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Abstract: The demand for peer-to-peer ridesharing services increased over the last years rapidly. To cost-efficiently
dispatch orders and communicate accurate pick-up times is challenging as the current location of each avail-
able driver is not exactly known since observed locations can be outdated for several seconds. The developed
trajectory visualization tool enables transportation network companies to analyze dispatch processes and de-
termine the causes of unexpected delays. As dispatching algorithms are based on the accuracy of arrival time
predictions, we account for factors like noise, sample rate, technical and economic limitations as well as the
duration of the entire process as they have an impact on the accuracy of spatio-temporal data. To improve
dispatching strategies, we propose a prediction approach that provides a probability distribution for a driver’s
future locations based on patterns observed in past trajectories. We demonstrate the capabilities of our predic-
tion results to (i) avoid critical delays, (ii) to estimate waiting times with higher confidence, and (iii) to enable
risk considerations in dispatching strategies.

1 INTRODUCTION

The usage of transport network companies (e.g., Ca-
reem, Lyft, or Uber) rapidly increased over the last
years. These companies offer a peer-to-peer rideshar-
ing service by connecting vehicle drivers with pas-
sengers to provide flexible and on-demand transporta-
tion (Masoud and Jayakrishnan, 2017). Based on in-
coming passenger requests, the ride-hailing service
provider has to assign an order (request) to an appro-
priate driver from a pool of available drivers, which
are constantly moving in a road network freely. For
that reason, it is necessary to have exact location in-
formation of all drivers to i) optimize the order dis-
patching process and ii) communicate accurate wait-
ing times to passengers.

The dispatching of orders focuses on reducing the
overall travel time and waiting time of passengers, op-
timizing the utilization of available resources, and in-
creasing the customer expectations (Xu et al., 2018).
There is a wide spectrum of dispatching algorithms
that determine the potential best candidate for an or-
der on the basis of various aspects. Spatio-temporal
cost functions, which are calculated based on the cur-
rent location of drivers and passengers, are an integral

part of these algorithms (Liao, 2003). Examples for
such metrics are the distance to the pick-up location
or the estimated time to reach the pick-up location.

Due to the evaluation of trajectory data of avail-
able drivers, a detailed analysis of dispatch decisions
is possible. It enables transportation network com-
panies to identify limitations of dispatching policies
and allows the comparison of different strategies and
configurations. By inspecting the dispatching process
of bookings, the causes for unexpected critical delays
can be investigated and an understanding of poten-
tially risky scenarios can be developed.

As one cause for delayed pick-up times and sub-
optimal dispatch decisions, we identified the inaccu-
racy and uncertainty of the driver’s exact location,
which is used for the travel time estimation and the or-
der dispatching. Surrounding urban effects cause sig-
nals to be noisy and lead to deviations of the recorded
GPS location and the real one of a driver (Wang
et al., 2011). Additionally, the technical limitations
of the GPS system and economical considerations
constrain the emission of signals. To reduce band-
width and storage costs, drivers’ GPS locations are
recorded and sent in specific intervals respecting a de-
fined sampling rate. Furthermore, the entire dispatch



process, including the acceptance confirmation by the
driver, consumes several seconds, in which the driver
is changing the position.

Based on these observations, it is necessary to an-
alyze and optimize the used locations of drives to im-
prove the accuracy of arrival time predictions and op-
timize order dispatch algorithms.

The contributions in this work are the following:

• We implemented a trajectory visualization tool,
which enables transportation network companies
to analyze their dispatch processes and determine
the causes of unexpected critical delays.

• We propose a location prediction approach, which
determines a distribution of potential future loca-
tions of drivers based on patterns observed in past
trajectories.

• Compared to common dispatching algorithms that
rely on outdated driver positions only, we are
able to avoid critical delays by assigning drivers
based on their estimated current potential position
accounting for their individual driving behavior
(speed, turn probabilities, etc.).

• We demonstrate that the prediction results allow
to forecast potential waiting times with higher
confidence which, in turn, effectively helps to de-
crease customers’ cancellation rates.

This paper is organized as follows. In Section 2
we describe the problem domain. Afterward, we
present the developed application to analyze dispatch
processes (Section 3). In Section 4, we present the
limitations of dispatch decisions based on the last
observed location of drivers. In Section 5, we de-
scribe our probabilistic location prediction approach.
In Section 6, we present related work. Conclusions
are given in the last section.

2 BACKGROUND

In the following section, we define all relevant infor-
mation entities that are part of the problem domain
and necessary to understand the visualization con-
cepts as well as the proposed algorithm to avoid risky
dispatches.

A road network is a directed multigraph that rep-
resents real-world traffic infrastructure of a spec-
ified area along with the corresponding meta-
data (Ben Ticha et al., 2018). In the graph, each
node represents an intersection between at least two
road segments, which are represented by edges.
These road network maps are created and maintained

by humans or automatically updated by trajectory-
based algorithms (He et al., 2018). The meta-
information includes, for example, the length and
speed limit of a road segment as well as the exact ge-
ographic locations for all intersections and road seg-
ments (Ben Ticha et al., 2018).

Definition 2.1. Road Network: A road network
is a multigraph R represented by a 4-tuple R =
(I,E,ΣI ,ΣE). I is a set of nodes representing inter-
sections. ΣI and ΣE contain the node and edge la-
bels, respectively. E ⊆V ×V ×ΣE is the set of edges
encoding road segments between intersections. The
node labels ΣI are composed of an intersection’s GPS
location, whereas the edge labels ΣE consist of a road
segment’s geographic extent, length, and speed limit.

Definition 2.2. Road Segment: A road segment r is a
directed edge that is confined by a source r.source and
target r.target intersection. It is associated with a list
of intermediate GPS points describing the segment’s
geography. Each road segment contains a length and
a speed limit. A set of connecting road segment com-
poses a road.

In this work, a trajectory is a chronologically or-
dered sequence of map-matched and timestamped ob-
served locations of a driver, which represents a con-
tinuous driving session. For that reason, we use a seg-
mentation algorithm to split the raw positional data of
a single moving object into separate trajectories. The
start and end of driving sessions are defined by events
like changes of the occupancy state or inactive time
intervals of drivers.

Definition 2.3. Trajectory: A trajectory T ts,te
d is a

chronologically ordered sequence of map-matched
and timestamped observed locations of a driver d in
a given time interval [ts, te].

Definition 2.4. Ping: A ping pt
d depicts a map-

matched observed location of a driver d at time t. The
state pt

d is given by a 3-tuple (l,s, t), denoting that the
driver d is located at location l with the occupancy
state s at time t. The location l consists of the tuple
(x,y) representing the map-matched GPS coordinates
with longitude and latitude.

As mentioned in the previous section, the accu-
racy of GPS locations is affected by various factors
(e.g., noise) (Wang et al., 2011). For that reason, it
is possible that the observed locations of a driver are
off-road. Therefore, we use common map-matching
algorithms to match the locations to a reference road
network. For each observed location a map-matched
location on a road segment is determined based on the
trajectory of a driver.



3 VISUALIZATION OF DISPATCH
PROCESSES

With the capabilities to display the trajectory data, our
application enables transportation network companies
(i) to analyze dispatch decisions, (ii) to evaluate and
compare different dispatching algorithms, (iii) to de-
termine the effect and accuracy of location predic-
tion algorithms, and (iv) to label spatio-temporal data
for comprehensive investigations or as foundation for
machine learning approaches. Through the detailed
analysis of past dispatches, it is possible to identify
reasons for late pick-ups and determine characteris-
tics of scenarios, in which the risk for a delay exists.
Additionally, it provides the opportunity to identify
general problems of dispatch strategies and to exam-
ine the behavior in edge cases.

3.1 Analyzing Dispatch Decisions

An overview of bookings enables transportation net-
work companies to navigate through various dis-
patch processes to identify problematic dispatches ef-
ficiently (e.g., significant delays). The bookings can
be filtered and sorted by different criteria (e.g., delay,
manually assigned labels) to select specific dispatches
to be analyzed in more detail (see Figure 1).

In the analysis view, the system visualizes the
spatio-temporal data associated with the dispatch de-
cision on a map. As shown in Figure 1, the trajec-
tory of the assigned driver (colored dots), the posi-
tion of the pick-up location (black marker), and the
shortest route to the pick-up location (green line) are
displayed. Additionally, the corresponding informa-
tion (e.g., estimated time of arrival determined by the
transportation network company and the Open Source
Routing Machine (OSRM) 1) are shown. The tra-
jectory of the driver is divided into orange and blue
dots, which represent the associated pings. The color
change indicates the timestamp at which the driver
acknowledged the transportation request, and the trip
was assigned. Consequently, the orange points repre-
sent the free-time trajectory of the driver. In periods
without passengers or passenger requests, the drivers
drive freely around intending to get in an excellent po-
sition to be selected by the dispatch algorithm for the
next booking request.

The blue dots of the trajectory represent the route
of the driver after the assignment of the trip. Here,
the driver has a particular target location and tries to
reach the pick-up location on the shortest path. By
comparing this trajectory with the shortest path de-
termined by OSRM, the user has a good indicator of

1http://project-osrm.org

problematic dispatches. As displayed in the exam-
ple (see Figure 1), the delay of the driver was caused
by an initial detour. Furthermore, we can analyze the
circumstances around the assignment of the trip and
determine potential reasons for the detour (e.g., inac-
curate positional information or a driver’s position on
a road segment, which makes it impossible for him
to drive the shortest route). In Section 4, we discuss
these issues in more detail.

To evaluate different prediction algorithms as
well as our probabilistic approach (described in Sec-
tion 5), the application visualizes the predicted loca-
tions along with the determined probabilities. The lo-
cations are displayed directly on the map to allow the
user to compare the predicted positions (purple cir-
cles) with the last observed location and the trajectory
of the driver after the dispatch process.

3.2 Determining the Estimated Fastest
Pickup Routes

The application illustrates the fastest route between
the last ping of the dispatched driver’s free-time tra-
jectory and pick-up location as a solid line. We use
the OSRM, a tool of the OpenStreetMap community,
to calculate a driver’s fastest pick-up route. In con-
trast to routing services used by deployed dispatching
algorithms of transportation network companies, the
routing functionality of OSRM is not traffic-adjusted.
Instead, it estimates the cost of a road segment, i.e.,
its traversal time, as its length divided by its speed
limit. The traversal speed estimation via the speed
limit is a significant simplification, as the scenario that
a driver traverses the road network without any traffic
and with traversal speed indicated by the speed limit
is very unlikely.

However, this constraint is acceptable, as even if
we use the same traffic-adjusted routing service as the
deployed dispatching algorithm, the calculated pick-
up route and its traversal time may differ from the
route the dispatching algorithm has retrieved at the
time of the dispatch from the same service. The rea-
son is that routing services, such as Google Maps,
incorporate traffic in real-time to keep estimates ac-
curate and hence, the suggested fastest route for the
same pair of GPS coordinates changes continuously
with the underlying traffic. The fastest pick-up route
that we retrieve from OSRM is not guaranteed to be
identical to the pick-up route that was used by the
dispatching algorithm. Hence, the estimated traver-
sal time of the fastest pick-up route and the estimated
traversal time calculated by the dispatching algorithm
of the transportation network company are not com-
parable to each other.



Figure 1: A screenshot of the application, displaying the trajectory of the driver (orange and blue dots), the fastest route (green
line), and the predicted next locations via purple circles.

4 IMPROVING DISPATCH
DECISION BY LOCATION
PREDICTION ALGORITHMS

As already mentioned, it is necessary to provide exact
location information of all available drivers to com-
municate accurate pick-up times to passengers and to
efficiently assign passengers to drivers. The assign-
ment of available drivers to requesting passengers in
the context of transportation network companies is a
dynamic vehicle routing problem or dial a ride prob-
lem.

The vehicle routing problem is characterized as
dynamic, if requests are received and updated concur-
rently with the determination of routes, see Psaraftis
et al. (Psaraftis, 1995). In the setup of transporta-
tion network companies, new passenger requests have
to be continuously assigned to available drivers con-
sidering further information, such as the current traf-
fic situation or the availability of drivers, which are
unknown in advance. For that reason, companies
are applying different policies typically intending to
optimize specific objective functions (e.g., to mini-
mize the overall waiting time of passengers or route
costs) (Psaraftis et al., 2016).

Correspondingly, the applied policy to select a

driver from a set of available drivers is based on a cost
function (e.g., minimum costs, minimum distance,
minimum travel time, maximum number of passen-
gers). Most of these functions use the location of the
passengers and the location of the available drivers
as inputs. A common example is the nearest vehicle
dispatch, which assigns the passenger request to the
driver with the shortest travel time to the pick-up lo-
cation (Jung et al., 2013). Based on the locations, the
travel time is determined by using services that offer
traffic-adjusted routing services (e.g., Google Maps).

For that reason, accurate calculations require pre-
cise and up-to-date location information about all
available drivers. However, there are different fac-
tors like noise or technical limitations of GPS sys-
tem (Wang et al., 2011).

Additionally, the given sampling rate, data trans-
fer problems, and the time consumed by the entire
process affects the accuracy of the spatio-temporal
information. Consequently, the actual position of a
driver at the time of the order assignment can deviate
significantly from the last observed location, which
is currently used as input to calculate the estimated
travel time or distance.
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Figure 2: An example highlighting the implications of the
driver’s current location’s inaccuracy and uncertainty. The
dotted location marker between the two highway lanes de-
picts the last recorded location. The other markers indicate
a driver’s possible current locations on the two roads.

4.1 Limitations of Status - Quo
Dispatch Decisions

To demonstrate the limitations of dispatch decisions
based on the last observed location, we use the dis-
patching example depicted in Figure 2 to exemplify
the implications of the inaccuracy and uncertainty of
a driver’s current location at the time of dispatch. The
example shows a dispatching scenario on a highway,
where the upper-right user pin represents the passen-
ger’s pick-up location and the car pins represent a sin-
gle driver’s GPS locations. While the dotted marker
represents the driver’s last recorded location (which
the dispatching algorithm uses), the solid markers
represent the driver’s possible locations at the time of
dispatch. The driver’s last recorded position in the ex-
ample is affected by noise so that the recorded loca-
tion resides between the two highway lanes. Depend-
ing on its implementation, the dispatching algorithm
may now assume that the driver is on the right lane,
however, if the driver’s correct location is A, the ac-
tual travel time can be much higher than its estimated
counterpart, as turns on highways are impossible and
the next exit may be far away.

Even when on the right side of the street, the
driver’s location at the time of dispatch relative to the
necessary highway exit is unknown: the driver may
have or may not have taken the exit (location D and
C), or the driver may not have reached the exit (lo-
cation B). The actual travel time varies significantly
with locations B−D, as missed exists on highways
are costly in terms of time. Consequently, there is
a high risk of delay. Additionally, the driver’s last
recorded location may be older than indicated by the
sampling rate or urban effects, such as tunnels, pre-

vent the emission of GPS signals. Also, the entire
process of assigning a driver and the acknowledgment
of the drive takes several seconds, where the position
of the driver is continuously changing.

As shown by the example, an inaccuracy and un-
certainty of the drivers’ locations at the time of dis-
patch can significantly influence the determined value
of the cost function (e.g., travel time). Therefore, the
dispatching algorithm has to decide based on incor-
rect information, for which reason it may not assign
the optimal driver to a requesting passenger and also
the driver could arrive delayed at the pick-up location.
For that reason, we introduce the concept of Detoured
Dispatches and Risky Dispatches, see below.

Definition 4.1. Detoured Dispatch: A dispatch is
classified as a detoured dispatch if the assigned
driver’s arrival at the pick-up location is delayed due
to an initial detour of the driver.

Definition 4.2. Risky Dispatch: A dispatch is said to
be risky if the dispatched driver’s arrival at the pick-
up location is likely to be delayed due to uncertainty
about the current position of a driver, which may lead
to an initial detour or a sub-optimal route.

After the selection of a driver, the exact current
position is also necessary to calculate the estimated
waiting time, which is communicated to the customer.
The waiting time has to be accurate as the cancella-
tion rate strongly increases with the displayed wait-
ing time. High cancellation rates reflect unsatisfied
passengers leading to a drop in passenger retention
rate, as the industry of ride-hailing is characterized
by fierce competition. Ultimately, high cancellation
rates reduce the revenue of a transportation network
company. The communicated waiting time has to be
accurate, i.e., the actual travel time cannot be much
longer than the calculated travel time. Otherwise, the
passenger has to wait longer than initially communi-
cated, leading to an increase in the cancellation rate.
We observed that passengers do not tolerate delays,
as more than 50% of all delay-related cancellations
happen within the first two minutes of a delay.

To evaluate the share of delays caused by detoured
dispatches, we analyzed a sample of 500 dispatch de-
cisions with our application manually. The dispatch
processes were randomly selected from a real-world
dataset of a transportation network company, which
includes the bookings and the spatio-temporal data
of Dubai, spanning from November 2018 to February
2019. Further, we limited the analysis to dispatch pro-
cesses where the driver arrived at the pick-up location
between one and five minutes delayed. We classified a
dispatch as detoured if the driver performed an initial
detour after the confirmation of the trip and returned



Figure 3: Predicting potential current locations of candi-
date drivers to be assigned to a waiting customer (black
marker): Example of three different drivers (green, blue,
orange marker). The dots represent predicted potential next
locations of each driver based on their driving behavior.

to the determined fastest route afterward. Based on
the random sample, we identified that in about 20 per-
cent of the delayed arrivals, the driver performed an
initial detour.

4.2 Probabilistic Location Predictions
and Implications for Dispatch
Decisions

An example of how probabilistic location predication
can influence the dispatch decisions is shown in Fig-
ure 3. The black marker represents the pick-up lo-
cation and the blue, green, and orange markers the
last observed map-matched location of three avail-
able drivers. A traditional dispatching algorithm that
uses a specific cost function (e.g., shortest distance or
shortest travel time) would assign the booking request
to the blue driver based on the last observed locations.
By analyzing the predicted potential positions of the
drivers, we can see that the blue and green drivers are
likely to move away from the location of the passen-
ger. In contrast, the orange driver is directly driving
in the direction of the passenger. For that reason, it is
highly likely that the orange driver would be the best
option for the algorithm.

In this example, we demonstrate that by includ-
ing the driving behavior and direction of drivers, the
result of the dispatch algorithm can change. Addition-
ally, we can immediately detect whether the estimated
time of arrival of a certain driver (e.g., the blue driver
in Figure 4) would be too optimistic and detours and,
in turn, critical delays are likely.

In the second example (see Figure 4), we demon-

Figure 4: Improving dispatch decisions using probability
distributions for the current locations of potential drivers:
Comparing the likelihood of a driver to reach the customer
(black marker) without critical delays. Example of three
different drivers (green, blue, orange marker). The dots rep-
resent the predicted next locations of each driver (the larger
the dot is, the higher is the probability of the location).

strate the impact of the probabilities calculated based
on observed patterns in past drives. The size of the
dots represents the probability of the corresponding
location. The larger a dot is, the higher is the proba-
bility of the location. Similar to the first example (see
Figure 4), the blue driver has the shortest distance and
seemingly the shortest travel time to the pick-up loca-
tion. But the big dot in the left-bottom corner indi-
cates that there is a high chance that the blue driver
misses the exit. For that reason, it may be preferable
to assign the trip to another driver.

The green driver has a higher probability of be-
ing on the shortest route to the pick-up location, but
also there is a not negligible probability that the driver
stays on the highway and needs to perform a costly
detour to reach the location of the passenger.

Based on the last observed location, the orange
driver has the longest distance to the pick-up loca-
tion, but the predicted probabilities show that she is
highly likely driving the direction of the pick-up loca-
tion. Consequently, to assign the order to the orange
driver is potentially not the optimal decision, but the
one with the lower risk of delays.

Our proposed approach enables transportation
network companies to apply dispatching strategies
that take risk considerations into account. Whether to
optimize expected arrival times, worst-case scenarios,
or other risk-aware criteria can be strategically deter-
mined by the companies. Our approach, however, is a
key for such risk-aware dispatching strategies.



5 PROBABILISTIC LOCATION
PREDICTION FOR
RISK-AWARE DISPATCHING

To minimize detoured dispatches and enable risk-
aware decisions, we propose a model to predict prob-
abilities of future driver positions based on patterns
observed in past trajectories. We suggest the algo-
rithm to be used to predict the possible locations of
dispatching candidates at the time of assignment of
the trip. The dispatching algorithm calculates the es-
timated travel time from a combination of travel times
considering the set of possible locations. By min-
ing historic drives and predicting possible locations
allows for a more precise estimation of pick-up times
leading to shorter waits, in spite of the inherent uncer-
tainty and inaccuracy of a driver’s current position.

5.1 Description of the Probabilistic
Location Prediction Algorithm

The goal of this approach is to observe repeating driv-
ing patterns from all drivers that can be generalized so
that we can apply them to forecast upcoming driving
behaviors. The generalization requires the analysis
of past driving behavior that is representative of fu-
ture behavior. As we forecast a driver’s next locations
around the time of dispatch, we constrain the analysis’
dataset to free-time trajectories. In free-time trajecto-
ries, drivers are generally not influenced by external
factors and thus can drive freely around.

At the time of dispatch, drivers are unaware of a
request until it is communicated to them, which is af-
ter the dispatch process. Consequently, at the time of
dispatch drivers drive freely around, and hence, their
decisions are similar to the ones taken before in past
free-time trajectories. The analysis of trajectories also
allows us to extract information on the dynamic char-
acteristics of the road network, such as traffic. Traf-
fic affects drivers’ traversal times on road segments
and hence we need to incorporate this into the loca-
tion prediction to ensure accuracy. Traffic repeats it-
self (Treiber and Kesting, 2013), we can use histori-
cal traffic patterns to forecast future traversal times on
road segments consequently.

Remark 5.1. The prediction algorithm consists of the
five parts (i) data preprocessing, (ii) map matching,
(iii) road segment candidates determination, (iv) turn
probability calculation, and (v) location prediction.
Most importantly, the final prediction of a driver’s
probabilistic location takes not more than 30 millisec-
onds, and hence, is applicable in real-life settings.
Note, part (i), (ii), and (iv) of the algorithm can be

processed offline and updated from time to time.

5.1.1 Data Preprocessing

During the data preprocessing, we segment the trajec-
tories in sub-trajectories that represent distinct driv-
ing sessions and extract the sub-trajectories with the
occupancy state free. Afterward, we map-match the
observed locations to retrieve their actual location on
a road segment in the road network. Based on the
map-matched pings, we interpolate the route between
subsequent pings if their road segments are discon-
tiguous.

Depending on the occupancy state, the driving be-
havior of a driver changes significantly. If the driver
is transporting passengers or is on the way to pick-up
passengers, she is driving the shortest route based on
the current position, the destination, and the current
traffic situation. These routes are often suggested by
routing services.

In contrast, drivers with the occupancy state free
are freely driving around with the goal of getting in-
coming bookings. Their routes are depending on per-
sonal experience and individual preferences as well
as external circumstances. For that reason, we have to
distinguish trajectories based on the occupancy state
for our use case.

Definition 5.1. Occupancy State of Trajectory: The
occupancy state of a trajectory T ts,te

d is defined by the
state of all pings of the trajectory. For that reason, all
pings of a trajectory must have the same occupancy
state. We distinguish between the two states available
and occupied.

We define a route as an ordered sequence of con-
nected road segments, which are determined by the
trajectory and defines a semantic compression of the
trajectory consequently. Multiple consecutive pings
on a road segment are combined. Additionally, if the
resulting road segments are not connected, the corre-
sponding road segments to connect the segments by
the shortest path are added to the route.

Definition 5.2. Route: A route Rts,te
d of a driver d

is a sequence of connected road segments, visited by
driver d in the time interval [ts, te] ordered by the time
of traversal.

A booking represents a transportation request
from a passenger. During dispatch, a potential driver
is assigned to the booking. After the driver confirms
the booking, her occupancy state changes from avail-
able to occupied. Accordingly, the state changes to
available after the driver finished a booking.



5.1.2 Map Matching

The accuracy of GPS locations is affected by var-
ious factors (e.g., noise) (Wang et al., 2011), cf.
Section 2. To match the locations to a reference
road network, we use the established map-matching
library Barefoot2. Additionally, we applied filters
to remove physically implausible sequences of map-
matched location caused by the breaks in the Hidden
Markov Model used by this approach. Newson and
Krumm (Newson and Krumm, 2009), also suggest fil-
ter and cleansing approaches for outliers (e.g., traver-
sal speed and maximum acceleration thresholds).

5.1.3 Road Segment Candidates

To determine the relevant potential road segments on
which the driver is estimated to be after the predic-
tion frame based on the last observed location, we
partially analyze the road network. Each road seg-
ment has an associated cost, which depicts its traver-
sal time (i.e., the time a driver needs to traverse it
completely). There are different approaches to de-
termine the traversal time (e.g., speed limits, actual
speed of the driver). We use an approach that mines
the traversal speed from past trajectories.

The mined traversal speed is the average speed of
all drivers on the road segment of past trajectories
(e.g., of a given hour). Due to the fact that we con-
sider all pings of a driver on a specific road segment,
the mined traversal speed implicitly includes traffic
effects like traffic light phases or traffic jams. Start-
ing from the road segment of the last ping, we de-
termine all possible paths of the driver by summing
up the traversal times of the road segments until the
prediction frame is exceeded. By definition, the algo-
rithm expects drivers to reach the last road segment of
a path and we add the last road segment to the list of
candidates consequently. Instead of considering just
all road segments in the neighbourhood, this approach
allows to derive a set of road segments that includes
all potential ones and is as small as possible, which in
turn allows for faster predictions.

5.1.4 Calculation of Turn Probabilities

To determine the turning behavior at intersections,
we can count the co-occurrences of road segment
pairs (Krumm, 2016; Liu and Karimi, 2006) and cal-
culated the corresponding probabilities. We model
the turn probabilities by a Markov chain of nth-order,
as a driver’s behavior at intersections can be repre-
sented by a sequence of events, in which the proba-

2https://github.com/bmwcarit/barefoot

bility of each event, i.e., the decision at the current
intersection, depends only on the state attained in the
previous event, i.e., the decision at the previous inter-
section. Markov chains of a higher order allow us to
represent the behavior of drivers better to drive around
a specific area. This behavior is not uncommon for
drivers of transportation network companies, due to
the fact that specific regions are more profitable com-
pared to others (Richly and Teusner, 2016).

5.1.5 Final Location Prediction

At the last step, we extrapolate a driver’s specific lo-
cation on the determined road segments, as the esti-
mated time to the passenger can vary based on the
particular location on a road segment. During the
short-term route prediction, we calculate a set of road
segments candidates that a driver is expected to reach
within the prediction frame f . We determine for each
candidate road segment a driver’s required traver-
sal time tpath ∈ R+

0 to reach it. As the remaining
time tremaining of each candidate road segment, i.e.,
tremaining = f − tpath, is not large enough to traverse it
completely, we expected the driver to be located on it.
Given each candidates remaining and traversal time,
we estimate the drivers detailed position via the frac-
tion of the road segment the driver is expected to have
traversed within the prediction frame.

5.2 Numerical Evaluation

In this section, we evaluate the accuracy of our loca-
tion prediction algorithm. We perform out-of-sample
four-fold cross-validation for all experiments and re-
port the average score over all four runs.

5.2.1 Experimental Setup

To evaluate our approach, we used a real-world tra-
jectory dataset of a renowned transportation network
company. The dataset includes observed locations of
drivers and booking information in the city of Dubai,
spanning from November 2018 to February 2019.
Compared to publicly available datasets, it has a high
sampling rate of 5 seconds. For the period, we have
over 400 million observed locations.

Based on the time span between two observed lo-
cations, we segment the trajectory data of a driver in
sub-trajectories representing continuous driving ses-
sion. We classified the sub-trajectories based on the
occupancy state and get 1.5 million free-time trajec-
tories. The OpenStreetMap road network of Dubai
has 139K road segments with average length of 115m.
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Figure 5: Results of the next location prediction algorithm on a representative road segment. We run the experiment on 1 000
out-of-sample pings that share the same road segment indicated by the dashed green arrow. The upper value in the box denotes
the relative frequency of drivers that are on the respective road segment after the prediction frame. In contrast, the value below
depicts the probability we predict for drivers to be on that road segment after the prediction frame.

5.2.2 Evaluation of the Prediction Algorithm

We evaluate the overall quality of the next location
prediction algorithm. We use 1 000 pings located on
the same road segment, to predict the road segments
their associated drivers could be on after the predic-
tion frame, i.e., the road segment candidates, along
with their respective probabilities. The drivers’ cor-
rect road segment after the prediction frame serves as
the ground truth.

We compare the discrete probability distribution
of these predicted road segments with the discrete
relative frequency distribution of the drivers’ correct
road segments of the ground truth. We model the turn-
ing behavior via 2nd-order Markov chains. For the ex-
periments, we set the prediction frame to 5, 10, and 20
seconds and evaluate the algorithm’s performance for
a representative example.

In Figure 5, we illustrate the results of our loca-
tion prediction algorithm for drivers that are currently
on a frequented road segment. The training dataset
for the algorithm includes 21751 traversal speed ob-
servations and 9 224 turn observations for the respec-
tive road segments. The predicted probability density
over the set of road segment candidates is similar to
the distribution of the relative frequencies of the in-
dividual road segments of the ground truth. The av-
erage absolute difference between the probability of
a predicted road segment and its relative frequency in
the ground truth for the prediction frames are small:
0.012 (5 seconds), 0.033 (10 seconds), and 0.075 (20
seconds). The result verifies the accuracy of our ap-
proach.

For a prediction frame of 5 seconds, the predicted
probability deviates on average by 1.2% from the ac-
tual relative frequency. The difference proves that

the location prediction algorithm is accurate for fre-
quently observed road segments. As the prediction
frame increases, the difference of the predicted prob-
abilities of the road segments to their actual rela-
tive frequencies increases. The reason for this is
that with increasing prediction frame, the impact of
the estimated traversal speeds’ inaccuracies increases.
The imprecision of the estimation may be caused by
temporary traffic conditions that the mined traversal
speed estimations do not capture in full detail.

We conducted further location predictions for dif-
ferent examples. Naturally, we found that the results
depend on the specific setting considered (road seg-
ment, time, individual driving behavior, etc.). How-
ever, overall, we obtained similar accuracy results as
in the shown example, see Figure 6. Further, we ob-
served that the most critical factor is the amount of
data associated with a specific setting.

Moreover, we evaluated if the turning behavior at
intersections changes with the time of the day (e.g.,
rush hour). For that reason, we construct one Markov
chain that models the turning behavior of drivers dur-
ing rush hour and one during the evening hours. We
select these hours so that both Markov chains cover
the same number of observations.

Further, to assess if the context-specific model-
ing boosts prediction accuracy, we assess if Markov
chains of the same context have more similar turn
probabilities than Markov chains of different con-
texts, considered as Both, cf. Figure 6. We measure
the similarity via the average absolute difference of
turn probabilities of the same Markov state. We con-
strain the comparison to intersections with at least 50
observations for each context. The restriction results
in 2 485 intersections, for which we compare the turn
probabilities.
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Figure 6: Sensitivity to context: The histogram shows the
cumulative distribution of the mean absolute differences of
intersections’ turn probabilities of different times of the day.

The results, see Figure 6, show that the estimated
turn probabilities are accurate for different contexts,
i.e., rush hour and evening. For both contexts, around
80% of all Markov states’ turn probabilities have at
most an average absolute difference of 0.05. In con-
trast, the Markov chains differ across contexts more
significantly. Only around 65% of the Markov states’
turn probabilities have at most an average absolute
difference of 0.05. In contrast to Krumm (Krumm,
2016), our results demonstrate that including context
information can improve the accuracy of turn proba-
bilities.

6 RELATED WORK

In the following section, we review the literature form
the related research fields route prediction and turning
behavior prediction.

6.1 Route Prediction

Route prediction algorithms can be separated into
long-term and short-term route prediction algo-
rithms. Long-term route prediction approaches fore-
cast drivers’ entire route to their final destination,
whereas short-term route prediction algorithms pre-
dict only a fraction of the remaining route a driver can
drive within a provided prediction time. Various long-
term route prediction algorithms use Hidden Markov
Models (HMM) that model a driver’s intended route
as a sequence of hidden states since drivers’ inten-
tions can only be observed indirectly by the driven
routes (Simmons et al., 2006; Lassoued et al., 2017;
Ye et al., 2015).

Simmons et al. (Simmons et al., 2006) use an
HMM that models the road segment, destination pairs
as hidden states and the GPS data as observable states.

While Simmons et al. (Simmons et al., 2006) do not
require a separate map-matching step, Ye et al. (Ye
et al., 2015) require one, as their HMM models the
driven road segment as observable states, while clus-
ters of route serve as hidden states. Other approaches
use clustering techniques to group similar trajectories
into clusters so that the deviations of the current tra-
jectories to past trajectories are more tolerated (Las-
soued et al., 2017; Froehlich and Krumm, 2008).

Lassoued et al. (Lassoued et al., 2017) hierar-
chically cluster trajectories via two different simi-
larity metrics: same destination or route similarity
metric. They define their route similarity metric as
the fraction of shared road segment. Froehlich and
Krumm (Froehlich and Krumm, 2008) predict the in-
tended route by using an elaborate route similarity
function to compare the current route to a represen-
tative combination of routes of each cluster. The
similarity metric depicts the distance differences be-
tween the GPS recordings of trajectory without pre-
requiring a map-matching step. Further approaches
use machine learning techniques, such as reinforce-
ment learning (Ziebart et al., 2008a), neural networks
(Mikluscák et al., 2012), and methods of social media
analysis (Ye et al., 2015).

While long-term route prediction algorithms are
helpful for the prediction of an entire route, their pre-
dictions are bound to previously observed routes. In
our problem, however, the pick-up routes of individ-
ual drivers are rarely identical, as pick-up locations
are not stationary, but various aspects can be used in
short-term prediction.

Trasarti et al. (Trasarti et al., 2017) use clustering
techniques to extract fractions the driver is expected to
be able to drive within the provided prediction time.
These approaches, however, still lack the support for
new unseen routes.

Karimi et al. (Karimi and Liu, 2003) predict the
most probable short-term route by mining the driver’s
turning behavior at intersections and using the trajec-
tories’ underlying road network. They traverse the
road network in depth-first fashion to find the maxi-
mum reachable locations from the driver’s current lo-
cation. They determine the traversal time of road seg-
ments by using the corresponding speed limits. This
approach was extended by Jeung et al. (Jeung et al.,
2010) by mining the road segments’ traversal time
from trajectories. Both approaches require the trajec-
tories to be map-matched, as the turn probabilities are
calculated on the road segments level.

In contrast, Patterson et al. (Patterson et al., 2003)
avoid map-matching by using particle filters that in-
corporate the error of all random variables into one
model. Additionally, dynamic short-term route algo-



rithms exist, that reconstruct their models on-the-fly
on data changes. These approaches acknowledge the
dynamic nature of traffic and moving objects, whose
environment changes aperiodically. Zhou et al. (Zhou
et al., 2013) continuously evict patterns from outdated
observed trajectories so that the applied models only
consider data from the most recent trajectories.

6.2 Turning Behavior Prediction

There are turning behavior predictions, which model
drivers’ turning behavior as a Markov process
(Krumm, 2016; Ziebart et al., 2008b; Karimi and Liu,
2003; Liu and Karimi, 2006; Jeung et al., 2010; Pat-
terson et al., 2003). These approaches are similar in
the way they model the turning behavior at intersec-
tions as Markov chains, in which the states represent
road segments, and drivers’ decisions indicate their
transitions at intersections. They differ, however, in
the order of the Markov chain, i.e., the number of past
road segments they consider.

While some consider only the last driven road
segment to be an indicator for the next turn (Karimi
and Liu, 2003; Liu and Karimi, 2006; Jeung et al.,
2010; Patterson et al., 2003), Krumm (Krumm, 2016)
proposes the usage of an nth-order Markov chain, in
which the next road segment is predicted by follow-
ing the last n driven road segments as states in the
Markov chain. They evaluate that the more past road
segments the prediction considers, the more accurate
is the prediction of the turning behavior.

However, with the increasing order of the Markov
chain, fewer sequences of driven road segments are
observed, as the Markov state space increases expo-
nentially. Also, they experimented with inferring if
the result’s accuracy is sensitive to context informa-
tion, such as time of day or day of the week. How-
ever, they did not find such sensitivity, as the fraction
of matched road segment sequences of the given con-
text was small due to the training dataset’s size.

Ziebart et al. (Ziebart et al., 2008b) model the
turning behavior of drivers via a Markov decision pro-
cess whose cost weight of actions are learned via in-
verse reinforcement learning using context- and road-
specific features. Further approaches analyze the
speed and acceleration profiles of drivers to predict
the turning behavior at an upcoming intersection.

Liebner et al. (Liebner et al., 2012) cluster speed-
ing profiles using k-means to predict a driver’s turn-
ing behavior at a single intersection. Phillips et
al. (Phillips et al., 2017) and Zyner et al. (Zyner et al.,
2017) use short-term memory neural networks to pre-
dict the turning behavior.

7 CONCLUSION

In this paper, we presented an application to visual-
ize the trajectory data of drivers in the period of dis-
patch processes, which enables the identification of
limitations of applied dispatching strategies. Further-
more, it supports transportation network companies
to derive a deeper understanding of reasons for un-
expected critical delays caused by inefficient dispatch
decisions. By using the application, we identified in-
accurate positional information as one aspect for the
late arrivals of drivers at the pick-up location. These
inaccuracies are produced by various circumstances
(e.g., noise, technical limitations).

Further, we address this problem by proposing a
location prediction approach that provides a probabil-
ity distribution for a driver’s future locations based on
patterns observed in past trajectories. More specifi-
cally, we are able to quantify with which probability
a driver has moved in which direction since the last
ping under consideration of personalized and time-
dependent driving characteristics. That enables us to
support risk-aware dispatch decisions in contrast to
common strategies, which use the last observed posi-
tion of a driver only.

Finally, our prediction approach directly allows
improving current dispatch strategies by avoiding
critical delays and announcing waiting times with
higher confidence. In future research we will further
evaluate the proposed approach and study the impact
of risk-aware dispatch decisions.
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