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Abstract

The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising
from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone
of cavity quantum electrodynamics (cQED), and theoretically well established. Recently,
Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predic-
tions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with
the many-body theory needed to describe trapped atomic BECs. Tools and methods are
developed in a second-quantized picture that treats atom and photon fields on the same
footing. We formulate a diagrammatic expansion using correlation functions for both the
electromagnetic field and the atomic system.

The formalism is applied to investigate, for BECs trapped near surfaces, dispersion
interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in
spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect,
which arises from the quantum fluctuations in an interacting BEC.

Zusammenfassung

Die durch (quantenmechanische und thermische) Fluktuationen des elektromagnetischen
Feldes hervorgerufene Casimir-Polder-Wechselwirkung zwischen einem elektrisch neu-
tralen Atom und einer benachbarten Oberfläche stellt einen theoretisch gut untersuchten
Aspekt der Resonator-Quantenelektrodynamik (cavity quantum electrodynamics, cQED)
dar. Seit kurzem werden atomare Bose-Einstein-Kondensate (BECs) verwendet, um die
theoretischen Vorhersagen der cQED zu überprüfen. Das Ziel der vorliegenden Arbeit ist
es, die bestehende cQED Theorie für einzelne Atome mit den Techniken der Vielteilchen-
physik zur Beschreibung von BECs zu verbinden. Es werden Werkzeuge und Methoden
entwickelt, um sowohl Photon- als auch Atom-Felder gleichwertig in zweiter Quantisie-
rung zu beschreiben. Wir formulieren eine diagrammatische Störungstheorie, die Korrela-
tionsfunktionen des elektromagnetischen Feldes und des Atomsystems benutzt.

Der Formalismus wird anschließend verwendet, um für in Fallen nahe einer Ober-
fläche gehaltene BECs Atom-Oberflächen-Wechselwirkungen vom Casimir-Polder-Typ
und die bosonische Stimulation des spontanen Zerfalls angeregter Atome zu untersuchen.
Außerdem untersuchen wir einen phononischen Casimir-Effekt, der durch die quantenme-
chanischen Fluktuationen in einem wechselwirkenden BEC entsteht.
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CHAPTER 1
Introduction

The Casimir effect, cavity quantum electrodynamics, and Bose-Einstein
condensates

The name of the Dutch physicist Hendrik Casimir is associated with several phe-
nomena where detectable forces between macroscopic bodies or single atoms arise
from a –quoting Casimir and Polder (1948)– ‘somewhat academic exercise in
quantum electrodynamics’.

In its strict sense, the term ‘Casimir effect’ refers to Casimir’s prediction of an
attractive force acting between two neutral, electrically conducting plates placed in
the vacuum (Casimir, 1948). From the standpoint of classical electromagnetism,
there is no interaction between the two neutral plates, but Casimir took into ac-
count the vacuum-fluctuations of the electromagnetic (em) field. The plates im-
pose boundary conditions on the em field, and the spectrum of the vacuum energy
contained in the resonator volume between the plates changes upon varying their
separation L. Casimir found a resulting force which varies as L−4, at a distance of
1µm, two plates of area 1 mm2 attract each other with a force of 10−9 N. An early
attempt by Sparnaay (1958) to experimentally verify this effect did not yield con-
clusive results, but a series of precision experiments in the late 1990s, beginning
with Lamoreaux (1997), could establish the Casimir force as a direct manifestation
of the electromagnetic zero-point energy.1

For Casimir’s argument, it is, however, not essential that the fluctuating medium
is the em field in its vacuum state. Mehra (1967) showed that the effect of ther-
mal fluctuations of the em field on the interaction of the plates actually dominates
the quantum Casimir force for large plate separations. At room temperature, this
thermal contribution to the Casimir effect changes the distance-dependence of the

1For a comprehensive review of the Casimir effect, see for example Bordag et al. (2001); Lam-
oreaux (2005); Milton (2001); Mostepanenko and Trunov (1997).
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1. INTRODUCTION

force into a kBT/L3 power-law for distances larger than 3µm, an effect observed
in the recent experiment by Sushkov et al. (2011).

The so-called critical Casimir effect does not deal with the em field at all, but
describes forces that arise in adsorbed films of liquids near a second order phase
transition. The fluctuating quantity is the order parameter, the resulting forces
are observable in the thickness of the film (see Gambassi et al. (2009) and the
references therein).

Two other effects involving neutral atoms with electric dipole moments were
explained within the framework of quantum electrodynamics by Casimir and Polder
in their 1948 seminal paper: The Casimir-Polder-van der Waals (CPvdW) interac-
tion between two atoms, and the Casimir-Polder (CP) interaction between an atom
and a macroscopic body. (For simplicity, we will only consider the case of the
macroscopic body being a plane, infinitely extended surface.) As in the well-
known Lamb shift in atomic hydrogen (Bethe, 1947), the energy level structure of
an atom is disturbed by the zero-point fluctuations of the em field. If the presence
of an additional atom or a surface alters the spectrum of the zero-point fluctua-
tions, the first atom’s energy shift depends on the inter-atomic distance or the atom
surface distance, respectively, resulting in an interaction potential.

For two atoms in their internal ground state (separated by a distance r), Casimir
and Polder found an attractive CPvdW-potential which behaves as r−6 for inter-
atomic distances smaller than typical atomic transition wavelengths from the ground
state, and as r−7 for larger distances. Historically, the r−6 potential had al-
ready been found in 1930 by Eisenschitz and London2 in an attempt to quantum-
mechanically explain the weak intermolecular forces which were introduced heuris-
tically half a century earlier by van der Waals (see Maxwell, 1874) in his equation
of state. While London’s calculation is based on the interaction energy of fluctu-
ating dipole moments, Casimir focused on the local action of fields at the position
of the atoms. This includes the effect of retardation due to the finite speed of light,
which results in the modification of the power-law behavior at large distances.
For a comprehensive derivation of the CPvdW-potential, see Craig and Thiruna-
machandran (1998, chap. 7).

The CP-potential between a single atom and a surface shows the same effect of
retardation, the power law changes from d−3 to d−4 with increasing atom-surface
separation d.3 Again, the non-retarded behavior was already known from an earlier
calculation by Lennard-Jones (1932). The retardation effect in the CP-potential
has been observed in the experiments of Sukenik et al. (1993) and Bender et al.
(2010).

Since a thorough understanding of the vacuum state is vital for any quantum

2See Eisenschitz and London (1930); London (1930).
3A compilation of the different power law forces mentioned here can be found in (Scheel and

Buhmann, 2008, p. 780).
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field theory (see Milonni, 1993), the Casimir effect is an interesting topic of theo-
retical physics in its own right. Precise knowledge of Casimir forces also enables
tests on possible extensions of the Standard Model of particle physics, where addi-
tional fields or extra-dimensional physics predict long range interactions between
massive bodies. Upon measuring the forces between two macroscopic, neutral
bodies, these hypothetical interactions would result in deviations from the com-
bined gravitational- and Casimir force. Precision measurements of Casimir forces
are used to set upper bounds on the strength of the hypothetical interactions, which
are called non-Newtonian gravity in the present context (see Mostepanenko et al.,
2008).

Apart from their appeal to theorists, Casimir- and CP-forces play also an im-
portant role in several technological applications. In atom chips, ultracold atoms
are confined and manipulated by magnetical traps above a microstructured surface
(see Reichel and Vuletic (2011) for a recent review). Quantum bits can be stored
and processed in superpositions of the internal states of the trapped atoms, but in-
teraction with the em-field fluctuations near the chip surface limits their coherence
time. This limits applications in quantum-computing, where several quantum gate
operations have to be processed during the lifetime of the superposition states.
In microelectromechanical systems (MEMS), the Casimir force between different
mechanical components has been identified as one of the main causes for the phe-
nomenon of stiction: movable elements collapse into nearby surfaces, resulting in
their permanent adhesion.4 For micromachined parts with nanometer-scale surface
roughness, which are in direct mechanical contact with each other, Casimir forces
between the non-contacting portions of the interface are also the main causes for
interfacial adhesion and friction (DelRio et al., 2005). A bridge between the lan-
guage used in such problems of the applied sciences and engineering and Casimir’s
‘academic exercise’ is provided in the book by Parsegian (2005), which presents
formulae for calculating Casimir forces in a wide variety of geometries.

Since Casimir’s calculation, the study of the perturbation produced by bound-
aries on the em field and on the radiative properties of atoms coupled to the field
has evolved into the discipline of cavity quantum electrodynamics (cQED, see for
example Haroche (1992) or Hinds (1994) for an overview). Apart from the ef-
fects of CP-forces, the excited atomic state decay can be suppressed or enhanced
by placing an atom in a cavity structure or close to a surface, as the process of
spontaneous emission also depends on the vacuum fluctuations of the em field.

Experiments in cQED have mostly been focusing on the manipulation of single
atoms. Only in the past few years have trapped Bose-Einstein condensates (BECs)
of ultracold alkali atoms emerged as a tool to explore cQED effects. A trapped
BEC with its well-controlled quantum state, which can be theoretically character-
ized by only a few parameters (like the atomic mass and s-wave scattering length

4See Buks and Roukes (2001); Stipe et al. (2001).

3



1. INTRODUCTION

and the frequencies of the trapping potential) provides a sensitive probe of cQED
interactions. In an experimental setup proposed by Antezza et al. (2004), a partic-
ular trap oscillation mode (the so-called dipole mode) is excited in a BEC trapped
a few micrometers above a surface. This oscillation is only very weakly damped,
and the shift in the oscillation frequency due to the CP-potential can be measured
with high accuracy. The measurement proved sensitive enough to detect the re-
tardation of the CP-potential and also the crossover into the thermal regime in the
experiments of Harber et al. (2005) and Obrecht et al. (2007). Likewise, Dalvit
et al. (2008) and Moreno et al. (2010) calculated the effects of the CP-potential
above a corrugated surface on the excitation spectrum of a BEC trapped close to
the surface.

The calculations mentioned above use a local CP-potential which then acts by
spatially averaging over the density distribution of the trapped atom cloud. As
BECs show spatial coherence over a macroscopic range, one might expect that
not all effects of the condensate-field interaction can be fully captured by such
a local approach. The aim of this thesis is therefore to develop a calculational
framework in which the fluctuations of the em-field, which underlie cQED effects,
and the many-body field theory describing atomic BECs are treated on the same
footing. We build our approach on the quantum field theory for photons and atoms
established by Lewenstein et al. (1994) and Zhang and Walls (1994) for the case
of the em-field in free space.

The present text is organized as follows: chapter 2 gives a brief account of the
treatment of trapped atomic BECs within the Bogoliubov approximation, focus-
ing on the low-temperature properties of interacting Bose gases and on the phe-
nomenon of long-range correlation. In chapter 3, we consider a weakly interacting
uniform BEC at zero temperature, and discuss how the quantum fluctuations on
top of the condensate ground state give rise to Casimir forces, an effect similar
to the critical Casimir effect mentioned above. The remaining sections deal with
the interaction of atoms and BECs with the em-field: in chapter 4, we lay out our
perturbative formalism for the atom-field interaction, and apply it to calculate the
self-energy acquired by single atoms through their interaction with the field. We
then discuss how the self-energy is modified by the presence of a nearby surface,
and thereby reproduce in an economical fashion the results for atomic transition
rates and the CP-interaction near a surface. In chapter 5, we derive an expression
for the collective CP-interaction of a trapped gas of condensed bosons with a plane
surface, and point out the differences to the single atom theory. In chapter 6, we
show how the spontaneous emission rate of an excited two-level atom placed in
a trapped BEC of ground-state atoms is enhanced by bosonic stimulation. This
stimulation provides a probe of the spatial coherence of the Bose gas. The effect
can be used to amplify the distance-dependent decay rate of an excited atom near
an interface. Finally, chapter 7 briefly describes how processes of higher order in
the atom-field interaction can be described with the techniques developed in the
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previous chapters.
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CHAPTER 2
Weakly interacting, dilute BECs

In the textbook model of an ideal Bose gas consisting of noninteracting particles, a
large fraction of particles accumulates in the ground state of the trapping potential
for temperatures below a critical value Tc. The presence of such a macroscop-
ically occupied state in dilute vapors of trapped alkali atoms was first observed
by Anderson et al. (1995) and Davis et al. (1995). While in the ideal gas model
at zero temperature all particles occupy the ground state, the effect of (repulsive)
interparticle interactions is to scatter particles out of the condensate state. Fol-
lowing the approach of Bogoliubov (1947), which we introduce in section 2.1,
the particles in the condensate mode can be described as a classical field. We
analyze the coherence properties of this matter-wave field in section 2.2. For suffi-
ciently dilute samples of ultracold alkali atoms, the interaction-induced depletion
of the condensate will be a small effect, which permits a perturbative expansion in
the interparticle interactions.1 After introducing an effective Hamiltonian for the
interparticle-interaction in section 2.3, we follow the treatment of Fetter (1972,
1999) to obtain equations of motion governing the macroscopically occupied state
and small fluctuations of non-condensed particles, namely the Gross-Pitaevskii
and Bogoliubov-de Gennes equations.2 We apply the perturbative approach of
section 2.4 to treat the case of an uniform interacting BEC in section 2.5 and of a
BEC in a harmonic trap in section 2.6.

The main purpose of the sections below is to collect basic results which are
applied in the description of BEC in the following chapters. For a systematic
overview on the vast amount of theoretical work on Bose-Einstein condensation in

1In contrast, superfluid helium is a strongly interacting system (see Hohenberg and Martin,
1965).

2For an overview on other perturbative methods that also include backaction of the non-
condensate fraction on the condensate, see Castin (2001); Proukakis and Jackson (2008).
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2. WEAKLY INTERACTING, DILUTE BECS

atomic gases, see for example Pitaevskii and Stringari (2003) or Pethick and Smith
(2002).

2.1 Field operators and the Bogoliubov approximation

We describe the system of trapped atoms by second quantized field operators3

Ψ̂†(r) and Ψ̂(r) that create (annihilate) an atom at point r. They fulfill the usual
bosonic commutation relations

[Ψ̂(r1), Ψ̂†(r2)] = δ(r1 − r2), [Ψ̂(r1), Ψ̂(r2)] = 0 . (2.1)

The one-body correlation function

n(1)(r1, r2) = 〈Ψ̂†(r1)Ψ̂(r2)〉 (2.2)

accounts for the spatial coherence between r1 and r2. In particular, the density
n(r) ≡ n(1)(r, r) is the probability of finding a boson at r, and the total number
of particles is

N =

∫
d3r n(r) . (2.3)

The eigenvalue equation∫
d3r2 n

(1)(r1, r2)χj(r2) = njχj(r1) (2.4)

provides a basis of orthonormalized single particle wave functions {χi(r)} (see
Pitaevskii and Stringari, 2003, chap. 1). These functions can be used to expand the
field operator in the form

Ψ̂(x) =
∑
j

χj(x) âj , (2.5)

where â†j and âj are the creation and annihilation operators of a particle in the state
|χj〉. They obey the commutation relations

[âi, â
†
j ] = δij , [âi, âj ] = 0 . (2.6)

The eigenvalues nj of eqn. (2.4) are the occupation numbers of the single particle
states |χj〉. Bose-Einstein condensation occurs when one of these states (labeled
by j = 0) is occupied in a macroscopic way, that is, when the eigenvalue n0

3In chapter 4, we also consider the internal electronic state of the condensate atoms and intro-
duce operators Ψ̂g and Ψ̂e that annihilate a ground state or an excited state atom, respectively. In
the present context, the (indistinguishable) atoms are all supposed to be in the same electronic state,
and we therefore skip the label.

8



2.2. Critical temperature and long-range order

assumes a value N0 which is of the order of the total particle number N , while the
other single particle states have an occupation of order 1 (see Penrose and Onsager,
1956). As the so-called condensate wave function relative to the macroscopic
eigenvalue N0 plays a crucial role in the theory of BEC, it is useful to separate the
condensate term from the other components in the field operator:

Ψ̂(r) = χ0(r) â0 +
∑
j 6=0

χj(r) âj . (2.7)

We now apply the Bogoliubov approximation (see Bogoliubov, 1947): it con-
sists of replacing the operators â0 and â†0 by the c-number

√
N0. We thus ignore the

noncommutativity of â0 and â†0 and treat the component χ0â0 of the field operator
as a classical field. This is a good approximation for describing the macroscopic
phenomena associated with BEC, where 〈â†0â0〉 = N0 � 1, while the commu-
tator between the two operators is equal to 1. The resulting field operator in the
Bogoliubov approximation reads

Ψ̂(r) ≈ Φ(r) + φ̂(r) , (2.8)

where we defined Φ =
√
N0χ0 and φ̂ =

∑
j 6=0 χj(r)âj , and the number density

is given by

n(r) = |Φ(r)|2 + 〈φ̂†(r)φ̂(r)〉 ≡ n0(r) + n′(r) . (2.9)

2.2 Critical temperature and long-range order in an ideal Bose gas

For a system of non-interacting atoms, the total Hamiltonian consists of a sum of
single particle Hamiltonians H(1), and the single particle states χi are obtained by
solving the Schrödinger equation

H(1)χi(r) = εi χi(r) .

For this simple case, the grand canonical partition function can be evaluated ana-
lytically (see Pitaevskii and Stringari, 2003, sec. 3.1), and the total particle number
N is expressed in terms of the average occupation numbers ni of the ith single par-
ticle state via

N =
∑
i

1

eβ(εi−µ) − 1
=
∑
i

ni . (2.10)

For all occupation numbers to be non-negative, this provides the constraint µ < ε0
for the chemical potential of the ideal Bose gas, where ε0 is the lowest eigenvalue
of the Hamiltonian H(1). We can split the total particle number into particles in
the condensate and particles out of the condensate (also called the thermal compo-
nent):

N = N0 +N ′ , (2.11)

9



2. WEAKLY INTERACTING, DILUTE BECS
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Figure 2.1: One-body density function n(1)(r1, r2) = n(1)(|r1−r2|) ≡ n(1)(r)
(see eqn. (2.16)) for an ideal Bose gas of density n confined to a box, at temper-
atures above and below the critical temperature Tc (2.14). Blue (red) curve:
T = 0.5Tc and T = 1.2Tc, respectively. Horizontal dashed-dotted line: the
condensate fraction N0/N (2.15) for T = 0.5Tc. Dashed curve: the asymptotic
expression (2.17) at T = 1.2Tc.

where N0 ≡ n0 and
N ′(T, µ) =

∑
i 6=0

ni(T, µ) .

For a fixed temperature, the function N ′(µ) reaches its maximum at µ = ε0 (see
Pitaevskii and Stringari, 2003, sec. 3.1), and we can define a critical temperature
Tc by the relation

N ′(Tc, µ = ε0) = N . (2.12)

If N ′(T, µ = ε0) is smaller than the total particle number (or, equivalently, T <
Tc), then µ will approach ε0 in the thermodynamic limit in order to fulfill the con-
dition (2.11), andN0 becomes increasingly large (see eqn. (2.10)). Thus Tc defines
the temperature below which Bose-Einstein condensation, that is, the macroscopic
occupation of a single particle state, takes place.

For the simple model of an ideal Bose gas confined to a box of volume V at a
density n = N/V (with periodic boundary conditions imposed on the plane wave
functions χi), the number of particles out of the condensate takes the value (see
Pitaevskii and Stringari, 2003, sec. 3.2)

N ′ =
V

λ3
T

g3/2(z) , (2.13)

10



2.2. Critical temperature and long-range order

where gn(z) denotes the polylogarithm, z = eβµ is the fugacity and λT the thermal
wavelength

λT =

√
2π~2

MkBT
.

Relation (2.12) yields

kBTc =
2π~2

M

(
n

g3/2(1)

)2/3

(2.14)

(with g3/2(1) = ζ3/2 ≈ 2.61), the critical temperature is fully determined by the
density n and the atomic mass M . By setting µ = ε0 = 0 in eqn. (2.13), we obtain
the value of the condensate fraction for T < Tc:

N0

N
= 1−

(
T

Tc

)3/2

. (2.15)

The one-body correlation function (2.2) evaluates to (see Cohen-Tannoudji and
Robilliard, 2001, sec. 2.3)

n(1)(r) =
N0

V
+

1

λ3
T

∞∑
l=1

zl

l3/2
exp

[−πr2

lλ2
T

]
, (2.16)

where r ≡ |r1 − r2|. For T � Tc, we have z � 1 and N0 is negligibly small.
From eqn. (2.13), we then get n = z/λ3

T +O(z2). Setting z = nλ3
T in eqn. (2.16)

and again neglecting N0 and terms of O(z2), we have

n(1)(r) ≈ n e−πr2/λ2T , T � Tc , (2.17)

which recovers the coherence length λT /
√
π of a classical Maxwell-Boltzmann

gas. If, on the other hand, T < Tc, we have z = 1 and the distance-independent
term N0/V in eqn. (2.16) assumes a finite value. This prevents n(1)(r) from go-
ing to zero at large distances, corresponding to an infinite correlation length. The
macroscopic population of the condensate state thus goes along with a long range
spatial order, which is in reality of course limited by the spatial extent of the sys-
tem. In fig. 2.1, n(1)(r) is shown for two different temperatures above and below
the critical value (red (blue) curve, respectively), compare to fig. 2.2 for a spatially
inhomogeneous system. The phenomenon of long-range spatial coherence can be
observed in the formation of interference patterns, see for example Andrews et al.
(1997); Bloch et al. (2000).
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2. WEAKLY INTERACTING, DILUTE BECS

2.3 Effective Hamiltonian for interacting atomic BECs

As the ground state of most interacting atomic systems corresponds to a solid, the
gas phase in the quantum degenerate regime represents a metastable configuration,
where thermalization is ensured by two-body collisions. Eventually, three-body
collisions will drive the system into the solid configuration, but the experimental
realization of the quantum gas phase with several atomic species has shown that
the metastable state survives long enough to allow for systematic measurements.
To arrive at a simple description of the BE-condensed gas phase, we neglect ef-
fects due to collisions involving more than two atoms. This is supposed to be a
good approximation if the atomic gas is sufficiently dilute, that is, if the range of
the interatomic potential is much smaller than the average distance between the
particles. In terms of the field operators defined above, a generic Hamiltonian then
reads

H =

∫
d3r

{
Ψ̂†(T + Vt)Ψ̂

}
+HAA , (2.18)

with the kinetic energy operator

T = −~2−→52

2M
, (2.19)

a trapping potential Vt(r), and HAA describing the interaction between pairs of
atoms via an interatomic potential V (r1 − r2):

HAA =
1

2

∫
d3r1

∫
d3r2 Ψ†(r2)Ψ†(r1)V (r1 − r2) Ψ(r2)Ψ(r1) . (2.20)

The interatomic potential for alkali atoms has a repulsive hard core, but as it also
contains bound states corresponding to molecular states of two atoms, it is not
feasible to retain the true potential V (r1−r2) in the Hamiltonian (2.18).4 With the
binary interactions in a Bose condensed gas taking place only at low energies (the
collision energy ~k2/M is on the order of kBT in the thermal gas), their effect on
the macroscopic properties of the gas is not sensitive to the details of the scattering
potential, but only to the s-wave scattering amplitude. We can therefore replace the
exact interaction potential by a model potential that reproduces the same scattering
properties at low energy, that is, that has the same scattering length. Using the
singular contact potential5

V (r1 − r2) = g δ(r1 − r2) , (2.21)

4See Castin (2001, chap. 3) for a detailed account.
5We will only consider the case g > 0, although condensates with attractive interaction (for

example 7Li (Bradley et al., 1997, 1995)) can also be held in a metastable state in traps as long as
the particle number does not exceed a critical value.
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2.4. Perturbative treatment of weak interactions

the Born approximation for the s-wave scattering length as and its first correction
yield in the low energy limit (see Fetter, 1999, chap. 1)

4π~2as
M

= g − Mg2

~2

∫
d3p

(2π)3

1

p2
. (2.22)

To relate the potential-strength g to the measurable s-wave scattering length, we
can set

g =
4π~2as
M

(2.23)

in calculations involving interactions between condensate atoms only. We will
see below that the divergent O(g2) term in eqn. (2.22) is needed as a counterterm
to cancel divergences when scattering between condensate and non-condensate
atoms is considered. The condition of diluteness formulated at the beginning of
the section can now be expressed as n|as|3 � 1, where n is the mean density.

Using the pseudopotential (2.21) in the interaction term HAA, our effective
many-body Hamiltonian for a dilute, weakly interacting Bose gas finally reads

H =

∫
d3r

{
Ψ̂†(T + Vt)Ψ̂ +

1

2
gΨ̂†Ψ̂†Ψ̂Ψ̂

}
. (2.24)

After the Bogoliubov approximation eqn. (2.8) is made, the above Hamiltonian
no longer conserves the number of particles. We therefore introduce a chemical
potential µ and work in the following with the expression

K = H − µ
∫
d3r Ψ̂†Ψ̂ , (2.25)

rather than with H itself. The expectation value of K is the thermodynamical
potential in the grand canonical ensemble at temperature T and chemical potential
µ.

2.4 Perturbative treatment of weak interactions

By inserting the field operator in the Bogoliubov approximation into the general
expression (2.25) for K and sorting the terms in orders of the fluctuation oper-
ator φ̂, we can obtain equations governing the condensate wavefunction and the
fluctuation operator.

Including only the condensate wavefunction in all field operators in K, we
obtain the condensate part K0 of the modified Hamiltonian, which is assumed to
dominate the physics at low temperatures:

K0 =

∫
d3r

{
Φ∗(T + Vt − µ)Φ +

1

2
gΦ∗Φ∗ΦΦ

}
. (2.26)

13



2. WEAKLY INTERACTING, DILUTE BECS

In the presence of a macroscopic condensate, K0 is approximately the thermo-
dynamic potential 〈K〉. In thermodynamic equilibrium at zero temperature, 〈K〉
takes its minimal value, so the value of the integral K0 must be stationary under
variations Φ∗ → Φ∗ + δΦ∗ (see Fetter, 1972). Introducing the Hartree potential
VH(r) as the interaction potential of a particle at r with all the other condensed
particles

VH(r) ≈
∫
d3r′ V (r− r′)n0(r′) ≈ gn0(r) = g|Φ(r)|2 , (2.27)

the Euler-Lagrange equation for K0 reads[
T + Vt + VH − µ

]
Φ = 0 . (2.28)

It is known as the Gross-Pitaevskii equation (GPE), found independently by Gross
(1961) and Pitaevskii (1961) in the study of vortex lines in weakly interacting Bose
gases.

To account for the particles scattered out of the condensate wave function, we
have to retain those terms inK that are quadratic in the fluctuation operator φ̂ after
the substitution (2.8) is applied. (The linear contribution to K vanishes if Φ is a
solution of the GPE.) We can diagonalize the fluctuation part K ′ with the linear
transformation

φ̂(r, t) =
∑
j

′{uj(r)αj(t)− v∗j (r)α†j(t)
}

(2.29)

(where the primed sum runs over all excited states), which introduces the quasi-
particle operators αj with the time dependence αj(t) = αj exp[−iEjt/~]. The
normalization ∫

d3r
{
|uj |2 − |vj |2

}
= 1 (2.30)

for the set of self-consistent normal modes {uj} and {vj} ensures that the quasi-
particle operators obey bosonic commutation relations at equal times. The Heisen-
berg equations of motion for φ̂ and φ̂† then lead to the coupled Bogoliubov-de
Gennes (BdG) equations(

T + Vt − µ+ 2g|Φ|2
)
uj − gΦ2vj = Ejuj , (2.31a)(

T + Vt − µ+ 2g|Φ|2
)
vj − g(Φ∗)2uj = −Ejvj , (2.31b)

which determine the wave functions uj(r) and vj(r) and the energy eigenvalues
Ej .6 For the number of particles out of the condensate, the expansion (2.29) yields

N ′ =
∑
j

′
∫
d3r |vj |2 ≡

∑
j

′Nj
′ (2.32)

6Alternatively, the BdG equations can also be derived as the linear response of the GP equation
to a weak perturbation of the condensate wavefunction (see Pitaevskii and Stringari, 2003, sec. 5.6).
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2.5. The interacting uniform system

withNj
′ the occupation of the j-th eigenstate, and the diagonalized fluctuation part

of the Hamiltonian reads

K ′ = −
∑
j

′EjN
′
j +

∑
j

′Ejα
†
jαj . (2.33)

Together with the c-number term K0 of eqn. (2.26), the Hamiltonian

K = K0 +K ′ (2.34)

describes the original system of interacting particles in terms of independent quasi-
particles with energy Ej . For a particular choice of the condensate wavefunction,
the lowest state vector |0〉 of K satisfies the condition

αj |0〉 = 0, j 6= 0 ,

it corresponds to the vacuum of quasiparticles. The excited states are obtained by
applying the creation operators α†j to |0〉.

For a treatment of the ideal Bose gas, we do not actually need to apply the diag-
onalization procedure developed above: With the interaction strength g set to zero
in the Hamiltonian (2.24), the single particle wave functions {χj} are simply the
eigenfunctions of the operator T + Vt, the BdG-equations eqns. (2.31) are solved
by uj = χj , vj = 0, and with these the transformation (2.29) yields quasiparticle
operators that are identical with the original particle operators. As the Hamiltonian
without the interaction term is quadratic in the field operators, the expansion up to
second order in the fluctuations is actually exact. Thus the one-body correlation
function (2.2) for the ideal gas can also be calculated at temperatures near and
above Tc, in a regime where condensate depletion is large.

2.5 The interacting uniform system

The effect of repulsive interaction on a BEC in a spatially uniform trapping po-
tential (for the sake of simplicity, we can set Vt = 0) is to scatter particles from
the non-interacting ground state k = 0 to pairs of higher momentum states with
±k 6= 0. This simple structure allows for a complete explicit solution for the
spectrum of quasiparticle excitations.

In leading order, that is, neglecting contributions from the fluctuation opera-
tor φ̂, the constant condensate wavefunction that minimizes the thermodynamic
potential (2.26) is

Φ =
√
µg . (2.35)

The free energy density at this order is obtained by evaluatingK0 at the minimum,

F0(µ) = −µ
2

2g
, (2.36)
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2. WEAKLY INTERACTING, DILUTE BECS

and inverting the relation n = −∂F/∂µ yields the mean-field result for the chem-
ical potential:

µ0(n) = gn . (2.37)

The modes uk(r) and vk(r) in eqn. (2.29) are plane waves (uk(r) = uk exp[ikr]
and vk(r) = vk exp[ikr]), and using these and the above expressions for µ0 and
Φ in the Bogoliubov-de Gennes eqns. (2.31) yields the dispersion relation

Ek =
√
ε0k(ε

0
k + 2µ0) , (2.38)

where ε0k = ~2k2/(2M).
The fluctuation part of the free energy density is obtained by evaluating the

expectation value of K ′ (eqn. (2.33)) in the Bogoliubov vacuum, with the values
of Ek and vk obtained from the BdG equations; this yields

F1(µ) =
1

2

∫
d3k

(2π)3

{
Ek − ε0k − µ0

}
+ ∆F1(µ) (2.39)

and

v2
k = u2

k − 1 =
1

2

(
ε0k + µ0

Ek
− 1

)
. (2.40)

The first term of the free energy (2.39) shows a linear divergence for large k, the
counterterm ∆F1 which is necessary to render the expression finite arises from a
renormalization of the interacting strength g. Setting g → g + ∆g in F0(µ) and
expanding to first order in ∆g yields

∆F1(µ) =
µ2

2g2
∆g , (2.41)

and the value ∆g = Mg2(2π)−3
∫
d3k (~k)−2 can be read from eqn. (2.22). With

this, we arrive at the explicit form

F(µ) = F0(µ) + F1(µ) (2.42)

=
µ2

2g
+

1

2

∫
d3k

(2π)3

{
Ek − ε0k − µ0 +

Mµ2

~2k2

}
(2.43)

= −µ
2

2g

(
1− 4

√
2µg2

15π2

)
(2.44)

for the free energy density. The ground state energy can be obtained by using the
relation

E(n) = F(µ) + nµ , (2.45)
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2.5. The interacting uniform system

in terms of the physical parameter as, this yields

Eg
N

=
2π~2asn

M

[
1 +

128

15

(
na3

s

π

)1/2]
(2.46)

for the ground-state energy per particle. The result (2.46) was first obtained by Lee
et al. (1957). There, instead of our contact potential (2.21), the pseudo potential
V (x) = g δ(x)(∂/∂x)x/2 was used, which avoids the appearance of ultraviolet
divergences. The above result represents an expansion in the diluteness parameter
n|a3

s|, which agrees with our initial assumptions in section 2.3 that this parameter
is small.

The dispersion law for quasiparticles

In order to analyze how the repulsive interaction alters the excitation spectrum
with respect to the ideal gas, it is convenient to define a characteristic length scale
ζ, the so called healing length7

ζ = ~/(2
√
Mng) , (2.47)

and a velocity of sound

c = ~/(2Mζ) =
√
gn/M . (2.48)

The quasiparticle dispersion (2.38) then takes the form

Ek = ~c
√
k2(1 + k2ζ2) . (2.49)

The quasiparticle operators αk introduced in eqn. (2.29) are linear superposi-
tions of the original particle operators ak and a†k, with uk and vk as the weight fac-
tors. For small momenta, these coefficients are both large, and the long-wavelength
quasiparticle operators represent a nearly equal superposition of a particle and a
hole. The dispersion relation in this regime takes the form

E(k) ≈ c ~k for kζ � 1 , (2.50)

the Bogoliubov theory predicts that the long wavelength excitations of an interact-
ing Bose gas are sound waves. If the Bogoliubov approximation (2.8) is under-
stood as an operation that breaks the gauge symmetry of the theory, these excita-
tions can be identified with the Goldstone modes associated with BE-condensation
(see Leggett and Sols, 1991). In the opposite limit of large momenta, the behav-
ior of the coefficients changes to u2

k ≈ 1, v2
k � 1, so that the short-wavelength

7For a condensate confined by an infinitely high box potential, the condensate density goes to
zero at the walls of the box. ζ is the length scale over which the density profile ‘heals’ back to its
homogeneous value (see Pitaevskii and Stringari, 2003, sec. 11.2).
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2. WEAKLY INTERACTING, DILUTE BECS

quasiparticle creation operator is effectively a pure particle creation operator. Cor-
respondingly, the dispersion approaches the free particle law

E(k) ≈ ε0k + gn for kζ � 1 , (2.51)

shifted by a constant potential gn, the Hartree interaction with the remaining par-
ticles.

2.6 Trapped gases

In the following, we will consider Bose gases confined by a harmonic trapping
potential. This is a good approximation to the experimentally obtainable magneto-
optical trapping potentials and offers the additional advantage of simple analytic
results for the ideal Bose gas. For an overview on the experimental realization
of trapping potentials for cold atoms, see for example Pethick and Smith (2002,
chap. 3-4).

Harmonic traps

Usually, the trap constitutes an axisymmetric harmonic potential of the form

Vt(r) = Vt(r⊥, z) =
1

2
M(ω2

⊥r
2
⊥ + ω2

zz
2) , (2.52)

where M denotes the atomic mass. It is common to introduce the anisotropy
parameter λ as the ratio of axial to radial angular frequencies

λ ≡ ωz/ω⊥ . (2.53)

For an ideal Bose gas, the single particle states χj in the potential (2.52) are the
well known eigenfunctions of the harmonic oscillator. The one body correlation
function (2.2) can be constructed from the mode expansion of Ψ̂, a useful form
that combines the summations over the multiple index j of eqn. (2.7) into a single
sum is given in eqn. (B.1) (see the plot in fig. 2.2). The lowest state, playing the
role of the condensate wavefunction, is a Gaussian (the dashed curve in fig. 2.3)

χ0(r) =

(
Mω

π~

)3/4

e−
1
2

(r2⊥/a
2
⊥+z2/a2z) , (2.54)

where ω ≡ (ω2
⊥ωz)

1/3. The radial and axial widths in eqn. (2.54) are given by the
oscillator lengths

a⊥ =

√
~

Mω⊥
, (2.55a)

az = a⊥/
√
λ , (2.55b)
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2.6. Trapped gases

the size of the condensate is, in the absence of interparticle interaction, solely de-
termined by the trapping potential and independent of the particle number. For an
ideal Bose gas, (az/a⊥)2 = λ−1 yields the anisotropy in the density profile, allow-
ing for oblate- and cigar-shaped condensate clouds by keeping λ � 1 or λ � 1,
respectively. We will see below that the size of the condensate is significantly in-
creased by repulsive interactions and can be several times larger than the oscillator
lengths (2.55). The critical temperature Tc for the onset of quantum degeneracy in
three spatial dimensions8 is

kBTc = ~ω
(
N

ζ3

)1/3

(2.56)

(see Bagnato et al., 1987), where ζ3 ≈ 1.20 denotes the Riemann Zeta-function.
Note the different N -dependence compared to expression (2.14) for the uniform
system. In typical experiments with Rubidium atoms in magnetic traps (see Baym
and Pethick, 1996), mean trap frequencies are around ω/(2π) ≈ 100 Hz, resulting
in oscillator lengths around 2 µm. At the onset of BE condensation the system
is very dilute, and the corrections to eqn. (2.56) due to two-body interactions are
small (see Pitaevskii and Stringari, 2003, chap. 13). With typical samples contain-
ing around 106 particles, Tc is in the range of 0.5 µK.

Dipole modes

There are three collective modes (one for each Cartesian direction α = x, y, z)
in the excitation spectrum of harmonically confined Bose gases which correspond
to the harmonic oscillation of the center of mass of the condensate cloud. If the
interacting condensate is displaced without deformation, as described by the gen-
eralized Kohn theorem (see Dobson, 1994; Kohn, 1961), the frequency Eα of the
oscillation due to the restoring force is identical to the frequency of the trapping
potential ωα, independent of the strength of interparticle interactions. For any con-
densate wavefunction Φ(r) fulfilling the GPE, the excited state corresponding to
the dipole mode in direction α is given by the solution

uα(r) = a†αΦ(r) ,

vα(r) = aαΦ∗(r) ,

to the BdG-equations (2.31) (see Fetter and Rokhsar, 1998), where the operators
aα and a†α are the familiar raising and lowering operators for the harmonic oscil-
lator.

8Quasi two (one) dimensional systems can be constructed using a trapping potential which is
very steep in one (two) directions, such that the excited trap modes cannot be occupied in these
directions (see Posazhennikova, 2006).
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Figure 2.2: The normalized one-body correlation function g(1)(r1, r2) =

n(1)(r1, r2)/
√
n(1)(r1, r1)n(1)(r2, r2) for an ideal Bose gas in an isotropic har-

monic trap. Blue: different temperatures below Tc (T = 0.2, 0.5, 0.7, 0.9Tc,
from right to left). Red: temperatures above Tc (T = 1.1, 1.2Tc). Between co-
ordinates close to the trap center (r < a), the temperature dependence of spatial
correlations behaves similar as for the uniform system in fig. 2.1. For distances
r � a, the correlation function goes to zero at any temperature, reflecting the
finite spatial extent of the system.

The appearance of the trap frequencies in the spectrum of excitation energies
provides a valuable cross-check for numerical calculations. Dipole modes can be
excited by periodic variations of the trap potential (see Japha and Band, 2002). As
they are not damped by interparticle interactions, the oscillations are very long-
lived, which made them an ideal probe for the Casimir-Polder measurements of
Harber et al. (2005) and Obrecht et al. (2007).

Thomas-Fermi approximation

The effect of repulsive interactions on the condensate fraction of a trapped BEC
is to broaden the density profile, thus decreasing the density in the center of the
trap. More quantitatively, rewriting the GPE in dimensionless variables (with the
abbreviations ω = (ω2

⊥ω
2
z)

1/3, a =
√

~/(Mω) and the rescaled coordinates r =
r/a, µ = µ/(~ω0),Φ = Φ a3/2/N1/2) yields[

−52
+ r2 + 8π

(
Nas
a

)
|Φ(r)|2 − 2µ

]
Φ(r) = 0 . (2.57)

From this equation, it is evident that the importance of the interatomic interactions
on the condensate wavefunction is completely fixed by the value of Nas/a, which
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Figure 2.3: Condensate wavefunctions in an isotropic harmonic trap for differ-
ent values of the Thomas-Fermi parameter Nas/a, illustrating the effect of re-
pulsive interparticle interactions on the density profile of the condensate. Dashed
curve: Gaussian ground-state wavefunction eqn. (2.54) for a noninteracting
Bose-gas, corresponding to as = 0. Solid curves: the variational wavefunc-
tion eqn. (2.61) for Nas/a = 1, 10, 100, 1000. Black (gray) dot-dashed curve:
the Thomas-Fermi wavefunction eqn. (2.58) and the variational-Gaussian wave-
function of (Pérez-Garcı́a et al., 1997), both for Nas/a = 1000.

is called the Thomas-Fermi (TF) parameter. As the increase in width goes along
with a smoothening of the density profile, for large values of the TF parameter it is
a good approximation to neglect the kinetic energy term in the GPE. We then ob-
tain the analytical solution (see Baym and Pethick, 1996; Huse and Siggia, 1982)

|ΦTF (r)|2 =
µ

g

(
1− r2

⊥
R2
⊥
− r2

z

R2
z

)
Θ

[
1− r2

⊥
R2
⊥
− r2

z

R2
z

]
(2.58)

where Θ denotes the unit step function and radial and axial extent of the condensate
cloud is given by the TF radii

R2
⊥,z =

2µ

Mω2
⊥,z

. (2.59)

As a result of the repulsive interaction, the anisotropy of the condensate is now
given by R2

z/R
2
⊥ = λ−2 instead of λ−1 for the non-interacting gas. Fixing the

value of the chemical potential by normalizing Φ (and neglecting the small con-
densate depletion) determines the radii

R⊥,z = a

(
15Nas
a

)1/5 ω

ω⊥,z
, (2.60)
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2. WEAKLY INTERACTING, DILUTE BECS

which shows that the spatial extent of the condensate cloud grows with the num-
ber of trapped particles as N1/5, in contrast to the ideal gas, where it is fully
determined by the trapping potential. For large values of the TF-parameter, the
momentum distribution of the atomic cloud, which is the Fourier transform of
ΦTF (r), approaches a δ-function, a typical feature of uniform Bose-Einstein con-
densed systems (see Pitaevskii and Stringari, 2003, sec. 11.3).

By inserting ΦTF in the BdG equations, it is possible to derive solutions for the
fluctuation operator φ̂(r) in terms of Jacobi polynomials and spherical harmonics
(see Öhberg et al., 1997). As the final expressions are rather involved, we do not
show them here.

Variational solutions for the condensate wave function

Another possibility for obtaining approximate solutions for the condensate wave-
function is to take a trial function for Φ which depends on variational parameters.
For a given value of the Thomas-Fermi parameter, the variational parameters are
then determined such that the energy of the condensate is minimized.

An ansatz for a trialfunction with a single parameter is a Gaussian with a vari-
ational width depending on the TF parameter, which has to incorporate the broad-
ening of the condensate cloud due to interactions. For large values of the TF
parameter (and an isotopic trap), the width of the Gaussian (2.54) is then replaced
by σ(N) = a(

√
2/πNas/a)1/5 (see Pérez-Garcı́a et al., 1997). The resulting

wavefunction is shown as the gray dot-dashed curve in fig. 2.3. Because of its
simple functional form, we will use it in chapter 5.

A more sophisticated ansatz which we will use in chapter 6 can be used to
interpolate smoothly between small and large values of the TF-parameter and in-
volves two variational parameters (see Fetter, 1997):

Φ(r) =
c0(λ,R)

N0
(1− r2

⊥
d2
⊥
− r2

z

d2
z

)(1+λ)/2 Θ(1− r2
⊥
d2
⊥
− r2

z

d2
z

) , (2.61)

where c0 is a normalization constant and d⊥, dz and λ can be chosen such that
they minimize the energy of the trapped gas. For large values of the TF-parameter,
this procedure yields λ� 1, and eqn. (2.61) reproduces the shape of the Thomas-
Fermi condensate wave function, while in the opposite limit, the shape approaches
that of the Gaussian ground-state wave function of the ideal gas (see fig. 2.3). In
a similar manner as for the TF-condensate wavefunction, the field operator de-
scribing fluctuations around the variational solution eqn. (2.61) can be explicitly
constructed by solving the BdG equations (see Hu et al., 2004).
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CHAPTER 3
Phononic Casimir effect

The material presented in this chapter is based on the paper ‘Casimir
energy of a BEC: from moderate interactions to the ideal gas’ by
J. Schiefele and C. Henkel, Journal of Physics A 42, 045401 (2009).

The Casimir effect is a consequence of the distorted vacuum fluctuation spectrum
of quantized fields in bounded domains or spaces with non-trivial topologies. In
Casimir’s original calculation, the system under consideration is the electromag-
netic vacuum (Casimir, 1948). Imposing Dirichlet boundary conditions along one
spatial direction by confining the system between two (idealized) parallel plates
causes a change in the (infinite) vacuum energy-density. The variation of the vac-
uum energy-density with respect to the plate separation is called Casimir pressure,
and, after renormalization, yields a finite expression for an attractive interaction
energy per unit area between the plates. The electromagnetic Casimir force, caused
by quantum fluctuations of the electromagnetic vacuum, varies as ~c/L4, with L
the plate separation and c the speed of light. It has been measured in a number of
experiments using various experimental settings (see Bordag et al., 2001, sec. 6).
The comparison between quantum vacuum experiments like these and the predic-
tions of different theoretical models provides the possibility of testing fundamental
physics (like higher dimensions or additional interactions), in much the same way
as accelerator experiments in high-energy physics do at the other end of the energy
scale (see Decca et al., 2003; Gies, 2008).

We consider here, instead of the electromagnetic vacuum, a weakly interact-
ing uniform BEC at zero temperature, and expect, in a similar manner, the quan-
tum fluctuations on top of the ground state of the BEC to give rise to observable
Casimir forces: As we have see in section 2.5, within the Bogoliubov approxima-
tion, the excited states of a BEC can be treated as quasiparticles characterized by
the dispersion relation

E(k) = ~c
√
k2(1 + k2ζ2) , (3.1)
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3. PHONONIC CASIMIR EFFECT

that behaves linearly for small momenta, with the ‘sound velocity’ c = ~/(2Mζ)
being inverse to the healing length ζ. In eqn. (3.1), the wave-number 1/ζ charac-
terizes the transition between the linear (phonon) and the quadratic (free-particle)
regimes. ζ is also related to the s-wave scattering length as of the atoms and to
the BEC density n via ζ = 1/(4

√
πnas). For small momenta, the quasiparticles

(phonons) propagate in the same way as the massless electromagnetic field, except
for the propagation velocity being different. Hence, the zero temperature quantum
fluctuations in a spatially confined BEC can be expected to result in an observable
Casimir force.

Different scenarios for Casimir forces in BECs have been analyzed by previ-
ous work: for the parallel plate geometry, an asymptotic expansion of the Casimir
force has been calculated by Edery (2006a), the small expansion parameter being
the ratio between healing length and plate separation. In the leading order, it re-
produces exactly the same ~c/L4 behavior as in the electromagnetic vacuum. The
next order corrections scale with the ratio ζ/L. Replacing the perfectly reflecting
plates by impurities embedded in a quantum liquid, Casimir forces between these
impurities have been calculated by Recati et al. (2005) and Klein and Fleischhauer
(2005) as a function of the impurity-liquid coupling. Scattering of Bogoliubov
excitations by a single impurity potential has been studied by Gaul and Müller
(2008). If the impurities are realized by atoms which, in a certain internal state, in-
teract with the atoms of the quantum liquid through s-wave scattering, the Casimir
interaction should be detectable as a shift of spectral lines that depends on the dis-
tance between the impurities. In the limit of an infinitely strong impurity-liquid
coupling, the result for the (one-dimensional) parallel plate scenario was recov-
ered (Recati et al., 2005); for a weak coupling, however, the interaction between
the impurities vanishes exponentially with the impurity separation on a scale set
by the healing length. For the ideal Bose gas, it was found that there is no Casimir
force at all between impurities of arbitrary interaction strength, including the ideal-
ized parallel plate scenario (see Recati et al., 2005, appendix C). This is consistent
with the quite general method of Bachmann and Kempf (2008), which is mapping
(polynomial) dispersion relations to Casimir forces in the parallel plate geometry:
this method shows that media with quadratic dispersion relations, and hence the
ideal Bose gas, do not give rise to any zero-temperature Casimir forces. A non-
vanishing Casimir force in the ideal Bose gas can arise due to thermal fluctuations,
as calculated by Biswas (2007) and Martin and Zagrebnov (2006). All these forces
are small but finite observable quantities, which—if experimentally confirmed—
would provide direct evidence of the quantum fluctuations in weakly interacting
BECs.

The system under consideration in the present chapter is a homogeneous, weakly-
interacting dilute BEC at zero temperature, confined to a parallel plate geometry
with periodic boundary conditions in one of the three spatial dimensions. For this
system, we will give a renormalized expression for the Casimir energy-density per
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3.1. Free energy in a weakly interacting, dilute BEC at T = 0

unit area. Our expression has the form of an integral over a ‘density of modes’
ρ(x) times the Bose distribution function:

EC =

∫ ∞
0

dx ρ(x)

e2πx − 1
, (3.2)

where ρ(x) has a simple analytic form (see eqn. (3.20)), and correctly describes
the vanishing of the Casimir force in the limit of the interaction strength going to
zero. The possibility to express the zero temperature Casimir energy in the above
form, resembling the density of states of a bosonic system at finite temperature,
is connected to a topological analogy between our parallel plate scenario and fi-
nite temperature field theory: In the parallel plate geometry, one spatial coordinate
of the field is subject to periodic boundary conditions, while in finite tempera-
ture field theory, the imaginary time coordinate is subject to a similar periodicity
condition. This analogy has been pointed out some time ago by Toms (1980); it
does not carry over, however, to Casimir calculations for non-linear dispersion re-
lations. The periodic boundary conditions for the BEC have mainly been chosen
because they make the relation to the finite temperature case particularly evident.
In experiments, periodic boundary conditions can be realized in toroidal traps, but
they also appear in optical lattices. If the boundaries are taken as real physical
plates, the perfect mirror scenario (i.e. Dirichlet boundary conditions as discussed
by Bachmann and Kempf (2008); Biswas (2007); Edery (2006b)) is closer to an
experimentally realizable situation. When Dirichlet boundary conditions are im-
posed on the fluctuations on top of the BEC ground state, the expansion of EC for
moderate interaction shows in the leading term again the same behavior as a mass-
less scalar field propagating at the speed of sound c, but with a different numerical
prefactor (see Schiefele and Henkel, 2009, appendix A).

3.1 Free energy in a weakly interacting, dilute BEC at T = 0

As we have seen in section 2.5, the free energy density of a weakly interacting
uniform BEC at T = 0 (in three spatial dimensions) is approximated by the per-
turbative expansion

F = F0 + F1 , (3.3)

where F1 contains the counterterm ∆1F that renders the expression (3.3) finite.
The concrete form of the counterterm depends on the renormalization scheme; in
this chapter we will follow the approach of Andersen (2004, see sec. III.B-C for
more details), which yields

F0 = −µ
2

2g
(3.4)

F1 =
1

2

∫
d3k

(2π)3

√
k2(k2 + 2µ) + ∆1F . (3.5)

25



3. PHONONIC CASIMIR EFFECT

(Here and for the rest of this chapter, we work in units where 2M = ~ = kB = 1.)
In the above expression, µ is the chemical potential (which, in section 3.3, will
be connected to the speed of sound in the medium), and g = 8πas is the effective
coupling constant eqn. (2.23). The term ∆1F can be set to zero if, as in (Andersen,
2004), dimensional regularization is used to calculate the integral eqn. (3.5). If
instead a momentum cut-off M in the ultraviolet is used for the regularization of
F1, the linear, cubic and quintic divergences can be absorbed by renormalizing g,
µ and the vacuum energy respectively, and the counterterm reads

∆1F =
1

2

∫ M d3k

(2π)3

{
µ2

2k2
− µ− k2

}
, (3.6)

which recovers the expressions of eqn. (2.39) and eqn. (2.41). F is then finite in
the limit M →∞, and using

E(n) = F(µ) + nµ , (3.7)

one recovers the ground state energy (2.46). The chemical potential µ can be
obtained from eqn. (3.3) by inverting

n(µ) = −∂F
∂µ

, (3.8)

which yields
µ(n) = gn

{
1 +O

(√
na3

s

)}
, (3.9)

as we already obtained in eqn. (2.37).

3.2 The Casimir energy as an integral over a mode density

Now, in order to describe a BEC between a pair of parallel plates separated by
a finite distance L (with periodic boundary conditions), we have to quantize the
momentum component perpendicular to the plates:

k2 → k2 + ω2
n, ωn =

2π

L
n, n ∈ Z (3.10)

Correspondingly, the momentum integration perpendicular to the plates is replaced
by a discrete sum: ∫

d3k

(2π)3
→

∞∑
n=−∞

∫
d2k

(2π)2
(3.11)

The area of the plates is taken to be L1L2 with L1, L2 � L, so the system now
inhabits the volume V = L1L2L. The mean field contribution F0 (see eqn. (3.4))
depends only trivially on the new boundary conditions, with the volume V entering
through µ in eqn. (3.9).
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3.2. The Casimir energy as an integral over a mode density

The Casimir energy EC of the BEC is related to the free energy calculated in
second-order perturbation theory. We are interested in its change per unit area that
is due to the introduction of the boundary conditions:

F1 = LF1

∣∣
V=V

+ EC , (3.12)

where the first term gives the the free energy in a homogeneous system. After
applying the substitutions (3.10) and (3.11) to eqn. (3.5), we are left with the fol-
lowing expression for F1, now describing the leading quantum corrections to the
free energy of a BEC confined between parallel plates:

F1 =
1

2L
2

∞∑
n=−∞

∫
d2k

(2π)2

√[(
Lk
)2

+ n2
] [
M(k)2 + n2

]
, (3.13)

where we have used the abbreviations

M(k, L, ζ) = L
√
k2 + 1/ζ2 , (3.14)

with L = L/(2π) and ζ = 1/
√

2µ. The summation over n can be converted into
two integrals by using the Abel-Plana formula in the form

∞∑
n=0

f(n) =

∫ ∞
0

dx f(x) +
1

2
f(0) + i

∫ ∞
0

dx
f(ix)− f(−ix)

e2πx − 1
(3.15)

(see Saharian, 2008). Application of eqn. (3.15) splits eqn. (3.13) into the two
terms written in eqn. (3.12), as the f(0)–term cancels out. The first term,LF1

∣∣
V=V

,
is divergent, but of the same form as the free-space expression eqn. (3.5) itself.
Hence, it can be renormalized as described above.

The term EC in eqn. (3.12), an energy per area, describes the effects induced
by restricting the periodicity in one spatial dimension to be much smaller than the
remaining ones, that is, confining the system to a volume V with one ‘short’ side
L. EC is convergent for any finiteL, strictly negative, and goes to zero forL→∞:

EC = − 2

L
2

∫
d2k

(2π)2

∫ M(k)

Lk
dx

[
x2 −

(
Lk
)2]1/2 [

M(k)2 − x2
]1/2

e2πx − 1
. (3.16)

The integration domain is sketched in fig. 3.1(a) (the shaded regions).
This domain as well as the form of the integrand are due to the branch-points

of the integrand in eqn. (3.13): In order to stay clear of the branch-cuts, we have
evaluated the last term in the Abel-Plana formula eqn. (3.15) along an integration
contour slightly to the right of the imaginary axis. Inserting the function f given
by eqn. (3.13),

f(x) =

√
(x2 + L

2
k2)(x2 +M2) , (3.17)
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Figure 3.1: (a) The upper curve shows the functionM(k, L, ζ) from eqn. (3.14),
the lower one is Lk ≡ Lk/(2π). The two shaded regions make up the total area
of integration in eqn. (3.16). (b) The exact ‘density of states’ function ρ(x) from
eqn. (3.20) (blue) and its small-argument expansion eqn. (3.21) (red).

the numerator in the last term of eqn. (3.15) evaluates to

i
(
f(ix+0)−f(−ix+0)

)
= −2

√
(x2 − L2

k2)(M2 − x2) , L k < x < M ,
(3.18)

being zero everywhere else along the contour of integration (see Mostepanenko
and Trunov, 1997, sec. 2.2). By changing the order of integration in eqn. (3.16),
the k-integral can be performed, and we find the expression (3.2) for the Casimir
energy:

EC =

∫ ∞
0

dx ρ(x, L)

e2πx − 1
(3.19)

In the form of eqn. (3.19), EC is expressed as an integral over a ‘density of states’
(DOS) for a bosonic system, as setting the integration variable x = βω/(2π) will
reproduce the Boltzmann factor in the denominator.

The ‘mode density’ ρ(x) is obtained by integrating separately over the lower
triangular region in fig. 3.1(a) (dark gray) and the ‘hyperbolic tail’ (light gray). In
terms of the dimensionless variable η = (ζ/L)x, we have

ρ(x, L) =

{
− 1

8πζ4

{
arcsin(η)− η

(
1− 2 η2

)√
1− η2

}
, 0 ≤ x < L/ζ ,

− 1
16 ζ4

, x ≥ L/ζ .
(3.20)

Above x = L/ζ, the function ρ(x) changes into a constant independent of x (see
the blue line in fig. 3.1(b)). The Casimir energy EC as a function of the normalized
distance L/ζ is shown in fig. 3.2, obtained by numerically integrating eqn. (3.19).

To provide a cross-check for the above results, we will show in the following
section that the function ρ(x) reproduces the asymptotic expansion for the Casimir
energy given by Edery (2006a) and Roberts and Pomeau (2005), which is valid for
small values of the parameter ζ/L. In section 3.5 we then show that the formula
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3.3. Large distance expansion
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Figure 3.2: Casimir energy per unit area as a function of the plate separation
L, normalized to the healing length ζ. Recall that ζ = ~

2

√
1/(gnm) with g the

effective interaction constant and n the BEC density. The Casimir energy has
been normalized to its value Esc(L) = −(π2/90)~c/L3 for a massless scalar
field propagating with a velocity c = ~/(2mζ); this limit is approached at large
distance. Blue: the asymptotic expansion for L/ζ � 1 eqn. (3.23). Red: the
opposite limit L/ζ → 0 (non-interacting Bose gas), of eqn. eqn. (3.33). Solid
black curve: numerical evaluation of the integral in eqn. (3.19) with the mode
density ρ(x) of eqn. (3.20). It smoothly describes the dependence of EC on
the interaction strength in the regime where both of the asymptotic expansions
diverge.

for ρ(x) in eqn. (3.20) also yields correct results in the opposite limit of the ideal
BEC, i.e. ζ →∞.

3.3 Expansion at large distance and moderate interactions

In this section, we will assume the plate separation to be much greater than the
healing length of the BEC, i.e., the ratio ζ/L � 1 can be treated as a small pa-
rameter. Note that this limit cannot describe a strongly interacting Bose gas in the
proper sense, since this would lead to a break-down of the perturbative expansion
at the basis of our approach.

As can be seen in fig. 3.1(b), the kink in the function ρ(x) happens at the large
value x = L/ζ � 1 in our limit. In evaluating the Casimir energy with eqn. (3.19),
large values of x, and hence the behavior of ρ(x) after the kink, get exponentially
suppressed by the denominator. Thus we can approximate the function ρ(x) by
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3. PHONONIC CASIMIR EFFECT

expanding its small-x part as a power-series around x = 0:

ρ(x) = − 1

L
4

{
1

π

x3

3

(
ζ

L

)−1

− 1

π

x5

10

ζ

L
+ O

(
(ζ/L)3

)}
(3.21)

The integrals in expression (3.19) for the Casimir energy can be performed explic-
itly with the identities ∫ ∞

0
dt

t2r−1

e2πt − 1
=

Γ(2r) ζ(2r)

(2π)2r
(3.22)

in terms of Gamma- and Zeta-functions. Upon setting c ≡ 1/ζ (the speed of sound
in the medium), we recover the result derived by Edery (2006a):

EC = −π
2

90

c

L3
+

2π4

315

c ζ2

L5
+ O

(
ζ3/L7

)
. (3.23)

The leading term Esc = −π2c/(90L3) is, as noted in (Edery, 2006a,b), equal
to the Casimir energy (per unit area) of a massless scalar field with propagation
velocity c confined between two parallel plates with periodic boundary conditions
(see Svaiter and Svaiter, 1991). Its presence can be understood as a manifestation
of the Goldstone-theorem, the long wavelength part of the Bogoliubov spectrum
representing the gap-less Goldstone modes (Hugenholtz and Pines, 1959). The
next-to-leading term in eqn. (3.23) is referred to as the Bogoliubov correction (see
Edery, 2006a) due to the non-linearity of the dispersion. Indeed, if we express
the Bogoliubov dispersion relation (3.1) as a power series around k = 0 and put
the first few terms into the expression for the Casimir force derived by Bachmann
and Kempf (2008, eqn. (16)), the leading term in the same manner reproduces the
result for the scalar field (in one dimension), followed by terms that are smaller in
magnitude and of opposite sign. As can be seen in fig. 3.2, the contribution of these
corrections gets smaller as the ratio between plate separation and healing length
increases, leaving only the dominant scalar term Esc depicted by the horizontal
dashed line in fig. 3.2.

When finally calculating the Casimir pressure from eqn. (3.23), one has to
consider that, for a constant average particle number, the derivative of the speed of
sound with respect to L is not zero, as discussed in (Edery, 2006a).

3.4 A formal analogy to finite temperature systems

As already mentioned, our expression (3.19) for EC at T = 0 formally resem-
bles the DOS for a bosonic system at finite temperature. This can be understood
by recalling that a finite temperature system can be described in imaginary time,
combined with periodic boundary conditions with period β. The same topology
is realized in the parallel plate system at T = 0, when one spatial dimension is
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3.4. A formal analogy to finite temperature systems

subject to periodic boundary conditions with period L (see Hawking, 1977; Toms,
1980).

Let us briefly re-phrase the argument of Toms (1980) within our notation. The
canonical partition function Z for a system at temperature T = 1/β in D spatial
dimensions can be expressed as the path integral

Z ≈
∮
d[Φ] exp

[∫ β

0
dτ

∫
dDxL(Φ)

]
, (3.24)

where L is the Lagrangian (a scalar functional of the field Φ), and the field is con-
strained in such a way that Φ(x, 0) = Φ(x, β). If we take L = (c2/2) ∂µΦ ∂µΦ,
the path-integral in eqn. (3.24) can, after Fourier expansion of the field, be evalu-
ated to yield (see Bernard, 1974; Kapusta and Gale, 2006)

ln[Z] = −V 1

2

∑
n

∫
dDk

(2π)D
ln
[
ω2
n + ω(k)2

]
, ωn =

2π

β
n , ω(k) = c |~k| .

(3.25)
Here, ωn with n = 0,±1,±2, . . . are the Matsubara-frequencies due to the pe-
riodicity condition in eqn. (3.24), and ωk with the continuous parameter k is the
dispersion relation of the massless scalar field. Note the similarity to eqn. (3.10),
where we had periodic boundary conditions not in imaginary time but in one spa-
tial dimension.

The sum over n in eqn. (3.25) is usually evaluated by multiplying with a factor
1
2β cot(1

2βω), which has poles of residue 1 at ω = 2πn/β, and then integrating
over a contour in the complex ω-plane which includes all the poles (see Kapusta
and Gale, 2006, sec. 3.4). This technique is actually the same that is used by
Saharian (2008) to prove the Abel-Plana formula eqn. (3.15). The well-known
result is

ln[Z] = ln[Z]

∣∣∣∣
β→∞

− V

∫
dDk

(2π)D
ln
[
1− e−β ω(k)

]
, (3.26)

where we have already subtracted the zero-point fluctuations. After integrating by
parts and employing eqn. (3.22) we obtain (ΩD denotes the volume of the unit
sphere in D dimensions)

ln[Z] = −V βc ΩD/D

(2π)D

∫ ∞
0

dk kD

eβ ck − 1
. (3.27)

Note that, upon setting k = (2π/βc)x, the above expression has the same form as
EC in eqn. (3.19), with ρ(x) being proportional to xD. Now, let the system inhabit
a volume V = L1L2L. With D = 3 we get for the free energy per unit area

F

L1L2
= −π

2

90

L

β (βc)3
. (3.28)
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Tentatively exchanging βc with L in eqn. (3.28) will reproduce the Casimir energy
for a massless scalar field, i.e. the first term in eqn. (3.23) (see Toms, 1980):

F

L1L2

βc↔L−→ −π
2

90

c

L3
= Esc (3.29)

So, we have seen that the zero temperature Casimir energy of a massless scalar
field confined between two parallel plates can be obtained by a simple change of
variables, once we know the thermal contribution to the free energy density of that
field. Unfortunately, this simple mapping does not carry over to fields character-
ized by nonlinear dispersion relations: The temperature dependent part of the free
energy for a BEC is (in the Bogoliubov approximation) still given by eqn. (3.26)
with the dispersion now being ω(k) = ck (k2 + 1/ζ2)1/2. But a simple inter-
change of βc with L in eqn. (3.26) will no longer yield EC , because the discretized
Matsubara frequencies ωn (that become a discretized momentum) always enter in
eqn. (3.25) in the same way as a spatial momentum component enters in a lin-
ear dispersion relation. It thus seems very difficult to mimic the fully nonlinear
behavior of the dispersion relation.

3.5 The non-interacting limit

The transition from the weakly interacting BEC to the ideal BEC should be ac-
complished by sending the effective coupling g = 8πas to zero, corresponding
to ζ → ∞. The Casimir energy is expected to vanish in this limit, as shown in
(Bachmann and Kempf, 2008; Recati et al., 2005).

The series expansion eqn. (3.21) was constructed for ζ/L � 1, which is a
physically reasonable assumption for finite L and a weak but finite interaction. But
with the effective coupling strength g → 0, the chemical potential µ in eqn. (3.9)
will vanish, too, and the healing length ζ will diverge. As L is kept finite, the non-
interacting BEC is hence described by the limit L/ζ → 0, which is the opposite
to the case considered in section 3.3. The asymptotic form of eqn. (3.21) for the
mode density ρ(x)—as well as the Casimir energy in eqn. (3.23)—diverges in the
limit of zero interaction strength. Our calculation of the exact mode density ρ(x)
suggests that this divergence is due to a branch point in the complex x-plane that
moves towards x = 0 and makes the power series expansion behind eqn. (3.23)
break down. We show here that the exact mode density eqn. (3.20) leads to a
Casimir energy that smoothly vanishes with the interaction strength (see fig. 3.2).

To examine the asymptotic behavior of EC for L/ζ � 1, we again start from
eqn. (3.19) and eqn. (3.20), separately treating the behavior of ρ(x) to the left and
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the right of the kink at L/ζ:

EC =

∫ L/ζ

0

dx ρ(x)

e2πx − 1
− 1

16ζ4

∫ ∞
L/ζ

dx

e2πx − 1
(3.30)

= E1 + E2 (3.31)

As the upper limit of the integration in E1 is going to zero, we can replace ρ(x)
by the first term in the expansion of eqn. (3.21), and Taylor-expand the denomi-
nator about x = 0. After integrating over this expansion, E1 will yield terms of
O
(
(L/ζ)4

)
. Integrating E2, from the lower border of the integral we get a contri-

bution

E2 =
π3

2L4

(
L

ζ

)4

ln
[
e2π (L/ζ) − 1

]
. (3.32)

Altogether, we find for the behavior of EC in the non-interacting limit

EC = − 1

L4

(
L

ζ

)4{4π2

3
− π3

2
ln
[
e2π (L/ζ) − 1

]}
+O

(
(L/ζ)5

)
. (3.33)

Note that the leading order for ζ → ∞ at fixed L goes like ζ−4 ln ζ. Conversely,
at fixed ζ, a logarithmic divergence remains for L → 0. The logarithmic term
changes sign for L/ζ > ln[2] ≈ 0.7 and, for large values of L/ζ, the above ex-
pression diverges, just as the expansion eqn. (3.23) does for small values of L/ζ
(see fig. 3.2). Hence, eqn. (3.33) and eqn. (3.23) provide two asymptotic expan-
sions to EC for opposite limits, while the exact formula is given by eqn. (3.19).

3.6 Summary

Starting from the free energy in a weakly interacting dilute BEC, we derived a
renormalized expression for the ‘phononic’ Casimir energy of the BEC confined
at zero temperature to a parallel plate geometry with periodic boundary conditions.
Our formula for the Casimir energy (per unit plate area), eqn. (3.19), has the form
of an integral over a mode density ρ times the Bose distribution. The function ρ
is given by a rather simple analytic expression in eqn. (3.20). In section 3.3, we
provided a cross-check for our result by showing that a series expansion of ρ in
the parameter L/ζ � 1 reproduces the asymptotic series for the Casimir energy
derived in (Edery, 2006a). There, the Euler-MacLaurin formula was used to extract
the long wavelength behavior out of the UV-divergent sum over all Bogoliubov
modes satisfying the boundary conditions. This approach fails to reproduce the
non-interacting limit.

As pointed out by Edery (2006a,b), the Casimir energy of the weakly interact-
ing BEC is, due to the linear dispersion of its low lying excitations, in the leading
order determined by a term analogous to the Casimir energy of a massless scalar
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field propagating with vacuum velocity c = 1/ζ. Our result displays this behavior
in the regime of the weakly interacting BEC where the plate separation is much
larger than the healing length, as can be seen in fig. 3.2. In addition, for ζ → ∞
with L kept finite (the non-interacting limit), our result (3.20) correctly describes
the Casimir energy going to zero and displays the Casimir energy as a smoothly
varying function of the interaction strength in the intermediate range. The sub-
tleties of the asymptotic expansions illustrate the rich physical content behind the
nonlinear dispersion relation of the Bogoliubov vacuum.
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CHAPTER 4
Quantum field theory of the
Casimir-Polder interaction

The interaction potential between a neutral, polarizable atom or molecule and a
macroscopic surface originates in the coupling between the atom and the (thermal-
or quantum-) fluctuations of the electromagnetic (em) field. The surface contains
sources that radiate a field, and it imposes boundary conditions on both the intrin-
sic field fluctuations and the field radiated by the atom. In this section we present in
some detail a rather general formalism developed in (Schiefele and Henkel, 2010)
for the treatment of Casimir-Polder (CP) interactions between dilute atomic gases
and macroscopic surfaces. The theory has to deal with a confined atomic system
in a trap (including inter-atomic interactions), and the interaction with the electro-
magnetic field is the relevant perturbation. In section 4.1, we briefly describe our
procedure for perturbation theory, which offers a pictorial representation in terms
of Feynman diagrams and permits us to compute the electromagnetic self-energy
of the atomic system, expanded in a Dyson series.

Traditionally, the techniques employed in the calculation of CP forces are lent
from non-relativistic QED: a mode expansion of the electromagnetic field and a
first quantized theory for the remaining (atomic) part of the system.1 In contrast,
our approach is formulated in terms of second-quantized atom field operators, as
they are commonly used in the theory concerning BEC. We here build on the quan-
tum field theory of atom-photon interaction as formulated by Lewenstein et al.
(1994) and Zhang and Walls (1994), and introduce, in section 4.2, atom field op-
erators which also consider the internal electronic degree of freedom.

Concerning the electromagnetic field, we will not work with explicit mode ex-
pansions adapted to boundary conditions, but instead use another approach which

1See, for example, Barton and Fawcett (1988) or Craig and Thirunamachandran (1998).
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4. QUANTUM FIELD THEORY OF THE CP INTERACTION

makes use of the fluctuation-dissipation theorem (see Wylie and Sipe, 1984, 1985):
the level shift is cast in a form involving generalized susceptibilities from linear
response theory, the (retarded) Green functions. The influence of the surface is
then encoded in the appropriate scattering amplitudes of the body, that is, reflec-
tion coefficients for a planar interface. This makes the approach applicable to very
general descriptions of the surface material, including absorption and dispersion.
Another advantage of the formalism lies in the fact that renormalization gets sim-
plified, as the (divergent) free-space part of the Lamb shift is easily isolated from
the surface-dependent contributions, the latter being finite. The relevant correla-
tion functions of E near the surface will be dealt with in section 4.4.

To illustrate our formalism and to provide a cross-check with existing results,
we calculate the electromagnetic self-energy of a single two-level atom in second
order perturbation theory in section 4.3 and use these results to derive the CP
interaction of the atom with a plane surface in section 4.5. Our approach provides
a consistent modular concept to describe effects associated with different atomic
systems near interfaces, as field and atomic system are separately described by
their respective correlation functions. The techniques described below will be
put to use in chapter 5 and chapter 6 to describe effects involving Bose-Einstein
condensates near interfaces.

4.1 Perturbative framework

The total Hamiltonian of our system can be split as follows:

H = HA +HAF +HF . (4.1)

Here, HF describes the free em-field (without any perturbation by the atoms, but
in the presence of the surface), HAF contains the atom-field interaction, and the
Hamiltonian HA describes the trapped atoms.

To investigate the CP interaction between the atomic system and the surface,
we employ perturbation theory in the atom-field coupling HAF . Technically, we
use the Dyson series2 to approximate the S-matrix

S = 1 +
∞∑
n=1

(−i)n
n!

∫
dt1 . . . dtn T

{
HAF (t1) . . . HAF (tn)

}
, (4.2)

which yields an asymptotic expansion in the coupling constant appearing in HAF .
The symbol T{. . . } in eqn. (4.2) denotes time ordering, and the operatorsHAF (ti)
are taken in the interaction picture, with a time dependence governed by the unper-
turbed Hamiltonian HA + HF . The T -matrix is defined by separating the trivial

2See Dyson (1949b) or Weinberg (2005, chap. 3).
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4.2. Atom-field coupling

part of the S-matrix (which describes a transition from an initial state |i〉 into an
identical final state |f〉 with no interaction taking place)

Sif = δ(i− f)− 2πi δ(Ei − Ef )Tif , (4.3)

whereEi andEf denote the energies of the initial and final state, respectively. The
energy-shift Re [∆E] acquired by an eigenstate of HA + HF through interaction
with the em-field can be computed from

Sfi = e−2πiδ(Ei−Ef )∆E

(see Rodberg, 1958). By retaining only the first few terms of the series (4.2), we
can calculate this energy-shift up to the desired order in the atom field interaction,
once a specific form of the interaction Hamiltonian HAF is established.

4.2 Atom-field coupling

Our description of the atom-field coupling basically follows the treatment of Lewen-
stein et al. (1994). We consider alkali atoms which can be modeled as consisting
of heavy nuclei of effective positive charge with a much lighter valence electron
of negative charge. Electron and core interact via a screened Coulomb potential.
The interaction between atoms and the em-field can be incorporated by the stan-
dard minimal coupling (or p.A coupling) procedure which consists of replacing
the canonical momenta of cores and electrons by pj → pj−e/cA(rj), with A(r)
the transverse electromagnetic potential in the Coulomb gauge. For our purposes,
it is more practical to use the Hamiltonian in the µ.E gauge (where µ denotes a
transition matrix element of the electric dipole operator), as it does neither contain
A2 terms nor static dipole-dipole interactions between atoms. The µ.E Hamil-
tonian is obtained by applying a unitary transformation to the minimal coupling
Hamiltonian.3 For our purposes, two approximations that will greatly simplify the
Hamiltonian seem appropriate: the dipole- and two-level approximation for the
atoms.

In the dipole approximation, one uses the fact that electrons are bound tightly
to the core, with typical distances of the order of a few Bohr radii, while the typical
interatomic distances in dilute ultracold atomic gases are of the order of several s-
wave scattering lengths.4 Also, the wavelength of photons involved in atom-field
interactions is much larger than the Bohr-radius, which means that atoms keep
their bosonic or fermionic identity in the course of the dynamics. Hence, with the
distance between electrons and core being much smaller than any other relevant

3See Power and Zienau (1959) or Craig and Thirunamachandran (1998); Healy (1982).
4For 87Rb, as = 5.77 nm ≈ 110 aBohr , λ = 780 nm ≈ 15 × 103 aBohr for the D2 line (see

Boesten et al., 1997).
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4. QUANTUM FIELD THEORY OF THE CP INTERACTION

length scale, we can safely replace the electromagnetic potential at the position of
the electron for that at the position of the corresponding core.

Furthermore, in many quantum-optical systems we can limit the description
of the atomic energy-level structure to a few relevant levels, for example to those
atomic dipole transitions with the largest oscillator strengths. In this work we re-
strict our Hamiltonian to a manifold of electronic ‘ground’ and ‘excited’ states,
labeled |g〉 and |e〉, which are eigenstates of the Hamiltonian for free, nonin-
teracting atoms.5 The energy difference between the two levels is denoted by
~ωeg = ~(ωe−ωg). Keeping in mind that this two-level approximation will fail to
describe situations in which transitions from an excited state of a multilevel atom
to higher lying states play a role, it can be used to calculate the energy-shift of the
ground state |g〉 or the decay rate of the excited state |e〉. The expressions thus ob-
tained can be generalized to realistic atoms in a straightforward way by summing
over the relevant transitions (see Hinds and Sandoghdar, 1991).

The quantum-statistical properties of the atoms could be described by restrict-
ing the Hamiltonian to the space of symmetric (or antisymmetric) wave func-
tions of the coordinates that represent the position of the cores for bosons (or
fermions). Instead, we apply the second-quantization procedure (see Fetter and
Walecka, 2003; Ziman, 1969), introducing the (bosonic or fermionic) fields Ψg(r)
and Ψe(r) which describe the annihilation of an atom in the ground or excited
electronic state at the location r. Within the dipole- and two level approximations,
the second quantized Hamiltonian for the atom-field interaction in the µ.E-gauge
finally reads

HAF = −
∫
d3r

∑
α

{
Eα(x)

[
µgeα Ψ†g(x) Ψe(x) + µegα Ψ†e(x) Ψg(x)

]}
, (4.4)

where α = x, y, z (see Lewenstein et al., 1994). We do not make the rotating
wave (or resonance) approximation here because otherwise relevant processes in
the intermediate states would be missed.

The dipole moment µ plays the role of the coupling constant in the above
Hamiltonian. We will see below and in chapter 7 that the small dimensionless
parameter appearing in the perturbation series, analogous to the fine structure con-
stant αfs in QED of elementary particles, is (µωeg)

2/(~c3) ≈ α3
fs ≈ 10−7.

4.3 Single atom self energies

In order to illustrate the formalism laid out above, we now calculate the self-energy
of the most simple atomic system, namely a single two level atom (see for example
Scheel and Buhmann, 2008, sec. 5.2).

5A generalization to states with an additional index for the spin state is straightforward (see
Lewenstein et al., 1994).
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4.3. Single atom self energies

We assume that both internal states of the atom experience a trapping potential
which localizes the atoms in space, and define the single-particle eigenfunctions
as Φg

n(r) = 〈r|gn〉 and Φe
m(r) = 〈r|em〉, where the collective indices n,m label

the different modes of the trapping potentials (see appendix C for details). Their
eigenenergies ωgn and ωem are typically several orders of magnitude smaller than
the optical transition frequency ωeg. To calculate the energy shift of an atom in
the internal state |g〉 or |e〉, we have to consider S-matrix elements between the
unperturbed states |{Nk}, gn〉 and |{Nk}, em〉. Here, the notation |{Nk}〉 denotes
an eigenstate of HF , with the field in equilibrium at a temperature TF , such that

Nk = 〈N̂k〉 =
1

e~ωk/(kBTF ) − 1
(4.5)

(with ωk = ck) is the mean thermal occupation number of the photon mode k. The
leading contribution to the self-energy is of second order in HAF :

gn gn
= T

(2)
g,n × [−2πiδ(Ef − Ei)] (4.6a)

=
(−i)2

2!

∫
dt1

∫
dt2 〈gn, {Nk}|T{HAF (x1)HAF (x2)}|{Nk}, gn〉

em em
= T

(2)
e,m × [−2πiδ(Ef − Ei)] (4.6b)

In the diagrams above, we used solid lines for the propagation of ground state
atoms, dashed lines for excited atoms, and a wiggled line for the Feynman propa-
gator of the electric field,

DF
αβ(x1;x2) = = 〈{Nk}|T

{
Eα(x1)Eβ(x2)

}
|{Nk}〉 (4.7)

=

∫
dω

2π
eiω(t1−t2)DF

αβ(r1, r2;ω) . (4.8)

The time-ordered product T{. . . } in eqns. (4.6) can, via Wick’s theorem, be de-
composed into contractions of field operators, see eqns. (C.4). Performing the time
integrations in the first line of eqn. (4.6a) yields the expression

T
(2)
g,n = µegα µ

ge
β

∫
d3r1

∫
d3r2 Φg ∗

n (r2)Φg
n(r1)

×
∑
m

〈r2|em〉〈em|r1〉
∫
dω

2π

DF
αβ(r1, r2, ω)

ω − ωeg − ωem + ωgn + iε
. (4.9)

When evaluated in free space, the above expression depends on the Franck-Condon
factors Φg

n(r)Φe ∗
m (r)eikr (see Lewenstein et al., 1994, sec. VIII). The optical

transition frequency in the denominator of eqn. (4.9) is slightly shifted by the
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4. QUANTUM FIELD THEORY OF THE CP INTERACTION

eigenenergies ωgn and ωem, we will in the following neglect this shift by assum-
ing that the field correlation function is varying slowly on the scale of the trap-
frequencies.6 After shifting the integration variable ω → ω + ωem − ωgn and set-
ting DF

αβ(ω + ωem − ωgn) ≈ DF
αβ(ω), eqn. (4.9) simplifies considerably: with∑

m〈x2|em〉〈em|x1〉 = δ(r1 − r2), the initial state wavefunction enters the re-
sult only through the probability density |Φg

n(r)|2. The argument proceeds com-
pletely analogously for T (2)

e,m, and after performing the time and space integrations
in eqns. (4.6), we arrive at

T
(2)
a,j =

∫
d3r |Φa

j (r)|2 T (2)
a (r) , (4.10)

where j = n,m,

T (2)
a (r) = µαµβ

∫
dω

2π

DF
αβ(r, r, ω)

ω ∓ ωeg + iε
, (4.11)

and the upper/lower sign in the denominator corresponds to a = g, e, respectively.
This result can also be obtained immediately from the diagrams in eqns. (4.6) by
applying the Feynman rules given in appendix C.

As the extent of the region in which the atom is localized should be small
compared to the atom-surface separation, the atoms are usually described as com-
pletely localized pointlike objects. We adopt this approach in the rest of this sec-
tion by setting |Φa

j (r)|2 = δ(r − rA) in eqn. (4.10) (with rA the location of the

atom), which substitutes T (2)
a (rA) for T (2)

a,j . The atomic wavefunctions will play
a role in the following chapters, where we use the same technique for treating
condensed Bose gases and the macroscopic extent of the condensate wavefunction
plays a prominent role.

The energy shift of an atom due to its interaction with the field is usually not
expressed in terms of the Feynman-propagator (4.7), but with the retarded field
correlation function

Gαβ(x1, x2) = i 〈{Nk}|[Eα(x1), Eβ(x2)]|{Nk}〉Θ(t2 − t2) (4.12)

and a polarizability αaαβ of the atomic state |a〉, which is likewise expressed as a
retarded correlation function of the polarization operator (see appendix A for more
calculational details). By rearranging the time ordered product in eqn. (4.7) and
using the fluctuation-dissipation theorem (see Wylie and Sipe, 1985, appendix B),

6In chapter 5, we explicitly evaluate this shift of the optical transition frequency for an interact-
ing trapped Bose gas, and show that the resulting correction for the self-energy is proportional to the
(small) ratio between trap- and atomic frequency.
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4.3. Single atom self energies

we can express the Fourier transform (4.8) of the Feynman propagator as

iDF
αβ(r1, r2, ω) = Re [Gαβ(r1, r2, ω)] + i Im [Gαβ(r1, r2, ω)]

× coth

[
ω

2kBTF

]
(4.13)

(see Fetter and Walecka, 2003, sec. 31). Here we assume the field and its sources
in thermal equilibrium at the temperature TF ,7 while the atomic part of the system
may have a temperature TA 6= TF and is even allowed to be in a non-thermal state,
as is the case for the excited two-level atom in eqn. (4.6b). Using the fact that
G(ω) has poles only in the lower half of the imaginary ω-plane, the frequency-
integral in eqn. (4.11) can be evaluated with the help of identity (A.7). Assuming
for simplicity that the dipole moments µgeα are real, eqn. (4.11) reads

T (2)
g = 〈Neg〉µαµβGαβ(rA, rA,−ωeg)− kBTF

∞∑
n=0

′
Gαβ(rA, rA, iξn)αgαβ(iξn) ,

(4.14a)

T (2)
e = −(〈Neg〉+ 1)µαµβGαβ(rA, rA, ωeg)− kBTF

∞∑
n=0

′
Gαβ(rA, rA, iξn)

× αeαβ(iξn) , (4.14b)

where the primed sum denotes that the n = 0 term is multiplied with a factor 1
2 , the

Matsubara frequencies are defined as ξn = 2πnTF , and the polarizability αaαβ(ω)
reads

αaαβ(ω) =
± 2ωegµαµβ

ω2
eg − (ω + iε)2

, (4.15)

the upper/lower sign corresponding to a = g, e, respectively. The last terms of
eqns. (4.14) now assume a form familiar from linear response theory, with the
answer of the atom to a perturbation being proportional to a retarded response
function multiplied with the atomic polarizability. The real part of T (2)

a yields the
energy shift of the atomic state |a〉, while the rate for the transition between states
|a〉 and |a′〉 is given by

γaa′ = −2Im [T (2)
a ] . (4.16)

The Matsubara sums in eqns. (4.14) are purely real, as the retarded field correlation
function Gαβ and the polarizability are evaluated at imaginary frequencies. The
imaginary parts of the first terms of eqns. (4.14) are proportional to the lifetime
of the atomic states |g〉 and |e〉, respectively. At TF = 0, only T (2)

e keeps an
imaginary part describing spontaneous emission. The transition rate is given by

γeg = 2µαµβIm [Gαβ(rA, rA, ωeg)] . (4.17)
7 More general cases like a heated substrate are treated in (Obrecht et al., 2007) or (Henkel

et al., 2002), for example.
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4. QUANTUM FIELD THEORY OF THE CP INTERACTION

For finite field temperatures, γge = −2Im [T
(2)
g ] 6= 0 describes the rate for absorp-

tion of a thermal photon by a |g〉-state atom. We will come back to the topic of
single-atom emission processes in chapter 6.

The generalization of eqns. (4.14) to atoms with several energy levels is straight-
forward by introducing summations over lower and higher lying states as in Gorza
and Ducloy (2006, eqn. (2.11)).

4.4 Correlation functions of the electric field in the presence of an
interface

For the electromagnetic field in free space, the time-ordered propagator eqn. (4.7)
can be worked out explicitly from a mode expansion of the E-field. The Matsubara
sums in eqns. (4.14) then give rise to a formally divergent self energy of the atom
due to its interaction with the field. The corresponding effect in atomic hydrogen is
well known as the Lamb-shift which, starting with Bethe’s seminal paper (Bethe,
1947), gave rise to the systematic development of renormalization techniques in
QED.

The mode function approach works in the presence of a non-dispersive sur-
face, too, but is rather cumbersome because the boundary conditions at the surface
require more complicated mode functions (see Carnaglia and Mandel, 1971; Eber-
lein and Robaschik, 2006). Instead, we want to follow here the method described
by Wylie and Sipe (1985):8 From linear response theory (see Fetter and Walecka,
2003, sec. 32) and the linearity of the Maxwell equations, the response function
Gαβ(r1, r2, ω) can be identified with the classical Green function, that is, the elec-
tric field at r1 generated by a classical dipole, oscillating at frequency ω, which
is located at r2. The explicit form of the Green function in the presence of an
interface is well known (see Sipe, 1981) and can be split into a free-space and a
reflected part:

Gαβ = G0
αβ +GRαβ ,

where G0
αβ is the retarded Green function in free space. As long as we are only

interested in that part of the energy shift caused by the presence of the surface,
we do not have to consider G0

αβ at all. The decomposition above thus permits
us in a simple manner to subtract the divergent terms of eqns. (4.14) (involving
divergent photon loops in the intermediate states), which arise from G0

αβ . To get
the distance-dependent part of the energy shift, we will simply substitute Gαβ by
GRαβ in eqns. (4.14). The expressions containing GRαβ are then finite without any
further renormalization.

8See also Agarwal (1975) and Wylie and Sipe (1984).
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d

z

|g〉
|e〉

ǫ(ω)

Figure 4.1: A single two level atom above a surface. The dielectric function
ε(ω) appears in the reflection coefficients eqns. (A.16).

The surface contribution GRαβ at imaginary frequencies has the form

GRαβ(r1, r2, iξ) = −µ0ξ
2

2π

∫
d2k

κ
Rαβ(ξ,k)e−κ(z1+z2) eik·(x1−x2) , (4.18)

(see appendix A for more details) where µ0 = (ε0c
2)−1 is the vacuum perme-

ability and κ =
√
ξ2/c2 + k2. The two-dimensional vectors x1,2 and k denote

position and momentum parallel to the surface, respectively. The tensor elements
Rαβ contain the reflection coefficients appropriate for the specific surface material.
Note that from the viewpoint of perturbation theory, the surface response functions
Rαβ depend on the quantum state of matter in the surface; they are calculated, of
course, in the absence of the atomic system outside it.

4.5 Attractive atom-surface potential

With the explicit form (4.18) for GR, we are now in the position to calculate the
interaction potential between the two-level atom and a plane surface. For simplic-
ity, we concentrate on the case of a pointlike atom in the internal state |g〉, located
at rA = (0, 0, d), where d is the (positive) distance between atom and surface and
the surface lies in the x, y-plane (see fig. 4.1). From eqn. (4.14a), we obtain for
the position dependent part of the energy-shift

∆Eg(d) = 〈N̂eg〉µαµβRe [GRαβ(rA, rA, ωeg)] − kBTF
∞∑
n=0

′
GRαβ(rA, rA, iξn)

× αgαβ(iξn) . (4.19)

As the optical transition frequencies of the atom are under typical conditions much
higher than the thermal energy, the first term is small compared to the Matsubara-
sum, and we will neglect it in the following. For a given optical transition fre-
quency and dipole moment, eqn. (4.19) can be evaluated numerically as a function
of the atom-surface separation d for a wide range of surface materials.9 As an

9For calculations of the atom-surface potential involving different models for the surface ma-
terial, see Gorza and Ducloy (2006); Sipe (1981); Wylie and Sipe (1984, 1985). Experimentally,
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Figure 4.2: Atom-surface interaction eqn. (4.19) between a rubidium atom
(resonance frequency ωeg/2π = 3.85 × 1014 Hz) with its dipole moment ori-
ented in the z-direction and a perfectly reflecting surface or a gold surface, re-
spectively. Parameters of the Drude dielectric function for gold, eqn. (A.17):
ωp = 5.74ωeg and ωpτ = 5 × 103. Solid curves show the results for the em-
field at zero temperature, the triangle and circle symbols for a field temperature
of 300 K. The atom-surface distance d = xc/ωeg is scaled in units of the res-
onance wavelength, the interaction energy is multiplied by −x3 and scaled by
the free-space decay rate ~Γz = |µz|2ω3

eg/(3πε0c
3) for a dipole oriented in the

z-direction. The dot-dashed lines show, from left to right, the van der Waals
potential (4.23), the Casimir-Polder potential (4.22), and the thermal potential
(4.21). The length scales separating the different asymptotic potentials take the
values λopt = 0.12µm and λTF

(300K) = 7.64µm.

example, fig. 4.2 shows the atom-surface potential for a gold surface with the field
at zero temperature and at 300 K (solid red curve and red circles, respectively),
and for a perfectly reflecting surface (blue curve and triangles). The values dif-
fer mainly in the short-distance regime, where the high-frequency part of the field
fluctuations is important. Arbitrarily high frequencies are not reflected by a realis-
tic surface, hence the slightly weaker atom-surface interaction.

In the following section, we will concentrate on the idealized case of the per-
fectly reflecting surface, which allows for simple asymptotic solutions of eqn. (4.19)
in various distance regimes.

a potential of the form (4.19) has been observed by Bender et al. (2010); Landragin et al. (1996);
Sukenik et al. (1993).
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4.5. Attractive atom-surface potential

Asymptotic expressions

The characteristic length scales appearing in the potential (4.19) are the thermal
wavelength λTF = ~c

kBTF
and the wavelength related to the optical transition,

λopt = c/ωeg. At finite field temperature TF with λTF > λopt, ∆Eg(d) shows
three distinct regimes.

As the function GRαβ(rA, rA, iξn) in the Matsubara sum of eqn. (4.19) decays
as exp[−nd/λTF ], for distances d � λTF we can approximate the potential by
retaining only the n = 0 term of the sum. This yields the thermal potential VTF (d)
in eqn. (4.21) below, which is proportional to TF /d3.

At distances smaller than the thermal wavelength, all of the terms in the Mat-
subara sum have to be taken into account. With dζ = ζn+1 − ζn = 2πωTF , the
sum can be approximated by an integral if TF is sufficiently low such that ωTF
is small compared to the frequency scale ωeg on which the functions α(iξ) and
G(iξ) vary. Eqn. (4.19) then reads

∆Eg(d) = − 1

2π

∫ ∞
0

dξ GRαβ(rA, rA, iξ)α
g
αβ(iξ) . (4.20)

After inserting the explicit expression for GR (for a perfectly reflecting mirror)
into eqn. (4.20), two simple, recognizable interaction potentials emerge as limiting
cases (see for example Hinds and Sandoghdar, 1991). These are the well known
Casimir-Polder and van der Waals-London potentials (below in eqn. (4.22) and
eqn. (4.23)), proportional to d−4 and d−3, respectively.10

To consider different orientations of the atom’s dipole moment with respect
to the surface, we introduce µρ =

√
µ2
x + µ2

y, and finally obtain the following
asymptotic expressions for the atom-surface potential:

VTF (d) = − 1

d3

λopt
λTF

|µz|2 + |µρ|2
2

, for d� λTF , (4.21)

VCP (d) = −λopt
d4

|µz|2 + |µρ|2
4π

, for λopt < d < λTF , (4.22)

VvdW (d) = − 1

d3

( |µz|2
8

+
|µρ|2
16

)
, for d� λopt . (4.23)

The van der Waals-London potential (4.23), valid when the atom is close to the
mirror, can be understood as the instantaneous interaction of the atom’s fluctuating
electric dipole with its own electric image in the mirror (see Scheel and Buhmann,

10In chapter 1, we used the term Casimir-Polder potential for atom-surface interactions, and
reserved the name van der Waals interaction for the dispersion interaction between two atoms. In
the literature, the names of van der Waals and London are often used to denote any non-retarded
potential, and we apply this convention here to distinguish between the two asymptotic expressions
for the atom-surface potential.
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2008, sec. 5.5.2). Historically, it was derived in this way by Lennard-Jones (1932),
preceded by work of Eisenschitz and London (1930) and London (1930) on the
interaction between two neutral molecules via their fluctuating electrical dipole
moments, which in turn gave a quantum mechanical explanation of the van der
Waals forces introduced in a phenomenological way half a century earlier (see
Maxwell, 1874).

On the basis of the mirror image picture customarily used for visualizing van
der Waals forces, an influence of retardation on the interaction (due to the finite
speed of light) is to be expected as soon as the distance between atom and mir-
ror becomes comparable to the wavelength corresponding to the atomic frequen-
cies. Conceptually, the important step in Casimir’s derivation of eqn. (4.23) (see
Casimir and Polder, 1948) is to take into account the fluctuations of the em-field.
In this spirit, the CP potential is most naturally understood as a change in the
Bethe contribution to the Lamb shift, caused by the modification of the vacuum
field distribution due to the surface.

As, for distances larger than the thermal wavelength, the atom-surface poten-
tial is dominated by the thermal fluctuations of the field, resulting in the TF /d3

potential of eqn. (4.21), the possibility to observe the crossover between the in-
stantaneous d−3 van der Waals and the retarded d−4 Casimir-Polder potential de-
pends on the field temperature. For a pronounced d−4-dependence, TF has to be
sufficiently low to guarantee λTF � λopt.
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CHAPTER 5
Casimir-Polder force on a
Bose-Einstein condensate

The material presented in this chapter is based on the paper ‘Bose-
Einstein condensate near a surface: Quantum field theory of the Casimir-
Polder interaction’ by J. Schiefele and C. Henkel, Phys. Rev. A 82,
023605 (2010).

In the following, we want to extend the approach of the last section to describe the
interaction potential between a Bose-condensed atom cloud and a plane surface at
second order in the atom-light interaction. As long as interatomic interactions (via
effective contact potentials, as described in section 2.3) are neglected, the general-
ization of the calculation in section 4.5 is straightforward. We will, however, see
in section 5.2 that the macroscopic extent of the condensate wavefunction, which
we neglected for the single atom calculations altogether, significantly modifies the
effective Casimir-Polder potential. We turn to the case of an interacting BEC in
section 5.3, and investigate how atom-atom interactions lead to corrections to the
single atom theory. In this analysis, we also take account of the propagation of the
excited atom in the virtual state, and quantify the (under typical conditions small)
shift of the effective resonance frequency associated with it.

5.1 Second-order energy shift

The total Hamiltonian of the system is again split as in eqn. (4.1),

H = HA +HAF +HF ,

with the atom-field interactionHAF introduced in eqn. (4.4). The atomic Hamilto-
nian HA now describes N identical two-level atoms in a trap above a flat surface.
As in section 4.5, the surface is taken to lie in the xy-plane, the center of the trap

47



5. CASIMIR-POLDER FORCE ON A BEC

is located a distance d from the surface in the half-space z > 0 (see fig. 4.1). We
use the notation r = (x, z) for spatial vectors, where the two-dimensional vector
x lies in the plane perpendicular to the surface. Spatial integrations

∫
d3r run only

over the z > 0 half-space. Spacetime points are denoted by x = (r, t). Our units
are such that ~ = kB = 1, the speed of light c and the atomic mass M are kept for
the ease of reading.

The leading contribution to the self-energy can then be expressed as

〈T (2)〉 =
1

−2πiδ(0)
×

N NN − 1

(5.1)

= −µegα µgeβ
∫
d4x1 d

4x2 〈Ψ†g(x2)Ψe(x2)Ψ†e(x1)Ψg(x1)〉

×Θ(t2 − t1)DF
αβ(x2, x1) . (5.2)

The brackets 〈. . . 〉 in eqn. (5.2) denote an expectation value in a stationary state of
the atomic Hamiltonian HA. In contrast to eqn. (4.6a), the in- and outgoing lines
in the above diagram represent N atoms in the internal state |g〉 that make up the
unperturbed atomic state. The intermediate state (inner line) consists of an atom in
the state |e〉 (dashed line) propagating in the presence of a background field (solid
line) made up of the remaining N − 1 ground state atoms (still a large number).

For an ideal gas, the atomic correlation function in eqn. (5.2) reduces to the
form that is usually obtained from applying Wick’s theorem to a time-ordered
product of four interaction picture operators (see appendix C). We treat this case
in section 5.2 below. In section 5.3, we address the case of an interacting BEC
with interatomic contact interactions which are described by HA rather than HAF .
Contractions between atomic operators then do not reduce to c-numbers; the Feyn-
man rules describing the inner lines in diagram (5.1) must take into account the
simultaneous presence of other atoms.

5.2 Ideal Bose gas in a surface trap

For simplicity, we assume an isotropic harmonic trapping potential

V g
trap(r) =

M

2
ν2 (x2 + (z − d)2) , (5.3)

the single-particle eigenfunctions Φg
n and eigenvalues ωgn that solve eqn. (C.1a)

are the well-known solutions of a three-dimensional harmonic oscillator. We set
the ground state energy of the trap equal to the zero of energy, and the critical
temperature Tc assumes the value (2.56). For a given mean particle number N and
atom temperature TA, the (negative valued) chemical potential µ(N,TA) has to be
determined from the relation

N(µ, TA) =

∫
d3r 〈Ψ†g(r)Ψg(r)〉 , (5.4)
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5.2. Ideal Bose gas in a surface trap

where the brackets 〈. . . 〉 denote a state of the atomic system at temperature TA.
The correlation function 〈Ψ†g(r)Ψg(r)〉 that enters in eqn. (5.4) is the one-particle
density matrix n(1)(r(d), r(d)) of eqn. (B.1), where the vector r(d) ≡ (x, z − d)
accounts for the distance d between the surface and the center of the trap.

Surface-induced energy shift - effects of delocalization

Using the same approximations as in eqn. (4.9), the first non-vanishing contribu-
tion to the self-energy yields

〈N |T (2)|N〉 =
1

−2πiδ(0)
×

N, µ, TA N, µ, TA

= µgeα µ
eg
β

∫
d3r 〈Ψ†g(r)Ψg(r) 〉

∫
dω

2π

DF
αβ(r, r, ω)

ω − ωeg + iε
.

Compared with eqn. (4.10), the above expression consists of a sum of single-atom
self energies, where the individual atoms occupy different modes of the trapping
potential. Had we kept the single particle energies ωgn and ωem, they would ap-
pear, as in eqn. (4.9), as a small shift of ωeg in the denominator. (For a trap-
ping frequency ν/2π = 1 kHz and a mean number of N = 104 trapped parti-
cles, the mean thermal energy that sets the scale for the relevant ωgn evaluates to
TA = (TA/Tc) 2π 20.3 kHz, which is still much smaller than ωeg for temperatures
of the order of Tc.) . Setting the field temperature TF = 0 for simplicity (and
thereby neglecting contributions from thermal photons) we obtain, after employ-
ing relation (A.9), the atom-surface potential

∆E(x) = − 1

2π

µgeα µ
eg
β ω

3
eg

ε0c3

∞∑
j=1

ejµ/TA(
(1− e−2jν/TA) tanh[1

2jν/TA]
)3/2

×
∞∫

0

dξ

∞∫
0

k dk

κ
I(κ, x, ηj)Mαβ(k, ξ, Rp, Rs)

1

1 + ξ
2 . (5.5)

Here, we introduced the scaled distance x = ωegd/c, rescaled the integration
variables ξ = ξ/ωeg, k = ck/ωeg, κ = cκ/ωeg = c/ωeg

√
k2 + ξ2, and defined

the quantity I(κ, x, ηj) as

I(κ, x, ηj) ≡
1

2
exp[−2κx+ κ2η2

j ] (1 + erf[
x

ηj
− κηj ]) , (5.6)

where erf denotes the error function. The energy scale in eqn. (5.5) is set by the
natural linewidth γeg = |µge|2ω3

eg/3πε0c
3. The diagonal matrix Mαβ originates

from the scattering tensor Rαβ (A.15) and has elements

Mxx = Myy = Rp k2 + (Rp −Rs) (ξ/c)2 , (5.7a)

Mzz = 2Rp k2 , (5.7b)
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5. CASIMIR-POLDER FORCE ON A BEC

and Rs,p(k, ξ) are the reflection amplitudes from the surface (see eqns. (A.16)).
A subtlety arises because the single-particle wave functions Φg

n are normal-
ized only in the limit d � a0 =

√
~/(Mν) if spatial integrations are restricted

over the half-space z > 0. We shall always assume this limit, as our approach
is clearly not valid for atoms touching the surface. The wave function Φg

0 is of
the order O(exp[−(d/a0)2]) at the surface, and exponentially small terms of this
order will be systematically discarded in numerical evaluations of energy shifts.
These approximations are dealt with in detail in appendix B, they likewise apply
to the numerical calculations in section 5.3.

The Lamb-Dicke parameter ηj = ajωeg/c in eqn. (5.5) involves the tempera-
ture dependent width

aj = a0 (coth[
1

2
jν/TA])1/2 ≥ a0 . (5.8)

To compare eqn. (5.5) with the results for the single atom, we note that the con-
straint (5.4) leads to

∞∑
j=1

ejµ/TA(
(1− e−2jν/TA) tanh[1

2jν/TA]
)3/2 = N (5.9)

and consider an interaction energy per atom, ∆E/N . The terms with large j in
the sum involve a width aj equal to the zero-temperature value a0. These terms
describe the condensate atoms in the trap ground state. The terms with small j
have larger values of aj and contribute to the energy shift as a broader trap would
do. Indeed, for j = 1 and ν/TA � 1, one gets the spatial width of a classical,
thermal density distribution.

The deviation from a simple Gaussian density is perceptible in the numerical
evaluation of eqn. (5.5) in fig. 5.1. The atom-surface interaction per atom at TA =
0.2Tc (top curve) is larger than at TA = 0 (at the same trap frequency ν/2π =
1 kHz), which is due to the larger spatial size of the thermally excited trap levels.

At an atom-surface distance of d > 2µm, the interaction potential for the per-
fectly localized atom (calculated from eqn. (4.20)) is already deep in the retarded
x−4 regime. For an atom delocalized in the trap, the interaction potential becomes
larger in magnitude because of the curvature of the Casimir-Polder interaction.
Averaging a power law 1/z4 over a narrow Gaussian distribution of width σ � d
centered at z = d, we get to leading order the enhancement factor〈 1

z4

〉
≈ 1

d4

[
1 + 5(σ/d)2 + . . .

]
. (5.10)

The dashed black curve in fig. 5.1 shows the asymptotic expression for the Casimir-
Polder potential eqn. (4.22) multiplied with the above enhancement factor for a
trapping frequency of ν/2π = 1 kHz. The estimate (5.10) is seen to be in good
agreement with our result from eqn. (5.5) (the red curve in fig. 5.1).
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5.3. Interacting Bose gas near a surface
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Figure 5.1: Atom-surface interaction per atom between a trapped, ideal BEC
of rubidium atoms (resonance wavelength 2πc/ωeg = 780 nm) and a perfectly
reflecting surface (field at zero temperature). Distance d in units of the reso-
nance wavelength, energy multiplied by −d4 and scaled by the natural linewidth
~γeg = |µeg|2ω3

eg/(3πε0c
3). The atoms are supposed to have isotropic dipole

matrix elements. The full curves correspond to a single, perfectly localized atom
(black) and atom clouds trapped with different trapping frequencies (ν/2π =
3, 2, 1 kHz from bottom to top). Top curve: interaction energy per atom for a
trapped ideal Bose gas at T = 0.2Tc and ν/2π = 1 kHz [see eqn. (5.5)]. The
legend gives the corresponding oscillator widths a0 =

√
~/(Mν) and tempera-

tures in units of the critical temperature Tc [see eqn. (2.56)]. Horizontal dashed
line: Casimir-Polder asymptote VCP , eqn. (4.22). Dashed curve: VCP multi-
plied with the enhancement factor (5.10) for ν/2π = 1 kHz.

5.3 Energy shift of an interacting Bose gas trapped near a surface

Dilute interacting BEC in the single mode approximation

In order to evaluate the self-energy diagram (5.1) for interacting atoms, we further
restrict ourselves to the deeply degenerate case, where we can consider a large
number N0 of atoms in a single condensate mode Φg

0(r). The atomic Hamilto-
nian HA describes two-level atoms with a contact interaction between excited and
ground state atoms:

HA = E(N̂0) +
∑
m

(
ωeg + ωem + bgeN̂0

)
e†mem , (5.11)
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5. CASIMIR-POLDER FORCE ON A BEC

where N̂0 = g†0g0 denotes the number operator for condensate atoms. The constant
bge characterizes the interaction between ground- and excited state atoms. We
do not take into account any interactions between excited state atoms. This is
legitimate since our unperturbed state consists of a large number of ground state
atoms. Excited state atoms will then only occur in intermediate states, and their
number will be small. The (repulsive) interaction amongst the ground state atoms
and the effects of the trapping-potential are contained in the energy E(N̂0), which
depends on the number of condensate atoms. The condensate wavefunction has to
be calculated self-consistently by solving the Gross-Pitaevskii-equation1 (GPE)

[
−
−→52

2M
+ V g

trap(r) + g (N0 − 1) |Φg
0(r)|2

]
Φg

0(r) = µ(N0) Φg
0(r) . (5.12)

Here, µ(N) = ∂E(N)/∂N denotes the chemical potential, the constant g (see
eqn. (2.23)) characterizes the self-interaction of ground-state atoms, V g

trap denotes
the trapping potential felt by the ground-state atoms, and the condensate wave-
function is normalized to

∫
d3r |Φg

0(r)|2 = 1.
With the particular choice (5.11) for HA, the time dependence of the field

operators Ψg and Ψe assumes the form

Ψg(x) = Φg
0(r) exp[−it (Eg(N̂0 + 1)− Eg(N̂0) + bgeN̂e)] ĝ0 , (5.13a)

Ψe(x) =
∑
m

Φe
m(r) exp[−it(ωeg + ωem + bge N̂0)] êm , (5.13b)

and the correlation function in eqn. (5.2) evaluates to

〈N0|Ψ†g(x2)Ψe(x2)Ψ†e(x1)Ψg(x1)|N0〉 = (5.14)

N0 Φg
0(r1)Φg∗

0 (r2)
∑
m

Φe ∗
m (r1)Φe

m(r2)e−i(t2−t1)ωeg(m,N0) .

Here,

ωeg(m, N) = ωeg + ωem + Eg(N − 1)− Eg(N) + (N − 1)bge , (5.15)

where the frequency shift of the atomic transition due to inter-atomic interactions
appears. Without loss of generality, we can takeEg(1) = ωg0 = 0 (see eqn. (C.1a)),
for the limiting case of N = 1, the quantity ωeg(m, 1) then recovers the energy-
eigenvalue of a single, trapped |e〉-state atom (see eqn. (C.1b)). In the calculations
below, we also explicitly keep the term ωem, which corresponds to the energy in
the translational degrees of freedom of the |e〉-state atom. In agreement with the
treatment in the previous sections, we shall see below that the relevant distances
|r2 − r1| in eqn. (5.14) are negligibly small so that eventually the ground-state
density |Φg

0(r1)|2 determines the atom-surface interaction.
1Differing from eqn. (2.28), where we introduced the GPE, we do not approximate the term

(N0 − 1) ≈ N0 in eqn. (5.12), which allows to perform the limit N0 → 1 for a cross-check in
section 5.3.
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5.3. Interacting Bose gas near a surface

Generalized polarizability

With the expression (5.14) for the atomic two-point function, eqn. (5.2) yields
for the T -matrix element (after performing the dt1 and dt2 integrations and using
relation (A.9))

〈N0|T (2)|N0〉 = − N0

(2π)4

∫
d3r1

∫
d3r2 Φg

0(r2)Φg∗
0 (r1)

×
∫ ∞

0
dξ Gαβ(r1, r2, iξ)

∑
m

aαβ(m, ξ) Φe
m(r1)Φe ∗

m (r2) .

(5.16)

The generalized polarizability

aαβ(m, ξ) = 2µgeα µ
eg
β

ωeg(m, N0)

ω2
eg(m, N0) + ξ2

, (5.17)

(compare to the single-atom expression αaαβ(iξ) in eqn. (4.15)) contains the in-
teraction- and recoil-shifted resonance frequency ωeg(m, N0) of eqn. (5.15). In
eqn. (5.16), we set TF = 0 for simplicity, that is, we neglected the contribution of
thermally excited photons.

Recoil shift and (de)localization correction

For simplicity, we now further assume that atoms in the internal state |e〉 do not
experience any trapping potential, that is, we set V e

trap(r) ≡ 0 in eqn. (C.1b). The
summation over m in eqn. (5.16) then becomes an integral over the plane-wave
momenta q, and the single-particle energy in eqn. (5.15) takes the value ωeq =
q2/(2M). As an approximate solution for the wave function of the condensate in
the potential (5.3), we choose the ansatz of Pérez-Garcı́a et al. (1997): Φg

0(r) is a
Gaussian centered at (0, 0, d) with a variational width σ(N0) that depends on the
number of condensate particles:2

σ(N0) =


a0, N0 = 1

a0

(√
2

π

N0a

a0

)1/5

,
N0a

a0
� 1

. (5.18)

The result (5.16) for the T -matrix is, however, more generally valid and can be
evaluated similarly for other forms of Φg

0(r) and Φe
m(r).

After performing the spatial integrations in eqn. (5.16), we observe that in the
polarizability (5.17), the momentum q appears only as a recoil shift of the atomic
transition frequency ωeg(N0) (5.15). Since the relevant momenta are limited to

2See the gray dashed-dotted curve in fig. 2.3.

53



5. CASIMIR-POLDER FORCE ON A BEC

typically 1/σ, the recoil shift is a small correction because 1/(Mσ2) = ν � ωeg is
usually well satisfied. We therefore expand in powers of q; integrating the first two
terms of the series we finally obtain for the atom-surface interaction (see Schiefele
and Henkel (2010) for more calculational details)

∆EN0(d) = − N0

4πε0

∫ ∞
0

dξ

∫ ∞
0

k dk

κ

1

2
e−2κd eκ

2σ2
(1 + erf[

d

σ
− κσ])Mαβ

×
{
ααβ(ξ,N0) + α

(rc)
αβ (ξ,N0, k)

}
, (5.19)

with the matrix Mαβ defined by eqns. (5.7). The polarizability

ααβ(ξ,N0) = 2µgeα µ
eg
β

ωeg(0, N0)

ωeg(0, N0)2 + ξ2
(5.20)

in eqn. (5.19) describes the no-recoil case. The recoil term α(rc) is given by

α
(rc)
αβ (ξ,N0, k) = −2µgeα µ

eg
β

ωeg(0, N0)2 − ξ2

(ωeg(0, N0)2 + ξ2)2

(
3

4M(σ(N0))2
+

k2

2M

)
.

(5.21)

We can attribute this correction to a recoil shift of the effective resonance fre-
quency

ωeg → ωeg +
3

4M(σ(N0))2
+

k2

2M
(5.22)

where the two terms describe the kinetic energy from the delocalized condensate
wave function and from the absorbed photon momentum in the excited state, re-
spectively.

Expression (5.19) is our main result for the interaction energy of a trapped
Bose gas with a plane surface. In the above form, it is clear that it generalizes the
result for a stationary single atom in a straightforward manner. Clearly, as we put
N0 = 1, we get the single-atom transition frequency ωeg(0, 1) = ωeg. And with
the identity

lim
σ→0

1

2
e−2κd eκ

2σ2
(1 + erf[

d

σ
− κσ]) = e−2κd , (5.23)

we get from the no-recoil term of eqn. (5.19)

lim
σ→0

∆E1(d) = −
µgeα µ

eg
β

π

∫ ∞
0

dξ GRαβ(rA, rA, iξ)
ωeg

ω2
eg + ξ2

(5.24)

with rA = (0, 0, d) the position of the trap center. This is the known result for a
perfectly localized single atom as derived by Wylie and Sipe (1985, eqn. (2.28)),
or, alternatively, the limit TF → 0 of eqn. (4.19) derived in the last chapter. The
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5.3. Interacting Bose gas near a surface

recoil correction involving α(rc) is discussed in detail in section 5.3. It is usually
very small, unless the trap frequency ν is comparable to the atomic resonance ωeg,
a case of no practical significance.

For a large atom numberN0, the resonance frequency ωeg(0, N0) in eqn. (5.20)
incorporates the inter-atomic interactions (see eqn. (5.15)). The overall propor-
tionality factor N0 of eqn. (5.19) can be understood by recalling that the responsi-
ble diagram (5.1) represents a sum of self-energies of N0 individual ground state
atoms.

Single atom revisited: photon recoil corrections

The interaction potential for a single atom can be obtained from eqn. (5.19) by
setting N0 = 1. In the dimensionless units of eqn. (5.5), we get

∆E1(x) = −
ω3
eg

πε0c3

∫ ∞
0

dξ

∫ ∞
0

k dk

κ
I(κ, x, η)Mαβ(k, ξ)

× ωeg
{
ααβ(ξωeg, 1) + α

(rc)
αβ (ξωeg, 1, kωeg)

}
, (5.25)

where the Lamb-Dicke parameter η = ωega0/c gives the size of the trap ground
state in units of the resonant wavelength, the quantity I was defined in eqn. (5.6),
and the matrix Mαβ of eqns. (5.7) depends on the reflection coefficients Rp and
Rs and encodes the surface properties. The recoil correction α(rc) is now seen to
be proportional to the ratio ν/ωeg:

ωeg ααβ(ξωeg, 1) = 2µgeα µ
eg
β (1 + ξ

2
)−1 , (5.26)

ωeg α
(rc)
αβ (ξωeg, 1, kωeg) = − ν

ωeg
2µgeα µ

eg
β

1− ξ2

(1 + ξ
2
)2

(3

4
+
k

2

2
η2
)

(5.27)

The trapping frequency ν/2π for a single ground state atom in the potential (5.3)
is usually around 10 . . . 1000 Hz, much smaller than the frequencies of optical
transitions ωeg/2π ≈ 1015 Hz. This justifies the expansion of the recoil shift for
small atom momenta q done in section 5.3. Experimental situations where the
recoil correction is enhanced in magnitude could involve tight traps like optical
lattices (ν/2π ∼ 100 kHz) and Rydberg atoms whose transition frequencies can
be a factor 106 smaller (see Gallagher, 1994).

Expression (5.25) is easily evaluated numerically. Figure 5.2 shows the energy
shift of a rubidium atom in the harmonic trapping potential eqn. (5.3) with ν/2π =
1 kHz. At this frequency, the oscillator length is a0 ≈ 340 nm. The black lines
in fig. 5.2 are for the case of a perfectly reflecting surface, with the reflection
amplitudes Rp = 1 and Rs = −1. The red lines involve a frequency-dependent
reflection, as appropriate for a gold surface (described by the Drude model, see
appendix A.2 for details). The two terms of eqn. (5.25) are shown separately, the
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Figure 5.2: Atom-surface interaction energy between a rubidium atom and
a perfectly reflecting (black solid line) and gold surface (red solid line), field
at zero temperature. Distance d in units of the resonance wavelength, energy
multiplied by −d4 as in fig. 5.1. Dashed horizontal line/dot-dashed gray line:
Casimir-Polder asymptote eqn. (4.22) and Casimir-Polder potential eqn. (4.20)
for a perfectly localized atom. The atom has isotropic dipole matrix elements and
is trapped in a harmonic potential with a trap frequency ν/2π = 1 kHz (ground
state size a0 = 2.8 c/ωeg). Lower dashed lines (black/red): recoil correction
multiplied by−ωeg/ν [see eqn. (5.25)]. Parameters of the Drude dielectric func-
tion for gold, eqn. (A.17): ωp = 5.74ωeg and ωpτ = 5× 103.

recoil correction (dashed lines) is multiplied by a factor of −ωeg/ν to fit on the
scale. The dashed horizontal line shows the asymptotic expression (4.22) for the
Casimir-Polder potential of a pointlike (localized) atom in front of a perfect mirror,
which, for an atom with isotropic dipole matrix elements, is usually expressed in
terms of the static polarizability α(0) as

VCP (d) = − 3

8π

cα(0)

ε0d4
.

The gray dashed-dotted curve depicts the exact result (4.20) for the localized atom,
which is, at the shown distance range, almost identical to the asymptote VCP (d).

5.4 Summary

The starting point of the calculations in this chapter was a second-quantized Hamil-
tonian that describes the interaction of a trapped system of N atoms with the elec-
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tromagnetic field. We have focused on two simple models for the atomic system:
an interacting BEC described by N0 atoms populating a single condensate wave
function and a noninteracting Bose gas at finite temperature, where theN particles
populate the various single particle states of the trap . To calculate the interaction
energy between the atoms and a plane surface, we made a perturbative expan-
sion of the electromagnetic self-energy and worked out the T -matrix elements to
second order in the atom-field coupling. The electric field propagator has been
expressed in terms of retarded Green functions that permit to identify easily the
contribution brought about by the surface. The characteristics of the surface mate-
rial then enter through the scattering amplitudes for light, which allows for treating
a wide range of materials. For the sake of simplicity, we considered the field to be
at zero temperature, but thermal corrections can be included in a straightforward
way by considering the temperature dependence in the propagator for the electric
field, see eqn. (A.7). Even non-equilibrium situations (bodies at different tempera-
tures) can be covered by combining the techniques of fluctuation electrodynamics
(see Rytov et al., 1989) with the Keldysh formalism (see Mkrtchian (2009) for an
example).

The expression found in eqn. (5.16) describes the Casimir-Polder like interac-
tion energy of a trapped Bose gas with the surface, for a general condensate wave
function Φg

0(x). If the system is reduced to a perfectly localized single atom as
treated by Wylie and Sipe (1985), our expression reproduces known results (see
eqn. (5.24)). It also highlights that in full generality, the atom-surface interaction
does not reduce to an integral over the density distribution of the atoms, due to the
(virtual) propagation in the excited state. Although corrections to the results of a
simple density averaging (as in eqn. (5.10)) turn out to be small, we think that it is
an important (and to the best of our knowledge unique) feature of our calculation
that we are able to quantify these deviations, instead of neglecting them right from
the start. The Bose gas-surface interaction energy shows an overall scaling with
the atom number N0 (as can be expected at this order of perturbation theory), but
even the interaction energy per atom still depends weakly on N0. We have iden-
tified for this dependence the following physical mechanisms. (i) The interaction
energy involves a spatial average over the density profile whose width is larger for
a repulsive atom-atom interaction. This effect was already taken into account in the
pioneering experiments of Harber et al. (2005) and Obrecht et al. (2007). (ii) The
atomic interactions (treated here as a contact potential) shift the optical transition
frequency (see for example the experiments of Wynar et al. (2000)) and modifies
the ground-state polarizability. (iii) The optical spectral line is recoil-broadened
due to the kinetic energy of the atoms. This effect is very weak for typical traps and
in the fully degenerate limit as the phase gradient of the condensate wave function
vanishes.

For the ideal Bose gas (see eqn. (5.5)), the Casimir-Polder interaction per parti-
cle does not depend on the atom number. We showed that the influence of a higher
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5. CASIMIR-POLDER FORCE ON A BEC

atom temperature on the atom-surface interaction is similar to that of a broadening
of the trap potential.

In chapter 6, we will use the formalism developed above to discuss the process
of spontaneous emission in a trapped BEC.
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CHAPTER 6
Bosonic enhancement of

spontaneous emission near an
interface

The material presented in this chapter is based on the paper ‘Bosonic
enhancement of spontaneous emission near an interface’ by J. Schiefele
and C. Henkel, Physics Letters A 375, 680 (2011).

Spontaneous emission from an excited atom can only take place when a vacuum
mode is available to accommodate the emitted photon. This fact is employed in
experiments in cavity quantum electrodynamics (cQED) to shift the spontaneous
emission rate in small cavities where the structure of the electromagnetic vacuum
is modified (see Haroche, 1992; Hinds, 1994; Hulet et al., 1985). In particular, it
is known that the lifetime of an excited atom near a plane surface (the simplest
‘cavity’ system) shows an oscillatory behavior for atom-surface distances compa-
rable to the resonant photon wavelength. Modified spontaneous emission near an
interface was first observed by Drexhage (1970), using fatty acid layers to separate
dye monolayers from the interface. The effect is not easy to observe with ultra-
cold atoms in vacuum since distance control in the sub-micron range is required.
A transient signal related to a change in decay rate was observed by Ivanov et al.
(2004), with cold atoms being probed spectroscopically in the vicinity of a surface
using an evanescent light field. Quite analogous to the effect of a cavity on photon
modes, the presence of a Bose-Einstein condensate can alter the decay of bosonic
atoms, as the macroscopic population of atomic modes stimulates the transition
into these (see Hope and Savage, 1996; Javanainen, 1994; Morice et al., 1995).
This enhancement is significantly reduced, however, in a uniform system because
of momentum conservation. For an excited atom initially at rest, the final state
is shifted by the photon recoil momentum, and overlap with the condensate mode
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6. BOSONIC ENHANCEMENT OF SPONTANEOUS EMISSION

occurs only if repulsive interactions deplete the ground state (as shown by Görlitz
et al., 2001), or alternatively, for a confined system where the BEC is spread over
a finite width in momentum space.

In the following, we discuss the enhancement of spontaneous emission in a
trapped BEC and show in particular that the small oscillations in the decay rate
near a surface can be significantly amplified. The trap confinement and the tem-
perature of the BEC are taken into account and provide only a moderate reduction
compared to the scaling with the number of atoms in the BEC. We also consider
a typical spectroscopy experiment where the enhanced decay rate appears in the
absorption spectrum of a weak, near-resonant laser field.

6.1 Decay of an excited wavepacket in a spherical atom cloud

Self energy and transition rate

Consider a factorized initial state |e,N〉with one atom in the electronically excited
state and N atoms in the (collective) ground state. We apply second-order pertur-
bation theory in the interaction with the em field to get for this state a complex
energy shift (self-energy) whose imaginary part gives the Bose-enhanced decay
rate. The em self-energy is proportional to the S-matrix element

〈e,N |S(2)|N, e〉 = (6.1)

= −µαµβ
∫
d4x1 d

4x2 Θ(t2 − t1) 〈T
{
Eα(x1)Eβ(x2)

}
〉

× 〈e|Ψ†e(x2)Ψe(x1)|e〉〈N |Ψg(x2)Ψ†g(x1)|N〉 , (6.2)

where µα (α = x, y, z) are the matrix elements of the transition dipole. The
Feynman diagram represented above uses bold lines for the many-body system of
ground state atoms, dashed lines for individual excited atoms and wavy lines for
the photon propagator. The brackets 〈. . . 〉 in the first line of eqn. (6.2) denote
an expectation value with respect to an equilibrium state of the em-field, and the
symbol T{. . . } denotes time-ordering. Ψe and Ψg are interaction-picture field op-
erators for the atomic levels, with a time dependence governed by the unperturbed
atomic Hamiltonian.

In eqn. (6.2), the time dependent phase of the ground state correlation function
〈N |Ψg(x2) Ψ†g(x1)|N〉 is of the order of typical single particle energies in the trap
and thus much smaller than the phase of the term 〈e|Ψ†e(x2)Ψe(x1)|e〉, which is
proportional to exp[iωeg(t2 − t1)] where ωeg is the Bohr transition frequency. We
will hence neglect the time dependence of the ground state correlation function in
eqn. (6.2). (This is equivalent to summing the decay rate over the final ground state
modes, see also the remarks below eqn. (4.9).) The time integrations in eqn. (6.2)
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6.1. Decay of an excited wavepacket

can then be performed, yielding for the transition rate (~ = 1)

γe(N) = 2[1 +Nωeg ]µαµβ

[∫
d3r |Φ(r)|2 Im Gαβ(r, r, ωeg) (6.3)

+

∫
d3r1 d

3r2 Φ(r1)Φ∗(r2)〈N |Ψ†g(r1)Ψg(r2)|N〉 Im Gαβ(r1, r2, ωeg)

]
,

where the excited state is given by the normalized wave function Φ(r). We denote
Nωeg the average photon number at frequency ωeg in thermal equilibrium (see
eqn. (4.5)). For the sake of simplicity, we restrict ourselves for the rest of the paper
to a field at zero temperature where the thermal photon number Nωeg is negligible.
As in the previous chapters, we have expressed the photon propagator through the
retarded response (Green) function Gαβ(r1, r2, ωeg) defined by eqn. (4.12). This
quantity is easily calculated in a general environment, for example near a surface
(see Wylie and Sipe, 1984), and shows oscillating behavior as a function of the
atom-surface separation.

In eqn. (6.3), the decay rate naturally splits into a term γ
(0)
e that remains in

the absence of the atom cloud (first line) and an additional term γBECe (N) which
describes the bosonic enhancement. The first term has a natural interpretation in
terms of an average of the local decay rates (4.17) over the position distribution
of the excited state wavepacket. (For a study of the dynamics of the excited state,
see Japha et al. (1998).) The analysis of the second term is the main focus of this
chapter. Note that it depends on the two-point correlation function of the ground
state atoms. The bosonic stimulation is thus a probe of the spatial coherence of the
Bose gas.

Discussion of Bose enhancement in free space

To illustrate the physics in eqn. (6.3), we will assume that both the ground-state
BEC and the excited atom are trapped in overlapping isotropic harmonic poten-
tials, far enough away from any macroscopic body. We use the free-space expres-
sion G(0)

αβ of the em Green tensor (see section A.2) which takes the form

G
(0)
αβ(r1, r2, ωeg) =

∫
d3k

(2π)3
G

(0)
αβ(k, ωeg) e

ik.(r1−r2) . (6.4)

As is well known, only photons on the light cone contribute to the the imaginary
part of this quantity, i.e., |k| = ωeg/c ≡ keg. Another relevant length scale is
the oscillator length a0 = (MωT )−1/2 of the ground-state trapping potential (M
is the atomic mass and ωT the trap frequency). We assume that the excited-state
wave packet Φ(r; η) is an isotropic Gaussian with a width η a0. The first term in
eqn. (6.3) gives γ(0)

e = µ2k3
eg/(3πε0), the free space decay rate (see Wylie and

Sipe, 1984).
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6. BOSONIC ENHANCEMENT OF SPONTANEOUS EMISSION

Fig. 6.1 shows how the decay rate γe(N) varies with the width parameter η, in
the presence of a Bose condensate withN = 10 000 Rb atoms (three-dimensional,
isotropic trap). We consider both an ideal gas model (solid red lines) and an inter-
acting Bose gas (dash-dotted lines). The upper black curve corresponds to an ideal
gas at zero temperature, where all the ground-state atoms populate the trap ground
state ψ0(r), a Gaussian with width a0. In this case the integrations in eqn. (6.3) can
be worked out explicitly. We find analytically that the optimum value of γe(N) is
obtained for

ηopt =
1√
3

(
√

9 + (kega0)4 − (kega0)2)1/2, (0 < ηopt < 1) . (6.5)

This result as well as the typical behavior of γe(N) is easy to understand by noting
that the decay rate for a given photon momentum k is proportional to the overlap
integral ∫

d3rΦ(r, η)ψ∗n(r) eik.r , (6.6)

where n = 0 for the BEC ground mode. In the so-called Lamb-Dicke limit
kega0 � 1 (well-localized trap), the exponential in eqn. (6.6) can be approxi-
mated by unity, and the overlap is optimal when the two wavepackets are matched
in width, η = 1. The opposite case looks closer to a homogeneous system and is
easier to analyze in Fourier space where the photon recoil provides a shift of the
momentum distribution. This reduces the overlap and can be compensated for by
making an excited-state wave packet wider in momentum space, i.e., η < 1. At the
optimum value, the width is of the order of the photon momentum and the shifted
excited-state wave packet still has some overlap with the sharp zero-momentum
component of the BEC.

The temperature dependence in Fig. 6.1 closely follows the occupation of the
ground-state (condensate) mode. We have used the expression (B.1) by Barnett
et al. (2000), where the two-point correlation function 〈N |Ψ†g(r1)Ψg(r2)|N〉 for
the ideal Bose gas in a 3D trap is given in a simple form, involving only a single
summation. This provides the Bose enhancement of γe(N) in a straightforward
manner for atom temperatures TA below and above the critical temperature Tc
(see caption). We see that for any η, the transition rate drops below the zero-
temperature value, and for temperatures above Tc, it becomes comparable to γ(0)

e

(horizontal dashed line). The temperature dependence is shown in fig. 6.2, and
compared to the condensate fraction N0/N (dashed line). The bosonic enhance-
ment closely follows the population of the condensate mode because the excited-
state wave packet Φ(r) has the largest overlap with the trap ground state. The ther-
mal occupation of higher lying trap states hence diminishes the integrals eqn. (6.6).
We note that this behavior would change qualitatively in lower-dimensional sys-
tems where the Bose gas occupies excited states with a relatively larger weight.
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Figure 6.1: Decay rate of an excited wave packet embedded in a Bose conden-
sate with N atoms. The rate γe(N) [eqn. (6.3)] is normalized to the free-space
value γ(0)e = µ2k3eg/(3πε0) and plotted as a function of the width η a0 of the
excited state, scaled to the oscillator length for the BEC trap. The ground-state
cloud consists of N = 10 000 atoms, with trap frequency ωT /2π = 1 kHz (os-
cillator length a0 = 0.34µm), the resonance wavelength is 2π/keg = 780 nm
as for rubidium. The optimal value of η [eqn. (6.5)] is ηopt = 0.44. Upper
black curve: ideal Bose gas at zero temperature. Solid (red) curves: ideal Bose
gas at temperature TA = 0.3, 0.5, 0.6, 0.8, 0.9, 1.2Tc with critical tempera-
ture Tc = ωT (N/ζ[3])1/3 (top to bottom). Dash-dotted curves: interacting
Bose gas with mode function eqn. (2.61), for varying s-wave scattering length
as = 1, 5, 10 as (top to bottom), with kegas = 0.047 as for rubidium. Horizon-
tal dashed line: free-space decay rate γ(0)e .

The more realistic case of an interacting Bose gas is also shown in fig. 6.1.
We focus here on repulsive interactions (corresponding to positive s-wave scat-
tering length as), and restrict ourselves to temperatures far below Tc, where it is
legitimate to approximate the field operator by the condensate mode only:

〈N |Ψ†g(r1)Ψg(r2)|N〉 ≈ Nψ∗0(r1)ψ0(r2) . (6.7)

Elementary excitations of the condensate can be included within Bogoliubov the-
ory (see Hu et al., 2004; Öhberg et al., 1997; Stringari, 1996). The condensate
wave function ψ0(r) is a solution of the Gross-Pitaevskii equation. We have used
the approximate variational solution (2.61) originally introduced by Fetter (1997),
that interpolates between a Gaussian and the Thomas-Fermi limit as the parameter
N0as/a0 is changing from zero to infinity. The result for the decay rate γe(N)
is shown by the dashed-dotted curves in fig. 6.1, as the interaction parameter
N0as/a0 is increased. Relative to the s-wave scattering length as of rubidium, we
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Figure 6.2: Decay rate and absorption line width vs temperature TA of an (ideal)
Bose gas, for an optimized excited state wave packet. The rate γe(N) is given
in units of the free-space value γ(0)e . Trap and atom parameters are the same
as in fig. 6.1. Red (upper) curve: decay rate eqn. (6.3) with η = ηopt = 0.44.
Blue (lower) curve: line width γabs(N) [eqn. (6.15)] of the absorption spectrum.
Dashed-dotted curves: condensate fraction N0/N , scaled to the T = 0 values.
Horizontal dashed line: free-space decay rate γ(0)e .

took as = 1, 5, 10 as (top to bottom) which can be achieved using a Feshbach res-
onance, for example. The interacting gas shows a flatter density profile in the trap,
as is well known; this results in smaller values of the overlap integrals eqn. (6.6).

To summarize the data of fig. 6.1, we find a relatively strong enhancement of
the spontaneous decay rate of an excited atom embedded in a Bose condensate.
This happens despite the non-perfect overlap that encodes the constraints of mo-
mentum conservation and photon recoil. The optimum conditions correspond to a
well-localized excited-state wavepacket (on the scale of the transition wavelength)
and a strong condensate fraction (T ≤ 0.5Tc).

6.2 Bose enhancement near a surface

In this section, we calculate the transition rate eqn. (6.3) near a surface and demon-
strate its enhancement in a Bose condensate of oblate shape. This scenario can be
realized with an optical lattice, by retro-reflecting an off-resonant laser beam at
the surface (see Spreeuw et al., 1995), or in a bichromatic evanescent wave (see
Ovchinnikov et al., 1991). We take the surface in the xy-plane and the trapped
atoms centered at a distance d from the surface in the positive z-direction. Con-
cerning the surface material, we use the idealized model of a perfectly reflecting
mirror for the sake of simplicity; but with the appropriate choice of (frequency de-
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Figure 6.3: Bose-enhanced decay rate γe(N) near an interface. The BEC con-
tains 105 Rb atoms in an oblate wave function at an average distance d from
a perfectly reflecting surface. The size parameters are a0 = 3.4µm parallel
and a0/

√
λ = 0.01 a0 perpendicular to the surface, corresponding to trapping

frequencies of ω‖/2π = 10 Hz and ω⊥ = 104ω‖ and a critical temperature
T

(2D)
c = 118 nK. The excited wave packet (resonance frequency as in fig. 6.1) is

spatially centered in the BEC, with size parameters η = 0.07 and ηz = 1 relative
to a0. Full red curve: Bose-enhanced decay rate γBEC

e (N) given by eqn. (6.3),
for an excited atom with its dipole moment oriented parallel to the surface. We
normalize to the free-space decay rate γ(0)e (d→∞). Full blue curve: γBEC

e (N)
for an excited atom with perpendicular dipole moment. Horizontal dashed lines:
asymptotic values of γBEC

e (N, d → ∞) at large separation. Dashed red (blue)
curve: single-atom decay rate γ(0)e (first line of eqn. (6.3)) for parallel (perpen-
dicular) dipole orientation; these data are multiplied by a factor of 390 and 150,
respectively, such that their asymptotic values for large distances d coincide with
γBEC
e (N).
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6. BOSONIC ENHANCEMENT OF SPONTANEOUS EMISSION

pendent) reflection coefficients that appear in the photonic Green functionGαβ(r1,
r2, ω), a wide range of surface materials can be treated in the same manner (see
Sipe, 1981; Wylie and Sipe, 1984).

As we have measurements in mind where the control over the distance d is
essential, we take an oblate Bose condensate and assume for simplicity a single
Gaussian mode with widths a0 (in the xy-plane) and a0/

√
λ � d (along the z-

axis). The depletion of the condensate and its broadening due to repulsive inter-
actions could be incorporated as in section 6.1. For the excited state, we adopt
again a Gaussian wave packet localized in the cloud center, with widths ηa0 and
ηza0/

√
λ, respectively. The actual values of the trap frequency are given in the

caption of fig. 6.3. As the very narrow confinement in the z-direction describes a
quasi-2D scenario, the temperature has to be lower than T (2D)

c = ω‖(N/ζ2)1/2 to
ensure a strong condensate occupation.

Fig. 6.3 illustrates the decay rate γe(N) obtained from eqn. (6.3) as a func-
tion of the distance d. As is well known, the rate depends on the orientation of
the dipole moment (parallel or perpendicular to the surface, represented in red
and blue, respectively). The full curves show the Bose-enhanced contribution
γBECe (N, d), while the dashed curves give the single-atom part γ(0)

e (d), re-scaled
such that the asymptotic value for large distances d coincides with γBECe (N, d→
∞). The numbers given in fig. 6.3 are the result of a compromise between a tight
confinement in the vertical (z-) direction and a localized wave packet in the ex-
cited state. The atomic wave packets must be confined below the wavelength in
the z-direction, otherwise the oscillations in γe vs. distance are averaged out. In
this limit, the optimal Bose enhancement is found for an excited wave packet that
is matched to the condensate (ηz = 1). For the size parameter in the xy-plane, we
find an optimum at η = 0.07. The asymptotic values γe(N, d→∞) are enhanced
by factors of 390 and 150 compared to γ(0)

e (d→∞) for the parallel and perpen-
dicular dipole, respectively. The difference between these two numbers and the
relative phase shift of the oscillation pattern in γBECe (d) are due to the radiation
pattern of the dipole emission, combined with the shape of the ground state mode
that modulates the Bose enhancement in k-space.

Fig. 6.3 thus demonstrates a significant amplification of the decay rate above
the surface, with the oscillation amplitude receiving an additional enhancement
relative to the asymptotic free-space component. It suggests that even at a distance
of a few microns (several transition wavelengths), Bose enhancement can bring
the tiny interference structure of the decay rate into an experimentally detectable
regime.
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6.3. Virtual excited atoms produced by laser absorption

6.3 Virtual excited atoms produced by laser absorption

The calculation above assumed the presence of an excited atom prepared in a
Gaussian wave packet, and one may ask the question whether this is a realistic
description. Indeed, the preparation of such a state would typically proceed by
illuminating the system. We therefore describe in this section a calculation of a
typical absorption spectrum. We find that the results of the previous section are
qualitatively unchanged. The method also illustrates the relevance of two- and
four-point correlation functions of the Bose gas. For the sake of simplicity, we
restrict this analysis to the ideal Bose gas.

The calculation proceeds by keeping a continuum of modes for the excited
state field operator Ψe(x) and by identifying the absorption spectrum of a weak
laser field with a suitable T-matrix element (self-energy). We take the laser field to
be described by a coherent state |β〉 in a given plane-wave mode.

In the leading order of perturbation theory, the absorption by the atom cloud
of a photon out of the coherent state |β〉 and re-emitting it into the same state,

N N

β β

, (6.8)

results in a (complex) energy shift of the laser plus atom system that is described
by the T -matrix element

〈N, β|T (2)|N, β〉 =
|β|2ωL

2
êα(kL)êβ(kL)

Nµαµβ
ωeg − ωL − iε

. (6.9)

In eqn. (6.9), |β|2 is the number of photons in the coherent state, ωL and kL denote
the frequency and wave vector of the absorbed photons, the unit vectors ê(kL)
denote axes of (linear) photon polarization, and the infinitesimal ε↘ 0 ensures the
adiabatic switching-on of the laser field. At this order of perturbation theory, the
absorption of photons by the atom cloud is proportional to Im 〈N, β|T (2)|N, β〉 ∝
δ(ωeg − ωL).

The next order in perturbation theory brings about the diagram1

N N

ββ

, (6.10)

1 The relation of this process to the well-kown phenomenon of superradiance is discussed by
Schneble et al. (2003): The initial state of (6.10), consisting of the condensate and the photon
corresponds to the excited electronic state in usual superradiance (see Dicke, 1954). The re-emitted
photon accompanied by a recoiling ground-state atom in the virtual state of (6.10) replace the final
state of Dicke’s superradiance, after spontaneous emission took place.
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which gives the following contribution to the T-matrix:

〈N, β|T (4)|N, β〉 = −|β|
2ωL
2

êα(kL)êβ(kL)
µαµβ

[ωeg − ωL − iε]2
(6.11)

×
∫
d3r1

∫
d3r2 〈Ψ†g(r2)Ψg(r2)Ψ†g(r1)Ψg(r1)〉µγµδGγδ(r1, r2, ωL)

× e−ikL.(r1−r2) .

Let us introduce the density correlation function of the Bose gas as

C(r2, r1) = 〈Ψ†g(r2)Ψg(r2)Ψ†g(r1)Ψg(r1)〉 − n(r2)n(r1) (6.12)

where n(r) = 〈Ψ†g(r)Ψg(r)〉 is the average density. This splits eqn. (6.11) in
two parts: 〈T (4)〉 = 〈T (4)

scat〉 + 〈T (4)
abs〉. The former contains only densities and can

be identified with the elastic scattering of photons off the inhomogeneous density
profile of the BEC. This term does not distinguish between a Bose gas and a clas-
sical system with the same density. Its imaginary part provides, by the optical
theorem, the total scattering cross section of the BEC. The second term 〈T (4)

abs〉,
on the contrary, is proportional to density fluctuations, and these are at the ori-
gin of bosonic enhancement (see Ketterle and Inouye, 2001; Moore and Meystre,
2001). We therefore identify Im 〈T (4)

abs〉 with the change in the atomic absorption
spectrum (line width).

Indeed, if we define the resonant part of the polarizability ααβ(ω) of the atom
cloud as

αresαβ (ω) =
Nµαµβ

ωeg − ω − iε
. (6.13)

we see that the process (6.10) can be re-written as a shift of the atomic transition
frequency ωeg → ωeg + δωeg with

〈T (2)〉+ 〈T (4)
abs〉 =

|β|2ωL
2

êα(kL)êβ(kL)
[
αresαβ (ωL) + δωeg

∂αresαβ (ωL)

∂ωeg

]
(6.14)

By identifying eqn. (6.11) and eqn. (6.14), we can read off the frequency shift
δωeg whose imaginary part yields the atomic line width (the inverse lifetime of the
virtual state involving an excited atom)

γabs(N) = −2 Im δωeg =
2

N
µαµβ

[∫
d3r n(r) Im Gαβ(r, r, ωL) (6.15)

+

∫
d3r1

∫
d3r2C(r1, r2) Im Gαβ(r1, r2, ωL) e−ikL.(r1−r2)

]
.

This function depends weakly on the laser frequency, and we evaluate it at ωL =
ωeg for simplicity. We shall use below Wick’s theorem to evaluate the density
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correlation function (see Evans and Steer, 1996), as appropriate for the ideal Bose
gas:

C(r1, r2) =
∣∣∣〈Ψ†g(r2)Ψg(r1)〉

∣∣∣2 (6.16)

Eqs.(6.15, 6.16) can now be compared to the decay rate γe(N) of an excited-state
wave packet (eqn. (6.3)). The first line in both expressions is very similar, and
we see that the laser spectroscopy effectively prepares an excited state density
profile matched to the condensate density. The second lines differ because the
laser wave-vector appears explicitly. Also the one-body density matrix for the ex-
cited state, 〈e|Ψ†e(r2)Ψe(r1)|e〉 in eqn. (6.2), is replaced by its ground-state equiv-
alent 〈N |Ψ†g(r2)Ψg(r1)|N〉 in eqn. (6.15). The prepared wavepacket is hence
no longer pure. This makes the temperature dependence of γabs(N) stronger, as
can be seen in fig. 6.2 (compare the blue and red curves). The calculation of
γabs(N) involves, because of the squared correlation function, a double summa-
tion over single-particle trap states (see Barnett et al., 2000) under the integral. At
zero temperature, the summations can be done analytically, at the low tempera-
tures TA = 0.2, 0.3Tc, the double sum could be evaluated numerically (circles in
fig. 6.2), while for TA/Tc ≥ 0.5, the summations can be accurately replaced by
integrations that evaluate faster (denoted by squares). The size parameter η was
set to the optimal value obtained from fig. 6.1. Although the line width γabs(N) is
for these parameters around 30% smaller than the optimized decay rate γe(N), the
strong Bose enhancement is still working in a qualitatively similar way for both
types of processes. We expect a similar result to hold for an absorption experiment
near a surface, using for example evanescent fields as discussed by Aspect et al.
(1995); Cornelussen et al. (2002); Courtois et al. (1995).

6.4 Summary

To summarize, the presence of a trapped BEC can significantly enhance the decay
of an excited atom by bosonic stimulation. The magnitude of the effect depends on
the overlap between the atomic wave functions and the wavevector of the photon
involved in the decay. More precisely, our calculations based on a quantum field
theory of the atom-photon interaction illustrate the importance of two- and four-
point correlation functions of the ground-state field for the Bose enhancement.
For an excited atom prepared in a Gaussian wavepacket, the transition rate to the
ground state can be increased under optimum conditions by a factor N/10 where
N is the atom number in the BEC. This effect also amplifies the small oscillations
of the decay rate near an interface. We have provided an alternative calculation
based on the absorption of a laser beam that qualitatively confirms the simpler
wave packet picture. The main difference is that absorption from the laser field
prepares a non-pure excited state which matches the one-body density matrix of
the Bose gas.
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CHAPTER 7
Self-energy processes in higher

orders

In the preceding chapters, we analyzed the self-energy acquired by different atomic
systems through their interaction HAF (4.4) with the em-field: single atoms in
their internal ground or excited state, Bose-condensates of ground-state atoms,
and single excited atoms in the presence of these condensates. Apart from the
calculation of the absorption process in section 6.3, where real photons in the
initial and final state were involved, we limited ourselves to the leading order of
perturbation theory. The purpose of this chapter is to give a brief overview about
how the quantities appearing in higher orders can be described with the techniques
developed so far.

7.1 Single atom processes

A generic self-energy diagram for a single ground-state atom might be represented
by

= +O(µ4) . (7.1)

The atom part of the diagrams appearing in the µ4-term of the series necessarily
involves the pattern

, (7.2)

where the presence of (virtual) |e〉 and |g〉 atoms is alternating. We already an-
alyzed the first term of the self energy eqn. (7.1) in detail in section 4.3. If we

71



7. SELF-ENERGY PROCESSES IN HIGHER ORDERS

consider localized pointlike atoms it is of the form

=

∫
dωD(ω)

µ2

ω − ωeg + iε
(7.3)

(see eqn. (4.10) and the Feynman rules in appendix C). Above, D(ω) denotes an
even, scalar function of the frequency, which is composed of the matrix elements
of the Feynman-propagator (4.8).

For an atom close to a surface, we have calculated the atom-surface poten-
tial from eqn. (7.3) by inserting an appropriate photon line into the diagram (see
section 4.5):

ǫ(ω)

We followed the approach of Agarwal (1975), using the fluctuation-dissipation
theorem to link correlations of the electric field to the retarded response functions
Gαβ of eqn. (4.12). These in turn can be identified with the known field of a
classical dipole oscillating above the surface (see Sipe, 1981).

In the following, by modifying the other elementary building blocks of eqn.
(7.3), we can construct the different contributions that appear in higher orders of
eqn. (7.1). One possibility to promote diagram (7.3) to a fourth-order process is to
include self energy diagrams for the virtual excited atom:

= + +O(µ4) . (7.4)

The above series can be summed formally to yield an integral equation (Dyson’s
equation, see Dyson (1949a) or Fetter and Walecka (2003, pp. 105)) for the exact
Green function of the excited atom. We obtain

x1 x2ω =
iδ(r1 − r2)

ω − ωeg − Σ(ω)
, (7.5)

where Σ(ω) is the one-particle irreducible (or proper) self-energy of the |e〉-state
atom. It consists of all self-energy diagrams that cannot be separated in two pieces
by cutting a single atom line, and can itself be expanded in orders of µ. We already
calculated the first nonvanishing contribution Σ(1) (proportional to µ2) in chapter 4
(see eqn. (4.6b) and eqn. (4.11)). Including the full propagator for the excited atom
in eqn. (7.3) thus yields, with the expression (4.11) for Σ(1),

= + + O(µ6) (7.6)

=

∫
dωD(ω)

[
1 + Σ(1)(ω)

∂

∂ωeg

] µ2

ω − ωeg + iε
+ O(µ6) .

(7.7)
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The self-energy Σ(1) is proportional to the natural linewidth γeg ≈ ωeg (µωeg)
2

(with ~ = c = ε0 = 1), and eqn. (7.7) shows that the small dimensionless pa-
rameter in our perturbation series, playing the role of the fine-structure constant in
QED interactions of elementary particles, is actually (µωeg)

2.
We encountered an expression similar to eqn. (7.7) in section 6.3 (see eqn.

(6.14)), where the frequency was fixed by the incoming laser-photon and we only
evaluated the resonant contribution of Σ(1). From eqn. (7.5), we see that the sub-
stitution (7.4) for the propagation of the virtual state results in a (complex) shift
of the atomic frequency ωeg, and the atomic transition acquires a finite line-width.
Techniques which make use of resummed expressions like eqn. (7.5) are in the
literature often referred to as non-perturbative (see for example Buhmann et al.
(2004)).

Inclusion of the full propagator (7.5) alone, however, does not yield all higher
order terms of the self-energy (7.1). In the same way as discussed above for the
frequency-shift, the modification

= + + O(µ5) (7.8)

results in a shift of the effective atom-light coupling (see Fetter and Walecka, 2003,
pp. 402). At the fourth order in eqn. (7.1), the inclusion of the vertex-insertion (7.8)
yields a contribution

, (7.9)

where, in contrast to the µ4-term of eqn. (7.6), the photons absorbed (emitted) in
the virtual state are emitted (absorbed) by the atom in the asymptotic state.

Combining eqn. (7.4) and eqn. (7.8), the one-particle irreducible contributions
to eqn. (7.1), which are relevant for the calculation of the energy-shift and lifetime
of the asymptotic state, are of the form

. (7.10)

The self-energy at sixth order in the atom light interaction is thus obtained from
(7.10) by inserting vertex parts up to O(µ3) and the green function of the excited
atom up to O(µ4). By consistently iterating this procedure, the self energy can be
obtained to any desired order in the atom-light interaction.

7.2 Two atom processes

In the following, we want to consider the case of two distinguishable (two-level)
atoms (labeled A and B) with no additional interactions between them except
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those mediated by photon-exchange, described by HAF . Both atoms are supposed
to be in their internal ground-state, but might have different transition frequencies
ωA and ωB . The atomic wavefunctions are centered at different points rA and rB ,
separated by a distance r = |rA− rB| large enough to treat the atoms as pointlike,
perfectly localized objects, as discussed in section 4.3. Analogous to eqn. (7.1),
we represent the self-energy diagram for the two-atom system as

A A

B B . (7.11)

Expanding eqn. (7.11) in orders of the interaction, we get disconnected diagrams
of second, fourth and higher orders, which describe the single atom processes of
the last section for atom A and B without any interaction between them:

A A

B B + . . . +

A A

B B +
A A

B B + . . . +

O(µ6) .

Apart from these, there are also two fourth order diagrams with photon lines that
connect atom A with atom B:

A

B B

A A

B B

A

(7.12)

If the two atoms are described as pointlike, localized objects, a straightforward
calculation using the Feynman rules given in appendix C shows that the sum of
the two diagrams in eqn. (7.12) leads (with the field at zero temperature), to a
purely real T -matrix element, which yields the interatomic potential1

V (rA, rB) =

∫ ∞
0

dξ

2π
Gαβ(rA, rB, iξ)Gδγ(rB, rA, iξ)α

Ag
γα (iξ)αB gβδ (iξ) . (7.13)

Above,Gαβ denotes the Green-function of the electric field eqn. (4.12), and αA,B gαβ

the atomic polarizabilities (4.15) for atom A and B, respectively. For two atoms
in free space, the potential (7.13) yields the result of Casimir and Polder (1948):
the attractive interaction potential between the two atoms behaves as r−6 for in-
teratomic distances smaller than typical atomic transition wavelengths from the
ground state and as r−7 for larger distances, thus showing a similar retardation ef-
fect as the atom-surface potential calculated in section 4.5. In (Craig and Thiruna-
machandran, 1998, chap. 7), the potential (7.13) is derived by means of conven-
tional fourth-order perturbation theory. The relevant terms are then depicted by

1For a generalization to finite field temperature and resonant interactions between |g〉- and |e〉-
state atoms, see Haakh et al. (2012).
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twelve different time-ordered graphs, which are compactly represented in eqn.
(7.12). As discussed in section 4.4, the Green-functions Gαβ can can also in-
corporate additional boundary conditions from nearby surfaces. A calculation of
the processes in eqn. (7.12) near a perfectly conducting surface was first done by
Power and Thirunamachandran (1982). Passante and Spagnolo (2007) generalize
the calculation of Power and Thirunamachandran by including the effects of ther-
mal photons which are present at finite field temperature. The thermal occupation
of the excited atomic degree of freedom can usually be neglected.

The two diagrams of eqn. (7.12) can also be constructed from the leading order
self-energy (7.3) of a single atom by including the presence of an additional atom
into the propagation of the virtual photon. Pictographically, this ‘dressing’ of the
virtual photon amounts to the substitution

−→
AA

in eqn. (7.3). A similar approach is applied by Novotny and Henkel (2008) and
by Messina et al. (2008), where the Casimir-Polder potential between two atoms
is derived as the interaction energy of one atom interacting with the photon cloud
dressing the other atom.

7.3 Generalization to many-body systems

In chapter 5, we already treated self-energies of atomic systems that consist of a
large numberN of |g〉-state atoms. In second order in the perturbationHAF , these
involved a mixed (that is, containing Ψg and Ψe operators) correlation function
〈Ψ†g(x2)Ψe(x2)Ψ†e(x1)Ψg(x1)〉 as in eqn. (5.2). At the next order, the correspond-
ing expressions

N NN − 1 N − 1N

and
N NN − 1 N − 1N − 2

(7.14)

appear. The first of the above diagrams contains repeated subprocesses where
a single atom is excited and decays again, as it is the case for the single atom
processes in eqn. (7.6) and (7.9). The second diagram differs by the simultaneous
presence of two excited atoms, as in the expressions (7.12) for the interatomic
potential. If we focus on the case where the atomic Hamiltonian HA contains
only interaction terms between the |g〉-state atoms, thus neglecting the interaction
between the two species and amongst the few excited atoms, the mixed correlation
functions in (7.14) factor into a correlation function for ground-state and one for
excited-state operators, each.

Under the assumption that the field correlation functions vary only slightly on
the scale of the single particle energies of the |e〉-state atoms, we can approximate,
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in the same manner as in eqn. (4.9),

〈Ψ†e(x4)Ψe(x3)Ψ†e(x2)Ψe(x1)〉 ≈ δ(r4 − r3)δ(r2 − r1) .

The atom-light interaction can then, similar to the Fermi-theory for weak interac-
tions, be visualized by an effective vertex

→ ,

which does not resolve the spatial propagation of the excited atom in the virtual
state. (We quantified the error resulting from this approximation in section 5.3,
and found that it scales with the small ratio between trap frequency and the optical
transition frequency.) In this way, the fourth order diagrams (7.14) are simplified
to structures as in eqn. (6.11), which involves the atomic correlation function at
only two different coordinates, 〈Ψ†g(r2)Ψg(r2)Ψ†g(r1)Ψg(r1)〉.

The correlation functions of the field interacting with the atoms can now either
be local or connect two different coordinates. We can depict these two possibilities
as

N Nx1 x2

ω ω′

, (7.15)

which involves integration over DF
αβ(r1, r1, ω)DF

γδ(r2, r2, ω
′), and

N N

x1 x2

ω

ω′

, (7.16)

with an integrand proportional to DF
αβ(r1, r2, ω)DF

γδ(r1, r2, ω
′). The processes

contained in diagram (7.16) cannot be described by averaging a local operator –as
for example the Casimir-Polder potential– over a density distribution.

For temperatures below Tc, the atomic part of diagrams (7.15) and (7.16) is
typically nonzero over distances r = |r1 − r2| which are comparable to the size
of the condensate wavefunction (compare fig. 2.2). Our analysis for the ideal
Bose-gas in section 6.3 showed that this long-range order is responsible for the
enhancement of spontaneous emission processes discussed in chapter 6. It breaks
down at temperatures higher than Tc (see the blue line in fig. 6.2). By the same
mechanism, any fourth order process described by the above diagrams gets en-
hanced whenever one of the modes into which the virtual excited atoms can decay
is macroscopically populated with a large number N0 of ground state atoms. This
bosonic enhancement changes the dimensionless parameter in the fourth order of
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the perturbation series from (µωeg)
2 to N0(µωeg)

2. We found in chapter 6 that the
actual numerical factor which scales the relative magnitude between leading and
next-to-leading order processes depends on the spatial coherence properties of the
Bose gas: the relevant quantity for the enhancement is the number of ground state
atoms inhabiting a volume characterized by the coherence length.

7.4 Perspectives for future work

In the previous chapters, we were evaluating self-energy processes for atomic sys-
tems interacting with light. Our results of section 6.3, where photons from a laser
beam interact with the Bose gas, can also be rephrased by putting the emphasis on
photon propagation: the photon propagator is dressed by the atomic system, and
the refractive index of the BEC depends on its density correlation function (see
Fleischhauer, 1999; Morice et al., 1995).

Also, we only considered condensate distributions which were fixed relative
to the surface. Moving condensate clouds could be interesting for investigating
the phenomenon of quantum friction.2 Friction as the exchange of momentum
between two surfaces can be described as an exchange of particles. In the classic
case of friction with wear, atoms are exchanged between the surfaces. Momentum
exchange can also occur via the exchange of (thermal or virtual) photons between
the surfaces, which create excitations of equal and opposite momentum on each of
them. This quantum friction due to virtual photon exchange puts a theoretical limit
on the reduction of friction (see DelRio et al., 2005). Effects of quantum friction
should also occur for a condensate cloud moving above a surface or between two
counter-rotating condensates in toroidal traps.

The attractive potential between two BECs trapped in a double-well potential
can be calculated analogous to the van der Waals interaction between two point-
like atoms mentioned in section 7.2. This additional potential modifies the poten-
tial barrier between the two condensate clouds (see Haakh et al. (2012) for more
details). A deformation of the potential barrier can be detected in a change of the
atomic tunneling current between the two wells. Such double-well setups have
been used to study a bosonic analogue to the Josephson-junction.3

Finally, in the evaluation of energy shifts and decay rates, we used so far only
two simple models for the atomic system, namely an ideal Bose gas and a pure
interacting condensate. A straightforward task for future investigations is the ef-
fect of thermal excitations in an interacting gas on the CP-interaction and on decay
processes of excited atomic states. We obtained preliminary results repeating the
decay rate calculation of chapter 6 for a one-dimensional, interacting Bose gas

2On quantum friction, see for example Mkrtchian (1995); Pendry (1997); Volokitin and Persson
(1999).

3See Smerzi et al. (1997); Sols (1999) and the experiments by Albiez et al. (2005) and Schumm
et al. (2005).
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(see Mazáč, 2010). The bosonic enhancement shows a different temperature de-
pendence compared to the three-dimensional case.
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CHAPTER 8
Summary

The phenomena belonging to the context of cavity QED and the broader class of
Casimir effects have in common that fluctuations of fields are subject to boundary
conditions. In this work, we discussed several of these effects involving atomic
Bose-Einstein condensates.

In the description of interacting BECs, we focused on the low-temperature
behavior, where one single-particle state is macroscopically occupied by a large
number of atoms. Following Bogoliubov, the fluctuations of this matter wave field
can be treated as non-interacting bosonic quasiparticles. In spatially homogeneous
systems, the energy spectrum can be solved analytically, and behaves linear for
small momenta. We showed that, similar to the zero-point fluctuations of the
electromagnetic field, the quantum fluctuations of the quasiparticles give rise to
a phononic Casimir energy when the atomic system is subject to external bound-
ary conditions. The qualitative behavior of the Casimir energy depends on the
dispersion relation. In particular, for the ideal Bose gas at zero temperature, there
is no such effect.

While the phononic Casimir effect arises when external boundary conditions
are imposed on the atom field, cavity QED describes phenomena where the electro-
magnetic field is spatially confined. Recently, Bose-Einstein condensates (BECs)
of ultracold atoms have been used to test the predictions of cavity QED. In order
to merge single-atom cavity QED with the many-body theory needed to describe
trapped atomic BECs, we used a quantum field theory of atoms and light that treats
atom and photon field on the same footing. We identified the Casimir-Polder en-
ergy of BECs near surfaces with the real part of electromagnetic self-energy pro-
cesses, the imaginary part describing decay processes.

The self-energy is expressed in terms of correlation functions for the elec-
tromagnetic and the atom field. The electromagnetic correlations (photon prop-
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agator) have been expressed in terms of retarded Green functions that permit to
identify easily the contribution brought about by the surface, and to remove the
divergent free-space Lamb shift. The characteristics of the surface material then
enter through the scattering amplitudes for light, which allows for treating a wide
range of materials.

By performing a perturbative expansion of the Dyson series in terms of Feyn-
man diagrams, we are able to reproduce standard results of cavity QED, like the
van der Waals-London interaction between two atoms in the fourth order of atom-
field interaction, in a transparent and economic fashion.

For a BEC trapped near a surface, we showed that, in full generality, the atom-
surface interaction does not reduce to an integral over the density distribution of the
atoms, due to the (virtual) propagation in the excited state. The interaction energy
between Bose gas and surface shows an overall scaling with the atom number. But,
for an interacting gas, the interaction energy per atom still depends weakly on the
atom number.

The spontaneous emission rate of atoms in an internal excited state can be
significantly enhanced if the atom is embedded in a trapped Bose-Einstein con-
densate of ground-state atoms. This effect amplifies the small oscillations of the
decay rate near an interface. The stimulation depends on the overlap of the excited
matter wave packet with the macroscopically occupied condensate wave function,
and provides a probe of the spatial coherence of the Bose gas.

Our calculations illustrate the importance of two- and four-point correlation
functions of the ground-state field for the Bose enhancement. We pointed out in
a qualitative manner processes of higher orders in the atom-light interaction, like
vertex renormalization and resummation techniques. As the details of the atomic
system and the surface enter the calculation via separate correlation functions,
our approach provides a consistent modular concept to describe different effects
associated with atomic systems near interfaces.
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APPENDIX A
Correlation functions for the

electric field

The time-ordered (or Feynman-) propagator for the electric field is defined as

DF
αβ(x1;x2) = 〈T

{
Eα(x1)Eβ(x2)

}
〉 (A.1)

=

∫
dω

2π
eiω(t1−t2)DF

αβ(r1, r2;ω) , (A.2)

where the brackets 〈. . . 〉 in eqn. (A.1) denote an expectation value with respect to
an equilibrium state of the field at temperature TF , and the symbol T{. . . } denotes
time-ordering. The retarded propagator (or Green-function) for the electric field is
defined as

Gαβ(x1, x2) = i〈[Eα(x1), Eβ(x2)]〉Θ(t1 − t2) (A.3)

=

∫
dω

2π
eiω(t1−t2)Gαβ(r1, r2, ω) , (A.4)

where Θ denotes the Heaviside step function. If the field is in equilibrium,DF
αβ(ω)

and Gαβ(ω) are related via

iDF
αβ(r1, r2, ω) = Re [Gαβ(r1, r2, ω)] + i coth[ω/(2TF )] Im [Gαβ(r1, r2, ω)]

(A.5)
(see Fetter and Walecka, 2003, sec. 31).

A.1 Integral identities in the complex frequency plane

Using the fact that Re [Gαβ(ω)] is an even function of ω while Im [Gαβ(ω)] is
odd (see Scheel and Buhmann, 2008, App. A) together with relation (A.5), we can
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iξ1

iξ2

iξ3

iξ4

ω + iǫ

ω

−ω + iǫ

Figure A.1: Contour of integration for eqn. (A.6).

express the integrals appearing in eqn. (4.11) as∫
dω

2π

D(ω)

ω ± iε− ω =

∫
dω

2πi

ω ± iε
(ω ± iε)2 − ω2

G(ω)
(
1 + coth[ω/(2TF )]

)
.

(A.6)
As Gαβ(ω) has poles only in the lower halfplane and falls of at least as fast as
|ω|−2 for large |ω| in the upper halfplane, we can integrate along the contour in
fig. A.1 and obtain∫
dω

2π

D(ω)

ω ± iε− ω = G(±ω)
1

2

(
1±coth[ω/(2TF )]

)
+2TF

∑
n

′ ω

ω2 + ξ2
n

G(iξn) ,

(A.7)
where the primed summation denotes that the n = 0 term is multiplied with a
factor 1

2 , and
ξn = 2πnTF , n = 0, 1, 2, . . . . (A.8)

With dζ = ζn+1 − ζn = 2πTF , the sum can be approximated by an integral if TF
is sufficiently low such that kBTF is small compared to the frequency scale ωeg
on which the functions under the sum vary. In the limit of low temperatures, we
obtain

lim
TF→0

∫
dω

2π

D(ω)

ω ± iε− ω = θ(±ω)G(±ω) +
1

π

∫ ∞
0

dξ
ω

ω2 + ξ2
n

G(iξ) . (A.9)

A.2 Explicit expressions for Gαβ

The Green function in the presence of an interface can be split into a free space
and a reflected part:

Gαβ = G
(0)
αβ +GRαβ . (A.10)
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G
(0)
αβ in free space

The retarded Green function in free space depends only on the coordinate differ-
ence r = r1 − r2:

G
(0)
αβ(r, ω) =

4π

3
δ(r) 1 + eikrk2

[
1

r
(1 − r̂αr̂β) +

(
i

kr2
− 1

k2r3

)
(1 − 3r̂αr̂β)

]
(A.11)

(see for example Scheel and Buhmann, 2008, App. A). In the limit r → 0, the real
part of (A.11) diverges, but the imaginary part stays finite:

Im [G
(0)
αβ(r = 0, ω)] = 1

2

3
ω3 +O

(
r2
)
.

The spatial Fourier transform of eqn. (A.11) reads

G
(0)
αβ(r, ω) =

∫
d3k

(2π)3
Gαβ(k, ω) eik.r , (A.12)

G
(0)
αβ(k, ω) = 4π

(
kk− ω21

(ω + iε)2 − k2
+ 1

)
. (A.13)

GRαβ in the presence of an interface

The reflected part of the retarded Green function in the presence of an interface
(as presented by Wylie and Sipe (1984, eqn. (3.4)), see also Panasyuk et al. (2009,
sec. 2) for an overview) reads

GRαβ(r1, r2, ω) = − iω2

2πε0c2

∫
d2k

kz
Rαβ(k, ω) eikz(z1+z2)+ik.(x1−x2) , (A.14)

with kz =
√
ω2/c2 − k2. Here, the two-dimensional vectors x and k denote the

position and momentum vectors parallel to the surface, respectively. The matrix
Rαβ(k, ω) is defined as

Rαβ(k, ω) = (ŝŝ)αβ R
s + (p̂0+p̂0−)αβ R

p (A.15)

The functionsRs andRp in eqn. (A.15) are the Fresnel reflection coefficients for s-
and p-polarized light, which can be modeled to realize different surface materials.
For the case of a perfectly reflecting surface, Rs = −1 and Rp = 1, while in
general the reflection coefficients are frequency dependent (see Sipe, 1981; Wylie
and Sipe, 1984, 1985): Considering an interface between vacuum (ε0 = 1) and a
material with a local and isotropic dielectric function ε(ω), Rs and Rp are given
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by

Rs =
kz − (ω2 ε(ω)− k2)1/2

kz + (ω2 ε(ω)− k2)1/2
, (A.16a)

Rp =
ε kz − (ω2 ε(ω)− k2)1/2

ε kz + (ω2 ε(ω)− k2)1/2
. (A.16b)

In section 5.3, we use the Drude model for a metal surface, with

ε(ω) = 1−
ω2
p

ω(ω + i/τ)
, (A.17)

where ωp is the plasma frequency and τ the collision time. Finally, the dyadic ele-
ments (ŝŝ)αβ and (p̂0+p̂0−)αβ in eqn. (A.15) involve the normalized polarization
vectors

ŝ = k̂× ẑ (A.18)

p̂0± =
k ẑ∓ kzk̂

ω
. (A.19)

For the idealized case of a perfectly reflecting surface, the reflected part of the
Green function assumes the simple form (see Wylie and Sipe, 1984, eqn. (3.12))

GRxx(rd, rd, iξ) = GRyy(rd, rd, iξ) =
1 + σ + σ2

8d3
e−σ , (A.20)

GRzz(rd, rd, iξ) =
1 + σ

4d3
e−σ , (A.21)

where rd denotes the vector (0, 0, d) and σ = 2ξd/c.

86



APPENDIX B
Mathematical details

B.1 One-body correlation function for an ideal BEC in a harmonic
trap

Using the analytical properties of the single-particle wave functions, the one body
correlation function (2.2) for the ideal Bose gas can be constructed from the mode
expansion of the field operator Ψ̂. A useful form, found by Barnett et al. (2000),
that combines the summations over the multiple index j of eqn. (2.7) into a single
sum reads

n(1)(r1, r2) =
1

π3/2a2
⊥az

∞∑
j=1

{
ejβµ(

1− e−2jβω⊥
)(

1− e−2jβωz
)1/2 (B.1)

× exp

[
−(r⊥ 2 + r⊥ 1)2 tanh[1

2jβ~ω⊥] + (r⊥ 2 − r⊥ 1)2 coth[1
2jβ~ω⊥]

4a2
⊥

]

× exp

[
−(z2 + z1)2 tanh[1

2jβ~ωz] + (z2 − z1)2 coth[1
2jβ~ωz]

4a2
z

]}
.

Here, a⊥ and az denote the oscillator-lengths eqns. (2.55) of the axisymmetrical
potential (2.52). We adopt the convention of setting the eigenenergy of the ground
state to zero, the chemical potential µ is then negative-valued.

B.2 Approximating the error function integral

In the integrands of eqn. (5.5) and eqn. (5.25), we encounter the expression

I(κ, x, η) =
1

2
exp[−2κx+ κ2η2] (1 + erf[

x

η
− κη]) (B.2)
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where κ is integrated from zero to infinity, η = ωega0/c is fixed by the atomic
transition frequency and mass and the positive distance x varies such that x > η2

is always fulfilled.
Noting that the argument of the error function changes sign at κ = x/η, we can

approximate the error function for large values of κ (see Gradshteyn and Ryzhik,
1980, eqn. (8.254)) to obtain

I(κ, x, η) ≈ exp[−x2/η2]

2
√
π (κη − x/η)

, for κ� x

η2
, (B.3)

which is exponentially small in the quantity (x/η)2. In numerical integrations,
we will thus cut off the dκ-integration at κ = x/η2, omitting terms of order
O
(
exp[−(x/η)2]

)
in the integrand. The neglected quantities are small: for a ru-

bidium atom at T = 0 trapped in a ν/2π = 1 kHz trap at an atom-surface distance
d ≈ 2µm (x = ωegd/c ≈ 15), we have (x/η)2 ≈ 30. Technically speaking, the
high momentum cut-off is necessary as the atomic probability density |φ0(r)|2 we
adopt here is not zero at the surface, but only exponentially small, namely of the
same order as the terms neglected in eqn. (B.3).
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APPENDIX C
Feynman rules for pointlike

atoms

We assume that both internal states of the atom experience a trapping potential
which localizes the atoms in space. In general, atoms in excited electronic states
move in a potential V e

trap(r) which differs from the potential V g
trap(r) character-

izing the ground state, because the magnetic moments of the two species differ.
The single-particle eigenfunctions Φg

n(r) and Φe
m(r) of |g〉- and |e〉 state atoms

are defined by

[−
−→52

2m
+ V g

trap(r)] Φg
n(r) = ωgn Φg

n(r) , (C.1a)

[−
−→52

2m
+ ωeg + V e

trap(r)] Φe
m(r) = (ωeg + ωem) Φe

m(r) , (C.1b)

where the collective labels n and m denote the spatial degrees of freedom. The
atomic field operators can be expanded as

Ψg(r) =
∑
n

Φg
n(r)ĝn , (C.2a)

Ψe(r) =
∑
m

Φe
m(r)êm , (C.2b)

and the unperturbed atomic Hamiltonian in this occupation-number basis reads

HA =
∑
n

ωgng
†
ngn +

∑
m

(ωeg + ωem)e†mem . (C.3)
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From eqns. (C.2) and eqn. (C.3), the Wick-contractions of atom operators read

Ψ†e(x1)Ψe(x2) = i

∫
dω

2π
e−iω(t2−t1)

∑
m

Φe
m(r2)Φe∗

m(r1)

ω − ωeg − ωem + iε
(C.4a)

Ψ†g(x1)Ψg(x2) = i

∫
dω

2π
e−iω(t2−t1)

∑
n

Φg
n(r2)Φg∗

n (r1)

ω − ωgn + iε
(C.4b)

For calculations of the Casimir-Polder interaction between a single atom and a
surface or the dispersion interaction between two atoms, the individual atoms can
usually be treated as perfectly localized, pointlike objects. This description is
obtained from eqns. (C.4) by considering a very tightly confining trap potential
such that the atoms can occupy only the lowest trap-state (with ωg,e0 = 0) and the
product of wavefunctions in the numerators of eqns. (C.4) approaches a spatial δ-
function. For distinguishable atoms (labeled A,B, . . . as in section 7.2), we then
arrive at the following Feynman-rules in frequency-space:

• Atom propagators:

x1 x2ω

A
=
i δ(r1 − r2)

ω + iε
,

x1 x2ω

A
=

i δ(r1 − r2)

ω − ωAeg + iε
.

• Field propagator:
x1, α x2, βω = DF

αβ(r1, r2, ω) .

(The explicit form of DF
αβ(r1, r2, ω) might depend on the boundary condi-

tions set by the presence of a surface.)

• Vertex factors:

A A

α

= −iµAegα , A A

α

= −iµAgeα .

• Atoms in asymptotic states (located at position rA):
x

A =
√
δ(r− rA) ,

x
A =

√
δ(r− rA) .

x

ωA
eg

A =
√
δ(r− rA) ,

x

ωA
eg

A =
√
δ(r− rA) .

Arrows in the various elements indicate the energy-flow, a label x denotes the
spacetime-point (t, r). As we set the internal energy of the state |g〉 to zero, in-
coming (outgoing) ground-state atoms do not contribute to the energy sum at a ver-
tex. To calculate a T -matrix element, impose energy conservation on each vertex.
Then integrate over all independent loop-energies and over the spatial coordinates
ri. Afterwards divide by a factor of (−2πi).
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