗 + 𝑖 − 1)2

≤ 𝜎 (2)
4

( 𝑗 + 𝑖) ≤ 1

2
𝜎 (𝑖 + 𝑗),

where the last inequality holds by Proposition 6.1. Hence, 𝑢 would not agree on
adding 𝑢𝑣. The claim follows. �

The pairwise stable networks of Lemma 6.9, depicted in Figure 6.4, asymptotically
reach the upper bound for the diameter of pairwise stable networks. Moreover,
they allow us to prove asymptotically matching lower bounds to the PoA for the
class of 2-edge-connected networks.

◮ Theorem 6.10. The PoA of SNCG is in 𝛺
(

𝜎 (𝑛)
𝑛max{𝜎 (2),𝑛}

)
. For the class of

2-edge-connected networks the PoA is in 𝛺
(
min{𝜎 (2), 𝑛}

)
. ◭
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Proof. First we prove the lower bound for the class of 2-edge-connected networks.
By Lemma 6.9, there is a pairwise stable network with 𝑛 = 𝛺 (𝜎 (2)) nodes and
social cost in𝛺

(
𝜎 (2)𝑛2

)
. Now, if we assume that 𝜎 (2) > 2, then, by Theorem 6.6,

we have that F𝑛 is a social optimum. The social cost of F𝑛 is at most

2𝑛(𝑛 − 1) + (𝜎 (2) − 2) 3
2
(𝑛 − 1) = 𝑂

(
𝑛2 + 𝜎 (2)𝑛

)
.

Therefore, the PoA is in 𝛺
(
min{𝜎 (2), 𝑛}

)
.

Concerning the lower bound for the general case, consider the modified
fan graph F

′
𝑛 from Theorem 6.7 for even 𝑛. This network is pairwise stable

for 𝜎 (2) ≥ 2 and has a social cost of O
(
𝜎 (2)𝑛 + 𝜎 (𝑛)

)
. Thus, the PoA is in

𝛺
(

𝜎 (𝑛)
𝑛max{𝜎 (2),𝑛}

)
. �

We conclude this section by showing bounds for the PoS.

◮ Theorem 6.11. The PoS of the SNCG when 𝜎 (2) ≤ 2 or 𝑛 is odd is 1. The
PoS of the SNCG when 𝜎 (2) > 2 and 𝑛 is even:

• at most 11
8 if 𝜎 (3) ≥ 6 and 𝜎 (2) ≤ 𝑛

2 − 4;

• at most 17
12 if 𝜎 (2) ≥

2𝑛
3 ;

• O
(

𝜎 (𝑛)
𝑛max

{
𝜎 (2),𝑛

} )
, otherwise.

◭

Proof. For the cases in which 𝜎 (2) ≤ 2 or 𝑛 is odd we have that the PoS is 1,
since, from Theorem 6.6 and Theorem 6.7, there always exists a pairwise stable
network which is also a social optimum.
It remains to prove the theorem statement for the case where 𝑛 is even and

𝜎 (2) > 2. We observe that the fan graph F𝑛 is not pairwise stable in this case as
the node of degree 3 can remove the edge towards a node of degree 2. An upper
bound for the PoA is delivered by the modified fan graph F

′
𝑛 from the proof of

Theorem 6.7. Then the PoS ratio is at most

SC(F′𝑛)
SC(F𝑛)

=
(𝑛 − 2) 32𝜎 (2) + 𝜎 (𝑛) + 2𝑛2 − 5𝑛 + 4

(𝑛 − 2) 32𝜎 (2) + 2𝜎 (2) + 2𝑛2 − 5𝑛 + 2
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(𝑛 − 4)𝜎 (2) + 6𝜎 (2) + 11
4 𝑛

2, while the social cost of a fan graph is (𝑛 − 2) 32𝜎 (2) +
2𝜎 (2) + 2𝑛2 − 5𝑛 + 2, i.e., the PoS goes to 11

8 when 𝑛 goes to infinity.
Now we consider the case when 𝜎 (2) >

2𝑛
3 . We construct the following

pairwise stable network 𝐺 . Consider a cycle of length 6 consisting of edge-
disjoint triangles. Each second node of the inner cycle is connected with 𝑛−12

12
edge-disjoint triangles (if 𝑛 mod 12 ≠ 0, we uniformly distribute the triangles
among nodes of the cycle such that the number of triangles differs by at most 1).
See Figure 6.5 (right) for an illustration of the construction.
We will show that 𝐺 is pairwise stable for 𝜎 (2) ≥ 2𝑛/3. We start with the

edge deletions. Clearly no agent can delete any edge from a triangle outside of
the central 6-cycle because it creates a bridge of cost 𝜎 (𝑛). Also, an agent located
in the central 6-cycle cannot delete any of her edges since it either creates a
bridge or increases her cost of another incident edge from 𝜎 (2) to 𝜎 (5). In the
second case, the deletion of the edge decreases the agent’s edge cost by 𝜎 (2)
and at the same time the edge cost is increased by 𝜎 (5)/2 ≥ 𝜎 (4)/2 ≥ 𝜎 (2) (by
Proposition 6.1 and monotonicity of 𝜎-function) since the edge cost of another
edge is increased by this deletion.

Now we will show that no pair of non-neighboring agents 𝑢, 𝑣 wants to add a
new edge 𝑢𝑣. Note, there are two types of nodes in the central 6-cycle: nodes
of degree 2 (outer cycle), and nodes of degree 4 + 𝑛

6 − 2 (inner cycle). Let 𝑢 be a
node in the cycle with degree

(
2 + 𝑛

6

)
. If 𝑣 is a similar node of the same degree,

then one of two cases holds:

• node 𝑣 is at distance 2 from𝑢. Then𝑢’s cost changes by 1
2𝜎 (2)−2·

(
𝑛
6 − 2

)
−3,

since it improves agent 𝑢’s distance by 1 to two nodes from the cycle and
to two high-degree nodes. This changes agent𝑢’s cost by 1

2𝜎 (2)−
𝑛
3 +1 > 0,

since 𝜎 (2) ≥ 2𝑛/3. Thus, the edge addition is not profitable for agent 𝑢.

• node 𝑣 is at distance 3 from𝑢. Then𝑢’s cost changes by 1
2𝜎 (3)−2·

(
𝑛
6 − 2

)
−4,

since 𝑢 decreases her distance to only three nodes in the cycle and only
one high-degree node by 2. The change of𝑢’ cost is 1

2𝜎 (3)−
𝑛
3 ≥ 0, because

𝜎 (3) ≥ 𝜎 (2) ≥ 2𝑛/3. Hence the move is not profitable for 𝑢.

If 𝑣 is any other node in the network, i.e., any 2-degree node, then creating
the edge 𝑢𝑣 would cost at least 𝜎 (2)/2 and decrease the distance to at most 𝑛

6
nodes. Hence it is enough to have 𝜎 (2) ≥ 𝑛

3 to prevent 𝑢 from creating any edge
with a 2-degree node. Therefore, there is no improving edge addition between a(
2 + 𝑛

6

)
-degree node and any other node in 𝐺 .
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Now we consider 2-degree nodes. Let 𝑢 be a 2-degree node from the central
cycle. As we know from the previous case, 𝑣 cannot be a

(
2 + 𝑛

6

)
-degree node. If

𝑣 is another 2-degree node in the central cycle, the addition of the edge (𝑢, 𝑣)
significantly decreases the distance to other nodes only if 𝑣 is at distance 3 or
4 from 𝑢. In the first case, 𝑢 pays 1

2
𝜎 (3) and improves her distances by at most

4 + 𝑛
6
− 2. Since 𝑛

6
+ 2 <

𝑛
3
<

1
2
𝜎 (2) ≤ 1

2
𝜎 (3), this move is not profitable for 𝑢.

In the second case, edge (𝑢, 𝑣) costs 1
2
𝜎 (4) and improves her distance cost by at

most 2 ·
(
𝑛
6
− 2

)
+ 5. Since 1

2
𝜎 (4) ≥ 𝜎 (2) ≥ 2𝑛

3
>

𝑛
3
+ 1, this move is not profitable.

Analogously, if 𝑣 is a 2-degree node outside of the central cycle, then the
maximum profit 𝑢 achieves if 𝑣 is at distance 4 from 𝑢. This move costs 1

2
𝜎 (4)

for agent 𝑢 and decreases her distance to 𝑛
6
− 3 nodes by 1 and to three other

nodes by 5 in total. Since 1
2
𝜎 (4) ≥ 𝜎 (2) > 𝑛

6
− 2, the edge will not be added.

Finally, let 𝑢 be a 2-degree node that is not in the central cycle, i.e., is a 2-
degree node in a vane. Clearly, creating an edge with any other 2-degree node
connected to the same center is not profitable for 𝑢. Consider a 2-degree node 𝑣
in a vane at distance at least 3 from 𝑢. If the distance between 𝑢 and 𝑣 is 3, the
addition of 𝑢𝑣 improves the distance to at most two nodes but costs 1

2
𝜎 (3), and

therefore is not profitable. If 𝑣 is at distance 4 from 𝑢, the addition of the edge 𝑢𝑣
costs 1

2
𝜎 (4) ≥ 𝜎 (2) ≥ 2𝑛

3
and improves the distance cost by at most 𝑛

3
+ 2 <

2𝑛
3
.

If 𝑣 is at distance 5 from 𝑢, the addition of 𝑢𝑣 costs 1
2
𝜎 (5) > 𝜎 (2) ≥ 2𝑛

3
and

improves the distance cost by at most 2 ·
(
𝑛
6
− 4

)
+ 11 <

2𝑛
3
. Since we checked all

possible agents’ improving moves, 𝐺 is pairwise stable.
Network 𝐺 provides the following upper bound to the PoS

SC(𝐺)
SC(F𝑛)

=

3·6
2

(
𝑛
6
− 2

)
𝜎 (2) + 6𝜎 (2) + 17

6
𝑛2 − 13𝑛 − 258

(𝑛 − 2) 3
2
𝜎 (2) + 2𝜎 (2) + 2𝑛2 − 5𝑛 + 2

≤ 17

12
. �

6.6 Dynamics of the SNCG

So far we have considered the SNCG as a one-shot game, i.e., we only have
specified the strategy space of the agents and then focused on analyzing the
equilibria of the game. In this section we focus on a more constructive sequential
view of the game. As our goal is to mimic real-world social networks, we want to
study the process of how such networks evolve over time. For this, we consider
some initial network and then we activate the agents sequentially. An active
agent will try to decrease her current cost by adding (jointly with another agent)

138





Chapter 6 Selfish Creation of Social Networks

𝐺2 → 𝐺3 : the edge between agents 3 and 5 is created. In fact, for agent 3
the edge cost varies by 3

2𝜎 (2) −𝜎 (3) ≤ 0 while the distance cost decreases
by 1. For agent 5 the edge cost varies by 2𝜎 (2) − 𝜎 (2) − 1

2𝜎 (3) = 𝜎 (2) −
1
2𝜎 (3) < 1 while the distance cost decreases by 1.

𝐺3 → 𝐺0 : agent 3 deletes the edge towards agent 4 because her edge cost
decreases by 1

2𝜎 (2) > 1 while her distance cost increases by 1. �

The above negative result for the sequential version of the SNCG should not
be overrated. In fact, when simulating the sequential process it almost always
converges to a pairwise stable network. We will now discuss such simulations.

6.6.1 Experimental Results

We will illustrate that starting from a sparse initial network, the sequential
version of the SNCG converges to a pairwise stable network with real-world
properties, like low diameter, high clustering and a power-law degree distribution.
We will measure the clustering with the average local clustering coefficient (CC),
that is a commonly used measure in Network Science [Bar16]. The clustering
coefficient is the probability that two randomly chosen neighbors of a randomly
chosen node in the network are neighbors themselves. More formally, let deg(𝑣)
denote the degree of 𝑣 in 𝐺 and let 𝛥 (𝑣) denote the number of triangles in 𝐺
that contain 𝑣 as a node. The local clustering coefficient 𝐶𝐶 (𝑣) of node 𝑣 in 𝐺
is the probability that two randomly selected neighbors of 𝑣 are neighbors, i.e.,
𝐶𝐶 (𝑣) := 2𝛥 (𝑣)

𝑑𝑒𝑔 (𝑣) (𝑑𝑒𝑔 (𝑣)−1) if 𝑑𝑒𝑔(𝑣) ≥ 2, and 0 otherwise. Clearly, 0 ≤ 𝐶𝐶 (𝑣) ≤ 1.
The CC of a network 𝐺 with 𝑛 nodes is the average of the local clustering
coefficients over all nodes 𝑣, i.e., 𝐶𝐶 (𝐺) = 1

𝑛

∑
𝑣∈𝑉 𝐶𝐶 (𝑣).

We will also illustrate power-law degree distributions via log-log plots and a
comparison with a perfect power-law distribution.
For all experiments10 we choose 𝜎 (𝑥) = 2⌊log2(𝑛)⌋ · 𝑥𝛼 , where 𝑛 ∈ ℕ (the

number of agents) and 𝛼 ∈ ℝ≥1 (the exponent) are input parameters. Clearly,
this function satisfies all constraints we have in the definition of the game, i.e.,
it is convex, monotone, and 𝜎 (0) = 0.

Note that by Theorem 6.4 the upper bound for the diameter of pairwise stable
networks is 𝜎 (2) + 2 and thus we have to define 𝜎 (2) to be growing with 𝑛 to
avoid a constant diameter. Using 𝜎 (𝑥) = 2 log2(𝑛) · 𝑥𝛼 as a proof-of-concept

10 The source code we used can be found at https://github.com/melnan/distNCG.git.
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Figure 6.7: Snapshots of networks obtained by the iterative best move dynamic starting
from a random spanning tree with 𝑛 = 1000 and 𝛼 = 3. Each plot from the top left to the
bottom right shows the current network after 1000 steps each. The top left plot shows
the initial tree; the bottom right plot shows is the final pairwise stable network. The
size of the nodes is proportional to the node degrees.

ensures a diameter upper bound of O(log𝑛) that is in line with the observed

141



Chapter 6 Selfish Creation of Social Networks

diameter bounds in many real-world networks [Bar16]. We emphasize that also
other edge cost functions with similar properties yield similar results.

In each step of our simulations one agent is activated uniformly at random and
this agent then performs the best possible edge addition (jointly with the other
endpoint if the respective agent agrees) or edge deletion. If no such move exists
then the agent is marked, otherwise the network is updated, and all marked
agents become unmarked and we repeat. The process stops when all agents are
marked.

In our experiments, we always start from a sparse initial network, i.e., a cycle
or a random spanning tree, to simulate an evolving social network, i.e., agents
are initially connected with only very few other agents, and the number of new
connections grows over time. See Figure 6.7 for showcase snapshots from this
process.

Additional experiments starting with sparse Erdös-Renyi random networks
support our intuition that the network initialization does not matter as long as the
networks are sparse and the average distances are large, i.e., the resulting stable
structures have the same structural properties as starting from random trees or
cycles. However, for example, starting from a star network yields drastically
different results. Moreover, if the initial structure is a fan graph, the algorithm
stops immediately since a fan is a stable network as stated in Theorem 6.7. This
shows that for the initial networks both sparseness and large average distances
are crucial.

Figure 6.8 shows the box-and-whiskers plot for the average clustering coeffi-
cient of the pairwise stable networks obtained by the algorithm for 𝑛 = 1000with
respect to the value of the power coefficient 𝛼 . The upper and lower whiskers
show the maximal and the minimal average clustering coefficient over 20 runs.
The bottom and top of the boxes are the first and the third quartiles; the middle
lines are the median values. The plot explicitly shows that pairwise networks
generated by the best move dynamic for a polynomial edge-cost function have a
high clustering coefficient. The results indicate that the clustering coefficient
correlates with the power coefficient 𝛼 .

Figure 6.9 shows the degree distribution for the resulting pairwise stable
networks for 𝑛 = 3000. We supplemented each plot with a plot of a perfect
power-law distribution 𝑃 (𝑘) ∼ 𝑘−𝛾 . All our experiments show that the power-
law exponent 𝛾 is between 2 and 3, which indicates that our generated pairwise
stable networks are indeed scale-free.
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Figure 6.8: Average clustering coefficient of pairwise stable networks obtained by the
best move dynamic for 𝑛 = 1000 over 20 runs with 𝜎 (𝑥) = 18𝑥𝛼 . Blue: results of the
process starting from a cycle; green: starting from a random tree.

Finally, Figure 6.10 illustrates the correlation between the node degree and the
local clustering coefficient of nodes with the respective degree. All plots show
that the local clustering coefficient is an inverse function of the node degree. In
Network Science, a local clustering following the law ∼ 𝑘−1 is considered as an
indication of the network’s hierarchy that is a fundamental property of many
real-world networks[RB03].
Table 6.1 shows a comparison of an experimentally generated network with

3000 nodes for 𝛼 = 2 and 𝛼 = 3, and real-world social networks.
In summary, we conclude from our proof-of-concept experiments that the

best move dynamic of the SNCG generates pairwise stable networks that have
very similar properties as real-world social networks.
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Figure 6.9: Log-log plot of the degree distribution of pairwise stable networks obtained
by the best move dynamic for 𝑛 = 3000 with 𝜎 (𝑥) = 18𝑥𝛼 . Blue: results for the process
starting from a cycle; green: starting from a random tree. Black: a fitted perfect power
law distribution.

6.7 Unilateral SNCG

It is natural to assume that pairwise stability is the right solution concept to
model social networks since each new connection is formed in both sides’ agree-
ment. However, it is an interesting question how this assumption influences the
behavior of the model. Moreover, the unilateral link formation can naturally
model the weaker social connections, e.g., one link represents that two agents
know each other but have no relationship. In this case, one agent can contribute
to the connection price while the other agent can later use the link, e.g., to spread
her information to other agents.

In this section, we will show that a change of the solution concept can lead to
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Figure 6.10: Log-log plot of the local clustering coefficient of nodes of a given degree
in pairwise stable networks obtained by the best move dynamic for 𝑛 = 3000 where
𝜎 (𝑥) = 18𝑥𝛼 . Blue: results starting from a cycle; green: starting from a random tree.
Black line: the function 2/𝑘 .

drastically different results for the model. Formally, we consider the unilateral
SNCGwhere each edge is fully paid by its owner only, i.e., by one of its endpoints.
Therefore, the cost for an agent 𝑢 in the network 𝐺 is the sum of the cost of all
edges owned by 𝑢 and the sum of distances to all other agents:

𝑐𝑜𝑠𝑡 (𝑢,𝐺) :=
∑︁
𝑣∈𝑆𝑢

𝑐𝐺 (𝑢𝑣) +
∑︁
𝑣∈𝑉

𝑑𝐺 (𝑢, 𝑣),

where 𝑆𝑢 is the strategy set of 𝑢 in 𝐺 .

As equilibrium concepts we consider the Nash equilibrium, the Greedy equi-
librium, and the add-only equilibrium. All other definitions, like the PoA and
the PoS, change accordingly.
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SNCG, SNCG, e-F ADV HAMST

𝛼 = 2 𝛼 = 3 [LM12] [RA15] [RA15]

|𝑉 | 3000 3000 4039 2280 1348

|𝐸 | 18059 6019 88234 5251 6642

Diameter 8 11 8 11 6

avg distance 3.69 5.17 3.69 3.85 3.2

max degree 72 55 1045 148 273

avg degree 12 4.013 43.7 4.61 9.85

avg CC 0.415 0.67 0.617 0.2868 0.54

Table 6.1: Comparison of basic structural properties of pairwise stable networks of the
SNCG and real-world social networks. The networks e-F (ego-Facebook), ADV (AD-

VOGATO), and HAMST (HAMSTERSTER) are (snippets of) online social networks.

6.7.1 Computational Hardness

The first result of this section shows the main difference between the unilateral
and bilateral versions of the model. Under the pairwise stability concept, the
strategy changes are restricted to single edge additions and deletions. Therefore,
an agent’s best response can be computed in polynomial time, e.g., by a greedy
algorithm. In contrast to this, the unilateral version allows an arbitrary change
of the agent’s strategy, which leads to NP-hardness of the problem.

◮ Theorem 6.13. Computing a best response is NP-hard in the unilateral
SNCG if 𝜎 (2) ≥ 1. For 𝜎 (2) < 1, a best response can be computed in polynomial
time. ◭

Proof. First, note that for 𝜎 (2) < 1 it is always profitable for any agent to add
any new incident edge at distance two since it costs 𝜎 (2) and decreases the
distance by at least 1. Hence, computing a best response is trivial since any agent
would want to connect with all other agents.

For the case 𝜎 (2) ≥ 1 we provide a polynomial time reduction from the
Minimum Set Cover problem which is NP-hard. The problem is defined as
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Next we show that all nodes in 𝑆∗𝑢 corresponds to a set cover, i.e., each node
𝑝𝑘𝑗 has at least one common neighbor with 𝑢. If there is a node 𝑝𝑘𝑗 which has
no neighboring nodes in 𝑆∗𝑢 , then there are at least 𝛼 nodes at distance 3 from 𝑢

which are connected to the same set-node 𝑎𝑖 . Thus, 𝑢 can add an edge 𝑢𝑎𝑖 and
improve her cost by at least |𝜎 (2) − ⌈𝜎 (2)⌉ − 1| ≥ 1.

Now we prove that the set of nodes 𝑆∗𝑢 corresponds to a Minimum Set Cover
problem solution. The cost for the agent 𝑢 under some strategy 𝑆∗ is

𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆∗𝑢, 𝑆−𝑢)) = |𝑆∗𝑢 | · 𝜎 (2) +
∑︁
𝑎𝑖 ∈𝑆∗𝑢

𝑑 (𝑢, 𝑎𝑖)

+
∑︁
𝑗,𝑘

𝑑 (𝑢, 𝑝𝑘𝑗 ) +
∑︁
𝑎𝑖∉𝑆

∗
𝑢

𝑑 (𝑢, 𝑎𝑖)

= |𝑆∗𝑢 | · 𝜎 (2) + 1 + |𝑆∗𝑢 | + 2𝑙 · ⌈𝜎 (2)⌉ + 2(𝑚 − |𝑆∗𝑢 |).

Consider two strategies 𝑆1𝑢, 𝑆
2
𝑢 such that the corresponding set covers cover all

elements of𝑈 and |𝑆1𝑢 | < |𝑆2𝑢 |. Since both strategies correspond to a set cover, the
difference of the agent’s cost is in the edge cost and distance to the set nodes, i.e.,
𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆2𝑢, 𝑆−𝑢)) − 𝑐𝑜𝑠𝑡 (𝑢,𝐺 (𝑆1𝑢, 𝑆−𝑢)) = ( |𝑆2𝑢 | − |𝑆1𝑢 |) · 𝜎 (2) − (|𝑆2𝑢 | − |𝑆1𝑢 |) ≥ 0

for 𝜎 (2) ≥ 1. Therefore, the strategy set with minimum size is the best response,
and thus, corresponds to the solution of the Minimum Set Cover problem. �

6.7.2 Properties of Equilibrium Networks

In this section, we show basic structural properties of equilibria in the unilateral
SNCG. Most of the statements are similar to the results we observed for pairwise
stable networks.

◮ Proposition 6.14. All non-bridge edges of an add-only equilibrium have cost
at most 𝜎 (3) in the unilateral SNCG. ◭

Proof. Let 𝑢𝑣 be a non-bridge edge in an equilibrium network 𝐺 of cost at least
𝜎 (4). W.l.o.g., 𝑢𝑣 is bought by agent 𝑢. Let 𝑣𝑤, with 𝑢 ≠ 𝑤, be another edge
incident to 𝑣. Such a node always exists because 𝑢𝑣 is a non-bridge edge. The
edge 𝑢𝑤 is not in 𝐺 as otherwise the cost of 𝑢𝑣 would be 𝜎 (2). If agent 𝑢 adds
also the edge 𝑢𝑤, then the cost for having bought two edges 𝑢𝑣 and 𝑢𝑤 would
be 2𝜎 (2) that is less or equal 𝜎 (4) by Proposition 6.1; furthermore, the distance
to 𝑤 would decrease by at least 1. As a consequence, non-stable network has a
non-bridge edge whose cost is at least 𝜎 (4). �
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In the next statement we will show that if the edge cost is low or very high,
agents have no incentive to buy costly edges, i.e., all edges are 2-edges. The
result hols for all greedy equilibria.

◮ Proposition 6.15. In the unilateral SNCG, if 2𝜎 (2) ≤ 𝜎 (3) or 𝜎 (3) > 2(𝑛−3),
then any non-bridge edge costs 𝜎 (2) in a GE network. ◭

Proof. Let 𝑢𝑣 be a non-bridge edge in a GE network 𝐺 and, w.l.o.g., we assume
that 𝑢 has bought the edge 𝑢𝑣. By Proposition 6.14, the cost of 𝑢𝑣 is at most
𝜎 (3). If the edge cost 𝜎 (3), it implies that there is at least one neighbor 𝑥 of 𝑣
at distance 2 from 𝑢. If 𝑢 buys an edge 𝑢𝑥 it improves her distance cost by at
least 1, and changes the edge cost by at least 2𝜎 (2) −𝜎 (3). If 2𝜎 (2) ≤ 𝜎 (3) holds,
buying the edge is an improving move.

Now we show that there are no induced cycles of size 4 in𝐺 if 𝜎 (3) > 2(𝑛−3).
We will prove the claim by showing that every agent in NE owns at most one
3-edge, and thus, for sufficiently large 𝜎 (3) it is profitable to delete the expensive
edge.

Let𝑢 be the owner of the edge𝑢𝑣 of cost 𝜎 (3). Let𝐶 be a set of nodes 𝑥 ∈ 𝑁 (𝑢)
such that the edge cost of the edge 𝑢𝑥 increases after the deletion of 𝑢𝑣, i.e.,
𝐶 = {𝑥 ∈ 𝑆𝑢 |𝑐𝐺−𝑢𝑣 (𝑢𝑥) > 𝑐𝐺 (𝑢𝑥)}. We will show that |𝐶 | = 0. Indeed, 𝐶
includes no endpoints of 2-edges. Moreover, if there is a node 𝑥 ∈ 𝐶 such that
𝑐𝐺 (𝑢𝑥) = 𝜎 (3), then there is a cycle 𝑢 − 𝑥 −𝑤 − 𝑣 of size 3 which contains both
edges 𝑢𝑣 and 𝑢𝑥 . Then 𝑢 can improve her cost by adding an edge 𝑢𝑤 because it
improves her edge cost by 3𝜎 (2) − 2𝜎 (3) ≤ 0 and the distance cost by at least
1. Therefore, 𝑢 owns no edges whose cost depends on the edge 𝑢𝑣, that implies
|𝐶 | = 0. It yields that the deletion of the edge 𝑢𝑣 changes 𝑢’s cost by at most
−𝜎 (3) + 2(𝑛 − 3). Thus, if 𝜎 (3) > 2(𝑛 − 3) any 3-edge will be deleted by its
owner. �

In the next proposition we claim that any network which is in NE has a
structure of a 2-edge-connected component with spikes11.

◮ Proposition 6.16. In the unilateral SNCG, any add-only equilibrium contains
only bridges that form spikes. ◭

Proof. For the sake of contradiction, assume an add-only equilibrium network𝐺
having a bridge𝑢𝑣 such that both endpoints𝑢 and 𝑣 are not leaves. Clearly, 𝑛 ≥ 4,

11 A spike is a bridge edge such that one of its endpoints is a leaf.
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otherwise any bridge is a spike. W.l.o.g. let 𝑢 be an owner of the edge 𝑢𝑣. Since 𝑣
is not a leaf, there is a node𝑤 ∈ 𝑁 (𝑣) such that𝑢 and𝑤 are in different connected
components in𝐺 −𝑢𝑣. Then, agent 𝑢 can buy the edge 𝑢𝑤 to improve her payoff.
Indeed, this move decreases the edge cost by 𝜎 (𝑛) − 2𝜎 (2) and improves the
distance cost by at least 1. Therefore, it is an improving move. �

◮ Proposition 6.17. In the unilateral SNCG, the diameter of any add-only
equilibrium network is at most 2

3
𝜎 (2) + 1. ◭

Proof. Consider an add-only equilibrium network 𝐺 with diameter 𝐷 (𝐺). Let
𝑢, 𝑣 be two nodes at distance 𝐷 (𝐺). Consider a 𝑢 − 𝑣 shortest path, and let
𝑥 be a node on this path such that 𝑑𝐺 (𝑥,𝑢) = 2. If 𝑢 buys the edge 𝑢𝑥 , this
increases the edge cost by at most 𝜎 (2) and decreases the distance cost by at
least 𝐷 (𝐺) + (𝐷 (𝐺) − 3)/2 because by Propositions 6.14 and 6.16 each edge,
except for the spike edges, closes at least one 3- or 4-cycle. Since𝐺 is in add-only
equilibrium, 𝐷 (𝐺) ≤ 2

3
𝜎 (2) + 1. �

Note that for any agent in the unilateral SNCG, the addition of two edges to
two endpoints of an existing edge in the network brings a similar improvement
as adding one of the edges in the add-only NCG. Indeed, if two edges close
a triangle, then this move always costs 2𝜎 (2) for the agent. Therefore, some
techniques for the original NCG can be applied to our model.

◮ Theorem 6.18. For 0.5 ≤ 𝜎 (2) < 0.5𝑛1−𝜀, 𝜀 ≥ 1/log𝑛, the diameter of any
add-only equilibrium network in the unilateral SNCG is constant. Namely, the
diameter is at most 4.667 · 3 ⌈1/𝜀 ⌉ + 7. ◭

Proof. Consider a network 𝐺 which is stable against the new edge additions.
Towards a contradiction, assume that the diameter 𝐷 (𝐺) is non-constant. Define
the NCG on the same set of agents and the same initial strategy profile with the
edge cost parameter 𝛼 = 2𝜎 (2). By Theorem 10 in [Dem+12] any network 𝐺
which is stable against single edge additions has constant diameter for 1 ≤ 𝛼 <

𝑛1−𝜀, 𝜀 ≥ 1/log𝑥 . More precisely, the diameter is at most 4.667 · 3 ⌈1/𝜀 ⌉ + 7. Thus,
if 𝐷 (𝐺) is not constant, there is an improving edge addition by some agent 𝑢
in the NCG. Then the agent wins at least the same distance improvement by
adding the same edge and an edge to the adjacent endpoint in the SNCG for the
same edge price. Hence, we have a contradiction with the assumption that 𝐺 is
in add-only equilibrium. �
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6.7.3 Existence of Equilibria

In this section we prove the existence of equilibrium networks for any feasible
𝜎-function.

◮ Theorem 6.19. For 𝜎 (2) < 1 a clique K𝑛 is the unique NE. ◭

Proof. An agent 𝑢 that is at distance 2 from 𝑣 always profits from buying an edge
to 𝑣 as, by doing so, the distance towards 𝑣 would decrease by 1 while the cost
of the edge would be at most 𝜎 (2). Hence, if 𝜎 (2) < 1 all nodes are in distance 1
from each other in a NE network, i.e., any NE is a clique. �

◮ Theorem 6.20. For 𝜎 (2) ≥ 1, a center sponsored star Sn is a NE. ◭

Proof. It is enough to observe that no leaf 𝑢 wants to buy an edge towards
another leaf 𝑣. Indeed, this move costs 𝜎 (2) and decreases the distance cost by 1
only. �

Next we prove that the unilateral SNCG for sufficiently high edge cost has a
unique stable configuration.

◮ Theorem 6.21. If 𝜎 (2) > 𝑛 − 2 and 𝜎 (3) ≥ 2𝜎 (2), the center sponsored star
S𝑛 is the unique GE and NE. ◭

Proof. Consider an equilibrium network 𝐺 . By Proposition 6.15, 𝐺 contains no
3-edges since 𝜎 (3) ≥ 2𝜎 (2). We will prove that there are also no triangles in 𝐺 .
For this we will show that if a triangle exists, there is at least one edge whose
deletion does not change the cost of other edges for its owner. That would
mean that such an edge can be deleted if its cost 𝜎 (2) is strictly larger than the
increase of the distance cost. Towards a contradiction, we assume that none of
the edges can be deleted without an increase in the edge cost. Denote 𝑆 (𝑢1, 𝑢2)
the set of endpoints of the edges owned by 𝑢1 such that the deletion of the edge
𝑢1𝑢2 increases its costs, i.e., 𝑆 (𝑢1, 𝑢2) = {𝑥 ∈ 𝑆𝑢1

|𝑐𝐺−𝑢1𝑢2
(𝑢1𝑥)) > 𝑐𝐺 (𝑢1𝑥))}.

Thus, our assumption above means that for any edge 𝑢1𝑢2 ∈ 𝐸 (𝐺), we have
𝑆 (𝑢1, 𝑢2) ≠ ∅.

Note that in any triangle 𝑢-𝑣-𝑧 in the network 𝐺 there is at least one node,
say 𝑧, which owns only one edge, say 𝑧𝑣, of the triangle. Since 𝜎 (3) > 2𝜎 (2), it
follows that 𝑆 (𝑧, 𝑣) contains no endpoints of 3-edges. If a deletion of the edge
𝑧𝑣 changes the cost of other edges owned by 𝑧, then there is at least one edge
𝑧𝑥 owned by 𝑧 such that nodes 𝑧, 𝑣, 𝑥 form a triangle 𝑧-𝑣-𝑥 in 𝐺 . Since by our
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assumption 𝑆 (𝑧, 𝑥) ≠ ∅, then 𝑧 also owns an edge 𝑧𝑦 ≠ 𝑧𝑣 such that 𝑧, 𝑥,𝑦 form a
triangle in 𝐺 . Hence, 𝑧𝑣 can be deleted without the cost increase for other edges
owned by 𝑧, i.e., 𝑆 (𝑧, 𝑣) = ∅, and we have a contradiction. Note that the deletion
is profitable for 𝑣 because it increases the distances to at most 𝑛 − 2 nodes by 1.
Hence, if 𝜎 (3) ≥ 2𝜎 (2) and 𝜎 (2) > 𝑛 − 2, network 𝐺 contains no cycles.

Finally, we need to show that𝐺 has diameter 2. If the diameter is more than 2,
there is an edge𝑢𝑣 owned by𝑢 such that 𝑣 is not a leaf in𝐺 . Then the agent𝑢 can
buy an edge of cost 𝜎 (2) and thereby decrease her cost by at least 𝜎 (𝑛)−2𝜎 (2)+1,
and thus, make an improvement. It implies that the center sponsored star is the
only stable network. �

6.7.4 PoA and PoS

Since the definitions of the social cost in the unilateral and bilateral SNCG are
identical, Theorem 6.6 holds for the unilateral version as well.

As we proved in Theorem 6.20, the central sponsored star Sn is a NE, while
a clique or a fan network is an optimum by Theorem 6.6. Moreover, by Theo-
rem 6.19, any NE as well an optimum is a clique for low values of 𝜎 (2). This
immediately implies a lower bound for the PoA. We will show that the lower
bounds asymptotically meets the upper bound.

◮ Theorem 6.22. The PoA in the unilateral SNCG is in 𝛩
(

𝜎 (𝑛)
max{𝜎 (2),𝑛}

)
for

𝜎 (2) ≥ 2, and it is in𝛩
(
𝜎 (𝑛)
𝑛𝜎 (2)

)
for 1 ≤ 𝜎 (2) < 2. For 𝜎 (2) < 1, the PoA is 1. ◭

Proof. First, we provide a general upper bound for the social cost of equilibrium
networks for 𝜎 (2) ≥ 1, and then we will compare the result with the social cost
of the corresponding optimum with respect to the range of 𝜎 (2).

Consider an equilibrium network𝐺 of maximum social cost for a given number
of nodes 𝑛. The distance cost of𝐺 can be upper bounded by 𝑛(𝑛 − 1)

( 2
3𝜎 (2) + 1

)
by Proposition 6.17. Since 𝜎 (2) ≥ 1, the expression is at most 5

3𝑛(𝑛 − 1)𝜎 (2).
Next, we will show an upper bound for the edge cost of 𝐺 . Let 𝑘𝑖 be the

number of 𝑖-edges in 𝐺 . By Proposition 6.14,𝐺 contains only 2-, 3-, and 𝑛-edges.
Moreover, if 2𝜎 (2) ≤ 𝜎 (3), all edges are either 2-edges, or spikes.

Consider the case 2𝜎 (2) ≤ 𝜎 (3). As we noticed, for any 𝑖 ≥ 3, it holds that for
𝑖 ≠ 𝑛, 𝑘𝑖 = 0. Clearly, 𝑘2 ≤ 𝑛 (𝑛−1)

2 , and there can be at most 𝑘𝑛 ≤ 𝑛 − 1 spikes.
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Then the edge cost of the network is at most

𝑘2 · 𝜎 (2) + 𝑘𝑛 · 𝜎 (𝑛) < 𝑛2𝜎 (2) + 𝑛𝜎 (𝑛).

In case 2𝜎 (2) > 𝜎 (3), the equilibrium network can contain 3-edges, as well as
2- and 𝑛-edges. By Mantel’s Theorem [Man07], 𝑘3 ≤ 𝑛2

4
. Then 𝐺 ’s edge cost is

at most

𝑘2 · 𝜎 (2) + 𝑘3 · 𝜎 (3) + 𝑘𝑛 · 𝜎 (𝑛) < 𝑛2

2
𝜎 (2) + 𝑛

2

4
𝜎 (3) + 𝑛𝜎 (𝑛)

<

𝑛2

2
𝜎 (2) + 𝑛

2

2
𝜎 (2) + 𝑛𝜎 (𝑛) = 𝑛2𝜎 (2) + 𝑛𝜎 (𝑛) .

Therefore, in any case, the edge cost of 𝐺 is at most 𝑛2𝜎 (2) + 𝑛𝜎 (𝑛). By
the convexity of the sigma function, 𝑛𝜎 (2) ≤ 2𝜎 (𝑛) (Proposition 6.1). Then in
combination with the upper bound for the distance cost, we get:

SC(𝐺) < 𝑛2𝜎 (2) + 𝑛𝜎 (𝑛) + 5

3
𝑛(𝑛 − 1)𝜎 (2) < 8

3
𝑛2𝜎 (2) + 𝑛𝜎 (𝑛)

≤ 16

3
𝑛𝜎 (𝑛) + 𝑛𝜎 (𝑛) = 19

3
𝑛𝜎 (𝑛) .

To prove the upper bound on the PoA, we need to consider two cases: if
1 ≤ 𝜎 (2) < 2, and if 𝜎 (2) ≥ 2. In the first case, a social optimum is a clique K𝑛

of cost 𝑛(𝑛 − 1) (𝜎 (2) + 1) (by Theorem 6.6), then the PoA is at most

SC(𝐺)
SC(K𝑛)

∈ O
(
𝑛𝜎 (𝑛)
𝑛2𝜎 (2)

)
= O

(
𝜎 (𝑛)
𝑛𝜎 (2)

)
.

In case𝜎 (2) ≥ 2, by Theorem 6.6, F𝑛 is a social optimumof cost𝛺 (𝑛2+𝑛𝜎 (2)) =
𝛺 (𝑛 ·max{𝑛, 𝜎 (2)}), then the PoA is at most

SC(𝐺)
SC(F𝑛)

∈ O
(

𝜎 (𝑛)
max{𝑛, 𝜎 (2)}

)
.

Note that both bounds are asymptotically tight because the upper bound for
equilibrium networks is achieved on a center sponsored star S𝑛 . Finally, by
Theorem 6.19, any equilibrium, as well any optimum, is a clique if 𝜎 (2) < 1,
hence, the PoA is 1. �
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◮ Theorem 6.23. The PoS is equal to 1 for 𝜎 (2) < 1 and 2 ≤ 𝜎 (2) ≤ 𝑛 − 3.
For 1 ≤ 𝜎 (2) < 2, the PoS equals 2. For 𝑛 − 2 < 𝜎 (2) ≤ 1

2
𝜎 (3), the PoS equals

the PoA∈ 𝛩
(

𝜎 (𝑛)
max{𝜎 (2),𝑛}

)
. ◭

Proof. First, we will show that for 1 ≤ 𝜎 (2) ≤ 𝑛 − 3, a fan network F𝑛 is a NE.
Consider F𝑛 with a central node 𝑢. We assume that 𝑢’s strategy profile is empty,
i.e., 𝑢 owns no edges in Fn. If 𝑛 is even, there is a non-central node with three
incident edges. We assume that this node owns only one edge towards 𝑢.
Consider a triangle 𝑥 − 𝑢 − 𝑣 in F𝑛 . W.l.o.g. 𝑥 owns two edges 𝑥𝑢 and 𝑥𝑣,

i.e., 𝑆𝑥 = {𝑢, 𝑣}. Agent 𝑥 cannot improve her strategy by deleting any of her
edges since it creates a bridge of cost 𝜎 (𝑛) or disconnects the network. Also, any
new strategy 𝑆 ′𝑥 with more than two edges costs at least 𝜎 (2) ( |𝑆 ′𝑥 | − |𝑆𝑥 |) and
improves distances only to the new neighbors by 1 each. Since 𝜎 (2) ≥ 2, it is
not profitable for 𝑥 to increase the number of owned edges. Also a swap of any
edge 𝑥𝑢 or 𝑥𝑣 can either increase the distance cost, or can be a neutral move.

Agent 𝑣 owns only one edge. This edge cannot be deleted because it increases
the distance to at least 𝑛−3 nodes by 1 (since 𝑣 can have three neighbors). Hence,
this move is not an improvement if 𝜎 (2) ≤ 𝑛 − 3. Clearly, any better strategy for
𝑣 includes the edge to the central node 𝑢. Since for 𝜎 (2) ≥ 1 the addition of any
new edge is not profitable, agent 𝑣 cannot improve on her strategy.
Finally, the central node 𝑢 owns no edges but is connected with all nodes.

Then 𝑢 cannot change her strategy. Therefore, Fn is a NE for 1 ≤ 𝜎 (2) ≤ 𝑛 − 3.
Hence, F𝑛 is a social optimum and is in NE for 2 ≤ 𝜎 (2) ≤ 𝑛 − 3. This implies
that the PoS is 1 12. Moreover, as stated in Theorem 6.19 and Theorem 6.6, a
clique K𝑛 is an equilibrium and optimum network. The first part of the statement
follows.
For 1 ≤ 𝜎 (2) < 2, by Theorem 6.6, the social optimum is a clique, then

PoS = sup
𝑛

SC(F𝑛)
SC(K𝑛)

= sup
𝑛

(𝑛 − 1)
( 3
2𝜎 (2) + 2𝑛 − 3

)
𝑛(𝑛 − 1) (𝜎 (2) + 1) = 2.

Finally, for 𝑛 − 2 < 𝜎 (2) ≤ 1
2𝜎 (3), by Theorem 6.21, a center sponsored star

S𝑛 is the unique NE. Hence, we have that PoS = PoA ∈ 𝛩
(

𝜎 (𝑛)
max{𝜎 (2),𝑛}

)
. �

12 Note that if 𝑛, the number of agents, is odd, then there is symmetric fan network such that all
non-central nodes have degree two. Hence, the deletion of any edge by a non-central node is
not profitable when 𝜎 (2) ≤ 𝑛 − 2. This implies that the PoS is 1 for 𝜎 (2) ≤ 𝑛 − 2.
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(1) agents are selfish, (2) each agent aims at increasing her centrality, (3) new
connections are most likely to appear between friends of friends rather than
between more remote nodes, and (4) connections are costly. All principles are
motivated by modeling real-world social networks.

This chapter’s main focus was on the bilateral version of the game where any
new edge is formed if it is profitable for both endpoints only, and any edge can be
deleted unilaterally. This variant perfectly mimics the formation of connections
in social networks. However, there are real-world network formation scenarios
where the links between the nodes are unilateral. Therefore, it is also essential
to study the unilateral variant of the game where each edge is controlled by
its owner only. Moreover, a study of both game variants helps to understand
the impact of the chosen solution concept. In the following, we will compare
properties of equilibrium networks in the unilateral and bilateral SNCG. An
overview of the results for both versions is provided in Table 6.2.

An important common property of both model variants is the dependence of
the results on the cost of 2-edges and bridges only. More precisely, the structure
and efficiency of selfishly created networks depend on the cost of forming a link
between two friends of a common friend, i.e., the cost of forming a triangle. A
good illustration of this is the upper bound for the diameter of a stable network
𝐺 . In both models 𝐷 (𝐺) ∈ O(𝜎 (2)). However, it is worth noticing that greedy
equilibria in the unilateral SNCG have constant diameter for almost any value
of 𝜎 (2) (Theorem 6.21 and Theorem 6.18). In contrast, the bilateral version
allows stable networks with high diameter (Lemma 6.9). This phenomenon
can be explained by the fact that in the bilateral version, deletions are mostly
costly because each node is the owner of all its incident edges, while in the
unilateral version, any network of high diameter most probably has an edge
whose deletion does not increase the cost of other edges and therefore makes
the deletion profitable for its owner.

Another common property of the two versions is a high number of triangles
in equilibrium networks. This property looks promising for proving a high
clustering property. Unfortunately, both games admit stable networks with the
average clustering coefficient going to zero when the number of agents goes to
infinity. See Figure 6.13 for an illustration of such networks.

Due to the centrality measure in the agent’s cost function, the best stable
state (as well as a social optimum) in both versions is a star-like construction,
i.e., one central node incident to all other nodes. Certainly, this construction
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Figure 6.14: An instance of a stable network generated by the best response dynamics
in the unilateral SNCG starting from a random tree.
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in the same setting. In particular, our empirical results illustrate that the best
move dynamic of the bilateral SNCG converges to equilibrium networks that
share fundamental properties with real-world networks, like a power-law degree
distribution, a high clustering, and a low diameter. Unfortunately, the unilateral
version does not show the same results. Figure 6.14 shows a typical greedy
equilibrium achieved by the best response dynamics starting from a random
tree. It has a star-like construction with one central node connected with all
other nodes. Indeed, high degree nodes often have high centrality in a network.
Therefore, in the unilateral case, any other node prefers to form one edge to the
most central node and one edge to keep the edge cost equal to 𝜎 (2). In contrast,
in the bilateral version, the central node can reject any new incoming edge if it
does not improve its centrality.

To summarize, we see the bilateral version as the most natural and promising
model of social network formation that yields networks with all core properties of
real-world networks. Future work could systematically study the influence of our
model parameters on the obtained network features and prove that the sequential
network creation process indeed converges to real-world-like networks with
high probability. As for the unilateral SNCG, it would be interesting to find a
mechanism that prevents the formation of constant diameter equilibria.
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Table 6.2: Comparison of the unilateral and bilateral SNCG.

SNCG unilateral SNCG

equilibrium always exists always exists

existence (Thm.6.7) (Thm.6.19, 6.20)

complexity
BR can be computed BR is NP-hard

in polynomial time (Thm.6.13)

each node incident to no induced cycles

structural at most one induced cycle of length ≥ 4 (Prop.6.14)

properties of length ≥ 4 (Prop.6.2);

of equilibria ≤ 3 bridges (Thm.6.3); star is a NE (Thm.6.20, 6.21)

𝐷 (𝐺) ≤ 𝜎 (2) + 1 (Thm.6.4); 𝐷 (𝐺) ≤ 2
3
𝜎 (2) + 1 (Thm.6.17)

PoA

𝑂
(
min{𝜎 (2), 𝑛} + 𝜎 (𝑛)

𝑛max{𝜎 (2),𝑛}

)
, for 𝜎 (2) < 1, PoA= 1

𝛺
(

𝜎 (𝑛)
𝑛max{𝜎 (2),𝑛}

)
for 𝜎 (2) ≥ 2:

2-edge-connected networks: 𝛩
(

𝜎 (𝑛)
max{𝜎 (2),𝑛}

)
;

𝛩
(
min{𝜎 (2), 𝑛}

)
. for 1 ≤ 𝜎 (2) < 2:

for 𝜎 (2) < 2, PoA= 1 𝛩
(
𝜎 (𝑛)
𝑛𝜎 (2)

)
;

(Thm. 6.8, 6.10) (Thm.6.22)

PoS

for 𝜎 (2) ≤ 2 or 𝑛 is odd: for 𝜎 (2) < 1, 2 ≤ 𝜎 (2) ≤ 𝑛 − 3:

PoS= 1; PoS= 1;

for 𝜎 (3) ≥ 6, 𝜎 (2) ≤ 𝑛
2 − 4: for 1 ≤ 𝜎 (2) < 2:

PoS≤ 11
8 ; PoS= 2;

for 𝜎 (2) ≥ 2𝑛
3 : PoS≤

17
12 ; for 𝑛 − 2 < 𝜎 (2) ≤ 1

2𝜎 (3):

otherwise: O
(

𝜎 (𝑛)
𝑛max

{
𝜎 (2),𝑛

} )
PoS∈ 𝛩

(
𝜎 (𝑛)

max{𝜎 (2),𝑛}

)
(Thm.6.11) (Thm.6.23)

Game
no FIP (Thm.6.12) no FIP (Thm.6.24)

Dynamics
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7 Conclusions & Outlook

In this thesis, we proposed and analyzed several variants of the Network Creation
Game with a particular focus on a realistic scenarios. Our main aim was to
understand the behavior and the structure of the equilibria in the game under
realistic assumptions. Each chapter already contains a conclusion and overview
of future directions for the respectively studied model. So in this chapter, we
will continue the discussion from a more general perspective.

We have observed that the Network Creation Game with the incorporated
robustness aspect behaves similarly to the non-adversarial version. However, to
achieve stability against a random edge failure, agents have to create sufficiently
more connections. This leads to a more diverse landscape of optimum and
equilibrium states compared to the model without adversary.

Moreover, we have learned that incorporating edge weights and geometry
into the Network Creation Game leads to many surprising results. Namely, the
inefficiency of the worst-case equilibrium in comparison to a social optimum.
Interestingly, this negative result is independent of the geometry and holds
for a metric and non-metric case. This implies that centralized coordination is
necessary for the outcome of the game to be socially efficient. However, in some
cases, the problem is complicated by the fact that computing an optimal centrally
designed network is hard. In particular, in Euclidean space, computing the social
optimum is related to a minimum weight geometric 𝑡-spanner problem which is
known to be NP-hard [CC13].

We presented a model with degree-dependent edge cost. Here, we observed
that the anti-preferential attachment rule of the edge formation guarantees a
constant diameter and efficient equilibria in the game. Hence, to successfully
imitate the real-world networks, the model requires additional restrictions to
avoid the constant diameter equilibria in the game. For this, we propose to
consider the bilateral version or to incorporate a more general edge-cost function,
e.g., a linear or polynomial function.

The last introduced model seems the most promising for modeling of real-
world social networks. Based on several natural assumptions, i.e., bilateral edge
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formation and distance-dependent edge cost, the obtained equilibria have many
real-world properties. Namely, we proved that the small-worlds property holds
for any pairwise stable network for suitable edge-cost functions. Our empirical
results showed that the game outcomes have a power-law degree distribution
and high clustering.

So far, we have focused on different objectives separately. However, many
assumptions can be combined such that the obtained model takes the best
properties from the parent models. For example, the geometric version can
be incorporated into any other model. In particular, the geometric version in
combination with the distance-dependent edge cost. This model combination
incorporates the principle that agents are more likely to establish new connec-
tions to close acquaintances and prefer connections to the agents with common
interests, i.e., to the agents within a close metric distance in the host network.

In Chapter 5 and 6 we aimed to model real-world social networks from two
different perspectives: assuming that cost of the connections depends on the
popularity of the targeting endpoint or the distance to the target before the
connection was established. Both objectives are natural and should be combined
in one model.

So far, we studied the local version for the Degree Price Network Creation
Game only. However, locality is a crucial realistic assumption that can be con-
sidered in combination with other model settings. Indeed, in large networks,
agents cannot observe the entire network but only have a partial knowledge of
the network structure, usually within their neighborhood. Several definitions
of locality have been proposed. The pessimistic scenario where agents have
only partial information about the world outside of their neighborhood [Bil+14a;
Bil+14b] sounds realistic but leads to dramatically inefficient networks. The
more optimistic approach (which has been incorporated in our Social Network
Creation Game) is one where the agents have all information about the network
but can perform only local steps [CL15]. This scenario guarantees a better qual-
ity of the stable networks. However, a complete knowledge about the network
structure is unrealistic if we talk about complex networks like the Internet. The
core question in this setting is what minimum information about the network is
necessary to enable selfish agents to find efficient equilibria.

For the distance-dependent edge cost model, we provided the analysis for a
general case when the dependence between the edge price and its cost for an
agent is expressed by a convex function. To the best of our knowledge, this
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generalization has never been studied before for the original Network Creation
Game, however, this question is interesting to study. For example, some structural
properties can be easily extended to the class of linear functions.
In this thesis, we paid much attention to the edge cost function while the

distance cost, representing a centrality measure, keeps unchanged. It would be
interesting to study other measures to understand the influence of other forces
that motivate the agents to form costly connections.

Given the above list of interesting open problems for future research, we are
optimistic that the study of variants of the NCG will go on, and that it will yield
many novel insights into the formation of real-world networks.
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