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Abstract

Permafrost is warming globally, which leads to widespread permafrost thaw and impacts
the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is
vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local
remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such
as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All
of which indicate an acceleration of permafrost degradation.

In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up
to several meters each year and impact local and regional topographic gradients, hydrological
pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost
carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle
is a crucial component of the Earth system and a relevant driver in global climate models.
However, an assessment of RTS at high temporal resolution to determine the dynamic thaw
processes and identify the main thaw drivers as well as a continental-scale assessment across
diverse permafrost regions are still lacking.

In northern high latitudes optical remote sensing is restricted by environmental factors and
frequent cloud coverage. This decreases image availability and thus constrains the application
of automated algorithms for time series disturbance detection for large-scale abrupt permafrost
disturbances at high temporal resolution. Since models and observations suggest that abrupt
permafrost disturbances will intensify, we require disturbance products at continental-scale,
which allow for meaningful integration into Earth system models.

The main aim of this dissertation therefore, is to enhance our knowledge on the spatial
extent and temporal dynamics of abrupt permafrost disturbances in a large-scale assessment.
To address this, three research objectives were posed:

1. Assess the comparability and compatibility of Landsat-8 and Sentinel-2 data for a
combined use in multi-spectral analysis in northern high latitudes.

2. Adapt an image mosaicking method for Landsat and Sentinel-2 data to create combined
mosaics of high quality as input for high temporal disturbance assessments in northern
high latitudes.

3. Automatically map retrogressive thaw slumps on the landscape-scale and assess their
high temporal thaw dynamics.

We assessed the comparability of Landsat-8 and Sentinel-2 imagery by spectral comparison
of corresponding bands. Based on overlapping same-day acquisitions of Landsat-8 and Sentinel-



2 we derived spectral bandpass adjustment coefficients for North Siberia to adjust Sentinel-2
reflectance values to resemble Landsat-8 and harmonise the two data sets. Furthermore, we
adapted a workflow to combine Landsat and Sentinel-2 images to create homogeneous and
gap-free annual mosaics. We determined the number of images and cloud-free pixels, the spatial
coverage and the quality of the mosaic with spectral comparisons to demonstrate the relevance
of the Landsat+Sentinel-2 mosaics. Lastly, we adapted the automatic disturbance detection
algorithm LandTrendr for large-scale RTS identification and mapping at high temporal
resolution. For this, we modified the temporal segmentation algorithm for annual gradual
and abrupt disturbance detection to incorporate the annual Landsat+Sentinel-2 mosaics. We
further parametrised the temporal segmentation and spectral filtering for optimised RTS
detection, conducted further spatial masking and filtering, and implemented a binary object
classification algorithm with machine-learning to derive RTS from the LandTrendr disturbance
output. We applied the algorithm to North Siberia, covering an area of 8.1 x 106 km2.

The spectral band comparison between same-day Landsat-8 and Sentinel-2 acquisitions
already showed an overall good fit between both satellite products. However, applying the
acquired spectral bandpass coefficients for adjustment of Sentinel-2 reflectance values, resulted
in a near-perfect alignment between the same-day images. It can therefore be concluded that
the spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to those of
Landsat-8 in North Siberia.

The number of available cloud-free images increased steadily between 1999 and 2019,
especially intensified after 2016 with the addition of Sentinel-2 images. This signifies a highly
improved input database for the mosaicking workflow. In a comparison of annual mosaics,
the Landsat+Sentinel-2 mosaics always fully covered the study areas, while Landsat-only
mosaics contained data-gaps for the same years. The spectral comparison of input images and
Landsat+Sentinel-2 mosaic showed a high correlation between the input images and the mosaic
bands, testifying mosaicking results of high quality. Our results show that especially the mosaic
coverage for northern, coastal areas was substantially improved with the Landsat+Sentinel-2
mosaics. By combining data from both Landsat and Sentinel-2 sensors we reliably created
input mosaics at high spatial resolution for comprehensive time series analyses.

This research presents the first automatically derived assessment of RTS distribution and
temporal dynamics at continental-scale. In total, we identified 50,895 RTS, primarily located
in ice-rich permafrost regions, as well as a steady increase in RTS-affected areas between 2001
and 2019 across North Siberia. From 2016 onward the RTS area increased more abruptly,
indicating heightened thaw slump dynamics in this period. Overall, the RTS-affected area
increased by 331 % within the observation period. Contrary to this, five focus sites show spatio-
temporal variability in their annual RTS dynamics, alternating between periods of increased
and decreased RTS development. This suggests a close relationship to varying thaw drivers.
The majority of identified RTS was active from 2000 onward and only a small proportion
initiated during the assessment period. This highlights that the increase in RTS-affected area
was mainly caused by enlarging existing RTS and not by newly initiated RTS.

Overall, this research showed the advantages of combining Landsat and Sentinel-2 data in
northern high latitudes and the improvements in spatial and temporal coverage of combined
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annual mosaics. The mosaics build the database for automated disturbance detection to reliably
map RTS and other abrupt permafrost disturbances at continental-scale. The assessment at high
temporal resolution further testifies the increasing impact of abrupt permafrost disturbances
and likewise emphasises the spatio-temporal variability of thaw dynamics across landscapes.
Obtaining such consistent disturbance products is necessary to parametrise regional and
global climate change models, for enabling an improved representation of the permafrost thaw
feedback.
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Zusammenfassung

Permafrostböden erwärmen sich global, was zu weit verbreitetem Auftauen des Permafrosts
führt und die angrenzenden Landschaften, Ökosysteme und Infrastruktur beeinflusst. Insbe-
sondere eisreicher Permafrostboden ist anfällig für schnelles und abruptes Auftauen durch
Schmelzen von überschüssigem Grundeis. Lokale Fernerkundungsstudien haben für die letzten
zwei Jahrzehnte zunehmende Raten abrupter Permafroststörungen festgestellt, wie z. B.
Veränderungen und Auslaufen von Thermokarstseen, Küstenerosion und Taurutschungen in
eisreichem Permafrost. Dies weist auf eine beschleunigte Permafrostdegradation hin.

Vor allem Taurutschungen (retrogressive thaw slumps) sind sehr abrupte Störungen, die
sich jedes Jahr um bis zu mehreren Metern vergrößern. Damit beeinflussen sie lokale und
regionale Topographien, hydrologische Gradienten, den Sediment und Nährstofftransport
zu Gewässern und verursachen eine erhöhte Freisetzung von organischem Bodenkohlenstoff.
Der Rückkopplungsprozess zwischen abruptem Auftauen des Permafrostbodens und dem
Kohlenstoffkreislauf, insbesondere seiner zeitlichen Skala, ist ein entscheidender Bestandteil
des Erdsystems und für globale Klimamodelle relevant. Es fehlen jedoch noch Untersuchungen
mit hoher zeitlicher Auflösung zur Bestimmung der dynamischen Auftauprozesse und zur Iden-
tifizierung der wichtigsten Treiber des Permafrosttauens, sowie großräumige Untersuchungen,
die heterogene Permafrostregionen umfassen.

In nördlichen hohen Breitengraden ist die optische Fernerkundung durch häufige und
anhaltende Wolkenbedeckung beeinflusst, was wiederum die Bildverfügbarkeit stark verringert.
Dieses schränkt die Anwendung von automatisierten Algorithmen zur Erkennung von abrupten
Permafroststörungen in Zeitreihen mit hoher zeitlicher Auflösung ein. Da Modelle und
Beobachtungen darauf hindeuten, dass sich abrupte Permafroststörungen verstärken, benötigen
wir Produkte, die die Störungen großräumig darstellen, damit sie zur Parametrisierung der
Erdsystemmodelle beitragen können.

Das Hauptziel ist daher, unser Verständnis über die räumliche Ausdehnung und zeitliche
Dynamik abrupter Permafroststörungen in einer großräumigen Studie zu erweitern. Um dieses
zu erreichen, wurden drei Forschungsziele aufgestellt:

1. Die Bewertung der Vergleichbarkeit und Kompatibilität von Landsat und Sentinel-2
Daten für eine gemeinsame Verwendung in Multispektralanalysen in nördlichen hohen
Breitengraden.

2. Die Anpassung einer Bildmosaik-Methode für Landsat und Sentinel-2 Daten, um
qualitativ gute gemeinsame Mosaike zu erstellen, welche Datengrundlage für die Analyse
von dynamischen Störungen in nördlichen hohen Breitengraden sind.



3. Die automatisierte, großräumige Kartierung von Taurutschungen und die Analyse ihrer
zeitlich hochaufgelösten Taudynamiken.

Wir haben die Vergleichbarkeit von Landsat-8 und Sentinel-2 Bildern durch einen spektralen
Vergleich der einzelnen Bänder bewertet. Basierend auf taggleichen Bildaufnahmen von Landsat-
8 und Sentinel-2 haben wir spektrale Band-Anpassungskoeffizienten für Nordsibirien abgeleitet,
um die Sentinel-2-Reflektanzwerte so anzupassen, dass sie Landsat-8 entsprechen und die beiden
Datensätze miteinander harmonisiert sind. Darüber hinaus, haben wir einen Mosaikprozess
angepasst, um Landsat und Sentinel-2 Bilder in jährlichen Mosaiken zu kombinieren und so
homogene und flächendeckende Mosaike zu erstellen. Um die Bedeutsamkeit von Landsat +
Sentinel-2 Mosaiken zu demonstrieren, haben wir die Anzahl der Bilder und wolkenfreien
Pixel, die räumliche Mosaikabdeckung und die Mosaikqualität durch einen spektralen
Vergleich ermittelt. Zuletzt haben wir LandTrendr, ein Algorithmus zur automatisierten
Störungserkennung, für die großräumige Identifizierung und Kartierung von Taurutschungen
mit hoher zeitlicher Auflösung angepasst. Wir haben den zeitlichen Segmentierungsalgorithmus
für die Erkennung von graduellen und abrupten Störungen modifiziert, um die jährlichen
Landsat + Sentinel-2-Mosaike zu inkludieren. Des Weiteren haben wir die optimalen Parameter
zur zeitlichen Segmentierung und zum spektralen Filtern für Taurutschungen bestimmt, sowie
weitere räumliche Maskierungen und Filter angewendet und eine binäre machine-learning
Klassifizierung durchgeführt. Wir haben den Algorithmus auf Nordsibirien (8,1 x 106 km2)
angewendet.

Der Vergleich der spektralen Bänder von taggleichen Landsat-8 und Sentinel-2 Bildauf-
nahmen zeigte bereits eine gute Übereinstimmung zwischen beiden Sensorprodukten. Die
Anpassung von Sentinel-2 mit den spektralen Band-Anpassungskoeffizienten führte dann zu
einer annähernd perfekten Ausrichtung zwischen den Fernerkundungsbildern. Dies verdeutlicht,
dass die spektralen Band-Anpassungskoeffizienten die Relektanzwerte von Sentinel-2 in
Nordsibirien sehr gut an Landsat-8 anpassen.

Die Anzahl der verfügbaren wolkenfreien Bilder stieg von 1999 bis 2019 stetig an. Ab 2016,
als Sentinel-2-Bilder verfügbar wurden, erhöhte sich die Anzahl stark, was auf eine verbesserte
Datengrundlage für den Mosaikprozess schließen lässt. Bei einem Vergleich der jährlichen
Mosaike deckten die Landsat + Sentinel-2-Mosaike die Untersuchungsgebiete immer räumlich
vollständig ab, während die Landsat-Mosaike in denselben Jahren Datenlücken enthielten. Der
spektrale Vergleich der Eingabebilder und der Landsat + Sentinel-2-Mosaike zeigte eine hohe
Korrelation zwischen den Eingabebildern und Mosaikergebnissen, was auf eine hohe Qualität
der Landsat+Sentinel-2 Mosaike hinweist. Unsere Ergebnisse zeigen, dass insbesondere die
räumliche Abdeckung für nördliche Küstengebiete mit den Landsat + Sentinel-2-Mosaiken
erheblich verbessert wurde. Durch die Kombination von Landsat- und Sentinel-2-Daten konnten
zuverlässig Mosaike mit hoher räumlicher Auflösung für Zeitreihenanalysen erstellt werden.

Diese Untersuchung präsentiert die erste automatisierte großräumige Kartierung von
Taurutschungen mit hoher zeitlicher Auflösung. Wir identifizierten 50.895 Taurutschungen,
hauptsächlich in eisreichen Permafrostregionen, und eine stetige Zunahme der von Taurutschun-
gen betroffenen Fläche von 2001 bis 2019 in Nordsibirien. Ab 2016 nahm die betroffene Fläche
auffallend zu, was auf eine erhöhte Taudynamik der Taurutschungen am Ende der Zeitreihe
hindeutet. Insgesamt stieg die von Taurutschungen betroffene Fläche im Beobachtungszeitraum
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um 331 % an. Im Gegensatz dazu, zeigen 5 Fokusregionen räumlich-zeitliche Variabilität in ihren
jährlichen Taudynamiken, welche zwischen Perioden erhöhter und erniedrigter Taudynamiken
wechseln. Dies deutet auf eine enge Korrelation zu unterschiedlichen Tautreibern hin. Die
Mehrheit der identifizierten Taurutschungen war ab dem Jahr 2000 aktiv und nur ein kleinerer
Anteil wurde während des Beobachtungszeitraums initiiert. Dies verdeutlicht, dass die Zunahme
der von Taurutschungen betroffenen Fläche hauptsächlich durch die Vergrößerung bestehender
Taurutschungen und nicht durch neue Taurutschungen verursacht wurde.

Insgesamt zeigte diese Untersuchung die Vorteile der gemeinsamen Nutzung von Landsat
und Sentinel-2 Daten in nördlichen hohen Breitengraden. Die Bildverfügbarkeit steigt drastisch
an und die spektrale Anpassung erreicht eine gute Harmonisierung zwischen den beiden
Sensorprodukten, welches die Analyse von Landschafts- und Ökosystemveränderungen mit
dichten Zeitreihen ermöglicht. Dies ist die Grundlage für die Anwendung eines automatisierten
Detektierungsalgorithmuses für abrupte Permafroststörungen, wie Taurtuschungen, auf
großräumiger Ebene. Die Untersuchung mit hoher zeitlicher Auflösung belegt die zunehmenden
Auswirkungen abrupter Permafroststörungen und betont ebenfalls die räumlich-zeitliche
Variabilität dieser. Das Erstellen von konsistenten Datenprodukten zu Störungen ist wichtig,
um regionale und globale Kimawandel-Modelle zu parametrisieren und die Rückkopplung
zwischen Klimaerwärmung Permafrosttauen besser darzustellen.
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1
Introduction

1.1 Scientific background and motivation

The climate system is changing at an unparalleled pace over the last decades to millennia (IPCC
2014). Foremost, the Earth is warming, both on land and ocean, the precipitation regimes
are intensifying, and sea levels are rising. By now, the human impact on the climate system
is unequivocal, with current anthropogenic greenhouse gas emissions at an unprecedented
high. In return, climate change widely impacts the human and natural system (IPCC 2014).
Observations of the last two decades show that in the Arctic, the area roughly north of 60 ◦N
latitude, the surface air temperature has been warming at more than double the global average
(Meredith et al. 2019; AMAP 2017). Furthermore, modelled projections for changes in surface
temperature and precipitation show that the Arctic will experience the strongest warming
and precipitation changes by the end of the century, mainly driven by mass loss of ice sheets
and glaciers and decreasing sea ice extent and spring snow cover in the cryosphere (IPCC
2014). These observations and modelling results show that the temperature variability and
warming trends in the Arctic are larger than the global trends, a phenomenon called Arctic
amplification (Serreze and Barry 2011). This highlights the significant role of the Arctic in
global climate warming, especially as the Arctic is at the interface of atmosphere, hydrosphere,
geosphere, biosphere and, very importantly, cryosphere, linked by strong coupled feedback
systems in the energy, water and carbon cycle (AMAP 2017; Lenton 2012). The importance
of the cryosphere for the Arctic extends further to the role of permafrost. Permafrost is
another component of the cryosphere that experiences warming (Biskaborn et al. 2019) but
compared to sea ice, glaciers and ice sheets long time series data comprehensively assessing
the effect of climate warming on the state and extent of permafrost is still missing. Yet, the
state of the permafrost is a crucial factor in the future as huge quantities of organic carbon
are stored in frozen soils, which will contribute to the carbon cycle after thaw, impacting the
wider climate (Lenton et al. 2019). Despite this knowledge, the magnitude and timing of
the feedback between permafrost and climate change still remains uncertain (Schuur et al. 2015).
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1. Introduction

1.1.1 Permafrost and climate change

Permafrost is warming globally and experiencing widespread permafrost thaw (Biskaborn et al.
2019; Vasiliev et al. 2020; Farquharson et al. 2019). Defined as ground that remains at or
below a temperature of 0 ◦C for at least two consecutive years, permafrost is composed of soil,
rock, organic material and varying quantities of ice (Van Everdingen et al. 1998). Permafrost
is a dominant feature in the unglaciated terrestrial Arctic, currently affecting about 22 %
of the land surface in the northern hemisphere (Obu et al. 2019). Further, permafrost is
found as subsea permafrost in Arctic shelf regions (Overduin et al. 2019), in unglaciated areas
of Antarctica (Guglielmin and Vieira 2014), and in high mountainous regions outside the
northern high latitudes (Kääb et al. 2007; Obu et al. 2019). Permafrost formed during the
Quaternary glacial periods in non-glaciated areas, where extremely cold winter temperatures
and low snow cover depth prevailed, causing a long-term negative annual energy balance of
the ground surface (Hubberten et al. 2004). As permafrost is defined by the thermal state
of the ground, it is very sensitive to changes in the energy balance and dominant thermal regime.

The thermal state of permafrost is directly impacted by global climate warming. Rising
air temperatures and changing precipitation regimes increase the ground temperature, which
leads to widespread permafrost thaw and eventually near-surface permafrost loss (Serreze
and Barry 2011; Chadburn et al. 2017; Biskaborn et al. 2019). Changes in the state and
distribution of permafrost have wide implications for local to regional landscapes (Jorgenson
and Grosse 2016), impacting ecosystems (Schuur and Mack 2018; Pastick et al. 2019),
hydrological systems (Francis et al. 2009; Liljedahl et al. 2016), soil carbon accumulation
and decomposition (Hicks Pries et al. 2015), greenhouse gas emissions (Walter Anthony et al.
2018), and infrastructure stability (Hjort et al. 2018). A major concern regarding the feedback
between global climate change and permafrost thaw is its potential contribution to the global
carbon cycle, as approximately 1300 Gt, with an uncertainty range of 1100 to 1500 Gt, of
organic carbon is stored in the northern circumpolar permafrost regions, which is almost twice
as much carbon as currently in the atmosphere (Hugelius et al. 2014; Strauss et al. 2017a;
Schuur et al. 2015). Extensive permafrost thaw induces the mobilisation of soil organic carbon
and the release of greenhouse gases, mainly carbon dioxide and methane, impacting the global
carbon cycle and thus, creating a positive feedback between climate change and permafrost
thaw (Grosse et al. 2011a; Schuur et al. 2015; Walter Anthony et al. 2018). Therefore, it
is of high relevance to understand and estimate the magnitude, speed and distribution of
permafrost thaw and incorporate this in climate models. Currently, only simplified relations
between air temperature increase and gradual permafrost thaw are included but more complex
thaw processes are missing by lack of data (Schuur and Abbott 2011), although observations
and local models show that abrupt permafrost thaw releases substantial amounts of carbon on
short time scales (Walter Anthony et al. 2018; Turetsky et al. 2019; Turetsky et al. 2020).

1.1.2 Permafrost thaw and disturbances

The feedback between global climate warming and permafrost thaw is highly influenced by
environmental and ecosystem properties, such as topography, surface water, groundwater, soil

2



1.1 Scientific background and motivation

properties, vegetation, and snow distribution (Jorgenson et al. 2010), by local to regional
spatial and temporal variability of climate conditions, as well as by varying anthropogenic
pressures (Kokelj and Jorgenson 2013). Thus, the changes in permafrost and permafrost
thaw features are diverse and heterogeneous. Widely observed thaw processes are active layer
deepening (Park, Kim, and Kimball 2016), which describes the ground layer that experiences
annual thawing and freezing (Van Everdingen et al. 1998), thermokarst (Kokelj and Jorgenson
2013; Olefeldt et al. 2016), which is the thawing of ice-rich permafrost or melting of massive
ground ice leading to extensive permafrost ground subsidence (Van Everdingen et al. 1998)
and thermal erosion (Are 1988), as erosion of permafrost ground by a combination of thermal
and mechanical processes such as hydraulic transport of ground material (Van Everdingen
et al. 1998). These processes trigger thaw features such as surface subsidence (Antonova
et al. 2018), degrading ice wedge polygons (Liljedahl et al. 2016), thermo-erosional gullies
and vallies (Günther et al. 2013), thermokarst lakes and dynamics (Grosse, Jones, and
Arp 2013), active layer detachment slides (Lewkowicz 2007), coastal erosion (Irrgang et al.
2018; Jones et al. 2018) and retrogressive thaw slumps (Burn and Lewkowicz 1990). These
landscape changes and climate-induced permafrost disturbances degrade the permafrost
and play a particularly important role in the release of carbon dioxide and methane due to thaw.

Permafrost disturbances can be differentiated by their spatial extent, their temporal
development, complexity of the process and the overall impact on the soil organic carbon pool
(Grosse et al. 2011a). Mainly focusing on the spatial extent and the temporal dimension, it
can be distinguished between press and pulse permafrost disturbances. Press disturbances
primarily evolve gradually and slowly from decades to centuries affecting large-scales, such as
active layer deepening (top-down thaw), aridification, paludification, and changes in vegetation
composition. These press disturbances, but not all, mostly affect the near-surface soil organic
carbon pools by seasonal freeze-thaw processes. Contrary to this, pulse disturbances mainly
occur locally as fast and abrupt, short-term events. Wildfires, thermokarst lake drainage,
flooding and rapid soil erosion are pulse disturbances, developing within a few days to decades.
Thermokarst processes and rapid soil erosion are examples of pulse disturbances that affect the
deeper soil organic carbon pools due to extensive thaw, which would otherwise be unaffected
by seasonal gradual disturbances (Grosse et al. 2011a). Because of this, particularly abrupt
thaw disturbances induce the release of a substantial amount of carbon, mainly by collapsing
ground, and fast and deep erosion as in active layer detachment slides, retrogressive thaw
slumps and thermo-erosional gullies and vallies (Turetsky et al. 2020). While abrupt thaw
is predicted to occur on less than 20% of the permafrost land area by 2300 (Turetsky et al.
2020), these thaw-prone ice-rich areas are particularly carbon-rich (Olefeldt et al. 2016).
Thus, abrupt thaw could affect half the sequestered permafrost carbon by 2300 due to its
capability to affect also deep soil layers according to models (Turetsky et al. 2019; Turetsky
et al. 2020). The differences of press and pulse disturbances emphasises the variability of
permafrost disturbances in time and space, and in their potential effect on the soil organic
carbon pool. Despite this, not even all current Earth System Models include gradual large-scale
permafrost thaw as representation of permafrost processes and lack abrupt thaw completely.
To implement gradual and abrupt thaw processes caused by disturbances in such global-scale
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models, an understanding of the abundance, distribution and especially temporal dynamics of
abrupt permafrost thaw disturbances is necessary. This requires the development of consistent
observation products with spatially and temporally continuous data on at least large regional
scales, which are relevant for Earth System Models (Schneider von Deimling et al. 2012; Nitze
et al. 2018; Turetsky et al. 2019).

1.1.3 Abrupt permafrost disturbances

The most prominent abrupt permafrost disturbances are thermokarst lake dynamics,
retrogressive thaw slumps, and wildfires as they substantially alter landscapes and ecosystems
on local to landscape-scales by impacting hydrology, vegetation and soil structure, albedo
properties and carbon sequestration and release (Grosse et al. 2011a). While we have a
general understanding of the impact these disturbances have on their surrounding landscape
and their impact on permafrost, substantial knowledge gaps remain related to their spatial
and temporal dynamics (Nitze et al. 2018). Turetsky et al. 2019 suggest slope erosion as
a priority research area, as these indicate the thawing of ice-rich permafrost on particular
high temporal scales and occur mostly in very carbon-rich region. Hence, they are a critical
permafrost disturbance component with strong impacts on the carbon cycle. Retrogressive
thaw slumping is the process of slope failure resulting from thawing of ice-rich permafrost
occurring on bluffs and hill slopes. This ice-rich permafrost is found either in Yedoma regions
(Strauss et al. 2017a) or formerly glaciated areas still preserving buried glacial ice (Kokelj et al.
2017). Retrogressive thaw slumps (RTS) are considered ’the most dramatic manifestations
of permafrost thaw’ (Kokelj and Jorgenson 2013). The initiation can result from a variety
of triggers including fluvial processes, thermoerosion or mass wasting after precipitation or
extreme thaw (Kokelj and Jorgenson 2013). Once initiated, RTS expand successively into
the landscape by retrogressive growth, as permafrost thaw continues in the following thaw
seasons, exposing more ice-rich permafrost along a steep headwall, forming a slump floor and
building a debris flow from the thawed sediment and meltwater (Van Everdingen et al. 1998).
RTS vary in size from under 0.15 ha to mega thaw slumps in the range of 52 ha (Ramage
et al. 2017; Kokelj et al. 2015a; Lacelle et al. 2015), to more than 80 ha, such as Batagay in
central Yakutia (Günther et al. 2015). RTS growth rates, often expressed in headwall retreat
rates, range from meters to tens of meters per year, which indicates their highly dynamic
development (Kokelj and Jorgenson 2013). Additionally to this, RTS can be polycyclic and
alternate between periods of active degradation and periods of stabilised dormancy (French
and Williams 2007), with spatially varying re-initiation of only parts of a stabilised RTS
(Balser, Jones, and Gens 2014; Kokelj et al. 2009).

Current RTS studies and assessments are mostly remote sensing-based or a combination
of remote sensing and field-based observation data (Lantuit and Pollard 2005; Kokelj et al.
2015b; Séjourné et al. 2015). Remote sensing approaches can be differentiated according to
their spatial scale and temporal resolution of assessment data. Mostly, RTS dynamics were
estimated from single or few aerial photographs from finite points in time and sparse field
visits for a cluster of slumps at a local scale (Lantz and Kokelj 2008; Lantuit and Pollard 2005;
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Lantuit and Pollard 2008; Balser, Jones, and Gens 2014; Segal et al. 2016; Ardelean et al.
2020; Luo et al. 2019; Séjourné et al. 2015; Mu et al. 2020). Based on manually digitised
RTS extents in images from different years, these studies derived accelerating slump activities
from increasing slump numbers, headwall retreat rates or slump areas. While the overall RTS
trend is explicit, the results are difficult to compare as the time periods covered vary and
mostly depend on image availability and variable selection of observation periods, which might
either not represent the thaw dynamics adequately or result in challenges to compare studies
across sites. Elaborating on this, disturbance trends from multi-decadal Landsat image stacks
indicate the distribution and abundance of active RTS for regional sites in Canada, Alaska,
and Siberia (Brooker et al. 2014; Nitze et al. 2018; Kokelj et al. 2015a; Lacelle et al. 2015).
These studies applied for the first time an automatic mapping approach for RTS, showing their
regional distribution and underlining that local disturbances occurring in regional clusters
have a significant impact on the landscape-scale. While these studies use the whole image
archive for a period of time as input and assess regional-scales, their results are temporal
trends and do not depict dynamic changes explicitly. Similarly, a first deep learning algorithm
derived RTS for a local site in Tibet with high spatial accuracy but so far this approach is still
limited in its temporal resolution and upscaling capability to large-scale assessments (Huang
et al. 2020). First assessments at high temporal resolution were conducted by Ward Jones et
al. (2019) and by Lewkowicz and Way (2019) with nearly annual input data for study sites
in the Canadian High Arctic. Both studies found accelerating slumping dynamics in their
respective observation periods. The high temporal resolution input data present changes in
annual or biennial slumping activities, which emphasises the variability of RTS dynamics
from year-to-year. While this gives insight into the highly dynamic nature of RTS, the results
are based on manual digitisation and visual interpretation of yearly images and therefore
only cover small-scale assessments. Although the increase of RTS dynamics is explicit, the
main climatic drivers identified for intensification of thaw slumping differ and are not reliably
determined yet. Slumping activity has been associated with increasing air temperatures
(Ward Jones, Pollard, and Jones 2019; Lewkowicz and Way 2019; Luo et al. 2019), strong
precipitation events (Kokelj et al. 2015a; Luo et al. 2019; Segal et al. 2016), as well as thawing
degree days (Ward Jones, Pollard, and Jones 2019) and reduced spring snow cover (Balser,
Jones, and Gens 2014). As indicated by Ward Jones, Pollard, and Jones 2019 and Lewkowicz
and Way 2019, RTS dynamics are highly variable on an annual to biennial scale and therefore
a clear correlation between slumping dynamics and climatic drivers can only be drawn from
high temporal assessments, which are currently lacking regional to large assessment scales.
Similarly, the local assessment scales may not be representative across the wider permafrost
region and therefore restrict projections of RTS dynamics to the landscape scale.

The variety of previous studies advanced our knowledge of RTS greatly and show prospects
of further studies. On the one hand high temporal resolution assessments improve our
understanding on the RTS dynamics and on the other hand automatic mapping methods allow
for large-scale assessments. Combining both approaches will present the possibility to derive
spatially and temporally continuous data and assess RTS at high temporal resolution, as
necessary for inclusion in Earth system models. This is in agreement with Turetsky et al. (2020
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suggesting that high temporal assessments are required to fully understand rapid permafrost
disturbances and their temporal variability and being able to determine the main climatic
drivers. Further, large-scale evaluations are necessary, which consider RTS distributions and
are representative for heterogeneous permafrost regions. Only with consistent regional to
landscape-scale assessments of the highly dynamic RTS processes our understanding of the
feedback between global climate warming and abrupt permafrost thaw can be enhanced and
these processes be included in Earth System Models for more accurate projections of future
changes.

1.1.4 Remote sensing

Satellite remote sensing is a discipline that addresses Earth’s environmental and physical
characteristics from space and offers distinctive advantages for assessing and monitoring
spatial and temporal processes both at local and landscape-scale (Militino, Ugarte, and
Pérez-Goya 2018). Satellite-based Earth observations now span the last seven decades. At
the beginning only with sporadic acquisitions, depending on the missions, but in particular
since 2000 with enhanced spatially and temporally continuous acquisition coverage (Barnes
and Salomonson 1992; Irons, Dwyer, and Barsi 2012). The remote sensing satellite and
sensor characteristics differ profoundly from one another but can be grouped in active and
passive sensors and differentiated by spatial, temporal, and spectral resolution as well as their
acquisition lifetime. Both the public and private sector recognise progressively the value and
demand of remote sensing data and hence, develop divers sensor and mission concepts (Tatem,
Goetz, and Hay 2008). Technological advancements in the last decade led to an increased
remote sensing algorithm development and application scope. The reliable, continuous and
repeated acquisition of satellite images contributes to high quality image archives with
an unprecedented amount of available data offering a multitude of analysis opportunities.
Especially open access policies of image archives, enhanced data availability and possible
application scopes greatly (Woodcock et al. 2008; Zhu et al. 2019). While data availability
improved, also advances were made in data storage, cloud computing and product distribution
systems to enable big Earth observation data management and analysis (Sudmanns et al.
2020). Newly accessible cloud-computing and storage platforms such as Google Earth Engine,
Sentinel Hub and Open Data Cube at no or little costs, provide the resources for large
and big data processing to a much bigger user group, fostering the development of new
technologies and algorithms greatly (Gomes, Queiroz, and Ferreira 2020; Sudmanns et al. 2020).

Especially the field of remote sensing time series enhanced greatly in the last decades.
In contrast to basic change detection, temporally dense time series illustrates not only
the stationary pre- and post-change status but the dynamic development of land surface
changes. If additionally data is available at large or even global scale, the analysis can address
spatio-temporal variability and help identifying drivers and causes (Kuenzer, Dech, and
Wagner 2015). Time series assessments have emphasised for example the loss in forest, the
expansion of urban and agricultural areas into natural space, as well as the decline in sea ice
cover. Furthermore, time series analysis allows to determine the temporal rate of change and
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differentiation between long-term dynamics or short-term disruptions of the environment,
which makes it a highly valuable and powerful tool for landscape change detection (Kuenzer,
Dech, and Wagner 2015).

1.1.5 Remote sensing of permafrost disturbances

Remote sensing allows spatially continuous observations across extensive geographic areas
which is especially beneficial for the widely inaccessible and climatically harsh Arctic regions,
including vast permafrost regions. Such observations provide spatial context for the few field
studies conducted there due to the highly challenging access to these regions. These areas
would remain largely unstudied without satellite remote sensing (Westermann et al. 2015a).
Permafrost cannot be monitored directly from remote sensing as it is defined by subsurface
physical properties. Instead, characteristic permafrost features and landscape changes can
be detected, monitored and used as indicators for the state of permafrost and permafrost
degradation processes (Westermann et al. 2015a). Detectable landscape characteristics or
changes which can be associated with permafrost dynamics for monitoring include changes in
surface temperature, vegetation cover and structure, surface water, topography, soil erosion
and disturbances such as from fire and human activities (Jorgenson and Grosse 2016).

Landforms shaped by thermokarst and thermo-erosion processes indicate the loss of
ground ice due to ice melt and are some of the best indicators of active local permafrost thaw
also observable with remote sensing (Jorgenson and Grosse 2016). RTS can be identified
from multi-spectral remote sensing images as the change in land cover from vegetation to
soil, scar zone and debris flow can be differentiated spectrally from its surrounding and
temporally in change detection brooker2014mapping. Besides, the deep soil erosion after
ice-rich permafrost thaw leads to a change in ground volume and can therefore be determined
from repeat elevation measurements (Kääb 2008). As outlined in section 1.1.3 the remote
sensing methods applied so far for RTS assessment primarily rely on manual digitisation or
visual interpretation, which provides spatially high detail but is labour and time intensive and
restricts the assessment to small-scale study sites. Further, the mostly low temporal resolution
used in such methods prevents detection of high annual variability of RTS dynamics. Various
recent image processing methods assessing land surface disturbances with temporally dense
Earth observation data now rely on automatic disturbance detection algorithms for regional
to global scale applications from image time series data, capturing temporal dynamics (Zhu
2017). The increased free availability of image archives and the enhancement in data storage
and processing capabilities in the last decade, fostered algorithm development and enabled for
the first time global-scale assessments of land surface changes at high temporal resolution
(Woodcock et al. 2008; Wulder et al. 2019).

Especially the Landsat archive has been exploited for the scientific applications of image
time series as it contains the longest, continuous and freely-available image collection. Landsat
is particularly versatile as it contains multi-spectral bands with acquisitions at high spatial
resolution of 30m, which allows for comprehensive spectral change detection with high
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spatial details, making the images, the various band combinations, and a range of secondary
multi-spectral band indices useful for a plethora of application fields (more details on Landsat
in section 1.4) (Wulder et al. 2012; Zhu et al. 2019). For example, a global forest loss and
gain product (Hansen et al. 2013) as well as a global water change product (Pekel et al.
2016) were developed from Landsat data, both determining long-term trends and annual
changes for these observation features for multiple decades. Ecosystem changes and landscape
dynamics have also been identified from spatio-temporal Landsat data for Arctic regions. The
sensitivity of Arctic ecosystems to external drivers is described by (Pastick et al. 2019) as
Arctic greening from vegetation growth associated to air temperature increase, as well as
browning trends from increasing evaporative trends in Alaska. Comparable spatio-temporal
landscape trends were also determined in the biggest Arctic delta in Russia (Nitze and Grosse
2016). For boreal forests in Canada similar ecosystem greening and browning trends were
derived from multi-spectral time series data. However, the main change driver was determined
to be disturbance-recovery dynamics and not climate-induced change, as suggested by previous
low resolution (e.g. AVHRR) assessments (Sulla-Menashe, Woodcock, and Friedl 2018). These
and other Landsat-based assessments underline the landscape heterogeneity of permafrost
regions and the variability of Arctic ecosystems to change.

A range of change detection and disturbance analysis algorithms are now widely used and
include the Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr)
(Kennedy, Yang, and Cohen 2010), the Continuous Change Detection and Classification
model (CCDC) (Zhu and Woodcock 2014), the Break detection For Additive Season and
Trend (BFAST monitor) (Verbesselt, Zeileis, and Herold 2012), and the vegetation change
tracker (VCT) (Huang et al. 2010). These algorithms all rely the on spatially and temporally
comprehensive Landsat image archive and detect disturbances from time series analysis but
differ in assessment focus and temporal input data frequency. Hence, the change detection
varies in temporal resolution, the change indices used, the capacity to detect gradual or abrupt
change, and whether they allow past disturbance detection or near real-time monitoring (Zhu
2017). Therefore, these algorithms are not equally suitable for transfer to other application
areas but display a variety of already existing disturbance detection possibilities.

The basis of reliable disturbance detection analysis is a consistent and dense image database
which fulfills the required temporal and spatial coverage for an application in permafrost
regions. However, passive remote sensing has some severe limitations in northern high latitudes
due to environmental factors, such as frequent snow, ice and cloud cover, low solar illumination
geometry and a short growing season length, reducing the amount of available and usable
Earth observation data drastically (Ju and Roy 2008). This diminishes the applicability
of most developed algorithms for long-term time series change detection in the Arctic, as
they require high frequency data input. While Landsat images are acquired every 16 days,
with an increased acquisition frequency in the northern high latitudes from their overlapping
polar-orbit swaths, the likelihood of obtaining qualitatively good images in the Arctic summer
period is highly reduced due to frequent cloud coverage. The number of usable images strongly
varies year-by-year depending on weather conditions, which decreases the spatial and temporal
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coverage from Landsat data.

A way to increase the image database for time series analysis in northern high latitudes
is to not only rely on images from one sensing system but to include data from multiple
optical sensor. This increases the number of usable images and will enhance the database
greatly, allowing the implementation of existing disturbance detection algorithms and enabling
the identification of permafrost disturbances from high temporal time series analysis. In
2015, the ESA Sentinel-2 mission, as part of the European Commission and ESA Copernicus
program, started and acquires optical images with two sensors (more details on Sentinel-2 in
section 1.4). The Sentinel-2 and Landsats’ sensors have very similar acquisition specifications
and therefore their combined use for terrestrial monitoring has been anticipated already
before the Sentinel-2 launch and inspired discussions on possible enhanced assessment
opportunities (Wulder et al. 2015; Drusch et al. 2012). A crucial benefit is the enhanced data
availability from simultaneously-operating Landsat and Sentinel-2 sensors. This especially
strengthens the database for Arctic regions due to converging polar-orbits in close proximity
to one another, resulting in frequent overlaps of acquisition orbits in the northern high
latitudes. This leads to image acquisitions every 1-3 days together from both systems
(Li and Roy 2017). This high acquisition frequency increases the likelihood of obtaining
cloud-free, good quality optical images tremendously. Hence, the overall disadvantage of
optical remote sensing in high latitudes can be compensated by the combined use of images
from multiple sensors, establishing a database of temporally dense observations to assess
northern high latitude permafrost disturbances with optical remote sensing data. Thus, a high
temporal and spatial coverage of permafrost regions is possible by a combined data pool and
disturbance detection from time series analysis that captures high temporal dynamics is feasible.

1.2 Aims and objectives

The main objective of this research is to enhance our knowledge on the spatial extent and
temporal dynamics of abrupt permafrost disturbances on the regional to landscape-scale
with remote sensing. To address this, we primarily concentrate on improving and creating a
reliable and adequate remote sensing database that enables high temporal time series analysis.
Furthermore, we adapt and modify disturbance analysis algorithms to be transferable to
northern high latitudes and the be applicable to permafrost disturbance assessment. Lastly,
we focus on the spatial and temporal assessment of abrupt permafrost disturbances (Figure 1.1).

The following three sub-objectives provide the basis for the work of the thesis:

1. To assess the comparability and compatibility of Landsat and Sentinel-2 data for a
combined use in multi-spectral analysis in northern high latitudes.

2. To adapt an image mosaicking method for Landsat and Sentinel-2 data to create
qualitative good combined mosaics as input for high temporal disturbance assessments
in northern high latitudes.
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Figure 1.1: The research of this thesis follows a linear path of establishing a robust multi-
spectral image database and adapting a time series algorithm for high temporal abrupt permafrost
disturbance assessment in North Siberia.

3. To automatically map retrogressive thaw slumps on the landscape-scale and assess their
high temporal thaw dynamics.

1.3 Study area

The terrestrial northern high latitudes in North Siberia are the study area of this dissertation,
encompassing an area of approximately 8,109,000 km2, roughly spanning from Taymyr
Peninsula in the West (80◦ E) to the coast of Chukotka in the East (170◦ W), and from 77◦ N
to 55◦ N. This area comprises a range of geologic, geomorphologic, climatic and vegetational
conditions and a variety of landscapes and land cover types in the Siberian permafrost region.
North Siberia experienced very cold and dry continental climate conditions during the Last
Glacial Maximum at around 21 ka BP. During this past glacial period the North Siberian
mainland reached maximum cold-climate conditions with overall low snow cover conditions
while remaining ice-free, which fostered the formation of deep permafrost, as thick as 1,500m,
across the region (Hubberten et al. 2004). The combination of extreme continental climate
and low topographic gradients favoured the accumulation of ice-rich permafrost deposits,
called Yedoma, which can be found extensively across East Siberia (Strauss et al. 2017a).
Warming during the Holocene then led to thermokarst-dominated developments transforming
whole landscapes by widespread thermokarst lake formation, growth and drainage (Grosse
et al. 2007). Despite these changes during the Holocene warming, vast areas of North Siberia
continue to be underlain by permafrost. Ranging from continuous permafrost in the north to
discontinuous and sporadic permafrost in the South (Figure 1.2).

The study area lies within the arctic and boreal climate zones and spreads from maritime,
coastal areas to continental inland areas, covering a variety of broad climate regions. Mean
annual air temperatures from specific sites within this region range from -41.7◦C (Batagay)

10



1.3 Study area

Figure 1.2: The study area North Siberia, with individual study sites from the research chapters.
From West to East: a. West Taymyr, b. East Taymyr, c. Kurungnakh, d. Sobo Sise, e. Bykovsky,
f. Lower Lena, g. Southwest Verkhoyansk Mountain Range, h. Yakutsk, i. Batagay, j. Chokurdakh,
k. Krestovaya, l. Pleistocene Park, m. Iultinsky, n. Kolyuchinskaya, and o. Chukotka.Permafrost
zones according to Obu et al. (2019), Yedoma extent according to Strauss et al. (2016), ecosystems
according to Olsen et al. (2001) and rivers according to Natural Earth Data (2008)

to -19.9◦C (Chukotka) in January and 3.8◦C (East Taymyr) to 19.4◦C (Yakutsk) in July
(Copernicus Climate Change Service 2017). Mean annual total precipitation varies between
0.052m (Chukotka) and 0.020m (Krestovaya). Similarly the study area comprises both taiga
and tundra ecoregions, signifying a diverse range of land and vegetation covers, including wet
and dry sedge-, moss- and grass-dominated tundra and boreal forest with evergreen spruce,
deciduous larch and hardwood birch (Olson et al. 2001; Schneider, Grosse, and Wagner 2009).
The study area is largely influenced by big river systems, such as the Lena, Kolyma, Yenisei,
Yana, Olenyok, Indigirka and Anadyr, which all have permafrost-dominated watersheds, as
well as several mountain ranges such as the Central Siberian Plateau, Byrranga, Verkhoyansk,
Cherskiy, Kolyma, and Koryak mountains. The mountain ranges are defined by extensive
glaciation during the LGM and a significant proportion of steep bedrock contains permafrost,
which is described by the thermal state of the ground just like low-land permafrost. However,
mountain permafrost is predominantly characterised by barren ground, block fields and debris
slopes and considered to be relatively ice and organic-poor compared to low-land permafrost
(Etzelmüller et al. 2020). While mountain permafrost is an emerging research field and also of
relevance to North Siberia, it is excluded from this study as we focus on low-land permafrost
disturbances.
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1.4 General data and methods

This chapter briefly introduces the main data sets and processing software used in this
dissertation, while the detailed descriptions of data and methods are provided in the scientific
papers.

1.4.1 Landsat and Sentinel-2

The longest passive, optical satellite record is provided by the Landsat program. Since 1972,
the Landsat satellite sensors have acquired consistently high spatial resolution images along
their polar-orbits with a nominal 16-day temporal frequency, providing continuous coverage of
the global landmasses in the visible, near-infrared, shortwave-infrared and thermal-infrared
wavelength spectrum (Wulder et al. 2019). A key component of the Landsat program is
continuity and overlap of their missions and sensors and an elaborated set of quality assuring
atmospheric correction (Roy et al. 2016b; Schmidt et al. 2013), radiometric calibration (Roy
et al. 2016a; Chander, Markham, and Helder 2009; Mishra et al. 2014) and cloud masking
(Zhu, Wang, and Woodcock 2015) algorithms. These sensor characteristics make the Landsat
program very valuable, enabling a wide scope of different applications. The use of Landsat
images increased drastically when the full archive was opened and access made freely available
in 2008 (Woodcock et al. 2008). New possibilities of large-scale (up to global-scale) as well
as long continuous time series arose and fostered the development of new scientific analysis
algorithms and methods, taking advantage of a Petabyte-scale imagery data volume never
before available (Zhu et al. 2019). Following this, an extensive portfolio of Landsat-based time
series change detection algorithms was developed, which cover a wide range of application
fields, such as land cover change (Zhu and Woodcock 2014), forest change and disturbance
(Kennedy, Yang, and Cohen 2010; Huang et al. 2010; Hansen et al. 2013), and vegetation
disturbance (Verbesselt, Zeileis, and Herold 2012).

In 2015 the European Space Agency (ESA) launched the first Sentinel-2 satellite, Sentinel-
2A, as part of the Copernicus program and in 2017 the second, Sentinel-2B. The Sentinel-2
satellites are sun-synchronous polar-orbiting with a temporal acquisition frequency of 10 days
at the equator individually and together with an acquisition frequency of every 5 days, as the
two satellites are phased at 180◦ to each other. Their sensor specifications are similar to the
Landsat series and contain spectral bands covering the visible, near-infrared to short-infrared
wavelength spectrum ranges, with spatial resolutions of 10, 20 and 60m (Drusch et al. 2012;
ESA 2015). In particular, the increased combined temporal acquisition frequency from
the two platforms makes the use of Sentinel-2 data highly compelling for high temporal
resolution time series analyses at enhanced medium spatial resolution. Sentinel-2 benefits from
the atmospheric correction and cloud masking algorithms developed for Landsat, as these
algorithms are now being transferred and adapted for Sentinel-2 (Zhu, Wang, and Woodcock
2015; Hollstein et al. 2016; Main-Knorn et al. 2015; Louis et al. 2016).
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1.4.2 Google Earth Engine

Google Earth Engine (GEE) is a cloud-based processing platform for geospatial analysis, free
of charge to the user. GEE comprises a multi-petabyte analysis-ready data catalogue and
is empowered by Google’s extensive online computational capabilities, which creates a very
unique and convenient framework for geospatial applications. Since the data products are
analysis-ready and stored on Google servers, the users are not restricted by their own storage
limitations, data transfer limitations, and computing capabilities and therefore are free in their
study design. This easily allows for planetary-scale assessments, enabling whole new assessment
approaches that were unavailable before (Gorelick et al. 2017). The data catalogue includes the
image archives of freely available sensors such as MODIS, Landsat and Sentinel-2, updating
the image repositories with new data acquisitions continuously. Furthermore, thematic data
products, such as land cover maps and reanalysis climate data are available as well, providing
the opportunity to conduct full scientific data processing and analysis in GEE. In addition
to the data catalogue, GEE also comprises an extensive dictionary of predefined functions
and algorithms, including standard remote sensing calculations like the normalized difference
vegetation index (NDVI), as well as more sophisticated algorithms for unsupervised and
supervised image classifications, image segmentation and temporal segmentation. Furthermore,
their Javascript and Python application programming interfaces allow for customized processing
workflows and applications, which is further enhanced by GEE’s compatibility to for example
TensorFlow (Google Developers 2021).

1.5 Thesis structure

This thesis contains five chapters, starting with an introduction on the scientific background,
state-of-the-art, and introducing the research objectives in chapter 1. Following this, three
scientific main chapters in the form of manuscripts are included (Chapter 2, 3, and 4). Finally
an overall synthesis and discussion (chapter 5) concludes the thesis. Chapters 2 and 3 are
original publications that have been published in peer-reviewed and International Scientific
Indexing (ISI) listed scientific journals. Chapter 4 has been accepted for review in a peer-
reviewed and ISI listed scientific journal. The details of the published work are stated in section
1.6. The study in chapter 2, ’Comparing Spectral Characteristics of Landsat-8 and Sentinel-2
Same-Day Data for Arctic-Boreal Regions’, assesses the comparability and compatibility of two
optical remote sensing image products, from Landsat-8 and Sentinel-2, in the Arctic-Boreal
Regions of Siberia for a combined use. Chapter 3, ’Mosaicking Landsat and Sentinel-2 Data to
Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions’,
further elaborates on this and assesses the possibility to create image mosaics from both
Landsat and Sentinel-2 images for an improved spatial and temporal coverage in time series
analysis in northern high latitudes. Chapter 4 ’Remote Sensing Annual Dynamics of Rapid
Permafrost Thaw Disturbances with LandTrendr’, presents the adaptation and parametrisation
of LandTrendr to rapid permafrost disturbances and the assessment of high temporal resolution
thaw dynamics of retrogressive thaw slumps. In chapter 5, the results and implications of
the individual research chapters, on the basis of the thesis objectives, are synthesised and
generally discussed. The three main research chapters represent stand-alone independent
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research. There is some overlapping general information between the manuscripts as the study
areas overlap and the data and methods build upon each other.

1.6 Overview of publications and authors’ contribution

1.6.1 Chapter 2 - Comparing Spectral Characteristics of Landsat-8 and
Sentinel-2 Same-Day Data for Arctic-Boreal Regions

Authors: Alexandra Runge and Guido Grosse
Remote Sensing, 2019, 11(14), doi: 10.3390/rs11141730

This paper presents a comparison of spectral characteristics of Landsat-8 and Sentinel-2
data for Arctic-Boreal regions in Siberia and shows the general compatibility of both sensor
data in high latitudes. A set of coefficients for spectral bandpass adjustments were derived
to modify the two image products to one another. This underlines the use of Landsat-8
and Sentinel-2 in combined time series analysis to increase data availability in northern high
latitudes.

Alexandra Runge conceptualized the study design, processed, analyzed, and visualized the
data, and wrote the original manuscript. Guido Grosse contributed to the study concept and
the writing and editing of the manuscript and was responsible for funding acquisition and
project administration. Field work data was not included in this study, but the participation
of Alexandra Runge in the Lena Delta expedition to Samoylov station in 2018 helped create
understanding for the Tundra ecosystem.

1.6.2 Chapter 3 - Mosaicking Landsat and Sentinel-2 Data to Enhance
LandTrendr Time Series Analysis in Northern High Latitude Per-
mafrost Regions

Authors: Alexandra Runge and Guido Grosse
Remote Sensing, 2020, 12(15), doi: 10.3390/rs12152471

This paper presents a method to combine Landsat and Sentinel-2 data in annual mosaics,
to increase and obtain reliable spatial and temporal data coverage for time series analysis in
northern high latitudes. For twelve sites across North Siberia, this paper demonstrates the
increase in data availability and improvement of spatial coverage with Landsat+Sentinel-2
mosaics in permafrost regions.

Alexandra Runge conceptualized the study design, processed, analyzed, and visualized
the data, and wrote the original manuscript. Guido Grosse contributed to the study concept
and the writing and editing of the manuscript and was responsible for the resources, funding
acquisition, and project administration.

1.6.3 Chapter 4 - Remote Sensing Annual Dynamics of Rapid Permafrost
Thaw Disturbances with LandTrendr

Authors: Alexandra Runge, Ingmar Nitze and Guido Grosse
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Remote Sensing of Environment, in review

This paper presents the adaptation of LandTrendr, an algorithm to detect disturbances
from time series at high temporal resolution, to rapid permafrost disturbances. The method
includes the combined use of Landsat and Sentinel-2 images and the full parametrisation
workflow of LandTrendr to map and reliably depict the annual dynamics of retrogressive thaw
slumps in North Siberia. This paper demonstrates a steady increase in retrogressive thaw
slump affected area from 1999-2020 in North Siberia but also emphasises spatio-temporal
variability of the thaw slump dynamics across five focus sites.

Alexandra Runge conceptualized the study design, processed, analyzed, and visualized
the data, and wrote the original manuscript. Ingmar Nitze conducted a machine learning
classification as part of the method. Guido Grosse contributed to the study concept and the
writing and editing of the manuscript and was responsible for the resources, funding acquisition,
and project administration.
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Comparing Spectral Characteristics of

Landsat-8 and Sentinel-2 Same-Day
Data for Arctic-Boreal Regions

Alexandra Runge 1,2 and Guido Grosse 1,2

1 Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A 45, 14473
Potsdam, Germany
2 University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-
Golm, Germany

Published: 22 July 2019 in Remote Sensing, 11(14), doi: 10.3390/rs11141730

2.1 Abstract

The Arctic-Boreal regions experience strong changes of air temperature and precipitation
regimes, which affect the thermal state of the permafrost. This results in widespread
permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring
rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess
and monitor landscape changes, a persistent cloud cover decreases the amount of usable
images considerably. However, combining data from multiple platforms promises to increase
the number of images drastically. We therefore assess the comparability of Landsat-8 and
Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together
in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions.
We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for
three representative study sites in Eastern Siberia. We then compared the Landsat-8 and
Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary
least squares regression for every band combination. The acquired coefficients were used
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for spectral bandpass adjustment between the two sensors. The spectral band comparisons
showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary
least squares regression analyses underline the generally good spectral fit with intercept
values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral
comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows
a nearly perfect alignment between the same-day images. The spectral band adjustment
succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian
Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used
to create temporally-dense time series and be applied to assess permafrost landscape changes
in Eastern Siberia. Remaining differences between the sensors can be attributed to several
factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed
pixels.

2.2 Introduction

The Arctic-Boreal domain is currently undergoing extensive environmental changes.
Mean annual air temperatures increased by up to 1.5–2 ◦C over the 1960–2009 period
(Serreze and Barry 2011), and precipitation increased, with climate models showing further
precipitation increases with additional warming (Kaplan and New 2006). Both the increase in
air temperatures and precipitation also affect the thermal state of permafrost, which is defined
as ground that remains at or below a temperature of 0 ◦C for at least two consecutive years
and is very widespread in this region (Brown et al. 1997). Considering that about a quarter of
the Northern Hemisphere is underlain by permafrost, which is 65% of the land north of 60
degrees (Zhang et al. 2008), these changes are of great importance to northern high latitude
ecosystems (Schuur and Mack 2018). Continued warming of permafrost across the pan-Arctic
region (Biskaborn et al. 2019) ultimately will result in widespread permafrost thaw and
eventually cause near-surface permafrost loss on local to regional scales (Chadburn et al. 2017).
Thawing permafrost has direct implications for hydrological systems (Francis et al. 2009),
ecosystems (Schuur and Mack 2018), soil carbon decomposition and accumulation (Hicks Pries
et al. 2015), greenhouse gas emissions (Walter Anthony et al. 2018), and infrastructure
stability in permafrost areas (Hjort et al. 2018). A multitude of landscape-scale changes,
such as active layer deepening, thermokarst and talik formation, soil erosion, and changes
in vegetation composition and surface hydrology can be linked to permafrost thaw (Grosse
et al. 2016; Jorgenson et al. 2013; Romanovsky, Smith, and Christiansen 2010; Woo et al. 2008).

While permafrost itself cannot be observed directly with remote sensing, detectable surface
disturbance can be linked to permafrost degradation. They can be distinguished between press
and pulse disturbances, which are gradual and abrupt disturbance regimes respectively and
alter the ecosystem and environment substantially (Collins et al. 2007). Press disturbances are
driven by impacts and change factors unfolding over decades to centuries and occur gradually
and continuously. Press disturbances include processes such as permafrost top-down thaw,
as well as vegetation structure and composition changes. They usually occur on extensive
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regional scales. In contrast to that, pulse disturbances unfold within very short time periods
from a few days to years. They are usually extreme in nature and affect the system rapidly as
one-time or episodic short-term events, but arise locally in distinct areas. Pulse disturbances
include soil erosion, thermokarst lake expansion, lake drainage, and wildfires. Press and pulse
disturbances interact with one another as well; for example, press disturbances can trigger
pulse disturbances. Exemplary is permafrost top-down thaw initiating rapid thermokarst
development or soil erosion (Grosse et al. 2011a; Jorgenson and Grosse 2016). To understand
the complex feedbacks of permafrost degradation processes and resulting landscape and
ecosystem dynamics in space and time, it is critical to track and quantify these not only at
the field site scale, but at high spatial resolution across decadal time scales and extensive regions.

Remote sensing provides excellent tools to understand and quantify many of these dynamics
linked to surface expressions and land cover changes associated with permafrost degradation
across large regions (Stow et al. 2004; Bartsch et al. 2016; Jorgenson and Grosse 2016). For
example, Nitze et al. (2018) mapped widespread permafrost disturbances based on trend
analysis using linear regression on Landsat multispectral index time series, highlighting the
abundance and distribution of disturbances such as thermokarst lake changes, wildfires,
and thaw slumps. Similarly, Pastick et al. (2019) analyzed the diversity of landscape and
ecosystem dynamics for Alaska using Landsat-based time series analysis in combination with
spectral metrics, climatic data, and topographical and soil information. Using statistical
models, they predicted and understood the drivers of change and differentiated between
gradual and abrupt disturbances. Apart from understanding the spatial coverage, magnitude,
patterns, and dimension of disturbances, the temporal dynamics of disturbances such as
initiation timing, duration and persistence, recovery time, and recurrence frequency are highly
important parameters for monitoring and projecting Arctic-Boreal ecosystem and landscape
trajectories in a changing climate. Space-borne remote sensing with a high temporal and
spatial resolution allows detailed monitoring of both gradual and abrupt changes, such as press
and pulse disturbances, but requires more detailed insights into the timing and magnitudes of
spectral changes of observation targets.

Algorithms developed for monitoring forest disturbances, such as LandTrendr, manage to
identify both abrupt and gradual changes with temporally-dense Landsat time series (Kennedy,
Yang, and Cohen 2010). Likewise, Sulla-Menashe et al. (2018) used Normalized Difference
Vegetation Index (NDVI) Landsat time series for characterizing vegetation greening and
browning patterns in Canadian boreal forests and identified the major driver of the signal to be
vegetation recovery following disturbance. Implementing such algorithms developed for boreal
ecosystems for extensive monitoring and assessing of disturbance types and dynamics, such as
differentiating between press and pulse disturbances, across Arctic-Boreal permafrost regions
will improve understanding of climate change and anthropogenic impacts in high latitudes on
multiple temporal scales. Most of the schemes so far rely on the extensive Landsat record,
which features the longest continuous data archive of optical Earth surface imagery, covering
more than 45 years. However, the low temporal resolution of Landsat images and some
environmental factors, such as a short growing season length, a challenging solar geometry,
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frequent snow and ice cover, and especially persistent cloud cover, negatively affect the
availability of images for detailed studies (USGS 2015; Hope and Stow 1996). Therefore, often,
only a rather low number of adequate Landsat images are available for time series analyses in
high latitudes. In many regions, these are not sufficient for creating temporally dense time
series, which are needed for extracting detailed trends of disturbances and especially their
short-term dynamics.

An approach to increase the data base in high latitudes is to combine Landsat time series,
which relies on a single platform only, with images from additional optical sensors. A combined
data base allows creating temporally much denser time series for the Arctic-Boreal domain,
thereby increasing opportunities for monitoring permafrost region disturbances and ecosystem
changes. The European Space Agency (ESA) Copernicus Sentinel-2 mission started in 2015
and consists of two satellites (S-2A, S-2B), which have a combined revisit time of five days
(Drusch et al. 2012). Landsat-8 and Sentinel-2’s sensors are both multispectral optical systems,
have Sun-synchronous polar orbits, and obtain data with a comparable resolution. Both
sensors record multispectral data with bands that cover similar wavelength ranges (Table
2.1). Sentinel-2 sensors’ similar characteristics to Landsat and shortened revisit time are
now leveraging the combined multispectral observation power of three platforms observing
the Earth’s surface at 10–30 m resolution, significantly increasing the chance for capturing
cloud-free observations at high latitudes. Li and Roy (2017) quantified the combined revisit
time of Landsat 8, Sentinel-2A, and Sentinel-2B, showing that the global average revisit
interval was 2.9 days. With the increased poleward orbit overlap and the enhanced spatial
overlap between acquisition swaths, the high latitudes (>70◦ N) feature the highest number of
acquired images within a year (>400 images) and the shortest revisit interval (<1 day) (Li
and Roy 2017). This dramatic increase in image numbers and shortened revisit time for a
combined Landsat-8 and Sentinel-2 time series could facilitate tracking permafrost region
disturbances in much higher detail.

Table 2.1: Corresponding Landsat-8 and Sentinel-2 bands and characteristics.

Landsat-8 Sentinel-2

Band Wavelength (µm) Resolution (m) Band Wavelength (µm) Resolution (m)

Coastal Aerosol 1 0.45–0.451 30 1 0.430–0.450 60
Blue 2 0.452–0.51 30 2 0.448–0.546 10

Green 3 0.533–0.590 30 3 0.538–0.583 10
Red 4 0.636–0.673 30 4 0.646–0.684 10
NIR 5 0.851–0.879 30 8A 0.848–0.881 20
NIR2 8 0.763–0.908 10

SWIR1 6 1.566–1.651 30 11 1.542–1.685 20
SWIR2 7 2.107–2.294 30 12 2.081–2.323 20
Cirrus 9 1.363–1.384 30 10 1.336–1.441 60

In terms of time series analyses, we do not just require cloud-free images, but rather depend
on clear pixels for every location in one study area. A high number of clear pixels available in
one observation period (summer months) indicates a good overall data coverage. Figure 2.1
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shows the average number of clear pixels in the Lena Delta (see Section 3.3.1) for the summer
months of every year. It becomes obvious that the average number of clear pixels for every
location in the Lena Delta increases dramatically, when adding Sentinel-2 to the analysis. This
underlines that relying not only on one sensor platform, but on multiple ones enhances the
database drastically.

Figure 2.1: Average number of clear pixels for the study site Lena Delta for the summer periods
covering 1999–2018 (blue bars: Landsat; red bars: Sentinel-2).

For a combined time series, it is necessary to align the image products of the different
sensors geometrically and radiometrically, ensuring that the same point on the ground is
captured with similar spectral reflectance properties in both products. This issue was already
addressed for the Landsat sensor series, defining adjustment schemes for slight differences in
reflectance measurements, ensuring data continuity and that the Landsat image products from
the different sensors (Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI) can be used in
a combined time series analysis (Flood 2014; Mishra et al. 2014; Teillet et al. 2001; Teillet,
Markham, and Irish 2006). To extend the data continuity incentive beyond the Landsat sensors
and also to be able to include Sentinel-2, previous studies compared Landsat-8 with Sentinel-2
data and defined bandpass adjustments between corresponding Landsat-8 and Sentinel-2
bands for a better fit. Despite similar wavelength ranges covered by the corresponding bands,
the spectral response functions per sensor differ, and this impact has to be assessed before a
combined time series is applied (Zhang et al. 2018). Previous comparison studies varied in
application region, scale, input datasets, ranging from simulated to acquired image products,
and covered temporally close to same-day acquisitions (Mandanici and Bitelli 2016; Vuolo et al.
2016; Gorroño et al. 2017; Zhang et al. 2018; Li et al. 2017). Regardless of these differences,
the comparison approaches are always alike, examining corresponding Landsat-8 and Sentinel-2
bands, comparing pixel-pairs, and deriving regression equations for bandpass alignments.
Claverie et al. (2018) conducted a comparison between Landsat-8 and Sentinel-2 data for 91
test sites worldwide and created a globally-applicable Harmonized Landsat and Sentinel-2
surface reflectance dataset (HLS). While a few sample sites are situated in Alaska, Canada,
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and Northern Scandinavia, sites from the Siberian high latitudes are not included. Flood
(2017) was first to compare same-day Landsat-8 with Sentinel-2 acquisition pixel-pairs of
corresponding bands for Australia and defined band-wise adjustment equations. Furthermore,
Flood (2017) applied the global HLS bandpass correction to the same dataset, but concluded
that the HLS adjustment did not sufficiently adjust the Sentinel-2 data to Landsat-8 data. As
a consequence, their region-specific derived bandpass adjustments showed a better fit than the
HLS adjustment. An overall result of the previous studies was that Landsat-8 and Sentinel-2
data were comparable, but for a combined analysis, the datasets have to be adjusted to
avoid detecting change because of a bias between sensors and not because of changes on the
ground, which is particularly important for studying trends. Despite the effort of creating
a globally-applicable harmonized product (Claverie et al. 2018), local to regional studies
showed that locally-derived bandpass adjustments are superior to the HLS product (Flood
2017; Mandanici and Bitelli 2016). Therefore, it is recommendable to create region-specific
adjustments between Landsat-8 and Sentinel-2 for regional assessments and applications.

So far, to the best of our knowledge, no comparison of Landsat-8 and Sentinel-2 data or
an assessment of a potential combined use in time series analyses for the Siberian Arctic-
Boreal region has been done. The overall objective of this paper is to compare the spectral
characteristics of Landsat-8 and Sentinel-2 data across different types of landscapes and
ecosystems in the study domain and assess their compatibility in Arctic-Boreal permafrost
regions for the potential use in combined time series. To address this objective, we focus on
three sub-objectives: (1) comparison of the spectral characteristics of corresponding bands
from Landsat-8 and Sentinel-2 data of same-day acquisitions for three individual study sites in
Eastern Siberia that broadly differ in ecosystem and land cover characteristics; (2) defining
spectral band adjustments between Landsat-8 and Sentinel-2 data for each of the three study
sites; and (3) determining a set of spectral band adjustments that is applicable to Eastern
Siberia generally and comparing them to the application of the global Harmonized Landsat
Sentinel-2 product.

2.3 Materials and Methods
2.3.1 Study Sites

For this assessment, we included three study sites that are representative for the range
of land cover conditions in Eastern Siberia: the arctic central Lena Delta (73◦ N, 126◦

E), the mountainous Batagay region in the Yana Highlands (67◦ N, 134◦ E), and the
boreal Maya-Yakutsk region in central Yakutia (62◦ N, 129◦ E). The three sites are located
along an approximate north-south transect and exemplify the different climatic, geologic,
geomorphologic, and vegetational conditions of the quite heterogeneous Eastern Siberian
permafrost landscapes, bridging from arctic to boreal regions and covering both tundra and
taiga biomes (Figure 2.2).

The Lena Delta has a maritime-influenced polar tundra climate and is located in Northern
Siberia at the Laptev Sea coast, within the continuous permafrost zone. It is the biggest
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Arctic delta with about 29,000 km2. The land cover in the delta is dominated by Arctic
tundra that varies in vegetation composition between three major geomorphological terraces
(Schneider, Grosse, and Wagner 2009). We here focused on the central part of the delta where
the Arctic research station Samoylov is located (Boike et al. 2013). Samoylov Island is one of
the 1500 delta islands and part of the first river terrace. The first terrace formed during the
Holocene and is characterized by low-center ice-wedge polygonal tundra, polygonal ponds,
large thermokarst lakes, and active flood plains (Boike et al. 2013). Wet and moist tundra
dominates this area with a vegetation cover of sedge, grass, moss, and dwarf shrub wetlands
(Schneider, Grosse, and Wagner 2009). The study area extends further to the adjacent
Kurungnakh Island, which is part of the third terrace, an old late Pleistocene accumulation
plain dissected by delta channel formation and thermokarst processes and characterized by
polygonal microrelief and thermokarst ponds and lakes (Morgenstern et al. 2011; Strauss et al.
2017a). The second terrace of the Lena Delta consisting of late Pleistocene fluvial deposits
is restricted to the northwestern part of the Lena Delta and is therefore not represented in
the study area. From 1999–2011, the mean annual air temperature of the central Lena Delta
was −12.5 ◦C with a mean temperature range from 10.1 ◦C–−33.1 ◦C in July and February,
respectively. In the same period summer, precipitation ranged from 52 mm (2001) to 199 mm
(2003) (Boike et al. 2013).

The Batagay study area represents a highly continental region with strong seasonal air
temperature ranges and an overall low mean annual precipitation (Ashastina et al. 2017;
Lydolph, Temple, and Temple 1985). Batagay is located at the Yana River and in between the
Verhoyansk and Chersky Ranges in the Yansk Uplands, a region that features the cold pole
of the Northern Hemisphere and is underlain by continuous permafrost with shallow active
layer depths from 0.2–1.2 m (Ivanova 2003). The mean air temperature in July is 15.5 ◦C
and in January −44.7 ◦C, while the mean annual precipitation is only 181 mm (Ivanova 2003;
Lydolph, Temple, and Temple 1985). The land cover in this study area is dominated by light
coniferous forests with larch (Larix gmelinii), Siberian dwarf pine (Pinus pumila), and a dense
shrub layer. A thick layer of lichens and mosses covers the mostly wet ground (Ashastina
et al. 2017). Other portions of the study area consist of barren bedrock surfaces. Ashastina
et al. (2017) described the bedrock geology as a mix of dark grey siltstone and mudstone
that contain layers of sand and clay deposits based on maps and Kunitsky et al. (2013). The
Batagay megaslump, the largest known retrogressive thaw slump with a total area of >70 ha
and headwall retreat rates of up to 30 m per year in 2016 (Günther et al. 2016), is located
within this study area at about 67◦ N, 134◦ E (Opel et al. 2018). This large thaw landform
indicates the presence of vulnerable ice-rich permafrost as a thick cover deposit in some parts
of this region.
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Figure 2.2: The three Arctic-to-Boreal study sites, Lena Delta, Batagay region, and Yakutsk
region, are located along an approximate north-south transect in Eastern Siberia. The blue frames
show the Landsat-8 image footprint, and the red frames show the Sentinel-2 image footprint of the
same-day acquisitions used in this study. Sentinel-2 RGB composites of the overlapping area for
the Lena Delta (a), Batagay region (b), and Yakutsk region (c).

The Yakutsk study area in central Yakutia has an extremely continental climate with
a mean annual air temperature of −10.2 ◦C, mean January temperatures of −42.6 ◦C,
July temperatures of 18.7 ◦C, and an annual precipitation of about 234 mm (Fedorov
et al. 2014). The region is dominated by boreal summer green needle forests, mainly by
Larix (Fedorov et al. 2017). Ice-rich late Pleistocene permafrost, as well as vegetated
dune fields are widespread on the Lena river terraces. Silty clays, sandy silts, and silty
sands dominate the Quaternary sediments. Thermokarst lakes and basins dominated by
meadow vegetation (alases) are abundant (Fedorov et al. 2014; Ulrich et al. 2017). Intensive
thermokarst development in the area can reach surface subsidence rates of 5–10 cm per year,
and thermokarst lakes more than doubled their area during the 1992–2012 period (Fedorov
et al. 2014). The region is also regularly affected by forest fires (Boike et al. 2016), resulting
in a heterogeneous land cover with different disturbance and succession stages of the vegetation.
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2.3.2 Data

In our study, we focused on imagery from Landsat-8 and Sentinel-2. The USGS Landsat-8
satellite was launched in 2013 and is equipped with the Operational Land Imager (OLI)
sensor, which is a multi-spectral imager. The satellite has a 16-day repeat cycle, orbiting
Sun-synchronously at 705 km altitude. The sensor field of view is 15 degrees, which results in
a 185-km swath width. The satellite is also equipped with a co-registered Thermal Infrared
Sensor (TIRS) that contains two thermal spectral bands with a ground spatial resolution of 100
m. The nine spectral bands of the OLI sensor have a spatial resolution of 30 m. The Landsat-8
OLI continues the Landsat mission that originally started in 1972 (USGS 2015). The ESA
Copernicus Sentinel-2A and 2B satellites were launched in 2015 and 2017, respectively, and
have the Multi-Spectral Instrument (MSI) aboard, which is also a multi-spectral imager,
orbiting at a 786-km altitude Sun-synchronously. The increased orbit altitude together with
a field of view of 20.6 degrees results in a swath width of about 290 km. Both Sentinel-2
satellites have a repeat cycle of 10 days, but as they operate out of phase, they have a joint
revisit time of five days. The 13 spectral bands of the MSI have different spatial resolutions,
10 m, 20 m, and 60 m (Table 2.1) (Drusch et al. 2012; ESA 2015).

We accessed and processed both Landsat-8 and Sentinel-2 imagery predominantly on the
Google Earth Engine (GEE) platform. GEE is a cloud-based platform that incorporates
analysis-ready data catalogs allowing the user to access and analyze data easily. GEE hosts the
entire multi-petabyte Landsat archive, as well as data from Sentinel-2 (Gorelick et al. 2017).
The images are ingested and cut into tiles for efficient collection handling in GEE, but remain
stored with their original projection, resolution, and bit depth. For this study, we used the
“USGS Landsat 8 Surface Reflectance Tier 1” image collection. The images in this collection
are atmospherically corrected to surface reflectance based on the Landsat 8 Surface Reflectance
Code (LaSRC) and already contain a mask for clouds, shadows, waters, and snow, derived
from the CFMASK algorithm (USGS 2018; Foga et al. 2017). For Sentinel-2, we accessed the
image products in two ways. First, we selected the “Sentinel-2 MSI: Multi-Spectral Instrument,
Level-1C” image collection in GEE, containing Top-Of-Atmosphere (TOA) reflectance images,
the only full Sentinel-2 collection provided in GEE at the time. The datasets contain the
QA60 band that includes cloud mask information as pre-processed by ESA (ESA 2015). We
used the GEE Sentinel-2 collection for preparing the filtering and masking step (Step A) as
described in Section 2.3.3.1 and Figure 4.2. Based on the GEE filtering results, we downloaded
the Sentinel-2 Level-1C images from the ESA Copernicus Open Access Hub to process them
to surface reflectance data with ESAs’ Sen2Cor atmospheric correction processor that corrects
Sentinel-2 Level-1C orthophoto products to Level-2A surface reflectance products (see Section
2.3.3.3) (Louis et al. 2016; Müller-Wilm, Devignot, and Pessiot 2016). After processing, we
ingested the atmospherically-corrected Sentinel-2 Level-2A images into GEE to continue with
Step C of the workflow (Figure 4.2).
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2.3.3 Data Processing

The data processing workflow consisted of three steps (Figure 4.2). In Step A, we filtered and
cloud-masked the imagery. In Step B, we processed Sentinel-2 surface reflectance images with
the Sentinel Application Platform. In Step C, we masked the Landsat-8 and Sentinel-2 images
to prepare the pixel-by-pixel data input for the spectral comparison and adjustment.

Figure 2.3: Data processing workflow used for the spectral band comparison and adjustment.
Landsat-8 is abbreviated to L8 and Sentinel-2 to S2.

2.3.3.1 Filtering Image Collections

For each study area (Lena Delta, Batagay, and Yakutsk), we filtered the Landsat-8 and Sentinel-
2 GEE image collections based on location, date range, and maximum cloud coverage. We
filtered the collections for the Arctic summer months (1 July–31 August 2016) and a maximum
cloud cover of 80% per image. We then identified same-day acquisitions of overlapping Landsat-
8 and Sentinel-2 images for each study site (Figure 2.2, Table 2.2, and Table 2.7 with the GEE
image names). For each study site, we identified one Landsat-8 and one Sentinel-2 image that
overlapped substantially and had as little cloud cover as possible. We assumed that there was
no change on the ground target between the Landsat-8 and Sentinel-2 identified same-day
observations since both satellites are Sun-synchronous with mid-morning overpass times, the
same-day acquisitions being taken only minutes apart. Likewise, atmospheric conditions were
also expected to not have changed significantly between the acquisitions. Additionally, the
solar zenith and solar azimuth angles were very similar and only diverged slightly (Table 2.2).
Therefore, any differences found between the Landsat-8 and Sentinel-2 same-day acquisitions
were considered differences in sensor responses exclusively.
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Table 2.2: Data filtering and selection result for same-day Landsat-8 and Sentinel-2 image pairs
for the three study sites.

Location Date
2016

Sensor
Cloud
cover
%

Acquisition
time
(UTC)

Solar
azimuth
angle

Solar
zenith
angle

No. of
clear
pixels

Lena
Delta

72.37 N 23 August L8 24 03:40:06 178.97 60.89 156,315
126.50 E S2 18.5 03:47:34 184.34 61.18

Batagay67.77 N 1 August L8 38.6 02:39:23 170.97 50:57 346,053
134.58 E S2 49.8 03:05:46 179.39 50.10

Yakutsk61.77 N 9 July L8 1.3 02:35:06 161.32 40.17 1,944,414
130.50 E S2 0.1 03:00:11 171.07 39.65

2.3.3.2 Creating L8, S2, and Site Masks

Our method was solely based on a clear pixel comparison. In this case, we defined clear pixels
not to contain clouds, cloud shadows, water, or snow, and hence, their surface reflectance
values were uncontaminated by these environmental properties. The masking of clouds, cloud
shadows, and snow was done in GEE. For Landsat-8, we used the provided “pixel_qa” band
that contains cloud, shadow, snow, and water masks derived with the CFMask algorithm
(Foga et al. 2017). Based on the CFMask information in the “pixel_qa” band, we selected
clear pixels only and created a “clear pixel” mask for each Landsat-8 image of the three
study sites (L8 mask). For Sentinel-2, we applied a simple cloud score algorithm that uses
band thresholds as cloud filtering steps (ESA 2015). We also included a cloud shadow shift
algorithm taking into account the average cloud height and projecting the estimated cloud
shadow based on the cloud position, a GEE code fragment introduced by Donchyts (Donchyts
2017). With this method, we also created a mask for each Sentinel-2 image that selects only
clear pixels of that image, creating a “clear pixel” mask (S2 mask).

To identify clear pixels in both datasets, we joined the two masks. First, we reprojected
both L8 and S2 clear pixel masks (L8 masks and S2 masks) to the same projection, taking the
Landsat-8 image projection as the default projection (WGS 84/ UTM zone 51 N, 52 N, or
53 N for the different study sites). Additionally, we resampled the S2 masks to 30-m spatial
resolution to fit to the Landsat-8 resolution. GEE offers a resampling algorithm for images
called “reproject”. This algorithm requires two input parameters and then performs nearest
neighbor resampling. Firstly, one needs to specify the projection to be used and secondly the
desired scale or better spatial resolution in meters of the output image. Then, the L8 mask
and S2 mask (30 m) for each image pair per study site were combined. The result was a single
mask that contained only overlapping clear pixels from the Landsat-8 and Sentinel-2 same-day
acquisitions for every study site (“site mask”).

2.3.3.3 Preparing Sentinel-2 Surface Reflectance Images in SNAP

We downloaded the same-day Sentinel-2 Level-1C images from ESA’s distribution platform
Copernicus Open Access Hub. The images were processed in SNAP to Sentinel-2 Level-2A
surface reflectance images with the Sen2Cor tool. Sen2Cor can be run from the Sentinel
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Application Platform (SNAP) desktop toolbox. We used SNAP Version 6.0.5 including the
Sentinel-2 Toolbox (S2TBX) Version 6.0.2 with Sen2Cor Version 255. The input for the
Sen2Cor tool is the Sentinel-2 Level-1C image and processing parameters. We defined the
processing resolution to 10 m, the aerosol input for the Lena Delta as “Maritime” and for
Batagay and Yakutsk as “Rural”, and the type of atmosphere as “mid-latitude summer”, and
the remaining parameters were kept as default. The results were Sentinel-2 Level-2A image
products, corrected to surface reflectance. After exporting the images as Geotiffs from SNAP,
we ingested them into GEE.

2.3.3.4 Applying Site Masks

The final processing step included the surface reflectance image products. For the L8, we again
relied on the image collection “USGS Landsat 8 Surface Reflectance Tier 1” available in GEE.
For S2, we used the SNAP-processed Sentinel-2 Level 2A images newly ingested into GEE. To
avoid errors due to georeferencing differences, we reprojected the same-day surface reflectance
images to the same projection, as described in Section 2.3.3.2, and resampled the images
uniformly to 60-m spatial resolution with an averaging algorithm. The resampling ensured
that the Landsat-8 and Sentinel-2 pixel-pairs covered the same ground target (Korhonen,
Packalen, Rautiainen, et al. 2017), in addition to their already good relative co-registration
of <6.6 m (Storey, Choate, and Lee 2014). Even residual geolocation errors of Landsat-8,
which can lead to geographic misalignments between Landsat-8 and Sentinel-2 of up to 38 m,
were then reduced (Storey et al. 2016). The overall mask per study site (“site mask”) was
also resampled to 60 m and then applied to the Landsat-8 and Sentinel-2 surface reflectance
(60 m) images. The resulting masked images were now clipped to the site masks’ extent and
only contained the corresponding Landsat-8 and Sentinel-2 cloud-free pixels of the same-day
acquisitions per study site. The obtained Landsat-8 and Sentinel-2 surface reflectance pixel-pair
dataset from the same-day acquisitions was then used as the input for the spectral band
comparison and adjustment.

Both the cloud and especially cloud shadow masking were not very reliable, neither for the
Landsat-8, nor for the Sentinel-2 images (Foga et al. 2017; Zhu, Wang, and Woodcock 2015).
This particularly affected the Batagay and Yakutsk sites. Therefore, we additionally had to
identify manually cloud- and cloud shadow-free overlapping image regions of the same-day
image pairs and select only these areas for the data output to ensure an appropriately clear
dataset. We exported these pixel-pair datasets from GEE as csv-files to continue with the
analyses in Jupyter Notebook (Python).

2.3.4 Spectral Band Comparison and Adjustment

We compared the Sentinel-2 pixel surface reflectance values of the individual bands to the
corresponding pixel surface reflectance values of the matching Landsat-8 bands (Table 2.1) and
used scatter plots to display the relationship of the pixel-pairs of corresponding bands. A 1-to-1
line in every plot represents the potential perfect agreement between the two bands and allows a
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first visual assessment of misalignment between the two sensors. The divergence of the variables
from the 1-to-1 line displays the error between the two corresponding bands. We further
calculated the Pearson correlation coefficient (r) as a measure of linear correlation between
the corresponding band pairs per study site. A correlation coefficient of 1.0 shows perfect
correlation between two variables and a coefficient of 0.0 that there is no linear relationship
(Cowan 1998). Additionally, we derived the Root Mean Squared Error (RMSE), which is a
measure of the absolute difference between the value pairs. The lower the RMSE, the smaller
the difference of the x and y value, hence a closer relationship (Cowan 1998). Most importantly,
we derived the ordinary least squares regression for every band comparison. The resulting
prediction fit model can be generally described as in Equation (2.1).

L8 = slope ∗ S2 + intercept (2.1)

where S2 stands for the surface reflectance values of the Sentinel-2 MSI bands, L8 for the
surface reflectance values of the Landsat-8 OLI bands, and slope and intercept the coefficients
derived in the ordinary least squares regression. A slope of 1 and an intercept of 0 would
indicate a perfect fit between L8 and S2.

We applied the explicit slope and intercept values per band of the derived ordinary least
squares regression model to the Sentinel-2 MSI reflectance values. Hence, we calculated
adjusted Sentinel-2 reflectance values that resembled the Landsat-8 values and reduced
potential errors between Landsat-8 and Sentinel-2 reflectance values per band. This analysis
and adjustment was conducted for every corresponding Sentinel-2 and Landsat-8 band pair
and every study site individually.

In addition to the local assessment of the individual study sites, we aimed for a more
regional approach. We combined all pixel pairs of the three study sites, Lena Delta, Batagay,
and Yakutsk, as they represent the heterogeneity of Eastern Siberia (ES), and conducted the
spectral band comparison for ES as a whole as well. We applied the resulting ES ordinary least
squares regression model to all three study sites to assess the potential differences between
locally- and regionally-derived adjustment coefficients and discussed whether a spectral
comparison and adjustment were possible on the regional scale. Likewise, we also applied the
globally-derived ordinary least squares regression coefficients from the Harmonized Landsat
Sentinel-2 product (HLS) (Claverie et al. 2018) to all three study sites individually to assess
the potential use of the globally applicable product versus the locally-derived adjustment. The
HLS adjustment coefficients were taken from (Claverie et al. 2018).

As vegetation indices are extensively used for qualitative and quantitative vegetation
cover analyses from spectral measurements, we extended the adjustment assessment to the
Normalized Difference Vegetation Index (NDVI). We derived the NDVI, which is commonly
used as an indicator of green vegetation cover, for both the Landsat-8 and Sentinel-2 data
products. The NDVI is calculated by using two spectral bands, as shown in Equation (2.2)

NDV I = NIR − Red

NIR + Red
(2.2)
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where NIR stands for the Near-Infrared wavelength band values and Red for the red wavelength
band values of the individual sensor (Bannari et al. 1995). The NDVI can range between
−1 and 1, where an NDVI close to 1 indicates high green vegetation cover and a value
close to 0 no vegetation, possibly urban areas, and negative NDVI values mainly result
from water, clouds or snow. For the Landsat-8 NDVI calculation, we used B5 for NIR and
B4 for red, and for the Sentinel-2 NDVI calculation, we used B8A for NIR and B4 for red
(Table 2.1). We calculated the NDVI for the measured surface reflectance Landsat-8 and
Sentinel-2 values and also for the spectrally-adjusted Sentinel-2 reflectance values to assess
what effect the spectral differences of Landsat-8 and Sentinel-2 might have on vegetation indices.

2.4 Results
2.4.1 Spectral Band Comparison

The spectral band comparisons were conducted for all pixels of the overlapping areas from the
same-day Sentinel-2 and Landsat-8 acquisitions for every corresponding band combination
and for all study sites. Table 2.3 summarizes the analysis for each study area and provides the
intercept and slope of the resulting ordinary least squares regression, Pearson’s correlation
coefficients, and associated root mean squared errors. Exemplarily, Figure 2.4 shows the scatter
plots of band combinations and adjusted Sentinel-2 data for the Lena Delta. Figure 2.4 depicts
the expected offset between corresponding bands and scatter around the one-to-one line. In
general, the scatter plots affirm that the Landsat-8 and Sentinel-2 bands have a strong overall
correlation. This is also represented by high r coefficients and promising ordinary least squares
regression coefficients as low intercept and high slope values (Table 2.3). The comparison
scatter plots of Batagay, Yakutsk, and Eastern Siberia are provided in the Appendix (Figures
2.6–2.8).

The band comparisons of the visible wavelength bands, B2/B2, B3/B3, and B4/B4 for
Batagay (Figure 2.6), showed noticeably lower correlation coefficients, 0.624, 0.726, and 0.818,
respectively. The slope coefficients from the ordinary least squares regression were lower for
these band combinations in Batagay as well, compared to the other two study sites and the
regional ES assessment (Table 2.3).

We compared both possible NIR band combinations, B8A/B5 and B8/B5, to inspect if one
Sentinel-2 NIR band, B8A or B8, was more similar and fits spectrally better to the Landsat-8
NIR band (B5) in combined studies in Eastern Siberia. The results showed no striking
trend favoring one band combination. The B8A/B5 comparison overall had slightly higher
correlation coefficients than the B8/B5 comparison. Likewise, the RMSE was also smaller
for B8A/B5, indicating a closer fit between Sentinel-2 B8A and Landsat-8 B5 reflectance
values. The ordinary least squares regression analyses showed contrasting trends, however.
The B8A/B5 band comparisons resulted in intercepts that were slightly lower and therefore
indicated a marginally better fit. In contrast, the B8/B5 comparison yielded higher slopes,
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which suggested a regression fit of the two variables.

Table 2.3: Comparison of surface reflectance values from the Sentinel-2 and Landsat-8
corresponding bands, for same-day acquisitions. Displaying the results of the ordinary least
squares regression, Pearson correlation, and root mean squared error for every study site.

Bands Study Ordinary Least Squares Regression Pearson’s Correlation Root Mean Square

S2 Band L8 Band Site Intercept Slope Coefficient (r) Error (RMSE)

2 2

Lena Delta 0.017 0.66 0.927 0.012
Batagay 0.0107 0.531 0.624 0.008
Yakutsk 0.0052 0.689 0.92 0.007

ES 0.0053 0.711 0.89 0.0073

3 3

Lena Delta 0.0186 0.767 0.962 0.0096
Batagay 0.0240 0.599 0.726 0.008
Yakutsk 0.0129 0.752 0.945 0.006

ES 0.0125 0.777 0.937 0.0065

4 4

Lena Delta 0.0182 0.784 0.97 0.0104
Batagay 0.018 0.721 0.818 0.011
Yakutsk 0.012 0.8 0.964 0.009

ES 0.0125 0.815 0.97 0.0095

8A 5

Lena Delta 0.0302 0.835 0.95 0.021
Batagay 0.056 0.749 0.902 0.019
Yakutsk 0.044 0.806 0.945 0.018

ES 0.044 0.804 0.941 0.019

8 5

Lena Delta 0.030 0.869 0.943 0.0187
Batagay 0.058 0.771 0.900 0.020
Yakutsk 0.049 0.82 0.942 0.0201

ES 0.049 0.82 0.94 0.020

11 6

Lena Delta 0.021 0.826 0.951 0.0241
Batagay 0.0194 0.836 0.933 0.015
Yakutsk 0.0095 0.894 0.967 0.014

ES 0.012 0.877 0.97 0.015

12 7

Lena Delta 0.007 0.852 0.962 0.019
Batagay 0.0077 0.834 0.938 0.0111
Yakutsk 0.0031 0.874 0.974 0.012

ES 0.004 0.87 0.974 0.013

Figure 2.4: Cont.
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Figure 2.4: Comparison of surface reflectance values from the Sentinel-2 and Landsat-8
corresponding bands for the Lena Delta. Left plots: observed surface reflectance values. Right
plots: Lena Delta Adjusted (LDA) Sentinel-2 reflectance values. The solid black line is one-to-one,
and the pink line is the ordinary least squares regression trend line. In all plots, the Sentinel-2
values and bands are on the x-axis, while Landsat-8 is depicted on the y-axis.

Overall, the study sites did not differ from one another significantly. The r coefficients
ranged between 0.89 (ES B2/B2) and 0.974 (Yakutsk and ES B12/B7), which points at very
strong correlations between the Sentinel-2 and Landsat-8 surface reflectance values for all
assessed corresponding bands at all study sites. Furthermore, the ordinary least squares
regression analyses mainly showed very low intercept and reasonably high slope values.

2.4.2 Spectral Band Adjustment

The ordinary least squares regression results (Table 2.3) were used as the input for the spectral
band adjustment, using Equation (2.1). With these coefficients, we adjusted the observed
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Sentinel-2 surface reflectance values to fit the Landsat-8 values with respect to the band
combination and specific study sites. The adjusted Sentinel-2 results are shown exemplarily for
the Lena Delta site in Figure 2.4, while the other two sites, as well as the overall adjustment
for Eastern Siberia are shown in the Appendix (Figures 2.6–2.8).

The overall results showed that the Sentinel-2 surface reflectance values can be fitted to
the Landsat-8 pixel surface reflectance values (Table 2.4). After the spectral band adjustment
by band pair, we recalculated the r coefficient, RMSE, and also the new ordinary least squares
regression. Visually, the adjusted Sentinel-2 and Landsat-8 surface reflectance values were
well aligned with the one-to-one line (Figure 2.4, Figure 2.6, Figure 2.7, and Figure 2.8). The
new intercept and slope results of the ordinary least squares regression now showed that the
adjusted datasets had no offset (0) and a slope that was either 0.99 or 1.0, indicating a very
good agreement between the two variables. The spread around the mean, demonstrated by
the r coefficient, was unchanged, but the RMSE decreased for all band combinations in all
study sites. This indicates that the absolute difference between the adjusted Sentinel-2 and
Landsat-8 reflectance values for corresponding pixels declined overall. Our results showed that
the individual bands correlated better after the Sentinel-2 adjustment for all three study sites
and also the Eastern Siberian (ES) regional scale analysis.
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Table 2.4: Comparison of surface reflectance values from the Sentinel-2 and Landsat-8
corresponding bands after spectral band adjustment, for same-day acquisitions. Displaying the
results of the ordinary least squares regression, Pearson correlation, and root mean squared error
for every study site.

Bands Study Ordinary Least Square Regression Pearson’s Correlation Root Mean Square

S2 Band L8 Band Site Intercept Slope Coefficient (r) Error (RMSE)

2 2

Lena Delta 0 0.99 0.927 0.007
Batagay 0 1.00 0.624 0.006
Yakutsk 0 0.99 0.92 0.004

ES 0 1.00 0.89 0.005

3 3

Lena Delta 0 0.99 0.962 0.006
Batagay 0 1.00 0.726 0.006
Yakutsk 0 1.00 0.945 0.0042

ES 0 1.00 0.937 0.005

4 4

Lena Delta 0 0.99 0.97 0.007
Batagay 0 0.99 0.818 0.006
Yakutsk 0 0.99 0.964 0.0048

ES 0 1.00 0.97 0.0054

8A 5

Lena Delta 0 1.00 0.95 0.016
Batagay 0 0.99 0.902 0.0153
Yakutsk 0 0.99 0.945 0.0152

ES 0 1.00 0.941 0.0154

8 5

Lena Delta 0 1.00 0.943 0.017
Batagay 0 0.99 0.900 0.0154
Yakutsk 0 0.99 0.942 0.0155

ES 0 0.99 0.94 0.0158

11 6

Lena Delta 0 0.99 0.951 0.013
Batagay 0 1.00 0.933 0.0112
Yakutsk 0 1.00 0.967 0.0102

ES 0 1.00 0.97 0.0106

12 7

Lena Delta 0 0.99 0.962 0.011
Batagay 0 1.00 0.938 0.0075
Yakutsk 0 0.99 0.974 0.0074

ES 0 0.99 0.974 0.0077

The comparison of the NDVI calculations showed one distinct feature. Negative Landsat-8
NDVI values were found only for few pixels, whereas for Sentinel-2 NDVI values before the
adjustment, there were considerably more negative values, especially in Yakutsk. However,
after spectral band adjustment, there were hardly any remaining negative Sentinel-2 NDVI
values. This was valid for all study sites (Figures 2.5 and 2.9). Negative NDVI values normally
indicate non-vegetated land cover types such as snow, clouds, or water with their higher
reflectance properties in the visible wavelengths and then a reflectance decline towards near
infrared. Despite this, the NDVI comparisons depicted overall a good fit between Landsat-8
NDVI and Sentinel-2 NDVI values for all study sites, with r coefficients ranging from 0.85
(Batagay) to 0.98 (Lena Delta) (Table 2.5). The ordinary least squares regression coefficients,
as well as the r and RMSE improved with the Sentinel-2 spectral band adjustment when
recalculating the Sentinel-2 NDVI with the adjusted NIR and red values (Figure 2.5 and Table
2.5).
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Table 2.5: Comparison of NDVI calculations from Sentinel-2 and Landsat-8 before and after
spectral band adjustment (NDVI adj), for same-day acquisitions. Displaying the results of the
ordinary least squares regression, Pearson correlation, and root mean squared error for every study
site.

Bands Study Ordinary Least Square Regression Pearson’s Correlation Root Mean Square

S2 Band L8 Band Site Intercept Slope Coefficient (r) Error (RMSE)

NDVI NDVI

Lena Delta 0.054 0.847 0.98 0.054
Batagay 0.2 0.65 0.85 0.078
Yakutsk 0.16 0.74 0.93 0.068

ES 0.12 0.79 0.95 0.068

NDVI adj NDVI

Lena Delta −0.017 1.03 0.98 0.033
Batagay −0.027 1.04 0.88 0.037
Yakutsk −0.017 1.02 0.96 0.03

ES −0.031 1.04 0.97 0.033

Figure 2.5: Comparison of NDVI values from the Lena Delta ((a), upper row) and Yakutsk ((b),
lower row). Left plots: NDVI calculated from observed Landsat-8 and Sentinel-2 surface reflectance
values. Right plots: NDVI calculated from adjusted Sentinel-2 and observed Landsat-8 reflectance
values. The solid black line is one-to-one, and the pink line is the ordinary least squares regression
trend line.

2.4.3 ES and HLS Spectral Band Adjustment

We used the ES ordinary least squares regression coefficients (Table 2.3) as input for Equation
(2.1) and applied these for spectral band adjustment to the three study sites. The results
showed that using the ES coefficients for band adjustment also significantly improved the
relationship between ES-adjusted Sentinel-2 and Landsat-8 surface reflectance pixel values
(Table 2.6). Visually, there was an improvement and a better relationship between ES-adjusted
Sentinel-2 and Landsat-8 reflectance values (Figure 2.10). The already previously-observed
lower correlation of the visible wavelength bands (B2/B2, B3/B3, and B4/B4) in Batagay
were noticeable in this assessment as well.
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The slope coefficients of the ordinary least squares regression after ES adjustment ranged
from 0.928 (Lena Delta B2/B2) to 1.059 (Lena Delta B8/B5). Applying the ES-adjustment
coefficients led to some slope coefficients exceeding 1.0 and intercepts that were slightly
negative. This was the case for individual band combinations in the Lena Delta and Yakutsk.

Yakutsk seemed to be adjusted the best compared to the Lena Delta and Batagay. This
likely was because the ES dataset was dominated by the Yakutsk site, which provided about
80% of the data to the analysis with 1,944,414 pixels compared to 156,315 and 346,053 pixels
from the Lena Delta and Batagay sites, respectively (Table 2.2).

Applying the globally-available HLS coefficients for band adjustment to the three study
sites showed no significant improvement (Table 2.6). The HLS results actually very much
resembled the original spectral band comparisons (Table 2.3). Hence, the relationship between
HLS-adjusted Sentinel-2 and Landsat-8 pixel values was not enhanced after HLS adjustment.

2.5 Discussion

Our overall comparison and adjustment results showed a good fit between Sentinel-2 and
Landsat-8 in the high latitudes. Despite this, the Batagay study site showed the biggest
differences between Landsat-8 and Sentinel-2 reflectance values in the visible wavelength
bands. The Batagay same-day image pair, compared to the Lena Delta and Yakutsk example,
also contained the highest cloud cover with 38.6% and 49.8% (Table 2.2). While the cloud
and cloud shadow detection algorithms still had high omission errors (Foga et al. 2017; Zhu,
Wang, and Woodcock 2015), the Batagay images particularly were visibly contaminated
with thin cirrus clouds that were difficult to mask. This decreased the quality of the images
(Gómez-Chova et al. 2007) and likely was the main cause for a lower correlation coefficient
between spectral bands, since the visible wavelength ranges were particularly affected by
clouds and cirrus (Bartlett et al. 1998). Landsat-8 and Sentinel-2 were differently sensitive to
cirrus clouds, and the acquisition delay of 25 min between the two sensors was sufficient for
a change in cirrus conditions in terms of cirrus presence and intensity, which decreased the
comparison quality. Claverie et al. (2018) observed this in images with a high cloud cover
content as well. The geographic location of the Batagay site between two mountain ranges
with very frequent cloud cover and highly variable cloud dynamics precludes better same-day
image pair qualities. Arguably, the Batagay image pair should therefore be considered with
additional caution; however, in spite of the slightly less favorable adjustment fit, the Batagay
study site still had good overall adjustment results and illustrated the applicability of this
approach also for challenging areas.

All scatter plots had a reasonable amount of scatter around the one-to-one relationship.
Experiments with simulated Landsat-8 and Sentinel-2 data by Zhang et al. (2018) demonstrated
that the scatter was emerging from the differing spectral response functions of the bands.
Another source for value scatter likely was the different spatial resolutions of the sensors.
Mandanici and Bitelli (2016) performed tests that showed that spatially-heterogeneous target
surfaces created a lower Pearson correlation coefficient in band comparisons (Mandanici and
Bitelli 2016). The Sentinel-2 sensors’ high-resolution bands most likely capture the landscape
heterogeneity to a greater extent compared to Landsat-8, which then is not averaged out
completely in the resampling process to 60-m pixels. Flood (2017) and Roy et al. (2017;
2017) further looked at misregistration, different viewing geometries, and atmospheric path
length as potential sources for errors between the sensors. All these points contribute to the
scatter between Sentinel-2 and Landsat-8 reflectance values. Overall, we are confident with our
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adjustment results as the Pearson’s correlation coefficients were high throughout the analyses.

When inspecting the scatter plots, a noticeable number of pixels displayed data discrepancies
in the NIR (B8A/B5, B8/B5) and SWIR (B11/B6, B12/B7) band comparisons of Yakutsk and
the Lena Delta. In the Lena Delta, Landsat-8 captured little reflectance variability in bands
B5 and B6 (between 0.08 and 0.13), while Sentinel-2 recorded reflectance values from 0–0.35
in bands B8A, B8, and B11 for the corresponding pixels. In Yakutsk, the relationship was
reversed, where Sentinel-2 recorded nearly no variation in values (0–0.05) in bands B8A, B8,
and B11, while Landsat-8 indicated values ranging from 0–0.2 in bands B5 and B6 for the same
pixels. This data illustrated the different sensitivities of the two sensors in signal reception and
translation to reflectance values. We identified these pixels by building masks to only select
the pixels associated with these discrepancies. The majority of these pixels were water or
mixed water-land pixels. In the Lena Delta, those pixels were mainly from sandbanks. Despite
applying a water mask, these pixels were not masked as they did not fully comply with water
characteristics only. The sandbanks have a high bottom reflectance through the thin water
column, resulting in mixed reflectance signals, and the extent of water coverage changes strongly
with water level changes. Therefore, the water mask failed to mask these pixels properly, and
evidently, the Landsat-8 and Sentinel-2 NIR and SWIR bands picked up and converted the
mixed signals differently. Likewise, the striking pixels in the Yakutsk NIR and SWIR bands
were water body pixels, as well. The Yakutsk area contains many thermokarst lakes and ponds
that vary in size and depth, which fosters the likelihood of pixels containing a mixed water
and ground signal. Vuolo et al. (2016) made similar observations in pixel differences and
accredited the bigger differences to three error sources: heterogeneous and complex terrains,
the quality of cloud and cloud shadow masking algorithms, and the challenging and differing
atmospheric correction results. Our analyses and study site characteristics confirmed these
points and challenges, which underlines that a spectral band comparison can only be based
on clear, high-quality images, as reflectance artifacts decrease the quality of the comparison
and the adjustment scheme results. Further attention has to be given to the cloud, cloud
shadow, and water masking. Under challenging conditions, a manual selection and masking of
clear areas for analysis may be inevitable. The NDVI comparison results showed that both
Landsat-8 and Sentinel-2 NDVI captured similar vegetation traits and that green vegetation
estimations derived from either system would be very similar. However, in this case, it was
inevitable to adjust the Sentinel-2 bands spectrally to Landsat-8 since a moderate amount
of non-adjusted Sentinel-2 NDVI values were negative in contrast to the Landsat-8 NDVI values.

The overall results demonstrated that Sentinel-2- and Landsat-8-acquired reflectance values
for corresponding pixels correlated well in Arctic-Boreal permafrost regions in Eastern Siberia.
This was observed for all three study sites separately and also in the combined adjustment for
the Eastern Siberian region. This underlines the expected sensor compatibility and agrees with
results from similar studies (Claverie et al. 2018; Flood 2017; Gorroño et al. 2017; Mandanici
and Bitelli 2016; Zhang et al. 2018). However, our study went slightly beyond some of the
previous ones, which partly based their evaluation on simulated Landsat-8 and/or Sentinel-2
image products (Mandanici and Bitelli 2016; Gorroño et al. 2017; Zhang et al. 2018), and
not on acquired images. We showed that it is possible to reduce the persistent difference in
spectral responses between the measured reflectance values of the spectral bands by deriving
and then applying an ordinary least squares regression model, adjusting Sentinel-2 to resemble
Landsat-8 reflectance values in Arctic-Boreal permafrost regions. It is possible to create a
seemingly perfect fit between spectrally corresponding bands at the individual study site.
The best adjustment results were obtained in the local assessments (LDA, BatA, YukA),
but closely followed by the regional approach (esA). The ES analysis shows that combining
regional data, and deriving overarching adjustment coefficients will lead to a very good fit
between Landsat-8 and ES adjusted Sentinel-2 reflectance values in Eastern Siberia as well.
We therefore considered our derived adjustment coefficients to be representative for Eastern
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Siberia and that they were applicable for a Sentinel-2 to Landsat-8 adjustment throughout
Eastern Siberia. The implementation of the globally-applicable HLS coefficients did not
improve the spectral comparability of Landsat-8 and Sentinel-2 reflectance values at any of
our three Arctic-Boreal study sites or on the regional ES level. This might be because only a
few Arctic study sites and merely one Siberian site were included in the HLS product, and
therefore, the Eastern Siberian landscape and vegetation forms were not represented enough
in the HLS study. This finding is similar to the adjustment results from Flood (2017) for
Australian landscapes, and thus, we do not recommend using globally-derived adjustment
coefficients for local or regional scale studies, but instead determine region-specific coefficients
for a Sentinel-2 to Landsat-8 adjustment.

Being able to adjust Sentinel-2 to Landsat-8 gives the possibility of combining Landsat
and Sentinel-2 data in analysis applications. Here, we relied on the already existing data
continuity strategy for the Landsat sensors and would like to extend the range of sensors by
adjusting Sentinel-2 to Landsat-8 (Flood 2014; Mishra et al. 2014; Teillet et al. 2001; Teillet,
Markham, and Irish 2006). Considering the substantial increase in available multispectral
images for the high latitudes with Sentinel-2 (Figure 2.1) (Li and Roy 2017), the creation of
dense time series is possible. A combined Landsat and Sentinel-2 time series will improve land
cover and vegetation mapping and monitoring approaches in detecting shifts in vegetation
composition and structure, as well as permafrost region disturbances in a warming climate. A
key advantage of dense time series analysis is the capability to detect landscape dynamics
and to differentiate between rapid and gradual changes, therefore describing permafrost
region disturbances better and being able to conduct detailed trend analysis in Arctic-Boreal
permafrost regions.

One of the main motivation to combine Landsat-8 and Sentinel-2 in high latitudes is
the frequent cloud cover and therefore the low data availability of cloud-free images. To
avoid this disadvantage of optical remote sensing altogether, one can consider using Synthetic
Aperture Radar (SAR) sensors that penetrate the cloud cover and acquire data during bad
weather conditions, as well. SAR data were applied to a variety of studies focusing on
different aspects and applications in northern high latitudes, such as land cover mapping,
successfully already (Bartsch et al. 2016). Nonetheless, one general conclusion is that the best
results can be obtained from polarimetric SAR data together with optical remote sensing
(Ullmann et al. 2014). Despite the advantages of active sensors, in particular SAR, towards
frequent cloud cover, we trust assessing permafrost landscape changes with optical remote
sensing. On the one hand, the optical remote sensing data archive, mainly Landsat, is the
longest archive spanning more than 45 years, providing extensive records of the past. On
the other hand, we see high potential in change detection and time series segmentation
algorithms, such as LandTrendr, which we would like to apply to permafrost regions and
assess disturbance regimes. However, the availability and advantages of SAR data will be an
asset when assessing permafrost disturbances, as SAR data can potentially fill data gaps and
help as supplementary material to identify and evaluate permafrost landscape disturbances well.

2.6 Conclusions

The overall objective of our study was to compare the spectral characteristics of Landsat-8
and Sentinel-2 across Arctic-Boreal permafrost regions and to assess their compatibility
and potential use in a combined time series. Our spectral comparison of Landsat-8 and
Sentinel-2 corresponding bands showed that these two sensors correlate well and depict similar
trends with only minor differences in Eastern Siberian permafrost regions. Depending on the
application purpose, one has to assess whether these differences are negligible or of relevance.
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With an ordinary least squares regression based on band comparisons of corresponding
Landsat-8 and Sentinel-2 bands, we can successfully adjust the Sentinel-2 reflectance values to
resemble Landsat-8 more and homogenize the two data sets. To avoid geolocation errors and
account for the sensors’ different spatial resolutions, we downscaled our images to 60 m.

The comparison method was valid for adjustments on the local level for sites with
different ecological and landscape characteristics, but also when merging data across Eastern
Siberia and conducting the spectral comparison and adjustment regionally. This underlines
the comparability and compatibility of the two sensors. In contrast, we found that the
application of the Harmonized Landsat Sentinel-2 product generated no improvement in
spectral adjustment. Relying on global adjustment schemes between Landsat-8 and Sentinel-2
is therefore not advisable for Eastern Siberia or for local to regional time series studies in
general. Therefore, we recommend at least regionally-fitted spectral adjustments when jointly
using Landsat-8 and Sentinel-2 data products. This minimizes the potentially introduced error
from different spectral band responses when combining data from multiple sensors. Our data
enable the combined use of Landsat and Sentinel-2 in future time series analysis and other
landscape change approaches in Arctic-Boreal permafrost regions of Eastern Siberia. Despite
the overall good adjustment results, small differences between the sensors remained, which can
be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow
masking, and mixed pixels.

Our assessment was solely based on the use of open source software (GEE, SNAP,
Jupyter Notebook) and freely-available data sets (Landsat-8, Sentinel-2). This makes the
methodological approach reproducible and allows wide usage also for other study areas. As
our results were in line with previous local and regional studies, we acknowledge that these
services and softwares are a valuable and useful tool appropriate for such comparison studies.
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Table 2.7: The selected same-day images in Google Earth Engine (GEE) after data filtering for
the three study sites.

Study Site Sensor Image Name GEE

Lena
Delta

L8 LC08_132009_20160823
S2 20160823T034732_20160823T091448_T51XXA

Batagay
L8 LC08_122012_20160801
S2 20160801T030546_20160801T064303_T53WMR

Yakutsk
L8 LC08_121017_20160709
S2 20160709T030011_20160709T081153_T52VEP

Figure 2.6: Cont.
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Figure 2.6: Comparison of surface reflectance values from the Sentinel-2 and Landsat-8
corresponding bands for Batagay. Left plots: observed surface reflectance values. Right plots:
Batagay Adjusted (BatA) Sentinel-2 reflectance values. The solid black line is one-to-one, and the
pink line is the ordinary least squares regression trend line.
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Figure 2.7: Cont.

44



2.8 Appendix Chapter 2

Figure 2.7: Comparison of surface reflectance values from the Sentinel-2 and Landsat-8
corresponding bands for Yakutsk. Left plots: observed surface reflectance values. Right plots:
Yakutsk Adjusted (YukA) Sentinel-2 reflectance values. The solid black line is one-to-one, and the
pink line is the ordinary least squares regression trend line.

Figure 2.8: Cont.
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Figure 2.8: Comparison of surface reflectance values from the Sentinel-2 and Landsat-8
corresponding bands for Eastern Siberia. Left plots: observed surface reflectance values. Right plots:
Eastern Siberia Adjusted (esA) Sentinel-2 reflectance values. The solid black line is one-to-one,
and the pink line is the ordinary least squares regression trend line.

Figure 2.9: Comparison of NDVI values from Batagay ((a), upper row) and Eastern Siberia ((b),
lower row). Left plots: NDVI calculated from observed surface reflectance values. Right plots:
NDVI calculated from adjusted Sentinel-2 reflectance values. The solid black line is one-to-one,
and the pink line is the ordinary least squares regression trend line.
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Figure 2.10: Comparison of Eastern Siberian Adjusted (esA) the Sentinel-2 reflectance values
and Landsat-8 corresponding bands for the individual study sites. In the order from left to right:
Lena Delta, Batagay, and Yakutsk. The solid black line is one-to-one, and the pink line is the
ordinary least squares regression trend line.
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3.1 Abstract

Permafrost is warming in the northern high latitudes, inducing highly dynamic thaw-related
permafrost disturbances across the terrestrial Arctic. Monitoring and tracking of permafrost
disturbances is important as they impact surrounding landscapes, ecosystems and infrastructure.
Remote sensing provides the means to detect, map, and quantify these changes homogeneously
across large regions and time scales. Existing Landsat-based algorithms assess different types
of disturbances with similar spatiotemporal requirements. However, Landsat-based analyses
are restricted in northern high latitudes due to the long repeat interval and frequent clouds, in
particular at Arctic coastal sites. We therefore propose to combine Landsat and Sentinel-2
data for enhanced data coverage and present a combined annual mosaic workflow, expanding
currently available algorithms, such as LandTrendr, to achieve more reliable time series analysis.
We exemplary test the workflow for twelve sites across the northern high latitudes in Siberia.
We assessed the number of images and cloud-free pixels, the spatial mosaic coverage and
the mosaic quality with spectral comparisons. The number of available images increased
steadily from 1999 to 2019 but especially from 2016 onward with the addition of Sentinel-2
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images. Consequently, we have an increased number of cloud-free pixels even under challenging
environmental conditions, which then serve as the input to the mosaicking process. In a
comparison of annual mosaics, the Landsat+Sentinel-2 mosaics always fully covered the study
areas (99.9–100 %), while Landsat-only mosaics contained data-gaps in the same years, only
reaching coverage percentages of 27.2 %, 58.1 %, and 69.7 % for Sobo Sise, East Taymyr,
and Kurungnakh in 2017, respectively. The spectral comparison of Landsat image, Sentinel-2
image, and Landsat+Sentinel-2 mosaic showed high correlation between the input images
and mosaic bands (e.g., for Kurungnakh 0.91–0.97 between Landsat and Landsat+Sentinel-2
mosaic and 0.92–0.98 between Sentinel-2 and Landsat+Sentinel-2 mosaic) across all twelve
study sites, testifying good quality mosaic results. Our results show that especially the results
for northern, coastal areas was substantially improved with the Landsat+Sentinel-2 mosaics.
By combining Landsat and Sentinel-2 data we accomplished to create reliably high spatial
resolution input mosaics for time series analyses. Our approach allows to apply a high temporal
continuous time series analysis to northern high latitude permafrost regions for the first time,
overcoming substantial data gaps, and assess permafrost disturbance dynamics on an annual
scale across large regions with algorithms such as LandTrendr by deriving the location, timing
and progression of permafrost thaw disturbances.

3.2 Introduction

Permafrost is warming in the northern high latitudes (Biskaborn et al. 2019), which has
considerable impacts on Arctic terrestrial landscapes. Permafrost is ground that remains at
or below 0 ◦C for at least two consecutive years and it covers roughly 25% of the northern
hemisphere (Obu et al. 2019). Being defined as a thermal state of the subsurface makes
permafrost directly vulnerable to changes in the energy balance of the land surface, in particular
the long-term changes in mean annual air temperature, precipitation regimes, and snow
distribution and thickness that are currently observed across the high latitudes (Serreze and
Barry 2011; Kaplan and New 2006). Continued warming causes widespread permafrost thaw,
resulting ultimately in near-surface permafrost loss at local to regional scales (Chadburn et al.
2017). Wide landscape changes can be associated with permafrost thaw and loss and have
impacts on ecosystems (Schuur and Mack 2018; Pastick et al. 2019), hydrological systems
(Francis et al. 2009; Liljedahl et al. 2016), soil carbon accumulation and decomposition
(Hicks Pries et al. 2015), greenhouse gas emissions (Walter Anthony et al. 2018), and stability
of infrastructure in permafrost areas (Hjort et al. 2018). Considering the vast area permafrost
covers across the northern hemisphere and its strong linkages to the Arctic biophysical system
(Box et al. 2019), changes in the distribution of permafrost due to thaw is of high relevance
for the Arctic amplification of global climate change (Kaplan and New 2006; Koven et al. 2011).

To make more precise estimations of the impact of permafrost thaw on landscapes and
biogeochemical cycles, a more detailed remote sensing-based assessment of permafrost disturbances
is necessary. Many thaw-related permafrost disturbances in the northern latitudes such as
thermokarst formation, thermokarst lake drainage, flooding, rapid soil erosion, and wildfires
(Grosse et al. 2011a; Turetsky et al. 2020) can be tracked with remote sensing methods that
provide key information on the distribution, magnitude, duration, and impacts of disturbances
(Jorgenson and Grosse 2016; Nitze et al. 2018). However so far, the extent of remotely sensed
permafrost disturbance assessments are limited spatially and temporally. Abrupt permafrost
disturbance features (Grosse et al. 2011a) have been mainly mapped on local to regional scales,
such as retrogressive thaw slumps (Brooker et al. 2014; Nitze et al. 2018; Segal et al. 2016), fires
(Frazier et al. 2018), and lake changes (Nitze et al. 2018). These studies either derived disturbance
dynamic parameters from few individual time snapshots (Balser, Jones, and Gens 2014; Kokelj
et al. 2015a; Lewkowicz and Way 2019; Ward Jones, Pollard, and Jones 2019), or determined
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trends across a period of time (Brooker et al. 2014; Nitze et al. 2018). However, knowledge on
the annual disturbance dynamics is required on regional to pan-arctic scales. This is crucial for
identifying main drivers of abrupt thaw events and including these processes in large-scale climate
models.

A number of remote sensing algorithms that were developed for land cover change and
forest disturbance applications to detect landscape changes at regional to global scales, capture
the temporal dynamics of disturbance features. Since the start of the open access policy of
the Landsat data archive in 2008 (Woodcock et al. 2008), Landsat is often chosen for high
spatial and temporal resolution land cover and change detection assessments. For example,
Hansen et al. (2013) presented a global forest gain and loss algorithm and Pekel et al. (2016)
a surface water assessment and its changes with Landsat data. Landsat has the longest
available data record, covering more than 48 years, which presents a unique opportunity for
long-term assessment studies. Landsat satellites are multispectral sensor systems, providing a
spatial resolution of 30 m at nominal revisit times of 16 days covering the whole globe (USGS
2016). The Landsat archive therefore allows to assess processes at high spatial resolution and
with a reliable continuous time series for more than several decades by now.

The most widely-used algorithms are the Landsat-based detection of Trends in Disturbance
and Recovery (LandTrendr) (Kennedy, Yang, and Cohen 2010), the vegetation change
tracker (VCT) (Huang et al. 2010), the Break detection For Additive Season and Trend
(BFAST monitor) (Verbesselt, Zeileis, and Herold 2012), the Continuous Change Detection
and Classification model (CCDC) (Zhu and Woodcock 2014), and the forest gain and loss
algorithm by Hansen et al. (2013), according to a compilation by Zhu (2017) based on
algorithm characteristics, such as temporal frequency, change indices, and gradual or abrupt
change detection. They all have in common the smallest assessment unit as a pixel but differ
in the required temporal data frequency, change index application, the form of disturbance
they assess (gradual or abrupt), and whether they are used for near real-time monitoring
or past change detection. Since data availability in the northern high latitudes is limited
drastically by frequent cloud cover (Ju and Roy 2008), most of the widely-used algorithms
that require a very high temporal frequency of input data are not suitable for Arctic applications.

An exception is LandTrendr, as it creates yearly mosaics from cloud-free Landsat images by
aggregating cloud-free pixels from a defined period of time, e.g., the summer months (Kennedy,
Yang, and Cohen 2010). With this approach, LandTrendr ensures a continuous disturbance
assessment with an annual resolution. Using aggregated data as input is a promising method
to bypass data limitations in the northern high latitudes (Potapov, Turubanova, and Hansen
2011; White et al. 2014). Moreover, LandTrendr is flexible in change index choice and captures
both abrupt and gradual changes. LandTrendr applies a segmentation algorithm for change
and trend detection to the time series of annual Landsat mosaics. The segmentation algorithm
splits the time series into vertices, points of abrupt spectral change, and time stretches in
between of vertices with change, no change or gradual trends, which then represent abrupt
and gradual land cover change, respectively. The algorithm results provide information on the
disturbance year, magnitude of change, and recovery duration (Kennedy, Yang, and Cohen
2010). Since 2018, LandTrendr is incorporated into Google Earth Engine (GEE) (Kennedy
et al. 2018) and is therefore easily transferable to new application areas, benefiting from
GEEs processing power and easily available large-scale satellite data sets (Kennedy et al.
2018). The application of LandTrendr to the high latitudes would allow assessing permafrost
disturbance processes for the first time with a continuous time series, deriving temporal
dynamics on multiyear to annual scales, derived from more than 20 years of data, at high
spatial resolution, which has not been achieved before.
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However, even the annual LandTrendr mosaics, based on the moderate repeat frequency of
Landsat images, contain considerable gaps due to lack of cloud-free images and pixels in some
years, in particular at higher Arctic and coastal sites. Additional disadvantages include high
latitude environmental factors such as frequent snow and ice cover, a short growing season
length, and a challenging solar geometry (Hope and Stow 1996; USGS 2016). As annual
cloud- and gap-free mosaics are the prerequisite of a reliable and high-quality time series
implementation such as LandTrendr, the single-sensor based algorithm remains prone to local
and regional observation gaps in the high latitudes (Egorov et al. 2019). These are major
challenges for permafrost disturbance studies as these same regions are also underlain by
thaw vulnerable, ice-rich and organic-rich permafrost (Strauss et al. 2013; Obu et al. 2019),
where first local studies already show extensive permafrost thaw (Lewkowicz and Way 2019;
Ward Jones, Pollard, and Jones 2019). Hence, it is crucial to enhance the input database for a
LandTrendr time series analysis for northern high latitude applications.

Active remote sensing sensors such as Synthetic Aperture Radar (SAR) sensors can
penetrate clouds and do not rely on sun illumination. Therefore, they are less restricted by
weather and illumination conditions, which is very useful in northern high latitudes (Wang
et al. 2018). Varying SAR methods have been applied to northern high latitudes for land cover
mapping (Bartsch et al. 2016), surface deformation assessments in permafrost regions (Rykhus
and Lu 2008; Short et al. 2014; Beck et al. 2015) and active layer thickness estimations
(Antonova et al. 2018). While the range of application possibilities of SAR data is broad
and promising, one major drawback is its overall sparse data availability due to irregular
acquisition schemes from historical SAR sensors such as ERS-1/2 SAR, ALOS-1 PALSAR-1,
TerraSAR-X and Radarsat-2 (Strozzi et al. 2018). This has only changed recently since
the launch of the Copernicus Sentinel-1 satellites in 2014 and 2016, and their short image
acquisition rate in polar areas every 6 to 12 days (Torres et al. 2012). With five years of
continuous temporally high-resolution data, the available time series for landscape analysis
from Sentinel-1 is comparably short and hence the longer optical remote sensing time series of
Landsat is still the preferred choice for long time series analysis assessments as exemplified here.

We here propose to combine Landsat and Sentinel-2 images in the mosaicking workflow
to ensure data coverage for a continuous time series and a reliable input basis for change
assessment algorithms, such as LandTrendr. The Sentinel-2 system has a comparable sensor to
Landsat but consists of two near-identical satellites, which have a combined revisit time of only
five days (Drusch et al. 2012). Combining Landsat 8 and Sentinel-2 shortens the overall revisit
time in the northern high latitudes drastically, increasing the likelihood of obtaining good
quality, cloud-free images (Li and Roy 2017) and potentially enhancing the database for large
scale mosaics(Griffiths, Nendel, and Hostert 2019). The two sensors are overall compatible and
spectral band adjustment coefficients ensure high spectral comparability (Flood 2017; Claverie
et al. 2018), which are also available for Arctic-Boreal regions specifically (Runge and Grosse
2019). Therefore, with the launch of the first Sentinel-2 satellite (Sentinel-2A) there is large
potential to improve the annual cloud- and gap-free mosaics from the second half of 2015 onward.

Despite the availability of already existing harmonised Landsat/Sentinel-2 products, such
as the Harmonized Landsat and Sentinel-2 surface reflectance data set (Claverie et al. 2018),
the Landsat+Sentinel-2 analysis ready data (Frantz 2019) or Sen2Like, a tool to generate
Sentinel-2 harmonised surface reflectance products with other sensors (Saunier et al. 2019),
these global data sets often show discrepancies to regionally derived and adjusted products
(Mandanici and Bitelli 2016; Flood 2017; Runge and Grosse 2019). Hence, a regionally fitted
harmonisation approach is favoured for regional applications.

The overall objective of this study is to assess the combination of Landsat and Sentinel-2
data to create good quality mosaics for northern high latitudes as input for high temporal
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assessment applications such as LandTrendr in GEE. To address this main objective, we focus
on three sub-objectives: (1) adapting a mosaicking workflow to incorporate both Landsat and
Sentinel-2 images; (2) evaluating the improved data availability as a basis for annual mosaics
when using Landsat and Sentinel-2 data; and (3) demonstrating the Landsat+Sentinel-2 mosaic
coverage improvements and the preservation of good mosaic quality. We apply and test this
framework to twelve diverse study sites in the high latitude permafrost regions across northern
Siberia.

3.3 Materials and Methods

3.3.1 Study Sites

This assessment focuses on the terrestrial northern high latitudes and in particular on
northern Siberia. We selected twelve study sites, spanning from Taymyr Peninsula in the west
(80◦E) to Chukotka Peninsula in the east (172◦W) and from the northern margins of the
Siberian mainland (77◦N) to central Yakutia in the south (61◦N) (Figure 3.1). The study sites
exemplify a variety of landscapes and cover the range of climatic, geologic, geomorphologic
and vegetational conditions in the North Siberian permafrost regions. While all sites except
Chukotka are within the continuous permafrost zone (Obu et al. 2019), we included sites which
are inland or coastal, with various terrain specifications and elevation levels, within the taiga
or tundra ecoregion (Olson et al. 2001), and with different ground ice contents and thus thaw
vulnerability (Table 4.1). Climatically the study sites lie within the arctic to boreal climate
zones and in both maritime and continental areas which defines the rather broad climate
region of northern Siberia (Sayre et al. 2020). The mean annual air temperature (MAAT) for
January and July and mean annual total precipitation (MATP) values were extracted from
ERA5 data for each study site (era5). Furthermore, specific study sites were chosen as they
accommodate long field data records and represent frequently visited research areas, such as
the Lena Delta, Batagay, Chokurdakh and the Pleistocene Park near Cherskiy.

For our analysis, we defined each study site by determining a centre point and a 25 ×
25 km square area around the centre point. From here on, the term study site refers to the
general study location while the term AOI refers to the coordinates of the centre point in
our processing workflow (Section 3.3.3) and AOIarea to the 25 × 25 km areal (Section 3.3.5)
extent of every study site. So, every study site consists of an AOI and an AOIarea.
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Figure 3.1: Overview of the twelve study sites across northern Siberia. Permafrost zones according
to Obu et al. (2019), Yedoma extent according to Strauss et al. (2013) and ecosystem according
to Olsen et al. (2001).

Table 3.1: The study sites, their location, and their ecosystem and climatic characteristics.

Study Site AOI Coord. [◦N, ◦E] Ecosystem Characteristics Climatic Characteristics MAAT Jan, Jul [◦C] MATP [m]

Bykovsky 71.8, 129.3 coastal, lowland, Yedoma, Tundra Polar, Moist −28.2, 3.95 0.029

Sobo Sise 72.5, 128.6 coastal, lowland, Yedoma, Tundra Polar, Moist −32.1, 8.3 0.024

Kurungnakh 72.4, 126.3 coastal, lowland, Yedoma, Tundra Polar, Moist −32.5, 9.97 0.024

East Taymyr 75.6, 113.6 coastal, lowland, Yedoma, Tundra Polar, Moist −28.6, 3.8 0.028

West Taymyr 72.6, 82.0 coastal, hilly, Tundra Polar, Moist −27.1, 8.1 0.043

Krestovaya 70.5, 157.2 coastal, lowland, Yedoma, Tundra Polar, Dry −32.1, 7.7 0.020

Chokurdakh 70.6, 147.9 coastal, lowland to hilly, Yedoma, Tundra Polar, Dry −33.9, 10.2 0.024

Pleistocene Park 68.5, 161.4 coastal, lowland to hilly, Yedoma, Tundra Boreal, Dry −33.1, 13.1 0.025

Chukotka 65.1, −172.1 coastal, lowland, Tundra Boreal, Moist −19.9, 8.97 0.052

Batagay 67.6, 134.8 inland, hilly to mountainous, Yedoma, Taiga Boreal, Dry −41.9, 15.7 0.021

Verkhoyansk 69.1, 124.5 inland, hilly to mountainous, Yedoma, Taiga Boreal, Moist −36.5, 14.9 0.032

Yakutsk 62.1, 130.5 inland, lowland, Yedoma, Taiga Boreal, Dry −38.8, 19.4 0.023

3.3.2 Data

In our study, we worked with Landsat and Sentinel-2 data. The Landsat program is the
longest running civilian optical remote sensing operation, continuously acquiring images of
our Earth since 1972. Temporally overlapping missions ensured data continuity for more than
48 years already (Irons, Dwyer, and Barsi 2012). The missions’ sensors changed moderately
over the years but general specifications sustained. Landsat satellites are sun-synchronous,
polar-orbiting and have a repeat cycle of 16 days at the equator. The Landsat sensors are
multi-spectral imagers, covering a wide range of the electromagnetic wavelength spectrum
with their bands, from visible to thermal infrared, and acquiring images with 30 m spatial
resolution (Wulder et al. 2019). In 2015 and 2017, the European Space Agency (ESA) launched
the Sentinel-2 satellites from their Copernicus program. The Sentinel-2 mission, consisting
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of two nearly identical satellites, Sentinel-2A and Sentinel-2B, also operates multi-spectral
instruments. Like Landsat, the Sentinel-2 satellites are sun-synchronous and polar-orbiting
but have a repeat cycle of 10 days individually and both satellites together of 5 days. Thirteen
bands cover the visible to shortwave infrared wavelengths at varying spatial resolutions (10, 20
and 60 m) (Drusch et al. 2012; Hoersch 2015). Landsat 8’s Operational Land Imager (OLI,
since 2013) and Sentinel-2’s Multi-Spectral Instrument (MSI) are overall comparable and their
simultaneous operation provides unique opportunities for Earth Observation (Wulder et al.
2019; Wang et al. 2017; Li and Roy 2017). Combined Landsat and Sentinel-2 studies benefit
foremost from Landsat’s multi-decadal, continuous acquisition scheme and Sentinel-2 high
temporal resolution, decreasing gaps in time series from 2015 onward.

We accessed and processed the satellite data on GEE. GEE is a cloud-based platform,
providing access to an extensive remote sensing data catalogue, containing a wide range of
pre-processed, calibrated, and corrected products, and enabling planetary-scale geospatial
analysis supported by Google’s computational capacities (Gorelick et al. 2017). For our
analysis we accessed the Top-Of-Atmosphere (TOA) image collections from Landsat 5, 7,
8 and Sentinel-2 on GEE (USGS Landsat 5 TM Collection 1 Tier 1 TOA Reflectance;
USGS Landsat 7 Collection 1 Tier 1 TOA Reflectance; USGS Landsat 8 Collection 1 Tier
1 TOA Reflectance; Sentinel-2 MSI: MultiSpectral Instrument, Level-1C). The Landsat
TOA Tier 1 collections on GEE contain data with calibrated reflectance values (Chander,
Markham, and Helder 2009) of the highest geometric and radiometric quality and thus are
considered suitable for time series analysis (Google Developers 2020a). Likewise, the Sentinel-2
Level-1C product is also calibrated, geometrically corrected, high quality data (Hoersch 2015).
While GEE also incorporates the surface reflectance (SR) products from the Landsat missions,
the Sentinel-2 surface reflectance product (Level-2A) is not yet processed globally for the whole
Sentinel-2 image archive (Google Developers 2020b). ESA has started to produce Sentinel-2
Level-2A images with their atmospheric correction processor Sen2Cor (Louis et al. 2016;
Müller-Wilm, Devignot, and Pessiot 2016) but has not processed the full image archive yet.
Currently, only Level-2A images from the most recent acquisitions until March 28th, 2017
are provided with regional differences. For Siberia, only Sentinel-2 Level-2A images from late
February, 2019 until now are processed and available on GEE (last checked on July 13th,
2020). As we target to develop an automated workflow taking advantage of easy filtering
of continental-scale data sets in GEE, we conducted our analysis with the TOA data for
now. While the radiometric quality is improved in the SR products (Flood 2014), the TOA
approach is still applicable and relevant, since the TOA spectral properties reflect the ground
characteristics well and capture disturbances reliably with prominent spectral signatures. Once
the SR product from Sentinel-2 is available, the same workflow can be transferred easily in GEE.

3.3.3 Data Processing and Mosaicking Workflow

The LandTrendr library, provided by Kennedy et al. (2018) on GEE, was the foundation of
this work and was successively adapted to the specific needs. In the following, we describe the
mosaicking workflow, adaptations and subsequent analysis steps.

We adopted the LandTrendr library and modified the script from image col-
lection filtering, image harmonisation, cloud and cloud shadow masking to mosaic
generation. Our code is publicly available: https://code.earthengine.google.com/
8ff1ee9ad801549df413184820bd7f39.

The biggest modification to the adopted mosaic workflow is the change of input collections.
We use the Landsat TOA collections and additionally the Sentinel-2 Level-1C collection
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as input (Figure 3.2). Following this adjustment, a harmonisation step for the Sentinel-2
images was included to obtain a consistent spectral database. The remaining overall workflow
was maintained and only modified where necessary. The Landsat and Sentinel-2 input was
processed in parallel and only combined in the last step before creating a combined mosaic
(Figure 3.2, ‘buildMosaic: medoid’).

The image collections were filtered by AOI, by date and by cloud cover to obtain a
subset of the image collection representing the database for the annual mosaics. The AOI
was the centre point coordinates of the study sites (Table 4.1), the date filter was set to the
summer months (1st July–31st August) to restrict deficiencies due to seasonality and the
cloud cover to less than 80%. All collections, Landsat and Sentinel-2, contain pre-processed
metadata information on cloud cover extent per scene (Landsat metadata property: cloud
cover, Sentinel-2 metadata property: cloud coverage assessment) and cloud and cloud shadow
information per pixel (Landsat band: BQA, Sentinel-2 band: QA60), which were used first for
general cloud image filtering and later for cloud and cloud shadow pixel masking, respectively
(USGS 2020; ESA 2020).

Figure 3.2: Mosaicking workflow. The general workflow follows the method from
Kennedy et al. (2018). The modifications are shown in blue.

We implemented Kennedy et al. (Kennedy et al. 2018) harmonizationRoy function,
applied to the filtered image collections, to harmonise Landsat 8 OLI images to Landsat
7 ETM+, ensuring consistent spectral properties across the Landsat sensors in the time
series. In this case, the TOA spectral transformation coefficients were applied (Roy et al.
2016a) but otherwise the harmonizationRoy function remained unchanged. Six bands are
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included in the band transformation, blue (B1), green (B2), red (B3), near infrared (B4),
shortwave infrared 1 (B5) and 2 (B7). The band selection is based on Landsat 7’s bands
and the band availability across the different Landsat sensors. Landsat 8’s corresponding
bands are selected and renamed in the harmonizationRoy function. Following the example
of the harmonizationRoy function, we implemented a similar harmonisation scheme for
Sentinel-2 data to guarantee consistent spectral reflectances across Landsat and Sentinel-2 data
(harmonizationS2L8). First, we harmonised the Sentinel-2 images to Landsat 8, by applying
spectral transformation coefficients for Arctic-Boreal regions for TOA data and resampled
them to 30 m spatial resolution, resembling Landsat data. We derived Sentinel-2 to Landsat-8
spectral transformation coefficients for TOA data for Arctic-Boreal regions from the same
study set up and workflow as described by Runge and Grosse (2019) but used not the SR
same-day images but the same TOA images as data input. We applied GEEs’ reproject() and
resample() functions for images and reprojected the Sentinel-2 images to Landsats’ projection
(WGS 84, UTM), a scale of 30 m and applied the bicubic resampling method. Secondly, we
transformed the adjusted Sentinel-2 images further to Landsat 7 with the harmonizationRoy
function, as described above for TOA Landsat data.

Until here, we operated on the image level. In the next steps, we processed the images in
the image collections further on the pixel level. The cloud and cloud shadow masking were
achieved by using the provided quality bands. For Landsat we used the quality assessment
bitmask (BQA) (USGS 2020) and for Sentinel-2 we used the QA60 Bitmask (QA60) (ESA
2020). Both quality bands are bitmasks that contain information on the presence of clouds
and cloud shadows at the pixel level. Consequently, we masked out all pixels with a cloud or
cloud shadow, based on the information in the quality band bitmask. The remaining cloud-free
pixels form the input database for the mosaic process described next.

After image filtering and pixel masking the last step was to generate annual mosaics
based on our processed database, which can be applied to every study site and assessment
year. Kennedy et al. (2010; 2018) create medoid mosaics in their LandTrendr workflow.
A medoid is similar to a median and represents the point with the minimal summed distance
to all points in a data set but considers multiple dimension in its selection, which are the
different bands in this case (Flood 2013). Medoid mosaics are resilient against extreme values,
such as outliers from unmasked cloud or cloud shadow pixels, and provide representative
mosaics of a defined time period (Flood 2013). As the cloud and cloud shadow masking
is not impeccable (Coluzzi et al. 2018) and our assessment strongly relies on a specific
narrow time period, the summer months July and August, we maintained the medoid mosaic
approach and applied the medoid mosaic function from the LandTrendr library (Kennedy
et al. 2018). Input of the medoid mosaic function are the annual Landsat and Sentinel-2
image collections that already are filtered, harmonised and cloud masked at this point.
Both collections are merged and then the medoid mosaic function identifies the medoid for
every pixel within the merged collection. Output of the function is a mosaic image, which is
cloud-free and spectrally representative for the summer months as we used the medoid function.

The above described workflow runs systematically for every year of the assessment
period, generating a cloud-free mosaic. These annual mosaics are combined in a mosaic
collection, representing a mosaic time series for a study site. For our assessment we created
a 21-year mosaic collection from 1999 to 2019. This time period includes seventeen years
of Landsat-only mosaics, from 1999 to 2015, when Landsat data started to be reliably and
consistently available for Siberia, and the last four years of combined Landsat and Sentinel-2
mosaics. We extended the assessment period beyond the overlapping Landsat and Sentinel-
2 period to draw comparisons between Landsat-only and combined Landsat+Sentinel-2 mosaics.
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3.3.4 Data Availability Assessment

Prerequisite of good quality annual mosaics are a good input database. The above described
processing workflow defines the framework for high quality mosaic outputs, minimising
artefacts from seasonality, merging of multi-sensors or clouds and cloud shadows. We further
assess the quality of the combined Landsat+Sentinel-2 mosaic output by looking at the input
data availability and the spectral characteristics of the mosaic outputs.

We assessed the data availability on both image and pixel level. As a general rule,
the bigger and more robust the input database is in form of number of images and number
of cloud-free pixels, the better the mosaic output. Therefore, we derived for every study site
the image list of available images with the GEE filterCollection function, for Landsat and
Sentinel-2 separately. The image list contains all images fulfilling the filter requirements from
the mosaicking workflow (AOI, date and cloud cover). The result is an available image count
for the specific study site per year, specifying images that cover the AOI, were acquired in
July and August, and are not completely cloudy. The image count number illustrates the
general input database for the mosaicking workflow.

The previously derived image list is input for a cloud-free pixel analysis. The filtered image
list might still contain images with a high cloud or cloud shadow cover across the AOIarea,
as the filtering is based on metadata information (Landsat metadata property: cloud cover,
Sentinel-2 metadata property: cloud coverage assessment), which were derived for the full
Landsat (185 × 185 km) or Sentinel-2 (290 × 290 km) scenes. Input to the medoid mosaicking
process should be cloud-free pixels only, hence we apply pixel-based cloud and cloud shadow
masking as described in Section 3.3.3. Therefore, not only the available image count is of
interest but more importantly the number of cloud-free pixels. To assess this, we applied
the buildClearPixelCountCollection function from the LandTrendr library to every study
site (Kennedy et al. 2018). The buildClearPixelCountCollection function takes the filtered
image collection as input, applies the cloud and cloud shadow masking to every image in the
collection, which operates on the pixel level, and counts the remaining number of clear pixels
for every pixel at the study site, for every year of the assessment period. The output of the
function is an image collection, containing one band image per year (1999–2019) with the
cloud-free pixel count for every location. For a more representative picture, we did not look at
the clear pixel count at every pixel but calculated the average number of clear pixels for every
study site, aggregated across the AOIarea. Within the 25 × 25 km square of a study site the
cloud-free pixel count slightly varies spatially, mainly because of overlapping sensor swaths,
the Landsat 7 ETM+ scan line corrector failure and partial cloud cover, but not significantly.
Hence, an aggregated average per study site is a good representation. This averaged cloud-free
pixel count is derived for every year in the assessment period.

3.3.5 Mosaic Coverage and Quality Assessment

Eventually, the main goal is to generate good quality mosaics. We assessed the quality of
the resulting combined Landsat+Sentinel-2 mosaics by study area coverage and spectral
characteristics. For the four years that we have both Landsat and Sentinel-2 data available,
2016 to 2019, we created two mosaics for every year and study site. One mosaic with Landsat
TOA data only (Landsat-only mosaic) and the second one with Landsat and Sentinel-2 data
together (Landsat+Sentinel-2 mosaic), following the above mosaic workflow. For both mosaics
we calculated the percentage they cover of the study site area (AOIarea). The annual mosaics
can contain holes from data gaps, given that no cloud-free pixel was available at a location for
the mosaic. With the area calculation we can compare which mosaicking result, Landsat-only

58



3.3 Materials and Methods

or Landsat+Sentinel-2 mosaic, more reliably produces a full study site coverage (Roy et al.
2010).

As described in Section 3.3.3 we ensure spectral consistency across the different sensors by
applying harmonisation functions, including spectral transformations. Nevertheless, to confirm
that the combined Landsat and Sentinel-2 data workflow produces representative and
radiometric consistent good quality mosaics, we conducted a spectral comparison between
cloud-free images and the Landsat+Sentinel-2 mosaic (White et al. 2014).

For every study site we selected individual cloud-free Landsat 8 and Sentinel-2 images,
fulfilling the previously stated filtering requirements, by AOI and date range, except lowering
the maximum cloud cover value to less than 30%. We selected the images with no cloud or
cloud shadow across the AOIarea. For every study site we found for one year a cloud-free
Landsat 8 and Sentinel-2 image fulfilling these requirements (Table 3.2) and conducted the
spectral comparison for that years’ Landsat+Sentinel-2 mosaic and the selected Landsat 8 and
Sentinel-2 images.

For comparability, we applied the same harmonisation approach that is also part of the
mosaic workflow, to the individual Landsat 8 and Sentinel-2 images. The Landsat 8 images were
transformed with the harmonizationRoy function and the Sentinel-2 images in two steps, first
with the Sentinel-2 to Landsat 8 band transformation (harmonizationS2L8) and then also with
the harmonizationRoy function. We then sampled 5000 random pixel locations (GEE sample
function) per study site (AOIarea) and extracted the spectral band values of the Landsat image,
the Sentinel-2 image and the Landsat+Sentinel-2 mosaic. The random pixel locations were only
taken from the areas where both images and the mosaic overlapped. We downloaded the data sets
with the spectral pixel values from GEE and conducted a spectral band comparison in Jupyter
Notebook. For every band we compared the corresponding spectral values between the Landsat
image and the Landsat+Sentinel-2 mosaic and the Sentinel-2 image and the Landsat+Sentinel-2
mosaic separately and calculated the correlation coefficients (r-value), indicating the strength
of linear relationship between image and mosaic pixel spectral values (Cowan 1998). Six bands
were included in this assessment, blue (B1), green (B2), red (B3), near infrared (B4), shortwave
infrared 1 (B5) and 2 (B7).

Table 3.2: The cloud-free Landsat and Sentinel-2 images per study site for the spectral
band comparison.

Study Site Year Landsat (LANDSAT/LC08/C01/T1_TOA/) Sentinel-2 (COPERNICUS/S2/)

Bykovsky 2018 LC08_127010_20180826 20180727T035541_20180727T035537_T52WEE

Sobo Sise 2018 LC08_130009_20180815 20180828T034529_20180828T034525_T51XXA

Kurungnakh 2018 LC08_132009_20180728 20180809T040541_20180809T040543_T51XXA

East Taymyr 2018 LC08_204237_20180805 20180825T051639_20180825T051642_T49XEE

West Taymyr 2019 LC08_160009_20190719 20190718T064629_20190718T064632_T44XNF

Krestovaya 2016 LC08_109010_20160806 20160804T013657_20160804T032423_T56WPD

Chokurdakh 2018 LC08_116010_20180813 20180804T022549_20180804T022545_T55WEU

Pleistocene Park 2019 LC08_105012_20190819 20190816T012701_20190816T012658_T57WWS

Chukotka 2019 LC08_085014_20190705 20190806T231601_20190806T231556_T02WMT

Batagay 2018 LC08_122012_20180807 20180711T024549_20180711T024544_T53WMR

Verkhoyansk 2018 LC08_129011_20180808 20180808T034529_20180808T034530_T51WWS

Yakutsk 2019 LC08_120017_20190727 20190726T024559_20190726T024554_T52VEP
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3.4 Results

3.4.1 Data Availability Assessment

We assessed the number of available Landsat and Sentinel-2 images by study site for 1999
to 2019 (Figure 3.3). For 1999 to 2015, only Landsat images from the sensors Landsat 5
TM, 7 ETM+, and 8 OLI are available. The absolute number of available Landsat images
varies across study sites but overall the number of Landsat images increases within the study
period. The lowest number of images available for most study sites is in 1999, ranging from
0 Landsat images in East Taymyr to 6 Landsat images in West Taymyr. The number of
applicable Landsat images increases continuously, with the number of available Landsat images
exceeding 25 for West Taymyr in 2013 (33 images), Yakutsk in 2015 and 2017 (26 and 27
images) and Batagay in 2013 (26 images). Sobo Sise has the lowest total number of available
Landsat images from 1999 to 2019 with 105 images and Yakutsk the highest total number of
images with 303. There are noticeable image count peaks in the time series, including for West
Taymyr, Bykovsyk and Batagay in 2013 (33, 17, and 26 images, respectively), Chokurdakh in
2014 (25 images), Chukotka in 2007 and 2015 (14 images) and Yakutsk in 2007, 2005 and 2011
(22, 25, and 23 images, respectively).

The steady increase of Landsat images from 1999 to 2019 as well as the image peaks are due
to temporally overlapping satellite missions and changes in acquisition specifications. The image
peaks described correspond to acquisition mission overlaps of Landsat 5 TM and Landsat 7
ETM+ (peaks 2005, 2007, 2011) or Landsat 7 ETM+ and Landsat 8 OLI (peaks 2013, 2014)
(Wulder et al. 2019). Similarly, the overall low number of Landsat images at East Taymyr can
be explained with unavailable Landsat 5 TM acquisitions. Additionally, Landsat 8’s changed
acquisition specifications facilitate better coverage of northern high latitudes. The increased
acquisition rate (>700 scenes/day), increased storage capacities, and changed off-nadir viewing
capability of Landsat 8 allow for acquisitions up to 84◦ latitude for the first time (Wulder
et al. 2019), a tremendous benefit for northern high latitudes.

For 2016 to 2019 also Sentinel-2 images are available. From 2016 onward the number
of available Sentinel-2 images generally increases. Chukotka has the lowest number of
Sentinel-2 images in 2016 with 4 images and East Taymyr the highest number of Sentinel-2
images in 2018 with 162 images. The absolute number of Sentinel-2 images per year
mostly exceeds the number of Landsat images for the same year. The years 2018 and 2019
represent Sentinel-2 image peaks for all study sites, except Yakutsk. Since 2017, the Sentinel-2
mission is in full operation after its staggered satellite launch in 2015 (Sentinel-2A) and
2017 (Sentinel-2B), acquiring images continuously and resulting in an enhanced image
availability from 2018 onward (Drusch et al. 2012). The observable decline in available images
and cloud-free pixels in 2019 is a result of the extensive wildfires throughout Siberia in that year.

The number of cloud-free pixels by study site corresponds closely to the trend of the
number of images, the more images available the more cloud-free pixels are available as
well. There are no cloud-free pixels for East Taymyr in 1999 and 2002 and Krestovaya in
2001. For all study sites, the maximum number of cloud-free pixels is in either 2018 or
2019, except for Chukotka, West Taymyr and Yakutsk. In general, the highest numbers of
cloud-free pixels are from 2016 to 2019, where both Landsat and Sentinel-2 images are available.
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Figure 3.3: Data availability results for all twelve study sites. The bar plots indicate the
number of available Landsat (blue) and Sentinel-2 (red) images, corresponding to the first y-axis
(left). The crosses indicate the average number of cloud-free pixels per study site (AOIarea),
corresponding to the second y-axis (right). The total number of Landsat and Sentinel-2 images are
stated in the left corner of each plot.

Overall, the number of available images increases drastically with the addition of Sentinel-2
images and likewise the number of cloud-free pixels, enhancing the database for the mosaicking
workflow greatly.

3.4.2 Mosaic Coverage and Quality Assessment

For the predefined 25 × 25 km study site areas (AOIarea) we calculated the mosaic
coverage percentages for 2016–2019 and created the Landsat-only mosaics and also the
Landsat+Sentinel-2 mosaics for all twelve study sites. Table 3.3 shows the area coverage
results exemplarily for Kurungnakh for 2016–2019, and for those study sites where one or
both mosaics did not fully cover the AOIarea. Figure 3.4 illustrates the difference between the
Landsat-only and Landsat+Sentinel-2 mosaic for Kurungnakh in 2019. Mosaic gaps are clearly
visible in the Landsat-only mosaic and discolouring from cirrus and haze. Contrary to this,
the Landsat+Sentinel-2 mosaic shows full coverage and a homogeneous mosaic result. The study
sites and years not shown in Table 3.3 have an area coverage of >99.9% for both mosaics. We
consider a difference of <0.1% between the Landsat-only and Landsat+Sentinel-2 mosaic
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coverage of a study site as negligible.

While the Landsat+Sentinel-2 mosaics consistently cover the whole study areas, the Landsat-
only mosaics frequently contain holes and gaps (Table 3.3). Sobo Sise has the lowest Landsat
mosaic coverage with 27.2% in 2017 and East Taymyr a considerably low coverage of 58.1%
in 2017 as well. For the same years, the combined Landsat+Sentinel-2 mosaic achieves
a full coverage of the study sites. While Table 3.3 clearly points out the benefits of the
Landsat+Sentinel-2 mosaics in terms of area coverage for several sites, it also shows that
there are study sites with only very small area coverage discrepancy between Landsat-
only and Landsat+Sentinel-2 mosaic. We conducted the area comparison in mosaics for
four years (2016–2019) for each study site, which results in 48 area comparisons in total.
Out of the twelve study sites, six study sites (Kurungnakh, Bykovsky, Sobo Sise, East
Taymyr, Krestovaya, Chukotka) show differences in area coverage of >0.1% for thirteen
years of area comparison together (Table 3.3). The other six study sites (West Taymyr,
Yakutsk, Verkhoyansk, Batagay, Chokurdakh, and Pleistocene Park) show no differences
in the same four years. Our analysis clearly shows that combining Landsat and Sentinel-2
images in the mosaic workflow always reliably produces a full study area coverage of 99.9–100%.

Table 3.3: Area Coverage Calculation showing the percentage covered of the study sites (AOIarea)
by the Landsat mosaic and the combined Landsat+Sentinel-2 mosaic.

Study Site Year Landsat Mosaic [%] Landsat+Sentinel-2 Mosaic [%]

Kurungnakh 2016 99.7 100

2017 69.7 100

2018 100 100

2019 92.2 100

Bykovsky 2016 97.3 100

2017 72.9 100

2019 98.7 100

Sobo Sise 2017 27.2 100

2019 83.6 100

East Taymyr 2016 97.1 99.9

2017 58.1 99.9

Krestovaya 2019 98.5 100

Chukotka 2017 95.3 100

2019 99.7 100
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Figure 3.4: Landsat-only mosaic (left) and Landsat+Sentinel-2 mosaic (right) of Kurungnakh
for 2019.

To assess the quality of the Landsat+Sentinel-2 mosaics we conducted spectral band
comparisons between the mosaics and single cloud-free Landsat and Sentinel-2 images (Table
3.2), assessing the radiometric consistency of the mosaics. We here depict the spectral band
comparisons as scatter plots from Kurungnakh as a representative example of all study sites
(Figure 3.5). In Table 3.4 we also display the correlation coefficients (r-values) of the spectral
band comparisons of the other study sites.

There is a strong agreement between the Kurungnakh Landsat+Sentinel-2 2018 mosaic
and the Landsat 8 image as well as the mosaic and the Sentinel-2 image, only showing minor
scatter along the one-to-one line (Figure 3.5). The spectral band comparisons show a strong
correlation between both images and the mosaic, across all six bands. The r-values illustrate
this as well with the lowest r-value of 0.91 and 0.92 (Band 1) and the highest of 0.97 and 0.98
(Band 4) for the Landsat and Sentinel-2 image, respectively.

We found similar close correlations for the other study sites as well (Table 3.4).
An exception is the Krestovaya spectral comparison of Band 1 of the Sentinel-2 image
and the Landsat+Sentinel-2 mosaic with an r-value of 0.28, indicating poor correlation.
However, all other Sentinel-2 band correlations for Krestovaya are much higher, ranging from
0.60 (Band 2) to 0.93 (Band 5), signalling medium to good agreement. It is noticeable, that
the general correlation between the images and mosaics for Band 1 are the lowest, for both
Landsat and Sentinel-2 comparisons, followed by Band 2 and Band 3. The comparisons for
Band 4–7 are overall much higher and indicate strong correlations. The noticeable lower
correlation coefficients for Band 1, 2 and 3, the blue, green and red wavelength spectrum
respectively, are likely on account of the poorer quality of TOA products (USGS Product
Guide 2018) as well as the stronger effect of atmospheric conditions, clouds and cirrus, on the
visible wavelength ranges (Bartlett et al. 1998; Gómez-Chova et al. 2007; White et al. 2014).

There are no distinct differences or trends across the twelve study sites. All study sites show
a good correspondence between the mosaic, the Landsat, and Sentinel-2 image. Furthermore,
there is also no noticeable difference between the Landsat - mosaic and Sentinel-2 - mosaic
comparison. The correlation coefficient values between these two comparisons for one study
site are always very close to one another. This underlines that there is no specific trend or
sensor bias in the Landsat+Sentinel-2 mosaic as neither Landsat image nor Sentinel-2 image
shows higher agreement to the output mosaic.
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Table 3.4: The correlation coefficients (r-values) from the spectral band comparisons for each study
site between the Landsat image and the Landsat+Sentinel-2 mosaic and between the Sentinel-2
image and the Landsat+Sentinel-2 mosaic (see Table 3.2).

Landsat 8 Sentinel-2

Study Site B1 B2 B3 B4 B5 B7 B1 B2 B3 B4 B5 B7

Bykovsky 0.82 0.87 0.85 0.99 0.99 0.99 0.75 0.88 0.89 0.99 0.99 0.99

Sobo Sise 0.46 0.58 0.63 0.91 0.9 0.85 0.88 0.91 0.91 0.96 0.94 0.92

Kurungnakh 0.91 0.93 0.94 0.97 0.96 0.93 0.92 0.95 0.95 0.98 0.97 0.95

East Taymyr 0.40 0.51 0.78 0.95 0.92 0.90 0.48 0.71 0.91 0.99 0.99 0.99

West Taymyr 0.68 0.77 0.80 0.94 0.89 0.90 0.57 0.64 0.68 0.89 0.86 0.86

Krestovaya 0.55 0.76 0.90 0.97 0.97 0.97 0.28 0.60 0.78 0.91 0.93 0.91

Chokurdakh 0.61 0.78 0.85 0.98 0.98 0.96 0.61 0.79 0.84 0.97 0.97 0.95

Pleistocene Park 0.64 0.84 0.79 0.96 0.97 0.96 0.67 0.88 0.87 0.98 0.99 0.98

Chukotka 0.70 0.85 0.90 0.99 0.99 0.99 0.68 0.88 0.93 0.99 0.99 0.99

Batagay 0.73 0.87 0.94 0.97 0.97 0.97 0.66 0.84 0.89 0.95 0.95 0.94

Verkhoyansk 0.91 0.95 0.96 0.98 0.99 0.98 0.91 0.95 0.96 0.99 0.99 0.98

Yakutsk 0.69 0.81 0.93 0.93 0.97 0.97 0.66 0.80 0.92 0.93 0.97 0.97
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Figure 3.5: Spectral band comparison for the Kurungnakh site, with the TOA Landsat+Sentinel-
2 mosaic reflectance values on the y-axis and the Landsat 8 TOA (left column) or Sentinel-2
TOA (right column) reflectance values on the x-axis. The grey line is the one-to-one trend
line. The correlation coefficient (r-value), least square regression equation and root mean squared
error (rmse) for every band comparison is also shown.
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3.5 Discussion

The mosaic results and the study area coverage highly depend on the available images and
cloud-free pixels in one year, which in turn is dependent not only on the scene acquisition rate
but also on climatic and local weather conditions during July and August. In general, both
Landsat and Sentinel-2 are highly influenced by local weather conditions as they are both
optical sensor systems. Yet, the combined Landsat 8 and Sentinel-2 revisit time is very short,
at around 2.9 days at the equator and even shorter in the northern high latitudes (Li and Roy
2017). Their combined use highly increases the likelihood of obtaining cloud-free images during
July and August in a year, potentially providing a more robust database for the mosaics, which
is the most important prerequisite for large scale mosaics (Potapov, Turubanova, and Hansen
2011; White et al. 2014). Our results confirm this, as not only the number of images but
especially also the number of cloud-free pixels increases greatly for all twelve study sites when
combining Landsat and Sentinel-2, enhancing the input database for the mosaic workflow.

When the usable image database is sufficient, the Landsat-only mosaics can achieve a full
coverage of a study area. In 2018 for example this is possible for Kurungnakh. The same
applies for the six study sites mentioned in Section 3.4.2 where the Landsat-only mosaics
achieve a coverage of 99.9–100%. These findings suggest that the existing Landsat-only
approach may be sufficient in some cases. However, at the same time half of our study
sites were not fully covered by Landsat-only mosaics and the mosaic coverage strongly
benefited from the adapted Landsat and Sentinel-2 mosaic workflow. The increased number of
images and especially also the increased number of cloud-free pixels when adding Sentinel-2
data to the mosaicking workflow ensured a full coverage of the study areas. Hence, a full
study site coverage can most reliably be achieved by the combined Landsat+Sentinel-2 mosaics.

In our assessment we can observe a north to south gradient in both Landsat image and
cloud-free pixel availability as well as in the study area coverage. The total number of Landsat
images for every study site extends from Sobo Sise in the north with the least number of
images to Yakutsk, the most southern study site, with the highest number of usable Landsat
images. This north-south gradient in usable image numbers is observable across the whole
Landsat acquisition period due to the differing data acquisition strategies of Landsat sensors,
satellite on-board memory capacities, and satellite and sensor geometries (Egorov et al. 2019;
Ju and Roy 2008). In addition, there is a south to north gradient in cloudiness from more drier
continental sites farther inland with less cloudiness to sites with more maritime influence at the
Arctic coast with more frequent clouds and fog. Hence, predominantly the most northern study
sites are not fully covered by the Landsat-only mosaics in certain years, such as Kurungnakh,
Bykovsky, Sobo Sise, East Taymyr, Krestovaya and Chukotka. These areas are especially prone
to cloud cover and fog, which decreases the number of usable images considerably, making
the mosaicking more challenging (White et al. 2014). The two platforms of Sentinel-2 help
counterbalancing this effect along the north-south gradient, ensuring a more stable database
across the latitudes. Thus, assessments in the northern high latitudes especially benefit from the
Landsat+Sentinel-2 mosaic workflow as it ensures full spatial coverage and a reliable time series.

Our analysis primarily focused on the spatial dimension of mosaic coverage but the spatial
completeness of annual mosaics also directly impacts time series assessments. In time series
analysis the complete annual mosaics ensure a temporally consistent database without data
gaps across years. In contrast, spatially incomplete mosaics result in missing years and thus
temporal gaps in the time series. For example, there are no images and therefore also no
cloud-free pixels available for East Taymyr in 1999 and 2002, and in six more years (2001,
2003, 2004, 2005, 2008, 2010) there are only few images available and therefore on average less
than 1 cloud-free pixel across the AOIarea. A Landsat-only time series analysis for the high
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Arctic coastal site East Taymyr is therefore questionable since the yearly database is irregular
and unreliable. Only from 2016 onward with the additional availability of Sentinel-2 data does
the number of cloud-free pixels increase substantially, allowing for spatially complete annual
mosaics and indicating the first stretch of temporal consistent data useful for a potential time
series analysis. Our findings underline the advantage of combining data from multiple sensors
on the overall data availability for continuous, good quality time series analyses (Egorov et al.
2019).

Being able to create a reliable annual mosaic database starting as early as 1999 for
time series analysis is already an extensive improvement. However, for certain ecosystem
or biophysical dynamics, such as changes in vegetation phenology, an annual time stamp is
not sufficient but a much higher intra-annual temporal resolution is required (Zeng, Jia, and
Epstein 2011; Beamish et al. 2020). While we do not assess this here specifically, we assume
that this combined mosacking workflow of Landsat and Sentinel-2 data has the potential
to produce intra-annual mosaics. As the combined repeat cycle of Landsat and Sentinel-2
data is less than 2.9 days in the northern high latitudes (Li and Roy 2017), the enhanced
Landsat and Sentinel-2 image database may allow to create multiple mosaics for a year,
covering for example spring, summer and autumn time. While we cannot obtain a very high
temporal resolution as for example MODIS does yet, we however achieve a much higher spatial
resolution with Landsat and especially Sentinel-2 (10 to 30m), delivering new insights into
small-scale changes in heterogeneous permafrost landscapes.

In this study we closely follow the workflow from the GEE LandTrendr algorithm. However,
changing the input data sets from the SR product to the TOA collections and adding
another sensor, potentially introduces inaccuracy to the mosaic output. One step to minimise
errors is to apply a stringent workflow and apply per-pixel compositing rules (Potapov,
Turubanova, and Hansen 2011), which was already established in the LandTrendr workflow and
is maintained in this adaptation. The overall spectral comparisons between Landsat+Sentinel-2
mosaic and Landsat and Sentinel-2 images show close agreement between the input images
and the resulting mosaic. The strong correlation to both independent, single-date Landsat
and Sentinel-2 images underlines that there are no systematical artefacts introduced in the
mosaicking process. The applied image transformation and harmonisation steps, which were
further extended to the Sentinel-2 images, result in a compatible database. Since the correlation
coefficients of both comparisons do not show a better fit to either Landsat or Sentinel-2
image, the medoid mosaic output evidently manages to create representative, sensor-unbiased
annual output mosaics (Flood 2013; White et al. 2014). Overall, surface reflectance images are
of higher quality than TOA images, because of their advanced calibration and radiometric
corrections. In order to detect and monitor more subtle changes, that are reflected in smaller
spectral change signatures such as shifts in vegetation, it is necessary to use SR data instead
of TOA (Masek et al. 2006). We are confident that once Sentinel-2 SR data is available the
workflow can be easily adapted to SR data and deliver mosaic results with similarly good
spectral characteristics, as the TOA spectral comparison results are already very positive.

The huge potential of earth observation applications combining Landsat and Sentinel-2 have
been comprehensively discussed even before the launch of Sentinel-2 (Drusch et al. 2012; Wulder
et al. 2015; Gómez, White, and Wulder 2016). An important step is the harmonisation and
transformation of the sensor products that enables the combined use of Landsat and Sentinel-2
(Runge and Grosse 2019; Flood 2017; Chastain et al. 2019; Mandanici and Bitelli 2016; Claverie
et al. 2018). The possibilities of sensor combination range from data fusion approaches (Wang
et al. 2017), temporal aggregations (Carrasco et al. 2019; Shang and Zhu 2019) to combined
spatial annual mosaics for large area coverage, such as Canada (White et al. 2014), Germany
(Griffiths, Nendel, and Hostert 2019), or Africa (Xiong et al. 2017). Creating large scale mosaics,
especially in areas with data limitations, remains challenging (White et al. 2014; Roy et al.
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2010; Potapov, Turubanova, and Hansen 2011). Especially the northern high latitudes benefit
from earth observation approaches combining multiple platforms and sensors, as they are
otherwise very restricted in data availability, limiting remote sensing time series analysis hugely.

This study presents an approach to achieve full spatial coverage of northern high latitude
permafrost regions with remote sensing data on an annual basis for the first time. The combined
Landsat and Sentinel-2 mosaic workflow accomplishes both a high spatial and also temporal
data coverage, needed for studying a range of ecosystem and landscape dynamics in rapidly
changing Arctic and Boreal regions (Box et al. 2019). A high temporal resolution of data
is important for understanding disturbance evolution, frequency, and impacts (Kasischke
et al. 2013). An annual temporal resolution of time series analysis allows to assess highly
dynamic permafrost pulse disturbances and possibly even identify the main disturbance
drivers. Thermokarst lake dynamics and particularly lake drainage events have currently only
been identified and described based on multiple-date images or trend analysis (Jones et al.
2020; Nitze et al. 2017; Olthof, Fraser, and Schmitt 2015; Hinkel et al. 2007). An annual time
series analysis will help to narrow down change drivers and identify inter-annual lake dynamics,
such as partial or full drainage, or intermittent infilling, which otherwise remain undiscovered
in multi-year trend data. This similarly applies to retrogressive thaw slumps, which occur
widely across the terrestrial Arctic (Nitze et al. 2018). They are highly dynamic permafrost
disturbances but an annual monitoring was not possible so far across large regions, limiting
understanding of potential links to climatic and weather conditions that drive the slumping
dynamics (Brooker et al. 2014; Balser, Jones, and Gens 2014; Kokelj et al. 2015a; Lewkowicz
and Way 2019; Ward Jones, Pollard, and Jones 2019). We therefore anticipate that these
processes can be detected and monitored in greater detail when applying LandTrendr with
Landsat+Sentinel-2 annual mosaics. The LandTrendr analysis output will deliver information
on the location and timing of thaw disturbances, the temporal progression on an annual basis
since 1999, and possibly forms a foundation for volumetric change analysis in areas where
multi-year digital elevation models are available. These results will give new estimations of the
impact of permafrost thaw on landscapes, biogeochemical cycles, and the biophysical systems.
Since this approach is fully scalable, the more detailed and homogeneous remote sensing-based
assessment of permafrost disturbances and their annual dynamics on regional to pan-arctic
scales will provide crucial information for identifying main drivers of abrupt thaw events in the
permafrost domain. The results will also help including these processes in large-scale climate
models, something that has been lacking so far and was identified as an important knowledge
gap (Grosse et al. 2011c; Grosse et al. 2016; Turetsky et al. 2020).

3.6 Conclusions

The overall objective of this study was to assess the combination of Landsat and Sentinel-2
data in a mosaic workflow to create good quality annual mosaics for the growing season (July
and August) as input for high temporal time series assessments in northern high permafrost
latitudes. We found that the number of available images, as well as the number of cloud-free
pixels, increases drastically when combining Landsat and Sentinel-2 images. The combined
Landsat and Sentinel-2 input database for mosaics is thus highly enhanced, which improves
the mosaic results as the combined Landsat+Sentinel-2 mosaics cover the spatial extent of
study areas reliably without data-gaps. Especially northern, coastal sites benefit from the
combined Landsat+Sentinel-2 approach, where Landsat-only mosaics show poorer results.
A stringent mosaic workflow, including spectral harmonisation functions between Landsat and
Sentinel-2, ensures data consistency across sensors and achieves homogeneous, good quality
mosaics from Landsat and Sentinel-2 as shown by spectral comparison between images and
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mosaic outputs. Applying the Landsat+Sentinel-2 mosaic approach by aggregating image data
annually for a set time period accomplishes not only high spatial but also continuous temporal
coverage enabling large scale time series assessments. Based on our findings we conclude that
our approach combining Landsat and Sentinel-2 data makes LandTrendr in principle suitable
for permafrost disturbance assessments also in challenging environments of northern high
latitudes, where frequent clouds, fog, and snow and ice cover limit the acquisition of good
quality multispectral imagery. The application of LandTrendr with our combined Landsat- and
Sentinel-2 mosaic approach to the high latitudes will allow assessing permafrost disturbance
processes for the first time with a continuous time series, deriving temporal dynamics, such as
disturbance location, timing and temporal progression since 1999, on an annual scale which
has not been achieved before. Following large-scale or circumpolar permafrost disturbance
assessments will deliver highly needed consistent and scalable input for climate models.
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4.1 Abstract

Permafrost is warming globally, leading to widespread permafrost thaw. Particularly ice-rich
permafrost is vulnerable to rapid thaw and erosion, impacting whole landscapes and ecosystems.
Especially retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to
tens of meters each year and lead to an increased soil organic carbon release. Local remote
sensing studies have identified increasing RTS activity in the last two decades by increasing
number of RTS or heightened RTS growth rates. However, a large-scale assessment across
diverse permafrost regions and in high temporal resolution allowing to further determine RTS
thaw dynamics and its main drivers is still lacking.

In this study we adapt the automatic disturbance detection algorithm LandTrendr for
large-scale RTS identification and mapping at high temporal resolution. We adapted and
parametrised the temporal segmentation algorithm for annual gradual and abrupt disturbance
detection to incorporate Landsat+Sentinel-2 mosaics, ran the temporal segmentation for the
tasseled cap greenness index with tailored parameters, conducted spectral filtering based on
the LandTrendr output, spatial masking and filtering, and finally a binary machine-learning
object classification of the disturbance output to separate between RTS and false positives (F1
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score: 0.609). We apply the algorithm to North Siberia (8.1 x 106 km2). Ground truth data
for calibration and validation of the workflow was collected from 9 known RTS cluster sites
using very high-resolution RapidEye and PlanetScope.

Our study presents the first automatically derived assessment of RTS distribution and
temporal dynamics at continental scale. We identified 50,895 RTS and a steady increase in
RTS-affected area from 2001-2019 across North Siberia, with a more abrupt increase from
2016 onward, indicating heightened thaw slump dynamics in this period. Overall the RTS-
affected area increased by 331 % compared to 2000 (2000: 20,158 ha, 2001-2019: 66,699 ha).
Contrary to this, 5 focus sites show spatio-temporal variability in their annual RTS dynamics,
with periods of increased and decreased RTS development, indicating a close relationship to
varying thaw drivers. The majority of identified RTS was active from 2000 onward and only
a small proportion initiated during the assessment period, highlighting that the increase in
RTS-affected area was mainly caused by enlarging existing RTS and not by new RTS. The
detected increase in RTS dynamics underlines the importance of assessing abrupt permafrost
disturbances with high spatial and temporal resolution at continental scales. Obtaining such
consistent disturbance products will be useful to parametrise regional and global climate
change models.

4.2 Introduction

Permafrost is warming globally and experiences intensifying rates of degradation (Biskaborn
et al. 2019; Vasiliev et al. 2020; Farquharson et al. 2019). As permafrost is defined by the
thermal state of the ground, with a temperature being at or below 0 ◦C degrees for at least
two consecutive years, the state and extent of permafrost is highly dependent on the prevailing
thermal regime of the land surface (Brown et al. 1997). Key indicators of Arctic climate
change such as increasing air temperatures, intensifying precipitation events, declining sea
ice thickness and spring snow cover extent impact the state of the permafrost (Box et al.
2019), ultimately leading to increased permafrost temperatures and inducing widespread
permafrost thaw (Biskaborn et al. 2019). Near-surface permafrost loss impacts whole
landscapes (Jorgenson and Grosse 2016), ecosystems (Schuur and Mack 2018), hydrological
systems (Liljedahl et al. 2016), urban infrastructure (Hjort et al. 2018) and soil carbon
accumulation and decomposition (Hicks Pries et al. 2015; Walter Anthony et al. 2018), resulting
in increased rates of soil organic carbon release (Schuur and Abbott 2011; Turetsky et al. 2019).

While permafrost warming is observed to cause widespread gradual active layer deepening
across the pan-arctic permafrost region (Park, Kim, and Kimball 2016), ice-rich permafrost is
particularly vulnerable to rapid thaw and erosion as high ground ice contents may accelerate
degradation by thermokarst (Kokelj and Jorgenson 2013) and thermo-erosion (Are 1988)
processes. These processes are often driven by other pulse disturbances such as strong
warming or precipitation events, hydrological changes, fires, or direct anthropogenic impacts
on the soil thermal regime (Grosse et al. 2011b). Resulting degradational landforms include
thermo-erosional gullies and valleys (Morgenstern et al. 2021), degrading ice wedge polygons
(Liljedahl et al. 2016), thermokarst lakes (Grosse, Jones, and Arp 2013), steep permafrost
coastal bluffs (Günther et al. 2013), active layer detachment slides (Lewkowicz 2007), and
retrogressive thaw slumps (Burn and Lewkowicz 1990), all which change landscapes more
drastically and much faster than gradual top-down thaw by active layer deepening (Turetsky
et al. 2020).

While remote sensing does not directly sense permafrost, a subsurface phenomenon
defined by ground temperature only, it does allow improved estimation of the distribution,
magnitude and impact of permafrost thaw landforms and processes associated with melt of
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excess ground ice. In addition, other permafrost region characteristics such as land cover,
land surface temperature, and soil moisture can be observed with remote sensing (Jorgenson
and Grosse 2016; Westermann et al. 2015b; Trofaier, Westermann, and Bartsch 2017) and
help improve landscape-scale permafrost models (Obu et al. 2019). Given the remoteness
and vast extent of permafrost regions, remote sensing-based data and techniques are the
only tools to detect, monitor and assess permafrost disturbances at regional to continental
scales with spatial and temporal consistency. Abrupt permafrost region disturbances, such
as wildfires (Frazier et al. 2018), retrogressive thaw slumps (Brooker et al. 2014; Segal
et al. 2016; Nitze et al. 2018), coastal erosion (Irrgang et al. 2018; Jones et al. 2018),
and thermokarst lake change and drainage (Nitze et al. 2017; Nitze et al. 2020) have
been mainly mapped on local to regional scale. Additionally, the temporal resolution of
many assessments ranges from few individual snapshots in time on decadal scales (Irrgang
et al. 2018; Morgenstern et al. 2021), which is characterised by labour and time intensive
manual mapping approaches, to deriving disturbance trends from multi-decadal time series
data (Brooker et al. 2014; Nitze et al. 2018), which rely on automatic algorithm-based methods.

Open image archives and newly available cloud-computing possibilities abolished previous
data and processing restrictions and led to an expanded development of remote sensing-based
time series and disturbance detection algorithms, with an increased focus on high temporal
resolution assessments (Zhu 2017). Especially the Landsat archive, containing the longest
continuous data set comprising nearly 50 years of multi-spectral high resolution (30 m) images
acquired with a 16-day revisit cycle, has been used for large-scale time series assessments
(Wulder et al. 2019). Prominent examples are annual global forest maps (Hansen et al. 2013)
and global surface water changes (Pekel et al. 2016). Advanced disturbance algorithms differ
in targeted observed change (gradual vs. abrupt), spectral index applications, temporal
input data frequency, and whether they detect past changes or conduct near real-time
monitoring (Zhu 2017). This development also provides new means to detect and monitor
abrupt permafrost disturbances in large-scale assessments at high temporal resolution. While
the existing algorithms already provide diverse assessment options, change and disturbance
detection in northern high latitudes is still challenging as time series studies with optical
remote sensing are restricted due to frequent cloud cover, short summer periods, and low
illumination angles. This confines data availability drastically and limits algorithm applications
that require high temporal input data. However, the combination of imagery from multiple
similar sensors, such as Landsat and Sentinel-2, increases data availability in the northern high
latitudes strongly and enhances change and disturbance detection at high temporal resolution
(Runge and Grosse 2019; Runge and Grosse 2020).

In this study we focus on the development of a remote sensing method for automatically
identifying and mapping retrogressive thaw slumps across continental scale regions.
Retrogressive thaw slumps (RTS) result from slope failure after thawing of ice-rich permafrost
which is found either in ice-rich Yedoma regions (Strauss et al. 2017b) or formerly glaciated
areas that still contain permafrost-preserved buried glacial ice (Kokelj et al. 2017). Initiated by
fluvial processes, thermo-erosion or mass wasting following heavy precipitation events and the
exposure of ice-rich permafrost, RTS expand successively into the landscape with retrogressive
growth of a steep headwall and the increase of a slump floor, rapidly and irreversibly changing
the landscape (Ardelean et al. 2020; Kokelj and Jorgenson 2013; Séjourné et al. 2015). RTS
vary in size, ranging from under 0.15 ha to mega slumps of 52 ha and more (Ramage et al.
2017; Kokelj et al. 2015a; Lacelle et al. 2015; Günther et al. 2015). Individual RTS are local,
small-scale disturbances but often occur in regional clusters that then impact the surrounding
landscape drastically by affecting topographic gradients and sediment transport (Kokelj et al.
2013; Mu et al. 2020), water quality (Kokelj et al. 2005), coastal erosion (Lantuit and Pollard
2008; Ramage et al. 2017) and carbon cycling (Cassidy, Christen, and Henry 2017; Turetsky
et al. 2020). Commonly observed RTS growth rates range from meters to tens of meters
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per year (Kokelj and Jorgenson 2013). Increasing permafrost thaw due to climate change is
predicted to intensify their thaw dynamics (Lantuit and Pollard 2008; Segal et al. 2016; Lantz
and Kokelj 2008). Their combined impact on landscapes and biogeochemical cycling and the
abruptness of their rapid development make RTS a highly important permafrost disturbance
feature that require better monitoring and prediction capabilities.

Several local remote sensing studies find an acceleration of RTS dynamics by increasing
numbers of active RTS, increasing sizes of RTS, and faster headwall retreat rates (Lewkowicz
and Way 2019; Ramage et al. 2017; Ward Jones, Pollard, and Jones 2019), a development
indicating intensified permafrost thaw and landscape degradation. Previous RTS studies
covered a range of local to regional spatial extents and annual to decadal temporal resolutions.
Commonly, RTS dynamics were estimated using very high resolution remote sensing imagery
for limited local spatial extents from a selected number of points in time, allowing assessment of
individual or a cluster of few RTS (Ardelean et al. 2020; Balser, Jones, and Gens 2014; Lantuit
and Pollard 2005; Lantuit and Pollard 2008; Lantz and Kokelj 2008; Luo et al. 2019; Segal
et al. 2016; Séjourné et al. 2015; Mu et al. 2020). Based on manually digitised RTS extents and
limited fieldwork, these studies found increasing rates of RTS activity for varying time periods.
A key restriction for such analyses is the limited availability of very high-resolution imagery,
allowing only small study extents and a low temporal resolution. Manual mapping using high
resolution SPOT imagery provided a first regional insights into RTS distribution across a
1.27 x 106 km2 region in NW Canada (Kokelj et al. 2017). Advancing these approaches, RTS
disturbance trends were derived from multi-decadal Landsat image stacks, which help mapping
the distribution of active RTS at regional scales in Canada, Alaska, and Siberia (Brooker et al.
2014; Kokelj et al. 2015a; Nitze et al. 2018) and a deep learning algorithm applied to map
RTS from very high-resolution images in the Tibetan Plateau (Huang et al. 2020). These first
automatic mapping approaches enabled assessments of RTS dynamics at larger scales and
results suggest that local permafrost disturbances occurring in regional clusters may have a
significant impact on the landscape-scale. Ward Jones et al. 2019 and Lewkowicz and Way
2019 conducted the first high temporal resolution RTS assessments from annual input data for
the last or last two decades, respectively. They derived the first results indicating the increase
in occurrence and thaw dynamics of RTS at a high temporal resolution from manual RTS
digitisation and image assessments and linked these to climatic drivers, advancing our RTS
knowledge greatly. Despite this, it sill remains unknown how high temporal RTS dynamics
are caused and may shift with climate change at a larger scale, as both studies are restricted
to rather local study sites in the High Arctic. To achieve a better understanding of RTS
temporal dynamics and for example their potential contribution to the global carbon cycle,
more representative, large-scale, high temporal RTS assessments are required.

The aim of this study is to combine two key elements from the previous RTS assessments:
firstly, to apply an automatic RTS mapping approach for large-scale assessments, taking into
account the diversity of permafrost regions; secondly, to conduct a high temporal resolution
assessment, which addresses the year-to-year dynamics of RTS. Our main objective is to
assess RTS disturbance dynamics at high temporal resolution in North Siberia. For this, we
developed a new adaptation of LandTrendr (LT), an algorithm for automatic time series
disturbance mapping and analysis (Kennedy, Yang, and Cohen 2010), and designed a tailored
algorithm parametrisation specifically for the assessment of RTS. LT performs pixel-based
temporal segmentation of spectral trajectories and identifies break-points of spectral change
which indicate a landscape disturbance. The algorithm captures both gradual and abrupt
disturbances from annual Landsat mosaics, enabling the quantification and assessment of
annual change. An annual resolution of data is appropriate to detect RTS dynamics related to
annual thaw cycles and the 30 m spatial resolution is also sufficient to map RTS (Brooker et al.
2014; Nitze et al. 2018). However, for a enhanced spatial and temporal coverage, especially
at northern high latitude coastal areas, we here combine Landsat + Sentinel-2 mosaics as
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input data for LT, overcoming some of the restrictions of optical remote sensing due to
frequent cloud cover in Arctic regions (Runge and Grosse 2020). We assess the applicability
and accuracy of our method at local focus sites and derive quantitative annual disturbance
dynamics of RTS from 2000 to 2019. Further, we upscale this method to an approximate 8.1
x 106 km2 study region to map the occurrence and distribution of RTS and determine their
annual disturbance dynamics for North Siberia.

4.3 Study Area and Methods

4.3.1 Study area

The study area covers the terrestrial northern high latitudes of Siberia, Russia, ranging from
Taymyr Peninsula in the West (80◦ E) to Chukotka in the East (170◦ W) and roughly from
77◦ N to 55◦ N, comprising an area of approximately 8.1 x 106 km2. Based on the geographic
location we refer to this extent as North Siberia. The majority of this area is characterised
by continuous permafrost, discontinuous permafrost is found only in Chukotka as well as
along the southern margins of the study area, where permafrost extent further declines to a
sporadic or isolated coverage (Fig. 4.1). Unglaciated areas experienced long-term syngenetic
freezing and continuous sedimentation during the Pleistocene, which led to the accumulation
of ice-rich periglacial deposits (Kanevskiy et al. 2011). Ground ice volume varies across North
Siberia but can reach more than 40 % as in the southern part of the Lena Delta or even up
to 80 % in the Yedoma ice complex (Stolbovoi and McCallum 2002; Strauss et al. 2017b).
The climate regions are broadly defined by the arctic and boreal zones and varying maritime
and continental influences, resulting in a range of sub-regional climatic characteristics (Sayre
et al. 2020). Bioclimatic zones in the region range from polar desert to tundra and taiga
(Olson et al. 2001). Furthermore, the study area is defined by interior and coastal lowlands
and several mountain ranges such as the Central Siberian Plateau, Byrranga, Verkhoyansk,
Cherskiy, Kolyma, and Koryak mountains, as well as the major river systems of the Khatanga,
Anabar, Olenek, Lena, Yana, Indigirka, Kolyma, and Anadyr (Fig. 4.1).

A total of nine focus sites are used for the methodological set-up, especially calibration and
validation, but also for in-depth result analysis. The focus sites cover the extent of the study
area and represent varying geologic, geomorphologic, climatic and vegetational conditions.
Table 4.1 lists the focus sites and gives insights into the specific ecosystem characteristics.

Table 4.1: Focus site locations and their characteristics. Mean annual air temperature (MAAT)
and mean annual total precipitation (MATP) are derived from ERA5 data copernicus2017era5.

Focus
site

Coordinates
(centre)

Site
characteristics

MAAT
Jan /Jul [◦C]

MATP
[m]

Lower Lena 69.1 ◦N, 124.5 ◦E inland, hilly-mountainous, Yedoma, Taiga -36.5 / 14.9 0.032
Iultinsky 67.7 ◦N, 176.5 ◦W coastal, lowland, Tundra -25.1 / 7.1 0.040
Chukotka 65.1 ◦N, 172.1 ◦W coastal, lowland, Tundra -19.9 / 9.0 0.052

East Taymyr 75.6 ◦N, 113.6 ◦E coastal, lowland, Yedoma, Tundra -28.6 / 3.8 0.028
West Taymyr 73.3 ◦N, 86.9 ◦E coastal, hilly, Tundra -27.1 / 8.1 0.043

Kolyuchinskaya Bay 66.7 ◦N, 174.4 ◦W coastal, lowland, Tundra -21.5 / 5.2 0.048
Chokurdakh 70.6 ◦N, 147.9 ◦E coastal, lowland to hilly, Yedoma, Tundra -33.9 / 10.2 0.024

Batagay 67.6 ◦N, 134.8 ◦E inland, hilly to mountainous, Yedoma, Taiga -41.9 / 15.7 0.021
Southwest Verkhoyansk 67.1 ◦N, 125.6 ◦E inland, lowland, Yedoma, Taiga -36.2 / 14.9 0.049

Mountain Range
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Figure 4.1: Overview of the study area and focus sites across North Siberia. From West to East:
a. West Taymyr, b. East Taymyr, c. Lower Lena, d. Southwest Verhoyansk Mountain Range, e.
Batagay, f. Chokurdakh, g. Iultinsky, h. Kolyuchinskaya, and i. Chukotka. Permafrost zones
according to Obu et al. 2019, Yedoma extent according to Strauss, Laboor, Fedorov, et al. 2016
ecosystem according to Olson et al. 2001 and rivers from Natural Earth Data kelso2010introducing.

4.3.2 General workflow and ground truth data

LandTrendr (LT) was originally developed and designed to detect and capture forest
disturbances. Therefore, we had to parametrise the algorithm to be applicable for RTS
disturbance dynamics. This comprises several individual steps, which required continuous
calibration and validation. Ground truth (GT) data is sparse in North Siberia and only
few RTS clusters are known so far. We therefore concentrated on the focus sites and
collected as much GT data as possible for calibration and validation. To achieve robust
results we assessed every parametrisation step individually. Figure 4.2 shows the general
workflow to adapt LT to LT-LS2 (LandTrendr Landsat + Sentinel-2) and to parametrise
LT-LS2 to be applicable to RTS. The individual steps will be discussed in the following sections.

We collected GT data for six focus sites across North Siberia to assess the temporal dynamics
of RTS. We obtained very high-resolution (VHR) RapidEye images (5m) (Krischke, Niemeyer,
and Scherer 2000) for as many years as available for the focus sites (Tab. 4.2). There are only
images available from 2013 onward, which implies that the period 1999-2012 cannot be assessed
with RapidEye data as independent GT data. This lack of VHR data is a general limitation
for North Siberia and unfortunately reflects how infrequent qualitatively sufficient VHR data
is available for this region also from other missions such as SPOT, Pléiades, WorldView
and GeoEye prior to 2013. Hence, we make use of the maximum amount of RapidEye data
available. We manually digitised multi-temporal RTS extents from the RapidEye images by
visualising false-color composites for better RTS identification and with additional guidance of
the permafrost region disturbance trend product (PRD) of the ESA GlobPermafrost project
(Nitze et al. 2018) and ESRI’s VHR satellite basemap (ESRI 2017). The collection of RTS
extents shows the RTS size at different times and depicts the RTS development over several
years at the six focus sites. Following the development of RTS as indicated by the digitised
extents, we defined observation points along central transects through individual RTS, which
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Figure 4.2: Workflow to adapt LT-GEE to LT-LS2 and parametrise the algorithm for retrogressive
thaw slump (RTS) assessment.

77



4. Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with
LandTrendr

Figure 4.3: The RTS extents at different years and determined observation transect points for
an exemplary retrogressive thaw slump on a lake in Iultinsky. The base picture is a false-colour
composite of the RapidEye image RE1 11-07-2018. Bluish color of the lake indicates substantial
sediment influx from the RTS as opposed to other dark lakes in the surrounding.

are representative for different disturbance years of the slump (Fig. A 4.3) (Brooker et al. 2014).

To assess the extent of RTS at the end of the time series period and to calibrate and
validate the spatial filtering and mapping capability of the LT-LS2 algorithm, we manually
digitised the RTS extents from the most recent VHR images available to us (Tab. 4.2). For
those focus sites where no RapidEye image was available from 2018 or 2019 we therefore
obtained additional cloud-free PlanetScope images (3m) (Planet Team 2017).

Table 4.2: Focus sites and very high-resolution image data used for calibration and validation
of the temporal segmentation and the spatial mapping step for LT-LS2 parametrisation. R =
RapidEye, P = PlanetScope.

Site Temporal
segmentation

Years VHR
images (R)

RTS
transects

Assessment
points

Spatial
mapping

Year RTS
extent (R/P)

Chukotka Calibration 2013, 2014, 2016, 4 18 Calibration 2019 (R)
2017, 2018, 2019

Batagay Calibration 2013, 2016, 2017 4 19 Validation 2018 (P)
Lower Lena Calibration 2013, 2014, 2016, 2018 4 24 Calibration 2019 (P)

Iultinsky Validation 2014, 2016, 2018 3 20 Calibration 2018 (R)
Kolyuchinskaya Bay Validation 2013, 2014, 2015, 2016, 4 25 Validation 2019 (R)

2017, 2018, 2019
Southwest VMR Validation 2019 (P)

In a second step we used TimeSync for calibration and validation of the run parameters
for the temporal segmentation in LT-LS2. TimeSync consists of four components for visual
assessment of time series data: (1) annual image chips from the assessment region, in our case
the yearly Landsat+Sentinel-2 mosaics (Runge and Grosse 2020), (2) spectral trajectories
of observation points extracted from the mosaic time series, (3) Google Earth window with
recent and past high-resolution images for a general overview, and (4) an assessment database
for result documentation (Cohen, Yang, and Kennedy 2010). For every transect point (Fig.
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4.3) we assessed the annual image chips, spectral trajectory and Google Earth history images
to visually identify the timing of RTS disturbance, greatest disturbance segment, and the
temporal segmentation of the overall spectral trajectory accordingly. As output of the manual
TimeSync assessment, we recorded the year of disturbance (GT YOD) for every transect point.
We used the GT results of Chukotka Coast, Batagay and Lower Lena for calibration of the
LT-LS2 temporal segmentation (’run parameters’), and Iultinsky, and Kolyuchinskaya Bay for
validation (Tab. 4.2).

In a last step we conducted a binary machine-learning classification to further remove
abundant false positive objects. Based on the LT-LS2 disturbance detection results, we created
a training and validation data set, by manually labelling all identified objects into either RTS
(label id 1) or no RTS (label id 0) for the focus sites Lower Lena, Iultinsky, Chukotka, West
Taymyr, and Chokurdakh. For identification of the disturbance objects, we used again the
PRD and ESRI’s VHR stellite basemap (Nitze et al. 2018; ESRI 2017). Table 4.3 gives an
overview of the identified RTS for validation for each focus site.

Table 4.3: The identified RTS in the disturbance data set for training of the machine-learning
algorithm.

Study Site Number of RTS
Chukotka Coast 53

Iultinsky 66
Lower Lena 71

West Taymyr 116
Chokurdakh 206

Total 512

4.3.3 Data and LandTrendr

Landsat and Sentinel-2 images are the input for this time series assessment as they together
have the densest and longest continuous multi-spectral high resolution image archive. Their
combined increased image acquisition frequency ensures good data coverage in northern high
latitudes despite frequent cloud cover (Li and Roy 2017), which is required for high-temporal
time series analysis. In this assessment we are adapting and applying the LandTrendr
(Landsat-based detection of Trends in Disturbance and Recovery) algorithm (Kennedy, Yang,
and Cohen 2010). LandTrendr captures disturbance dynamics at high temporal resolution
while only requiring annual mosaics as input, which is attainable in northern high latitudes
by combining Landsat and Sentinel-2 (Runge and Grosse 2020). LT is fully integrated on
Google Earth Engine (GEE) as LT-GEE (Kennedy et al. 2018) and we followed the established
workflow for adaptation.

We filtered the full archives of Landsat (Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+) and Operational Land Imager (OLI)) and Sentinel-2 (MultiSpectral
Instrument (MSI)) top-of-atmosphere (TOA) image collections for North Siberia by image
acquisition dates from 1999 to 2020 and for the peak-growing season months, July-August.
Constraining the data to peak growing season reduces seasonal variations in reflectance values
and ensures spectral comparability of land covers between years independent of phenological
phases. An initial cloud cover filter, less than 80 %, was included as a first image quality
criterion, as cloud coverage is an issue in Arctic regions and reducing the image selection to
cloud-free images improves the overall assessment quality. Additionally, we masked cloud and
cloud shadow pixels based on the provided pre-processed metadata information for both image
products (Landsat band: BQA (CFMASK), Sentinel-2 band: QA60 (adapted CFMASK)) to
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ensure data quality. Lastly, we applied spectral band transformations from MSI to OLI (Runge
and Grosse 2019) and OLI to ETM+ data (Roy et al. 2016a) for spectral harmonisation
and temporal continuity across the different sensors in the time series. The filtered, masked
and harmonised image collections were input for a combined annual mosaicking process.
We applied the medoid mosaicking function (Flood 2013), which produces cloud-free, good
quality and seasonally representative annual mosaics in Arctic-Boreal regions (Runge and
Grosse 2020). With these consistent annual mosaics we ensured temporal continuity in the
time series and therefore had a robust input for the LT-LS2 assessment. Since we extended
the input database to also include Sentinel-2 images and rely on TOA data as opposed to
surface reflectance in the original LT-GEE algorithm, we will refer to the adapted algorithm
as LandTrendr Landsat + Sentinel-2 (LT-LS2) to avoid confusion.

4.3.4 Index selection

RTS can be mapped from multi-spectral data as there are distinct spectral differences between
the RTS ground dominated by bare or sparsely vegetated, disturbed soils and wet mudflows and
the surrounding undisturbed vegetated landscape (either tundra or forest). In a multi-spectral
time series, we expect to detect the change in reflectance values from undisturbed vegetation
to disturbed ground (Fig. 4.4). To determine the multi-spectral index, which captures this
spectral change in the time series most reliably, we conducted a comparative analysis of six
indices: the normalized difference vegetation index (NDVI) (Rouse et al. 1974), normalized
burn ratio (NBR) (Key and Benson 2005), normalized difference moisture index (NDMI)
(Wilson and Sader 2002), and the tasseled cap transformation indices greenness (TCG),
brightness (TCB), and wetness (TCW) (Huang et al. 2002). At three focus sites, Lower
Lena, Batagay and Iultinsky, we assessed the sensitivity of the indices to distinguish between
pre-disturbance, RTS disturbance and post-disturbance in a time series (Quintero et al. 2019;
Yang et al. 2018). The TCG and NDVI showed the clearest differentiation between the three
stages in a spectral time series compared to the other indices, representatively depicting the
indices for the focus site Lower Lena (Figure A 4.10). TCG showed more significant differences
between pre-, post- and the RTS disturbance year, while the variation in NDVI was more
subtle. We therefore proceeded with TCG as the assessment index, which is also in accordance
with the RTS mapping study by Brooker et al. 2014.

4.3.5 Temporal Segmentation

LT-GEE is primarily a time series segmentation algorithm that determines disturbance events
and change trends from spectral trajectories on a pixel-basis. The spectral temporal trajectory
is extracted from the time series of medoid mosaics and based on individual spectral bands or
indices. From a sequence of break-point and straight segment analysis steps, the temporal
segmentation is derived which describes the temporal spectral trajectories more simplistically
and eliminates noise from the time series (Fig. 4.4) (Kennedy, Yang, and Cohen 2010).
This segmentation process is controlled by a set of run parameters. Relating this to RTS
disturbances, the segment with the greatest change that describes a loss of vegetation in the
time series depicts the landscape disturbance.

The temporal segmentation process requires eight run parameters constraining the
algorithm to achieve the best fitted temporal trajectory representation of the disturbance. To
identify the most suitable run parameters for RTS disturbances we defined the range of possible
values for each parameter based on recommendations defined by the algorithm developers and
previous adaptations (Tab. 4.4) and compared the different temporal segmentation outputs
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Figure 4.4: Retrogressive thaw slump detection by LandTrendr. a. LandTrendr temporal
segmentation schematic, indicating the year of detected disturbance from change in spectral
magnitude and disturbance duration. b. Picture of coastal thaw slumping at Bykovsky Peninsula
(129.2 ◦E, 71.5 ◦N) in 2014 (G. Grosse). Note persons for scale. c. Thumbnails indicating the
development of RTS (white arrows in 2020) at the coast of Chukotka (172.2 ◦W, 64.6 ◦N) 2000-2020.
Illustration based on a TCB/TCG/TCW visualisation in the LT-GEE Time Series Animator App
(J 2020).
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to the GT data (Section 4.3.2). In total we ran 48 LT-LS2 temporal segmentations for each
calibration site and extracted the year of disturbance (LT-LS2 YOD) for the greatest loss
segment for each observation point. We calculated an error matrix between the GT YOD
and LT-LS2 YOD for all temporal segmentation runs at each focus site and recorded the
overall accuracy and Pearson’s correlation coefficient to determine the best fitting temporal
segmentation run and its corresponding run parameters. The segmentation results with the
highest Pearson’s correlation coefficient and overall accuracy were not the same for each focus
site but showed tendencies of the individual parameters. We therefore compared the runs
with the highest scores and picked the run parameters with the highest agreement between
sites and run options (Tab. 4.4). The selection of run parameters are in agreement with
recommendations from Kennedy et al. 2010 and their sensitivity assessment for a successful
LT set-up.

Table 4.4: List of necessary LT-LS2 run parameters for the temporal segmentation algorithm,
indicating all tested values and eventually selected values (in bold) for processing. Standard values
were chosen for vertex count overshoot, minimum observations needed and one year recovery
prevention.

Run parameter Values
Max segments 3, 4, 6
Spike threshold 0.75, 0.9

Vertex count overshoot 3
Recovery threshold 0.25, 0.5

Best model proportion 0.75, 1.0
Pval 0.05, 0.1

Minimum observations needed 6
Prevent one year recovery True

The results from the comparison between GT YOD and LT-LS2 YOD show that the
LT-LS2 temporal segmentation depicts the progression of annual temporal dynamics of
RTS well. We assessed the LT-LS2 temporal segmentation results using the run parameters
indicated in table 4.4 to compare GT YOD and LT-LS2 YOD for the RTS observation
transects and extended the assessment to two independent validation sites. The Pearson’s
correlation coefficient between GT YOD and LT-LS2 YOD show an agreement of up to
0.98 for individual RTS transects (Chukotka 1 and 4, Iultinsky 2, 3 and Kolyuchinskaya
Bay 1), which verifies that the LT-LS2 temporal segmentation parametrisation captures the
progression of the RTS thaw dynamics at an annual temporal resolution (Tab. 4.5). Individual
transects show little agreement between the GT YOD and LT-LS2 YOD data (Lower Lena
1 and 2, Iultinsky 1, Kolyuchinskaya Bay 2 and 3). A visual assessment showed that this
is mainly due to individual faulty data points in the temporal spectral trajectories. These
resulted from irregularities in the mosaics, for example from ETM+ scan-line errors in earlier
years or from individual invalid pixels, which deviated from the expected temporal trajectory
while all immediate neighboring pixels in the LT-LS2 data set represented the GT data more
closely. Hence, overall LT-LS2 captures and depicts the dynamic development of RTS well.
Further, we derived the mean deviation and standard deviation between absolute GT and
LT-LS2 identified years of disturbance for the transect observation points to evaluate the
precision of detected disturbance year 4.5. Transects marked with an asterisk contained
transect observation points, which were disturbed before the time series assessment period
(first transect point) and were therefore excluded from the analysis. The mean deviation
ranges from -4.4 to +3 years for Kolyuchinskaya Bay transect 3 and Lower Lena transect
1, respectively. Half of the mean values demonstrate that LT-LS2 YOD values are later
compared to the GT YOD, which shows a delay in disturbance recognition in the LT-LS2
analysis. Contrary to this, negative mean values illustrate that LT-LS2 implies a disturbance
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earlier than the GT YOD data set. An issue is probably that by a spatial resolution of 30
m we have to account for mixed pixels, which delay the detection of a disturbance, as the
multi-spectral data only recognises the disturbance when bare soil dominates the mixed pixel.
The assessment shows no clear trend on whether LT-LS2 identifies RTS disturbances rather
too early or delayed but that we have to account for inaccuracies of approximately ±2 years
for the disturbance year of LT-LS2.

The overall parametrisation results show a good fit and promising first results indicating
that LT-LS2 captures annual dynamics of RTS as anticipated. With this parametrisation we
ran LT-LS2 for the full study area of North Siberia and generated LT-LS2 change images for
the greatest change segment. Six bands describe the disturbance at every pixel: 1) magnitude
of spectral change, 2) year of disturbance, 3) duration of disturbance, 4) pre-change spectral
value, 5) rate of spectral change, and 6) DSNR as a fit metric.

Table 4.5: Assessment of the LT-LS2 temporal segmentation based on the GT YOD and LT-
LS2 YOD transect observation points. The first value is the Pearson’s correlation coefficient
indicating the general level of agreement between GT and LT-LS2. The second value is the mean
deviation between the absolute GT YOD and LT-LTS YOD value and the third the standard
deviation, demonstrating the error in absolute year of disturbance in the temporal segmentation.
For transects marked with an asterisk we excluded the earliest transect point for the mean and
standard deviation.

Step Site All Transect Transect Transect Transect
transects 1 2 3 4

Calibration Chukotka Coast 0.63 / -0.3 / 2.6 0.65 / 1* / 1.4 0.40 / -1.3 / 2.8 0.98 / -2 / 2.1 0.95 / 2* / 1.2
Batagay 0.78 / 0.8 / 3.3 0.8 / 1.7* / 0.9 0.66 / 2.8* / 1.9 0.81 / -2.8 / 3.4 0.76 / 2.5* / 1.2

Lower Lena 0.23 / 0 / 3.9 0.22 / 3* / 5.1 0.14 / 1.5 / 1.4 0.81 / 1.8 / 0.7 0.59 / -1.7* / 4.6
Validation Iultinsky 0.49 / -0.13 / 3.9 0.06 / -1.5* / 6.2 0.90 / 2.3* / 1.8 0.92 / -0.7 / 1.8

Kolyuchinskaya 0.40 / -2.1 / 5.3 0.97 / -0.4 / 1.0 0.05 / -1.4* / 5.4 0.05 / -4.4 / 6.7
Bay

4.3.6 Spectral Filtering

The majority of spectral change captured in the temporal segmentation is not RTS disturbance
or change-related but due to general spectral change and trend, other landscape disturbances
such as wildfires or lake drainage, erroneous pixels (cloud, haze, fire smoke) or other artefacts.
To remove small spectral change not associated to RTS disturbances, we filtered the temporal
segmentation result by applying thresholds to the LT-LS2 image bands. To determine
the filter thresholds for magnitude of spectral change (mag), duration in years (dur), and
pre-disturbance value (preval) that still map RTS but remove other spectral change, we
defined possible threshold values (mag: 200, 400, 600, 800; dur: 1, 2, 4, preval: 50, 100, 200)
and compared the disturbance mapping results to GT data (Section 4.3.2. We compared the
mapped area size of RTS from the 36 spectral filtering options to the GT area size (RTS
extents 2019) and chose the threshold combination, which showed the highest correlation to
the GT based on the Pearsons’ correlation coefficient. With the exception of Chukotka Coast
and East Taymyr, the Pearsons’ correlation coefficients show high agreement between a dur
value of 2 and mag values of 400, 600, and 800 (Tab. 4.6). The preval did not contribute
significantly to the spectral filtering and was therefore excluded. A dur threshold of 2 ensures
the inclusion of disturbance events that are last at least 2 years which can be expected for
RTS. At the same time this threshold excludes short term spectral disturbances, which are
most likely related to anomalies, such as longer or earlier snow cover or other changes, as well
as pixel artefacts. The best fitting mag threshold varied across the focus sites but as indicated
in table 4.6 there is a high correlation between several mag values. The mag threshold is
critical to ensure full spatial coverage of the RTS objects. We therefore chose the lower mag
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threshold of 400 (Fig Appendix 4.9). While this enhances the RTS object coverage it also
leads to high commission errors, including more non-RTS disturbance pixels and noise which
has to be removed in the following steps.

Table 4.6: The tested mag and dur values for spectral filtering with the highest Pearson’s
correlation coefficient for the calibration and validation focus sites .

Site Magnitude Duration Pearson’s correlation
coefficient

Lower Lena 400 2 0.98
600 2 0.92

Chukotka 800 2 0.51
600 2 0.26
400 2 0.24

Iultinsky 800 2 0.94
600 2 0.70
400 2 0.56

East Taymyr 200 2 0.37
400 2 0.28

Southwest VMR 400 2 0.99
Kolyuchinskaya Bay 800 1 0.99

600 2 0.97
400 2 0.95

4.3.7 Spatial masking and filtering

The spectral disturbance signature of RTS is distinct but not completely differentiated from
other disturbances, such as wildfires, landslides, changes in river water levels or other. Hence,
also the LT-LS2 disturbance map after spectral filtering, despite its explicit parametrisation to
RTS disturbances, does not only depict thaw slumping features but includes other, spectrally
similar disturbances. To further narrow the LT-LS2 disturbance map to RTS, we applied
several spatial masks with additional environmental information. We applied a water mask
to exclude permanent water bodies (Pekel et al. 2016), a fire mask which included detected
fire scars from 2000 to 2019 (Hansen et al. 2013), a slope mask to only include disturbances
on sloped terrain from 3-15◦ as well as an elevation mask to exclude mountainous regions
above 250 m a.s.l. both based on the ArcticDEM mosaic (Porter et al. 2021), a water buffer
to only include disturbances in the proximity of lakes, rivers, and coastlines prone to RTS
initiation (Pekel et al. 2016), and finally we only included identified disturbances within the
the continuous and discontinuous permafrost zones (Obu et al. 2019). Table 4.7 shows an
overview of spatial masks and thresholds applied.

Table 4.7: Overview of spatial masks applied.

Mask Data set Threshold Reference
Water Global surface water data set Pekel et al. 2016
Fire Global forest cover change Hansen et al. 2013

Slope ArcticDEM 3–15 ◦ Porter et al. 2021
Elevation ArcticDEM <250 m a.s.l. Porter et al. 2021

Water buffer Global surface water data set 300m buffer Pekel et al. 2016
Permafrost Extent and Ground Temperature Continuous, Obu et al. 2019

discontinuous

84



4.3 Study Area and Methods

Following the spatial masking on the pixel-level, we performed object-oriented spatial
filters to further exclude false-positive disturbances and to restrict the subsequent analysis to
RTS disturbances. We identified disturbance objects with scikit-image’s connected component
algorithm in a 2-connectivity neighbourhood. For every labelled object, we extract feature
properties including the object centre coordinates, area, eccentricity, orientation, perimeter,
and solidity. Based on the LT-LS2 year of disturbance band, we further derived the minimum
year and maximum year of disturbance for every labelled object, representing the disturbance
period of that object within the assessment period. Additionally, we filtered all labelled objects
by their eccentricity property. We set the eccentricity threshold to > 0.75, which was derived
empirically from validating RTS at three focus sites, Lower Lena, Chukotka and Iultinsky.
Other object properties, such as orientation, perimeter or solidity did not show a similar trend
for separating between RTS and false positives.

Next, we applied an area size filter, defined by a minimum mapping unit (mmu) and
maximum mapping unit (maxmu). We set the mmu to 0.0036 km2 (0.36 ha), which represents
2*2 30 m pixels, a minimum RTS size also suggested by Brooker et al. 2014 for their RTS
mapping study from Landsat images. To remove bigger disturbance patches, which are
most likely not RTS but 2020 fire scars, remnants of previous fire scars or other extensive
disturbances, we set the maxmu to 0.15 km2. These mapping unit filters still include the
general known RTS size ranges as reported in other studies (Lacelle et al. 2015; Lewkowicz
and Way 2019; Kokelj et al. 2015a; Lantz and Kokelj 2008; Segal et al. 2016; Ramage et al. 2017).

Lastly, we used the minimum and maximum disturbance year property of every labelled
object and removed all objects with a disturbance activity duration of less than two
years. The likelihood, that these are RTS, which mostly evolve over multiple years, is very
low. Instead it is more likely that these are 2020 fire scars, remnants from previous fire
scars, small active layer detachment slides, artefacts or other disturbances not representing RTS.

4.3.8 Machine-learning object filter

The disturbance data set after spatial masking and filtering still contained a high amount
of commission errors (false positives). Therefore we included a final binary classification
step to classify each remaining disturbance object either as a RTS or other. We used the
pycaret (version 2.3) package (A 2020) in python to setup a classification pipeline. As input
data we used basic statistics (min, mean, max values) of all LT-LS2 output bands, except
"year of disturbance", and Landsat Tasseled Cap Index Trends (slopes of TC brightness,
greenness and wetness) per polygon object. In the model comparison Light Gradient Boosting
Machine (Ke et al. 2017) came out as the best model, where we used the F1 score as the
primary estimator metric. To account for the extreme class imbalance we used the "SMOTE"
resampling algorithm (Chawla et al. 2002) implemented in pycaret. We optimised the
model and performed a 10-fold stratified cross-validation on the input data set. We used
pycaret’s built-in model evaluation functionality to determine the best separation threshold
between classes, as the initial discrimination was strongly imbalanced with a bias towards the
no-slump class. We repeated the cross-validation on a regional basis, training on four tiles
and validating on the fifth, rotating through all tiles. We added the regional validation to
test the transferability to unseen regions. Finally, we trained the production model on all
five ground-truth tiles and ran the inference on the entire study area. The output data set
contains final class labels (0 or 1) and class specific probability scores. With this we reduced
the false positives of LT-LS2 drastically, which improved the RTS disturbance mapping greatly
compared to the purely LT-LS2 automatic algorithm.
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The validation results prove the challenging task of mapping RTS on continental scales.
10-fold cross-validation (CV) on the full GT data set without regional differentiation revealed
a mean accuracy (statistics of all 10 folds) of 0.9479±0.0106 and kappa of 0.5452±0.1042
(Tab. 4.8). The class specific performance for RTS (class 1) metrics revealed a mediocre
performance with a F1 score of 0.609. The higher precision (0.655) compared to recall (0.569)
shows a slight bias towards an "underdetection" of RTS. To overcome this bias and to receive a
balanced classification we used the "threshold" estimator in pycaret. This revealed an optimum
threshold (probability score for class 1) of 0.33 to maximize the F1 score and a threshold of
0.25 for an equilibrium of precision and recall (Fig. A 4.11). The regional cross-validation (5
sites) revealed the challenges of model transferability. RTS class specific F1 score ranged from
0.07 (Lower Lena) to 0.37 (West Taymyr) and therefore lower than a CV on the entire data set
(Tab. 4.9). The classification bias, as observed on the full CV, was more diverse in the regional
CV. Three of five regions have a higher recall, while only two exhibit an excess in precision.

Table 4.8: Overall 10 fold cross-validation. Mean and standard deviation of scores from all 10
folds.

Accuracy AUC Recall Precision F1 Kappa
Mean 0.9479 0.9014 0.4846 0.6765 0.5622 0.5355

Standard Deviation 0.0106 0.0172 0.1025 0.1034 0.1013 0.1061

Table 4.9: Regional Cross-validation (RTS class only).

Site Precision Recall F1 Support (n objects)
Chukotka 0.45 0.27 0.34 48
Iultinsky 0.28 0.34 0.30 56

Lower Lena 0.04 0.44 0.07 61
Chokurdakh 0.38 0.18 0.24 212
West Taymyr 0.63 0.26 0.37 110

4.4 Results

4.4.1 Focus sites

For five focus sites we mapped RTS and assessed their annual thaw dynamics in detail to
demonstrate the capability and applicability of our method. The focus sites comprise a square
area of 625 km2 and represent known RTS clusters. The number of identified RTS varies at
the focus sites and demonstrates differing RTS densities (Tab. 4.10). Chukotka presents a
coastal site with many active RTS along the coastline. Here, as the RTS grow retrogressively,
neighbouring RTS merge together and form bigger RTS objects with time. At Iultinsky and
Lower Lena we identified RTS at lake shores and often 2-3 RTS at one lake. Both focus sites
are located at the border of the Last Glacial Maximum (LGM) glacial ice extent in Siberia and
are close to areas with ice-rich Yedoma deposits (Fig. 4.7). The other two focus sites, West
Taymyr and Chokurdakh, also feature RTS at lake shores but often with more than 3 RTS at
a lake. Chokurdakh is special, as not only individual RTS developed but complete lake shores
erode. Here, LT-LS2 often identified multiple individual RTS, for the more active erosion
parts of the shore. Chokurdakh is characterised by extensive Yedoma deposits, whereas West
Taymyr is located within pre-LGM glacial moraine complexes. The minimum RTS size with
0.45 ha was found at Iultinsky, Chukotka and Chokurdakh and is determined by the predefined
minimum mapping unit. The biggest identified RTS is in Chukotka with 14.94 ha, the limit
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set up the maximum mapping unit. While the mean RTS size for the sites ranges from 1.4-4.8
ha. In West Taymyr the average RTS activity duration is 11.8 years compared to 15.2 years in
Chukotka. The initial RTS-affected area in 2000 per focus site varies greatly (Iultinsky: 5.9 ha,
West Taymyr: 69 ha) and likewise does the increase in RTS affected area from 2001-2019. The
RTS-affected area in Iultinsky, West Taymyr and Lower Lena increased by 188 %, 144 % and
141 %, respectively. In contrast, the area increase of only 73 % was much lower for Chokurdakh.

Table 4.10: Overview of identified RTS for the focus sites (625 km2) and all of North Siberia.
The number of identified RTS, average slump size and the average slump activity duration (last -
first year of disturbance pixel) are based on the identified RTS objects. The summarised slump
area for 2000 and the summarised slump area from 2001-2019 are compiled from all RTS pixels in
a focus site. The summarised area from 2001-2019 percentage indicates the area growth compared
to the RTS area in 2000. The peak growth years are the two years with the highest RTS area in
the time series. *The initial RTS area was derived from 2000 and 2001.

Number RTS Average slump RTS area RTS area from Average Average Peak growth
Site of min/mean/max activity in 2000 2001-2019 growth/year growth/RTS years

RTS [ha] duration [yr] [ha] [ha]/[%] [%] [%] ([ha])
Lower Lena 18 0.72 / 2.34 / 6.2 13.7 17.5 24.6 / 141 7.4 7.8 2013 (3.9),

2015 (3.7)
Iultinsky 9 0.45 / 1.9 / 8.46 11.9 5.9 11.16 / 188 9.9 20.9 2008 (2.61),

2009 (1.53)
Chukotka 9 0.45 / 4.83 / 14.94 15.2 19.5 23.9 / 123 6.5 13.6 2016 (5.4),

2007 (2.97)
Chokurdakh 64 0.45 / 1.4 / 7.56 12.3 50.9 36.9 / 73 3.8 1.1 2009 (6.03),

2011 (5.58)
West Taymyr 88 0.45 / 1.9 / 11.8 11.8 69.0* 99.5 / 144 7.6 1.6 2016 (43.2),

2013 (20.5)
North Siberia 50,895 0.45 / 1.7 / 14.94 12.3 20,158 66,699 / 331 17.4 0.007 2019 (9,669),

2016 (7,136)

We determined the dynamic progression of RTS by identifying the first and last year of
slump activity within the assessment period for each identified RTS and by resolving the
summarised RTS affected area per year, indicating the annual RTS growth as depicted in
figure 4.6. The first year in the assessment period, 2000, comprises not only newly disturbed
RTS area in 2000 but also the accumulated dynamics from previous years before our time
series starts (Fig. 4.5). Although we can derive the average RTS growth for each year or for
every RTS (Tab. 4.10), the annual RTS area analysis shows that the increase in RTS area is
not uniformly during the observation period but that distinct years with accelerated RTS area
growth can be determined. Iultinsky had two periods of increased slump activity, 2008-2010
and 2015-2018, with the highest RTS area growth in 2008 (Fig. 4.5 d). Similarly, did West
Taymyr also show two periods with increased slump activity, 2005-2006 and 2012-2017. The
RTS affected area in Lower Lena increased in 2008 and lasted until 2017, with the exception of
2014. About 60 % of the RTS slumps in West Taymyr showed their last activity in 2016-2017
(Fig. 4.5 c), which is either the peak slump year (2016) or one year later (2017). This suggests
that the heightened slump activity was caused by a temporary trigger. There is little new RTS
initiation during the assessment period in Iultinsky and Lower Lena alike and more than 80 %
of the identified RTS were active since 2000. Most of the RTS had their last slump activity in
the second half of the time series, specifying higher slump activity during the last two decades
in Iultinsky and Lower Lena compared to West Taymyr. Chokurdakh und Chukotka show
very similar annual RTS-affected area trends as Iultinsky and Lower Lena. The results show
an alternation between time periods of high RTS activity and less RTS development during
the observation period (Fig. A 4.12).

4.4.2 North Siberia

Within our study area of approximately 8.1 x 106 km2 covering North Siberia from Taymyr
Peninsula to Chukotka, a total number of 50,895 RTS were identified and mapped. The
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Figure 4.5: The first year of RTS activity (red bar) and last year of RTS activity (blue bar) for
Iultinsky, Lower Lena and West Taymyr on the top panel (a-c) and the annually summarised RTS
areas for the same sites below (d-f).

Figure 4.6: Annual progression of RTS in Chukotka (172.2 ◦W, 64.6 ◦N), showing the year of
disturbance for every pixel. Digitised RTS extents from RapidEye images are indicated.
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majority of RTS was found between 61-73 ◦N (Fig. 4.8 b). This RTS abundance is highly
related to the uneven latitudinal land mass distribution in the study area. There is less land
area north of 72 ◦N, which also explains the decrease in number of RTS. Similarly to this, the
lower latitudes in the East of the study area (140 ◦E, 55-60 ◦N) cover less land mass, which
explains the lower geographic boundary of identified RTS. Figure 4.7 shows the geographic
density of identified RTS for 40km x 40km grid cells. The majority of RTS were identified
in the continuous permafrost zone. Where the permafrost extent becomes discontinuous,
sporadic or isolated permafrost, RTS occurrence and density decrease as well. Furthermore,
the RTS density map reveals clusters of RTS between 80-90 ◦E in the West of the study
area, between 140-160 ◦E and north of 65 ◦N and along the border of the LGM glacial ice
extent in Siberia (Ehlers and Gibbard 2003). The abundance of RTS along the margins of the
LGM glaciation is most likely associated to degrading buried glacial ice in moraines (Barr
and Clark 2012; Kokelj et al. 2017). Moreover, the occurrence and density of RTS correlates
closely with the distribution of thick ice-rich Yedoma permafrost deposits that are particularly
vulnerable to thermokarst and thermo-erosion processes such as RTS (Fig. 4.7) (Strauss et al.
2017b; Strauss, Laboor, Fedorov, et al. 2016). A high density of RTS can be found in central
Yakutia near Yakutsk, a known hot spot region for permafrost degradation and thermokarst
development (Séjourné et al. 2015; Ulrich et al. 2017). In contrast to this, we also identified
vast areas with no or low RTS densities across North Siberia, most notably in mountainous
regions and the central West of the study area.

The normalised area frequency plot (Fig. 4.8 d) illustrates that the vast majority of
identified RTS are small and close to the predefined minimum mapping unit. 50 % of all
identified RTS are smaller than 1.17 ha and 90 % of the RTS are smaller than 3.42 ha, which
indicates that the normalised area frequency is positively skewed. The proportion of bigger
slumps is much lower. This positively skewed distribution of RTS object size can be explained
by common RTS characteristics and by detection limitations of LT-LS2. First, RTS are rather
small-scale disturbance features, with commonly reported sizes of 0.4-5.3 ha (Lacelle et al.
2015; Segal et al. 2016), which our results show as well. RTS exceeding this size by far,
so-called mega slumps, occur but are less common. Secondly, RTS are polycyclic which is
another reason for the predominance of smaller identified RTS objects. RTS often alternate
between periods of active degradation and periods of stabilised dormancy, which can differ
spatially with only part of a stabilised RTS re-initiating, depending on slumping drivers and
environmental factors such as remaining ice content, exposure of the ice, the sloped terrain,
drainage and sediment transport, and climatological conditions (Balser, Jones, and Gens
2014; Kokelj et al. 2009). The stabilised part of a RTS cannot be detected by LT-LS2 as the
temporal spectral signature of these areas does not resemble a disturbance trajectory and
therefore is not captured by LT-LS2. LT-LS2 only detects the actively degrading RTS areas,
which might not be the full extent of a RTS. Likewise, LT-LS2 can only capture disturbances
occurring within the assessment period (1999-2020). The first captured year of the time
series, 2000, contains an accumulation of the most recent disturbances, approximately from
1997-2000, but disturbance events from before cannot be accounted for and therefore only the
actively degrading part and not the whole RTS size can be determined by LT-LS2. Therefore,
we consider our findings of RTS numbers and areas conservative low.

Most slumps had their first active year at the start of the assessment period with almost
50 % and 25 % in 2000 and 2001, respectively (Fig. 4.8 a). The remaining RTS had their
first activity year in the course of the time series until 2016 but no new RTS initiations were
detected in 2017-2018. About 25 % of the RTS had their last slump activity in 2019, which is
the end of the time series. However, a bigger proportion of about 30 % of the RTS deceased
slumping already before the end of the assessment period, namely in 2016-2018. The overall
summarised RTS affected area increases steadily during the time series, illustrating extended
RTS growth and development. Heightened increase rates were determined for 2016, 2017 and
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Figure 4.7: a) Density map of identified RTS per 40 km x 40 km grids in North Siberia. b) The
permafrost zones are according to Obu et al. 2019, the Last Glacial Maximum (LGM) glaciation
ice extent according to Ehlers et al. 2003 and the Yedoma distribution according to Strauss et al.
2016.

2019. From 2001-2019 the RTS affected area increased by 331 % compared to 2000, which
shows a drastic increase in area affected by permafrost degradation in only 19 years (Tab.
4.10). Combining these results, we can determine, that the increase in RTS-affected area at
the end of the time series is not caused by newly or re-initiated RTS but most likely by RTS
growth of already existing and active RTS. Furthermore, the high number of inactive RTS
in 2016-2018 (last year of activity), suggests that the increase in RTS area is not necessarily
caused by successive thaw, which would prevail for a longer time period, but by explicit
triggers in those years. Whether these RTS remain inactive and stabilise for a longer period
cannot be derived from this assessment.
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Figure 4.8: Identified and mapped RTS in North Siberia: a. First year (red bar) and last year
(blue bar) of RTS object activity; b. Normalised frequency of RTS by geographic latitude; c.
Summarised annual RTS area [ha] with trend line indicating an increase in area from 2002 to 2019
with a slope of 374 ha per year; d. Normalised frequency of RTS object sizes.

4.5 Discussion

4.5.1 Mapping of RTS

The results obtained in this study on RTS are overall in agreement with previous studies.
The mean size of identified RTS ranges between 1.4 ha (Chukordakh) to 4.8 ha (Chukotka),
which exceeds the RTS sizes recorded by previous studies slightly, stating average RTS sizes
of 0.15-1.63 ha (Ramage et al. 2017; Lewkowicz and Way 2019). The range of mega slumps,
3.8-9.9 ha, as stated by Kokelj et al. 2015, is mirrored by maximum RTS sizes of 6.2-11.8 ha
(Chukotka even 14.94 ha) in this assessment. This indicates that LT-LS2 is well suited to
identify RTS across very large regions. Furthermore, we found a strong correlation between
the detection of RTS and environmental factors. RTS generally occur in clusters in ice-rich
permafrost areas, mostly from glaciogenic deposits or syngenetic permafrost, along sloped
terrain and in proximity to lakes, rivers and coasts, where climatic conditions drive their
development (Kokelj and Jorgenson 2013; Kokelj et al. 2017; Ardelean et al. 2020). Our
results also show that the majority of the RTS and the highest RTS density can be found
in the proximity to the LGM glacial ice extent (moraine complexes) and in areas with thick
ice-rich Yedoma deposits, emphasising that the primary determining factor for RTS is ice-rich
permafrost. The RTS density distribution underlines the vulnerability of ice-rich permafrost to
abrupt thaw and furthermore, the threat of rapidly mobilizing increased amounts of sediment
and organic carbon over short periods of time (years) in icy permafrost regions experiencing
thaw.
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4.5.2 Spatio-temporal variability of RTS dynamics

Between 2000-2019 we detected 50,895 RTS and a steady increase in RTS affected area for
North Siberia. From 2016 onward we detected a more abrupt increase in RTS affected area,
which indicates heightened thaw slump dynamics at the end of the observation period. Overall,
the RTS-affected area increased by 331 % between 2001-2019 (from 20,158 ha in 2000 to 66,699
ha), confirming the projected intensification and growing impact of abrupt permafrost thaw
(Nitzbon et al. 2020; Turetsky et al. 2020). The majority of RTS was active at the beginning
of the time series, 2000-2001, and only a smaller number of newly initiated RTS was detected
in the course of the observation period. This suggests that the increase in RTS affected area
is predominantly driven by growth of existing RTS and not by initiation of new slumps, as
also shown by Lewkowicz and Way 2019 for the Canadian High Arctic. However, the spatial
resolution of 30 m and the applied minimum mapping unit prevent to detect smaller scale
changes, such as RTS initiation at higher spatial resolution. Therefore, we emphasise again
that most likely we underestimate the number of actual RTS as well as the RTS affected area.
In contrast to the steady increase of RTS-affected areas for North Siberia, the focus sites
showed differing annual variability in the RTS thaw dynamics, indicating spatio-temporal
variability of RTS thaw dynamics. All five focus sites do not show a uniform year-by-year
development of RTS area but distinct periods of increased and decreased thaw dynamics.
The peak slump years and periods vary between focus sites, which further confirms a strong
connection to spatio-temporal varying slump drivers and environmental triggers, which lead to
exposure of ice-rich ground, increased thaw, drainage and sediment transport during the thaw
period. Such assessments of a high spatial variability in RTS activity and dynamics could
only be addressed in limited ways by previous high temporal resolution assessments focusing
more on local to regional study extents in the Canadian High Arctic or on the Qinghai-
Tibet Plateau (Lewkowicz and Way 2019; Ward Jones, Pollard, and Jones 2019; Luo et al. 2019).

Lewkowicz and Way 2019 correlated their annual detection of growing RTS and newly
initiated RTS mainly to warm summer years on Banks Island. A similar relationship was
found by Ward Jones et al. 2019 for their Canadian High Arctic study sites on Ellesmere and
Axel Heiberg Islands. Besides this, Kokelj et al. 2015 linked increased slumping activity to
heavy precipitation events and downward sediment fluxes for the more southern study area
of the Peel Plateau, in NW Canada. All these studies point towards the strong correlation
between climatic and environmental drivers and RTS activity. The annual variability of RTS
dynamics at the focus sites point at spatio-temporally varying thaw triggers that cause the
increased slump dynamics in some years. Following this, we correlated the yearly affected RTS
area to climate variables. We derived the mean temperature, the total annual precipitation,
the total precipitation for July and August and the number of thawing days from ERA5
reanalysis data for the focus sites (Copernicus Climate Change Service 2017). However, we
found no significant correlation between these climate variables and the annual RTS area, but
only varying tendencies for the different focus sites. Lewkowicz and Way 2019 and Kokelj et
al. 2015 pointed out a temporal lag of one or two years between the occurrence of reinforcing
thaw drivers and actual increased permafrost thaw and RTS development. Therefore, a closer
analysis of possible climate drivers and annual RTS dynamics is required to identify the
spatio-temporal RTS drivers at the different focus sites, but outside the scope of this study.
Overall, combining the results from the focus sites and North Siberia, we can imply that the
steady increase in RTS-affected area in North Siberia results from spatio-temporal variability
of RTS thaw dynamics at local to regional scale. This emphasises the heightened relevance
of abrupt permafrost disturbances at the continental scale but without underestimating the
importance of local to regional assessments when it comes e.g. to infrastructure planning or
other site-specific analyses. The impact of advancing permafrost degradation by rapid RTS
development on local-scale is very pronounced in changing topographic gradients, hydrological
systems, and biogeochemical cycling and can largely be considered irreversible. Most numerical
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permafrost models do not yet include rapid thaw processes. However, in a recent modeling
study for the cold and ice-rich permafrost regions of Northeast Siberia, which were previously
thought to remain largely stable despite gradual warming, (Nitzbon et al. 2020) included
thermokarst dynamics for the first time and found the landscape to be considerably affected
by permafrost degradation already by 2100. Current carbon models show that by 2300 abrupt
permafrost thaw disturbances will occur on less than 20 % of the permafrost region, but their
carbon contribution will be of global relevance due to their rapid and deep erosion of ice-rich
permafrost (Turetsky et al. 2020). The combination of this high carbon release potential and
the abrupt and widespread thaw process by RTS, also discovered in this assessment for North
Siberia, make RTS a highly important disturbance feature.

4.5.3 LT-LS2 capabilities and limitations

LT-LS2 identifies disturbances from temporal segmentation of spectral trajectories. The
accuracy of the temporal segmentation showed that the progression of the year-to-year thaw
dynamics of RTS are captured well, with correlations up to 0.98 between LT-LS2 temporal
segmentation and GT data. Yet, this correlation varies and depends on good quality input
data as seen for few GT transects. By using medoid mosaics combining both Landsat and
Sentinel-2 we enhanced the input database greatly (Runge and Grosse 2020), similarly to
approaches for MODIS time series ingesting both Aqua and Terra images (Sulla-Menashe et al.
2014). However, even Landsat and Sentinel-2 mosaics might not succeed in providing full
spatial and temporal coverage in cloud-prone areas, such as northern coastal and high Arctic
areas. Besides this, Sentinel-2 images are only available since 2016 for Siberia and before
that we rely on Landsat-only mosaics. Thus, we assessed a possible correlation between input
data and affected RTS area. For the focus sites we derived the average number of cloud-free
pixels for each year, which is an indicator for the input mosaic quality as the likelihood of
obtaining consistent and gap-free mosaics increases with the number of cloud-free pixels.
Although the number of clear pixels increased drastically with Sentinel-2 in 2016 for all focus
sites, we did not find a correlation between the average yearly clear-pixel count and identified
RTS-affected area. This suggests that there is no bias between detected RTS area and enhanced
mosaic coverage at the end of the time series, but it rather implies reliable disturbance
detection throughout the assessment period. This is in contrast to findings from a study
on cropland change, where the image availability and detection of cropland changes showed
a correlation (Dara et al. 2018). However, cropland changes and abandonment are largely
gradual changes, which are further distorted by land cover phenology and outliers that are more
likely and pronounced in low quality input mosaics (Dara et al. 2018). Compared to this, the
detection of RTS disturbances is based on determining and extracting the biggest disturbance
segment, following abrupt, drastic spectral change. This method is more robust to shifts in
phenology and outliers, which might arise in Landsat-only mosaics in years with few cloud-
free images and affirms reliable disturbance detection also for the first 15 years in the time series.

Despite the vigorous temporal segmentation of RTS dynamics, insecurities on the definite
year of disturbance remain and a deviation of approximately ±2 years has to be taken into
account. While this lowers the confidence for explicit year of disturbance associations, the
20-year time series assessment is still able to depict peak periods of abrupt thaw. Furthermore,
the accuracy of the annual dynamics is affected by the 30 m spatial resolution of the input
data. Small scale initial disturbances of only a few meters width will not be captured by 30 m
spatial resolution, which will result in a delay of detecting RTS initiation and early growth
and is therefore considered a low-resolution bias (Sulla-Menashe et al. 2014). A delay of
detection can further be perpetuated by thaw slumping processes where the vegetation cover
and hence the spectral land cover reflectance remains intact while the soil column already
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subsides or erodes underneath. Contrary to this, the identification of a disturbance can be
premature if other changes precede the RTS disturbance, such as vegetation change, active
layer detachment slides or flooding of lake or river shores.

In spite of the reliable detection of temporal RTS dynamics with LT-LS2 at local-scale, the
application at large-scale required further attention as we encountered high commission errors.
The spectral-temporal segmentation included a variety of false-positives, such as remnants of
fire scars, lake change and drainage, changing water levels and sediment transport in rivers,
shadows in mountains and other commissions. The difficulty to detect and map RTS at
large-scale and to separate from false positives has been discussed before and was solved by a
final manual RTS confirmation (Nitze et al. 2018). This was possible for us at the focus sites
but not for the large-scale North Siberian application. Hence, a rigorous post-classification of
the identified disturbance objects was necessary to reduce the amount of false positives and
narrow the analysis to RTS disturbances. Considering that RTS are very local, small-scale
features, the amount of training and validation data, compared to the false positives was very
low and sparsely scattered across North Siberia as qualitative VHR data is only infrequently
available for North Siberia. Also, prior studies of detailed local RTS assessments are very
sparse in this large study region (e.g., Sejourne et al. 2015). This sparseness in high-resolution
data decreases the LT-LS2 RTS classification accuracy to a F1 score of 0.609 for RTS. At the
same time, the LT-LS2 classification reduced the overall number of identified disturbance
objects drastically. We are confident that final RTS mapping and analysis of RTS across North
Siberia, represents a reasonable and fitting framework for a first continental-scale assessment
at high temporal resolution.

The RTS distribution and density map indicates local and regional RTS clusters, closely
related to climatic, geologic and topographic conditions. The use of VHR imagery and
assessment methods can therefore now be regionally targeted and used for a high spatial
resolution assessment of RTS in the future, provided the availability of VHR data. Multi-sensor
constellations such as RapidEye and PlanetScope acquire images at increased rates and high
spatial resolution, which increases the likelihood of obtaining high quality images. This
could confirm and narrow the identified RTS objects in conjunction with the high temporal
resolution assessment presented here as well as enhance the identification of initiation and
small scale changes. So far, the long time series of high temporal high spatial resolution
cannot be replaced by VHR data but a combination of both will enhance the detection of
small scale changes. Similarly, the development of new improved mapping methods, such
as deep learning algorithms, may help achieving a high mapping accuracy. For example,
RTS in Tibet were mapped using deep learning techniques with CubeSat images at high
spatial resolution, which ensured a more accurate estimation of RTS-affected area but is
currently still limited to local study sites and only short assessment periods (Huang et al. 2020).

4.6 Conclusion

Our study includes the adaptation of the LandTrendr algorithm to capture the rapid permafrost
disturbance dynamics of RTS at high temporal resolution in a first continental-scale assessment
across North Siberia. Parametrisation of LT-LS2 by extending the data input to Landsat
and Sentinel-2, adjustment of the temporal segmentation, and adaptation of the spectral
and spatial masking parameters allowed us to identify and map RTS. While ground truth is
sparse, we aimed to thoroughly assess and parametrise the individual workflow steps with
high-resolution data available, resulting in a reliable and robust assessment framework for high
temporal RTS analysis. Our assessment showed an overall steady increase in RTS-affected area
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in the 8.1 x 106 km2 study region and highlights the abundance and rapid dynamics of abrupt
permafrost thaw processes in ice-rich permafrost landscapes. Local focus-site assessments
indicated spatio-temporal variability of RTS thaw dynamics. These patterns and year-by-year
processes can only be detected at high temporal resolution and would be missed by low
temporal resolution assessments and trend analysis. It is apparent that RTS do not develop
uniformly but are caused by varying drivers. The data set with annual resolution of RTS
thaw dynamics now allows for a detailed assessment of thaw slumping drivers. Our study
covered heterogeneous permafrost regions with varying climatic, geologic, geomorphological
and vegetational conditions, which are also common in other regions of the pan-arctic.
In our rather short time series covering 19 years (2000-2019), we observed an increasing
impact of abrupt permafrost disturbances on the landscape. Considering that numerical
models project increasing permafrost thaw due to climate change and strong Arctic warming
also in very ice-rich permafrost regions, we assume that this observed trend will continue further.

Code and Data products:
The LT-LS2 RTS disturbance data set will be provided on PANGAEA for public access.
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4.7 Appendix

Figure 4.9: Spectral filtering example of a close-up at the focus site Lower Lena. The dur
threshold is set to 2 and the mag threshold varies from 400 (middle panel) to 800 (right panel).
The dark red areas show RTS along lakes.
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Figure 4.10: Spectral indices for pre-disturbance (2010), disturbance (2012) and post-disturbance
(2013-2016) years for the focus site Lower Lena. Boxplots illustrate the spectral reflectance dynamics
from representative RTS disturbance pixels.

Figure 4.11: "Threshold" estimator in pycaret for the classification model.
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Figure 4.12: Specific results of RTS dynamics for the focus sites Iultinsky, Lower Lena, and West
Taymyr.

97





5
Synthesis and Discussion

The main objective of this dissertation thesis was to develop automated high spatial and
temporal resolution remote sensing methods that advance our knowledge and understanding
on the spatial extent and temporal dynamics of abrupt permafrost disturbances on the regional
to continental-scale with remote sensing.

While permafrost thaw and its contribution to the carbon cycle are increasingly recognised
as relevant components for Earth System Models, there is still a lack of consistent observation
products with spatially and temporally continuous and high resolution data on the abundance,
distribution, and especially the temporal dynamics of abrupt permafrost thaw disturbances.
Of particular interest are retrogressive thaw slumps, which might only be local, small-
scale permafrost disturbance features but have a significant relevance for local and regional
topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic
systems, and permafrost carbon mobilisation as they deeply and rapidly erode ice-rich and
organic-rich permafrost soils. However, key research gaps so far include the lack of studies on
RTS distribution and dynamics beyond the local to small regional scale and the absence of
temporally high resolution assessments of their development on decadal scales. The recent
development of automatic mapping algorithms for regional to large-scale landscape change
assessments as well as the availability of high temporal resolution remote sensing data sets
that allow capturing the highly dynamic thaw processes in time series analysis now provides
the opportunity to resolve these knowledge gaps.

Therefore, this thesis presented new methods to enhance and expand the remote sensing
database for abrupt permafrost disturbances by combining images from two sensors systems
for temporally dense time series studies in northern high latitudes. It further demonstrated the
adaptation of an automated mapping and disturbance assessment algorithm that captures high
temporal change dynamics. Lastly, it introduced a large-scale RTS disturbance assessment,
from consistent multi-spectral time series analysis, which highlighted spatio-temporal variability
of RTS thaw dynamics at high temporal resolution. The following synthesis discusses the main
findings of this research as they relate to the objectives outlined in section 1.2.
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5.1 Google Earth Engine

This dissertation has highly profited from cloud-based processing and computing facilities,
available to the general public at no cost. I conducted all my analyses on Google Earth
Engine (GEE), which hosts a multi-petabyte remote sensing data archive, ranging from image
repositories (multi-spectral, active), climate reanalysis data, prepared data products, such as
forest or water change data sets, and thematic geospatial data.

Being able to access and process analysis-ready data instantly, allowed me to explore
new assessment options easily. I considered this to be very helpful not only while designing
the project but also in the course of the research to double check results, compare differing
workflows and algorithm performances as well as consult additional data sets for further and
more informed interpretation. The open-code policy and active GEE-developer community
helps to quickly seek out help and support in case of code errors or when further explanation
concerning a data set or algorithm is necessary. The fast reply times of GEE-developers is
monumental.

There are unequivocal many and diverse advantages of cloud-based computing and big data
earth observation approaches that they enable, which the scientific community will benefit
greatly from. However, there are also a number of limitations as discussed by Sudmanns et al.
(2020) and grouped according to technology, data processing, data access, and applications
and users. In the line of this, I would like to address a limitation I encountered. While GEE
accesses and displays a huge amount of images instantly, creates best-pixel mosaics or performs
supervised machine-learning algorithms in no time, in-depth assessments which go beyond
these standard operations, such as robust statistical result analysis are still limited, impractical,
especially for large-scale assessments in GEE. Especially, after performing several adaptation
and transformation steps, as required when combining Landsat and Sentinel-2 for large regions
I ran into memory-issues when attempting to perform further assessments. Reason for this is
that GEE main image processing options run on the back-end, however further project-defined
adaptations are performed ultimately in the front-end, which is restricted in computing and
processing performance and therefore limits the possibilities and algorithm applications related
to verifying output, image processing performance, statistical comparisons or such greatly.
This is a big disadvantage for scientific applications, as they require more vigorous validation.
While the non-expert user group grows exponentially, it is important to ensure also scientific
verification options. Hence, the continuous development to improve statistical analysis and
validation algorithms for user-defined projects is essential and fundamental for GEE to maintain
a strong remote sensing expert user group. I still think that the advantages outweigh this
and other disadvantages but for future development efforts should address this as it would
increase the opportunities for the scientific community vastly and avoid having to perform
initial processing and analysis in GEE and then continue and finish in a different analysis
environment, such as Python or R, as I had to.

5.2 Landsat and Sentinel-2

Several environmental factors highly restrict optical remote sensing applications in northern
high latitudes. The biggest limitations are low illumination angles, polar night during winter,
short summer periods and frequent cloud cover, which deteriorate the image quality and
acquisition coverage. In contrast to this, Synthetic Aperture Radar (SAR) sensors are not
restricted by weather and these environmental factors as their active sensing systems penetrate
cloud cover and operate independent of illumination conditions (Wang et al. 2018). Therefore,
a SAR system delivers images reliably and throughout the whole year, which in terms of
temporal coverage is much superior to optical remote sensing (Jorgenson and Grosse 2016).
Thus, SAR methods have been developed frequently in recent years and also been adapted
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for permafrost landscape changes, fostering crucial advances in permafrost landscape change
detection and monitoring with more assessment progress to be anticipated in the coming years
(Bartsch et al. 2016; Short et al. 2014; Strozzi et al. 2018). However, the biggest disadvantage
to this day, is the mostly short and irregular acquisition time period of individual SAR
missions so far, which do not allow for consistent multi-decade time series analyses yet (Torres
et al. 2012). Thus, optical remote sensing systems provide the longest continuous database for
time series analysis currently, despite their acquisition limitations in the northern high latitudes.

In this dissertation, I conducted a spectral comparison between Landsat and Sentinel-2
multi-spectral images for a combined use in temporally dense time series analysis. The major
benefit of a combined use of Landsat and Sentinel-2 is their improved data acquisition scheme
with a combined revisit time of less than 2.9 days globally, which is further increased in the
northern high latitudes (Li and Roy 2017). This high image acquisition rate increases the
likelihood of obtaining good quality, cloud-free images during the short summer period greatly.
The absolute number of acquired images increased drastically with the addition of Sentinel-2
in 2016, since two Sentinel-2 sensors operate simultaneously, with a combined revisit time of
5 days at the equator. This is also reflected in an increased number of available cloud-free
pixels (Chapter 2 and 3). Therefore, a temporally dense image database can be obtained from
combining spatially high resolution Landsat and Sentinel-2 imagery in northern high latitudes,
which cannot be achieved from other sensor systems, such as MODIS, AVHRR, Worldview,
SPOT, or others, at a comparable temporal and spatial coverage, or at a similar high spatial
resolution, which is required to detect and monitor local-scale changes.

Detecting environmental land surface change and shifts in ecosystems based on multi-
spectral assessments is sensitive to and can be impacted by spectral and radiometric deviations
and artefacts. Therefore, spectral continuity and high agreement between spectral properties
of different sensors is required, to avoid sensor-based biases in a combined assessment. While
same-day Landsat-8 and Sentinel-2 images for three study sites across the Arctic-Boreal
permafrost region showed a general good concurrence between the two sensors’ spectral
bands, I conducted a detailed spectral band comparison and derived bandpass adjustment
coefficients. The pixel-based assessment of overlapping same-day images, showed small
differing responses between the corresponding band-pairs, which would lead to irregularities
in multi-spectral assessment such as interpretations derived from multi-spectral indices, e.g.
normalized difference vegetation index, to address ecosystem properties like greening and
browning. The spectral band adjustment of Sentinel-2 to Landsat-8 established a very close fit
between the two sensors, which reduces the sensor-bias. Overall this assessment proved to be
suitable for the visible, near-infrared and short-infrared band-pairs alike. The results indicate
the possibility to achieve a strong spectral agreement between Landsat-8 and Sentinel-2 after
spectral bandpass adjustment in North Siberia and therefore suggest a seamless application
of Landsat and Sentinel-2 images in a combined time series study. The derived bandpass
coefficients facilitate the possibilities for new combined Landsat and Sentinel-2 assessments at
high northern latitudes which can rely on a strengthened combined database from Landsat
and Sentinel-2 together.

This enhancement has also been indicated by other local and regionally-focused Landsat
and Sentinel-2 studies (Mandanici and Bitelli 2016; Vuolo et al. 2016; Gorroño et al. 2017; Li
et al. 2017; Flood 2017) and furthermore also by a globally available harmonized Landsat and
Sentinel-2 data product (Claverie et al. 2018). While the application of a globally available
product would show consistency beyond individual studies, the assessment in chapter 2
also points out the shortcomings of such a product for a regional-specific application. The
regionally-derived bandpass adjustment coefficients outperformed the globally harmonised
product and generated a better fit between Landsat-8 and Sentinel-2 data in North Siberia.
Assessments with a global focus might neglect this discrepancy and accept small regional
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deviations for the benefit of a globally-consistent analysis. However, in this case, I am
concentrating on an assessment for a specific region that is geographically restricted to the
northern high latitudes. Thus, the regionally-fitted bandpass adjustment coefficients address
the region-specific challenges better as presented in chapter 2 and provide an enhanced
database for future analyses in North Siberia.

My research demonstrates the general comparability and compatibility of Landsat-8 and
Sentinel-2 for North Siberia but most importantly delivers bandpass adjustment coefficients for
a transformation of Sentinel-2 spectral reflectance values. This ensures spectral data continuity
between Landsat and Sentinel-2, which is highly important to reliably assess ecosystem
changes at high spatial resolution and further advances our knowledge on climate-induced
and disturbance-related changes. While the Landsat archive has been used extensively
to determine spatio-temporal ecosystem change in Arctic regions, a common limitation is
the differing spatial coverage of Landsat images for large-scale assessments (Pastick et al.
2019; Sulla-Menashe, Woodcock, and Friedl 2018; Nitze and Grosse 2016; Lara et al. 2018).
Being able to combine Landsat and Sentinel-2, with a high spectral comparability, reduces
the imbalance in spatial coverage, while maintaining a high spatial resolution to determine
spatio-temporal variability of landscape dynamics.

As Sentinel-2 images are only available since 2016 for Siberia, the increase in data
availability only accounts for the last 5.5 years, which is a short time period compared to
Landsat’s image archive. However, since the publication of the first study of this dissertation
in 2019, already data of another year can be added to the time series and this will continue as
both NASA and USGS, as well as ESA have committed to their Earth observation programs
in the future. Hence, the relevance of spectral adjustment between Sentinel-2 and Landsat
will increase with the continuous image acquisitions of both sensor systems.

5.3 Image mosaics and disturbance detection algorithm

While expanding the remote sensing database for assessments in northern high latitudes was a
central step towards high temporal resolution assessments of abrupt permafrost disturbances,
a second crucial step was the adaptation of an automatic mapping and assessment algorithm.
The restriction of previous RTS studies to a low temporal resolution and local assessment
extent was not only due to lack of data but also the absence of a scalable automatic assessment
method. Manual digitisation of RTS extents or visual interpretation is very time and
labour intensive and therefore neither feasible for high temporal time series nor suitable for
continental-scale assessments. Therefore, this dissertation focused on adapting an automatic
high temporal disturbance detection algorithm.

LandTrendr (LT), the algorithm for Landsat-based detection of trends in disturbance and
recovery, captures gradual and abrupt disturbances in high temporal time series. LT seemed
to be fitting for abrupt permafrost disturbances for two reasons. Firstly, LT comprises an
annual temporal assessment resolution, which is a suitable temporal resolution for RTS, as
their disturbance dynamics highly rely on the annual thaw and freeze cycle in the Arctic.
Secondly, LT requires annual mosaics as input, which is comparatively little input for high
temporal resolution output in contrast to other change detection algorithms, which demand
more frequent input, such as CCDC (Zhu and Woodcock 2014) or BFAST Monitor (Verbesselt,
Zeileis, and Herold 2012). While we expanded the input database greatly by combining
Landsat and Sentinel-2, an intra-annual full spatial and temporal coverage would still be
challenging. LT strikes the right balance between high temporal resolution assessment and
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input data frequency, which can be attained from Landsat and Sentinel-2 in northern high
latitudes.

A critical step for a successful LT adaptation and application to abrupt permafrost
disturbances is to ensure good-quality input data. Therefore, chapter 3 concentrated on the
modified mosaicking approach to combine both Landsat and Sentinel-2 for the annual input
mosaics of LT. The evaluation showed the drastic increase of images and cloud-free pixels
available for the mosaicking approach with Landsat and Sentinel-2 together, as also pointed
out in chapter 2. The foundation of the mosaicking algorithm is the image input collection,
which was extended to include Landsat and Sentinel-2 top-of-atmosphere data and comprised
the spectral adjustment of Sentinel-2 with the spectral bandpass coefficients (chapter 2).
Combining images from both sensors in a medoid mosaic led to an improved coverage for
Landsat+Sentinel-2 mosaics, especially at far northern, coastal sites affected by frequent
clouds, which could not be achieved by Landsat-only mosaics. In years with increased cloud
coverage, Landsat-only mosaics would contain data gaps and decolorisation from bad quality
input, whereas Landsat+Sentinel-2 mosaics achieved full spatial mosaic coverage. Lastly, a
spectral band comparison between input images and Landsat+Sentinel-2 mosaics showed a
close spectral correlation, which testified that the mosaic results are representative, reliable,
and of good spectral quality from Landsat and Sentinel-2 images together. This further
validates the effectiveness of the spectral bandpass adjustment between Sentinel-2 and Landsat.
Consequently, my research emphasises the comparability of Landsat and Sentinel-2 data and
their combined strength to facilitate good quality mosaics that achieve both improved spatial
and temporal coverage of northern high latitudes in high temporal resolution time series,
which is essential for disturbance assessments in Arctic regions.

This Landsat+Sentinel-2 mosaicking approach now allows to create landscape-scale mosaics
for spatially consistent high temporal time series assessments in North Siberia. For the first
time a spatial and temporal consistent database is available for continental-scale assessments.
This is crucial to further our understanding on permafrost disturbance occurrence, frequency,
duration, magnitude, and spatio-temporal variability in permafrost regions and advance our
knowledge on their main drivers (Kasischke et al. 2013). Increasing the temporal resolution to
annual assessments will allow to analyse inter-annual thermokarst lake change and drainage
(Jones et al. 2020; Nitze et al. 2020; Olthof, Fraser, and Schmitt 2015), fire occurrence,
frequency, distribution, and recovery (Frazier et al. 2018), as well as permafrost landscape
erosion such as coastal erosion (Irrgang et al. 2018; Jones et al. 2018), active layer detachment
slides (Lewkowicz 2007), and RTS (Brooker et al. 2014; Balser, Jones, and Gens 2014; Kokelj et
al. 2015a) with greater temporal detail. In principal, this workflow also allows for intra-annual
image mosaicking, which would be required for certain ecosystem and biophysical dynamics
such as shifts in vegetation phenology (Beamish et al. 2020; Zeng, Jia, and Epstein 2011) or
snow timing (Jan and Painter 2020). However, a detailed image availability assessment for
intra-annual time series for these applications would be required, as both vegetation phenology
and snow timing necessitate data in spring and autumn, which is more challenging with optical
remote sensing.

Being able to combine Landsat and Sentinel-2 data, ensuring spectral continuity across
sensors and time periods, as well as an improved data coverage for high temporal resolution
analysis completes the foundation of the first RTS high temporal resolution continental-scale
assessment. Based on the enhanced image database and the good quality mosaics the
application of an automatic change detection and disturbance analysis algorithm is possible
for abrupt permafrost disturbances.
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5.4 Mapping RTS and their annual temporal dynamics

The enhanced image database and the adapted mosaicking workflow provided the means for
high temporal time series permafrost disturbance assessments. In order to include permafrost
disturbances in Earth System Models, consistent regional to continental-scale disturbance
products are required to take the feedback between climate change and permafrost disturbances
into account. Key requirements for large-scale abrupt permafrost thaw disturbance detection
is to apply an automated mapping and analysis algorithm at high temporal scale.

The continental-scale assessment of RTS requires a robust parametrisation of LT, to
reliably capture and depict the disturbance dynamics of RTS in the time series. In this
case we differentiate between the original LT algorithm and LT incorporating the adjusted
Landsat+Sentinel-2 mosaics (LT-LS2). LT-LS2 applies a pixel-based temporal segmentation
of the spectral trajectory and spectral filtering of the result to confine the assessment to
the disturbance feature, which is the foundation of the LT-LS2 assessment. The validation
of the RTS LT-LS2 temporal segmentation with GT data, showed a good representation of
the successive progression of RTS dynamics on an annual scale by LT-LS2. A comparison
of identified disturbance year between LT-LS2 and GT showed a deviation from -4.4 to +3
years with an average +/-2 years. This discrepancy between LT-LS2 and GT has to be taken
into account when analysing the annual dynamics of RTS disturbances. While this displays
an uncertainty in disturbance year detection, it also signifies that LT-LS2 is able to capture
progressive RS dynamics at a high temporal resolution and is able to depict periods of increased
and decreased thaw slump development. Validation data from very high-resolution RapidEye
and PlanetScope images for known RTS clusters showed that LT-LS2 nicely identifies and
maps RTS spatially. However, the separation of RTS to other disturbances and land cover
changes in the time series is challenging, both on local and continental-scale, as multiple land
surface and ecosystem changes occur simultaneously. Therefore, extensive spatial and spectral
filtering, and finally a binary machine-learning classification was required to reduce the LT-LS2
disturbance data set and confine the assessment to only RTS disturbances. This demonstrated
that automatically mapping RTS disturbances, especially on regional to continental-scale, is
challenging and validation of the results crucial. This applies not only for RTS mapping but
also other abrupt permafrost disturbances, such as wildfires, thermokarst lake change and
drainage or thermo-erosional gullies and vallies. However, it is especially critical for RTS as
they are small-sale, local disturbances and if not well distinguished from other disturbances or
errors, the RTS-affected area will be overestimated out of proportion. It is therefore important
to keep the ratio between RTS disturbance area and study area in a reasonable range, which
is achieved by the additional spatial filtering and classification step in the workflow and hence,
improved the automated RTS mapping result at continental-scale greatly.

We mapped and identified RTS across North Siberia. The spatial resolution of LT-LS2
(30m) allowed to detected RTS disturbances as small as four pixels and up to 15ha, which
comprises the commonly reported RTS sizes (Lacelle et al. 2015; Segal et al. 2016). The RTS
distribution and abundance closely correlates to ice-rich permafrost regions, either with thick
syngenetic permafrost in Yedoma deposits (Strauss, Laboor, Fedorov, et al. 2016; Strauss et al.
2013) or in formerly glaciated areas with remaining buried glacial ice in moraines from the
Last Glacial Maximum (LGM) or pre-LGM moraine complexes (Barr and Clark 2012; Kokelj
et al. 2017). At focus sites most identified RTS were located along lakes, leading to the rapid
erosion of lake shores, which alters the lake structure and increases the risk of lake drainage
(Nitze et al. 2020) and also changes lake water chemistry with the increased intake of sediment
and organic matter, which is indicated by high turbidity of the lakes (Lara, Chipman, and Hu
2019). The RTS density shows a clear relation to ice-rich permafrost regions and underlines
their high vulnerability to permafrost thaw and disturbances. As RTS are defined by slope
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erosion after ice-rich permafrost thaw, this is not a new insight. However, this is the first
continental-scale assessment of RTS for North Siberia. The previous assessments with bigger
spatial extents so far only covered regional extents in Russia (Western and Eastern Siberia),
Alaska (Nitze et al. 2018), and Canada, including the High Arctic (Lewkowicz and Way 2019;
Ward Jones, Pollard, and Jones 2019), Northwest Canada (Kokelj et al. 2017), Eastern Canada
(Nitze et al. 2018). The majority of RTS studies are local, small-scale studies in Alaska (Balser,
Jones, and Gens 2014), Canada (Brooker et al. 2014; Segal et al. 2016; Lantuit and Pollard
2005) and the Tibet-Plateau (Luo et al. 2019; Mu et al. 2020). However, the close correlation
between ice-rich permafrost and RTS disturbances has never been depicted for such a large
area (8.1 106 km2) or for North Siberia in general. While a couple of RTS clusters in Siberia
are known to scientist, such as Lower Lena, Batagay, Taymyr Peninsula and Bykovsky, only
few studies are published (Günther et al. 2015; Séjourné et al. 2015; Nitze et al. 2018), leaving
North Siberia predominantly unstudied. The RTS mapping and density assessment points out
RTS hotspots, namely central Yakutia, West of the Verkhoyanks mountain range, and West
Taymyr, which help to localise areas with increased permafrost thaw vulnerability and target
further RTS assessments with very high-resolution imagery.

The RTS-affected area in North Siberia increased steadily from 2001-2019. Overall, the
detected RTS area increased by 331 % from 2000 to the end of the time series, which is a
substantial increase in this short time period. The majority of identified RTS were active from
the beginning of the observation period, 2000 and 2001, and in contrast to that only a small
proportion of new RTS were detected during the observation period. Since the number of
identified RTS does not increase significantly, we can imply that the increase in RTS-affected
area is caused by enlarging RTS and not newly initiated RTS. However, this observation is
restricted by the spatial resolution and the minimum mapping unit applied, which prevents
the detection of small-scale disturbances, such as RTS initiation. We therefore most like
underestimate the number of RTS and the affected area in North Siberia alike. The focus
sites depicted strong annual variability of RTS-affected area. Within the 19-year period
distinct periods of increased and decreased thaw slump activity were determined. This annual
variability and the peak slump years for each focus site varied, hence, indicating not only
temporal but also spatial variability of RTS thaw dynamics in North Siberia. This emphasises
the strong connection between RTS and thaw slumping drivers, which may vary from external
climatic drivers and anthropogenic pressures to ground ice contents and local topography
(Lewkowicz 2007; Ward Jones, Pollard, and Jones 2019; Kokelj et al. 2017). In the scope of
this dissertation, I did not investigate thaw drivers thoroughly yet, however, the annual thaw
slump dynamics derived here present the foundation of such a study. With the help of climate
reanalysis data or, if available, ground measurements we would be able to identify local and
regional drivers across North Siberia.

Combining the results from the focus sites and North Siberia, we can conclude that
the steady increase in RTS-affected area in North Siberia is driven from spatio-temporal
variability of RTS thaw dynamics at local to regional scale. This emphasises the increased
impact of abrupt permafrost disturbances at the continental-scale and further highlights
the importance of local to regional assessments for infrastructure planning or other site-
specific analyses. The close correlation between high RTS density and ice-rich permafrost
does not only signify the intensified vulnerability of permafrost to thaw, but also the
increased impact on the carbon cycle, as most ice-rich regions are also often very organic-rich,
which results in heightened carbon release (Turetsky et al. 2020). This continental-scale
assessment comprises varying climatic, geologic, gemorphologic, and vegetational conditions
that are characteristic for the heterogeneous permafrost regions, which makes the results
representative across the pan-arctic. As increasing permafrost thaw due to climate change and
strong Arctic warming is projected by models, we presume that the observed trend will continue.
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5.5 Limitations and technical considerations

Despite the advantages of remote sensing-based assessments and the workflow described in this
dissertation, certain limitations and technical considerations remain. The general restrictions
of optical remote sensing in the northern high latitudes remain and even the combined use of
two sensors might result in data-gaps in years with very frequent cloud cover and bad weather
conditions, when even the combined Landsat and Sentinel-2 image database is not sufficient.
Likewise, coastal, far northern high latitudes remain particularly challenging and large-scale
mosaics may contain data-gaps.

The methods described in this dissertation do not fully address lack of data in the years
prior to the launch of Sentinel-2 or even before 1999. Although the Landsat program already
operates since 1973 and we have consistent and continuous images since mid-1980s for North
America, the recorded acquisitions for Siberia were too sporadic for consistent spatial and
temporal coverage before 1999. Therefore, the advances described and achieved in this study
are mainly relevant for the period since Sentinel-2 is operational (5.5 years) and for future
assessments. However, a correlation analysis between RTS annual results and clear-pixel
availability testified reliable disturbance detection from the time series with only Landsat
images as well. Hence, 1999 is a reasonable starting point of the time series

Currently, the workflow is based on top-of-atmosphere data as Sentinel-2 surface reflectance
data is not yet available for the full image repository. While top-of-athmosphere data depicts
abrupt spectral change well, more subtle, gradual change and trend analysis, e.g. detecting
changes in phenology, is more sensitive to spectral change and rather requires atmospherically
corrected surface reflectance data. Therefore, it will be necessary to change the input database
to the surface reflectance products of Landsat and Sentinel-2, once the whole Sentinel-2 archive
is available. Depending on the landscape or ecosystem change under assessment, one has to
decide with image product is suitable.

Overall, we require more calibration and validation data to improve the mapping results of
RTS at continental-scale. Obtaining more very high-resolution images and identifying RTS
across more sights in North Siberia would improve the RTS classification accuracy and hence,
the succeeding analysis and result interpretation. Furthermore, the lack of very high-resolution
images prior 2013 is a disadvantage, as the LT-LS2 parametrisation for this time period was
solely based on Landsat images themselves and not independent data.

5.6 Key findings

The research presented in this dissertation shows a framework for continental-scale assessments
of abrupt permafrost disturbances at high temporal resolution. This work emphasises the
advantages of combining Landsat and Sentinel-2 images and shows the improvements of a
combined time series analyses in northern high latitudes, which enables the assessment of
high temporal disturbances and changes at continental-scale. The thesis focuses on RTS but
the framework similarly allows to assess wildfire disturbances, steep permafrost bluff erosion,
thermokarst lake processes, anthropogenic infrastructure development and similar abrupt
permafrost disturbances, which cause a change in spectral signature. The following are key
findings of this dissertation:

• Landsat and Sentinel-2 are spectrally comparable in Arctic-Boreal regions

• Spectral bandpass adjustment coefficients for Arctic-Boreal regions, which lead to a close
spectral agreement of Landsat 8 and Sentinel-2 and enable combined assessments of
landscape and ecosystem changes
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• Landsat+Sentinel-2 mosaics, which provide high spatial and temporal coverage input
for time series algorithms, enabling high temporal and high resolution assessments in
northern high latitudes

• The adaptation and parametrisation of LandTrendr to capture abrupt permafrost
disturbances that allows for the first automatically derived assessment of RTS distribution
and temporal dynamics at continental scale

• RTS-affected area increased steadily across North Siberia from 1999 to 2020

• Annual RTS thaw dynamics show local to regional spatio-temporal variability

5.7 Outlook

High temporal remote sensing-based disturbance detection and analysis at continental to
global-scale will be increasingly important, to increase our understanding on their spatio-
temporal variability and their overall disturbance dynamics. Furthermore, they are required
for parametrisation of Earth System Models for an improved representation of permafrost thaw.
Conducting large-scale assessments of other abrupt permafrost disturbances, such as wildfires,
thermokarst lake change and drainage, and thermo-erosional gullies and vallies, will also be
important in the future to include the full range of permafrost disturbances in Earth System
Models. This is supported by the ever-increasing and improved data availability and enhanced
data storage, processing and computing capabilities of Earth observation data. New Earth
observation products, sensor systems and mission designs further increase data availability
and enable to enhance the research scope. The following highlights opportunities for future
research to increase our understanding of abrupt permafrost disturbances:

1. Very high-resolution multi-spectral data: a higher spatial resolution enhances the correct
detection of local disturbances such as RTS or thermo-erosional features. An increased
spatial resolution strengthens the reliable identification of permafrost disturbances in
the landscape, while also enabling the detection of thaw processes at an earlier stage,
such as its initiation. This is restricted in high to medium resolution images due to
mixed pixels. We would be able to obtain a disturbance estimation which reduces the
underestimation of small-scale disturbances. Moreover, a stronger spectral and spatial
connection and correlation between very-high and high resolution images (for permafrost
disturbances) should be established. Linking spectral signatures of high resolution images
to very-high resolution and establishing disturbance relationships would enhance our
overall permafrost disturbance assessment with high resolution data. We could achieve
an improved applicability of Landsat images to disturbance detection, which would
especially enhance change detection at the beginning of the 21st century, when little very
high-resolution data is available.

2. Intra-annual dynamics: abrupt permafrost disturbances are closely driven by external
factors, which intensify with climate change. Intra-annual time series analysis would
allow to detect abrupt disturbances closer to the day of the disturbance event. This will
improve the identification of prominent thaw drivers and increase our understanding
of the high temporal thaw dynamics. PlanetScopes satellite constellation covers the
whole Earth daily, which creates a dense time series at very high-resolution. Being able
to differentiate between spring, early summer, late summer and autumn will improve
our understanding of permafrost thaw dynamics greatly and help to identify distinct
thaw drivers. Narrowing primary thaw disturbances to a season will also increase our
understanding on their effect on soil organic carbon release as microbial processes vary
depending on climate and surrounding conditions.
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3. Near real-time monitoring: Permafrost thaw and disturbances create a particular risk to
infrastructure and human beings in the Arctic. Detecting permafrost disturbances early
would enable to close affected roads, airports or evacuate buildings and villages in time.
This requires automated mapping and detection systems with a pipeline adding the most
recent satellite images and automatically deriving disturbance products. PlanetScope
data (VHR) or Sentinel-2 data could be very useful for such an application and enable
early detection and warning for areas experiencing abrupter permafrost thaw.
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