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Abstract

Lie group method in combination with Magnus expansion is utilized to develop
a universal method applicable to solving a Sturm-Liouville Problem (SLP) of
any order with arbitrary boundary conditions. It is shown that the method has
ability to solve direct regular and some singular SLPs of even orders (tested up
to order eight), with a mix of boundary conditions (including non-separable and
finite singular endpoints), accurately and efficiently.

The present technique is successfully applied to overcome the difficulties
in finding suitable sets of eigenvalues so that the inverse SLP problem can be
effectively solved.

Next, a concrete implementation to the inverse Sturm-Liouville problem
algorithm proposed by Barcilon (1974) is provided. Furthermore, computational
feasibility and applicability of this algorithm to solve inverse Sturm-Liouville
problems of order n = 2, 4 is verified successfully. It is observed that the method is
successful even in the presence of significant noise, provided that the assumptions
of the algorithm are satisfied.

In conclusion, this work provides methods that can be adapted successfully
for solving a direct (regular/singular) or inverse SLP of an arbitrary order with
arbitrary boundary conditions.

iii






Zusammenfassung

Die Lie-Gruppen-Methode in Kombination mit der Magnus-Expansion wird
verwendet, um eine universelle Methode zu entwickeln, die zur Losung eines
Sturm-Liouville-Problems (SLP) beliebiger Ordnung mit beliebigen Randbedin-
gungen anwendbar ist. Es wird gezeigt, dass die Methode in der Lage ist, direkte
regulire und einige singuldre SLPs gerader Ordnung (getestet bis zur 8. Ordnung)
mit einer Mischung von Randbedingungen (einschlie8lich nicht trennbarer und
endlicher singuldrer Endpunkte) genau und effizient zu l6sen.

Die vorliegende Technik wird erfolgreich angewendet, um die Schwierigkeiten
beim Finden geeigneter Sdtze von Eigenwerten zu iiberwinden, so dass das
inverse SLP-Problem effektiv gelost werden kann.

Als nichstes wird eine konkrete Implementierung des von Barcilon (1974)
vorgeschlagenen inversen Sturm-Liouville-Problemalgorithmus bereitgestellt.
Weiterhin wird die rechnerische Durchfithrbarkeit und Anwendbarkeit dieses
Algorithmus zur Losung inverser Sturm-Liouville-Probleme der Ordnung n =
2,4 erfolgreich verifiziert. Es wird beobachtet, dass das Verfahren selbst bei
Vorhandensein von signifikantem Rauschen erfolgreich ist, vorausgesetzt, dass
die Annahmen des Algorithmus erfiillt sind.

Zusammenfassend stellt diese Arbeit Methoden zur Verfiigung, die erfolgreich
zur Losung eines direkten (reguldr/singuldren) oder inversen SLP beliebiger
Ordnung mit beliebigen Randbedingungen angepasst werden kénnen.
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Introduction

In this thesis, Lie group method in combination with Magnus expansion is
utilized to develop a universal method applicable to solving a Sturm-Liouville
Problem (SLP) of any order with arbitrary boundary conditions. Furthermore, a
concrete implementation to the inverse Sturm-Liouville algorithm proposed by
Barcilon [16] is provided.

To begin with, the current chapter states some basic definitions, theorems and
proofs.

The rest of the thesis is organized as follows: Chapter 2 based on [18] elaborates
the proof of the uniqueness theorem for inverse eigenvalue problems. Chapters
3 and 4 which are based on two own publications [92] and [93], discuss direct
and inverse Sturm-Liouville problems, respectively, and the methods of solution.
Chapter 5 concludes the thesis by discussing the pros and cons of the methods
and providing useful insights to future developments.

1.1 Definitions and Theorems

» Definition 1.1. Linear Differential Equations of Order n.
Let ag, ay, . . ., a, are n + 1 continuous (complex) functions defined on a real x
interval I, and let £, denote the differential operator

dr dn—l
Ly=ay—— +a;

dx W+...+an. (11)

That is, if u is any function possessing n derivatives on I,
Lou=agu"™ +au™V + . +auu.
If ay(x) # 0, for any x € I, then
Liu=0 = v +pu™V 4+ +pu=0. (1.2)

This is a linear homogeneous differential equation of order n.
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Linear in the sense that p;’s are functions of x only, and no product terms involv-
ing dependent variable u, and homogeneous as there are no terms independent
of u. And the order is defined to be the highest derivative in the differential
equation. <

» Definition 1.2. Inner Product.
If f,g € 82(a, b) (the set of all complex-valued functions f on a < x < b which
are Lebesgue-measurable),

b
T
a
is called the inner product of f with g. Here g* denotes the complex conjugate
of g. <

» Definition 1.3. Adjoint Equations.
Consider the differential operator £, defined in Equation (1.1):

dn dn—l
Ln—aoﬁ+alm+...+an
The adjoint of £, is given by
L= (—1)"£(a* )+ (—1)"_1dn—_1(a* Y+...+a (1.3)
" dxn " dxn=1717 '

The equation
Liu=0 (xel

is called the adjoint equation to L,u = 0 on I, is defined to be the problem of
finding a function ¢ (a solution) on I such that a]*(lﬁ (k=0,1,...,n) hasn—k
derivatives on I and satisfying

(-D™ag) ™ + ()" @) "V + L+ aly =0
onl. <

Proof.

Lly] =a0(x)y(") +a; (x)y("_l) +...+ap(x)y
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n n-1 d
= L an(x)ﬁ +ai(x)——+... +an_1(x)a + a,(x)

dxn-1
v, Ly) = / v*(ao(x)y(") +a;(x0)y" Y L+ an(x)y)dx
=/v*a0(x)y(”)dx + / via (x)y™ Vdx+... + / v an-1(x)y’dx
+ / v*a, (x)ydx
We have:

/v*an_l(x)y’dx = v*an_l(x)y|2 - / y(v*a,-1(x))'dx = BCs — / y(vay-1(x)*) " dx
/ v ap—2(x)y’dx = BCs + / y(v*ap-2(x))"dx = BCs + / y(vay—2(x)*)""dx

/ v*ay(x)y™ Vdx = BCs + (-1)"! / y((vay (x)*) ") dx
/v*ao(x)y(")dx=BCs+(—1)"/y((vao(x)*)(”))*dx
Adding up we have:
0. £9) =BCs + (1" [ (a0 ™)+ (-0 [ y(a0) "y dr
- [ yans ) ax s [ a0 v

dn n-1
dx (ao(x)"y) - Zan—1

— L'y - (@) -+ (D' (02 (0)9) + (1) ()
= > (-1 D¥[ap £(x)"y]
k=0

So adjoint operator of L[y] = 3}, an_r(x)DF[y]is L*[y] = Zzzo(—l)ki)k[an_k(x)*y].
|

» Definition 1.4. Eigenvalue Problems.
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Let £, be the nth-order operator given by

dn dn—l
dxr +a1m+...+an

where the a; are complex-valued functions on the closed interval a < x < b. Let
n
U = Z(Mjku(k_l)(a) +Nju* D (b)), j=1,...,n
k=1

where Mji, N are constants. Denote the relationships Uju = 0, j = 1,...,n, by
Uu = 0. The problem,

Inm: Liu=Au, Uu=0 (1.4)

is called an eigenvalue problem.
The element u # 0 is called the eigenvector and the number A is called an

eigenvalue.
The set of all eigenvalues satisfying the equation (1.4) is called the spectrum and
denoted by p(L,). <

» Definition 1.5. Green’s Formula.
If u,v are any two functions on I possessing n derivatives, then for any a,b € I,

(v, Lot} = (uw, L) = [w] (@) - [w] (b) (15)
where
Wl =Y S ) (6 (g () (16)
==
) )
() = 3 Byl (0w 0 (o) (17)
fr=!
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with
By By, : -+ ag(x)
: —ap(x)
B(x) = : ‘ (1.8)
: 0
(=1)"ag(x)
Note that det B(x) = (ao(x))" # 0. <

» Definition 1.6. Self-adjoint Eigenvalue Problems.
An eigenvalue problem defined as in (1.4) is said to be self-adjoint if

(Lnu,v) = (u, L) (1.9)
for all u,v € C*[a, b] which satisfy the boundary conditions:

Uu=Uv=0 (1.10)

» Theorem 1.7. ([34], pp. 291, Theorem 3.2)
The homogeneous boundary conditions (1.10) can be written as:

n

n
Z meuY (a) = 0, Z V() =0, k=12 (1.11)
i=1

i=1
or
mlTu(a) = niTu(b) =0 (1.12)
T

where u' = [w,u’,u”,u"",. ..,u(”_l)] and ml.T = [mj1, mia, . . ., m;n]. The bound-
ary conditions Ux = 0 is adjoint to itself if and only if

MB~!(a)M* = NB™!(b)N* (1.13)

Here, M = [m!,...,m!] and M* is the complex conjugate of M. <

» Theorem 1.8. ([34], pp. 189, Theorem 2.1).
Let IT given by (1.4) be a self-adjoint eigenvalue problem. Then the eigenvalues
are real and constitute an at most enumerable set with no finite cluster point. <«

Section 1.1
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Proof. Let A = Aq be an eigenvalue with y and eigenfunction of IT given by (1.4).
Then because Ly = Aoy, the relation (1.9) gives (4 — A0)(x, x) = 0. Because
(x> x) > 0, it follows that Ay = Ay and thus an eigenvalue must be real. ]

» Definition 1.9. Inverse Eigenvalue Problems.
The inverse eigenvalue consisting of the differential equation

d™u d"

+a——
dx" dxn-1

Lyu = ag +...+apu = Au
together with suitable boundary conditions, is determining the unknown func-
tions ay, ay, - - - , a,, given spectral information {A}. <

» Definition 1.10. Kronecker delta.

(1 i=
51]—{0 P% (1.14)

» Definition 1.11. Entire function [21].
An entire function, also called an integral function, is a complex-valued function
that is holomorphic at all finite points over the whole complex plane. Every

entire function f(z) can be represented as a power series f(z) = Z anz" that
n=0
converges everywhere in the complex plane, hence uniformly on compact sets.

Entire functions of finite order have Hadamard’s canonical representation:

f(z) =2me"? l,j(l_ i) exp(%+---+%(i)p) (1.15)

where zj are those roots of f that are not zero (zx # 0), P a polynomial (whose
degree we shall call q). The order (at infinity) of an entire function f(z) is defined
using the limit superior as:

iy In(In | fll,5,)
p =limsup ————

(1.16)
00 Inr
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where B, is the disk of radius r and || f||«, B, denotes the supremum norm of
f(z) on B,. <

Interest reader is referred to [86] and [87] for a comprehensive discussion on
linear differential operators.







Uniqueness of Inverse
Eigenvalue Problems

The main reference for this chapter is [18].

2.1 The Main Theorem

» Theorem 2.1. Uniqueness of Inverse Eigenvalue Problem of order 2n.
Given the self-adjoint eigenvalue problem for a differential equation of order 2n:

u® — (pru™ D L (=1)"pau = A, (2.1)
n+1 spectra are needed to determine the functions p;(x), . . ., pn(x) uniquely. <«

» Proposition 2.2. L[y] = [ao(x)y™]™ + ...+ (an1(x)y") + an(x)y is a

self-adjoint operator. <
Proof.
L[y] =[ac(x)y™1™ + .. + (ap1(x)y') + an(x)y
n n—1 n—2
— Z ncka(()n—k)y(n+k) + Z nflckain—l—k)y(nfnk) + Z nfzckaén—z—k)y(nfzﬂc) +. .
k=0 k=0 k=0
3 2 1
—k -k —k
+ Z 3Cka,(13_3 )y(3+k) " Z zckar(zz—z )y(2+k) " Z 1Ckafll_1 )y(1+k) +any
k=0 k=0 k=0

=y(2”)a0 + y(zn_l) [nay +ai] +y ay +(n—1)aj +ay

-1
(2n-2) [”(”_2 ) +...

124 ’ ’ 7
+y"[an-1 +2a,_,] +y'a,_; + any

L [y] =(=1)*"D*[aoy] + (~=1)*"'D*" ! [(nag + a)y] +...

+(=1)°D*[(2a,_, + an-1)yl + (=1)'Dla,_,y] + any
2n—-1

2n
:Zchka(()k)y(zn—k) _ Z 2"71Ck(na(') + al)(k)y(Zn—l—k) +
k=0 k=0
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2 1
+ ) Culans +2a ) Py = 5 100 ) Py 4 any
k

k=0 =0
=y[a, —a’ |+ (an_y +2a’,)" —...— (na} +a;)® Y + a(()zn)] +...— [na} +ay]y®"Y
+ aoy®"
=Ll[y]

So L[y] = [ao(x)y™ 1™ + ... + (an_1(x)y’)’ + an(x)y is a self-adjoint operator. [

2.2 Fourth order Sturm Liouville Problem (FSLP)

Consider the fourth order, self-adjoint differential operator
Lu=u — (pu') +qu=Au, xe(0,1) (2.2)

where p(x) and q(x) are real functions of x, p(x) being differentiable. Consider
the eigenvalue problem

Lu=Au (2.3)

together with the homogeneous boundary conditions:

4

4
Z mu ™ (0) = 0, Z nu™V (1) =0, k=12
i=1

i=1
or
m/u(0) =nlu(1) =0 (2.4)

where u” = [u, v/, u”,u”"’] and ml.T = [mj1, miz, my3, mi4]. From Theorem 1.7 for

self-adjointness claim

m!/B(0)my =0, n!B7!(1)n, = 0. (2.5)

10
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where,
0 -px) 0 1
Bx)=| P (Ox) (1) _01 g (2.6)
-1 0 0 0
Proof.

Lu=u? - (pu') +qu
1
(Lu,v) = / [u® — (pu’) + qulv* dx
0

=[(H) "+ (2w @) + (+) w' @)+ (2) u@)” + (=p) u'v* + (p) u@®*)'];
—— —— —— —— —— —
Biy By Bsy By By By

+/o 1 ul @)W = (p©*)) +q*] dx

And all the other B;; = 0, hence the Equation (2.6). [

Also, since we have B(x) is regular (it is an upper-triangular matrix), it has
the inverse

0 0 0 -1
B l(x) = g _01 (1) _p(zx) (2.7)
1 0 px) 0

Let m3 be a third boundary operator which is linearly independent from m;
and my.
Let S(m;, m;),i # j be the spectrum associated with the boundary operators m;,
m; at x = 0 for the operator £ and the boundary conditions nzu(l) =0,k=1,2

2.2.1 Wronskian of FSLP

Let my, n; and ny4 are any vectors such that m; and n;, (i = 1, 2,3, 4) form two
bases. Introduce four fundamental solutions of (2.2), ¢(x, 4), ¥(x, A), n(x, A),

11
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and {(x, A) which are defined as:

miT¢(0; A) =63
m; (0, 1) = 5y
n/ n(1,2) = &
n/ £(1,2) = 6

where §;; is the Kronecker delta.

» Proposition 2.3. [101], Lemma 5.4.1

Fea ] < 2™ fe gy}

(2.8a)
(2.8b)
(2.8¢)
(2.8d)

|

From the above proposition, the functions ¢, ¥, 5, and { are entire functions

of A of order i.

For large values of ||, the asymptotic behavior of these functions is obtained

by setting p(x) and g(x) equal to zero in (2.2). In other words,

$(x,2) ~ 9 (x,2)
Y(xA) ~ O (x,2)
T](X, /1) ~ '7(0) (X, /1)
{6 A) ~ O (x2)

where ¢, /(@ () and ¢ are the solutions of

as |[A| > =

u® = Au

subject to the boundary conditions (2.8).
The fundamental matrix of (2.2) is

W(EA) = [n(EA), (&), ¢(& ), 9 (& )]

The Wronskian of the fundamental solutions ¢, ¥, 17, { is W(A).

» Theorem 2.4. W(J) is independent of the variable &.

(2.9)

(2.10)



Fourth order Sturm Liouville Problem (FSLP)

Proof.

’ g’ ¢I ‘p’
W(g’ A) = ”77// gll ;/;)// Z//
’7/// é«/// ¢/// ¢///

aw _ ’7/ ’ ’ ’
S d§ ’7,” gll ¢// lpl/

’7 7 gll// ¢//l/ Iﬁ///l

From equation (2.2), we see that u'Y = (1 — q)u + p’u’ + pu”’, hence last row is a linear
combination of other three rows. So the derivative is zero, which implies that W is
independent of &. ]

» Lemma 2.5. Given the boundary conditions m;, n;, (i = 1,2) and the spec-
trum S(my, my), W(A) is completely determined. <

Proof. As W(J) is independent of the variable £, we can set £ equal to 0 or 1 in (2.10)
to evaluate W(A4).
Assume without loss of generality

det(M) = det(N) = 1.

Then,
det(W) = det(MW) (2.11a)
det(W) = det(NW). (2.11b)
m;
m!
Mw=| " (0 ¢ ¢ w)
3
m;
mgr] m; m; m;q;
det(MW) = [ M8 md m g
m,n m, m, m; ¢
m‘{n m{{ m4T¢ m4T¢

Section 2.2

13
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Using (2.8)

mlTr](O, A) mng(O, A)
m, 7(0,4) m, £(0,1)
my(0,4) my£(0,1)
mZn(O, A) m4T§(0, A)
mlTr](O, A) mng’(O, A)
szr](O, A) szg’(O, A)

W) = {m{n(0,)}{m; £ (0.1} - {m3n(0, )} {m{ (0,1} (2.12)

£=0 = det(MW)

O = O O
= o O O

Similarly,
ny
nT
NW=| 4 1(n & ¢ v)
3
ny
n;r] ni 11; n;l[l
n,n n § n ¢ n l[)
det(Nw) = | 51 25 2% 3
(NW) n;,, n;; n,;(p nglp
n,n n,g n ny
Using (2.8)
0 0 niqb(l,l) n;‘/’(”)
) oo n2¢(1,/1) nzll’(l’/l)
f=1 = detNW)=| | nl¢p(1,2) nly(1,2)
0 1 ngop(LA) ngyp(L2)

n’¢(1,1) nly(1,1)
nqu)(l, A) nszp(l, A)

W) = {nf{p(L ) Hnjp (1D} - {njp(L D) }{n{p(1, 1)} (213)

Since (2.2) is self-adjoint, according to Theorem 1.8, the zeros {4,}]° of W(2) are real
and simple, and they coincide with the eigenvalues of (2.2), (2.4), i.e.

S(my, mp) = {A,}7

Also W(A) is an entire function of order % except for a constant multiplicative factor, it

14
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is completely determined by its distribution of zeros, namely

W) =k ]_[(1 - %)
i=1 !

The constant k can be obtained by examining the asymptotic behavior of W(A) for
|A] = 0.
Also from (2.12) (or (2.13)) and (2.9),
Jim W = tim {m{n(0.0}{m] (0.0} - {mfn(0.0}{m]£(0.1)}
= 1mIn©@(0,2){{m} £ (0,2){ = {mIn® (0,2) } {m! ¢!V (0,2
my 0 (0,4) qmy (0, A) ¢ — ymy ™ (0, 4)  ymy £77(0, 1)
Since ¥ (0,1) and £ (0, 1), are independent of p(x) and q(x), so does k. Thus,
given the boundary conditions m;, n;, (i = 1,2) and the spectrum S(mj, my), W(4) is
completely determined. ]

2.2.2 Green’s Function of FSLP

Consider the Green’s function g(x, ; A) which is defined as:

Lg—2g=35(x-19),
miTg(O, &) = nl-Tg(l, &EAN) =0,

where § is the Dirac delta-function.

s =g AR IR 2
The functions a, b, ¢ and d are found by solving the matrix equation
a 0
W(Z, 1) IZ = g (2.15)
d W(A)

» Lemma 2.6.

a(0,1) = {m{ 2(0,2)}B™(0)m; — {m; £(0,2)}B™" (0)m;. (2.16)

15



Chapter 2

16

Uniqueness of Inverse Eigenvalue Problems

Proof. From (2.15), using Cramer’s rule,

Ay
a(x,A) = T
where
no ¢ ¢ ¥
_ I A S A 8
A=W = N =W()
’7/// g/// ¢/// lpl’/
and
0
A S
Al = 77 ’” "= _W(/‘l) é‘/l qs, l//,
0 g ¢ ¢ g”/ ¢/I lpll
W(A) é‘///I ¢l’/ lﬁ”’

We can obtain an explicit formula for a(x, 1), as:

(x4 9 ¥(xA)
) ¢ed) Pl
" A) 9" () P(xA)

a(x,A) = -

Differentiating a(x, 1) once,

¢ 9 Y
¢ty
g/// ¢/II lpl//

a(x,1) =-

Differentiating a’(x, ) again,

¢ 9y
g// ¢// ¢//
glll ¢//l ¢lll

¢ 9y
é‘/// ¢// lﬁ’l
gl// ¢lll lpl//

¢ 4 ¥
¢ Y=

a’(x,1) = - =
g//// ¢//// lp////

L |
(2.17)
(2.18)
A I
-1 Y
pl”" pg” py”
(2.19)



Differentiating a”’ (x, 1) again,

a’(x,A)=-

gl/ ¢II l#Il _
gl// ¢/// ‘plll

pgl// + p/gl/

S

Fourth order Sturm Liouville Problem (FSLP)

4

g ¢
¢ ¢’

é/ll
gl/// ¢//Il ¢,//,

¢
¢/I

p¢l// + p/qsl/

Y {9
1 e AU
p" pd” py”
0
Y
¢I
plﬁ,” +pl¢//

(we have used in last row of last determinant u® = p'u” + pu””’ — qu’)

¢

S
- — g/l ¢/I
gl/l qslll
S
— g/l ¢//
gl/l qslll

¢
- _ g// ¢//
é‘/lll ¢//l

Let

w/
lﬁ”
lﬁ,/,
Iﬁ/

2 B AT

¢III

Ipl
¢//
¢lll

A 4
gli ¢II lp//

¢ ¢ ¥

é‘//l qS/l ¢II

plgl plqsl p’lﬁ’

_p’

¢
gl

gl
gl/

plgll
¢ ¢ ¥

¢/

¢)/
qsll

lﬁ,
w’l

P

0

¢ 9 ¥
-p| 9V
év/// ¢/// w///

w’
p/¢l1 plwll

14

4
g/
g//l

ai(x,A) = det([81, £ (x, 1), p(x, 1), p(x, 1)])

and §; = (J;j). That is,

ay(x, A) = det([61, £(x, A1), ¢(x, 1), p(x, D)]) =

az(x, A) = det([82, Z(x, 1), ¢(x, ), ¢ (x, D)]) =

S O O =

S O =k O

g

gl
gll
g///

gl
é’l/
gll/

¢
¢l
¢//
qsll/

¢/I
¢//l

4

lpl
lﬁ”
Iﬁ//,

4
lpl

¢
g/

¢

¢

¢/II ¢III

1720

‘plll

’

¢ Y
¢y

pé‘//II p¢lll plplll

14
Iﬁ/

(2.20)

(2.21)
gy
éfl/ ¢// wll
g//l ¢l// lp//’

¢ 9y
S
é‘//ll ¢/// ¢//I

Section 2.2
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Uniqueness of Inverse Eigenvalue Problems

o ¢ ¢ 9 S
o ¢ v R
(Z3(.X', A) = det([63’ §(x, A): ¢(x’ A): lp(x: /1)]) = 1 év// ¢// ¢// = é( ¢ ¢
0 g/// ¢l// lp//’ g ¢ lﬁ
0 ¢ 9 ¥
o v ¢ v Y
(x4(x, A) = det([64’ g(xa )L)> ¢(x, A), ‘I’(xs /1)]) = 0 g// ¢N ¢N == ( ¢ lﬁ
1 g’/l’ ¢’// ‘p/II év ¢ ¢
Hence equations (2.17)-(2.20) reduce to
a=ay, a =-a3, d’'=ay+pay, d" =-01-pas
so that,
a Qay 0 0 0 -1 ay
| a | —as |_ |0 0 1 0 ay
a= a’ oy +pa4 - 0 -1 0 _p(x) a (222)
a’’ —a; — pas 1 0 px) 0 ay
From (2.7), we recognize that
a(x,A) = -Bl(x)a(x, ) (2.23)
Since det(M) is equal to unity, we can rewrite (2.21) as
ai(x,1) = det(M - [6;, 8, ¢, 9]) (2.24)
Consider,
™
M- [8.5(0.0.60.0). 90D =| 5 (& & ¢ wo)
3
m;
W mig wie wi
_ mZT 6,’ mZT §0 m2T¢o mglpo
m;& mig mige migy
m, 8 m il mi¢y myy



Fourth order Sturm Liouville Problem (FSLP) Section 2.2

where &, denotes £ (0, 1), and so on. From (2.8), we have

mi& mié’o
s | myé m; &
M [8,£00.0.9(0.0.90.0] =| S T4

T T
m4 6,' m4 §0

mT6j m!
Hl;T(Si mégz - {mlT(Si}{szgo} - {szé'i}{mngO}

O = O O
==

det(M - [, &o, Po, Po]) =

Also, mlTé'l- = my; and széi = my;. For x = 0, equation (2.24) can be written as,

i(0,2) = det(M - [;, £(0,2), (0, 2), (0, 1)])

So that,
a1(0,4) =my{m]Z(0,)} —my{mlZ(0.1)}
0(2(0, A) = mlz{mgg‘(o, A)} - mgz{mng(O, /1)}
a3(0,1)  =my3{m[Z(0,1)} — mp{m! £(0,2)}
24 (0,1) = mya{m]Z(0,1)} — mpy{m{ £(0,2)}.
or:

ai(0,2) = my;{my £(0. )} = mai{m; £(0, 1)} (2.25)
By substituting (2.25) in (2.23) we obtain

mll}mggﬁ - mzl?fl;fo{
_ p-l Mz m, §o; — ma2im; o
a(0,4) = -B~(0) m13{sz§0}—m23 miTgo}

m14{mgT§o} - m24{m1T§o}

= {m{ £(0,2)}B'(0)m; — {m} (0, 2)}B!(0)m,.

m
Similarly,
» Lemma 2.7.
b(0,4) = —{m{n(0,2)}B™" (0)m; + {m] (0, 1)}B~* (0)m;. (2.26)
>

19



Chapter 2 Uniqueness of Inverse Eigenvalue Problems

Proof. From (2.15), using Cramer’s rule,
Ay
b(x, 1) = —,
(x, 1) A

where

o 4 v
) ) n ¢
A A s
O ¢ lﬁ ’7/1 ¢/l
lﬁ,/,

We can obtain an explicit formula for b(x, 1), as:

no¢ vy
b(x,))=|n" ¢ |
’7// ¢II lpli

A2=

n
l’],

’7/
’7,” W(A) ¢III

Differentiating b(x, 1) once,

no ¢ ¥
b, )=n" ¢ Y|
’7/// ¢/II ¢N/

Differentiating b’(x, ) again,

no ¢ ¥ n ¢ 4 no¢

4
lﬁ/
¢II

(2.27)

(2.28)

n ¢ Y

b//(x’ A) — ’711 ¢Il ‘pll + ’7/ ¢I ¢I — ’7[[ ¢II lp/l + ’7[ ¢I lpl X
r]/// ¢/Il ¢/// ’7//// ¢//// lp”,/ r]/// ¢I// l)b/// p’]// p¢// plpll
(2.29)

Differentiating b” (x, 1) again,

o9 Y n ¢ 4 n

¢ ¥

b’//(x’ A) — ’7// ¢I’ ¢’/ _ r]” ¢I, Ip// + ’7// ¢// ¢’/
’7/// ¢/// lp/// n//// ¢//// lp//// pn// p¢// p‘p//
0
U ¢ 4
+ ’ ’ ’
pql// +p/’7// p¢/// +p/¢// pwf// +p/¢//
(we have used in last row of last determinant u® = p'u” + pu””’ — qu’)

20



That is,

Pr(x, A) = det([61, n(x, 1), ¢(x, D), ¢ (x, D)]) =

Ba(x,2) = det([ 82, n(x, 1), ¢(x, 1), ¢ (x, D)]) =

P3(x, A) = det([ 83, n(x, 1), (x, 1), ¢ (x, D)]) =

Pa(x, A) = det([84, n(x, 1), ¢(x, 1), ¢ (x, D)]) =

¢I
¢Il
¢ll/
¢I
¢Il
¢ll/

¢I
¢Il
¢/Il

¢I
lﬁ”
1)&///
¢I
Ip//
1ﬁ///

lﬁ’
Iﬁ//
lﬁ/l’

Fourth order Sturm Liouville Problem (FSLP)

n 0] 4 n ¢ n ) 4
+ ’7[/ ¢Il (p// + ’7/ ¢/ ¢I + T]’ ¢l ¢I
p/’]/ p/¢l p/[pl p/’]// pl¢/l plwfl pnllf p¢/// p¢///
no¢ vy n ¢ ¥ no ¢ ¥
=-p'\n" ¢ Y |+p'|n v\ +pln” ¢ Y
,7// ¢Il I)&N ’7II ¢// lﬁ” ’7”/ ¢//l wl!l
0
no ¢ v
+pln ¢ Y (2.30)
’7/// ¢I/I (plll
ﬁi(x’ A) = det([sl’ ’l(x’ A)’ ¢(x’ A)s l/"(x: /1)]) (231)
1 ’7 ¢ ‘p ’ ! ’
0 ’7/ ¢I lﬁ/ _ ’7// ¢// lp/r
0 ’7// ¢” w” - rl/// ¢/N l)bl//
0 ’7/// ¢/// lﬁ”, ’7 ¢ I//
o n ¢ ¢
1 ’7, ¢’ lp, — ’711 qél ‘pll
0 r’” ¢" lﬁ” T 17 ¢//I ¢III
0 ’7/// ¢/ll ‘plll ’7 ¢ ‘p
o n ¢ ¢
0 ’7l ¢/ wl _ ’7/ ¢’ ‘ﬁ/
1 ’7// ¢N w“ - ’7”/ QS/N Iﬁl/l
0 U/N d)/l/ lﬁ’” '7 ¢ ‘//
o n ¢ ¢
oo ¢ oyl N ¢ Y
0 ’7// ¢// lﬁ" - = ’7” ¢// ¢”
1 rl/ll ¢/// l)&//l r] ¢ ‘p

Section 2.2
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Chapter 2 Uniqueness of Inverse Eigenvalue Problems

Hence equations (2.27)-(2.30) reduce to

b=—pi, b =ps, b"=-Po—pfs, b =pi+pphs

so that,
b —Bs 0 0 0 -1 B
b=l o |- s —plljz o FIE —po(x) /;2 (2.32)
b Pr+pps 1 0 px) 0 Ps
From (2.7), we recognize that
b(x,1) = B~ (x)B(x, 1) (2.33)
Since det(M) is equal to unity, we can rewrite (2.31) as
Pi(x, 2) = det(M - [, n. ¢, 9]) (2.34)

Consider,

M- [6:,7(0,2), (0, 4), (0, )]

mlT d; mlT no m; gy mthpo
_| my& myme mygy m;yy
| mlI8; mln, mlig, mly,
m!8; mln, mlgy mlyo

where 19 denotes (0, 1), and so on. From (2.8), we have

m!s; mln

m!8; mln,

M- [8:,7(0,4),¢(0,),p(0, )] = F 3
(6100, 9] =| T T4

T T
m, §; m,nq

= {my i} {m;no} = {m; &;H{m{ o}

[ - -
_ o O O

T T
m1T6,- mlTno
m,§; m,7)o

det(M - [ 8, o, o, o) =

Also, mlTSi = my; and szé'i = my;. For x = 0, equation (2.34) can be written as,

Pi(0,2) = det(M - [8;, n(0, 1), $(0, ), (0, 1)])

22



Fourth order Sturm Liouville Problem (FSLP) Section 2.2

So that,
,81(0, /1) = mu{szr](O, /‘l)} - m21{m1Tr](0, /1)}
Ba(0,1) = mlz}mZT’l(Os A} = map{min0,2)}
B5(0,A) =mys szr](O, /1)} - ng{mlTr](O, /1)}
ﬂ4(0, /‘{) = m14{m2Tr](0, /‘l)} - m24{m1Tr](0, /1)}
or:
Bi(0,2) = my;{mln(0,2)} — my{m]n(0,1)}. (2.35)

By substituting (2.35) in (2.32) we obtain

mu{m, no} — mar {my o}
miz{m, o} = ma {my 1o}
mig{my o} — mas {my no}
m14{m2TTI0} - m24{m1TTI0

b(0,4) = —{mqu(O, A)}B_l(O)mz + {mZTn(O, A)}B_I(O)ml.

b(0,1) =B7(0)

From (2.5) on m; and n;, (i = 1, 2), the problem is self-adjoint. So g(x, & 1)
is a symmetric function of its arguments x and & ([65], Lemma. 4.2, pp. 446).
Interchanging x and ¢ in (2.14),

1 a(x, (&, A) +b(x, {5 ), x<§

glbxsh) = W{ e DGED —dmAPED, x>¢ G

we see that a(x, 1) and b(x, A1), must satisfy the same boundary conditions as
g(x, & A) at x = 0. It is because of (2.5) and

miTB_l(O)m,- =0.

Therefore,

a(x. 1) = a1 (D)P(x. 1) + a2 (x, A, } (2.37)

b(x, A) = by (D)p(x, ) + b2 (D) (x, ).

Differentiating this thrice w.r.t. x, we get a set of equations

a'(x, ) = ai (D¢’ (x, 1) + a2 (DY’ (x, 1),

23



Chapter 2 Uniqueness of Inverse Eigenvalue Problems

b'(x, 1) = b1 ()9’ (x, 1) + b2 (DY (x, 4),
a’(x,4) = a1(D)¢” (x, 1) + a2(M)y" (x, ),
b (x,4) = b1 (19" (x, 1) + ba(D)Y" (x, ),
a’ (x,A) = a;(A)P"”" (x,A) + ax ()Y (x, 1),
b (x, 1) = bi(D)P”" (x, 4) + b2 (DY (x, 1)

or
a(x, ) = a1 (V) @(x, A) + ax (D (x, A), (2.38)
b(x, 1) = b1 (A)p(x, 1) + ba (D (x, A) (2.39)
Setting x = 0,
a(0,4) = a; ()90, 1) + a; (Mg (0, 1), (2.40)
b(0,A) = b1(A)p(0, 1) + by (L) (0, 4). (2.41)

Using (2.16) and (2.26), we can evaluate ay, az, by and b, in (2.40) and (2.41).

Multiplying (2.40) by m], we get

mga(O, A) =ai(A) {m3T¢(0, /1)} +as(A) {m3sz(O, )L)}
1 0

using boundary conditions (2.8a) and (2.8b). Then we have,
a;(A) =mla(0,2) (2.42)
Similarly, multiplying (2.40) by m!, we get

mja(0,1) = a; (1) {m]$(0,1)} +a>(1) {m]g(0,2)}
0 1

using boundary conditions (2.8a) and (2.8b). Then we have,

as(A) =mla(0,2) (2.43)

24



Fourth order Sturm Liouville Problem (FSLP)

Substituting (2.42) and (2.43) for a; and a; in (2.38)
a(x,4) = {m}a(0,1)}¢(x, 1) + {mfa(0, 1) }g(x, 2).
Using (2.16) we get

a(x, 1) z[mg{mlTé’o}B_l(O)mz - mg{mggo}B_l(O)ml]qb(x, A)
+ [mz{mng',’o}B_l(O)mz - mZ{mggo}B_l(O)ml]lp(x, A)

or
a(x,A) = [Bs2{m] &o} = Bsr{mg So}|p(x. 2) + [Bae{m] o} — Bur{m; Lo} |y (x. 2)
where

pij = m{ B~} (0)m,.
Now we have

a(x,A) = [Bs2{m] &} = Bsi{ml &} p(x, 1) + [Baz{m! Lo} — Bar{m] &} |y (x, 2)

(2.44)
Similarly, multiplying (2.41) by mg, we get
m; b(0,4) = by (1) {m3$(0, 1)} +b5(1) {mj (0, 1)}
— —
using boundary conditions (2.8a) and (2.8b). Then we have,
b1(1) = mlb(0, 1) (2.45)
Similarly, multiplying (2.41) by m], we get
m;b(0,4) = by (1) {m{p(0, 1)} +b5(1) {mig(0, 1)}
— —
using boundary conditions (2.8a) and (2.8b). Then we have,
by(A) = mIb(0, 1) (2.46)

Section 2.2
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Substituting (2.45) and (2.46) for b; and b, in (2.39)
b(x, 1) = {mIb(0,1) }p(x, 1) + {m]b(0, 1) }g(x, )

Using (2.26) we get

b(x, 1) :[mg{—{m{qg}B_l(O)mz + {mZTno}B_l(O)ml}]qb(x, A)
+ [mf{—{m{qo}B_l(O)mz + {mZTno}B_l(O)ml}]qJ(x, A)

or

b(x,A) = [—ﬁ32{m1Tflo} + ﬁ31{szflo}]¢(x, A) + [—ﬁ42{m1Tr]0} + ﬁ41{m2Tr]0}](p(x, A).

Now we have

b(x,A) = [—ﬁaz{mlT’lo} + ﬁ31{sz'l0}]¢(x, A+ [—ﬁ42{m1T'lo} +ﬁ41{m2TTlo}]¢(x, A).

(2.47)

Knowing a(x, A) and b(x, 1), we can find an expression for g(x, £; 1) in terms
of the fundamental solution, the boundary operators m; and the matrix B(0),

substituting for x < & in (2.36),

W(Dg(Ex;4) = alx, Yn(§, 1) +b(x, A)I(E D), x <&

and using (2.44) and (2.47).

Because of the symmetry of g(x, & 1) with respect to its arguments, (2.36) can

be written as,

. L eGP (e A) —d(EDY(x, L), x <&
96xA) = W(A){ —e(x, DPEA) — d(x, DY(E ), x> &
or
o L faGn(E ) +b(x, DA, x <&
§(6x4) = W<A>{ a(& D(x, ) +bEN(xA), x> &
so that

W(Dg(&x:4) = a(§, Mn(x, A) +b(E, D){(x, ), x>¢

(2.48)

(2.49)



Fourth order Sturm Liouville Problem (FSLP) Section 2.2

Now setting x — &, in (2.44),

a(éA) = [ﬂsz{mlT§o} - /331{sz§0}]¢(§, A) + [.542{1111T§0} - ﬁ41{m§§0}]¢(§, A)

and setting x — &, in (2.47),

b(&A) = [—ﬂaz{m{no} + ﬁ31{m§n0}]¢(§, A) + [—,342{111{170} + ,341{1112TTI0}]¢(§, A).

Equation (2.49) reads as,

W(g(& x;4)
=[Bs2{mi &} — P31 {m; o} | P (& Dn(x, 1)

+ [Baz{m] &} — Baur{m] &}y (& Dn(x, )

+ [=Bsz{mino} + fs1 {mino} | $(& D¢ (x, )

+ [—.342{1111TT10} +ﬁ41{m£’lo}]¢(§, NI, A), x> &
={ [ﬂaz{mngo} - /331{111;50}]’7(3@ A) + [—,532{m1Tflo} + ﬁ31{mg’lo}]év(3@ /1)}¢(§, A)

+ {[ﬂ42{m1T§o} - /341{m§§o}]f7(x, A) + [—/342{m1T'70} + ,541{mgTTlo}]§(X, A)}l//(fs A)
={Bs1 [ {m3 no} ¢ (x, 2) = {mg &o}n(x, 1) = Pz [{m] 0o} ¢ (x, 1) = {m] Lo}n(x D] }$(£ )

+ {ﬁ41 [{szflo}g(x, A) - {szgo}U(x, /1)] - ﬁ42[{m1Tno}§(x, A) - {mng',’o}n(x, A)]}'ﬁ(f’ A)

From (2.36)

a(x, Yn(&A) +b(x, )(EA), x <&

9(&x; YW (A) = { (6 NP(EA) —d(x, DP(EN), x> ¢&

(2.50)

we see that for x > ¢,

c(x,2) =B31[{m] £(0. 1)} (x, 1) = {mI n(0, 1)} (x, )]

= Bs2[{m{ 2(0, ) }n(x, 1) = {m{n(0, ) }{(x,1)]
d(x,2) =pu [{m] £(0, ) }n(x,2) — {mgn(0,1)}{(x,2)]

— Ba2[{m] 2(0, ) }n(x, ) = {m{n(0, )} {(x,1)]

From the above expressions for c¢(x, A) and d(x, 1), it is clear that as A — A,, an
eigenvalue of (2.2)-(2.4), both ¢(x, 1) and d(x, A) tend toward an eigenfunction
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Chapter 2 Uniqueness of Inverse Eigenvalue Problems

(since {(x, A) and n(x, 1) tend towards eigenfunctions), namely

c(x, Ay) = Chun(x), (2.51)
d(x, An) = Dyup(x). (2.52)

» Lemma 2.8. {C,}]° and {D,}{°" are completely determined by S(m;, my),
S(m;, m3), (i = 1,2), the boundary operators m;, my, ny, n, and p(0). <

Proof. Let us normalize the eigenfunctions {u,(x)}]° by means of the condition

m!u,(0) = 1. (2.53)
Then
(6, 2) =ps1 [ {m] o} {mT mofnx.2) = {m o {mT o} . )]
~ sz {m] 2o} {m mon(x. 1) = {mI o} {m] g0} )] (259
d(2) =ar [ m] goH{md mo}n . 1) = {md o} {md &0},
= rz{m? go} {mT mo}r e ) = {mT o {m] g0} )| (255)
then

c(x,An) = § B31 Hszfong'm} - {szFIOngZO}] —P32 HmlTKO}{maTHO} - {mlT'IOHHl{CoH un(x)

Wa (An) Wi (An)

Cn

d(x,An) = § a1 Hszs“on?no}—{szno}{m&o}] —Paz Hm{@}{mgno} -{m{'IOng&)H un(x)

W2 (An) Wi (An)
Dp
so that
Cn = f31W2(dn) — P32 Wi (An) (2.56)
and
Dn = Wz (An) — BaaWi(An) (2.57)
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where
Wi(2) = {m] ¢(0. ) Hm] (0.0 - {m] n(0.0)}m] £0. 1)},
W) = {mf ¢, )} {mI a0, 1)} - {mIn(0. 1)} {m g0 0}

From (2.12)

W) = {mf 0. ) Hmg(0.2)f - {mIn(0.0)} {m{ (0.2}

which is the Wronskian of the solutions associated with the differential operator £ — A and the
boundary conditions

m{u(O) = mZTu(O) = n{u(l) = ngu(l) =0.

We can see that, Wi (1) is the Wronskian of the solutions associated with the differential operator
L — A and the boundary conditions

mlTu(O) = m3Tu(O) = anu(l) = ngu(l) =0.

and W, (1) is the Wronskian of the solutions associated with the differential operator £ — A and
the boundary conditions

mgu(O) = m3Tu(O) = anu(l) = nzTu(l) =0.

By Lemma 2.5, it follows that Wj(A) is completely determined by the spectra S(m, m3), and
Wz (A) is completely determined by the spectra S(mg, m3).

Hence, from (2.56) and (2.57), {Cpn}]" and {D,}{° are completely determined by S(mj, mz),
S(mj, m3), (i = 1,2), the boundary operators mj, my, nj, nz and p(0). It should be empha-
sized that the evaluation of {C,}7° and {Dp,}]° can be carried out without a knowledge of p(x)
and q(x). [ ]

» Lemma 2.9.

= Ca¢ (& An) = Dn (&, An) = —Cruun(8). (2.58)

Proof. From the properties of the Green’s function, we know that
lim W(A)g(x. &) = Kt (¥)un (9, (259)
From (2.50)

a(e, )n(&A) +b(x, MI(EA), x<§

g(&x HW(A) = { —c(x, DP(EA) —d(x DP(ED), x> ¢

Section 2.2
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we see that
Alin/’ll W(Dg(x,&EN) = Algil {=c(x, D)p(&A) —d(x, VY (& D}
and from (2.51) and (2.52)

Aliglln W(A)g(x, & A) = =Crun(x) (&, An) — Dpun(x)Y(&, An)

Kntin (X)Un (&) = —Crun (x)$ (&, An) — Dpun(x)¥ (&, An), = (2.59) (2.60)
= Knn(&) = —Cud (& An) — Duty(&,An) (2.61)

The constant k,, can be determined by operating on the above equation with mg and
setting & = 0; this yields

Kp !y (0) = —~C, ml ¢(0,A,) =D, mI (0, 4,) - (2.53),(2.8a), (2.8b)
1 1 0

Kp =—Cy
Hence (2.61) reads as

_Cnun(g) = _Cn¢(§> An) = Dnlﬁ(f, An)

2.3 Uniqueness of Inverse FSLP

» Theorem 2.10. Uniqueness of Inverse FSLP
Given

1. the differential operator £ defined in Equation (2.2):

Lu=u® — (pu') +qu=Au, xe(0,1)
Lu=Au

2. the three spectra S(m;, m,), S(m;, m3), S(my, m3) satisfying Equation
(2.5):

m!u(0) = nlu(1) =0, i=123

3. the value of p(0),
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then p(x) and g(x) are uniquely determined. <

Proof. Consider the three pairs of eigenvalue problems:

.gun = Ay, mlTu,,(O) = szun(O) =0, (2.62)
L, = Aptin, m!4,(0) =m!4,(0) =0, '
-{:Un = HnUn;, mfvn(o) = m?,TVn(O) =0, } (2.63)
Lon = pnln, m{(ln(O) = m3T‘A’n(0) =0, )
LAu),, = Vplp, szwn(O) = mgwn(O) =0, (2.64)
Ly = vy, szWn(O) = mg‘an(O) =0, .

and an (1) = nzT (1) =0.
The operators £ and £ are defined as:

Lu=u — (pu') +qu
Lia=a" - (p1) + gir.
Assume that each of the two eigenvalue problems constituting a pair have the same
spectrum, i.e.
S(m;, m;) = S(my, my),
S(my,m3) = SA(mz,m3),
S(my,m3) = S(m;, ms)

To prove the theorem, we need to show that,

’P(x) = p(x) - p(x) =0, \ (2.65)
10(x) = q(x) = 4(x) = 0. | (2.66)
Also, assume that
p(0) = p(0)
= P(0)=0 (2.67)

Let us introduce two contour integrals:

1 1
O =55 ¢ @ [ gt
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and

3@ =5 § ab [ feore g

Here, f(x) is an arbitrary, real, differentiable function, and I, is a circle of radius r,
where

Ap < Tp < Apsts n=12....

An 1s the nth eigenvalue of Equation (2.62). The function y(x, §;4) which is the green’s
function associated with the operator £ is defined as follows (similar to (2.48)):

~E(e DYED) —dx DYED, x> &
~e(ENG(x D) —dEN (), x < ¥

where (similar to (2.54) and (2.55)),

WDy(x &4) = {

606 ) =po [ {mI £0. D)} ) — {mI (0.0} (x. 1 |

- B[ {(mI£0.D}i(e2) — {(mTi(0. D} (D) |
Ao ) =pa [ {mI 0. D} 2) = {mIi(0, D} (x|

- B[ {m 0.} ) = {ml (0.2} () |

Here, 7, f ,q§ and (ﬁ are the solutions of (£ — A)u = 0, which satisfy the boundary
conditions (similar to (2.8)):

miTqAS(O, A) = b3,
m;] §(0,) = 8,
m; A(1,1) = &,

m?é(LA) = 51'4

From Theorem 1.8 the zeros of W () are simple (since the problem is self-adjoint). Using
the calculus of residues,

n § R .
1© = 05 [ e 08600 = ad a0 | oo

k=1
n 1 1 ) A
+; m ‘/‘:: {—C(x,)tk)ﬁls(ff»/lk) _d(x,Ak)(p(g’Ak)}f(x)dx
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But, from equation (2.51), ¢(& Ax) = Crur (&) and é(x, Ax) = Crilx(x), since the two
constants of proportionality are identical as they depend solely on the spectra {4,}{°,
{tn}y, {vn}7, mij, and p(0) (by Lemma 2.8). Similarly, from equation (2.52), d(¢, Ax) =
Dyug(£) and d(x, Ax) = Dyl (x). So,

SRAGE I ;
D=2 5755 Jy 70940 = D )| £ (s

n

1 1 )
+ kZ:; W) {=Crd (& Ak) — Dty (& Ax)} /E ik (%) f (x)dx, (2.68)

or from Equation (2.58) (Lemma 2.9),

~Ci(x, M) — Dy (x, Ay) = —Crig (x)

and

—Crp(& ) — Drr (& Ax) = —Cruge (&)

so that (2.68) reduces to

_nuk(f) §—12x xxn;—u lax x)dx
n®= 2 [ s 3 s t-Can®) [ acosed

N Gaw(® [
(&) = ; W, G (dx (2:69)

Similarly,

n

¢
WO =Y 0 | el a0 = d(E AP n A ()

k=1

+
-

1 1
W’ (M) /§ {=c(x, A) P (& A) — d(x, AW (& Ak) }f (x)dx

But, from equation (2.51), c(& Ax) = Cru (&) and c(x, Ax) = Crug(x), since the two
constants of proportionality are identical as they depend solely on the spectra {4,}°,
{tn}y, {vn}7, mij, and p(0) (by Lemma 2.8). Similarly, from equation (2.52), d(¢, Ax) =
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Druy (¢) and d(x, Ax) = Drug(x). So,

_Nw® ff
n _kzz; W/(A. ) / {_Ck(]S(X, Ak) - Dklﬁ(x, Ak)}f(x)dx

+Zn: W ){ Cred (& M) — Die (&, ﬂk)}/ u (x) f (x)dx, (2.70)
or from Equation (2.58) (Lemma 2.9),

~Cr(x, M) = Dyt (x, M) = —Creuge ()
and

—Crd (& M) = Dy (€, k) = —Creure(§)

so that (2.70) reduces to

u & n 1
b =) e [ Cuinyfxa + 2 g (- (©) | s

wo=-2 5t [ we s @)

As n — oo, it is possible to evaluate the limit of I,,(£) and J, () by replacing ¢, ¥, n, {

and ¢, y, 7, { by the first term of their respective asymptotic expansions for || — oo.
Hence,

Tim I,(£) = lim J, (&), (2.72)

That is

= Cru (&) ! > uk(f)
_,; W’ (&) Jo w(x)f (x)dx = Z W (%) uk(x)f(x)dx

— -3 D [ ) - ) i =0

k=1
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By orthogonality of the eigenfunctions {uy(x)}7°,

[ o~ autonar =0
Since f(x) arbitrary, (for example, f(x) # 0)
= ur(x) = g (x), k=12...
From the pair of eigenvalue problems (2.62), we see that,

Anan = /lnun

- Lan = -Eun

0 0
— T (pa) + it = i~ (pul)’ + qun.
= —(pi,)" + (pu,)’ = qun — §it,
= ((p _ﬁ)u;z), =(q = §un, up(x) = dp(x)
From equations (2.65) and (2.66),
(Pu;)" = Quy,. (2.73)

Let f(x) be an arbitrary differentiable function such that

f=f(1=0 (2.74)

Multiplying (2.73) by f and integrating over (0, 1), we get:
1 1
[ wuysix= [ ofuax
0 0
. 1 1
[Pu;lf]o — / (Puy) f'dx = / Ofundx
0 0

0 0 1 1
P(1)uy, (1) £47~ P40TRL,(0) £ (0) - /0 (Puy) f'dx = /0 Ofundx, v (2.74),(2.67)

—/Ol(Pf')u;ldxz‘/Oleundx.

Section 2.3
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Integrating once more,
1 1
—[(Pf')u,’l](l)+‘/0 (Pf’)’undxz‘/o Ofundx
0 0 1 1
~P(1) AT (1) + PLOTT (0)u (0) + /0 (PF") tndx = /0 Ofundx, = (274),(2.67)

1
= / (P = Of )undx =0,
0
and due to the completeness of {u, (x)}{°

(Pf")" = Of. (2.75)

/0 ey = /0 ofdx

irr = [ ofax
0 0 1
P(1) £417 - PTT(0) = / Of dx

Integrating again,

1
= / Qfdx = 0. (2.76)
0
Since f is arbitrary,
Q(x) =0.
Integrating, equation (2.75),
1 1
/ d(Pf’) = / Qfdx =0, 1 (2.76)
0 0
= Pf'=0
which means, since f is arbitrary,

P(x) =0.
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This completes the proof. ]

2.4 Uniqueness of Inverse SLP of even order

The above proof can be generalized to 2nth order differential operator as follows.

The Green’s function expression (2.14) must be replaced by

n

WDg(x &0 == P gD,  x>§

k=1

where ¢r(x,1), k = 1,2,...,n are the n linearly independent solutions which
satisfy the boundary conditions at x = 0. As A tends toward an eigenvalue of the
basic eigenfunction problem, each of the functions ¢¥) (x, 1) tends to a multiple
of the corresponding eigenfunction. In other words, (2.51)-(2.52) generalize to

B (x, 1) = Cl(k)ul(x).

The n sequences of constants {C¥) }1, are determined by means of n different
spectra. The knowledge of these spectra together with the spectrum of the
basic eigenvalue problem (which is needed to compute W (1)) are sufficient to
guarantee that if y(x, &; 1) is defined thus:

- ZZ:l é(k) (x’ /1)¢k(§a /1)’ x> f’
- ZZ:I c(k) (x’ A)ﬁbk('f: /1)’ x < 'Jz

where a caret has the same meaning as before, then I; and J; defined earlier have
the same limit as / — oco. Consequently,

wuwmam={

u(x) = d;(x).
The fact that
Pr(x) = pr(x) — pr(x), k=12 ...,n

are all zero can then be deduced by means of a reasoning similar to one previously
used.

Section 2.4
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3 Solutions of Direct
Sturm-Liouville Problems

This chapter is based on two of own publications [92] and [93].

3.1 Introduction

Direct and inverse eigenvalue problems (EVP) of linear differential operators
play an important role in all vibration problems in engineering and physics [59].
The theory of direct Sturm-Liouville problems (SLP) started around 1830’s in
the independent works of Sturm and Liouville.

Consider the 2mth order, nonsingular, self-adjoint eigenvalue problem:

(=)™ (P (X)y ™)™ + (1) (P (x)y ™) (=D
+o+ (p2(0Y) = (p1 (YY) +po(x)y = dw(x)y,  a<x<b (3.1)

with appropriate boundary conditions (such as Equation (3.2)). For the Equation
(3.1), the direct Sturm-Liouville problem is concerned with determining the A
given the coefficient information py, (0 < k < m).

There is a variety of numerical methods for the solutions of the simplest
case of Equation (3.1) known as the direct Sturm-Liouville problem with m = 1,
most notable ones being SLEIGN [15], five-diagonal fourth order method (FD-
FOM) [32], Finite difference method (FDM) [91], Numerov’s method (NM) [11],
higher order finite difference methods (HOFDM) [108], Finite element method
(FEM) [10], Modified Numerov’s method (MNM) [110], SLEIGN2 [14], Pruess
method [74], SLEGDGE [94], FEM with trigonometric hat functions using Simp-
son’s rule (FEMS) and using trapezoidal rule (FEMT) [19], Lie-Group methods
(LGM) [84], MATSLISE [61], Chebyshev collocation method [25], differential
quadrature (DQ) method [111], functional-discrete (FD-) method [72], sampling
theory [29], Legendre-Galerkin— Chebyshev collocation method (LGCC) [33],
Boundary Value Method (BVM) [2, 4], Magnus integrators (MI) [60], Dirich-
let spectra method [37, 38, 39], mapped barycentric Chebyshev differentiation
matrix (MBCDM) [113], and Homotopy Perturbation Method (HPM) [12].
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Slightly fewer techniques are available for the direct eigenvalue problem of
case m = 2 known as fourth order Sturm Liouville problem (FSLP). For example,
symmetric five-diagonal finite difference method (FDFDM) [31], seven-diagonal
fourth order method (SDFOM) [30], Sturm-Liouville Eigenvalues using Theta
matrices (SLEUTH) [49], finite difference method of order two (FDM2) [109],
Fliess series [27, 28], Adomian decomposition method (ADM) [13], Chebyshev
spectral collocation method (CSCM) [70], Variational Iteration Methods (VIM)
[103], Extended Sampling Method (ESM) [26], Homotopy Perturbation Method
(HPM) [12], homotopy analysis method (HAM) [1], Differential quadrature
method (DQM) and Boubaker polynomials expansion scheme (BPES) [112],
Chebychev method (CM) [44], Spectral parameter power series (SPPS) [56],
Chebyshev differentiation matrices (CDM) [105], variational iteration method
(VIM) [104], Matrix methods (MM) [97], Chebyshev Collocation Method (CCM)
[35], Legendre-Galerkin method (LGM) [43], and Lie Group method [83] and
functional-discrete (FD-) method [71] are the prominent techniques available.

Handful of methods are available for m = 3, or Sixth-order SLP (SSLP). They
are shooting method [50], Chebyshev spectral collocation method (CSCM) [70],
Adomian decomposition method (ADM) [62], variational iteration methods
(VIM) [102], Chebyshev collocation method (CCM) [82], and Chebyshev polyno-
mials (CP) [5].

However, as the order of the direct problem increases, it becomes much harder
to solve and also the accuracy of the eigenvalues decreases with the index since
only a small portion of numerical eigenvalues are reliable [114].

All of the above mentioned methods are applicable only to a particular order
of the SLP and specific set(s) of boundary conditions. In contrast, we propose Lie
group method in combination with Magnus expansion to construct a method
applicable to solving any order of SLP with arbitrary boundary conditions, which
was initially applied for solving SLP by [84] and [60] and FSLP by [83]. The
proposed method is universal in the sense that it can be applied to solve a
SLP of any (even) order with different types of boundary conditions (including
some singular) subject to computational feasibility inherent to large matrix
computations.

Section 3.2 will describe the method constructed using Lie group method in
combination with Magnus expansion and Section 3.3 provides some numerical
examples of direct Sturm-Liouville problems of different orders m = 1,2,3,4
with a variety of (including one singular) boundary conditions. Furthermore, the
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efficiency and accuracy of the proposed technique is illustrated, using Example
3.1.

3.2 Materials and Methods

3.2.1 Notations

Consider Equation (3.1) under the assumptions:

AT: all coefficient functions are real valued

A2: interval (a, ) is finite

A3: the coefficient functions pg, (0 < k < m — 1), w and 1/p,, are in L(a, b)
A4: infima of p,, and w are both positive.

(The last two assumptions A3, and A4 will be relaxed in Example 3.3). By Green-
berg and Marletta [50], (provided the above assumptions are true) one gets:

R1: the eigenvalues are bounded below,
R2: the eigenvalues can be ordered: ) < A < A, < ..., and

R3: lim A; = +oo.

k—o0
Defining quasi-derivatives:

U = y(kfl), 1<k<m,
Ul = (_1)mpmy(m)>

vy = (=1 (Pmy"™) + (=1 (pmay ™),

Section 3.2

Vg = (_1)m(pmy(m))(k—l) + (_1)m—1 (pm—ly(m_l))(k_Z) +. o+ (_1)m—k+1(pm_1y(m—k+1))’

Dy = pzy// _ (pSyN’), + (p4y(4))// +. .+ (_1)m—2(pmy(m))(m—2)’
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om = (=)™ Py ™)™ = (psy”) + (pay”) — pry,

the general, separated, self-adjoint boundary conditions can be written in the
form [50]:

Aju(a) + A (a) =0, Biu(b) + Bov(b) =0, (3.2)
with
1. Ay, Ay, By, By are m X m real matrices
2. AJAT = A,AT, BB! = B,BT
3. m X 2m matrices (A : A;) and (Bj : By) have rank m.

Equation (3.1) in the matrix form is:

U’ = G(x)U (3.3)
AU (a) + BU(b) = 0 (3.4)
with
0 1 0 0 0 0 0 0 0 O
0 0 1 0 0 0 0 0 0 O
0 0 0 . 0 0 0 0 0 O
0 0 0 0 1 0 0 0 0 O
0 0 0 0 0 1/pm(x) 0 0 0 0
G(x) = 0 0 0 0 pmi(x) 0 10 0 0
0 0 0 0 0 01 0 O
0 0 pa(x) 0 0 0 0
0 px) 0 0 0 0 00 0 1
w(x) = po(x) 0 0 0 0 0 o0 o0 0/ .
(3.5)
= [ul;uz;---;um;vl,UZ:---:vm]:

U
A

Al AZ B= 0m Om
Om Om | By By |
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3.2.2 Lie Algebra

The Lie group (G, -) was introduced by Lie [66] as a differentiable manifold with
the algebraic structure of a group. The tangent space at identity is called the Lie
algebra of G and denoted by g. A binary operation [-,-] : g X g — gis called a
Lie bracket. Let x, y € g, then the Lie bracket [x, y] is defined as:

[x,y] = xy —yx.
Special Lie group is defined as
SL(F,n) = {y € F™", det(y) = 1}.
A system of linear ordinary differential equations on SL(F, n) has the form [54]:
y = G(x)y, tr(G(x)) =0 < det(y) = 1. (3.6)

Letting U(x) = Y(x)U(a), where U(a) is the initial data, Y(x) satisfies the
differential equation

Y'(x) = G(x)Y(x), Y(a)=1 (3.7)

where I stands for the n—dimensional identity matrix [20]. Since tr(G(x)) =0
we have det Y(x) = 1, so that (3.6) is on the Lie Group SL(R%, 4), hence can
be solved by Magnus expansion. Let Y(x) be a solution of (3.7) for x > q, the
solution of the system (3.3) with initial condition U (a) is

U(x) =Y(x)U(a).
Thus, U(b) = Y(b)U (a) and using boundary conditions (3.4):
AU(a) +BY(b)U(a) =0 = [A+BY(b)]U(a) =0.

Here, U(a) # 0. Hence, the eigenvalues A of the SLP (3.1) are the roots of the
characteristic equation:

F(A) = det(A + BY(b)) = 0. (3.8)

Section 3.2
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As the problem (3.1) is self-adjoint, the roots of Equation (3.8) are simple [16],
hence can be calculated using Bisection method or any other root finding method.
Although an explicit expression for F(A) cannot be found, we can find the roots
by computing F(A) for a real number A. Besides, one can plot the function F(A)
to get an idea of the locations of the roots, and to specify a smaller bracket for
the bisection method, thus increasing the efficiency of the method. However, the
slow convergence and high computational time requirements make it impossible
to use bisection method especially when it comes to higher-order SLPs. As the
explicit form of F (and it’s derivatives) is unknown a Newton-like method cannot
apply. To overcome these difficulties we propose a new root finding method to
our best knowledge in the following paragraph.

3.2.3 Multisection method

A new root finding method, named: ‘Multisection method’ - a variant of Bisection
method is proposed which will converge to the desired root faster. The idea is
to divide the root interval into m subsections (m = 2 being bisection method)
and locate the sign changing interval. Then, this interval is again refined into m
subsections and the sign changing interval is located. This will continue until
desired accuracy or the maximum number of iterations reached (See Example A.1
in Appendix A which illustrates the usage and the performance of multisection
method).

This method overcomes drawbacks in bisection method, yet provides a simple
and faster, derivative-free solution to the root-finding problem. This method
is able to find even multiple roots in an interval, and given a sufficiently small
subsection-length it is able to find roots which are cluster closer to each other
(see Example 3.4). Unlike Bisection method, this method does not require the
bracketing interval to have different signs at the endpoints. In the present paper,
input to this method is a set of function values, as it does not require to specify
the explicit functional form of F, which is another advantage of this method.
Due to the faster convergence of the multisection method (even at the risk of
more computational cost), it will be used to find the eigenvalues (or roots) of the
characteristic function.
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3.2.4 Magnus expansion

Magnus [69] proposes a solution to (3.6) as

y(x) = exp Q(x) y(a),

and a series expansion for the exponent

Qx) = Y %(x)
k=1

which is called the Magnus expansion, the first few terms of which can be written
as

2(x) = / " G(t) dy
0
00 = / " / " dt, [G(1), G(1)]
0 0

0y = ¢ / Cat, / dt, / "ty [G(0). [G(12), G(t2)]] + [G(8), [G(12). G(t1)]]

where [A, B] = AB — BA is the matrix commutator of A and B.

3.2.5 Numerical Procedure

The Magnus series only converges locally, hence to calculate €, the interval
[a, b] should be divided into N steps such that the Magnus series converges in
each subinterval [x,-1,x,],n=1,...,N, with x5 = b.

Then the solution at xx is represented by

N
Y(xn) = | | exp(@0en1,50) Yo

n=1

and the series Q(xy-1, x,) has to be appropriately truncated.
The three steps in the procedure are:

E1: Q series is truncated at an appropriate order: For achieving an integration
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method of order 2s(s > 1) only terms up to Qs in the Q series are
required [20].

P
E2: The multivariate integrals in the truncated series Q2 [Pl = Z Q, are replaced
i=1
by conveniently chosen approximations: if their exact evaluation is not
possible or is computationally expensive, a numerical quadrature may be
used instead. Suppose that b;, ¢;, (i = 1,..., k), are the weights and nodes
of a particular quadrature rule, say X of order p, respectively. Then,

thth k
G(0) = / G(t)dt=h Z b:G; + O(hPHY),
In i=1
with G; = G(t, + ¢;h). By [55], systems with matrices of general size
require a A—dependent step size restriction of the form h < O(|)L|_1/ 4) in
order to be defined.

E3: The exponential of the matrix Q!?] has to be computed. This will be the
most expensive step of the method. For this, Matlab function expm() will
be used which provides the value for machine accuracy.

The algorithm then provides an approximation for Y (x,,;) starting from Y, ~
Y(x,), with x,4+1 = x, + h.

In the present paper, (2 is truncated using a sixth-order Magnus series and the
integrals are approximated using three point Gaussian integration method [53].
Q1] js obtained in the following equations. Let,

Py = hG(cih), P, = hG(coh), P3; = hG(csh),

Q=P Q2= g(st -P), Q3= %(% — 2P+ Py),

Ri=[01,0:], Ro=1[0Q12Q05+Ri], Rs3=[-2001—-Qs+Ri,Q2— %Rz]-
Then,

1 1
QlN(h) = 01 + —Q3 + —Rs,
( ) Ql 12Q3 240 3



Solutions of direct Sturm-Liouville problems

1 V15 1 1 V15
where ¢c; = — — ——, ¢ = — and ¢3 = — + —— are the nodes of Gaussian quadra-
¢ 2 10 2 2 10
ure.

3.3 Solutions of direct Sturm-Liouville problems

In this Section, some numerical examples of Sturm-Liouville problems of dif-
ferent orders are presented. Furthermore, the efficiency and accuracy of the
proposed technique outlined in the previous section is investigated, numerically.

Here, we made use of the MATLAB 2014 package to code the algorithms:
multi-section method (Listing B.1) and Magnus method (Listing B.2) for solving
SLP. The codes executed on an Intel ® Core ™ i3 CPU with power 2.40 GHz,
equipped with 8 GB RAM.

For the numerical results (unless otherwise specified), the parameter values
are: m = 100, n = 500, L = 5 where n is the number of subdivisions in the interval
[a, b] and m is the number of subdivisions in the interval [Ag, A1*], A* being the
maximum eigenvalue searching, and L is the number of multisection steps used
to calculate each eigenvalue in the characteristic function.

The performance of the Magnus method is measured by the absolute error Ej
which is defined as

E = ‘A,EE’“““) P N S (3.9)

where A}(Mag "45) indicates the kth eigenvalue obtained by Magnus method and

AI(CExaCt) is the kth exact eigenvalue and the relative error ¢, which is defined as

(Exact) (Magnus)
A — A

€ =

., k=12.... (3.10)

(Exact)
Ak

There are several parameters in the Magnus method, which affect the perfor-
mance and the accuracy of the method, namely:

1. eigenvalue index: k or eigenvalue: A
2. number of subdivisions in A: m

3. number of subdivisions in x: n

Section 3.3
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4. number of multisection iterations: L

The performance is measured by the computation time used, here the Matlab
function timeit () will be used. timeit measures time required to run a
function by calling the specified function multiple times, and computing the
median of the measurements. It provides a robust measurement of the time
required for function execution and the function provides a more vigorous
estimate [77]. The accuracy is measured using the absolute and relative errors
as defined in Equations (3.9) and (3.10), respectively. The Example 3.1 illustrates
the affect of these variables on a SLP.

» Example 3.1. This eigenvalue problem is due to Chawla and Katti [32],
y(1) =0,

=ly, 0<x<1, y(0) = (3.11)

having the exact eigenvalues A, = (kr)?, k = 1,2,.... From Figure 3.1(a), the
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Figure 3.1: (a) Log absolute error (red) and log relative error (magenta) and (b) com-
puting time (in seconds) (blue circles) and linear trend line (orange dashed line) for the
first 100 eigenvalues using Magnus method for the problem (3.11).

absolute error is increasing (as the eigenvalues are increasing quadratically),
however, the relative error is (independent of 1) gradually decreasing as A — oo.
This shows the Magnus method’s capability to find higher index eigenvalues
with less relative error. (See Table A.1 in Appendix A for a detailed analysis of
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the code). Also the computation time is very slowly increasing linearly with the
index of the eigenvalue (Figure 3.1(b)). As expected accuracy and computation
time increase with m— the number of subdivisions of A and L— the number of
multisection iteration steps (Figure 3.2). After around L = 15, the error doesn’t
improve, so it is sufficient to stop at 15 iterations. As Figure 3.2(b) shows the

20

o )l1 with L o da
A1 with m Cpo
A, withn
15 o Ay o #¥
¥ A withL
2 * o
* )‘2 with m %
* Az with n *

Relative error
time (seconds)

Figure 3.2: (a) Relative error and (b) computation time (in seconds) for the first two
eigenvalues A; (o) and A, (*) of the problem (3.11) using Magnus method: for m = 10,
L =5,andn = 1,...,50 (magenta); for n = 10, m = 10, and L = 1,...,50 (blue); for
n=10,L=1,and m=1,...,50 (green).

computation time increases with the number of subdivisions of x: n—, but there is
no change in the error (Figure 3.2(a)). This is obvious, since in Equation (3.11) all
coefficient functions are constant, hence G is independent of x and the number
of subdivisions n. <

» Example 3.2 (SL Regular problem). This is an almost singular eigenvalue
problem due to Paine et al. [91].

" +(x+0.1)2y=1y, 0<x<um, y(0) =y(x) = 0. (3.12)

Tables 3.1 and 3.2 list the first four eigenvalues of this problem and compare
the relative errors with FDM [91, Table 4], NM [11, Table 3], FEM [10, Table
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Table 3.1: First four eigenvalues of (3.12).

K Eigenvalue
Exact [110, Table 4] Magnus
1 1.5198658 1.519865820634
2 4.9433098 4.943309819778
3 10.2846630 10.284662639575
4 17.5599580 17.559957737891
10 10
0.2
5 5
0.1
- _
T 0 % 0 0
-0.1
5 5
-0.2
03 500 1000 1500 2000 1 10
04 035 -0.3 06 08 1
A A
(a) (b)

Figure 3.3: (a) Characteristic function of (3.12). (b) Parts of the characteristic equation
(blue) and first 12 eigenvalues (red) for the version of Mathieu equation (3.13).
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3], MNM [110, Table 5], FEMT and FEMS [19, Table 2], and LGM [84, Table 4]
methods. Magnus method exhibits good relative errors compared with the other
methods.

Figure 3.3(a) shows the characteristic function for this problem. It can be seen
that the roots (eigenvalues) are simple and also the eigenvalues are further apart
as the index increases. <

» Example 3.3 (Singular SLP). Magnus method is robust that it can han-
dle even singular Sturm-Liouville Problems. For example, consider the Bessel
equation of order % [95, Test problem 19]:

1
xy'+—y=Axy, 0<x<1, y(1) =0.
4x

Here p(0) = 0 and the exact eigenvalues are A; = (kxr)?. The endpoint a = 0 is
singular and a limit-circle non-oscillatory (LCN) point (Note that the assumptions
A3 and A4 mentioned in section 3.2.1 no longer holds). Taking Friedrich’s BCs:
f =1, g = Inx, writing the boundary condition coefficients as:

( 1 log(0) )( y(0)  y(1) ):(0)
1 log) J\ v v )| o
the eigenvalues can be easily obtained as: A; = 9.864557319999999, A, =

39.458190680000001, A3 = 88.780786309999996, and so on. <

» Example 3.4. This example - a version of Mathieu equation is also due to [95,
Test problem 5].

y" + (cosx)y = Ay, 0 < x < 40, y(0) = y(40) = 0. (3.13)

Here the lower eigenvalues form clusters of 6 (see Figure 3.3(b)). Using a suffi-
ciently small step size (< 0.004: the minimum difference between two consecutive
eigenvalues) for the subdivision in A—dimension, Magnus method is able to find
even the lower eigenvalues with an accuracy comparable to Matslise’s (see Table
3.3). <

» Example 3.5 (FSLP: Simple BCs). This example is due to [97, Example 1] :

yWry=2y,  y(0)=y"(0) =y(1) =y’ (1) =0. (3.14)



Table 3.3: First 17 eigenvalues and errors for the version of Mathieu equation (3.13)
using Matslise and Magnus method.
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>~

Matslise [61]

Magnus

Absolute difference

O 00 1 N U W N

e e el ol
NN U RN = O

—0.376845881566946
—0.372222021386702
—0.365517698755253
—0.358145409533808
—0.351818307563677
—0.348153086495489

0.606260772683456
0.639995069435221
0.694009291118601
0.764487943746816
0.843278584575029
0.907400354525007
1.272925107989470
1.381819492267290
1.525973491208340
1.695868669968620
1.884251375610910

—0.37684593940
—0.37222207135
—0.36551773700
—0.35814543445
—0.35181832065
—0.34815309260

0.60626073600
0.63999503360
0.69400929280
0.76448803840
0.84327879680
0.90740065280
1.27292467200
1.38181949440
1.52597360640
1.69586882560
1.88425164800

5.78330540124128E — 08
4.99632979988895E — 08
3.82447470359537E — 08
2.49161919985141E — 08
1.30863230252132E — 08
6.10451100779841E — 09
3.66834560505680E — 08
3.58352210128032E — 08
1.68139902001485E — 09
9.46531840684273E — 08
2.12224970930208E — 07
2.98274993038028E — 07
4.35989469860232E — 07
2.13271000859550E — 09
1.15191659988412E — 07
1.55631380005516E — 07
2.72389089950309E — 07
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By Schueller [101], exact eigenvalues are: Ay = (kx)* + 1,k =1,2,....

Table 3.4: The first five eigenvalues for (3.14).

K Eigenvalue

Exact Magnus
1 9.84090910340024E + 01  9.84090910340024E + 01
2 1.55954545654404E + 03  1.55954545654403E + 03
3 7.89113637375420E + 03  7.89113637375442E + 03
4 2.49377273047046E + 04  2.49377273046367E + 04
5 6.08816818962515E + 04  6.08816818943245E + 04

Table 3.5: The relative errors of the first five eigenvalues for (3.14). Relative errors for
all the methods except Magnus method are calculated from the eigenvalues reported
in [97, Table 5]. * denotes the methods with correction terms. [Minimum relative error
for each eigenvalue is in bold]

Relative error

k

Magnus FDM* MNM* BVM6* BVMS8* BVM10*
1 144E-16 238E-09 5.11E-09 9.73E-08 4.71E-09 4.14E-08
2 554E-15 188E-10 149E-09 1.04E-08 257E-11 1.52E-09
3 284E-14 122E-10 443E-10 1.40E-09 1.10E-11 247E-10
4 272E-12 231E-11 5.16E-11 7.11E-10 2.60E-11 6.07E-11
5 3.17E-11 344E-11 245E-11 196E-10 4.73E-12 3.15E-11

From Tables 3.4, 3.5 and Figure 3.4 it is clear that Magnus method is more
accurate. However, unlike the other methods, the accuracy decreases with the
index of the eigenvalue due to the increasing magnitude of the eigenvalue. In
contrast, for the second-order SLP using Magnus method the relative error
decreased with the index (Figure 3.1 (a)).

<«

» Example 3.6 (FSLP: General BCs). This example involving more general
boundary conditions was taken from [97, Example 4] to illustrate the Magnus
method’s versatility.

y(4) + (sin(x) + 2)y = Ay, (3.15)
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Figure 3.4: Log relative error of the first five eigenvalues of problem (3.14)

y(0) —y’(0) =0, y(0) —y”(0) =0,
y(1) -y'(1) =0, y(1) —y” (1) = 0.

According to [97, pp.153], the exact eigenvalues of this problem could not be
computed and there is no other method except matrix methods (MM) proposed
by them to approximate the eigenvalues. Table 3.6 lists the first five eigenvalues

Table 3.6: First five eigenvalues of FSLP (3.15). * Eigenvalues (except for the Magnus
method) were computed using the codes provided by F. Fischer, PhD student at the
Potsdam University, Germany. For each eigenvalue computed using Magnus method,
the closest ones by other methods are in bold.

k Magnus FDM* MNM* BVMeé6* BVMS&* BVM10*
1 3.52240175682026 3.44479 2.60411 3.52238 3.52238 3.52238
2 503.00125581467400 502.56365 501.77704 502.96155 502.96324 502.96270
3 3805.98521478000000 3804.50674 3804.41400 3805.47622 3805.49752 3805.49069
4 14620.08332703000000 14614.34574 14619.49377 14617.34897 14617.46132 14617.42540
5 39946.25457020200000 39923.30006 39950.76042 39936.65422 39937.04152 39936.91814

of the problem and it can be seen the values by Magnus method are comparable
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with values computed by matrix methods. From Figure 3.4, we see that the
BVMS8 method with correction terms performs better than the other methods
considered (except Magnus) in that example. And from Table 3.6, it is clear that
Magnus method’s values are closer to the BVM8’s values for this example. <«

» Example 3.7. This example illustrates Magnus method’s superiority over
some of the other existing methods. This problem describes the free lateral
vibration of a uniform clamped-hinged beam (CH) [70]:

y =2y y(0) =y (0) =y(1) =y"(1) =0. (3.16)
From [70, Equation 45], the eigenvalues are the solutions of the equation:

tanh VA = tan V). (3.17)

Table 3.7: The first five eigenvalues of the problem (3.16)

k Eigenvalue

Exact Magnus
1 237.72106753 237.72106753
2 2496.48743786 2496.48743786
3 10867.58221698 10867.58221697
4 31780.09645408 31780.09645380
5 74000.84934916  74000.84934040

As Tables 3.7 and 3.8 point out, Magnus method has a comparable relative
error to the other methods considered (CSCM [70, Table 4], ADM [13], HAM [1],
PDQ and FDQ [112, Table 1], CM [44, Tables 1, 2], CDM [105, Table 2], VIM [104,
Table 2], and SPSS [56]) with respect to the first five eigenvalues. <

More examples on Magnus methods for FSLP can be found in Mirzaei [83].
» Example 3.8 (SSLP).

9 =2y, 0o<x<z y(0)=y"(0)=y?(0) =y(x) =y (n) =yW(n) =0.
(3.18)
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This example is due to [50, Problem 1], having exact eigenvalues: Ay = k°,
k =1,2,.... Again from Table 3.9, Magnus method shows excellent accuracy with
regard to this sixth-order SLP compared to other methods: Shooting method [50,
Table 1], ADM [62, Table 2], CP [5, Table 2], VIM [104, Table 3]. <

As far as the authors concern there exists no algorithms for solving eighth-
order SLP in the literature. However, proposed Magnus method can be success-
fully applied with literally no modification to the algorithm. Only the matrix G
has to be modified using Equation (3.18).

» Example 3.9 (Eighth-order Sturm Liouville problem). Squaring the fourth-
order SLP:

y@ = Ay, y(0) =y"(0) =y(1) =y"(1) =0,

with exact eigenvalues A = (kn)%, k = 1,2,.. ., the following eighth-order SLP
is obtained:

y® =22 y(0)=y"(0) =y (0) =y ) =y(1) =y (1) =y (1) =y (1) =0,
(3.19)

with exact eigenvalues A,zc = (km)8,k = 1,2,.... The first five eigenvalues
have good accuracy although the error is steadily increasing with the index
of the eigenvalue (see Table 3.10). This is because the error also depends on
the magnitude of the eigenvalue. Specifically, the error in a pth-order method
grows as O(hP*121P/271) and thus one expects poor approximations for large
eigenvalues [20]. <

» Example 3.10 (Singular SLP: infinite domain). This example extends the
Magnus method, as described in [92] to infinite domain. Consider the harmonic
oscillator problem

W +(A=xHu=0, xe (—c0,00) (3.20)

together with Dirichlet and Neumann BCs, having exact eigenvalues A = 2k +1,
n=0,1,...[106].

The domain is truncted to [, [], and using the parameters m = 10, n = 100,
L = 10 the first three eigenvalues are computed (see Table 3.11). It can be
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Table 3.10: Eigenvalues and relative errors for the problem (3.19) using m = 100, n = 100,
L=10

Eigenvalue

Exact

Magnus

Relative error

G 0N =

9.48853101607057E + 03
2.42906394011407E + 06
6.22542519964390E + 07
6.21840368669201E + 08
3.70645742815257E + 09

9.48853101607059E + 03
2.42906394011394E + 06
6.22542519964604E + 07
6.21840368667400E + 08
3.70645742800000E + 09

1.91704005653253E — 15
5.21434895376847E — 14
3.43361538321867E — 13
2.89626411740934E — 12
4.11625897732872E — 11

deduced that the Magnus method has comparable performance to other method.
Moreover, fixed parameters can be changed to get better accuracy. <

Table 3.11: Absolute errors for the first three eigenvalues of Equation (3.20) from [106,
Table 1] and using Magnus method (Minimum absolute error for each eigenvalue is
shows in bold.)

Dirichlet error Neumann error

Al
[106] Magnus method [106] Magnus method
45 1.70E-08 1.58E - 08 1.50E - 08 1.68E — 08
1 6.0 2.60E-11 5.80E — 10 2.00E — 12 5.80E — 10
7.5 2.00E - 14 2.20E — 09 0.00E + 00 2.20E — 09
45 1.88E - 06 1.10E - 05 1.10E - 05 1.19E - 05
5 6.0 3.30E-08 8.02E - 09 2.73E - 09 8.00E — 09
7.5 5.50E -11 3.07E — 08 6.00E — 12 3.07E — 08
45 9.99E -01 9.85E — 04 9.85E — 04 1.12E - 03
9 6.0 6.01E—-06 3.06E — 08 6.11E — 07 2.54E — 08
7.5 1.70E — 08 1.08E — 07 2.00E — 09 1.08E — 07

» Example 3.11 (Singular SLP with asymmetric potential). Consider the
Morse potential problem

—u = (e -1)*u=luy, x € (—00,) (3.21)
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together with Dirichlet and Neumann BCs. When A € (0, 1) this has a finite
number of EV: Ay = (2 — i), with fi = %a(zk +1),k=0,1,...,K, where
K=[1-1]T106].

The domain is truncated to [—/, ], and using the parameters m = 10, n = 100,
L =10 and a = 0.02 the first three eigenvalues are computed (see Table 3.12).
Magnus method is more accurate when the truncated interval is small. Also it

can be observed that initial eigenvalues are more accurate than the later ones.

Table 3.12: Absolute errors for the first three eigenvalues of Equation (3.21) from [106,
Table 2] and using Magnus method (Minimum absolute error for each eigenvalue is
shows in bold.)

1 ] Dirichlet error Neumann error
[106] Magnus method [106] Magnus method
40 1.10E-08 5.60E — 12 1.90E — 09 1.12E — 11
0.0199 50 6.07E—10 3.17E — 11 6.00FE — 11 3.17E - 11
60 1.15E-—13 9.39F — 11 2.48E — 14 9.39F — 11
40 3.56E — 07 3.78E — 10 3.90E — 08 3.34E — 10
0.0591 50 2.20E —08 1.12E - 10 5.97E — 09 1.12E - 10
60 5.00E —12 3.37E - 10 6.75E — 13 3.37E - 10
40 7.69E — 07 1.85E — 08 1.13E - 07 1.93E — 08
0.0975 50 6.65E — 07 3.83E-10 1.29E — 07 3.82E-10
60 2.50E - 11 1.15E — 09 3.18E — 12 1.15E — 09

|

» Example 3.12 (Singular SLP in half axis). Consider the hydrogen atom
equation

2 1
—u - (_z _ _)u =Au, xe€ (O’ oo) (322)
X X

together with Dirichlet and Neumann BCs. This has finite number of eigenvalues

lying between —1 < A < 0, given by Ax = withk=0,1,..., [74].

1
4k +2)%
The domain is truncated to [0, 100], and using the parameters m = 100, n = 200,
L = 10 the first few eigenvalues are computed (see Table 3.13).
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Table 3.13: Eigenvalues and absolute errors for the first five eigenvalues of Equation
(3.22) using Magnus method.

k Magnus value Magnus error
1 —6.2323550470257E — 02 1.76E — 04
2 —2.7717584125111E — 02 6.02E — 05
3 —1.5581393052633E — 02 4.36E — 05
4 —9.0660619438460F — 03 9.34E — 04
5 —1.6285043066920E — 03 5.32E - 03

3.4 Discussion

It is clear that Magnus method has the potential to find the first few eigenvalues
of a SLP of arbitrary (even) order with good accuracy.

Also, it is observed for the EVPs with constant coefficients (hence constant
and mostly sparse G matrix) the errors are smaller (n = 2: Example 3.1, n = 4:
Examples 3.5, 3.7, n = 6: Example 3.8 and n = 8: Example 3.9) irrespective of the
order. However, when G is no longer a constant, the error is not as good even
for the SLP of order 2 (see Example 3.2). This can be attributed to the matrix
exponent calculation step and can be improved by using a more accurate method
in place of expm() function.

Furthermore, it is capable of solving some singular SLPs on infinite domain,
half-axis and for an asymmetric potential. In addition, the present method
doesn’t require transforming the singular SLP to a regular one or re-scaling the
eigenvalues. It effectively finds the required eigenvalues, just by truncating the
interval to a finite one.



4 Solutions of Inverse
Sturm-Liouville Problems

This chapter is based on two of own publications [92] and [93].

4.1 Introduction

The inverse Sturm-Liouville theory was originated in 1929 by [6] and further
developed in [57, 63, 64, 73, 107].
The 2mth order, nonsingular, self-adjoint eigenvalue problem (EVP) is given

by:

(=)™ (po(x)y ™)™ + (=1)™1 (py (x)y M=) (m=D
+ooit (Pm—2x)y")" = (Pm=1()y") + pm(x)y = w(x)y, a<x<b

together with some boundary conditions at a and b, the functions p, (0 < k <
m), and w (x) being continuous on the finite closed interval [a, b], and py having
a continuous derivative. In the inverse Sturm-Liouville problem (SLP), the
coefficient functions pg, (0 < k < m) need to be reconstructed, given suitable
valid spectral data.

For a discussion on numerical methods for inverse SLP refer [42]. [80] provides
an overview of analytical methods for second and fourth-order inverse problems.

Iterative methods [16, 100], Rayleigh—Ritz method [51], finite difference ap-
proximation [90], Quasi-Newton method [99], shooting method [68], interval
Newton’s method [89], finite-difference method [41], boundary value meth-
ods [3, 4, 47, 48], Numerov’s method [7, 8, 9], least-squares functional [98],
generalized Rundell—Sacks algorithm [40, 96], spectral mappings [52], Lie-group
estimation method [67], Broyden method [22, 23], decent flow methods [45],
modified Numerov’s method [46], Newton-type method [36], Fourier-Legendre
series [58], and Chebyshev polynomials [88] are of particular importance among
the existing methods to solve inverse SLP.

Numerical algorithms to solve the inverse fourth—order Sturm-Liouville prob-
lem (FSLP) are proposed in [17], and [78, 79].
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The inverse problem is much harder as the restrictions on the spectral data
should be placed to ensure the uniqueness. Barcilon [18] proved that in general,
m + 1 spectra associated with m + 1 distinct ‘admissible’ boundary conditions
are required to determine p,,’s uniquely (with p,, = w = 1). Later McLaugh-
lin and Rundell [81] proved that the measurement of a particular eigenvalue
for an infinite set of different boundary conditions is sufficient to determine
the unknown potential. Both these theorems require an infinite number of ac-
curate eigenvalue measurements, which are hard to obtain in practice as the
higher eigenvalues are usually more expensive to compute than lower ones [15].
However, the present technique can be applied to address some of the above
difficulties in finding suitable set(s) of eigenvalues so that the inverse problem
can be effectively solved.

Section 4.2 explains the inverse SLP algorithm and Section 4.3 presents some
solutions of inverse SLPs.

4.2 Inverse SLP Algorithm for the general order

The Magnus method’s ability to handle various types of boundary conditions,
adaptability to extend to higher order problems, and accuracy with regard to
higher index eigenvalues naturally allows it to be useful in generating suitable
spectra for constructing and testing different inverse SLPs.

The Iterative Solution presented by Barcilon [16] was selected as the inverse
SLP algorithm due to two reasons: first, there was no evidence of actual imple-
mentation of Barcilon’s algorithm in the literature. Second, other numerical
methods available for the inverse problem are not amenable to generalization for
higher order equations or systems. Setting py(x), w(x) = 1 in (3.1) and taking
the domain [0, 1] the EVP reads as:

(ymym — (pym=D)m=D 4 p(x)y = Ay, 0<x<1. (4.1)

According to [18], m + 1 distinct spectra are required in order to determine
Pp1(x), p2(x), . . ., pm(x). In other words, m+1 different EVPs with distinct bound-
ary conditions (BC) are needed. In addition, the spectra need to be interlaced,
ie.,

R R I R I I M P A
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Assume that m boundary conditions are common to all the given m+1 eigenvalue
problems, say, conditions at the right end point x = 1.

1. Combine the m + 1 eigenvalue problems into an equivalent linear differen-
tial equation:

a) Define a vector function ¢(x, 1):

¢ (x, ) = oy y,....,0m D ym 1]
= [¢(1)> ¢(2), ey ¢(m)]

where @(x, ) and y(x, 1) are two solutions of equation (4.1).

b) Differentiate each ¢ i), 2m times.

c) Obtain m(2m+1) linear equations for @ y/) + @) y() where i < j,
j=01,...,2m—-1.

d) Express (D(i))((j) + (D(j))((i), i<j,j=0,1,...,2m — 1, in terms of
(1), P(2)> - - -» P(m) and their first 2m derivatives.

2

e) Differentiate gb((l.)m), i=1,2,...,m again, to obtain m linear coupled

differential equations of order 2m + 1, i.e.,

M = IN¢ (4.2)

2. Obtain the corresponding boundary conditions for the linear differential
equation using the boundary conditions of the m + 1 eigenvalue problems:

a) Assume that @(x, A) and y(x, 1) satisfy the m boundary conditions
common to all the given m + 1 eigenvalue problems.

b) Then from 1.3, find the m(3m + 1) /2 boundary conditions at x = 1,
and the m(m + 1) /2 boundary conditions at x = 0 for ¢(x, 4).

3. Solve equation (4.2) using above boundary conditions, to obtain the solu-
tions ¢,,.

4. Solve the adjoint system of equations to the above system, and denote the
solutions by 5.

5. Find the bi-orthogonal set of functions {y,}° to {¢,}{°, using the relation
Yn(x) = N ().

Section 4.2
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With these pre-calculated values, Algorithm 1 can be used to solve the inverse SLP.

Algorithm 1: Solving inverse SLP.

(o)

Data: m + 1 distinct spectra {A,(li)} ,i=1,2,...,m+1 corresponding to
n=1
m + 1 different EVPs.
Result: the unknown potential functions

P’ (%) = [pm (%), pmi (X). ... pr(x)]
1 Coalesce the m + 1 sequences of eigenvalues into a single sequence {6,,}
using

Stnmens =AY, j=12,. . m+1,  i=12... (43)

Set: initial guess p?, k = 1;

2 Solve: EVPs using p(®) and combine the solutions to {0',50) };

3 while Z

6n — O',(,k_l)| #0do

4 Set
(e"¢n)
Yn(x) = 5= ¥n (4.4)
(vion)
and
p(k)(x) =p(k—1)(x) +Z(5-n _O_r(lk—l))j}n(x) (45)
n=1
Solve the EVPs using p'¥) and set the solutions to { J,(,k) };
5 | k=k+1;

Some remarks on Algorithm 1 follows:
Line (Data:) Infinite eigenvalue (EV) sequence is replaced with the first N EVs.
N
The truncated EV sequences {/1,(1’)} ,i=1,2,...,m+ 1 are obtained,

=1
using the Magnus method [92] to solve Equation (4.1).

Line (Result:) Output p: m X n matrix of function values, n: the number of
subdivisions in the x—axis and m: the number of potentials.
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Line (1) We take initial guess p(o) as 0p,xn.

Line (3) while loop exit condition is replaced with a maximum number of it-
(m+1)N

erations: kMAX and in each iteration the condition Z

n=1

On — 0',(, < tol

k—1)|
(tol: a fixed tolerance) is checked to exit the loop.

Line (4) (-) denotes the integration w.r.t. x from 0 to 1 and e’ = [1,0]. y, and
¢n are kept fixed at yy and ¢y, which are the solutions by setting p; = 0, Vi.
Solutions y, and ¢, are calculated using Mathematica [75]. Matlab [76]
built-in functions: trapz() and griddedInterpolant () with pchip
(piecewise cubic Hermite interpolating polynomial) option are used to
approximate integrals and to have p as a function, respectively. Latter is
required since, p as a function is input to the Magnus method. Again, the
eigenvalue sequence ¥ is calculated using p'¥) and the iteration repeats.

4.2.1 Inverse SLP Algorithm of order 2
Consider the Sturm-Liouville problem
y'+(0-q(x)y=0, xe(-1,1)  y(-1)=y(1) =0, (4.6)

for a symmetric and normalized potential g(x), i.e.

1
q(—x) = q(x) and [1 q(x)dx = 0.

Then the spectrum {0, }]” uniquely determines the symmetric potential g(x)
[24]. The eigenvalue problem (4.6) is equivalent to the following pair of Sturm-
Liouville problems:

U +(A=—q(x)u=0, xe(0,1) u(0) =u(1) =0, (4.7)
"+ (u—q(x))p=0 x€(0,1) v’(0) =v(1) = 0. (4.8)

Also the two spectra {1,}7", {1n}7, are interlaced, i.e.,

0<’ul</11</12<12<ﬂ3<.... (49)

Section 4.2
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Letting,

wan(x) = ui(x), Von = 44,

Wan-1(x) =05(x), Van1 = 4iin (4.10)
the equations (4.7) and (4.8) are combined into:
w"” —4qu’ - 2q'w = —w’, w (0) =w(1) =w’(1) = 0. (4.11)
Equation (4.11) is not self-adjoint and its adjoint is given by:
w0 —4q0’ - 2q'0 = —vw’, w(0) = w”(0) = w(1) = 0. (4.12)

Then the inverse SLP procedure presented in Algorithm 2 (which is a simplified
version of Algorithm 1) can be used to recover the unknown potential q.

For a symmetric potential a fixed set of eigenfunctions can be used in the
updating formula (4.13) for &, (x), for example, eigenfunctions for the case
q = 0 [16]. This is possible because,

“.if g € L*([a, b]), the kth eigenvalue A (q, a, b) behaves asymptot-
ically as

(g @ b) = 2(0,0,b) + 3 + (g, a,b), (4.15)

where A (0, a, b) is the kth eigenvalue of the SLP with the same BCs
and zero potential, g is the mean value of g and 8, (g, a, b) is the
remainder for smooth potential. Moreover, the information that
the given spectrum provides about the variation of the unknown
potential are contained in the terms & (g, a, b) and, in view of their
behaviour, the first eigenvalues are the most important for the re-
construction of q...” [3,p- 2]

This implies that the required set can be restricted to the first few eigenval-
ues. In fact, when the number of input eigenvalues increases, the error also
increases, which can be attributed to the approximation errors in the higher
index eigenvalues (see Figure 4.3).

Implementation details of the steps of Algorithm 2 are as follows:
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Algorithm 2: Solving inverse SLP

Data: Sequence {7,}], the combined eigenvalues of the two equations
(4.7) and (4.8) using equation (4.10)
Result: the unknown potential function g(x)
1 Set an initial guess ¢V, k = 1;
2 Solve EVPs (4.11), (4.12), and get the eigensolutions:

fri? w0 ()}
(k-1)

3 while V, #v, 7/, n=12,...do
4 Set
bk
[wioe e
A 0 Wy
Wn(x) = (4.13)
B deo D dx
/ LTS g s
0 S dE
and
_ 1. .
() =g D@+ Yt i @19
n=1

Solve EVPs (4.11), (4.12), and get the eigensolutions:
{90 (0,0 )
50 k=k+1;

Line (Data:) Input eigenvalue sequence is limited to N = 10 to get a finite
sequence. Using Magnus method on the two equations (4.7) and (4.8) the
truncated eigenvalue sequences {An}{v , {yn}]lv are obtained, then using
(4.10) are combined to obtain the interlaced set of eigenvalues {ﬁn}fN .

Line (Result:) The output is a finite vector of function values: g, q1, - - -, qn,
where n is the number of subdivisions in the x—axis.

Line (1) Initial guess ¢(* will be set to g = 0.

Section 4.2
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Line (2) By setting g = 0 in the equations (4.7) and (4.8), the following expres-
sions are easily obtained:

Y = {om),
C= (- H2}

1

= (0} Ul

1

= {sin(nrx)},

. {w,(f’)}:o - {sin(Mﬂx)}w.

1

For the rest of the algorithm, the eigenfunctions {wf,k) (x), a),gk) (x) }jN are
kept fixed at {w 5,0) (x), a),(lo) (x)}jN
Line (3) The optimal while loop condition: ¥, # v,(lk_n, n=1,2,... may never
reach due to various errors in the numerical procedure, and is relaxed
to % Vn — v,(,k_l) < tol, and/or k < kMAX where tol is a fixed tolerance
n=1

and kMAX is a maximum number of iterations.

Line (4) The required derivatives and integrals in equation (4.13) are approxi-
mated using the Matlab built-in functions gradient () and trapz(), re-
spectively. Furthermore, the Matlab built-in function griddedInterpolant ()
with 1inear interpolation method is used to obtain an explicit functional
form of q from the set of points qo, q1, - - -, g This is necessary because
in the next step, the explicit form of g should be the input to the Magnus
method (which allows evaluating q(x) at an arbitrary point). Just one of
the EVPs (4.11) or (4.12), is need to be solved using Magnus method since

o

2N
only the eigenvalue sequence { } is needed (as the eigenfunctions
1

are kept fixed) in the subsequent iterations.
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4.2.2 Inverse FSLP algorithm

Setting m = 2 in equation (4.1) we get FSLP:
Lu=u - (pu') +qu=Au (4.16)

Three spectra {A,}, {u,} and {v,} required to reconstruct the unknown coeffi-
cients: p and g will be obtained from the following EVPs:

Luy = Ayup, un(0) = u'/l/(o) =up(1) = ur,zl(l) =0, (4.17)
Ly = pinvn, vn(0) = l);l(()) =vn(1) = U;z,(l) =0, (4.18)
Lwn =vawn,  wy(0) =wy(0) =w,(1) =w; (1) = 0. (4.19)

Although, equations (4.17) and (4.18) are self-adjoint, equation (4.19) is not. It’s
adjoint equation is:

Low=von  0(0) = 0(0) = p(0)w)(0) = wn(1) = w}/ (1) = 0. (4.20)

The eigenvalues (for p = g = 0) A,, 1, and v, are given by the solutions of the
following equations:

sin(s) =0, st=2
tan(r) — tanh(r) = 0, r*=pu
tan(t) + tanh(t) = 0, tF=v

Furthermore,

1 1
t=|n——|mx, s =nm, r~|n+-|mx, neN
4 4

so that the spectra {1, }, {u,} and {v,} are interlaced, i.e.,

0<V1</11</11<V2<A.2<}12<...
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Since the eigenvalues are interlaced, they can be coalesced into a single one by

defining
{ Vn,

o 2 1 -
|

_| 9 _ Pn ]
1 [ p ] o [ v |
Let y(x,A) and @(x, A) be two solutions of (4.16) satisfying the common bound-
ary conditions of equations (4.17)-(4.20), namely, (u(1) = u”’(1) = 0, etc.)

fork =3n-2,

g E
=~ 3
e &
I~ 3
8

<
S
8

fork=3n-1, n=12....

<
S

L C

[ I
L ] D
——

1

} for k = 3n,
1

<
B

(4.21)

Denote:

x(LAD) =a(L,A) =xY" (L) =a"(1,1) =0. (4.22)
Guided by (4.21), define
¢(x,4) = o(x,4) x(x,2)
Y, ) =o' (x,4) ' (x,A) .

By differentiating ¢ and ¢ five times each, and eliminating @, and y, 9th order
linear differential equation for ¢ (or a coupled system of linear differential
equations of order 5 for ¢ and ¢) can be obtained. When p = ¢ = 0, this reduces
to

¢ (x) — 129 (x) = 64229 (x) (4.23)

or

3D> —-10D° \[ ¢\ _ 8D 0 )
( 0 D’ )( ¥ ) ‘A( 10D -24D )( ¥ ) (4.24)
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in the form of the equation (4.2), and the boundary conditions reads as:

p=9¢""=¢'=0 at x=0, (425
¢ — ¢/ - ¢I/ _ 2[# — ¢/// - ¢//II _ 4¢/I — ]ﬁ’ — lp/’l — 0 at x = 1. (426)

The solution of the system of equations (4.24)-(4.26) using Mathematica is:

$(x)
) ese(y)

8(2cosh(p) + cosh(2u) (=3 cos(u) + cos(3p) — cos((2 +i)u) + cos((1 + 2i)p) + cosh((2 + i) ) — cosh((1+ 2i)p)))
X (icos((1+0)((1+i)x+1)p) —icos((1+7)((1+i)xp+p)) + 16sin(2u) — 4sin(4p) — (10 + 107) sin((1 + i) p)
+(2-20)sin((3+10)p) — (4+4i)sin((2+2i)p) — (2 - 2i) sin((1+30)p) + (2 + 2i) sin((3 + 3i) p)
—2isin((1+3)((3+1i) —x)p) — (6 +6i) sin((1+i)(x —2)p) + (2 + 2i) sin((1+1) (x +2)p)
+6isin((1+0)((—1—i)+x)p) +2sin((1+i)((=3+i) +x)p) +4sin((1+ i) (—2i +x)p) + 4isin((1+) (20 +x)p)
—(2+4i)sin((1+0)((1+10) +x)p) — 2isin((1+) ((=1+3i) +x)p) + (2 = 2i) sin((1+ 1) ((-2 — 2i) + x) p)
—2sin((148)((=1=3i) +x)p) + 2isin(((1+ i) + 2x)p) — 2i sin(((1 + 3i) + 2x)p) — 6i sin((2i + (1 — i)x) p)
+ (2+2i)sin((4i + (1 —i)x)p) — 2sin(((2+4i) + (1 —i)x)p) + 2sin(2(ix + 1) p) + 4i sin((1 + i) (ix + 2) p)
+8sin(((1—1i) +2ix)p) — 2sin(((3 + i) + 2ix)p) + 2sin(((1 — 3i) + 2ix)p) — 2sin(((3 — 3i) + 2ix)p)
+sin((1+8)((1+)x+1)p) — (44 20)sin(((1+)x+2)p) +8isin(((1+i) — 2x)p) + 2isin(((3 + 1) — 2x) p)
—2isin(((3+3i) —2x)p) —6sin((2 - (1 —i)x)p) + (24 2i) sin((4 — (1 —i)x)p) + 2sin(2(1 — ix)p)
+4sin((1+1)(2—ix)p) —8sin(2((1+1i) — ix)p) +2sin(2((2 + i) — ix)p) + 2sin(2((1 + 2i) — ix)p)
+2sin(((1 —i) — 2ix)p) — 2sin(((3 — i) — 2ix)p) + 8sin(((1 + i) — 2ix)p) + 2sin(((1 + 3i) — 2ix) )
—2sin(((3+3i) — 2ix)pu) —6sin((2— (1+i)x)p) + (2 —2i) sin((4 — (1 + i)x)p) — (4 — 2i) sin((1 — i)xp
+2p) +sin((1+0)((1+i)xp+p)) —8isin((2+ 2i)pu — 2xp) + 2i sin((4 + 2i) p — 2xp)
+2isin( (2 +4i)p — 2xp) — 16 sinh(2p) + 4 sinh (4p) + (10 + 10i) sinh((1 + i) p)
— (2 —2i)sinh((3+i)p) + (4 + 4i) sinh ((2 + 2i) ) + (2 — 2i) sinh((1 + 3i) u) — (2 + 2i) sinh((3 + 3i)p)
+ (64 6i) sinh((1+ 1) (x — 2)p) — (2 + 2i) sinh((1+ i) (x +2)p) — 2isinh ((1+ 1) ((=3 — i) +x)p) + 2isinh(2((-2 — i) + x)p)
—8isinh(2((-1—1i) +x)p) — 2sinh((1+ 1) ((-3+1i) +x)p) + 2isinh(2((—1 — 2i) + x)p) + 2sinh((1 + ) ((—1 — 3i) + x)p)
—2sinh(2(ix + 1)p) + 2sinh (((3+ 1) + 2ix)p) — 2sinh ((1+ 1) ((1+)x+ 1) p) + (4 + 2i) sinh(((1+ i) x + 2)p)
—2sinh(2(1 — ix)p) + 8sinh(2((1 + i) — ix)p) — 2sinh(2((2 + i) — ix)p) — 2sinh(2((1 + 2i) — ix)p)
—8sinh(((1+1i) — 2ix)p) — 2sinh(((1 + 3i) — 2ix)p) + 2sinh(((3 + 3i) — 2ix)p))

Y(x)

~ 2 esc()

= 8(2cosh(u) + cosh(2) (=3 cos(p) + cos(3p) — cos((2 + i) ) + cos((1 + 2i) ) + cosh((2 + i) ) — cosh((1+ 2i)z)))

X (icos((1+i)((1+i)x+1)p) —icos((1+i)((1+i)xp+p)) —16sin(2p) + 4sin(4p) + (10 — 10i) sin( (1 + i) p)
—(2+2i)sin((3+i)p) + (4 — 4i) sin((2 + 2i)pr) + (2 + 2i) sin((1 + 3i) ) — (2 — 2i) sin((3 + 3i) )

—2sin((1+i)((3+1i) —x)p) — (6 —6i) sin((1+i)(x —2)p) + (2 = 2i) sin((1+ i) (x + 2)p) + 6sin((1+ i) ((-1 = i) +x)p)
—2isin((1+8)((=3+i) +x)p) —4isin((1+i)(=2i +x)p) +4sin((1+1) (2i +x)p) — (4 - 20) sin((1+7) ((1+1) +x)p)
—2sin((1+1) ((=1+3i) +x)p) — (24 2i) sin((1+ ) ((—=2 — 2i) + x)p) + 2i sin((1 + 1) ((=1 = 3i) +x)pr) — 2isin(((1 +8) + 2x) )
+2isin(((1+3i) +2x)p) +6sin((2i + (1 — i)x)p) — (2 — 2i) sin((4i + (1 — i)x)p) — 2isin(((2 + 4i) + (1 — i)x)p)
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+2sin(2(ix + 1)p) — 4sin((1+1) (ix +2)p) +8sin(((1 — i) + 2ix)p) — 2sin(((3 + i) + 2ix)p) + 2sin(((1 — 3i) + 2ix) p)

—2sin(((3 = 3i) + 2ix)p) +sin((1+ ) ((1+0)x + 1) p) — (2 — 4i) sin(((1+ i)x +2) p) — 8isin(((1+1i) — 2x)p)

—2isin(((3+1) — 2x)p) + 2isin(((3+3i) —2x)p) — 6isin((2— (1 —i)x)p) — (2 - 2i) sin((4 — (1 — i)x)p) + 2sin(2(1 — ix) p)
+4isin((1+i)(2—ix)p) —8sin(2((1+1i) —ix)p) +2sin(2((2+ i) — ix)p) +2sin(2((1 + 2i) — ix)p) + 2sin(((1 — i) — 2ix)p)
—2sin(((3 — i) — 2ix)p) + 8sin(((1+ i) — 2ix)p) + 2sin(((1 + 3i) — 2ix)p) — 2sin(((3 + 3i) — 2ix)p) + 6isin((2 — (1 +i)x)p)
—(2+2i)sin((4— (1+i)x)p) — (2+4i) sin((1 — i)xp+2p) +sin((1+8) ((1+i)xp+ p)) +8isin((2 + 2i)pp — 2xp1)

—2isin( (4 + 2i)p — 2xp) — 2isin((2 + 4i)p — 2xp) — 16 sinh(2p) + 4 sinh(4p) + (10 — 10§) sinh((1 + i) pz)

— (2+2i) sinh((3+i)p) + (4 — 4i) sinh ((2 + 2i) pr) + (2 + 2i) sinh ((1 + 3i) ) — (2 — 2i) sinh((3 + 3i) ) — (6 — 6i) sinh ((1 + i) (x — 2) )
+ (2 —2i) sinh((1+1) (x +2)p) + 2sinh((1 + i) ((=3 — i) + x)p) + 2i sinh(2((—2 — i) + x)p) — 8isinh(2((-1— i) +x)p)
—2isinh((1+)((=3+1i) +x)p) + 2i sinh(2( (=1 — 2i) + x) p) + 2i sinh ((1+ i) ((—1 — 3i) + x)p) + 2sinh(2(ix + 1) p)
—2sinh(((3+1i) +2ix)p) + 2sinh ((1+ 1) ((1+i)x + 1)p) — (2 — 4i) sinh(((1 + i)x + 2) ) + 2 sinh(2(1 — ix) p)

—8sinh(2((1+ i) —ix)p) + 2sinh(2((2 + i) — ix)p) + 2sinh(2((1 + 2i) — ix)p) + 8sinh(((1 + i) — 2ix) ) + 2 sinh (((1 + 3i) — 2ix)p)
— 2sinh(((3 +3i) — 2ix)p))

with p* = A. The adjoint of system of equations (4.24)-(4.26) is

3D 0 \(n)\_,(8D 10D \(n
( -10D3 D? )( l ) _’1( 0 —24D )( l (4.27)
with
’7=’7//:’7///:§=§I:§//:§////:0 at x=0, (428)
§=§II+2’7:§///1_4’7//:0 at x=1 (429)

The solutions are

n(x)
=cos(2ux) + 2 cos((1 + i) ux) + cosh(2ux) + 2 cosh((1 + i) ux)
(2 = 2i)(sin(u) — sinh(u)) (sin(p) sinh(2y) — sin(2y) sinh(u))
(sin(2y) + sinh(2p)) (sin(u) cosh(p) — cos(u) sinh(y))
(cos(2p) + cosh(2y) — 2)
B sin(2y) + sinh(2y)

(sin((1 + i) px) + sinh((1 + i) px))

(sin(2pux) + sinh(2px)) — 6

{(x)

1
:l? —cos(2px) — 2i cos((1 + i) ux) + cosh(2ux) + 2i cosh((1 + i) ux)

(24 2i)(sin(p) — sinh(p)) (sin(y) sinh(2p) — sin(2p) sinh(u))
(sin(2p) + sinh(2p)) (sin(u) cosh(y) — cos(p) sinh(u))

N (cos(2p) + cosh(2p) — 2)
sin(2p) + sinh(2p)

(sinh((1 + i)px) — sin((1 + i) ux))

(sin(2px) — sinh(2ux)) | .
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The bi-orthogonal set for {¢} given by y = NTp is:

~ 24(1+1)p

(sin(2y) + sinh(2p)) (sin(y) cosh(y) — cos(u) sinh(p))
X (—(2 — 2i) sin® () sinh(2p) cos(px) cosh(px)
+ cos(pu) sinh(p) (— sin(2p) (sin((1 + i) px) — (2 — 2i) sin(2px)) + (2 — 2i) (cos(2p) — 2) cos(2pux)
+sin(2p) (sinh((1 + i) px) — (2 — 2i) sinh(2px)) + sinh(2p) ((2 — 2i) sin(2px) — sin((1 + i) px)
—(2 — 2i) sinh(2px) + sinh((1 + i) ux)) + (2 — 2i) sin® () cos((1 + i) x)
+(2 — 2i)(cos(2p) — 2) cosh(2pux) + (2 — 2i) cosh(2p) (cos(2ux)
+cosh(2px)) + (2 — 2i) sin® (i) cosh((1 + i) px))
+ sin(p) cosh () (sin(2p) (sin((1 + i) px) — (2 — 2i) sin(2px)) + (=2 + 2i) (cos(2u) — 2) cos(2ux)
+ sinh(2p) (—(2 — 2i) sin(2pux) + sin((1 + i) ux) + (2 — 2i) sinh(2px) — sinh((1 + i) ux))
—sin(2p) (sinh((1 + i) px) — (2 — 2i) sinh(2px)) — (2 — 2i)(cos(2u) — 2) cosh(2px)
—(2 — 2i) cosh(2p) (cos(2ux) + cosh(2px)) + (4 — 4i) sinh? () cos(pux) cosh(px))
+(=2 + 2i) sin(2p) sinh? (1) cos(pix) cosh(,ux))

y(x)

z(x) =— % sin(2ux) + (=1 + i) sin((1 + i) ux) + sinh(2ux) — (1 — i) sinh((1 + i) ux)

N (cos(2p) + cosh(2p) — 2)
sin(2y) + sinh(2p)

2i(sin(p) — sinh(p)) (sin(y) sinh(2u) — sin(2p) sinh(p))

(sin(2y) + sinh(2y)) (sin(y) cosh() — cos(p) sinh(y))

(cos(2pux) — cosh(2ux))

(cosh((1+i)px) —cos((1+i)ux))] .

4.3 Results of Inverse Sturm-Liouville problems

Here we present some numerical examples of direct and inverse SLPs of orders
2 and 4.

Algorithm 2 was implemented using MATLAB (2014) [76]. The reference
solutions of the EVPs are computed using Wolfram Mathematica 11 [75].

For the numerical calculations, n is the number of subdivisions in the interval
[a,b], m is the number of subdivisions in the interval [1y, A*]; ¥ being the
maximum eigenvalue searching, L is the number of multisection steps used to
calculate each eigenvalue in the characteristic function and M is the number of
inverse algorithm steps.

Error values are stated using max-norm which is defined as ||x||o := max,(|x,|).
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4.3.1 Inverse SLP of order 2
» Example 4.1 (Symmetric potential). Consider the EVP
' +A=—q(x)u=0, xe(0,1)

Suppose q(x) = cos(zx), which is symmetric and normalized. The truncated
eigenvalue sequences at N = 10, for Dirichlet boundary conditions (DDBCs):
#(0) = u(1) = 0 and Dirichlet- Neumann boundary conditions (DNBCs): v”(0) =
v(1) = 0 are calculated using Magnus method (using a tolerance le — 13), and
combined into {9,}2V. This will be the input to the algorithm. Now using an

intial guess, say q = 0, the eigenvalue sequences for DDBCs and DNBCs are
2N

calculated again using Magnus method and the sequence { v,(lo) is constructed.
1

Then g is updated using the equations, (4.5) and (4.4). Again this cycle repeats.

Iteration stops when the desired accuracy is reached. Figures 4.1 and 4.2

1.5 et
[ cos(w x) (exact)
1k cos(w x) (calculated)
x-0.5 (exact)
[ x-0.5 (calculated)
05 T
=
T 0
0.5
At
1.5 .....................
0 0.2 04 0.6 0.8 1

Figure 4.1: Exact and reconstructed potentials g(x) = cos(nx) and g(x) = x — 0.5.

show the exact, and reconstructed potential g and the log absolute errors in
the reconstructed potential and the eigenvalue sequences, respectively. The
supremum norm difference between the reconstructed g and the actual q is
8.229454025521221e — 05. It is clear that the error is larger at the end-points than
in the middle. In the mid-point g(x) is 0 and from equation (4.15), this implies
a minimum error, see Figure 4.2(a). The supremum norm difference between
the reconstructed eigenvalues and the actual ones is 1.302601049246732¢ — 07.
Also after about 15 iterations the differences in the two sets of eigenvalues are
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Figure 4.2: (a) Log absolute error in the reconstructed g, and (b) log absolute error sum

of the difference of the eigenvalue sequences {¥,} and {V,(lkfl)} for reconstructing the

potentials g(x) = cos(zx) (blue) and g(x) = x — 0.5 (red).

not improving, just oscillating, implying that more iterations may try to overfit
(Figure 4.2(b)).

When the number of eigenvalues increase the error also increases, due to
the errors in approximating higher index eigenvalues (see Figure 4.3). This
verifies Aceto et al. [3]’s claim that the first eigenvalues are the most important
for the reconstruction of g, so the required set should be restricted to the first few
eigenvalues. Also, after about 6 iterations, the error does not improves, and even

increases for some values of N. So it’s advisable to stop the iteration procedure
by checking the error. <

» Example 4.2 (Non-symmetric potential). For a second example, consider
q(x) = x — 0.5, which is non-symmetric but normalized. Figures 4.1 and 4.2
show the exact, and reconstructed potential g and the log absolute errors in the
reconstructed potential and the reconstructed eigenvalue sequence, respectively.
The supremum norm difference between the reconstructed q and the actual q is
0.016647548176497. Although not as good as for the symmetric potential this
can be improved if the exact eigenvalues for the exact potential (here we are
calculating them using the Magnus method) are known. The supremum norm
difference between the reconstructed eigenvalues sequence and the actual ones

Section 4.3
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Number of iterations

Figure 4.3: Sum of the absolute errors in the reconstructed eigenvalues: Y, [vE¥a¢? —

yCaleulated| yy5ing Magnus method vs. the iteration number, using eigenvalue sets of
sizes N = 1,..., 10, 20, 50, 100 for reconstructing the potential g(x) = cos(mx).

is 0.004796140075996. Similar to previous example, the error is larger at the
end-points than in the middle (Figure 4.2(a)). <

» Example 4.3 (Inverse SLP in a different domain). This example extends
Barcilon’s algorithm in [17] by changing the domain [0, 1] to [0, 7]:

u”+(A=cos(x))u=0, xe€(0,m)

Here p(x) is symmetric and normalized. In Algorithm 2, w ,(10) (x) and a),(lo) (x)

need to be changed into {w,(lo)}oo = {cos(nx) — cos(nn)}7, {a),(,o)}oo = {sin(nx)}{°
1 1

which are the basic solutions in the new domain. The truncated eigenvalue se-
quences at N = 6, for Dirichlet boundary conditions (DDBCs) and Dirichlet—
Neumann boundary conditions (DNBCs) are calculated using the Magnus method
(with m = 20, n = 20, L = 15) and M = 10 inverse algorithm steps are used.
Figure 4.4 shows the reconstructed and exact potential, and the log absolute
errors in the reconstructed potential, respectively. From Figure 4.4(a), it is
obvious that the potential is converging towards the exact one. The max-norm
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Figure 4.4: (a) Iteratively reconstructed potential (green dashed line) and exact potential
(blue solid line) p(x) = cos(x) (b) Log absolute error in the reconstructed p.

of difference between the reconstructed p and the actual p is ~ 3.35 x 1073
and the max-norm of difference between the reconstructed eigenvalues and the
actual ones is ~ 1.62 x 107>,

Figure 4.5 shows reconstructed p starting with perturbed eigenvalues

I

0, = Ok +0 - o - rand(size(oy)), k=1,...,2N

where § is the noise level and N =5, m =20, n = 100, L =5, M = 6.

Figure 4.5: Reconstructed potential (blue) and exact potential (red) p(x) = cos(x) (a)
§=0.1(b) & = 0.05.
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It is obvious that reconstruction is possible even in the presence of a significant
noise. <

» Example 4.4 (Inverse SLP with a non-smooth potential). This example
extends Barcilon’s algorithm [17] by reconstructing a non-smooth potential:

' +(A=-p(x))u=0 x€(0,2)

with p(x) = |1 — x| — 0.5: symmetric and normalized, but non-smooth. The
truncated eigenvalue sequences at N = 4, for DDBCs and DNBCs are calculated
using the Magnus method (with m = 10, n = 100, L = 5), and used in the
reconstruction of the potential.

absolute error in potential
0.5F T T . A 10° v ' P -
0 T 7
AN approximate /
exact |

5 oo N o o %8
2 o ©oOo o ) o
E) utl 10 o 5 &L o5
[o]
0.1 i o
0.2} © ° o o
107} o
0.3
0.4 o
0.5 s v . 107 i L .
0.5 1 15 2 0 0.5 1 15 2
X X
(a) (b)

Figure 4.6: (a) Reconstructed potential (blue) and exact potential (red) p(x) = |[1—-x|-0.5
(b) Log absolute error in the reconstructed p.

Figure 4.6 shows the reconstructed and exact potential, and the log absolute
errors in the reconstructed potential, respectively, using one inverse algorithm
step. From Figure 4.6(a), it is obvious that the potential is converging towards
the exact one. The max-norm of difference between the reconstructed p and
the actual p is ¥ 1.13 X 107! and the max-norm of difference between the
reconstructed eigenvalues and the actual ones is ~ 3.15 X 10'. As anticipated, the
error is maximum at the point of non-differentiability and at the boundaries. <«
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4.3.2 Inverse FSLP
» Example 4.5 (FSLP). Consider

Y — (1Y) +pay = Ay, 0<x<nm

with p; = 0 and p,(x) = 7/2—x. Using the three spectra corresponding to the sets
of BCs: {y(0) =y"(0) = y(1) = y"(1) =0}, {y(0) = y'(0) = y(1) = y”(1) = 0}
and {y’(0) = y”(0) = y(1) = y”’(1) = 0} two potential functions p;, p, are

reconstructed starting with zero initial guesses and N = 4, m = 20,n = 100, L = 5,

M = 6 (Figure 4.7). The max-norm of difference between the reconstructed p,
and actual p; is ¥ 3.5 X 107! and the max-norm of difference between the
reconstructed eigenvalues and the actual ones is ~ 2.1 x 1071,

0.6
© o
o
o

15 | Qz%%
I = 1 C
= o
Y 3 M m g
| N | o o
C

(2) (b)

Figure 4.7: (a) Reconstructed potential (blue) and exact potential (red) p,(x) = 7/2 — x
(b) Log absolute error in the reconstructed p;.

» Example 4.6 (FSLP). Consider

Y- (p1y’) +pay = Ay, 0<x<m

with p;(x) = |x — 7/2| — n/4 and p, = 0. Using the three spectra corresponding
to the sets of BCs: y(0) = y”’(0) = y(1) = y”(1) = 0, y(0) = y’(0) = y(1) =
y”’(1) = 0and y’(0) = y”’(0) = y(1) = y”(1) = 0 two potential functions p;,
P2 are reconstructed starting with zero initial guesses and N = 4, m = 20,n =
100,L = 15, M = 6 (Figure 4.8). The max-norm of difference between the

Section 4.3

81



Chapter 4

82

Solutions of Inverse Sturm-Liouville Problems

reconstructed p; and the actual p; is ~ 1.4x 107! and the max-norm of difference

between the reconstructed eigenvalues and the actual ones is ~ 7.5 x 107!, <

(a) (b)

Figure 4.8: (a) Reconstructed potential (blue) and exact potential (red) p;(x) = |x —
/2| — /4 (b) Log absolute error in the reconstructed p;.

4.4 Discussion

Here, the inverse SLP is solved with smooth and non-smooth potential, even in
the presence of noise. It is observed that the method is successful even in the
presence of significant noise, provided that the assumptions of the algorithm is
satisfied.

Last few examples solve the inverse FSLP using the Barcilon’s algorithm with
the initial knowledge of three spectra. A simplified FSLP is solved keeping one
of the unknown potential functions zero.

According to Andrew [9] there are three major sources of error with the

inverse problem:

E4: attempting to compute g using only a finite (and often quite small) num-
ber of eigenvalues although the complete infinite set is required for the

determination of g,

E5: only approximations of the eigenvalues are available and errors in the given
eigenvalues may be especially serious for higher eigenvalues,



Discussion

E6: all errors in the numerical solution of the direct problem cause errors in the
solution of the inverse problem.

The last one is the only error source which is affected by the choice of numerical
method and which can be reduced by using a high accuracy method such as
Magnus.
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There are several places where approximation errors occur in the Magnus method.
For the direct problem, they are (see Section 3.2.5 also):

E1: truncation of the Magnus series

E2: calculation of multivariate integrals

E3: computing the matrix exponent

and in the case of the inverse problem (see also section 4.4):

E4: using a finite number of eigenvalues

E5: using approximate eigenvalues

E6: errors in the direct problem

E7: computing the explicit form of g by an interpolation method

E8: approximating derivatives and integrals using numerical methods

so that the accumulated error would be high for the direct and inverse SLPs. For
the direct SLP, we can address the error E1, by using a higher order Magnus
method, error E2, by using higher order quadrature methods, and E3 by using a
more accurate method from the methods proposed by Moler and Van Loan [85].
For the inverse SLP, the error E4 is no longer a problem as Aceto et al. [3] argues,
that the first eigenvalues are the most important for the reconstruction of the
unknown potential. And the errors E5, and E6 can be also reduced by reducing
the errors in the direct problem (E1, E2, and E3). E8 can be eliminated by using
exact derivatives and integrals when possible. So it turn outs that the error in
the inverse problem solely depends on the errors in the direct problem and the
error E7 (interpolating g from a set of points).

By construction, Magnus method leads to a global error of order O(h?) if a
pth-order Magnus method is applied, yet it turns out that the error also depends
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on the magnitude of the eigenvalue. Specifically, the error in a pth-order method
grows as O (h?*1)P/271), and thus one expects poor approximations for larger
eigenvalues [20]. This method has the disadvantage that the cost of integration,

2
while increasing very slowly as a function of A, will be O (( 2: ) ) for a problem

arising from a 2nth order Sturm-Liouville problem [55].

It is clear, the Magnus method is able to deal with general kind of boundary
conditions, since the boundary conditions are presented in a matrix form. Here,
it is shown that the proposed technique has the ability to solve regular and some
singular Sturm-Liouville problems of any even order, efficiently. By Ledoux
et al. [60] a modified Magnus method can be used with Lobatto points to improve
the error. Although in theory, this method can be used for solving higher order
SLPs, for it to be effective in practise, the various errors in the approximation
steps, should be addressed adequately.

More than 40 years after Barcilon’s paper [17], this work gives a concrete
implementation of the inverse SLP algorithm proposed therein, to our knowledge
for the first time. Furthermore, computational feasibility and applicability of this
algorithm for solving inverse SLPs of higher order is verified successfully in this
paper (for n = 2 and n = 4).

The Magnus method was tested with finite interval SLPs of even orders (upto
8) along with regular and a finite singular endpoint BC, and infinite intervals.
Good accuracy with regard to first few eigenvalues is obtained. It is an open
problem whether this method can be extend to solve other types of EVPs such as:
different finite singular endpoints, and multiple eigenvalues. In a future work, it
is possible to extend the results to solve even higher order SLPs.

In a future work, the algorithm for inverse SLP may be modified to include
general finite interval problems (i.e. problems in the domain (a, b)): for different
sets of BCs (provided the spectra are interlaced), infinite BCs, and different
classes of potential functions, such as: non-smooth, discontinuous, oscillating,
etc. Also a more suitable interpolation method for reconstructing ¢ may be
examine.

In conclusion, this work provides a method that can be adapted successfully
for solving a direct (regular/singular) or inverse SLP of an arbitrary order with
arbitrary BCs.



Appendix

» Example A.1 (Multi-section method). Figure A.1 compares the log errors
for the bisection and multisection methods for approximating the root of f(x) =
x3 — x — 2 in the interval [1, 2] using m = 3, 10, 100 subdivisions. Even after more
than 20 iterations, bisection method reports an error of 1.5E — 08 where as after
only 7 iterations multisection method with m = 100 reached an error 4.5E — 14.
Even m = 3 multisection method converged within 19 iterations to the same

accuracy. Obviously, the computation time increases and error decreases with

the number of steps m and tolerance (Figure A.2). <
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Figure A.1: Log errors for the bisection (m = 2) and multisection method for approxi-
mating the root of f(x) = x> —x—2 in the interval [1, 2] using m = 3, 10, 100 subdivisions.

Table A.1, shows the Profile summary of the Matlab implementation of Magnus
method. It can be seen that the most time spent on calculating Q, and most
function calls are for the functions G, p,w, and q (which are the coefficients
matrix and the coefficients of the equation, respectively). The most self time
is utilized by the function G. Also, problem (B) requires more computational
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time than for problem (A) with other factors remaining fixed, as the latter have
a constant G matrix.
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Figure A.2: (a) Time and (b) log absolute error for the multisection method for ap-
proximating the root of f(x) = x> — x — 2 in the interval [1,2] using m = 2,..., 200
subdivisions with tolerance in {le — 4,..., le — 8}.
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Table A.1: Profile summary of the s1p function generated by Matlab with m = 10, n = 10,
L =5 for finding the eigenvalue in the (A) interval [0, 10] for y” +Ay = 0,y(0) = y(1) =0
and (B) interval [0, 2] for y”’ + (x + 0.1) "2y = Ay, y(0) = y(r) = 0. *Self time is the time
spent in a function excluding the time spent in its child functions. Self time also includes
overhead resulting from the process of profiling. All time values are in seconds.

Function Name Calls Total Time Self Time
A B A B

slp 1 2442s 2461s 0.028s 0.031s
Omega 660 2.323s 2.292s 0.024s 0.030s
R3 660 2.163s 2.200s 0.056s 0.032s
G 44880 1.454s 1.480s 0.948s 1.014s
R2 1320 1.336s 1.404s 0.040s 0.063 s
R1 3960 1.114s 1.307s 0.096s 0.095s
Q2 9240 0.843s 0.900s 0.140s 0.124s
Q3 4620 0.736s 0.548s 0.096s 0.078 s
G2 17160 0.711s 0.653s 0.140s 0.110s
G1 13860 0.602s 0.516s 0.104s 0.078s
01 12540 0.527s 0.623s 0.076 s 0.048 s
G3 13860 0.481s 0.654s 0.096s 0.156 s
p 44880 0.216s 0.171s 0.216s 0.171s
w 44880 0.180s 0.141s 0.180s 0.141s
q 44880 0.110s 0.155s 0.110s 0.155s
expm 660 0.091s 0.139s 0.008s 0.031s
expm>PadeApproximantOfDegree 660 0.067s 0.108s 0.067s 0.092s
expm>expmchk 660 0.016s 0.000s 0.016s 0.000s
expm>getPadeCoefficients 660 0.000s 0.016s 0.000s 0.016s
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Appendix: Important Coding

Listing B.1: Multisection method

function y=multisection(f,a,b,tol,m)
%% Multisection method for finding a root in an interval
% Input:
%_f_ (function handle)
%_a_ (double) left end point of the interval
%_b_ (double) right end point of the interval
t

%_m_ (integer) # maximum iterations

Output:

%_y_ (double) approximate root of $f$ in the interval [a, b] with a
tolerance of 'tol'

s and maximum number of iterations m

% Author: Upeksha Perera (April 2019)

Supplementary Material for the article titled

Solutions of Direct and Inverse Even-order Sturm-Liouville problems using

Magnus expansion
% by Upeksha Perera and Christine Bockmann

Correspondence: upeksha@kln.ac.lk; Department of Mathematics, University
of Kelaniya, 11600 Kelaniya, Sri Lanka;

Current address: Institut fur Mathematik, Universitat Potsdam, 14476
Potsdam, Germany; bodhiyabadug@uni—potsdam.de

©.0.0.0.0.00000000000000000000000
“6766660006606060600606606060606°6°060 06006060

%

o°® o° o°

o°

o°

o°

% % USAGE:
% % Example: Finding the root in the interval [1,2] for the function $
f=x"3—x—-2%

% % with a tolerance le—7 and maximum of 10 iterations
% % a=1;b=2;

% % f=@(x) X."3—x—2;

% % tol=1le—7;

% % m=10;

)/m; % step —size
b; % sequence of numbers: xl=a , x2=a+h , ... , xm=b
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values=zeros(1l,m); % store function values at each subdivision point

err = 1;
while err > tol
for k=1:m+1
values(k)=f(x(k)); % calculate function value at each point k
end

scinter = find(diff(sign(values))); % find the sign changing position of
f

% reset the right and left end points to bracket the sign changing
position

b=x(scinter(1l)+1);

a=x(scinter(1l));

% redefine the step size
h=(b—a)/m;

% refine the root interval
x=a:h:b;

err=abs(f(x));
end % end of while loop (multisection)
y=(a+b)/2; % approximate root

Listing B.2: Magnus method

function ev=magnus_slp(a,b,lambda®, lambdaS,p,q,w,m,n,LM,Al,A2,B1,B2)

%% Magnus method for Sturm—Liouville problems of the form
% $$ (p(x)y')'+q(x)y=\lambda w(x) y $$

Input:
_a_ (double) left end point of the x—domain
%_b_ (double) right end point of the x—domain
_lambdaS_ (double) right end of eigenvalue interval
_lambda0@_ (double) left end of eigenvalue interval
_q_ (function) coefficient of y
_p_ (function) coefficient of y''
%_w_ (function) coefficient of lambda y term
_m_ (integer) # divisions for the eigenvalue interval
_n_ (integer) # divisions for the [a,b]
_LM_ (integer) # multisection iteration steps
%_Al_ (0 or 1) coefficient of boundary condition y(a)
%_A2_ (0 or 1) coefficient of boundary condition y'(a)

o°

o°

o°® o° o°

o°

o of

o°
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o°

_B1_ (0 or 1) coefficient of boundary condition y(b)

_B2_ (0 or 1) coefficient of boundary condition y'(b)

% note that A1,A2,B1,B2 selected such that
A1xA2'=A2xAl', B1xB2'=B2xB1l' and (Al,A2) and (B1,B2) have rank 1
Output:

_ev_ (double) approximate eigenvalue in the interval [lambda0®, lambdaS]
Author: Upeksha Perera (April 2019)
Supplementary Material for the article titled

Solutions of Direct and Inverse Even-order Sturm-Liouville problems using
Magnus expansion
by Upeksha Perera and Christine Bockmann

Correspondence: upeksha@kln.ac.lk; Department of Mathematics, University
of Kelaniya, 11600 Kelaniya, Sri Lanka;

Current address: Institut fur Mathematik, Universitat Potsdam, 14476
Potsdam, Germany; bodhiyabadug@uni—potsdam.de

o 0° o° o° o° of o°

o°

o°

o°

o°

% % USAGE:

% % Example 1: Finding the eigenvalue in the interval [0, 10] for the
problem

y''+lambda y=0, y(0)=y(1)=0

o® of
o°

o°
o

% a=0; b=1;

lambda0=0; lambdaS=10;

% q=@(x) 0;

% p=@(x) 1;

% % w=@(x) 1;

% % m=100; n=100;

LM=5;

% Al=1; A2=0;

% Bl=1; B2=0;

ev=magnus_slp(a,b,lambda0d, lambdaS,p,q,w,m,n,LM,Al,A2,B1,B2);

o° o
o® of

o°
o

o® o° o°
Oo Oo O\°

o
o°

°
o°

s % Example 2: Paine problem 2 in Pryce [1993] from Paine et al. [1981].
5 % y''+1/(x+0.1)"2 y=lambda y, y(0)=y(pi)=0

% a=0; b=pi;

% lambda0=0; lambdaS=2;

% q=@(x) 1./(x+0.1).72;

% p=@(x) —1;

% w=@(x) 1;

% m=10; n=10; L=5;

% Al=1; A2=0;

% Bl=1; B2=0;

©
e
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hl=(lambdaS—lambda0)/m; % step size of eigenvalue interval

lambda=1lambda@:hl:lambdaS; % sequence of numbers: lambda®, lambdal, ... ,
lambda$S

h=(b—a)/n; % step—size for the domain

x=a:h:b; % sequence of numbers a=x0, x1, ..., xn=b

Y=eye(2); % initial value of Y(0)

A=[A1,A2; 0 0];
B=[0 0;B1,B2];

G=@(x,lambda) [0 1./p(x) ; Tlambda.xw(x)—q(x) 0]; % matrix G

cl=1/2—sqrt(15)/10; % Gaussian point cl
c3=1/2+sqrt(15)/10; % Gaussian point c3

G1=@(x,lambda) G(x+cl.xh,lambda); G(clxh)
G2=@(x,lambda) G(x+h/2,lambda); % G(c2xh), c2=1/2
G3=@(x, lambda) G(x+c3.xh,lambda); % G(c3xh)

%

Q1=@(x,lambda) h.x*G2(x,lambda); % Ql=hx*G(clxh)
Q2=@(x, lambda) (sqrt(15)*h/3).%(G3(x,lambda)—G1l(x,lambda));
Q3=@(x, lambda) (10xh/3).x*(G3(x,lambda)—2%G2(x,lambda)+G1l(x,lambda));

R1=@(x, lambda)Q1(x, lambda)*Q2(x, lambda)—Q2(x, Lambda)*Q1(x, lambda) ;
% R1=[Q1,Q21=Q1%Q2-02%Q1

R2=@(x, lambda) Q1(x,lambda)*(2.xQ3(x, lambda)+R1(x,lambda))
—(2.%Q3(x, lambda)+R1(x, lambda))*Q1l(x,lambda); % R2=[Q1,2Q3+R1]

R3=@(x, lambda) (—20%Q1(x, lambda)—Q3(x, Lambda)+R1(x, lambda) ) *(Q2(x, Lambda)
—R2(x,lambda) ./60)—(Q2(x, Lambda)—R2(x,lambda)./60)*(—20%Q1(x, Lambda)
—Q3(x, lambda)+R1(x, lambda) ) ;

sigma=@(x,lambda) Q1l(x,lambda)+Q3(x,lambda)./12+R3(x,lambda)./240;

L=0;
while L<LM % # multisection steps
for k=1:m+1
Y=eye(2);
for j=1l:n
Y=expm(sigma(x(j),lambda(k)))x*Y; % Calculate Y(b) iteratively
end
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F(k)=det (A+BxY); % calculate characteristic function at each point
k
end
plot(F)

scinter = find(diff(sign(F))); % find the sign changing position of F

% reset the right and left end points to bracket the sign changing
position

lambdaS=1lambda(scinter(1)+1);

lambda®=1ambda(scinter(1));

% redefine the step size
hl=(lambdaS—lambda®)/m;

% refine the possible lambda values
lambda=1lambda@:h1l:lambdas;

L=L+1; % increase the multisection counter
nd % end of while loop (multisection)

%%%%%%%%%%%6%%%%%% end of multisection method %%%%%%%%%%

(0]

ev=(lambdab+lambdaS)/2; % approximate eigenvalue

Listing B.3: Inverse SLP algorithm

function [g0,nu@]l=inverse_slp(a,b,m,n,L,LL,nue,lambda®d, lambdaS,M1,A1l, A21,
B11,B21,A12 ,A22, B12, B22)

%% Barcilon's inverse SLP method using Magnus method for Sturm—Liouville
problems of the form

as described in the paper:

Iterative solution of the inverse Sturm—Liouville problem

Journal of Mathematical Physics 15, 429 (1974); https://doi.org
/10.1063/1.1666664

% Victor Barcilon

% $$ (p(x)y") "+a(x)y=\lambda w(x) y $$

% p=w=1l and sets of BCs: y(0)=y(1)=0 and y'(0)=y(1)=0

o® of

o°

%_a_ (double) left end point of the x—domain

b_ (double) right end point of the x—domain

%_lambdaS_ (double) right end of eigenvalue interval
lambda®_ (double) left end of eigenvalue interval

%_m_ (integer) # divisions for the eigenvalue interval

%_n_ (integer) # divisions for the [a,b]

_L_ (integer) # multisection iteration steps

o°
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%_LL_ (integer) # 1length of exact eigenvalue sequence
%_M1_ (integer) # inverses iteration steps

%_nue_ (array) # exact eigenvalue sequence

%% Output:

%_q0_ (function) reconstructed potential

%_nu@_ (array) reconstructed eigenvalue sequence
Author: Upeksha Perera (April 2019)

Supplementary Material for the article titled

Solutions of Direct and Inverse Even-order Sturm-Liouville problems using
Magnus expansion
by Upeksha Perera and Christine Bockmann

s Correspondence: upeksha@kln.ac.lk; Department of Mathematics, University
of Kelaniya, 11600 Kelaniya, Sri Lanka;

Current address: Institut fur Mathematik, Universitat Potsdam, 14476
Potsdam, Germany; bodhiyabadug@uni—potsdam.de
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o® o°

o°

o°

°

o°

% % Example: Reconstructing the potential for the problem

% % —y''+cos(t)xy=lambda vy,

% % given the corresponding eigenvalue sequences for y(0)=y(1)=0 and y'(0)=y

(1)=0

% a=0; b=pi; % end points

lambda0=0; lambdaS=20; % eigenvalue search interval

m=10;n=10; L=2; % parameters for magnus method

All=1; A21= 0; Bll=1 ; B21=0 ; % first set of BCs

A12=0 ; A22= 1; B1l2= 1 ; B22=0; % second set of BCs

g0e=@(t) cos(t); % exact potential

p=@(t) —ones(size(t)); wO=@(t) ones(size(t)); % these two coefficients are
fixed

% M1=2; % number of inverse algorithm steps

o® o® o° o° o°

o°

% lambdae=magnus_slp(a,b,lambda0, lambdaS,p,q0e,wd,m,n,L,A11,A21,B11,B21);
mue=magnus_slp(a,b,lambda0, lambdaS,p,q0e,wd,m,n,L,A12,A22,B12,B22);
LL=min([length(lambdae), length(mue)]);
for k=1:LL % interlacing

nue (2xk—1, : )=4*xmue (k) ;

nue(2x*k, :)=4*lambdae (k) ;

® o° o° o° o°

o°

end
% nue: exact eigenvalues

o0

o°

% [q0,nu@]=inverse_slp(a,b,m,n,L,LL,nue,lambda®, lambdaS,M1,A1l, A21, B1l1l,B21
,A12 ,A22, B12, B22);
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A12=0 ; A22= 1; B1l2= 1 ; B22=0; % second set of BCs

x=linspace(a,b,n); % partitioning x-domain
suml=zeros (M1, length(x)); % store the error terms

%% constructing w and omega for =0

for k=1:2xlambdaS
ccl=sqrt(2/(3x*b));
w(k, :)=(cos(k.*xxpi/b)—cos(kxpi))=*ccl;
dw(k, :)=—(kxpi/b)*sin(k.xxxpi/b)*ccl;

cc2=sqrt(2/b);
omega(k, :)=sin(k.*x*xpi/b)*cc2;
domega(k, :)=(kxpi/b)*cos(k.xx*pi/b)*cc2;

intl(k)=—sqrt(2xb/3)*cos(kxpi);
int2(k)=kxpi/(b*xsqrt(3));
c(k)=intl(k)./int2(k);
dwl(k, :)=c(k)*domega(k,:);

end

p=@(t) —ones(size(t)); wO=@(t) ones(size(t)); % these two coefficients are
fixed
q0=@(t) zeros(size(t));% initial guess

lambda=magnus_slp(a,b, lambda®, lambdaS,p,q0,wd0,m,n,L,A11l,A21,B11,B21);
mu=magnus_slp(a,b,lambda0, lambdaS,p,q0,w0,m,n,L,A12,A22,B12,B22);

for k=1:LL % interlacing
nu@ (2xk—1, :)=4xmu (k) ;
nu@(2xk, : )=4*xlambda (k) ;
end
nu@: approximate eigenvalues

%

o°

of

for M=1:M1 % iteration loop

for kk=1:LL

suml (M, :)=suml (M, :)+dwl(kk, :).*x(nue(kk)—nu0(kk));
end
suml(M, :)=0.25xsuml(M,:);

Q0=q0(x)+suml(M,:); % updating q

pp=griddedInterpolant(x',Q0"', 'pchip'); % getting the functional form of
q

q0=@(t) pp(t);

Chapter B

97



98

end

[

% calculating new eigenvalues using updated q
lambda=[1; mu=[]; nu=[];
lambda=magnus_slp(a,b, lambda®, lambdaS,p,q0,w0,m,n,L,A11,A21,B11,B21);
mu=magnus_slp(a,b,lambda0d, lambdaS,p,q0,w0,m,n,L,A12,A22,B12,B22);
for k=1:LL % interlacing

nuo (2xk—1, : )=4*mu (k) ;

nu@(2xk, : )=4*xlambda (k) ;
end
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