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Abstract

Dynamic resource management is an essential requirement for private and pub-
lic cloud computing environments. With dynamic resource management, the
physical resources assignment to the cloud virtual resources depends on the ac-
tual need of the applications or the running services, which enhances the cloud
physical resources utilization and reduces the offered services cost. In addition,
the virtual resources can be moved across different physical resources in the
cloud environment without an obvious impact on the running applications or
services production. This means that the availability of the running services
and applications in the cloud is independent on the hardware resources includ-
ing the servers, networks and storage failures. This increases the reliability of
using cloud services compared to the classical data-centers environments.
In this thesis we briefly discuss the dynamic resource management topic and
then deeply focus on live migration as the definition of the compute resource
dynamic management. Live migration is a commonly used and an essential
feature in cloud and virtual data-centers environments. Cloud computing load
balance, power saving and fault tolerance features are all dependent on live mi-
gration to optimize the virtual and physical resources usage. As we will discuss
in this thesis, live migration shows many benefits to cloud and virtual data-
centers environments, however the cost of live migration can not be ignored.
Live migration cost includes the migration time, downtime, network overhead,
power consumption increase and CPU overhead.
IT admins run virtual machines live migrations without an idea about the mi-
gration cost. So, resources bottlenecks, higher migration cost and migration
failures might happen. The first problem that we discuss in this thesis is how
to model the cost of the virtual machines live migration. Secondly, we investi-
gate how to make use of machine learning techniques to help the cloud admins
getting an estimation of this cost before initiating the migration for one of mul-
tiple virtual machines. Also, we discuss the optimal timing for a specific virtual
machine before live migration to another server. Finally, we propose practical
solutions that can be used by the cloud admins to be integrated with the cloud
administration portals to answer the raised research questions above.
Our research methodology to achieve the project objectives is to propose empir-
ical models based on using VMware test-beds with different benchmarks tools.
Then we make use of the machine learning techniques to propose a prediction
approach for virtual machines live migration cost. Timing optimization for live
migration is also proposed in this thesis based on using the cost prediction
and data-centers network utilization prediction. Live migration with persistent
memory clusters is also discussed at the end of the thesis. The cost prediction
and timing optimization techniques proposed in this thesis could be practically

v



vi ABSTRACT

integrated with VMware vSphere cluster portal such that the IT admins can
now use the cost prediction feature and timing optimization option before pro-
ceeding with a virtual machine live migration.
Testing results show that our proposed approach for VMs live migration cost
prediction shows acceptable results with less than 20% prediction error and can
be easily implemented and integrated with VMware vSphere as an example of a
commonly used resource management portal for virtual data-centers and private
cloud environments. The results show that using our proposed VMs migration
timing optimization technique also could save up to 51% of migration time of
the VMs migration time for memory intensive workloads and up to 27% of the
migration time for network intensive workloads. This timing optimization tech-
nique can be useful for network admins to save migration time with utilizing
higher network rate and higher probability of success.
At the end of this thesis, we discuss the persistent memory technology as a new
trend in servers memory technology. Persistent memory modes of operation
and configurations are discussed in details to explain how live migration works
between servers with different memory configuration set up. Then, we build
a VMware cluster with persistent memory inside server and also with DRAM
only servers to show the live migration cost difference between the VMs with
DRAM only versus the VMs with persistent memory inside.



Zusammenfassung

Die dynamische Ressourcenverwaltung ist eine wesentliche Voraussetzung für
private und öffentliche Cloud-Computing-Umgebungen. Bei der dynamischen
Ressourcenverwaltung hängt die Zuweisung der physischen Ressourcen zu den
virtuellen Cloud-Ressourcen vom tatsächlichen Bedarf der Anwendungen oder
der laufenden Dienste ab, was die Auslastung der physischen Cloud-Ressourcen
verbessert und die Kosten für die angebotenen Dienste reduziert. Darüber hin-
aus können die virtuellen Ressourcen über verschiedene physische Ressourcen in
der Cloud-Umgebung verschoben werden, ohne dass dies einen offensichtlichen
Einfluss auf die laufenden Anwendungen oder die Produktion der Dienste hat.
Das bedeutet, dass die Verfügbarkeit der laufenden Dienste und Anwendun-
gen in der Cloud unabhängig von den Hardwareressourcen einschließlich der
Server, Netzwerke und Speicherausfälle ist. Dies erhöht die Zuverlässigkeit bei
der Nutzung von Cloud-Diensten im Vergleich zu klassischen Rechenzentrum-
sumgebungen.
In dieser Arbeit wird das Thema der dynamischen Ressourcenverwaltung kurz
erörtert, um sich dann eingehend mit der Live-Migration als Definition der dy-
namischen Verwaltung von Compute-Ressourcen zu beschäftigen. Live-Migration
ist eine häufig verwendete und wesentliche Funktion in Cloud- und virtuellen
Rechenzentrumsumgebungen. Cloud-Computing-Lastausgleich, Energiespar- und
Fehlertoleranzfunktionen sind alle von der Live-Migration abhängig, um die
Nutzung der virtuellen und physischen Ressourcen zu optimieren. Wie wir
in dieser Arbeit erörtern werden, zeigt die Live-Migration viele Vorteile für
Cloud- und virtuelle Rechenzentrumsumgebungen, jedoch können die Kosten
der Live-Migration nicht ignoriert werden. Zu den Kosten der Live-Migration
gehören die Migrationszeit, die Ausfallzeit, der Netzwerk-Overhead, der Anstieg
des Stromverbrauchs und der CPU-Overhead.
IT-Administratoren führen Live-Migrationen von virtuellen Maschinen durch,
ohne eine Vorstellung von den Migrationskosten zu haben. So kann es zu
Ressourcenengpässen, höheren Migrationskosten und Migrationsfehlern kom-
men. Das erste Problem, das wir in dieser Arbeit diskutieren, ist, wie man
die Kosten der Live-Migration virtueller Maschinen modellieren kann. Zweitens
untersuchen wir, wie maschinelle Lerntechniken eingesetzt werden können, um
den Cloud-Administratoren zu helfen, eine Schätzung dieser Kosten zu erhalten,
bevor die Migration für eine oder mehrere virtuelle Maschinen eingeleitet wird.
Außerdem diskutieren wir das optimale Timing für eine bestimmte virtuelle
Maschine vor der Live-Migration auf einen anderen Server. Schließlich schla-
gen wir praktische Lösungen vor, die von den Cloud-Admins verwendet werden
können, um in die Cloud-Administrationsportale integriert zu werden, um die
oben aufgeworfenen Forschungsfragen zu beantworten.
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viii ZUSAMMENFASSUNG

Unsere Forschungsmethodik zur Erreichung der Projektziele besteht darin, em-
pirische Modelle vorzuschlagen, die auf der Verwendung von VMware-Testbeds
mit verschiedenen Benchmark-Tools basieren. Dann nutzen wir die Techniken
des maschinellen Lernens, um einen Vorhersageansatz für die Kosten der Live-
Migration virtueller Maschinen vorzuschlagen. Die Timing-Optimierung für
die Live-Migration wird ebenfalls in dieser Arbeit vorgeschlagen, basierend auf
der Kostenvorhersage und der Vorhersage der Netzwerkauslastung des Rechen-
zentrums. Die Live-Migration mit Clustern mit persistentem Speicher wird
ebenfalls am Ende der Arbeit diskutiert. Die in dieser Arbeit vorgeschlage-
nen Techniken zur Kostenvorhersage und Timing-Optimierung könnten prak-
tisch in das VMware vSphere-Cluster-Portal integriert werden, so dass die IT-
Administratoren nun die Funktion zur Kostenvorhersage und die Option zur
Timing-Optimierung nutzen können, bevor sie mit einer Live-Migration der
virtuellen Maschine fortfahren. Die Testergebnisse zeigen, dass unser vorgeschla-
gener Ansatz für die VMs-Live-Migrationskostenvorhersage akzeptable Ergeb-
nisse mit weniger als 20% Fehler in der Vorhersagegenauigkeit zeigt und leicht
implementiert und in VMware vSphere als Beispiel für ein häufig verwendetes
Ressourcenmanagement-Portal für virtuelle Rechenzentren und private Cloud-
Umgebungen integriert werden kann. Die Ergebnisse zeigen, dass mit der von
uns vorgeschlagenen Technik zur Timing-Optimierung der VMs-Migration auch
bis zu 51% der Migrationszeit für speicherintensive Workloads und bis zu 27%
der Migrationszeit für netzwerkintensive Workloads eingespart werden können.
Diese Timing-Optimierungstechnik kann für Netzwerkadministratoren nützlich
sein, um Migrationszeit zu sparen und dabei eine höhere Netzwerkrate und eine
höhere Erfolgswahrscheinlichkeit zu nutzen.
Am Ende dieser Arbeit wird die persistente Speichertechnologie als neuer Trend
in der Server-Speichertechnologie diskutiert. Die Betriebsarten und Konfigura-
tionen des persistenten Speichers werden im Detail besprochen, um zu erklären,
wie die Live-Migration zwischen Servern mit unterschiedlichen Speicherkonfigu-
rationen funktioniert. Dann bauen wir einen VMware-Cluster mit persistentem
Speicher im Server und auch mit Servern nur mit DRAM auf, um den Koste-
nunterschied bei der Live-Migration zwischen den VMs mit nur DRAM und den
VMs mit persistentem Speicher im Server zu zeigen.
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Chapter 1

Introduction

1.1 Research Problems

Live Migration is a key technology and essential feature in datacenter virtual-
ization. With live migration, the VMs can be moved from a physical host to
another with almost no impact on the running applications availability. This
makes the running applications get affected by the entire physical server issues;
which enhances the service availability dramatically. Many research articles have
discussed live migration optimization and cost modeling, however in this work
we focus on research problems that are not addressed before. The problems
that we aim to solve in this research project are:

1. Live migration cost modeling for VMware platforms has few contributions
in the related work compared to open source hypervisors like Xen and
KVM. So it is required to perform live migration cost modeling validation
on VMware clusters.

2. IT admins run live migration requests without an idea about the cost
beyond each live migration request. This might lead to resources bottl-
necks, higher migration cost and migration failures; especially for large
memory Virtual Machines (VMs). The existing live migration cost pre-
diction publications present complex techniques that are not practical to
be integrated with the virtual datacenter clusters portals.

3. It is not obvious how to integrate a live migration cost prediction algorithm
with cloud administration portal such that the IT admins can make use of
this feature as an integrated feature in the clusters management portals.

4. To the best of our knowledge, no article has discussed the idea of tim-
ing optimization for VMs migration based on migration cost prediction.
Therefore, a practical technique should be developed to help the IT admins
in choosing the optimal timing for a VM live migration to have minimal
cost.

5. To the best of our knowledge, there is no article that discusses live mi-
gration cost modelling difference with using the standard DRAM memory
versus using the persistent memory as a new trend in memory technology.

1
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Based on the problems discussed in the previous section, the raised questions
that should be answered in this thesis are:

1. Does the live migration cost change from a hypervisor to another?

2. What is the estimated live migration cost for a VM before proceeding with
migration?

3. What is the optimal time for a VM to be migrated?

4. How to integrate the proposed techniques with Cloud administration por-
tals?

5. Is there a difference between DRAM and Persistent Memory in live mi-
gration cost?

1.2 Research Methodology

Our research methodology to address the research problems and answer the
raised questions are:

1. To obtain empirical modeling for live migration cost using a VMware clus-
ter test-bed and with using different VMs sizes and different benchmark
tools for single and multiple VMs migration.

2. To make use of machine learning techniques in order to propose a live
migration cost prediction approach. The proposed approach should be
simple and practical to be implemented and used by the IT admins.

3. For live migration timing optimization, we make use of datacenter network
utilization prediction that were proposed by many published articles using
different prediction techniques. We use one of these network utilization
prediction techniques in addition with our proposed live migration network
overhead prediction to propose an optimal time for a VM live migration
to the IT admins.

4. For integration with virtual datacenters and cloud computing administra-
tion portals, we integrate the proposed prediction technique with VMware
vSphere User Interface (UI) as a commonly used hypervisor at enterprise
datacenters.

5. To repeat the migration tests on VMware cluster with persistent memory
included to compare the modeling results between DRAM and persistent
memory in VMs live migration.

1.3 Thesis Contribution

The thesis contribution can be listed in the below points:

1. We provide a literature review on live migration cost modeling and pre-
diction. Then we classify these works according to the cost parameter and
show how it is modeled in the different research papers.
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2. Related work articles show that cost modeling for live migration focus
mainly on open source hypervisors and the contribution for VMware en-
vironments is obviously few. Hence, our first contribution is to propose
empirical cost modeling for virtual machines live migration in VMware
environments.

3. Machine learning based approach is proposed for live migration cost pre-
diction. The proposed approach considers the simplicity of the prediction
technique for integration with the virtual datacenters administration por-
tals.

4. A novel timing optimization technique is also proposed in this thesis to
provide an optional guidance to the IT admins about the optimal time
to run live migration for a specific VM based on the datacenter network
utilization prediction.

5. The proposed cost prediction and timing optimization technique could be
integrated as a built-in plug-in with VMware vSphere user interface to
show an example for practical implementation for the proposed algorithm
with cloud administration interfaces. This facilitates using cost prediction
and timing optimization features by the IT admins as an extended option
before proceeding with the VMs live migration.

6. In this thesis, we discuss also the persistent memory technology as a new
servers memory technology that is supported by different hypervisors. We
validate in this thesis if live migration cost modeling with the standard
DRAM can be used also for persistent memory.

The proposed work in this thesis is published in the following papers:

1. Elsaid, M.; Abbas, H. and Meinel, C. Virtual Machines Pre-Copy Live
Migration Cost Modeling and Prediction: A Survey, 2021. Distributed
and Parallel Databases. Springer (Final revision processed)

2. Mohamed Esam Elsaid, Mohamed Sameh, Hazem M. Abbas and Christoph
Meinel. Live migration timing optimization integration with vmware en-
vironments. In Donald Ferguson, Claus Pahl, and Markus Helfert, edi-
tors, Cloud Computing and Services Science, pages 133–152, Cham, 2021.
Springer International Publishing. ISBN 978-3-030-72369-9.

3. Elsaid, M.; Abbas, H. and Meinel, C. (2020). Live Migration Timing Opti-
mization for VMware Environments using Machine Learning Techniques.
In Proceedings of the 10th International Conference on Cloud Computing
and Services Science, 2020 - Volume 1: CLOSER, ISBN 978-989-758-424-
4, pages 91-102. DOI: 10.5220/0009397300910102

4. Mohamed Esam Elsaid, Hazem M. Abbas, and Christoph Meinel. Ma-
chine learning approach for live migration cost prediction in vmware en-
vironments. In Vıctor Mendez Munoz, Donald Ferguson, Marku sHelfert,
and Claus Pahl, editors, Proceedings of the 9th International Conference
on Cloud Computing and Services Science, CLOSER 2019, Heraklion,
Crete, Greece, May 2-4, 2019, pages 456–463. SciTePress,2019. doi:
10.5220/0007749204560463.
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5. M. E. Elsaid, A. Shawish and C. Meinel, ”Enhanced Cost Analysis of
Multiple Virtual Machines Live Migration in VMware Environments,”
2018 IEEE 8th International Symposium on Cloud and Service Computing
(SC2), Paris, France, 2018, pp. 16-23, doi: 10.1109/SC2.2018.00010.

6. M. E. Elsaid, A. Shawish, and C. Meinel. A Social Aware Approach
for On-line Social Networks Data Allocation and Replication. In 2017
European Conference on Electrical Engineering and Computer Science
(EECS), pages 266–271, 2017. doi: 10.1109/EECS.2017.56.

7. M. E. Elsaid and C. Meinel. Multiple Virtual Machines Live Migration
Performance Modelling – VMware vMotion based Study. In 2016 IEEE In-
ternational Conference on Cloud Engineering (IC2E), pages 212–213,April
2016. doi: 10.1109/IC2E.2016.9.

8. M. E. Elsaid and C. Meinel. Friendship based storage allocation for on-
linesocial networks cloud computing. In 2015 International Conference
onCloud Technologies and Applications (CloudTech), pages 1–6, 2015.
doi:10.1109/CloudTech.2015.7336970.

9. M. E. Elsaid and C. Meinel. Live migration impact on virtual datacen-
ter performance: Vmware vmotion based study. In 2014 International
Conference on Future Internet of Things and Cloud, pages 216–221, Aug
2014.doi: 10.1109/FiCloud.2014.42.

1.4 Thesis Organization

The next chapters of the thesis are organized as following, in Chapter 2 we
discuss the thesis background that covers the dynamic resource management
topic and focuses on live migration process and configuration details. In Chap-
ter 3, we provide a related survey and classification for the related articles that
discuss live migration cost. Chapter 4 presents the testing environment using
a VMware cluster and explains how to integrate an algorithm with VMware
user interface to be added as a built-in plug-in. Live Migration cost modeling
is presented in Chapter 5 as empirical models. Then the proposed cost predic-
tion approach is discussed in Chapter 6. In Chapter 7, we propose the timing
optimization approach for virtual machines live migration. Live migration for
VMs with persistent memory is discussed in Chapter 8 and then we conclude
the thesis in Chapter 9.



Chapter 2

Background

2.1 Dynamic Resources Management in Virtual
Environments

Virtualization concept relies on resources sharing such that the datacenters re-
sources of compute, network and storage can be shared between different oper-
ating systems and applications with a physical layer based isolation [122]. Dy-
namic resource management in virtual datacenters and cloud computing means
that the physical resources assignment for the virtual resource is dependent on
the actual demand. So the hypervisor can scale up and down the resources based
on the actual needs [80]. In case of over-commitment when a high demand for
the physical resources is requested and can not be fulfilled to meet the capacity
requirements of the virtual resource, a virtual resource migration to another
physical machine that can meet the physical resources demand is required [111],
[134]. This concept applies to storage, network or in compute resources. Not
only in an over-commitment situation, but also virtual resources migration can
be used for other purposes like performance enhancement [57], [138] or power
saving objectives [123], [83] as part of the dynamic resource management feature
in virtual datacenters and cloud computing environment.

2.1.1 Storage Resources Dynamic Management

Data storage increases dramatically with the massive data demand on social
networks, e-commerce, IoT, online video sharing platforms, enterprise applica-
tions and many other data sources. Users and IT admins look for a storage
environment that is reliable, secure, cost efficient and meets the performance
requirements. Storage virtualization is an abstraction technology of the storage
layer that separates the hosts’ view from the physical storage systems [30].

2.1.1.1 Virtual Storage Migration and Replication

Virtual data-centers and cloud computing environments provide a virtualization
layer for the storage platform in order to meet the data storage cost efficiency,
availability, reliability and rapid scaling requirements. In storage virtualization,
the storage layer of the VM disk is implemented as a set of files to be stored

5
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on the physical medium. Therefore, in the case of the VM replication or migra-
tion, the VMs disk files can be smoothly transferred and shared across different
physical hosts and different physical storage servers. With virtual storage, the
storage resources can be more cost efficient, rapidly scaled and be more reliable
and available. Virtual storage facilitates the storage migration in cloud and vir-
tual storage environments by abstracting the storage of the virtual machines in
a set of disk files or data stores using the platform hypervisor in stead of phys-
ically attached disks to server [31] and [5]. Using storage virtualization, live
storage migration feature can be supported by transferring the VMs disks files
to the target storage server without applications disruptions [31], [5]. Virtual
storage migration and replication can be used for different reasons depending
on the applications requirements like cost saving, higher durability, higher avail-
ability, load balance and performance enhancement of the application [106].
Cost saving can be achieved also with live storage migration of the virtual stor-
age data stores. Data can be moved to a cheaper storage tier when the frequency
of the data access becomes lower [86]. Storage tiering is dependent on the access
rate of the data, for high access rate of the data a hot tier should be used to
afford the high storage performance requirement. When the data access rate
decreases a migration to the cold tier that has slower performance can be done
to save the storage cost. This concept applies for private, public and hybrid
cloud [86].
For high durability, data should not be lost and for high availability there should
be accessible. These two parameters are measured in multiple of nines proba-
bility; AWS S3 for example shows five nines (99.999) percentage against data
unavailability and 11 nines against data loss [1], [107]. VMs storage replication
and migration techniques are used in cloud environments to have multiple copies
of the data in order to increase the service availability and durability levels [107].
This redundancy in data storage avoid a single point of failure in the storage
environment such that the application server can be assigned to another virtual
storage node when a failure happens at the primary node[11].
Storage migration and replication can be useful also for the cloud environment
load balance [103], [85]. With data replication of the virtual storage resources,
data is stored in multiple copies across different storage nodes and the applica-
tion server chooses the storage nodes that avoids resources bottleneck situation
and meet the application Service Level Agreement (SLA) requirement.
Application performance optimization can be achieved also by using the vir-
tual storage replication and migration techniques. In [66], storage replication of
VMs could be used to optimize Hadoop Distributed File System (HDFS) perfor-
mance. The authors use SVM to classify the storage nodes of the HDFS cluster
based on the nodes load and topology. The top nodes are selected for replication
to achieve better load balance between the nodes with less replication overhead.
In [70] and [72], we proposed storage migration and replication techniques to
minimize the access latency for Online Social Network (OSN) cloud environment
web content. In chapter 3, we discuss in details the proposed data management
approaches for OSN cloud.
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2.1.2 Networks Resources Dynamic Management

Software Defined Network (SDN) is another virtualization layer for the network
infrastructure that grew up rapidly during the last decade and shows many
benefits for cloud network resources management. SDN virtualizes the net-
work resources to abstract the physical hardware components of the network
infrastructure such as the switches and routers [12] and [33]. Using SDN IT
admins can dynamically manage the datacenter networking resources to fulfill
the workload and applications requirements. They can also implement the net-
work policies consistently and at large scale using a centralized control console.
In addition, workloads can be migrated across different virtual or physical net-
works with almost no impact on the application availability.
Network infrastructure can be deployed including network controllers, software
load balancers, and gateways using the SDN controller. IT admins can create
virtual network policies centrally and assign that to the corresponding appli-
cations such that when the application is migrated, the network configuration
adjusts itself automatically. This means that the network manual reconfigura-
tion is not needed, which saves the operational complexity and operational cost.
Each Virtual Network (VN) control logic can run on a virtual controller as a set
of rules instead of configuring the physical switch [110]. SDN consists of 3 layers
as shown in Fig. 2.1. Layer one is the infrastructure layer that has the physical
network infrastructure equipments like switches and routers. The second layer
is the SDN controller layer where the network configuration, switching, rout-
ing, L2 VPN, L3 VPN, firewall security rules, DNS, DHCP, and clustering are
applied [12], [33]. The controller services expose their interfaces to the upper
layer; which is the application layer.
The application layer is the top layer that includes network automation, net-
work management, network monitoring, troubleshooting, network policies and
security. The application layer services differentiate between a SDN platform
to another depending on the SDN platform vendors interest to add applica-
tion layer features for their customers. The application layer services facilitate
offering an application-driven network (ADNO) architecture that defines logic
structure of the network based on the application requirement [98]. This is con-
sidered as a new paradigm in networking management. In ADNO, the physical
network resources are sliced into many logical network such that each appli-
cation is assigned to a logical network that is optimized for the application
requirements. Live migration of the logic network segment and the application
assigned to it is a feature in SDN. In this case the VM where the application run,
the logical network assigned to it and the related management modules can be
migrated from a physical resource to another [96]. In [96], the authors propose a
live migration algorithm for applications VMs and their assigned networks with
down time avoidance for SDN environments.

2.1.3 Compute Resources Dynamic Management

Dynamic management of the compute resources is called live migration of the
virtual machines. Cloud computing and virtual datacenters admins can move
the VMs from a physical host to another without applications interruptions.
Live Migration is one of the most important features and a powerful tool in
machine virtualization. It allows an entire running and active virtual machine
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Figure 2.1: SDN Architecture

(VM) to be transferred from one physical host to another with a very little
interruption which allows seamless movement of online servers in LAN or in
MAN scale without asking clients to disconnect and reconnect [4]. Live migra-
tion is supported by VMware (vMotion), Xen (XenMotion), Microsoft Hyper-V
and Redhat KVM [3]. Servers load balancing, online maintenance, fault tol-
erance and power saving are all dependent on VMs live migration feature. So
live migration is an essential feature in virtual datacenter and cloud computing
environment to have dynamic resource management. On the other hand, it is
important also to study the drawback of live migration overhead on the data-
center performance.
The rest of this thesis focuses on the live migration process. We start with
detailed background on live migration types, phases, configurations, networking
and cost. Then we propose cost modeling, prediction and timing optimization
for VMs live migration.

2.2 Live Migration Types

From migration processes point of view, live migration has three different types;
as shown in Fig. 2.2 The three types are Pre-copy, Post-copy and Hybrid-copy.

• In Pre-copy, live migration starts with transferring the whole content of
the source host memory to the target host, however due to the fact that
the application is still writing data on the source host memory, this new
data is called dirty pages that should be transferred also to the target host
in other iterations. This iterative copy runs until a stopping condition is
met. There are different stopping conditions, as we will discuss later.
When the stopping condition is met, the last copy of the memory and
the CPU state are transferred to the target host and the this is the time
when the VM is handed-over to the target host. During this handover,
there is a down-time that should be very short to avoid the running ap-
plication interruption. This means that in Pre-copy, the handover of the
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Figure 2.2: Live Migration Types

VM only occurs when there is little amount of data to be transferred to
minimize the down-time and to have robust migration. That is the the
reason for considering Pre-copy live migration as the most reliable live
migration type. VMware, KVM, Hyper-V and Xen are all using Pre-copy
live migration. The dis-advantage of Pre-copy live migration is the migra-
tion time which is not predictable because the number of copy iterations
can not be predicted. It depends basically on the dirty pages rate and the
network transmission rate. In some cases the migration might take too
long time or even fails due to high dirty pages rate with lower network
transmission rate. But when this case happens, the VM continues running
on the source host without disruption, which makes Pre-copy as the most
reliable technique.
The stopping condition in Pre-copy differs from a hypervisor to another.
The number of pre-copy iterations, the residual amount of data to be mi-
grated in the source host memory, or the ratio between the transferred
data and the memory content to be migrated are the main stopping con-
ditions for pre-copy. The stopping conditions in the Xen platform are
[50]:

1. Less than 50 pages are dirtied during the last pre-copy iteration.

2. To have 29 pre-copy iterations been carried out.

3. More than three times the total amount of RAM allocated to the VM
has been copied to the destination.

While the stopping conditions for VMware are [87]:

1. Less than 16 megabytes of modified pages are left.

2. There is a reduction in changed pages of less than one megabyte.

• In Post-copy migration, the source host transfers only the data required
for the VM boot to the target host and then stops the VM at the source
host to hand it over. After the VM activation at the target host, the
source host starts sending the memory data in one iteration to the target
host. This means that the memory copy is done in a one shot after the
VM handover, and so post-copy migration time is predictable. However,
this means that if the memory content transfer fails for any reason, the
VM will be destroyed and data loss might occur [79]. So, it is not a
reliable migration technique as Pre-copy. Hence, post-copy is not used
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by any commercial hypervisor. In [100], a detailed comparison between
pre-copy and post-cop migration is presented. The comparison in [100]
shows that pre-copy technique is more safe and reliable and so it is the
commonly used technique by the hypervisors Xen, VMware, Microsoft
Hyper-V, Oracle VM server, KVM, Virtuozzo, OVirt and Google Compute
Engine. Post-copy migration is used also in KVM, Virtuozzo, OVirt and
Google Compute Engine.

• Hybrid-copy technique has several algorithms that try to mix steps of
pre-copy and post-copy to achieve higher robust migration with migration
time prediction. One of these algorithms [88] and [115] firstly migrates the
memory content of the VM to the target host and during this migration,
new dirty pages are written to the source host memory, and several pre-
copy iterations are run but with limited number to keep the migration time
predictable. Then the VM state is transferred and the handover occurs
to activate the VM at the target host. The residual memory pages are
transferred to the target host in a post-copy manner. Hybrid-copy depends
on having low amount of residual memory pages in the post-copy phase
to enhance the migration robustness compared to post-copy. However it
does not show the same reliability and robustness level of pre-copy. So, in
case of transfer failure in the post-copy phase, data loss might occur.

2.3 Pre-Copy Live Migration Phases

Live migration is a key technology for data-centers and cloud computing environ-
ments, however there is a cost for the live migration process. The cost includes
down time, migration time, network overhead, power consumption overhead,
memory overhead and CPU utilization overhead.
Pre-copy live migration has mainly six phases; as shown in Fig. 2.3 [63]. These
phases are:

1. Initialization: Initiating the migration by selecting the VM to be migrated
and selecting the target machine.

2. Reservation: The source machine sends a request to the target machine
for resources reservation and the target machine answers with an acknowl-
edgment after reserving the required resources for the migration.

3. Iterative pre-copy: The entire RAM is sent in the first iteration, then pages
modified during the previous iteration are transferred to the destination.
Using shadow page table for memory dirty pages mapping.

4. Stop-and-Copy: When the stop conditions are met, the VM is halted on
the source for a final transfer round. At the same round of stop- and-copy
while transferring the final dirty pages, the migrated VM’s CPU state is
transferred to the destination.

5. Commitment: the destination host checks if it has received successfully a
consistent copy of the migrated VM. Then the target machine sends a mes-
sage telling the source that it has successfully synchronized the migrated
VM states.
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Figure 2.3: Pre-copy Live Migration Phases

6. Activation: After target host informs source host that it has synchronized
their states, source VM can be discarded. The migrated VM running on
target host is the primary host now and takes over the services offered by
source VM.

There are many research articles that analyze and modeled live migration cost
[69], [73], [89], [116], [129]. In addition, there are also many other papers that
predict the migration cost for pre-copy migration in order to resolve the dis-
advantage of not having a predictable migration cost [124] - [51]. However, it
is a challenge for readers of these papers to track the differences and map the
suitable use-case for each model of these papers.
In this work, we review, compare, classify and summarize different up to date
research articles in the area of live migration overhead modelling and predic-
tion. Also, we cover live migration overhead for servers with persistent memory
inside; as an emerging memory technology recently used in modern datacenters.
Finally, we discuss the outstanding research topics in the area of live migration
cost analysis and prediction. In more details, this project contribution can be
summarized in the following points:

1. Analyze the other related survey papers that cover pre-copy live migration
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Figure 2.4: Live Migration Configurations

topic and show their differentiation compared to this project.

2. Categorize and compare related live migration cost papers based on the
papers focus (analysis or prediction), the cost parameters that are dis-
cussed and the hypervisors used.

3. Discuss live migration for modern datacenter servers with persistent mem-
ory technology.

4. Share the outstanding research problems in the area of live migration cost.

In this work, we focus on the pre-copy live migration cost as the mainly used
technique by all virtualization hypervisors due to higher robustness; as men-
tioned in the previous section. In the next section, we discuss in more details
pre-copy live migration phases, the migration cost parameters considering their
root causes, and the different methods for migration cost analysis and predic-
tion.
Pre-copy live migration has mainly six phases; as shown in Fig. 2.3 [63].

2.4 Live Migration Configurations

Live migration can be achieved with different configuration scenarios; as shown
in Fig. 2.4.

• The first scenario is to migrate the VM compute resources to another
physical host without the VM storage virtual disk migration. This can be
applied only under the condition of having a shared storage environment
between the source and the target servers. In this case, mainly the memory
content is migrated. For example the VM in Fig. 2.4 can be migrated with
this scenario only between S1 and S2 hosts through the management IP
network of the cluster.



2.5. LIVE MIGRATION NETWORKING 13

• The second scenario is to migrate the compute and storage resources of the
VM from a source to a target host through the management IP network of
the cluster. In this case the memory and the virtual disk storage content
should be migrated. So, the VM in Fig. 2.4 can be migrated from S1 or
S2 to S3 host or vice versa.

• The third scenario is to migrate the compute and storage resources of the
VM from the source to the target host through the WAN or the Internet
network. This scenario is useful for datacenter migrations or disaster
recovery solutions between datacenters in different locations. So, in this
scenario, the VM S1, S2 or S3 can be migrated to S4; as shown in Fig. 2.4.

• The fourth scenario of live migration is to have multiple VMs migration
simultaneously. The number of simultaneous VMs to be migrated has
a maximum limit. This limit is defined by the source host of the mi-
gration that is responsible for resources allocation and migration success
verification process. Referring to Fig. 2.4, in multiple simultaneous VMs
migration, there can be many VMs in different hosts that can be migrated
from any of the hosts to another.

2.5 Live Migration Networking

Virtual networking is an essential requirement for virtualized datacenters and
cloud computing platforms [82]. Each VM has a virtual network adapter and
at least one virtual port. The VMs are inter-connected to virtual switches
(vSwitches) that use physical Ethernet switches in the back-end. In this section,
we discuss in more details the concept of network virtualization and how live
migration is implemented in the four hypervisors; VMware vSphere, Microsoft
Hyper-V, Xen and KVM.
In virtual networking, each VM has virtual Network Interface Cards (vNICs).
Each vNIC has one or more virtual ports (vPorts). Each vPort is connected to
a vSwitch. This virtual switch can be a local switch inside the physical host
only to connect the VMs within this host, or can be a cluster virtual switch to
connect between the VMs in a cluster. Each vSwitch has at least one uplink
port which is mapped to a physical switch port. Each group of ports in the
vSwitch can create a separate vLAN or port group that can be labeled. For
one or more physical hosts connection, a cluster vSwitch is used as a centralized
vSwitch that connects all the VMs of the cluster physical nodes. This vSwitch
concept applies to all hypervisors [128]. However, the hypervisors are different
to each other when it comes to live migration networking set up. We discuss in
this section live migration networking configuration details for VMware vSphere,
Microsoft Hyper-V, Xen and KVM.

2.5.1 VMware vSphere Live Migration Networking

Live migration feature in VMware is called vMotion. Fig. 2.5 represents a
commonly used scenario in enterprise datacenters where a storage array is shared
between the cluster servers using FC-SAN network. The example shown in
Fig. 2.5 is a best practice for vMotion networking. Fig. 2.5 shows a cluster of
two physical machines that are connected to a shared storage using FC-SAN
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Figure 2.5: Network Topology for VMware vMotion

switch and connected to the IP network using an Ethernet switch. The solid
lines represent physical connections and the dotted lines represent the virtual
connections for the virtual distributed switch. Live migration uses TCP/IP
protocol and so it utilizes the IP network. From best practice point of view,
each physical host should have at least 2 physical NICs and each VM should
have at least two NICs [45]. The VMs in the cluster are connected to a virtual
distributed switch. Using port groups, the IO traffic of the VMs can be isolated.
There are two types of port groups in VMware; VMkernel distributed port
group and VM network distributed port group. VM network port group is
responsible for the production traffic like applications traffic. VMkernel port
group is responsible for the special classes of traffic like vMotion, management,
iSCSI, NFS, Fault tolerance, replication traffic and VMware vSAN as a Software
Defined Storage (SDS) traffic [32]. The physical machines NICs ports should be
mapped to the distributed switch as uplink ports. The uplink port is responsible
for the in-going and the out-going traffic into and from the distributed switch.
Each port group should have at least one uplink port from each physical host.
Each uplink port can be shared between many port groups. For vMotion traffic,
it is a best practice to create a dedicated VMkernel port group between the VMs
in the cluster. This vMotion distributed port group should include at least one
uplink port from each physical host [45]. This uplink port assignment is actually
not only for vMotion port group, but also for any other VMkernel based port
group. From physical port isolation, vMotion traffic is physically isolated on
the host port level from the applications traffic. However, depending on the
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backend network topology, vMotion and workload traffic might compete on the
backend network bandwidth.

2.5.2 Microsoft Hyper-V Live Migration Networking

Virtual layer two switches in Hyperv-V have the same concept like VMware.
It is basically a software based switch that connects the VMs vNICs with the
physical ports uplinks [46]. Also, live miration in Microsoft Hyper-V has the
same concept like VMware vMotion. The best practice for Hyper-V is to con-
figure a separate virtual network or VLAN for live migration in order to isolate
the migration network traffic from the applications traffic [8].

2.5.3 Xen Hypervisor Live Migration Networking

In Citrix Xen, vSwitch concept is also used as in vSphere and Hyper-V, so
each VM has at least one vNIC and vports that are connected to a distributed
vSwitch which connects that VMs across the cluster and includes the hosts phys-
ical NICs as the vSwitch uplinks. The difference in Xen compared to vSphere
and Hyper-V is having a separate OpenFlow controller. This OpenFlow con-
troller is a centralized server that controls the Xen servers virtual network and
is responsible for the vSwitches configuration, traffic management and perfor-
mance monitoring [36]. Live migration feature in Xen is called XenMotion.
XenMotion networking best practice is to create a cross server private network
that isolates XenMotion traffic from other other management or workload traf-
fic. This private network provisions dedicated virtual management interface of
the VMs for live migration traffic [16].

2.5.4 KVM Live Migration Networking

Libvirt is used for KVM Hypervisor virtual networking [40]. Libvirt uses APIs
that talks to Quick EMUlator (QEMU) for network and storage configurations.
Each VM has its own QEMU instance. The vSwitch that is created by libvirt can
connect the VMs vNICs across the KVM cluster with the physical hosts uplink
ports. For KVM live migration networking, Redhat best practice is to create
separate the storage network from the migration network. So live migration
isolation from other management traffic or workload traffic is not mentioned
[28]. This means that live migration network traffic might be in contention with
the workload traffic or with other management traffic.

2.6 Summary

In this chapter, we have discussed in detail the dynamic resource management
concept for storage, network and compute resources of the virtual datacenters
and cloud computing environments. Then, we focused on the live migration
feature that is used for compute resources dynamic management. We covered
in this chapter, the definition of live migration phases, configuration types,
supported scenarios and networking setup. This background is important for the
next sections, where we discuss live migration cost, cost modeling and migration
cost prediction techniques.
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In the next sect3ion, we discuss live migration cost and the related work that
discuss the cost modeling and prediction for VMs live migration.



Chapter 3

Online Social Networks
Cloud Storage

In this chapter, we discuss storage management in OSN as a use-case for dy-
namic storage management in cloud computing environments. The motivation
toward our OSN optimization is the rapid growth in OSN users’ during the last
decade, the latency challenge to access the feeds data by their users’ friends and
the different nature of the OSN architecture where the users can share huge
content of data with each other across the globe based on each user’s friendship
matrix. The friendship matrix of a user is the social network that the user has
with the other users in the network, so either to be a friend on not.

3.1 Storage Management in Online Social Net-
works

Social networks providers have many datacenters that are located across the
world to cover their users. Each user should store his/her data in one of the
datacenters storage servers where his/her friends can access this data. To have
better quality of service, the social networks users should access their friends’
feeds with minimum access delay. The problem is how to map the social net-
works provider users to datacenters allocation such that the average user’ delay
is minimized in reading/accessing their friends’ feeds. As shown in Fig. 3.1, user
A data is assigned to Australia datacenter and user B data is assigned to US
datacenter. If user A and user B are friends and user-B accesses user A’s feeds,
the data uploaded from user A to Australia datacenter will be transferred by
the Internet to user B’s station. If user A has many friends, the data will be
transferred multiple times via the Internet from Australia datacenter user A’s
friends stations.

In [70], we have proposed a novel friendship matrix aware storage allocation
that migrates the user’s hot data to another node that is close to the majority
of the user’s active friends. The idea of Friendship Matrix based Storage is to
minimize the Internet traffic for OSN and maximize the probability of data ac-
cess locality within the same friends’ datacenters. This objective minimizes the
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Figure 3.1: Online Social Network Provider Cloud Environment

data-access delay because the Internet is bottleneck of the data routing from
sender to receiver station. As shown in Fig. 3.1, initially if Min-Distance stor-
age is used, we assume that user-A is located in Australia and stores his/her
data is Australia datacenter. User-A’s friends are one friend in US and three
friends in Sweden. If user-A’s friends stream or access user- A’s feeds, the data
will be copied one time from Australia to US and three times from Australia to
Sweden; which increases data transfer through the Internet and increases the
data access delay by the user’s friends. In order to minimize the dependency on
the Internet, friendship matrix based storage is proposed. If we apply the same
example using the proposed algorithm, user-A searches for his friends’ locations
and finds that most of the friends are located in Sweden, so user-A’s feeds will
be uploaded and stored in Sweden datacenter.
This algorithm will increase the upload delay for user-A, but will significantly

save the download time for his/her friends; which happens many time by many
friends. So the average users’ data access delay will be minimized. Fig. 3.2
shows the flowchart of the proposed friendship matrix based storage allocation.
As shown, the proposed algorithm starts with the user with largest number of
friends in the social network, because this is the most significant user in the
network performance. The number of friends for this user is calculated to check
if they are less than 100 users or not. A number 100 users is an assumed value
for the number of friends limit to make significant effect on the network perfor-
mance that overcomes the data-relocation overhead. If the number of friends is
more than 100, the proposed friendship based will be used and the user’s data
will be allocated based on the friends’ locations; otherwise the Min-Distance
allocation will be kept. When the proposed social aware data storage algorithm
runs, the users will be assigned to the datacenter when most of their friends
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Figure 3.2: Friendship Matrix based Storage Allocation

store their data; which minimizes the access latency for their friends’ feeds.
The algorithm should be run periodically for all the network users to be up-
dated with the friendship matrix and network topology changes.
It is well known in OSN that many users and their friends are normally located
in the same region and most probably they are mapped to the same datacen-
ter. In this case, the proposed algorithm will keep these users and their friends
mapped to the same datacenter as this is already the optimal for access delay.
Comparing the proposed algorithm with Apache Cassandra and Min-Distance
based storage allocation; the friendship based storage shows less average users’
data access delay. In terms of the users’ load balance across the datacenters, the
proposed algorithm shows less users difference between the network datacenters.
So it offers better load balance between storage servers. The drawback of the
proposed algorithm is its complexity in data storage decision compared to the
other two algorithms.

In [72], we propose a novel social aware algorithm for OSN data storage
and replication. The proposed algorithm (shown in Fig. 3.3) considers both
users and data centers locations, the friendship matrix and the activity between
each user and his/her friends with considering the computation simplicity and
stability. As shown in Fig. 3.3, the proposed algorithm runs every T period
of time to check if there might be a required redistribution for the OSN users’
across the datacenter. The values of T should be defined by the OSN provider
and should differ from OSN provider to another based on both users’ growth
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Figure 3.3: Proposed OSN Storage and Replication Approach

and their activity. Therefore, is dealt with T as a variable. The algorithm can
also be initiated when OSN provider needs to optimize and reallocate the users’
hot data for less access delay and hence better QoS. After the algorithm starts,
initially the datacenter for a new user is the closest data center using Anycast
routing; as used by Google. Once, the number of the user’s friends exceeds a
certain limit FThreshold the social aware allocation should be considered. The
value of this threshold is also left variable to be decided by the OSN provider1.
For each user who has number of friends exceeding FThreshold and starting from
the user with highest number of friends, we find the number of friends in each
datacenter among the OSN provider Cloud-datacenters. The algorithm then
finds the top two datacenters with the maximum number of friends, noted as
DCf1 DCf2. The algorithm compares the difference between the number of
friends in their current datacenter and the number of friends in DCf1, if this
difference is greater than FThreshold, this means that hot data migration and
storage reallocation for this user will have significant enhancement in access de-
lay for this user’s friends. It is a significant performance enhancement despite
the hot data migration overhead. This check point also makes the algorithm
more stable by avoiding data-relocation due to few changes in the friendship
matrix. If the previous check is met, the user’s hot data and his/her future data
allocation should be directed to DCf1.
For high availability, the replica of this data should be allocated as DCf2; which
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Figure 3.4: Datacenters Locations in the Simulation Network

is the second top ranked datacenter in terms of the number of friends. The idea
beyond the proposed algorithm is to have the user’s data and its replica as-
signed to the datacenters that have minimum access delay to his/her friends.
This minimizes the overall average users’ access delay. It is well known in OSN
that many users and their friends are normally located in the same area, city or
country and so most probably they are mapped to the same datacenter which
is a special case of the current algorithm. In this case, the proposed algorithm
will keep these users and their friends mapped to the nearest datacenter as this
is already the optimal for access delay.
Thus, the proposed algorithm data storage and replication optimization is con-
sidered if the users and their friends are in the same area or if they are distributed
around the globe. We may highlight also that in the case of having the user and
her/his friends in the same area, the proposed algorithm will exactly operate
as the Anycast routing algorithm. As, the closest datacenter of the friends is
exactly the closest datacenter to the user.

3.2 Testing Environment

In order to test the proposed algorithms for storage management in OSN [72]
and [70], we have used MATLAB tool to build and simulate a social network
cloud with several datacenters [14]. We simulate a social network provider
datacenters in a cloud environment and worldwide located users; as shown in
Fig. 3.4. The area Length is 36750 km and Width is 19500 km. These values are
approximately the world map length and width. As shown in the next page, the
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Table 3.1: Datacenters Locations

Datacenter
X

(x1000km)
Y

(x1000km)
DC 1 10.719 6
DC 2 6.891 11.25
DC 3 6.125 15
DC 4 20.672 9.75
DC 5 18.375 12.75
DC 6 31.391 4.5
DC 7 27.563 10.5
DC 8 29.094 15

number of users varies with the following values 100, 500, 1000 and 5000 users
that are uniformly distributed across specific areas that are dense with social
network users; based on Facebook engineering active users’ worldwide map [3].
Datacenters are located as mentioned in 3.1 to be as similar as possible to Google
datacenters locations. The transmission rate is assumed to be 10Mbps, and the
frame size is 1500B; which is the maximum Ethernet frame size. FThreshold is
assumed to be 100. For migration condition, we assumed that = 25% of the
number of friends in the current datacenter. The friendship matrix that controls
the storage allocation decision for our proposed algorithm considers not only
the one-to-one relationship between the OSN users, but also the read activity
between them. This is because any user might have many friends in a certain
area, but these friends are not active with such user, so they are not interested
to read his/her feeds. In this case, the allocation decision should not consider
optimizing the delay for these friends, as most probably they will not read the
data in the future. This activity relationship can be obtained by the historical
correlation of the read ratio between users. Table 3.1 shows an example of the
activity relation of some OSN users and their friends. In this table if the value
in the table equals zero it means that these two users are not friends. If the
value is greater than zero, this means that the two users are friends and the
higher activity between them the higher value in the matrix. The maximum
activity value in the matrix is 1. Equation 3.8 shows how the activity factor
of user u is calculated with a friend . The diagonal of the friendship activity
matrix is zero, because the user can’t be a friend with him/herself.
For each number of users, the simulation runs 10 times, and the access delay is
calculated based on equations 3.1 to 3.8. Then for each algorithm, the average
users’ delay is calculated over the number of runs. Five thousands users is a low
number of users compared to the actual OSN users, but this is the limit that we
could reach based on our hardware capabilities. In future work, more number
of users can be tested using more powerful machines. Replication factor of two
is considered in our testing, so for each primary copy in a datacenter, there is
one replica copy at another datacenter.

3.3 Simulation Results

Based on the testing environment that is used in the previous section, we have
focus to measure the average users’ access delay and the load balance across the
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Figure 3.5: Average Users’ Delay Comparison

cloud datacenters. The simulation Results show the following:

1. Avg. Users Delay: As discussed, we compare between Apache Cassandra,
Min-Distance, Integer Optimization and Friendship based storage alloca-
tion algorithm as well as Rack-Unaware and Friendship based replication.
Here, we compare these algorithm in terms of the average users’ delay; as
calculated in 3.6 from 100 to 5000 users.

Obj.min.(Avr.D) (3.1)

Du,fu = Tprop + Tproc + Tt + Ts (3.2)

Tprop =
Lu,ifu
Vprop

(3.3)

Tt =
S

R
(3.4)

Tproc. = Ti.Ui (3.5)

Avr.Du =

Fu∑
fu=1

Du,fu (3.6)
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Figure 3.6: Load Balance Calculation

Avr.D =

U∑
u=1

Avr.Du (3.7)

Where:
Du,fu :Delay between the user (u) and the friend’s (fu) datacenter
Tprop: Signal Propagation Delay
Lu,ifu :The distance between user (u) location and the datacenter (i) of
the friend (fu)
Vprop: Signal propagation speed
Tproc: Server transaction processing delay
Ti: Server transaction processing time per user
Ui: Number of users in Datacenter (i)
Tt: Frame Transmission Delay
S: Frame Size (bits)
R: Transmission Rate (bit per second)
Ts: Switching Delay
Fu: Total number of friends of user (u)
Avr.Du: Average delay across all friends of user (u)
Avr.D: Average delay for all users
U : Total number of users in the network

∆Li = |Ui − U/I| (3.8)

∆DCAvg =

I∑
i=1

∆Li

I
(3.9)

∆Avg =

R∑
r=1

∆DCAvg

R
(3.10)
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Figure 3.7: Load Balance Comparison (Users)

Where:
∆Li: Load Difference
Ui: Users in each DC
U : Total No. of users
I: No. of DCs
R: No. of runs

Fig. 3.5 shows the average users’ access delay for the simulated OSN. The
obtained results can be summarized as following: The integer optimiza-
tion solution shows always the global optimum delay that is close to 1 msec
value with different number of users. It is logic to have integer optimization
as the best performance approach, however it is not a practical technique
due to the problem complexity and processing delay; especially with a
large number of users. The proposed friendship allocation with friendship
based replication “R2-Friendship Replication” shows almost half the rack-
unaware replication “R2-Friendship”. Replication with Rack-unaware for
the proposed friendship storage allocation of the primary copy has almost
the same results like replication with Rack-Unaware for the Min-Distance
Anycast based allocation. Rack-Unaware replication for Cassandra shows
much higher delay compared to our proposed friendship based replication.
For storage allocation, the proposed friendship based allocation saves al-
most 33% of the access delay by Min-Distance algorithm and has must
less delay compared to Cassandra.

2. Load Balance Comparison: Because OSN has a huge load of read/write
request, it is worth to consider the load balance across the OSN provider
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cloud datacenters. So, load balance between the datacenters is important
to avoid over utilization for a certain datacenters; which may lead to
performance issues. In this section, we compare the proposed Friendship
based storage with Min-Distance and Cassandra in term of the users’ load
balance with considering Rack-Unaware and friendship based replication.
Firstly, we explain how the load balance is calculated in this simulation
and then show the comparison results between the three algorithms.

As shown in Fig. 3.6, load balance is calculated by equations (3.8), (3.9)
and (3.10). In equation (3.8), we calculate ; the modulus of the difference
between the number of users in the datacenter and the perfect balance of
all datacenters . In optimum load balance, should equal zero. In 3.10, the
average load difference is calculated across all the simulation runs. Load
balance simulation study shows the following result; as shown in Fig. 3.7:
The global minimum by integer optimization has the worst load balance;
which is logic because this solution assigns all the users to one or two
datacenters only to minimize the delay between them.

• Cassandra shows much better load balance compared to Min-Distance
algorithm.

• The proposed friendship aware data allocation and replication shows
worse load balance than Cassandra, but better than Min-Distance
allocation.

• With increasing the number of users, the load balance decreases
across the datacenters.
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Survey on Live Migration
Cost

Live migration is a key technology for data-centers and cloud computing environ-
ments, however there is a cost for the live migration process. The cost includes
down time, migration time, network overhead, power consumption overhead,
memory overhead and CPU utilization overhead.
There are many research articles that analyze and model live migration cost
[69], [89], [116] and [129]. In addition, there are also many other papers that
predict the migration cost for pre-copy migration in order to resolve the dis-
advantage of not having a predictable migration cost [124] - [51]. However, it
is a challenge for readers of these papers to track the differences and map the
suitable use-case for each model of these papers.
In this work, we review, compare, classify and summarize different up to date
research articles in the area of live migration overhead modelling and prediction.
Also, we cover in this project live migration overhead for servers with persistent
memory inside; as an emerging memory technology recently used in modern
datacenters. Finally, we discuss in this project the outstanding research topics
in the area of live migration cost analysis and prediction. In more detail, this
project contribution can be summarized in the following points:

1. Analyze the other related survey papers that cover pre-copy live migration
topic and show their differentiation compared to this project.

2. Categorize and compare related live migration cost papers based on the
papers focus (analysis or prediction), the cost parameters that are dis-
cussed and the hypervisors used.

3. Discuss live migration for modern datacenter servers with persistent mem-
ory technology.

4. Share the outstanding research problems in the area of live migration cost.

In this project, we focus on the pre-copy live migration cost as the mainly
used technique by all virtualization hypervisors due to higher robustness; as
mentioned in the previous section. In this section, we discuss in more details
pre-copy live migration phases, the migration cost parameters considering their
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root causes, and the different methods for migration cost analysis and predic-
tion.
Optimization of live migration is proposed by many research articles with an ob-
jective to minimize one or many of the migration cost parameters. This survey
paper [112] summarizes and classifies the different approaches in live migration
optimization algorithms. As presented in [112], the optimization techniques can
be based on compression, de-duplication, check-pointing and other optimization
techniques. There is a major difference between the survey proposed in [112] and
this survey paper. this project focuses on classification and comparison between
the papers discuss live migration cost modelling and prediction techniques for
the built-in live migration algorithms in different hypervisors. However in [112],
the focus is to classify and summarize the papers that discuss the live migration
optimization algorithms to minimize the migration cost.

4.1 Live Migration Cost Modeling

Pre-copy live migration cost is basically a result of the six phases of live migra-
tion that are mentioned in the previous section. In this section, we discuss in
details the definition of each cost parameter, the root cause of it and its verified
modeling for different hypervisors. The cost parameters are:

1. Migration Time: Migration time is the period between the VM migra-
tion request initialization and having the VM activated at the destination
server. This time can take from seconds to minutes depending on the VM
memory content size, the network transmission rate during the migration
and the dirty pages rate.

2. Down Time: This is the time consumed in the stop and copy phase, when
the VM stopping condition applies and the last iteration of the migration
copy should start and then the VM networking being attached to the
target server and until being activated. Down time should typically be in
the range of milli-seconds and so the applications and the users do not feel
interruption, however in some cases it takes several seconds [77].

3. Network Throughput Overhead : Network average rate is the average data
rate at which data was transmitted from the physical host NIC card during
the migration time interval. This represents the consumed bandwidth of
the network in Bps for live migration process. Live migration process
is managed by the cluster manager server which uses the Transmission
Control Protocol/Internet Protocol (TCP/IP) in the networks layers 3 and
4 for the live migration management and the iterative copies of memory
pages.

4. Power Consumption Overhead : Live migration process consumes CPU
cycles from the source and the target servers [114]. This overhead pa-
rameter should not be ignored especially when live migration is used for
data-centers power saving algorithms. Live migration transmission rate is
the dominant parameter that controls the power consumption during the
migration process [123].
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5. CPU Overhead : VMs live migration consumes also from the source and
target servers CPU resources due to handling the iterative copy phase; as a
CPU intensive phase of the migration[133]. Meanwhile, the more available
CPU resources, the less migration time in case of having available network
bandwidth.

As shown; live migration time, down time, network, power and CPU are the
main five cost parameters. In this thesis, we focus mainly on three of the five
cost parameters; namely the migration cost, network overhead and power con-
sumption. This is due to the challenges that we have faced to measure the CPU
and down time practically. The challenges in CPU measurements are firstly
the VMs vCPUs which are assigned to the physical cores and this assignment
changes very frequently and so can not be monitored. Also, during the bench-
marks, the CPU cores are instantaneously changing during the migration and
so could not be monitored. For the down time measurement, the challenge is
down time in not one of the performance parameters in VMware vCenter Server
performance metrics and the this time is in the milliseconds range. So, it was
hard to measure the down time practically.
Live migration cost is covered by different researchers, we list many of them in
Table 4.1 and classify the articles based on research focus if it is cost predic-
tion or just analysis, the validated hypervisors and the cost parameters that are
considered.

We proposed empirical modeling techniques in [69] for VMs live migration
in VMware environments to characterize live migration time, network rate and
power consumption overhead. The proposed modeling is based on applying
the regression techniques on the obtained test results to present a linear or non-
linear regression based models for these migration cost parameters. In Reference
[89], an analysis of live migration time and downtime is provided and then a
comparison between Xen, KVM, Hyper-V and VMware vSphere hypervisors is
presented in terms of storage migration and live migration time and downtime.
A comparison between Xen and VMware live migration time and downtime is
also presented in [116] with more investigation on the parameters that control
the live migration time and downtime duration. The authors [56] show the
impact of a VM live migration on the running applications performance from
client side. The performance degradation of the application from client side was
measured in operations per second. The impact of live migration on Internet
Web 2.0 applications performance is discussed in [129]. This is important for en-
vironments with SLA requirements. For this purpose, a test-bed is built in [129]
where the running Web 2.0 workload is Olio application, combined with Faban
load generator that access the Apache 2.2.8 Web server with MySQL database.
In [62] the authors propose a scheduling weighted based approach for Multi-VMs
live migration requests in VMware. The objective of the proposed technique is
to minimize the total migration time for Multi-VMs. The weight assigned to
each request is based on the memory usage and the network bandwidth and the
article shows the impact of scheduling the migration requests using this weight
on the total migration time of the VMs. Article [104] studies the impact of
virtualization technology and live migration on multi-tier workloads as well as
the migration performance. Experimental tests show that virtualization tech-
nology does not have significant overhead on Multi-Tier applications, however
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Table 4.1: Summary of Related Work

Paper
Research
Scope

Mig.

Time
Down
Time CPU Network Power

Testing

Env.

[69]

Regression

Modeling X - - X X VMware

[89]
Perf.

Comparison X X - - - All

[116]

Analysis and

Comparison X X - - -
Xen

VMware
[129] Perf. Evaluation X X - - - Xen

[93]

Analysis on

Apps Perf. X X - - - Xen

[62]
Multi-VMs
Scheduling X - - - - VMware

[104]

Analytical

& Regression

based Modeling X X - X X Xen

[97]

Analysis

and Model
Checker X - - - - Xen

[59]

Analytical

Modeling X X - - - All
[65] Cost Analysis X - - - X KVM
[124] Cost Prediction X X - - X Xen
[125] Cost Prediction X - - - X KVM
[51] Cost Prediction - - X X X KVM

[137] Prediction X - - - -
VMware but
not vMotion

[55] Prediction - - X X X
Oracle

Virtual Box
[94] Prediction X X X X - All
[49] Prediction X X - - - Xen

[117] Prediction X X - - -

VMware/

Xen/ KVM
[91] Prediction X - X - - Xen

[78]
Markov Model

Prediction - - X - - CloudSim
[113] Prediction X - - - - Xen

[75]
ML based
Prediction X - - X X VMware

[60]

Analytical

Modeling X X - X - All

[90]
Cost

modeling - - - - X Xen
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live migration causes performance decrease due to the migration cost and down
time. This performance degradation is more significant with memory intensive
multi-tier workloads.
The authors in [53] use Probabilistic Model Checking (PMC) and Markov De-
cision Process (MDP) to study the impact of VM size, page size, dirty pages
rate, network rate and pre-copy iterations threshold on the live migration time
and down time. The proposed approach uses numerical analysis and the results
should be valid for any pre-copy based live migration. In [97], the authors build
a performance model for live migration using several migration tests in a Xen
hypervisor based test bed and then use Probabilistic Symbolic Model Checker
(PRISM) for modelling verification. The proposed approach is used to model
live migration time for single and multiple concurrent VMs migration. In [59],
analytical modeling is also used to formalize live migration time and down time
for single and multiple VMs. Then a Markov model is build for inter-DC net-
work to study the impact of network bandwidth, number of migration requests
rate and the number of interconnected DCs on the blocking probability for mi-
gration requests.
In [65], the author studies the relationship between live migration cost param-
eters; namely the migration time, the network bandwidth, the power consump-
tion and their correlation with the size of the VM memory. Testing results show
that the migration time exponentially decreases as the network rate increases.
The average power usage of the source as well as the destination server linearly
increases as the network rate increases. The migration time and the energy con-
sumption linearly increase as the size (memory content) of the virtual machine
increases. The models presented in this project are experimental models that
are obtained using KVM Hypervisor based test-bed.

4.2 Live Migration Cost Prediction

The other category of papers focus on live migration cost prediction. Clas-
sification of Live migration cost is provided in [124] with an explanation of
the parameters that control migration time, downtime and energy consump-
tion. Also, Mathematical models are proposed to estimate live migration time,
downtime and energy consumption. Machine learning is used in [55] for VM
placement elements predictive modeling like (CPU, memory, network and en-
ergy).The authors [49] analyze the parameters that control the migration time
and the downtime and show the impact of the workload on the migration per-
formance. Markov chains are used in [109] for hosts utilization prediction after
live migration. The proposed Markov based prediction model is used for power
saving algorithm that can achieve lower SLA violations, lower VM migrations
as well as less power consumption [109]. Time series is used in [91] for time
varying resources load prediction. The proposed model is used for power saving
by minimizing the number of active physical machines with less live migration
times and with satisfying the SLA requirements. The proposed technique is
tested in a Xen cluster. A mathematical based prediction framework is also
proposed in [51]. In [78], a Linear Regression based CPU Utilization Prediction
(LiRCUP) method is proposed to determine the future CPU utilization. The
objective is to minimize the power consumption and SLA violation level during
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VMs live migration. This article compares four benchmark algorithms using
CloudSim simulation tool. The first algorithm migrates a VM when the current
CPU utilization exceeds a certain threshold. The second and third algorithms
adjust the utilization threshold dynamically based on the median absolute de-
viation (MAD) and the inter Quartile range (IQR). The fourth method utilizes
a local regression (LR) technique to predict the CPU utilization.
Authors in [113] evaluate the pre-copy migration in Xen hypervisor. The study
objective is to minimize live migration duration and down time in Xen hyper-
visor by optimizing the total number of memory pages that should be trans-
ferred. The proposed approach achieves this target by combining two tech-
niques. Firstly by avoiding repeated dirty pages based on using LRU (Least
Recent Used) Stack Distance or using Probability Prediction that can predict
the repeated pages. Secondly by using memory pages compression technique.
In [108] the authors propose a host CPU load detection algorithm called Median
Absolute Deviation Markov Chain Host Detection algorithm (MADMCHD).
The objective of the proposed algorithm is to minimize the SLA violation and
to reduce the number of VMs migrations. This objective is achieved by using
the past readings for hosts CPU utilization as input for Markov Chains that can
therefore predict the future CPU states. Based on the servers CPU prediction,
the proposed algorithm decides when to migrate VMs to consider SLAs and
with minimizing the VMs migrations numbers. The authors of [68] propose an
idea to enhance the compression for VMs memory pages before live migration.
The idea is to characterize the memory pages and to identify the pseudo-stable
pages. So these pages are predicted to change slowly during the iterations of
live migration; which enhances the compression ratio for the pages before being
migrated. The proposed algorithm is tested in a KVM lab that shows enhance-
ment in the compression from 10% to 16%.
We have proposed in [75] our machine learning based approach to predict live
migration cost in VMware environments. The proposed prediction approach
uses regression techniques to predict the migration transmission rate, migration
time and peak power increases given the VM active memory size.

4.3 Live Migration Cost Classification

In this section, we classify live migration cost related articles listed in Table 4.1
based on the the live migration cost. The objectives of this classification are to
show:

• A simple presentation the different models for a cost parameter; which is
useful for readers who search about specific live migration cost attribute
modelling and the different testing environments used for modeling vali-
dation.

• How the same live migration cost parameter is modelled differently or
similarly by different researchers with different tests and distinguished
hypervisors. This should help the reader to identify for the same cost
parameter how much modelling might change by different test-beds, or if
it is a generic model that is independent on the testing environment.
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• A comparison for prediction techniques of the same cost parameter in
terms of prediction dependencies, accuracy and approach complexity.

• How the proposed classification list should help identifying the research
area that are still open or need more research contributions for specific
cost parameters modeling or prediction.

In the next subsections, we classify Table 4.1 papers in modeling and prediction
summary for the different cost parameters that are listed in Table 4.1.

4.3.1 Migration Time Modeling and Prediction

As shown in Table 4.1, live migration time is studied by many articles from
modeling and prediction points of view. In Table 4.2 more details about live
migration time modeling and prediction are discussed.
Migration time is a critical cost parameter because this is the time consumed
during the whole migration process. So in Table 4.2, there are many models
with common parameters that control having long or migration duration.

Table 4.2: Migration Time Modeling and Prediction

Paper Equation Hyper. Methodology

[69]
&

[75]

Tmig = a.(
Vmem
Rs

) + b

Tmig: is the migration time

duration in seconds.
a and b are the equation

constants
Rs: is the source host
network throughput

Vmem: is the source host
active memory size in kB
at the time when the live
migration should start. VMware

Regression based
approach is

proposed to obtain the
constants and predict

the migration time

[104]

Tmig = Vmem
R . 1−λ

n+1

1−λ
Tmig: Total migration

time.
Vmem: Current size of VM
memory during migration.
R: Memory transmission

rate during migration.
D: Memory dirtying rate

during migration. λ = D/R Xen

Provides an analytical
model for live migration

time based on the
analysis of pre-copy

migration phases and
iterative copy iterations

[97]

y = α+ β ∗ (VMsize(GB))∗x
y: Total migration time (sec).

α & β: Constants
x: Concurrent migrating VMs Xen

Uses empirical modeling
and then probabilistic

Symbolic Model Checker
(PRISM) for model

verification
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[59]

T
(z)
mig,j = Vz

Rj
.
1−γ

n
(z)
j

+1

j

1−γj

n
(z)
j = min{logγj VthVz ,nmax}

Tmig,j : Total migration time

of the j-th VM.
Vz: Total memory content to

be migrated for request z.
Rj : transfer rate for the j-th

VM in the requested set
γj : ratio between the dirtying

rate and the network bit rate All

single and multiple VMs
migration time analytical
modeling. Then a Markov
model is built for inter-DC

network to study the
impact of network

bandwidth, number of
migration requests rate

and the number of
interconnected DCs on
the blocking probability
for migration request.

[65]

t = as + b
t: Migration latency

s: size of the VM memory KVM
Experimental modeling
using KVM platform

[124]

(Vmem/b)≤ tmig≤
((mth + 1)Vmem/b)

Vmem: Total Memory Size
b: Network transfer rate
mth: Number of pre-copy

iteration Xen

Analytical modeling for
migration cost based

on related work survey

[125]

t= A+(B*s)/b
t: Migration time.
s: VM memory size
b: Network rate.

A and B are constants Xen

Experimental modeling
to study VM size

and network bandwidth
on the migration

cost

[49]

Overheads +
(VMSize/LinkSpeed)
≤ TotalMigrationT ime
≤ Overheads+

(5*(VMSize− 1)∗
page/LinkSpeed)

Overhead: Pre- and post-
migration overheads.
VMSize: VM active

memory size Xen

studying link speed and
page dirty rate impact

on migration time

[117]

Mig. Time= min(tc1,tc2)+

f(t2)/ru−t0
tcx: The time when stop
condition x is satisfied

f(t): Estimated number of
memory pages that
remain to be copied.

ru: Memory dirty pages
migration rate.

t0: Start time of the live
migration procedure

Xen,
KVM
and

VMware

Migration cost prediction
modelling given the live
migration characteristic

parameters
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[91]

y= 0.0904 x+ 2.455
y: Migration time.
x: VM memory size Xen

Proposes a Prediction
based Dynamic

Resource Scheduling
(PDRS) technique to
minimize the number

of active physical
machines with satisfying

the SLA

From Table 4.2 we get that the commonly used modeling and prediction formulas
for migration time is directly proportional with the VM active memory size and
inversely proportional with the network transmission rate, and this relationship
is valid for all hypervisors. The next cost parameter to discuss is the migration
down time; when the VM is handed over to the target host and not actually
responding to the application requests.

4.3.2 Down Time Modeling and Prediction

Live migration down time is studied also by many articles as shown in Table 4.1.
In Table 4.44.3, we show more details about live migration down time modeling
and prediction.

Different analysis and prediction models of live migration down time as pre-
sented in Table 4.3. As shown, there is no common formula that is shared by
the related papers. However, the proposed formulas show that the down time is
directly proportional with the dirty pages rate and the page size; while the down
time is inversely proportional with the transmission rate. In the next section,
we discuss live migration CPU cost modeling and prediction techniques.

4.3.3 CPU Modeling and Prediction

In this subsection, we present live migration CPU overhead modeling and pre-
diction formulation. Table 4.4 indicates that the contribution in live migration
CPU cost is obviously lower than other cost parameters. This might be due
to the modeling and prediction complexity for CPU overhead during the live
migration process. So, we consider modeling and prediction of CPU overhead as
one of the open research areas in pre-copy live migration cost. From Table 4.4,
we see that the CPU cost of live migration has different formulations. In [51],
the CPU overhead of the physical server is directly proportional with the num-
ber of vCPU and the estimated CPU utilization of the VM. In [91] and [78], the
future physical host CPU overhead is obtained from the last CPU utilization.
In the next subsection, we discuss the network cost of live migration.

4.3.4 Network Modeling and Prediction

In Fig. 2.5 , we explained the network setup of the VMware cluster as an example
of virtualized platforms to show how live migration network is configured. In
this subsection, we present the network overhead in kBps as a result of live
migration of VMs.
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Table 4.3: Down Time Modeling and Prediction

Paper Equation Hyper. Methodology

[104]

Tdown = Tn + Tresume

n=logλ
Vthd
Vmem

Tn: Remaining dirty pages transferred

during the stop-and-copy phase.

Tresume: time spent on VM resuming

at the destination host Xen

Analytical model

for live migration

down time based on
the analysis of

pre-copy migration

phases

[59]

T
(z)
s−down = Vz

b
γn

z
s + (M − 1).Vz

b
. 1−γ

n
(z)
s +1

1−γ
+Tres

T
(z)
p−down = M Vz

b
(Mγ)n

z
p + Tres

Ts−down: Down time for request z of M VMs

migration in series.

T
(z)
p−down: Down time for request z of M VMs

migration in parallel.

Vz : Total memory content to be migrated

for request z.

b : Network pipe bandwidth.

γ: ratio between the dirtying rate

and the network bit rate. All

single and multiple

VMs down time
analytical modeling.

Then a Markov
model is built for

inter-DC network to
study the impact

of network bandwidth,

number of migration

requests rate and the

number of connected
DCs on the blocking

probability of
migration request.

[124]

tdown= (d ∗ l ∗ tn) / b

tdown: Migration down time

d: Dirty pages rate

l: Page size

b: Link speed

tn: Last pre-copy round n duration. Xen

Analytical modeling

for migration

down time

[49]

Post−migrationOverhead

≤ TotalDownTime ≤
Post−migrationOverhead+

((VMSize)/LinkSpeed)

Post−migrationOverhead: Time consumed

in commitment and activation phases

of a VM migration. Xen

studying link speed

and page dirty
rate impact on

migration downtime

[117]

Down time= f(t2)/ru

f(t2): The number of remaining pages in the

stop-and-copy phase.

ru: Transmission rate of non-empty pages.

Xen,

KVM
and

VMware

f(t) depends on the

hypervisor, and in

this project, different

hypervisors are tested

to measure f(t) and

so to predict the down
time.
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Table 4.4: CPU Overhead Modeling and Prediction

Paper Equation Hyper. Methodology

[51]

PMiPredU = (α ∗ (
∑VMcount
y=1

(VMxReqvCPUs ∗
VMxPredU

100
))+

β) + (PMiCurrU − PMiIdleU )

PMiPredU :The predicted PMi

CPU utilization
VMxReqvCPUs :Requested vCPU

for each VM
VMxPredU :Predicted utilisation

for each VM
PMiCurrU :Current PMi utilisation

PMiIdleU :Idle PMi utilisation KVM

A linear regression

model is applied to

predict the PMs CPU

utilisation based on
the used ratio of the
requested number of

vCPU for the VMx
with consideration of
its current workload

as the PMs

[91]

Rk+1=φ0Rk + ..+ φpRk−p+1+

εk+1 + θ0εk + ..θq−1εk+1−q
Rk+1:Is the first step prediction

for CPU resource usage Rk
φi and θi :Constants estimated

from the available date
εk :Independent error terms Xen

Auto-Regressive

Integrated Moving

Average (ARIMA)

model is used as the
basic prediction model

to predict the time

series of the CPU
and memory usage

at time k

[78]

PredictUtil=β0+

β1 ∗ CurrTotalUtil(h)

PredictUtil: Host CPU
utilization prediction

β0, β1 :Regression coeff.

parameters that estimate based

on the last k CPU utilization
of the host

CurrTotalUtil(h): Current

CPU utilization of the host (h) All

This technique used

the last utilization
over one hour ago

and approximated

a function. This
function can forecast

the short-term
future utilization

based on the current
requested utilization

in each host.
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Table 4.5: Migration Network Modeling and Prediction

Paper Equation Hyper. Methodology

[69]

&
[75]

Rs = αeVMem + β

Rs: is the source host network throughput.

α and β are the equation constants

Vmem: is the source host active memory

size in kB at the time when the live
migration should start. VMware

Non-linear Regression

approach is applied to

model and predict the

migration network rate

given the Vmem

[104]

R= D + δ
R: Memory transmission rate during

migration.

D: Memory dirtying rate during migration.

δ :is a constant variable and its default
value is empirically set as 100Mb/s. Xen

Migration data
transmission rate
for each round is

determined by adding
a constant increment

to the previous round’s

memory dirtying rate

[60]

Czs = αCzs−net + (1 − α)Czs−app
Czp = αCzp−net + (1 − α)Czp−app

0≤α≤1

Czs−net = 1−γn
z
s+1

(nmax+1)(1−γ)

Czp−net =
1−(Mzγ)

nzp+1

(nmax+1)(1−Mzγ)

Czs−app =

Vz

(
γn
z
s+(Mz−1) 1−γn

z
s+1

1−γ

)
+Tresb

Vz(1+(Mz−1)(nmax+1))+Tresb

Czp−app =
MzV z(Mzγ)

nzp+Tresb

MzVz+Tresb

Mz : Number of migrated VMs for request z

Vz : Allocated memory for each VM

γ: Ratio of the dirtying rate to the

maximum transfer rate
Tres: Time required to resume a VM

at the destination host
b: Network pipe max. transfer rate

nmax: Maximum number of iterations
that trigger the stop and-copy phase.

n: Number of remote DCs in the
cloud federation All

Presents an analytical

model for assessing

inter-DC network
performance in cloud

federations, assuming

that network load is
caused by live migration

of multiple VMs
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Network cost requires also more contribution as obvious in Table 4.5; same as the
CPU cost. So it is added also as one of the open research areas that requires
more study in modeling and prediction. The formulas proposed in Table 4.5
show that the network transmission rate has an exponential relationship with
the VM active memory size as in [69] and [75]. In [104], the network transmis-
sion rate has directly proportional relationship with the dirty pages rate during
the migration process. In [60] the transmission rate is function of the number
of VMs to be migrated, the dirty pages rate, the maximum bandwidth of the
network pipe and the time required to resume the VM at the destination host.
The last cost parameter table to discuss is for the power and energy modeling
and prediction in Table 4.6.

4.3.5 Power and Energy Modeling and Prediction

In this subsection, we present the energy and power overhead modeling and
prediction due to live migration

Table 4.6 lists different live migration energy cost models. The energy over-
head in Joule is directly proportional with the memory content to be migrated
as mentioned in [104], [124] and [125]. Another representation is shown in
[69] and [75] for the power overhead in Watt as directly proportional with the
transmission rate. Other models proposed in [51] and [90] say that the power
consumption prediction in Watt is directly proportional with the CPU utiliza-
tion.
Because live migration is basically a migration for the memory volume, so in the
next section we discuss a new memory technology which is persistent memory
that is recently provided by different servers manufactures and supported by
many software vendors [29].

4.4 Open Research Areas

Based on this survey study, we can list the open research areas for pre-copy live
migration cost in the below points:

1. To propose lightweight and practical prediction techniques for live migra-
tion cost that can be integrated with the hypervisors interfaces to be used
by clusters’ admins. Most of the proposed prediction techniques consume
time and CPU intensively to train the models and predict live migration
cost prediction [75]; which results in a challenge to have a technique that
can be practically implemented.

2. Live migration cost aware load balance techniques for cloud environments.
This is because load balance utilizes live migration in virtual and cloud
computing environments [99]. So since live migration cost can not be ig-
nored, it should be considered as an overhead for load balance techniques.

3. Live migration cost aware power saving techniques for cloud environments.
Same as load balance, power saving also utilizes live migration [135], [81]
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Table 4.6: Power and Energy Modeling and Prediction

Paper Equation Hyper. Methodology

[69]

&
[75]

Pmig= c Rs
Pmig : peak power overhead in Watt

c: is constant.
Rs: is the source host network throughput VMware

Regression based

approach is proposed

to obtain the constants
and predict the peak

power overhead due
to migration

[104]

Emig = (αs + αd)Vmig + (βs + βd)

Emig : Migration energy consumption

overhead in Joules
Vmig : Current size of memory content

to be migrated in MB.

αs, αd, βs and βd : model parameters

to be trained Xen

Analytical model for

live migration energy

overhead at source
and target stations.

There is very little

difference of energy

consumption between

source and target

stations energy overhead

[124]

Emig=α ∗ Vmig + β

Emig : Energy overhead of VM migration.

Vmig : Total Memory Size

α and β: trained parameters in

offline experiments Xen

Analytical modeling for

migration cost. The

authors validated their
approach based on five

different benchmarks
running on the

migrated VM.

[125]

Eov= A+B*s+C*b
Eov : VM migration energy overhead .

s: VM memory size

b: Network rate.
A, B and C: are constants to be trained Xen

Experimental modeling

to propose a lightweight,

linear model to
estimate the energy

cost of live migration

of virtual machines

[51]

PMiPredP = (α∗PMiPredU + β)

PMiPredP :The predicted PMi Power

consumption for the source station in Watt

PMiPredU :The predicted PMi CPU

utilization
α and β : constant parameters KVM

Propose steps to predict

the PMs/VMs workload

and power consumption,

then estimate the total
cost of the migrated VMs

[90]

P= a * Util. + b
P : The predicted Power consumption

of the source server in Watt
Util.: The predicted CPU utilization

a and b: constant parameters Xen

Proposes a practical

experimental approach

to evaluate the power

consumption of VM

migration. And then

we quantify the power

cost of VM migration

both source and
target servers
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and [48]. So, it is important to consider live migration cost and espe-
cially the power overhead in power saving techniques for virtual and cloud
computing environments.

4. Live migration cost modeling and prediction for WAN scale migration
[127] and [132]. Most of the proposed modeling and prediction techniques
were tested and proposed for LAN scale live migration; where the source
and target hosts are within the same datacenter. So, it is an open research
area to provide models and tests for WAN scale live migration.

5. Live migration cost analysis and prediction for VMware and Hyper-V.
This is taking into account the fact that most of the proposed modeling
and prediction techniques tests focus mainly on open source hypervisors
like Xen and KVM. So more research work is needed toward commercially
used hypervisors.

6. Live migration cost modeling and prediction with different in memory data
analytics applications like Apache Spark [42] and in memory data base
applications like Redis [41]. These in memory applications are memory
intensive application and show example for modern applications trend that
run on private and public cloud environments.

7. Referring to Table 4.4, more research work is still needed in live migration
CPU cost modeling and prediction. Since few papers could be found that
consider this cost parameter modeling and prediction.

8. Referring to Table 4.5, more research work is still needed in live migration
network cost modeling and prediction. Since also few papers could be
found that consider this migration network modeling and prediction.

9. From Tables 4.2 - 4.6, to compare between different prediction techniques
for the same cost parameter. The comparison can be in terms of the
prediction accuracy and the prediction CPU consumption overhead.

10. Live migration cost analysis and prediction for VMs with Persistent Mem-
ory (PMem) and to compare the cost versus the standard DRAM. This
includes the different memory configurations of PMem as following:

• VMs with 3D xPoint PMem in memory mode.

• VMs with 3D xPoint PMem in App Direct mode.

• VMs with NVDIMMs in memory mode.

• VMs with NVDIMMs in App direct mode.

11. Consider variant memory capacities in the PMem test, in order to add
contribution about very large memory VMs migrations; especially with
3D xPoint PMem as a high capacity/DIMM memory technology.
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Chapter 5

Cost Modeling, Prediction
and Timing Optimization

In this section, we discuss our main contribution of the thesis which is live
migration cost modeling, prediction and timing optimization. The proposed
models for these three techniques rely on using machine learning algorithms
that can be implemented practically and show acceptable accuracy in order to
help the IT admins to get an estimate cost of live migration before proceeding
with that and also get a timing recommendation for the live migration event of
a specific VM. In the next section, we discuss firstly how the live migration cost
could be modeled.

5.1 Proposed Live Migration Cost Modeling

To obtain empirical models of live migration overhead, we used the following
methodology. Firstly, we built a VMware testbed; with configuration details as
in the next section. Then we run different live migration sessions for different
number of parallel VMs and different memory size, because memory size is the
dominant factor in live migration cost.
The running application is a main player in live migration overhead amount. In
this study, we considered three different workloads; Linpack stress benchmark
[9], network stress and idle VM. Linpack benchmark is a CPU and memory
intensive benchmark which is the worst case scenario for an application from
resource utilization perspective. Idle VM is the best case scenario for a VM
utilization and finally network stress which represents virtual machines with
web applications in cloud computing environment. This is because the VMs in
the cloud environment are mainly accessed by remote users through the net-
work and so the applications input/outputs should be transmitted through the
network. By these three applications, we validate the obtained reading of live
migration overhead performance metrics.
For each live migration session, we use VMware vCenter server performance tool
to measure the migration time in seconds, the active memory utilization change
in kB, the network throughput in kBps change, and the power consumption in-
crease in Watt. From the obtained results, we get several distracted points that
can be fitted to a defined mathematical relation. To find the best fit relation,
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our target is to minimize the error between the obtained testing readings and
the fitted curve line. This is done using MATLAB [13] to achieve the objective
function of minimum error in equation:

Min. Eθ1,θ2 =
1

m

m∑
i=1

hθ(x
(i) − y(i))2

hθ(x
(i)) = θ1 + θ2

RMSE =
√
Eθ1,θ2

Error% =
RMSE
1
m

∑m
i=1 yi

.100

(5.1)

Where:
i: test reading number
x: is the horizontal scale variable
Eθ1,θ2: Square Error as function of θ1 and θ1
y(i): testing reading value
m: Total number of readings
RMSE: The root mean square error

In the next section, we discuss the test-bed configuration details, experiment
results, performance modelling and the theoretical validation of the obtained
models

5.1.1 Testing Environment

To study live migration performance modeling, we have built a VMware lab
setup with the following specifications: 2 physical hosts (Dell PowerEdge 2950).
Each host has 8 CPU x 2.992 GHz Intel Xeon, 20GB RAM, 2 NICs and 1 HBA
with 2 Fiber ports/ card. VMware vSphere 5.1 hypervisor is used vCenter server
appliance for live migration and performance monitoring.

As shown in Fig. 5.1; both hosts are connected to a shared EMC VNX block
storage [35] with 1TB LUN via FC-SAN. The SAN Switch is Cisco with 4Gbps
ports. The Ethernet switch is Cisco with 1Gbps ports. Live migration process
utilizes the Ethernet switch [34]. The two physical hosts are configured in
as a cluster that is managed by VMware vCenter Server which manages the
cluster resources and include vMotion feature [44]. Performance metrics are also
gathered using vCenter Server performance monitoring interface. The VMs that
are used in this migration are Linux Ubuntu 12.04 (32bit) with 4 vCPU. The
testing benchmark is Linpack, network stress; Apache Bench (AB) and idle VM.
Linpack is a CPU and RAM intensive benchmark [9]; which is the worst case
scenario for a running application. The network stress application that we have
used Apache Bench (AB). Apache Bench tool stresses the web servers with lots
of requests to test the servers’ response; which is also a stress on the network.
Idle VM is simply an idle Ubuntu OS VM; with no running applications. So
the workload comes only from the Ubuntu OS events.
The VM RAM size is the most effective parameter in the migration performance
[124]. So we test the impact of live migration on the datacenter performance
with different memory sizes to have different migration volumes. The VM RAM
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Figure 5.1: Testing Lab Network Diagram

size varies between 1GB, 2GB, 4GB and 8GB. The VM is powered on, the
benchmark is run and after 5 minutes at least, the VM migration is started
from one of the physical hosts to the other in order to distinguish between
the benchmark impact and the migration impact on performance. After the
migration is finished, the migration time is calculated and the impact on the
target host performance is monitored. Finally the benchmark is stopped.
Based on the testbed configuration in section 3, we have run several testing
scenarios in order to obtain empirical models for live migration performance that
can be used for live migration cost prediction. Using the above infrastructure
the testing sequence was as following; the migration was done 5 times for each
memory configuration value of the same number of VMs running an application.
For example in Linpack application, we run 1VM with 1GB RAM 5 times, 5
times for 2 GB RAM VMs, 5 times for 4GB RAM and 5 times for 8 GB RAM.
The same steps are repeated for different number of VMs at the same time and
for different applications.

5.1.2 Modeling Formulas

5.1.2.1 Migration Time Modelling

Observations Migration time is the period between the VM migration request
initialization and having the VM activated at the destination server. In this
experiment, we follow VMware vsphere client tasks list in order to know the
VM migration start and end times. The difference between the two times is
the VM migration time. Fig. 5.2 - 5.4 show the migration time testing results
versus the active memory size over the network throughput due to migration.
The results show the migration time duration for different number of VMs,
with different memory sizes and using Linpack, network intensive and idle VM
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applications. In Fig. 5.2, the migration time of Linpack benchmark is presented
and from the obtained results, we see the following observations:

• With increasing the number of VMs in parallel migration, the migration
time increases; so 1 VM migration has the least migration time and 4 VMs
migration has longest migration time.

• The starting point of the line in the vertical axis has the lowest value for
1 VM migration and has the highest value for 4 VMs migration.

• The regression of the resultant testing points shows linear curve fitting; as
represented in equation (1.6) which assures the proposed models in [69],
[73] and [71].

Tmig = a.(
Vmem
Rs

) + b (5.2)

Rs: is the source host network throughput increase, Vmem is the source
host active memory size before migration starts, Tmig is the migration
duration time and a and b are constants that change with the datacenter
hardware configurations.

• The linear relation slope increases with having more number of parallel
VMs due to the greater impact on the migration time with having more
VMs at the same value of the memory size over the rate.

Figure 5.2: Avg. Migration Time – Linpack Benchmark

Theoretical Background – Migration Time The theoretical background of
the migration time linear modelling in Fig. 5.2 - Fig. 5.4 can be explained as
following. Equations set 5.3 represent the migration time analytical modelling
proposed in [104]. D is the dirty pages rate in kBps, n is the number of live
migration iterations and Rs is the transmission rate in kBps. For successful live
migration λ should be less than 1; otherwise the migration copy iterations will
exceed the stopping condition timeout and fail. Fig. 5.5 shows the relationship
in the set of equation 5.3 with different values of n and λ. The normalized
migration time can be fitted to a linear relation especially for small values of
(n) or (λ). With higher values of (n) or (λ), the linear fitting error increases.
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Figure 5.3: Avg. Migration Time – Network Stress Application

Figure 5.4: Avg. Migration Time – Idle VM

Tmig =

n∑
i=0

Ti =
Vmem
Rs

· 1− λn+1

1− λ

λ =
D

Rs

TNorm =
Tmig
Vmem
Rs

=
1− λn+1

1− λ

(5.3)

The modeling error of the migration time is presented in Table 5.1 based
on the RMSE calculation and then the RMSE value division over the mean of
the measured values. As shown in the table, the migration time modeling error
does not exceed 20% which makes the proposed regression error acceptable.

5.1.2.2 Network Throughput Modelling

Observations Network average rate is the average throughput at which data was



48CHAPTER 5. COSTMODELING, PREDICTION AND TIMINGOPTIMIZATION

Figure 5.5: Migration time relation between λ and n

Table 5.1: Migration Time Regression Error

Model Linpack Network Stress Idle VM
Avg. RMES% (Regression Error) 17% 14% 16%

transmitted from the physical host NIC card during the migration time interval.
This represents the consumed bandwidth of the network in Bps for live migration
process. Fig. 5.6, Fig. 5.7 and Fig. 5.8 show the relation between the network
rate and active memory size of the source host. From these figures, we highlight
the following observations:

• The relation between the network rate and the active memory size for the
three curves can be modelled as an exponential relation.

Rs = αe−VMem + β (5.4)

Where: Rs: Source host throughput increase
VMem: Source host active memory size before migration α and β are
constants

• Values of the x and y axes increases with the number of parallel VMs to
be migrated.

• 1 VM curve has the lowest start point in x and y axis in the three figures
because it has the lowest active memory size and rate

• 4 VM curve has the highest network throughput in the three figures due
to the largest active memory consumption.

• The curves may overlap at some points which is due to the change in the
memory size with moving the x axis. So for example, 1 VM with 8GB
memory will consume more throughput than 2 VMs with 2GB memory
size.
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Table 5.2 shows the modeling error of the live migration network cost. As
listed in the table, the modelling error is less than 20% which presents an ac-
ceptable accuracy of the proposed modelling is acceptable.
We may notify here also that in the literature review other more accurate algo-
rithms can be used, however the other proposed algorithms show more complex-
ity and so more CPU consumption. This means that there is a trade-off between
the modeling accuracy and complexity. For this modeling, we focus on having
a model that is simple and with acceptable error. Such that this model can be
used in real-time predictions; as we will discuss in the next section. Theoretical
Background – Network Rate Live migration process is managed by VMware
cluster vCenter server which uses the Transmission Control Protocol/Internet
Protocol (TCP/IP) in the networks layers 3 and 4 for the live migration man-
agement and the iterative copies of memory pages. As mentioned in [4] and
illustrated in Fig. 5.9, TCP congestion window is initially set to a maximum
segment size. The sender then sends a burst of this number of bytes. If the
burst is received (timer doesn’t expire) then it doubles the congestion window
and sends a burst of 2 * max segment size. It continues increasing the conges-
tion window until a burst is lost (time-out). Now the sender knows how much
the network can handle. This is called slow start. Slow start phase has almost
an exponential relationship between the segment size and the number of rounds.
When a timeout happens the threshold is set to one half the current congestion
window, and increases in a saw-tooth shape [131].
Because live migration is running for short time; few minutes on average, we
can say that it is mainly controlled by the slow start phase in TCP which has
an exponential relationship between the number of round trips and the number
of segments to be sent in each round trip. This represents also the relation
between the active memory size and the network rate. Because in x-axis, the
more active memory content, the more number of round trips and in y-axis
the more number of segments to be sent at the same time, the higher network
throughput.

Figure 5.6: Avg. Network Rate – Linpack Benchmark
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Figure 5.7: Avg. Network Rate – Network Stress Application

Figure 5.8: Avg. Network Rate – Idle VM

5.1.2.3 Power Consumption Modelling

Observations Power consumption is always a critical point in datacenters opera-
tions due to the AC power high running cost and impact on CO2 emissions. One
of the main benefits in resource virtualization is optimizing the power usage for
IT systems. So we study in this sub-section, the power consumption overhead
due to VMs live migration. In this experiment, we use VMware vCenter server
performance tool to measure the peak increase in the power consumption in
Watt of each physical host after each migration test and map this change with
the VM memory size and number of VMs; as shown in Fig. 5.10 - 5.12. From
the charts in the below power consumption figures, we note the following:

• Power consumption peak increase has linear relation with the transmis-
sion rate. This linear relation between the power consumption and the
transmission rate is also obtained in [104], but for Xen environment. In
this project, we prove the same relation also for VMware environment.

Pmig =
dEmig
dt

= c
dVmig
dt

= c R (5.5)
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b

Figure 5.9: TCP congestion control [4]

where:
Pmig: Peak power increase after live migration
Emig: Peak energy increase after live migration
Vmig: Migration volume
R: Migration rate

• Linpack application shows the highest peak power increase due to high
network rate, in contrary the idle VM shows the lowest peak power con-
sumption.

• The graph lines overlap at some points because high memory size for low
number of VMs may consume higher power than low memory size for more
number of VMs; for example in Fig. 5.11, 3 VMs with 8 GB memory
consume more power than 4 VMs with 4GB memory.

Theoretical Background – Power Consumption Migration rate is the dom-
inant factor for power consumption during the migration process; with higher
network rate the migration duration becomes shorter and the power consump-
tion increases [104]. Based on the proposed modelling for live migration energy

Table 5.2: Network Throughput Regression Error

Model Linpack Network Stress Idle VM
Avg. RMES% (Regression Error) 18.5% 16.8% 15%
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Figure 5.10: Power consumption – Linpack Benchmark

Figure 5.11: Power consumption – Network Stress Application

Figure 5.12: Power consumption – Idle VM

consumption in [104], there is a direct relation between the consumed energy
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Emig and the migration volume Vmig; equation 5.6 which represents also the
direct relation between the consumed power and the migration rate:

Emig = α Vmig + β (5.6)

5.2 Live Migration Cost Prediction

Machine learning is a segment of Artificial Intelligence (AI) where systems can
learn for historical data, create patterns, predict results and take decisions [38].
Machine learning is commonly used in modern datacenters for different use-
cases including medical, financial, transportation and retail industries. Linear
Regression (LR) is one of the popular techniques in machine leaning. In LR, the
relation between the input data and the prediction outcome can be represented
in a linear relationship. If the relation is in a non-linear format, so non-linear
regression technique can be used [38].
In this research, machine learning is used because the proposed models in equa-
tions (5.3) -(5.5) can not be used in live migration cost prediction. This is due to
the constants included in the equations. These constants values depend on the
cluster environment characteristics; like CPU, network and hypervisors versions
configurations. So, machine learning is required to train the models in reference
to equations (5.3) -(5.5) until the constants values are obtained for each cluster.
Then, these equations can be used for cost prediction.

5.2.1 The Proposed Algorithm

In this section, we present the proposed machine learning based framework for
live migration time, transfer rate and power consumption overhead prediction.
As shown in the flow chart of Fig. 5.14, the proposed framework consists of two
main phases, the training phase and the prediction phase.
The training phase starts when the VMware PowerCLI script connects to the
cluster vCenter Server Appliance (vCSA). Then data collection starts with list-
ing all the events happened in the cluster during the last 12 hours. This 12 hours
cycle can be changed based on the cluster admin preference. From the collected
events, vMotion events are filtered out. These vMotion events details like the
source host, target host and time stamp are captured. The time stamp include
the start time and the complete time of the vMotion event. Then the script
calculates the complete and start time differences in order to get the migration
time of each vMotion request. The performance logs of vCSA are collected at
the start and the completion times at the vMotion events in order to get the
active memory size of the migrated VMs in kB, the network overhead in kBps
and the peak power change in Watt.
From the above data of each vMotion event, we use the regression models in
equations (5.2, 5.4 and 5.5) to calculate the equations constants after doing
several substitution and considering the minimum Root Mean Square Error
(RMSE); equation 5.7.

RMSE =

√
1

N
ΣNi=1(di − fi)2 (5.7)
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Where N is the number of sample points collected during the last 12 hours.
di is the measured performance value and fi is the regression model equation
value.
If the change in all the constants value became greater than 10% of the last
12 hours cycle, the script waits for more 12 hours and run again to continue in
the training phase. If these changes became less than 10% of the last 12 hours,
so we consider the the training phase of this cluster is finished, and the script
then moves to the prediction phase. The time consumed until reaching this 10%
convergence depends on the changes that happen in the VMs active memory
size. These changes in the active memory depend on the running workload. This
means that the more changes happen in the active memory size of the VMs, the
less time required to reach the 10% convergence; this is because the regression
relation curve will cover most of the values that the active memory size can take
and so the regression relation model can be defined faster. This sequence of
data collection and models training makes the algorithm can fit at any vCenter
Server cluster and adapt its models based on the cluster configuration in order
to provide cost prediction with high accuracy.
In the prediction phase when a vMotion request is sent by the cluster admin,
the active memory size is captured by the script before proceeding with live
migration. Once the active memory size is known, equation 5.4 is used to
predict the source host network throughput. Then equation 5.2 is used to predict
the migration time, and finally equation 5.5 is used to predict the peak power
consumption. The prediction data is exported to a .csv file that the cluster
admin can read, and then decide either to proceed with this migration or not.

5.2.2 Testing Environment

The testing environment is shown in Fig. 5.13; as shown it has a similar in-
frastructure to enterprise datacenters. It includes the following hardware setup;
Three Hosts (Hewlett Packard DL980 G7) with 8 x Intel Xeon (Nehalem EX)
X7560, 8GB RAM, 4 NICs, 2 HBA with 2 Fiber ports per card. The three hosts
are connected to a shared storage EMC VNX5800; 1TB LUN via FC-SAN net-
work.The Ethernet switch is Cisco with 1Gbps ports. From software prespective,
VMware ESXi 6.5.0 Hypervisor is used with vCenter Server that manages both
hosts and the VMs live migration. VMware PowerCLI 6.5.1 build 5377412 is
connected to the vCenter Server to run the framework algorithm script.
In this set up we have created four Linux Ubuntu 12.04 VMs with 4 vCPU,
and different RAM sizes (1GB, 2GB, 4GB and 8GB). The VMs have mainly 3
categories of workload:

• CPU and Memory intensive: This is considered as the worst case scenario
for a running workload. The CPU intensive benchmark that we used is
Linpack [9] and the memory stress is the Linux Stress Package [14].

• Network Intensive: The network stress benchmark that we have used is
Apache Bench (AB). Apache Bench tool stresses the web servers with lots
of requests through the network to test the servers response.

• Idle: VM is simply an idle Ubuntu OS VM; with no running applications.

From networking side, we have followed VMware best practice to isolate live
migration traffic by creating a dedicated VMkernel vMotion port group [37].
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Figure 5.13: Testing Lab Layout

As a basic introduction to networking in VMware vCenter server, a virtual
Distributed Switch (vDS) is created between the cluster physical hosts through
the hosts physical network adapters. This vDS is connecting all the VMs insides
these physical hosts; such that each VM is connected to this vDS using its virtual
ports. A port group is an aggregation of multiple virtual ports to isolate their
traffic using labeling. This is used basically to isolate management, kernel and
data traffic from each other. vMotion has a specific port group that isolates its
traffic from other kinds of traffic [37]. With this testing setup, we have run 12
testing scenarios; as a matrix of 3 workload categories and 4 different VM sizes.
For each configuration, we have run live migration at least 10 times. So the
resultant is 144 readings. For each run, we do live migration for a VM from one
of the physical hosts to other of the other two hosts; without doing any storage
migration [69] and [73]. So only the CPU state, memory and buffers contents
are migrated. For data collection and models training, every 12 hours the script
gathers all the live migration events that happened in the cluster and from the
events timing details, the live migration can be obtained. Then the script uses
Get − Stat function to import the statistics beyond each live migration event;
specifically the data rate change, the peak power increase and the active memory
size of the migrated VMs. This data is used for models training for the cluster.
For the prediction phase, we make use of the trained models to predict the
future VM live migration cost when the admin sends a live migration request,
and given the active memory in kB. The estimated cost is exported as csv file
that the admin can check before proceeding with the live migration.

5.2.3 Results and Analysis

After testing the proposed approach in Fig. 5.14 on the test-bed of Fig. 5.13,
we present in this section the prediction results for almost 144 readings. Before
showing the prediction phase graphs, we start with the training phase. This is
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to show how the models are trained until obtaining equations (5.2, 5.4 and 5.5)
constants with at least 90 percent accuracy.

Figure 5.14: Proposed Prediction Framework

5.2.3.1 Training Phase

In this phase, the script collects the last 12 hours live migration events. Then the
performance statistics of these live migrations are gathered including their time
stamps. The migration time is calculated by the script; given the start and end
time of the live migration event. The other gathered statistics include the active
memory size, the source host transmission rate and the peak power change. All
these details are used to train the models of equations (5.2, 5.4 and 5.5) and
to obtain the constants of this cluster by solving several linear equations. For
example in order to calculate a and b of equation (5.4), we use every two live
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Figure 5.15: A and B Change until Saturation

migration events statistics to generate two equations in two unknowns. These
unknowns are a and b in this example, because the migration time, the active
memory size and the transmission rate are given. So, we gather every two live
migration events statistics to solve for the constants of equation (5.4). The
script keeps on solving for the values of a and b until finding the changes in the
values of a and b are less than 10 percent compared to the calculated values
of last equations solution. This means that these constants are at least 90
percent saturated. Fig. 5.15 shows the changes of a and b constants versus
the number of live migration equations that were used until reaching the 90
percent saturation. As shown in Fig. 5.15; the difference in a is changing with
the number of live migrations which represents solving more equations until the
90 percent saturation at difference equals 0.22 after 14 live migrations. At this
point a=9.04. For b constant, the script has run 50 live migrations to reach
the 90 percent saturation at difference equals 9.16. At this point b=21.04. This
means that modeling with equation (5.4) could be used after 50 live migration
runs for this cluster.

For equation (5.7), we could also solve every two equations of live migrations
data as linearly to obtain the values of α and β. The is because the values of
the active memory size and the migration time are given, so we can substitute
with them and then solve two equations in two unknowns; α and β. Fig. 5.16
shows the differences happen in the values of α and β after each live migration
until reaching the 90 percent saturation. As shown; the constant α could reach
the saturation at difference equals 1850 after 54 live migrations. At this point α
equals 2.02 ∗ 104. The value of β reaches the 90 percent saturation at difference
equals 2225 also after 54 live migrations. At this point, β equals 2.33∗104. This
means that modeling with equation 5.7 can be used after 54 live migration runs.
Finally, equation (5.5), which has just one unknown; c and so it can be resolved
given just one live migration statistics. So for each live migration run in the past
12 hours, we could read the transmission rate and the peak power overhead and
then calculate the constant c. Fig. 5.17 shows the changes happen with each
live migration calculation to the the constant c; as shown it 90 percent saturates
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Figure 5.16: Alpha and Beta Change until Saturation

after just fours live migrations runs at difference of c value equals 0.6∗10−5. At
this point c equals 16 ∗ 10−5.
From the above analysis, we find that it required 54 live migration runs to be
able to train the models provided in equations (5.2, 5.4 and 5.5). In general, the
required number of live migrations runs to finish the training phase depends on
the error gap between the training data and the regression model. The closer
gap between the training data set and the model, the lower number of live
migration iterations required to reach the 90 percent saturation, and vice verse.

5.2.3.2 Prediction Phase

In this subsection, we build on the training phase that we have discussed above.
Now, the regression models are trained for this cluster and ready to be used for
future live migration cost prediction. The testing results in Fig. 5.18 - Fig. 5.20,
show the regression models that are used and the actual measured data after
migration.

The measurements in Fig. 5.18 - Fig. 5.20 are for VMs live migrations with
different configurations including memory size of 1GB, 2GB, 4GB and 8GB VMs
that utilize three different kinds of workloads. As discussed in section V, these
workloads are CPU and memory intensive, network intensive and idle VMs.
This results in 12 different VM configurations. Each configuration is tested 12
times; which represents the existing 144 measurement points in the following
figure. The prediction starts with Fig. 5.18; so given the active memory size
of the VM to be migrated, the source host transmission rate can be predicted.
The VM active memory size can be measured before live migration. Fig. 5.18
shows the exponential relation as a valid regression model between the active
memory size and the transmission rate. That is how the transmission rate can
be predicted. Table 5.3 shows the RMSE of Fig. 5.18 in reference to equation
5.7. After obtaining the transmission rate from Fig. 5.18, we calculate now the
active memory size over the transmission rate; which is the horizontal axis of
Fig. 5.19. So the migration time can be predicted; using the linear regression
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Figure 5.17: C Change until Saturation

Table 5.3: RMSE of the Regression Models

Model Fig. RMSE Error %
Transmission Rate Fig. 5.18 8187 18%

Migration Time Fig. 5.19 15.5 16%
Peak Power Fig. 5.20 1.7 15%

model of Fig. 5.19. The RMSE of the prediction in Fig. 5.19 is also listed in
Table 5.3. Fig. 5.19 also shows that the migration time can consume several
minutes in case of large memory and memory intensive VMs. The last model
is for the source host peak power change; which is shown in Fig. 5.20. So given
the source host transmission rate, the peak power change can be obtained using
linear regression.
Table 5.3 shows the prediction error of the different cost prediction parameters.
The Error% is calculated based on (5.1). The prediction of the transmission
rate, migration time and peak power show a prediction error less than 20%;
which is acceptable. As discussed before, the proposed prediction technique
proposes a simple algorithm with acceptable error that can show prompt results
to the IT admins. More accurate algorithms are proposed by other researchers,
however more prediction accuracy requires more complexity and results in more
CPU consumption. So there is a trade-off between accuracy and complexity. In
the proposed prediction technique, we focus on presenting a simple technique
showing real time results and acceptable prediction error.
All these predicted live migration cost parameters are exported to a .csv file
that can be accessed by the cluster admin to check the estimated cost if he/she
decides to do live migration to a certain VM. This help the admins to have better
planning for live migrations, and avoid resource bottlenecks that lead to live
migration failures and service quality degradation. This proposed framework
script can adapt itself by changing the models constants using the training
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Figure 5.18: Rate vs Active Memory Size

phase; which make it flexible with any VMware cluster.

5.3 Timing Optimization for Live Migration

The objectives of our VMs live migration timing optimization proposal can be
summarized in the following points:

• To propose a solution that can minimize the live migration cost in VMware
environments by finding the optimal timing of the live migration process
initiation and so to minimize the network contention for live migration
traffic.

• To make use of the machine learning techniques there were used for live
migration cost prediction and for network prediction techniques.

• The proposed approach should be a practical algorithm that can be im-
plemented and integrated with cluster management portals.

5.3.1 Datacenter Network Utilization Prediction

Machine Learning (ML) has many applications that change our life and ex-
perience with lots of applications including healthcare, manufacturing, insur-
ance, social networking and robotics industries. Using ML for datacenters opti-
mization could resolve different challenges in modern datacenters infrastructure
servers usage forcasting [121], networking [58], storage [120], security [52]and
energy consumption [54].
In this section we focus on network traffic prediction using ML techniques. This
is due to the fact that live migration has a massive impact on the datacenter
networking. So from live migration cost parameters, networking overhead is
the most impacted performance metric compared to other infrastructure per-
formance metrics like CPU, memory and power overhead. On the other hand,
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Figure 5.19: Migration Time vs Active Memory Size/Rate

in pre-copy migrations, iterative copy phase is the most time consuming phase
and limitation in the network bandwidth can lead to copy process interruptions
and so live migration failure.
In this work, we make use of the existing network prediction techniques pro-
posed by other researcher to integrate it with the live migration cost prediction
model that is proposed in related work to come up with a novel timing opti-
mization for live migration in VMware environments. The proposed technique is
published in [74] Using ML techniques for networking prediction is well covered
in this survey paper [58] that cover ML applications for network traffic pre-
diction, performance optimization and security. For network traffic prediction,
this survey paper [58] has referred to four research articles. The first article [61]
uses Artificial Neural Networks (ANN) technique with Multi-Layer perceptron
(MLP) to analyze and estimate the Internet traffic over the IP network. In this
proposed approach, model training is used with given inputs and outputs to
optimize the weights of the neuron and minimize the error between the ANN
output and the target output. For model training 750 points were used and for
model testing other 250 independent points were used. Authors in [61] proved
that Leven-berg-Marquardt (LM) and the Resilient back propagation (Rp) al-
gorithms show highest precision compared to other training algorithms.

In the second article [102], the authors propose new ANN based prediction
model for the inter-DC network traffic. In the model three inputs are collected
for the ANN module; an elephant flow sample due to the massive amount of
traffic, the total traffic and the traffic of the sublinks in both directions. The
proposed model is applied at the largest DC backbone link in China that con-
nects multiple datacenters with thousands of servers. Using this model could
reduce the prediction error up to 30 percent and so the peak bandwidth can be
reduced with 9 percent.
Authors in the third article [140] proposed a network traffic prediction model
with high accuracy using Back Propagation Neural Network (BPNN) optimiza-
tion and Particle Swarm Optimization - Artificial Bee Colony (PSO-ABC) al-
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Table 5.4: Summary of Network Traffic Prediction Related Work

Paper Technique Dataset Training Output

Comp.

Cost

(Chabaa et.) MLP-ANN 1000 dataset
Past

measurement

Expected

Traffic
Volume High

(Li et.) MLP-ANN

Every 30s

traffic
for 6 weeks

Time Series
data

decomposition

using Db4

Next 30s
expected

traffic
volume High

(Zhu et.) MLP-ANN

Hourly traffic

for the past

2 weeks
PSO-ABC
Algorithm

Next day

hourly

traffic Lower

(Chen et.)

Hidden
Markov
model

Every 5 mins

in 24 weeks
Network
Volume
and flow

count

KBR
and RNN

with
LSTM
unit

Traffic
volume

prediction Lower

gorithm. BPNN is a supervised learning ANN based technique. In BPNN, the
error between the desired output and the calculated output is back propagated
to the ANN system input to minimize the error. PSO-ABC is used as an opti-
mization algorithm that trains the ANN to minimize the prediction error and
increase the performance stability [140].
In the forth paper [139], the authors propose network traffic prediction tech-
nique which is based on Hidden Markov Model that describes the relationship
between the flow count and the flow volume and the dynamic behavior of both as
a time invariant state-space model. The transition probability and the emission
probability in the proposed Markov Model are unknown and so, packet traces
are collected to learn the model and train the transition and emission probabil-
ities. Then Kernel Bayes Rule will be used to obtain the estimation points for
specific time interval with minimal error and computational overhead. Table
5.4 summarizes the comparison between the four papers that we discussed in
this section. As shown in Table 5.4, we add a comparison column from CPU
consumption overhead point of view for each technique. This is important for
having an algorithm that can be applied in practical. So for our proposed timing
optimization algorithm, we will make use of the network prediction algorithm
proposed in [139]; since is networking prediction algorithm shows lower CPU
consumption compared to the first two techniques. The forth technique shows
also lower CPU consumption , however the output samples are hourly based;
which is long period for our application. CPU consumption is critical for our
application because, the computational delay for this network prediction pro-
cess should be minimal in order to get back with a fast response to the network
admin with the recommended migration timing when the live migration request
is initiated.
this research contribution can be summarized in the following points:

1. We propose a solution that can minimize the migration time for single
and multiple VMs migration in VMware environments. This solution is
based on timing optimization for the live migration process initiation to
minimize the network contention for live migration traffic.
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2. The proposed timing optimization technique is a machine learning based
approach that makes use of the machine learning techniques; mainly the
previously studied machine learning based live migration cost prediction
approach proposed in [75] and the machine learning based IP network
prediction technique proposed in [139].

3. The proposed approach is a practical algorithm that is implemented as a
VMware powerCLI script and integrate with VMware vCenter Server for
cluster management.

4. To the best of our knowledge, studying live migration timing is not covered
by any related work. We could only find some VMware articles that
assures on using high speed GbE for vMotion to avoid network bottlenecks
[23].

The proposed algorithm is presented in Fig. 5.21 flowchart that starts with
connecting to VMware vCenter Server Appliance (vCSA) [44] using PowerCLI
client [27] to run our PowerCLI script on the VMware cluster that is manage-
ment by this vCSA. The next step is train the live migration cost prediction
model from the past 12 hours events; as discussed in Fig. 5.14. Then network
traffic prediction model is also trained using the Hidden Markov Model algo-
rithm proposed in [139] and every 30 sec of the VMware VMkernel network
traffic history of the past day; which means 2880 points as training dataset. As
discussed in section 2.1, VMkernel network is the isolated network that includes
vMotion and vSAN traffic. By finishing this step, the training phase can be
considered as finished and the script is ready to predict.

When the network admin sends a vMotion request for a specific VM or for
Multi-VMs migration, the VM live migration time and migration traffic rate
is predicted by calling the prediction phase of the machine learning technique
proposed in Fig. 5.14. By this step, the migration time and network rate are
estimated. Then the prediction technique proposed in [139] is used to estimate
the network traffic volume of the VMware cluster VMkernel network for every
30 sec during the next 1 hour. By finishing this step, the prediction phase of the
network traffic volume, the live migration time and the migration transmission
rate is finished and timing optimization check should start.
Timing optimization starts with a check if the current time; when the vMotion
request is received is the a good time for initiating the vMotion process. To do
this check, the script runs equation 5.8 that estimates the traffic rate during the
estimated migration time interval.

Rbusy =

∑Nmig
n=0 Vn
Tmig

RAvail. = BW −Rbusy
(5.8)

Rbusy is the estimated traffic volume in bps that will be utilized by other
VMkernel network traffic, like vSAN, management,..etc. So, it is predicted to
have the VMkernel network reserved with this rate during the migration time.
n is the 30 sec based sample number in integer of the network traffic prediction
technique Nmig is the last sample that approximately ends with the estimated
migration time. Vn if the estimated traffic volume in bytes for each sample.
RAvail. is the un-utilized traffic rate in bps that is available for vMotion traffic.
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BW is the VMkernel network bandwidth in bps.
The succeed check point in the algorithm flow chart verifies simply the below
condition in equation 5.9

RAvail. > Rs ∗ (1 + PAcc.) (5.9)

Where PAcc. is the prediction accuracy for live migration network rate. So
in equation 5.9, the algorithm checks if the available network rate for VMkernel
network RAvail. can afford the estimated migration transmission rate whilst
considering the prediction accuracy that is mentioned in [75]. if this checkpoint
result is (Yes), the live migration will start momentarily. If the result is (No),
the algorithm moves to another phase which is finding the optimal time for
initiating the VMs migration process.
When the momentarily migration check does not succeed, the algorithm checks
for another better timing during the next hour from network availability point
of view. So equation 5.9 is applied for the next hour prediction samples with 30
sec interval. If another optimal time is found, it will be shared with the network
admin. If the admin accepts it, the VMs migration will be initiated at this time
automatically. If the admin rejects this recommendation, the migration will
be initiated momentarily. In case of not finding another optimal time during
the next hour, the admin will be also alerted with this fact. In this case, the
recommendation is to request the migration again after 1 hour. If the admin
rejects that, the migration will be also initiated momentarily. If the admins
accepts the recommendation, the algorithm stops.

5.3.2 Testing Environment

The testing environment is shown in Fig. 5.22; which has a similar infrastruc-
ture to enterprise datacenters that includes the following hardware setup; Three
Hosts (Hewlett Packard DL980 G7) with 2x Intel Xeon (Nehalem EX) X7560,
8GB RAM, 2 NICs per server. The Ethernet switch is Cisco with 10 Gbps
ports. The three hosts are connected to a 1 TB VMware vSAN datastore as
a software defined storage platform. From software prospective, VMware ESXi
6.5.0 Hypervisor is used with vSAN 6.5 and vCenter Server that manages the
hosts and the VMs live migration. VMware PowerCLI 6.5.1 build 5377412 is
connected to the VMware PowerCLI [27] is used to run the algorithm flowchart
script.
In this set up we have created four Linux Ubuntu 12.04 VMs with 4 vCPU, and
different RAM sizes (1GB, 2GB, 4GB and 8GB). We focus on the RAM size
change only becuase memory is a critical configuration parameter in defining live
migration performance [75]. The VMs run a network intensive workload that
represents web servers environment and memory intensive workload as worst
case scenario for VMs migration. The network stress benchmark that we have
used is Apache Bench (AB) [22]. Apache Bench tool stresses the web servers
with lots of requests through the network to test the servers response. For mem-
ory stress, we have used AB for memory stress [14]. With this testing setup,
we have run 16 testing scenarios per Workload for running single VM, 2 VMs,
3 VMs and 4 VMs migration in parallel. So the testing scenarios is a matrix
of 4 different numbers of VMs and 4 different VM sizes. For each configuration
scenario, we have run the migration at elast 5 times.
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In our testing, we focus on studying the timing optimization impact on the VMs
live migration time as a reflection for having less contention in the VMkernel
network. Lower migration time for live migration requests, means faster migra-
tion with less interruptions and higher probability of migration success. This is
basically due to avoiding the bottlenecks and the network peaks for initiating
the migration process; specially for large memory VMs.

5.3.3 Results and Analysis

As presented in section 5.3, our proposed algorithm searches for the optimal
timing for live migration requests during the next hour of the admin vMotion
request using prediction techniques for the live migration time, network rate and
the datacenter traffic volume prediction. We evaluate our proposed algorithm
by showing the impact of timing optimization on the migration time. Lower
migration time means less contention in the migration traffic within the VMk-
ernel network; which represents higher transmission rate with less interruptions
and higher probability of migration success in a shorter time. In section 5.3.2,
we presented the testing setup and showed that for different VMs memory con-
figurations and with different numbers of VMs, we test our algorithm using
network stress and memory stress benchmarks. Fig. 5.23 and Fig. 5.24 show
the proposed timing optimization algorithm testing results for memory stress
and network stress workloads.
In Fig. 5.23, there are four charts that represent the obtained results for differ-
ent number of VMs; as mentioned in the title on top of each chart. For each
chart, we show the migration time consumed by different VMs memory config-
urations; 1GB, 2GB, 4GB and 8GB RAM VMs. For each configuration, There
are three bars, the first solid black bar shows live migration time consumption
in seconds with using the proposed timing optimization algorithm. The second
dotted bar shows the average migration time for five times live migrations for
the same VM without timing optimization. The third dashed bar shows the
maximum observed migration time for the same VM from the five migrations
happened without timing optimization. For the average and the maximum mi-
gration times bars, we add the difference in percentage on top of the bar versus
the migration time achieved by using timing optimization. So for example in
the 1 VM- 1GB Mem testing scenario, the migration time achieved with using
timing optimization is 16 seconds and the average migration time is 1.1 percent
higher. Also the maximum migration time observed is 1.25 percent higher than
using timing optimization. The same explanation applies to all the charts in
Fig. 5.23.

As shown in Fig. 5.23, the difference between the average and maximum

Table 5.5: Timing Optimization Performance

Mem Stress Net Stress
Average Mig. Time % 145 126

Max. Mig. Time % 205 136



66CHAPTER 5. COSTMODELING, PREDICTION AND TIMINGOPTIMIZATION

migration times versus using timing optimization varies between different con-
figuration scenarios and reaches large values in many cases; especially with
multiple VMs migrations; for example on average 157% more time consumed
versus migration timing optimization, and 221% more time for the maximum
migration time case. These observed differences in Fig. 5.23 show the following:

• The performance of the proposed timing optimization techniques is com-
pared versus not using it and proceeding with live migration randomly at
any time. The performance metric is the migration time in sec of the VMs
live migration.

• Table 4.3 shows the average of the percentages difference between the av-
erage migration time and the maximum observed migration time versus
using timing optimization. As shown, for memory intensive workload,
average migration time shows 145% more time than using the proposed
timing optimization and the maximum migration time shows 205% more
time. This means that the proposed timing optimization can save up to
50% of migration time and in average it saves 32% of the VMs migration
time for memory intensive workloads.
This enhancement in the migration time is basically due to the selection
of an optimal migration timing based on the datacenter network utiliza-
tion, such that live migration process can get higher network throughput.
With higher migration transfer rate, live migration process can be accom-
plished in a shorter time and with higher success rate. Fig. 5.25 shows
the difference between running vMotion with timing optimization versus
without using our proposed timing optimization algorithm as an example
for 4 VMs, 8GB memory for each VM and linpack benchmark workload.
As shown; with timing optimization, live migration can be achieved with
higher transfer rate and so the migration time becomes shorter. In this
example, migration time consumes 26 time samples without timing opti-
mization, however it consumes 16 samples with timing optimization. The
sample is 20 sec.

• VMs with larger memory size consume significantly more migration time.
This time is basically required for the memory content and dirty pages
iterative copy migration phase. This assures the point that memory size
is a significant parameter in live migration performance.

• Multiple VMs migration has also significant impact on live migration time.
So the more number of VMs migrated in parallel, the more migration time
required.

Fig. 5.24 has the same charts explanation like Fig. 5.23 and the difference is
mainly in the results numbers. From the charts in Fig. 5.24, we share the
following observations:

• Live migration time for network intensive workload shows lower values
than memory intensive workloads. This is basically because the content
and the dirty pages rate to be migrated is significantly bigger for memory
intensive workloads.

• Table 4.3 shows also the average of the percentages numbers in Fig. 5.24;
which shows 126% on average more migration time and 136% maximum
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migration time versus the migration time achieved with using the proposed
timing optimization approach. This means that the proposed approach
can save up to 27% of the migration time and on average it saves 21% of
the migration time for network intensive applications.
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Figure 5.20: Peak Power Overhead vs Transmission Rate

Figure 5.21: Proposed Timing Optimization Approach for VM Migration
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Figure 5.22: Testing Environment Infrastructure

Figure 5.23: Memory Stress - Impact of Timing Optimization on Live Migration
Time
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Figure 5.24: Network Stress - Impact of Timing Optimization on Live Migration
Time

Figure 5.25: Live Migration without and with Timing Optimization



Chapter 6

Algorithms Integration
with VMware

In this section, we prove that the proposed algorithms in section 5 can be
practically implemented and integrated with cloud computing administration
portals. VMware vCenter server is used in the chapter just as an example of
a commonly used private cloud portals at different institutions and enterprises
datacenters globally. We show in this chapter the different tools that we have
used to integrate the proposed algorithms with VMware user interface.

6.1 Testing Environment

During this research study, we have used different lab clusters that consist of
2 VMware ESXi hosts that share the same storage and managed by VMware
vCenter server. The hardware specifications and the version of VMware vSphere
changed from time to time depending on the test time and the available lab re-
sources.
For VMs live migration initiation, there are two possible methods; the first is
built-in UI based live migration procedures; which is commonly used by the IT
admins and VMware users. And the second method is used VMware PowerCLI
shell commands. For live migration cost modeling, we used the UI. For live
migration cost prediction and timing optimization, we used the VMware Pow-
erCLI shell commands as part of the algorithm script. VMware vCenter server
is used to gather the required performance parameters that were used for live
migration network, power, time and memory consumption.

6.2 Integration with VMware vSphere UI

For resource management algorithms integration with VMware UI, we have
used several software tools; that are presented in [76]. VMware provides a
software development kit for building plugins for the VMware vSphere client.
The structure of the plugin is shown in Fig. 6.1 and consists of the following
components [76]:
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Figure 6.1: Integration with VMware Plug-in Components Structure

• HTML UI layer: this layer handles the way the plugin looks in the Web
client. It allows adding menu options and navigation items.

• JAVA service layer: this layer is based on the Spring MVC and the OSGI
framework, it represents the backend of the plugin. This layer communi-
cates with the PowerCLI and Python modules to perform the coefficients
calculation and provide the estimation.

• PowerCLI module: This component handles the live data collection through
the PowerShell PowerCLI APIs. It collects data about the migrations that
occurred in the last 12 hours. The collected data is then processed by the
Python module and returned to the JAVA service layer.

• Python module: This component processes the data using the Algorithm
described by this paper and outputs the value for the coefficients α, β, a,
b, and c to predict the expected duration for the migration, the expected
power consumption, and the expected network usage.

6.3 Solution Demonstration

In this section, we show and example of a resources management algorithm
integration with VMware UI. We present a use-case for our proposed timing
optimization algorithm published in [76]. This algorithm recommends the opti-
mal timing for a VM migration based on the network utilization prediction and
the VM migration network cost estimation. This technique could be integrated
with VMware User Interface (UI) using the testing lab discussed in section 5.3.2.
The integration with VMware UI as an extension work on [76] shows that the
proposed timing optimization feature can be practically implemented and used
by the IT admins.
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Figure 6.2: Integration with VMware Plugin Data-flow

Based on the integration of the above platforms and tools with VMware and the
algorithms charts in Fig. 5.14 and Fig. 5.21, the steps we have used to integrate
the proposed timing optimization algorithm with VMware vSphere are:

1. A shown in Fig. 6.2 The user interacts with the vSphere client UI, which
contains the HTML layer added for the plugin, and requests the predicted
migration overhead for a VM. This step is possible because the vSphere
client software development kit allows developers to alter the user interface
of the vSphere client to add new custom features.

2. The JAVA service layer receives the request from the UI layer and then
forwards the request to the PowerCLI module.

3. The PowerCLI module gathers all the events run in the vCenter Server
during the last 12 hours and filter the vMotion events. The script identifies
the source and target hosts of each vMotion event and the start and end
time stamp of each migration. Based on that, the performance statistics
of each migration is collected and passed to the next step in CSV format.

4. The Python module then takes in the collected data set and for each pair
of data items it calculates the coefficients. Once the script finds Two
successive coefficients with less than 10% difference in value it stops the
search and returns this value in a CSV format to the PowerCLI module.

5. The equations from (1), (2), (3) are then used to predict the duration,
power consumption, and required network bandwidth of the migration.

6. These results are returned to the JAVA service layer as a string of charac-
ters and then returned to The HTML UI layer after formatting the string
and shown to the user as in Fig. 6.3.

In the next section, we show the result of using these scripting tools and fol-
lowing the above steps to integrate the cost prediction and timing optimization
algorithms with VMware vSphere UI.
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Figure 6.3: Added Icon: Cost Prediction Plug-in

Figure 6.4: Added Icon: Optimal Timing Plug-in

6.4 Testing Results

The result of the integration with VMware vSphere UI is as shown in Fig. 6.3
and Fig. 6.4. As shown in Fig. 6.3, this newly added plugin in the UI of the
VMware vSphere allow getting insights about the migration time, network rate
and power consumption before initiating a VM migration and by using the data
collected from the live migration history within the VMware cluster and with
monitoring the VM active memory size. This allow the datacenter admins to
make educated decisions about VMware vMotion events before committing the
migration.
After determining the expected network rate of a VM live migration and using
this integration method, it is also possible to create a more sophisticated migra-
tion system using the Hidden Markov model [139] in Fig. 5.21. Such a system
would predict how the network bandwidth will change in the future and thus
inform the datacenter administrator of the optimal time to do the migration in
order to decrease the load on the network infrastructure. Fig. 6.4 shows how
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Table 6.1: Timing Optimization Performance

Mem Stress Net Stress
Average Mig. Time % 145 126

Max. Mig. Time % 205 136

this system would look to the administrator. To implement such a system the
following changes would be made:

• The PowerCLI module needs to periodically collect network data to be
used by the Python module for training.

• the Hidden Markov model needs be implemented in the Python module.
This model will be able to predict the network state in the future and thus
guess the best time for a certain VM to migrate.

• When the user requests a migration, the UI will show the user the best pre-
dicted time to do the migration after running the model from the previous
step.

As a result of using live migration cost prediction and timing optimization tech-
niques, the live migration time of the VMs can be saved by just shifting the
migration start time of the same VM to the recommended optimal time. Ta-
ble 6.1 show average and the maximum migration time increase without using
timing optimization as normalized values versus using the timing optimization
techniques. As shown in Table 6.1, for memory stress benchmark the average
increase in the migration time without timing optimization is 145% versus with
using timing optimization. This average increase is 126% for network stress
applications. From the peak increase in the migration time point of view, the
maximum migration time increase for memory stress benchmark without timing
optimization is 205% versus with using the timing optimization. This maximum
increase is 136% for network stress benchmark. The results mentioned in Table
6.1 show how significantly the timing optimization can save the migration time
cost for VMs live migrations.
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Chapter 7

Live Migration Cost with
Persistent Memory

Persistent memory is a recently developed technology that keeps the data stored
at the memory tier even with system reboot or power off [6]. This technology
is now supported by many hardware, operating systems, middle-ware and ap-
plications vendors[29].

7.1 Persistent Memory Technology Background

Memory intensive and in-memory applications are one of the main drives for
persistent memory utilization. These applications use memory capacity inten-
sively to gain high performance and low latency. However, the admins for these
applications face challenges in large memory cost with DRAM and system re-
boot duration due to running a volatile memory. Persistent memory is a new
tier of storage that is added between DRAM and standard flash SSDs; as shown
in Fig. 7.1. This new byte-addressable tier of storage minimizes the bottlenecks
in read and write operations between the DRAM and NAND SSDs due to the
big gap in performance. So adding this new storage tier provides a more bal-
anced data management for computer systems [6].
Persistent memory comes in two main silicon technologies; Non-Volatile DIMMs

(NVDIMMs) or Non-Volatile RAM (NVRAM) and 3D xPoint Persistent Mem-
ory (PMem) which is 3D-xPoint based silicon technology released only by Intel
[39] and Micron [15] in 2019. From the CPU prospective, Intel Xeon Cascade-
lake CPU [3]; released in 2019 is the first and so far the only CPU that supports
PMem; this is up to the date of writing this article.

7.1.1 Non Volatile DIMM (NVDIMMs)

NVRAM or NVDIMMs is based on the CMOS transistor that is used in the
standard DDR4 RAM, however the memory architecture and power manage-
ment ICs are modified to run with battery-backed power source that flushes
the data from the DRAM to an internal NAND drive in order to have have
data persistence during power failures or system restart [18], [19], [20] and [21].
So NVRAM has the same performance as the volatile DRAM but has the the
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Figure 7.1: Storage Tiers Hierarchy with PMem [6]

endurance of NAND technology [101], [95] and [20]. NVDIMMs are supported
by VMware vSphere 6.7 and above [17].

7.1.2 3D xPoint PMem

3D xPoint is a new silicon technology developed by the memory vendors Intel
and Micron [130]. Compared to NVRAM, 3D xPoint PMem has higher capacity
density, lower cost per GB, higher durability and native persistent; without bat-
teries [130]. From performance point of view, 3D xPoint PMem has comparable
bandwidth and 10x more latency compared to NVRAM and DDR4 RAM. So,
3D xPoint PMem is not proposed as a replacement for DDR4 DRAM, but to be
added as a new tier of memory between DRAM and the standard flash NAND
SSDs as a higher capacity density and a more cost effective memory solution
that provides also higher system availability[7].
Table 7.1 shows a comparison between DRAM, NVDIMMs and 3D xPoint
PMem specifications. As shown; DRAM has advantages in latency and en-
durance, however the dis-advantages in DRAM are the low capacity per DIMM,
volatile storage medium and the cost per GB. NVDIMMs has advantages in
latency, and in data persistent, however the disadvantages in NVDIMMs are
the low capacity per DIMM which is exactly as DRAM, the medium endurance
and the cost per GB. The 3D xPoint PMem has advantage in the capacity per
DIMM, the medium endurance, the data persistent and the lower cost per GB.
However the disadvantages in 3D xPoint PMem is the higher latency compared
to DRAM and NVDIMMs.

3D xPoint PMem has two modes of operations; Memory Mode (MM) and app
direct mode (AppDir); as shown in Fig. 7.2. In MM, the PMem acts as a
volatile memory and the only gains of using it are the capacity per DIMM and
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Figure 7.2: PMem AppDir Mode vs Memory Mode [25]

the endurance. In MM, there is no need to do any development in the hypervi-
sor, the OS and the application to discover the PMem as the system discovers
it as normal DRAM. In MM also, if there are PMem DIMMs as well as DDR4
DIMMs in the same server, the DDR4 DIMMs act as memory cache for the
PMem DIMMs [20].
In AppDir mode, the PMem acts as persistent memory and in this case DDR4

and PMem are presented as two different types of memory to the hypervisors,
the OS and the applications. So all these three software stacks should be devel-
oped to decide which part of the data should be stored in the PMem to utilize
the larger capacity and persistent storage and which part should reside on the
DDR4 to get the lower latency. PMem in both modes is supported by many
applications (like SAP HANA, Apache Cassandra, Apache Spark SQL and Mi-
crosoft SQL server 2019), OSs vendors(like Windows Server 2019, RHEL 7.6,
Ubuntu 18.10, CentOS* 7.6 and SLES* 12 SP4), hypervisors vendors (VMware*
ESXi 6.7 EP 10 or later, Xen project and Microsoft Hyper-V 2019) and servers
vendors (like Dell, Supermicro, Lenovo and HPE) [2] and [39].

For the AppDir mode presented in Fig. 7.2, we show how VMware vSphere
discovers PMem in Fig. 7.3 as an example of a commonly used hypervisor that
supports PMem starting with vSphere 6.7 release [47]. Fig. 7.3 is presented in
[20] . As shown; for vSphere 6.7 and above, the hypervisor can actually recog-
nize the PMem as a persistent memory device or as a very fast block storage
disk; which is a memory class of storage. The decision of the PMem module
representation is done using the server BIOS. For utilizing the PMem as a per-
sistent memory, the logical persistent volume vNVDIMM should be used by the
hypervisor to represent the PMem to the VM OS. For utilizing the PMem as
a fast block storage, the logical volume vSCSI should be used to represent the
PMem to the VM OS [2].

7.2 Live Migration with Persistent Memory

Live migration of VMs with PMem inside is supported by VMware vSphere, Mi-
crosoft Hyper-V and different Linux based hypervisors and operating systems
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Figure 7.3: vSphere Configurations for PMem [20]

[24]. So for future research, it might be interesting to study if live migration
cost modeling and cost prediction techniques there were studied on the DDR4
DRAM will be valid also for PMem as a new memory technology. In the this
section, we focus on the live migration cost comparison between DRAM only
servers and the PMem inside servers.
VMs can use PMem in a standalone server or in a cluster configuration. In App
Direct Mode of Intel Optane or in NVM-DIMMs configuration, a local datastore
is created to represent the PMem content. For each VM, the PMem required
allocation is reserved whatever the VM is powered ON or Off. VM migration or
deletion are the only situations when the PMem content of a VM is removed.
As shown in Fig. 7.3, as a persistent storage PMem can be represented to the
OS as Virtual PMem (vPMEM) in byte addressable random access using the
vNVDIMM driver. Or PMem can be represented as Virtual Disk (vPMemDisk)
using the virtual SCSI (vSCSI) device. In both cases, the persistent memory
is shown by VMware vSphere as a new datastore. This means that when a
VM with vPMEM or vPMemDisk is live migrated to another host in a VMware
cluster, both vMotion and storage vMotion requests should be initiated to con-
sider the VM compute and persistent memory storage migration. An important
consideration here is; a VM with vPMem can only be migrated to another host
with vPMEM. However, a VM with vPMemDisk can be migrated to another
host without a PMem as the local storage drive can takeover the vPMemDisk
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data [26].
As shown in Fig. 7.2, PMem can be represented also as a volatile storage device;
same as the standard DRAM. In this case, the DRAM DIMMs are handled by
the system as memory cache for the PMem DIMMs and handling the cache read
and write operation is managed by the CPU memory controller. This means
that the write operations are always forwarded toward the DRAM DIMMs;
which make the write operation has the performance as the DRAM only host.
The read operation can be fetched from the DRAM DIMMs or from the PMem
DIMMs depending on the cache hit or the cache miss operations. The memory
controller firstly checks the DRAM Cache, if cache hit happens the response
latency will be identical to DRAM. If cache miss happens, the read operation
will face higher latency due to the read from the PMem DIMMs [10].
Live migration of VMs with PMem in memory mode is supported between hosts
with and without PMem [84]. In this case, the memory content is read from the
source host DRAM or PMem depending on the cache-hit or cache-miss opera-
tion and the migrated content is always written to the the target host DRAM.

Table 7.2 summarizes the supported live migration configurations between
VMware cluster servers with DRAM, Intel Optane PMem in Memory Mode
(MM) and in App Direct (AD) mode. As shown; live migration is always sup-
ported except from PMem - vNVDIMM in AD modes servers to PMem in MM
or to DRAM only servers. Also, for AD mode, both compute and storage mi-
grations should be requested to include the PMem content migration as well.

7.3 Related Work

To the best of our knowledge, live migration cost modeling for clusters with
PMem is not covered yet by any of the research articles. Live migration with
Non-volatile or persistent memory based clusters is basically covered in [64],
[126] and [118] as following. In [64], [119], Microsoft research team provides a
hardware architecture and develop a Byte-addressable Persistent File System
(BPFS) that runs on a Phase Change Memory (PCM) which is a persistent
memory technology. The proposed architecture is compared to NTFS file sys-
tem on disks using four different benchmarks; Microbenchmarks, throughput
benchmark, Apache benchmark and Patch benchmark. Results show that for
the four benchmarks that were used consequently, BPFS outperforms NTFS-
Disk systems in files creation time, read/write operations per second, directories
tree build time and in file pattern re-write delay [64].
A new VM pre-copy live migration method is proposed in [126] for distributed
edge servers that utilize DRAM and PM in the main memory. The main ob-
jective of the proposed technique is to decrease the memory pages sent and
optimizes the page placement in destination hybrid memory systems by using
memory pages classification to hot and cold pages. Cold pages are transferred
to the persistent memory of the target server and the hot pages are saved more
time in the source host transmission queues and finally transferred to the target
host DRAM. The proposed technique results in less total transferred bytes, less
number of migration copy iterations and so less total migration time [126]. Au-
thors in [118] propose a multi-site synchronous VM replication technique that
is is optimized for rack based memory centric architecture. In this architecture,
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Table 7.1: Comparison between Non-Volatile Memory Technologies

Mem.
Tech.

Max. Cap.

per DIMM

Latency

(ns) Endur.
Silicon
Tech Supplier

Cost
/GB

SDDRAM 128 GB 10’s CMOS CMOS Samsung Medium

NV-DIMM 128 GB 10’s NAND
CMOS

and NAND Everspin Highest
3D xPoint

PMem 512 GB 100’s 3D xPoint 3D xPoint Intel/Micron Lowest

Table 7.2: Supported Live Migration Configurations with PMem for VMware
Platforms

Oper.

Mode
Source
Host

Target

Host Valid?

Compute
or

storage

Migration? Notes

MM DRAM Only PMem-MM Yes Compute
Reads from DRAM

and writes to DRAM

MM PMem-MM DRAM Only Yes Compute

Reads from DRAM or
PMem and writes to

DRAM

MM PMem-MM PMem-AD Yes Compute

The Application decides

which data should be
stored at the target host

DRAM and data at the
PMem

MM DRAM Only PMem-AD Yes Compute

The VM does not use
PMem-AD Mode

as it is in MM Mode
at the source host

MM PMem-MM PMem-MM Yes Compute -
AD PMem-AD PMem-AD Yes Both -

AD PMem-AD PMem-MM No Both

Supported only if the

PMem is used as
vPMemDisk

AD PMem-AD DRAM Only No Both

Supported only if the

PMem is used as
vPMemDisk



7.4. MIGRATION COST OF DRAM VERSUS PERSISTENT MEMORY 83

Remote Direct Memory Access (RDMA) is used to achieve a zero copy manner
for VMs migration from a host to another; since they share the same centric
memory. Compared to the common asynchronous VM replication, the proposed
synchronous VMs replication in [118] increased the performance by 10% in a
commodity DRAM-based system, and up to 27% for emulated prospective NV-
RAM-based systems.
In [119] a distributed shared persistent memory system is proposed. The pro-
posed architecture is called Hotpot that provides direct access to a shared per-
sistent memory. The proposed architecture assures data durability, reliabil-
ity and availability using two distributed data commit protocols with different
consistency levels and corresponding recovery protocols. Two datacenters test-
beds were used to demonstrate the proposed system performance and easy of
implementation. Microbenchmark is used with five existing file systems and
distributed memory systems. Testing results show that the proposed hotpot ar-
chitecture achieves higher performance compared to other distributed persistent
memory based systems like Octopus [105], Mojim [136], Persistent Memory File
System (PMFS) [67] and temporary file system (tmpfs) [43].

7.4 Migration Cost of DRAM versus Persistent
Memory

As discussed in the last section, live migration performance for VMs with PMem
in MM depends on the read operations from the source host cache hit or cache
miss. The data is always written to the target host DRAM as a cache tier of
the PMem in MM. The read and write operation is running intensively during
the iterative copy phase of the live migration process.
In this section, we compare the live migration cost between servers that have
only DRAM versus the servers that have PMem in MM. The next section de-
scribes the testing environment.

7.4.1 Testing Environment

To test the VMs live migration cost with DRAM versus PMem in Memory
Mode, we have built the test-bed in Fig. 7.4 with the below configuration:

• Four servers: two servers with DRAM and two other servers with PMem

• The four servers have: Dual socket Intel Xeon Gold 6252N CPU with 24
core/socket, two 25Gb NICs, One Intel Optane SSDs with 750 GB and
two Intel SATA SSDs with 3.2 TB.

• For the two DRAM servers: each server has 2048 GB (32x 64GB DIMMs)
of DDR4 DRAM

• For the two PMem servers: each server has 384 GB (6x 64GB DIMMs) of
DDR4 DRAM and 1792 GB (14x 128 GB) of PMem in MM. The specifica-
tions difference between DDR4 DRAM DIMMs and Intel Optane PMem
DIMMs that we have used in this test is summarized in Table 7.3 [92]

• The four servers are in the same vCenter Server cluster and share the same
VMware vSAN data-store.
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Figure 7.4: PMem Live Migration Cost Test-bed

Table 7.3: DDR4 DRAM vs PMem Specifications [92]

DDR4 DRAM Optane PMem
Module Capacity 64 GB 128 GB

Round-trip

Latency 81 ns 305 ns
Read Bandwidth 110 GB/s 35 GB/s
Write Bandwidth 80 GB/s 10 GB/s

• VMs with different memory sizes are created to be live migrated between
the different servers. The VMs configurations are 8GB, 16GB and 32GB.
The workload used in the VMs migration testing is CPU and memory
stress; which represents the worst case scenario for a running VM.

• Using these 4 servers, live migration of the VMs is running also with
different servers types to show the migration cost difference based on the
source and target servers memory types; as presented in Table 7.4.

7.4.2 Testing Results

Live migration testing with the configurations and scenarios that were discussed
in the previous section have led to the results that we discuss in this section.
The migration cost parameters that we evaluate are the migration time, the
network overhead and the peak power cost.
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Table 7.4: Source and Target Hosts Migration Scenarios

Scenario
Number Source Host Target Host Notes

1 DRAM Only DRAM Only -
2 DRAM Only DRAM+PMem in MM Target host writes to DRAM

3 DRAM+PMem in MM DRAM+PMem in MM

Source host reads from DRAM
or PMem but the target host

writes to DRAM

4 DRAM+PMem in MM DRAM Only
Source host reads from DRAM

or PMem

Table 7.5: PMem in MM vs DRAM only - Migration Time Comparison

Scenario
Number 4 GB 8 GB 16 GB 32 GB

1 6 13 21 42
2 5 14 19 41
3 9 17 34 60
4 8 16 33 59

7.4.2.1 Migration Time Cost

As discussed before, the VMs hosted at servers with PMem in MM has two
tiers of memory. The DRAM tier acts as a memory cache for the PMem and
the PMem tier that has the main system memory capacity. So, when the VMs
are migrated from a server to another there are different migration scenarios
depending on the source and target hosts memory configurations; as explained
in Table 7.4. These different migration scenarios lead to different cost and
overhead of these VMs live migration. Fig. 7.5 shows the migration time cost
of the different migration scenarios mentioned in Table 7.4 and with different
VMs memory capacities. Each VM is stressed by a CPU and memory stress
benchmark using the stress benchmark of the Linux systems [14]. As shown in
Fig. 7.5, the higher the VM memory size, the longer migration time consumed
to move VMs from a host to another. It is also obvious from the results that
scenarios 3 and 4 take longer migration time compared to scenarios 1 and 2. For
the 4 different memory sizes of the VM, scenarios 1 and 2 show almost the same
migration time and scenarios 3 and 4 have also almost the same migration time.
The reason is in scenarios 1 and 2, the read and write operations of the live
migration process are from the source host DRAM to the target host DRAM.
However, in scenarios 3 and 4, the write operation is to the DRAM but the
read operation might be from the PMem or from the DRAM; depending on
the memory cache hit or cache miss events. Reading from the PMem has lower
performance compared to reading from the DRAM due to the lower hardware
specifications of the PMem compared to DRAM; as listed in Table 7.3. The
gap in the migration time between scenarios 1 and 2 versus scenarios 3 and
4 depends on the VM memory size. Table 7.5 shows that for the same VM
memory size, the gap between the average migration time with PMem can be
increased with up to 73% if we consider the min. value of the DRAM only
versus the min. of the PMem inside migration times.
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Table 7.6: PMem vs DRAM only - Network Overhead Comparison (kBps)

Scenario
Number 4 GB 8 GB 16 GB 32 GB

1 239213 466075 879171 999070
2 251352 460081 913160 1011184
3 227493 412096 658666 606394
4 234580 409406 691536 615810

7.4.2.2 Network Overhead

In this test a separate management network with 10 Gbps Ethernet network
is used management and live migration network traffic. For VMware vSAN
another 25 Gbps network is used. From memory overhead point of view, sce-
narios 1 and 2 could utilize higher memory throughput due to the higher read
bandwidth using the DRAM at the source hosts. However in scenarios 3 and 4,
PMem might be used in the read process in the event of memory cache miss.
The higher bandwidth of the DRAM, leads to higher migration rate compared
to using PMem as the source memory of the migration process. As presented in
Fig 7.6, the network rate variations with the different scenarios is mapped with
the migration times, such that the longer the migration time, the lower network
rate.
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Figure 7.5: PMem vs DRAM Live Migration Time

Figure 7.6: PMem vs DRAM Live Migration Network Overhead
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Chapter 8

Conclusion

Live migration of virtual machines is an essential feature on virtual datacen-
ters and cloud computing environments. Dynamic resource management, load
balance, power saving and fault tolerance of the cloud VMs depends on live
migration. The cost of live migration includes the migration time, down time,
network overhead and power consumption increase. This cost can not be ig-
nored and so in this research, we answer some of the open research questions
about dynamic resource management in general and also about live migration
cost modeling, prediction and live migration of VMs with persistent memory
inside.
In this thesis, we start with a discussion about the concept of datacenters stor-
age, network and compute resources dynamic management. Then we focus on
live migration of virtual machines as the compute resources dynamic manage-
ment in virtual datacenters and cloud computing environments. Because live
migration cost is covered by many other research articles, we provide a detailed
literature review for the related work that includes tens of the related papers.
We could summarize the related word in a table that lists the contribution by
each paper and the differences between these papers focus and methodology.
We discussed also how the proposed work in this thesis is different compared to
other research work; either in modeling, prediction, timing optimization or in
the PMem migration test comparisons.
Using VMware test-beds, we show live migration cost modeling for VMware
environment for single and multiple VMs migration. The empirical models that
we propose make use of the regression techniques to formulate the relationship
between the active memory of the VMs and the migration times of these VMs
as well as the migration network throughput and the peak power consumption.
Based on the proposed cost modeling formulas of live migration, we proposed
also a prediction technique for live migration cost of VMs that helps the IT ad-
mins to get an estimation about the VMs live migration before proceeding with
migration start. The proposed prediction algorithm shows a simple technique
that has acceptable accuracy with maximum 13% error in prediction and agility
to be integrated with VMware administration portals; which make it a practical
solution for the IT admins to predict live migration cost. We show in this thesis,
how the proposed prediction technique can be integrated with VMware cluster
administration portal using HTML and PowerCLI scripting tool. The objective
beyond adding the integration with VMware administration portal step is to
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show to the readers the simplicity and agility to integrate the proposed algo-
rithms with VMware portals and to practically use the proposed techniques.
In addition to that, we propose in this thesis a novel technique for live migra-
tion timing optimization that can be used to recommend a VM live migration
optimal timing for the IT admins depending on the datacenter network predic-
tion and using our proposed cost prediction algorithm. The proposed timing
optimization technique results in higher migration network throughput which
minimizes the migration time of the VMs. The proposed timing optimization
technique saves up to 27% of the migration time and on average it saves 21%
of the migration time for network intensive applications. For memory stress
workload, the proposed technique saves up to 51% of the migration time and
on average it saves 27% of the migration time.
During the last few years, persistent memory is released for production by dif-
ferent servers vendors and suppliers to offer four times higher memory density
per DIMM as well as the data storage persistence. Persistent memory and high
memory density should be useful for memory intensive applications like data
analytics platforms and in-memory database. In this thesis, we discuss also the
non-volatile and persist memory technology concept in details. We present the
memory mode and the persistent mode configurations of the PMem and how
virtual machines memory can have different scenarios of migration.
We have built a VMware cluster using four servers; two with DRAM plus PMem
in memory mode and the other two with DRAM only for the purpose of live
migration cost comparison. The results show that for the servers with PMem,
always the write operations goes to the memory cache; which is the DRAM.
However the read operations might be from the DRAM or from the PMem; de-
pending on the cache hit or cache miss events. So, in the scenarios of migration
from servers with PMem, the migration time looks higher than migration from
DRAM only servers due to the lower bandwidth of the PMem DIMMs com-
pared to the DDR4 DRAM DIMMs. The migration time gap depends also on
the VM memory size, so the larger the VM size, the bigger migration time cost
gap between PMem servers versus the DRAM only ones. Our test used VMs
with 4, 8, 16 and 32 GB memory VMs, and the testing results with CPU and
memory stress benchmark show that migration time cost can be increased with
up to 73% more time compared to the same live migration from DRAM only
servers. If the servers with PMem are the target servers, the write operation is
always to the DRAM still since the DRAM acts as the server memory cache.



Chapter 9

Future Work

As an extension work to the research presented in this thesis, there are dif-
ferent topics of interest that we aim to be studied. Firstly, the live migration
cost comparison between VMs with PMem in App Direct mode inside versus
the VMs with PMem in Memory Mode and versus the VMs with DRAM only
inside. This migration cost comparison between the different memory config-
urations should include also different other benchmarks with applications that
are PMem in App Direct mode aware; such as Apache Spark, SQL and SAP
HANA.
The second topic that can be studied in the future is the storage migration of
VMs cost modeling, prediction and timing optimization; same as we did in this
thesis with the compute migration of the VMs. The point is, in VMware when
we migrate a VM the admin is asked firstly if it should be only a VM compute
migration or a storage migration or both of them. In this thesis, we always
use just compute migration. So as a second research topic in the future work,
we talk about considering storage only migration and also both compute and
storage migration of the VMs.
The third topic of interest also in the future work is to study the MAN/
WAN scale live migration cost modeling and prediction to see if the proposed
LAN based live migration that we have studied is applicable also on the large
MAN/WAN scale. This kind of large distance migration is very useful to study
especially for public cloud customers who normally have their environment VMs
distributed across different zones and regions across different locations in the
globe. So it will be important for these cloud admins to know the cost of any
VM that they plan to do before proceeding with this kind of large distance
migration to avoid migration failures and minimize the live migration cost.
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