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Abstract

Synchronization of coupled oscillators manifests itself in many natural and man-made systems,
including cyrcadian clocks, central pattern generators, laser arrays, power grids, chemical and
electrochemical oscillators, only to name a few. The mathematical description of this phe-
nomenon is often based on the paradigmatic Kuramoto model, which represents each oscillator
by one scalar variable, its phase. When coupled, phase oscillators constitute a high-dimensional
dynamical system, which exhibits complex behaviour, ranging from synchronized uniform os-
cillation to quasiperiodicity and chaos. The corresponding collective rhythms can be useful or
harmful to the normal operation of various systems, therefore they have been the subject of
much research.

Initially, synchronization phenomena have been studied in systems with all-to-all (global)
and nearest-neighbour (local) coupling, or on random networks. However, in recent decades
there has been a lot of interest in more complicated coupling structures, which take into account
the spatially distributed nature of real-world oscillator systems and the distance-dependent
nature of the interaction between their components. Examples of such systems are abound
in biology and neuroscience. They include spatially distributed cell populations, cilia carpets
and neural networks relevant to working memory. In many cases, these systems support a rich
variety of patterns of synchrony and disorder with remarkable properties that have not been
observed in other continuous media. Such patterns are usually referred to as the coherence-
incoherence patterns, but in symmetrically coupled oscillator systems they are also known by
the name chimera states.

The main goal of this work is to give an overview of different types of collective behaviour in
large networks of spatially distributed phase oscillators and to develop mathematical methods
for their analysis. We focus on the Kuramoto models for one-, two- and three-dimensional
oscillator arrays with nonlocal coupling, where the coupling extends over a range wider than
nearest neighbour coupling and depends on separation. We use the fact that, for a special (but
still quite general) phase interaction function, the long-term coarse-grained dynamics of the
above systems can be described by a certain integro-differential equation that follows from the
mathematical approach called the Ott-Antonsen theory. We show that this equation adequately
represents all relevant patterns of synchrony and disorder, including stationary, periodically
breathing and moving coherence-incoherence patterns. Moreover, we show that this equation
can be used to completely solve the existence and stability problem for each of these patterns
and to reliably predict their main properties in many application relevant situations.

The habilitation thesis is a compilation of the author’s papers [79, 81, 84, 85, 86, 87] with
improved notations and suitably organized exposition of results. Several new results are also
included in the text and are accompanied by their proofs.
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1 Introduction

1.1 Self-sustained oscillators and synchronization phenomena

Many physical, chemical and biological systems can behave as self-sustained oscillators. Spiking
neurons, mammalian hearts, pendulum clocks, lasers, and pulsating variable stars are just a few
examples of this kind. The main characteristic feature of a self-sustained oscillator is that in
isolation it exhibits rhythmic activity, which is due to the inherent properties of the oscillator
only and does not depend on the initial conditions [41]. This activity can be measured as the
output signal of the system. Then, in general, the period and shape of the signal will remain
almost unchanged, even if the oscillator is placed in a certain environment. This property,
obviously, implies that a self-sustained oscillator can neither be a conservative nor a linear
system. In contrast, it is typically a nonlinear dissipative system with a steady intrinsic source
of power. For example, a pendulum clock contains a weight on a chain that turns a sprocket
and thus compensates for the effect of friction in this mechanical system. Similarly, a typical
semiconductor laser needs to be pumped by an external light source or electric current in order
to compensate for dissipation losses in the cavity. Finally, cellular oscillations [6] are usually
driven by the chemical energy liberated during adenosine triphosphate (ATP) hydrolysis.

The dynamics of a self-sustained oscillator is usually described by a nonlinear autonomous
system of differential equations, which has a stable limit cycle solution. If one slightly disturbs
such an oscillator, then after a relatively short transient it restores the form of its oscillation,
but with some shift in time. For a single oscillator this time shift plays no role. However, if
one considers two or more similar self-sustained oscillators, then the relative time shift between
their outputs becomes a meaningful quantity. For example, the sum of two oscillations with no
time shift between them has twice bigger amplitude than the amplitude of a single oscillator.
In this case, the corresponding oscillators are called synchronized. In contrast, if the time shift
between two oscillations is close to the half-period, then these oscillations tend to cancel each
other and therefore the corresponding oscillators are called asynchronous.

In nature and in man-made systems, self-sustained oscillators often occur not individually
but in groups. In this case, they interact with each other so that their rhythms tend to
adjust in a certain order. In general, their oscillations may remain mutually asynchronous or
may become partially or completely synchronized. This interaction of rhythms is commonly
referred to as synchronization phenomenon [133, 96, 3]. Synchronization has been observed in
different real-world systems and laboratory experiments, including populations of fireflies [14]
and yeast cells [23], chemical [123] and electrochemical oscillators [48]. Moreover, it has been
shown that this phenomenon underlies many physiological processes in living organisms such
as generation of circadian rhythms, heart beating and locomotion [31, 139]. On the other hand,
it can be associated with certain brain disorders, such as schizophrenia, epilepsy, Alzheimer’s
and Parkinson’s diseases [127, 63].
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The general interest in synchronization phenomena has led to the development of mathemat-
ical models that provide a rigorous description of the synchronized and asynchronous oscillations
in terms of phase oscillators. Roughly speaking, if one considers several nearly identical, weakly
interacting self-sustained oscillators, then their dynamics can be approximately described by
a specific model, called the phase model. In such a model, the state of each oscillator is rep-
resented by a single scalar quantity, the oscillator’s phase. The phase is qualitatively similar
to the time shift of oscillation and usually is normalized so that it increases by 2π after every
complete oscillation.

First phase models were proposed about 50 years ago by Arthur Winfree [133] and Yoshiki
Kuramoto [53]. In particular, the model suggested by Kuramoto became very popular because
of its simplicity and rigorous mathematical justification. Initially, phase models were used to
explain synchronization transitions in populations of all-to-all coupled oscillators [118, 2], but
later their field of application was extended to complex oscillator networks [3]. In this work,
we focus on a specific class of oscillator networks where the interaction between individual
oscillators is determined by the distance between their positions in real physical space, therefore
we call such networks spatially extended. We show that these networks constitute a new
type of pattern forming systems with extremely rich dynamical behaviour, including complex
spatiotemporal patterns of synchrony and disorder which, in some cases, are called chimera
states. Note that our main goal is not only to demonstrate these bizarre patterns, but also
to reveal the dynamical mechanisms responsible for their emergence, as well as to describe
effective mathematical tools that can be used to study their properties.

1.2 Phase models

Mathematical description of self-sustained oscillators usually relies on ordinary differential equa-
tions of the form

dX

dt
= F0(X), (1.1)

where X(t) ∈ Rn is the state vector of the oscillator and F0 : Rn → Rn is a nonlinear
function describing the oscillator dynamics. This representation is valid for many textbook
examples such as Stuart-Landau oscillator, Van der Pol oscillator and Duffing oscillator [117].
Moreover, different neuron models, including FitzHugh-Nagumo, Morris-Lecar and Hindmarsh-
Rose models, can also be written in this form [27].

To be a self-sustained oscillator, Eq. (1.1) must have an asymptotically stable periodic
solution X0(t) with a minimal period T0. Then, for varying time t the point X0(t) moves along
a closed curve C0 in Rn, called limit cycle. Selecting an arbitrary point X∗ ∈ C0 one can
characterize all other points on the limit cycle by the time Φ(X0(t)) ∈ [0, T0) since the last
passing of X∗. The obtained scalar quantity Φ(X0(t)) is called phase of oscillations. Using the
mathematical concept of isochrones [34, 53], the definition of phase Φ(X) can also be extended
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outside the limit cycle C0. Then it can be shown that for any system of weakly interacting
oscillators of the form (1.1) their dynamics reduces to the dynamics of the oscillator phases
only. In mathematical literature, this fact is known as Malkin theorem, which for the purposes
of the present work we formulate as follows (the proof of the theorem can be found in [39]).

Theorem 1.1 Let the dynamical system (1.1) behave as a self-sustained oscillator, i.e. it has
an asymptotically stable periodic solution X0(t) with a minimal period T0. Consider a system
of N nearly identical weakly connected oscillators of the form

dXk

dt
= F0(Xk) + εFk(Xk) + ε

N∑
j=1

Gkj(Xk, Xj), k = 1, . . . , N, (1.2)

where ε ∈ R is a small parameter, Fk : Rn → Rn and Gkj : Rn×Rn → Rn. Then there exists
ε0 > 0 such that for every ε ∈ (0, ε0) the long-term dynamics of system (1.2) is given by

Xk(t) = X0(t+ ϕk(εt)) +O(ε), (1.3)

where the vector of phase deviations ϕk(τ) is a solution to

dϕk
dτ

= νk +
N∑
j=1

Hkj(ϕj − ϕk), k = 1, . . . , N, (1.4)

and

νk =
1

T0

∫ T0

0

Q(t)TFk(X0(t))dt,

Hkj(ψ) =
1

T0

∫ T0

0

Q(t)TGkj(X0(t), X0(t+ ψ))dt,

where Q(t) ∈ Rn is the unique nontrivial T0-periodic solution to the linear system

dQ

dt
= − [∇XF0(X0(t))]TQ

satisfying the normalization condition

Q(t)TF (X0(t)) = 1

for some (and hence all) t.
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Theorem 1.1 is very useful for studying synchronization phenomena in model (1.2). Indeed,
it allows to replace the (N × n)-dimensional model (1.2) with a simpler N -dimensional phase
model (1.4). Notice that all ingredients of Eq. (1.4) are defined explicitly. To compute νk
and Hkj(ψ), apart from the functions Fk(X) and Gkj(X, Y ) one needs to know only the periodic
solution X0(t) and the Jacobian ∇XF0(X0(t)) of nonlinear system (1.1).

Importantly, system (1.4) describes the dynamics of phase deviations ϕk(τ), while the os-
cillator phases are given by t + ϕk(εt), see formula (1.3). In practice it is more convenient to
rescale these phases in the following way

θk(t) = ω0(t+ ϕk(εt)) where ω0 =
2π

T0

.

Then, the new phases θk(t) vary from 0 to 2π (not from 0 to T0). Moreover, it follows from
Eq. (1.4) that θk(t) evolve according to

dθk
dt

= ωk + ε
N∑
j=1

Γkj(θk(t)− θj(t)), k = 1, . . . , N, (1.5)

where ωk = ω0 + εω0νk and Γkj(ψ) = ω0Hkj(−ψ/ω0) are 2π-periodic functions of ψ.

Remark 1.2 A mathematical approach concerned with the derivation of phase models approx-
imating the behaviour of general networks of self-sustained oscillators is called phase reduction.
More details about this approach can be found in recent review papers [4, 95, 56].

The most studied version of the phase model (1.5) involves a factorization

Γkj(ψ) = −wkj sin(ψ + α),

where wkj are real weights and α is a phase lag parameter. This form of the phase coupling
function Γkj(ψ) can be justified for system (1.2) if oscillator (1.1) is near a Hopf bifurcation
and the interaction term reads Gkj(X, Y ) = wkjG0(X, Y ), see [39, 5]. Then, different choices
of weights wkj lead to qualitatively different models (1.5), which can be classified as follows.

Globally coupled phase oscillators. This is a system of all-to-all coupled phase oscillators

dθk
dt

= ωk −
κ

N

N∑
j=1

sin(θk(t)− θj(t) + α), k = 1, . . . , N, (1.6)

where ωk denotes the natural frequency of oscillator k, and κ is the coupling constant. The
frequencies ωk are drawn randomly and independently from a distribution h(ω), therefore in
the absence of coupling all phases θk(t) drift with respect to each other and remain disordered.
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For increasing coupling strength κ, the phases show a tendency to synchronize following a
specific bifurcation scenario called synchronization transition. The properties of synchronization
transition depend on the type of distribution h(ω) and on the value of phase lag parameter α.

The model (1.6) with α = 0 was first suggested and analyzed by Kuramoto in 1975 [53].
Later Sakaguchi and Kuramoto reconsidered it for nonvanishing phase lag α [107]. Synchro-
nization transitions predicted in these works were observed in experiments with electrochemical
oscillators [48] and BZ oscillatory catalytic particles [123]. Moreover, Wiesenfeld, Colet and
Strogatz showed [130] that model (1.6) describes also synchronization transitions in Josephson
junction arrays. A large number of other theoretical results concerned with model (1.6) can be
found in reviews [118, 2, 98].

Locally coupled phase oscillators. These are one-, two- and three-dimensional arrays of
nearest-neighbour coupled phase oscillators. In the simplest case of a one-dimensional array,
the corresponding model reads

dθk
dt

= ωk − κ sin(θk(t)− θk+1(t) + α)− κ sin(θk(t)− θk−1(t) + α), k = 1, . . . , N. (1.7)

If natural frequencies ωk vary slowly along the array, more precisely if |ωk+1−ωk| < 1/N , then
typical solutions of Eq. (1.7) are phase-locked states. In the limit N → ∞, their asymptotic
behaviour can be described using a continuum limit equation derived by Kopell and Ermentrout
in [49, 50]. Further results about the phase-locked solutions in one- and two-dimensional systems
of locally coupled oscillators can be found in [101] and [93].

Modular oscillator networks. These are generalizations of the above Kuramoto-Sakaguchi
model (1.6), where instead of a single population of globally coupled phase oscillators one
considers several copies of them. In the case of two populations with sizes N1 and N2, such
model can be written in the form

dθ
(m)
k

dt
= ω

(m)
k −

2∑
n=1

κmn
Nn

Nn∑
j=1

sin(θ
(m)
k (t)− θ(n)

j (t) + αmn), k = 1, . . . , Nm.

Note that the coupling constants κmn and the phase lags αmn depend on the population indices
only, hence the name modular network. An overview of the most interesting dynamical regimes
observed in modular oscillator networks and the mathematical methods used to analyze their
behaviour can be found in [9].

Random oscillator networks. If the connectivity between phase oscillators is described by
a random graph (directed or undirected) with an adjacency matrix Akj, then one can define a
random network of oscillators

dθk
dt

= ωk − κ
N∑
j=1

Akj sin(θk(t)− θj(t) + α), k = 1, . . . , N. (1.8)
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For model (1.8) one usually studies the existence and stability of synchronized and clustered
states as well as synchronization transitions for varying κ [10, 3, 25, 105].

Spatially extended oscillator systems. These are spatially weighted networks where the
connectivity between oscillators depends on their distance from each other. Such models are
the main subject of this work and are explained in the next section.

1.3 Spatially extended oscillator systems and nonlocal coupling

A realistic coupled oscillator system is always spatially distributed, because different oscillators
have different positions in space. On the other hand, all physical interactions depend on the
distance between interacting agents, therefore the phase coupling functions Γkj(ψ) in (1.5)
must be distance dependent too. To take this fact into account, Eq. (1.5) is usually modified as
follows. One denotes the oscillator positions as points xk, k = 1, . . . , N , in a certain domain D
with volume |D|. This domain can be one-, two- or perhaps three-dimensional. Then, one
chooses a relevant interaction function G(x, y) and assumes that the coupling strength between
the kth and jth oscillators is proportional to G(xk, xj). This yields a model

dθk
dt

= ωk +
|D|
N

N∑
j=1

G(xk, xj)f(θk(t)− θj(t)), k = 1, . . . , N, (1.9)

where f(ψ) is a phase coupling function independent of the indices k and j. Obviously, for a
constant function G(x, y), model (1.9) coincides with a globally coupled system. On the other
hand, if G(x, y) has nonvanishing values around the diagonal x = y only, then model (1.9)
is qualitatively similar to a locally coupled system. This means that the coupling structure
in (1.9) is in between of the global and local coupling, therefore it is usually called nonlocal
coupling.

In many cases, a more specific form of nonlocal coupling is considered in (1.9). For instance,
the interaction function G(x, y) may depend only on the difference of x and y,

G(x, y) = G0(x− y),

resulting in the convolution type interaction between oscillators. Another example is function
G(x, y) depending on the distance between x and y,

G(x, y) = G0(|x− y|),

which represents the isotropic oscillator interaction. In the following we discuss the origin of
nonlocal coupling in applications.
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Nonlocal coupling in reaction-diffusion systems. First, we consider a model suggested by
Kuramoto in [54]. This is a reaction-diffusion system of the form

∂

∂t
A(x, t) = F (A(x, t)) +KS(x, t), x ∈ D, (1.10)

τ
∂

∂t
S(x, t) = −S + d∆S +Q(A(x, t)), x ∈ D, (1.11)

where D is a spatial domain, A(x, t) ∈ Rn and S(x, t) ∈ R are concentration variables of some
chemicals, F : Rn → Rn and Q : Rn → R are functions describing their interaction, K ∈ Rn×n

is a constant coupling matrix, d is a diffusion coefficient and τ is a time scale coefficient.
Suppose that for K = 0 equation (1.10) has an attracting limit cycle, then for nonvanishing K
system (1.10), (1.11) describes a continuum of coupled oscillators, which interact with each
other not directly, but through the diffusive chemical S. If the time scale τ in Eq. (1.11) is very
small, we can perform an adiabatic elimination of S. For this, using the Green’s function g(x, y)
associated with the differential operator I − d∆, we solve Eq. (1.11)

S(x, t) =

∫
D

g(x, y)Q(A(y, t))dy.

Then, inserting the result into Eq. (1.10) we obtain

∂

∂t
A(x, t) = F (A(x, t)) +K

∫
D

g(x, y)Q(A(y, t))dy. (1.12)

Although Eq. (1.12) was derived for a continuum of oscillators, it remains valid approximately
for a large discrete set of positions xk, k = 1, . . . , N , distributed uniformly in D. Indeed, for
every xk we have a Monte Carlo integral approximation∫

D

g(xk, y)Q(A(y, t))dy ≈ |D|
N

N∑
j=1

g(xk, xj)Q(A(xj, t)),

where |D| is the volume of the domain D. Hence for large enough N equation (1.12) implies

∂

∂t
A(xk, t) = F (A(xk, t)) +

K|D|
N

N∑
j=1

g(xk, xj)Q(A(xj, t)), k = 1, . . . , N.

If all entries of the coupling matrix K are small, we can also perform a phase reduction of
the latter system. Thus, we obtain a phase oscillator model of the form (1.9). For example,
a detailed description of the phase reduction step, for nonlinearities F (A) that correspond to
Stuart-Landau and FitzHugh-Nagumo oscillators, can be found in [55] and [114], respectively.
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Remark 1.3 Note that the Green’s function g(x, y), which determines nonlocal coupling in
(1.12), depends on the boundary conditions used in Eq. (1.11), therefore, in general, it is not
of the convolution type. However, for periodic domains D (e.g., a ring or a flat torus) this
function depends only on the distance between x and y, therefore in this case, it produces an
isotropic, and hence a convolution type, nonlocal coupling.

The most relevant implementation of system (1.10), (1.11) in the experiment was reported
in [122], where synchronization and pattern formation were studied on a chip of 15 artificial cells
with gene expression cellular reactions and diffusion-based communication. Other experimental
setups that directly impose a nonlocal coupling scheme in the form of Eq. (1.12) on a system
of chemical or electrochemical oscillators were described in [124, 125, 129].

Nonlocal coupling in neuroscience. In [39], Hoppensteadt and Izhikevich developed a general
theory of weakly connected neural networks. Supposing that each neuron is a system near a
Hopf bifurcation, they showed that the dynamics of such a network is described by equations
of the form

dzk
dt

= (ak − bk|zk|2)zk +
N∑
j=1

wkjzj, k = 1, . . . , N, (1.13)

where zk(t) are complex functions representing neurons and ak, bk and wkj are complex con-
stants. If the neurons are similar and all weights wkj are real, then applying Theorem 1.1 one
can reduce system (1.13) to a phase model (1.5) with Γkj(ψ) = wkjΓ(ψ) and Γ(ψ) ∼ sin(ψ+α).
In this model, weights wkj encode the spatial structure of neural network. Typically, one chooses
them in the form wkj = G(xk, xj) where xk is the spatial position of the kth neuron and G(x, y)
is an interaction function. The most common choice of G(x, y) is an isotropic function that
depends on the distance between x and y only. Then, G(x, y) = G0(|x−y|) may be a Gaussian,
exponential, ’Mexican hat’, or with finite support, see [26, Sec. 6]. In some situations, however,
G(x, y) has to be chosen as a function of two variables. This holds, for example, in the case of
a homogenized interaction function

G(x, y) = G0(|x− y|)
(∫

D

G0(|x− y|)dy
)−1

,

in the case of a non-uniform distribution ρ(x) of neurons

G(x, y) = G0(|x− y|)ρ(x)ρ(y),

or in the case of a Hebbian type connectivity

G(x, y) =
K∑
k=1

pk(x)qk(y)
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determined by 2K functions pk(x) and qk(y).

Cilia arrays with hydrodynamic interaction. Cilia are slender, hair-like organelles that pro-
trude from many types of cells. They are capable to generate a regular, beating waveform and
thus behave as self-sustained oscillators [73]. In animal systems, ciliated cells are often found
in the form of multicellular ensembles such as colonial protozoans, ciliary bands or epithelial
surfaces. Typical functions of such ensembles include generation of feeding currents, pumping
bodily fluids or enabling complex locomotion, so they require collective synchronization of cilia
movement [29]. From the physical perspective, cilia operate in the low Reynolds number regime
where hydrodynamics is dominated by viscous forces [32], therefore their interaction is mainly
determined by a long-ranged hydrodynamic coupling. This fact was used in [126] to derive a
mathematical model describing synchronization phenomena in cilia carpets. To this end, the
ciliated surface was represented as a two-dimensional array of rotors on a substrate. In the case
when the distance between the nearest cilia was much larger than their sizes, the hydrodynamic
coupling between them was weak, and phase reduction was possible. Thus, a phase oscillator
model (1.9) was obtained [126] with an isotropic power-law nonlocal coupling

G(x, y) = |x− y|−3/2

and f(ψ) = − sin(ψ + α) where α was determined by the beating waveform.

1.4 Phenomenology of spatially extended oscillatory systems

Let us consider a one-dimensional phase oscillator system

dθk
dt

= ωk −
2π

N

N∑
j=1

G

(
2π

N
(k − j)

)
sin(θk(t)− θj(t) + α), k = 1, . . . , N, (1.14)

where G(x) is a non-constant 2π-periodic function. System (1.14) is a particular case of
model (1.9), where f(ψ) = − sin(ψ + α), the coupling is of the convolution type and the
oscillator positions xk are evenly distributed in the interval [−π, π]. The periodicity of G(x)
implies that system (1.14) is equipped with periodic boundary condition and thus describes a
ring of nonlocally coupled oscillators.

In the following we give an overview of typical dynamical regimes observed in system (1.14).
For this we consider two coupling functions:

1) a top-hat coupling defined as a 2π-periodic extension of the function

G(x) =

{
(2πσ)−1 for |x| ≤ πσ,

0 for πσ < |x| ≤ π,
(1.15)

where σ ∈ (0, 1) is the relative coupling radius;
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2) and a trigonometric coupling

G(x) =
1

2π
(1 + A cosx+B sinx), (1.16)

where A and B are real parameters.
Note that the top-hat coupling (1.15) is non-negative and reflection symmetric, i.e. it satis-

fies G(−x) = G(x) ≥ 0. In contrast, the trigonometric coupling (1.16) is reflection symmetric
only for B = 0. Moreover, it can be sign-changing for large values of A and B (for example for
A > 1 and B = 0).

We also consider two representative cases of natural frequencies ωk: identical oscillators
and heterogeneous oscillators. In the former case, we choose ωk = 0, while in the latter case,
we suppose that the frequencies are chosen randomly and independently from a Lorentzian
distribution

h(ω) =
γ

π

1

ω2 + γ2 (1.17)

with width γ > 0. Note that the case of identical oscillators can formally be considered as the
limiting case γ → 0 of the Lorentzian distribution.

Complete coherence and q-twisted states. The most common solutions of the system (1.14)
with identical oscillators are q-twisted states [132]

θk(t) =
2πqk

N
+ Ωqt, k = 1, . . . , N,

where integer q counts the number of twists along the array and Ωq ∈ R is the angular speed
of the oscillators, Fig. 1(a). In q-twisted states all oscillators rotate rigidly keeping their phase
differences with respect to each other constant, therefore we call them phase-locked or coherent

Figure 1: Coherent states in a system of N = 256 identical nonlocally coupled phase oscillators (1.14).
(a) Completely coherent and 1-twisted states for the top-hat coupling (1.15) with σ = 0.5 and α = 0.
(b) Multi-twisted state for the top-hat coupling (1.15) with σ = 0.14 and α = π. (c) Coherent traveling
wave for the symmetric trigonometric coupling (1.16) with A = 0.9, B = 0 and α = π/2− 0.1.
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states. Moreover, since the state with q = 0 consists of fully synchronized oscillators, we call it
complete coherence.

Other coherent states. Apart from the q-twisted states, there are also other coherent states,
which can be found in the system of identical oscillators (1.14). These are, for example, multi-
twisted [30] and rippled [37] states, which have several spatial regions where oscillators are close
to one or other twisted state, Fig. 1(b), or transient travelling waves, where rigidly rotating
phase patterns drift simultaneously along the array, Fig. 1(c).

Chimera states. Coherent dynamics is not the only oscillator behaviour in system (1.14).
In 2002 Kuramoto and Battogtokh discovered [55] that system (1.14) can also exhibit complex
spatiotemporal patterns composed of coherent and incoherent regions. Here, the term coherent
region applies to a group of oscillators which are phase-locked, i.e. their velocities θ̇k(t) are al-
most identical for sufficiently long time and the corresponding phases θk(t) evolve synchronously,
whereas the term incoherent region refers to the rest of the oscillators which drift with respect
to each other and with respect to all coherent regions. The coexistence of coherent and in-
coherent dynamics in the system of symmetrically connected identical oscillators (1.14) seems
to be counterintuitive, therefore Abrams and Strogatz suggested to call it chimera state [1].
Two examples of such chimera states are shown in Fig. 2. These are a chimera state with a
single coherent region, Fig. 2(a), and a chimera state with two anti-phase coherent regions,
Fig. 2(e). Note that the coherent and incoherent regions can be recognized as clustered and
sparsely distributed phases θk(t) respectively. Another way to distinguish between coherent

Figure 2: Two coexisting chimera states in a system of N = 256 identical phase oscillators (1.14).
Parameters: Symmetric trigonometric coupling (1.16) with A = 0.9, B = 0 and α = π/2− 0.1.
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and incoherent oscillators is to calculate their effective frequencies

Ωeff,k =
1

τ

∫ τ

0

dθk
dt
dt, (1.18)

where the averaging must be carried out over sufficiently many oscillator rotations. A group
of oscillators with equal Ωeff,k is identified as coherent (note that, in general, there can be
several such groups with different common frequencies), whereas the remaining oscillators with
different Ωeff,k are considered to be incoherent, see Fig. 2(b),(f).

For a more detailed characterization of chimera states one also uses two other quantities:
global and local order parameters. The global order parameter is defined as an average

ZN(t) =
1

N

N∑
k=1

eiθk(t). (1.19)

Its modulus |ZN(t)| measures the collective synchrony of oscillators θk(t) such that the identity
|ZN(t)| = 1 holds for perfectly synchronized state only, while small values |ZN(t)| ≈ 0 usually
indicate sparse phase distributions. If |ZN(t)| 6= 0 the argument of ZN(t) yields the most likely
value of θk(t). Moreover, if the inequality |ZN(t)| 6= 0 holds for all t, then the average argument
speed

Ω =
1

τ

∫ τ

0

d argZN(t) =
1

τ

∫ τ

0

Im

(
ZN(t)

|ZN(t)|2
dZN

dt

)
dt (1.20)

is well-defined and is called global order parameter frequency.
In contrast to the global order parameter ZN(t), the local order parameter is defined as a

position dependent function

zN,ε(x, t) =
1

#{k : |xk − x| < ε}
∑

k : |xk−x|<ε

eiθk(t). (1.21)

We assume that the kth oscillator position is xk = −π+2πk/N and the averaging in (1.21) takes
place over all oscillators lying in the ε-vicinity of x ∈ [−π, π]. For a good spatial resolution,
the radius ε has to be small enough. On the other hand, it cannot be too small, because in the
ε-vicinity of every point x there must be sufficiently many oscillators for averaging. Thus, the
optimal strategy, in the case of a one-dimensional array (1.14), is to choose ε = π/

√
N .

The middle and bottom panels in Fig. 2 show the local z(x, t) and the global ZN(t) order
parameters of the chimera states described above. Their coherent and incoherent regions are
determined by the conditions |z(x, t)| ≈ 1 and |z(x, t)| < 1, respectively. A nearly constant
behaviour of |ZN(t)| indicates that both chimera states are statistically stationary dynamical
regimes.
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Breathing chimera states. Figure 3 shows a more complicated type of chimera states for
identical oscillators, called breathing chimera state. Its characteristic features are:

(i) multiple coherent and incoherent regions in the θk-snapshot,
(ii) multiple equidistant plateaus in the graph of effective frequencies Ωeff,k,
(iii) periodically varying (breathing) oscillator dynamics,
(iv) oscillating modulus of the global order parameter ZN(t).

The equidistant effective frequency plateaus indicate that the macroscopic dynamics of
breathing chimera states is quasiperiodic with two frequencies. For chimera states shown in
Fig. 3, these frequencies can be found in the following way. Using formula (1.20) one calculates
the primary frequency Ω1, while the secondary frequency Ω2 can be extracted from the oscil-
lations of global order parameter ZN(t). To this end, one first determines the minimal Rmin

and the maximal Rmax values of |ZN(t)| and then seeks for the consecutive time moments tk
where the graph |ZN(t)| crosses the mean level Rmean = (Rmin +Rmax)/2 from above, see circles
in Fig. 3(d) and (h). Averaging the differences tk − tk−1 over k one obtains the period T2

corresponding to the secondary frequency Ω2. The latter, obviously, equals Ω2 = 2π/T2.

Remark 1.4 Note that the above method for determining the breathing period T2 relies on the
assumption that the |ZN(t)|-graph crosses the mid-level (Rmin+Rmax)/2 only twice on the period
(once from below and the other from above). If this is not the case, then one needs to select

Figure 3: Breathing chimera states in a system of N = 16384 identical phase oscillators (1.14).
Parameters: Symmetric trigonometric coupling (1.16) with (a)–(d) A = 1.05 and (e)–(h) A = 1.19,
B = 0 and α = π/2− 0.15.
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another mid-level value in the interval (Rmin, Rmax), which guarantees the two intersections
condition.

Complete incoherence and partially coherent twisted states. Now we consider a version of
system (1.14) with heterogeneous phase oscillators, i.e. oscillators with non-identical natural
frequencies ωk. Without coupling G(x) = 0 such oscillators drift with respect to each other,
therefore after some transient their phases become randomly distributed, see Fig. 4(a). This
state usually is referred to as complete incoherence.

Figure 4: (a) Completely incoherent state and (b), (c) partially coherent twisted states in a system of
N = 16384 heterogeneous phase oscillators (1.14). (d)–(f) Effective frequencies (1.18) of the states (a)–
(c). Parameters: The natural frequencies ωk are Lorentzian distributed with γ = 0.01. Figures (a),
(d) were obtained for uncoupled oscillators G(x) = 0. Figures (b), (c), (e), (f) were obtained for the
top-hat coupling (1.15) with σ = 0.5 and α = 0.

When the nonlocal coupling between oscillators is switched on G(x) 6= 0, their dynam-
ics often approaches one of partially coherent states [80]: a uniform partially coherent state,
Fig. 4(b), or a partially coherent twisted state, Fig. 4(c). At first glance these states look similar
to the completely coherent and 1-twisted states shown in Fig. 1(a). However, they have several
important differences. Each snapshot in Fig. 4(b), (c) appears as a swarm of points distributed
around a central line that is close to an exact completely coherent or 1-twisted state. Moreover,
if we look at the corresponding plots of effective frequencies, see Fig. 4(e), (f), then close to
any point x we find not only frequency-locked but also drifting oscillators. This fact explains
the name ’partially coherent’ for denoting these states.

Chimera states for heterogeneous phase oscillators. In 2009 Carlo Laing showed [57] that
stationary and breathing chimera states persist for slightly heterogeneous phase oscillators.
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Figure 5: Chimera state in a system of N = 16384 heterogeneous phase oscillators (1.14). Parameters:
Symmetric trigonometric coupling (1.16) with A = 0.9, B = 0 and α = π/2 − 0.1. The natural
frequencies ωk are Lorentzian distributed with γ = 0.01.

However, in this case, their appearance changes. In particular, if one compares a chimera state
for identical oscillators, Fig. 2(a)–(d), with the corresponding chimera state in a heterogeneous
oscillator system, Fig. 5, one finds that in the latter case the difference between coherent and
incoherent regions becomes blurred. Strictly speaking, in the heterogeneous oscillators case,
every chimera state has no clear coherent region. Therefore, to recognize it one needs to
distinguish between high coherence and low coherence regions corresponding to large and small
values of the modulus of local order parameter z(x, t), see Fig. 5(c).

A more interesting dynamical behaviour can be found if one considers an analog of breath-
ing chimera states in systems of heterogeneous oscillators [86]. The interplay of the nonlocal
coupling and the distributed natural frequencies leads to the emergence of pulsing and alter-
nating chimera states, Fig. 6. A pulsing chimera state looks most of the time as a spatially
modulated partially coherent state, Fig. 6(b). However, at certain moments it transforms into
a short-living chimera state, Fig. 6(a), which eventually collapses to the modulated partial
coherence again. This transformation process repeats nearly periodically as can be seen from
the behaviour of local and global order parameters in Fig. 6(c), (d).

An alternating chimera state behaves similarly to pulsing chimera state, but in addition, its
high coherence and low coherence regions regularly exchange their positions, Fig. 6(g). Roughly
speaking, if one chooses a point in the middle of the high coherence region, then after a certain
period of time it will become a center of the low coherence region, see Fig. 6(e), (f). Then,
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after the same period of time the point will return in the middle of the high coherence region
and so on. This cyclic process motivates the name of this state.

Figure 6: Pulsing and alternating chimera states in a system of N = 16384 heterogeneous phase
oscillators (1.14). Parameters: Symmetric trigonometric coupling (1.16) with A = 1.115 (for puls-
ing chimera) and A = 1.135 (for alternating chimera), B = 0 and α = π/2 − 0.15. The natural
frequencies ωk are Lorentzian distributed with γ = 0.01.

Figure 7: The effective frequencies (1.18) of the pulsing and alternating chimera states in Fig. 6. A
thin horizontal line indicates the value of the global order parameter frequency (1.20).

Note that in pulsing or alternating chimera states, frequency-locked oscillators can be found
not only in their high coherence regions but also around any position x, see Fig. 7. This is in
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contrast to the breathing chimera states for identical phase oscillators, Fig. 3(b).
Travelling chimera states. So far, we have considered chimera states in systems with reflec-

tion symmetric coupling, i.e. in the case when the coupling function G(x) satisfies condition
G(−x) = G(x). In this case, chimera states usually look like motionless patterns with fixed
positions of their coherent and incoherent regions. More precisely, for finite system size N ,
the positions of the coherent and incoherent regions may show an irregular motion similar to
the Brownian motion on the ring. But this motion is a finite size effect, which completely
disappears in the large N limit [77]. The situation changes if coupling function G(x) is asym-
metric. Then every chimera state starts to drift in a preferred direction corresponding to the
asymmetry of G(x). This effect gives rise to travelling chimera states shown in Fig. 8.

Figure 8: Travelling chimera states in a system of N = 16384 heterogeneous phase oscillators (1.14).
Parameters: Asymmetric trigonometric coupling (1.16) with A = 0.9, B = 0.09 (left column) and
B = 0.13 (right column), and α = π/2 − 0.1. The natural frequencies ωk are Lorentzian distributed
with γ = 0.01.

To characterize the motion of a chimera state one needs to be able to determine its instan-
taneous position. This can be done in the following way. For each time moment t one computes
Fourier coefficients

a1(t) =
2

N

N∑
k=1

|Wk(t)| cosxk, b1(t) =
2

N

N∑
k=1

|Wk(t)| sinxk,
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where xk is the kth oscillator position and

Wk(t) =
2π

N

N∑
j=1

G

(
2π(k − j)

N

)
eiθj(t), k = 1, . . . , N.

If the system size N is large, then all points (xk, |Wk(t)|) tend to align along a curve with a
non-constant leading Fourier mode

|Wk(t)| ∼ a1(t) cosxk + b1(t) sinxk =
√
a2

1(t) + b2
1(t) cos(xk − ξ(t)).

The value ξ(t) in the above expression can be identified with the position of the chimera state
at time t. Using this approach, one also can compute the mean lateral speed

s =
1

τ

∫ τ

0

dξ

dt
dt (1.22)

averaged over sufficiently large time τ .
A detailed study of travelling chimera states in the system (1.14) with trigonometric cou-

pling (1.16) was carried out in [85]. For fixed A = 0.9 and varying asymmetry parameter B,
the following results were obtained:

(i) Pinning of the chimera’s position for small values B: There exists a critical value Bcr > 0
depending on N such that chimera state does not move for B ≤ Bcr, but has a nonzero lateral
speed s for B > Bcr, see Fig. 9.

(ii) For small values of the asymmetry parameter B, the lateral speed s is a monotonic
function of B. In contrast, for B > 0.08 the combination of the forward and backward B-
sweeps reveals a hysteretic behaviour, which indicates the coexistence of several travelling
chimera states for certain ranges of B, see Fig. 9.

0

0.08

0 0.12

s

B

Figure 9: The mean lateral speed of the travelling chimera state in system (1.14) versus the asymmetry
parameter B of the coupling function (1.16). Circles and squares denote the values from the forward
and backward scans, respectively. All parameters as in Fig. 8.
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(iii) For small B the spatial profile of travelling chimera state looks as a slightly deformed
profile of the corresponding stationary (B = 0) chimera state. In contrast, for large B a new
spatial structure appears on top of the stationary chimera state, compare Fig. 5 and Fig. 8. In
particular, the tail of the travelling chimera state breaks into a number of alternating high co-
herence and low coherence regions, Fig. 8(a)–(d). Moreover, the argument of the corresponding
local order parameter z(x, t) computed by (1.21) becomes more and more “twisted”, see the
snapshots in Fig. 8(b) and (f).

(iv) When the asymmetry parameter B grows above a certain threshold, there appear
modulated travelling chimera states. Their spatial profiles and hence their instantaneous lateral
speeds and global order parameters change nearly periodically in time, Fig. 8(e)–(h).

Remark 1.5 Note that asymmetric coupling is not necessary for the observation of travelling
chimera states. Similar states can be found in systems with symmetric coupling too [136]. In
this case, their occurrence is concerned with a spontaneous symmetry breaking.

Remark 1.6 Travelling chimera states have been found numerically not only for heterogeneous
but also for identical phase oscillators, both with symmetric [136] and asymmetric [7] coupling
functions G(x). However, their rigorous mathematical description can be provided for hetero-
geneous oscillator systems only [83, 85].

1.5 Extensive chaos in coupled oscillator systems

Regarding their microscopic dynamics, all states observed in system (1.14) can be divided into
two main groups. The first group includes states associated with a low-dimensional behaviour
of the system such as equilibria, periodic and quasiperiodic orbits and low-dimensional chaotic
attractors. For example, all coherent states described in Section 1.4 belong to this group. A
complementary group includes more complicated dynamical regimes referred to as extensive
chaos. This term is explained in Fig. 10 where we show Lyapunov spectra computed along
chimera trajectories in the system (1.14) with a top-hat coupling (1.15). Each spectrum has
a number of positive Lyapunov exponents, which is approximately proportional to the system
size N . The latter is a characteristic feature of extensive chaos [97]. Apart from chimera
states [134, 13], similar Lyapunov spectra were found for completely incoherent and partially
coherent states in all-to-all coupled oscillator systems [100]. Moreover, there are no doubts
that extensive chaos also underlies the dynamics of all partially coherent states and coherence-
incoherence patterns mentioned in Section 1.4.

Note that the chaotic nature of chimera states includes also many other aspects reported
in [77, 134, 135]. In particular, for increasing system size the largest Lyapunov exponent tends
to zero and hence chimera states can be identified as weakly chaotic attractors. The Lyapunov
dimension NL of this attractor is approximately proportional to the system size N . Moreover,
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Figure 10: Lyapunov spectra ΛN (s) computed for chimera trajectories in the system (1.14) with
identical oscillators (ωk = 0) and different system sizes N = 60 (red circles), N = 90 (green diamonds),
N = 120 (blue triangles). Parameters: α = 1.5 and top-hat coupling (1.15) with σ = 0.7.

from the numerical simulations it follows that there exists a limiting value

sincoh = lim
N→∞

NL

N

that coincides with the relative number of incoherent oscillators as N → ∞. In fact, there
are reasons to believe that as N → ∞ the Lyapunov spectrum ΛN(s) converges to a curve
representing a suitably scaled spectral density of real parts ReΣ(L), where Σ(L) is the spectrum
of the operator L describing the linear stability of this chimera state in the continuum limit,
see Chapter 4 for more detail.

Other remarkable features of the chimera states in system (1.14) are irregular wandering of
position [77] and a finite lifetime [135]. These properties play an important role if one considers
chimera states in small size systems (1.14) or if one monitors their behaviour on a large time-
scale. Fig. 11 illustrates both phenomena in a system (1.14) with N = 40 oscillators. Note
that the macroscopic shapes of the coherent and incoherent regions do not vary in time, while
the chimera state moves erratically as a rigid body. The trajectory of this movement can be
determined by the method explained at the end of Section 1.4. Its statistical analysis shows [77]
that chimera state wanders as a Brownian particle on the ring. Moreover, the corresponding
diffusion coefficient scales inversely with some power of the system size N , so that the movement
stops for infinitely large N .

Fig. 11 also shows that small size chimera states can collapse to the completely synchronized
state. Typically, the chimera’s lifetime τ is extremely sensitive to initial data and behaves as a
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Figure 11: (a) Irregular position wandering and collapse of a chimera state in Eq. (1.14) with identical
oscillators (ωk = 0). (b) Snapshot of the chimera state at t = 200. Parameters: N = 40, α = 1.46,
top-hat coupling (1.15) with σ = 0.7.

random variable with an exponential distribution

E(τ) =
1

τm

e−τ/τm ,

where τm is the mean lifetime. Numerical simulations reveal [135] an exponential growth of τm

for increasing system size N such that

log τm ∼ N.

Thus, for system sizes N > 60 it is very unlikely that one observes even a single collapse event
within the time span that is amenable to numerical simulation. Nevertheless, it seems more
correct to consider the chimera states from Section 1.4 as chaotic transients rather than as
chaotic attractors.

Note that the above scenario of the chimera collapse is not universal. For example, a chimera
state with two coherent regions can collapse to a chimera state with a single coherent region,
as shown in [81, Fig. 2]. On the other hand, there are situations when chimera states become
true attractors and do not collapse at all. Such situations can be found in modified versions of
system (1.14) when one applies a specific control scheme [115] or when one uses a non-sinusoidal
phase interaction function f(θ), see [119].

2 Continuum limit formalism

For small numbers N , spatially extended oscillator system (1.9) is a low dimensional dynamical
system, therefore its behaviour can be analyzed using the qualitative theory of ordinary differ-
ential equations. This approach, however, becomes inefficient for large N . Then, one needs to
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look for more suitable statistical physics methods. A naive way is to consider system (1.9) as
an oscillatory medium with a continuously varying phase θ(x, t) that evolves according to an
integro-differential equation

∂θ

∂t
= ω(x) +

∫
D

G(x, y)f(θ(x, t)− θ(y, t)), x ∈ D,

where ω(x) is an appropriately chosen function. In [51, 102] it was shown that such approach
does help to describe all coherent states in a large size system (1.9) consisting of identical
oscillators. But it cannot be applied to partially coherent states and coherence-incoherence
patterns, because in this case two arbitrarily close oscillators may drift with respect to each
other and therefore their dynamics cannot be represented by a continuous function θ(x, t).

This difficulty can be overcome if one employs statistical description of system (1.9). Then,
its state at time t is represented by a distribution ρ(θ, ω, x, t) yielding the probability to find an
oscillator θk(t) ≈ θ with the natural frequency ωk ≈ ω at the position xk ≈ x. From Eq. (1.9)
it follows, see for example [12] or [20, Appendix B], that in the continuum limit N → ∞ the
probability density ρ evolves according to the integro-differential equation

∂ρ

∂t
+

∂

∂θ

(
ρ

[
ω +

∫
D

dx′
∫ ∞
−∞

dω′
∫ 2π

0

G(x, x′)f(θ − θ′)ρ(θ′, ω′, x′, t)dθ′
])

= 0. (2.1)

This equation is universal in the sense that it describes not only coherent states but also partially
coherent states, coherence-incoherence patterns and other types of dynamics in system (1.9).
However, the analysis of Eq. (2.1) usually is extremely complicated, because one needs to
consider its measure-valued solutions ρ. A particular case of Eq. (2.1) allowing to avoid this
complication is explained in the next section.

2.1 Ott-Antonsen manifold

The standard way of constructing solutions to Eq. (2.1) is based on their representation as a
Fourier series

ρ(θ, ω, x, t) =
h(ω)

2π

(
1 +

∞∑
n=1

[
un(ω, x, t)einθ + un(ω, x, t)e−inθ

])
, (2.2)

where un : R×D × R→ C is the n-th Fourier coefficient, un denotes the complex conjugate
of un, and where one factorizes explicitly the time-independent term h(ω).

Inserting (2.2) into Eq. (2.1) and expanding the resulting equation in a Fourier series with
respect to θ, one obtains an infinite chain of coupled integro-differential equations for the Fourier
coefficients

un(ω, x, t) =

∫ 2π

0

ρ(θ, ω, x, t)

h(ω)
einθdθ. (2.3)
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The infinite-dimensional system for {un} is extremely complicated and so far has been con-
sidered in the case of global coupling [17, 20, 21, 24, 116] or several globally coupled popula-
tions [59] only. However, for a specific choice of the phase coupling function f , its analysis can
be significantly simplified via the invariant manifold reduction discovered by Ott and Antonsen
in [88, 89]. Roughly speaking, their observation can be formulated as follows. In the case
f(ψ) = − sin(ψ + α), almost all solutions ρ of Eq. (2.1) converge asymptotically in time to the
manifold consisting of all distributions ρ given by the formula (2.2) with un(ω, x, t) = un(ω, x, t)
and |u(ω, x, t)| ≤ 1. The next proposition shows that this manifold, called usually Ott-Antonsen
manifold, is invariant with respect to Eq. (2.1).

Proposition 2.1 Let
f(ψ) = − sin(ψ + α), α ∈ R.

Suppose that u : R×D × R→ C is a solution to the equation

du

dt
= iωu(ω, x, t) +

1

2
e−iαFu− 1

2
eiαu2(ω, x, t)Fu, (2.4)

where

(Fu)(x, t) :=

∫ ∞
−∞

dω′
∫
D

h(ω′)G(x, x′)u(ω′, x′, t)dx′. (2.5)

Moreover, suppose that |u(ω, x, t)| ≤ 1.
Then, formula (2.2) with un(ω, x, t) = un(ω, x, t) yields a solution to equation (2.1).

The benefits provided by Proposition 2.1 can be described as follows. If one is not interested
in the transient dynamics of Eq. (2.1) and looks for established dynamical regimes only, then
Eq. (2.1) can be replaced with Eq. (2.4). Although Eq. (2.4) is still an infinite-dimensional
integro-differential equation, its phase space is spanned by the single function u instead of an
infinite sequence {un}. Its analysis is therefore much simpler than the analysis of the initial
equation (2.1). Moreover, the function u parameterizing Ott-Antonsen manifold turns out to
have a simple interpretation for the corresponding coupled oscillator system

dθk
dt

= ωk −
|D|
N

N∑
j=1

G(xk, xj) sin(θk(t)− θj(t) + α), k = 1, . . . , N. (2.6)

Recall that for a large system (2.6) the conditional probability density ρ(θ, ω, x, t)/h(ω) yields,
by definition, the distribution of phases θk(t) for oscillators with ωk ≈ ω and xk ≈ x. On the
other hand, if un(ω, x, t) = un(ω, x, t) and |u(ω, x, t)| < 1 the summation in (2.2) can be carried
out explicitly and we obtain

ρ(θ, ω, x, t) = h(ω)Pu(θ), where Pu(θ) :=
1

2π

1− |u|2

1− 2|u| cos(θ − arg u) + |u|2
(2.7)
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is a Poisson distribution (see Fig. 12).
For |u(ω, x, t)| = 0 formula (2.7) yields a uniform distribution

ρ(θ, ω, x, t)

h(ω)
=

1

2π

corresponding to the complete incoherence of phases θk(t). For an intermediate value 0 < |u| < 1
distribution Pu(θ) has a bell shaped profile centered at θ = arg u, and |u| characterizes the
distribution width. This means the oscillators θk(t) with ωk ≈ ω and xk ≈ x are drifting with
respect to each other although their phases are more likely to be found at the value θk(t) = arg u.
Such local behaviour in the following will be referred to as incoherence. Finally, considering the
distribution Pu(θ) in the limit |u(ω, x, t)| → 1 we find that it degenerates into a delta function,

Pu(θ) = δ(θ − arg u),

representing a phase-locked state θk(t) = arg u for the oscillators with ωk ≈ ω and xk ≈ x.
Therefore identity |u(ω, x, t)| = 1 implies coherence at the point (ω, x).

θ

P
u
(θ)

arg u-π+arg u π+arg u

(a)

θ

P
u
(θ)

arg u-π+arg u π+arg u

(b)

θ

P
u
(θ)

arg u-π+arg u π+arg u

(c)

Figure 12: The Poisson distribution Pu(θ) for (a) |u| = 0, (b) 0 < |u| < 1 and (c) |u| = 1.

2.2 Dynamics in the Ott-Antonsen manifold

In this section we consider Eq. (2.4) describing the dynamics in the Ott-Antonsen manifold.
We reveal its symmetries and invariant sets, and give an overview of its typical solutions. We
also derive continuum limit analogs of the formulas for global order parameter, local order
parameter and effective frequencies.

1. The definition of the Ott-Antonsen manifold requires |u(ω, x, t)| ≤ 1. Otherwise the
series (2.2) with un(ω, x, t) = un(ω, x, t) does not converge even in the sense of weak convergence
of measures. This motivates us to define the set of admissible solutions of Eq. (2.4)

V = {v(ω, x) : |v(ω, x)| ≤ 1 for all (ω, x) ∈ R×D}.
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It turns out, see [79, Lemma 2], that the set of admissible solutions V is flow-invariant with
respect to Eq. (2.4). In other words, if at the instant t = 0 one has u(·, 0) ∈ V then u(·, t) ∈ V
for all t > 0.

Similarly, if for a given admissible solution u(ω, x, t) of Eq. (2.4) we define its coherent region

Scoh(u, t) = {(ω, x) ∈ R×D : |u(ω, x, t)| = 1}

and its incoherent region

Sincoh(u, t) = {(ω, x) ∈ R×D : |u(ω, x, t)| < 1},

then they are also flow-invariant, i.e.

Scoh(u, t) = Scoh(u, 0) and Sincoh(u, t) = Sincoh(u, 0) for all t > 0.

This impies that coherent phase oscillators never can become incoherent phase oscillators and
vice versa.

2. Since the integral operator F is linear, see (2.5), equation (2.4) always has a trivial
solution u(ω, x, t) = 0 corresponding to the completely incoherent state.

3. Eq. (2.4) has a complex phase shift symmetry: The set of its solutions is invariant with
respect to the transformation

u(ω, x, t) 7→ u(ω, x, t)eiφ for φ ∈ R.

Because of this symmetry typical nontrivial solutions of Eq. (2.4) are relative equilibria

u(ω, x, t) = a(ω, x)eiΩt where Ω ∈ R and a(ω, x) is independent of t, (2.8)

and relative periodic orbits

u(ω, x, t) = a(ω, x, t)eiΩt where Ω ∈ R and a(ω, x, t) is a periodic function of t. (2.9)

The word ’relative’ refers here to the fact that every solution (2.8) becomes an equilibrium and
every solution (2.9) becomes a periodic orbit in an appropriate corotating frame only.

4. In some cases, for example when the kernel G(x, y) in (2.5) is a function of the difference
x − y only and the domain D is periodic (e.g. a ring or a flat torus), Eq. (2.4) has also a
translation symmetry: The set of its solutions is invariant with respect to the spatial translations

u(ω, x, t) 7→ u(ω, x+ c, t) for c ∈ Rn where n is the dimension of x.

Then along with relative equilibria (2.8) and relative periodic orbits (2.9) typical solutions of
Eq. (2.4) include also travelling solutions

u(ω, x, t) = a(ω, x− st)eiΩt (2.10)
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where Ω ∈ R, s ∈ Rn and a(ω, x) is a periodic function of x, as well as modulated travelling
solutions

u(ω, x, t) = a(ω, x− st, t)eiΩt (2.11)

where Ω ∈ R, s ∈ Rn and a(ω, x, t) is a periodic function of x and t.

5. Every solution u(ω, x, t) of Eq. (2.4) can be associated with some established dynamics
in the corresponding oscillator system (2.6). This fact can be used to compute continuum limit
analogs of the effective frequencies, global order parameter and local order parameter defined
in Section 1.4.

For a system (2.6) global order parameter ZN(t) is defined by averaging the complex expo-
nent eiθk(t) over all oscillator indices k, see (1.19). In the continuum limit this average reads

Z(t) =
1

|D|

∫
D

dx

∫ ∞
−∞

dω

∫ 2π

0

ρ(θ, ω, x, t)eiθdθ =
1

|D|

∫
D

dx

∫ ∞
−∞

h(ω)u(ω, x, t)dω, (2.12)

where we took into account that due to (2.3) it holds

u(ω, x, t) =

∫ 2π

0

ρ(θ, ω, x, t)

h(ω)
eiθdθ. (2.13)

The local order parameter zN,ε(x, t) is defined as the average of eiθk(t) over all oscillators
with xk ≈ x only, see (1.21). Therefore the continuum limit analog of zN,ε(x, t) is obtained by
canceling the spatial averaging in (2.12) what yields

z(x, t) =

∫ ∞
−∞

h(ω)u(ω, x, t)dω. (2.14)

For computing the effective frequencies Ωeff,k it is convenient to rewrite Eq. (2.6) in the form

dθk
dt

= ωk − Im
(
eiαW k(t)e

iθk(t)
)

where Wk(t) =
|D|
N

N∑
j=1

G(xk, xj)e
iθj(t).

Since for infinitely large N points xk densely fill the domain D, we assume that there exists
a function W (x, t) such that Wk(t) = W (xk, t). Then Ωeff,k equals the time average of the
expression ωk − Im

(
eiαW (xk, t)e

iθk(t)
)
. Obviously, the definition of Wk(t) and formulas (2.5)

and (2.13) imply W (x, t) = (Fu)(x, t). On the other hand, if system (2.6) is ergodic, then the
time average of eiθk(t) can be replaced with the distribution average (2.13). Thus we conclude
Ωeff,k = Ωeff(ωk, xk) where

Ωeff(ω, x) = ω − Im

(
eiα lim

τ→∞

1

τ

∫ τ

0

u(ω, x, t)(Fu)(x, t)dt

)
. (2.15)
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2.3 Ott-Antonsen equations for spatially extended oscillatory sys-
tems

Let us consider two specific cases of system (2.6):

(i) the case of identical oscillators ωk = 0,

(ii) and the case of heterogeneous oscillators with the natural frequencies ωk chosen randomly
and independently from a Lorentzian distribution (1.17) with width γ > 0.

For each of these cases we write a simplified version of Eq. (2.4) relevant to the dynamics
in the Ott-Antonsen manifold. We start with the case of Lorentzian distributed ωk and use
a special mathematical trick suggested by Ott and Antonsen in [88] to simplify the integral
operator (2.5). Suppose that solution u(ω, x, t) of Eq. (2.4) has an analytic extension in the
complex half-plane Im ω ≥ 0, then using the residue theorem we can compute explicitly the
integral in the definition of local order parameter (2.14)

z(x, t) =

∫ ∞
−∞

h(ω)u(ω, x, t)dω =

∫ ∞
−∞

γ

π

u(ω, x, t)dω

ω2 + γ2 = u(iγ, x, t). (2.16)

This fact allows us to restrict Eq. (2.4) to a single point ω = iγ. Indeed, using (2.16) we obtain
a closed integro-differential equation

∂z

∂t
= −γz +

1

2
e−iαGz − 1

2
eiαz2Gz (2.17)

where the integral operator G is defined by

(Gz)(x, t) =

∫
D

G(x, y)z(y, t)dy. (2.18)

In the following we call Eq. (2.17) the Ott-Antonsen equation for heterogeneous oscillators.

Remark 2.2 Note that in the original paper of Ott and Antonsen [88] they considered a com-
plex conjugate version of Eq. (2.4). Its solution u(ω, x, t) has an analytic extension in the lower
(not upper!) complex half-plane Im ω ≤ 0. Therefore applying the residue theorem, instead of
identity (2.16) one obtains

z(x, t) =

∫ ∞
−∞

γ

π

u(ω, x, t)dω

ω2 + γ2 = u(−iγ, x, t).

Then restricting the complex conjugate of Eq. (2.4) to a single point ω = −iγ one obtains
the complex conjugate of Eq. (2.17). Such derivation of Eq. (2.17) can be found, for example,
in [57].
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The Ott-Antonsen equation for identical oscillators can be obtained from Eq. (2.17) in the
limit of vanishing Lorentzian width γ → 0. This yields

∂z

∂t
=

1

2
e−iαGz − 1

2
eiαz2Gz. (2.19)

The phase interaction function in (2.6) is sinusoidal, therefore due to Proposition 2.1 we may
expect that all dynamical regimes observed in this coupled oscillator system can be described
by Eq. (2.17) for heterogeneous oscillators and by Eq. (2.19) for identical oscillators. This is
indeed the case. For example, Table 1 shows how different coherent and partially coherent
states as well as stationary and nonstationary coherence-incoherence patterns described in
Section 1.4 can be represented by specific solutions of Eqs. (2.17) and (2.19) in the case of one-
dimensional domain D. Moreover, the same relation usually holds for Eqs. (2.17) and (2.19)
and the corresponding systems (2.6) where D is a two-, three- or hyper-dimensional domain.

Importantly, for the observation of twisted states and moving coherence-incoherence pat-
terns Eqs. (2.17) and (2.19) have to be translationally symmetric, in other words the coupling
function G(x, y) has to depend on the difference of x and y only and the domain D has to be
periodic (e.g. a ring or a flat torus). In contrast, all other patterns and states listed in Table 1
in general can be found for any coupling function G(x, y).

The main advantage of Eqs. (2.17) and (2.19) is concerned with the fact that they provide
a mathematical framework for rigorous theoretical analysis of partially coherent states and
coherence-incoherence patterns, which otherwise can be studied only numerically. Indeed, in a
coupled oscillator system (2.6) these patterns and states appear as complex chaotic trajectories,
whereas in Eqs. (2.17) and (2.19) they correspond to relative equilibria, relative periodic orbits
or other explicit solutions. This simplifies significantly their analysis and makes possible the
prediction of their properties.

For example, let z = z(x, t) be a solution of Eq. (2.17) or Eq. (2.19), then the solution itself
describes approximately the dynamics of the local order parameter zN,ε(x, t), see (1.21), in the
corresponding finite size system (2.6). Using formula (2.12) we also find that

Z(t) =
1

|D|

∫
D

z(x, t)dx (2.20)

yields an approximate value of the global order parameter ZN(t), see (1.19). Moreover, if all
oscillators in (2.6) are identical and hence z(x, t) is a solution of Eq. (2.19), then using (2.15)
we can compute the approximate values of the effective frequencies Ωeff,k = Ωeff(xk), where

Ωeff(x) = −Im

(
eiα lim

τ→∞

1

τ

∫ τ

0

z(x, t)(Gz)(x, t)dt

)
. (2.21)

Other results concerned with the long-term dynamics of system (2.6) will be obtained using
Eqs. (2.17) and (2.19) in the next sections of this work.

34



Coherent states

Complete coherence z = eiΩt

Twisted states z = ei(qx+Ωt)

Coherent states, in general z = eiϕ(x,t)

Incoherent and partially coherent states

Complete incoherence z = 0

Uniform partial coherence z = aeiΩt with 0 < a < 1

Partially coherent twisted states z = aei(qx+Ωt) with 0 < a < 1

Coherence-incoherence patterns (CIPs)

Stationary CIPs,
incl. chimera states

z = a(x)eiΩt with 0 ≤ a(x) ≤ 1

Nonstationary CIPs, incl. breathing,
pulsing and alternating chimera states

z = a(x, t)eiΩt with 0 ≤ a(x, t) ≤ 1

Moving coherence-incoherence patterns

Travelling chimera states z = a(x− st)eiΩt with 0 ≤ a(x) ≤ 1

Modulated travelling chimera states z = a(x− st, t)eiΩt with 0 ≤ a(x, t) ≤ 1

Table 1: Different types of solutions of the Ott-Antonsen equations (2.19) and (2.17).
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Remark 2.3 Let z = z0(x, t) be a solution of Eq. (2.19) for α = α0, then the complex conjugate
of Eq. (2.19) reads

∂z0

∂t
=

1

2
eiα0Gz0 −

1

2
e−iα0z2

0Gz0.

This means z = z0(x, t) is a solution of Eq. (2.19) for α = −α0. If we denote by Ω
(1)
eff (x)

and Ω
(2)
eff (x) the effective frequency profiles corresponding to the solutions z = z0(x, t) and z =

z0(x, t), then from (2.21) we obtain Ω
(2)
eff (x) = −Ω

(1)
eff (x).

Thus we conclude that every solution of Eq. (2.19) has its conjugate counterpart. Moreover,
the effective frequency profiles of the conjugated solutions are mirror images of each other with
respect to the axis Ωeff = 0.

Remark 2.4 Ott-Antonsen equation (2.17) looks similar to the well-known complex Ginzburg-
Landau equation (CGLE)

∂z

∂t
= z + (1 + ic1)∆z − (1 + ic2)|z|2z.

In particular, they both have the same cubic nonlinearities and the same complex phase shift and
translation symmetries. However, in contrast to CGLE, Ott-Antonsen equation does not contain
any spatial derivatives, therefore its solutions, in general, should not be smooth. Moreover, while
the coefficients c1 and c2 in CGLE do not depend on each other, the coefficients at Gz and z2Gz
in Eq. (2.17) are complex conjugate. This property ensures the existence of the trapping region
|z| ≤ 1 for solutions of Eq. (2.19), as was explained in Section 2.2.

3 Completely incoherent state

The completely incoherent state
z(x, t) = 0

always satisfies Eq. (2.19). However, for different system parameters it can be stable or unstable
solution. In order to check its stability we linearize Eq. (2.19) around zero. Thus we obtain a
linear integro-differential equation

∂v

∂t
=

1

2
e−iαGv, (3.1)

which describes evolution of small perturbations v(x, t). The stability of incoherent state is
determined by the spectrum of the integral operator on the right-hand side of Eq. (3.1). To
compute this spectrum we insert ansatz

v(x, t) = v1(x)eλt + v2(x)eλt
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into Eq. (3.1) and equate separately the terms at eλt and the terms at eλt. This yields a system
of two uncoupled equations

λv1 =
1

2
e−iαGv1, λv2 =

1

2
eiαGv2. (3.2)

Obviously, if some pair (λ, v1(x)) = (λ∗, v∗(x)) satisfies the former equation then the pair
(λ, v2(x)) = (λ∗, v∗(x)) satisfies the latter equation and vice versa. Therefore the spectrum
determined by the whole system (3.2) comprises all eigenvalues of the operator 1

2
e−iαG as well

as their complex conjugates. Using this fact we can formulate the following stability criterion.

Proposition 3.1 Let Re (e−iαλ) ≤ 0 for all λ ∈ spec G, then the incoherent state z(x, t) = 0
is neutrally stable. Conversely, if Re (e−iαλ) > 0 at least for one value λ ∈ spec G, then the
incoherent state is unstable.

4 Relative equilibria of the Ott-Antonsen equation

In this chapter we consider relative equilibria of Eq. (2.19). These are its solutions of the form

z = a(x)eiΩt, (4.1)

where a(x) is a complex function satisfying |a(x)| ≤ 1 and Ω is a real number. In the case
of constant |a(x)| such solutions represent coherent (if |a(x)| = 1) and partially coherent (if
0 < |a(x)| < 1) states. Otherwise they describe stationary coherence-incoherence patterns.

This chapter is organized as follows. In Section 4.1 we consider a complex Riccati equation
related to Eq. (2.19). We calculate its fixed points and analyze their stability. Using these
results, in Section 4.2 we show that the amplitude a(x) and the frequency Ω of every admissible
stable relative equilibrium (4.1) satisfy a self-consistency equation

µw = G(H(|w|2)w), (4.2)

where

µ = iΩeiα, w(x) = − i

Ω
e−iαGa(x),

and

H(|w|2) =


1− i

√
|w|2 − 1
|w|2 for |w| ≥ 1,

1−
√

1− |w|2
|w|2 for |w| < 1

(4.3)

is a universal function independent of any parameters. Conversely, we obtain that every solu-
tion (µ∗, w∗(x)) of Eq. (4.2) determines two admissible relative equilibria of Eq. (2.19) for two
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If (µ∗, w∗(x)) satisfies Eq. (4.2), then z = a(x)eiΩt is a solution of Eq. (2.19) for α = α∗

a(x) = H(|w∗(x)|2)w∗(x) a(x) = H(|w∗(x)|2)w∗(x)

Ω = −|µ∗| Ω = |µ∗|

eiα∗ = i
µ∗
|µ∗|

or α∗ = π
2 + arg µ∗ eiα∗ = −i µ∗|µ∗|

or α∗ = −π2 − arg µ∗

Table 2: The correspondence between the solutions (µ∗, w∗(x)) of problem (4.2) and the relative
equlibiria (4.1) of the Ott-Antonsen equation (2.19).

specific values of phase lag α, see Table 2. However, these equilibria are not necessarily stable.
It follows from the above observations that all admissible stable relative equilibria of Eq. (2.19)
can be found if one solves Eq. (4.2) and carry out the stability analysis of the corresponding
solutions in Table 2.

A method for solving Eq. (4.2) numerically is suggested in Section 4.3, while the stability is-
sue is clarified in Section 4.4. There we study a linear operator concerned with the linearization
of Eq. (2.19) around the relative equilibrium in the left column of Table 2 (the relative equilib-
rium in the right column can be analyzed similarly). We show that the essential spectrum of
this operator reads

Σess =
{
|µ∗|η(|w∗(x)|2) : x ∈ D

}
∪
{
|µ∗|η(|w∗(x)|2) : x ∈ D

}
(4.4)

where

η(|w|2) =

 −
√
|w|2 − 1 for |w| ≥ 1,

i
√

1− |w|2 for |w| < 1.
(4.5)

For the discrete spectrum Σdisc of the operator we derive a nonlocal eigenvalue problem

(
v1

v2

)
=

i

2|µ∗|


− µ∗
λ− |µ∗|η(|w∗|2)

− µ∗H
2(|w∗|2)w2

∗
λ− |µ∗|η(|w∗|2)

µ∗H2(|w∗|2)w2
∗

λ− |µ∗|η(|w∗|2)

µ∗

λ− |µ∗|η(|w∗|2)


(
Gv1

Gv2

)
(4.6)

such that for every λ ∈ Σdisc there exists a bounded nontrivial solution (v1(x), v2(x)) of Eq (4.6).
A relative equilibrium (4.1) is unstable if the corresponding spectrum Σess ∪ Σdisc has a

nonempty intersection with the right half-plane Re λ > 0. In the opposite case we call it
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neutrally stable. Formula (4.4) ensures that the essential spectrum Σess is always neutrally
stable and lies on the imaginary axis and on the stable part of the real axis, therefore all
instabilities of a relative equilibrium (4.1) can be concerned with the discrete spectrum Σdisc

only. The latter spectrum is symmetric with respect to the real axis and comprises at most a
finite number of isolated eigenvalues, which can be computed approximately using a method
described in Section 4.5.

4.1 Riccati equation with constant coefficients

Let D = {v ∈ C : |v| < 1} denote the open unit disc of the complex plane and D = D∪ ∂D be
its closure. In this section we consider a complex Riccati equation of the form

du

dt
= W − isu(t)−Wu2(t) (4.7)

where s is a real coefficient and W is a complex coefficient, and search for all its stable fixed
points in the disc D.

Proposition 4.1 For every nonzero s ∈ R and every nonzero W ∈ C, Eq. (4.7) has a unique
(neutrally) stable fixed point in the unit disc D, which is given by the formula

u = Hs(|W |2)W, (4.8)

where

Hs(|W |2) =


−is+

√
4|W |2 − s2

2|W |2 for 4|W |2 − s2 ≥ 0,

−is+ i sgn(s)
√
s2 − 4|W |2

2|W |2 for 4|W |2 − s2 < 0.

Proof: Fixed points of Eq. (4.7) are roots of the equation

Wu2 + isu−W = 0.

For W 6= 0 this quadratic equation can be solved explicitly. Thus, for 4|W |2− s2 > 0 we obtain
two roots

u± =
−is±

√
4|W |2 − s2

2W
=
−is±

√
4|W |2 − s2

2|W |2
W, (4.9)

while for 4|W |2 − s2 < 0 we obtain two roots

u± =
−is± i

√
s2 − 4|W |2

2W
=
−is± i

√
s2 − 4|W |2

2|W |2
W. (4.10)
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Simple calculations show that in the former case the identity |u+| = |u−| = 1 holds, whereas in
the latter case we have |u+| < 1 < |u−| if s > 0, or |u−| < 1 < |u+| if s < 0.

To analyze the stability of a fixed point u∗ of Eq. (4.7) one needs to consider the corre-
sponding linearized equation

dv

dt
= −(is+ 2Wu∗)v(t),

which describes evolution of small perturbations v(t). If Re (is + 2Wu∗) > 0, then all pertur-
bations decay in time and hence u∗ is a stable fixed point. In contrast, if Re (is+ 2Wu∗) < 0,
then the modulus |v(t)| grows exponentially and therefore u∗ is an unstable fixed point. The
case Re (is+ 2Wu∗) = 0 will be referred to as the neutrally stable case.

Using formula (4.9) we calculate Re (is + 2Wu±) = ±
√

4|W |2 − s2, therefore for 4|W |2 −
s2 > 0 the root u+ is stable while the other root u− is unstable. On the other hand, using
formula (4.10) we obtain Re (is + 2Wu±) = 0, therefore for 4|W |2 − s2 < 0 the both roots u+

and u− are neutrally stable.
Summarizing the above results we see that among two fixed points of Eq. (4.7) only one is

(neutrally) stable and simultaneously satisfies the inequality |u| ≤ 1. This fixed point is given
by formula (4.8). Importantly, for 4|W |2 − s2 = 0 both expressions (4.9) and (4.10) coincide
and yield u+ = u−, therefore in this case Eq. (4.7) has a single degenerate fixed point, which
obviously is neutrally stable.

4.2 Self-consistency equation

Using a substitution
z(x, t) = u(x, t)eiΩt

we write Eq. (2.19) in the form

∂u

∂t
=

1

2
e−iαGu− iΩu− 1

2
eiαu2Gu. (4.11)

Obviously, every relative equilibrium z = a(x)iΩt of Eq. (2.19) corresponds to a fixed point
u = a(x) of Eq. (4.11) and vice versa. On the other hand, for every x equation (4.11) is a
particular case of the complex Riccati equation (4.7) for s = Ω and

W (x) =
1

2
e−iαGa. (4.12)

We are interested only in such fixed points u = a(x), which satisfy the inequality |a(x)| ≤ 1
and are locally stable for every x. Due to Proposition 4.1 these requirements yield

a(x) = HΩ(|W (x)|2)W (x). (4.13)
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Introducing a new complex function

w(x) = −2iW (x)/Ω, (4.14)

we replace identity (4.12) with
iΩeiαw(x) = Ga. (4.15)

Moreover, inserting W (x) = iΩw(x)/2 into (4.13) we obtain

a(x) = H(|w(x)|2)w(x) for Ω < 0, and a(x) = H(|w(x)|2)w(x) for Ω > 0, (4.16)

where H(|w|2) is the function defined by (4.3). Obviously, formulas (4.15) and (4.16) agree
with each other if and only if the following self-consistency equation is satisfied

iΩeiαw = G(H(|w|2)w) for Ω < 0, and iΩeiαw = G(H(|w|2)w) for Ω > 0. (4.17)

Abbreviating µ = iΩeiα we write (4.17) in the form

µw = G(H(|w|2)w) for Ω < 0, and µw = G(H(|w|2)w) for Ω > 0. (4.18)

Suppose that (µ∗, w∗(x)) is a solution of the first equation in (4.18), then it is easy to verify
that (µ∗, w∗(x)) is a solution of the second equation in (4.18). These results are interpreted as
follows. In the former case µ∗ = iΩeiα and Ω < 0, therefore using the first formula in (4.16) we
obtain that

a(x) = H(|w∗(x)|2)w∗(x) (4.19)

is a fixed point of Eq. (4.11) for Ω = −|µ∗| and α = π/2 + arg µ∗. In contrast, in the latter case
we have µ∗ = iΩeiα and Ω > 0, therefore using the second formula in (4.16) we obtain that

a(x) = H(|w∗(x)|2)w∗(x) (4.20)

is a fixed point of Eq. (4.11) for Ω = |µ∗| and α = −π/2−arg µ∗. Recalling the relation between
the fixed points of Eq. (4.11) and the relative equilibria of the Ott-Antonsen equation (2.19)
we summarize the obtained results in Table 2.

Remark 4.2 If parameters α, Ω and functions a(x), w(x) satisfy relations (4.16) and (4.17),
then formula (4.15) implies e−iαGa = iΩw.

Proposition 4.3 Let (µ∗, w∗(x)) be a solution of Eq. (4.2) and let z = a(x)eiΩt be the corre-
sponding relative equilibrium of Eq. (2.19), see Table 2. Then the continuum limit analog of
the global order parameter can be computed by

|Z(t)| = 1

|D|

∣∣∣∣∫
D

a(x)dx

∣∣∣∣ =
1

|D|

∣∣∣∣∫
D

H(|w∗(x)|2)w∗(x)dx

∣∣∣∣ ,
while the effective frequency profile is given by

Ωeff(x) = −Im
(
eiαa(x)(Ga)(x)

)
= Ω Re

(
H(|w∗(x)|2)|w∗(x)|2

)
.
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Proof: The first formula for |Z(t)| follows directly from (2.20), (4.19) and (4.20). In order
to obtain the second formula for Ωeff(x) we insert the ansatz z = a(x)eiΩt into (2.21) and use
Remark 4.2. Then in the resulting expression we replace a(x) by (4.19) or (4.20) in accordance
with the choice w(x) = w∗(x) or w(x) = w∗(x). Note that in both cases we obtain identical
formulas for Ωeff(x).

4.3 Modified self-consistency equation

Suppose that the integral operator G has a degenerate kernel, i.e. there exist two sets of linearly
independent functions φk(x), k = 1, . . . , K, and ψk(x), k = 1, . . . , K, such that

(Gu)(x) =
K∑
k=1

〈φk, u〉ψk(x), (4.21)

where 〈·, ·〉 is a scalar product on the corresponding functional space. Then Eq. (4.2) can be
written in the following form

µw =
K∑
k=1

〈
φk, H(|w|2)w

〉
ψk. (4.22)

This implies

w(x) =
K∑
k=1

ŵkψk(x) for some ŵk ∈ C. (4.23)

Inserting (4.23) into Eq. (4.22) and applying the scalar product operation 〈ψm, ·〉 to both sides
of the resulting equation we obtain

µ
K∑
k=1

ŵk〈ψm, ψk〉 =
K∑
k=1

〈
φk, H(|w|2)w

〉
〈ψm, ψk〉, m = 1, . . . , K. (4.24)

Because of the complex phase shift symmetry of Eq. (4.2) we can assume that one of the
unknown coefficients ŵk in (4.23), say ŵK , is real and positive. If we denote p = ŵK then we
can express the parameter µ from the equation (4.24) for m = K

µ =

(
K∑
k=1

〈
φk, H(|w|2)w

〉
〈ψK , ψk〉

)
/

(
p〈ψK , ψK〉+

K−1∑
k=1

ŵk〈ψK , ψk〉

)
. (4.25)
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Inserting this expression into the other equations (4.24) for m = 1, . . . , K − 1 we obtain a
system (

K∑
k=1

〈
φk, H(|w|2)w

〉
〈ψK , ψk〉

)(
p〈ψm, ψK〉+

K−1∑
k=1

ŵk〈ψm, ψk〉

)

=

(
p〈ψK , ψK〉+

K−1∑
k=1

ŵk〈ψK , ψk〉

)(
K∑
k=1

〈
φk, H(|w|2)w

〉
〈ψm, ψk〉

)
, (4.26)

where

w(x) = pψK(x) +
K−1∑
k=1

ŵkψk(x). (4.27)

Note that the system (4.26), (4.27) has no complex phase shift symmetry, therefore for different
values of parameter p it typically has a locally unique solution ŵm, m = 1, . . . , K − 1, which
can be found, for example, by means of a standard Newton method. Thus one obtains a one-
parameter family of functions w(x) in the form (4.27). The corresponding values µ can be
computed explicitly using formula (4.25).

Remark 4.4 The system (4.26) simplifies significantly if the functions ψk(x) satisfy the or-
thonormality condition

〈ψk, ψm〉 = δkm.

Then it reads 〈
φK , H(|w|2)w

〉
ŵm = p

〈
φm, H(|w|2)w

〉
, m = 1, . . . , K − 1. (4.28)

Respectively, instead of the formula (4.25) we obtain

µ =
1

p

〈
φK , H(|w|2)w

〉
, (4.29)

while the ansatz (4.27) remains unchanged.

4.4 Stability analysis

Let (µ∗, w∗(x)) be a solution to the nonlinear eigenvalue problem (4.2), then

z = a∗(x)eiΩ∗t where a∗(x) = H(|w∗(x)|2)w∗(x) and Ω∗ = −|µ∗| (4.30)

is a stationary solution to Eq. (2.19) for α = α∗ = π/2 + arg µ∗. The stability of the solu-
tion (4.30) can be analyzed in the following way. We insert the ansatz

z = (a∗(x) + v(x, t))eiΩ∗t
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into the Ott–Antonsen equation (2.19) and linearize it with respect to the small perturbation
v(x, t), obtaining

∂v

∂t
= −

(
iΩ∗ + eiα∗a∗(x)Ga∗

)
v +

1

2
e−iα∗Gv − 1

2
eiα∗a2

∗(x)Gv. (4.31)

Using Remark 4.2 to calculate eiα∗Ga∗ we get eiα∗a∗(x)Ga∗ = −iΩ∗H(|w∗(x)|2)|w∗(x)|2. This
identity along with the formula (4.3) yields

iΩ∗ + eiα∗a∗(x)Ga∗ = Ω∗η(|w∗(x)|2)

where η(|w|2) is the function defined by (4.5). Hence Eq. (4.31) is equivalent to

∂v

∂t
= −Ω∗η(|w∗(x)|2)v +

1

2
e−iα∗Gv − 1

2
eiα∗a2

∗(x)Gv. (4.32)

Remark 4.5 Because of the complex phase shift symmetry of Eq. (2.19) its linearization can
be carried out using any ansatz of the form

z = (a∗(x)eiϕ + v(x, t))eiΩ∗t where ϕ ∈ R.

The resulting linearized equation may have coefficients differing from those in Eq. (4.32) (see,
for example, equation (20) in [84, Sec. 2.3]), but the stability properties of the zero solution in
this equation and Eq. (4.31) will be the same.

According to the linear stability principle, the stability / instability of the solution (4.30) is
determined by the stability / instability of the zero solution to Eq. (4.32), which in its turn is
determined by the spectrum of the operator on the right-hand side of Eq. (4.32). To find the
latter we use the ansatz

v(x, t) = v1(x)eλt + v2(x)eλt, (4.33)

where λ ∈ C and v1(x) and v2(x) are complex functions. Inserting (4.33) into Eq. (4.32) and

equating separately the terms at eλt and the terms at eλt we obtain a system of two equations

λv1 = −Ω∗η(|w∗|2)v1 +
1

2

(
e−iα∗Gv1 − eiα∗a2

∗Gv2

)
,

λv2 = −Ω∗η(|w∗|2)v2 +
1

2

(
eiα∗Gv2 − e−iα∗a2

∗Gv1

)
,

which can be written in a matrix form

λ

(
v1

v2

)
= Lm

(
v1

v2

)
+ Li

(
v1

v2

)
(4.34)
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with a multiplication operator

Lm

(
v1

v2

)
=

(
−Ω∗η(|w∗|2) 0

0 −Ω∗η(|w∗|2)

)(
v1

v2

)

and an integral operator

Li

(
v1

v2

)
=

1

2

(
e−iα∗ −eiα∗a2

∗

−e−iα∗a2
∗ eiα∗

)(
Gv1

Gv2

)
.

In the following we focus on the spectrum of the operator Lm +Li. If this spectrum lies in the
left half-plane Re λ ≤ 0, then the zero solution to Eq. (4.32) is (neutrally) stable. In contrast,
if some part of the spectrum lies in the right half-plane Re λ > 0, then the zero solution is
unstable.

First, we consider the spectrum of the multiplication operator Lm. It is purely essential and
consists of all λ ∈ C such that the matrix(

−Ω∗η(|w∗|2)− λ 0

0 −Ω∗η(|w∗|2)− λ

)

is not invertible, i.e. one of its diagonal elements vanishes. Since w∗(x) depends on x ∈ D this
condition yields

Σess(Lm) =
{
−Ω∗η(|w∗(x)|2) : x ∈ D

}
∪
{
−Ω∗η(|w∗(x)|2) : x ∈ D

}
.

Note that because of the inequality Ω∗ < 0 and because of the definition (4.5) every λ ∈ Σess(Lm)
satisfies Re λ ≤ 0, hence the spectrum Σess(Lm) is always (neutrally) stable.

Taking into account that the integral operator G is a compact operator and hence Li is a
compact operator too, we conclude that the essential spectra of the operators Lm +Li and Lm

coincide with each other. Therefore the spectrum of the operator Lm + Li has a nonempty
intersection with the unstable half-plane Re λ > 0 if and only if there is a part of the discrete
spectrum Σdisc(Lm + Li) lying there. To determine the discrete spectrum Σdisc(Lm + Li) we
consider the eigenvalue problem (4.34) for λ /∈ Σess(Lm + Li) = Σess(Lm). In this case we have

(λI − Lm)−1 =


(
λ+ Ω∗η(|w∗|2)

)−1

0

0
(
λ+ Ω∗η(|w∗|2)

)−1

 ,
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therefore Eq. (4.34) is equivalent to(
v1

v2

)
= (λI − Lm)−1Li

(
v1

v2

)

=
1

2

 e−iα∗ (λ+ Ω∗η(|w∗|2))
−1 −eiα∗ (λ+ Ω∗η(|w∗|2))

−1
a2
∗

−e−iα∗
(
λ+ Ω∗η(|w∗|2)

)−1

a2
∗ eiα∗

(
λ+ Ω∗η(|w∗|2)

)−1

( Gv1

Gv2

)
. (4.35)

Inserting here instead of a∗(x) and Ω∗ their expressions from (4.30) and replacing eiα∗ with iµ∗/|µ∗|
we rewrite Eq. (4.35) in the form (4.6). The discrete spectrum Σdisc(Lm + Li) consists of all
complex values λ such that the system of integral equations (4.35) has a bounded nontrivial
solution (v1(x), v2(x)). In this case, the function pair (v1(x), v2(x)) is called the eigenmode
corresponding to the eigenvalue λ. Note that if (λ, v1(x), v2(x)) is a solution of the prob-
lem (4.35) so is (λ, v2(x), v1(x)). It follows that the eigenvalues λ are either real or occur in
complex-conjugate pairs.

Remark 4.6 If |w∗(x)| ≥ 1 for all x ∈ D, then the matrix in the definition of the multiplication
operator Lm is Hermitian, and therefore this operator is self-adjoint. On the other hand, if eiα∗

is real, i.e. α∗ = 0 or α∗ = π, and the integral operator G is self-adjoint, for example it is
a convolution type operator with a real symmetric kernel G(x), then the operator Lm and the
operator Lm+Li are self-adjoint too. In this case, the spectrum of the composed operator Lm+Li

lies on the real axis only.

In Section 4.2 we showed that every solution (µ∗, w∗(x)) of the nonlinear eigenvalue prob-
lem (4.2) determine two relative equilibria. One of them was considered above. The other
one

z = a∗∗(x)eiΩ∗∗t where a∗∗(x) = H(|w∗(x)|2)w∗(x) and Ω∗∗ = |µ∗| (4.36)

is a solution of Eq. (2.19) for α = α∗∗ = −π/2 − arg µ∗. Repeating the same arguments as
above we can show that the relative equilibrium (4.36) has the same stability properties as the
relative equilibrium (4.30).

4.5 Computation of the discrete spectrum

Suppose the operator G has a degenerate kernel and can be written in the form (4.21). Then
there exists a more explicit description of the discrete spectrum Σdisc relevant to the stability of
a relative equilibrium (4.30). Indeed, in this case every solution (v1(x), v2(x)) to the eigenvalue
problem (4.35) satisfy(

Gv1

Gv2

)
=

K∑
k=1

(
〈φk, v1〉
〈φk, v2〉

)
ψk =

K∑
k=1

V̂kψk for some V̂k ∈ C2.
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Inserting this ansatz into Eq. (4.35) and applying the scalar product operation 〈φm, ·〉 to both
sides of the resulting equation, we obtain a self-consistency system for the K pairs of complex
coefficients V̂m, m = 1, . . . , K

V̂m =
1

2

K∑
n=1

Bmn(λ)V̂n, (4.37)

where

Bmn(λ) =



〈
φm,

e−iα∗ψn
λ+ Ω∗η(|w∗|2)

〉
−
〈
φm,

eiα∗a2
∗ψn

λ+ Ω∗η(|w∗|2)

〉

−

〈
φm,

e−iα∗a2
∗ψn

λ+ Ω∗η(|w∗|2)

〉 〈
φm,

eiα∗ψn

λ+ Ω∗η(|w∗|2)

〉
 . (4.38)

Collecting the coefficients V̂m into a single vector V̂ ∈ C2K , we can rewrite equations (4.37) as
an equivalent matrix equation

V̂ =
1

2
B(λ)V̂ , (4.39)

where we solve for the eigenvalue λ and the corresponding kernel vector V̂ ∈ C2K . The ma-
trix B(λ) has the structure

B(λ) =


B11(λ) B12(λ) · · · B1K(λ)

B21(λ) B22(λ) · · · B2K(λ)

...
...

. . .
...

BK1(λ) BK2(λ) · · · BKK(λ)


and consists of 2× 2 blocks Bnm(λ) defined above.

The eigenvalues λ can be found as solutions of the characteristic equation

det

[
I2K −

1

2
B(λ)

]
= 0, (4.40)

where In denotes the n × n identity matrix. If all solutions λ 6= 0 to Eq. (4.40) lie in the left
half-plane, Re λ < 0, then the corresponding relative equilibrium (4.30) is stable. In contrast,
if Eq. (4.40) has at least one solution λ = λ∗ such that Re λ∗ > 0, then the relative equilibrium
is unstable.

47



5 Nonlocal coupling of the convolution type

In this chapter we consider a one-dimensional Ott-Antonsen equation (2.19) with a nonlocal
coupling of the convolution type. For this we assume that x is a one-dimensional real variable
and G(x) is a piecewise continuous 2π-periodic function. Respectively, the integral operator G
is defined as follows

(Gu)(x) =

∫ π

−π
G(x− y)u(y)dy. (5.1)

Function G(x) has a Fourier series representation of the form

G(x) =
∞∑

n=−∞

gne
inx, where gn =

1

2π

∫ π

−π
G(x)e−inx. (5.2)

Note that for an arbitrary real function G(x) we obtain complex Fourier coefficients gn, which
satisfy g−n = gn. However, if G(x) is symmetric (in the sense that G(−x) = G(x)), then
its coefficients gn are real and satisfy g−n = gn. Using (5.2), one can easily verify that every
complex exponent eint with integer n is an eigenfunction of the operator G such that

Geinx = 2πgne
inx. (5.3)

This property of operator G allows us to obtain two important results:

(1) For every gn 6= 0 the Ott-Antonsen equation (2.19) has two branches of relative equilibria
corresponding to partially coherent and coherent n-twisted states (see Section 5.1).

(2) If G(x) is symmetric, then for every gn 6= 0 satisfying some additional conditions the
Ott-Antonsen equation (2.19) has also four branches of relative equilibria corresponding to
spatially modulated partially coherent states. Two of them (see Section 5.2) bifurcate from the
zero solution of Eq. (2.19) and therefore are called primary branches. The other two branches
(see Section 5.3) bifurcate from spatially uniform relative equilibria of Eq. (2.19) and therefore
are called secondary branches. The branches of spatially modulated solutions are important,
because their extensions computed with the method of Section 4.3 can be relevant to different
types of chimera states, see [79, Figs. 5 and 6] and [81, Fig. 10].

5.1 Twisted states

Some of the relative equilibria of Eq. (2.19) can be found explicitly. For example, these are
twisted solutions of the form

z = aei(nx+Ωt), (5.4)

where n is an integer indicating the number of twists and their direction, a is a positive real
number and Ω ∈ R. Inserting ansatz (5.4) into Eq. (2.19), using (5.3) and cancelling identical
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non-zero terms from both sides of the resulting equation we obtain

iΩ = πgne
−iα − πg−neiαa2 = πgne

−iα − πgneiαa2. (5.5)

For every integer n and gn 6= 0 equation (5.5) has two types of solutions:

(i) Re (gne
−iα) = 0, a > 0 and Ω = π(1 + a2)Im (gne

−iα),

(ii) Re (gne
−iα) 6= 0, a = 1 and Ω = 2πIm (gne

−iα).

These solutions are shown in Fig. 13. An interesting feature of these graphs are two points,

0

1

a

-2π

0

2π

-π α1 0 α2 π
α

Ω
 / 

|g
n|

Figure 13: Parameters a and Ω of the twisted solution (5.4). Dashed curves show spurious solutions
(see detail in the text). Frequency Ω is normalized by the nth Fourier coefficient gn. Values α1 and α2

are determined from the equation Re (gne
−iα) = 0.

where horizontal and vertical lines meet together. The points correspond to a complex fold
bifurcation, which is a bifurcation with normal form

u2 = p, where u ∈ C and p ∈ R,

see Fig. 14. Indeed, in the vicinity of every point where Re (gne
−iα) = 0, Ω = 2πIm (gne

−iα)
and a = 1, equation (5.5) can be transformed to this form using the non-degenerate coordinate
transformation

p = 1−
∣∣∣∣2πgnΩ

∣∣∣∣2 a2, u = 1 +
2πgnie

−iα

Ω
.
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Importantly, complex fold bifurcations are typical for the Ott-Antonsen equation (2.19). In fact,
they appear in all cases when a partially coherent relative equilibrium (4.1) with |a(x)| < 1
transforms into a coherent state with |a(x)| = 1 or into a coherence-incoherence pattern (e.g.
a chimera state).

Figure 14: Complex fold bifurcation in the algebraic equation u2 = p with a complex unknown u and
real parameter p.

Let us consider four solution branches coming together at a complex fold point in Fig. 13. It
turns out that only two of them (solid curves) are relevant to the dynamics of the corresponding
coupled oscillator system (2.6). Two other branches (dashed curves) are spurious, because one
of them represents twisted solutions which don’t satisfy the inequality |z| ≤ 1, while the other
branch represents twisted solutions with unstable essential spectra (the stability analysis of
this solution can be carried out following the line of Section 4.4). If we discard the spurious
branches, then the remaining two branches constitute a continuous (but not smooth) curve
in the vicinity of a complex fold point. This solution curve can be automatically identified
using the self-consistency equation (4.2), which by construction yields only admissible (|z| ≤ 1)
solutions of Eq. (2.19) with stable essential spectra. For this we insert the ansatz

w(x) = peinx, where p ∈ (0,∞), (5.6)

into Eq. (4.2) and obtain
µ = 2πgnH(p2).

Using the left column of Table 2 we find

z = H(p2)pei(nx+Ωt) with Ω = −|2πgnH(p2)| (5.7)

is a solution of Eq. (2.19) for α = π/2 + arg(gnH(p2)). Similarly, using the right column of
Table 2 we find

z = H(p2)pei(−nx+Ωt) with Ω = |2πgnH(p2)| (5.8)
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is a solution of Eq. (2.19) for α = −π/2 − arg(gnH(p2)). The formula (5.8) can be written
differently, if we replace index n by −n. Then taking into account that g−n = gn we obtain

z = H(p2)pei(nx+Ωt) with Ω = |2πgnH(p2)| (5.9)

is a solution of Eq. (2.19) for α = −π/2 + arg(gnH(p2)). Now, increasing p from 0 to ∞ and
plotting the parameters of the relative equilibria (5.7) and (5.9) we obtain all points on the
solid curves in Fig. 13. Notice that according to the the definition (4.3), for 0 < p < 1 the
expression H(p2)p is real and satisfies the inequality 0 < H(p2)p < 1, while for p ≥ 1 this
expression is complex and satisfies |H(p2)p| = 1.

Remark 5.1 Let us consider a twisted solution (5.7), then for every p < 1 we have

eiα =
iµ

|µ|
=
ignH(p2)

|gnH(p2)|
=
ign
|gn|

.

On the other hand, for every p > 1 we have

eiα =
iµ

|µ|
=
ignH(p2)

|gnH(p2)|
=
ignH(p2)p

|gn|
=

gn
|gn|

i+
√
p2 − 1

p
,

therefore

cosα =
gn
|gn|

√
p2 − 1

p
.

Moreover, in this case also holds

|µ| = 2π|gnH(p2)| = 2π|gn|
p

.

5.2 Primary branches of spatially modulated partially coherent states

Let the coupling function G(x) be symmetric, then its Fourier coefficients gn are real and
satisfy g−n = gn. Moreover, for every positive integer n we have

〈cos(nx),Gu〉 = 2πgn〈cos(nx), u〉 and 〈sin(nx),Gu〉 = 2πgn〈sin(nx), u〉,

where the scalar product 〈·, ·〉 is defined as follows

〈φ, ψ〉 =
1

2π

∫ π

−π
φ(x)ψ(x)dx. (5.10)
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The above property allows us to conclude that the operator G is invariant on the following
functional spaces:

(i) the space On of all real odd 2π/n-periodic functions with a fixed n ≥ 1,

(ii) the space En of all real even 2π/n-periodic functions with a fixed n ≥ 1.

In the following we show that for every nonvanishing Fourier coefficient gn with n ≥ 1 the self-
consistency equation (4.2) has, in general, a branch of spatially modulated solutions w(x) ∈ On

bifurcating from zero. In accordance with Table 2 this ensures the existence of two branches of
spatially modulated solutions of Eq. (2.19): a branch for α = π/2 and a branch for α = −π/2.

Proposition 5.2 Let gn 6= 0, n ≥ 1, be a Fourier coefficient of the coupling function G(x)
and gn 6= g(j+1)n for all j ∈ N. Then there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) the
self-consistency equation (4.2) has a solution

µ = πgn +
3πgn
16

ε2 +O(ε4),

w(x) = ε sin(nx)− g3n

16(gn − g3n)
ε3 sin(3n) +O(ε5).

Moreover, µ is real and w(x) ∈ On.

Proof: Let us consider the restriction of Eq. (4.2) on the subspace (µ,w(x)) ∈ R×On. It
is well-defined because of the definition (4.3) and the invariance properties of the operator G.
Next, we define a projection operator

Psu = 2〈sin(nx), u〉 sin(nx),

then Eq. (4.2) is equivalent to a system

µ〈sin(nx), w〉 =
〈
sin(nx),G

(
H(|w|2)w

)〉
, (5.11)

µ(I − Ps)w = (I − Ps)G
(
H(|w|2)w

)
, (5.12)

where I denotes the identity operator. We are going to show that the system (5.11), (5.12) has
a solution of the form

w(x) = ε sin(nx) + ε3v(x, ε), (5.13)

where ε > 0 is a small real number and v(x, ε) ∈ On is a bounded function satisfying the
orthogonality condition 〈sin(nx), v〉 = 0. Inserting the ansatz (5.13) into Eqs. (5.11) and (5.12)
we obtain

µε/2 = 2πgn
〈
sin(nx), H((ε sin(nx) + ε3v)2)(ε sin(nx) + ε3v)

〉
, (5.14)

µε3v = (I − Ps)G
(
H((ε sin(nx) + ε3v)2)(ε sin(nx) + ε3v)

)
. (5.15)

52



Then expressing µ from Eq. (5.14) and inserting the result into Eq. (5.15) we obtain a single
equation

v =
(I − Ps)G

(
H((ε sin(nx) + ε3v)2)(ε sin(nx) + ε3v)

)
4πgnε

2
〈
sin(nx), H((ε sin(nx) + ε3v)2)(ε sin(nx) + ε3v)

〉 . (5.16)

Using the definition (4.3) we can write an asymptotic formula

H(q) =
1

2
+

1

8
q +O(q2) for q → 0, (5.17)

therefore

H((ε sin(nx) + ε3v)2)(ε sin(nx) + ε3v) =
1

2
(ε sin(nx) + ε3v) +

1

8
ε3 sin3(nx) +O(ε5).

Next, taking into account the identity sin3(nx) = (3 sin(nx)− sin(3nx))/4 we compute

(I − Ps)G
(
H((ε sin(nx) + ε3v)2)(ε sin(nx) + ε3v)

)
=

1

8
ε3
(

4Gv − πg3n

2
sin(3nx)

)
+O(ε5)

and

4πgnε
2
〈
sin(nx), H((ε sin(nx) + ε3v)2)(ε sin(nx) + ε3v)

〉
= πgnε

3 +
3πgn
16

ε5 +O(ε7).

This allows us to write Eq. (5.16) in the form

v =
Gv

2πgn
− g3n

16gn
sin(3nx) +O(ε2). (5.18)

It is easy to verify that

v(x) = − g3n

16(gn − g3n)
sin(3nx)

is a solution to Eq. (5.18) for ε = 0. Hence, the Implicit function theorem yields the required
result.

The results of Proposition 5.2 can be interpreted using Table 2. Inserting the obtained
solution (µ,w(x)) into the left column of the table and using the asymptotics (5.17) we conclude

z = a(x)eiΩt with a(x) =
ε

2
sin(nx) +O(ε3) and Ω = −π|gn|

(
1 +

3

16
ε2

)
+O(ε4)

is a solution of Eq. (2.19) for α = π/2 + arg gn. Since the parameter ε is small, this relative
equilibrium corresponds to a spatially modulated partially coherent state. Similarly, using the
right column of Table 2 we obtain

z = a(x)eiΩt with a(x) =
ε

2
sin(nx) +O(ε3) and Ω = π|gn|

(
1 +

3

16
ε2

)
+O(ε4)

is a solution of Eq. (2.19) for α = −π/2 − arg gn. Importantly, the above formulas hold for
both gn > 0 and gn < 0, therefore we kept the term arg gn in the expression of α.
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5.3 The uniform partially coherent state and secondary branches of
spatially modulated partially coherent states

In this section we continue to assume that G(x) is a symmetric coupling function. We consider
a family of constant solutions of the self-consistency equation (4.2)

(µ∗, w∗(x)) = (2πg0H(p2), p) where p ∈ (0,∞) (5.19)

and the corresponding relative equilibria

z = a∗e
iΩ∗t, where a∗ = H(p2)p and Ω∗ = −2π|g0H(p2)|, (5.20)

which solve the Ott-Antonsen equation (2.19) for α = α∗ = π/2 + arg µ∗. According to the
formula (4.3) we have 0 < |a∗| < 1 for 0 < p < 1 and |a∗| = 1 for p ≥ 1. Respectively, the
solution (5.20) corresponds to a uniform partially coherent state for 0 < p < 1 and to the
completely coherent state for p ≥ 1. In the following we carry out the stability analysis of
the solution (5.20) and show that in some cases a spatially modulated relative equilibrium can
bifurcate from it.

Proposition 5.3 The linear stability of the solution (5.20) is determined by the essential Σess

and discrete Σdisc spectra of the corresponding linearized equation.
The essential spectrum Σess comprises a pair of imaginary numbers ±2πi|g0H(p2)|

√
1− p2

for p < 1 and a negative real number −2π|g0H(p2)|
√
p2 − 1 for p > 1.

The discrete spectrum Σdisc comprises all roots λ of the equations

det

[
I2 −

1

2
Bnn(λ)

]
= 0, (5.21)

where

Bnn(λ) = 2πgn


e−iα∗

λ+ Ω∗η(p2)
− eiα∗a2

∗
λ+ Ω∗η(p2)

− e−iα∗a2
∗

λ+ Ω∗η(p2)

eiα∗

λ+ Ω∗η(p2)

 . (5.22)

Proof: The general stability analysis of the relative equilibria (4.1) was carried out in
Sections 4.4 and 4.5, therefore we can use formulas obtained there. In particular, inserting (5.19)
into (4.4) and using (4.5) we find the essential spectrum Σess.

To determine the discrete spectrum Σdisc we approximate G(x) with its finite Fourier sum

G(x) =
K∑

n=−K

gne
inx,
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then the corresponding integral operator G can be written in the form

(Gu)(x) =
K∑

n=−K

〈φn, u〉ψn(x),

where φn(x) = 2πgne
inx, ψn(x) = einx and the scalar product 〈·, ·〉 is defined by (5.10). Now

we use the results of Section 4.5. We compute the matrices Bmn(λ) defined by (4.38) and find
that they are nonzero only for n = m. Therefore the composed matrix B(λ) is block diagonal
and hence the determinant of the characteristic equation (4.40) factorizes as follows

det

[
I4K+2 −

1

2
B(λ)

]
=

K∏
n=−K

det

[
I2 −

1

2
Bnn(λ)

]
.

This implies that Eq. (4.40) is equivalent to a set of equations (5.21) for all possible n.

Proposition 5.4 Every Eq. (5.21) with gn 6= 0 has either a pair of real roots or a pair of
complex-conjugate imaginary roots. Depending on the value gn/g0 one of the following scenarios
can be observed for increasing parameter p.

(i) If gn/g0 < 0, then the roots of Eq. (5.21) are purely imaginary for 0 < p < 1 and real
negative for p > 1.

(ii) If 0 < gn/g0 < 1, then there exists p0 =
√

1− g2
n/g

2
0 ∈ (0, 1) such that the roots of

Eq. (5.21) are purely imaginary for 0 < p < p0 and real for p > p0. Moreover, the real roots
have opposite signs for p0 < p < 1 and are both negative for p > 1.

(iii) If gn/g0 > 1, then the roots of Eq. (5.21) are purely imaginary for 0 < p < 1 and real
with opposite signs for p > 1.

Proof: Inserting (5.22) into Eq. (5.21) we obtain

det

[
I2 −

1

2
Bnn(λ)

]
=

(λ+ Ω∗η(p2)− πgne−iα∗)(λ+ Ω∗η(p2)− πgneiα∗)− π2g2
n|a∗|4

(λ+ Ω∗η(p2))

(
λ+ Ω∗η(p2)

) .

The numerator of this fraction is a quadratic equation

λ2 + 2C1λ+ C2 = 0, (5.23)

where
C1 = Re C0, C2 = |C0|2 − π2g2

n|a∗|4 and C0 = Ω∗η(p2)− πgne−iα∗ .
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Since the coefficients C1 and C2 are real, Eq. (5.23) has either a pair of real roots or a pair of
complex-conjugate roots, depending on the discriminant value

4C2
1 − 4C2 = 4

(
π2g2

n|a∗|4 − (Im C0)2
)
.

For p > 1 we have |a∗| = |H(p2)|p = 1 and Im η(p2) = 0, this yields Im C0 = πgn sinα and
4C2

1 − 4C2 = 4π2g2
n cos2 α. Hence the roots of Eq. (5.23) are real

λ± = −C1 ±
√
C2

1 − C2 = πgn cosα− Ω∗
√
p2 − 1± π|gn cosα|.

Using Remark 5.1 and formula (5.20) the latter expression can be written in the form

λ± = πgn
g0

|g0|

√
p2 − 1

p
− 2π|g0|

√
p2 − 1

p
± π|gn|

√
p2 − 1

p
= π|g0|

√
p2 − 1

p

(
gn
g0

− 2± |gn|
|g0|

)
.

Clearly, λ− < λ+. Moreover, if gn/g0 < 1, then λ+ < 0. In contrast, if gn/g0 > 1, then λ+ > 0.
Now we consider the case p < 1. Using Remark 5.1 to replace e−iα∗ and the formula (5.20)

to replace Ω∗ we find
C0 = −2πi|g0H(p2)|

√
1− p2 + πi|gn|.

This yields C1 = Re C0 = 0. Moreover, using the identities

|H(p2)|2p2 + 1 = 2|H(p2)| and |H(p2)|2p2 − 1 = −2
√

1− p2|H(p2)| for p < 1,

we obtain

C2 = 4π2g2
n|H(p2)|2

√
1− p2

(
1− g0

gn

)(
1− g0

gn

√
1− p2

)
.

If g0/gn < 1, then C2 > 0, and therefore Eq. (5.23) has a pair of imaginary roots λ± = ±i
√
C2.

On the other hand, if g0/gn > 1, then there exists a point p0 ∈ (0, 1) at which the expression C2

changes its sign from positive to negative. In other words, for p < p0 equation (5.23) has
purely imaginary roots λ± = ±i

√
C2, while for p > p0 it has two real roots with opposite signs

λ± = ±
√
−C2.

Proposition 5.4 allows us to conclude about the stability of the completely coherent state and
the uniform partially coherent states. In particular, the completely coherent state is unstable
if there exists at least one Fourier coefficient gn such that gn/g0 > 1. Otherwise it is neutrally
stable. Regarding the uniform partially coherent states, they are unstable only in one case: if
there exists gn such that 0 < gn/g0 < 1 and

√
1− g2

n/g
2
0 < p < 1. Otherwise they are neutrally

stable too.
It turns out that all Fourier coefficients gn satisfying the inequality 0 < gn/g0 < 1, in

general, give rise to spatially modulated partially coherent solutions of Eq. (2.19).
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Proposition 5.5 Let g0 6= 0 and gn 6= 0, n ≥ 1, be a Fourier coefficient of the coupling
function G(x) such that 0 < gn/g0 < 1 and gn 6= g(j+1)n for all j ∈ N. Then there exists ε∗ > 0
such that for all ε ∈ (0, ε∗) the self-consistency equation (4.2) has a solution

µ =
2πg2

0

g0 + gn
+O(ε2),

w(x) =
√

1− g2
n/g

2
0 + ε cos(nx) +O(ε2).

Moreover, µ is real and w(x) ∈ En.

Proof: The proof is similar to the proof of Proposition 5.2. We consider the restriction of
Eq. (4.2) on the subspace (µ,w(x)) ∈ R× En. Defining a projection operator

Pcu = 2〈cos(nx), u〉 cos(nx),

we transform Eq. (4.2) into an equivalent system

µ〈cos(nx), w〉 =
〈
cos(nx),G

(
H(w2)w

)〉
, (5.24)

µ(I − Pc)w = (I − Pc)G
(
H(w2)w

)
, (5.25)

where I denotes the identity operator.
We recall that the relative equilibrium (5.20) becomes unstable for p = p0 =

√
1− g2

n/g
2
0.

Therefore we look for spatially modulated solutions of the system (5.24), (5.25) in the vicinity
of its constant solution (µ,w(x)) = (µ0, p0), where µ0 = 2πg0H(p2

0) = 2πg2
0/(g0 + gn). For this

we use the ansatz
w(x) = p0 + ε cos(nx) + ε2v(x, ε),

where ε > 0 is a small real number and v(x, ε) ∈ En is a bounded function satisfying the
orthogonality condition 〈cos(nx), v〉 = 0. It is easy to verify, see (4.3), that

H((p0 + q)2)(p0 + q) = H(p2
0)p0 + (H(p2

0) + 2H ′(p2
0)p2

0)q +O(q2)

=

√
g0 − gn
g0 + gn

+
g2

0

gn(g0 + gn)
q +O(q2) for q → 0. (5.26)

Using this asymptotics we expand Eqs. (5.24) and (5.25) in the Taylor series with respect to ε.
Moreover, because of the property gn 6= gn(j+1), j ∈ N, we conclude that the linear operator

µ0I − G(H(p2
0) + 2H ′(p2

0)p2
0) = µ0I −

g2
0

gn(g0 + gn)
G
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has a one dimensional kernel in En spanned by the function cos(nx). This allows us to apply
the Implicit function theorem and obtain the required result.

In accordance with Table 2 every solution (µ,w(x)) obtained in the Proposition 5.5 deter-
mines two relative equilibria of Eq. (2.19) representing spatially modulated partially coherent
states. Indeed, for ε → 0 the equation (2.19) with α = π/2 + arg gn has a branch of relative
equilibria

z = a(x)eiΩt where a(x) =

√
g0 − gn
g0 + gn

+ ε cos(nx) +O(ε2) and Ω = − 2πg2
0

g0 + gn
+O(ε2).

Similarly, the equation (2.19) with α = −π/2− arg gn has a branch of relative equilibria

z = a(x)eiΩt where a(x) =

√
g0 − gn
g0 + gn

+ ε cos(nx) +O(ε2) and Ω =
2πg2

0

g0 + gn
+O(ε2).

Note the small parameter in the above formulas is denoted by ε, because it abbreviates the
product ε = εg2

0/(gn(g0 + gn)), see (5.26). Moreover, the term arg gn remains in the expressions
of α, because they can be considered for both gn > 0 and gn < 0.

6 Stationary chimera states in oscillator arrays of differ-

ent dimensionality

In this chapter we show how theoretical framework developed in Chapter 4 can be applied for
the analysis of stationary chimera states. The results presented below are adapted from [84]. We
consider three systems of identical nonlocally coupled phase oscillators of increasing complexity,
oscillators on a ring, on a two-dimensional torus and on a three-dimensional torus. In the first
of these cases we look at the dynamics of phase oscillators {θk(t)}Nk=1 evolving according to the
equations

dθk
dt

= −2π

N

N∑
k′=1

G

(
2π

N
(k − k′)

)
sin (θk − θk′ + α) , (6.1)

where α ∈ (−π/2, π/2) is the phase lag parameter and

G(x) =
1

2π

(
1 + A cosx

)
, A ∈ R, (6.2)

is a 1D cosine function determining a specific index-dependent coupling between oscillators.
Since G(x) is 2π-periodic the connections between oscillators have circular symmetry and the
resulting system (6.1)–(6.2) is in fact a ring of coupled oscillators.
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If instead of the one-dimensional oscillator array we consider a square lattice of phase
oscillators {θkl(t)}Nk,l=1, we can write a two-dimensional analog of system (6.1)

dθkl
dt

= −
(

2π

N

)2 N∑
k′,l′=1

G

(
2π

N
(k − k′), 2π

N
(l − l′)

)
sin (θkl − θk′l′ + α) (6.3)

with the 2D cosine function

G(x, y) =
1

(2π)2

(
1 + A cosx+ A cos y

)
, A ∈ R. (6.4)

The most complicated model considered in this chapter is a cubic lattice of coupled phase
oscillators {θklm(t)}Nk,l,m=1 described by the equations

dθklm
dt

= −
(

2π

N

)3 N∑
k′,l′,m′=1

G

(
2π

N
(k − k′), 2π

N
(l − l′), 2π

N
(m−m′)

)
sin (θklm − θk′l′m′ + α)

(6.5)
with the 3D cosine function

G(x, y, z) =
1

(2π)3

(
1 + A cosx+ A cos y + A cos z

)
, A ∈ R. (6.6)

Note that in all formulas of this chapter we assume x, y and z to be scalars. They should not
be confused with the function z(x, t) in Chapter 2 or with the general vector x in Chapter 4.

The choice of the cosine functions (6.2), (6.4) and (6.6) is motivated by the fact that this is
one of the rare cases where a stability analysis of the observed chimera states becomes feasible.
Moreover, varying the kernel parameter A we can sweep over several qualitatively different
coupling topologies. For example, when A = 0 the kernel (6.2) determines a global (all-to-
all) coupling in model (6.1). In contrast, when A ∈ (0, 1) the connectivity matrix G(2π(k −
k′)/N) describes nonidentical but positive coupling strengths which decay with growing distance
between pairs of oscillators. This type of coupling is usually called nonlocal. A different type
of nonlocal coupling is obtained for A ∈ (1,∞). In this case, the short-range coupling between
oscillators remains positive, while the long-range coupling between them becomes negative.
Finally, in the limit A→∞ model (6.1)–(6.2) is equivalent (after a suitable time rescaling) to
the system (6.1) with the balanced coupling function G(x) = cos x considered in [136]. Here
the terms balanced and non-balanced refer to the sum total coupling strengths∫ π

−π
G(x)dx = 0 and

∫ π

−π
G(x)dx 6= 0, respectively.
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The role of the parameter A in the higher-dimensional functions (6.4) and (6.6) is qualitatively
the same: Varying A from zero to infinity one passes in succession from global, to positive non-
local, sign-changing nonlocal and balanced coupling topologies similar to the one-dimensional
case.

Performing numerical simulations of models (6.1)–(6.2), (6.3)–(6.4) and (6.5)–(6.6) we found
eleven different types of chimera states, see Tables 3 and 4, which are naturally grouped together
based on the value of the global order parameter and the inheritance principle formulated
below. Note that in all snapshots of the chimera states we use the scaled oscillator positions
xk = −π + 2πk/N , yl = −π + 2πl/N and zm = −π + 2πm/N instead of the integer indices k,
l and m. This convention will help us later to compare the reported coherence-incoherence
patterns with their continuum limit counterparts.

The primary difference between the chimera states shown in Tables 3 and 4 comes from
the fact that they have different degrees of global synchrony. More precisely, for every chimera
pattern from Table 3 the corresponding global order parameter

R(t) =
1

N

∣∣∣∣∣
N∑
k=1

eiθk(t)

∣∣∣∣∣ , R(t) =
1

N2

∣∣∣∣∣
N∑

k,l=1

eiθkl(t)

∣∣∣∣∣ , or R(t) =
1

N3

∣∣∣∣∣
N∑

k,l,m=1

eiθklm(t)

∣∣∣∣∣
stays close to zero for all time, while for every pattern from Table 4 the value of R(t) is well-
separated from zero and fluctuates around some positive constant level. Notice that according
to the theoretical results of Sections 6.2–6.7 chimera states with vanishing order parameter can
be found for both balanced and non-balanced cosine functions. In contrast, chimera states with
positive global order parameter exist in systems with non-balanced coupling functions only.

In general, every chimera state found in the one-dimensional model (6.1)–(6.2) can be
trivially extended to become a solution of the two-dimensional model (6.3)–(6.4) and of the
three-dimensional model (6.5)–(6.6). Similarly, every two-dimensional chimera pattern can be
lifted into a solution of the three-dimensional model (6.5)–(6.6). We call this simple observation
the inheritance principle and use it to group the chimera states in different columns of Tables 3
and 4. Each of these columns is named after the symmetry group relevant to the topmost
pattern in the column (details regarding this classification are presented in Sections 6.2–6.7).
In Sections 6.2–6.7 we also show that the stability region of every inherited chimera state is
a subset of the stability region of the corresponding lower-dimensional parent chimera state.
In particular, an inherited chimera state can be everywhere unstable (left column in Table 3),
have the same stability region as the parent chimera (middle and right columns in Table 3),
or its stability region can be a proper subset of the stability region of the parent chimera state
(left and middle columns in Table 4).
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D2 Z2 ×O(2) Dih(C4)

antiphase chimera

1D

-π

0

π

-π x π

θ
k

twisted chimera spiral chimera

2D unstable

-π x π

-π

y

π

-π

θkl

π

-π x π

-π

y

π

-π

θkl

π

twisted plane spiral rolls

3D unstable

-π

x
π -π

y

π

-π

z

π

θklm

-π

0

π

-π

x
π -π

y

π

-π

z

π

θklm

-π

0

π

Table 3: Chimera states with vanishing global order parameter in models (6.1)–(6.2), (6.3)–(6.4)
and (6.5)–(6.6).
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Z2 D4 Oh

classical chimera

1D

-π

0

π

-π x π

θ
k

coherent stripe coherent spot

2D

-π x π

-π

y

π

-π

θkl

π

-π x π

-π

y

π

-π

θkl

π

coherent plane coherent tube coherent ball

3D

-π

x
π -π

y

π

-π

z

π

θklm

-π

0

π

-π

x
π -π

y

π

-π

z

π

θklm

-π

0

π

-π

x
π -π

y

π

-π

z

π

θklm

-π

0

π

Table 4: Chimera states with non-vanishing global order parameter in the models (6.1)–(6.2), (6.3)–
(6.4) and (6.5)–(6.6).
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6.1 The Ott-Antonsen equation method

If the number of oscillators N in the model (6.1), (6.3) or (6.5) tends to infinity, then stationary
chimera states in this model can be described by relative equlibria of the corresponding Ott-
Antonsen equation (2.19). In Chapter 4 we showed that such equilibria can be found using
the self-consistency equation (4.2) and their stability can be analyzed using the characteristic
equation (4.40).

Depending on the dimensionality of the model (1D for model (6.1), 2D for model (6.3) and
3D for model (6.5)) one has to consider different versions of Eq. (4.2). More precisely, one has
to assume that the unknown function in this equation is

w(x) ∈ Cper([−π, π];C),

w(x, y) ∈ Cper([−π, π]2;C),

w(x, y, z) ∈ Cper([−π, π]3;C).

Then the symbol G in Eq. (4.2) denotes respectively the integral operators

(Gu)(x) =

∫ π

−π
G(x− x′)u(x′)dx′, (6.7)

(Gu)(x, y) =

∫ π

−π
dx′
∫ π

−π
G(x− x′, y − y′, z − z′)u(x′, y′)dy′, (6.8)

(Gu)(x, y, z) =

∫ π

−π
dx′
∫ π

−π
dy′
∫ π

−π
G(x− x′, y − y′, z − z′)u(x′, y′, z′)dz′. (6.9)

It turns out that all chimera states in Tables 3 and 4 are represented by solutions w(x), w(x, y)
and w(x, y, z) that are invariant with respect to a nontrivial subgroup of the symmetry group
of the corresponding coupling function G, therefore we call these chimera states the symmetric
chimeras.

In the following we concentrate in greatest detail on the three-dimensional case of Eq. (4.2)
with the corresponding integral operator (6.9). For the cosine function (6.6), the range of the
operator (6.9) obviously is spanned by seven basis functions

(ψ1(x, y, z), . . . , ψ7(x, y, z))T = (1, cosx, cos y, cos z, sinx, sin y, sin z)T. (6.10)

Moreover, if we define seven co-basis functions

(φ1(x, y, z), . . . , φ7(x, y, z))T = (1, A cosx,A cos y, A cos z, A sinx,A sin y, A sin z)T, (6.11)

then this operator can be written in the form (4.21), where the scalar product 〈·, ·〉 is calculated
by the formula

〈φ(x, y, z), ψ(x, y, z)〉 =
1

(2π)3

∫ π

−π
dx

∫ π

−π
dy

∫ π

−π
φ(x, y, z)ψ(x, y, z)dz. (6.12)
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The representation (4.21) allows us to simplify the self-consistency equation (4.2) following the
method of Section 4.3. Indeed, in this case all solutions to Eq. (4.2) can be written in the form

w(x, y, z) =
7∑

k=1

ŵkψk(x, y, z) where ŵk ∈ C. (6.13)

Since the basis (6.10) is orthonormal with respect to the scalar product (6.12), it is easy to
verify that expression (6.13) yields a solution to Eq. (4.2) if and only if the coefficients ŵk solve
the system

µŵk = 〈φk, H(|w|2)w〉, k = 1, . . . , 7, (6.14)

where H(|w|2) is defined by (4.3). In a similar way, following the method of Section 4.5 we can
show that for every solution w(x, y, z) to Eq. (4.2) all eigenvalues λ determining the stability
of the corresponding relative equlibrium to Eq. (2.19) satisfy a 14-dimensional characteristic
equation (4.40). The stability matrix B(λ) in Eq. (4.40) is composed of 49 blocks Bmn(λ) given
by the formula (4.38), where φm and ψn are basis and co-basis functions (6.10) and (6.11). Note
that for the cosine function (6.6) the reduction to finite dimension implied by formula (4.21) is
exact. It is this fact that makes the computations that follow tractable.

In the next sections we give an overview of the results concerned with the impact of the
coupling function in models (6.1), (6.3) and (6.5) on the types of observed chimera states. For
every chimera state in Tables 3 and 4 we write the corresponding solution to the self-consistency
equation (4.2) and analyze its symmetries. Moreover, we describe the stability regions of these
chimera states in the two-dimensional parameter space (A,α).

6.2 Antiphase chimeras in 1D, 2D and 3D

The chimera state shown in the top-left panel of Table 3 comprises two equidistant coherent
regions of equal size, which are in antiphase to each other. In the following we call this state
the antiphase chimera.

Self-consistency equation. Antiphase chimeras correspond to solutions of the self-consistency
equation (4.2) given by the formula

w(x, y, z) = p cosx, where p ∈ (1,∞). (6.15)

The minimal dimension needed for chimera states of this type is 1D, but they are also inherited
in 2D and 3D cases. Substituting ansatz (6.15) into (6.14) shows that all but one of the
equations are automatically satisfied and that the only non-trivial equation reads

µ = A〈cosx,H(p2 cos2 x) cosx〉. (6.16)

For different p ∈ (1,∞) expression (6.16) delivers the corresponding values of Ω and α, see
Table 2. Thus, we obtain an explicit parametric representation of antiphase chimera states.
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Note that the absence of a constant term in expression (6.15) analogous to ŵ1 in (6.13) implies
the global order parameter of every antiphase chimera state vanishes.

Symmetries. The function (6.15) is invariant under the following discrete symmetry opera-
tions:

κ1 : w(x, ·)→ w(−x, ·),
κ2 : w(x, ·)→ −w(π − x, ·).

Both these operations are elements of order two (κ2
1 = 1, κ2

2 = 1), and therefore generate
the Klein four-group D2. The symmetry group of antiphase chimeras is therefore D2. In this
statement we omit the translation and reflection invariance of w with respect to the variables
y and z.

Stability. In view of expressions (4.38) and (6.15) the matrix B(λ) has the following struc-
ture:

B(λ) =



B11(λ) 0 0 0 0 0 0

0 B22(λ) 0 0 0 0 0

0 0 B33(λ) 0 0 0 0

0 0 0 B33(λ) 0 0 0

0 0 0 0 B55(λ) 0 0

0 0 0 0 0 B33(λ) 0

0 0 0 0 0 0 B33(λ)


.

The characteristic equation (4.40) therefore decouples into four independent equations:

det

[
I2 −

1

2
B11(λ)

]
= 0, (6.17)

det

[
I2 −

1

2
B22(λ)

]
= 0, (6.18)

det

[
I2 −

1

2
B33(λ)

]
= 0, (6.19)

det

[
I2 −

1

2
B55(λ)

]
= 0. (6.20)

Recall that antiphase chimeras are 1D geometric patterns that are inherited by the 2D and
3D coupled oscillator models. As a result these states may have two types of instabilities:
longitudinal instabilities relevant to the main pattern direction (in the case of expression (6.15)
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this is the x-direction), and transverse instabilities appearing for inherited patterns in higher-
dimensional models. In order to distinguish these instabilities, the blocks of the matrix B(λ)
corresponding to the y- and z-directions are colored in blue. The longitudinal instabilities
are described by Eqs. (6.17), (6.18) and (6.20), while the transverse instabilities appearing in
the 2D and 3D cases are determined by Eq. (6.19). Because the blocks of the matrix B(λ)
corresponding to the y-instabilities and those corresponding to the z-instabilities coincide, the
2D inherited antiphase chimera and the 3D inherited antiphase chimera are stable or unstable
simultaneously.
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Figure 15: (a) Stability region of antiphase chimera states in the 1D case. Dashed and dotted lines
indicate Hopf and symmetry-breaking bifurcations, respectively. (b) Complex eigenvalues (H) and real
eigenvalues (SB) obtained as solution of Eq. (6.17) with p = 1.043 (α ≈ 1.47). (c) Real eigenvalues
obtained as solutions of Eqs. (6.19) and (6.20) with A = 1.
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Eq. (6.17) has two types of unstable eigenvalues, complex eigenvalues corresponding to Hopf
modes (H) and real eigenvalues corresponding to symmetry-breaking modes (SB). These modes
are present for small and large values of the parameter A, respectively, as shown in Figure 15(b).
Figure 15(a) shows the corresponding stability region in the (A, π/2−α) parameter plane. This
region is bounded by curves of Hopf (dashed) and symmetry-breaking (dotted) bifurcations and
represents the stability region for antiphase chimera states in 1D. In fact, in the present case
the complex conjugate eigenvalues emerge from the essential spectrum on the imaginary axis,
i.e., from the edge of the essential spectrum, in a manner that is reminiscent of the eigenvalue
behavior in the so-called edge bifurcation [43]. For larger values of A the characteristic equa-
tion (6.17) has instead a real unstable point eigenvalue. This eigenvalue also emerges from
the essential spectrum as A increases, although it is subsequently reabsorbed by it. Thus the
stability region of antiphase chimeras turns out to consist of two disjoint domains.

In contrast the blocks Bnn(λ) with n > 1 can only produce A-independent instabilities.
Indeed, the expression µ = iΩeiα together with Eq. (6.16) imply that the ratio Ω/A does not
depend on A. Consequently, if we consider the matrix Bnn(Aλ′), we easily verify that it depends
on λ′ and p but not on A. In other words, if a block Bnn(λ) with n > 1 determines an unstable
eigenvalue for some A then this fact remains true for any other A 6= 0. As a consequence for
n > 1 it is enough to analyze instabilities produced by blocks Bnn(λ) with A = 1. In particular
we find that Eq. (6.18) yields no unstable eigenvalues, although it always determines one zero
eigenvalue. Another zero eigenvalue always appears as a solution of Eq. (6.20). Moreover,
Eq. (6.20) has a real unstable eigenvalue for α < α1 where α1 ≈ 1.396, see Figure 15(c).
This fact accounts for the horizontal line of symmetry-breaking bifurcations in Figure 15(a).
Figure 15(c) also shows that Eq. (6.19) has a real unstable eigenvalue for all α ∈ (0, π/2). This
means that antiphase chimeras are always unstable in 2D and 3D and so can only be observed
as stable patterns in the 1D case.

6.3 Twisted chimeras (2D) and twisted planes (3D)

Self-consistency equation. The twisted plane chimera, Figure 16, corresponds to the solution
of the self-consistency equation (4.2) given by the expression

w(x, y, z) = p(eix + eiy), where p ∈ (1/2,∞). (6.21)

It has a 2D counterpart, namely the twisted chimera, but no 1D counterpart. Substituting
ansatz (6.21) into (6.14) shows that some of these equations are satisfied automatically, while
the remaining ones are all equivalent to a single equation of the form

µ = A〈cosx,H(p2|eix + eiy|2)(eix + eiy)〉. (6.22)

Expression (6.22) provides an explicit parametric representation of twisted plane chimeras,
determining Ω and α as functions of p ∈ (1/2,∞), see Table 2. As for antiphase chimeras, the
global order parameter of every twisted plane chimera vanishes.
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Figure 16: Twisted plane chimera state. (a) Phase snapshot from Eqs. (6.5)–(6.6) for A = 1.5
and α = 1.5. (b) Modulus |a(x, y, z)| and (c) argument arg a(x, y, z) of the corresponding relative
equilibrium (4.1).

Symmetries. The function (6.21) is invariant under the symmetry operations

κ1 : w(x, y, ·)→ w(y, x, ·),

κ2 : w(x, y, ·)→ w(−x,−y, ·),

as well as the continuous transformation

κ3 : w(x, y, ·)→ e−iφw(x+ φ, y + φ, ·) for all φ ∈ R.

The first two operations are elements of order two (κ2
1 = 1, κ2

2 = 1). Moreover κ2 and κ3

do not commute. The symmetry group of twisted plane chimera state is therefore the group
Z2×O(2). In this statement we omit the translation and reflection symmetries associated with
the z-direction.

Stability. In view of (4.38) and (6.21) the matrix B(λ) has the following structure:

B(λ) =



B11(λ) 0 0 0 0 0 0

0 B22(λ) B23(λ) 0 B25(λ) B26(λ) 0

0 B23(λ) B22(λ) 0 B26(λ) B25(λ) 0

0 0 0 B44(λ) 0 0 0

0 B25(λ) B26(λ) 0 B55(λ) B56(λ) 0

0 B26(λ) B25(λ) 0 B56(λ) B55(λ) 0

0 0 0 0 0 0 B44(λ)


.
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The characteristic equation (4.40) therefore decouples into the three independent equations:

det

[
I2 −

1

2
B11(λ)

]
= 0, (6.23)

det

I8 −
1

2


B22(λ) B23(λ) B25(λ) B26(λ)

B23(λ) B22(λ) B26(λ) B25(λ)

B25(λ) B26(λ) B55(λ) B56(λ)

B26(λ) B25(λ) B56(λ) B55(λ)


 = 0, (6.24)

det

[
I2 −

1

2
B44(λ)

]
= 0. (6.25)

Notice that Eq. (6.24) can be further simplified. Using the column/row interchange property
of a determinant we rewrite Eq. (6.24) in the form

det

I8 −
1

2


B22(λ) B25(λ) B23(λ) B26(λ)

B25(λ) B55(λ) B26(λ) B56(λ)

B23(λ) B26(λ) B22(λ) B25(λ)

B26(λ) B56(λ) B25(λ) B55(λ)


 = 0. (6.26)

The block symmetry of the latter determinant allows us to represent it as a product of two
half-size determinants and to show that every solution of Eq. (6.26) solves simultaneously one
of the following equations

det

[
I4 −

1

2

(
B22(λ)−B23(λ) B25(λ)−B26(λ)

B25(λ)−B26(λ) B55(λ)−B56(λ)

)]
= 0, (6.27)

det

[
I4 −

1

2

(
B22(λ) +B23(λ) B25(λ) +B26(λ)

B25(λ) +B26(λ) B55(λ) +B56(λ)

)]
= 0. (6.28)

Thus, Eq. (6.24) is equivalent to the two independent equations (6.27) and (6.28).
In contrast to the case of antiphase chimeras, none of equations (6.23), (6.24) and (6.25) have

zero roots. However, Eq. (6.23) determines a pair of unstable complex conjugate eigenvalues
for small values A, while Eq. (6.24) yields another pair of complex eigenvalues (this time of
double multiplicity) for α ≤ 1.45. The resulting stability region of twisted chimera states is
shown in Figure 17. It is bounded by two Hopf bifurcation curves and extends to arbitrarily
large values A. The latter observation agrees with previously reported results from [137].
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Figure 17: Stability regions of the twisted chimera state in 2D (shaded) and of the twisted plane
chimera in 3D (hatched) coincide. Dashed lines indicate Hopf bifurcations. Note that the horizontal
line α ≈ 1.45 corresponds to a Hopf bifurcation of double multiplicity.

6.4 Spiral chimera (2D) and spiral rolls (3D)

Self-consistency equation. The spiral roll chimera, Figure 18, corresponds to a solution of the
self-consistency equation (4.2) given by the expression

w(x, y, z) = p(cosx+ i cos y), where p ∈ (1/
√

2,∞). (6.29)

This chimera state has a 2D counterpart, namely the spiral chimera, but no 1D counterpart.
Substituting the ansatz (6.29) into (6.14) shows that some of these equations are again satisfied
automatically, while the remaining ones are all equivalent to a single equation of the form

µ = A〈cosx,H(p2(cos2 x+ cos2 y))(cosx+ i cos y)〉 = A〈cosx,H(p2(cos2 x+ cos2 y)) cosx〉.
(6.30)

Expression (6.30) provides an explicit parametric representation of spiral roll chimeras, deter-
mining Ω and α as functions of p ∈ (1/

√
2,∞), see Table 2. As for antiphase chimeras, the

global order parameter of every spiral roll chimera vanishes.
Symmetries. Symmetries of the function (6.29) were analyzed in [82] in the context of a

study of 2D spiral chimeras where it was shown that (6.29) is invariant under the following
symmetry operations:

κ1 : w(x, y, ·)→ w(x,−y, ·)

κ2 : w(x, y, ·)→ w(−x, y, ·)

κ3 : w(x, y, ·)→ e−iπ/2w(π − y, x, ·).
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Figure 18: Spiral roll chimera state. (a) Phase snapshot from Eqs. (6.5)–(6.6) for A = 1.5 and α = 0.8.
(b) Modulus |a(x, y, z)| and (c) argument arg a(x, y, z) of the corresponding relative equilibrium (4.1).

The reflections κ1 and κ2 are elements of order two (κ2
1 = 1, κ2

2 = 1), while κ3 is an element of
order four (κ4

3 = 1). Moreover, κ2 = κ3κ1κ
−1
3 . Therefore the spatial symmetries of the spiral

roll chimera constitute the generalized dihedral group of the cyclic group C4, i.e. Dih(C4).
Stability. In view of (4.38) and (6.29) the matrix B(λ) has the following structure:

B(λ) =



B11(λ) 0 0 0 0 0 0

0 B22(λ) B23(λ) 0 0 0 0

0 B23(λ) B33(λ) 0 0 0 0

0 0 0 B44(λ) 0 0 0

0 0 0 0 B55(λ) 0 0

0 0 0 0 0 B66(λ) 0

0 0 0 0 0 0 B44(λ)


.

The characteristic equation (4.40) therefore decouples into five independent equations:

det

[
I2 −

1

2
B11(λ)

]
= 0, (6.31)

det

[
I4 −

1

2

(
B22(λ) B23(λ)

B23(λ) B33(λ)

)]
= 0, (6.32)

det

[
I2 −

1

2
B44(λ)

]
= 0, (6.33)
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det

[
I2 −

1

2
B55(λ)

]
= 0, (6.34)

det

[
I2 −

1

2
B66(λ)

]
= 0. (6.35)

Numerical analysis of Eqs. (6.31)–(6.35) reveals [84] the stability region of spiral roll chimeras,
see Figure 19. We find that Eqs. (6.32), (6.34) and (6.35) have simple zero roots for all A
and α. Moreover, for small values of A equation (6.31) determines a pair of unstable complex
conjugate eigenvalues. For fixed α and increasing A these eigenvalues move to the imaginary
axis where they are absorbed by the essential spectrum indicating a Hopf bifurcation.

α
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0

π/4

π/2

 0  1  2

Figure 19: Stability regions of spiral chimeras in 2D (shaded) and of spiral roll chimeras in 3D
(hatched). As in Figure 17 these stability regions are identical. Dashed and dotted lines indicate Hopf
and symmetry-breaking bifurcations, respectively.

As for Eq. (6.20) it can be shown that all instabilities determined by Eq. (6.34) are A-
independent. Our analysis reveals that for α > α2 ≈ 1.23 this equation has a real positive
eigenvalue. Hence, the line α = α2 corresponds to symmetry-breaking bifurcations.

Our extensive search did not reveal any other unstable eigenvalues, including those poten-
tially determined by Eqs. (6.32) and (6.33). This indicates that 3D spiral roll chimeras are
stable/unstable for the same parameters (A,α) as their 2D counterparts, i.e. spiral chimeras.
Moreover, the stability region from Figure 19 apparently extends to arbitrarily large values A,
a result that agrees with that reported in [137], where stable 2D spiral chimeras were observed
in the case of a balanced cosine coupling function.
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6.5 Classical chimera (1D), coherent stripe (2D) and coherent plane
(3D)

Self-consistency equation. The coherent plane chimera, Figure 20, corresponds to a solution of
the self-consistency equation (4.2) given by the expression

w(x, y, z) = ŵ0 + p cosx, where ŵ0 ∈ C and p ∈ (0,∞). (6.36)

This state has both 1D and 2D counterparts, namely the classical chimera state and the
coherent stripe chimera, respectively. Substituting ansatz (6.36) into (6.14) shows that this
system is equivalent to the two equations

µŵ0 = 〈1, H(|ŵ0 + p cosx|2)(ŵ0 + p cosx)〉,

µp = A〈cosx,H(|ŵ0 + p cosx|2)(ŵ0 + p cosx)〉,

which can be rewritten in the form

ŵ0 =
p〈1, H(|ŵ0 + p cosx|2)(ŵ0 + p cosx)〉

A〈cosx,H(|ŵ0 + p cosx|2)(ŵ0 + p cosx)〉
, (6.37)

µ =
A

p
〈cosx,H(|ŵ0 + p cosx|2)(ŵ0 + p cosx)〉. (6.38)

These equations can be understood as follows: We first solve Eq. (6.37) for ŵ0 as a function
of p. We then substitute (p, ŵ0(p)) into Eq. (6.38) and determine the corresponding values Ω
and α according to Table 2. Note that for the coherent plane chimeras we always have ŵ0 6= 0,
implying that for these states the global order parameter is strictly positive, see Figure 21.

Figure 20: Coherent plane chimera state. (a) Phase snapshot from Eqs. (6.5)–(6.6) for A = 0.9
and α = 1.46. (b) Modulus |a(x, y, z)| and (c) argument arg a(x, y, z) of the corresponding relative
equilibrium (4.1).
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Figure 21: Global order parameter R versus the phase lag α for the three chimera states computed from
Eqs. (6.37)–(6.38), (6.43)–(6.44) and (6.49)–(6.50) with A = 0.9. Solid and dashed curves indicate
stable and unstable branches, respectively. Bullets of different colors correspond to chimera states
observed in numerical simulations of the model (6.5)–(6.6) with N = 128.

Symmetries. The function (6.36) is invariant under the reflection

κ1 : w(x, ·)→ w(−x, ·)

only and so has Z2 symmetry.
Stability. In view of the expressions (4.38) and (6.36) the matrix B(λ) has the following

structure:

B(λ) =



B11(λ) B12(λ) 0 0 0 0 0

B21(λ) B22(λ) 0 0 0 0 0

0 0 B33(λ) 0 0 0 0

0 0 0 B33(λ) 0 0 0

0 0 0 0 B55(λ) 0 0

0 0 0 0 0 B33(λ) 0

0 0 0 0 0 0 B33(λ)


.

The characteristic equation (4.40) therefore decouples into the three independent equations:

det

[
I4 −

1

2

(
B11(λ) B12(λ)

B21(λ) B22(λ)

)]
= 0, (6.39)
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det

[
I2 −

1

2
B33(λ)

]
= 0, (6.40)

det

[
I2 −

1

2
B55(λ)

]
= 0. (6.41)

The stability region of classical chimera states in the 1D case was computed in [79]. It is
bounded by curves of fold (solid) and Hopf (dashed) bifurcations, see Figure 22. Note that
the pair of complex conjugate eigenvalues responsible for the Hopf instability is determined by
Eq. (6.39). The eigenvalues emerge from the essential spectrum for values of A greater than
one, i.e. for a sign-changing coupling function.
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Figure 22: Stability regions of classical chimera states in 1D (shaded) and of coherent plane chimera
states in 3D (hatched). The coherent stripe chimera in the 2D case has the same stability region as
the coherent plane chimera state. Solid, dashed and dotted lines indicate fold, Hopf and symmetry-
breaking bifurcations, respectively.

The stability regions of coherent plane chimeras (3D) and of coherent stripe chimeras (2D)
are identical. They are smaller than the stability region of classical chimeras (1D), because
Eq. (6.40) has a real unstable eigenvalue for values of α close to π/2. This eigenvalue is
responsible for a symmetry-breaking bifurcation (dotted curve). Note that λ = 0 turns out to
be a simple root of both Eq. (6.39) and Eq. (6.41).
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6.6 Coherent spot (2D) and coherent tube (3D)

Self-consistency equation. The coherent tube chimera, Figs. 23(a)–(c), corresponds to a solution
of the self-consistency equation (4.2) given by the expression

w(x, y, z) = ŵ0 + p(cosx+ cos y), where ŵ0 ∈ C and p ∈ (0,∞). (6.42)

This state has a 2D counterpart, namely the coherent spot chimera, but no 1D counterpart.
Substituting ansatz (6.42) into (6.14) shows that this system reduces to the simpler set

ŵ0 =
p〈1, H(|ŵ0 + p(cosx+ cos y)|2)(ŵ0 + p(cosx+ cos y))〉

A〈cosx,H(|ŵ0 + p(cosx+ cos y)|2)(ŵ0 + p(cosx+ cos y))〉
, (6.43)

µ =
A

p
〈cosx,H(|ŵ0 + p(cosx+ cos y)|2)(ŵ0 + p(cosx+ cos y))〉. (6.44)

To solve this system, we first solve Eq. (6.43) for ŵ0 as a function of p and then use the result
to compute the complex quantity µ from Eq. (6.44), thereby yielding the corresponding values
of Ω and α, see Table 2. As for the coherent plane chimeras, the global order parameter of a
coherent tube chimera is always strictly positive, see Figure 21.

Symmetries. The coherence-incoherence boundary of a coherent tube chimera is determined
by the equation |w(x, y, z)| = 1. According to (6.42) this yields a cylindrical surface in z with a
four-sided squashed circle in the (x, y)-section. It is easy to see that the function (6.42) has all
the discrete symmetries of a square inscribed in the above squashed circle. Hence, all coherent
tube chimeras have the symmetry of the dihedral group D4.

Stability. In view of expressions (4.38) and (6.42) the matrix B(λ) has the following struc-
ture:

B(λ) =



B11(λ) B12(λ) B12(λ) 0 0 0 0

B21(λ) B22(λ) B23(λ) 0 0 0 0

B21(λ) B23(λ) B22(λ) 0 0 0 0

0 0 0 B44(λ) 0 0 0

0 0 0 0 B55(λ) 0 0

0 0 0 0 0 B55(λ) 0

0 0 0 0 0 0 B44(λ)


.

The characteristic equation (4.40) therefore decouples into the three independent equations:

det

I6 −
1

2

B11(λ) B12(λ) B12(λ)

B21(λ) B22(λ) B23(λ)

B21(λ) B23(λ) B22(λ)


 = 0, (6.45)
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det

[
I2 −

1

2
B44(λ)

]
= 0, (6.46)

det

[
I2 −

1

2
B55(λ)

]
= 0. (6.47)

Figure 23: Coherent tube (a)–(c) and incoherent tube (d)–(f) chimera states. (a), (d) Phase snapshots
from Eqs. (6.5)–(6.6) observed for (A,α) = (0.9, 1.5) and (A,α) = (0.4, 1.489), respectively. (b), (e)
Moduli |a(x, y, z)| and (c), (f) arguments arg a(x, y, z) of the corresponding relative equilibria (4.1).

Equations (6.45) and (6.47) have simple zeros for all values of the parameters A and α.
Moreover, solving Eq. (6.45) numerically we found a real positive eigenvalue for small A and
a pair of unstable complex conjugate eigenvalues for large A. Remarkably, for A ≤ 0.8 the
positive real eigenvalue can be found only in a proper subinterval of α ∈ (αfold, π/2), the
existence interval for this type of chimera, because at the ends of this subinterval the eigenvalue
is absorbed by the essential spectrum. As a result, the stability region of tube chimeras consists
of two disconnected parts, see Figure 24. In one parameter region the chimera states resemble
coherent tubes, Figure 23(a)–(c), while in the other region they resemble incoherent tubes,
Figure 23(d)–(f). Note that in the latter case we can use w(x, y, z) = ŵ0 + p(cos(x + π/2) +
cos(y+π/2)) instead of (6.42) in order to bring the incoherent tube into the center of the cube
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[−π, π]3. The stability region of incoherent tubes lies close to the fold bifurcation curve and
is extremely narrow. In contrast, the stability region of coherent tubes lies close to the line
α = π/2 and is relatively wide. Notice that all symmetry-breaking bifurcations described by
Eq. (6.45) are analogous to those known for the coherent spot chimeras in the 2D case [90].
It follows that along with the symmetric coherent plane branch and symmetric coherent tube
branch the self-consistency equation (4.2) also has two additional unstable solution branches
corresponding to asymmetric chimera patterns, connecting the symmetry-breaking bifurcation
points on the coherent plane branch and the coherent tube branch.

We now turn to Eq. (6.46). This equation determines a real positive eigenvalue responsi-
ble for another curve of symmetry-breaking bifurcations lying close to the line α = π/2, see
Figure 24. As a consequence the stability region of coherent tubes in 3D is smaller than the
stability region of 2D coherent spots. Since Eq. (6.46) has no other unstable roots, the stability
regions of 3D incoherent tubes and of 2D incoherent spots are identical.
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∆α
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0
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0 A 0.8

Figure 24: Stability regions of coherent spot chimera states in 2D (shaded) and of coherent tube
chimera states in 3D (hatched). Dashed and dotted lines indicate Hopf and symmetry-breaking
bifurcations, respectively. Insert panel shows the width ∆α of the narrow stability region bounded by
fold (solid) and symmetry-breaking (dotted) bifurcation curves.

6.7 Coherent ball (3D)

Self-consistency equation. The coherent ball chimera, Figure 25, corresponds to a solution of
the self-consistency equation (4.2) given by the expression

w(x, y, z) = ŵ0 + p(cosx+ cos y + cos z), where ŵ0 ∈ C and p ∈ (0,∞). (6.48)
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This chimera state is a purely 3D phenomenon and therefore has neither 2D nor 1D coun-
terparts. Substituting ansatz (6.48) into (6.14) shows that this system reduces to the simpler
set

ŵ0 =
p〈1, H(|ŵ0 + p(cosx+ cos y + cos z)|2)(ŵ0 + p(cosx+ cos y + cos z))〉

A〈cosx,H(|ŵ0 + p(cosx+ cos y + cos z)|2)(ŵ0 + p(cosx+ cos y + cos z))〉
,(6.49)

µ =
A

p
〈cosx,H(|ŵ0 + p(cosx+ cos y + cos z)|2)(ŵ0 + p(cosx+ cos y + cos z))〉.(6.50)

To solve this system, we first solve Eq. (6.49) for ŵ0 as a function of p and then compute the
complex quantity µ from Eq. (6.50), yielding the corresponding values of Ω and α, see Table 2.
As for the coherent plane chimeras, the global order parameter of a coherent ball chimera is
always strictly positive, see Figure 21.

Figure 25: Coherent ball chimera state. (a) Phase snapshot from Eqs. (6.5)–(6.6) for A = 0.9 and
α = 1.54. (b) Modulus |a(x, y, z)| and (c) argument arg a(x, y, z) of the corresponding relative equi-
librium (4.1).

Symmetries. The coherence-incoherence boundary of a coherent ball chimera is determined
by the equation |w(x, y, z)| = 1. According to (6.48) this yields a six-sided squashed sphere. It
is easy to see that the function (6.48) has all the discrete symmetries of a cube inscribed in the
above squashed sphere. Hence, all coherent ball chimeras have the symmetry of the octahedral
group Oh.

Stability. In view of expressions (4.38) and (6.48) the matrix B(λ) has the following struc-
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ture:

B(λ) =



B11(λ) B12(λ) B12(λ) B12(λ) 0 0 0

B21(λ) B22(λ) B23(λ) B23(λ) 0 0 0

B21(λ) B23(λ) B22(λ) B23(λ) 0 0 0

B21(λ) B23(λ) B23(λ) B22(λ) 0 0 0

0 0 0 0 B55(λ) 0 0

0 0 0 0 0 B55(λ) 0

0 0 0 0 0 0 B55(λ)


.

The characteristic equation (4.40) therefore decouples into the two independent equations

det

I8 −
1

2


B11(λ) B12(λ) B12(λ) B12(λ)

B21(λ) B22(λ) B23(λ) B23(λ)

B21(λ) B23(λ) B22(λ) B23(λ)

B21(λ) B23(λ) B23(λ) B22(λ)


 = 0, (6.51)

and

det

[
I2 −

1

2
B55(λ)

]
= 0. (6.52)
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Figure 26: Stability region of coherent ball chimera states (shaded). Dashed and dotted lines indicate
Hopf and symmetry-breaking bifurcations, respectively.
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Both equations (6.51) and (6.52) have simple zeros for all values of the parameters A and α.
Moreover, Eq. (6.51) has a double real positive eigenvalue for small A and a double pair of
unstable complex conjugate eigenvalues for large A. Thus the stability region of coherent ball
chimeras is bounded by Hopf and symmetry-breaking bifurcation curves as shown in Figure 26.

Note that using Eqs. (6.49)–(6.50) we can follow the branch of coherent ball chimeras beyond
the symmetry-breaking bifurcation. This reveals that the coherent ball chimera transforms
continuously into a labyrinthine chimera state, see Figure 27. However, the latter coherence-
incoherence pattern is unstable and cannot be observed in numerical simulations of Eq. (6.5)–
(6.6). On the other hand, such patterns were found in numerical simulations with other coupling
functions G(x, y, z), see [67].

Figure 27: (a) Modulus |a(x, y, z)| and (b) argument arg a(x, y, z) of the relative equilibrium (4.1)
corresponding to an unstable labyrinthine chimera state.

6.8 Other coupling functions

Multi-harmonic coupling functions. All of the above results for 3D chimera states can be easily
generalized for coupling functions of the form

G(x, y, z) =
1

(2π)3

(
1 + A cos(nx) + A cos(ny) + A cos(nz)

)
, (6.53)

where n ≥ 2 is an integer and A ∈ R. Indeed, suppose that (µ,w(x, y, z)) is a solution to
the self-consistency equation (4.2) with the coupling function (6.6). Then (µ,w(nx, ny, nz)) is
a solution to the self-consistency equation (4.2) with the coupling function (6.53) and n ≥ 2.
Moreover, comparing expressions (4.38) written for the solution (µ,w(x, y, z)) and the cou-
pling function (6.6) with their analogs written for the solution (µ,w(nx, ny, nz)) and coupling
function (6.53) we find that the resulting stability matrices B(λ) are identical. This leads to
the general conclusion: If for some parameters A and α in the model (6.5)–(6.6) we observe
a chimera state corresponding to a relative equilibrium of the form (4.1) (for example, one of
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those shown in Tables 3 and 4), then for the same parameters we will find a stable multiple
analog of this chimera state in the model (6.5) with the coupling function (6.53) and n ≥ 2, see
Figure 28. Note that the sequence of multiple chimera states for multi-harmonic coupling func-
tions was already observed in 1D and 2D models of coupled phase oscillators [128, 136, 137].
Here we have shown that there is a fundamental reason for these observations, which we call
the chimera multiplication principle.

Figure 28: Multiple chimera states in the model (6.5) with the multi-harmonic coupling function (6.53).
(a) Coherent ball chimera for n = 1. (b) Eight coherent balls chimera for n = 2. (c) 27 coherent balls
chimera for n = 3. Other parameters: A = 0.9, α = 1.54 and N = 64.

Mixed harmonic coupling functions. The Ott-Antonsen equation method described in Sec-
tion 6.1 can also be used to study chimera states in models (6.1), (6.3) and (6.5) with coupling
functions differing from those considered above. For example, the model (6.1) with the balanced
mixed harmonic coupling function

G(x) = cos(nx) + cos((n+ 1)x), n ∈ N, (6.54)

was considered in [136]. For this model, several new multiple chimera states were found. In
terms of the self-consistency equation (4.2) these correspond to solutions of the form

w(x) = p(ei(n+1)x + e−inx), where p ∈ (0,∞),

and
w(x) = ŵ1 sinx+ ŵ2 sin 2x, where ŵ1, ŵ2 ∈ C.

Note that the two-dimensional analogs of these multiple chimeras were also observed [137] in
model (6.3) with the two-dimensional counterpart of the balanced mixed harmonic coupling
function (6.54). Therefore according to the chimera inheritance principle we may expect to
find three-dimensional analogs of these chimeras too.

82



Top hat coupling functions. A large number of numerical results [67, 68], including sketches
of stability diagrams, were obtained for model (6.5) with the so-called piecewise constant, or
top-hat coupling function

G(x, y, z) =

{
(4π4σ3/3)−1 for x2 + y2 + z2 ≤ |πσ|,
0 for x2 + y2 + z2 > |πσ|,

(6.55)

where σ ∈ (0, 1) is the coupling radius. Along with the chimera patterns from Tables 3 and 4
and their multiple analogs, remarkable new states, called knotted and linked chimeras, were
found in this model [62, 68]. Note, however, that the top-hat coupling function has a Fourier
series with infinitely many terms, so that the analysis of the corresponding self-consistency
equation (4.2) and especially of the corresponding eigenvalue problem (4.37) requires a signifi-
cant computational effort that is beyond the scope of the present work.

Importantly, the fact that the top-hat coupling function has a Fourier series with infinitely
many terms has also another consequence. Similar to the multi-harmonic coupling functions, ev-
ery chimera solution (µ,w(x, y, z)) to the self-consistency equation (4.2) with the coupling func-
tion (6.55) and σ ∈ (0, 1) can be transformed into a multiple chimera solution (µ,w(nx, ny, nz))
with n ≥ 2 corresponding to the scaled coupling radius σ/n. However, the stability properties
of the new multiple chimera pattern and of the original chimera pattern may be different, be-
cause the eigenvalue problem (4.35) cannot be reduced to a finite-dimensional equation of the
form (4.40). Hence, the chimera multiplication principle for top-hat coupling functions works
only partially [67, 68].

6.9 Open problems

In this chapter, we have given a systematic (albeit incomplete) overview of three-dimensional
chimera states in the model (6.5)–(6.6) and their relation to the chimera states in lower-
dimensional models. We revealed two important principles, the chimera inheritance principle
and the chimera multiplication principle, underlying their appearance. These principles can be
easily generalized for higher-dimensional situations allowing one to predict the existence and
stability of hyper-dimensional chimera states. Note that the results reported here are far from
exhaustive and do not cover all the chimera states that can be found in the model (6.5)–(6.6).

First, the self-consistency equation (4.2) has many symmetric solutions not mentioned in
Tables 3 and 4. For example, one can use the ansatz

w(x, y, z) = p(cosx+ cos y + cos z), p ∈ (0,∞), (6.56)

or w(x, y, z) = p(eix + eiy + eiz), p ∈ (0,∞) (6.57)

to construct new interesting relative equilibria as shown in Figure 29. However, numerical
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Figure 29: (a), (c) Modulus |a(x, y, z)| and (b), (d) argument arga(x, y, z) of two unstable relative equi-
libria (4.1) corresponding to solutions of the self-consistency equation (4.2) given by expressions (6.56)
and (6.57) with p = 0.5.

simulations of the model (6.5)–(6.6) do not reveal any chimera states relevant to these equilibria,
therefore they are likely to be unstable (although this has not been proved rigorously).

Second, the numerous symmetry-breaking bifurcations in the above stability diagrams in-
dicate that the model (6.5)–(6.6) has solutions with less symmetry than those included in
Tables 3 and 4. This hypothesis is further supported by the observation of asymmetric spot
chimeras [90] and asymmetric spiral chimeras [82] in the two-dimensional model (6.3)–(6.4) as
well as by the observation of two pairs of orthogonal spiral rolls in model (6.5) with the top-hat
coupling function, see [67]. These states are the result of spontaneous symmetry breaking and
must be distinguished from chimera states arising from forced symmetry breaking such as those
present in systems with the coupling function

G(x, y, z) =
1

(2π)3

(
1 + Ax cosx+ Ay cos y + Az cos z +Bx sinx+By sin y +Bz sin z

)
(6.58)

with distinct Ax, Ay, Az, Bx, By and Bz. Such forced symmetry breaking destroys the highly
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symmetric chimera states described above replacing them with states of lower symmetry. More-
over, for nonvanishing coefficients Bx, By and Bz these states typically drift [83, 85]. The lower
symmetry of these states makes the corresponding stability calculations more involved, since
the linear stability problem may no longer block-diagonalize.

Third, the solution of the characteristic equation (4.40) allows one to determine the sta-
bility boundaries of different chimera states but provides no information about the nature of
the bifurcations that occur at these boundaries, i.e. whether the reported symmetry-breaking
and Hopf bifurcations are subcritical or supercritical and the scaling of the amplitude of the
new states generated by these instabilities with the distance from the bifurcation point. Po-
tentially, these questions can be answered via a weakly nonlinear analysis of the Ott-Antonsen
equation (2.19). However, in this case one needs to carry out a non-standard center manifold
reduction in a situation where point spectrum eigenvalues emerge from an essential spectrum
on the imaginary axis, a situation that leads to significant complications already in the case of
globally (all-to-all) coupled oscillators [20, 21, 17, 24].
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Figure 30: (a), (b) Time-averaged order parameter Rav of different chimera patterns obtained via
continuation of the coherent tube chimera state for (A,α) = (0.9, 1.5). For each point (A,α) (black
dots) the model (6.5)–(6.6) was integrated over 104 time units and the last 5000 time units were
used to compute Rav. The red/bright dots in panel (a) correspond to an additional backward scan
where parameter A was decreased from A = 1.17 to A = 1.12. Shaded boxes show stability regions
of the coherent tube chimera. (c) Order parameter R(t) for the two chimera states at the values of A
indicated by arrows in panel (a): A = 1.12 (purple/bright curve) and A = 1.17 (black curve).

At present all stability boundaries in Figures 15(a), 17, 19, 22, 24 and 26 were analyzed only
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numerically [84]. For each chimera pattern shown in Tables 3 and 4 a dynamical continuation
in four possible directions (increasing or decreasing parameters A and α) was carried out. For
every direction the time-averaged order parameter Rav was recorded as a function of A or α, see
Fig. 30(a),(b). It turned out that in all cases the behaviour of the order parameter Rav showed
abrupt jumps after the crossing of the corresponding stability boundary. This observation
suggests that all the bifurcations reported in Figures 15(a), 17, 19, 22, 24 and 26 are in fact
subcritical. More precisely, it was found that crossing a symmetry-breaking stability boundary
may lead to a collapse of the corresponding chimera state to either a completely coherent state,
or to a splay state or another chimera state, which is stable for the new system parameters.
In contrast, crossing Hopf instability boundaries generally resulted in abrupt transitions to
more complicated time-intermittent regimes, see Fig. 30(c), suggesting that some of the Hopf
bifurcations may be responsible for Type-II intermittent transitions to chaos as described by
Pomeau and Manneville in [99]. Note that with non-cosine coupling functions the bifurcations
may be supercritical. In particular, supercritical Hopf bifurcations were reported for mixed
harmonic [136, 137, 82], exponential [11] and top-hat [120] coupling functions, i.e. for coupling
functions containing more than one non-constant Fourier harmonic.

7 Breathing chimera states

In this chapter we consider solutions of the Ott-Antonsen equation (2.19) representing breathing
chimera states. 1 These are relative periodic orbits of the form

z = a(x, t)eiΩt, (7.1)

where a(x, t) is a function T -periodic with respect to t for some T > 0. Similar to Section 1.4,
the frequencies Ω and ω = 2π/T will be referred to as the primary frequency and the secondary
frequency, respectively. For the sake of simplicity throughout the chapter we assume that the
spatial coordinate x is one-dimensional and the integral operator G is of the convolution type,
see (5.1), with a one dimensional coupling function G(x).

Remark 7.1 Note that the product ansatz (7.1) with a T -periodic function a(x, t), in general, is
not uniquely determined. Indeed, for every nonzero integer m we can rewrite it in the equivalent
form

z = am(x, t)eiΩmt with am(x, t) = a(x, t)eimωt and Ωm = Ω−mω.
To avoid this ambiguity, throughout this chapter we assume that the function a(x, t) and the
constant Ω in (7.1) are chosen so that

lim
τ→∞

1

τ

∫ τ

0

d arg Y (t) = 0 where Y (t) =
1

2π

∫ π

−π
a(x, t)dx.

1The results presented in this chapter are adapted from [87].
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Roughly speaking, we request that the variation of the complex argument of Y (t) remains bounded
for all t ≥ 0.

Importantly, this calibration condition is well-defined only if Y (t) 6= 0 for all t ≥ 0, therefore
we checked carefully that this requirement is satisfied for all examples of breathing chimera states
shown below.

The chapter is organized as follows. In Section 7.1 we consider a complex Riccati equation

du

dt
= W (t)− isu(t)−W (t)u2(t),

where s is a real coefficient and W (t) is a continuous complex-valued function. We show that
this equation has a unique stable periodic solution satisfying the inequality |u(t)| ≤ 1. The
corresponding solution operator is denoted by

U : (W, s) ∈ Cper([0, 2π];C)× R 7→ u ∈ C1
per([0, 2π];C).

Its properties are discussed in Sections 7.2 and 7.3. Although the operator U is defined implic-
itly, it turns out that its value can be computed by solving only three initial value problems for
the complex Riccati equation. In Section 7.4 we show that if Eq. (2.19) has a stable solution
of the form (7.1) then its amplitude a(x, t) and its primary and secondary frequencies Ω and ω
satisfy a self-consistency equation

2ωeiαw(x, t)− GU(w(x, t), s) = 0, (7.2)

where

ω =
2π

T
, s =

Ω

ω
, w(x, t) =

e−iα

2ω
Ga
(
x,
t

ω

)
. (7.3)

A modified version of Eq. (7.2) is obtained in Section 7.5. Then in Section 7.6 we suggest
a continuation algorithm allowing to compute the solution branches of Eq. (7.2) and thus to
predict the properties of breathing chimera states. In Section 7.7 we carry out linear stability
analysis of a general relative periodic orbit (7.1) in Eq. (2.19). The analysis relies on the
consideration of a monodromy operator describing time evolution of small perturbations in the
system. We show that the stability of a relative periodic orbit is determined by the spectrum of
the monodromy operator. The spectrum consists of two parts: essential and discrete spectra.
The former part is known explicitly and has no influence on the stability of a breathing chimera
state, while the latter part is crucial for its stability but can be computed only numerically as
explained in Section 7.8. In Section 7.9 we illustrate the performance of the developed methods
considering a specific example of breathing chimera state in system (6.1)–(6.2).

Notations. Throughout this chapter we use the following notations. We let Cper([−π, π];C)
denote the space of all 2π-periodic continuous complex-valued functions. A similar notation
Cper([−π, π] × [0, 2π];C) will be used to denote the space of all continuous double-periodic
functions on the square domain [−π, π]× [0, 2π]. Moreover, the capital calligraphic letters such
as G or U are used to denote operators on appropriate Banach spaces.

87



7.1 Periodic complex Riccati equation

Let us consider a complex Riccati equation of the form

du

dt
= W (t)− isu(t)−W (t)u2(t), (7.4)

where s ∈ R and W (t) is a continuous complex-valued function. Recall that the symbol D
denotes the open unit disc of the complex plane and D = D∪∂D is its closure. We are going to
show that for every (W (t), s) ∈ Cper([0, 2π];C)×R such that |s|+ max

t∈[0,2π]
|W (t)| 6= 0, in general,

there exists a unique stable solution to Eq. (7.4) lying entirely in the unit disc D. The nonlinear
operator yielding this solution will be denoted by U(W (t), s).

Proposition 7.2 For every s ∈ R, W ∈ C(R;C) and u0 ∈ D there exists a unique global
solution to equation (7.4) starting from the initial condition u(0) = u0. Moreover, if |u0| = 1
or |u0| < 1, then |u(t)| = 1 or |u(t)| < 1 for all t ∈ R, respectively.

Proof: Suppose that u(t) is a solution to equation (7.4), then

d|u|2

dt
= u(t)

du

dt
+ u(t)

du

dt
= u(t)W (t) + is|u(t)|2 −W (t)|u(t)|2u(t)

+ u(t)W (t)− is|u(t)|2 −W (t)|u(t)|2u(t) = 2Re(u(t)W (t))(1− |u(t)|2). (7.5)

According to Eq. (7.5), if |u(0)| = 1 then |u(t)| = 1 for all other t 6= 0, therefore the solution u(t)
cannot blow up in finite time and hence it can be extended for all t ∈ R. On the other hand,
Eq. (7.5) implies that every solution u(t) satisfying |u(0)| < 1 remains trapped inside the disc D,
therefore it also can be extended for all t ∈ R.

Remark 7.3 Every solution u(t) to Eq. (7.4) satisfying the identity |u(t)| = 1 can be written
in the form u(t) = eiψ(t) where ψ(t) is a solution to the equation

dψ

dt
= −s+ 2Im(W (t)e−iψ).

Now we consider Eq. (7.4) with a 2π-periodic coefficient W (t). It is well-known [16, 131]
that the Poincaré map of such equation coincides with the Möbius transformation. Because
of Proposition 7.2 this Möbius transformation maps unit disc D onto itself, therefore it can be
written in the form

M(u) =
eiθ(u+ b)

bu+ 1
where θ ∈ R and b ∈ C. (7.6)
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Remark 7.4 The fact that the Poincaré map of the periodic complex Riccati equation (7.4)
coincides with the Möbius transformation (7.6) can also be justified in a different way using a
known result from Lie theory, see [72, Sec. III].

The next proposition shows that the parameters θ and b in formula (7.6) can be uniquely
determined using two solutions to Eq. (7.4) starting from the initial conditions u = 0 and u = 1.

Proposition 7.5 Suppose s ∈ R and W ∈ Cper([0, 2π];C). Let U(t) and Ψ(t) be solutions of
the initial value problems

dU

dt
= W (t)− isU(t)−W (t)U2(t), U(0) = 0, (7.7)

dΨ

dt
= −s+ 2Im(W (t)e−iΨ), Ψ(0) = 0, (7.8)

and let ζ = U(−2π) and χ = Ψ(2π), then the Poincaré map of Eq. (7.4) is determined by the
formula (7.6) with

b = −ζ and eiθ =
ζ − 1

ζ − 1
eiχ. (7.9)

Moreover |b| < 1.

Proof: The definition of the Poincaré map and Remark 7.3 imply

eiθ(ζ + b)

bζ + 1
= 0 and

eiθ(1 + b)

b+ 1
= eiχ.

The former equation yields b = −ζ. Inserting this into the latter equation we obtain a formula
for eiθ. Notice that because of Proposition 7.2 we always have |ζ| < 1, and hence |b| < 1 too.

Every 2π-periodic solution to Eq. (7.4) corresponds to a fixed point of the Poincaré map,
or equivalently to a solution to the equation

M(u) =
eiθ(u+ b)

bu+ 1
= u. (7.10)

The periodic solution is stable or unstable, if the corresponding fixed point u∗ is stable or
unstable with respect to the map M(u), and the latter condition can be easily verified by
estimating the derivative M′(u∗). Indeed, if |M′(u∗)| < 1, then the fixed point u∗ is stable.
On the other hand, if |M′(u∗)| > 1, then u∗ is unstable. Moreover, the special properties of
the map M(u), see Remark 7.7, allow us to conclude that a fixed point u∗ with |M′(u∗)| = 1
is also stable provided it is non-degenerate.

In the next proposition, we show that every Poincaré map (7.6) with 0 < |b| < 1 has either
a unique stable fixed point in the closed unit disc D, or a unique fixed point at all (in this case,
the fixed point is degenerate and lies on the unit disc boundary ∂D).
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Proposition 7.6 Suppose θ ∈ (−π, π] and 0 < |b| < 1, then Eq. (7.10) has a unique solu-
tion u0 ∈ D such that |M′(u0)| ≤ 1. This solution is given by the formulas

u0 =
i sin(θ/2) +

√
|b|2 − sin2(θ/2)

|b|2
beiθ/2 for |b| > | sin(θ/2)|, (7.11)

u0 =
i sin(θ/2)− i

√
sin2(θ/2)− |b|2

|b|2
beiθ/2 for |b| ≤ sin(θ/2),

u0 =
i sin(θ/2) + i

√
sin2(θ/2)− |b|2

|b|2
beiθ/2 for |b| ≤ − sin(θ/2).

Moreover, |u0| = 1 for |b| ≥ | sin(θ/2)|, while |u0| < 1 for |b| < | sin(θ/2)|. Furthermore,
|M′(u0)| < 1 for |b| > | sin(θ/2)|, |M′(u0)| = 1 for |b| < | sin(θ/2)|, and M′(u0) = 1 for
|b| = | sin(θ/2)|.

Proof: For every |b| < 1 and u ∈ D equation (7.10) can be rewritten in the form

e−iθ/2bu2 − 2i sin(θ/2)u− eiθ/2b = 0. (7.12)

Since b 6= 0 this is a quadratic equation which generically has two complex roots. We are going
to check which of these roots lie in the unit disc D and what are their stability properties. To
address the latter question we compute the derivative of the Möbius transformation (7.6)

M′(u) =
eiθ(1− |b|2)

(bu+ 1)2
(7.13)

and evaluate its modulus (keeping in mind that |b| < 1)

|M′(u)| = 1− |b|2

|bu+ 1|2
. (7.14)

Depending on the sign of the difference |b|2 − sin2(θ/2) we distinguish two cases.
Case 1. Suppose |b| > | sin(θ/2)|, then two solutions to Eq. (7.12) read

u± =
i sin(θ/2)±

√
|b|2 − sin2(θ/2)

be−iθ/2
.
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It is easy to verify that in this case |u+| = |u−| = 1. Moreover, we also obtain

1− |b|2 − |bu± + 1|2 = 1− |b|2 −
(

cos(θ/2)±
√
|b|2 − sin2(θ/2)

)2

= −2
√
|b|2 − sin2(θ/2)

(√
|b|2 − sin2(θ/2)± cos(θ/2)

)
.

Obviously, for every θ ∈ (−π, π] and | sin(θ/2)| < |b| < 1 we have

cos(θ/2) =
√

1− sin2(θ/2) >
√
|b|2 − sin2(θ/2),

therefore
1− |b|2 − |bu+ + 1|2 < 0 and 1− |b|2 − |bu− + 1|2 > 0, (7.15)

and hence
|M′(u+)| < 1 and |M′(u−)| > 1.

Case 2. The other case is determined by the inequality |b| ≤ | sin(θ/2)|. If |b| < | sin(θ/2)|,
then Eq. (7.12) has two solutions

u± =
i sin(θ/2)± i

√
sin2(θ/2)− |b|2

be−iθ/2
, (7.16)

while for |b| = | sin(θ/2)| the values u+ and u− given by (7.16) coincide. To estimate the
moduli |u+| and |u−| we compute the difference(

sin(θ/2)±
√

sin2(θ/2)− |b|2
)2

− |b|2 = 2
√

sin2(θ/2)− |b|2
(√

sin2(θ/2)− |b|2 ± sin(θ/2)

)
.

Then for sin(θ/2) > 0 we obtain(
sin(θ/2) +

√
sin2(θ/2)− |b|2

)2

− |b|2 > 0,

(
sin(θ/2)−

√
sin2(θ/2)− |b|2

)2

− |b|2 < 0,

and hence |u+| > 1 and |u−| < 1. Similarly, for sin(θ/2) < 0 we obtain |u+| < 1 and |u−| > 1.
Finally, we compute a difference relevant to formula (7.14)

1− |b|2 − |bu± + 1|2 = 1− |b|2 −
∣∣∣∣cos(θ/2)± i

√
sin2(θ/2)− |b|2

∣∣∣∣2 = 0,

which implies |M′(u+)| = |M′(u−)| = 1.
On the other hand, in the limiting case |b| = | sin(θ/2)|, formulas (7.13) and (7.16) yield

|u+| = |u−| = 1 and M′(u+) =M′(u−) = 1.
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Remark 7.7 Let us consider the formula (7.6) with 0 < |b| < | sin(θ/2)| in more detail. In
this case, M(u) determines an elliptic Möbius transformation, see [75, Ch. 3.VII]. This means
that it has two distinct fixed points that are neither attractive nor repulsive but indifferent.
(Recall the equation |M′(u±)| = 1 from the Case 2 in the proof of Proposition 7.6.) Moreover,
the transformation moves all other points of the complex plane in circles around the two fixed
points. Therefore, according to the Lyapunov stability classification, both fixed points are stable,
but not asymptotically stable.

Similarly one can verify that the other two cases | sin(θ/2)| < |b| < 1 and |b| = | sin(θ/2)| 6= 0
considered in Proposition 7.6 correspond to the Möbius transformations M(u) of hyperbolic
and parabolic types, respectively. This is in accordance with the fact that M(u) has a pair
of attracting and repulsive fixed points in the former case and a degenerate fixed point in the
latter case. Note that the degenerate fixed point of a parabolic Möbius transformation is always
unstable in the sense of Lyapunov [75, Ch. 3.VII].

Remark 7.8 If b = 0, then Eq. (7.10) degenerates into the linear equation eiθu = u. For
eiθ 6= 1 this equation has only single solution u = 0, while for eiθ = 1 it becomes trivial identity
u = u and hence has infinitely many solutions u ∈ D. In both cases all the solutions are stable,
because M(u) is linear and |M′(u)| = 1. Moreover, the case b = 0 and eiθ = 1 corresponds to
the equation (7.4) with w(t) = 0 and s = 0.

Remark 7.9 If u0 is determined by formula (7.11), then M′(u0) is real and M′(u0) ∈ (0, 1).
Indeed, formula (7.11) implies

bu0 =

(
i sin(θ/2) +

√
|b|2 − sin2(θ/2)

)
eiθ/2,

therefore

bu0 + 1 =

(
cos(θ/2) +

√
|b|2 − sin2(θ/2)

)
eiθ/2.

Hence the assertion follows from formula (7.13) and from the first of two inequalities (7.15).

7.2 Solution operator U for periodic complex Riccati equation

In the previous section we showed that for every W ∈ Cper([0, 2π];C) and s ∈ R the complex
Riccati equation (7.4) has a uniquely determined 2π-periodic solution u(t) ∈ D that is stable
in the sense of Lyapunov (or at least linearly stable in the degenerate case). Let us denote the
corresponding solution operator

U : Cper([0, 2π];C)× R→ C1
per([0, 2π];C).

The definition of U is constructive and relies on the following steps:
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1) Given W (t) and s one solves two initial value problems (7.7) and (7.8) and obtains
coefficients b and θ of the Möbius transformation (7.6), see Proposition 7.5.

2) Using Proposition 7.6 one computes the initial value u0 of the periodic solution u(t) that
lies entirely in the unit disc D and, moreover, is stable provided |b| 6= | sin(θ/2)|. In the case
b = 0, one assumes u0 = 0, see Remark 7.8.

3) One integrates Eq. (7.4) with the initial condition u(0) = u0 and obtains 2π-periodic
solution u(t).

Importantly, Propositions 7.5 and 7.6 ensure that the steps 1–3 can always be realized. There-
fore, the mapping U : (W (t), s) 7→ u(t) is well-defined.

Remark 7.10 Note that the minimal period of the function u(t) = U(W (t), s) does not have
to be 2π. In general, it can assume any value 2π/k with k ∈ N. Moreover, for certain values
of the arguments (W (t), s) the operator U can also return a constant function u(t).

Due to the definition of U we have |u(t)| ≤ 1 for all t ∈ [0, 2π], therefore U is a bounded
operator. Moreover, the operator U has a specific dichotomy property:

Proposition 7.11 Let W∗ ∈ Cper([0, 2π];C), s∗ ∈ R and u∗ = U(W∗, s∗). Moreover, let

M∗ = exp

(
−
∫ 2π

0

(is∗ + 2W ∗(t)u∗(t))dt

)
. (7.17)

Then either |u∗(t)| = 1 for all t ∈ [0, 2π] and M∗ is a real number such that M∗ ∈ (0, 1], or
|u∗(t)| < 1 for all t ∈ [0, 2π] and |M∗| = 1.

Proof: We need only to show that M∗ = M′(u0) where u0 = u∗(0). Then the assertion
follows from Propositions 7.2 and 7.6 and from Remarks 7.8 and 7.9.

Let us consider Eq. (7.4) for W (t) = W∗(t) and s = s∗. Inserting there ansatz u(t) =
u∗(t) + v(t) and linearizing the resulting equation with respect to small perturbations v(t) we
obtain

dv

dt
= −(is∗ + 2W ∗(t)u∗(t))v. (7.18)

Obviously, formula (7.17) determines the Floquet multiplier of the scalar linear equation (7.18).
By definition its value coincides with the derivative of the Poincaré map of the original nonlinear
equation (7.4), hence M∗ =M′(u0) where u0 = u∗(0).

Remark 7.12 Proposition 7.6 and Remark 7.8 imply that u0 = u∗(0) is a simple fixed point
of Eq. (7.10), if and only if M∗ 6= 1. Therefore, the equation M∗ = 1 can be considered as a
degeneracy or bifurcation condition.
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7.3 Derivatives of the solution operator U
In this section we show how to compute partial derivatives of the operator U .

Proposition 7.13 Let W∗ ∈ Cper([0, 2π];C), s∗ ∈ R and u∗ = U(W∗, s∗). Suppose

Φ∗(2π) 6= 1 where Φ∗(t) = exp

(
−
∫ t

0

(is∗ + 2W ∗(τ)u∗(τ))dτ

)
,

then there exists a bounded linear operator J : Cper([0, 2π];C) → C1
per([0, 2π];C) such that

v(t) = (J f)(t) is a 2π-periodic solution of the equation

dv

dt
+ (is∗ + 2W ∗(t)u∗(t))v(t) = f(t).

Moreover

(J f)(t) =

∫ 2π

0

Φ∗(2π) + (1− Φ∗(2π))Θ(t− τ)

1− Φ∗(2π)
Φ∗(t)Φ

−1
∗ (τ)f(τ)dτ

where Θ(t) is the Heaviside step function such that Θ(t) = 0 for t < 0 and Θ(t) = 1 for t ≥ 0.

Proof: This assertion has been proved in [83, Proposition A.1].

Proposition 7.14 Let the assumptions of Proposition 7.13 be fulfilled. Then for every W ∈
Cper([0, 2π];C) we have

∂εU(W∗ + εW, s∗)|ε=0 = J (W − u2
∗W ), (7.19)

∂sU(W∗, s∗) = J (−iu∗). (7.20)

Proof: For every ε ∈ R function v(t, ε, s) = U(W∗(t) + εW (t), s) satisfies

dv(t, ε, s)

dt
= W∗(t) + εW (t)− isv(t, ε, s)− (W ∗(t) + εW (t))v2(t, ε, s). (7.21)

Differentiating this identity with respect to ε and inserting ε = 0 and s = s∗, we obtain

dvε(t, 0, s∗)

dt
= W (t)− (is∗ + 2W ∗(t)u∗(t))vε(t, 0, s∗)−W (t)u2

∗(t). (7.22)

Now, using Proposition 7.13 we solve Eq. (7.22) with respect to vε(t, 0, s∗) and obtain for-
mula (7.19).

Formula (7.20) is justified similarly. We differentiate (7.21) with respect to s and solve the
resulting equation using Proposition 7.13.
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7.4 Self-consistency equation

Suppose that Eq. (2.19) has a solution of the form (7.1) where a(x, t + T ) = a(x, t) for some
T > 0. Let us define

ω =
2π

T
and u(x, t) = a

(
x,
t

ω

)
, (7.23)

then the new function u(x, t) is 2π-periodic with respect to t and satisfies

ω
du

dt
= −iΩu+

1

2
e−iαGu− 1

2
eiαu2Gu. (7.24)

Dividing Eq. (7.24) by ω and introducing the notations

s =
Ω

ω
and w(x, t) =

e−iα

2ω
Gu, (7.25)

we rewrite Eq. (7.24) in the form

du

dt
= w(x, t)− isu− w(x, t)u2. (7.26)

In Section 7.1 we showed that every stable solution to Eq. (7.26) that lies entirely in the unit
disc D is given by the formula u(x, t) = U(w(x, t), s). Inserting this result into the definition
of w(x, t) we arrive at a self-consistency equation

w(x, t) =
e−iα

2ω
GU(w(x, t), s),

which can be written in the equivalent form (7.2).
Eq. (7.24) has several continuous symmetries. More precisely, the set of its solutions is

invariant with respect to the following transformations:

1) spatial translations u(x, t) 7→ u(x+ c, t) for c ∈ R,

2) complex phase shifts u(x, t) 7→ u(x, t)eiφ for φ ∈ R,

3) time shifts u(x, t) 7→ u(x, t+ τ) for τ ∈ R.

All these symmetries are inherited by the self-consistency equation (7.2), therefore to select its
unique solution w(x, t) we need to provide three pinning conditions. In practice, this number
can be reduced by one if we restrict Eq. (7.2) to the space of even functions

Xe =
{
w ∈ Cper([−π, π]× [0, 2π];C) : w(−x, t) = w(x, t) for all (x, t) ∈ [−π, π]× [0, 2π]

}
.

Indeed, for symmetric coupling functions G(x) equation (7.2) is reflection symmetric with
respect to x, therefore we can look for solutions w(x, t) satisfying w(−x, t) = w(x, t) only.
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In this case the spatial translation symmetry is eliminated automatically. Then two pinning
conditions relevant to the complex phase shift and the time shift can be chosen in the form

Im

(∫ π

−π
dx

∫ 2π

0

w(x, t)dt

)
= 0, (7.27)

Im

(∫ π

−π
dx

∫ 2π

0

w(x, t)eitdt

)
= 0. (7.28)

In the next sections we will show that the augmented system consisting of Eqs. (7.2), (7.27)
and (7.28) is well-defined. This means that for fixed phase lag α and kernel G(x) it correctly
determines the unknown even function w(x, t) and two scalar parameters ω and s.

Proposition 7.15 Let the triple (w(x, t), ω, s) be a solution to the self-consistency equation (7.2)
and let u(x, t) = U(w(x, t), s) and a(x, t) = u(x, ωt). Then the continuum limit analog of the
global order parameter can be computed by

|Z(t)| = 1

2π

∣∣∣∣∫ π

−π
a(x, t)dx

∣∣∣∣ =
1

2π

∣∣∣∣∫ π

−π
u(x, ωt)dx

∣∣∣∣ ,
while the effective frequency profile is given by

Ωeff(x) = −Im

(
1

T

∫ T

0

eiαa(x, t)(Ga)(x, t)dt

)
= −2ω Im

(
1

2π

∫ 2π

0

u(x, t)w(x, t)dt

)
.

Proof: The first formula for |Z(t)| follows directly from (2.20). In order to obtain the second
formula for Ωeff(x) we insert the ansatz z = a(x, t)eiΩt into (2.21) and use (7.23) and (7.25).

7.5 Modified self-consistency equation

In this section we show that the phase shift symmetry can also be eliminated from Eq. (7.2).
Then we decrease the number of equations and unknowns in the augmented system described
above.

Let us define a linear operator

P : Cper([−π, π]× [0, 2π];C)→ C, Pw =
1

(2π)2

∫ π

−π
dx

∫ 2π

0

w(x, t)dt,

which gives a constant part of the function w(x, t). Using this operator and the identity
operator I, we rewrite Eq. (7.2) in the equivalent form

2ωeiαPw = PGU(w, s), (7.29)

2ωeiα(I − P)w = (I − P)GU(w, s).
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Dividing the latter equation by the former one (which is a scalar equation!) we obtain

(I − P)w

Pw
=

(I − P)GU(w, s)

PGU(w, s)
,

or equivalently
(PGU(w, s))(I − P)w = (Pw)(I − P)GU(w, s). (7.30)

If we assume

w(x, t) = p+ v(x, t), where p ∈ (0,∞) and v(x, t) ∈ {u ∈ Xe : Pu = 0} , (7.31)

then pinning condition (7.27) is fulfilled automatically and can be discarded. Moreover, insert-
ing the ansatz (7.31) into Eq. (7.30) and pinning condition (7.28) we obtain

(PGU(p+ v, s))v = p(I − P)GU(p+ v, s), (7.32)

and

Im

(∫ π

−π
dx

∫ 2π

0

v(x, t)eitdt

)
= 0. (7.33)

Now instead of solving the system of equations (7.2), (7.27) and (7.28), we can look for solutions
of the system comprising Eqs. (7.32) and (7.33). In this case p > 0 must be given, then the
system of equations (7.32) and (7.33) has to be solved with respect to two unknowns: scalar
parameter s and even function v(x, t) satisfying Pv = 0. As soon as such solution is found, one
can compute the corresponding values of ω and α from Eq. (7.29) written in the form

2ωeiα =
1

p
PGU(p+ v, s).

7.6 Modified self-consistency equation for cosine coupling function

In this section we consider a specific example of integral operator G and show how system (7.32),
(7.33) can be solved approximately using Galerkin’s method. For this we assume that G(x) is
the cosine coupling function (6.2).

Given a positive integer F let us define a set of 8F + 2 functions ψk(x, t)

√
2 cosx, i

√
2 cosx,

eimt, ieimt, eimt
√

2 cosx, ieimt
√

2 cosx, m = −F, . . . ,−1, 1, . . . , F.

Note thatm 6= 0, therefore constant functions
√

2 and i
√

2 are not included in the set. The order
of ψk(x, t) is irrelevant apart from the only place below where we will assume ψ8(x, t) = ie−it.
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It is easy to verify that ψk(x, t) satisfy the orthonormality condition 〈ψk, ψn〉 = δkn with respect
to the scalar product

〈u, v〉 = Re

(
1

(2π)2

∫ π

−π
dx

∫ 2π

0

u(x, t)v(x, t)dt

)
,

where δkn is the Kronecker delta. Hence functions ψk(x, t) span a finite-dimensional subspace
of {u ∈ Xe : Pu = 0}. We look for approximate solution to Eq. (7.32) in the form

v(x, t) =
8F+2∑
k=1

ckψk(x, t) (7.34)

where ck ∈ R are unknown coefficients. Inserting (7.34) into Eq. (7.32) we write 8F + 2
orthogonality conditions

〈ψn, (PGU(p+ v, s))v〉 = p 〈ψn, (I − P)GU(p+ v, s)〉 , n = 1, . . . , 8F + 2.

Since for the cosine coupling function G(x) it holds PG = P , the above system can be written
as follows

8F+2∑
k=1

〈
ψn, ψkPU

(
p+

8F+2∑
m=1

cmψm, s

)〉
ck = p

〈
ψn, (I − P)GU

(
p+

8F+2∑
m=1

cmψm, s

)〉
. (7.35)

To account for the pinning condition (7.33) we assume ψ8(x, t) = ie−it, then

Im

(∫ π

−π
dx

∫ 2π

0

v(x, t)eitdt

)
= Re

(∫ π

−π
dx

∫ 2π

0

v(x, t)(−i)eitdt
)

= (2π)2〈ψ8, v〉.

This means c8 = 0. Inserting this identity into Eq. (7.35) we end up with a system of 8F + 2
nonlinear equations with respect to 8F + 2 real unknowns (these are 8F + 1 coefficients ck
with k 6= 8 and the parameter s). The system (7.35) can be solved by Newton’s method,
using a semi-analytic Jacobian expression involving the derivative representations obtained in
Section 7.3. Note that breathing chimera states typically have a very fine spatial structure,
therefore to approximate the integrals in (7.35) with the same accuracy, one needs to use either
a nonuniform grid with a moderate number of nodes in the x-direction, or a uniform grid with
a much larger number of nodes. For example, all numerical results reported in Section 7.9
were obtained using a nonuniform grid with ca. 103 discretization points in the x-direction (the
distribution of points, in this case, was 10 to 100 times denser in the vicinity of the coherence-
incoherence boundaries than in the other regions of the chimera state). On a uniform grid, the
same accuracy would be achieved only with at least 105 discretization points, what would lead
to extremely large computational times.
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7.7 Stability analysis of relative periodic orbits

Suppose that Eq. (2.19) has a solution of the form

z = a(x, t)eiΩt, (7.36)

where a(x, t) is T -periodic with respect to its second argument. To analyze the stability of this
solution we insert the ansatz

z = (a(x, t) + v(x, t))eiΩt

into Eq. (2.19) and linearize it with respect to the small perturbation v(x, t). In the result we
obtain a linear equation with T -periodic coefficients

dv

dt
= −η(x, t)v +

1

2
e−iαGv − 1

2
eiαa2(x, t)Gv, (7.37)

where
η(x, t) = iΩ + eiαa(x, t)Ga. (7.38)

Along with Eq. (7.37) it is convenient to consider its complex-conjugate version

dv

dt
= −η(x, t)v +

1

2
eiαGv − 1

2
e−iαa2(x, t)Gv.

These two equations can be written in the operator form

dV

dt
= A(t)V + B(t)V, (7.39)

where V (t) = (v1(t), v2(t))T is a function with values in Cper([−π, π];C2), and

A(t)V =

(
−η(·, t) 0

0 −η(·, t)

)(
v1

v2

)
,

and

B(t)V =
1

2

(
e−iα −eiαa2(·, t)

−e−iαa2(·, t) eiα

)(
Gv1

Gv2

)
.

For every fixed t the operators A(t) and B(t) are linear operators from Cper([−π, π];C2) into
itself. Moreover, they both depend continuously on t and thus their norms are uniformly
bounded for all t ∈ [0, T ].

Our further consideration is concerned with the stability of the zero solution to Eq. (7.39).
Therefore, we are dealing only with the linear stability of the solution (7.36). We apply the
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methods of qualitative analysis of differential equations in Banach spaces [22]. Since A(t)
and B(t) are uniformly bounded operators, we can define an operator exponent

E(t) = exp

(∫ t

0

(A(t′) + B(t′))dt′
)
.

Then the solution of Eq. (7.39) with the initial condition V (0) = V0 is given by the formula
V (t) = E(t)V0. Recalling that A(t) and B(t) are T -periodic, we conclude [22, Chapter V] that
the stability of the zero solution to Eq. (7.39) is determined by the spectrum of the monodromy
operator E(T ). Roughly speaking, the necessary condition for the stability of the zero solution
to Eq. (7.39) is that the spectrum of the operator E(T ) lies entirely in the unit circle on the
complex plane. Otherwise, this solution is unstable.

The main problem in the application of the above stability criterion is concerned with
the fact that the monodromy operator E(T ) acts in an infinite-dimensional functional space.
Therefore, its spectrum consists of infinitely many points, which can be arbitrarily distributed
in the complex plane. Below we use the explicit form of the operators A(t) and B(t) and show
the following properties of the monodromy operator E(T ):

(i) The spectrum of the operator E(T ) is bounded and symmetric with respect to the real
axis of the complex plane. It consists of two qualitatively different parts: essential spectrum Σess

and discrete spectrum Σdisc.

(ii) The essential spectrum Σess is given by

Σess =

{
exp

(
−
∫ T

0

η(x, t)dt

)
: x ∈ [−π, π]

}
∪ {c.c.}. (7.40)

(iii) The discrete spectrum Σdisc comprises finitely many isolated eigenvalues µ, which can
be found using the formula µ = eλT where λ are roots of a characteristic equation specified
below.

Proposition 7.16 The monodromy operator E(T ) can be written as a sum

E(T ) = E0(T ) +K, (7.41)

where E0(T ) is a multiplication operator of the form

E0(T ) = exp

(∫ T

0

A(t)dt

)
,

and K is a compact operator from Cper([−π, π];C2) into itself.
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Proof: Every function V (t) satisfying Eq. (7.39) and the initial condition V (0) = V0 solves
also integral equation

V (t) = E0(t)V0 +

∫ t

0

E0(t)E−1
0 (t′)B(t′)V (t′)dt′, (7.42)

where

E0(t) = exp

(∫ t

0

A(t′)dt′
)
.

On the other hand, every solution to Eq. (7.42) can be decomposed into a sum

V (t) = E0(t)V0 +W (t), (7.43)

where W (t) is a solution to integral equation

W (t) =

∫ t

0

E0(t)E−1
0 (t′)B(t′)E0(t′)V0dt

′ +

∫ t

0

E0(t)E−1
0 (t′)B(t′)W (t′)dt′. (7.44)

The Volterra integral equation (7.44) has unique solution W (t) that continuously depends
on the initial value V0. Moreover, the mapping V0 7→ W (T ) is a compact operator from
Cper([−π, π];C2) into itself (recall the compactness of the operator G involved in the definition
of the operator B(t)). This fact along with the formula (7.43) implies that the monodromy op-
erator E(T ) is the sum of the multiplication operator E0(T ) and a compact operator abbreviated
by W (T ).

The spectrum of monodromy operator E(T ) consists of all numbers µ ∈ C such that the
difference operator E(T ) − µI is not invertible. Because of the definition of A(t) and B(t)
this spectrum is symmetric with respect to the real axis. Moreover, since A(t) and B(t) are
uniformly bounded for t ∈ [0, T ], the monodromy operator E(T ) is bounded too, and hence its
spectrum lies in a circle of finite radius of the complex plane. Other spectral properties of E(T )
follow from the decomposition formula (7.41).

Indeed, formula (7.41) implies [46] that the essential spectrum of monodromy operator E(T )
coincides with the spectrum of multiplication operator E0(T ). Using the definition of A(t) we
obtain

E0(t) =

(
Φ(x, t) 0

0 Φ(x, t)

)
,

where

Φ(x, t) = exp

(
−
∫ t

0

η(x, t′)dt′
)
.

This allows us to calculate the spectrum of E0(T ) explicitly and obtain formula (7.40) for Σess.
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Remark 7.17 Suppose that we consider a relative periodic orbit (7.36) with the amplitude a(x, t),
primary frequency Ω and secondary frequency ω satisfying the self-consistency equation (7.2)
where w(x, t) and s are defined by (7.3). Then inserting (7.23) and (7.25) into (7.38) we obtain

exp

(
−
∫ T

0

η(x, t)dt

)
= exp

(
−
∫ 2π

0

(is+ 2w(x, t)u(x, t))dt

)
and therefore formula (7.40) and Proposition 7.11 imply that every µ ∈ Σess lies either on
the boundary of the unit circle |µ| = 1 or on the interval (0, 1) of the real axis. Hence the
essential spectrum Σess cannot be relevant to any instability of the solution (7.36) obtained from
the self-consistency equation (7.2). Note that, in general, Eq. (2.19) may have solutions of
the form (7.36) with an unstable essential spectrum, but such solutions don’t satisfy the self-
consistency equation (7.2).

Formula (7.41) also implies

E(T )− µI = (E0(T )− µI) +K.

For every µ /∈ Σess the right-hand side of this formula reads as a sum of the invertible operator
E0(T ) − µI and the compact operator K, hence it defines a Fredholm operator of index zero.
This means that apart from the essential spectrum Σess the monodromy operator E(T ) can
have a discrete spectrum Σdisc consisting of eigenvalues of finite multiplicity. Since the entire
spectrum Σess ∪ Σdisc is confined in a bounded region of the complex plane, there can be at
most finitely many such eigenvalues. These eigenvalues can be computed only numerically and
in the following we outline the way how this can be done.

Proposition 7.18 Let λ be a complex number such that the equation

dV

dt
= A(t)V + B(t)V − λV (7.45)

has a nontrivial T -periodic solution, then the number µ = eλT is an eigenvalue of the monodromy
operator E(T ). Conversely, for every nonzero µ ∈ Σdisc there exists a number λ ∈ C such that
Eq. (7.45) has a nontrivial T -periodic solution and µ = eλT .

Proof: Eq. (7.45) has a nontrivial T -periodic solution if and only if

exp

(∫ T

0

(A(t′) + B(t′)− λI)dt′
)

= exp

(∫ T

0

(A(t′) + B(t′))dt′
)
e−λT = I.

This is equivalent to the identity E(T ) = eλTI that ends the proof.
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Remark 7.19 Notice that formula µ = eλT isn’t a one-to-one relation between λ and µ. For
every λ ∈ C it yields one value µ. In contrast, given a nonzero µ one obtains infinitely many
corresponding values λ, namely λ = (log µ+ 2πki)/T with k ∈ Z.

Proposition 7.20 Let λ be a complex number such that eλT /∈ Σess, then for every continuous
T -periodic function F (t) there exists a unique T -periodic solution of equation

dV

dt
= (A(t)− λI)V + F (t),

which is given by

V (t) =

∫ T

0

Dλ(t, t′)F (t′)dt′

where
Dλ(t, t′) = (I − Eλ(T ))−1(Eλ(T ) + Θ(t− t′)(I − Eλ(T )))Eλ(t)E−1

λ (t′)

and

Eλ(t) = exp

(∫ t

0

(A(t′)− λI)dt′
)

= E0(t)e−λt.

Proof: This assertion can be proved by analogy with [83, Proposition A.1].
Proposition 7.20 implies that for every λ ∈ C such that eλT /∈ Σess all T -periodic solu-

tions V (t) of Eq. (7.45) satisfy also the integral equation

V (t) =

∫ T

0

Dλ(t, t′)B(t′)V (t′)dt′. (7.46)

This fact can be used to compute the discrete spectrum Σdisc numerically. To this end let us
choose C > 0 and consider Eq. (7.46) in the rectangular region

Π = {λ ∈ C : |Re λ| ≤ C, |Im λ| ≤ π/T}.

If we find all λ ∈ Π such that Eq. (7.46) has a bounded nontrivial solution V (t), then according
to Proposition 7.18 and Remark 7.19 we also find all eigenvalues µ = eλT of the monodromy
operator E(T ) lying in the circular region e−CT ≤ |µ| ≤ eCT . Since the spectrum of the
monodromy operator E(T ) is bounded, this ensures that for sufficiently large C we determine
all eigenvalues µ ∈ Σdisc relevant to the stability of the solution (7.36). Indeed, considering
Eq. (7.46) for λ ∈ Π we may overlook eigenvalues µ in the circle |µ| ≤ e−CT . However, all these
eigenvalues satisfy |µ| < 1 and therefore have no impact on the stability of the solution (7.36).
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7.8 Computation of the discrete spectrum

Recalling the definitions of B(t) and Dλ(t, t′) it is easy to see that Eq. (7.46) is a homogeneous
Fredholm integral equation. In general, it cannot be solved explicitly, but its solutions can be
found approximately using Galerkin’s method. For this one needs to choose a set of linearly
independent functions ϕk(x, t), k = 1, . . . , K, which are 2π-periodic with respect to x and T -
periodic with respect to t. Without loss of generality it can be assumed that these functions
are orthonormalized with respect to the scalar product

〈〈v1, v2〉〉 =
1

2πT

∫ T

0

dt

∫ π

−π
v1(x, t)v2(x, t)dx

such that 〈〈ϕj, ϕk〉〉 = δjk. Then one looks for an approximate solution to Eq. (7.46) in the form

V (t) =
K∑
k=1

Vkϕk(·, t), where Vk ∈ C2.

Inserting this ansatz into Eq. (7.46) and writing the projected problem yield

Vn =
K∑
k=1

〈〈
ϕn,

∫ T

0

Dλ(t, t′)B(t′)ϕk(·, t′)dt′
〉〉
Vk, n = 1, . . . , K.

This is a system of linear algebraic equations for the K two-dimensional coefficients Vk. Obvi-
ously, it has a nontrivial solution if and only if λ satisfies the characteristic equation

det (M2K(λ)− I2K) = 0, (7.47)

where

M2K(λ) =


B11(λ) . . . B1K(λ)

...
. . .

...

BK1(λ) . . . BKK(λ)


is a block matrix with the (2× 2)-matrix entries

Bnk(λ) =

〈〈
ϕn,

∫ T

0

Dλ(t, t′)B(t′)ϕk(·, t′)dt′
〉〉
. (7.48)

Solving Eq. (7.47) one obtains approximate eigenvalues λ of Eq. (7.46) and hence the corre-
sponding approximate eigenvalues µ = eλT of the monodromy operator E(T ).

Taking into account that functions ϕk(x, t) appearing in the definition of matrix M2K(λ)
must be 2π-periodic with respect to x and T -periodic with respect to t it is convenient to
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choose them in the form of spatiotemporal Fourier modes. More precisely, let Kx and Kt be
two positive integers, then we assume

ϕnm(x, t) = einx+2πimt/T , n = −Kx, . . . , Kx, m = −Kt, . . . , Kt.

Thus we obtain a set of K = (2Kx + 1)(2Kt + 1) functions such that 〈〈ϕnm, ϕn′m′〉〉 = δnn′δmm′ .
Notice that functions ϕnm(x, t) have an important property. If coupling function G(x) has

a Fourier series representation

G(x) = g0 +
∞∑
k=1

2gk cos(kx), where gk =
1

2π

∫ π

−π
G(x)e−ikxdx =

1

2π

∫ π

−π
G(x) cos(kx)dx,

then for all integer indices n and m it holds

Gϕnm = 2πgnϕnm.

This implies

B(t)ϕnm = 2πgnB0(t)ϕnm, where B0(t) =
1

2

(
e−iα −eiαa2(·, t)

−e−iαa2(·, t) eiα

)
,

therefore in the case of functions ϕnm(x, t) formula (7.48) can be written

Bnmn′m′(λ) =
gn′

2πT

∫ π

−π
dx

∫ T

0

dt

∫ T

0

ϕnm(x, t)Dλ(t, t′)B0(t′)ϕn′m′(x, t
′)dt′. (7.49)

The main advantage of the latter expression is that it doesn’t contain any operators, but only
explicitly known functions. More precisely, the term Dλ(t, t′) is a (2 × 2)-matrix with entries
depending on x, t, t′ and λ, while B0(t′) is a (2× 2)-matrix with entries depending on x and t′.
Importantly, the triple integration in (7.49) must be carried out for each entry of the resulting
product matrix separately. As soon as all matrices Bnmn′m′(λ) are determined they must
be combined into the block matrix M2K(λ) and then the left-hand side of the characteristic
equation (7.47) can be computed.

Remark 7.21 In Section 7.4 we mentioned that Eq. (7.24) has three continuous symmetries.
This implies that the monodromy operator E(T ) has three linearly independent eigenfunctions
corresponding to the unit eigenvalue µ = 1. Respectively the characteristic equation (7.47) has
the triple root λ = 0, which is embedded in the essential spectrum.
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7.9 Example of a breathing chimera state

Let us illustrate the performance of the methods developed in Section 7.4–7.8. For this
we consider a breathing chimera state observed in the system (6.1)–(6.2) for A = 1.05 and
α = π/2 − 0.16. In Section 1.4 we showed that the primary frequency Ω and the secondary
frequency ω of this state can be extracted from the time trajectory of the global order param-
eter ZN(t). As soon as the primary frequency Ω is known we can find the approximate values
of the amplitude a(x, t) in the ansatz (7.1)

a(xk, t) =
1

2M + 1

k+M∑
j=k−M

ei(θj(t)−Ωt), (7.50)

where the indices j are taken modulo N , xk = −π + 2πk/N is the scaled position of the kth
oscillator and M = [

√
N/2] is the largest integer that does not exceed

√
N/2. Note that

formula (7.50) resembles the definition of local order parameter (1.21) but differs from it by the
additional exponential factor e−Ωt. Inserting the approximate values of Ω, ω and a(x, t) into
formulas (7.23) and (7.25) we obtain approximate values of the parameter s and function w(x, t).
Finally using continuous symmetries of Eq. (7.24) we ensure that w(x, t) is even with respect
to x and satisfies the pinning conditions (7.27) and (7.28). The obtained function w(x, t) can
be represented as a Fourier series

w(x, t) =
∞∑

k=−∞

(ŵ0,k + ŵ1,k cosx)eikt.

Then the leading coefficients ŵ0,k, ŵ1,k with indices k = −10, . . . , 10 can be used as an initial
guess in the Galerkin’s system (7.35) with F = 10. The latter system was solved using Newton’s
method up to the accuracy 10−9. The obtained set of coefficients ck was transformed into
function w(x, t) using formulas (7.31) and (7.34). Then the corresponding solution u(x, t) to
Eq. (7.24) was computed using the operator U defined in Section 7.2.

Figure 31(a),(b) shows an approximate amplitude a(x, t) of the breathing chimera state in
the system (6.1)–(6.2) with N = 8192 oscillators for A = 1.05 and α = π/2 − 0.16. The am-
plitude was computed using formula (7.50). On the other hand, using Galerkin’s system (7.35)
we solved the corresponding self-consistency equation (7.2) and found a time-periodic solu-
tion u(x, t) to Eq. (7.24), see Figure 31(c),(d). As expected, the graphs of a(x, t) and u(x, t)
agree with each other on a large scale, but have some fine structure differences which can be
attributed to finite size effects. The assertion is confirmed by simulations of system (6.1) with
more oscillators (not shown). In particular, several darker filaments protruding into the coher-
ent region (yellow/bright) in Fig. 31(a) become thinner for growing system size and disappear
in the limit N → ∞, see Fig. 31(c), in accordance with the coherence/incoherence invariance
property described in Proposition 7.2.
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Figure 31: (a), (b) Approximate complex amplitude a(x, t) of the relative periodic orbit (7.1) cor-
responding to a breathing chimera state in the system (6.1)–(6.2) with N = 8192 oscillators for
A = 1.05 and α = π/2− 0.16. (c), (d) The corresponding solution u(x, t) to Eq. (7.24) obtained from
the Galerkin’s system (7.35) with F = 10.

The self-consistency equation (7.2) allows us to predict almost perfectly the graphs of the
global order parameter ZN(t), see (1.19), and of the effective frequencies Ωeff,k, see (1.18).
In Figure 32 these quantities, computed for a chimera state in the system (6.1)–(6.2), are
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Figure 32: (a) Global order parameter ZN (t) and (b) effective frequencies Ωeff,k computed for the
chimera state in Fig. 31 and the corresponding theoretical predictions Z(t) and Ωeff(x) obtained using
Proposition 7.15.
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compared with their continuum limit counterparts Z(t) and Ωeff(x) computed by the formulas
from Proposition 7.15 where we inserted the functions w(x, t) and u(x, t) obtained from the
Galerkin’s system (7.35).

Figure 33 illustrates another application of the self-consistency equation (7.2). We used it for
computation of a branch of breathing chimera states in Eq. (2.19). The theoretically predicted
primary and secondary frequencies are compared with the corresponding values of Ω and ω
observed in breathing chimera states in the coupled oscillator system (6.1) with N = 8192.
Again, the agreement between the theoretical curve and the numerical points is very good. A
slightly recognizable mismatch can be attributed to finite size effects or to the small number
of Fourier modes (F = 10) in the Galerkin’s approximation. Note that the curves in Figure 33
fold for α ≈ π/2 − 0.145. This fact explains a sudden collapse of breathing chimera states to
the completely synchronous state, which we observed in system (6.1) for α > π/2− 0.145.
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Figure 33: (a) Primary frequency Ω and (b) secondary frequency ω of breathing chimera states in
the system (6.1)–(6.2) for A = 1.05. The solid curve shows theoretical predictions made using the
Galerkin’s system (7.35) with F = 10. The points show frequencies extracted from the breathing
chimera states observed in the system (6.1)–(6.2) with N = 8192 oscillators.

For all breathing chimera states on the solution branch in Figure 33 we also computed the
corresponding essential spectra Σess. These spectra look identically, see Figure 34(a), and have
the maximal possible size, see Remark 7.17 for more detail. The computation of the discrete
spectra Σdisc turned out to be a time demanding task, therefore at present it was not carried
out. However, because of Remark 7.21 we assert that Σdisc includes a triple eigenvalue µ = 1
embedded into the essential spectrum. Since for every breathing chimera state the unit cir-
cle |µ| = 1 is a subset of its essential spectrum Σess, the destabilization of such chimera state
cannot occur via a classical bifurcation of finite codimension. Indeed, any unstable eigenvalue
can emerge only from the essential spectrum and therefore this eigenvalue cannot be isolated at
the bifurcation point. By analogy with other dynamical systems we may expect that breathing
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Figure 34: All breathing chimera states on the solution branch in Fig. 33 have identical essential
spectra shown in panel (a). The point indicates a multiple eigenvalue embedded into the essential
spectrum. Other panels show hypothetical bifurcation scenarios for breathing chimera states: (b)
Fold and symmetry-breaking bifurcations, (c) period-doubling bifurcation, (d) torus bifurcation. The
arrows indicate directions in which one or two eigenvalues can appear from the essential spectrum.

chimera states in general can lose their stability via a fold, symmetry breaking, period-doubling
or torus bifurcation, which are associated with the appearance of one or two unstable eigen-
values µ from the essential spectrum on the unit circle as shown in Figure 34(b)-(d). Note
that proper consideration of such bifurcations requires the use of generalized spectral meth-
ods [17, 24, 18], which, however, must be adapted to a situation where the reference solution
is a relative periodic orbit rather than a simple equilibrium.

In summary, we emphasize that the consideration scheme described in this chapter can be
applied to systems (6.1) with arbitrary coupling functions G(x), including exponential [11] and
top-hat [120, 121] coupling. In particular, using the self-consistency equation (7.2) one can
carry out a more rigorous asymptotic analysis of breathing chimera states reminiscent of that
in [121]. Moreover, all above methods can be extended to the study of breathing spiral chimera
states in two-dimensional lattices of phase oscillators [137, 82]. Furthermore, our results can
also be applied to explore the appearance of pulsing and alternating coherence-incoherence pat-
terns [86] and modulated travelling chimera states [85] in systems of heterogeneous nonlocally
coupled phase oscillators, though in this case one needs to modify the definition of the solution
operator U .

8 Nonstationary coherence-incoherence patterns

In Chapters 4–7 we considered different types of coherence-incoherence patterns observed in
systems of identical oscillators. However, identical interacting agents almost never occur in real
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world, therefore it is natural to ask how robust are these patterns with respect to the oscillator
heterogeneities? The simplest way to address this question is to consider the system (1.14)
with natural frequencies ωk chosen from a Lorentzian distribution (1.17) with a width γ > 0.
In Section 2.3 we showed that in this case the continuum limit dynamics of the system is
represented by the local order parameter z(x, t) evolving according to Eq. (2.17). Note that
the only difference between the Ott-Antonsen equation (2.19) for identical oscillators and the
Ott-Antonsen equation (2.17) for heterogeneous oscillators is the additional term −γz.

It turns out that for small widths γ all stationary chimera states observed in the sys-
tem (1.14) with Lorentzian distributed natural frequencies ωk have similar macroscopic dy-
namics as their counterparts for identical natural frequencies, compare Fig. 2(a)-(d) and Fig. 5.
This fact was rigorously justified by Laing first for chimera states on a ring [57] and later for
chimera states in two-dimensional domains [61]. However, analogous assertion does not hold
for breathing chimera states, which can change their properties already for relatively small
Lorentzian widths γ ∼ 10−2, see [86]. In particular, their stability region in the system param-
eters space can grow significantly. Moreover, breathing chimera states can turn into nonsta-
tionary coherence-incoherence patterns (CIPs) which behave as periodically disappearing and
re-appearing chimera states (see pulsing and alternating chimera states in Fig. 6). To give a
better understanding of these phenomena, in Section 8.2 we show several bifurcation diagrams
computed for Eq. (2.17) using the Poincaré section method described in Section 8.1.

8.1 Poincaré section method

One of the main advantages of Eq. (2.17) is that all its stable solutions can be studied by direct
numerical simulations. For this one discretizes Eq. (2.17) on a uniform grid and integrate the
resulting ODE system with some solver. In the following we apply this approach to nonsta-
tionary CIPs in a one-dimensional version of Eq. (2.17). More precisely, we assume that the
spatial coordinate x of the local order parameter z(x, t) varies in the interval [−π, π] and the
integral operator G is given by (6.7). Then using the global order parameter

Z(t) =
1

2π

∫ π

−π
z(x, t)dx

we make the following definition: A coherence-incoherence pattern is called nonstationary if
the corresponding modulus |Z(t)| is time-dependent.

Obviously, for non-constant |Z(t)| the minimal and maximal values

Rmin = min
t
|Z(t)|, Rmax = max

t
|Z(t)|

are well-defined and differ from each other, therefore a Poincaré section for |Z(t)| can be chosen
at the mean level Rmean = (Rmin + Rmax)/2. Then every time moment tk where |Z(t)| crosses
the value Rmean from above is called the intersection with the Poincaré section, or briefly event.
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Given a nonstationary CIP it is useful to find all event moments tk, calculate the inter-event
intervals ∆tk = tk − tk−1 and plot them on the same graph. If |Z(t)| is a periodic function of
time, then the sequence of intervals ∆tk contains at most a finite number of different values.
On the other hand, if |Z(t)| varies irregularly, then one obtains infinitely many different values
of ∆tk.

8.2 Stability diagram of nonstationary coherence-incoherence pat-
terns

The top panel of Fig. 35 shows a bifurcation diagram of nonstationary CIPs in the Eq. (2.17)
with the cosine coupling (6.2). The parameters γ = 0.01 and α = π/2−0.15 are fixed, while the
parameter A of the coupling function (6.2) varies. For every fixed A we plot ca. 100 inter-event
intervals ∆tk obtained using the Poincaré section technique. All these intervals either coincide
or assume only two different values within the numerical precision. This indicates that the
observed CIPs are relative periodic orbits of Eq. (2.17). Note that outside the stability interval
A ∈ (1.098, 1.323) we found only stationary CIPs, therefore this part of the diagram remains
empty.

We distinguish six qualitatively different zones in the bifurcation diagram of nonstationary
CIPs. The zones are separated by five critical values of A: three values correspond to the
infinite growth of ∆t, and two other values correspond to a symmetry breaking (a single curve
in the diagram splits into two curves or two curves merge together into a single one). In
the small panels of Fig. 35 we show typical CIPs for each of the zones I–VI. The CIPs are
represented by the solutions z(x, t) of Eq. (2.17) and by the corresponding complex global
order parameters Z(t).

(I) The CIPs for A ∈ (1.098, 1.123) are pulsing chimera states, see Fig. 6(a)-(d). Their
profiles are reflection symmetric, i.e. |z(−x, t)| = |z(x, t)|. The minimal period TI of every
such CIP coincides with the period of the corresponding |Z(t)|-graph. It is likely that in the
phase space of the Ott-Antonsen equation (2.17) there exists a homoclinic orbit underlying
the existence of pulsing chimera states. This orbit apparently is approached for A ≈ 1.123
when ∆t grows to infinity. Importantly, pulsing chimera states cannot appear in systems of
identical oscillators, because in this case the coherent and incoherent regions cannot change
their size [79, Lemma 2].

(II) The CIPs for A ∈ (1.124, 1.157) are not only reflection symmetric but also have a
space-time symmetry. Their profiles |z(x, t)| are invariant with respect to the spatial shift
by π combined with the time-shift by half-period, what means |z(x + π, t + TII/2)| = |z(x, t)|
where TII is the minimal period of the CIP. Note that TII equals to the doubled period of the
corresponding |Z(t)|-graph.

The coherent and incoherent regions of type-II CIPs exchange their positions periodically,
therefore these patterns correspond to alternating chimera states, see Fig. 6(e)-(h). Similar
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Figure 35: Inter-event intervals ∆t versus A for nonstationary coherence-incoherence patterns in
Eq. (2.17). Other parameters: γ = 0.01 and α = π/2 − 0.15. Vertical lines separate six zones I–VI
with different types of solutions exemplified in the small panels below. These panels show the moduli
of the solutions z(x, t) of Eq. (2.17) at A = 1.115, 1.135, 1.175, 1.2, 1.235, 1.29 (see arrows in the main
panel) and the corresponding moduli of the global order parameter Z(t). The purple (gray) lines in
the |Z(t)|-graphs indicate the mean level Rmean (see text).
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alternating dynamics was reported for two subpopulations models [66, 59], for spatially mod-
ulated systems of non-locally coupled phase oscillators [138] as well as for more complicated
oscillatory media [36]. We conjecture that alternating chimera states appear due to a hetero-
clinic switching mechanism [8]. Moreover, in the presence of noise they can also be found in
systems of nonlocally coupled excitable units (e.g. coherence-resonance chimeras [112]) or in a
two populations system with two metastable states (e.g. switching chimera [140]).

(III) The CIPs for A ∈ (1.158, 1.184) differ from the type-II CIPs by broken space-time
symmetry (the reflection symmetry is preserved). The shape of such pattern at the moment
when its incoherent region is centered around x = 0 looks differently than the shape of the
pattern at the moment when its incoherent region is centered around x = π. On the other
hand, for the incoherent region it takes longer to switch from the position x = 0 to the position
x = π than to switch in the opposite direction. Because of this, the corresponding |Z(t)|-
graph has two non-equidistant peaks with different heights, and the bifurcation diagram in
Fig. 35 comprises two points ∆t for each A from the zone III. Note, while one of the inter-event
intervals ∆t remains bounded for all A ∈ (1.158, 1.184), the other interval grows to infinity
as A approaches the right endpoint 1.184. Finally, the minimal period TIII of a type-III CIP
coincides with the period of the corresponding |Z(t)|-graph.

(IV) This zone extends over the interval A ∈ (1.185, 1.213). In general, the transition from
the type-III CIPs to the type-IV CIPs resembles the transition from pulsing to alternating
chimera states at the boundary between zones I and II. In the bifurcation diagram the inter-
event intervals ∆t grow to infinity at the left endpoint of zone IV. The minimal period TIV
equals to the doubled period of the |Z(t)|-graph. Moreover, all type-IV CIPs have the same
space-time symmetry and hence similar alternating dynamics as the type-II CIPs.

(V), (VI) These two zones extend over the intervalsA ∈ (1.214, 1.263) andA ∈ (1.264, 1.323),
respectively. The symmetries of the type-V/VI CIPs are identical to those of the type-III/II
CIPs. However, the |z(x, t)|-plots of the former patterns are more homogeneous in time and lose
their pulsing behavior. Simultaneously, they get more structured in the x-direction such that
now we see four horizontal stripes in these plots: the two stripes are more coherent (brighter),
while the other two are less coherent (darker).

Bifurcation diagrams similar to that in Fig. 35(top panel) can be also computed for other
nonvanishing values γ. We did this for 20 different values γ varying from 0.001 to 0.02 with
the step ∆γ = 0.001. Two of these diagrams are shown in Fig. 36. For each γ we identified
the endpoints of the stability interval and found all critical values A corresponding to infinite
period singularities or symmetry breaking events. This allowed us to draw a 2D-stability region
of nonstationary CIPs in the (A, γ)-plane, see Fig. 37. We found that the bifurcation diagrams
look qualitatively similar for all γ ∈ [0.008, 0.02] and comprise the same six zones as Fig. 35. In
contrast, for smaller values γ these diagrams change dramatically. The two rightmost infinite
period critical values A coalesce together and disappear for some γ ∈ (0.007, 0.008), therefore
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Figure 37: Stability region (light shaded) of the nonstationary coherence-incoherence patterns in
Eq. (2.17) for α = π/2 − 0.15. (Note that the extension of the stability region for γ < 0.001 is not
shown.) Triangles and squares mark symmetry breaking and infinite period critical values, respectively.
Dark shaded region corresponds to irregular nonstationary coherence-incoherence patterns.
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for γ ≤ 0.007 we don’t find any type-IV CIPs. However, the diagrams still preserve ghost
peaks close to their former location, see Fig. 36 (top panel). At γ = 0.006 the stability interval
of nonstationary CIPs breaks into two pieces, and at γ = 0.005 it becomes a union of four
disjoint subintervals. Each of these subintervals shrinks for decreasing γ. Moreover one of
them completely vanishes for γ < 0.004, see Fig. 36 (bottom panel). It is likely that one of
the remaining three subintervals also vanishes for γ < 0.001 and only the other two constitute
the stability region of breathing chimera states for γ → 0. This conjecture is confirmed by
the fact that the corresponding system (1.14) with identical natural frequencies does support
two breathing chimera states for A ≈ 1.05 and A ≈ 1.19, see Fig. 3(a)-(d) and Fig. 3(e)-(h),
respectively.

Note that for γ ≤ 0.005 all bifurcation diagrams contain small ranges of parameter A
with irregular nonstationary CIPs. In this case for a fixed A we obtain dozens of different
values ∆tk (not a few as it was for larger γ). These points appear as a vertical dotted line in
the bifurcation diagram, see Fig. 36 (bottom panel). All occurrences of irregular nonstationary
CIPs are marked by the dark shaded regions in Fig. 37.

8.3 Remarks

In this chapter we revealed a constructive role of natural frequency heterogeneity for the emer-
gence of nonstationary CIPs in spatially extended oscillator systems. We showed that a narrow
(but non-degenerate) frequency distribution facilitates their emergence and increases their va-
riety. Though counterintuitive these results are not completely unexpected, because they have
analogies in the behaviour of other coupled oscillator networks where diversity facilitates col-
lective order [113] or even is required for symmetric pattern formation [76].

Figure 38: Irregular nonstationary coherence-incoherence pattern in the system (1.14) with Lorentzian
distributed natural frequencies (γ = 0.01) and cosine coupling (6.2). Space-time plot of the local order
parameter |z(x, t)| defined by (1.21). Parameters: N = 16384, A = 1.175 and α = π/2− 0.15.

In Section 8.1 we described the Poincaré section technique for the Ott-Antonsen equa-
tion (2.17) and used it to explore a complex bifurcation scenario underlying the transformation
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of nonstationary CIPs into each other. We emphasize that this analysis is based on the con-
tinuum limit assumption, therefore nonstationary CIPs observed in the system (1.14) with
small N may differ qualitatively from the solutions of Eq. (2.17). For example, all CIPs shown
in the small panels of Fig. 35 indeed are reproduced in detail in the numerical simulations of
the system (1.14) with N ≥ 215. However, for smaller system sizes the correspondence becomes
less pronounced, compare Fig. 35(III) with Fig. 38.

9 Travelling chimera states

This chapter is concerned with the mathematical description of travelling chimera states. We
focus on their prototype example observed in the system (1.14) with Lorentzian distributed
natural frequencies ωk and an asymmetric coupling function (1.16), see Fig. 8. In the continuum
limit such chimera states are represented by travelling waves in Eq. (2.17). These are solutions
of the form

z = a(x− st)eiΩt, (9.1)

where a(x) is a smooth 2π-periodic complex-valued function, Ω ∈ R and s ∈ R. Here and
throughout this chapter we assume that the coordinate x in Eq. (2.17) is one-dimensional and
the integral operator G is given by the formula (6.7).

Eq. (2.17) can be discretized in space on a uniform grid and solved numerically. For ex-
ample, using the parameters from Figs. 5 and 8 we obtain solutions shown in Fig. 39. The
first two solutions agree with the ansatz (9.1). In particular, the solution in panel (a) is a
stationary wave with s = 0, while the solution in panel (b) is a travelling wave with s 6= 0. The
remaining solution in panel (c) has a more complicated dynamics, which is not described by
the ansatz (9.1). This is a modulated travelling wave, see Table 1.

In contrast to Chapter 8, where we used numerical simulations of Eq. (2.17) to reveal the
bifurcation diagram of nonstationary coherence-incoherence patterns, here we cannot rely on
this approach, because travelling chimera states show a more complicated dependence on the
system parameters, see Fig. 9. Therefore we analyze these states differently.

Inserting ansatz (9.1) into Eq. (2.17) we obtain an integro-differential equation

−sda
dx

= −(γ + iΩ)a+
1

2
e−iαGa− 1

2
eiαa2Ga. (9.2)

This equation needs to be solved with respect to the unknown 2π-periodic function a(x) and
the unknown scalars Ω and s. The coupling function G(x) and the other system parameters γ
and α are supposed to be given. In Section 9.1 we show that the periodic boundary value
problem formulated in this way is well-posed. We use the fact that Eq. (9.2) has two continuous
symmetries and apply the Lyapunov-Schmidt reduction. This allows us to formulate a numerical
method for the continuation of travelling waves.
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Figure 39: Solutions of Eq. (2.17) with trigonometric coupling function (1.16) for (a) B = 0, (b)
B = 0.09 and (c) B = 0.13. Top panels show initial snapshots |z(x, 0)|. Bottom panels show dynamics
of |z(x, t)|. Other parameters: A = 0.9, γ = 0.01 and α = π/2− 0.1.

In Section 9.2 we carry out stability analysis of travelling waves in Eq. (2.17). We apply
standard techniques from the PDE theory [44, 108] adapted to the case of integro-differential
equations. More precisely, we linearize Eq. (2.17) around a travelling wave (9.1) and consider the
corresponding differential operator on the space of periodic functions. We derive a characteristic
equation describing the operator’s spectrum and prove the following assertions:

(i) The spectrum of any travelling wave (9.1) is purely discrete. In general, it consists of
infinitely many isolated eigenvalues λk of finite multiplicity. For |λk| → ∞ the eigenvalues
condensate along the line λ = −Re ηm where

ηm =

(
1

2π

∫ π

−π
(γ + iΩ + eiαa(x)Ga)dx

)
.

Therefore a practical test for the stability of a travelling wave (9.1) includes two conditions.
First, the inequality Re ηm > 0 must be satisfied. Second, all eigenvalues λk in a sufficiently
large neighbourhood of zero must satisfy Re λk ≤ 0. If any of these two conditions is not
fulfilled, the travelling wave is unstable.

117



(ii) Consider a stable travelling wave (9.1). If the inequality Re ηm > 0 persists for varying
system parameters, then the travelling wave in general can become unstable through a fold,
symmetry breaking or Hopf bifurcation.

The continuation method and the stability analysis scheme presented in Sections 9.1 and 9.2
were used in [85] to compute a bifurcation diagram of travelling waves in the equation (2.17)
with the trigonometric coupling function (1.16). The diagram is shown in Figure 40. Note that
the coupling function (1.16) depends on two parameters A and B. In Figure 40 the former
parameter is fixed at A = 0.9 and the latter one varies from 0 to 0.13. Thus the impact of the
coupling function asymmetry on the properties of travelling waves is demonstrated.

For small values of the asymmetry parameter B, i.e. |B| << min(1, |A|), the collective
frequency Ω remains nearly constant, while the lateral speed s increases proportionally to B.
This observation agrees with the asymptotic formulas obtained in [83]. In contrast, for large
values B the dependence Ω vs. B as well as the dependence s vs. B become non-monotone. The
corresponding graphs develop loops. Moreover, moving along the branch of travelling waves we
see that some of these waves are unstable because a single real eigenvalue (blue curves) or a pair
of complex-conjugate eigenvalues (red curves) lie in the unstable complex half-plane Re λ > 0.
Importantly, the bifurcation diagram in Fig. 40(b) explains qualitatively and quantitatively
most of the numerical results presented in Fig. 9 for B ≤ 0.09. (The absence of the pinning
region for B ≈ 0 is concerned with its finite size nature.) However, Fig. 9 contains also several
data points for B > 0.09 where, according to Fig. 40(b), one doesn’t expect any stable travelling
waves of the form (9.1). These points correspond to modulated travelling waves, see Fig. 39(c).
Though we didn’t study the modulated travelling waves here it is likely that they appear in
the result of supercritical Hopf bifurcations at the points separating black and red parts of the
solution branch in Fig. 40.

The non-monotone increase of the lateral speed s for growing asymmetry B is accompanied
by a complicated transformation of the spatial profiles of travelling waves, see Fig. 41. For small
asymmetries B the profiles of travelling waves resemble very much the profile of the stationary
wave for B = 0. However, for B > 0.02 all z(x, t)-graphs become spatially modulated. When
the asymmetry B increases from 0.02 to 0.06 the amplitude of the spatial modulation increases
too, while its wavelength decreases. But for B > 0.06 the modulation amplitude stabilizes and
the modulation wavelength starts to increase. Fig. 41 shows three coexisting travelling waves
for each of the values B = 0.085 and B = 0.097. In the former case two waves are stable and
one unstable, while in the latter case only one wave is stable and two other unstable. The
spectra of the travelling waves for B = 0.097 are shown in the insert panels.

Another remarkable transformation of travelling waves occurs for B > 0.11, see Fig. 42. To
explain it let us notice that in all panels of Fig. 41 the modulus |z(x, t)| is separated from zero
and the total variation of the argument of z(x, t) for x varying from −π to π equals zero. On
the other hand, moving along the solution branch in Fig. 40 we encounter several distinct points
where the modulus |z(x, t)| touches zero. Beyond each of these points the argument of z(x, t)
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Figure 40: (a) Collective frequency Ω and (b) lateral speed s of travelling waves (9.1) satisfying
Eq. (2.17) with a trigonometric coupling function (1.16). All points for B < 0.03 were obtained by
direct numerical simulations of Eq. (2.17). For B ≥ 0.03 the continuation algorithm from Section 9.1
was employed. The stability of travelling waves was checked using the method from Section 9.2.
It reveals stable (black), one-real-eigenvalue unstable (blue) and Hopf unstable (red) waves. Insert
panels show the spectra of three travelling waves coexisting for B = 0.097. Each spectrum condensates
around the thin solid line for Im λ→ ±∞. Parameters: A = 0.9, α = π/2− 0.1 and γ = 0.01.
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Figure 41: Travelling wave solutions of Eq. (2.17) for trigonometric coupling function (1.16) with
different asymmetry parameters B. Black, blue and red colours denote stable, one-real-eigenvalue
unstable and Hopf unstable solutions, respectively. Arrows show the direction of the wave’s lateral
motion for B 6= 0. Parameters: A = 0.9, α = π/2− 0.1 and γ = 0.01.
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Figure 42: Development of phase twists in travelling wave solutions of Eq. (2.17). The snapshots
correspond to three crosses in Fig. 40.

becomes more twisted than it was before. Respectively, its total variation jumps first from zero
to −2π, Fig. 42(a), then from −2π to −4π, Fig. 42(b), and finally from −4π to −6π, Fig. 42(c).
This fact explains the ”twisted” profile of travelling chimera state shown in Fig. 8(e).

9.1 Continuation algorithm for travelling chimera states

Let us consider Eq. (9.2) with an integral operator G given by the formula (6.7) and assume that
the operator kernel G(x,B) depends two real arguments x and B. Then Eq. (9.2) is equivalent
to the operator equation

F(a,Ω, s, B) = s
da

dx
− (γ + iΩ)a+

1

2
e−iαGa− 1

2
eiαa2Ga = 0 (9.3)

where
F : C1

per([−π, π];C)× R3 → Cper([−π, π];C).

In the following we assume that the system parameters γ and α are fixed. Then our aim is to
solve the following local problem:

Given a triplet (a0,Ω0, s0) satisfying the equation (9.3) with B = B0 find all other solutions
of equation (9.3) for B ≈ B0.

If we know how to solve this local problem, we can formulate a general continuation algorithm
for travelling waves in Eq. (9.3).
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There is an important fact about Eq. (9.3) which we have keep in mind. This equation has
two symmetries: the complex phase shift symmetry and the translation symmetry. This means,
if any triplet (a(x),Ω, s) solves Eq. (9.3) then every other triplet (a(x+ c)eiφ,Ω, s) with φ ∈ R
and c ∈ R solves the same equation too. The symmetries of Eq. (9.3) lead to a specific property
of the derivative operator L = ∂aF(a0,Ω0, s0, B0). Indeed, using the explicit expression

La = s0
da

dx
− η0a+

1

2
e−iαGa− 1

2
eiαa2

0Ga

with
η0(x) = γ + iΩ0 + eiαa0(x)Ga0,

it is easy to verify that the homogeneous equation La = 0 has two non-trivial solutions a = ia0

and a = ∂xa0, and hence the operator L is not invertible. This implies that Eq. (9.3) cannot be
solved with respect to a by means of the Implicit Function Theorem. On the other hand, if the
equation La = 0 has no other linearly independent solutions and the operator L is a Fredholm
operator of index zero, then we can perform the Lyapunov-Schmidt reduction of Eq. (9.3) and
obtain a modified equation or system suitable for applying the Implicit Function Theorem. In
order to describe this method preciser, we make two assumptions:

(A1) Suppose that ia0 and ∂xa0 are linearly independent functions and that the equation
La = 0 has no other linearly independent solutions apart from ia0 and ∂xa0.

(A2) Suppose

Φ0(π) 6= 1, where Φ0(x) = exp

(
1

s0

∫ x

−π
η0(y)dy

)
. (9.4)

In the following we also will use the next two definitions:

(D1) For every pair w1, w2 ∈ Cper([−π, π];C) we define their inner product by the formula

〈w1, w2〉 = Re

∫ π

−π
w1(x)w2(x)dx.

(D2) Given a bounded linear operator A acting on Cper([−π, π];C) we call its adjoint oper-
ator the linear operator A† satisfying

〈w1,Aw2〉 = 〈A†w1, w2〉 for all w1, w2 ∈ Cper([−π, π];C).
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Remark 9.1 (about the role of assumption (A1)) Assumption (A1) implies that the ker-
nel of operator L is two-dimensional. Moreover, applying the Gram-Schmidt process to the
functions ia0 and ∂xa0 we can construct two other functions u1 and u2 such that

ker L = span (u1, u2) and 〈uj, uk〉 = δjk

where δjk is the Kronecker delta.

Remark 9.2 (about the linear independence of ia0 and ∂xa0) According to the geomet-
ric interpretation of the inner product 〈·, ·〉 the functions ia0 and ∂xa0 are linearly independent
if and only if

|〈ia0, ∂xa0〉|2

〈ia0, ia0〉〈∂xa0, ∂xa0〉
< 1.

Remark 9.3 (about the role of assumption (A2)) Assumption (A2) ensures the existence
of the inverse operator

K0 = (−s0∂x + η0)−1 : Cper([−π, π];C)→ C1
per([−π, π];C).

This is an integral operator of the form

(K0u)(x) = −
∫ π

−π

Φ0(π) + (1− Φ0(π))Θ(x− y)

s0(1− Φ0(π))
Φ0(x)Φ−1

0 (y)u(y)dy (9.5)

where Φ0(x) is defined by (9.4) and Θ(x) denotes the Heaviside step function such that Θ(x) = 0
for x < 0 and Θ(x) = 1 for x ≥ 0.

Let us consider the product operator

K0La = −a+
1

2
K0

(
e−iαGa− eiαa2

0Ga
)
. (9.6)

Obviously, we have kerK0L = ker L. Moreover, because of the compact embedding

C1
per([−π, π];C) ↪→ Cper([−π, π];C)

the operator K0L is a Fredholm operator of index zero on Cper([−π, π];C). According to the
Fredholm alternative, the cokernel of the operator K0L coincides with the kernel of the adjoint
operator (K0L)†. Moreover, the dimension of ker (K0L)† is equal to the dimension of kerK0L.
Consequently, there exist two functions v1 and v2 such that

ker (K0L)† = span (v1, v2) and 〈vj, vk〉 = δjk.

These functions can be written explicitly if one finds two linearly independent solutions of the
adjoint equation (K0L)†v = 0 and apply to them the Gram-Schmidt orthonormalization.

123



Proposition 9.4 The adjoint of the operator K0L reads

(K0L)†v = −v +
1

2
eiαG†

(
K†0v − a2

0K
†
0v
)
, (9.7)

where the operators G† and K†0 are defined by

(G†u)(x) =

∫ π

−π
G(y − x)u(x)dy (9.8)

and

(K†0u)(x) =

∫ π

−π

Φ−1
0 (π) + (1− Φ−1

0 (π))Θ(x− y)

s0(1− Φ−1
0 (π))

Φ−1
0 (x)Φ0(y)u(y)dy. (9.9)

Proof: Formulas (9.8) and (9.9) can be justified using the definition (D2). Then it follows
from (9.6) that for every u, v ∈ Cper([−π, π];C) we have

〈v,K0Lu〉 = 〈v,−u〉+
1

2
〈v,K0

(
e−iαGu− eiαa2

0Gu
)
〉

= 〈−v, u〉+
1

2
〈K†0v, e−iαGu〉 −

1

2
〈K†0v, eiαa2

0Gu〉

= 〈−v, u〉+
1

2
〈eiαK†0v,Gu〉 −

1

2
〈eiαa2

0K
†
0v,Gu〉.

Now formula (9.7) follows from the above identity.

Remark 9.5 It can be shown that formula (9.9) yields the integral representation of the inverse
operator (s0∂x + η0)−1.

Above we explained how to find the functions u1, u2, v1 and v2 which span the kernel and
cokernel of the operator K0L. Using them we construct a modified operator

K0L+ 〈u1, ·〉v1 + 〈u2, ·〉v2

which is a rank-2 perturbation of K0L. According to the Lyapunov-Schmidt method this
operator is an isomorphism from Cper([−π, π];C) onto itself. In other words, it is invertible on
the space of 2π-periodic continuous functions. This immediately implies that the composite
operator

M = K−1
0 (K0L+ 〈u1, ·〉v1 + 〈u2, ·〉v2) = L+ 〈u1, ·〉K−1

0 v1 + 〈u2, ·〉K−1
0 v2 (9.10)
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is an isomorphism from Cper([−π, π];C) onto C1
per([−π, π];C). Using this observation we define

H(a,Ω, s, B) = F(a,Ω, s, B) + 〈u1, a〉K−1
0 v1 + 〈u2, a〉K−1

0 v2 (9.11)

and consider a system 
H(a,Ω, s, B) = 0,

〈u1, a〉 = 0,

〈u2, a〉 = 0.

(9.12)

Obviously, every solution of system (9.12) yields a solution of Eq. (9.3). Moreover, because of
the identities 〈ia0, a0〉 = 〈∂xa0, a0〉 = 0 the triplet (a0,Ω0, s0) is a solution of the system (9.12)
with B = B0. On the other hand, system (9.12) is much easier to solve than Eq. (9.3). In-
deed, above we have showed that the derivative operatorM = ∂aH(a0,Ω0, s0, B0) is invertible.
Therefore Implicit Function Theorem implies that the equation H(a,Ω, s, B) = 0 determines
a function a = ã(Ω, s, B) such that ã(Ω0, s0, B0) = a0. Inserting this function into the second
and the third equations of the system (9.12) we obtain{

〈u1, ã(Ω, s, B)〉 = 0,

〈u2, ã(Ω, s, B)〉 = 0.
(9.13)

System (9.13) can be solved with respect to the variables Ω and B if its Jacobian matrix

D =

(
〈u1, ∂Ωã(Ω0, s0, B0)〉 〈u1, ∂Bã(Ω0, s0, B0)〉
〈u2, ∂Ωã(Ω0, s0, B0)〉 〈u2, ∂Bã(Ω0, s0, B0)〉

)
(9.14)

is non-singular. Then it yields two functions Ω = Ω̃(s) and B = B̃(s) such that Ω̃(s0) = Ω0

and B̃(s0) = B0. Inserting these functions into the formula a = ã(Ω̃(s), s, B̃(s)) we obtain an
s-parameterized solution branch of Eq. (9.3).

Remark 9.6 (about the calculation of matrix D) Using formulas (9.3) and (9.11) we cal-
culate the derivatives

∂ΩH(a0,Ω0, s0, B0) = −ia0,

∂sH(a0,Ω0, s0, B0) = ∂xa0,

∂BH(a0,Ω0, s0, B0) =
1

2
e−iαG̃a0 −

1

2
eiαa2

0G̃a0

where

(G̃a0)(x) =

∫ π

−π
∂BG(x− y,B0)a0(y)dy. (9.15)
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Thus we obtain

∂Ωã(Ω0, s0, B0) = −M−1∂ΩH(a0,Ω0, s0, B0) = −M−1(−ia0), (9.16)

∂sã(Ω0, s0, B0) = −M−1∂sH(a0,Ω0, s0, B0) = −M−1∂xa0, (9.17)

∂Bã(Ω0, s0, B0) = −M−1∂BH(a0,Ω0, s0, B0)

= −1

2
M−1

(
e−iαG̃a0 − eiαa2

0G̃a0

)
. (9.18)

Consequently, all elements of the matrix D are given by explicit expressions.

Let us summarize the sufficient conditions for the local solvability of system (9.12). We
assume that the triple (a0,Ω0, B0) is a solution of the system (9.12) with s = s0 and choose
the lateral speed s to be a free parameter. Consequently, we need to solve system (9.12) with
respect to the triplet (a,Ω, B) ∈ Cper([−π, π];C)×R2. According to Implicit Function Theorem
this can be done if the corresponding linear system

Ma1 + ∂ΩH(a0,Ω0, s0, B0)Ω1 + ∂BH(a0,Ω0, s0, B0)B1 = f0,

〈u1, a1〉 = f1,

〈u2, a1〉 = f2

(9.19)

has a unique solution for every (f0, f1, f2) ∈ Cper([−π, π];C) × R2. This question is addressed
in the following proposition.

Proposition 9.7 Suppose that the operator M is invertible and the matrix D is non-singular,
then for every (f0, f1, f2) ∈ Cper([−π, π];C) × R2 there exists a unique solution (a1,Ω1, B1) ∈
C1

per([−π, π];C)× R2 of the system (9.19), which is given by the formulas(
Ω1

B1

)
= D−1

(
f1 − 〈u1,M−1f0〉
f2 − 〈u2,M−1f0〉

)
(9.20)

and
a1 =M−1f0 + ∂Ωã(Ω0, s0, B0)Ω1 + ∂Bã(Ω0, s0, B0)B1. (9.21)

Proof: If the operator M is invertible then the first equation of the system (9.19) can be
written as follows

a1 = M−1f0 −M−1∂ΩH(a0,Ω0, s0, B0)Ω1 −M−1∂BH(a0,Ω0, s0, B0)B1

= M−1f0 + ∂Ωã(Ω0, s0, B0)Ω1 + ∂Bã(Ω0, s0, B0)B1, (9.22)
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see formulas (9.16)–(9.18). Inserting this expression into the second and the third equations of
the system (9.19) we obtain a two-dimensional system of the form

〈uk, ∂Ωã(Ω0, s0, B0)〉Ω1 + 〈uk, ∂Bã(Ω0, s0, B0)〉B1 = fk − 〈uk,M−1f0〉, k = 1, 2.

For non-singular matrix D this system is solved by the formula (9.20). Inserting the found
values of Ω1 and B1 into (9.22) we obtain (9.21).

If all conditions of Proposition 9.7 are fulfilled, system (9.12) can be solved using the New-
ton’s iterations. Then for every s ≈ s0 we obtain a triplet (a(s),Ω(s), B(s)) which in turn
yields a solution of Eq. (9.3). For the sake of clarity we repeat again the technical steps which
one needs to carry out in order to compute the solution of Eq. (9.3).

Step 1. Using Remark 9.2 check if the functions ia0 and ∂xa0 are linearly independent.
Then compute the basis functions u1 and u2 using the Gram-Schmidt formulas.

Step 2. Check that the inequality (9.4) is satisfied. If so, find the cobasis functions v1

and v2.

Step 3. Constructe the inverse operator M−1. Then using formulas (9.15)–(9.18) compute
the derivatives ∂Ωã(Ω0, s0, B0), ∂sã(Ω0, s0, B0) and ∂Bã(Ω0, s0, B0).

Step 4. Check if the Jacobian matrix D given by the formula (9.14) is nonsingular.

Step 5. Use the triplet (a0,Ω0, B0) as an initial condition in the Newton’s iteration scheme(
Ωn+1

Bn+1

)
=

(
Ωn

Bn

)
−D−1

(
〈u1, an − bn〉
〈u2, an − bn〉

)
,

an+1 = an − bn −

(
∂Ωã(Ω0, s0, B0)

∂Bã(Ω0, s0, B0)

)T

D−1

(
〈u1, an − bn〉
〈u2, an − bn〉

)
,

where bn = M−1H(an,Ωn, s, Bn). If the new value s is close enough to s0, then the Banach
fixed point theorem guarantees that these iterations are convergent. In practice, one can stop
them when the desired precision ε is achieved, i.e. when ‖an+1 − an‖∞ ≤ ε, |Ωn+1 − Ωn| ≤ ε
and |Bn+1 −Bn| ≤ ε.

Remark 9.8 If the matrix D in Step 4 is singular, this can be the indication of a fold bifurca-
tion. Then the above algorithm needs to be modified. For example, if the matrix

D̃ =

(
〈u1, ∂Ωã(Ω0, s0, B0)〉 〈u1, ∂sã(Ω0, s0, B0)〉
〈u2, ∂Ωã(Ω0, s0, B0)〉 〈u2, ∂sã(Ω0, s0, B0)〉

)

is non-singular, then system (9.13) can be solved with respect to the variables Ω and s. In
this case we seek the solution of Eq. (9.3) in the form (a(B),Ω(B), s(B)) where B is the new

127



independent variable. Respectively, the Newton’s iteration formula from Step 5 must be replaced
with (

Ωn+1

sn+1

)
=

(
Ωn

sn

)
− D̃−1

(
〈u1, an − bn〉
〈u2, an − bn〉

)
,

an+1 = an − bn −

(
∂Ωã(Ω0, s0, B0)

∂sã(Ω0, s0, B0)

)T

D̃−1

(
〈u1, an − bn〉
〈u2, an − bn〉

)
,

where bn =M−1H(an,Ωn, sn, B).

Remark 9.9 In the case of the trigonometric coupling function (1.16) the operator G is a
degenerate rank-6 integral operator. More precisely, for every v ∈ Cper([−π, π];C) it holds

Gv =
1

2π
〈ψ1, v〉ψ1 +

1

2π
〈ψ2, v〉ψ2 +

A

2π

6∑
k=3

〈ψk, v〉ψk

+
B

2π

(
〈ψ3, v〉ψ5 + 〈ψ4, v〉ψ6 − 〈ψ5, v〉ψ3 − 〈ψ6, v〉ψ4

)
,

Gv =
1

2π
〈ψ1, v〉ψ1 −

1

2π
〈ψ2, v〉ψ2 +

A

2π

6∑
k=3

(−1)k+1〈ψk, v〉ψk

+
B

2π

(
〈ψ3, v〉ψ5 − 〈ψ4, v〉ψ6 − 〈ψ5, v〉ψ3 + 〈ψ6, v〉ψ4

)
,

where
(ψ1(x), . . . , ψ6(x))T = (1, i, cosx, i cosx, sinx, i sinx)T .

Because of this fact, the adjoint equation (K0L)†v = 0 can be reduced to a homogeneous six-
dimensional linear system, see [85, Sec. 3.3]. Similarly, it can be shown that the calculation of
the inverse operator M−1 is equivalent to solving an eight-dimensional linear system, see [85,
Sec. 3.4].

Remark 9.10 (about the singularly perturbed Eq. (9.3)) The continuation algorithm de-
scribed above relies strongly on the inequality s0 6= 0. Roughly speaking, we take a travelling
wave observed for some parameter values and extend it to other parameter values. If s0 = 0, we
encounter a qualitatively different situation. In this case we take a standing wave and look how
it transforms into a travelling wave for arbitrarily small parameter changes. The corresponding
periodic boundary value problem for Eq. (9.3) becomes singularly perturbed. This problem was
considered in [83].
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9.2 Stability of travelling chimera states

Suppose that we know a travelling wave solution of Eq. (2.17) written in the form (9.1). To
analyze its stability we insert the ansatz

z(x, t) =
(
a(x− st) + v(x− st, t)

)
eiΩt

into Eq. (2.17). Linearizing the resulting equation with respect to the small perturbation v we
obtain

−s∂ξv + ∂tv = −η(ξ)v +
1

2
e−iαGv − 1

2
eiαa2(ξ)Gv, (9.23)

where ξ = x− st is the wave variable and η(ξ) = γ + iΩ + eiαa(ξ)Ga. Note that the function v
is smooth with respect to its both arguments and 2π-periodic with respect to the variable ξ.

Next, we analyze the stability of the zero solution of Eq. (9.23). For this we consider
perturbations of the form

v(ξ, t) = v+(ξ)eλt + v−(ξ)eλt.

Inserting this ansatz into Eq. (9.23) and equating the terms proportional to eλt and eλt sepa-
rately, we obtain

λ

(
v+

v−

)
=

(
s∂ξv+ − ηv+ + 1

2
e−iαGv+ − 1

2
eiαa2Gv−

s∂ξv− − ηv− + 1
2
eiαGv− − 1

2
e−iαa2Gv+

)
. (9.24)

Using the notation v = (v+, v−)T system (9.24) can be written in the operator form

(D − λI +N )v = 0, (9.25)

where

Dv =

(
s∂ξv+ − ηv+

s∂ξv− − ηv−

)
is a two-component differential operator in C1

per([−π, π];C2),

Nv =

(
N+v

N−v

)
=

1

2

(
e−iαGv+ − eiαa2Gv−
−e−iαa2Gv+ + eiαGv−

)

is a two-component integral operator in Cper([−π, π];C2), and I is the identity-operator.
We are going to prove the following statements regarding Eq. (9.24).
(i) In Proposition 9.11 we will show that for every λ ∈ C the operator D − λI + N is

a Fredholm operator of index zero from C1
per([−π, π];C2) into Cper([−π, π];C2), therefore all
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nontrivial solutions of the spectral problem (9.24) correspond to isolated eigenvalues λ of finite
multiplicity.

(ii) In Proposition 9.13 we will show that all eigenvalues of the problem (9.24) lie in a specific
region of the complex plane.

(iii) Finally, in Proposition 9.15 we will show that in the case of the trigonometric coupling
function (1.16) all eigenvalues of the problem (9.24) can be found solving an explicitly known
characteristic equation.

Note that in Propositions 9.11 and 9.13 we formulate explicitly the minimal regularity
conditions for the operator G and for the functions a and η needed to prove these assertions.
These conditions are usually satisfied for all operators G with smooth kernels G(x) and for all
travelling wave solutions of Eq. (2.17). We also note that in some proofs below we refer to
propositions and remarks from Appendix. Their numbers start with the letter A.

Proposition 9.11 Suppose that G is a bounded linear operator in Cper([−π, π];C) and a, η ∈
Cper([−π, π];C), then for every λ ∈ C the operator D− λI +N is Fredholm of index zero from
C1

per([−π, π];C2) into Cper([−π, π];C2).

Proof: Because of Remark A3, there exists λ0 ∈ C such that D − λ0I is an isomorphism
from C1

per([−π, π];C2) onto Cper([−π, π];C2). Choosing this λ0 we obtain

D − λI +N = D − λ0I + (λ0 − λ)I +N .

The both operators (λ0−λ)I andN are compact because of the compact embedding of the space
of smooth functions C1

per([−π, π];C2) into the space of continuous functions Cper([−π, π];C2).
Hence, the operator D−λI+N can be decomposed into the sum of an invertible operator and
a compact operator. This ends the proof.

Remark 9.12 Proposition 9.11 implies that the spectrum of the operator D + N is purely
discrete. In other words, it comprises only distinct eigenvalues of finite multiplicity. Hence it
follows that in every bounded region of the complex plane we can find at most finitely many
eigenvalues of the operator D +N .

In order to prove the next proposition we need to require that the functions a and η are not
only continuous but also smooth. An additional smoothening requirement is also imposed on
the operator G.

Proposition 9.13 Suppose that G is a bounded linear operator from Cper([−π, π];C) into
C1

per([−π, π];C) and a, η ∈ C1
per([−π, π];C), then there exist constants c∗, c∗∗ > 0 such that

all eigenvalues of the problem (9.24) lie in the region{
λ ∈ C : |Re (λ+ ηm)| ≤ min(c∗, c∗∗/|λ|)

}
,
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where

ηm =
1

2π

∫ π

−π
η(ξ)dξ. (9.26)

Proof: Remark A3 implies that the operators ∂ξ − η − λ and ∂ξ − η − λ are isomorphisms
from C1

per([−π, π];C2) onto Cper([−π, π];C2) for all λ ∈ C such that Re(λ+ηm) 6= 0. Moreover,

‖(∂ξ − η − λ)−1‖+ ‖(∂ξ − η − λ)−1‖ ≤ c1

Re (λ+ ηm)
,

where c1 > 0 is independent of λ, since in the formula (A.8) the constant c0 depends on the
difference ν − ν0 only.

Let us assume that the norm of v = (v+, v−)T ∈ Cper([−π, π];C2) is defined by the expression

‖v‖∞ = ‖(v2
+ + v2

−)1/2‖∞.

Then for Re (λ+ ηm) 6= 0 the operator D − λI is invertible, and

‖(D − λI)−1‖ ≤ c2

Re (λ+ ηm)
,

where the constant c2 > 0 may differ from the constant c1, but still it does not depend on λ.
Because of the assumptions made about a, η and G the operator N is a bounded linear operator
on Cper([−π, π];C2), therefore there exists a constant c3 > 0 such that

‖N‖ ‖(D − λI)−1‖ < 1

for all λ ∈ C satisfying |Re (λ + ηm)| > c3. In this case, due to [46, Theorem IV.1.16], the
operator D − λI +N is invertible and hence the equation (9.25) has no non-trivial solutions.

Let us consider the first equation of the two-component system (9.25) written in the form

∂ξv+ −
η + λ

s
v+ = −1

s
N+v. (9.27)

Because of the smoothness assumptions imposed on the functions a and η as well as on the
operator G there exists a constant c4 > 0 such that

‖N+v‖∞ + ‖∂ξN+v‖∞ ≤ c4‖v‖∞.

Suppose that λ ∈ C satisfies two inequalities |λ| > 2‖η‖∞ and Re (λ + ηm) 6= 0, then we can
apply Remark A4 to Eq. (9.27) and obtain

‖v+‖∞ ≤ ‖(η + λ)−1‖∞
(
‖N+v‖∞ +

cs

|Re (λ+ ηm)|
(
‖∂ξN+v‖∞ + s‖(η + λ)−1‖∞‖N+v‖∞

))
≤ c4‖(η + λ)−1‖∞

(
1 +

cs

|Re (λ+ ηm)|
(
1 + s‖(η + λ)−1‖∞

))
‖v‖∞,
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where c > 0 is the constant from the formula (A.10), which in our case is independent of λ.
For every |λ| > 2‖η‖∞ we have ‖(λ+ η)−1‖∞ < 2/|λ| < 1/‖η‖∞, therefore

‖v+‖∞ ≤
2c4

|λ|

(
1 +

cs(1 + s/‖η‖∞)

|Re (λ+ ηm)|

)
‖v‖∞.

Similarly, we consider the second equation of the system (9.25) and obtain an analogous inequal-
ity for ‖v−‖∞. Altogether this implies that there exist two constants c5, c6 > 0 independent
of λ such that every solution v to Eq. (9.25) satisfies the inequality

‖v‖∞ ≤
1

|λ|

(
c5 +

c6

Re (λ+ ηm)

)
‖v‖∞,

provided |λ| is large enough and Re (λ + ηm) 6= 0. This means that Eq. (9.25) does not have
non-trivial solutions if

1

|λ|

(
c5 +

c6

|Re (λ+ ηm)|

)
< 1, or equivalently |Re (λ+ ηm)| > c6

|λ| − c5

.

Thus, all eigenvalues of the problem (9.25) lie in the region |Re (λ + ηm)| ≤ c7/|λ| with some
c7 > 0. Assuming c∗ = c3 and c∗∗ = c7 we obtain the above formulated spectral region
estimate.

0

−Re ηm 0

λ

0

−Re ηm 0

Figure 43: Schematic representation of the region determined by Proposition 9.13.

Remark 9.14 The region of the complex plane determined by Proposition 9.13 is shown schemat-
ically in Fig. 43. Note that for Imλ→ ±∞ the left and right borders of the shaded area converge
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asymptotically to the line Re λ = −Re ηm. Hence, the eigenvalues of the operator D +N con-
densate along this line for |λ| → ∞. Moreover, if Re ηm > 0, then there can be at most finitely
many eigenvalues with Re λ ≥ 0.

In the remaining part of the section we consider the eigenvalue problem (9.24) in the case
of the trigonometric coupling function (1.16). We are going to derive a characteristic equation
determining its eigenvalues. For this we rewrite Eq. (9.24) in the form(

s∂ξv+ − ηv+ − λv+

s∂ξv− − ηv− − λv−

)
= −1

2

(
e−iα −eiαa2

−e−iαa2 eiα

)(
Gv+

Gv−

)
. (9.28)

If (v+, v−)T is a solution of Eq. (9.28), then there exist numbers v̂k+, v̂
k
− ∈ C, k = 1, 2, 3, such

that

(Gv+)(ξ) =
3∑

k=1

v̂k+ϕk(ξ) and (Gv−)(ξ) =
3∑

k=1

v̂k−ϕk(ξ), (9.29)

where (ϕ1(ξ), ϕ2(ξ), ϕ3(ξ))T = (1, cos ξ, sin ξ)T are functions spanning the range of the opera-
tor G with the trigonometric coupling function (1.16). Inserting ansatz (9.29) into Eq. (9.28)
we obtain(

s∂ξv+ − ηv+ − λv+

s∂ξv− − ηv− − λv−

)
= −1

2

3∑
k=1

(
e−iαϕk −eiαa2ϕk

−e−iαa2ϕk eiαϕk

)(
v̂k+

v̂k−

)
. (9.30)

Let us define two functions

Φ+(ξ, λ) = exp

(
1

s

∫ ξ

−π
(η(y) + λ)dy

)
(9.31)

and

Φ−(ξ, λ) = exp

(
1

s

∫ ξ

−π
(η(y) + λ)dy

)
, (9.32)

and two integral operators

(K±(λ)u)(ξ) =
1

s

∫ ξ

−π
Φ±(ξ, λ)Φ−1

± (y, λ)u(y)dy.

Considering Eq. (9.30) as a two-dimensional ODE system with an initial condition v±(−π) = v̂0
±

we write its general solution in the form(
v+

v−

)
=

(
Φ+(ξ, λ) 0

0 Φ−(ξ, λ)

)(
v̂0

+

v̂0
−

)

− 1

2

3∑
k=1

(
e−iαK+(λ)ϕk −eiαK+(λ)(a2ϕk)

−e−iαK−(λ)(a2ϕk) eiαK−(λ)ϕk

)(
v̂k+

v̂k−

)
. (9.33)
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This formula yields a 2π-periodic function if and only if(
v̂0

+

v̂0
−

)
=

3∑
k=0

J0k(λ)

(
v̂k+

v̂k−

)
, (9.34)

where

J00(λ) =

(
Φ+(π, λ) 0

0 Φ−(π, λ)

)
and

J0k(λ) = −1

2

(
e−iαK+(λ)ϕk −eiαK+(λ)(a2ϕk)

−e−iαK−(λ)(a2ϕk) eiαK−(λ)ϕk

)∣∣∣∣∣
ξ=π

for k = 1, 2, 3.
Along with Eq. (9.34) the coefficients v̂k± in formulas (9.29) should also satisfy some self-

consistency relations following from the definition of the operator G. Indeed, for every v ∈
Cper([−π, π];C) the coupling function formula (1.16) yields

(Gv)(ξ) =
1

2π

∫ π

−π

(
ϕ1(ξ)ϕ1(y) + Aϕ2(ξ)ϕ2(y) + Aϕ3(ξ)ϕ3(y)

+ Bϕ3(ξ)ϕ2(y)−Bϕ2(ξ)ϕ3(y)
)
v(y)dy.

Comparing this identity with ansatz (9.29) we find

v̂1
± =

1

2π

∫ π

−π
ϕ1(y)v±(y)dy,

v̂2
± =

1

2π

∫ π

−π
(Aϕ2(y)−Bϕ3(y))v±(y)dy,

v̂3
± =

1

2π

∫ π

−π
(Aϕ3(y) +Bϕ2(y))v±(y)dy.

Inserting here v+ and v− from formula (9.33) we obtain(
v̂1

+

v̂1
−

)
=

3∑
k=0

J1k(λ)

(
v̂k+

v̂k−

)
, (9.35)

(
v̂2

+

v̂2
−

)
=

3∑
k=0

(AJ2k(λ)−BJ3k(λ))

(
v̂k+

v̂k−

)
, (9.36)

(
v̂3

+

v̂3
−

)
=

3∑
k=0

(AJ3k(λ) +BJ2k(λ))

(
v̂k+

v̂k−

)
, (9.37)
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where for every j, k = 1, 2, 3 we denote

Jj0(λ) =


1

2π

∫ π

−π
ϕjΦ+(·, λ) dξ 0

0 1
2π

∫ π

−π
ϕjΦ−(·, λ) dξ


and

Jjk(λ) = −1

2


e−iα

2π

∫ π

−π
ϕjK+(λ)ϕk dξ −e

iα

2π

∫ π

−π
ϕjK+(λ)(a2ϕk) dξ

−e
−iα

2π

∫ π

−π
ϕjK−(λ)(a2ϕk) dξ

eiα

2π

∫ π

−π
ϕjK−(λ)ϕk dξ

 .

Four equations (9.34) and (9.35)–(9.37) correspond to the eight-dimensional system

(v̂0
+, v̂

0
−, v̂

1
+, v̂

1
−, v̂

2
+, v̂

2
−, v̂

3
+, v̂

3
−)T = J(λ)(v̂0

+, v̂
0
−, v̂

1
+, v̂

1
−, v̂

2
+, v̂

2
−, v̂

3
+, v̂

3
−)T, (9.38)

where

J(λ) =


J00 J01 J02 J03

J10 J11 J12 J13

AJ20 −BJ30 AJ21 −BJ31 AJ22 −BJ32 AJ23 −BJ33

AJ30 +BJ20 AJ31 +BJ21 AJ32 +BJ22 AJ33 +BJ23

 .

Obviously, this system has non-trivial solutions if and only if λ ∈ C satisfies the characteristic
equation

det (I8 − J(λ)) = 0. (9.39)

Taking into account the constructive way of the derivation of Eq. (9.39), we obtain the following
proposition.

Proposition 9.15 In the case of the trigonometric coupling function (1.16) every eigenvalue
of the spectral problem (9.24) corresponds to a zero of Eq. (9.39) and vice versa.

Remark 9.16 Because of the complex phase-shift symmetry and translation symmetry of the
Ott-Antonsen equation (2.17), the characteristic equation (9.39) has always a double zero at
λ = 0. Hence, if Eq. (9.39) has no other solutions λ 6= 0 in the right half-plane Re λ ≥ 0,
then the corresponding travelling wave (9.1) is stable. In contrast, if Eq. (9.39) has at least one
solution λ with Re λ > 0, then the corresponding travelling wave (9.1) is unstable.

Note that Proposition 9.13 indicates that the operator D +N is of hyperbolic type and it is
known that the linear stability principle may fail for such operators [103]. However, the spectral
problem (9.24) is one dimensional in space (ξ ∈ R), therefore the relation between the stability
of travelling wave (9.1) and the position of the rightmost roots of Eq. (9.39) follows from [64].
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According to the definitions (9.31) and (9.32) the functions Φ+(ξ, λ) and Φ−(ξ, λ) are ana-
lytic with respect to λ in the whole complex plane, therefore the determinant det (I8 − J(λ))
is also analytic for all λ ∈ C. This implies that the characteristic equation (9.39) has only
isolated zeros of finite multiplicity. Moreover, if Re ηm > 0, then only finite number of them
can be found in the unstable half-plane Re λ ≥ 0, see Remark 9.14.

10 Conclusion and outlook

In this work, we gave a comprehensive overview of different synchrony patterns emerging in
spatially extended networks of coupled phase oscillators. We focused mainly on the networks
of the form (1.14) and their two- and three-dimensional generalizations. The choice of the
sinusoidal phase coupling function allowed us to exploit the full potential of the Ott-Antonsen
method [88]. Thus, we could completely solve the existence and stability problem for stationary,
periodically breathing and travelling coherence-incoherence patterns. Importantly, we have not
only obtained many theoretical results, but also demonstrated their application on specific
examples.

Note that our approach to relative equilibria and relative periodic orbits of the Ott-Antonsen
equation (2.19) is not limited to periodic boundary conditions in space. With a suitable def-
inition of the integral operator G, it can be easily extended to the case of arrays with open
boundary conditions and even to the case of unbounded arrays (see [70, 58] for examples of
phase models with such boundary conditions). In a more general context, the mathematical
methods developed in this work can be adapted to other phase models concerned with the appli-
cation of the Ott-Antonsen ansatz. These are, for example, networks of pulse-coupled Winfree
oscillators [94], networks of theta neurons [65, 60, 15], and networks of quadratic integrate-
and-fire neurons [74, 28]. Further potential applications include also random networks [3] and
systems of coupled oscillators with distributed parameters [104, 40]. Moreover, beyond the Ott-
Antonsen theory, many of our theoretical constructions and formulas can be used as a starting
point to describe the dynamical behaviour of spatially extended phase oscillator models with
noise and non-sinusoidal phase coupling functions. All these facts indicate the relevance of the
reported results and their importance for future research at the intersection of synchronization
and pattern formation theories.
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Appendix

Let us consider a linear differential equation

du

dx
− ν(x)u(x) = f(x), x ∈ [−π, π], (A.1)

with a continuous 2π-periodic coefficient ν and a continuous 2π-periodic inhomogeneity f .
Below we formulate sufficient conditions for the solvability of Eq. (A.1) in the space of smooth
2π-periodic functions and provide an explicit solution formula.

Proposition A1 Suppose that ν ∈ Cper([−π, π];C) and

Φ(π) 6= 1 where Φ(x) := exp

(∫ x

−π
ν(y)dy

)
. (A.2)

Then for every f ∈ Cper([−π, π];C) there exists a unique solution u ∈ C1
per([−π, π];C) to

Eq. (A.1) given by the formula

u(x) =

∫ π

−π
K(x, y)f(y)dy, (A.3)

where

K(x, y) =
Φ(π) + (1− Φ(π))Θ(x− y)

1− Φ(π)
Φ(x)Φ−1(y).

Proof: The general solution to Eq. (A.1) is given by the formula

u(x) = u∗ exp

(∫ x

−π
ν(y)dy

)
+

∫ x

−π
f(y) exp

(∫ x

y

ν(ξ)dξ

)
dy

= u∗Φ(x) +

∫ x

−π
Φ(x)Φ−1(y)f(y)dy (A.4)

where u∗ ∈ C denotes the initial condition u(−π) = u∗. This solution is 2π-periodic if and only
if u(π) = u(−π), e.g.

u∗ (1− Φ(π)) =

∫ π

−π
Φ(π)Φ−1(y)f(y)dy.

Because of (A.2) the latter equation can be solved with respect to u∗. Inserting the result into
formula (A.4) and performing straightforward transformations we obtain (A.3).
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Remark A2 Let K : Cper([−π, π];C)→ C1
per([−π, π];C) be the solution operator to Eq. (A.1)

defined by formula (A.3). If min
x∈[−π,π]

|νr(x)| > 0 where νr(x) = Re ν(x), then

‖Kf‖∞ ≤
∥∥∥∥ fνr

∥∥∥∥
∞
. (A.5)

Proof: Formula (A.3) implies

|(Kf)(x)| ≤
∥∥∥∥ fνr

∥∥∥∥
∞

∫ π

−π
|K(x, y)| |νr|dy. (A.6)

Then, using the inequality | sinh Λ| ≥ | sinh Λr| where Λr = Re Λ, we obtain

|K(x, y)| ≤ 1

2| sinh Λr|
exp

(∫ x

y

νr(ξ)dξ + Λrsign(x− y)

)
.

According to Proposition A1, the formula

u0(x) =

∫ π

−π

1

2| sinh Λr|
exp

(∫ x

y

νr(ξ)dξ + Λrsign(x− y)

)
|νr(y)|dy

gives the 2π-periodic solution to the equation

du

dx
− νr(x)u(x) = −νr(x),

hence u0(x) = 1. Taking into account that the integral in the right-hand side of the inequal-
ity (A.6) is bounded by u0(x), we obtain (A.5).

Remark A3 Suppose that Re ν0 6= 0 where

ν0 =
1

2π

∫ π

−π
ν(ξ)dξ, (A.7)

then there exists a constant c0 > 0 depending on the difference ν(x)− ν0 only such that

‖Kf‖∞ ≤
c0

|Re ν0|
‖f‖∞, (A.8)

where K is the solution operator to Eq. (A.1) defined by formula (A.3).
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Proof: Because of the definition (A.7), the function

u1(x) = exp

(∫ x

−π
(ν(ξ)− ν0)dξ

)
is 2π-periodic function, therefore via the transformation u(x) = ũ(x)u1(x) every 2π-periodic
solution to Eq. (A.1) corresponds to a 2π-periodic solution of the equation

dũ

dx
− ν0ũ(x) =

f(x)

u1(x)
, x ∈ [−π, π], (A.9)

and vice versa. Applying formula (A.5) from Remark A2 we find that every solution ũ to
Eq. (A.9) satisfies the inequality

‖ũ‖∞ ≤
1

|Re ν0|

∥∥∥∥ fu1

∥∥∥∥
∞
.

Therefore because of the relation u = ũu1 connecting the solution u of Eq. (A.1) with the
solution ũ of Eq. (A.9) we obtain

‖Kf‖∞ ≤ ‖ũ‖∞ ‖u1‖∞ ≤
1

|Re ν0|
‖u1‖∞‖u−1

1 ‖∞‖f‖∞.

Recall that the function u1 is expressed via the difference ν − ν0 only, thus formula (A.8) is
completely justified.

Remark A4 Let K : Cper([−π, π];C)→ C1
per([−π, π];C) be the solution operator to Eq. (A.1)

defined by formula (A.3) and let the following assumptions are satisfied:
1) ν ∈ C1

per([−π, π];C),
2) |ν(x)| 6= 0 for all x ∈ [−π, π],
3) Re ν0 6= 0, where ν0 is defined by formula (A.7).

Then there exists a constant c > 0 depending on the difference ν(x) − ν0 only such that for
every f ∈ C1

per([−π, π];C) we have

‖Kf‖∞ ≤ ‖ν−1‖∞
(
‖f‖∞ +

c

|Re ν0|
(
‖∂xf‖∞ + ‖ν−1‖∞‖f‖∞

))
. (A.10)

Proof: Integrating by parts the right-hand side of formula (A.3) and using the periodicity
of functions ν and f we obtain

(Kf)(x) = −f(x)

ν(x)
+

∫ π

−π
K(x, y)

d

dy

(
f(y)

ν(y)

)
dy.
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Now, the triangle inequality for the norm ‖ · ‖∞ and the Remark A3 yield

‖Kf‖∞ ≤ ‖ν−1‖∞‖f‖∞ +
c0

|Re ν0|

∥∥∥∥ ddx
(
f

ν

)∥∥∥∥
∞
,

where c0 > 0 depends on the difference ν− ν0 only. On the other hand, because of the quotient
rule we get∥∥∥∥ ddx

(
f

ν

)∥∥∥∥
∞

=

∥∥∥∥∂xfν − f∂xν

ν2

∥∥∥∥
∞
≤ ‖ν−1‖∞

(
‖∂xf‖∞ + ‖∂xν‖∞‖ν−1‖∞‖f‖∞

)
,

therefore

‖Kf‖∞ ≤ ‖ν−1‖∞
(
‖f‖∞ +

c0

|Re ν0|
(
‖∂xf‖∞ + ‖∂xν‖∞‖ν−1‖∞‖f‖∞

))
.

Taking into account that ‖∂xν‖∞ = ‖∂x(ν − ν0)‖∞ we justify the formula (A.10).
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[131] P. Wilczyński, “Planar nonautonomous polynomial equations: The Riccati equation”, J.
Differential Equations 244, 1304–1328 (2008)

[132] D. A. Wiley, S. H. Strogatz, and M. Girvan, “The size of the sync basin”, Chaos 16,
015103 (2006)

[133] A. T. Winfree, The Geometry of Biological Time, Springer, Berlin, 1980

[134] M. Wolfrum, O. E. Omel’chenko, S. Yanchuk, and Y. L. Maistrenko, “Spectral properties
of chimera states”, Chaos 21, 013112 (2011)

[135] M. Wolfrum and O. E. Omel’chenko, “Chimera states are chaotic transients”, Phys. Rev.
E 84 015201 (2011)

[136] J. Xie, E. Knobloch, and H.-C. Kao, “Multicluster and traveling chimera states in nonlocal
phase-coupled oscillators”, Phys. Rev. E 90, 022919 (2014)

[137] J. Xie, E. Knobloch, and H.-C. Kao, “Twisted chimera states and multicore spiral chimera
states on a two-dimensional torus”, Phys. Rev. E 92, 042921 (2015)

[138] J. Xie, H.-C. Kao, and E. Knobloch, “Chimera states in systems of nonlocal nonidentical
phase-coupled oscillators”, Phys. Rev. E 91, 032918 (2015)

[139] S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, and H. Oka-
mura, “Synchronization of cellular clocks in the suprachiasmatic nucleus”, Science 302,
1408–1412 (2003)

[140] Y. Zhang, Z. G. Nicolaou, J. D. Hart, R. Roy, and A. E. Motter, “Critical switching in
globally attractive chimeras”, Phys. Rev. X 10, 011044 (2020)

152


	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	1.1 Self-sustained oscillators and synchronization phenomena
	1.2 Phase models
	1.3 Spatially extended oscillator systems and nonlocal coupling
	1.4 Phenomenology of spatially extended oscillatory systems
	1.5 Extensive chaos in coupled oscillator systems

	2 Continuum limit formalism
	2.1 Ott-Antonsen manifold
	2.2 Dynamics in the Ott-Antonsen manifold
	2.3 Ott-Antonsen equations for spatially extended oscillatory systems

	3 Completely incoherent state
	4 Relative equilibria of the Ott-Antonsen equation
	4.1 Riccati equation with constant coe�cients
	4.2 Self-consistency equation
	4.3 Modified self-consistency equation
	4.4 Stability analysis
	4.5 Computation of the discrete spectrum

	5 Nonlocal coupling of the convolution type
	5.1 Twisted states
	5.2 Primary branches of spatially modulated partially coherent states
	5.3 The uniform partially coherent state and secondary branches of spatially modulated partially coherent states

	6 Stationary chimera states in oscillator arrays of di erent dimensionality
	6.1 The Ott-Antonsen equation method
	6.2 Antiphase chimeras in 1D, 2D and 3D
	6.3 Twisted chimeras (2D) and twisted planes (3D)
	6.4 Spiral chimera (2D) and spiral rolls (3D)
	6.5 Classical chimera (1D), coherent stripe (2D) and coherent plane (3D)
	6.6 Coherent spot (2D) and coherent tube (3D)
	6.7 Coherent ball (3D)
	6.8 Other coupling functions
	6.9 Open problems

	7 Breathing chimera states
	7.1 Periodic complex Riccati equation
	7.2 Solution operator U for periodic complex Riccati equation
	7.3 Derivatives of the solution operator U
	7.4 Self-consistency equation
	7.5 Modified self-consistency equation
	7.6 Modified self-consistency equation for cosine coupling function
	7.7 Stability analysis of relative periodic orbits
	7.8 Computation of the discrete spectrum
	7.9 Example of a breathing chimera state

	8 Nonstationary coherence-incoherence patterns
	8.1 Poincaré section method
	8.2 Stability diagram of nonstationary coherence-incoherence patterns
	8.3 Remarks

	9 Travelling chimera states
	9.1 Continuation algorithm for travelling chimera states
	9.2 Stability of travelling chimera states

	10 Conclusion and outlook
	Appendix
	Acknowledgements
	References

