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Abstract

Within our research group Bayesian Risk Solutions we have coined the idea of a Bayesian Risk
Management (BRM). It claims (1) a more transparent and diligent data analysis as well as (2)
an open-minded incorporation of human expertise in risk management. In this dissertation
we formulize a framework for BRM based on the two pillars Hardcore-Bayesianism (HCB)
and Softcore-Bayesianism (SCB) providing solutions for the claims above.
For data analysis we favor Bayesian statistics with its Markov Chain Monte Carlo (MCMC)
simulation algorithm. It provides a full illustration of data-induced uncertainty beyond
classical point-estimates. We calibrate twelve di¤erent stochastic processes to four years of
CO2 price data. Besides, we calculate derived risk measures (ex ante/ post value-at-risks,
capital charges, option prices) and compare them to their classical counterparts.
When statistics fails because of a lack of reliable data we propose our integrated Bayesian
Risk Analysis (iBRA) concept. It is a basic guideline for an expertise-driven quanti�cation
of critical risks. We additionally review elicitation techniques and tools supporting experts
to express their uncertainty.
Unfortunately, Bayesian thinking is often blamed for its arbitrariness. Therefore, we in-
troduce the idea of a Bayesian due diligence judging expert assessments according to their
information content and their inter-subjectivity.
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1 Intention & Goals of this Dissertation

The current �nancial crisis since 2007/8 has shown quite plainly that risk management has
encountered a myriad of risks (and opportunities) which have not adequately been consid-
ered. In this dissertation we believe in two main causes for this failure of risk management:

1. Classical risk management does not transparently disclose a rational level of uncertainty
resulting from restricted historic data.

2. Classical risk management ignores relevant information beyond data analysis or ac-
counts for it o¤ the record as well as arbitrarily.

The �rst shortcoming results from the application of classical (or frequentist) statistics in risk
management. It solely identi�es point estimates disregarding data-induced parameter and
model uncertainty. Such ignorance becomes highly critical with a low number of observations.
A more prudent data analysis might unravel observed �nancial market anomalies like the
equity premium and the capital charge puzzle.
Generally, all data analysis rests on (the assumption of) reliable data to deliver information
on future structures. A risk management �solely concentrated on historical observations �
can however easily miss the essentials. In a Bloomberg interview Justin Fox warns: "Fre-
quency does not make you smarter".1 This is highly relevant for singular or unprecedented
regulation, reputation, and litigation risks induced by climate change.2 Under such prevail-
ing circumstances we see no alternative to an explicit consideration of human expertise in
risk management.
Until now, there has been a deep-rooted averseness to such subjectivity � maybe less a
personal feeling than a demand of regulations like Basel II. However, this could fundamentally
change in the coming years as the �nancial regulators conclude (see the "79th Annual Report"
of the Bank for International Settlements, BIS 2009):

"Measuring, pricing and managing risk all require modern statistical tools based
largely on historical experience. [... A] long period of relative stability will lead to
the perception that risk is permanently lower [...] Addressing this misperception
is an enormous challenge. The major risks [...] are large, infrequent events.
[... We] need an accurate assessment of the size of the tails of the distribution

1At iTunes, you can download the interview: "Justin Fox Sees Need to Open OTC Derivatives Markets",
Bloomberg on the Economy (September 9, 2009). See also the popular science book "The Myth of the
Rational Market: History of Risk" by Fox (2009).

2see publications of the project "Mainstreaming of Climate Risks and Opportunities in the Financial
Sector" at www.climate-mainstreaming.net and klimazwei (2009), pp. 76



2 1 INTENTION & GOALS OF THIS DISSERTATION

of outcomes. [... The] statistical models [...] will, almost by de�nition, be
inaccurate because of a lack of data. [...] The di¢ culty of assessing the tails of
the distribution of outcomes is even greater for new �nancial instruments. With
no history, their riskiness cannot be statistically measured at all."

According to the BaFin circular letter 15/2009 (BA) (BaFin 2009), the German �nancial
supervision has corrected the minimum standards for credit and �nancial service institutions
(MaRisk) in favor of a more expertise driven risk management. Although institutions need
to understand their business activities, the supervision highlights that "understanding" does
not mandatory mean "measuring risks". If an institution has no suitable approaches, a
plausibility check can alternatively be applied for the risk quanti�cation. The plausibility
check itself can result from an expert appraisal.
Under such surrounding conditions, a decent risk management should make optimal but not
blue-eyed use of all reliable data as well as of human expertise without accepting arbitrariness.
We call such risk management accounting for these demands Bayesian Risk Management
(BRM).
BRM has been developed in the research group Bayesian Risk Solutions (BRS) - headed
by Carlo Jaeger and Armin Haas (both Potsdam Institute for Climate Impact Research) -
while conducting research for the project Mainstreaming of Climate Risks and Opportunities
in the Financial Sector. This project aimed at researching practicable implementations of
BRM in the day-to-day business of (�nancial) institutions.
This dissertation aims for the presentation and discussion of some key �ndings. We focus to
attain four fundamental goals:
(1) BRM Structure: We want to condense the wide scope of BRM into a clear structure based
on the concepts Hardcore-Bayesianism (HCB) and Softcore-Bayesianism (SCB) - introduced
by Armin Haas during the Bayesian Risk Management workshop at Carnegie Mellon Uni-
versity (Pittsburgh) on June 11/13, 2008.3

(2) Improved Data Analysis: We want to discuss alternatives to classical data analysis. We
focus on the question whether Bayesian statistics is an alternative to frequentist statistics in
respect of a better extraction of information contained in the data. We review our theoretical
�ndings by an empirical analysis of European CO2 price risk where we combine a Bayesian
parameter estimation (see Siliverstovs et. al. 2009) with a Bayesian model weighting (see
Jaeger et. al. 2008). To understand the di¤erences in risk appraisal, we additionally assess
Bayesian and classical value-at-risks, capital charges, and option prices.
(3) Risk Management Beyond Data Analysis: We want to �nd options to transparently
and rationally incorporate human expertise in risk management beyond pure data analysis.

3This work re�ects the author�s understanding of BRM. It mainly conforms to the BRS view but can
slightly di¤er in some speci�c points.
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Amongst others, we discuss practicable guidelines, techniques, and tools for the identi�cation
and quanti�cation of potential risks. Since expertise is often scattered around several people,
we analyze concepts to deal with competing assessments. In this context, we see need for
further research on people�s understanding of risk and their con�dence in expert assessments.
We try to contribute to a more profound understanding by two empirical surveys.
(4) Non-Arbitrary Risk Management: BRM explicitly propagates the incorporation of sub-
jective appraisals into risk management. This is often opposed because of a fear of ar-
bitrariness. Unfortunately, the common Bayesian view of "uncertainty" lacks in rules for
the judgment of the usefulness of assessments while the classical understanding of "risk"
and "uncertainty" totally fails to account for subjective appraisals. Therefore, we ask for a
new risk classi�cation reducing arbitrariness. This is also highly relevant for classical data
analysis since it needs to be decided whether speci�c data is reliable for inference.

In the following section 2 we introduce the Bayesian way of understanding uncertainties and
propose a clear structure for BRM with its main parts HCB and SCB. Subsequently, we
discuss a new classi�cation system for risks.
In sections 3 up to 12 we concentrate on Bayesian statistics as the most important part
of HCB. In an empirical study we calibrate and weight twelve stochastic processes to four
years of CO2 price data (see sections 9 and 10). We calculate Bayesian value-at-risks,
capital charges, and option prices to quantify the CO2 price risk and contrast them with
their classical counterparts (see sections 11 and 12).
In sections 13 up to 18 we discuss the scope of SCB in the mobilization of human expertise to
quantify reliable assessments when a pure data analysis falls short of needs or fails. We start
with a discussion on the agents involved in BRM (see section 14). Subsequently, we present
our integrated Bayesian Risk Analysis (iBRA) concept o¤ering guidelines for an expertise
driven risk management beyond a pure data analysis (see section 15). As risk management
often critically depends on the appraisals of in house or external experts, we overview several
elicitation techniques and tools (see sections 16 and 17). Unfortunately, there is a trade-o¤
between the quality of the collected expert appraisals and the time and resources invested
in elicitation. Since we see prediction markets as a good compromise we separately dwell on
them in section 18.

2 Bayesian Way of Understanding Uncertainties

Forecasting outcomes of future events is traditionally classi�ed whether it is done under
certainty, risk, or uncertainty (Knight 1921). Forecasting under certainty only exists in a
moderated form. The forecast that the sun will rise again tomorrow is virtually true with a
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degree of certainty that the collapse of the sun is negligible in the next days. Forecasting
under risk describes stochastic randomness. The outcomes of future events depend on a
probability distribution with known "objective" (also frequentist, mathematical, numerical)
probabilities (Press 2002, p. 19). In contrast, forecasting under uncertainty is done without
the knowledge of these frequentist probabilities.
There are two commonly used classical descriptions for the frequentist probabilities: (1) The
symmetry or exchangeability argument de�nes probability as (Gelman et al. 1995, p. 12)

probability =
number of favorable cases
number of possibilities

:

(2) The more elaborate frequency argument describes probabilities as "the proportion of
times that (an outcome of an event) occurs if we conduct a long sequence of repetitions"
(O�Hagan et al. 2006, p. 11). Gelman et al. (1995), p. 12, use a more precise de�nition
for the probability as a "relative frequency obtained in a very long sequence of (repetitions),
assumed to be performed in an identical manner, physically independently of each other".
Unfortunately, there is one hitch. Frequentist probabilities are no characteristic of a single
event but of a sequence of "similar" events (von Mises 1981).4

From this risk and uncertainty categorization follows a subdivision of uncertainty into an
epistemic and an aleatory constituent (O�Hagan et al. 2006, pp. 10, Aven 2003, pp. 16,
Ötsch 2008, p. 25). The epistemic part describes the uncertainty arising from insu¢ cient
knowledge of the structure of a model or the world. Consequently, this uncertainty can be
deleted by gathering information. In contrast, the aleatory part characterizes the "true"
physical randomness.
This concept is better illustrated by an example: When you toss a coin, the outcome is
assumed to be uncertain because of your (epistemic) uncertainty on the structure of the
coin and the coin�s (aleatory) physical randomness. Once you know the coin is "fair", all
structural uncertainty has vanished but there is still the randomness. According to the
frequentist understanding, the outcome of a fair coin is risky because you know the "true"
probabilities but not the actual outcomes in advance.5

Following the concepts of frequentist probabilities and physical randomness, classical (or
frequentist) statistics can only describe aleatory uncertainty by hypothesizing the existence
of virtually repeatable events like coin tossing. However, even this prime example of a

4See Burdzy (2009) for a discussion on the di¤erences between the theory on frequentist (subjective)
probabilities and their practicable use in frequentist (Bayesian) statistics.

5Another example are daily returns of stocks. When there is no model for those returns, there is huge
uncertainty about them. By introducing the concept of Geometric Brownian motion for the (log-)returns,
the epistemic uncertainty is removed but there is still aleatory uncertainty as the (log-)returns are assumed
to be Gaussian distributed.
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repeatable event fails in reality. There have been several experiments showing coin tossing
to be deterministic (see Diaconis et al. 2007). Indeed, the outcome of a toss solely depends
on the initial conditions which can be replicated by coin tossing machines.
Because of the lack of repeatable events, there is no risk but only epistemic uncertainty.
Lindley (1985), p. 8, de�nes uncertainty as a situation when a person does "not know what
will happen on some future occasion, though sometimes the uncertainty is in the past".
When we do not want to abstain from the concept of probabilities, subjective probabilities
are the only way out.6 This is advisable, as in everyday life, probability statements are often
used for unprecedented events or almanac questions (e.g., "Which city is located closer to
the equator, Madrid or Rome?").
Consequently the subjective probability - the theory was developed by de Finetti (1997) and
Savage (1972) - is a personal degree of belief in the truthfulness of a proposition (O�Hagan et
al. 2006, p. 11, Press 2002, pp. 17/ 19). Moreover, the normative axioms of Savage (1954/
1972) imply a maximization of expected utility based on the individual degree of belief.
When o¤ering persons di¤erent action alternatives, their subjective probability assessments
can be observed by monitoring their decisions (O�Hagan et al. 2006, p. 21). The most
sophisticated way is to quantify subjective probabilities by measuring the willingness to bet
which is however often contaminated by a person�s preferences.
All theory dealing with such an understanding of subjective probabilities we call Bayesian
theory. The practicable application of these probabilities we term Bayesian Risk Manage-
ment (BRM) - we discuss in this dissertation. We only present Bayesian theory to an extent
that allows to correctly apply Bayesian techniques and helps to understand pitfalls.

2.1 Hardcore- vs. Softcore-Bayesianism

Bayesian Risk Management (BRM) focuses on a transparent risk management (1) when
there is reliable data for data analysis as well as (2) when there is no reliable data, at all.
Data is labeled "reliable" when the risk analyst judges a data analysis as promising with a
clear conscience. Then, normative mathematical Bayesian updating discloses a rational level
of uncertainty remaining after the observation of the reliable data. Unfortunately, there is
often no reliable data available or no reliable statistical model can be deduced from reliable
data. In such situations there is no escape to quantify subjective assessments.
Following this argumentation, BRM distinguishes two main (complementary) ways to quan-
tify personal uncertainty on critical factors:7

6Indeed, Press 2002, p. 19, sees the concept of "objective" probabilities as a special case of subjective
probabilities.

7We use the notion "factor" to reference to variables like oil price as well as to events like "a global
emission trading scheme in 2020". Mostly, variables coincide with level variables while event is a synonym
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� Hardcore-Bayesianism (HCB) summarizes all empirical Bayesian techniques that re-
quire reliable data to apply the formal Bayes rule for normative (mathematical) Bayesian
updating.8 The data can be inter-subjectively9 measured observations (e.g. length,
width, weight, temperature, speed, price) or subjective (probability) assessments.10

HCB relies on the data�s explanatory power for the inference on the critical factors.

� Softcore-Bayesianism (SCB) summarizes all Bayesian approaches (1) that can identify
critical factors, (2) that can quantify or aggregate subjective (probability) assessments,
(3) that can deal with such assessments, and (3) that can support decision makers in
dealing with them. Although informal Bayesian updating of subjective assessments is
generally intra-subjective,11 SCB techniques intend to foster a more inter-subjective
updating. A crucial task is to separate informative from uninformative or even delib-
erately misleading appraisals. In fact, this includes the assessment of the reliability of
data and of the induced statistical models.

The BRM proposes two criteria (subjective probabilities and mathematical Bayesian up-
dating) as a rough di¤erentiation between HCB and SCB, although the di¤erences are in
fact much more subtle (see �gure 1). Primarily, Bayesian thinking requires the concept of
subjective probabilities. The famous normative mathematical Bayesian updating via the
Bayes rule12 is no premise for Bayesian theory. The quanti�cation of uncertainty without
the Bayes rule is an important, maybe, the most important part of Bayesianism.
Due to its e¢ ciency, there have been e¤orts to apply the Bayes rule in empirical data
analysis without informative priors. Inference purely bases on data (see section 6.2). Strictly
speaking, such approaches are outside the Bayesian paradigm. Nevertheless, we label such
work as Bayesianism because it is an important part of Bayesian statistics and a separation
would cause a more unclear and confusing landscape.

for occurrence variables (see section 15.1).
8In this dissertation we use the term "updating" to describe the incorporation of additional information

in an existing risk assessment.
9Inter-subjectivity: Di¤erent people interpret characteristics in the same way.
10Statements can be transformed into a numerical form like traditionally measured data. This allows to

apply the mathematical Bayes rule.
11Intra-subjectivity: A person�s latent, inner, and individual reconsideration and appraisal of new infor-

mation.
12The Bayes rule for two events (variables) A and B follows basic statistical rules. It is � (aj b) =

� (bj a)� (a) =� (b) and simply states that the conditional probability (posterior) of event A given the out-
come b of event B can be calculated by the reverse conditional probability � (bj a), by an unconditional
probability (prior) � (a) for A = a, and by an unconditional probability � (b) for B = b. The notation � (�)
with a pi re�ects the subjectivity of the probability. Indeed, we will apply the Bayes rule in the Bayesian
parameter estimation (see sections 3 up to 12) where we presume a data generating process (DGP) producing
measurable data (CO2 prices). Then � (bj a) and � (b) are not treated as subjective probabilities.
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Figure 1: basic categorization of Bayesianism

In general, SCB can separately be applied while HCB cannot for two reasons (see �gure
2): First, the normative mathematical Bayesian updating via the Bayes rule requires the
identi�cation of advanced information (= informative priors). The quanti�cation of such
informative priors is however part of SCB.13 The controversial use of improper prior can cut
this link between HCB and SCB.14 Second, the pre-selection of models and the judgement
of the reliability of the data and the model assumptions for inference is purely subjective
even though classical testing and Bayesian model weighting can support the appraisal.
The groundbreaking innovation of the BRM concept is the simultaneous and transparent
handling of the normative mathematical Bayesian updating and the informal subjective
updating of people in real life. Indeed, there is no clear superiority for one of both updating
approaches.
The mathematical Bayesian updating guarantees a rational and non contradicting incorpo-

13In the special case of Bayesian belief networks (BBN), SCB can even deliver posteriors. Adequate priors
can be calculated by means of BBN.
14The use of improper priors is a violation of statistical fundamentals which entails no practicable problems

for some special cases (see section 6.2).
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Figure 2: Bayesian tree - SCB describes an informal updating while HCB o¤ers a mathematical
updating via the Bayes rule. Since every model is formed by human expertise there is no HCB
without SCB. We expect a di¤erence between the normative HCB risk assessments (resulting
from rational learning) and the observed assessments of human beings.
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ration of information but requires a formal model of the world. Unfortunately, the world is
too complex to �nd an exhaustive model and the Bayes rule can only update on clear spec-
i�ed data. An informal updating of individuals seems preferable when there is uncertainty
on some unprecedented events or their is no reliable data, at all. Such an updating relies
on the person�s experience of life and often (latently) accounts for an incredible amount of
information. Consequently, a prudent risk management should pro�t from both approaches.
For instance, expertise of some experts can help to set up informative priors or to modify
the result (posterior) of mathematical Bayesian updating.

2.2 Bayesian Due Diligence

From a theoretical point of view, Bayesian reasoning enables to quantify all imaginable un-
certainties because subjective probabilities are not attached to objects (e.g. a coin) or events
(e.g. global implementation of the Tobin tax) but to persons. There is no chance to verify
or falsify a subjective statement irrespective the information we have access to.15 Indeed,
Bayesian updating is not a veri�cation or falsi�cation of past assessments in consideration
of new information (de Finetti 1974/ 1975). Instead, an old assessment - based on old infor-
mation - is replaced by a new assessment - based on old and new information (Burdzy 2009).
Ideally, human beings express their uncertainty, depending on their level of information, in
form of more or less �at probability distributions (Klir 1999).
In real life, a laissez-faire Bayesianism could result in a haphazard instead of a bene�cial
risk management. An adequate quanti�cation and evaluation of subjective uncertainties is
inevitable for a practicable implementation of BRM. In fact, we agree with Keynes (1937),
pp. 213, who sees di¤erent degrees of uncertainty:

By �uncertain� knowledge [...] I do not merely distinguish what is known for
certain from what is only probable. The game of roulette is not subject, in this
sense, to uncertainty; nor the prospect of a Victory bond being drawn. [...] Even
the weather is only moderately uncertain. The sense in which I am using the
term is that in which the prospect of a European war is uncertain, or the price
of copper and the rate of interest twenty years hence. [...] About these matters

15Although the Bayes rule theoretically allows for a model (= theory) falsi�cation, i.e. probability of zero,
this contradicts the con�rmation holism (Goerz 2006). According to the con�rmation holism (or Quine-
Duhem-Thesis) a theory cannot be veri�ed in real life because it is always tied to further theories and
assumptions resulting from a person�s background knowledge. It is only possible to falsify the theory and
the background knowledge simultaneously. Unfortunately, there is no full access to a person�s background
knowledge. Consequently, there is no chance for an absolute certainty on the truth or falsity of a theory (see
Goerz 2006 for more details).
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there is no scienti�c basis on which to form any calculable probability whatever.
We simply do not know.

A challenge is to o¤er principles to avoid arbitrary subjectivity within the SCB that can
even translate into the HCB by a high-handed or fraudulent appraisal of the reliability of
the data and the model assumptions or by a sloppy quanti�cation of (prior) distributions.16

The goal is not to reach a non-existing "objectivity" but coming as close as possible to
inter-subjectivity.
We favor a Bayesian due diligence scoring the level of information embodied in the as-
sessments. We have summarized some (reasonable) criteria in section 15.5 which generally
account for three fundamental meta-criteria:17 (1) Substantive expertise describes a person�s
level of information. (2) Normative expertise is the person�s skill to express her beliefs in
an adequate probabilistic form. (3) Credibility re�ects our con�dence whether assessments
base on faithful information or misinformation.18

Regarding these meta-criteria, we demand a new risk classi�cation for probability assess-
ments produced by the Bayes rule as well as directly expressed by human beings. It references
to the classical terms "risk" and "uncertainty" of Knight (1921):

� risk factor: A factor is risky when it is described by (subjective) probabilities that
are judged to be reliable - i.e. quite inter-subjective and based on a(n economically)
su¢ cient level of faithful information.19

� uncertain factor: A factor is uncertain when it is described by (subjective) probabilities
that seem unreliable - i.e. quite intra-subjective or not based on a(n economically)
su¢ cient level of faithful information.

We refer to risk factors and uncertain factors as dragon kings because they are postulated
(but not necessarily correctly quanti�ed) factors that are supposed to be relevant for risk
management.20 However, a prudent BRM should always bear in mind critical factors not
16However, there is no doubt about the adequacy of mathematical Bayesian updating in risk management

because it is purely normative corresponding to a rational utility maximizing agent.
17The goodness criteria substantive and normative expertise were proposed by Winkler & Murphy (1968).
18We avoid to claim for "true" information. We believe that there is often no "objective" truth. Instead,

we demand information which is not deliberately misleading but a faithful assessment of the assessor.
19Posterior distributions resulting from the mathematical Bayesian updating only describe risk factors

when the data and the model assumptions are believed to be reliable and there is a general acceptance for
the prior distributions within the risk management or the company. The latter demand might often result
in uninformative (�at) priors.
20The original concept is di¤erent. Dragon kings correspond to meaningful outliers that coexist "with

power laws in the distributions of event sizes under a broad range of conditions in a large variety of systems"
(see Sornette 2009, abstract). In fact, Sornette�s dragon kings can always be detected by a (sophisticated)
data analysis while our dragon kings can also/ solely be identi�ed by human reasoning.
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Figure 3: trichotomy of Bayesian due diligence

considered so far. Consequently, we enhance our categorization by black swans in the sense of
Taleb (2007) - critical but personally unforeseeable factors. This results in two claims: (1) A
risk management should mobilize risk cushions that can absorb unexpected adverse events
of minor up to medium size. (2) Moreover, it should look for new information (sources)
providing a better appraisal of possible risks and opportunities.
We hope that a Bayesian due diligence, propagating the trichotomy of risks, uncertainties,
and black swans can help to reconcile conservative risk managers with the Bayesian under-
standing of risk management (see �gure 3 for our trichotomy of risks and �gure 4 for a basic
structure of a prudent BRM). It curbs arbitrariness of subjective assessment and fosters a
conservative risk management.
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Figure 4: temple of Bayesian Risk Management
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3 Hardcore-Bayesianism

Hardcore-Bayesianism (HCB) summarizes all empirical approaches where data-based infer-
ence relies on Bayesian updating via the Bayes rule. Just like non-Bayesian data analysis,
HCB implicitly assumes data to contain relevant information for inference (= reliability).
The concept of Bayesian Belief Networks (BBN) is an exciting part of HCB. Amongst others,
it is bene�cial for decision making in medicine and engineering. Unfortunately, it goes beyond
the scope of this work to present BBNs. Therefore, we refer to other publications like the
practicable textbook Pourret et al. (2008) or Krause (2010), a BBN study on the CO2
emission reduction options for the German automotive industry.
Beside BBNs an even more important and universal area of HCB is Bayesian statistics in
general and Bayesian parameter estimation in particular. In contrast to frequentist statistics,
it does not restrict to the estimation of point estimates. Instead, Bayesian estimates are
(multivariate) distributions re�ecting a rational level of uncertainty in consideration of the
available data. This has three practical consequences:

1. In the case of a low number of observations, frequentist statistics often fails to reject
the null hypothesis in favor of the point estimates. Additionally, the high uncertainty
of the estimators is often ignored in subsequent risk measures. In contrast, the quality
of Bayesian estimates does not su¤er from a low number of observations. In such a
case, Bayesian estimates re�ect the higher uncertainty by broader distributions.

2. It is often a drudgery in frequentist statistics to validate whether the preconditions are
ful�lled to run a test, at all.21 Although the convergence of the Bayesian estimates
needs to be veri�ed, there is no classical hypothesis testing. The (relative) adequacy
of a model can be judged by model weights.

3. Bayesian statistics does not reject hypotheses but fully accounts for parameter as well
as model uncertainty in the data. This results in a more conservative risk management
and allows to explain phenomena like the equity premium puzzle or the capital charge
puzzle (see section 11).

We have structured the HCB part of this dissertation in the following way: First, we describe
the preliminary work of model building and compare the basic frequentist and Bayesian idea
of parameter estimation. Then, we introduce the Markov Chain Monte Carlo (MCMC)
simulation concept. Because of the speci�cs, we separately dwell on Bayesian model weight-
ing. For a better understanding, we exemplarily run a MCMC estimation with twelve sto-
chastic processes (models) on CO2 price observations which we subsequently compare by

21e.g., Gaussian distribution by Jarque-Bera or auto-correlation by Durbin�Watson
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Bayesian model probabilities. To explicitly quantify the di¤erence between the frequentist
and Bayesian CO2 price risk assessment, we calculate risk premiums resulting from Bayesian
value-at-risks, capital charges, and option prices.

4 Model Building

In the following, we explain the subjectively driven preliminary work, we call model building,
every statistician has to do regardless whether he/ she is an "objective" frequentist or a
subjective Bayesian - terms we explain later in more details. There are concepts like hy-
pothesis testing, model selection based on information criteria (see Burnham & Anderson
2004), or probability integral transform (see Angus 1994) hoped to enable an "objective"
model building. However, we are convinced that these cannot prevent subjectivity to be a
critical component of model building.
To avoid confusion, in this paper we use the terms "objective" and subjective statistics
to address parameter estimation, evaluation of parameter quality, and weighting of prese-
lect modelsM� f1; :::; Kg. The (subjectively) preliminary �xing of these K models (model
building) out of an in�nite number of possible models is ignored for specifying the terms
"objective" and subjective statistics.
Assume, we believe a time-dependent variable, e.g. log-returns on stock prices, can be
described by a vector Y = (Y1; :::; YT )

0 of stochastic variables where22

Yt � Distt (gtlt (�) ; lt = 1; :::; Lt) for t = 1; :::; T:

The distributions are characterized by Lt parameters, which are functions gtlt (�) of basic or
structural parameters � = (�1; :::; �J)

0. With an assumption on the distribution of Yt, we can
construct the respective marginal (probability) density function (pdf)23 fYt (ytj �).
In a next step we need to presume a dependence structure for the T -dimensional (inter-
temporal) joint distribution Y � DistT (gl (�) ; l = 1; :::; L). Based on this dependence struc-
ture we can set up a likelihood (joint density) function Ly (�) = fY (yj �) with observations
y = (y1; :::; yT )

0. The likelihood for stochastic dependent variables can be formulized in
di¤erent ways:

22A more general formulation for time-series as well as cross-sectional data is Yi �
Disti (gili (�) ; li = 1; :::; Li), for i = 1; :::; n. However, we only deal with time-series models in this
paper. Consequently, we concentrate on this special case.
23For simplicity we do not distinguish between a probability density function (pdf) and a probability mass

function (pmf) for continuous and discrete distributions. We will always use the term "pdf" to refer to a
marginal distribution.
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� multivariate distributions: When all variables Yt originate from the same distrib-
ution Dist (gtl (�) ; l = 1; :::; L), where distribution parameters gtl (�) can di¤er for
t = 1; :::; T , the joint distribution is called multivariate distribution. Standard multi-
variate distributions are the multivariate Gaussian or Student�s t distribution.

� meta-distributions (via copulas):24 The resulting joint distribution from arbitrary mar-
ginal distributions is called meta-distribution. The marginal distributions are coupled
via a T -dimensional multivariate uniform distribution de�ned on a [0; 1]T hypercube.
The exact dependence structure originates from a copula function, which can be pro-
duced by a multivariate distribution. Consequently, there are meta-Gaussian and meta-
Student�s t distributions. Other prevalent meta-distributions are the meta-Clayton,
meta-Gumbel, or the meta-Frank distribution.

� Markovian-property:25 The Markovian-property can substantially ease the construc-
tion of joint distributions for time-series. A stochastic time-series Y = (Y1; :::; YT )

0 is
a Markov chain of order m if the conditional distribution of Yt only depends on the m
preceding realizations

fYt (ytj yt�1; :::; ym; :::; y1; �) = fYt (ytj yt�1; :::; ym; �) :

In the case of m = 1 the likelihood function reduces to

Ly (�) = fY1 (y1j �) �
TY
t=2

fYt (ytj yt; �) :

Very often Y = (Y1; :::; YT )
0 are (1) assumed to be stochastically independent or (2) trans-

formed to ~Y (e.g. prices to (log-)returns) that are assumed to be independent. Under
stochastic independence, the likelihood is simply de�ned by a factorization of the marginal
distributions, i.e. Ly (�) = fY (yj �) =

QT
t=1 fYt (ytj �).

In this paper we term the combination of assumptions on the marginal distributions of Yt,
t = 1; :::; T , and on the dependence structure of Y = (Y1; :::; YT )

0 as a (stochastic) model M.
The process of constructingK explicit models out of an in�nite number of possible models we
call model building. A modelM de�nes the domains of all model parameters � = (�1; :::; �J)

0

but not their exact values. We additionally assume the observed data y = (y1; :::; yT )
0 is

generated by the data generating process (DGP) Mj ��. It is described by the likelihood
Ly (�

�) = fY (yj ��) where �� is the "true" or "objective" parameter vector.
24see Cech (2006), Schmidt (2007), Bouye et al. (2000), or Fermanian & Scaillet (2004)
25see Ross (1995), pp. 163
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We generally argue statisticians believe that each modelM� f1; :::; Kg (they construct) could
be the "true" model for Y = (Y1; :::; YT )

0.26 Of course, this is an extremely hard assumption
that might only be appropriate to natural but not to social science. However, a violation of
this assumption does not destroy the basic ideas we want to present.

5 Frequentist Statistics

In this dissertation we term all statistical inference theory that tries to �nd point estimates
�̂ for the "true" parameters �� of the DGP Ly (�

�) = fY (yj ��) as frequentist (or classical)
statistics. Probability formulation is reserved for uncertain variables Y . Data generating
parameters �� are assumed to be deterministic and consequently �x but unfortunately un-
known. Probability is a rather restricted, nevertheless complex, concept which is loosely
speaking the relative frequency of realized Yt = yt (for discrete Y ) when Yt could be repeat-
edly observed n!1 times.

5.1 Parameter Estimation

One of the earliest and still most popular techniques for the parameter estimation in frequen-
tist statistics is the least square (LS) estimation which was proposed by Carl Friedrich Gauß
in the early 19th century.27 The basic concept is simple. Assume we believe the observations
y = (y1; :::; yT )

0 can be approximated by a deterministic function yt � ŷt = gt (y�t; x; �
�)

which might depend on other observations y�t (except yt) of the same variable Y , on ob-
served realization of other variables X, and on an unknown parameter vector ��. Then the
least square estimates are the parameters that minimize the quadratic error between our
model estimates and the observations

�LS = argmin
�

TX
t=1

[yt � gt (y�t; x; �)]
2 :

In the case of � linear in gt (y�t; x; �), there exists an analytical solution for the least square
estimators. However, when gt (y�t; x; �) is non-linear, numerical techniques are needed, like
a Taylor approximation of gt (y�t; x; �) in � to linearize gt, the steepest-descent (or gradi-
ent) method, or the maximum neighborhood method (= interpolation between Taylor and
Gradient method, see Marquardt 1963).

26A prominent counter-example is the quasi-maximum likelihood (QML) estimation, where estimation is
deliberately based on a "wrong" model. See page 17 for more details.
27See Mood et al. (1974), pp. 498, Hartung (1999), pp. 574, Bamberg & Baur (2001), pp. 151, and

especially for-time series Schlittgen & Streitberg (1989), pp. 193, for more details.
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Another extremely popular and dominant method is the maximum likelihood (ML) estima-
tion introduced by Ronald Aylmer Fisher in the early 20th century. In contrast to the least
square estimation the ML estimation needs an assumption on the distribution (in our terms
amodel) of Y as it maximizes the likelihood function of modelM in respect of the parameter
vector �

�ML = argmax
�
Ly (�) :

Unfortunately, the likelihood function relatively fast goes to zero or to extremely large values.
Consequently, ML estimation is applied by maximizing the log-likelihood function ly (�) =
lnLy (�) which is just a monotone transformation.
For basic likelihoods there are analytical solutions to the ML estimators. In the special case
of y = (y1; :::; yT )

0 stemming from a Gaussian variable Y , the ML estimators coincide with
the least square estimators. For more complex models, numerical or simulation techniques
are needed.
An alternative to ML estimation is the quasi-maximum likelihood (QML) estimation which
is rather a more honest understanding of the world than a technique. The QML estimation
admits that the observations y = (y1; :::; yn)

0 stem from an unknown (and maybe highly com-
plex) DGP f �Y (y) which cannot be maximized by ML.

28 Consequently, the modeler should
look for a "simple" but reasonable approximating quasi-likelihood LQML

y (�) = gY (yj �) given
a parameter vector �. The parameters are calibrated by minimization of the Kullback-Leibler
Information Criterion (KLIC)29

KLIC (fY ; gY j �) =
Z
ln

f �Y (y)

LQML
y (�)

f �Y (y) dy;

which measures the misspeci�cation and equals zero for f �Y (y) = LQML
y (�). As the quasi-

likelihood function only depends on the parameter vector, the KLIC can be rearranged and
the maximization ofZ

lnLQML
y (�) f �Y (y) dy = Ef�Y

�
lnLQML

y (�)
�
=
1

T
Ef�Y

�XT

t=1
ln gY (YtjY<t; �)

�
is equivalent. In empirical estimation, the expectation operator is ignored as the "true" DGP
f �Y (y) is unknown and the maximization solely bases on the observations y = (y1; :::; yT )

0.
Hence, the QML estimators are �QML = argmax�

1
T

PT
t=1 ln gY (ytj y<t; �) :

28Our explanation mainly bases on Kuan (2007), chapter 9.
29The idea of the KLIC is to measure the information gain or loss when our probability assessment on the

realization of an event A is updated from pold to pnew (Kuan 2007, p. 234). An increase (decrease) of the
realization probability, pnew >

(<)p
old, increases (reduces) our information level of A. The information content

changes disproportionately for shifting probability assessments. In the case of n mutually exclusive events
A1; :::; An the expected shift in the information level is

P
i p
new
i ln

�
pnewi =poldi

�
. The KLIC is the continuous

version.
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Sometimes, the QML estimation is understood more trivial as a ML parameter estimation
based on a deliberately misspeci�ed likelihood function, e.g. assuming Gaussian errors when
they are not. Again, the reduction in complexity of the estimation via QML is not up to a
di¤erent technique but up to the estimation of a simpler approximating likelihood.30

In contrast to the QML estimation there also exist "true" estimation techniques di¤erent
from ML, like generalized method of moments (GMM, see Hansen 1982), simulated method
of moments (SMM), or e¢ cient method of moments (EMM, see Andersen et al. 1999)
estimation.
The GMM works the following way. Assume you have a model with S = 2 conditions
E (Yt) = h1t (�

�) and V ar (Yt) = h2t (�
�), for t = 1; ::; T , which can be rearranged to g1t (�) =

E (Yt) � h1t (�) and g2t (�) = V ar (Yt) � h2t (�). Given the data generating process with
parameter vector ��, it follows �gk (�

�) = T�1
PT

t=1 gst (�
�)! 0, s = 1; 2. The GMM estimator

is �GMM = argmin�
�
�g (�)0	�g (�)

�
, where �g (�) = (�g1 (�) ; �g2 (�))

0 and 	 is an empirical
positive de�nite weighting matrix for the conditions. A requirement is that the number of
conditions S should at least equal to the number of parameters J . For � non-linear in gst (�)
the GMM estimator can only be obtained numerically.
The simulated method of moments (SMM), proposed by McFadden (1989) and extended
to time-series by Lee & Ingram (1991), is an extension of the GMM approach when mo-
ment condition functions gst (�) have no analytical representation. Then SMM allows for a
simulation of gst (�) via Monte Carlo techniques.
One of the most important problems in ML estimation is the parameter estimation in models
where observations y critically depend on latent, i.e. unobservable variables X. Assume a
structural model Yt = Xt"t, where "t � N (0; 1) and Xt is a latent process driven by the
parameter vector �. Unfortunately, the vector y = (y1; :::; yT )

0 is the only observation we
have access to. Consequently, ML parameter estimation needs to maximize the unconditional
likelihood

LY (�) = fY (yj �) =
Z
fY X (y; xj �) dx =

Z
fY (yjx; �) fX (xj �) dx;

which requires to solve the T -dimensional integral that is generally intractable. In this
context fY (yjx; �) is called auxiliary density where the latent variable X is treated as
observation.
The EMM approach is a technique that allows to maximize such complex likelihoods. In
a �rst step a quasi-score function is calculated from the auxiliary density by s (yt; xt) =
@
@x
ln fYt (ytjx; �) = @

@xt
� (ytj 0; xt) which ignores the parameter vector.31 Via QML we �nd

30In a log-variance stochastic volatility model, Harvey et al. (1994) assume Gaussian errors for the
logarithm of the squared log-returns although they are log-�2 distributed. Because of the high frequency of
�nancial data, they found no huge misspeci�cation.
31� ( �jm; s) is the pdf of a Gaussian distribution with mean m and standard deviation s.
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latent realizations x̂ = (x̂1; :::; x̂T )
0 maximizing T�1

PT
t=1 s (yt; xt). Under some regularities

x̂! x0 with x0 called as quasi-true values of x (see Andersen et al. 1999, p. 66). The model
implies that s (yt; xt) is induced by the probability measure fYt (ytj �) and features a vector
of conditional means m (x0; �). These are approximated by a SMM step via

m̂ (x̂; �) = (m̂1 (x̂1; �) ; :::; m̂T (x̂T ; �))
0 ;

where m̂t (x̂t; �) = W�1PW
w=1 s

�
ŷ
(w)
t (�) ; x̂t

�
and ŷ(w) (�) =

�
ŷ
(w)
1 (�) ; :::; ŷ

(w)
T (�)

�0
, for w =

1; :::;W , is a series simulated from the structural model given a parameter vector � and the
QML estimates x̂. The EMM estimators are calculated by minimizing

�EMM = argmin
�

�
m̂ (x̂; �)0 �̂�1m̂ (x̂; �)

�
;

where �̂ is the respective covariance matrix which can be calculated in the QML or SMM
step.

5.2 Quality of Estimation Results

In frequentist statistics, the "true" parameter �� is a deterministic, �xed, non-random con-
stant32 while the parameter estimator �̂ is a random variable with di¤erent realizations �̂ for
several observations y originating from the same population. Based on these assumptions
statistical inference is mostly based on hypothesis testing and con�dence intervals.
In (Neyman-Pearson) hypothesis testing a null hypothesis, H0 : ���(0), and an alternative
hypothesis, H1 : ���(1), are stated, where �(0) \ �(1) = ? and the parameter space is often
�(0) [ �(1). It is analyzed whether the observed estimator value �̂ is compatible with y driven
by the parameter vector ���(0).
Generally, a test is conducted via a test statistics, t = � (y), t�R,33 which rejects the null hy-
pothesis when y�y(1). The range of y(1) depends on the desired signi�cance level �, normally
�� f0:1; 0:05; 0:01g, where

P
�
Y �y(1)

�� ���(0)� � �:

Empirical studies often list another statistics called p-value originating from Fisher hypoth-
esis testing theory, which only states a null hypothesis. The p-value

p =

(
P
�
� (Y ) ��� (y)

��� ���(0)� ; for one-sided hypothesis

P
�
j� (Y )j � j� (y)jj ���(0)

�
; for two-sided hypothesis

;

32For a more intuitive understanding in this section we assume that the parameter vector � consists of one
parameter, only.
33A test statistic for the mean parameter � is the arithmetic mean �� (y) =

P
t yt=T while the variance

�2 is generally estimated by the test statistic �� (y) =
P
t [yt � �� (y)]

2
= [T � c], where c = 0; 1.
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is the "objective" probability (relative frequency in the limit) of obtaining a � (Y ) that is at
least as extreme as the observed � (y) if ���(0). In statistical software packages like EViews,
p-values are often implemented for the null hypothesis H0 : � = 0 to test whether the
estimated parameter is signi�cant or not. As long as the null hypothesis cannot be rejected
there is evidence that the parameter can be ignored. Otherwise, the estimator �̂ is accepted
as "true" parameter value ��.

Another common statistic is the con�dence interval CIyj� =
h
CI lowyj� ; CI

up
yj�

i
re�ecting reli-

ability of the parameter estimator �̂. For multiple samples from the same population the
con�dence interval contains the �xed "true" parameter value �� with a desired "objective"
probability which is called con�dence level �, where P

�
���CIyj�

�
= �. Con�dence intervals

are typically stated for con�dence levels 90%, 95%, and 99%. Generally, this means the
higher the con�dence level the larger the con�dence interval. The abstract interpretation
of the con�dence interval is due to the fact that the con�dence interval itself is a random
variable in contrast to the "true" but unknown parameter ��.

6 Basic Idea of Bayesian Statistics

In the following we understand Bayesian statistics as the quanti�cation of uncertainty on a
parameter vector � = (�1; :::;�J)

0 resulting from a modelM when prior subjective uncer-
tainty on � is rationally updated by observations y = (y1; :::; yT )

0 originating from the data
generating process fY (yj ��) where �� is the "true" parameter vector.34 In contrast to fre-
quentist statistics where a point estimate �̂ is calculated which is hoped to be a good proxy
for �� the output of Bayesian statistics is a stochastic variable � describing the updated
uncertainty.35

6.1 Bayesian Parameter Estimation

Assume the modeler has set up a model M for the stochastic variables Y = (Y1; :::; YT )
0.

The likelihood (joint density function) Ly (�) = fY (yj �) is hoped to explain the observations
y = (y1; :::; yT )

0. Assume further that the model M is correct however the "true" data
generating process (DGP) is the special case ofM with � = ��. Unfortunately, �� is unknown.

34Of course, we could also assume that the "true" joint density f�Y (y) is unknown, and we just want to
calibrate model M with density fY (yj �) to the observations as good as possible. However, this is a bit
more abstract and could distract from the basic idea of Bayesian statistics.
35In the following, � refers to a stochastic parameter vector whereas � is its realizations. However, for

practicable reasons, all other stochastic parameters, written in Greek letters, are not typed in capital letters.
Hence, there is no optical di¤erence between random variable � and its realization �.
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The Bayesian parameter estimation of �� is conducted via several steps:

prior distributions: In a �rst step we need to state, purely subjectively, so called prior
distributions for each of the J model parameters � = (�1; :::;�J)

0 in form of a joint prior
density � (�). As the de�nition of a joint prior can be very complicated and is often not
crucial, prior independence, � (�) =

QJ
j=1 � (�j), is mostly assumed.

The marginal prior � (�j) conveys two basic information: First, we express our purely sub-
jective beliefs on the domain of �j by choosing suitable standard distribution, e.g. Gaussian
distribution for �j�R (mean value), inverse gamma distribution for �j�R+ (variance), or
uniform distribution for �j� [�1; 1] (correlation coe¢ cient). A remarkable advantage of
Bayesian statistics is the straightforwardness of incorporating restrictions on parameters.
Undesired realizations during the estimation process are simply ruled out. Second, we can
adjust the respective standard distribution (to some extent) to express our prior beliefs.

posterior distribution: The result of Bayesian statistics is the posterior parameter distribu-
tion of �j y which is the prior distribution of � updated by the observations y = (y1; :::; yT )0.
The joint posterior density is formulized by the Bayes rule (or theorem)

� (�j y) = fY (yj �)� (�)
f (y)

=
Ly (�)� (�)R
Ly (�)� (�) d�

:

Unfortunately, the J-dimensional integral in the denominator is mostly intractable. Fortu-
nately, the form of the posterior is not e¤ected by f (y). It is just a constant scaling factor.
Hence, the posterior is mostly presented as

� (�j y) / LY (�)� (�) ;

where / marks proportionality.
There are two important facts on the posterior, which are not necessarily apparent: (1) The
Bayes rule shows that the form of the posterior � (�j y) is de�ned by three factors: the prior
� (�), the likelihood Ly (�) (which is determined by the distributional assumption on Y ),
and the actual observations y. The updating from the prior to the posterior is a purely
normative process, based on the Kolmogorov axioms. It describes how people should update
and not how they actually do! Indeed, when we mention subjective uncertainty in context
with the posterior we mean normatively updated subjective uncertainty. (2) Theoretically,
the posterior � (�j y) is the �nal Bayesian parameter estimation result. Practically, statistics
like E (�j y) or V ar (�j y) are calculated from the posterior to o¤er a better understanding.
Nevertheless, these statistics just describe the Bayesian parameter estimator, � (�j y), that
is a distribution and normally not a vector of point estimates.
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An advantage of Bayesian statistics is the relative simplicity of the incorporation of latent
(state) variables X which cannot be observed. In frequentist statistics we would try to �nd
point estimates �̂ that maximize the unconditional likelihood of y which is the solution of a
T -dimensional integral, Ly (�) =

R
fY (yjx; �) fX (xj �) dx.

Instead, Bayesian statistics "simply" augments the parameter vector ~� = (�0; X 0)0, where
� = (�1; :::;�J)

0 and X = (X1; :::; XJ)
0. The resulting posterior is

�
�
~�
��� y� / Ly

�
~�
�
�
�
~�
�
= fY (yjx; �) fX (xj �)� (�) ;

where fX (xj �) is the conditional joint pdf of the latent variables X. We avoid to call it
"prior".

6.2 Uninformative Priors

We distinguish three di¤erent groups of statisticians dealing with Bayesian statistics: (1) fre-
quentist statisticians applying Bayesian techniques because of their e¢ ciency,36 (2) objective
Bayesians, and (3) (subjective) Bayesians.
Like (subjective) Bayesians, objective Bayesian statisticians favor a stochastic interpretation
of parameters � over that of point estimates �̂. However, they oppose the formulation of
informative priors � (�). When there is a low number of observations, the prior speci�cation
can have a substantial in�uence on the posterior. This is undesirable for non-intuitive pa-
rameters in complex models. Unfortunately, complete ignorance cannot be expressed on all
kinds of parameters. A prime example is the volatility parameter �. Expressing ignorance
via an uniform distribution on the interval (0; �up], where �up < 1, would result in an
informative prior on the variance �2, which is just a simple transformation of the volatility.
Nevertheless, the de�nition of improper priors, i.e. non-�nite

R
� (�) d�, sometimes results

in proper posteriors, i.e.
R
� (�j y) d� < 1, which is the crucial point. Popular improper

priors are Je¤rey�s priors � (�) = jI (�)j1=2 where

I (�) = �E
�
@2 ln fy (yj �)

@�@�0

�
:

is the Fisher�s information matrix for � (Rachev et al. 2008, p. 26). In a model with
Gaussian errors, the respective prior for the location parameter � is � (�) / 1, which ex-
presses a complete ignorance, while the prior � (�) / ��1 on the scale parameter � is rather
approximatively uninformative.

36Andersen et al. (1999) �nd that the Bayesian MCMC sampler (see section 7) results in a lower mean
squared error for stochastic volatility models than e¢ cient method of moments (EMM), generalized methods
of moments (GMM), quasi maximum likelihood (QML), and simulated method of moments (SMM).
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However, keep in mind, that uninformative priors should only be applied if the resulting
posterior is proper. E.g., Bauwens & Lubrano (1998), pp. 25, present a proof showing that
a prior on (2;1) for the degree of freedom in a GARCH model with Student�s t distributed
errors results in an improper posterior.
In this context Ronald Aylmer Fisher proposed the �ducial inference in 1930 (see Pedersen
1978 and Aldrich 2000). Similar to Bayesian statistics and in opposition to frequentist
statistics it regards parameters � as stochastic variables. However, in contrast to Bayesian
statistics, the �ducial posteriors are solely derived from the data y. No prior distribution is
needed for the parameters. Consequently the �ducial posterior (often cited by the obsolete
term inverse probability) needs another formulation than the Bayes rule. Fisher only gave a
representation f (�j y) / �@FY (yj �) =@� for a model de�ned by a single parameter � and
with a single observation y where the likelihood (often cited by the obsolete term direct
probability) is de�ned by the derivation of a cdf which is a negative function in � (see Hannig
2006, p. 2).
A very simple example, we take from Hannig (2006), pp. 6, may help to understand the
basic idea of Fisher�s �ducial argument. Assume, we believe the observation y stems from
the model Y = � + 1 � Z, where � is the uncertain mean parameter and Z � N (0; 1). This
model can be rearranged to � = Y � Z. As we have observed Y = y we can pro�t from
the fact that the conditional distribution (= inverse probability or posterior) is Gaussian
with �j y � N (y; 1). Now it is simple to construct �ducial intervals with P (�� [a; b]) =
� (b� y) � � (a� y). Such intervals have a natural interpretation like Bayesian credible
intervals (see section 6.3).
In the following we ignore �ducial inference as (1) there is no general formulation for a
�ducial inverse probability, (2) it has been marginalized,37 and (3) often obtains similar
results compared to Bayesian inference with Je¤rey�s priors.

6.3 Bayesian Posterior Inference

As already stated the Bayesian parameter estimator is the posterior distribution � (�j y),
which requires di¤erent analysis techniques compared to frequentist point estimates �̂. Be-
side the calculation of statistics like E (�j y) or V ar (�j y), credible intervals and Bayesian
hypotheses comparison are widespread approaches.38

The concept of con�dence intervals does not apply since parameters � = (�1; :::;�J)
0 are

stochastic variables. Instead, J di¤erent credible intervals CR(�)
j =

�
�lowj ; �upj

�
can be con-

37See Pedersen (1978). However, Hannig (2006) sees some rediscovering for problems where frequentist
statistics fails.
38We base our descriptions on Rachev et al. (2008), pp. 32.
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structed that guarantee

P
�
�j�

�
�lowj ; �upj

��� ��j; y� = Z �upj

�lowj

� (�jj ��j; y) d�j
!
= �;

for j = 1; :::; J and ��j is the parameter vector without parameter �j. Credible intervals
express the posterior level of uncertainty - measured by credible level � - on the unknown
"true" parameter ��j . This is a far more intuitive interpretation than that of con�dence
intervals.
A helping concept for data-based scenario weighting is Bayesian hypotheses comparison
(Rachev et al. 2008, pp. 33). In contrast to frequentist hypotheses testing it does not reject
hypotheses but compares their posterior probabilities. Assume that we compare the null
hypothesis H0 : ���

(0) with the alternative hypotheses Hl : ���
(l), where �(0) \ �(1) \ ::: \

�(L) = ; and l = 1; :::; L. Instead of (not) rejecting hypotheses, their absolute and relative
performance can directly be measured, i.e. P

�
���(l)

��� y� and P ����(l)��� y� =P ����(k)��� y�,
for l 6= k.

6.4 Bayesian Predictive Inference

The di¤erent kind of the Bayesian parameter estimator � (�j y) in�uences the way of risk
assessment. In frequentist statistics the predictive distribution of YT+1 is described by

fYT+1

�
yT+1j y; �̂

�
, where �̂ is the vector of non-rejected point estimates. In contrast the

(unconditional) Bayesian predictive density is

�YT+1 (yT+1j y) =
Z
fYT+1 (yT+1j y; �)� (�j y) d�:

The formulation above shows that Bayesian statistics distinguishes two di¤erent levels of
risk assessments on Y :

� data generating process (DGP) of Y : The model M presumes that the DGP of Y
is Ly (�

�) = fY (yj ��) with unknown ��. The frequentist risk assessment of YT+1,

fYT+1

�
yT+1j y; �̂

�
, is an estimation of the DGP given that the parameter estimates �̂

equal the "true" parameters ��. The Bayesian pendant is the conditional Bayesian
predictive density fYT+1 (yT+1j y; �). Its prediction relevance is weighted by � (�j y).

� (subjective) uncertainty on Y : As the Bayesian parameter estimator is the posterior
distribution � (�j y), the Bayesian risk assessment of Y is a description of the updated
uncertainty on Y when there is uncertainty on ��. Generally, �YT+1 (yT+1j y) should
not be understood as a direct estimation of the "true" DGP, fY (yj ��), but a rational
updated uncertainty on the "true" DGP.
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It is important to keep in mind that frequentist statistics only accounts for model induced
risk whereas Bayesian statistics additionally incorporates parameter risk (or estimation risk,
Johannes & Polson 2003, p. 6). The model induced risk describes the randomness of
the model given an arbitrary parameter vector � while parameter risk describes the added
uncertainty if the "true" parameter vector �� is not known with certainty.

As the Bayesian risk assessment of Y re�ects model induced as well as parameter risk we
have to distinguish two levels of dependence structures: (1) The dependence structure of the
DGP, re�ected in the likelihood Ly (�

�) = fY (yj ��). (2) The dependency of the Bayesian
predictive density on the observations y.

Assume we know the DGP generates independent samples Y = y. Then the conditional
Bayesian predictive densities reduce to fYT+1 (yT+1j �). Nevertheless, the Bayesian risk as-
sessment on YT+1

�YT+1 (yT+1j y) =
Z
fYT+1 (yT+1j �)� (�j y) d�:

depends on past observations y = (y1; :::; yT )
0 as the posterior � (�j y) is the updated prior.

7 Markov Chain Monte Carlo Simulation

As already pointed out the Bayesian estimator is the posterior � (�j y) / Ly (�)� (�), which
is a distribution and not a point estimate. Theoretically, we need no estimation procedure
as � (�j y) is just proportional to the factorization of the likelihood and the priors.
Unfortunately, parameter vectors are often of higher dimensions and therefore the poste-
rior � (�j y) is an J-dimensional distribution which can only be plotted for J � 2. In
the case of an augmented parameter space the dimension of the posterior � (�; xj y) /
fY (yj �; x) fX (xj �)� (�) is even larger. Generally, risk managers and statisticians cannot
gain much information from the raw formula proportional to � (�; xj y).
Fortunately, there exists the Cli¤ord-Hammersley theorem39 which states that any contin-
uous (augmented) joint posterior distribution � (�; xj y) is completely characterized by the
conditional posteriors

� (�jx; y) / fY (yj �; x) � � (�jx) &
� (xj �; y) / fY (yj �; x) � fX (xj �) :

39We could not get a copy of the unpublished paper John M. Hammersley and Peter Cli¤ord (1971):
Markov �elds on �nite graphs and lattices. However, you can �nd a proof of Cli¤ord-Hammersley theorem
and premises in Besag (1974).
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This theorem can be applied again to �nd the full or complete conditional posteriors40

� (�jj ��j; x; y) / fY (yj �; x) � � (�jj ��j; x) ; for j = 1; :::; J;
� (xij �; x�i; y) / fY (yj �; x) � fX (xij �; x�i) ; for i = 1; :::; dim (x) :

The formulation ��j and x�j describe the vectors � and x without �j and xj.
Thanks to the Cli¤ord-Hammersley theorem, Bayesian parameter estimation of the joint pos-
terior � (�; xj y) is simpli�ed to the estimation of the full conditional posteriors � (�jj ��j; x; y),
j = 1; :::; J , and � (xij �; x�i; y), i = 1; :::; dim (x).
The full conditional posteriors are "simple" univariate distributions we could easily plot. This
is however not a sensible strategy, as we would need to decide on which values ��j = ��j
and X = x we should condition. Fortunately, there is the concept of Markov Chain Monte
Carlo (MCMC) simulation which o¤ers an ingenious solution to this problem. It works the
following way:

1. Set start values for all parameters �(0) =
�
�
(0)
1 ; :::; �

(0)
J

�0
and latent variables x(0) =�

x
(0)
1 ; :::; x

(0)
dim(x)

�0
. Set w = 1.

2. Sample all parameters �(w)j , where j = 1; :::; J , one by one from the respective full

conditional posterior �
�
�
(w)
j

��� �(w)<j ; �
(w�1)
>j ; x(w�1); y

�
.

3. Sample all latent variables x(w)i , where i = 1; :::; dim (x), one by one from the respective

full conditional posterior �
�
x
(w)
i

��� �(w)i ; x
(w)
<i ; x

(w�1)
>i ; y

�
.41

4. Set w = w + 1. If w � W go back to step 2.

5. Dump all sampled values
�
�(w); x(w)

�0
, w � B < W , for which the MCMC series

has not yet converged. This we term burn-in phase. For inference, we use W � B

repetitions, only.

After convergence, the output of the MCMC sampler �j =
�
�
(B+1)
j ; :::; �

(W )
j

�0
and xi =�

x
(B+1)
i ; :::; x

(W )
i

�0
, for j = 1; :::; J and i = 1; :::; dim (x), approximates the (augmented) pos-

terior � (�; xj y) (see section 7.4). Dependence structures between the di¤erent parameters
� = (�1; :::;�J)

0 can be analyzed via covariance matrices Cov (�) � dCov (�) or bivariately
plotted via scatter plots.

40In the case of independent priors it follows � (�j jx) = � (�j j ��j ; x).
41The Kalman �lter is an alternative which allows to sample latent variables simultaneously. See Murphy

1998/2004 for more details.
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Moreover, by means of histograms or Kernel estimators, the parameter path �(B+1)j ; :::; �
(W )
j

can approximate the marginal (parameter) posterior42

� (�jj y) =
Z Z

� (�j; ��j; xj y) d��jdx:

Usually, statisticians do not merely present the approximated distribution. They calculate
a bulk of statistics like

E (�jj y) =

Z
�j� (�jj y) d�j � Ê (�jj y) =

1

W �B

WX
w=B+1

�
(w)
j ;

V ar (�jj y) = E
�
[�j � E (�jj y)]2

�� y�
� dV ar (�jj y) = 1

W �B � 1

WX
w=B+1

h
�
(w)
j � Ê (�jj y)

i2
:

If Ê
�
�jj �̂

(w)

�j ; x; y
�
can be calculated analytically, a Rao-Blackwellization

E (�jj y) � Ê (�jj y) =
1

W �B

WX
w=B+1

Ê
�
�jj �(w)�j ; x; y

�
;

can reduce the variance of the estimator Ê (�jj y) (see Gelfand & Smith 1990, p. 440, or
Rachev et al. 2008, p. 30).
In the following we describe the Gibbs sampler, Griddy Gibbs sampler, and Metropolis-
Hastings sampler as dominant MCMC samplers. In the appendix A.3 you can �nd a short
description of the sampling-importance-resampling (SIR) which is the most important alter-
native to the MCMC samplers.

7.1 Gibbs Sampler

The Gibbs sampler is the special case of the MCMC sampler where all full conditional pos-
teriors � (�jj ��j; x; y) and � (xij �; x�i; y), for j = 1; :::; J and i = 1; :::; dim (x), are standard
distributions which are mostly implemented in standard statistical software.43 Consequently,
all parameters �jj �j; x; y and latent variables Xij �; x�i; y can directly be sampled. This has
42In the special case of a Gaussian model with uncertain mean and variance where we assume a Gaussian

and an inverse gamma prior, the marginal posterior for the mean (variance is integrated out) is a Student�s
t distribution. See Rachev et al. (2008) , pp. 48, for more details.
43When the joint posterior � (�j ; x; y) is a standard multivariate distribution, the simultaneous sampling

of the J parameters is also a Gibbs sampler. Indeed, such a multivariate Gibbs sampling is often preferable
as speed of convergence is improved.
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often two important advantages: (1) the computational implementation is relatively easy
and (2) processing speed is fast.
The implementation of the Gibbs sampler is mostly linked to the curiosity of conjugate priors
(see Fink 1997 for more details). There are some rare but extreme important cases where
the prior and posterior follow the same distribution, although the distributional parameters
di¤er. Two points are crucial for conjugate priors: First, the correct choice of the likelihood
Ly (�) (distributional assumption on y).44 Second, the respective parameters need special
priors given the likelihood. Some important conjugate priors are summarized in table 1.

y � �j y posterior parameters

� N (�; �) N (m0; s0) � � N (m�; s�)
m� = s2�

h
m0=s

2
0 + ��2

PT
t yt

i
s2� =

�
s�20 + T��2

��1
� N (�; �) IG (a0; b0) �2 � IG (a�; b�)

a� = a0 + T=2

b� = b0 + 0:5
PT

t [yt � �]2

� Exp (�) G (a0; b0) � � G (a�; b�)
a� = a0 + T

b� = b0 +
PT

t yt

� Bin (T; �) Beta (a0; b0) � � Beta (a�; b�)
a� = a0 + T

b� = b0 + T �
PT

t 1[yt=1]

Table 1: conjugate priors

7.2 Griddy Gibbs Sampler

The Griddy Gibbs sampler approximates a non-standard full conditional posterior on a re-
stricted number of points. It works the following way

1. Set S �xed points ~�
(s)

j , for s = 1; :::; S, for parameter �j, where ~�
(s�1)
j < ~�

(s)

j < ~�
(s+1)

j .

2. Compute the respective posteriors ws = �
�
~�
(s)

j

��� ��j; x; y�.
3. Normalize ws to unity by

PS
s=1ws � �s, where �s is the distance between the �xed

points.

4. Approximate the posterior cdf by ~F�j jy
�
~�
(l)

j

�
=
Pl

s=1ws, for l = 1; :::; S.

5. Generate u from U � Uni (0; 1). Find that ~F�j jy
�
~�
(l)

j

�
closest to u without exceeding

it and set �(w)j = ~�
(l)

j .

44For the following discussion we ignore latent variables X.
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The Griddy Gibbs sampler is rather fast as in every sample step the proposed parameter is
excepted. However, it is only a rough approximation of the "true" posterior. Rachev et al.
(2008), pp. 209/ pp. 226, apply the Griddy Gibbs sampler for the degree of freedom v of
Student�s t distributed errors. In such a case the restriction to integers v� f2; 3; :::; 50g seems
not problematic. However, in the case of the mean value or the volatility of log-returns this
might not be the case.

7.3 Metropolis-Hastings Sampler

The advantage of Gibbs samplers is that each sampled parameter �(w)j is accepted as a real-
ization of the parameter �j. This is why Gibbs samplers sample from the "true" posterior di-
rectly.45 When Gibbs samplers fail, the dominant MCMC sampler is theMetropolis-Hastings
(M-H) sampler. For reducing the notational demands we introduce two additional terms:

� target distribution: The target distribution is the distribution we want to sample from.
In the MCMC case this is the respective full conditional posterior � (�j) = � (�jj ��j; y).
We write the target distribution solely as a function of the uncertain parameter�j as all
other parameters and observations are �xed for the pure Metropolis-Hastings sampler.

� proposal distribution: A proposal, or candidate-generating, distribution �
�
~�j

��� �(w�1)j

�
is generally a standard distribution we sample from as the target distribution is too
complex. In the general form the distribution of the proposal parameter ~�j depends
on the current value �(w�1)j .

In contrast to the Gibbs sampler the Metropolis-Hastings sampler generates proposals ~�
(w)

j ,
w = 1; :::;W , which are not automatically assumed to stem from the target (posterior)
distribution. In exchange the requirements for the Metropolis-Hastings sampler are very
low. The target distribution can feature any complex non-standard form as long as the ratio
� (a) =� (b) can be evaluated, where a and b are de�ned on the domain of �j.
The exact Metropolis-Hastings algorithm is the following

1. Sample a proposal value ~�
(w)

j from the (standard) proposal distribution �
�
~�j

��� �(w�1)j

�
.

2. Set MCMC sample �(w)j = ~�
(w)

j with acceptance probability

�
�
�
(w�1)
j ; ~�

(w)

j

�
= min

0@w
�
~�
(w)

j ; �
(w�1)
j

�
w
�
�
(w�1)
j ; ~�

(w)

j

� ; 1
1A ;

45Of course, the Griddy Gibbs sampler generates from the discretized posterior.
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where the weight w (a; b) = � (a) =� (aj b) is the ratio of target and proposal distribu-
tion. Otherwise keep the old MCMC sample, i.e. �(w)j = �

(w�1)
j .

Thanks to the acceptance probability function � (�; �) the MCMC sample path �(w)j , w =

1; :::;W , converges to the target distribution � (�j). Interestingly, the Gibbs sampler is
a special case of the Metropolis-Hastings algorithm where the proposal equals the target
distribution. This results in a constant acceptance probability of � (�; �) = 1 as w (�; �) = 1.
Often, there are models where some parameters can be generated by a Gibbs sampler while
others need a Metropolis-Hastings sampler. Such algorithms are termed hybrid MCMC
samplers.
The M-H algorithm is abstract as long as the proposal distribution is not speci�ed. In the
following we concentrate on two dominant and extremely �exible concepts, independence
Metropolis-Hastings and random walk Metropolis-Hastings sampler.

7.3.1 Independence Metropolis-Hastings Sampler

The independence Metropolis-Hastings (iM-H) sampler bases on the concept of rejection
sampling (see appendix A.2). The target density � (�j) is simulated by an approximating
standard proposal density � (�j) which does not depend on the last value �

(w�1)
j of the MCMC

sampler. The acceptance probability reduces to

�
�
�
(w�1)
j ; ~�

(w)

j

�
= min

�
w
�
~�
(w)

j

�
=w
�
�
(w�1)
j

�
; 1
�
;

where w (�j) = � (�j) =� (�j). In contrast to rejection sampling the iM-H sampler does not
require the proposal density to be an envelope of the target density, meaning � (�j) � c� (�j),
for c > 1. Nevertheless, some basic conditions can fundamentally improve the e¢ ciency of
the iM-H sampler (see �gure 5): The proposal distribution should be centered at the mode
of the target density and the shapes should be matched. Often, the proposal density needs
to dominate the target density in the tails (� (�j) � � (�j)) to guarantee convergence of the
iM-H sampler in �nite time (see also 7.4). Consequently, a Student�s t proposal density may
often outperform a Gaussian proposal density.
Convergence of the iM-H sampler can be slow when several parameters feature strong depen-
dencies. This problem can be reduced by applying multivariate target densities (posteriors)
� (�), where � = (�1; :::; �J)

0. A standard choice for the proposal density � (�) is the J-
dimensional multivariate Gaussian distribution NJ

�
�ML;�

�
where �ML are the maximum

likelihood estimators and � = �
�
@2 ln � (�) =@�2

��1���
�mod

is the covariance matrix evaluated

at the mode �mod of � (�). The acceptance probability can be improved by in�ating the
covariance, c � �, for c > 1.46
46Geweke (1995) sets c = 1:22 in the case of a Student�s t distributed proposal density.
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Figure 5: independence Metropolis-Hastings sampler

To produce fat tails a non-central J-dimensional multivariate Student�s t distribution47

tv
�
�ML;� � [v � 2] =v

�
could be used instead. Again, � is the covariance matrix of the proposal parameters ~� and
v is the degree of freedom, e.g. v = 5.

7.3.2 Random Walk Metropolis Sampler

The original Metropolis(-Hastings) sampler is the random walk Metropolis (RWM) sampler

(see Metropolis et al. 1953). Its basic idea is that the proposed parameter value ~�
(w)

j is just

the last MCMC sample �(w�1)j plus a random term "(w) with zero mean

~�
(w)

j = �
(w�1)
j + "(w):

This results in a symmetrical proposal density �
�
~�
(w)

j

��� �(w�1)j

�
= �

�
�
(w�1)
j

��� ~�(w)j

�
and, con-

sequently, in the simpli�ed acceptance probability

�
�
�
(w�1)
j ; ~�

(w)

j

�
= min

�
�
�
~�
(w)

j

�
=�
�
�
(w�1)
j

�
; 1
�
:

47The non-central multivariate Student�s t distribution is often not implemented in statistical software.
It can simply be simulated by generating samples z from a central multivariate Student�s t distribution,
Z � tv (0; I), where 0 is a J-dimensional vector of zeros and I is a J � J identity matrix. Then ~� =
�ML + z � � � [v � 2] =v stems from the desired distribution.
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As a rule of thumb, a suitable proposal density results in an acceptance frequency of 20%
up to 50% (see Johannes & Polson 2003, p. 18/ 28, or Rachev et al. 2008, p. 70). A
lower acceptance frequency indicates an extreme dominance of the proposal density in the
tails of the target density, which results in a long computing time. In contrast, acceptance
frequencies far above 50% could mean that the proposal density does not sample on the
whole domain of the target density.
The random term is commonly modelled Gaussian, i.e. "(w) � N (0; s). Generally, a higher s
reduces the acceptance rate (when RWM sampler has converged). Fat tails can be produced
by applying a central Student�s t distribution for "(w).

In the case of dependent parameters a multivariate RWM sampler ~�
(w)
= �(w�1)+ "(w) seems

preferable where ~� and � are J-dimensional vectors and "(w) � NJ (0;�). Similar to the
multivariate iM-H sampler, the covariance matrix � can be calculated as the negative inverse
of the Hessian evaluated at the mode of the target density. Again, to improve convergence
� can be scaled by a factor c > 1 or "(w) could be sampled from a central multivariate
Student�s t distribution. Roberts et al. (1997) show that under some general conditions the
asymptotically "optimal" acceptance rate for multivariate RWM samplers is 23:4% (see also
Gelman et al. 1996).

7.4 Convergence of MCMC Sampler

We have simply assumed the MCMC samplers converge to the posterior. Roughly speaking,
this means the MCMC samples �(w)j , j = 1; :::; J , (and x

(w)
i , i = 1; :::; dim (x)) describe

the (augmented) posterior � (�; xj y). The mathematics proo�ng this statement is highly
complicated. Hence, we only present the basic facts48 and, for the sake of simplicity and
without loss of generality, we ignore the latent variables X.
As the name of the MCMC sampler suggests, the generated parameter path �

(w)
j , w =

1; :::;W , is a Markov chain of order m. This means the MCMC distribution of �(w)j does not

only depend on the observations y and the other parameters �(w)<j and �
(w�1)
>j but also on the

preceding m realizations �(w�1) up to �(w�m). Hence, there is a danger that the start value
�
(0)
j of the MCMC chain a¤ects the conditional distribution �w

�
�
(w)
j = �j

��� �(0)j �, which we
term the w-step transition probability.
Fortunately, under some mild conditions, the MCMC chain is ergodic as the transition
distribution converges to an unique stationary distribution

lim
w!1

�w

�
�
(w)
j = �j

��� �(0)j � = �̂ (�jj ��j; y) :

48see Johannes & Polson (2003), pp. 19, or Winkler 2004, pp. 75, for more details
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This equilibrium distribution is (1) independent of the initial parameter value �(0)j and (2)
equals the "true" posterior �̂ (�jj ��j; y) = � (�jj ��j; y).49 This implies the posterior is the
invariant distribution of the converged MCMC chain.50

Beside convergence of the whole distribution, there are two forms of convergence for real
transformations g

�
�
(w)
j

�
, where g is a real-valued function and

R
g (�j)� (�jj ��j; y) d�j <

1.51 The law of large numbers (ergodic averaging) guarantees

1

W

WX
w=1

g
�
�
(w)
j

�
! E (g (�j))

almost surely, whereas the central limit theorem states

p
W

"
1

W

WX
w=1

g
�
�
(w)
j

�
� E (g (�j))

#
! N (0; s)

in distribution where s�R+ andE (g (�j)) =
R
�j
g (�j)� (�jj ��j; y) d�j (see Johannes & Polson

2003, pp. 23, Jones 2004, and Winkler 2004, pp. 88).
Although convergence is mostly guaranteed, the speed of convergence is of relevance. It can
be measured via the inequality52


�w ��(w) = �

�� �(0)�� � (�j y)



 � h (w) ;

where k�k could be any number of norm. The dominant convergence measure is geometric
convergence, hgeom (w) = K � �w, where K < 1 and � > 1. The MCMC samplers often
feature geometric convergence.53 However, geometric convergence does not guarantee con-
vergence in �nite time. A stronger concept is polynomial convergence,54 which posses more
restrictions on the MCMC sampler.55

49See Johannes & Polson (2003), pp. 21, for a basic but intuitive proof. For more details see Winkler
(2004), pp. 75, Roberts & Tweedie (1996), or Mengersen & Tweedie (1996).
50Invariance means �

�
�
(w)
j = b

��� �; y� = Ra�1 (bj a)� ��(w�1)j = a
��� �; y� da where �1 (bj a) is the one-step

transition probability.
51e.g., g1 (�j) = �j or g2 (�j) = [�j � g1 (�j)]2
52see Johannes & Polson (2003), pp. 23, or Roberts & Tweedie (1996), p. 99, and Mengersen & Tweedie,

pp. 103/ p. 105, for a similar formulation
53E.g., Mengersen & Tweedie (1996) show that geometric convergence can be guaranteed (1) for a random-

walk Metropolis-Hastings sampler when "true" posterior has geometric tails or (2) for a independence
Metropolis-Hastings sampler when the proposal distribution dominates the posterior in the tails.
54See Jarner & Roberts (2002) and Moulines et al. (2001), p. 13, who also discuss sub-exponential

convergence.
55E.g., MCMC samplers with log-concave proposal distributions feature a polynomial convergence (Frieze

et al. 1994).
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There are several concepts to analyze the convergence of a sampled parameter path �(w)j ,
w = 1; :::;W . A basic but widespread approach is a simple visual inspection of the path
by J trace plots on

n
w; �

(w)
j

o
w=1;:::;W

. When the statistician believes that the parameter

path becomes stationary (no fundamental trend in the trace plot), he or she discards the B
samples �(w)j , w � B, that do not seem to feature stationarity.
The optical scan can be improved (1) by running L parameter paths starting from di¤erent
starting points �(0)jl , l = 1; :::; L, and (2) by plotting the L parameter paths in one trace plot.
When, after a certain sample step (w = B + 1), there is no structural di¤erence between
the di¤erent parameter paths, all samples �(w)jl , for w > B and l = 1; :::; L, can be used for
inference.
Gelman & Rubin (1992) propose a concept which reduce the information of L chains, with
an after-burn-in length of W � B, to the potential scale reduction factor F (GR)

j . It requires
to calculate the within-chain-variance

�̂2W =
1

L � [W �B]

LX
l=1

WX
w=B+1

h
�
(w)
jl � ��jl

i2
where ��jl = [W �B]�1

PW
w=B+1 �

(w)
jl , and the between-chain-variance

�̂2B =
W �B

L� 1

LX
l=1

�
��jl � ��j

�2
;

for ��j = L�1
PL

l=1
��jl. The posterior variance of �j is the weighted average

dV ar (�j) = �1� 1

W �B

�
�̂2W +

1

W �B
�̂2B;

which is an unbiased estimator. The idea is that when the L chains are started from far-
apart initial values the between-chain-variance dominates the within-chain-variance. After
convergence the between-chain-variance should be negligible and consequently the potential

scale reduction factor F (GR)
j �

qdV ar (�j) =�̂2W � 1. Commonly, the MCMC sampler is

assumed to be converged when F (GR)
j < �, where � is 1:2 or 1:1. In the case of J parameters

the MCMC sampler has reached convergence when maxJj=1F
(GR)
j < �.

Another simple graphical tool is the cumsum convergence criterion (see Bauwens & Lubrano
1998, pp. 31)

CSj ($) =

"
1

$

$X
w=1

�
(w)
j � �̂ (�j)

#
=�̂ (�j) ; $ = 50; :::;W;
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where �̂ (�j) and �̂
2 (�j) are the empirical mean and variance of the complete parameter path

�
(w)
j , w = 1; :::W . The interpretation of CSj ($) = � is that the di¤erence between the mean
of the full sample path and the sample path up to $ is � � 100% of the standard deviation of
the full path. Bauwens & Lubrano (1998) assume convergence for the path when CSj ($)
converges smoothly to zero and jCSj ($)j is below 0:05 or 0:1.
An important test for convergence of the parameter path �(w)j , w = 1; :::W , is the Geweke
Z-scores test (Geweke 1992). The Geweke Z-score Zj is the standardized di¤erence of the
sub-sample means ��(1)j = w�1(1)

Pw(1)
w=1 �

(w)
j and ��(2)j = w�1(2)

PW
w=W�w(2)+1 �

(w)
j , where w(1) <

W � w(2) + 1 < W . When the MCMC chain reached convergence (the null hypothesis)
then Zj � N (0; 1). As MCMC paths generally feature auto-correlation, standardization
needs a correction. To eliminate auto-correlation Bonamente et al. (2004) propose to apply

Geweke�s Z-score on the average parameter samples ~�
(m)

j for m = 1; :::; [W �B] =&, where &
is the step width.
The Heidelberger-Welch diagnostic is a multiple-step test (see Heidelberger & Welch 1983).
First, a Cramer-von Mises test is run for the full MCMC parameter chain �(w)j , w = 1; :::W .
The null hypothesis is whether all samples come from the same distribution. When this is
rejected the �rst 10% of all samples are dumped and the Cramer-von Mises test is run again.
This is repeated until the test could not be rejected or 50% of the initial samples has been
dumped. In the next step, the samples which have passed the test are used to calculate
their mean ��j and a credible interval CR

(1��)
j for ��j. The MCMC path is assumed to have

converged when the ratio of half the width of CR(1��)j and ��j is lower than a pre-de�ned ",
e.g. " = 0:1.
It is important to keep in mind that convergence and auto-correlation of the MCMC path
�
(w)
j , w = 1; :::W , does not mean the same. Often, the path can be assumed to be con-

verged however auto-correlations ACj (l) = AC
�
�
(!)
j ; �

(!�l)
j

�
for l = 1; 2; :::, often fall

slowly. This can be visualized by auto-correlation plots. As a rule of thumb: the higher
the auto-correlation the less information is captured in the chain. A converged chain with
W � B = 1:000 samples and nearly no auto-correlation could better approximate the true
posterior than a chain with W � B = 10:000 samples but large auto-correlation. Conse-
quently, an e¢ cient MCMC algorithm is not only de�ned by the computing time for a �xed
number of repetitions but also by other criteria like auto-correlation. However, the concept
of auto-correlation should always be taken with a pinch of salt. It is not correct to conclude
that a MCMC path with nearly no auto-correlation must have converged.56

56See the discussion on the witch�s hat distribution, broad �at brim and a centered sharp peak. The
MCMC sampler is geometric convergent, K � �w, but � is close to one. There is practically no chance for
the sampler to move from the brim to the center in �nite computing time even with low auto-correlation
(Johannes & Polson 2003, p. 24, and Geyer 1992).
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8 Model Weighting

In contrast to frequentist statistics, Bayesian statistics concentrates on model weighting
rather than model rejecting and accepting. First, we present di¤erent approaches to calculate
commonly used Bayes factors and posterior model probabilities. Then we describe how
information criteria can be used to weight models.

8.1 Posterior Model Probability/ Bayes Factor

The MCMC approach o¤ers an e¢ cient parameter estimation algorithm. Besides this
Bayesian statistics allows for a direct weighting of models M = 1; :::; K, via the posterior
model probability (posterior odds ratio)

� (Mkj y) =
fY (yjMk)� (Mk)PK
l=1 fY (yjMl)� (Ml)

=

R
fY (yj �;Mk)� (�jMk) d� � � (Mk)PK

l=1

R
fY (yj �;Ml)� (�jMl) d� � � (Ml)

; (1)

whereMk is short forM = k, and

� � (Mk) ... prior probability of model k

� � (�jMk) ... prior of the parameter vector � =
�
�1; :::; �dim(�)

�0
given model k

� fY (yj �;Mk) ... conditional joint density given model k

� fY (yjMk) ... unconditional joint density given model k.

Alternatively, and more common, K models can be compared viaK [K � 1] =2 Bayes factors

BFkl =
fY (yjMk)

fY (yjMl)
=

R
fY (yj �;Mk)� (�jMk) d�R
fY (yj �;Ml)� (�jMl) d�

: (2)

In the case of two competing models the relationship between posterior model probability
and Bayes factor is simply (Kass & Raftery 1995, p. 776)

posterior model probability = Bayes factor � prior odds.

Raftery (1996), p. 252/ table 1, suggests an interpretation scale for the Bayes factors (see
table 2).57

57The expression 2 � lnBFkl converts the Bayes factor to the same scale as common deviance and likelihood
ratio tests (Spiegelhalter et al. 2002).
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BFkl 2 � lnBFkl evidence for model Mk

< 1 < 0 negative
1� 3 0� 2:2 not worth more than a mention
3� 20 2:2� 6 positive
20� 150 6� 10 strong
> 150 > 10 very strong

Table 2: Bayes factors

Unfortunately, the Bayesian advantage of model comparison or weighting via posterior model
probabilities or Bayes factors is computational extremely demanding. The integrals in equa-
tions 1 and 2 are only analytically tractable in a restricted number of exceptions (Dellaportas
et al. 2002, p. 27).
A basic methodology to calculate the model probability and the Bayes factors is the Laplace
method (see Tierney & Kadane 1986 or Kass & Raftery 1995, pp. 777). It approximates
I (�) = fY (yj �;Mk)� (�jMk) by a multivariate Gaussian distribution �dim(�)

�
yj��; [�H]

�1�
with �� = argmax� I (�) as mean vector and H as the respective Hessian matrix. Integrating
the Gaussian approximation leads to [2�]dim(�)=2 j�Hj�1=2 I (��) which is hoped to be a good
approximation to

R
I (�) d�. The Laplace method is only sensible for I (�) highly peaking

about their maximum and for low-dimensional problems (Kass & Raftery 1995, pp. 777).

8.1.1 Sampling from the Joint Posterior

In Bayesian statistics the modelM� f1; :::; Kg can be understood as uncertain variable where
the posterior probability of model k

� (Mkj y) / fY (yjMk)� (Mk) ; for
KX
k=1

� (Mkj y) = 1;

is described by the relative frequency

� (Mkj y) �
1

W

WX
w=1

1[M(w)=k]:

the variableM realizes as k in a MCMC sampler.
In the Bayesian way of thinking we need to account for parameter uncertainty. Assuming that
model k is only determined by the parameter vector �k, for � = (�1; :::; �k�1; �k; �k+1; :::; �K)

0,
the posterior model probability is the solution of a complicated integral over the joint pos-
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teriors58

� (Mkj y) =
Z
� (�k;Mkj y) d�k: (3)

Research has concentrated on MCMC based simulations that approximate

� (�k;Mkj y) / fY (yj �k;Mk) � � (�kjMk) � � (Mk) :

The joint posterior � (�k;Mkj y) is mostly a complex multivariate density with a dimension
depending on K, the number of models, and Dk = dim (�k), the dimension of the parame-
ter vector �k. Hence, there are several approaches to approximate � (�k;Mkj y) like (see
Dellaportas et al. 2002, pp. 27, Robert & Marin, pp. 1, or Chen et al. 2008):

� independence sampler: The density � (�k;Mkj y) is sampled by the independence sam-
pler (Tierney 1994). It uses a multivariate proposal density � (�k;Mk) which is inde-
pendent from the last sampled valuesM(w�1)

k and �(w�1)k with w as the current step of
the sampler. The independence sampler is e¢ cient as long as the proposal density is
a reasonable approximation to � (�k;Mkj y) which is only feasible for low dimensional
problems (Dellaportas et al. 2002, p. 28).

� Metropolis-Hastings sampler: Because of the complexity of � (�k;Mkj y) a proposal
density,

�
�
Mk; �kjM(w�1)

k ; �
(w�1)
k

�
;

depending on the current values M(w�1)
k and �

(w�1)
k , is more favorable. However,

the Metropolis-Hastings acceptance probability cannot be calculated for models with
di¤erent parameter dimensions (Dellaportas et al. 2002, p. 28).

� reversible jump: A modi�cation the samplers above is the reversible jump technique of
Green (1995) which �rst samples the modelMk and than applies a proposal density
with the dimension of the respective parameter vector �k, only.59

58Indeed, the integral

� (Mkj y) /
Z
fY (yj �;Mk)� (�jMk) d� � � (Mk)

=

Z
fY (yj �k;Mk)� (�kjMk) � � (Mk) d�k �

Z Y
l 6=k
'k (�l) d�l 6=k

/
Z
� (�k;Mkj y) d�k � 1

accounts for linking densities 'k (�l). See section 8.1.2 for more details.
59see section 8.1.2 for a better understanding of the basic concept
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8.1.2 Linking Density Approach

As aforementioned, the posterior model probability � (Mkj y) =
R
� (�;Mkj y) d� is often

the solution of an integral on the joint posterior � (�;Mkj y) which is too complex to sample
from directly (Gibbs sampler) or indirectly (Metropolis-Hastings sampler). Fortunately, the
Cli¤ord-Hammersley theorem guarantees that � (�;Mkj y) can be described by sampling
in succession from � (Mkj �; y) and � (�j y;Mk). Consequently, you are allowed to sample
Mj �; y, withM� f1; :::; Kg. However, this approach requires to fully describe � (�;Mkj y)
instead of � (�k;Mkj y), only.
Assume you have generatedMk, meaningM = k, from � (Mkj �; y). In the next step you
need to sample from �j y;Mk. Again applying Cli¤ord-Hammersley, this can be described
by sampling from � (�kj ��k; y;Mk) and � (��kj �k; y;Mk), where ��k is � without �k. Of
course, � (�kj ��k; y;Mk) is equivalent to � (�kj y;Mk). Nevertheless, a formulation for
� (��kj �k; y;Mk) is needed which only requires that it is a proper density.
The posterior model probabilities can be approximated by Monte Carlo techniques

� (Mkj y) =
Z
� (Mkj �k; y)� (�j y) d� �

1

W

WX
w=1

�
�
Mkj �(w); y

�
The equation above is the same as in equation 3 if the likelihood function under model k
only depends on the parameters �k. However the simulation approach bears a di¢ culty.
The full parameter vector �(w) needs to be sampled from the joint posterior � (�j y) which
features dependency between �k and ��k (Robert & Marin 2008). The joint posterior can be
formulized by

� (�j y) =
KX
k=1

� (�;Mkj y)

/
KX
k=1

fY (yj �k;Mk) �
KY
l=1

� (�ljMk) � � (Mk)

=
KX
k=1

fY (yj �k;Mk)�k (�kjMk) � � (Mk) �
Y
l 6=k

'k (�l) ;

where 'k (�l) are so called proper linking densities (pseudo-priors) for parameters outside
model k (Carlin & Chip 1995, pp. 475) and

R Q
l 6=k 'k (�l) d�l 6=k = 1.

60 As the joint posterior
is too complex Cli¤ord-Hammersley can be applied and the multi-model MCMC algorithm
of Carlin & Chip (1995), pp. 475, can be used:
60Linking densities are not an intuitive concept but rather a technical necessity. Nevertheless, it can be

understood as harmonization of model uncertainties. Assume you have two modelsM1 andM2 with J1 = 1
and J2 = 2 parameters. As long as we separately estimate both models we only need to account for the
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1. Sample all model speci�c parameter vectors �k, for k = 1; :::; K, from

� (�kj ��k; y;M) /
�
fY (yj �k;Mk) � � (�kjMk) ; M = k

'M6=k (�k) ; M 6= k
:

2. Sample a modelM� f1; :::; Kg from

� (Mkj �; y) =
#k (�kj y) �

Q
l 6=k 'k (�l) � � (Mk)PK

l=1 #l (�lj y) �
Q

l 6=k 'l (�s) � � (Ml)
;

with the kernel #k (�kj y) = fY (yj �k;Mk) �� (�kjMk). The posterior model probabil-
ity is simply the relative frequency ofM = k that has been sampled.

The crucial point in this algorithm is the choice of the linking densities. Although the shape
of the linking densities 'k (�l) is not restricted as long as they are still densities, an e¢ -
cient implementation of this method requires linking densities to be close to the conditional
posteriors � (�lj ��l; y;Ml) (Dellaportas et al. 2002, p. 29). Nevertheless, the simultaneous
MCMC estimation of K competing models leads to a very complex algorithm. It would be
desirable (1) to separately run MCMC estimation on each of the K models and then (2) to
combine the results.
Scott (2002) and Congdon (2006) propose methodologies where the conditional posterior of
model k solely depends on the MCMC samples of �k, which is computationally appealing.
This implicitly assumes independence between the model parameter vectors �k, k = 1; :::; K.
Such an approximation

� (�j y) =
KX
k=1

� (�;Mkj y)
?�

KY
k=1

� (�kj y;Mk)

may not achieve good results.
Based on some empirical analyses, Robert & Marin (2008) found that the proposals of Scott
(2002) and Congdon (2006) feature some bias although the bias of Congdon (2006) is far
less and the approximation is often very close or at least in the same magnitude as the
"true" model posterior. Hence we ignore the approach of Scott (2002) and introduce that of

parameter uncertainty of one, respectively two, parameters. However, when we compare both models we
need to include the uncertainty on the two parameters of modelM2 in the evaluation of modelM1 (and vice
versa). This is why we are not allowed to ignore uncertainty. In Bayesian model weighting, we should not
discriminate modelM2 because it acknowledges uncertainty on two parameters in contrast to one parameter
in modelM1. In fact, under modelM1 we are not sure about the two parameters of modelM2. We just
ignore them!
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Congdon (2006). Finally, we present the improved algorithm of Congdon (2007) which still
assumes independence but de�nes proper instead of improper linking densities.

Marginal approaches with improper linking densities (Congdon06)
The idea of the Congdon (2006) model (Congdon06 ) is to run MCMC estimations separately
on all K competing models and then to calculate the model posterior by

� (Mkj y) =
Z
� (Mkj �; y)� (�j y) d� �

1

W

WX
w=1

�
�
Mkj �(w)k ; y

�
;

assuming improper linking densities 'k (�l) / 1, for l 6= k, and

�
�
Mkj �(w)k ; y

�
=

#k

�
�
(w)
k

��� y� � � (Mk)PK
l=1 #l

�
�
(w)
l

��� y� � � (Ml)
:

Again, #k
�
�
(w)
k

��� y� = fY

�
yj �(w)k ;Mk

�
� �
�
�
(w)
k

���Mk

�
stands for the posterior kernel of

model k in MCMC step w� f1; ::;Wg.
So far, the approach of Congdon (2006) has already been applied by Chen et al. 2008.
However, it should be kept in mind that it features a bias which is however mostly modest
(Robert & Marin 2008). Nevertheless, Congdon06 is a trade o¤ between simplicity and the
danger of a misspeci�cation.

Marginal approach with di¤use but proper linking densities (Congdon07)
Congdon (2007) presents an extension (Congdon07 ) of Congdon06 which avoids di¤use link-
ing densities. The posterior model probability is approximated by

� (Mkj y) =
Z
� (Mkj �; y)� (�j y) d� �

1

W

WX
w=1

�
�
Mkj �(w); y

�
;

for

�
�
Mkj �(w); y

�
=

#k

�
�
(w)
k

��� y� �Ql 6=k 'k

�
�
(w)
l

�
� � (Mk)PK

l=1 #l

�
�
(w)
l

��� y� �Qs 6=l 'l

�
�(w)s

�
� � (Ml)

;

and #k
�
�
(w)
k

��� y� = fY

�
yj �(w)k ;Mk

�
� �
�
�
(w)
k

���Mk

�
.

As we can arbitrarily de�ne the linking densities as long as they are proper, Congdon (2007),
p. 146, assumes di¤use homogeneous linking densities for each parameter

~'kd = '1 (�kd) = ::: = 'k�1 (�kd) = 'k+1 (�kd) = ::: = 'K (�kd) ;
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for k = 1; :::; K, d = 1; :::; Dk, and Dk = dim (�k).

Multiplying �
�
Mkj �(w); y

�
by ~'=~', for ~' =

QK
i=1 ~'i =

QK
i=1

QDi
d=1 ~'id�results in

61

�
�
Mkj �(w); y

�
=

H
(w)
k � � (Mk)PK

l=1H
(w)
l � � (Ml)

;

where H(w)
k = #k

�
�
(w)
k

��� y� =QDk
d=1 ~'

(w)
kd , ~'

(w)
kd = ~'kd

�
�
(w)
kd

�
, and �

(w)
kd is sampled from the

distribution described by the pdf ~'kd.
For an optimal convergence of the multi-model MCMC algorithm of Carlin & Chib (1995),
pp. 475, the linking densities need to be close to the conditional posteriors of the respective
parameters. This we try to approximate by calibrating (truncated) Gaussian distributions
to the parameter paths generated by our MCMC samplers. To reduce the variance of Hk

and � (Mkj �; y), the tails of the linking densities should be heavy tailed relative to the
respective parameter posteriors.62 Therefore, we scale-up the standard deviations of the
MCMC parameter paths by a factor c > 1.
In our separate MCMC implementation (1) we store the respectiveW kernel values resulting
from the sampled parameter vectors �(w)k for each model k = 1; :::; K and (2) we generate
W samples from the respective linking densities ~'ld for the

PK
l=1Dl linking parameters �

(w)
ld .

For computational reasons we store log-values and transform them later

�
�
Mkj �(w); y

�
=

exp (ck)PK
l=1 exp (cl)

=
1

1 +
P

l 6=k exp (cl � ck)
;

where ck = lnH
(w)
k + ln� (Mk).

Marginal approach with di¤use but proper priors for latent variables
In the following sections we calibrate di¤erent stochastic processes. Some of these processes
feature latent (unobservable) variables X = (X1; :::; XT )

0 which need to be integrated out

61The formulation of Scott (2002) is

� (Mkj y) =
1
W

PW
w=1 fY

�
yj �(w);Mk

�
� � (Mk)PK

l=1
1
~W

P ~W
~w=1 fY

�
yj �( ~w);Ml

�
� � (Ml)

;

which is the special case of Congdon07 where the linking densities equal the respective priors. This approach
has already been applied from other authors, e.g. Bunnin et al. (2002) and Pollard (2007).
62Heavy tailed Student�s t linking densities (v � 2) do not always minimize the variation (Congdon 2007,

p. 152).
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beside the parameter vector �. The posterior model probability complicates to

� (Mkj y) =

Z
� (Mkj �; x; y)� (�; xj y) d (�; x)0 (4)

� 1

W

WX
w=1

�
�
Mkj �(w); x(w); y

�
;

where � and x are sampled from the joint posterior � (�; xj y). Consequently, the conditional
posterior model probability is

�
�
Mkj �(w); x(w); y

�
=

H
(w)
k � � (Mk)PK

l=1H
(w)
l � � (Ml)

;

where H(w)
k = #k

�
�(w)

��� x(w); y� =~'k with ~'k =QDk
d=1 ~'kd. The kernel is de�ned by

#k

�
�(w)

��� x(w); y� = fXY

�
x
(w)
(k) ; y

��� �(w)k ;Mk

�
� �
�
�
(w)
k

���Mk

�
= fY

�
yj �(w)k ; x

(w)
(k) ;Mk

�
� fX

�
x
(w)
(k)

��� �(w)k ;Mk

�
� �
�
�
(w)
k

���Mk

�
= fY

�
yj �(w)k ; x

(w)
(k) ;Mk

�
� �
�
�
(w)
k

���Mk

�
as we assume - in contrast to the parameters - that we know the latent variables x = x(w)

with certainty.63 The estimation error for the latent variables X is re�ected by the samples
x(w), w = 1; :::;W , from the MCMC sampler (see equation 4).

8.2 AIC & BIC Model Weights

The posterior model probabilities and the Bayes factors are nice features of the Bayesian
statistics as they allow a direct statement how better or worse a model k is compared to
a model l. However this concept does not account for our desire for parsimonious models
with a low number of parameters.64 For instance, assume that we want to compare the
Geometric Brownian Motion with Jumps (GBMJ) and its nested model, the standard Geo-
metric Brownian motion (GBM), for a series of log-returns. The GBMJ has more �exibility
to adjust to the data but entails some parameters more to estimate.65

63Here, we argue that the latent variables X are no uncertain parameters. Our MCMC algorithm simulates
x(w), w = 1; :::;W , and we accept them as estimates for the unobservable X. Indeed, we state the probability
for the model given the sampled x(w) as we assume they are the correct values. Consequently, we ignore the
likelihood under the model that x(w) realizes.
64Of course, this opposes the intuitive idea of linking densities. However, the concepts presented in

this section reward parsimonious models according to clear and well-thought-out rules. This we think is
reasonable.
65Here, we ignore the larger uncertainty under the GBMJ because it is de�ned by three more parameters.
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To meet these concerns we apply the Akaike�s information criterion (AIC) and the Bayesian
information criterion (BIC, Congdon 2007, p. 149)

AIC
(w)
k = ln fY

�
yj �(w)k ;Mk

�
�Dk

BIC
(w)
k = ln fY

�
yj �(w)k ;Mk

�
� 0:5 �Dk � lnT;

for k = 1; :::; K, Dk = dim (�k) as the number of parameters in model k, and T as the number
of observations. We present the (arithmetic) mean Akaike as well as Bayes information
criteria AICk and BICk for a pure ordinal model comparison. Additionally, we calculate
the common mean deviance MDk = �2

PW
w=1 ln fY

�
yj �(w);Mk

�
=W where lower deviance

indicates a better �t (Pollard Aug. 2007).
Since we are interested in cardinal performance measures we transform the ordinal AIC and
BIC to model probabilities (Congdon 2007, p. 149)

MP
(w)
AIC (k) =

1

1 +
PK

l 6=k exp
�
AIC

(w)
l � AIC

(w)
k

�
MP

(w)
BIC (k) =

1

1 +
PK

l 6=k exp
�
BIC

(w)
l �BIC

(w)
k

�
with MPAIC (k) and MPBIC (k) as their empirical means.

9 EU ETS

9.1 Overview

To �ght Climate Change the Kyoto Protocol was signed in 1997 by 175 countries.66 Industrial
(annex I) countries agreed to reduce their green house gas (GHG) emissions by 5:2% by 2012
compared to their levels in 1990. Moreover the European Union (EU) pledged to lower its
overall emissions by at least 20% until 2020.67 The protocol does not commit developing
countries to emission reductions but they are allowed to host emission reduction projects of
industrial countries.
The Kyoto Protocol o¤ers three main mechanisms: Clean Development Mechanism (CDM),
Joint Implementation (JI), and Emission Trading. CDM and JI allow annex I countries
to o¤set their emissions by emission reduction projects in non-annex I countries and in

66The following introduction of the EU Emissions Trading Scheme (EU ETS) relies on EU (2009).
67If other developed countries plan comparable reductions, the EU is willing to reduce emissions by 30%.
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other industrial countries. The Emission Trading mechanism provides the opportunity that
countries can trade emission credits.

Following the idea of emission trading, the EU set up the EU Emissions Trading Scheme (EU
ETS) which is an international, mandatory, company-level cap-and-trade system (Directive
2003/87/EC) for emission allowance units (European Union Allowance, EUA) certifying the
right to emit one ton of CO2 or CO2 equivalent GHGs.68 At the moment, the EU ETS
covers about 11; 000 heavy energy-consuming installations69 in power/ heat generation and
manufacturing in the 27 EU member states, Iceland, Liechtenstein, and Norway.

The idea is to foster a cost e¢ cient emission reduction by directing the reduction into sectors
with the lowest marginal reduction costs. The EU hopes to meet its reduction target under
the Kyoto Protocol at a cost of below 0:1% of GDP.

Every installation covered by the EU ETS requires a permit from the competent authority
for their CO2 (equivalent) emissions. A permit is granted when the installation is able
to annually monitor and report its emissions. Every April installations have to surrender
allowances corresponding to their veri�ed emissions. Redundant allowances can be sold
while missing allowances can be bought from other companies or at a stock exchange.70 If
an installation fails to submit the adequate number of EUAs it is obliged to hand them in
one year later. Additionally, it is punished by a �ne of 100e/ ton (40e before 2008).

The EU ETS started with a pilot phase (2005-2007) to verify actual emissions and to allow
market participants to understand the mechanism. As the EU ETS has to bear most of the
burdens of EU emission reduction goals, the EU has cut the numbers of EUAs by 6:5%
below the 2005 level for the the second trading period (2008-2012).71 The long-lasting
third trading period (2013-2020) will o¤er more predictability for long-term investments.
Additionally, there will be some fundamental changes in the system: National caps de�ned
by the respective national allocation plans (NAPs) will be replaced by a single European
cap following a linear annual 1:74% reduction until 2020 � a 21% reduction below the 2005
level by 2020. On average, companies will have to buy at least 50% (100% in 2027) of their
allowances at auctions. The auction share of companies apart from power generators will

68The EU ETS is closely linked to the other Kyoto mechanisms as companies can use certi�ed emission
reductions (CER) and emission reduction units (ERU) from CDM and JI projects for compliance where
1EUA= 1CER= 1ERU.
69They account for around 40% (50%) of the EU�s total GHG (CO2) emissions. More sectors (e.g. aviation)

will be covered in 2012 increasing the share to 43%.
70Prices at exchanges (e.g. European Climate Exchange (ECX), BlueNext, Powernext, Nordpool, Euro-

pean Energy Exchange (EEX), Energy Exchange Austria (EXAA), Climex) are determined by supply and
demand and trading is open to all people and institutions that want to invest. The trading volume has
constantly risen from 1 billion EUAs in 2006 to 3:1 billion in 2008.
71The second trading period corresponds to the �rst commitment period of the Kyoto Protocol.
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gradually rise from 20% in 2013 to 70% in 2020.72 At the moment, at least 90% (95% before
2008) of the allowances are allocated for free.

9.2 Data

In �nance, stochastic processes are calibrated to spot price data, s = (s1; :::; sT )
0. The

dominant and most liquid spot exchange for European Union Allowances (EUAs) is BlueNext
(www.bluenext.eu). However, spot trading on phase II EUAs started on February 26, 2008
which is rather short for parameter estimation. In contrast, the European Climate Exchange
(ECX, www.ecx.eu) - the dominant and most liquid future exchange - has been trading on
phase II futures (maturity December 2008/ 2009) since April 22, 2005. We have access to
the ECX data from April, 22 2005 up to May 07, 2009 with 1,034 settlement prices.
Uhrig-Homburg & Wagner (2007) �nd support for the basic cost-of-carry relationship73

S
(I)
t = F

(I)
tT � exp (�r � [T � t]) for intra-phase (Dec06) future contracts F (I)tT and phase I

spot prices S(I)t . The constant r is the risk-free interest rate and T is the date of maturity
of the future. Uhrig-Homburg & Wagner (2007), p. 11, assume a cost-of-carry relationship
without convenience yields due to economic reasoning as the storage of EUAs does nearly
cost nothing and because of the prohibition of inter-phase banking 2007/8. Consequently,
the stockpiling of EUAs would have been irrational for compliance in the second trading
period.74

Unfortunately, Uhrig-Homburg & Wagner (2007) conclude that the basic cost-of-carry rela-
tionship is extremely violated for inter-phase future contracts (spot prices before 2008 vs.
future price for December 2008 delivery (Dec08)). Daskalakis et al. (2009) come to the same
result. They run an extremely sophisticated parameter estimation where they conciliate
phase II futures and phase I spot prices by augmenting their pricing models by a stochastic
mean reverting convenience yield. We fully agree with their �ndings that the spot prices in
phase I are not linked via a basic cost-of-carry formula to phase II future prices (e.g. Dec08
and Dec09). Phase II EUAs are no substitutes for phase I EUAs as they cannot be used for
compliance in phase I. Hence, the approach of Daskalakis et al. (2009) seems not logical and
complicates the parameter estimation substantially.
We follow the idea of Wagner (2007), pp. 97, and propose the generation of synthetic spot

72Exceptions are allowed for energy intensive industries exposed to �erce international competition.
73It is justi�ed by the no-arbitrage argument (see Hull 2006, pp. 99).
74In the case of physical storage costs, the relationship between spot and future prices is assumed to be

St = FtT � exp (� [r � c] � [T � t]) where c is the convenience yield. The argumentation is, that the future
buyer avoids the storage which cannot be ignored in a no-arbitrage market. Additionally, if the market fears
a liquidity squeeze in T , traders prefer to lock in the market before. This induces an upwards pressure on
spot prices. This is equivalent to c > 0.
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Figure 6: EU ETS market - future prices and market volume

prices from ECX phase II futures via the basic cost-of-carry relationship.75 Our argument
is that future markets are generally far more liquid than spot markets. This is also true
for the ETS (lower subplot in �gure 6). Moreover, the phase II future prices look highly
related (upper subplot in �gure 6). All futures seem to be determined by the total traded
volume on all futures. Consequently, the future markets seem to rule the spot prices. In
the following, we assume that (1) price �nding only takes place in the future markets and
(2) there are no physical storage costs and no fear of a market squeeze in phase II. Then,
we do not require the existence of a spot market as we can generate synthetical spot rates
~St = FtT � exp (�r � [T � t]).
For logical reasons, the cost-of-carry approach should be valid for phase II spot and future
prices. Therefore, we compare BlueNext phase II spot prices sBluet and synthetic Dec09
spot prices sECXt = fECXtT � exp (�r � [T � t]) generated from ECX Dec09 futures.76 The
time-to-maturity T � t is measured in years. As a proxy for the annual risk-free interest
75In fact, Wagner (2007), pp. 97 - analyzing the EUA prices for the period April 23, 2005 up to December

15, 2006 - calculates synthetic spot prices because of the better liquidity of future markets.
76We have decided to generate synthetical spot prices from ECX Dec09 futures as they have been traded
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rate rp:a: = ln (1 + �rEURIBOR), we calculate an unweighted arithmetic average of EURIBOR
rates with maturities from one week up to twelve month.77 As there are approximately 250
trading days each year we convert the risk-free rate by r = rp:a:=360:25 � 250. We �nd a good
match for future and spot prices. The mean absolute di¤erence between the log-returns
yt = ln (st+1=st) is T�1

PT
t=1

��yBluet � yECXt

�� = 0:0058.
In the upper subplot of �gure 7 you can �nd the observed ECX Dec09 future prices (black
line) and our synthetic Dec09 spot prices (red line). Because of the outliers in April/ May
2006 (see middle subplot of �gure 7) we also analyze a corrected time-series without prices
from April 24 up to May 25, 2006 (dashed blue lines). In table 3, we have summarized
some basic statistics of the log-returns (sample mean �̂, volatility �̂, skewness 
̂1, and excess
kurtosis 
̂2).

yFutDec09 yDec09 ycorrDec09

T 1033 1033 1009

�̂ = 1
T

PT
t=1 yt �1:3 � e�4 �7:3 � e�5 1:7 � e�4

�̂p:a: = �̂ � 250 �0:033 �0:018 0:044

�̂ = m2 0:030 0:030 0:027

�̂p:a: = �̂ �
p
250 0:468 0:478 0:430


̂1 =
m3

m
3=2
2

�0:920 �0:867 �0:376

̂2 =

m4

m2
2
� 3 11:464 10:738 3:025

mk =
1
T

PT
t=1 [yt � �̂]k

Table 3: basic statistics of the log-returns

The sample volatility �̂ in the table 3 is an unconditional estimator. Indeed, it is easy to
see in the lower subplot of �gure 7 that the log-returns of the synthetic spot prices are
heteroskedastic.78

Similar to many other �nancial time-series the sample skewness 
̂1 is negative for all log-
returns (= more large negative outliers). The positive excess kurtosis 
̂2 indicates that

since 2005.
77Of course, our proxy for the risk-free interest rate is criticizable. However, there is no consensus on an

optimal approximation (see Hull 2006, business snapshot 4.1). On the one hand, treasury bonds of best
rated countries like the U.S. and Germany could be below the risk-free interest rate since �nancial investors
are partly forced by regulation to invest in such bonds. On the other hand, EURIBOR or LIBOR rates
correspond to best rated companies still bearing some default risk.
78We generated the estimators of the conditional variance by variance smoothing �̂2t = � �y2t +[1� �] �y2t�1,

we use � = 0:25, and moving average �̂2t = K�1PK�1
k=0 [yt�k � �ytK ]

2, where �ytK = K�1PK�1
k=0 yt�k and

t � K. We choose K = 5 to calculate the variance of the last trading week.
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Figure 7: CO2 price data

log-returns feature leptokurtosis meaning an extremely peaked center and fat tails compared
to a Gaussian distribution (see �gure 8).

In the coming sections we calibrate popular stochastic processes to the Dec09 spot prices
respectively to their log-returns. Our preliminary analysis of the data seems to favor models
with fat tails and variable variance. As models with variable variance can generate leptokur-
tosis and negative skewness, stochastic processes seem most promising. Nevertheless, we
also estimate simple processes like Geometric Brownian motion. We believe the suitability
for daily use of a model is an important criteria beside "correctness" in model selection.
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Figure 8: log-returns of synthetic spot prices

10 CO2 Price Risk Assessment

The "...knowledge of the statistical distribution of emission trading allowances, and its fore-
castability, becomes crucial in constructing optimal hedging and purchasing strategies in the
carbon market" (Paolella & Taschini 2008, abstract). Therefore, we try to quantify the risk
of the EUA price St by means of stochastic di¤erential processes (with jumps) (SDP(J)).79

Most of these processes are nested in the basic formulation 80

dSt = St+dt � st = � (t; st; xt; �)| {z }
drift

� dt+ � (t; st; xt; �)| {z }
volatility

� dWt + d
�XNt

i=1
Zi

�
| {z }

jump

:

The variables � (t; st; xt; �) and � (t; st; xt; �) can be functions of time t, the current (known)
EUA price st, the realization of an unobservable vector of latent variables Xt = xt, and a
vector of unknown parameters � = (�1; :::; �J)

0. Continuous risk enters the process by the dif-

ferential of the continuous Wiener process (standard Brownian motion) dWt � N
�
0;
p
dt
�
,

79There have been only a few similar attempts (see Borak et al. 2006, Benz & Trück 2009, Paolella &
Taschini 2008, or Daskalakis et al. 2009) that all rely on frequentist statistics. Furthermore, our analysis
is di¤erent from previous research. Either other studies estimate on relatively short times series that are
dramatically a¤ected by the price jumps in April/ May 2006 or there are curious attempts to link future
markets of the 2nd trading period to the spot markets of the 1st one (see Daskalakis et al. 2009). In contrast,
we base our estimations on four years of observations. Consequently, we abstain from a comparison of the
estimation results.
80In the rest of the paper we will assume that all regularities are met for well-de�ned solutions. See Eraker

(2001), p. 178, for more details.
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where W0 = 0. Although the SDPJ requires St to be de�ned in continuous time, St itself
does not need to be continuous if a jump term is assumed. Then the number of jumps (or
jump times) from t to t + dt is modelled by the counting process Nt, normally a Poisson
process with intensity �.81 The jump width (or amplitude) Zi can be a constant Zi = zi or
can follow a distribution Disti (�) that depends on some of the unknown parameters and the
EUA price. Both number of jumps and jump times are unobservable. Consequently, Nt and
Zi are latent variables. The parameters � and the variables Wt, Nt, and Zi are all de�ned
under the objective measure P driving the EUA prices in the "real world".
Although SDP(J)�s are de�ned on continuous time, EUA prices S = s = (s1; :::; sT )

0 are only
calculated and published in discrete time. The basic formulation of the SDP(J) changes to
an integral equation (see Johannes & Polson 2003, p. 34)

St+1 � st =

Z t+1

t

� (� ; s� ; x� ; �) d� +

Z t+1

t

� (� ; s� ; x� ; �) dW� +
XNt+1

i=Nt+1
Zi:

Beside special cases (Geometric Brownian motion, Ornstein-Uhlenbeck, or Cox-Ingersoll-
Ross process) there is no analytical solution for the integrals above. Therefore, we apply the
Euler discretization

St+1 � st � � (t; st; xt; �) ��+ � (t; st; xt; �) �
p
� � "t +

X�Poist

i=1
Zi;

where "t � N (0; 1), �Poist � Poi (� ��), and Zi follows an adequate distribution.
The quality of the approximation crucially depends on the time step �. The shorter, the
better! In this paper all variables and parameters are standardized to an annual basis whereas
we have observations on each trading day. Therefore, the time span t up to t + 1 equals
roughly � = 1=250 = 0:004 years.
We further simplify the model by assuming the number of jumps per trading day cannot
exceed one. This results in

St+1 � st � � (t; st; xt; �) ��+ � (t; st; xt; �) �
p
� � "t + Z � �t; (5)

where �t � Ber (� ��).82

81The intensity can also be a function � (t; st; xt; �).
82The binomial distributionBin (n; p) converges to the Poisson distribution, limn!1Bin (n; p) = Pois (�),

for a constant � = np. The Bernoulli distribution is the special case of the binomial distribution for n = 1,
Ber (p) = Bin (1; p). Although Bernoulli and Poisson distributed variables are de�ned on di¤erent domains,
�Ber� f0; 1g and �Pois�Z+ this might be ignored for a low daily jump intensity (� daily jump probability)
~� = �� = p�
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We estimate models nested in the SDPJ formulation above.83 The Bayesian MCMC sampler
is an excellent algorithm to run the estimation e¢ ciently. Moreover it can separate model
induced risk (= Brownian motion), model risk, and parameter risk. This seems important
as the risk management is prone to point estimation errors. E.g. Merton (1980), p. 355,
believes the development of models accounting for variance estimation errors is the most
important direction of research.
Since we estimate twelve competing models, we need a model selection procedure. Normally,
frequentist statistics cannot reject all but one model. Although they could be graded by
information criteria (e.g. AIC and BIC) or by the p-value calculated from the probability
integral transform (Rosenblatt 1952), a model weighing is generally not possible. In contrast,
Bayesian statistics o¤ers posterior model probabilities which can be used for generating
hybrid-models. This is far more than a basic ranking.
In the next subsections, we �rst present the nested models we want to estimate. Then we
present the estimation results. Subsequently, we calculate model probabilities.

10.1 Models

10.1.1 Geometric Brownian Motion (GBM)

The Geometric Brownian motion (GBM) is de�ned by

dSt = �stdt+ �stdWt:

By Ito�s lemma this simpli�es to (see appendix A.4)

d lnSt = �dt+ �dWt;

~� = 0:1% ~� = 1:0% ~� = 5:0% ~� = 10:0% ~� = 15:0% ~� = 30:0%

P
�
�Ber = 0

�
= 99:9% 99:0% 95:0% 90:0% 85:0% 70:0%

P
�
�Pois = 0

�
= 99:9% 99:0% 95:1% 90:5% 86:1% 74:1%

P
�
�Ber = 1

�
= 0:1% 1:0% 5:0% 10:0% 15:0% 30:0%

P
�
�Pois = 1

�
= 0:1% 1:0% 4:8% 9:0% 12:9% 22:2%

P
�
�Pois > 1

�
= 5:0 � 10�5% 5:0 � 10�3% 0:1% 0:5% 1:0% 3:3%

In the table above, it can be seen that for low jump intensities, ~� � 15%, the Bernoulli distribution is an
acceptable approximation as the probability for more than one jump per trading day is low. In the case of
~� � 30:0% we need carefully interpret estimation results.
83There are two exceptions: the Student�s t error GARCH process and the Student�s t error log-variance

process (see sections 10.1.6 and 10.1.9). For both we assume Student�s t distributed errors. However, we
can transform them to a Gaussian model with a gamma distributed latent precision.
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where � = � � �2=2. For the parameter estimation we apply the Euler discretization Yt =
lnSt+1 � ln st = ~�+ ~� � "t � N (~�; ~�), where ~� = �� and ~� = �

p
�.

The Bayesian parameter estimation aims to calculate the posterior distribution � (�j y) /
Ly (�) � � (�), for the parameter vector � =

�
~�; ~�2

�0
given the observations y = (y1; :::; yT )

0.
The likelihood of the GBM is simply Ly (�) =

QT
t=1 fYt (ytj �) =

QT
t=1 � (ytj ~�; ~�), where

� (ytj ~�; ~�) is a Gaussian pdf with mean ~� and standard deviation ~�. For simplicity we
assume independent priors, i.e. � (�) = � (~�) � �

�
~�2
�
.

The posterior � (�j y) is a bivariate distribution. We reduce complexity by applying the
Cli¤ord-Hammersley theorem: � (�j y) is completely characterized by the conditional poste-
riors

�
�
~�j ~�2; y

�
/ Ly (~�) � � (~�) & �

�
~�2
�� ~�; y� / Ly

�
~�2
�
� �
�
~�2
�
:

As we use a Gaussian prior � (~�) = � ( ~�jm0; s0) and an inverse-gamma prior �
�
~�2
�
=

IG
�
~�2
�� a0; b0�, the posteriors are conjugate priors which we know exactly. Hence, we can

implement the Gibbs sampler (see appendix A.7.1).

10.1.2 Geometric Brownian Motion with Jumps (GBMJ)

Beside the standard Geometric Brownian motion we estimate the jump-di¤usion model
(GBMJ) of Merton (1976)

dSt =

�
�+

1

2
�2
�
st � dt+ �st � dWt +

�
eJt � 1

�
stdNt;

where Nt is an independent Poisson process. Moreover, dNt and dWt are assumed to be
independent. We apply Ito�s lemma on lnSt and the resulting process is still a jump-di¤usion
(see appendix A.4)

d lnSt = �dt+ �dWt + Jt � dNt

We use the Euler discretization and approximate dNt � Pois (�J ��) by a Bernoulli variable
�t � Ber (�J ��). Then the log-returns calculate by

Yt = lnSt+1 � ln st = ~�+ ~� � "t + Jt � �t;

where ~� = � ��, ~� = � �
p
�, "t � N (0; 1), and J � N (�J ; �J). The conditional distribution

of Yt is

Ytj �t �
(
~�+ ~� � "t � N (~�; ~�) ; for �t = 0

~�+ �J + ~� � "t + �J � � � N
�
~�+ �J ;

p
~�2 + �2J

�
; for �t = 1

;

where � � N (0; 1).
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The parametrization in GBMJ model is � =
�
~�; ~�2; �J ; �

2
J ; pJ

�0
with pJ = �J �� as the daily

jump probability. The resulting likelihood function is Ly (�) =
QT

t=1 fYt (ytj �) with marginal
distributions

fY (ytj �) =

1X
k=0

fYt (ytj �;Nt = k) � P (Nt = kj �)

� fYt (ytj �;Nt = 0) � P (Nt = 0j �) + fYt (ytj �;Nt = 1) � P (�Nt = 1j �)

= � (ytj ~�; ~�) � [1� pJ ] + �

�
ytj ~�+ �J ;

q
~�2 + �2J

�
� pJ ; (6)

where Nt is the number of jumps on trading day t. Given independent priors for � =�
~�; ~�2; �J ; �

2
J ; ~pJ

�0
, the posterior results as

� (�j y) / Ly (�) � � (~�) � �
�
~�2
�
� � (�J) � �

�
�2J
�
� � (pJ) ;

where � (~�) = � ( ~�jm0; s0), �
�
~�2
�
= IG

�
~�2
�� a0; b0�, � (�J) = �

�
�J jm

(J)
0 ; s

(J)
0

�
, �2J =

IG
�
�2J j a

(J)
0 ; b

(J)
0

�
, and � (pJ) = Beta (pJ j�0; �0).

For a more e¢ cient estimation via the Gibbs sampler we augment the parameter vector �
by the latent variables jump width Jt and number of jumps Nt� f0; 1g for t = 1; :::; T .84

Therefore, the augmented posterior is

� (�; xj y) / Ly (�; x) � fX (xj �) � � (�)
= Ly (�; x) � fJt (jtj �) � fNt (ntj �) � � (�)
= Ly (�; x) � � (jtj�J ; �J) �Ber (ntj pJ) � � (�) ;

for x = (x1; :::; xT )
0 and xt = (jt; nt)

0. The conditional likelihood

Ly (�; x) =
TY
t=1

� (ytj ~�+ jt � nt; ~�)

assumes both number of jumps and jump width as observations. Based on the augmented
posterior we can program a Gibbs sampler (see appendix A.7.2).

10.1.3 Ornstein-Uhlenbeck Process for Log-Prices (OU)

A simple mean-reverting process is the Ornstein-Uhlenbeck process (OU) which was applied
by the Vasicek model (see Vasicek 1977) to describe interest rate movements. Although this
process is one of the most prevalent stochastic processes to model commodity prices, its

84Beside some slight modi�cations we follow Chan & Wong (2006), pp. 172.
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popularity is due to its analytical solution rather than its theoretical implications. The main
disadvantage of the Ornstein-Uhlenbeck process is that it allows for negative (commodity)
prices, interest rates, etc. Because of this �aw we calibrate the Ornstein-Uhlenbeck process
to the log-CO2-prices instead to the basic CO2 prices (see Hull 2006, pp. 719, & Daskalakis
et al. 2009)85

d lnSt = � [~�� ln st] dt+ �dWt;

where d lnSt = lnSt+dt � ln st. The volatility � is known from the GBM above. The
parameter ~� is the long-term equilibrium of ln st. The mean reversion rate � describes
the speed of mean reversion. The larger � the more ln st is �xed to ~�. A more intuitive
understanding o¤ers the half-life time �1=2 = ln 2=� which states the time needed to pass
half-way from ln st to the long-term mean ~�.86

The OU process features an analytical solution lnSt+1 � N (m (t) ; &) for87

m (t) = ~�+ [ln st � ~�] exp (���) , and
& = �

p
[1� exp (�2��)] =2�:

Based on this, the posterior is de�ned by � (�j s) / Ls (�)� (�),88 where � = (�; ~�; �)0

85By means of Ito�s lemma (see appendix A.4), we can calculate the price process

dSt =

�
� [~�� ln st] +

�2

2

�
stdt+ �stdWt;

which results in an always positive CO2 price.
86Assume a discretized mean-reverting process � lnSt = � [~�� ln st]�+�dWt, where � lnSt = lnSt+1�

ln st. Further assume y1=2 is the half-way from ln st to the long-term mean ~�. Then the time �1=2 needed
to reach y1=2 is called half-life time. After applying the expectation operator it follows (see www.puc-
rio.br/marco.ind/half-life.html)

� ��1=2 =
E (� lnSt)

[~�� ln st]
=

Z y1=2

ln st

dx

[~�� x] = � ln (~�� x)jy1=2ln st
= �

ln
�
~�� y1=2

�
ln (~�� ln st)

= � ln ([~�� ln st] =2)
ln (~�� ln st)

:

Hence, it holds �1=2 = ln 2=�. The respective half-life times are

� = 0 � = 0:1 � = 0:5 � = 1 � = 5 � = 10 � = 100 � = 1000

�1=2 for � = 1=250 never 6y 11m 1y 5m 8m 7d 1m 14d 17d 1d 7h 1h 44min
�1=2 for � = 1=365:5 never 6y 11m 1y 5m 8m 10d 1m 20d 25d 2d 12h 6h

For � = 1=250 we use an average month (m) with 21 trading days (d) and 10 opening hours (h) a day
(ECX opens from 7:00 to 17:00 UK local time). The tags "y" and "min" mean years and minutes.
87Nevertheless, we weight the OU process according to d lnSt = � [~�� ln st] dt+ �dWt.
88Of course, we could also run a MCMC estimation based on the Euler discretized process where � lnSt �

N
�
� [~�� ln st]�; �

p
�
�
. The di¤erences in estimation results are minor (Liu 2006). However, the MCMC

algorithm is even fast for the "exact" approach. There is no need for the approximation.
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and Ls (�) =
QT�1

t=1 � ( ln st+1jm (t) ; &).89 We assume the following independent priors:
� (�) = � (�jm�; &�)jk�0, � (~�) = � ( ~�jm~�; & ~�)j��[~�min;~�max], and � (�) = � (�jm�; &�)j�>0.90
Unfortunately, the posterior above possesses no standard marginal distributions.91 Hence,
we need to construct a hybrid Metropolis-Hastings sampler (see appendix A.7.3).

10.1.4 Cox-Ingersoll-Ross (CIR) Process

The Cox-Ingersoll-Ross (CIR) process (see Cox et al. 1985) is a mean-reverting extension
of the Ornstein-Uhlenbeck process with variable volatility term

dSt = � [�� st] dt+ �
p
stdWt; (7)

where � is the long term mean level of the CO2 price, � is the speed of reversion to �, and
� is the instantaneous volatility. After Euler discretization this can be rearranged to

St+1 = �+ �st + �
p
st��t; �t � N (0; 1) ;

where � = ��� and � = 1 � ��. For Bayesian estimation with a restricted number of
observations it is critical whether we model priors on (�; �; �)0 or on (�; �; �)0. We decided
to de�ne priors for (�; �; �)0. For a better model comparison we transform the CIR process
into the log-price notion by Ito�s lemma (see appendix A.4)

d lnSt =
1

st

�
� [�� st]�

1

2
�2
�
dt+

�
p
st
dWt;

89In the case of the short time-series, without the outliers in April/ May 2006, we use the likelihood

Ly (�) =
T (1)�1Y
t=1

� ( ln st+1jm (t) ; &) �
T�1Y
�=T (2)

� ( ln s�+1jm (�) ; &) ;

where T (1) is the last trading day before and T (2) the �rst trading day after the break.
90The function � (xj �; �)jx�[xmin;xmax] is the pdf of a truncated Gaussian distribution. See appendix A.6 for

generating samples from a truncated distribution.
91Of course, we could rearrange the OU process to

lnSt+1 = �+ � ln st + ~�"t � N (�+ � ln st; ~�) ;

where � = ���, � = 1���, and ~� = �
p
�. Consequently, a Gibbs sampler could be applied for this simple

regression (see Rachev et al. 2008, chapter "Bayesian Linear Regression Model"). We avoid this approach
as it demands to specify conjugate priors to �, �, and ~�. Unfortunately, it needs some e¤ort to guarantee
non-negative � and �.
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which we use for MCMC estimation. The joint posterior is � (�j s) / Ls (�) � � (�) given the
CO2 prices s = (s1; :::; sT )

0. The likelihood function is de�ned by Ls (�) =
QT

t=1 � (ytjm (t) ; & t),92
where yt = ln st+1 � ln st, m (t) =

�
� [�� st]� 1

2
�2
�
�=st, and & t = �

p
�=st. We assume

the same independent prior distributions like in the OU model: � (�) = � (�jm�; &�)jk�0,
� (�) = � (�jm�; &�)j��[0:01;�max], and � (�) = � (�jm�; &�)j�>0. As the hybrid Metropolis-
Hastings sampler has the same structure like that of the OU model we refer to our remarks
there.

10.1.5 Constant Elasticity of Variance (CEV) Process

The constant elasticity of variance (CEV) process with mean reversion93

dSt = � [�� st] dt+ �s
t dWt; (8)

nests the basic OU process for 
 = 0 and the CIR process for 
 = 1=2. A 
 < 0 re�ects
a negative dependency between the variance of St and St, while 
 > 0 describes a positive
dependency. By Ito�s lemma the log-CO2-price process is

d lnSt =

�
� [�� st]�

1

2
�2s2
�1t

�
1

st
dt+ �s
�1t dWt;

which we apply for the model selection.

92The CIR di¤erential equation possesses the non-central �2-distribution as closed-form solution. Its pdf
is

fStjst�� (st) = c � exp (�u� v)
h v
u

iq=2
Bessq

�
2
p
uv
�
;

where

c =
2�

�2 [1� exp (���)] , u = c � st exp (���) , v =
2��

�2
� 1:

The modi�ed Bessel function of the �rst kind of order q is de�ned by

Bessq (x) =
1X
k=0

[x=2]
2k+q

k!� (q + k + 1)
;

where � (�) is the gamma function (see Cox et al. 1985, pp. 391). The mean and variance are

E (Stj st��) = � [1� exp (���)] + exp (���) st��

V ar (Stj st��) =
�2

�

h
st�� [exp (���)� exp (�2��)] +

�

2
[1� exp (���)]2

i
:

For computational reasons, this paper applies a Gaussian approximation. See Lee (2006) for a comparison
of exact and approximated estimation.
93An alternative would be to de�ne the basic CEV process dSt = �dt+�s



t dWt with constant mean which

nests the GBM.
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The joint posterior for � = (�; �; �; 
)0 is � (�j s) / Ls (�) �� (�) where the likelihood Ls (�) =QT�1
t=1 � (st+1jm (t) ; & t) is de�ned by m (t) = � [�� st] �+ st and & t = �s
t

p
�.94 We assume

the same independent priors like for the OU and the CIR process: � (�) = � (�jm�; &�)jk�0,
� (�) = � (�jm�; &�)j��[0:01;�max], and � (�) = � (�jm�; &�)j�>0. Furthermore, we de�ne a
Gaussian prior � (
) = � (
jm
; s
) for 
.
In the main, the CEV hybrid Metropolis-Hastings sampler has the same structure like that
of the OU process. Hence, we refer to our remarks above. However, there is one di¤erence.
Generally, the parameters � and 
 are highly correlated. This results in auto-correlations
of their MCMC sample paths close to one, which means a bad mixing. Even a thinning
factor of 100 could not improve mixing performance in simulation studies. Therefore we
run a bivariate random walk Metropolis sampler which generates (�; 
)0 from a bivariate
Gaussian distribution with a covariance matrix retrieved from the ML estimation.95 As the
dependency is actually non-linear we still have to thin the samples.

94Our hybrid Metropolis-Hastings sampler bases on the CEV process in equation 8 as it is more e¢ cient
according to its computing time.
95Please keep in mind, that the posteriors of � and 
 are dependent. There is no theoretical problem if we

assume independent priors. This just re�ects that we believe, prior to our estimation, that the parameters
� and 
 are independent.
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10.1.6 Student�s t GARCH (1; 1)

The inspection of the EUA log-returns yt = � ln st = ln st+1� ln s suggests that the assump-
tion of constant volatility is not suitable.96 Therefore we estimate di¤erent models with
variable variance. We start with a stochastic di¤erential process on the log-returns where
the latent variance process is described by a GARCH (1; 1) model.97 We base our MCMC
sampler on the algorithm of Rachev et al. (2008), pp. 203, which also includes a regression
term of external factors. Although we are curious about the in�uence of oil and coal prices
or marginal greenhouse gas abatement costs we could not implement them in our analy-
sis. There is partly no homogeneous good and therefore no general market price and partly
there is no daily data. Instead, we implement a regression term analyzing the in�uence of
the mean EURIBOR interest rate r = (r1; :::; rT )

0 on the log-returns. This seems interesting
as we use r to calculate the synthetic spot rates. Consequently, our GARCH (1; 1) model
can be formulized in discrete time by

Yt = 
0 + 
1 � rt + ~�t � "t (observation process)
~�2t = ! + � � u2t�1 + � � ~�2t�1 (latent process)

for ut = yt � 
0 + 
1 � rt. To account for fat tails we assume "t � tv (0; 1), where v is the
degree of freedom.
The implementation of a GARCH process requires to check some properties (see Rachev
2008, pp. 190): There is no guarantee that the process at least features weak stationarity,
i.e. the existence of �nite means, variances, and covariances that do not change with time.98

In our Student�s t GARCH (1; 1) model the log-returns Yt are stationary99 if the process
persistence parameter

�
v

v � 2 + � < 1:

The larger it becomes the more slowly volatility shocks u2t die out. Only if this condition
holds there exists a �nite, long-term (unconditional) log-return variance ~�2u:c: � v= [v � 2],
where

~�2u:c: =
!

1� �� �
:

96The GBMJ and the CIR/ CEV processes feature a heteroskedastic variance, too. However, there has
not been an explicit modelling of the volatility term.
97Bollerslev (1986) has proposed the GARCH model as an extension of the ARCH model of Engle (1982)

which reduces number of lags fundamentally.
98In this context, covariance stationarity means that the auto-covariance can be a function of the time

di¤erence � but not of the time t itself, Cov (Zt; Zt+�) = g (�).
99We ignore problems arising from the EURIBOR interest rates.



60 10 CO2 PRICE RISK ASSESSMENT

In basic GARCH models there is no auto-correlation between the log-returns. This is in
conincidence with the E¢ cient Market Hypothesis (EMH, Fama 1970). GARCH models can
however describe volatility clustering as the volatility shocks are positive correlated by

Corr
�
U2t ; U

2
t+�

�
= [�+ �]�

�
�
1� �� � �2

�
[�+ �]

�
1� 2�� � �2

� ;
which declines for increasing �.
In our speci�cation the Student�s t GARCH (1; 1) model, the joint posterior � (�j y) /
Ly (�) � � (�) is de�ned by the parameter vector � = (
0; 
1; !; �; �; v)

0. The likelihood
function

Ly (�) =
TY
t=1

tv (ytj 
0 + 
1 � rt; ~�t)

is an independent multivariate Student�s t distribution which is conditioned on the latent
conditional variances ~�2 =

�
~�21; :::; ~�

2
T

�0
.

To improve e¢ ciency of our MCMC algorithm we follow Rachev et al. (2008), pp. 206,
and introduce mixing variables �tj v � Gam (v=2; 2=v) for the precision of the log-returns
to transform the Student�s t likelihood to a Gaussian likelihood.100 The likelihood function
simpli�es to101

~Ly (�) =
TY
t=1

�
�
ytj 
0 + 
1 � rt; ~�t=

p
�t
�

but the model is augmented by the latent precision vector � = (�1; :::; �T )
0. Consequently,

the posterior is

� (�; �j y) / ~LY (�) �
TY
t=1

Gam (�tj v=2; 2=v)

�� (v) � � (
0; 
1) � � (!) � � (�) � � (�) ;

where Gam (�tj a; b) is the pdf of a gamma distribution. We assume the following priors:
� (v) = Exp (vj�0) and � (!) = � (�) = � (�) = Uni ( �j#min; #max). The joint prior for the
regression parameters is bivariate Gaussian � (
0; 
1) = �2 (
0; 
1jm0;�0) where m0 re�ects
our prior assumption on the mean of both regression parameters while the covariance matrix
�0 = [z

0z]�1 c, with c as a scaling factor, tries to capture dependency structure between the
regression parameters.102

100Assume Y � tv (m; s). Then the Student�s t pdf can be approximated by tv (yjm; s) =
R
�
�
xjm; s=p�

�
�

Gam (�j v=2; 2=v) d� � 1
W

PW
w=1 �

�
xjm; s=

p
�(w)

�
.

101For model weighting we will use the original likelihood function Ly (�).
102In appendix A.7.4 you can �nd a short description of the hybrid Metropolis-Hastings algorithm we
programmed for this model.
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10.1.7 Markov Switching (MS) GARCH (1; 1)

Additionally, we apply a Markov Switching model (MS, see Hamilton 1989) by introducing
two regimes for the GARCH process. Time periods with di¤erent volatility levels can be
described by di¤erent GARCH processes which can reduce instationarity of the GARCH
process fundamentally. As standard frequentist (ML) instruments computationally fail to
estimate MS models with regime-dependent parameters within the GARCH process (the
number of variance paths explodes exponentially with the number of observations) less �ex-
ible ARCH-type MS structures have been implemented (see Rachev et al. 2008, p. 214).
Hamilton & Susmel (1994), p. 317, multiply the time-dependent GARCH variance ~�2t by a
state-dependent factor, Yt =

p
�xt~�t"t, for �Xt > 0 and xt = 1; 2; ::: Cai (1994), p. 310, only

models an ARCH process for the variance, e.g.

Yt = 
0 + 
1 � xt + ~�t"t,

~�2t = �0 + �1 � xt +
JX
j=1

�j � u2t�j;

where Yt = lnSt+1 � ln st and xt� f0; 1g.
In contrast, MCMC allows for an e¢ cient estimation as state-dependent variance paths are
simply sampled given all other parameters. The observation space is augmented by the
regime path x = (x1; :::; xT )

0. Our estimation approach bases mainly on Haas et al. (2004),
Henneke et al. (2006), Bauwens & Rombouts (2007), and Rachev et al. (2008), pp. 214.
Because of our restricted number of observations we implement some slight modi�cations.
We drop the Student�s t distribution assumption and any external risk factors. Our model
can be formalized by

Ytj � = �Xt + ~�t"t, "t � N (0; 1)

~�2t = !Xt + �Xt � u2t�1 + �Xt � ~�
2
t�1;

where ut = yt � �Xt and Xt� f0; 1g is the latent regime variable.
The joint posterior in the MS GARCH model

� (�j y) =

Z
� (�; xj y) dx =

Z
� (�jx; y) � fX (xj �; y) dx

�
WX
w=1

�
�
�jx(w); y

�
is augmented by the latent regime states X = (X1; :::; XT )

0 which are sampled from the
observation based density fX (xj �; y). The transition of the regime variable can be described



62 10 CO2 PRICE RISK ASSESSMENT

by the transition probability matrix

� =

�
p1
p2

�
=

�
p11 p12
p21 p22

�
;

where pij is the transition probability from state i to state j and pi2 = 1� pi1, for i = 1; 2.
For simplicity we assume the Markov property for the transition probabilities, i.e. pij =

P (Xt = jjxt�1 = i).
A crucial step in this model is to sample the regime path x = (x1; :::; xT )

0 out of KT = 2T

potential paths. Because of the complexity we separately sample each state of the regime

P (Xt = kj �; x�t; y) =
fY (yj �;Xt = k; x�t)P (Xt = k; x�tj �)

P (x�t; yj �)

=
fY (yj �;Xt = k; x�t)P (Xt = k; x�tj �)P2
l=1 fY (yj �;Xt = l; x�t)P (Xt = l; x�tj �)

;

where k = 1; 2 and x�t is the vector x without xt. As the number of regimes for Xt is
restricted to K = 2 it is more e¢ cient to sample from the posterior instead of the kernel
although the posterior follows no standard distribution. Thanks to the Markov property it
is

P (Xt = k; x�tj �) = P (Xt�1 = l; Xt = k;Xt+1 = sj �) = plkpks

k; l; s� f0; 1g. Consequently, we get

P (Xt = kj �; x�t; y) =
QT

i=1 �
�
yij�xik ; ~�ik

�
pxt�1;kpk;xt+1P2

l=1

QT
i=1 �

�
yij�xil ; ~�il

�
pxt�1;lpl;xt+1

;

where �xik and ~�ik are the mean and volatility paths with Xt = k. For reducing the compu-
tational burden we shorten the likelihoods by

P (Xt = kj �; x�t; y) =

Qt�1
i=1 �

�
yij�xi ; ~�i

�Qt�1
i=1 �

�
yij�xi ; ~�i

� � QT
i=t �

�
yij�xik ; ~�ik

�
pxt�1;kpk;xt+1P2

l=1

QT
i=t �

�
yij�xil ; ~�il

�
pxt�1;lpl;xt+1

=

QT
i=t �

�
yij�xik ; ~�ik

�
pxt�1;kpk;xt+1P2

l=1

QT
i=t �

�
yij�xil ; ~�il

�
pxt�1;lpl;xt+1

; (9)

as the �rst t� 1 observations are not in�uenced by the di¤erent regimes. Unfortunately, the
density values of the observations y� , � > t, depend on xt as the volatility path is a function
of xt.
Given the sampled regime path x = (x1; :::; xT )

0 and the augmented parameter vector � =�
f�k; !k; �k; �k; pkkgk=1;2

�0
we can set up the augmented joint posterior

� (�jx; y) = Lxy (�) � � (�)

= Lxy (�) �
2Y

k=1

� (�k)� (!k)� (�k)� (�k)� (pkk) :
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The augmented likelihood is Lxy (�) =
QT

t=1 �
�
ytj�xt ; ~�t

�
. We assume the following pri-

ors: � (�k) = � (�kjm0; s0), � (!k) = � (�k) = � (�k) = Uni (#min; #max), and � (pkk) =
Beta (pkkj a0k; b0k).103

10.1.8 Basic Stochastic Log-Variance (BLV)

Beside the class of GARCH processes, variable variances can be modelled more �exible by
stochastic variance processes. First, we start with the basic stochastic log-variance (BLV)
process104

d lnSt = �dt+ exp (ht=2) dW
S
t (observation process)

dHt = � [�� ht] dt+$dWH
t ; (latent process)

which assumes independent Wiener processes dW S
t and dW

H
t . After Euler discretization we

get

Yt = ~�+ exp (ht=2) �t

Ht+1 = ht + ~� [�� ht] + ~��t+1; (10)

where Yt = lnSt+1 � ln st and �t; �t
i:i:d:� N (0; 1). The formulation above is de�ned on daily

basis, i.e. � = 1. For comparison with the other models, we state the annual counterparts
� = ~�=250. � = ~�=250, and � = ~�=

p
250. Our MCMC estimation follows the e¢ cient BUGS

algorithm of Meyer & Yu (2000) which is de�ned on the re-parameterized processes

Yt = ~�+ exp (ht=2) �t (11)

Ht+1 = �+  [ht � �] + ~��t+1;

where  = 1 � ~�� = 1 � ~� measures the persistence in the volatility which we restrict
to  � (�1; 1), i.e. ~�� [0; 2] (�� [0; 500]). Consequently, the joint posterior is � (�; hj y) /
Ly (�) � fH (hj �) � � (�), where � =

�
~�; �;  ; ~� 2

�0
and105

Ly (�) =
TY
t=1

� (ytj ~�; exp (ht=2)) ;

fH (hj �) = � (h0j�; ~�) �
TY
t=1

� (htj�+  [ht�1 � �] ; ~�) :

We assume the following independent priors: � (~�) = � ( ~�jm~�; s~�), � (�) = � (�jm�; s�),
�
�
~� 2
�
= IG

�
~� 2
�� a~� ; b~��, and � ( �) = Beta ( �j a � ; b �), for  � = [1 +  ] =2.

103A description of our MCMC sampler can be found in the appendix A.7.5.
104By applying Ito�s lemma this is equivalent to dSt=st =

�
�+ 1

2 exp (ht)
�
dt+ exp (ht=2) dW

S
t .

105For computational reasons we truncate the log-variance process. As we do this far in the tails we will
ignore this in the further analysis.



64 10 CO2 PRICE RISK ASSESSMENT

10.1.9 Stochastic Log-Variance with t-Errors (tLV)

To account for fatter tails we modify our basic log-variance model (BLV) in 11 to a Student�s
t log-variance (tLV) model by assuming t-distributed errors (see Meyer & Yu 2000)

Yt = ~�+ exp (ht=2) �t, �t � t� (0; 1)

Ht+1 = �+  [ht � �] + ~��t+1; �t+1 � N (0; 1) ;

where ~�, ~� as well as ~� = 1�  are de�ned on a daily basis and � is the degree of freedom
of a Student�s t distribution.
Similar to the BLV model, we need the augmented joint posterior � (�; hj y) / Ly (�) �
fH (hj �) � � (�), where � =

�
~�; �; �;  ; ~� 2

�0
, Ly (�) =

QT
t=1 tv (ytj ~�; exp (ht=2)),106 and107

fH (hj �) = � (h0j�; �) �
TY
t=1

� (htj�+  [ht�1 � �] ; �) :

We assume the same independent priors like in the BLV model. Additionally, we de�ne
� (�) = Exp (vj av)jv�(2;50) which is the pdf of a truncated exponential distribution with a
mean value of av.108

10.1.10 Correlated Log-Variance (CLV)

So far, we have presented the basic log-variance (BLV) model which allows to describe
excess kurtosis (i.e. heavy tails). Additionally, we introduced an extension where the errors
of the observation process are Student�s t distributed. Even fatter tails can be modelled.
However, both approaches can explain symmetrical log-returns, only. In the following, we
describe two log-variance processes which both can model skewness � a common feature
of log-returns. The advantage of these models is that they achieve this improvement by an
intuitive modi�cation which replicates the leverage e¤ect reported in empirical research (see
Engle & Ng 1993). The leverage e¤ect is the typical negative relationship between prices/
returns and volatility in �nancial data.
Although there is no discussion on the existence of a leverage e¤ect, the correct speci�cation
is not without controversy. The mainstream favors the formulation of Harvey & Shephard
(1996) who assume an inter-temporal dependency (asymmetric stochastic variance, ASV1)

106The function tv (xjm; s) is a non-central Student�s t distribution with mean m and variance s2v= [v � 2].
107For computational reasons we truncate the log-variance process. As we do this far in the tails we will
ignore this in the further analysis.
108Here, we di¤er from Meyer & Yu (2000) who apply a �2-prior. Unfortunately, our posterior for v is
highly sensitive in respect of the prior. Alternatively, we use an exponential prior which we make rather
non-informative by setting av = 1000.
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between the log-return Yt = lnSt+1�ln st of the current period t and the log-variance Ht+1 of
the next period t+ 1. In contrast, there is the proposal of Jacquier et al. (2004) who model
an intra-temporal relationship (ASV2) of the current log-return Yt and log-variance Ht in
t. The di¤erences seem subtle but they have huge theoretical and empirical implications
(see Yu 2005, p. 166): A negative correlation parameter � in the ASV1 model corresponds
to the leverage e¤ect while there is no clear relationship in the ASV2 model. Furthermore,
(Bayesian) empirical research on S&P500 data favors ASV1 (Yu 2005, p. 166).
In the following, we present the ASV1 as well as the ASV2 model, according to the speci�ca-
tion of Yu (2005), p. 166 and Yu (2002), which we implemented in WinBugs. Both models
base on the observation and latent log-variance processes

d lnSt = exp (ht=2) dW
S
t (12)

dHt = � [�� ht] dt+$dWH
t : (13)

Inter-temporal Correlation (ASV1)
The ASV1 model results from a simple Euler discretization of equation 12 and 13

Yt = exp (ht=2) "t

Ht+1 = �+  ht + ~��t+1; (14)

where Yt = lnSt+1 � ln st,  = 1 � ~�� = 1 � ~�, � = �~�� = �~� = � [1�  ]. We formulize
the model on a daily basis, i.e. � = 1. The special characteristic of the ASV1 model is its
inter-temporal correlation

Corr
�
"t; �t+1

�
= �:

The ASV1 model can be rearranged to (see Yu 2005, p. 170)

Ht+1jht; �;  ; ~� � N (�+  ht; ~�) &

Ytjht+1; ht; �;  ; ~� ; � � N (myt ; syt) ;

where myt = � exp (ht=2) [ht+1 � ��  ht] =~� and syt = exp (ht=2)
p
1� �2.

For computational reasons priors are de�ned for  � = [ + 1] =2 and � = �= [1�  ] instead
of � and  (see Kim et al. 1998). The augmented joint posterior is � (�; hj y) / Ly (�) �
fH (hj �) � � (�), where � = (�;  ; ~� ; �)0, Ly (�) =

QT
t=1 � (ytjmyt ; syt), and

109

fH (hj �) = �

�
h0j

�

1�  
;

~�

1�  2

�
�
T+1Y
t=1

� (htj�+  ht�1; ~�) :

109For computational reasons we truncate the log-variance process. As we do this far in the tails we will
ignore this in the further analysis.
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We assume the same independent priors like in the BLV model. Additionally, we de�ne an
uniform prior � (�) = Uni (�j � 1; 1) for the correlation parameter.

Intra-temporal Correlation (ASV2)
Jacquier et al. (2004) propose a slightly di¤erent asymmetric stochastic log-variance model
(ASV2) which results from the Euler discretization of d lnSt and dHt�1 in equations 12 and
13

Yt = exp (ht=2) "t

Ht = �+  ht�1 + ~��t:

Again, we formulize the model on a daily basis, i.e. � = 1. In contrast to the speci�cation
above, the ASV2 model assumes an intra-temporal correlation

Corr ("t; �t) = �:

The ASV2 model can be rearranged to (see Yu 2005, p. 170)

Ht+1jht; �;  ; ~� � N (�+  ht�1; ~�) &

Ytjht+1; ht; �;  ; ~� ; � � N (myt ; syt) ;

where myt = � exp (ht=2) [ht � ��  ht�1] =~� and syt = exp (ht=2)
p
1� �2. This this corre-

sponds to Ly (�) =
QT

t=1 � (ytjmyt ; syt) and
110

fH (hj �) = �

�
h0j

�

1�  
;

~�

1�  2

�
�
TY
t=1

� (htj�+  ht�1; ~�) ;

where � = (�;  ; ~� ; �)0. Additionally, we assume the same priors like in the ASV1 model.

10.1.11 Correlated Heston Model

Although log-variance processes are extremely �exible they are no a¢ ne models. This has two
main disadvantages (see Johannes & Polson 2003, p. 58): (1) The calculation of option prices
is numerically costly and (2) the volatility of the log-variance is constant. An alternative is
the Heston model

d lnSt = �dt+
p
htdW

S
t

dHt = � [�� ht] dt+ �
p
htdW

H
t ;

110For computational reasons we truncate the log-variance process. As we do this far in the tails we will
ignore this in the further analysis.
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where dW S
t and dW

H
t are correlated Wiener processes with constant correlation coe¢ cient

�.111 Euler discretization leads to the inter-temporal correlated model

Yt = ��+
p
ht�"t

Ht+1 = ht + � [�� ht] � + �
p
ht��t+1;

where Yt = lnSt+1� ln st, "t; �t � N (0; 1), and inter-temporal correlation Corr
�
"t; �t+1

�
=

�.
For the MCMC implementation we follow Li et al. (2008) but do not incorporate jumps
because of the low number of EUA price observations. The joint posterior is � (�; hj y) /
Ly (�) � fH (hj �) � � (�), where � = (�; �; �; !;{)0. Following Jacquier et al. (1994) we
do not directly construct priors for � and � but for ! = � 2 [1� �2] and { = �� .112 The
likelihood function is Ly (�) =

QT
t=1 �

�
ytj��;

p
ht�

�
, while the joint density for the latent

log-variances is113

fH (hj �) =
TY
t=0

�
�
ht+1jht + � [�� ht] �; �

p
ht�

�
:

We assume the the following priors: � (�) = � (�jm�; s�), � (�) = � (�jm�; s�)j�>0, � (�) =
� (�jm�; s�)j�>0, � (!) = IG (!j a!; b!), and � ({j!) = �

�
{j 0;

p
!=2

�
.

10.2 Parameter Estimation Results

In this subsection we present the MCMC estimation results of all models presented above
for the full time-series. We analyze the convergence and interpret the simulated posteriors.
Finally, we compare the stability of the results to the outcome of our estimations for the
short time-series without the outliers in April/ May 2006.

10.2.1 Geometric Brownian Motion (GBM)

We start parameter estimation with the Geometric Brownian motion (GBM) on the full
time-series (April 22, 2005 up to May 7, 2009). We sampleW = 51; 000 times the parameter

111This can be transformed to�
d lnSt
dHt

�
=

�
�

� [�� ht]

�
dt+

p
ht

 
1 0

��
p
1� �2�

!�
dWS

t

dW �
t

�
;

where dWS
t and dW

�
t are independent Wiener processes.

112For model weighting we calibrate a truncated Gaussian distribution to � and �.
113The variance h0 is unknown. Hence, we cannot calculate �

�
h1jh0 + � [�� h0]�; �

p
h0�

�
. Fortunately,

we can sample h1 from its posterior � (h1jh2; h0; �; y) / � (h1jh0; �) � � (h2jh1; �) � fY1 (y1jh1; �) which
depends on h2. We ignore the dependence on h0.
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Figure 9: GBM - trace, cumsum, & scatter plots

vector
�
~�; ~�2

�0
and dump the �rst 1; 000 as burn-in.114 We assume the following priors: ~� �

N (�y = �7:275 � 10�5; 1000 ��) and ~�2 � IG (2:0001; 9:1241 � 10�4). This latter speci�cation
results in a prior mean of E

�
~�2
�
= dV ar (y) = 9:1231�10�4 and a prior variance of V ar �~�2� =

9 �dV ar (y).
A �rst visual inspection of the trace plots and cumsum plots for � = ~�=� and � = ~�=

p
� (see

�gure 9) indicates convergence for both parameters which seem uncorrelated ([Corr (�; �) =
0) and feature no mentionable auto-correlation.
The marginal posteriors of � and � have fundamentally down-scaled and shifted from their
priors (see upper subplots in �gure 10). For a better understanding of the parameter un-
certainty we add quantile plots (credible level � = 1%; 2%; :::; 99%) showing the lower and
upper credible bounds for both posteriors (see lower subplots in �gure 10). Although the
mean posterior of � (�0:019) is centered around zero, � features a huge standard deviation
(0:235) resulting in annual drift rates even likely to be around �0:5 or 0:5. To a less extent,
this statement is also true for the posterior of � featuring a highly informative (concentrated)
posteriors - a general �nding for scale parameters.
We apply the same Gibbs sampler to the short time-series where we dump the observations
from the turbulent period April 24 to May 25, 2006.115 The posterior of � has slightly
shifted to the right and features a lower standard deviation while the posterior of � is more

114Indeed, we thin the sampled data by a factor three, meaning that we store every third generated para-
meter vector, only. Consequently, we sample a total of W � 3 = 153; 000 parameter vectors.
115We assume the following priors: ~� � N

�
�y = �1:742 � 10�4; 1000 ��

�
and ~�2 �

IG
�
2; 0001; 7:4113 � 10�4

�
. This speci�cation results in a prior mean of E

�
~�2
�
= dV ar (y) = 7:4107 � 10�4

and a prior variance of V ar
�
~�2
�
= 9 � dV ar (y). With a thinning factor of three we store 50; 000 samples

after a burn-in phase of 1; 000 generations.
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Figure 10: GBM - priors/ posteriors & credible intervals

to the left with nearly no change in its standard deviation (see �gure 11). In table 4 we have
summarized some basic statistics on the parameters for the full and the short time-series.

mean std. deviation skewness excess kurtosis
� �0:019 0:235 �0:010 0:017

� 0:477 0:010 0:119 0:019

�short 0:041 0:215 0:004 �0:017
�short 0:430 0:010 0:105 0:064

Table 4: results for GBM model

Additionally, we analyze the lower and upper credible bounds (0:5% and 99:5%) of the log-
returns given the mean posteriors Ê (�j y) and Ê (�j y) (see �gure 12). The lower and upper
bound for the full time-series (dashed red line) is far below and above the outliers which are
extremely unlikely under the GBM. All in all 2:61% of all observations are outside the 99%
credible interval. Even for the short time-series the GBM seems not be a suitable model
(green line). There are still 2:58% of the observations outside the credible interval. This key
�gure is still that high as Ê (�j y) has shrunken from 0:477 to 0:430 which has narrowed the
interval.
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Figure 11: GBM (short) - priors/ posteriors & credible intervals

Figure 12: GBM - credible bounds for log-returns



10.2 Parameter Estimation Results 71

Figure 13: GBMJ - trace & cumsum plots

10.2.2 Geometric Brownian Motion with Jumps (GBMJ)

In the next step we run a parameter estimation for the Geometric Brownian motion with
jumps (GBMJ). We sample W = 60; 000 (burn-in B = 10; 000) times the parameter vector
� =

�
~�; ~�2; �J ; �

2
J ; ~pJ

�0
with a thinning factor of ten. We assume the following priors: ~� �

N (0; 1000 ��), ~�2 � IG (a; b), for a = 2:0001 and b = 4:8024 �10�4,116 �J � N (0; 0:2), �2J �
IG (aJ ; bJ), for aJ = 2:0009 and bJ = 8:5173 � 10�3.117 The jump probability pJ � Beta (1; 1)

is modelled by a �at prior on the unity interval.

All MCMC parameter paths have converged according to the trace and cumsum plots (see
�gure 13). Even by a thinning factor of ten, the parameters ~�, �2J , and ~pJ feature some
auto-correlation up to a lag of four or �ve. Moreover, we �nd some substantial positive and
negative correlation for the parameters ~�, ~�J , and pJ (see table 5).

~� ~� �J �J
~� �0:227
�J �0:323 �0:175
�J �0:219 0:612 �0:155
pJ 0:230 �0:821 0:221 �0:748

Table 5: parameter correlations of GBMJ model

116This speci�cation results in a prior mean of 4:8022 � 10�4 which is the empirical variance of the observed
log-returns without the 15% most extreme ones. The prior variance is nine times the prior mean of ~�2.
117This speci�cation results in a prior mean of 8:5092 � 10�3 which is the empirical variance of the 15%
most extreme log-returns minus the mean prior variance of ~�2. The prior variance is nine times the prior
mean of �2J .
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Figure 14: GBMJ - posteriors & credible intervals

Both kinds of correlations reduce information content in the MCMC samples. We could curb
auto-correlation by applying a larger thinning factor. However this would increase computa-
tional burdens. Alternatively, the correlation problem could be tackled by the construction
of a MCMC sampler on the joint posterior � ( ~�; �2J ; ~pJ j ~�; �J ; y). Unfortunately, this is rather
complex and could not be managed by a Gibbs sampler. The computation time would rise
sharply. Therefore, we have decided to accept correlation but we run the Gibbs sampler for
a larger number of repetitions.
We apply the same MCMC analysis on the short time-series.118 The cumsum criterion gives
some evidence to be more cautious with convergence. Therefore, we sampled W = 100; 000

(burn-in B = 50; 000) times the parameter values � =
�
~�; ~�2; �J ; �

2
J ; ~pJ

�0
with a thinning

factor of ten (see �gure 14 and 15 for the posteriors and quantile plots). In the tables 6
and 7 we have summarized some basic statistics on the parameters for the full and the short
time-series.
Similar to the GBM, the drift rate � rises and the volatility � falls for the short time-series
as negative skewed outliers have been removed. A less apparent e¤ect is the increase in the
jump probability pJ . The GBMJ tries to �nd jumps. As there are less extreme outliers it
identi�es more frequent medium size outliers as jumps. Consequently, the mean jump width
�J and jump volatility �J fall.
Generally, the GBMJ describes the fat-tailed log-returns more closely than the GBM (see

118We assume the following priors: ~� � N (0; 1000 ��) and ~�2 � IG
�
2:0001; 4:5277 � 10�4

�
. This results

in a prior mean of 4:5275 � 10�4 which is the empirical variance of the observed log-returns without the 15%
most extreme ones. The prior variance is nine times the prior mean of ~�2. Other priors are �J � N (0; 0:2),
�2J � IG

�
2:0009; 8:5173 � 10�3

�
. The prior mean of �2J is 5:6683 � 10�3 which is the empirical variance of the

15% most extreme outliers minus the mean prior variance of ~�2. The prior variance is nine times the prior
mean of �2J . Again, we de�ned an uninformative prior Beta � IG (1; 1).
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Figure 15: GBMJ (short) - posteriors & credible intervals

full series mean std. dev. skewness excess kurtosis
� 0:451 0:210 �0:005 0:022

~� 1:802 � 10�3 8:390 � 10�4 �0:005 0:022

� 0:301 0:019 �0:129 0:025

~� 0:019 1:179 � 10�3 �0:129 0:025

�J �9:638 � 10�3 4:967 � 10�3 �0:219 0:412

�J 0:053 5:185 � 10�3 0:631 0:742

pJ 0:200 0:046 0:407 0:136

Table 6: results of GBMJ model (full series)

upper subplot of �gure 16). The better performance of the GBMJ results from a state
dependent credible interval. In contrast to the GBM (see �gure 12), the credible interval
bounds of the GBMJ depend on the fact whether yt is in a state with or without jump
(see middle subplot in �gure 16). All in all, 0:19% (0:30% for the short time-series ) of all
observed log-returns fall outside the 99% credible interval. Of course, this is far less than a
perfect calibrated frequentist model allows. However, Bayesian statistics re�ects parameter
uncertainty compensated by a risk premium on the credible interval (wider interval).119

The GBMJ seems to be a fundamental improvement compared to the GBM but it is not
perfectly suitable for the observed log-returns. It has been developed to describe log-returns
following a GBM interrupted by large outliers, once in a while. Our Dec09 log-returns do
not follow this pattern. They seem to feature phases with modest and phases with large
absolute log-returns. Beside this structural mismatch our Gibbs sampler does not estimate
the "true" GBMJ model but an approximation which allows one jump per day, only. The

119see section 11 for more on the Bayesian VaR
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short series mean std. dev. skewness excess kurtosis
� 0:620 0:229 2:526 � 10�3 0:050

~� 2:478 � 10�3 9:145 � 10�4 2:510 � 10�3 0:050

� 0:254 0:022 0:074 �0:029
~� 0:016 1:420 � 10�3 0:074 �0:029
�J �6:641 � 10�3 3:088 � 10�3 �0:240 0:379

�J 0:037 2:811 � 10�3 0:668 0:905

pJ 0:357 0:071 0:059 �0:096

Table 7: results of GBMJ model (short series)

approximation is not critical for daily jump probabilities ~pJ below 10%. In fact, we estimate
mean posterior values of pJ which are twice up to 3:5 times larger than 10%. Fortunately, in
simulation studies, we found no substantial misspeci�cation resulting from our algorithm.

10.2.3 Ornstein-Uhlenbeck Process for Log-Prices (OU)

For the Ornstein-Uhlenbeck (OU) process on log-EUA-prices we sample W = 60; 000 (burn-
in B = 10; 000) times the parameter values � = (�; ~�; �)0 with a thinning factor of ten which
reduces auto-correlation to low levels up to lag ten. We assume truncated Gaussian priors
for all parameters and set the hyperparameters to the respective ML estimates and modi�ed
covariance values.120 As we believe that the long-term EUA price equilibrium (marginal
abatement cost for one metric tonne of CO2 equivalent) will never fall below 0.01e and will
never be above 150e, we truncate the prior for ~� at ~�min = ln (0:01) and ~�min = ln (150). The
trace and cumsum plots (see �gure 17) indicate convergence for all parameter which show
low levels of correlation, only.121 Therefore, we avoid to construct a multivariate random
walk Metropolis sampler.
In �gure 18 we present the posteriors and their quantile plots. The mean posterior of
� is 1:70. This results in a half-life time of approximately 4 months and 19 trading days.
However, as our EUA price series is rather short, there is considerable uncertainty on � which
reaches from � = 0 (no mean reversion at all) up to � = 4:5 (half-life time of approximately 1
month and 18 trading days). Probably, there is much amazement about the curious form of
the posterior. This originates from the fact that the prior distribution has not been ruled out
by the observations. Even after more than 1000 observations the slight mode of the rather
non-informative prior (m� = �ML = 2:181 and &2� = �

ML
� �1000 = 1016) results in a posterior

120We set m� = �ML = 2:181; m~� = ~�ML = 2:9318; m� = �ML = 0:47842; &2� = �ML
� � 1000 = 1016,

&2~� = �
ML
~� � 1000 = 13:768, and &2� = �ML

� � 1000 = 0:11077.
121[Corr (~�; �) = 0:169, [Corr (~�; �) = 0:004, and [Corr (�; �) = 0:085
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Figure 16: GBMJ - modelling of log-returns

peak. For a far more non-informative prior the posterior of � would be an unimodal and
continuously falling function.
The other extreme is a more informative prior. We run the same model with a truncated prior
on � that matches the ML estimation error (m� = �ML = 2:181 and &2� = �

ML
� = 1:016).122

The posterior of � is by far more concentrated as the prior dominates the posterior (see
�gure 19). The mean posterior is 1:96. We appreciate that our numerical example above
might entail much critics on Bayesian statistics because of its arbitrariness. However, we
are convinced that a prudent Bayesian proceeding reveals uncertainty ignored in frequentist
statistics.123 From a Bayesian perspective, the distribution of the ML estimator does not

122We also increased the information level on � and � by &2~� = �
ML
~� � 10 = 0:13768, and &2� = �ML

� � 100 =
0:011077.
123Frequentist statistics acknowledges (ML) estimation error, only. In fact, most users of frequentist sta-



76 10 CO2 PRICE RISK ASSESSMENT

Figure 17: OU - trace & cumsum plots for uniformative priors

Figure 18: OU - posteriors & credible intervals for uninformative priors
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Figure 19: OU - posteriors & credible intervals for informative priors

need to be an adequate prior. First, it does not re�ect uncertainty on the parameter �
but on the maximum value of the likelihood function. Second, ML estimation is done under
parameter certainty. This is one important reason why the mode for the posterior of �
fundamentally di¤ers from the ML estimate. Consequently, we decide to base our analysis
on rather non-informative priors.124

Back to the analysis of the estimation results derived from rather non-informative priors. The
mean posterior of the long-term CO2 price equilibrium � = exp (~�) is 19:75e. Parameter
values below 10e and above 30e are unlikely. As in the previous cases the posterior of
the volatility � features low uncertainty (standard deviation 0:01). With a mean posterior
0:48 the estimated volatility is comparable to the GBM as both models only possess a
�xed volatility term to describe variability. Although the GBMJ has the same constant
volatility term, its mean posterior is only 0:30 as the jump term explains parts of the observed
variability.

We apply the same algorithm to the short time-series.125 Even after a thinning factor of ten,
our MCMC parameter paths have only slowly falling auto-correlations. Fortunately, trace
and cumsum criterion show a good mixing and convergence. Again, there is no alarming

tistics even ignore this uncertainty beyond parameter testing.
124We refuse to apply di¤use (improper) priors for two reasons. First, there can arise problems of improper
posteriors that do not integrate to a �nite value. Second, our prior is rather non-informative. Even � = 1000
(half-life 1 hour and 44 minutes) features a relatively high likelihood. Nevertheless, posterior values of � > 7
have not been sampled.
125We generate W = 60; 000 samples with a thinning factor of ten and dump the �rst 20; 000 samples.
We use the same priors with hyperparameters resulting from ML estimation: m� = �ML = 1:3448, m~� =

~�ML = 2:9707, m� = �ML = 0:43115, &2� = �ML
� � 1000 = 921:85, &2~� = �ML

~� � 1000 = 26:576, and
&2� = �

ML
� � 1000 = 0:096781.
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Figure 20: OU (short) - posteriors & credible intervals for uninformative priors

correlation between the parameters.126 In �gure 20 you can �nd the respective posteriors
and in the tables 8 and 9 we have summarized some statistics of the posteriors on the full
and the short EUA log-return series.

full series mean std. dev. skewness excess kurtosis
� 1:702 1:071 0:356 �0:466
~� 2:862 0:615 �4:394 33:721

� = exp (~�) 19:752 10:686 5:227 40:723

� 0:479 0:011 0:135 0:025

Table 8: results of OU model (full series)

short series mean std. dev. skewness excess kurtosis
� 0:959 0:806 0:856 0:147

~� 2:808 1:051 �3:043 13:640

� = exp (~�) 22:624 17:900 3:259 14:018

� 0:432 9:606 � 10�3 0:094 �6:817 � 10�3

Table 9: results of OU model (short series)

For the short time-series we estimate a lower level of mean reversion compared to the full
time-series. The mean half-life time is 8 months and 14 trading days whereas a half-life
time below 2 months and 16 trading days (� > 3) is unlikely. This is a result we have not

126[Corr (�; �) = 0:1801, [Corr (�; �) = 0:0704, [Corr (�; �) = 0:0169
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Figure 21: CIR - trace & cumsum plots for uniformative priors

expected but seems reasonable. The full series, inclusive the outliers, needs some level of
mean reversion (during our observation time). Otherwise, we would not have identi�ed the
outliers as outliers. Another reasonable �nding is the higher long-term EUA price equilibrium
for the short series because of the negative skewed outliers. As we reduced variability in the
short series, the posterior for � is also shifted towards zeros and close to the posterior of the
GBM.

10.2.4 Cox-Ingersoll-Ross (CIR) Process

For the Cox-Ingersoll-Ross (CIR) process on EUA prices we apply a thinning factor of ten
to sampleW = 120; 000 times the parameter vector � = (�; �; �)0. We dump the �rst 40; 000
samples and thin the remaining path by a factor of two. Hence, we inference on 40; 000
samples. We assume truncated Gaussian priors for all parameters and set the hyperpara-
meters to the respective ML estimates and modi�ed covariance values.127 Comparable to
the OU process we set the limits �min = 0:01 and �min = 150 for the long-term EUA price
equilibrium. The trace and the cumsum plots (see �gure 21) indicate convergence for all
parameters featuring negligible correlations beside [Corr (�; �) = �0:331. A simultaneous
sampling of � and � could reduce auto-correlations which are only close to zero for lags larger
than �ve. This could fundamentally improve mixing. However, our MCMC sampler is fast

127We set m� = �ML = 2:171; m� = �ML = 19:258; m� = �ML = 2:079; s2� = �ML
� � 1000 = 971:14;

s2� = �
ML
� � 1000 = 3854:5, and s2� = �ML

� � 1000 = 1:9427:
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Figure 22: CIR - posteriors & credible intervals for uninformative priors

and we avoid to complicate the algorithm.

The mean posterior for � is 1:71 corresponding to a half-life time of 4 months and 18 trading
days (see �gure 22). This is nearly the same mean posterior like in the OU model (� = 1:70).
Moreover, both posteriors are similarly shaped (standard deviation 1:03 vs. 1:07 in OU).
Because of the more pronounced second mode, the CIR posterior of � seems more dominated
by its prior. The mean posterior and the standard deviation of the long-term equilibrium �

are 21:67e and 10:71e. This is slightly higher than in the OU model (19:75e and 10:69e).
According to our posterior, values of � above 70e (90e) have a probability of 1% (0:5%).
The mean posterior of � is 2:08 which we cannot compare to the GBM or OU process. In
the CIR model the variable � is not a volatility level but a volatility factor. Nevertheless,
the posterior of � is a relatively concentrated distribution.

We applied the same algorithm to the short time-series.128 In �gure 23 you can �nd the
respective posteriors129 and quantile plots while we have summarized some statistics of the
posteriors on the full and the short time-series in the tables 10 and 11.

The CIR estimation results of the short time-series are consistent to those of the OU process.
The level of mean reversion � and the volatility � is reduced while the long-term EUA price
equilibrium � is higher. However, we should keep in mind that our CIR process models
mean reversion for the EUA prices in contrast to the OU process where reversion is de�ned
on log-prices. Consequently, the mean priors of �̂CIR and �̂OU are hardly to compare as

128We sample the parameters W = 120; 000 times with a thinning factor of ten and dump the �rst 40; 000.
We thin the remaining samples by a factor of two. This results in a sample of 40; 000. We use the same
priors with hyperparameters resulting from ML estimation: m� = �ML = 1:1709, m~� = ~�ML = 20:487,
m� = �

ML = 1:8289, &2� = �
ML
� � 1000 = 891:11, &2~� = �ML

~� � 1000 = 11632, and &2� = �ML
� � 1000 = 1:6387.

129Comparable to the OU estimation, auto-correlation of our MCMC parameter paths falls slowly. Fortu-
nately, visual inspection of the trace plots and cumsum criterion support a good mixing and convergence.
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Figure 23: CIR (short) - posteriors & credible intervals for uninformative priors

full series mean std. dev. skewness excess kurtosis
� 1:713 1:034 0:353 �0:410
� 21:667 10:712 5:014 34:863

� 2:084 0:046 0:124 0:046

Table 10: results of CIR model (full series)

generally �̂ 6=
PW

w=1 exp (~�w) =W .

10.2.5 Constant Elasticity of Variance (CEV) Process

For the constant elasticity of variance (CEV) process we sample W = 60; 000 (burn-in
B = 20; 000) times the parameter vector � = (�; �; �; 
)0 with a thinning factor of ten. This
could eliminate auto-correlation for lags larger than �ve. We assume truncated Gaussian
priors for all parameters and set the hyperparameters to the respective ML estimates and
modi�ed covariance values.130 Again, we set the limits �min = 0:01 and �min = 150 for the
long-term EUA price equilibrium.
A characteristic of the CEV process is the nearly deterministic relationship between � and

 ([Corr (�; 
) = �0:983). This results in extreme high and long lasting MCMC parameter
auto-correlations which prevent convergence of our MCMC algorithm in practicable comput-
ing time.131 Hence, we implement a bivariate random walk Metropolis-Hastings algorithm
which generates joint proposals (��; 
�)0 from a bivariate Gaussian distribution driven by

130We set m� = �ML = 2:0081; m� = �ML = 19:276; m� = �ML = 1:1109; m
 = 
ML = 0:70608;

s2� = �
ML
� �1000 = 720:64 s2� = �ML

� �1000 = 3986:5; s2� = �ML
� �1000 = 61:352; and s2
 = �ML


 �1000 = 5:672.
131Other parameter correlations are not problematic and reach from [Corr (�; �) = �0:396 up to
[Corr (�; 
) = 0:039.
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short series mean std. dev. skewness excess kurtosis
� 0:863 0:740 0:972 0:515

� 29:388 22:153 2:715 8:074

� 1:833 1:833 0:112 �0:010

Table 11: results of CIR model (short series)

Figure 24: CEV - trace & cumsum plots for uninformative priors

the correlation of the ML estimates ([CorrML (�; 
) = �0:99535). The trace and cumsum
plots indicate that our modi�cation has been successful (see �gure 24).

The mean posterior for � is 1:57 corresponding to a half-life time of 5 months and 6 trading
days (see �gure 25). This is a lower mean reversion rate than in the OU and CIR model.
However, the form of the CEV posterior for � resembles that of the OU model. The domi-
nance of the prior seems even higher as the two modes are more pronounced. The posterior
on the long-term EUA equilibrium � has a mean value of 22:79e which is substantially above
the posterior means of the OU and CIR models (19:75e and 19:43e). Indeed, the di¤erence
between 22:79e and 19:43e is larger than the standard deviation of � in the CIR model
(2:83e).

The mean posterior of � is 1:21 which is lower than 2:08 in the CIR model. In contrast, its
standard deviation is substantially larger (0:28e compared to 0:05e for CIR). This higher
level of uncertainty originates from the additional elasticity parameter 
. Its posterior (mean
0:69) is nearly fully above 0:5 corresponding to the CIR model. Consequently, a lower value
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Figure 25: CEV - posteriors & credible intervals for uninformative priors

of � in the CEV model can express the same volatility in the log-returns.
We applied the same algorithm to the short time-series.132 In �gure 26 you can �nd the
respective posteriors and quantile plots while we have summarized some statistics of the
posteriors on the full and the short time-series in the tables 12 and 13.

full series mean std. dev. skewness excess kurtosis
� 1:573 0:986 0:389 0:421

� 22:790 12:449 4:468 26:170

� 1:210 0:283 0:759 0:757


 0:687 0:077 �0:074 �0:063

Table 12: results of CEV model (full series)

The statistics for the CEV model are mainly consistent to those of the OU and CIR models.
The posterior uncertainty on � reduces for the short time-series. There is more evidence for
a lower mean reversion (half-life time of 9 months and 11 trading days vs. 5 months and
6 trading days). Comparable to the other processes the uncertainty on the long-term EUA
price equilibrium � is higher for the short time-series.
In contrast to the other models, the posterior of � has shifted to a higher level. This
could seduce us to conclude that the model �nds more volatility for the time-series without

132We sample the parameters W = 130; 000 (burn-in B = 60; 000) times with a thinning factor of ten.
We use the same priors with hyperparameters resulting from ML estimation: m� = �

ML = 1:17149, m~� =

~�ML = 20:486, m� = �
ML = 1:8434, m
 = 


ML = 0:49732, &2� = �
ML
� � 1000 = 739:5, &2~� = �

ML
~� � 1000 =

11482, &2� = �
ML
� � 1000 = 202:49, and &2
 = �ML


 � 1000 = 6:8918.
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Figure 26: CEV (short) - posteriors & credible intervals for uninformative priors

short series mean std. dev. skewness excess kurtosis
� 0:862 0:741 0:954 0:407

� 29:827 22:268 2:627 7:446

� 2:016 0:483 0:699 0:690


 0:477 0:080 �0:010 �0:116

Table 13: results of CEV model (short series)

outliers. However, this interpretation ignores the fact of a reduced elasticity parameter 

which counteracts this e¤ect. The exact interplay of � and 
 is not intuitive. Hence, we do
not try to interpret it.

10.2.6 Student�s t GARCH

For the Student�s t GARCH (1; 1) model we sampleW = 46; 000 (burn-in B = 6; 000) times
the parameter vector � = (
0; 
1; !; �; �; v)

0 without any thinning. We assume uniform
priors on (0; 2] for the GARCH parameters133 and a prior mean of �ve, i.e. �0 = 1=5, for
the exponential prior on the degree of freedom v.134 For the joint prior of the regression

133The sampled GARCH parameters realized far away from 2 in our simulation studies. Hence, we see no
problem for these narrow priors.
134For our Griddy Gibbs sampler we create the �xed points 2:1; 2:2; :::; 10:0. In our simulations the sampled
v have been far below 10. Therefore, we see no problem with that low upper limit.
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parameters 
0 and 
1, we set m0 = (0; 0)
0 and135

�0 =

�
0:23434 �6:1184
�6:1184 174:14

�
:

Compared to the GBM and GBMJ, our GARCH sample paths are rather short - especially as
we do not thin because of the time consuming computing. Unfortunately, our samples show
high auto-correlation. Fortunately, the cumsum criterion indicates convergence (see the
upper six subplots in �gure 27). Moreover, we analyze the behavior of the posterior means

Figure 27: Student�s t GARCH - cumsum and posterior mean plots

when we vary the sample size. They appear stable for all parameters with a variation on a

135�0 is based on a conservative (less informative) scaling factor c = 1=20 and corresponds to a parameter
correlation of �0:96.
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very low level (see lower six subplots in �gure 27). A further sampling seems not necessary.
Our MCMC algorithm is rather e¢ cient as it accounts for the substantial correlation between
the regression parameters and between the GARCH parameters (see table 14).


0 
1 v ! �


1 �0:965
v 0:004 �0:002
! 0:010 �0:012 0:187

� 0:008 �0:006 0:270 0:307

� �0:015 0:013 �0:028 �0:745 �0:748

Table 14: parameter correlation of Student�s t GARCH model

An encouraging �nding is that the EURIBOR interest rates have a negligible in�uence on
the log-returns (�gure 28). This supports our approach with synthetic Dec09 spot rates.
The posterior of v concentrates between 2:5 and 4:5. Hence, the implementation of fat tail
errors seems adequate.136 The current variance is by far more in�uenced by the last variance
than by past shocks in the log-return series (� = 0:09 vs. � = 0:78). Unfortunately, the log-
returns possess no stationarity for 53% of all parameter samples (see upper subplot in �gure
29).The long-term annual volatility137 of the log-returns is below the annual volatility of the
GBM but above that of the GBMJ (see lower subplot in �gure 29). All things considered,
the GARCH process can replicate the variability of the log-returns (see �gure 30).
We apply the same algorithm to the short time-series.138 In �gure 31 you can �nd the
respective posteriors139 and quantile plots while we have summarized some statistics of the
posteriors on the full and the short time-series in the tables 15 and 16.
The most remarkable di¤erence between the whole and the short time-series is that the
short one has a by far larger annual drift (0:73 vs. 0:53). This result we have expected
as the whole series features more left skewness (�0:87 vs. �0:38) than the series without
the turbulent April/ May 2006. Consequently, the higher degree of freedom is in the line of

136Indeed, the EUA log-returns even more support heavy tails than the MSCI Canadian log-returns (mean
posterior 9:2) analyzed by Rachev et al. (2008), pp. 211.
137Of course, we can only calculate a (�nite) volatility for stationary GARCH processes (persistence measure
below one).
138We generate W = 57; 000 samples without thinning and dump the �rst 17; 000. We use the same priors
with the exception that we set

�0 =

�
0:23786 �6:1823
�6:1823 175:29

�
which corresponds to a correlation of �0:96.
139Although there is huge auto-correlation the cumsum criterion and the posterior means favor convergence.
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full series mean std. dev. skewness excess kurtosis

0 2:135 � 10�3 2:076 � 10�3 �8:788 � 10�4 0:047


p:a:0 = 
0=� 0:534 0:519 �8:788 � 10�4 0:047


1 �0:063 0:054 0:001 0:037

v 3:387 0:462 0:499 0:353

! 2:565 � 10�5 8:530 � 10�6 0:755 1:035

� 0:090 0:021 0:553 0:493

� 0:778 0:040 �0:536 0:764

Table 15: results of Student�s t GARCH model (full series)

short series mean std. dev. skewness excess kurtosis

0 2:926 � 10�3 2:082 � 10�3 �8:188 � 10�4 0:034


p:a:0 = 
0=� 0:732 0:521 �8:188 � 10�4 0:034


1 �0:078 0:055 0:015 0:032

v 3:655 0:544 0:715 1:048

! 2:640 � 10�5 9:558 � 10�6 0:883 1:550

� 0:094 0:022 0:453 0:318

� 0:776 0:044 �0:435 0:459

Table 16: results of Student�s t GARCH model (short series)
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Figure 28: Student�s t GARCH - posteriors & credible intervals

this argumentation. Surprisingly, the di¤erence between the posteriors is not large. We are
really surprised by the stability of the GARCH estimates which do not change much. The
mean long-term annual volatility !

1����
v
v�2 also changed slightly from 0:350 to 0:339. The

non-stationarity of the log-returns reduced from 53% to 41%.
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Figure 29: Student�s t GARCH - stationarity & long-run unconditional volatility

Figure 30: Student�s t GARCH - empirical volatility
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Figure 31: Student�s t GARCH (short) - posteriors & credible intervals
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Figure 32: MS GARCH - cumsum plots

10.2.7 Markov Switching (MS) GARCH (1; 1)

For the Markov switching GARCH (1; 1) model we sample W = 60; 000 (burn-in B =

20; 000) times the parameter values � =
�
f�k; !k; �k; �k; pkkgk=1;2

�0
without any thinning.

We assume uniform priors on (0; 5] for the GARCH parameters140 and �at priors on p11 and
p22 (a0k = b0k = 1). For �k, k = 1; 2, we set m0 = 0 and s0 = 10.
Comparable to the Student�s t GARCH model we do not thin the MCMC parameter paths
for computational reasons. This might be critical as all parameters feature substantial auto-
correlation at least up to lag 20. Nevertheless, the cumsum criterion indicates convergence
(see �gure 32). The plots on the mean posteriors support this �nding (see �gure 33). For all
parameters they appear stable with a variation on a very low level. A further sampling seems
not necessary. Of course, we could improve mixing behavior by a simultaneous parameter
sampling. We, however, �nd no critical parameter correlation.141

The posteriors of �p:a:1 and �p:a:2 are rather disjunct (see �gure 34). The posterior of �p:a:1

(mean 0:50) is nearly fully above zero which means that in "normal" times there is an upwards
trend in the prices. However, in "turbulent" times there is a relatively harsh negative trend
with �p:a:2 (mean �4:56) nearly fully below zero. The posterior of p11 re�ects a high level of
stability for regime 1 while there is only a 1=4 change (p22) to stay in regime 2. As regime

140The sampled GARCH parameters realized far away from 5 in our simulations. Hence, we see no problem
for these narrow priors.
141There is parameter correlation between [Corr (!1; �1) = �0:667 and [Corr (�1; p22) = 0:357.
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Figure 33: MS GARCH - mean posterior plots

Figure 34: MS GARCH - posteriors & credible intervals for mean log-returns & transition
probabilities
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Figure 35: MS GARCH - posteriors & credible intervals for GARCH parameters

2 has been estimated as a rare event, it is a reasonable fact that the uncertainty on p22 is
larger than on p11 (std. dev. 0:12 vs. 0:04).
The GARCH posteriors of regime 1 correspond to the GARCH posteriors of the Student�s t
GARCH model with a slight reduction in the extreme values (see �gure 35). In contrast, the
posteriors of regime 2 feature extreme non-stationarity and uncertainty (see upper subplot in
�gure 36). While the persistence measure of regime 1 is nearly fully below one that of regime
2 is nearly fully above. Hence, we can only calculate the long-term variance for regime 1
(see lower subplot in �gure 36).
The MS GARCHmodel is also able to reproduce the variability of the volatility where regime
2 describes the "turbulent" times (see �gure 37).
We apply the same algorithm to the short time-series.142 In the �gures 38 and 39 you can
�nd the respective posteriors143 and quantile plots while we have summarized some statistics

142We generate W = 90; 000 samples without thinning and dump the �rst 50; 000. We use the same priors
as for the full time series.
143After roughly 50; 000 repetitions the cumsum criterion, the trace and posterior mean plots favor conver-
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Figure 36: MS GARCH - stationarity & long-run unconditional volatility

of the posteriors on the full and the short time-series in the tables 17 and 18.
A remarkable result is that the annual drift rate �p:a:1 for the short time-series is nearly the
same as for the full time-series (0:49 vs. 0:50). This statement also holds for the GARCH
parameters !1, �1, �1, and p11. An interpretation could be that the dumped outliers have
been fully allocated to regime 2 in our estimation on the whole time-series. In contrast, the
parameters of regime 2 have changed to a larger extend. The annual drift �p:a:2 is substantially
less extreme (�2:84 vs. �4:55) because negatively skewed outliers have been ignored. The
GARCH terms have changed fundamentally. For the whole time-series the variance in t is
dominated by the variance in t�1 while for the short time-series the past estimation error in
t�1 is most important. As the level of p11 falls and that of p22 rises regime 2 undertakes the
task to describe above average rather than extreme log-returns (see �gure 40). Moreover,
the persistence measure estimates stationarity for 41% of all sampled parameter tuples (far
more than roughly 0% for the full time-series).

gence although there are substantial auto-correlations in the parameter paths and parameter correlations in
the range from [Corr (�1; !1) = �0:642 to [Corr (p11; !2) = 0:568.
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Figure 37: MS GARCH - empirical volatility

Figure 38: MS GARCH (short) - posteriors & credible intervals for mean log-returns & transition
probabilities



96 10 CO2 PRICE RISK ASSESSMENT

Figure 39: MS GARCH (short) - posteriors & credible intervals for GARCH parameters

full series mean std. dev. skewness excess kurtosis
�p:a:1 0:503 0:247 0:262 0:331

�p:a:2 �4:55 2:073 �0:778 1:542

!1 2:641 � 10�5 1:051 � 10�5 0:845 1:402

�1 0:044 0:033 0:900 0:466

�1 0:779 0:045 �0:518 0:345

!2 4:104 � 10�4 2:386 � 10�4 0:945 1:366

�2 0:256 0:280 2:585 10:851

�2 1:710 0:503 1:176 2:591

p11 0:898 0:036 �1:006 1:897

p22 0:170 0:119 0:959 0:791

Table 17: results of Markov Switching MS GARCH(1,1) model (full series)
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short series mean std. dev. skewness excess kurtosis
�p:a:1 0:493 0:270 0:289 0:256

�p:a:2 �2:841 1:543 �0:364 0:519

!1 2:141 � 10�5 9:318 � 10�6 0:853 1:540

�1 0:038 0:031 1:134 1:316

�1 0:789 0:045 �0:756 1:733

!2 6:117 � 10�4 2:720 � 10�4 0:544 0:313

�2 0:332 0:263 1:321 2:559

�2 0:875 0:433 0:393 0:723

p11 0:885 0:038 �1:323 3:060

p22 0:261 0:184 0:709 �0:230

Table 18: results of Markov Switching MS GARCH(1,1) model (short series)

Figure 40: MS GARCH (short) - empirical volatility
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Figure 41: BLV - trace & cumsum plots

10.2.8 Basic Stochastic Log-Variance (BLV)

For the basic log-variance (BLV) model we sample W = 65; 000 times the parameter vector
� =

�
~�; �;  ; ~� 2

�0
with a thinning factor of ten and dump the �rst 20; 000 samples as burn-

in.144 Because of the thinning we could eliminate all auto-correlation for lags larger than
two. Consequently, trace plots and cumsum criterion indicate convergence (see �gure 41).
We could reduce auto-correlation if we implemented a simultaneous sampling of � = ~�=250
and � = ~�=

p
250 which feature a high parameter correlation. Other correlations are not

problematic (
���[Corr��� � 0:13).

The posteriors of the parameters are plotted in �gure 42. In contrast to the GBM which
estimates the posterior of � between �0:5, the posterior of the BLV model is concentrated
between 0 and 0:8. This is close to those of the GARCHmodel and the GBMJ which describe
the huge negative skewed outliers by variability in the variance or by jumps. The mean
posterior of � (21:5) corresponds to a half-life time of around eight trading days. However,
we cannot compare this result to the ��s in the OU, CIR, and CEV model as they are de�ned
on (log-)prices rather than on log-variances. From the mean posterior of � we can construct
the mean long-term equilibrium of the log-returns�volatility, exp (�7:5278=2) = 0:023 (see
�gure 43). Similar to �, we cannot compare the parameter � to � in the GBM model. While
� describes the volatility of the log-variances, � does the same for the log-returns.

144We assume the following hyperparameters: m~� = 0, s~� =
p
1000, m� = 0, s� =

p
1000, a � = b � = 1,

a~� = 0, and a~� =
p
1000.
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Figure 42: BLV - posteriors & credible intervals

Figure 43: BLV - long-run volatility
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We apply exactly the same algorithm to the short time-series. With a thinning factor of
ten the auto-correlation is negligible. According to the trace plots and the cumsum criterion
we believe the MCMC sampler has converged (see �gure 44 for the posterior). We have
summarized some basic statistics of the posteriors in the tables 19 and 20.

full series mean std. dev. skewness excess kurtosis
� 0:358 0:164 �0:012 �4:435 � 10�3
� 21:452 6:070 0:583 0:650

� �7:528 0:164 0:118 0:646

� 6:378 0:892 0:368 0:195

Table 19: results of BLV model (full series)

short series mean std. dev. skewness excess kurtosis
� 0:347 0:166 �0:011 0:023

� 23:172 6:826 0:624 0:697

� �7:580 0:146 0:089 0:420

� 6:013 0:914 0:351 0:134

Table 20: results of BLV model (short series)

Our main �nding is that the posteriors are extremely stable with nearly no change of their
means. Even the long-term equilibrium for the volatility only slightly changes from 0:0232

to 0:0226.

10.2.9 Stochastic Log-Variance with t-Errors (tLV)

For the Student�s t log-variance (tLV) model we sample W = 65; 000 times the parameter
vector � = (~�; �; �;  ; � 2)0 with a thinning factor of ten and dump the �rst 20; 000 samples
as burn-in.145 Because of the thinning we could eliminate all auto-correlation for lags larger
than two. Trace plots and cumsum criterion indicate convergence (see �gure 45). Similar
to the BLV model there is substantial correlation between � = ~�=250 and � = ~�=

p
250

([Corr (�; �) = 0:762). Additionally, there is some medium correlation between � and �

([Corr (� ; �) = 0:408). A simultaneous sampling of all three parameters could improve mixing
of parameter paths. However, our MCMC sampler is fast enough for thinning.
Compared to the BLV model the posterior of � (mean posterior 0:353 vs. 0:358) has nearly
not changed (see �gure 46). Roughly 80:1% of posterior � is below 30 which means an

145We assume the following hyperparameters: m~� = 0, s~� =
p
1000, m� = 0, s� =

p
1000, a � = b � = 1,

a~� = 0,a~� =
p
1000, and av = 1=1000.
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Figure 44: BLV (short) - posteriors & credible intervals

Figure 45: tLV - trace & cumsum plots
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approximation by a Gaussian distribution (like in the BLV) model is not suitable. This
leads to some remarkable changes in the posteriors of the log-variance parameters. The
posterior of the mean reversion parameter � is slightly more left than in the BLV model.
Its mean is 17:83 corresponding to a half-life time of about ten trading days. The mean
reversion is lower as outliers are partly explained by the Student�s t errors which require
short term peaks of the variances to a less extent. This statement is supported by a lower
mean posterior of � (5:54 vs. 6:38 in the BLV model). Nevertheless, the mean long-term
equilibrium of the log-variances � (�7:63) is rather stable (long-term volatility of log-returns
exp (�7:6337=2) = 0:022 vs. 0:023 in the BLV model).
We apply exactly the same algorithm to the short time-series and generate W = 65; 000

samples with a thinning factor of ten. Because of a slower convergence rate we dump the
�rst 30; 000 samples (see �gure 47 for the posteriors). We have summarized some basic
statistics of the posteriors for the full and the short series in the tables 21 and 22.

full series mean std. dev. skewness excess kurtosis
� 0:353 0:162 �9:399 � 10�3 0:043

� 17:829 5:561 0:590 0:690

� �7:634 0:181 0:011 0:552

� 5:543 0:914 0:269 0:250

� 19:516 11:624 0:931 �0:174

Table 21: results of tLV model (full series)

short series mean std. dev. skewness excess kurtosis
� 0:344 0:164 7:708 � 10�3 8:787 � 10�3
� 19:42 6:537 0:622 0:784

� �7:670 0:165 6:892 � 10�3 0:453

� 5:280 0:982 0:207 0:126

� 22:782 12:325 0:545 �0:868

Table 22: results of tLV model (short series)

There are no surprising changes in the posteriors. Because of the elimination of the outliers a
higher mean degree of freedom � estimates the log-returns more Gaussian (71:3% of posterior
below 30). Similar to the BLV model, the mean posterior of � increases, while the means of
� and � decrease.
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Figure 46: tLV - posteriors & credible intervals

Figure 47: tLV (short) - posteriors & credible intervals



104 10 CO2 PRICE RISK ASSESSMENT

10.2.10 Correlated Log-Variance (CLV)

In the following we present our estimation results for the inter-temporal (ASV1) and the
intra-temporal (ASV2) correlated log-variance models. In favor of a more straightforward
MCMC algorithm we did not implement the drift �. In fact we just correct the log-returns
yt by their empirical mean �y =

PT
t=1 yt=T . Hence, we apply both CLV models on the

observations ~yt = yt � �y.

ASV1
For the inter-temporal correlated ASV1 model we sample W = 57; 000 times the parameter
vector � = (�;  ; ~� ; �)0 with a thinning factor of ten and dump the �rst 17; 000 samples as
burn-in.146 Even with a thinning factor of ten our parameter paths feature substantial auto-
correlation up to lag 20. Nevertheless, trace plots and cumsum criterion show convergence
(see �gure 48). Similar to the BLV and tLV models there is substantial correlation between

Figure 48: ASV1 - trace & cumsum plots

� = ~�=250 and � = ~�=
p
250 ([Corr (�; �) = 0:764). All other parameter combinations seem

not critical with correlations between �0:110 and �0:042.
The posteriors of �, �, and � are close to those of the BLV model (see �gure 49 and the
table below). This is reasonable as the BLV model is nested in the ASV1 model (ignoring
the drift parameter �) for � = 0. In fact, we estimate a low leverage e¤ect with a correlation
between 0 and 0:3. The mean posterior is �0:151.
146We assume the following hyperparameters: m� = 0, s� =

p
1000, a � = b � = 1, and a~� = 0,

a~� =
p
1000.
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We apply exactly the same algorithm to the short time-series and generate W = 60; 000

(burn-in B = 20; 000) samples with a thinning factor of ten (see �gure 50 for the posteriors).
We have summarized some basic statistics of the posteriors for the full and the short series
in the tables 23 and 24.

full series mean std. dev. skewness excess kurtosis
�y �7:275 � 10�5
� 22:590 6:091 0:603 0:707

� �7:514 0:154 0:090 0:525

� 6:349 0:874 0:377 0:296

� �0:151 0:080 0:083 �0:056

Table 23: results of ASV1 model (full series)

short series mean std. dev. skewness excess kurtosis
�y 1:742 � 10�4
� 23:548 6:735 0:658 0:871

� �7:575 0:141 0:053 0:513

� 5:921 0:901 0:367 0:283

� �0:122 0:082 0:076 �0:041

Table 24: results of ASV1 model (short series)

The changes of the posteriors are similar to those of the BLV and tLV models. The leverage
e¤ect is reduced (lower mean posterior of �).

ASV2
For the intra-temporal correlated ASV2 model we sample W = 57; 000 times the parameter
vector � = (�;  ; ~� ; �)0 with a thinning factor of ten and dump the �rst 17; 000 samples
as burn-in.147 Even with a thinning factor of ten our parameter paths feature substantial
auto-correlation at least up to lag 20. Nevertheless, trace plots and cumsum criterion show
convergence (see �gure 51). Similar to the BLV, tLV, and ASV1 models, the substantial
correlation between � = ~�=250 and � = ~�=

p
250 ([Corr (�; �) = 0:746) deteriorate the

mixing quality of the sampler.148

The posteriors of the ASV2 model (see �gure 52) are rather close to those of the ASV1

147We assume the following hyperparameters: m� = 0, s� =
p
1000, a � = b � = 1, and a� = 0,

a� =
p
1000.

148All other correlations are between �0:195 and 0:204.
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Figure 49: ASV1 - posteriors & credible intervals

Figure 50: ASV1 (short) - posteriors & credible intervals
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Figure 51: ASV2 - trace & cumsum plots

Figure 52: ASV2 - posteriors & credible intervals
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model. All posteriors (with exception of �) are slightly shifted to the left and feature a lower
standard deviation.
We apply exactly the same algorithm to the short time-series and generate W = 60; 000

(burn-in B = 20; 000) samples with a thinning factor of ten (see �gure 53 for the posteriors).
We have summarized some basic statistics of the posteriors for the full and the short series
in the tables 25 and 26.
The changes of the posteriors are similar to those of the BLV, tLV, and ASV1 models.

Figure 53: ASV2 (short) - posteriors & credible intervals

full series mean std. dev. skewness excess kurtosis
�y �7:275 � 10�5
� 20:356 5:505 0:558 0:580

� �7:471 0:161 0:102 0:541

� 5:989 0:816 0:365 0:153

� �0:206 0:073 0:018 �0:075

Table 25: results of ASV2 model (full series)
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short series mean std. dev. skewness excess kurtosis
�y 1:742 � 10�4
� 22:124 6:298 0:697 1:044

� �7:545 0:144 0:097 0:443

� 5:694 0:856 0:462 0:481

� �0:186 0:074 0:036 0:004

Table 26: results of ASV2 model (short series)

Figure 54: Heston - trace & cumsum plots

10.2.11 Correlated Heston Model

For the correlated Heston model we sample W = 90; 000 times the parameter vector ~� =
(�; �; �; !;{)0, where � =

p
{2 + ! and � = {=$.149 Because of the computational burdens

we do not thin the sample paths. We just dump the �rst 20; 000 samples as burn-in. Although
there is substantial auto-correlation in the parameter paths at least up to lag 20, trace plots
and cumsum criterion indicate convergence (see �gure 54). Moreover, the mean posteriors
seem rather stable, too (see �gure 55).
Our Heston Gibbs sampler generates some remarkable parameter correlation between � and
� ([Corr (�; �) = �0:594) and between � and � ([Corr (�; �) = 0:498). We could construct a

149We assume the following hyperparameters: m� = 0, s� = 10, m� = 0, s� = 100, m� = 0, and s� = 10.
The parameters a! = 1, and b! = 1=70 imply a �at prior for � between �0:9. Values close to �1 are rather
unlikely.
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Figure 55: Heston - mean posterior plots

Figure 56: Heston - posteriors & credible intervals

multivariate Metropolis-Hastings sampler to improve mixing behavior. However, this would
reduce the acceptance rate of the generated parameters. Simulation studies could analyze
this trade-o¤.
For the interpretation of the posteriors (see �gure 56) it is important to keep in mind that
the Heston model directly assumes a CIR process for the variance while the log-variance
processes assume an OU process for the log-variances. Hence, we should be careful with
comparisons of the parameters.
Similar to the GBM and the Student�s t model, the posterior of � (mean 0:241) does not rule
out a negative trend. Roughly speaking, the Heston posterior of � is concentrated between
the posterior of the GBM and those of the GBMJ, Student�s t GARCH, MS GARCH,
BLV, and tLV models. An interpretation is that the Heston model is less able to explain
large negative log-returns by its variable volatility term relatively to the other models.150

150Of course, the GBMJ explains large positive and negative log-returns by jumps.
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The level of the posterior of � (mean 13:25) is lower compared to those of the log-variance
models. This can be explained by the assumed CIR process which allows for a varying
volatility term accelerating mean reversion. The posterior of � (mean �� = 0:206) cannot
directly be compared to the log-variance processes. Instead, we calculate the mean long-term
equilibrium

p
��� of the log-returns. It is 0:029 (see �gure 57) compared to 0:023 (ASV1)

and 0:024 (ASV2).
The posterior of � (mean 1:749) cannot directly be compared to those of the log-variance
models, too. As it is a parameter of a CIR process, it is a factor rather than a level like in
an OU process. The posterior of � is in the same magnitude as those of the ASV1 and ASV2
models although its mean is �0:122 � below those of ASV1 (�0:151) and ASV2 (�0:206)
model. As expected it is closer to the ASV1 model as both assume an inter-temporal
correlation.
We apply exactly the same algorithm to the short time-series and generate 110; 000 (burn-
in B = 20; 000) samples without any thinning (see �gure 58 for the posteriors). We have
summarized some basic statistics of the posteriors for the full and the short series in the
table 27 and 28.

full series mean std. dev. skewness excess kurtosis
� 0:241 0:173 �0:008 0:007

� 13:246 3:569 0:307 0:219

� 0:206 0:039 1:706 6:954

� 1:749 0:152 0:251 0:030

� �0:122 0:091 0:088 �0:028

Table 27: results of Heston model (full series)

short series mean std. dev. skewness excess kurtosis
� 0:249 0:174 �0:023 0:011

� 13:778 3:855 0:407 0:325

� 0:181 0:031 1:334 4:163

� 1:567 0:157 0:190 �0:041
� �0:116 0:094 0:044 �0:097

Table 28: results of Heston model (short series)

Similar to the BLV and tLV models, the posterior of � is extremely stable. All other
parameters change in the same manner as in the ASV1 and ASV2 models.
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Figure 57: Heston - empirical volatility

Figure 58: Heston (short) - posteriors & credible intervals
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Figure 59: model weighting - log-likelihoods & log-kernels

10.3 Model Weighting Results

For model comparison we calculate Akaike�s and Bayesian information criterion (AIC and
BIC), mean deviance, as well as AIC and BIC based model probabilities (see section 8).
Because of the large number of partly rather complex models we avoid the multi-model
MCMC algorithm of Carlin & Chib (1995), pp 475. Instead, we apply the approximation of
Congdon (2007) allowing for a separate MCMC estimation of di¤erent models. Of course,
these approaches seem to be rather crude but Robert & Marin (2008) found the results
of Congdon (2006) normally in the same magnitude compared to the exact results. As
Congdon (2007) is an improvement of the Congdon (2006) algorithm we hope for an even
better approximation.

Our Bayesian model comparison for the full time-series is based on W = 10; 000 MCMC
samples from all models we have estimated. To reach 10; 000 samples we thin the MCMC
outputs as much as possible and dump redundant samples where necessary. In the �gures
59 and 60 we present the plots of the sampled log-likelihoods and log-kernels as well as their
mean values and standard deviations. It is easy to see that we can separate three di¤erent
groups of models: (1) plain vanilla models GBM, OU, CIR, and CEV, (2) Student�s t
GARCH model, and (3) sophisticated models GBMJ, MSGARCH, BLV, tLV, ASV1, ASV2,
and Heston.

All plain vanilla models feature low log-likelihoods and log-kernels with low standard devia-
tions. In contrast, the sophisticated models have by far larger log-likelihoods and log-kernels
accompanied by a substantial larger standard deviation which originates from the simulation
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Figure 60: model weighting - basic statistics

of the respective latent variables (variance, jumps, jump width). A special group forms the
Student�s t GARCH model with medium size log-likelihood and log-kernel but low standard
deviations.

The mean log-likelihood and the mean deviation express the same statement in two di¤erent
scales. The log-kernel additionally accounts for our prior uncertainty on the parameters.
We have mostly de�ned relatively non-informative (�at) priors. Hence, the log-kernels are
shifted to the left.151 As a consequence, the GBM - two parameters only - has the "third
best" log-likelihood of the plain vanilla models while it has the "best" one of the log-kernels.

The mean values of the log-likelihoods and log-kernels only allow for an ordinal comparison of
di¤erent models. Hence, we calculate model probabilities based on the AIC and BIC allowing
to weight the models (see �gure 60). The model probabilities clearly favor the asymmetric
log-variance models with a slight advantage for the intra-temporal correlated ASV2. Beside
these, the basic log-variance model BLV and the MSGARCH model have still remarkable
model probabilities. Moreover, we �nd BIC based probabilities supporting models with less
then �ve parameters. Models with exactly �ve parameters slightly lose probability compared
to the AIC ones whereas the BIC probability is devastating for the MSGARCH model with
its ten parameters.

Of course, it seems confusing why the Student�s t error log-variance model (tLV) has a by far
lower model probability than the BLV model. However, in our speci�cation, the tLV model

151A �at prior results in a close to zero density. The resulting log-value is mostly negative.
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is not a generalization of the BLV model as we restrict the degree of freedom to �� (0; 50].
We are only willing to use a more complex model if it has an advantage compared to the BLV
model. Indeed, we have run another MCMC estimation were we have allowed �� (0; 350]. In
this case, the log-likelihood has been rather close to that of the BLV model.
Although the performance of GBM, OU, CIR, and CEV is far behind all other models they
seem interesting because of their simplicity. Therefore, we additionally compare their AIC
and BIC based probabilities (see �gure 60). While MPAIC favors the CEV model, MPBIC
prefers the GBM. From a Bayesian perspective, we should treat the MPBIC results with
care. All models feature likelihoods rather close to each other. The GBM could improve
its relative performance under MPBIC as it has a lower number of parameters resulting in
a lower degree of uncertainty. Of course, the classical criterion of parameter parsimony is
important in Bayesian statistics, too. However, the preference for a model with a low number
of parameters should not originate from ignored parameter uncertainty. Intuitively, this
means that the CEV model could reach a larger log-likelihood compared to the GBM (2153
vs. 2149) but the uncertainty on two more parameters results in a lower log-kernel (2140
vs. 2153). In the CEV model we acknowledge that we are uncertain about the relationship
between the annual and daily volatility while we simply impose �annual = �daily �

p
250 for

the GBM.
We estimate the posterior model probabilities �̂ (Mkj y) by the approximation Congdon
(2007) where we assume uniform model priors � (Mk) = 1=K, k = 1; :::; K. We need to
specify linking densities for all parameters of all models. As the approximation is better for
linking densities close to the posteriors of the parameters but with fatter tails we calibrate
(truncated) Gaussian distributions to the respective posteriors and scale up their standard
deviations by a factor of two.152 The posterior model probabilities are close to the AIC
and BIC probabilities (see �gure 60). Again, the intra-temporal correlated log-variance
process (ASV2) outperforms the inter-correlated log-variance process (ASV1). The GBMJ,
MSGARCH, BLV, and tLV models have only some marginal importance. When we compare
the model probabilities for the plain vanilla models, the OU (36:8%) and CEV (57%) model
dominate. For a more intuitive comparison of the model performances, we present the Bayes
factors (according to Congdon 2007) with the wording of Raftery (1996), 252/ table 1 (see
�gure 61). Additionally, we plot all AIC, BIC, and posterior model probabilities in �gure
62.
To analyze the stability of the model performances, we also estimate model probabilities for
the short time-series (see �gures 63, 64, and 65). Again, we �nd the identical three groups (1)
plain vanilla models, (2) Student�s t GARCH model, and (3) sophisticated models. Although
the asymmetric log-variance models still have the largest model probabilities, the GBMJ is

152We have not found substantial shifts in the model probabilities for di¤erent factors lower than 10.
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Figure 61: model weighting - Bayes factors (~... similar model performance, - ... model is inferior)

Figure 62: model weighing - AIC, BIC, & posterior model probabilities
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Figure 63: model weighting (short) - basic statistics

Figure 64: model weighting (short) - Bayes factors (~... similar model performance, - ... model is
inferior)
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Figure 65: model weighting (short) - AIC, BIC, & posterior model probabilities

now the third dominant model.

All things considered, the asymmetric log-variance models ASV1 and ASV2 seem to be most
suitable to describe the synthetic Dec09 spot prices irrespectively whether we analyze the
full time-series from 2005 up to 2009 or whether we exclude the turbulent phase in April/
May 2006. To some extend the basic log-variance process BLV seems also relevant in a
model weighting. At least for the short time-series, we should consider the GBMJ as it
features substantial model probability. When we want to restrict to the plain vanilla models
there is no consistent result. At least the CEV process features some remarkable model
probability for all measures (AIC, BIC, and posterior model probabilities) and data sets
(full and restricted time-series ). In contrast, for the GBMJ, OU, and CIR processes, we
have estimated mixed levels of model probabilities. Hence, we advice not to dump any of
these models.

11 Bayesian VaR

The value-at-risk (VaR) measures the downside risk of an uncertain asset price, here the
EUA price St. Roughly speaking, the risk for St to fall below V aR (�) can be quanti�ed by
a probability of 1 � � for � � 0:5 and by a probability of � for � < 0:5. The frequentist
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version153

V aRF (�) = V aRF

�
�j �̂
�
=

8<: inf
�
stjP

�
St � stj �̂

�
= 1� �

�
; for � > 0:5

inf
�
stjP

�
St � stj �̂

�
= �

�
; for � < 0:5

evaluates the asset price distribution P
�
St � stj �̂

�
=
R st
0
fSt

�
&j �̂
�
d& given the frequentist

point estimate �̂. In contrast, the Bayesian formulation

V aRB (�) =

(
inf
�
stj
R st
0
� (&j y) d& = 1� �

�
; for � > 0:5

inf
�
stj
R1
st
� (&j y) d& = �

�
; for � < 0:5

evaluates the posterior Bayesian uncertainty on the asset price154

� (stj y) =
Z
fSt (stj �)� (�j y) d�

which is a posterior weighted average of potential candidates fSt (stj �) of the data generating
process fSt (stj ��).155 Again, � (�j y) is the posterior of the parameter vector � and y is a
set of observations.
In the following, we �rst present the ex-post one-day-ahead VaRs for our Dec09 spot prices.
For the calculation, we assume that the CO2 price follows the asymmetric log-variance
model with intra-temporal correlation (ASV2) - the best performing model according to
our Bayesian model weighting (see section 10.3). Subsequently, we estimate ex-ante multi�
period-ahead VaRs based on the GBM and OU process.

11.1 Bayesian Ex-Post VaR

The concept of ex-post VaRs allows us to quantify the past risk (April 22, 2005 up to May 07,
2009) of the one-day-ahead EUA price St+1j st; y given st in t and the full set of observations
y used for parameter estimation.

153In contrast to credit risk, we have no loss variable but the CO2 price. Traders long and short in the EU
ETS might have di¤erent understandings of downside risk. Hence, our de�nition of the VaR is special.
154Beware of a misinterpretation of the Bayesian VaR. It is generally not a posterior weighted average of

di¤erent conditional VaRs, i.e. V aRB (�)
generally

6=
R
V aR (�j �)� (�j y) d�.

155For a clearer presentation, we ignore model uncertainty. Otherwise the posterior uncertainty would be

� (stj y) =
KX
k=1

Z
fSt (stj �;Mk)� (�j y;Mk) d� � � (Mkj y) ;

where fSt (stj �;Mk) equals the data generating process when Mk, k = 1; :::;K, is the "true" model M�
k

and � is the "true" parameter vector ��.
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In the frequentist approach, we generate W1 = 100; 000 samples st+1, for t = 1; :::; T �
1, from the presumed data generating process fSt+1

�
st+1j st; �̂

�
where we simply set the

point estimates equal to the mean of the posteriors, i.e. �̂ =
PW

w=1 �
(w)=W . We base our

VaR estimation on the best performing model - the asymmetric log-variance model with
intra-temporal correlation (ASV2, see section 10.1.10). Consequently, we can easily sample
according to

St+1 = st exp (�y + exp (ht=2) � "t) ;

where �y is the empirical mean log-return and ht is a realization of the latent log-variance
Ht = �̂+  ̂ � ht�1 + �̂ � �t. We have to account for the correlated errors "t and �t following a
standard bivariate Gaussian distribution with Pearson�s correlation coe¢ cient �̂.
The Bayesian approach is similar but it samples from the (unconditional) Bayesian predictive
density (see section 6.4)

�St+1 (st+1j st; y) =
Z
fSt+1 (st+1j st; �)� (�j y) d�:

We generate W2 = 100 samples st+1 for each of the W = 40; 000 parameter vectors �(w),
w = 1; :::;W , simulated by the MCMC technique. This sums up to W �W2 = 4; 000; 000

samples (s(w;w2)t+1 for w = 1; :::;W and w2 = 1; :::;W2).156

In the upper subplot of �gure 66, you can �nd our Dec09 spot rates as well as the frequentist
and Bayesian VaRs (V aR� (0:99)& V aR� (0:01)) for the ASV2 model. We additionally present
the frequentist VaR for the GBM to roughly quantify the risk ignored by assuming the
"simple" Black & Scholes world. You can easily see, that the frequentist GBM VaRs (green
lines) underestimate the downwards and upwards risk relatively to the ASV2 model (black
& red lines).
The di¤erences between the frequentist and Bayesian ASV2 VaRs are low. We separately
depict them in the lower subplot of �gure 66. Generally, we �nd the Bayesian VaR more
conservative, i.e. V aRB (0:99) � V aRF (0:99) & V aRB (0:01) � V aRF (0:01). This empiri-
cal �nding has already been proofed theoretically by Pollard (Nov. 2007). In table 29, we
have summarized the mean di¤erences between the VaRs (row minus column).

156For an e¢ cient sampling of the correlated errors "t and �t in Matlab, we favor vector programming

over loops. In the Bayesian approach, we stack the MCMC samples �MCMC =
�
�(1); :::; �(W )

�0
W2 times

to ~� =
�
�
(1)
MCMC ; :::; �

(W2)
MCMC

�0
. Then, we generate W �W2 samples from the standard bivariate Gaussian

distribution with W di¤erent correlation coe¢ cients. This we cannot accomplish by the means of the
Matlab command mvnrnd(�). Hence, we apply the Cholesky decomposition. First, we sample the i.i.d.
standard Gaussian variables zij , for i = 1; :::;W � W2 and j = 1; 2. Subsequently, we set "ti = zi1 and
�i = �"ti +

p
1� �zi2. This results in an empirical correlation of dcorr ("t; �t) � �.
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Figure 66: Bayesian ex-post value-at-risk

V aRGBM
F (99%) V aRF (99%) V aRGBM

F (1%) V aRF (1%)

V aRF (99%) �0:327e V aRF (1%) 0:130e
V aRB (99%) �0:362e �0:035e V aRB (1%) 0:167e 0:037e

Table 29: di¤erences between the VaRs

Indeed, the di¤erence between the frequentist and Bayesian VaR is easy to understand:
V aRF tries to describe the "true" data generating process fSt+1 (st+1j st; ��) but ignores any
parameter uncertainty.157 V aRB instead analyzes the Bayesian predictive density

�St+1 (st+1j st; y)

re�ecting the uncertainty on the true parameter vector ��. Hence, the Bayesian VaR calls
for a risk cushion or premium depending on the parameter uncertainty. Pollard (Nov. 2007)
explains the capital charge puzzle158 by a Bayesian (= subjective) risk cushion. By the way,
Weitzman (2007) o¤ers the same arguments to solve the equity premium puzzle.159

157Here, we ignore the fact of an uncertain model.
158Banks announce too conservative VaRs not compatible with frequentist VaRs.
159The observed risk premiums contradict reasonable assumptions on the market�s risk aversion as long as
parameter uncertainty is ignored.
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In table 30, we illustrate the relative number of "hits" (= VaR is crossed by the spot price)
for the di¤erent VaRs.

"true" model V aRGBM
F (�) V aRF (�) V aRB (�)

� = 99% 1% 2:03% 0:87% 0:68%

� = 1% 1% 1:45% 1:26% 1:06%

Table 30: relative number of "hits" for di¤erent VaRs

The GBM fundamentally underestimates the variability of the EUA price. The respective
lower VaR is crossed more than twice compared to the "true" model. The upper VaR is
also violated too often. It can be seen that the Bayesian VaR is less often hit relative to the
frequentist VaR. In the case of V aRB (99%), the Bayesian hits are below the "true" 1% -
the Bayesian VaR is absolutely conservative. Unfortunately, V aRB (1%) is too low meaning
there are too many hits (> 1%). This provides some evidence that even our best performing
ASV2 model cannot perfectly mirror the data generating process ("true" model with "true"
parameters). Nevertheless, there is still a risk cushion relative to V aRF (1%).

11.2 Bayesian Ex-Ante VaR

In the next step, we estimate some ex-ante multi-periods-ahead (up to one year) VaRs
starting from the last Dec09 spot rate (14:77e) on May 7, 2009. To reduce computational
burdens, we present VaRs based on the GBM and OU process. We choose these processes
because we exactly know their conditional distributions for future EUA prices ST , T >t.
Both follow a log-Gaussian distribution

ST j st; � � lnN (m; &) ;

where mGBM = ln st + � � �, &GBM = � �
p
�, mOU = ~� + [ln st � ~�] exp (���), &OU =

�
p
[1� exp (�2��)] =2�, and � = T � t.

Thanks to the analytical solution of the GBM and OU process we can directly calculate
V aR� (99%) for all � (from �ve trading days up to one year, see black lines in �gure
67).160 Again, we simply use the mean of the posteriors as point estimates. The Bayesian
programming is similar. We simulate W2 = 200 samples of each conditional CO2 price
ST j st; �(w), for w = 1; :::;W [= 50; 000]. We approximate the Bayesian VaR with a total of
W �W2 = 10; 000; 000 samples for each time step T = t +� (see red lines in �gure 67). In
table 31, we have summarized the frequentist misspeci�cation of the CO2 price risk for some
key maturities.

160Due to a clearer presentation, we solely calculate the downside VaR (V aR� (99%)).
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Figure 67: Bayesian ex-ante value-at-risk

� = 99% 1 month 3 months 6 months 1 year
V aRGBM

B (�)� V aRGBM
F (�) �0:037e �0:142e �0:306e �0:575e

V aROU
B (�)� V aROU

F (�) �0:034e �0:397e �1:124e �2:434e

Table 31: frequentist misspeci�cation of the CO2 price risk

Similar to the ex-post VaRs, the ex-ante Bayesian VaRs are more conservative than their
frequentist counterparts.

11.3 Bayesian Capital Charge

Banks with substantial trading activities are required to insure large losses in their portfolio
value by a capital charge (Amendment to Capital Accord to Incorporate Market Risks, see
BIS 1996). Again, there is a frequentist as well as a Bayesian version of the capital charge.
Here, we follow Pollard (Nov. 2007) to compare both.
Although the banks are relatively free in their models to estimate the market risk, the
quanti�cation of the capital charge has to base on V aRt (99%) for a � = 10 trading day
horizon161

CC (t) = max

�
V aRt (99%) ;

Factor (t)

60

X59

�=0
V aRt�� (99%)

�
:

The capital charge is not only a¤ected by the current VaR but by the average performance

161The estimation of the VaR requires at least one year of historical data (see BIS July 2008), pp. 7.
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Figure 68: Bayesian capital charge

of the past 60 VaRs. Additionally, there is a correction factor accounting for the number of
hits ((log-)return below VaR) during the last trading year

Factor (t) =

8<:
3 for Hits � 4 (green)

3 + 0:2 � [N � 4] for Hits = 5; 6; 7; 8; 9 (yellow)
4 for Hits � 10 (red)

;

where a perfectly calibrated model would featureHits = 1. If the number of hits is in the red
zone, the model is seen as inaccurate and the risk model needs to be improved immediately.
We have only calculated frequentist and Bayesian capital charges (per 1e investment) for the
EUA price based on the GBM and the last 250 trading days (see �gure 68). As expected,
the Bayesian capital charges are higher than the frequentist ones. However, the average risk
cushion for the parameter uncertainty is low (0:41e-cents per 1e investment).

12 Derivative Pricing of Some Special Models

In this section, we �rst present the theoretical concept of Bayesian option pricing and sub-
sequently we exemplarily calculate some Bayesian option prices for plain vanilla European
call options on EUA prices.162 Such option are not purely academic. In a survey (mid 2005)

162Wagner (2007) already calculated option prices resulting from a frequentist calibration of stochastic
processes. He had access to EUA prices from April 22, 2005 up to December 15, 2006.



12.1 Basic Idea of Option Pricing 125

25 experts163 believed in a realistic chance for a long-term success of futures/ forwards and -
too a lesser extent - of options on the EUA price (Uhrig-Homburg & Wagner 2008). Indeed,
the European Climate Exchange (ECX) introduced option instruments in October 2006.

12.1 Basic Idea of Option Pricing

In this section we describe Bayesian pricing of plain vanilla call options that guarantee a
deterministic payo¤ C (sT ) = C (sT ; �) = max (sT � �; 0) given the EUA price sT in T and
a strike price �. As people feature a time preference (people enjoy a payo¤ now more than a
payo¤ in future) and the future EUA price ST is uncertain in t < T , the call price pt in t is
the discounted value of the payo¤ C (sT ). This can be formulized by (see Cochrane 2001)

pt = EP (D � C (ST )) ;

where EP (�) is the expectation in t under the real world measure P and D is the stochastic
discount factor.164 Without any uncertainty, ST = sT , the time preference can be re�ected
by discounting with the (continuous) risk free interest rate rt

pt = EP (D) � C (sT ) = exp (�r�) � C (sT ) ,

where exp (�r�) = exp
�
�
R T
t
r�d�

�
and � = T � t.

In the case of an uncertain EUA price in T , risk-averse people ask for a risk premium
resulting in a lower option price165

pt = EP (D) � EP (C (ST )) < exp (�r�) � C (sT ) :

In such a case we could calibrate a stochastic process and deduce EP (C (ST )). Unfortunately,
the risk premium cannot directly be observed as it originates from the utility functions of
the market. Generally, a quanti�cation of EP (D) is rather arbitrary.
Fortunately, option pricing theory partly allows to avoid the determination of risk premiums.
The basic idea is that a risk-neutral and a risk-averse person agree on the same price pt if
they disagree on the expected payo¤ in T , i.e.

exp (�r�) � EQ (C (ST )) = pt = EP (D) � EP (C (ST )) ;
163Experts were representatives of energy providers and a steel producer as well as of banks, energy traders,
and exchanges.
164The real world measure P is the market�s perception of the distribution of the data-generating process
(ignoring the stochastic discount factor).
165The problem becomes even more complicated if the future payo¤ C (ST ) and the discount factor D
(risk-free interest rate plus risk premium) are stochastically dependent. Then a separate analysis is not
possible, i.e. EP (D � C (ST )) 6= EP (D) � EP (C (ST )). See Björk (2004), pp. 348, for more details.
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where EQ (C (ST )) < EP (C (ST )). Here, Q and P are the probability measures re�ecting the
uncertainty of the risk-neutral and the risk-averse person. To avoid the quanti�cation of the
risk adjusted discount factor we need to determine the risk neutral measure Q.
This can be done by the calibration of a stochastic process (e.g. GBM, GBMJ, OU,...,Heston)
to the observed CO2 prices s0; :::; st. As pricing in the market results from the interaction
of risk-averse traders, we can estimate the real world measure P, only.166 In a next step, we
need to change the measure from P to Q. A dominant approach is to �nd the measure Q,
that transforms exp (�r�) � ST into a martingale, i.e. exp (�r�) � EQ (ST ) = s� .
E.g., the GBM (dSt = �stdt+ �stdWt) has an analytical solution

ST = st exp
��
� � �2=2

�
�+ � [WT �Wt]

�
with E (ST ) = st exp (��). To meet the martingale condition we require � = r. Conse-
quently, we can calculate call prices by

pt = exp (�r�) � EQ (C (ST )) � exp (�r�)
1

W

WX
w=1

C
�
s
(w)
T

�
;

where we generate s(1)T ; :::; s
(W )
T from the risk neutral GBM process dSt = rstdt+ �stdWt.

Generally, the change of measure relies on the Radon-Nikodym theorem167

EQ (C (ST )j Ft) =
Z
C (sT ) dQ (sT ) =

Z
C (sT )

dQ (sT )
dP (sT )

dP (sT ) =
EP (C (ST )LT j Ft)

EP (LT j Ft)
;

(15)
where LT = LT j FT = dQ (sT ) =dP (sT ) is the Radon-Nikodym derivative of Q with respect
to P which is FT -measurable but not Ft-measurable.168 As the expectation operator is based
on Ft � FT , we need to apply Bayes�Theorem after the last equal sign to deal with LT j Ft
(see Björk 2004, pp. 440, for a proof).
An important �nding is that the Radon-Nikodym derivative is a stochastic process in form of
a P-martingale EP (LT j Ft) = Lt. In the case that the EUA prices follow stochastic processes

166Of course, the market price of the option results from EP (C (ST )), where the probability measure P
is based on the aggregated information of the market in t. In contrast, the measure P estimated by the
frequentist calibration of stochastic processes relies on the observed asset prices up to t, only. In Bayesian
statistics with informative priors, P is additionally in�uenced by personal information of the statistician or
experts who deliver priors.
167see Björk (2004), pp. 416, for requirements
168The �ltration Ft = FSt comprises all observed asset prices up to t. The price St is adapted to Ft as
with the information in Ft we know the realization st. Events that can completely be determined by the
information in Ft are called Ft-measurable. E.g., the event A = fS� � 10; � � T g is FT -measurable but not
Ft-measurable with t < T . See Björk (2004) or Oksendal (2007) for more details in measure theory.
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that are driven by d-dimensional Wiener terms, the non-negative Lt is the solution of the
simple GBM dLt = 'tLtdW

P
t where

169 L0 = 1 and 't is a suitable Girsanov kernel and we
just index dW P

t to emphasis the measure P. Applying Ito�s lemma it follows

Lt = exp

�Z t

0

'�dW
P
� �

Z t

0

'2�d�

�
:

The Girsanov theorem states that a change of measure from P to Q can be achieved by
replacing the Wiener term170

dW P
� = 'tdt+ dWQ

� :

Again assume dSt = �stdt+�stdW
P
� . According to the Girsanov theorem we can set dW

P
� =

'tdt + dWQ
� to determine the Q-measure process of St: dSt = [� + �'t] stdt + �stdW

Q
� .

Finally, we need to determine the suitable Girsanov kernel. It needs to guarantee �+�'t = r.
Consequently, it follows 't = � [� � r] =� which is the negative of the market price of risk.

12.2 Bayesian Option Pricing

The term Bayesian option pricing (BOP) is sometimes used for the estimation of an option
price p̂t based on observed asset prices s�t = (s0; :::; st)

0 and option prices p�t = (p0; :::; pt)
0.

Because of a lack of traded options, the option price pt can often be deduced from the
observed stock prices s�t = (s0; :::; st)

0, only.
Assume we have access to past EUA prices s = (s1; :::; sT )

0 and option prices p = (p1; :::; pT )
0

of a simple plain vanilla call with uncertain payo¤ C (ST ) = C (ST ; �) = max (ST � �; 0) in
T . Again, � is the strike price. Given some suitable stochastic models for the asset price St
and option price Pt, we can calculate the posteriors of the parameters � (�j z) / Lz (�)� (�) ;

where z = (s�t; p�t)
0 and � is the parameter vector of the asset and option price models.171

The determination of the likelihood function Lz (�) =
Qt

�=0 fS� ;P� (s� ; p� j �) is the crux of
the matter. Generally, the CO2 price is assumed to follow a stochastic process of the form172

dSt = � (t; st; xt; �)| {z }
drift

� dt+ � (t; st; xt; �)| {z }
volatility

� dWt + d
�XNt

i=1
Zi

�
| {z }

jump

(16)

169Again, the martingale property applies, i.e. EP (LT ) = L0 = 1.
170See Oksendal (2007), pp. 159, for requirements and details and Björk (2004), likewise pp. 159, for an
intuitive derivation.
171In the case of competing modelsM1; :::;MK , the posterior model probabilities are

� (Mkj z) =
R
Lz (�;Mk)� (�jMk) d� � � (Mk)PK

l=1

R
Lz (�;Ml)� (�jMl) d� � � (Ml)

:

172see section 10 for more details on the process
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or some nested model. The likelihood Ly (�) for yt = ln st+1� ln st can easily be derived from
the discretized version of the respective stochastic process. In contrast, the construction of
the likelihood for the call option prices is not that straightforward. In fact, the conditional
call price pt (�) is deterministic. Hence, we cannot set up a likelihood function. Moreover, a
model would normally be over-determined as mostly T > dim (�).
To cope with that problem we can impose a measurement error "t � N (0; s) for the option
price173

~Pt = pt (�) + "t:

This allows us to set up the likelihood easily if there is an analytical solution for pt (�). If
the EUA price follows a GBM, pt (�) is the Black & Scholes formula.174

As we have no access to liquid options on EUA contracts, we follow a more simple Bayesian
option pricing approach. In return, we have to assume that the market is certain about
the "true" modelM� and parameters175 �� but we - the analysts - are uncertain about the
market assessment.176 In this case we need to weight the conditional option price by our
posteriors on the model and the parameters177 (Bunnin et al. 2002)

pt =
KX
k=1

Z
�k

pt (�; �;�; st;Mk)� (�kj s�t;Mk) d�k � � (Mkj s�t)

= exp (�r�) �
KX
k=1

Z
sT

Z
�k

C (sT )� (sT j st; �k;Mk)� (�kj s�t;Mk) d�kdsT � � (Mkj s�t) ;

where s�t are the observed EUA prices, � = T � t, and �(sT j st; �k;Mk) is the conditional
transition probability in model k to reach a price sT in T if it is st in t.
The advantage of the transition probability representation is the closed form of �(sT j �) for
some simple models dSt = a (st; t) dt+b (st; t) dWt where the function sT = g (�wtj st; t; �k;Mk)

and its inverse �wt = wT � wt = g�1 (sT j st; t; �k;Mk) exist in analytical form. Then the
transition probability can be calculated by a density transformation

�(sT j st; �k;Mk) =

����@g�1 (sT j �)@sT

���� � ��g�1 (sT j �)�� 0;p��
173see Johannes & Polson (2003), pp. 32, Darsinos & Satchell (2001), or Pollard (Aug. 2007) for more
details
174Alternatively, Malone & Horst (2006) and Gzyl et al. (2006) present a sophisticated but rather academic
approach relying on the Radon-Nikodym derivative where the Bayes rule can be used without the assumption
of a measurement error.
175Anderson et al. (2000) present a rather academic proposal to account for traders�parameter uncertainty.
176see Eraker 2004, Eraker et al. 2003, or Bunnin et al. 2002
177For a clearer presentation we ignore latent variables X.
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The Q-measure transition probability of a GBM is the log-normal pdf

�(sT j st; �k;Mk) =
1

�sT
p
2��

exp

 
� 1

2��2

�
ln
st
sT
+
�
r � �2=2

�
�

�2!
; (17)

resulting from sT = g (�wtj �) = st exp ([r � �2=2]� + ��wt) and �wt = g�1 (sT j �) =h
ln

sT
st
� [r � �2=2]�

i
=�. Knowing this transition probability, we can generate W samples

of ST and approximate the call option price by exp (�r�)
PW

w=1C
�
s
(w)
T

�
=W .

If there is no analytical solution to the transition probability we need to approximate
�(sT j st; �k;Mk) =

QT �1
�=t �(s�+1j s� ; �k;Mk). This we can do by the following algo-

rithm:178

1. Generate W1 times a price path s
(w1;w2)
t+1 ; :::; s

(w1;w2)
T from �

�
sl+1j sl; �(w2)

�
where the

parameter vector �(w2), w2 = 1; :::;W2, is sampled from the posterior � (�j y) (see
section 10).179

2. Approximate the option price by exp (�r�)
PW1

w1=1

PW2

w2=1
C
�
s
(w1;w2)
T

�
= [W1 �W2].

12.3 Some Simulation Studies

In the following, we present some simulation studies to analyze the e¤ect on the option
prices when parameter uncertainty is incorporated. We compare the mean European call
price for EUA contracts resulting from W = 10; 000 MCMC samples of the parameter pos-
terior (Bayesian option pricing) to the call price originating from the means of the posterior
parameters (frequentist option pricing)

pBayest =
1

W

WX
w=1

pt

�
�(w); r�; �;�; st

�
vs. pfreqt = pt

�
1

W

XW

w=1
�(w); r�; �;�; st

�
;

where � = T � t is the time to expiry, r� is the maturity adequate risk-free interest rate
(p.a.), � is the strike price, and st is the current EUA price.
In our simulation studies, we intend to estimate call prices in t = fMay 07, 2009g, the last
trading day of our observations. At this day, our synthetical EUA spot price was st = 14:77e.
We analyze di¤erent maturities � and strike prices � for the options. As a rule of thumb, a
data based forecasting should not exceed 20% up to 30% of the period of past observations

178For a clearer presentation we ignore the uncertainty on the correct modelMk, k = 1; :::;K.
179The conditional distribution �

�
s�+1j s� ; �(w2)

�
is mostly a nested model of equation 16 under measure

Q.
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(Vose 2008). With four years of observations we restrict option maturity to a maximum of
one year, i.e. � � 1. As a proxy for the risk-free interest rate we use EURIBOR rates o¤ered
on May 07, 2009 for maturities between one week and one year. We approximate EURIBOR
rates for any �� (0; 1] by a polynomial of degree �ve.180 We de�ne, strike prices � between
10e and 20e which allows to evaluate in-the-money (� < st), at-the-money (� = st), and
out-of-the-money (� > st) call option prices.

12.3.1 Geometric Brownian Motion (GBM)

Because of its importance and its simplicity we start with the Geometric Brownian motion
(GBM). For European call option pricing, we do not need the analytical solution of the
transition probability �(sT j st; �k;Mk), we derived in equation 17. In fact, the Black & Sc-

holes formula is the analytical solution of the conditional option price pt
�
�(w); r�; �;�; st

�
=

BSt
�
�(w); r�; �;�; st

�
where (see Bingham & Kiesel 2004, p. 133)

BSt
�
�(w); r; �;�; st

�
= st � � (d1)� � � exp (�r�) � � (d2) ;

d1 =
�
ln (st=�) +

�
r + �2=2

�
�
�
=2��2 & d2 = d1 � �

p
�:

In table 32 we have summarized Bayesian option prices

p̂Bayest =
1

W

WX
w=1

BSt
�
�(w); r�; �;�; st

�
and their standard deviations181 (see brackets) for some combinations of maturity and strike
price.

call prices � = 1=4 � = 1=2 � = 1

� = 14e
1:8093e
(0:029056e)

2:389e
(0:041193e)

3:2209e
(0:057482e)

� = 14:77e
1:4245e
(0:030691e)

2:0281e
(0:042994e)

2:8874e
(0:059643e)

� = 15e
1:322e
(0:030892e)

1:9289e
(0:043327e)

2:7935e
(0:060144e)

Table 32: GBM option prices

In the upper plot of �gure 69 we visualize the prices from the table above. Additionally,
in the lower subplot, we present the mispricing (p̂Bayest � p̂freqt ) of the frequentist option

180We �nd r� = �0:040141�5 + 0:084461�4 � 0:034092�3 � 0:035873�2 + 0:03615� + 0:0062165.
181dStd (pt (�; r�; �;�; st)) =PW

w=1

h
pt

�
�(w); r�; �;�; st

�
� p̂t

i
= [W � 1]
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prices p̂freqt = BSt

�
1
W

PW
w=1 �

(w); r�; �;�; st

�
. A nice result under the GBM assumption is

the insigni�cance of parameter uncertainty. We �nd a mean (absolute) mispricing of 0:01e-
cents (0:01e-Cents) with a maximum absolute mispricing of 0:029e-cents. This outcome is
not surprising as the single uncertain parameter necessary for option pricing is the volatility
� which has an extremely informative posterior (mean 0:477, std. dev. 0:010).

12.3.2 Geometric Brownian Motion with Jumps (GBMJ)

Another important process in �nance and in our results for the short time-series is the
Geometric Brownian motion with jumps (GBMJ) proposed by Merton (1976)

dSt =

�
�+
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2
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�
stdt+ �stdW

P
t +

h
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P
t � 1

i
stdN

P
t ; or
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P
t ;

where dW P
t � N

�
0;
p
dt
�
, JPt � N (�J ; �J), and dN

P
t � Pois (�J ��) are independent risk

factors (see section 10.1.2).
For option pricing we need to specify the risk-neutral process under measure Q (Merton
1976). Such a process has (1) a risk neutral drift ' but the same volatility and jump term182

and (2) it needs to be a martingale, i.e. EQ (St+�) = exp (r�) � st or

EQ (�St) = 'st�+ �stEQ
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= exp (�J + �2J=2) � 1 = �. After

some rearrangements we get ' = r � �J � �. Applying Ito�s lemma, it follows
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where NQ
T
is the risk-neutral number of jumps between t and T . Consequently, an European

call option could be approximated by pt � exp (�r�) 1
W

PW
w=1C

�
s
(w)
T

�
.

182A risk-neutral person sees the same risk but does it evaluate di¤erently, i.e. no call for a risk premium.
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Figure 69: Bayesian option pricing - GBM
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Unfortunately, we cannot construct a risk-free hedging portfolio dC (St+dt) � c � dSt by a
long position in the option C (ST ) and a short position c in the underlying stock ST . This
only allows to eliminate the Brownian risk factor WQ

t but not J
Q
� and N

Q
T
. Option pricing

based on equation 18 requires traders not to price the risk of jumps. This is not unrealistic
when we assume that the jump risk is independent of the market risk, i.e. the jump risk is
unsystematic (Merton 1976). Naturally, there is a price of risk for systematic risks, only.
For the special case of JPt � N (�J ; �J), Merton (1976) could even identify a quasi-analytical
solution for the price of a plain vanilla European call183

pt

�
�(w); r�; �;�; st

�
=

1X
i=0

exp (��J [�+ 1]�) � [�J [�+ 1]�]i

i!
BSt

�
�
(w)
i ; �i; �;�; st

�
;

whereBSt (�) is the Black & Scholes formula, �i = r��J�+i�ln (1 + k) =� , �i =
p
�2 + i � �2J=�,

and � = exp (�J + �2J=2)� 1.
To calculate the Bayesian option prices, we average pt

�
�(w); r�; �;�; st

�
for ourW = 10; 000

samples �(w) resulting from the MCMC estimation. In table 33 you can �nd call prices for
some combinations of strike price and maturity.184

call prices � = 1=4 � = 1=2 � = 1

� = 14e
1:7128e
(0:0618e)

2:3703e
(0:0795e)

3:2424e
(0:1047e)

� = 14:77e
1:3984e
(0:0569e)

2:0269e
(0:0789e)

2:9087e
(0:1080e)

� = 15e
1:3084e
(0:0561e)

1:9313e
(0:0787e)

2:8148e
(0:1088e)

Table 33: GBMJ option prices

In the lower subplot of �gure 70 you can �nd a visualization of the Bayesian option prices
(upper subplot) and the mispricing (p̂Bayest � p̂freqt ) of the frequentist prices. The mispricing
is modest with a maximum of 1:58e-cent which can however total to a considerable amount
in a large portfolio. Generally, the mispricing is most critical for strike prices at-the-money
(� � 14:77e) and for long maturities.

12.3.3 Basic Stochastic Log-Variance (BLV)

The basic log-variance (BLV) model belongs to the class of stochastic volatility models where
latent variance exp (ht) is independent of the log-returns Yt = lnSt+1 � ln st. In such a case
183Hence, we can avoid to sample ST according to equation 18.
184Please keep in mind that we have approximated dNP

t � Pois (�J ��) by dNP
t � Ber (�J ��).
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Figure 70: Bayesian option pricing - GBMJ
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of independence, Hull & White (1987) show that the knowledge of the average variance
�2 (T ) up to exercise in T is su¢ cient for option pricing. If we have no analytical solution
for �2 (T ), we can run a Monte Carlo simulation. In the case of Wiener increments the call
price is simply185

pt (�) = pt (�; r�; �;�; st) �
1

W1

W1X
w1=1

BSt

�q
�2T (w1); r�; �;�; st

�
;

where

�2T (w1) =
1

T � t

TX
t=t+1

exp
�
h
(w1)
t

�
is the average BLV variance between t and T for sample path w1. The frequentist option price
is pt

�
�̂
�
given the point estimates �̂. From the Bayesian perspective we need additionally

re�ect our parameter uncertainty

pBLVt =

Z
pBLVt (�)� (�j y) d� � 1

W1 �W2

W1X
w1=1

W1X
w1=1

BSt

�q
�2T (w1; w2); r�; �;�; st

�
;

where �2T (w1; w2) is the average variance in sample path w1 based on the MCMC posterior
parameter sample �(w2), w2 = 1; :::;W2.
In the upper subplot of �gure 71 we present the Bayesian option prices for several combi-
nations of strike price and maturity. In table 34, we have summarized some of these option
prices (standard deviation).
The option prices are below those of the GBM and GBMJ. Nevertheless they are in the same
magnitude. In contrast to the other models, the standard deviations of the sampled option
prices are large (see brackets in the table). This is why we run a Monte Carlo simulation
to sample the mean variance. Fortunately, this is no evidence for instable option price
estimators. We generated W1 = 100 times the average variance for a total of W2 = 10; 000

posterior parameter vectors �(w2). The resulting option prices are extremely stable. Repeated
sampling according to this procedure results in option prices and standard deviations varying
in the range of 0:00 up to 0:03e-cents.

185This approach is not applicable for GARCH models as, by de�nition, the variance is a function of the
squared error term of the observation process. Noh et al. (1994) use a GARCH model to estimate the future
mean volatility which they plug in the Black & Scholes formula. Because this approach features a mispricing,
Bauwens & Lubrano (2002) propose a simulation of the Q-measure option payo¤C (sT ). Unfortunately, there
is no multi-period risk-neutral process for GARCH models. Alternatively, Bauwens & Lubrano (2002) gener-
ate a local (one period) risk-neutral process according to Duan (1995) and sample future log-returns period
by period, i.e. fYT (yT j �; yt) =

R
fYT (yT j �; yT �1) � fYT (yT �1j �; yT �2) � ::: � fYT (yt+1j �; yt) d (yT �1:::yt+1)

0.
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Figure 71: Bayesian option pricing - BLV
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call prices � = 1=4 � = 1=2 � = 1

� = 14e
1:5903e
(0:45447e)

2:2694e
(0:48647e)

3:1517e
(0:51102e)

� = 14:77e
1:3199e
(0:40581e)

1:9404e
(0:47671e)

2:8197e
(0:52719e)

� = 15e
1:2302e
(0:40302e)

1:8467e
(0:47597e)

2:7263e
(0:5311e)

Table 34: BLV option prices

In the lower subplot of �gure 71, we visualize the mispricing (p̂Bayest � p̂freqt ) which is only
low for short maturities and grows with increasing maturity. We have calculated a maximum
mispricing of � 3e-cents for in-the-money options with large maturities.

In this section we have exemplarily compared the Bayesian option pricing based on three
stochastic processes (GBM, GBMJ, and BLV) we had calibrated by means of MCMC sim-
ulations (see section 10). We could show that the option prices based on the workhorse in
�nance - the GBM - are nearly not a¤ected by parameter uncertainty - although there is a
systematic underestimation of the call prices by the frequentist option pricing. Merely the
estimator of the volatility is relevant for the pricing under the GBM. However, this parameter
features an extremely informative (low standard deviation) and symmetrical posterior re-
sulting in a low variation of nearly symmetrical conditional option prices. For the GBMJ we
could identify an overpricing of the frequentist approach with a maximum of 1:5e-cents for
at-the-money options with a maturity of one year. Similar to the GBM, the BLV model fea-
tures a systematic underpricing of frequentist pricing peaking to 3e-cents for in-the-money
calls with a maturity of one year. Albeit we had to simulate the option prices under the
BLV model, our prices are extremely stable with variations (up to 0:03e-cents) far below
the mispricing.
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13 Softcore-Bayesianism

So far, we have introduced Bayesian statistics as the most important area of HCB. Bayesian
statistics transparently reveals parameter and model uncertainty in contrast to frequentist
statistics. Hence, a faithful risk management should switch to the e¢ cient Bayesian estima-
tion techniques that are not that complicated but di¤erent from frequentist ones. Neverthe-
less, Bayesian (exactly like frequentist) statistics substantially rests on reliable data for the
inference on risk factors.186 Unfortunately, the quality of data is often lousy in real life.
Alternatively, Softcore-Bayesianism (SCB) o¤ers a framework to transparently reveal human
expertise in form of continuous or discrete distributions (incl. scenarios) instead of point
estimates glossing over personal uncertainty.
Bayesian Risk Management (BRM) summarizes elaborated and practicable guidelines, tech-
niques, and tools for a well-thought-out quanti�cation and handling of subjective assess-
ments. In the following, we introduce the main agents and groups involved in BRM (see
section 14). Later, we present the integrated Bayesian Risk Analysis (iBRA) concept which
separates the identi�cation, quanti�cation, and management of critical variables into some
well de�ned modules (see section 15).
Often, expertise of specialists is needed as problems are highly complex. This can substan-
tially improve the quality of the risk management but requires a careful elicitation of in
house and external professionals - easily to incorporate into our iBRA concept. We overview
the basic ideas of expert elicitation (see section 16) and explain some elicitation techniques
(see sections 16.3, 16.5, and 16.6) as well as elicitation tools (see section 17). Because of the
exceptional position of prediction markets as elicitation tools we separately dwell on their
special features (see section 18).

14 Agents in BRM

Generally, up to three groups of people are involved in BRM: risk analysts, decision makers,
and experts (see �gure 72). The risk analyst is the person or group that tries to identify and
examine critical menaces and opportunities and has to report to the decision maker in form
of studies, models, and personal meetings. Risk analysts are managed by and subject to the
supervision of the decision maker. The decision maker is a person or group that has the
decision-making authority about how a department, cooperation, or an institution has to
react to critical menaces and opportunities. We simply de�ne experts as all those persons the
risk analyst is willing to query hoping to improve her risk analysis. Hence, a person becomes

186Additionally, mathematical Bayesian updating requires adequate model assumptions and prior distrib-
utions (see section 2.1).
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Figure 72: groups involved in Bayesian Risk Management

an expert by selection which can be direct via pre-selection of certain persons (risk analyst,
decision maker, or other experts) or indirect via a self-selection of persons that ful�ll certain
criteria.
Although BRM advocates expert consulting, an integration of external experts from outside
the department, corporation, or institution is not always reasonable or necessary. In house
experts can often contribute lots of expertise. The expertise of the risk analysts and decision
makers should also not be neglected. In fact, the expert, the risk analyst, and decision maker
is often the same person.

15 Integrated Bayesian Risk Analysis (iBRA)

In the following we introduce a practicable framework allowing an organization to set up an
integrated risk management for some critical target variables187 when there is a lack of reli-
able or informative data. We have sketched the integrated Bayesian Risk Analysis (iBRA)
concept that summarizes guidelines, technique, and tools for the subjective identi�cation,
quanti�cation, and evaluation of critical factors a¤ecting the target variable.188 For practi-
cability, iBRA highlights the risk analyst as invaluable expert. Nevertheless, an integration
of in house and external experts is easily realized for strategic factors.
The Bayesian roots of the iBRA propagate a permanent updating of the results and a
constant learning to improve the risk management. Consequently, iBRA is a cycle separated

187e.g. value-at-risk of a credit/ asset portfolio, output of a company, or cash �ow
188Although the iBRA concept concentrates on subjective risk management, the identi�cation step seems
highly relevant in the model building of pure data-based risk management like credit risk.
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Figure 73: integrated Bayesian Risk Analysis cycle

into several sub-steps (see �gure 73), we introduce in the next sections.

15.1 Identi�cation, Risk Mapping, & Model Building

The task of a risk analyst is to quantify a (some) target variable(s), e.g. a company�s cash
�ow. Often a direct quanti�cation is not possible because it is in�uenced by numerous factors
that are often highly interrelated. Models can normally help the analyst to grasp the scope
of the risk management issue.
In the following, we concentrate on the risk analysis of discretionary non day-to-day business
problems. They normally require a great deal of analytical skills and a su¢ cient level of
practicable experience. A reasonable starting point for the identi�cation of critical factors
is a brainstorming of potential causes for problems and their negative as well as positive
consequences. The task can be simpli�ed by resolving the task into sub-problems. In the
early stage, a simple list of all potential critical factors (= dragon kings) is enough.
On principle, there are two basic groups of factors:
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Figure 74: probability impact map

� Occurrence variables (e.g. regulation, natural disaster, or electrical power outage) are
predominantly uncertain whether they will occur or not. Their impact on the target
variable might be substantial but only if the variable has realized.

� Level variables (e.g. oil/ CO2 price or demand for goods) are mainly uncertain because
of their actual level.

After potential factors have been identi�ed, they should be ranked. A probability-impact
map can support the ranking of occurrence variables (see �gure 74). Most important factors
are in quadrant "likely & critical" and less important ones in "unlikely & non-critical". A
simple rule could decide according to the expected impact which is simply the map area left
and below the factor. The analysis could be additionally improved by accounting for the
uncertainty in the probability and impact assessments.
Level variables should be ordered according to their variability and their expected impact
on the target variable. A variability-impact table could help to visualize the task (see �gure
75). Variables with a high variability and a high impact on the target variable are more
important than factors with a high variability but a low impact, or vice versa.
Probably, the number of identi�ed factors is too large. The risk analyst can only quantify
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Figure 75: variability-impact table

discrete or continuous distributions for the most important factors (= risk factors). Less
critical or non-quanti�able factors (= uncertain factors) can be estimated by point estimates
or need to be dumped and documented. Probability-impact maps and variability-impact
tables could complement the analysis.
Because of the subjectivity of the assessments, a risk analyst needs further criteria to classify
the identi�ed risk factors (Bayesian due diligence): It is important to deliberate on the
question whether the risk analyst (or the experts) has su¢ cient information to form useful
discrete or continuous distributions for all critical variables. Besides, the risk analyst should
always regard an external assessment (in house as well as external experts) with suspicion.
It could be heavily a¤ected by arrogance, pride (fear of loss of face), vengeance, or envy.
Risk factor distributions might be too informative (concentrated) in respect of the available
information.
Consequently, it might be better to transform some critical factors to constants. A sensitivity
analysis allows to reveal the overall impact of the dumped uncertainty on the target variable.
If impact is notable, a more extensive expert elicitation could be triggered. Otherwise, there
is a good chance that a point estimate is not problematic.
After the determination of risk factors and uncertain factors, the risk analyst should set up a
crude risk map (see �gure 76) which consists of all risk factors and some important uncertain
factors in form of point estimates (constants):

� The analysis of a problem can be reduced in complexity if independent groups of risk
factors can be identi�ed.

� Non-natural constants are factors we have decided to be not uncertain about. Gener-
ally, they correspond to the mean or most likely value of some uncertain factors.

� Decision variables (e.g. number of produced items) are variables which are not uncer-
tain for the decision maker because she can decide on them.

� Intermediate variables are (deterministic) functions depending on decisions, constants,
and risk variables.
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Figure 76: risk map

The designing of a crude risk map normally helps to understand the basic structure of the
problem and to reduce the complexity of the model. Sometimes, such risk maps are that
simple that they can be used for short discussions with experts and for presentations to the
decision makers within the decision process.

Unfortunately, such crude risk maps are not su¢ cient to set up quantitative models that can
calculate the target variable. An explicit description of all critical interrelations between all
risk factors, constants, decision, intermediate, and target variables is required.

An in�uence matrix allows to identify the cause-and-e¤ect chain of the risk factors (see
�gure 77 and Krahl & Wagner 2009). It simply rates the in�uence (not correlation) of the
risk factor in the row on the factor in the respective column.189 Krahl & Wagner (2009), pp.
130, de�ne the levels 0... "no or very low in�uence", 1... "low or time-lagged in�uence", 2...
"medium in�uence", and 3... "strong or very strong in�uence". The active (row) sums re�ect
the in�uence of the risk factor on other factors while the dependency of the risk factor on
other factors is summarized by the passive (column) sum. Risk factors with a large dynamic
index - product of active and passive sum - seem highly interrelated to other factors and
should not be assumed as independent.

Once critical interrelations have been identi�ed, the risk analyst can set up a more sophis-

189The in�uence matrix is to reveal the normally non-symmetrical cause-and-e¤ect chain instead of the
symmetrical correlation describing parallel or reverse behavior.



144 15 INTEGRATED BAYESIAN RISK ANALYSIS (IBRA)

Figure 77: in�uence matrix

Figure 78: in�uence diagram

ticated risk map, called in�uence diagram (see �gure 78). In contrast to crude risk maps,
in�uence diagrams can reach extreme complexities as they explicitly describe the model
structure.190 Moreover, the risk analyst has to distinguish between simple risk factors and
conditional risk factors.
The uncertainty about independent risk factors is de�ned by a discrete or continuous prob-
ability distribution. Dependent factors need to be described by a multivariate (or meta-)
distribution. To reduce complexity, it is advisable to �nd independent basic risk factors.
E.g., it might be much more easy to model kerosine and gas price as functions of the crude
oil price than to quantify a multivariate distribution for kerosine and gas price.
Conditional risk factors are described by statistical distributions depending on decision vari-

190The calculations of the WestLB/ Potsdam Institute for Climate Impact Research study "German power
utilities - caught in the CO2 trap?" (Garz et al. 2009) are based on such a complex in�uence diagram
implemented in the software Analytica.
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ables, constants, intermediate variables, or other conditional risk factors. As long as their
in�uence is only restricted to some parameters of the distribution, there is no big problem. If
however they in�uence many parameters the so called conditional probability tables can eas-
ily explode in size. Hence, a well-thought-out structured in�uence diagram can substantially
reduce complexity of model calibration.
In the next step, the risk analyst should implement the model according to the in�uence
diagram. In this early stage, there is no requirement for an exact calibration. A preliminary
implementation allows to identify logical errors in reasoning and counter-intuitive model
results.
Although we have mainly stressed the risk analyst as expert, in house or external experts
can often contribute a great deal of expertise. If the gain in insight justi�es the additional
e¤orts, the risk analyst should elicit them. Experts can help to identify critical factors and
their interrelations. Expert comments on the probability-impact map and risk map as well as
on the ranking of the variables seem extremely bene�cial. Such a brainstorming can help to
reduce imminence of black swans as the black swan of the risk analyst might be an uncertain
factor or even a risk factor for an expert.
In the coming sections we introduce concepts how to calibrate a model by separately quan-
tifying the risk factors (see section 15.2) and by determining their interrelations (see section
15.3).

15.2 Speci�c Risk Quanti�cation (SRQ)

BRM is based on the belief that a quanti�cation of uncertainty in form of risk factors is
superior to point estimates.191 In real life, an extensive analysis usually leads to a com-
plex model that is hardly to handle when the uncertainty and all dependency structures
of all factors are modelled in distributional form. We should therefore concentrate on the
most critical factors. Less important factors (or factors we have no reliable information on)
should be treated as constants or be dumped. Furthermore, we have propagated to identify
independent basic risk factors (e.g. oil price instead of gas and kerosine price) or at least in-

191A prime example is the attempt of the Energy Model Forum (EMF) in 1980 to predict the oil price
up to 2020 (see Ötsch 2008, pp. 31). The combination of several models and scenarios resulted in 120
projections. From a classical point of view there exist no clear guidelines to deal with more or less plausible
projections which all could turn out to be appropriate. The EMF simply calibrated all models to a most-likely
reference scenario and presented the results without any weighting. Such an approach entails a fundamental
non-communicated uncertainty. Alternatively, Draper (1995) weighted the 120 projections according to the
plausibility of the respective scenarios while the models were assumed to be equivalent. In contrast to the
Energy Model Forum (EMF), Draper (1995) could clearly identify a considerable risk (although in the left
tail of the oil price distribution) for an oil price equal or below the realized price ($13) in 1986.
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dependent groups of dependent risk factors (oil and CO2 price vs. regulation on automotive
and aviation industry).
When the risk analyst could set up a model following the principles above, there are several
(nearly) independent risk factors that allow a separate quanti�cation. This step � we call
speci�c risk quanti�cation (SRQ) � enables the risk analyst to concentrate on the risk
factors one at a time. This concept reduces the burdens for expert elicitation fundamentally
as in house or external experts with some specialized expertise can be of use.192

Generally, we recommend two basic elicitation techniques for a separate quanti�cation of
risk factors:

� �xed interval method (see section 16.3.5): The risk analyst sub-divides all possible
outcomes of a risk factor into a �xed number of intervals. Subsequently, she (or the
expert) allots weights to each of them. Interval probabilities can be inferred from
those weights. This allows to set up a discrete probability distribution or to calibrate
parametric distributions.

� variable interval method (see section 16.3.6): The risk analyst directly de�nes parame-
ters of special elicitation distributions (e.g. triangular or modi�ed PERT distribution).

15.3 Integrated Risk Quanti�cation (IRQ)

Unfortunately, a separate quanti�cation of risk factors can cause trouble if some of the risk
factors feature strong correlations. E.g., the CO2 price and the coal (lignite) price seem not
to be independent. A traditional approach is to run some empirical estimations of Pearson
or other (rank) correlation coe¢ cients which depend on historical data. A risk analyst might
(realistically) expect a fundamental change in the future dependence structure because of
coming regulations to �ght climate change. Empirical data analysis can generally not deal
with such problems. Subjective assessments are needed.
The integrated risk quanti�cation (IRQ) module o¤ers techniques to cope with such situa-
tions. Actually, IRQ deals with two di¤erent kinds of dependence structures:193

� correlations between risk factors: To some extent, subjective reasoning propagates some
combination of outcomes of several risk factors while it rules out (to some extent) some
other combinations.

192If the risk analyst wants to consult experts, special elicitation tools are needed that expose the experts
to the elicitation techniques. We prefer to distinguish between expert panels (e.g. focus groups or Delphi
studies), expert interviews, classical surveys (e.g. questionnaires), and automated surveys (e.g. online
questionnaires or prediction markets). See section 17 for more details.
193The most tricky situation arises when there is correlation between auto-correlated risk factors.
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� auto-correlation of risk factors: According to subjective reasoning, the outcome of a
time-series risk factor is somehow related to its outcomes in previous periods.

15.3.1 Correlated Risk Factors

First and foremost, in the case of correlated risk factors, the BRM advises all risk analysts to
leave no stone unturned to avoid the IRQ module - without wrongly assuming independence.
A nearly all purpose tool is to fathom the cause-and-e¤ect chain. Often, the risk factors
depend on the same independent basic factors which cause the correlations. Consequently,
we can evade correlated risk factors. If there is no way out, there are several methods to
deal with dependencies.
A very simple but often ignored approach to eliminate correlation is the transformation
of risk factors. Garz et al. (2009) set up a multi risk factor Monte Carlo simulation to
appraise the uncertain cash �ows of German electric utility portfolios consisting of di¤erent
energy sources (coal, lignite, natural gas, renewable). The results critically depend on the
electricity wholesale prices and the costs of generating electricity. A blue-eyed modelling
would quantify all commodity prices resulting in a multi-dimensional distribution or in a
highly complex conditional probability table. Usually, both approaches are too complex too
deal with. A diligent analysis of the problem �nds relative - not absolute - commodity prices
important for cash �ow (see Garz et al. 2009). The calibration can be simpli�ed by de�ning
a distribution for the price of a numeraire (e.g. coal) and subsequently the relative prices in
respect of that numeraire. In the special case of two dependent risk factors, the uncertainty
on the (price) ratio could directly be quanti�ed.
Sometimes, it is not possible to eliminate the correlation between di¤erent risk factors but
there are some techniques that allow to approximate them. Primarily, the risk analyst should
structure the crude risk map to reach as many independent groups of risk factors as possible.
The complexity of the model is by far more a¤ected by the number of correlated risk factors
within independent groups than by the number of such groups. If there are groups of two or
three correlated factors the visual copula approach could be applied (see section 16.5.1 for
more details). It simply separates the analysis into two steps. First, the speci�c uncertainty
on each risk factor is quanti�ed (see SRQ in section 15.2). Finally, the risk analyst or the
experts need to choose or rank scatter plots produced by one or several copula functions for
di¤erent levels of (rank) correlations.
An alternative is the envelope method allowing to model correlations for a few risk factors
(see section 16.5.2 for more details). A risk factor is chosen as a numeraire and separately
quanti�ed. Subsequently, all other dependent risk factors are assumed to follow a simple
elicitation distribution (e.g. triangular or modi�ed PERT distribution). Finally, the risk
analyst de�nes the parameters of the elicitation distribution given the numeraire. E.g.,
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Figure 79: consistency matrix

given a coal price x, the most likely CO2 price is y and the CO2 price will never be below
ymin and above ymax. As the speci�cation is done separately for each risk factor except the
numeraire, the envelope can be simply visualized by a two-dimensional plot. Then the risk
analyst can simply draw lines for the most likely, minimum, and maximum value of the CO2
price given di¤erent oil prices.
The techniques we have presented are only feasible for a low number of interrelated risk
factors. In more complex situations there is no alternative to stress tests or scenario analyses.
Stress tests are used to describe the tail characteristics of the target variable (e.g. credit
portfolio loss) - often the unfavorable tail, only. The critical task is to identify plausible and
consistent stress scenarios inducing a relevant "worst case" (and "best case"). The adjectives
"plausible", "consistent", and "relevant" simply mean that (1) the assumed outcomes of the
risk factors in the respective scenario are based on sound judgement, (2) the simultaneous
outcomes of di¤erent risk factors are not mutually exclusive,194 and (3) the probabilities for
even more extreme stress scenarios are negligible.
The scenario analysis is a generalization of the stress test approach. The designing of at least
"worst case" and "best case" scenarios as well as some "medium" reference scenarios can
illustrate the full range of outcomes possible for the target variable. Once the scenarios are
enhanced by probabilities (Bayesian scenario analysis), this approach allows to approximate
the full distribution of the target variable.
The identi�cation of adequate reference scenarios is a challenging task. The scenarios should
roughly cover all possible and relevant basic storylines re�ecting the simultaneous uncertainty
on all risk factors. Optimally, each reference scenario is a prime example of an important
storyline. A consistency matrix can help to simplify the problem (see �gure 79 and Krahl
& Wagner 2009). First of all, it requires the risk analyst to rank the risk factors according
to their importance as the designing of the reference scenarios is a cascade starting from the

194E.g., stable or rising tax revenues do not seem realistic in times of an economic depression in Germany.
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most important risk factor (e.g. A is more important than B and B is more important than
C and C is more important than D). In the next step, the risk analyst de�nes a number of
scenario outcomes for each risk factor (e.g. A1 & A2 for A, B1 & B2 & B3 for B, ...). Then
for every outcome of a speci�c risk factor the risk analyst (or an expert) rates the consistency
with the scenario outcomes of the more important risk factors. Krahl & Wagner (2009), pp.
130, propose the following ratings: 1... "totally inconsistent", 2... "partially inconsistent",
3... "independent", 4... "mutually promotive", and 5... "highly mutually promotive".

The scenario generation starts with risk factor A where the risk analyst has to decide whether
it has outcome A1 or A2. Assume the risk analyst chooses A1. Then she has to de�ne a
scenario outcome for risk factor B (B1, B2, or B3). Except for the construction of a "worst
case" scenario, an outcome for B should be chosen which has the highest score in column
A1 - here B3. If all scores are 1 or 2 a relevant outcome for B has been ignored and needs
to be included. Subsequently, the risk analyst should �nd a suitable outcome for risk factor
C (C1 or C2). Now, the risk analyst could follow di¤erent rules, e.g., take the outcome of
C which maximizes the sums or products in column A1 and B3 (here C2). An exclusion of
an outcome which has at least one rating of 1 seems reasonable. In this way, the scenario
outcomes can be de�ned for all risk factors. As risk factor A is the most important factor,
the next scenario should start with A2 and would imply B2, etc.

Without any weights or probabilities, the scenario analysis can only help to understand the
range of uncertainty on the target variable. The scenarios could be misinterpreted as equally
likely, which can be counterproductive in the case of "worst case" and "best case" scenarios.
E.g., the authors of the IPCC Special Report on Emissions Scenarios (SRES) designed six
families of emission projections to guarantee comparable results of global circulation models
(see IPCC 2000). The scenarios were formulated to roughly cover all plausible and possible
emission paths. Probability statements or at least weights were not o¤ered. Consequently,
the scenarios are not bene�cial for a non-expert decision maker.

From the BRM perspective, probabilities or weights need to be attached to the scenarios.
Subsequently, the risk analyst should plot the marginal risk factor distributions whether
they agree with her assessment.195 If not, the scenarios weighting might be inconsistent or
the analysis lacks in scenarios describing some key storylines. This approach can even help
to identify critical dragon kings.

195Assume, the target variable is de�ned by three risk factors A, B, and C. The risk analyst constructs the
scenarios to fully describe A and B while C is only adjusted to be in line with these scenarios. Then highly
relevant or likely outcomes of C could have been ignored.
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15.3.2 Auto-Correlated Risk Factors

A special case of dependency structures is the auto-correlation of time-series risk factors
which results in a two-dimensional problem. On the one hand, the risk analyst wants to
quantify the marginal distributions of the risk factor for di¤erent points in time. On the
other hand, the realization of the risk factor in one period should be interrelated to previous
realization. E.g., if logical reasoning propagates that a high (low) CO2 price in 2015 tends
to be followed by a high (low) price in 2016, the CO2 price is assumed to be positively
auto-correlated.

Within the IRQ module we propose three basic approaches: stochastic processes, weighted
projections, and time-series copula. A rather simply approach is to calibrate a mean-reverting
stochastic process (e.g. Ornstein-Uhlenbeck, Cox-Ingersoll-Ross, or constant elasticity of
variance process). Mean-reverting processes allow to quantify a long-term equilibrium for
the risk factor. Other parameters are normally a mean-reversion rate and a variance level/
factor which are not that intuitive. Alternatively, a stochastic process can be calibrated
to statements on means and quantiles. Unfortunately, the modeling of assessments via
stochastic processes is rather in�exible. Mean-reverting processes are generally de�ned by
three up to four parameters. This number is mostly too low for an adequate approximation of
the auto-correlation and the time-dependent risk factor distribution. Either, the number of
(consistent) statements is reduced to the number of parameters or a (quadratic) loss function
is needed to �nd a parameterization.

An alternative is the de�nition of weighted projections for the risk factor. Similar to the sce-
nario analysis, the projections should re�ect all relevant storylines. The pro of this approach
is its nearly unlimited �exibility. Similar to the scenario analysis, this approach su¤ers from
the risk that the weighted reference scenarios can result in marginal risk factor distributions
contradicting the risk analyst�s assessments.

Another method is the time-series copula which is a combination of the envelope method
and a copula for all points in time (see section 16.5.4 for more details). In contrast to the
standard envelope method the numeraire is no other risk factor but simply the time. In a
�rst step, the risk analyst calibrates elicitation distributions to the risk factor for all periods.
Then, by means of a Gaussian copula, the realization of the risk factors is simultaneously
simulated for all periods. The time-series copula method is extremely �exible in modeling
the marginal distributions but restricted in respect of the auto-correlation. We apply a
correlation matrix equivalent to auto-correlations with (symmetrical) exponential decay in
the time-di¤erence. Such an auto-correlation structure seems adequate for most time-series
risk factors.



15.4 Model Implementation and Analysis 151

15.4 Model Implementation and Analysis

In the modules before, the risk factors and their interrelations have been identi�ed and
quanti�ed while uncertain factors have been transformed to point estimates or have been
dumped. The essential task of this module is (1) the analysis of the quanti�ed risk factors
(marginal distributions) and the uncertain factors (point estimates), (2) the calibration of
the model, and (3) the documentation of the model results. These steps should always be
accompanied by a permanent evaluation whether a model updating or a new quanti�cation
is necessary.
In a �rst step, all risk factor distributions should be critically analyzed according to their
information content, plausibility, and their credibility.196 Theoretically, a very �at distrib-
ution re�ects the high uncertainty of the assessor. The major di¢ culty for the risk analyst
is to decide whether such a distribution results from a competent, information based as-
sessment or from a pure ignorance of the topic.197 In the �rst case, this is an alarm signal.
The risk factor and its interrelations could be too complex for people to o¤er more precise
assessments. In the latter case, the risk analyst should wonder whether she has addressed
the adequate person to quantify the risk factor.
Another, maybe even harder, problem is to evaluate the information level of concentrated
distributions. There is the danger of some overoptimistic assessments. The risk might be
underestimated when the assessor has no expertise on the risk factor or no access to (new)
relevant information.
If the statements are rated uninformative, the risk analyst should think about the elicitation
of (more) competent experts. If the risk analyst believes that there is no such (a¤ordable)
expertise allowing to quantify the risk factors, she should try to modify the model by
replacing the intractable risk factor by another much easier to handle one.
After the evaluation of the risk factor distributions, the model can be calibrated to these
results. The risk factor distributions substantially increase the complexity of the model.
Mostly, the distribution of the target variable can only be calculated by means of Monte
Carlo techniques. Consequently, the distribution is the result of a large number of simulations
given the generated realizations of the risk factors and the point estimates of the uncertain
factors. The target variable distribution covers all uncertainty in the risk factors. Some
statistics (e.g. mean or standard deviation) can help to summarize basic characteristics for
a better evaluation.
Unfortunately, there is always some unconsidered uncertainty in point estimates of uncertain

196Of course, the point estimates of the uncertain factors need also to be checked. In the following, we will
concentrate on risk factors for a clearer presentation.
197This seems challenging when the risk analyst herself stated the assessments. Then she needs to judge
on her own previous work.
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factors. Sensitivity analyses can help to identify the most critical factors and their impact
on the target variable. Unexpected results should be explainable otherwise a more in-depth
analysis of the factor and its interrelations is needed.

For the decision process, the target distribution with its statistics should be enhanced by a
documentation of the sensitivity results for the most important factors. To roughly describe
the range of ignored uncertainty, a "worst case" and a "best case" target variable distribution
should be simulated. This requires the risk analyst to �nd some reasonable and consistent
"worst case" and "best case" storylines for all relevant uncertain factors. A consultation of in
house and external experts could improve the quality of the estimates. If the target variable
distribution is only slightly sensitive to extreme "worst case" and "best case" scenarios of
the constants, the treatment of uncertain factors as constants seems reasonable.

15.5 Diversity of Opinion Analysis

By now, we have described the iBRA concept under the assumption that the risk analyst
sets up exactly one model and calibrates it by risk factor distributions and point estimates
of the uncertain factors. Although the iBRA concept advises to permanently reconsider the
model (informal Bayesian updating), we have ignored a potential indecisiveness and diversity
of opinions. The risk analyst might often favor several contradicting or competing assess-
ments on the critical factors and their interrelations. The consulting of experts increases the
intricacy of the risk analysis even more.

However, competing assessments sometimes are no bug but a feature. They reveal the
uncertainty (a person with competing assessments) or disagreement (several persons with
competing assessments) on the risk factors. Makridakis (1986), pp. 16 & table 1, compared
several studies on di¤erent information sources producing (point) forecasts. He could not
identify a generally superior information source. Hence, it would be grossly negligent solely
to rely on one source (Armstrong 2001). According to a rule of thumb, combining informa-
tion sources (in contrast to picking one of them) improves forecast accuracy the more the
assessments of the sources are negatively correlated.

In SCB we distinguish between three basic paradigms for the handling of competing assess-
ments (see �gure 80 for expert aggregation): behavioral aggregation, no aggregation, and
mathematical aggregation. The aggregation of disagreeing expert assessments is supported
by several approaches following the paradigm of behavioral aggregation. Generally, behav-
ioral tools require a certain level of interaction between experts. Ideally, experts reach a
consensus on their assessments. The most dominant tools are deliberation panels and Del-
phi studies. A deliberation panel (see section 17.1.2) is a formally unstructured discussion
group of several experts which is more or less managed by a coordinator. The task for the
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Figure 80: diversity of opinions

experts is to �nd a consensus.

Unfortunately, such expert panels do not always reach a consensus and there is a real risk
for some undesired group behavior like group pressure. Hence, the success of a deliberation
panel critically depends on the coordinator. To avoid such �aws, Delphi studies (see section
17.1.2) do not allow for a direct contact of the experts. Instead, experts are separately asked
for their assessments, subsequently presented to the other experts. In an iterative (laborious)
process the Delphi method is hoped to result in converging expert assessments.

Nominal-group-techniques like the SANDIA-NRC protocol (see section 17.1.2) try to pro�t
from the direct interaction of experts but want to avoid undesired e¤ects. Hence, initial
deliberation panels are followed by separate interviews where the experts can state their
individual assessments.

The behavioral elicitation tools, just sketched above, mostly entail a direct contact between
the experts and a coordinator (mostly the risk analyst). This mostly entails an expensive
and time-consuming coordination which is not economical in daily business. Alternatively,
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there is the concept of prediction markets (see section 18) that pro�t from the automatic
aggregation via the pricing mechanism - justi�ed by Hayek�s theorem (Hayek 1945). Experts
can trade on the realization of risk factors as well as on competing models and concepts.
The market prices can be interpreted as a market consensus on the topic. Ideally, the
market prices contain all information any of the trader has gathered. Prediction markets are
well-understood for uncertainties that will resolve in the near future. Unfortunately, many
important uncertainties will stay unclear for a long time. Therefore, we propose the concept
of the prediction market PCXtrade which runs short term markets on long-term events (see
section 18.9.2).
When direct behavioral elicitation tools could not reach consensus or surveys have been
conducted, the risk analyst is confronted with competing assessments. Consequently, she
can simultaneously present them according to the no-aggregation paradigm or apply some
form of mathematical aggregation
Supporters of the no aggregation paradigm (e.g. Morgan & Keith 2008) fear that an aggrega-
tion of di¤erent propagated models or risk factor distributions could result in an inadmissible
loss of information. Alternatively, they favor tools (e.g. simple pdf plots or box plots198)
that reveal all con�icting assessments to the decision maker who informally aggregates by
her expertise (see �gure 81).
There are two di¤erent forms ofmathematical aggregation: assessment weighting and Bayesian
expert aggregation. Assessments weighting summarizes the weighting of competing assess-
ments stemming from one person199 (risk analyst) as well as di¤erent experts200 or (e.g.
econometric, physical) models. The most dominant weighting tool is the linear opinion pool
which is a weighted arithmetic average of the competing assessments (see section 16.6.1).
The weights can either be uninformative or informative. In the �rst case, assessments on a
risk factor are equally weighted. In the latter case, weights should base on some reasoning
of the risk analyst, the decision maker, or the assessor herself.
Fischer & Harvey (1999) showed in a laboratory experiment that a subjective weighting by
persons without any idea about the accuracy of di¤erent information sources performed worse
than equal weighing but better when these persons had such information. Armstrong (2001)

198A box plot is an easy tool to visualize the features of some observations without assuming any distribu-
tion. The box re�ects the range of the middle 50% of all observations while the horizontal line inside the box
is the median separating the lower from the upper 50% of all observations. A non-symmetrical box means
skewness in the data. The whiskers have a maximum of 1:5 times the length of the box. Observations below
and above the respective whiskers are marked as outliers.
199People are often undetermined about the "correct" model. The iBRA cycle can easily be applied to
this situation. The concept of imprecise probabilities (e.g. see Levi 2000) o¤ers the theoretical background.
Nevertheless, we do not believe that it is reasonable and economically justi�able to allow one person (either
risk analyst or expert) to state several risk factor distributions.
200See section 16.6.1 where we describe assessments weighting for con�icting expert assessments.
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Figure 81: no aggregation paradigm - Continuous and discrete distributions as well as box plots
can illustrate the full range of disagreement.

presents an overview of 30 empirical studies. By just equally weighting di¤erent information
sources they achieve, on average, a 12.5% reduction (ranging from 2% up to 24%) of the
forecasting errors. Under some ideal conditions, aggregated assessments were more accurate
than the best single information source. As the error of the aggregated assessment is never
greater than the worst single assessment, this approach is also very interesting in situations
where wrong predictions result in intolerable losses.
Generally, the determination of informative weights is situational. The risk analyst can be
confronted with (1) competing assessments of non-human information sources like statistical
or econometric models, (2) competing ideas or models, or (3) competing pure subjective
assessments of di¤erent experts.
The future performance of models could be weighted by posterior models probabilities avail-
able in Bayesian statistics (see sections 8 and 10.3). However, this approach presumes that
the data - used to calculate the probabilities - is informative for future developments. Often,
there is no such reliable data. Then, there is no way out to de�ne subjective weights in form
of peer weights, self weights, or group weights.
There are di¤erent approaches to �nd adequate weights for expert (and model) assessments:
the past calibration, the analysis of key criteria, or again the use of pure subjective weights.
The weighting of experts (or models) according to their past calibration simply re�ects their
past performance in forecasting the outcome of the risk factor.201 Unfortunately, the calibra-

201Based on many years of experiences with psephology the German election research institute Allensbach
weights the interviewees in polls according to their intentions to go to the election. A statement "sure" is
weighted with 1:0, "likely" with 0:7, and "surely not" with 0 (Berlemann & Schmidt 2001, p. 16). Here, the
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tion approach requires the assumption of a repeatable risk factor which is a critical assump-
tion. Alternatively, calibration could be measured according to the forecasting performance
on comparable risk factors. Is the past performance of a weather forecaster comparable to
her future performance? This seems quite reasonable. However, is the past performance of
an investment banker a good indication for her future pro�ts?
In the case of unparalleled risk factors or in situations where the past forecasting performance
is unserviceable to future success, alternatives are needed. Clemen & Winkler (1986), p. 45,
prefer to assume exchangeable experts. Then with experts from the same "league", experts
should equally weighted.
We do not favor such an equal weighting. It just tries to simplify the problem and ignores
important additional information. The iBRA concept propagates a criteria based weighting
of experts (Bayesian due diligence) following the request "weigh evidence, not experts!"
(Kaplan 1992, p. 61). We do not keep faith with a belief of objectivity and call for inter-
subjective rather than "objective" criteria for the evaluation of experts. Ideally, there exist
such inter-subjective criteria - any decision maker or risk analyst would come to the same
appraisal. In reality, we can only hope to �nd some key criteria - any rational person would
judge in the same direction. Such criteria could be the practical and theoretical experience of
the expert,202 no-stakes condition,203 interdisciplinary skills,204 anti-mainstream opinion,205

or deliberate opinion.206 Within the iBRA concept, we favor a simple reputation map for
the experts which is based on a tra¢ c lights categorization (see �gure 82). The risk analyst
(or decision maker) simply rates di¤erent experts or expert groups by red (=bad), yellow
(=medium), or green (=good). Subsequently, she decides on the (mis)information content
of the expert statements. In fact, we believe that it is not reasonable and too cumbersome
to �nd a weighting scheme for the key criteria. Instead, the risk analyst should subjectively
weight the experts in a manner that she can justify by the criteria. A rigorous documentation
reduces the danger of arbitrary coloring by the risk analyst.
Regrettably, there are some delicate intricacies linked to subjective expert weighting. As
long as the expert assessments originate from studies or conferences, there are no interper-
sonal problems. The weighting of experts directly invited by the risk analyst seems more

performance in forecasting is the person�s activity to go to the polls.
202We assume consensus on the fact that people prefer experts with more theoretical (or practical) experi-
ence as long as there is no other di¤erence.
203Rational, utility-maximizing people with stakes in competing projects are prone to false testimonies and
disinformation (see Kadane & Winkler 1988 and section 16.3.1).
204A higher level of interdisciplinary skills seems correlated with more problem solving competence.
205An expert having a competing assessment compared to the mainstream does not need to be right.
However, the consideration of a broad scope of opinions seems reasonable.
206An expert who has formed an own view on the problem should be preferred compared to persons that
have not.
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Figure 82: reputation map

problematic. A disproportionately low weighted expert could feel to su¤er a snub. Therefore,
we favor self-assessments of experts on the quality of their forecasts. Within the iBRA con-
cept, we propose the wording "no idea", "extremely uncertain", "uncertain", "moderately
uncertain", "con�dent", and "very con�dent". All experts who state "no idea" are ignored.
This avoids to account for experts pushed to their statement. The crux of the matter is
an adequate transformation of the wording into numerical weights. The risk analyst (or
decision maker) could de�ne a personal weighting scheme. Alternatively, we have carried
out a survey on the common understanding of these statements. We come to the following
weighting scheme (see table 35 and �gure 83):207

no idea extremely uncertain uncertain moderately uncertain con�dent very con�dent

0% 6:0% 13:2% 20:3% 28:9% 31:6%

Table 35: expert weighting scheme

An alternative to the weighting approach for competing expert assessments is the concept of
Bayesian expert aggregation (see section 16.6.2). Its basic idea is the rational updating of the
decision maker�s prior uncertainty on a risk factor by expert statements which are used like
traditional data. The resulting posterior is a consensus any rational decision maker would
agree on given the prior and the expert statements. To reach an inter-subjective posterior,
the prior is often modelled uninformative and the decision maker is treated as an additional

207We used our online questionnaire PCXquest for a short survey on people�s perception of the competence
of experts who self-rate their assessments by "extremely uncertain", "uncertain", "moderately uncertain",
"con�dent", and "very con�dent". A total of 57 persons could rate the self-assessments with 0... "no trust
at all" up to 10... "full trust". We transformed these absolute weights (upper subplot in �gure 83) to relative
weights summing up to one (lower subplot). We used the resulting medians for our weighting scheme.
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Figure 83: con�dence in expert�s self-rating - The box plots (whiskers set to a maximum of 1:0
times the interquartile range) show: The more con�dent the expert in her assessment the more
con�dent people in the expert assessment. Nevertheless, 1=3 (1=5) of all respondents expressed a
lower level of faith for assessments rated by "very con�dent" than by "con�dent" ("moderately
uncertain").
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expert. Then the updating does only depend on the form of the joint distribution of the
expert statements. Generally, Bayesian expert aggregation accounts for correlated expert
statements. Such correlations can fundamentally a¤ect the quality of expert statements.
Highly correlated statements provide some indication of a single information source most
experts refer to. Metaphorically speaking, the Bayesian approach aggregates information
sources instead experts. An against mainstream expert is given more weight than mainstream
experts. This Bayesian idea reduces the danger of ignoring Cassandras warning against a
bubble.
There is no clear answer to the question which mathematical aggregation scheme (assess-
ment weighting or Bayesian expert aggregation) should be preferred when there are com-
peting expert assessments. Both approaches use fundamentally di¤erent concepts. The
weighted uncertainty on a risk factor is an average of competing opinions. The aggregated
Bayesian density (= posterior) is the result of a rational (inter-subjective) process of learning
(mathematical Bayesian updating). Although the Bayesian approach is theoretically more
appealing, it is practically hard to implement.

15.6 Decision Management

Once the risk analyst has identi�ed, quanti�ed, and aggregated all uncertainty and all rel-
evant interrelations, the results need to be evaluated in respect of their implications on
management decisions in the cooperation. As this dissertation concentrates on the risk
analysis instead of optimal decision-making, we make this section short.208

A crucial point in the iBRA design is the exact de�nition of the decision maker who can
be the risk analyst herself or another person or group within the cooperation. The deci-
sion maker needs to be briefed on the risk factors and their interrelations. Moreover, a
concentrated documentation should inform the decision maker on uncertain factors and in-
terrelation which could be crucial but have not been quanti�ed. If the results critically base
on expert assessments, the presentation of the respective reputation maps seems advisable.
We avoid to present exact algorithms o¤ering the "optimal" decision. We are rather in favor
of a decision maker acting on her gut feeling. In his remarkable book "Bauchentscheidungen"
(English "gut decisions"), Gigerenzer (2008) presents an unbelievable number of examples
where gut feeling can outperform an explicit decision process. Although Gigerenzer (2008)
highlights the success of spontaneously acting according to someone�s gut feeling, we rather
propagate to base the decision on the analysis and documentation of the risk analyst. This
might allow the decision maker to become aware of unexpected value drivers and scenarios
critical for the cooperation.

208See Peterson (2009) for a full introduction to decision theory.
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Nevertheless, the decision maker should keep in mind that notwithstanding an exemplary
risk analysis there is always a myriad number of black swans (see section 2.2 and Taleb
2007) potentially foiling any projections decisions are based on. The decision maker and the
risk analyst are not at the mercy of such black swans. Bayesian estimates can better reveal
uncertainty on the risk assessments than classical point estimates. Moreover, a black swan
for them might be an uncertain factor or even a quanti�able risk factor for some experts.
Last but not least, no decision should critically rely on the assessments of the risk analysis. A
safety cushion should be able to compensate unexpected minor up to medium variations. The
inadequateness of human planning has coined the famous sentence of the chief of sta¤ of the
Prussian Army Helmuth Graf von Moltke the Elder (1800 �1891): "Kein Plan überlebt die
erste Feindberührung" (English "No campaign plan survives �rst contact with the enemy")
summarizing the idea of uncertainty (in war) of the Prussian military theorist Carl von
Clausewitz (1780 � 1831).209 This is closely related to the ludic fallacy of Taleb (2007)
describing people�s tendency to believe that their models can really describe reality which
allows planning in a quasi deterministic world. However, risk analysis, planning, and decision
making - in our Bayesian understanding - should rather raise the awareness of the critical
factors and their interrelations. This enables persons to quickly react and to be prepared for
unpredictable events.

16 Expert Elicitation

The basic idea of BRM is to explicitly quantify subjective uncertainty on risk factors. So
far, we have not concentrated on the fact who is a suitable source for the assessments. For
simplicity, we have mostly assumed that the risk analyst herself just expresses her uncer-
tainty. Of course, the risk analyst or even a group of risk analysts are mostly professionals
but might not have expertise on all topics they deal with. Consequently, a consultation of
respective experts seems appropriate as long as the additional invested time and money can
be justi�ed by the expert assessments.
There are di¤erent levels of expert consultation. Experts can be asked (1) for some advise
on the identi�cation of risk factors as well as on the construction and on the evaluation of
models, (2) for some point estimates, or (3) for probabilities expressing their uncertainty on
risk factors and their possible outcomes. The latter is called expert elicitation.
We do not want to discuss adequate general strategies for cooperation and integration of in
house and external experts. This could be better performed by management consultancies

209See the Boston Consulting book "Clausewitz on strategy: inspiration and insight from a master strate-
gist" interpreting Clausewitz�s ideas of the unpredictability of war for the today�s management (von Ghyczy
et al. 2002).
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like McKinsey, Roland Berger, Boston Consulting, or Deloitte Consulting. Although the
expert consulting of point estimate (normally most likely or expected value of a risk factor)
is still going strong (Morgan & Keith 2007), we do not concentrate on this topic for two
reasons: First, point estimates conceal the uncertainty of an expert. Second, there is a bad
habit that the dispersion of point forecasts of di¤erent experts is normally interpreted as the
uncertainty of a group. Instead, it is just the observed disagreement of the experts (Nesvisky
2006).210 Theoretically, all experts can be very uncertain although they do not disagree
about the forecasted value. Gürkaynak & Wolfers (2005), p. 17, found that uncertainty and
disagreement comove with a low correlation. Hence, they conclude that disagreement is not
a good proxy for uncertainty.
In this and the next sections, we introduce the concept of expert elicitation which is an impor-
tant instrument in di¤erent areas like decision analysis, psychology, risk analysis, Bayesian
statistics, mathematics, and philosophy (Hora & Jensen 2002, p. 2). Even if the risk analyst
abstains from expert elicitation, its understanding can help to improve the quanti�cation of
her own uncertainties.
In expert elicitation, the risk analyst is directly or indirectly confronted with one or several
experts whose assessments might vary between experts and over time. Consequently, the
risk assessments are a­ icted with two kinds of uncertainty:

� There is the communicated uncertainty of the expert which depends on the expert�s
substantive and normative expertise.211 In the simplest form, the expert estimates the
most plausible outcome of the risk factor enhanced by a verbal statement about her
personal degree of belief that the forecast becomes true. In the most complex form the
expert communicates a complete probability or density distribution for the risk factor.
A point forecast is only su¢ cient when experts have complete information and they
feel certain.

� The analyst�s uncertainty re�ects the risk analyst�s degree of belief in the expert as-
sessment whether it is informative or misleading. The analyst has to decide whether
she deals with a risk factor or an uncertain factor (see section 2.2).

Actually, nobody should expect perfect foresight. Experts are invited as professionals on a
topic to state their uncertainty about a risk factor. It is important to understand that there
is no classi�cation whether a subjective assessment is "true" or "wrong" (Hora & Jensen

210Mankiw et al. (2003) approximate the disagreement of the experts by the standard deviation of the
point forecasts.
211Again, the substantive expertise is an expert�s level of adequate and useful information on the risk
factor, while normative expertise just describes the expert�s ability to communicate this information in a
probabilistic form. See section 2.2 for more details.
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2002, p. 4). There are no "objective" probabilities intrinsic to an object or event but there
are subjective probabilities intrinsic to the assessors.212 Accordingly, it is more important
to reproduce an expert�s subjective probability assessments as exactly as possible because
the communicated as well as the analyst�s uncertainty is critically a¤ected by the normative
expertise.

16.1 Heuristics

Tversky & Kahneman (1974) stated in the mid of the 1970ies that (non-expert) people
have problems to express their assessments in form of subjective probabilities. Therefore,
they would use heuristics (= rules of thumb) to reduce complexity, that lead to systematic
predictable biases like conjunction fallacy, base rate neglect, and miscalibration:

� representativeness: The probability that something or someone belongs to a group
is judged by its similarity to this group. E.g., a blond-haired person is commonly
disproportionately often assumed to be a Swede as there is the opinion that nearly all
Swedes are blond. The base rate of blond Swedes compared to all blond-haired people
worldwide is neglected.

� availability: People tend to judge the frequency of an event by the ease of remembering
past examples. Therefore, rare extreme events appear to occur more frequently than
rather personally not so important events.

� adjustment and anchoring: People usually anchor their (probability) estimates and
adjust other information to be in accord with the anchor. E.g., when you want people
to estimate the number of inhabitants of Berlin and you state that London is another
important European capital that has 7.5 million inhabitants, the anchoring would bias
the estimations to 7.5 million inhabitants although the real number is 3.4 million.

Since Tversky & Kahneman (1974), the literature has mainly related to this article and its
biases although Tversky and Kahneman relaxed their statements later (Kynn 2008, p. 239).
Kynn (2008) summarizes the research on probability elicitation that helps to elicit "good"
probability �gures. To do so, it is "not only what we ask experts to assess, but how we ask
it" (Kynn 2008, p. 240). The question about the number of inhabitants of Berlin is not
univocal. The wording could easily be understood that it is a fact that Berlin has the same
number of inhabitants like London. Hence, the biased estimation could be rather because of
a wrong wording than of the incapacity of people to express good assessments.

212See Nau (2001) who argues that de Finetti (1974), p. x, was right with his statement "probability does
not exist".
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Another problem is that people usually violate the law of total probability as the total of all
their probabilities sums to more than 100%, called subadditivity. However, even Bernoulli
suggested that this is not a big problem for subjective probabilities (Kynn 2008, p. 246).
The conjunction e¤ect describes the observation that people partly estimate the probability
for A is less than the probability for A given B. A prime example was brought forward by
Kahneman & Tversky (1982), p. 126:
"Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As
a student, she was deeply concerned with issues of discrimination and social justice, and
also participated in antinuclear demonstrations. Which is more probable? (i) Linda is a
bank-teller; (ii) Linda is a bank-teller who is active in the feminist movement."

People tend to answer (ii) to be more probable than (i). From probability theory this is
formally wrong. Kynn (2008), pp. 247 argues that the conjunction e¤ect can arise from a
misleading question. People maybe seem to conclude in response to (ii) that (i) means that
Linda is a bank-teller and not in the feminist movement. The interviewer should pose the
question more clearly without requiring people to know statistical calculus.
In general, people tend to have no problems to increase the probabilities rather than to
decrease the others consistently. To avoid such problems odds ratios can be used as no coun-
terbalancing is needed (Kynn 2008, p. 250). Alternatively, weights instead of probabilities
seem adequate, too.
However, over the years, there have been found several more biases which cannot be traced
back to the fact of misunderstandings: (1) People tend to be more con�dent about their
prediction skills than their historical record of correct responses would suggest (Kynn 2008,
p. 253). This overcon�dence e¤ect depends on the type of the task and the level of di¢ culty
of the question and is (2) accompanied by the hard-easy e¤ect which describes that people
are overcon�dent for hard questions and under-con�dent for easy questions (Kynn 2008, p.
253). (3) People have the tendency to overestimate events with very low probabilities and
underestimate events with high probabilities. This is called favorite-longshot bias (Thaler
& Ziemba 1988).213 (4) People trade according to their desires rather than to their own
assessments.214 (5) People seem to have problems to express and interpret complex thoughts
(Ostrover 2005, p. 10). (6) People tend to secure certain gains as well as to avoid certain
losses which results in insuring future gains but bearing uncertain losses. This is called

213Wolfers & Zitzewitz (2004) compared Tradesports (www.tradesports.com) prices and option prices from
Chicago on the S&P 500. They found that extremely high and low outcomes of the S&P 500, which seem
to be very unlikely, are relatively overpriced in Tradesports.
214Forsythe (1999) found evidence that people�s trading in political stock markets is correlated with their
party identi�cation. They are motivated by partisanship. However this could be a special problem of political
polls and political stock markets.
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re�ection e¤ect (Kahneman & Tversky 1979). (7) People seem to have problems to handle
and understand probability assessments. They can rather distinguish between an event
that is certain or not certain than between events that have a probability of 60% or 50%.
Consequently, they are more concerned about the loss of certainty, 100% probability to 90%,
than 60% to 50%, as they are interested to reduce uncertainty to zero. This phenomenon
is called certainty e¤ect.215 (8) People often ignore information which is shared by several
sources but concentrate on information which is not shared. Moreover, they seek for the
di¤erences in the structure of the alternatives. They rather decide for an alternative because
it is di¤erently presented. Therefore, in a second presentation they would choose another
alternative. This is called the isolation e¤ect or von Restor¤ e¤ect (von Restor¤ 1933).

Other important cognitive biases are:216 conservatism or endowment e¤ect,217 bandwagon
fallacy,218 choice-supportive and con�rmation bias,219 congruence bias,220 status quo bias,221

déformation professionnelle e¤ect,222 distinction bias,223 need for closure,224 neglect of prob-

215E.g., people taking part in a Russian Roulette are generally willing to pay more of their lifetime income
to get rid of one out of one bullet in a six-barreled gun than one bullet out of two. Theoretically, people
should pay more in the one out of two scenario as in both cases the probability is reduced by the same
amount but there still exists a probability of death in the second scenario in which all money is worth less
for them (Zeckenhauser 1996, endnote 16).
216An excellent survey of nearly all fallacies you can �nd in Wikipedia article "List of cognitive biases" and
its related links.
217People are willing to pay more for things they already possess to keep them instead to pay for the same
things when they don�t own them. E.g., there is an experiment with students. The half of them are handed
beer mugs. Then they are o¤ered money to give back the mugs. The other students were simultaneously
o¤ered to take money or a mug. Although both situations should be the same for a rational utility maximizing
agent, students �rst equipped with the mug generally named a higher price for the mug (Daniel Kahneman
in a Newsweek; issue of April 10, 1995; www.newsweek.com/id/110181/output/techbiz/biz (last revised July
1, 2008))
218People tend to rely on the mainstream because it is more comfortable to follow a herd instinct instead
to oppose the assessment of the majority (see Nadeau et al. 1993).
219Ex post, people tend to put lipstick on the pig by stating partly indefensible positive features supporting
the option as well as ignoring negative features opposing the option they have chosen before. This is partly
because people really remember this way - choice-supportive bias (see Mather & Johnson 2000 and Mather
et al. 2000) - and partly because people try to �nd, respectively ignore new information to justify their
assessment - con�rmation bias (see Lord et al. 1979).
220People tend to stick to a hypothesis they initially believed to be correct. They prefer to modify the
hypothesis rather than to consider alternative ones (see Wason 1960).
221People refuse to reconsider an established assessment as long as there is no overwhelming evidence.
222Once experts are asked being specialists for a certain topic, there is the danger that she believes the
whole problem could be explained by that area of expertise.
223The assessment of two di¤erent options depends on the fact whether both are analyzed separately or
simultaneously. In a simultaneous analysis small di¤erences are seen relatively more distinctive.
224People dislike to be uncertain. Consequently, people tend to come to a conclusion.



16.1 Heuristics 165

ability bias,225 wishful thinking,226 optimism bias,227 overcon�dence e¤ect,228 ambiguity ef-
fect,229 attentional bias,230 gambler�s fallacy,231 hindsight bias,232 illusory correlation233 and
disregard of regression toward the mean.234

Kahneman & Tversky (1979) concluded from such biases that the expected utility theory235

might be not suitable to describe decision making under risk. As an alternative they proposed
the prospect theory for describing decision making under uncertain future events with known
probabilities.
The prospect theory features two steps, editing and evaluation. In the edition step humans
sort all possible outcomes of the future event relative to a reference point, which can be
the worst case or the status quo. All outcomes which are more (less) preferable than the
reference point are seen as gains (losses). In the evaluation step a human being calculates a
subjective overall value of an edited prospect (Kahneman & Tversky 1979, p. 276)

V =
KX
k=1

w (pk) � v (xk) ;

where p = (p1; :::; pK)
0 and x = (x1; :::; xK)

0 are the subjective probabilities and payo¤s of
the K possible outcomes. The formula above has two functions which distinguish it from
the expected utility formula:

� The function w (�) is the subjective probability weighing function which reproduces the
observation that people overreact to small probabilities and underreact to large prob-
abilities. This overweighting property should not be mixed up with the overestimation

225Sometimes, people deliberately ignore uncertainty.
226People state relatively more positive than negative forecasts as they tend to form assessments according
to their hopes rather than according to the apparent evidence.
227People tend to be over-optimistic about planned actions resulting in too high likelihoods for positive
outcomes and too low likelihoods for negative outcomes.
228People tend to over-estimate the correctness of their assessments resulting in a miscalibration of subjec-
tive probabilities.
229People tend to prefer options with known probabilities over options with uncertain but in the mean
equal probabilities.
230People tend to test for some requirement of an assessment, only. Consequently, people can fail to notice
contradicting evidence.
231People have problems to understand the idea of stochastic independence. Instead, they believe an
outcome (e.g., head of a coin) will realize next because it has not realized for a long time.
232People tend to see the realized outcome of an events relatively more predictable after the realization
than before.
233People tend to �nd strong correlations (group stereotypes) where there are no or only low level interre-
lations.
234People tend to expect extreme outcomes to repeat.
235see Schoemaker (1982) for more details
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Figure 84: prospect theory - The gains value function is concave in gains and convex in losses
(Kahneman & Tversky 1979, �gure 3).

of low probabilities as in the Prospect Theory it is assumed that people know the
"true" probabilities but state them di¤erently

� The function v (�) is the value function that re�ects that people seem to have a concave
(convex) appraisal of gains (losses). Moreover, the value function is in general steeper
for losses than for gains (see �gure 84).

People come to a decision by choosing a strategy, e.g. insurance (I) vs. no insurance (NI),
which maximizes subjective overall value of an edited prospect

max
�
V I ; V NI

�
= max

 
KX
k=1

w (pk) � v (xk) ; v ( )
!
;

with  as the insurance premium for a �xed gain ( > 0) or loss ( < 0). Irrespective
the weighting function, people prefer to exchange risky gains against a �xed payment which
equals the expected value of the risky ones or is even slightly below. Hence, people favor
insurances to �x gains as they maximize their overall value of edited prospects. In contrast,
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they rather refuse to insure losses except the insurance premium is far below the expected
value of the risky payments. Consequently, whether persons buy an insurance or not depends
on the reference point, which decides what payo¤s are gains and losses. Especially when the
reference point is the status quo people tend to accept high insurance premiums to lock
future gains, immediately, while they tend to take high risks instead of insuring against
future losses (re�ection e¤ect).
Although the prospect theory seems to be promising to explain some of the biases, the rest
of the paper follows the expected utility theory. This is not only because of convenience.
Harrison (1994) reviewed several biases which are supposed to indicate that the expected
utility theory is wrong. However, he concluded that modi�cation in the experiment designs
would even result in support of the traditional expected utility theory.

16.2 Some Theoretical Thoughts on Expert Quality & Selection

So far, we have presented some of the most important biases a risk analyst should keep
in mind when she tries to elicit experts. However, are there clear criteria to evaluate the
quality of subjective statements? A standard approach is to calculate a person�s calibration -
how close is the mean probability assessment compared to the observed frequency. However,
there is some opposition to this concept. Calibration seems not to be suitable to evaluate
subjective probability assignments (Aven 2003, p. 64). Subjective probabilities convey
totally di¤erent information compared to "objective" probabilities:

� The "objective" probabilities are an immanent part of the forecasted object (respec-
tively sequence), e.g. a "fair" dice, while subjective probabilities express the uncer-
tainty of the forecasting subject.

� The "objective" probabilities are an axiomatic value while the subjective probabilities
are variables that change with incoming information.

� While an assignment of probability one to the actual realizing outcome and zero to the
others would be a miscalibration in classical statistics these are desirable subjective
probabilities.236

236The concept of "objective" probabilities is not optimal for the performance measurement of credit port-
folio ratings. Banks separate their credit portfolios into di¤erent rating classes from low to high probabilities
of default. The aim is that the long-term default frequencies match the announced class probabilities. This
is measured by the calibration. However, rating classes with probabilities di¤erent than zero or one are just
a sign for a not perfect selectivity, a common measure in credit risk (see Bemmann 2005). Such classes are
only necessary because of a lack of information about the situation of the debtors. Optimally, all �nally
defaulted debtors should have been classi�ed in the default class (= no credit granted) and all others in the
premium class.
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Suppose a "fair" dice with no bias to a speci�c number. In classical understanding of
aleatory uncertainty, the optimal estimate would be to assign an "objective" probability of
1/6 to all numbers. In Bayesian understanding, subjective probabilities of 1/6 just re�ect a
person with the belief that the dice is not biased. An assignment of probabilities for a "fair"
dice di¤erent to 1/6 needs not to be a failure but may rest on additional information. An
experienced gambler could forecast the outcome of the next die role above average.
Nevertheless, calibration seems to be a suitable quality criterion as long as the risk analyst is
interested in a frequency. Patt & Schrag (2003), p. 22, believe that (lay)persons are rather
able to give probabilities for events where a frequency observation is at least theoretically
possible than for singular events without past data as such probabilities convey a degree of
freedom.
Often, but not always, there is more than one expert on a topic. There is the question whom
to ask? According to the concept of concordant beliefs of Milgrom and Stokey (1982) rational
people are assumed to interpret information in the same way (inter-subjective updating)
irrespective of their (heterogeneous) prior beliefs. Consequently, it would be su¢ cient to
arbitrarily choose an expert to ask for expert probabilities (Hanson 2002, p. 2). In reality,
such expert probabilities can only be elicited when it is possible to reach a consensus between
all experts237 or when there is an expert community with a nearly homogeneous knowledge
base.238

Unfortunately, no consensus can be reached on most topics - even within research commu-
nities. The degree of discordance of expert assessments critically depends on how infor-
mation is spread over several experts. Bruggen et al. (2006), p. 3, distinguish between
(1) low knowledge-heterogeneity and (2) high knowledge-heterogeneity. Information of low
knowledge-heterogeneous problems are homogeneously spread over informants. Information
is di¤erently dispersed (in type and quality) for high knowledge-heterogeneous problems. It
is common in corporations as much of the information is widely spread and undocumented,
residing in the minds of the employees (Ostrover 2005, p. 9). Moreover, many employees
are professionals on isolated topics. And companies often lack of systematic procedures for
consolidating massive amounts of information into quantitative metrics (Ostrover 2005, p.
9).
Consequently, it is relevant which expert or group of experts to ask. In a situation of
competing expert assessments, the risk analyst should generally prefer to consult as many
experts as possible. A subsequent informal or formal aggregation of the expert statements

237Deliberation groups or Delphi studies could help to �nd common prior. Afterwards, the risk analyst
needs only to contact one of those experts for further assessments.
238Weather forecasters usually make very similar predictions for the weather weeks or month in the future
as they refer to some base rates, e.g. long term historic data. The more the forecasted day approaches the
more the forecasts diverge because of new private information (Hanson 2002, p. 2).



16.3 Basic Elicitation Techniques 169

by the risk analyst (or decision maker) normally results in a better risk assessment.239

16.3 Basic Elicitation Techniques

In this section we present some techniques that allow for a separate quanti�cation of the risk
analyst�s or expert�s uncertainty on a risk factor Y .240 For simplicity, we only use the term
expert even though the expert can be the risk analyst herself.
We start with techniques (scoring rules, promissory notes, lotteries, and lottery insurance
markets) that can deal with experts not willing to reveal their assessments without any
monetary compensation. All approaches are grounded on assumptions of pro�t or utility
maximization of rational experts as well as on the Bayesian understanding of probabili-
ties as a willingness to bet. Regrettably, these techniques are extremely academic and too
demanding for real life.
Hence, we favor two basic and simple interval techniques (see sections 16.3.5 and 16.3.6 as
well as Garthwaite et al. 2005) that can even account for imprecise probabilities: weighting of
intervals (�xed interval technique) or calibrating probability distributions (variable interval
technique).
All elicitation techniques require to some extent that the experts are able to quantify their
latent probability assessment (normative expertise). Unfortunately, people can often not
meet this requirement in real life. In section 16.4 we present some empirical results on
the actual calibration of people and o¤er a Bayesian quanti�cation of the miscalibration of
subjective statements.

16.3.1 Scoring Rules

Due to the fear of cheap talk, advanced elicitation techniques have been developed to incen-
tivize experts to report truthfully. One of the most important techniques is the scoring rules
approach which o¤ers experts monetary incentives when they reveal their "true" probability
assessments. The �rst rule, the logarithmic scoring rule, was presented by Good (1952).
Since that time countless other scoring rules have been presented.

239An intuitive example, showing the gains from aggregation when information is spread, comes from
Kalovcova (2007), p. 4: Assume the world will be tomorrow in one of the six states A, B, C, D, E, or F
and there are �ve experts that give you an assessment according to their knowledge. The experts may fail
to advise us the right state A. This may be modelled by expert drawing three balls with replacement from
an urn with 10 � A and two balls of B, C, D, E, and F . E.g., the experts draw AAB (expert 1), AEE,
ABF , ACD, and CDF . Then expert 1 advises state A, expert 2 states E and the others have no clue. If
we had an aggregation mechanism, we could observe the experts have drawn �ve times A, and two times B,
C, D, E, and F .
240See section 15.2 for the speci�c risk quanti�cation module of the iBRA concept.
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The huge advantage of scoring rules is that the operator (e.g. the risk analyst) of a proper
scoring rule does not need to know the "true" expert probabilities. Instead, the experts
are rewarded by payo¤ rules maximizes their expected payo¤ for a "true" statement, only.
However, some assumptions are needed: (1) The experts know their "true" probability
assessments but do not want to reveal them for free (Kynn 2008, p. 255). (2) The experts
need to understand the payo¤ structure of scoring rules. (3) Experts should be utility
maximizers and consequently willing to reveal their subjective probabilities for cash. In the
following we present some formulas for a better understanding of scoring rules.241

Scoring rules are (monetary) rewarding schemes that try to get an expert to reveal her sub-
jective probability assessment � = (�1; :::; �K)

0 on theK outcomes of a discrete or discretized
risk factor. The risk analyst can only observe the expert�s reports rk, for k� f1; :::; Kg. Conse-
quently, the scoring rule pays sk (r) given outcome k realizes and the report is r = (r1; :::; rK)

0.
A proper scoring rule maximizes the expected payo¤ when the expert reveals her subjective
assessment (r = �)

� = argmax
r

KX
k=1

�ksk (r) ; (19)

where
PK

k=1 rk =
PK

k=1 �k = 1. Prominent proper scoring rules are summarized in table 36:

scoring rule
quadratic sk (r) = ak + b � rk � b

PK
k=1 r

2
k=2

spherical sk (r) = ak + b � rk=
qPK

k=1 r
2
k

logarithmic sk (rk) = ak + b � ln rk
power law sk (r) = ak + b � �

R rk
0
"��2k d"k � b

PK
k=1 r

�
k ; � � 1

Table 36: prominent proper scoring rules (Hanson Jan. 2002, p. 4)

There is no other proper scoring rule than the logarithmic where the payo¤ sk (�) for outcome
k only depends on the expert�s probability report rk (Hanson Jan. 2002, p. 4).
It is important to know, that prober scoring rules only hold when experts maximize their
expected payo¤ (see equation 19). However, this assumption is only suitable for risk-neutral
experts. Risk-averse experts maximize their expected utility (Hanson 2002, p. 5). This
is not equivalent to a maximization of their payo¤. An example may provide a better
understanding of scoring rules.
Assume, the risk analyst wants to elicit the probabilities of two mutually exclusive outcomes,
A and B (P (A \B) = 0 and P (A) + P (B) = 1) of a risk factor. A simple logarithmic

241For a closer description of scoring rules see Lindley (1985), pp. 23.
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scoring rule seems suitable242

sk (r) =

�
ln r; when k = A occurs
ln (1� r) ; when k = B occurs

;

where r (1� r) is the expert�s probability report of outcome A (B). Furthermore, fW (wjA)
and fW (wjB) are the expert�s subjective probability distributions for her wealth in a world
given outcome A or B. Then, the expert�s expected utility - inclusive the payments of the
scoring rule - is (Kadane & Winkler 1988, pp. 359)

E (U (W )) = �

Z
U (w + ln r) fW (wjA) dw + [1� �]

Z
U (w + ln (1� r)) fW (wjB) dw;

where � (1 � �) is the expert�s subjective probability assessment of outcome A (B). For a
utility maximization expert it follows

r

1� r
= c

�

1� �
;

where

c =

R
U 0 (w + ln r) fW (wjA) dwR

U 0 (w + ln (1� r)) fW (wjB) dw
:

The report r matches the subjective assessment � when c = 1. This is true when U (�) is
linear, i.e. the expert is risk-neutral. The no-stakes condition of Kadane & Winkler (1988)
is not su¢ cient to guarantee c = 1. It simply states that the expert�s wealth is independent
of the outcome of the risk factor, i.e. fW (wjA) = fW (wjB), because she has no other
stakes in a special outcome of the risk factor.243

Scoring rules su¤er from a thick market problem244 because they are not able to produce
a single consensus estimate when experts give di¤erent responds (Hanson 2003, p. 108).
This is problematic when we assume that the knowledge about a risk factor is dispersed
over di¤erent experts. In such a situation the di¤erent experts might come to di¤erent
assessments when they judge on the basis of di¤erent, only partly overlapping information.
Scoring rules do not o¤er a mechanism to deal with diverse answers (Hanson Jan. 2002).
Indeed, it is possible to apply a weighting mechanism for the di¤erent answers. Unfortu-
nately, a weighting according to the scoring rule payo¤s is not univocal. Even when prober

242This corresponds to a logarithmic scoring rule si (ri) = ai + b � ln ri, where i = A;B, ai = 0, and b = 1.
243An extreme example is the expert elicitation of the probability to win a nuclear war. The expert could
deliberately underestimate that probability in order to prevent the war because her wealth inclusive the
payments of the scoring rule would by worthless in such a situation.
244In contrast, prediction markets (see section 18) rather su¤er from a thin market problem. Their results
improve the more traders take part. However, they might fail with too less traders. In the case of one trader
standard continuous double-auction markets don�t work.
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scoring rules are used they can lead to di¤erent rankings of the experts (Winkler & Murphy
1968, p. 756). Moreover, the resulting aggregated probability distribution does not allow
to retrace to the marginal distributions of the single agents. This is called opinion pooling
problem (see Garg et al. 2004). It is not far-fetched that the resulting weighted distribution
could be disapproved by all interviewed experts.

16.3.2 Promissory Notes

The previous approach assumes experts with clear probability assessments. Experts just need
to be asked for their probability estimates, although monetary incentives are often needed.
However, the discussion - initiated by Tversky & Kahneman (1974) - on the human problems
to formulate subjective probability statements indicates that a direct query of probabilities
seems critical. Alternatively, Bayesian theory propagates to indirectly derive subjective
probabilities (= degrees of belief) from the person�s bets on a risk factor (willingness to bet,
de Finetti 1976).
A very simple approach is the use of promissory notes (Kadane & Winkler 1988) which pay
xA > 0 when outcome A realizes and otherwise nothing. Then, it is asked for the maximum
price � the expert is willing to pay for one note. The expert�s reported probability for
outcome A is rA = �=xA.
The odds ratio of a promissory note is (see Kadane & Winkler 1988 or Kadane & Winkler
1987)

rA
1� rA

= c
�

1� �
;

where

c =
�

xA � �

R
[U (w � �+ xA)� U (w)] � fW (wjA) dwR
[U (w)� U (w � �)] � fW

�
wj �A

�
dw

and �A is the complement outcome of A.
The no-stakes condition of Kadane & Winkler (1988) is not su¢ cient for c = 1. Even when a
risk-averse expert has no other stakes outside the elicitation, the promissory note approach
underestimates the experts probability assessments for A because of c < 1. Consequently,
this simple procedure is not suitable to elicit subjective probabilities.

16.3.3 Lotteries

Lotteries were another early approach to separate probability assessments and preferences
of experts in elicitation. An expert decides between two lotteries with identical payo¤s.245

In a �rst lottery the expert receives a payo¤ xA when outcome A occurs and xB in the case

245see Kadane & Winkler (1988), pp. 357, for more details
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of outcome B. Both outcomes are mutually exclusive. A second independent lottery has the
same payo¤ xA (xB) with the reported probability of r (1 � r). Without losing generality
we presume xB = 0. The experts have to set the probability report r at such a value that
they are indi¤erent between the lotteries.
Assume, fW (wjA) and fW (wjB) as the probability distributions for the wealth of the
expert without any lottery payo¤ given a world where A or B has realized. Then, the
expert�s expected utility for the �rst lottery equals

E1 (U (W )) = �

Z
U (w + xA) fW (wjA) dw + [1� �]

Z
U (w) fW (wjB) dw;

with � as the expert�s probability assessment of outcome A and fW (wjA) is the expert�s
latent uncertainty on her wealth given outcome A. Respectively, the expected utility for
lottery 2 is

E2 (U (W )) = r

�
�

Z
U (w + xA) fW (wjA) dw + [1� �]

Z
U (w + xA) fW (wjB) dw

�
+ [1� r]

�
�

Z
U (w) fW (wjA) dw + [1� �]

Z
U (w) fW (wjB) dw

�
:

The expert is indi¤erent between the two lotteries when E1 (U (W ))
!
= E2 (U (W )). After

some arrangements it follows the odds ratio (Kadane & Winkler 1988, pp. 358)

r

1� r
= c

�

1� �
; with

where

c =

R
[U (w + xA)� U (w)] � fW (wjA) dwR
[U (w + xA)� U (w)] � fW (wjB) dw

:

In the case of c = 1, the expert�s announced value r is equivalent to her probability assessment
�. This is true for linear U (�), i.e. the expert is risk-neutral, or when the no-stakes condition
holds, i.e. fW (wjA) = fW (wjB).

16.3.4 Lottery Insurance Market

Apart from lotteries, monetary elicitation techniques fail to elicit the "true" probabilities
of risk-averse and rational experts - irrespective of whether they have other stakes or not.
Unfortunately, lotteries in their basic form can not be used for risk factors with more than
n = 2 possible outcomes. Hanson (2002) proposes the lottery scoring rule as an alternative
that pays lottery tickets instead of cash.
First, the expert is rewarded with K di¤erent lottery tickets for K di¤erent reports r =
(r1; :::; rK)

0, for
PK

k=1 rk = 1, on the probability of the outcomes k = 1; :::; K. Subsequently,
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the lottery on the realized outcome will only be conducted. All other lotteries will be canceled
and their tickets will become worthless.
The ticket on the realized outcome k pays x with an outcome-dependent probability �k 2
[0; 1] and 0 with a probability of 1��k. The state dependent probability is determined by a
scoring rule �k = sk (r) 2 [0; 1],246 which depends on the expert report r. Then a "faithfully"
report rk = �k maximizes the expert�s expected utility.

E (U (W )) =

KX
k=1

�k � [[1� �k]U (w) + �iU (w + x)] = U (w)+[U (w + x)� U (w)] �
KX
k=1

�k�k:

Once the no-stakes condition does not hold, the expert�s wealth depends on the outcome of
the risk factor. The basic lottery scoring rule does not guarantee "faithfully" reports. A
solution is a competitive insurance market with J price-taking experts (Hanson 2002, pp.
5). For outcome k, an expert j can hedge, hkj, her outcome-dependent wealth wkj to get a
hedged wealth of zkj = wkj + hkj. Hedging does only take place between the experts. For
each outcome k the aggregated hedging payments are zero over all experts, i.e.

PJ
j=1 hkj = 0.

The price for an insurance payment x in k is pk which is formed by demand and supply. All
rational experts j = 1; :::; J maximize their expected utility

Ej (Uj (�)) =
KX
k=1

�kjUj (zkj) ;

where
PK

k=1 pkhkj = 0. Given the insurance payments p = (p1; :::; pK)
0, expert j seeks for the

outcome-dependent payo¤s z�kj that satisfy �kjU
0
j

�
z�kj
� !
= �jpk for �j =

PK
k=1 �kjU

0
j

�
z�kj
�
.

The experts will trade as long as the market has not reached an equilibrium where no expert
wants to buy or sell any hedging. After trading run dry, the insurance market is closed.
Then the hedging price pk for a payment of x is the market consensus on the probability of
outcome k.
The scoring rules, promissory notes, lotteries, as well as the lottery insurance markets are
theoretically and mathematically very elegant. However, they seem not feasible in real life:
(1) These techniques are mostly designed for risk-neutral and Bayesian utility maximizing
experts. (2) Even when experts would behave in such a way, they would need to understand
the payo¤ mathematics. (3) Experts are assumed to know their probabilities exactly but
are not willing to state them for free. In our understanding, it is doubtful whether experts
really would deliberately express false statements as long as the elicitation process is well

246The payments of the scoring rules need to be between zero and one. This condition can be ful�lled
for all reports by the quadratic and spherical scoring rules but not by the logarithmic scoring rule as
limr!0 ln r = �1.
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thought-out and organized. Consequently, we prefer the simple �xed and variable interval
techniques.

16.3.5 Fixed Interval Technique

The basic idea of the �xed interval technique is to express uncertainty on an uncertain
discrete or discretized risk factor Y by weighting di¤erent intervals. Therefore, the risk
analyst needs to separate the domain of the risk factor Y into K intervals yI =

�
yI1 ; :::; y

I
K

�0
,

where yIk�
�
ylowk ; ylowk+1

�
, for k = 2; :::; K � 1, and yIK�

�
ylowK ; yupK

�
.247 The intervals need to be

disjunct, i.e. yIk \ yIl = ? for k 6= l, and should cover the whole domain of Y . Subsequently,
the expert has to allocate K weights w = (w1; :::; wK)

0 to the intervals. It is possible to

endow the expert with a prede�ned amount of weights ~w that
PK

k=1wk
!
= ~w must hold.

A free allocation is possible, too. For a more standardized presentation of the experts
uncertainty on the risk factor Y we just need to normalize the weights to get the expert�s
discrete prior distribution � (y) = (�1; �2; :::; �K)

0 ; where the interval probabilities calculate
by �k = wk=

PK
l=1wl.

248

A visualization of the weights can support the expert to express her uncertainty. It is
preferable to draw the prior distribution on a sheet of paper. We call such plots expert
histograms. Unfortunately, expert histograms can be counterintuitive when the intervals
yIk feature di¤erent widths. Then a modi�ed expert histogram ~� (y) = (~�1; ~�2; :::; ~�K)

0 is
preferable as it accounts for the di¤erent ranges:

~�k =
wk �RangekPK
l=1wl �Rangel

;

where Rangek = ylowk+1 � ylowk , for k = 1; :::; K � 1 and RangeK = yupK � ylowK .
A special problem arises when interval 1 or K possesses in�nite limits, i.e. ylow1 ! �1 or
yupK ! 1. Then the analyst can decide to ask the expert for an absolute minimum ymin or
maximum ymax. Alternatively, it is possible to model the tails (1) by a function exhibiting
exponential decay

~�exp1 (y) = ~�2 � exp
�
��
�
ylow2 � y

��
; for y� (�1; yup1 ]

~�expK (y) = ~�K�1 � exp
�
��
�
y � yupK�1

��
; for y�

�
ylowK ;1

�
or (2) by a function featuring power law decay249

~�pow1 (y) = ~�2 �
�
ylow2 � y + 1

���
; for y� (�1; yup1 ]

~�powK (y) = ~�K�1 �
�
y � yupK�1 + 1

���
; for y�

�
ylowK ;1

�
:

247In the case of no �nite ylow1 and yupK the intervals are open.
248E.g., a weight on interval k twice as large as on interval l corresponds to a subjective assessment that
the probability for Y to realize in interval k is twice as high as for realizing in l.
249Heavy-/ fat-tailed distributions posses a power lay decay, where P (X > x) � x�[1+�], for x ! 1
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Both approaches guarantee a smooth decay starting from the modi�ed probabilities of in-
terval 2 and K � 1. The areas under these tails equal the non-modi�ed expert probabilities
�1 and �K .
A suitable value � > 0 needs to be determined. For the exponential decay the parameter �
needs to guarantee

~�2
�
� exp

�
��
�
ylow2 � y

������ylow2
�1

!
= �1, for y < ylow2

� ~�K�1
�

� exp
�
��
�
y � yupK�1

������1
yupK�1

!
= �K , for y > yupK�1:

Hence, it is � = ~�2=�1, for y < ylow2 , and � = ~�K�1=�K , for y > yupK�1. In the case of power
law decay we just solve

� ~�2
1� �

�
�
ylow2 � y + 1

�1������ylow2
�1

!
= �1, for y < ylow2

~�K�1
1� �

�
�
y � yupK�1 + 1

�1������1
yupK�1

!
= �K , for y > yupK�1;

Assuming � > 1 then � = [�1 + ~�2] =�1, for y < ylow2 , and � = [�K + ~�K�1] =�K , for
y > yupK�1.
An example might help to understand the di¤erences between the approaches. Assume, a
risk analyst has asked an expert for interval weights to express her uncertainty on a risk
factor Y . The hypothetical answers and resulting probabilities are summarized in the table
37.

[�5;�2) [�2; 0) [0; 0:5) [0:5; 1) [1; 2) [2; 3:5) [5:5; 6) [6; 10]

wk 5 4 3 2 3 3 4 6

�k 0:16 0:13 0:1 0:06 0:1 0:1 0:16 0:19

~�k 0:05 0:06 0:19 0:13 0:1 0:06 0:06 0:05

~�expk � = 0:4 0:06 0:19 0:13 0:1 0:06 0:06 � = 0:33

~�powk � = 1:4 0:06 0:19 0:13 0:1 0:06 0:06 � = 1:33

Table 37: examples for interval weights

In the upper subplot of �gure 85 we visualized the expert weights. For the middle subplot

and � > 0. Some reserve the term "fat tail" for distributions with in�nite variance where 0 < � < 2

(http://en.wikipedia.org/wiki/Fat_tail, last revised January 28, 2009). See Karagiannis et al. (2007) for a
discussion on exponential and power law decay.
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Figure 85: (modi�ed) expert histograms

we assume a natural minimum (ylow1 = �5) and maximum (yupK = 10) for Y . It is easy to see
that the basic expert histogram is misleading because of the heterogeneous interval widths.
Hence, decisions should be based on a modi�ed expert histogram. In the lower subplot we
model the tails for the modi�ed expert histogram. The power law decay falls faster as it
dominates the exponential decay far in the tails.250

16.3.6 Variable Interval Technique

An alternative to the �xed interval method is the variable interval technique which propa-
gates a subjective calibration of a stochastic distribution. It seems obvious to describe expert
statements by distributions normally used in data analysis, like Gaussian, Student�s t, ex-
ponential, chi-square, gamma, beta, or binomial distribution. However, a direct inquiry for
parameters seems di¢ cult as these distributions mostly have non-intuitive parameters. This

250An alternative to the (modi�ed) expert histograms is the implementation of kernel estimators like the
Gaussian or the Epanechnikov kernel function.
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is even true for assuming a Gaussian distribution for our risk factor Y � N (�; �). The mean
value � is not a problem as the mean value, mode, and median collapse. In contrast, most
people, even experts, might have a problem to quantify the standard deviation �. Although
such distributions could be used to match them to an elicited modi�ed expert histogram,
the dominant approach is to directly elicit special elicitation distributions like the triangular
distribution or the (modi�ed) PERT distribution.

Triangular Distribution
The triangular distribution is one of the workhorses in elicitation as it is easy to use even
when there is little information on the risk factor Y . It simply de�nes Y by a, c, and b which
are the lower and the upper bounds as well as the most likely value of Y , which is more
intuitive than asking for the mean value. The respective pdf is

Tri (yj a; b; c) =
(

2[y�a]
[c�a][b�a] ; for a � y � b
2[c�y]

[c�a][c�b] ; for b < y � c
;

where E (Y ) = [a+ b+ c] =3 and Std (Y ) =
p
a2 + b2 + c2 � ab� ac� bc=

p
18 are both

equally sensitive to all three parameters.
Often analysts try to avoid asking experts for the absolute minimum or maximum (a and c).
This would provoke experts to state extreme values. Alternatively, the risk analyst can elicit
a credible interval CR (q) with credible level q. It is simply an interval where Y is presumed
to realize with probability q � 100%. Hence, the expert is asked for a practical minimum and
maximum (~a and ~c)251

(a�; c�)0 = argmin
a;b

 �
1� q

2
� FTri (~aj a; b; c)

�2
+

�
1 + q

2
� FTri (~cj a; b; c)

�2!
;

where FTri ( �j a; b; c) is the cdf of a triangular distribution and a� as well as c� are the implied
absolute minimum and maximum. In the upper subplot of �gure 86 you can �nd triangular
pdfs for �ctive expert statement on the CO2 price. All three statements have equal minimum
and maximum values but diverge for the most likely value. In the lower subplot we show
the variations of the triangular distributions (for �xed most likely price) when the expert is
asked for practicable minimum and maximum instead of absolute bounds. Generally, this
results in a� and c� more left and right compared to a and b. Unfortunately, this approach
can lead to counterintuitive results as negative CO2 prices feature positive probability.

251In fact, the credible level Q is uncertain to the risk analyst. In section 16.4, we present some results
of an elicitation where we have tried to quantify the uncertainty on Q. In section 16.5.2, we introduce an
algorithm that accounts for the uncertainty on Q.
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Figure 86: triangular distribution

(Modi�ed) PERT
A more �exible distribution compared to the triangular one is the modi�ed PERT (Program
Evaluation and Review Technique) distribution. It is again de�ned by an absolute minimum
a, absolute maximum c, and the most likely value b, of Y .252 Additionally, its form depends
on a shape parameter 
 controlling the in�uence of extreme absolute minimum and maximum
expert statements. The modi�ed PERT is de�ned by

PERTmod (yj a; b; c; 
) = Beta

�
y � a

c� a

�����; �� ;
for 
 > 0 and Beta ( �j�; �) as the pdf of a beta distribution with parameters

� =
[�� a] � [2b� a� c]

[b� �] � [c� a]
& � =

� � [c� �]

�� a
& � =

a+ 
 � b+ c

2 + 

:

252Again, it is possible to ask experts for the practical minimum and maximum of Y , beside the most likely
value b.
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Figure 87: (modi�ed) PERT distribution

The mean � of the modi�ed PERT distribution is 
 times more sensitive to the most likely
value b than to the absolute minimum or maximum.253 By moving 
 up and down, the
expert can express how likely values of Y are near a or b. In the upper subplot of �gure 87
you can see di¤erent modi�ed PERT distributions resulting from di¤erent most likely values,
b = (15; 95; 115)0 for hypothetical CO2 prices. Given a most likely value b = 115e di¤erent
modi�ed PERT distributions (
 = (0:5; 4; 50)0) are plotted in the lower subplot of �gure 87.

16.4 Credibility Intervals

Elicitation distributions like the triangular or modi�ed PERT distribution are easily to in-
troduce to experts but require to state an absolute minimum and maximum. This can result
in two problems: (1) Experts state an extreme minimum and maximum which they believe

253The basic PERT distribution is de�ned for 
 = 2.
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is rather unlikely. Then a triangular distribution puts too much probability to the tails. Al-
though this e¤ect could be compensated by the calibration of a modi�ed PERT distribution,
the identi�cation of an adequate shape parameter could be time-consuming. (2) Experts
could simply state practicable instead of absolute extrema.
For the latter proposal, there arises the question what "practicable" means? The risk analyst
could simply query for the prede�ned q=2 and 1� q=2 quantiles of a risk factor Y : "Please
state a lower (upper) bound for Y where you believe that the probability for the �nal outcome
of Y below (above) this bound is q=2 � 100%".254
Unfortunately, such an approach relies on the assumption that experts have no systematic
bias in interpreting numerical probabilities. Alternatively, experts could be confronted with
verbal probability statements.255 A well-known probability wording is used by the Inter-
governmental Panel on Climate Change (see IPCC 2008, p. 11): The risk analyst could
ask for bounds where a lower and higher outcome of Y is "extremely unlikely" (< 0:05),
"very unlikely" (0:05� < 0:10), or "unlikely" (0:10� < 0:33).256 Patt & Schrag (2003) show
that people tend to have an inter-subjective understanding of the IPCC probabilities which
is however biased. In contrast, Budescu & Wallsten (1986) �nd people to possess a stable
but not inter-subjective rank ordering of such phrases. This can result in a fundamental
miscommunication between the risk analyst and the expert (Fillenbaum et al. 1991).
Because of these contradicting research results, we propagate an alternative way which ap-
plies verbal statements which do not require a �xed numerical interpretation. We identi�ed
three "simple" questions to query experts for some basic credible intervals:

1. high probability interval: "Please state a range for Y for which you are con�dent
that the �nal outcome of Y is covered with high probability and there is only a low
probability that the value is not covered!"

2. �fty/ �fty interval: "Please state a smaller range for Y for which you believe that the
interval has a �fty/ �fty chance to cover the �nal outcome of Y !"

3. median interval: "Please estimate a value for Y for which you think it is equally
probable that the �nal outcome of Y is below (exact) or above that cutting point!"

The crux of these credible intervals are their credible levels Q which are risk factors for the
risk analyst. An adequate distribution is needed to re�ect the risk analyst�s uncertainty. In
254see Garthwaite et al. (2005) for comparable approaches
255Budescu (1988) present evidence that there is often a small di¤erence between decisions based on nu-
merical or verbal statements.
256Other statements are "virtually certain" (> 0:99), "extremely likely" (> 0:95 � 0:99), "very likely"
(> 0:90�0:95), "likely" (> 0:66�0:90), "more likely than not" (> 0:50), "about as likely as not" (0:33�0:66)
(IPCC 2008, p. 11).
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the elementary approach, the risk analyst simply states a prior � (q) by calibrating a beta
distribution Q � Beta (a0; b0) according to some basic statistics,

E (Q) =
a0

a0 + b0
& V ar (Q) =

a0b0

[a0 + b0]
2 [a0 + b0 + 1]

& Mode (Q) =
a0 � 1

a0 + b0 � 2
:

Alternatively, the risk analyst can calculate a posterior � (qjElicitation) based on some
data helping to interpret the human understanding of credible intervals. Within the BRM
research project we run an empirical analysis by asking J = 22 (20 for median interval)
arbitrary chosen persons (= experts) to state the credible intervals (see above) for n = 10
almanac questions.257 For all experts, we count the numbers of "hits" xj� f0; 1; :::; 10g, i.e.
the number of intervals that covered the "correct" answers. Given the risk analyst knows
the latent credible level Qj = qj and the expert�s answers can be assumed to be independent,
the number of hits Xj should be binomially distributed Xjjn = 10; q � Bin (10; q). Based
on our n = 10 observations we can set up the risk analyst�s posterior of expert j�s credible
level Qj

� (qjjxj) / Lxj (qj) � � (qj) = Bin (xjj 10; q) � � (q) :

Once the risk analyst assumes a beta-distributed prior Qj � Beta (a0; b0), the posterior
Qjjxj � Beta (apost; bpost) is a conjugate prior where apost = a0 + xj and bpost = b0 + n� xj.
So far, we have shown a possibility how to measure the latent calibration of expert j be-
forehand the actual elicitation. This seems rather academic than practical as a risk analyst
can count herself lucky to �nd experts at least taking part in the elicitation. Therefore,
we assume experts to be exchangeable for the risk analyst in respect of their understanding
of the credible interval questions. Then, given the stereotypical credible level Q = q and
all answers are independent, the whole number of observed hits

PJ
j=1Xj should follow a

binomial distribution
PJ

j=1 Xjjn � J; q � Bin (10 � J; q). Consequently, the posterior of a

257The questions were: "What is your estimation of the number of inhabitants of Florence (Italy) in
June 2006?", "What is your estimation of the equatorial circumference of Earth?", "What was the o¢ cial
population of the People�s Republic of China according to the 2000 census?", "What do you believe is the
share of African Americans in the total U.S. population in 2007?", "What do you believe was the popular
vote share of US president Barack Obama in the 2008 U.S. presidential election?", "What do you believe
was the maximum daytime temperature measured in Palma de Mallorca (Spain) in 2008?", "According to
the Forbes magazine, Warren Bu¤et was the �World�s Billionaires #1� in 2008. What do you believe did
Warren Bu¤ett own of a net worth in 2008 (in US-$)?", "During the 2006 FIFA World Cup in Germany,
64 matches were played. What do you believe was the average number of goals per match?", "The Mount
Everest Elevation (Nepal/China, Tibet) is the World�s highest mountain. What do you believe is the exact
elevation of the Mount Everest (in m/ ft)?", "The Euro (e) is one of the most important currencies in
the world. What do you believe was the 2007 worldwide share of the Euro in the o¢ cial foreign exchange
reserves?"
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Figure 88: posterior credible level

stereotypical credible interval Q is

� (qjx) / Bin
�XJ

j=1
xj

��� 10 � J; q� � � (q) :
Again, when the risk analyst assumes a beta prior Q � Beta (a0; b0), the posterior Qjx �
Beta (apost; bpost) is a conjugate prior where apost = a0+

PJ
j=1 xj and bpost = b0+

PJ
j=1 [n� xj].

In table 38, we have summarized the posteriors � (qjx) (see also upper subplot in �gure 88)
resulting from our empirical analysis. To purely rely on the data, we have assumed uniform
priors corresponding to a beta distribution with a0 = b0 = 1.

Our results support the heuristic of overcon�dence of subjective statements for the "high
probability" (1) and the "�fty/ �fty" interval (2). While the posterior of (1) is far below one,
the posterior of (2) is below 0:5. Consequently, the risk analyst should take into consideration
that experts o¤er too narrow intervals. Surprisingly, the posterior of Q for the median



184 16 EXPERT ELICITATION

10 � J
PJ

j=1 xj apost bpost Mode
�
Qpost

�
Std

�
Qpost

�
(1) 220 161 162 60 0:73 0:03

(2) 220 92 93 129 0:42 0:03

(3) 200 117 118 84 0:59 0:04

Table 38: posteriors for credible levels (uniform priors)

interval has most of its probability above 0:5. This is a sign that people tend to overestimate
the "true" value.
These empirical results need to be taken with a pinch of salt as they base on the elicitation
of almanac questions. However, this is a general problem. Experts are normally elicited on
(currently unknowable) future events, while most research is on probability judgments of
John Citizens for general knowledge questions. This is why the risk analyst can immediately
measure the quality of such statements (Vose 2008, pp. 395). In contrast, experts recognize
that the realizations of future events is unknown to everyone and not de�nitely answerable
in advance. As a consequence the risk analyst can expect a lower level of overcon�dence for
questions on future events (Ronis & Yates 1987, pp. 194). This fact we tried to account for
by imposing a prior for the "high probability" interval with a mean close to unity while we
have more concentrated the other priors around 0:5 (see table 39 and the lower subplot of
�gure 88).

a0 b0 Mode (Q) Std (Q) apost bpost Mode
�
Qpost

�
Std

�
Qpost

�
(1) 20 2 0:95 0:06 181 61 0:75 0:03

(2) 4 4 0:5 0:17 96 132 0:42 0:03

(3) 4 4 0:5 0:17 121 87 0:58 0:03

Table 39: posteriors for credible levels (informative priors)

Only the posterior (1) has slightly shifted to unity while the posteriors of the other cred-
ible levels are more close to 0.5. However, there is no remarkable di¤erence between the
posteriors.
Another curious result of our study is the self-assessment of the interviewees. After they had
answered all questions, we asked 17 of them to state their assessments how many of their
"high probability", "�fty/�fty" intervals actually cover the "correct" value and in how many
cases the true value will lie below or equal the median (see table 40 and �gure 89).

Although the interviewees were instructed to state an interval where they are rather certain
that the "correct" value will not fall outside, there were several persons that ex post felt
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Figure 89: self-assessment

interval self-assessment # of covering intervals
(1) 6:32 (2:12) 7:29 (1:76)

(2) 4:44 (1:89) 4:18 (2:10)

(3) 4:35 (1:01) 5:76 (1:20)

mean value (standard deviation)

Table 40: self-assessment results

some overoptimism and feared too narrow intervals. Generally, we optically found no strong
relationship between the self-assessment of the experts x̂j and their actual performance
measured in "correct" answers xj.

Additionally, we run (for simplicity) a frequentist least squares estimation of the linear
regression xj = �+�x̂j + "j where E ("j) = 0.258 We estimated �̂ = 3:675 and �̂ = 0:411.259

There is some evidence for a positive relationship but it is rather weak (Pearson�s � = 0:374,
R2 = 0:140).

258Here, we do not distinguish between the di¤erent credible intervals.
259We do not test the parameters as we want to avoid a distributional assumption for "j .
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16.5 Elicitation Techniques for Integrated Risks

In risk management we are interested in describing important target variables B. E.g., B
can be a company value depending on n uncertain risk factors Y = (Y1; :::; Yn)

0 (interest
rate, consumption, commodity prices).260 The uncertainty on B normally results from two
sources:

1. A model describes the relationship between the quantity B and the risk factors Y

B = h (Y1; :::; Yn) + ";

where h (�) is a deterministic (non)-linear function sometimes enhanced by a measure-
ment or misspeci�cation error ".

2. The joint distribution of the risk factors

P (Y1 = y1; :::; Yn = yn) = fY (y1; :::; yn) ;

captures the uncertainty on the risk factors and re�ects how much information about
one factor can be gained from the observation of the others. The joint distribution
complicates when B is a function of risk factors at di¤erent point in times.

In the following section we only deal with techniques that allow to approximate the joint
distribution in point 2. We start with non-time dependent risk factors, i.e. Yi = Yit. In the
basic situation of independent risk factors, their joint distribution can be calculated by a
factorization of its marginal distributions (see �gure 90)

P (Y1 = y1; :::; Yn = yn) = fY1 (y1) � ::: � fYn (yn) :

Although modelling independence is so straightforward, it can underestimate risk as observed
joint extreme events in real life feature a low probability under the independence assumption
(see corners in �gure 90). Hence, we present techniques allowing to model correlations
between di¤erent risk factors as well as to handle auto-correlated risk factors.

16.5.1 Visual Copula

We start with the presentation of a technique, we call visual copulas, that allows to approx-
imate the correlation of two up to three di¤erent risk factors. Its basic idea is to confront

260E.g., Garz et al. 2009 design a model that estimates the discounted cash �ows of di¤erent portfolios of
German power stations.
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Figure 90: independent risk factors

the expert with scatter plots produced by one or several copulas. In the appendix A.8.1 you
can �nd an introduction to the concept of copulas.
The visual copula technique for two risk factors fY1; Y2g is a three step approach. In a
�rst step, the expert separately quanti�es her uncertainty on both risk factors Y1 and Y2 in
distributional form (see section 15.2 for more details). In the next step, the expert has to
choose an adequate correlation structure which is generated by a copula. As the copulas
mainly di¤er in their ability to model tail dependence, the expert should weight the likelihood
for joint extreme events of fY1; Y2g (see table 41).261

extreme negative Y2 extreme positive Y2
extreme negative Y1 w�� w�+

extreme positive Y1 w+� w++

Table 41: weighting scheme for the likelihood of joint extreme events

According to the expert�s assessment the risk analyst can chose a suitable copula function
to model the joint density of the risk factors (see table 42).262

261A weight w = 0 would state negligible tail dependence.
262See �gure 104 in appendix A.8.1 for scatter plots produced by di¤erent copulas.
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Gauss Student�s Clayton� Gumble� Frank�
Y �
1 ; Y

�
2

	
� N N � ��

Y +
1 ; Y

+
2

	
� N � N ��

Y �
1 ; Y

+
2

	
� H H � ��

Y +
1 ; Y

�
2

	
� H � H �

N=H sampling with positive/ negative (rank) correlation
� negative dependence only by j� j & sampling fY1; 1� Y2g

Table 42: copulas for modelling of joint extreme events

The risk analyst should prepare several scatter plots (see �gure 91) produced by the select
copula function and di¤erent pre-de�ne levels of rank correlations.263 The number of pre-
sented plots could be reduced by ignoring rank correlations between �0:5 and 0:5 apart from
zero, as they are hard to recognize in scatter plots. Once the expert has decided for one
scatter plot (a weighting would also be possible), Monte Carlo techniques can be used to

generate W correlated pairs
n
y
(w)
1 ; y

(w)
2

o
w=1;:::;W

of the risk factors (see appendix A.8.2 for

the Monte Carlo algorithms).

The visual copula approach is still applicable to model the dependence structure of three
risk factors Y1, Y2, and Y3. For the sake of simplicity, we only use the Gaussian copula which
needs an additional step in elicitation to guarantee a positive de�nite covariance matrix,
c0�c > 0 for c�R3. First, the expert separately expresses her uncertainty on the risk factors.
Afterward, scatter plots for the tuples fY1; Y2g and fY1; Y3g are presented to the expert for
di¤erent levels of rank correlation �� [�1; 1]. In the third step, the expert can choose between
di¤erent scatter plots for fY2; Y3g. To guarantee a positive de�nite covariance matrix, the
rank correlation of fY2; Y3g is restricted to � (Y2; Y3) � [�min; �max].
The boundaries for the third rank correlation can be easily calculated by the following algo-
rithm which bases on a reversed Cholesky-decomposition for a three-dimensional covariance
matrix of a multivariate Gaussian distribution with zero means and variances equal to one:264

1. Set the desired Kendall�s rank correlations � (Y1; Y2) ; � (Y1; Y3) � [�1; 1] and transform
them to Pearson�s correlation � = sin (� � �=2).

2. Set the last rank correlation � (Y2; Y3) in such a way that Pearson�s � (Y2; Y3) � [�min; �max]

263E.g., � (Y1; Y2) � f�0:85;�0:65;�0:5;�0:25; 0; 0:25; 0:5; 0:65; 0:85g. For the Student�s t copula, the risk
analyst has additionally to decide in favor of a certain degree of freedom v.
264In this case the covariance matrix � and the correlation matrix � are equal.
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Figure 91: Gaussian copula for di¤erent (rank) correlations

where

�
�max
�min

�
=

�12�13
V ar(Z1)

�
rh

V ar (Z3)� [�12]
2

V ar(Z1)

i h
V ar (Z3)� [�13]

2

V ar(Z1)

i
p
V ar (Z2)V ar (Z3)

= �12�13 �
q�
1� [�12]

2� �1� [�13]2�;
where V ar (Z) = 1 and �ij = � (Yi; Yj).

Unfortunately, visual copulas for higher dimensions (n > 3) result in a more laborious
procedure to guarantee positive de�nite covariance matrices. Hence, the risk analyst should
not apply the visual copula technique to such situations. Instead, the envelope method or
scenario analysis should be preferred.
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16.5.2 The Envelope Method

Another technique for modeling dependency between a few risk factors Y = (Y1; :::; Yn)
0 is

the envelope method (Vose 2008, pp. 280) which assumes the distributions of conditional
risk factors Y�1j y1 = (Y2j y1; :::; Ynj y1)0 as function of a numeraire (exogenous risk factor)
Y1.265 Hence, this approach runs in two steps.

1. Simulate W samples y(w)1 of the numeraire from Y1 � Dist (�1) with parameter vector
�1 = (�11; :::; �1K1)

0.

2. Simulate W samples y(w)i

��� y(w)1 from Y
(w)
i

��� y(w)1 � Dist
�
�
(w)
i

�
where i = 2; :::; n and

the parameter vector �(w)i =
�
gi1

�
y
(w)
1

�
; :::; giKi

�
y
(w)
1

��0
is de�ned by functions of the

numeraire.

Although this concept is rather �exible, the risk analyst should restrict to triangular and
modi�ed PERT distribution for the elicitation of Yij y1, i = 2; ::; n.266 For both distributions,
the expert is only asked for the (practical) minimum a and maximum c as well as the most
likely value b of the conditional factors Yi given the numeraire Y1 = y1.267 This can be done
in di¤erent ways: (1) The expert draws three lines in a Y1-Yi-plot (see �gure 92) or (2) states
L tuples fal; bl; clgl=1;::;L, given some realizations y

(1)
1 < ::: < y

(L)
1 of the numeraire. The

points can easily be connected by straight lines.
As already mentioned (see section 16.3.6), it is possible to ask the expert for the practicable
instead of the absolute minimum and maximum (~a and ~b vs. a and b) of a risk factor.
Unfortunately, the expert�s understanding of "practicable" is latent for the risk analyst, and
often not explicit to the expert. In such a situation the risk analyst is uncertain about the
credible level q of the credible interval and consequently about the absolute minimum and
maximum Z ~c

~a

Tri (yij a; b; c) dyi = q:

In section 16.4, we have analyzed the understanding of people when they are asked for the
practicable minimum and maximum and could �nd a posterior distribution for the credible
level � (qjElicitation) which we can use for the envelope method. Here, we present our
approach for the special case of a triangular distribution.
265Of course, it is possible to construct a more complex factor model where the distributions of factors
Y2; :::; Y~n are functions of factor Y1 while the distributions of the factors Y~n+1; :::; Yn are again functions of
Y1; :::; Y~n.
266see section 16.3.6 for more on these distributions
267In the case of the modi�ed PERT distribution the shape parameter needs to be determined, too. This
could be done by the risk analyst or the expert has to choose between several distributions di¤ering in the
shape parameter.



16.5 Elicitation Techniques for Integrated Risks 191

Figure 92: envelope method

1. Simulate W samples y(w)1 of the numeraire from Y1 � Dist (�1) with parameter vector
�1 = (�11; :::; �1K1)

0.

2. Simulate W samples q(w) from a prior or posterior of the credible level Q.268

3. Simulate W samples y(w)i

��� y(w)1 , for i = 2; :::; n, from Y
(w)
i

��� y(w)1 � Tri (a�i ; bi; c
�
i ) where

(a�i ; c
�
i )
0 = argmin

ai;ci

 �
1� q

2
� FTri (~aj ai; bi; ci)

�2
+

�
1 + q

2
� FTri (~cj ai; bi; ci)

�2!
;

FTri (~aj ai; bi; ci) is the cdf of a triangular distribution, ai = gia

�
y
(w)
1

�
, bi = gib

�
y
(w)
1

�
,

and ci = gic

�
y
(w)
1

�
.

268You can �nd our empirical posterior � (qjElicitation) = Beta
�
qj�post; �post

�
in section 16.4. Here, we

use alpha and beta to avoid confusion with the minimum and most likely value of Y .
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The envelope method can be extended to a situation where a conditional risk factor Ynj y�n
depends on the n�1 realizations y�n = (y1; :::; yn�1)0 of the numeraires Y�n = (Y1; :::; Yn�1)0.
Although it is possible that these numeraires are correlated, e.g. modeled by a copula,
we want to keep the presentation straight and simple. Hence, we assume independent nu-
meraires and restrict our presentation to the triangular distribution. Moreover, we disregard
uncertainty on the subjective understanding of minimum and maximum and simply ask for
the absolute minimum a and maximum b as well as the most likely value b.
Even in such a simpli�ed situation, the challenge is to �nd a parameter vector �n = (a; b; c)

0 =

(ga (y�n) ; gb (y�n) ; gc (y�n))
0 that results in a consistent distribution for Ynj y�n. Again, a

multi-step approach is required.

1. SimulateW samples of the numeraires y(w)�n from the distributions Yi � Dist (�i) where
i = 1; :::; n� 1 and �i = (�i1; :::; �iKi

)0.

2. The expert needs to state the conditional parameters a(w)i = g
(i)
a

�
y
(w)
i

�
, b(w)i = g

(i)
b

�
y
(w)
i

�
,

and c(w)i = g
(i)
c

�
y
(w)
i

�
for all numeraires Yi, i = 1; :::; n� 1. This can easily be done by

drawing three lines in the respective Yi-Yn-plots.

3. Optionally, the expert can weight the in�uence of the di¤erent numeraires Y�n =
(Y1; :::; Yn�1)

0 on Yn by wi � 0.

4. An aggregation algorithm is needed which produces consistent parameters. We propose
a(w) = max

�
a
(w)
1 ; :::; a

(w)
n�1

�
, c(w) = min

�
c
(w)
1 ; :::; c

(w)
n�1

�
, and269

b(w) =

Pn�1
i=1 wi � b

(w)
i � 1�

b
(w)
i �(a;c)

�Pn�1
j=1 wj � 1�b(w)j �(a;c)

� :

Although people often have an assessment on the range of a risk factor Yn given one of the
numeraires yi, it seems beyond the scope of human beings to state all ranges for Yn given
all possible combinations of y�n. Therefore, we believe that the most restrictive minimum
and maximum, given the realized n � 1 risk factors, should apply. The most likely value
b instead is simply the weighted average of the most likely values. As we do not want to
generate a most likely value lower than a or larger than b we exclude such b(w)i by the means
of an indicator function.
Nevertheless, there is the danger that our algorithm ends in a situation where c � a. This
might be avoided when a is a restriction for c. However, we prefer to accept the risk for

269If the expert has not weighted the numeraires they are treated equally important.
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two reasons. (1) A situation where c � a reveals an inconsistent quanti�cation of the risk
factors�dependence structures. (2) The algorithm above should only be applied in a direct
and intensive interaction with the expert which allows for training and modi�cation by trial
and error.
Generally, the envelope method can be used to describe dependence between the distrib-
ution of a conditional risk factor Yi and one up to a few uncertain numeraires Yj, i 6= j.
Unfortunately, this approach does normally not work for a time-series risk factor Yt with
the deterministic numeraire time t. Although the envelope method could �exibly model
a time-dependent distribution for Yt, it neglects auto-correlation of Yt on past realizations
yt��, � = 1; 2; ::: In the following sections, we present some techniques that allow for an
approximation of auto-correlated time-series risk factors.

16.5.3 Stochastic Processes

A basic approach for modeling auto-correlation of a risk factor Yt is to use stochastic
processes. Especially basic mean reverting processes seem to be most suitable. They are
speci�ed by an intuitive long-term mean reversion level (equilibrium) and feature analytical
solutions.
The two most prominent mean-reverting processes are the Ornstein-Uhlenbeck and the Cox-
Ingersoll-Ross processes (see sections 10.1.3 and 10.1.4). The Ornstein-Uhlenbeck process
(also known as Vasicek process when applied to interest rates) is de�ned by

dYt = � [�� yt] dt+ �dWt;

where � is the mean reversion rate,270 � is the long-term mean (or mean reversion level), �

is the volatility, and dWt � N
�
0;
p
dt
�
is the increment of a Wiener process. The analytical

solution to this process is

Yt+�j yt � N
�
yte

��� +�
�
1� e���

�
; �
p
[1� e�2��] =2�

�
:

Although the Ornstein-Uhlenbeck process features an analytical solution it seems only suit-
able in expert elicitation when the auto-correlated risk factor Yt is allowed to become nega-
tive.
Therefore, Cox et al. (1985) extended Vasicek�s interest rate version of the Ornstein-
Uhlenbeck process by a variable volatility term

dYt = � [�� yt] dt+ �
p
ytdWt:

270The mean reversion rate is much easier to understand by the transformation �1=2 = ln 2=� termed half-
life time. It simply states the time needed to pass half-way from yt to the long-term mean �. See section
10.1.3 for more details and a derivation.
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The Cox-Ingersoll-Ross process also possesses an analytical solution (Cox et al. 1985, pp.
391)

2cYt+�j yt � �2NC (v; �) ;

where 2cYt+� is non-central chi-square distribution with v = 2q + 2 degrees of freedom, a
non-centrality parameter � = 2u, and

c =
2�

�2 [1� e���]
& u = cyte

��� & q =
2��

�2
� 1:

The expected value and the variance of Yt+� equal

E (Yt+�j yt) = yte
��� + �

�
1� e���

�
V ar (Yt+�j yt) = yt

�2

�

�
e��� � e�2��

�
+ �

�2

2�

�
1� e���

�2
:

In expert elicitation the Ornstein-Uhlenbeck and the Cox-Ingersoll-Ross process can perfectly
be calibrated to J = 3 (consistent) expert statements. A calibration to J > 3 assessments
generally results in an approximation. The next problem is to �nd adequate expert state-
ments. A direct elicitation of the long-term mean � seems unproblematic while it is not for
� and �. Hence, we propose an elicitation for some practicable lower and upper bounds (~a
and ~c).271 Again, there is uncertainty on the expert�s understanding of "practicable". The
risk analyst does not know the expert�s understanding of the credible level Q that the risk
factor Yt will realize within the interval [~a; ~c] in t. To re�ect a rational uncertainty, we can
simulate credible levels q from the posterior � (qjElicitation) (see sections 16.4 and 16.5.2).
Then, a quadratic target function like

TFw (�; �; �) =

�
1� q(w)

2
� FYt+� (~a�j�; �; �)

�2
+

�
1 + q(w)

2
� FYt+� (~c�j�; �; �)

�2
(20)

could be used to minimize
PW

w=1

PJ=2
�=1 TFw (�; �; �) by adequate parameters �

�, ��, and
�� and W samples from the prior/ posterior of Q. In equation 20, FYt+� ( �j�; �; �) is the
analytical solution of the Ornstein-Uhlenbeck or Cox-Ingersoll-Ross process while ~a� and ~c�
are the practicable minimum and maximum of the risk factor Yt+� in t+�.
Within our research group, we have discussed the future developments of the average CO2
price within the EU ETS between 2013 and 2020 (after the second trading period). We could
reach consensus on (1) a triangular distribution of the average CO2 price in 2013 (in 2009

271A direct elicitation for the most likely value b seems problematic as the Ornstein-Uhlenbeck process
produces a symmetrical solution. Although the Cox-Ingersoll-Ross model results in an analytical solution
allowing for asymmetry, the non-central chi-square distribution is not able to model all imaginable relations
~a < b < ~c.
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prices)272 and on the practicable lower and upper bounds in 2015, 2017, and 2020 (see table
43).

2013 2015 2017 2020

~a� 10e 15e 20e 30e
~c� 70e 100e 125e 150e
b� 45e

Table 43: research group assessments on future average CO2 prices

Based on these statements and on our uncertainty of the latent credible level Q, we have
applied the following algorithm

1. Simulate W1 times the credible level q(w1) from the prior or posterior of Q.

2. Find the practicable minimum ~a
(w1)
2013 and maximum ~c

(w1)
2013 given q

(w1). For each w1 =
1; :::;W1, sample W2 times the CO2 price y

(w1;w2)
2013 given ~a(w1)2013, b2013, and ~c

(w1)
2013.

3. Find adequate parameters [��](w1), [��](w1), and [��](w1) minimizing the target function
in equation 20 given q(w1) as well as ~a(w1)t and ~c(w1)t , for t = 2013; 2015; 2017; 2020. For

each w1 = 1; :::;W1, sample W2 times the CO2 price paths
n
y
(w1;w2)
t

o
t=2014;2015;:::;2020

given y(w1;w2)2013 , [��](w1),[��](w1), and [��](w1).273

In upper subplot of �gure 93 you can �nd W = W1 �W2 = 10; 000 simulated paths of the
CO2 price and our assessments on the practicable minimum and maximum as well as the
most likely value of 2013. Additionally, we compare the histograms of the CO2 price paths
to our assessments (lower subplots). We calculate the quality of the approximation by the
mean absolute and square error, MAE = 0:058909 and MSE = 0:048175.274 The MAE is

272Our approach is a little bit cumbersome as there are two EU ETS markets on CO2 - second and third
(post 2012) trading period. Unfortunately, there is not yet a future market for emission rights of the third
period. Hence, we start our modelling in 2013.
273For numerical reasons we approximate the non-central chi-square distribution by the Gaussian distrib-
ution.
274Here, we calculate the mean absolute and square error (MAE and MSE) by

MAE =

W1X
w1=1

X
t�T

j�w1tj+
���w1t��

W12nT
& MSE =

W1X
w1=1

X
t�T

s
�2w1t + �

2
w1t

W12nT
;

where

�w1t =

PW2

w2=1
1�
y
(w1;w2)
t <~at

�
W2

� 1� q
(w1)

2
& �w1t =

PW2

w2=1
1�
y
(w1;w2)
t >~ct

�
W2

� 1 + q
(w1)

2
:
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Figure 93: stochastic processes for expert elicitation

simply to interpret. It states the mean deviation between the quantiles (~a� and ~c� should
equal [1� q] =2 and [1 + q] =2) of our assessments and the sampled ones.

16.5.4 Time-Series Copula

Calibrating stochastic processes to re�ect expert statements is not a rather �exible approach
as stochastic processes are mostly de�ned by few parameters. Therefore, an approach is
needed which can reproduce large �uctuations in the structure of risk factor Yt over the
years. The envelope method can easily produce samples yt from a distribution with time-
dependent parameters. Even switching between the distributions can easily be done. How-
ever, the envelope method is not able to produce auto-correlation in the time-paths. Hence,
we propose a combination of the envelope and copula method we call time-series copula
which is able to reproduce time-variant expert statements on Yt as well as auto-correlation.
In our modi�cation the auto-correlation is restricted to positive values which seem ade-
quate for most auto-correlated risk factors. The time-series concept consists of three steps:
(1) time-dependent envelope method, (2) de�nition of auto-correlation structure, and (3)
simultaneous sampling of Y = (Y1; :::; YT )

0 via a copula.

W1 and W2 are the number of times we sample a credible level q(w1) and a path given q(w1). This means we
generate W = W1 �W2 sample paths. T =(2013; 2015; 2017; 2020)0 - hence nT = 4 - are the years we o¤er
statements on practicable minimum ~at and maximum ~ct of the CO2 price.
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In the �rst step, the expert is asked to calibrate a distribution to the risk factor

Yt � Distt (�kt = fk (t) ; k = 1; ::; K) ; t = 1; :::; T;

by (in)directly stating the K time-dependent parameters. Again, the easiest way is to use
special elicitation distributions, triangular and modi�ed PERT distribution, where the expert
can simply draw the practicable minimum ~a and maximum ~c as well as the most likely value
b of Yt in a t-Yt-plot.
Then, the expert has to de�ne an adequate auto-correlation structure. For simplicity, we
concentrate on the Gaussian copula. This requires to set up a positive de�nite covariance
matrix. We assume that positive auto-correlation, measured by Kendall�s � , exponentially
falls in the absolute time-di¤erence � between the risk factors Yt and Yt��

�� = � (Yt; Yt��) = exp (���) ;

where � > 0. This de�nition guarantees a positive de�nite T � T Kendall�s rank correlation
matrix.
In the third step we use the Gaussian copula to generate positive auto-correlated paths of
the risk factor Y = (Y1; :::; YT )

0. First, we need to transform the rank correlations in a T �T
Pearson correlation matrix by �� = sin (���=2). Subsequently, we can generate W times T

realizations
�
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where F�1Yt ( �j �kt = fk (t) ; k = 1; ::; K) is the marginal inverse distribution of the risk factor
Yt in t while � ( �j 0; 1) is the cdf of the standard Gaussian distribution. For a su¢ ciently large
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Figure 94: time-series copula

number of samples, the empirical Kendall�s rank correlation matrix converges to the de�ned
one and the marginal distributions are sampled exactly according to the expert statements.
In the following, we apply the time-series copula to the our research group assessments on the
future CO2 price (see table 43). In contrast to the stochastic process approach, we calibrate
a triangular distribution to our assessment. As the time-series copula allows for an arbitrary
number of statements, we join the di¤erent statements for the practicable minimum ~a and
maximum ~c as well as the most likely value b by an adequate polynomial. As we need the
absolute minimum a and maximum c we minimize a quadratic target function de�ned on
the practicable minimum and maximum (see equation 20). Again, we are uncertain about
our understanding of "practicable". Hence, we use the posterior � (qjElicitation) on the
credible level to generate W samples q(w). After some discussion, we have decided to set
� = 0:5 resulting in a relatively fast decreasing auto-correlation.275 In the upper subplot of
�gure 94, you can �nd some exemplarily sampled CO2 price paths featuring the desired auto-
correlation. As expected, the copula approach allows to exactly sample from the marginal

275The auto-correlations depends on the absolute time di¤erence (in years) between the CO2 prices:

� = 0 � = 1 � = 2 � = 3 � = 4 � = 5 � = 6 � = 7

�� 1 0:607 0:368 0:223 0:135 0:082 0:050 0:030
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distributions of Yt, for t = 2013; :::; 2020 (lower subplots in �gure 94).276 We measure the
quality of the time-series approach by the mean absolute and square error (see p. 195) which
are MAE = 0:032339 and MSE = 0:036418. The time-series copula approach has a better
approximation than the calibration of stochastic processes. However, this is not the full
story. The time-series copula approach is by far more �exible as it could even approximate
many more expert statements and even more complex structures (e.g. bounds could be
W -shaped).

16.6 Mathematical Expert Aggregation

Armstrong (2001) comes to provoking conclusions in a meta-analysis:

1. Organizations should not concentrate to �nd the best expert but a diversity of assess-
ments.

2. When an organization has access to several experts it should not bring them together
in group meeting as the independence of the forecasts vanishes.277

In section 15.5, we have generally overviewed the scope of approaches to cope with a diversity
of opinions. Especially behavioral tools like panel discussions, focus groups, or prediction
markets allow for an elegant aggregation (see sections 17 and 18). Unfortunately, such
tools can fail to aggregate because experts could not agree on a group assessment or the
prediction market lacks in liquidity. In such a situation, the diversity of opinions could
simply be documented or a mathematical expert aggregation technique could concentrate
the information. In the following, we introduce mathematical expert aggregation techniques
which can be subdivided in weighting techniques and Bayesian expert aggregation. Although
we use the phrase "expert", we also mean the output of statistics as well as any kind of model.

16.6.1 Expert Weighting

Expert weighting is a relatively simple axiomatic approach of aggregating di¤erent expert
assessments.278 Here, we concentrate on the dominant linear and logarithmic opinion pool
(Clemen & Winkler 1999, pp. 190). The linear opinion pool is a (weighted) arithmetic
average of J di¤erent expert assessments on a risk factor Y . We do not distinguish whether

276The di¤erences between the histograms (grey) and the theoretical marginal distributions (red) originate
from the uncertainty on Q. We plot the theoretical marginal distributions for the mean posterior credible
level E (Q) while the samples y(w)t base on di¤erent realizations of Q.
277Hu¤cutt & Woehr (1999) empirically found job interviews with a panel of interviewers less accurate to
select the best job applicant than interviews with a single interviewer.
278A more general term is assessments weighting when con�icting assessments only result from one person.
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the J statements originate from J experts (incl. the risk analyst) or whether some experts
state several assessments (e.g. problem of imprecise probabilities).
In the case of continuous expert statements, e.g. in form of calibrated elicitation distributions
(see section 16.3.6), the linear opinion pool is de�ned by279

� (y) =
JX
j=1

wj�j (y) ;

where �j (y) is the calibrated pdf of expert j and
PJ

j=1wj = 1.
There are some nice properties of the linear opinion pool: (1) The average distribution is zero
for Y = y which were excluded by all experts and has positive probability for Y = y when at
least one expert holds such an outcome probable.280 (2) The pool opinion exactly equals each
expert�s uncertainty when all experts state the same assessment (unanimity property). (3)
The linear opinion pool is the only combination scheme which satis�es the marginalization
property (Clemen & Winkler 1999, p. 189). It simply means that it is irrelevant whether
the risk analyst weights the expert�s marginal distributions � (yi) =

PJ
j=1wj�j (yi) of risk

factor Yi or whether she �rst weights the joint probability � (y) =
PJ

j=1wj�j (y) of all n

risk factors Y = (Y1; :::; Yn)
0
and than calculates the marginal � (yi) =

R
y�i

� (y) dy�i, where

y�i is y = (y1; :::; yn)
0
without yi.

Although Ranjan & Gneiting (2008) theoretically show that the linear opinion pool is not
calibrated even when calibrated experts are weighted, we believe in the linear opinion pool as
an excellent tool for two reasons. First, Ranjan &Gneiting (2008) propose a beta transformed
linear opinion pool which can only be applied on repeatable events. Second, and most
important, the linear opinion pool has empirically proved to be a good decision rule which
can fundamentally reduce miscalibration, at least for repeatable events (e.g. Sanders 1963;
Clemen & Winkler 1986; Vislocky & Fritsch 1995; Graham 1996).
Another axiomatic approach is the logarithmic opinion pool281

� (y) /
JY
j=1

�j (y)
wj

which equals the geometric mean for wj = 1=J . The logarithmic opinion pool features the
external Bayesianity property (Clemen &Winkler 1999, p. 190) which means that there is no

279If the expert statements are in discrete form, the linear opinion pool is �k =
PJ
j=1 wj�jk, where �jk is

the (modi�ed) probability assessment of expert j on interval k� f1; :::;Kg and
PJ
j=1 wj =

PK
k=1 �jk = 1.

280In contrast, the Bayesian aggregation via copulas (see section 16.6.2) results in zero probability for
outcomes of Y at least one expert excludes.
281In the discrete case, it is �k /

QJ
j=1 �

wj
jk for intervals k = 1; :::;K.
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di¤erence whether we update each expert distribution with new information and then weight
them or whether we �rst weight them and then update the aggregated expert distribution.
When deciding for an axiomatic approach it is important to keep in mind that no rule
satis�es all desirable features (Clemen & Winkler 1999, p. 191). Nevertheless, the most
important fact for weighting is not the technique but the expert weights wj that need to be
determined carefully (see discussion in section 15.5).

16.6.2 Bayesian Expert Aggregation

A di¤erent mathematical expert aggregation technique - academic attention has shifted to
- is Bayesian expert aggregation which updates the decision maker�s (or risk analyst�s) prior
uncertainty � (y) on risk factor Y by J expert statements s = (s1; :::; sJ)

0 assumed as data
observations. The expert statements can originate from individuals or groups as well as from
statistics or any kind of model. Based on priors and expert statements, the decision maker
receives an updated posterior (Clemen & Winkler 1999, p. 190)

� (yj s1; :::; sJ) / fS (s1; :::; sJ j y) � � (y) = Ls (y) � � (y) ;

where the risk factor Y is treated like a Bayesian parameter and fS (s1; :::; sJ j y) is any
distribution re�ecting the decision makers uncertainty on the statements.
For simplicity the prior distribution is often modeled without information (improper prior)
and possible prior information of the decision maker is implemented by an additional expert
statement sJ+1.282 The likelihood function Ls (y) is required to account for the precision
and the bias of the expert statements. In the case of distributional statements, precision
measures the expert�s uncertainty while bias is understood as level of calibration (Clemen &
Winkler 1999, p. 190). In the case of point estimates precision and bias can be understood
the way presented in table 44.283

Winkler (1981) proposed a Bayesian aggregation algorithm which allows updating from J

experts expressing their uncertainty on Y by a Gaussian distribution with mean mj and
standard deviation �j. In the basic setting the assessments of the experts are reduced to
the mean values m = (m1; :::;mJ)

0 as point estimates of Y while the standard deviation
statements � are disregarded. The basic idea is to understand the point estimate mj as a
simple realization of the expert�s uncertainty on the mean Mj. Consequently, the expert�s
"true" estimation error "�j = y� � Mj is random where y� is the �nal outcome of risk
factor Y . Additionally, the experts are assumed to be unbiased, i.e. E

�
"�j
�
= 0. As the

282The treatment of the decision maker as expert has a huge advantage. A basic prior of the decision maker
is conditionally independent of her uncertainty on the expert statements. In contrast, in the formulation
above, the uncertainty of the decision maker is correlated with those of the experts.
283In the case of repeatable risk factors precision can be labeled as repeatability or reproducibility.
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low bias large bias

low precision
- estimates close to "true" value

- repeated estimates relatively heterogenous

- estimates far away from "true" value

- repeated estimates relatively heterogenous

high precision
- estimates close to "true" value

- repeated estimates close to each other

- estimates far away from "true" value

- repeated estimates close to each other

Table 44: precision & bias of an expert assessment

decision maker is uncertain on Y we cannot model "�j directly but the conditional expert
error "j = ["jj y] = y �Mj instead. Then, the resulting posterior is

� (yjm1; :::;mJ) / f" ("1; :::; "J j y) � � (y) = L" (y) � � (y) ;

where L" (y) = f" ("1; :::; "J j y) models the joint conditional expert errors. For simplicity,
the errors " � N

�
(0; :::; 0)

0
;�
�
are assumed Gaussian.284

A speciality of Bayesian aggregation is the consideration of dependent expert statements
which can result in a simultaneous bias in the same direction (positive correlation) and
means a lower "net-number" of experts we can use for updating. The covariance matrix �
allows to calibrate the model to the decision maker�s uncertainty on the expert statements
and their correlation.
The posterior of the Winkler model (see Winkler 1981, p. 483, or Clemen & Winkler 1985,
p. 430)

Y j�1; :::; �J � N

�
��20 �0 + e0��1m

��20 + e0��1e
;
�
��20 + e0��1e

��1=2�
, for e = (1; :::; 1)0 ;

is a conjugate prior for a Gaussian prior Y � N (�0; �0).
The covariance matrix � can "freely" be chosen to express con�dence in the experts.285

Winkler (1981), p. 484, simply sets the main diagonal to �1; :::; �J . Nevertheless, it is
hard to state a positive de�nite covariance matrix re�ecting the decision makers assessment
on the dependencies between each of the J [J � 1] =2 pairs of experts. Clemen & Reilly
(1999), pp. 213, empirically analyze di¤erent methods to elicit correlation levels. They �nd
a combination of di¤erent approaches seems more promising. E.g., expert could be asked for
correlations and subsequently scatter plots could visualize these statements.

284Lindley (1983) presents a Student�s t distribution approach.
285In Winkler (1981), pp. 485, you can �nd an extension of this approach, when the covariance matrix is
not known.
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Clemen & Winkler (1986), p. 45, propagate the assumption of exchangeability for experts
when they are from the same "league".286 Consequently, a simpli�cation is to assume equal
covariances. Then the resulting correlation is restricted to �� (�1= [J � 1] ; 1]. The more
experts we use for updating the less negative correlation is possible. However, it seems
that experts�forecast errors " are mostly positively correlated because of interconnections,
same sets of information, and equal structures of models (Clemen 1989). Especially, in the
situations when experts ride a bubble, we should expect positive correlations.
All things considered, the (Gaussian) Bayesian aggregation approach of Winkler (1981) is
remarkable as it accounts for dependent information sources of di¤erent experts. It makes
aware that expert elicitation should not simply be an acclamation and doubling the num-
ber of experts will not always result in a doubling of forecasting quality. In the Gaussian
model increasing positive correlation between experts (forecasting errors) results in a di¤er-
ent Gaussian posterior, as the "net-information" available for updating reduces. Assuming
a homogeneous expert uncertainty �, Clemen & Winkler (1985), pp. 430, present the equiv-
alent number of independent experts which transforms the number of J dependent experts
to the number of independent experts N� resulting in the same posterior uncertainty. Under
normality, the joint standard deviation for independent expert statements Sj � N

�
�j; �

�
is �=

p
J . Assume the decision maker consults J independent experts while her prior infor-

mation equals J0 expert statements. Then, the posterior uncertainty of the decision maker
is �post = [J0=�

2 + J=�2]
�1=2

= � [J0 + J ]�1=2, for �0 = �=
p
J0. The equivalent number of

independent experts
J� = �2e0��1e

calculates by comparing �post to
�
��20 + e0��1e

��1=2
from the Gaussian model (for correlated

expert statements) (see Clemen & Winkler 1985, p. 431).
Nevertheless, the Gaussian approach has several shortcomings (Clemen & Winkler 1999,
p. 192): (1) Expert errors need to be adjusted to the unimodal and symmetrical Gaussian
distribution, (2) the posterior is always Gaussian which (3) may put positive probability on
realizations of Y which are excluded by all experts. These arguments might be better un-
derstood with some examples. In �gure 95, the Bayesian aggregation is shown for the case of
weighted and unweighted experts. In the upper subplot you can �nd the di¤erent (Gaussian)
expert statements and the decision maker�s posteriors for di¤erent levels of assumed expert
error correlations if experts are equally weighted. The higher the assumed correlation the
more uncertain (broader) becomes the posterior re�ecting a decreasing level of independent
information. The case of di¤erent weighted experts is more complicated and shown in the
lower subplot. The experts are weighted according to their variance statements. A lower

286In the case of di¤erent types of experts (e.g. econometric models, judgmental forecasts, extrapolation
methods) exchangeability should hold for subsets of experts.
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Figure 95: Bayesian expert aggregation (Gaussian model)

variance re�ects a higher level of reliance. When the expert correlation rises, the Gaussian
model assumes a higher level of common information. Di¤erent abilities in interpretation
of the common information result in di¤erent expert statements. As we prefer experts with
good interpretation skills, re�ected by a low variance statement, the posterior tends to the
expert statement with the lowest variance.

When the expert correlation approaches unity, a simultaneous bias of all experts should not
be ruled out. However, the Gaussian model is not able to fully re�ect this idea because its
posterior is unimodal. Consequently, it is not possible to simultaneously model fears of an
over- and underestimation. In the lower subplot it can be seen that the Gaussian model
tries to highly weight the expert with the lowest variance statement and to account for a
simultaneous bias of all experts. As a consequence, the Gaussian model only o¤ers the risk
of a simultaneous overestimation. A simultaneous underestimation would assume that the
expert with the lowest variance statement would have the largest prediction error.

A remarkable transition to a more �exible Bayesian aggregation technique o¤ers the cop-
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ula proposal of Jouini & Clemen (1996) which allows for arbitrary marginal distributions
although a homogeneous dependence structure is assumed between the experts. In detail,
the decision maker�s posterior on Y is

� (yj s1; :::; sJ) / fS (s1; :::; sJ j y) � � (y)

= c (FS1 (s1j y) ; :::; FSJ (sJ j y)j#) �
JY
j=1

fSj (sjj y) � � (y) :

The copula approach allows the decision maker to separately specify her uncertainty on the
J expert statements s = (s1; :::; sJ)

0 by fSj (sjj y) and on their correlations where

c (u1; :::; uJ j#) =
@C (u1; :::; uJ j#)
@u1; :::; @uJ

is the copula density with respective parameter vector # (see appendix A.8.1).
Jouini & Clemen (1996), pp. 452, propose the following speci�cation of fSj (sjj y) and
c (u1; :::; uJ j#): Assume the decision maker and J experts state their uncertainty on Y by
�j (y), where j = 1; :::; J and mj are the respective medians of these distributions. Although
in real life, the full uncertainty of the experts, expressed by �j (y), might be correlated,
the approach is only manageable if correlation is restricted to some key features. Jouini &
Clemen (1996), pp. 452, assume that the median estimate mj is only a realization of the
expert�s uncertainty on the median Mj. Hence, there is a random conditional expert error
"j = ["jj y] = y �Mj. An appropriate speci�cation of "j is g ("j) = �j ("j +mj) which has
the same shape like the expert statement �j (y) but a median at zero. As Jouini & Clemen
(1996) presumeMj to have a median equal to y (Mj is unbiased) its conditional marginal can
be described by fMj

( ~mjj y) = g (y � ~mj) = �j (y � ~mj +mj). The respective cdf is simply
FMj

( ~mjj y) = 1 � F�j (y � ~mj +mj). Here �j (�) and F�j (�) are the expert�s uncertainty
on Y while fMj

( ~mjj y) and FMj
( ~mjj y) re�ect the conditional uncertainty of the decision

maker on the expert statements. This results in the following posterior

� (yjm1; :::;mJ+1) /
J+1Y
j=1

fMj
(mjj y) � c

�
FM1 (m1j y) ; :::; FMJ+1

(mJ+1j y)
�� �� ;

where Jouini & Clemen (1996) assume a Frank copula and an uninformative prior. The
J experts and the decision maker state their uncertainty by J + 1 priors �j (y) which are
transformed to J + 1 distributions fMj

( ~mjj y) with respective median statements ~m = m =

(m1; :::;mJ+1)
0
.

A Frank copula seems reasonable in this context as it produces a remarkable posterior � (yj �)
for the risk factor Y . In the case of a forecast error correlation close to unity there is a good
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Figure 96: Bayesian expert aggregation (copula approach)

chance that all experts have simultaneously under- or overestimated the "true" outcome of
Y . A Frank copula accounts for this fact (see upper subplot in �gure 96). Unfortunately, a
Frank copula becomes hard to set up for J > 2 experts. A multi-step approach could be used
where coupled subgroups of experts are again coupled by a Frank copula.287 An alternative
is the Gaussian copula with a density

c
�
FM1 (m1j y) ; :::; FMJ+1

(mJ+1j y)
�� �� = j�j�1=2 exp��1

2
z0
�
��1 � I

�
z

�
;

where � is the correlation matrix and z =
�
��1 (FM1 (m1j y)) ; :::;��1

�
FMJ+1

(mJ+1j y)
��0
.

This approach allows easily to aggregate a nearly unrestricted number of expert distributions
but does generally not result in a bimodal posterior (see lower subplot in �gure 96).

287In the case of a large number of expert statements (= observations), the copula density c ( �j#) could be
estimated (see e.g. Autin et al. 2010).
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Figure 97: expert elicitation tools

17 Expert Elicitation Tools

In the section above, we have presented techniques that help to quantify and manage com-
peting expert assessments. However, this also requires to expose experts to those techniques.
This is done by expert elicitation tools that should be compared according to their quality
of information elicitation, information exchange, and information aggregation (Bruggen et
al. 2006, pp. 7):

� Information elicitation is the process of extracting the individual assessment of an
expert who should not be in�uenced by the risk analyst. The fact whether the expert
was right or wrong is not a criterion for the quality of the elicitation tool.

� Information exchange quality is determined by the possibility for the experts to ex-
change their knowledge and to bene�t as well as to learn from others�knowledge.

� Information aggregation is the mechanism to aggregate the knowledge dispersed over
the experts.

In the following, we present di¤erent elicitation tools. We basically distinguish between
direct elicitation tools (expert interviews and expert panels) where there is a direct contact
between risk analyst and experts and indirect elicitation tools (surveys) where there is mostly
no direct contact and experts can often decide when and where to state their assessments
(see �gure 97).
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17.1 Direct Elicitation Tools

17.1.1 Expert Interviews

The most dominant tool in expert elicitation is the expert interview which can have di¤erent
levels of complexity. In the simplest version, the risk analyst informally interviews the expert
via a phone call or during lunch. Normally, this only results in some point estimates and
uncertainty statements. To elicit more elaborated expert assessments, the risk analyst needs
to prepare an in-depth guideline with all questions. Sometimes, the risk analyst needs to
customize the guideline because of the expert statements during the interview. Generally,
the risk analyst conducts the interview but should avoid to force her point.
The advantage of expert interviews is the simple integration of di¤erent elicitation techniques
(e.g. calibrate a distribution and weight these intervals) and its �exibility to personalize the
elicitation. Moreover, within a short time, it is possible to gather lots of di¤erent expert
statements which a well-versed risk analyst can relatively easily appraise. Unfortunately,
professional and sophisticated expert interviews are extremely time-consuming in prepara-
tion, realization, and reporting.288 Furthermore, there is no interaction between the experts.
This might be favorable because there are no �aws like cascades and group pressure (see
section 17.1.2). However, this can also be unfavorable as soon as there emerge new points
of view. Then the risk analyst has to decide whether she ignores that point in the following
interviews to guarantee comparability. An alternative to expert interviews are expert panels
which normally allow for an interaction between the experts.

17.1.2 Expert Panels

(Multi-)Expert panels gather persons supposed to possess superior knowledge about some
risk factors or uncertain factors. A border case of an expert panel is the key informant
approach (KIA) which is widespread in practice because of its simplicity (Bruggen et al.
2006, p. 3). The panel only consists of one expert, called key informant. The key informant
is picked as representative because of her knowledge and willingness to communicate. The
KIA is accompanied by problems like individual biases, random errors, and the inability to
aggregate information spread over di¤erent experts. In fact, the key informant approach can
also be interpreted as expert interview which theoretically requires no second opinion.289

(Multi-)Expert panels are behavioral aggregation approaches for combining judgemental fore-
casts of di¤erent experts (Bruggen et al. 2006, p. 4). There are panels with direct and

288A prime example is Krause (2010) who interviewed 15 German automotive experts (representatives
from car manufacturers, investors, non-governmental organizations, associations, and science) to collect and
compare their assessments of CO2 emission reduction options for the German automotive industry.
289In real life, the renaming to key informant approach is often just a smokescreen to avoid more interviews.
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indirect interactions between experts. The aggregation mechanism is normally performed
by a simple or (knowledge/ competence/ con�dence) weighted average when experts do not
interact or reach no consensus.
The basic form of such expert panels are undirected deliberation panels (or group discus-
sions) which allow for an in-depth elicitation. Although deliberation panels bear no risk
of manipulation and bubbles, they have the potential to fail because of social pressure,
groupthinking,290 and informational in�uence. Panels tend to amplify rather to correct in-
dividual errors. Additionally, they usually reduce variance in the assessments when panel
members come to one group statement. In the end, they tend to be more con�dent with their
judgement, even when the group is totally wrong and group polarizations has taken place
(Sunstein 2006, pp. 70 & pp. 82). Moreover, deliberations often su¤er from hidden pro-
�les, a consequence from the common-knowledge e¤ect (Sunstein 2006, p. 75): Deliberations
do not perform well in disclosing information held by only few group members. Cascades
are another problem where group members are in�uenced by others and neglect their own
knowledge (Sunstein 2006, pp. 78):

� informational cascades: Single group members, uncertain with their assessment, join
the predominant group opinion increasing its predominance. Hence, more group mem-
bers could be convinced and join, too.

� reputational cascades: Group members are convinced that they are right. But they
do not express their own opinion as they do not want to contradict the predominant
group opinion. The more group members do so the more group pressure builds up.

There are di¤erent approaches to avoid or reduce such problems. On the one hand there is
the idea of a directed deliberation group, called focus groups.291 The moderator (e.g. the
risk analyst) of a focus group should be impartial without formulating own assessments. Her
task is rather to guarantee every group member to get a word in edgeways and has to prevent
the discussion to wander from the subject. Nevertheless, it is hard to dispel group pressure.
Alternatively to focus groups, there have been proposed structured (multi-step) expert panels
which can substantially reduce the danger of social pressure and cascades because experts
do not need to express their assessments in front of other experts. The widespread Delphi
studies, developed by the RAND Corporation in the 1950ies, let all experts separately reveal
their assessments which are anonymously presented to the whole group. This is repeated until
the group reaches consensus. The disadvantages of Delphi methods are the equal weighting of

290Janis (1972) shaped the term groupthinking to describe consensual false conclusion caused by peer-group
in�uences in the context of U.S. foreign policy.
291see Kitzinger (1995) or Morgan (1996) for more details
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even less informed experts and logistical problems which do not allow for a frequent updating
(Bruggen et al. 2006, p. 4).
Another class of structured expert panels bases on the nominal-group-technique (�rst pro-
posed by Delbecq & van de Ven 1971) which allows for a direct contact of experts but
tries to reduce the need of experts to openly commit to their assessments. It guarantees a
relatively equal integration of all experts as all assessments are considered (van de Ven &
Delbecq 1974). Normally, all experts separately state their assessments (in written form)
which are anonymously presented to the group and subsequently discussed. Finally, experts
need to separately rank or weight these assessments. A special version of such panels for
the elicitation of physical risks is de�ned in the SANDIA-NRC protocol,292 developed by the
US SANDIA National Laboratories and the US Nuclear Regulatory Commission (NRC). It
advises to gather experts to panels twice (Hora & Jensen 2002, pp. 2):293 In a �rst meeting,
the experts freely discuss the issue and approaches to �nd critical factors. Additionally, ex-
perts are trained in probability elicitation294 to give them some hints about potential biases
in elicitation. In a second meeting, experts present their models and data they use for quan-
ti�cation.Then, they are separately asked to state their assessments. The results support
the expert panel to form a probability distribution.
Another rather distinct type of expert panels could be labeled as analyst approach. Kaplan
(1992) propagates panels where experts present their competing arguments and evidence to
a non-expert risk analyst. Based on this information, the risk analyst solely determines the
group assessment. This guarantees that the panel always produces an aggregated assessment.
This approach seems extremely demanding. It is important that the risk analyst explicitly
identi�es such facts all experts agree on as well as those facts there is some disagreement.
Additionally, she should enable all experts to state all their arguments. However, the most
important challenge for the (non-expert) risk analyst is to separate evidence from good
presentation.

17.2 Indirect Elicitation Tools

Direct elicitation tools, presented above, are mostly extremely expensive and time consuming
for experts and the risk analyst. The availability of experts and the exact timing of a direct
elicitation procedures seems however to be the main restriction.
From the perspective of a researcher, in house experts can be motivated if they research on

292Slight variations are allowed like inviting experts of one or several �elds (Hora & Jensen 2002, p. 2).
293see Morgan & Keith (2008) for a similar approach
294To assess the experts�ability to formulate probabilities, experts are queried by almanac questions about
quantities outside their area of expertise. The project leader knows the quantities as the questions are from
the encyclopedia.
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a complementary topic or there is a good personal relationship. Normally, external experts
can only be accessed by strategic cooperations (with other (research) institutions, private
business, and politics) which are mostly initialized by long-time personal relationships. In
contrast, medium and large scale businesses can motivate experts much more easily. A clever
intern charging system to clear activities of departments makes in house expertise accessible
to risk analysts. External expertise can be retrieved from a better use of memberships
in associations, e.g. Federation of German Industries (BDI), or political pressure groups.
Moreover, scientists are highly interested in cooperations with the private sector because
this is a general claim from public �nanciers and students.
However, if the risk analyst is not able to raise the resources for a direct elicitation or
cannot manage an adequate timing, indirect elicitation tools are an alternative which avoid
to overstrain the expert�s willingness of cooperation. They mostly allow experts to decide
when and where to state their assessments but cannot produce such informative elicitation
results like direct tools. Generally, experts are asked for short statements (e.g. by means
of �xed or variable interval techniques) on some risk factors which normally requires a
transmitter between the risk analyst and the experts.
The most widespread indirect elicitation tools are classical surveys. Questionnaires on the
risk factors can be distributed in form a hardcopy by mail or attached to e-mails. There are
two special versions of classical surveys: telephone interviews and street polls. Traditional
telephone interviews can be conducted by the risk analyst herself or by several assistants.
In the �rst case, a telephone interview is an expert interview we have already discussed in
section 17.1.1. Nevertheless, we prefer to understand telephone interviews as surveys when
the number of interviews is large (maybe more than 20). The term "survey" highlights the
overall picture of the assessments of a broad range of experts. Generally, telephone interviews
should only be conducted by assistants when the number of experts is large and they are
no authority but rather John Q. Publics. The same applies to street pools where assistants
arbitrarily (or based on some basic criteria) address passers-by.
Another class of indirect elicitation tools are automated elicitation tools which o¤er an in-
teractive automated transmitter that has normally marginal maintenance costs after it has
been set up. We favor web-based tools like prediction markets and online questionnaires.
In prediction markets,295 experts can trade on the outcome of risk factors for several minutes
up to months or years (�xed interval technique). Online questionnaires are web-based ver-
sions of traditional questionnaires (�xed and variable interval technique) that are often more
�exible and allow for a visualization of the expert statements.
The most crucial di¤erence between both concepts is the interaction of the experts. While

295An alternative term for prediction market is online market. However, this can result in confusions with
the concept of online based market platforms where subcontractors compete for orders.
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online questionnaires exclude any information exchange between them, prediction markets
fundamentally rely on the dynamic interaction of experts. Hence, questionnaires can even be
run with a single expert while markets need at least two experts. Consequently, a question-
naire seems preferable when the risk analyst fears some negative interactions between the
experts (bubbles) while prediction markets are suitable when interaction is hoped to improve
elicitation.296 Additionally, online questionnaires are far less time consuming than prediction
markets which are again relatively low time consuming compared to direct elicitation tools
like extensive expert interviews or expert panels.
Within our research project, we have set up the internet page Potsdam Climate Exchange
(PCX) hosting our online questionnaire platform PCXquest and our prediction market plat-
form PCXtrade. In the following we shortly present the PCXquest. The concept of prediction
markets is more complex and beyond the scope of a subsection. Hence, section 18 exclusively
deals with it and our prediction market platform PCXquest.

Online Questionnaire PCXquest
In our perspective, an online questionnaire should allow elicitation of experts who are some-
where in the world and are not willing to invest too much time. According to these constraints
we have developed the online questionnaire platform PCXquest hosting several question-
naires consisting of an arbitrary number of questions.
On the main page of the PCXquest the name and the runtime of the questionnaire is dis-
played. After clicking on the name the questionnaire starts with an introduction text. Sub-
sequently, the questions are presented one by one. Each question belongs to one of six basic
types:

� question type I (most likely realization): Questions of type I simply o¤er up to 15
intervals of an uncertain variable. The expert is allowed to chose one interval, only. Of
course, this type can also be applied for questions beside probability elicitation (e.g.
Yes/No-questions).

� question type II (weighting): Question type II is our workhorse in elicitation. The risk
analyst can break an uncertain variable in up to ten intervals. The expert can weight
intervals by up to 30 weight levels prede�ned by the risk analyst. It is possible to
visualize the expert statements by a bar chart.

� question type IIIa (allocate probabilities): Question type IIIa requires the expert to
spread up to 100 percentage points on up to 15 intervals. An additional correction
�eld guarantees that statements always sum up to 100%. Similar to question type II a

296Indeed, the interaction of experts in a prediction market is indirect - via the pricing mechanism. This is
close to the interaction in Delphi studies where there is no direct contact between the experts, too.



213

bar chart can visualize the probabilities. Because of its design, we should only prefer
type IIIa to type II if an interval of the uncertain variable can be understood as "rest
interval" (e.g. "CO2 prices > 200e") and an explicit probability statement is needed.

� question type IVa (variable intervals): Question type IVa is designed to ask for up to
ten characteristics (mostly minimum, maximum, and most likely value) of an elicitation
distribution like the triangular and modi�ed PERT distribution.

� question type IIIb (allocate shares): In fact, question type IIIb has the same structure
as type IIIa. Again, the experts are asked to allocate exactly 100 percentage points.
However, IIIb asks for the shares of di¤erent elements of a domain instead of prob-
abilities. E.g., if we ask for the German energy mix in 2020, the statements are not
probabilities but shares.

� question type IVb (verbal statements): Question type IVb allows for short statements
on up to 10 di¤erent questions. Similar to question type IIIb this is no probability
elicitation but can sometimes be useful.

After the last question, experts are asked for their professional background. As the PCXquest
is freely accessible via internet and we did not implement a login procedure - to reduce
the time burden for the experts - we have developed the concept of expert codes. On the
background page we have created a �eld where experts can enter a prede�ned code. This
allows us to match the statements and the experts.
We are convinced that the PCXquest is one of the elicitation tools which asks experts for the
lowest level of cooperation. Moreover, creation of additional questionnaires is easily done by
the risk analyst and the expert statements are stored in a text/ Excel �le. Consequently,
the PCXquest, or a similar platform, can easily be implemented in the day-to-day business
to quantify uncertainty of in house and external experts. Online questionnaires could be run
on a regular basis (monthly, quarterly, etc.) for a constant group of in house experts (one
person of each key department) and external experts to monitor crucial changes in important
risk factors.

18 Prediction Markets

The Hayek Hypothesis (Hayek 1945) assumes the market mechanism is excellent in collecting
and aggregating diverse information which is relevant for the value of commodities and assets.
This was formalized by the rational expectation theory of Muth (1961). The three central
facts of the Hayek Hypothesis are (Berlemann 2003, pp. 176):
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� Competitive markets lead to Pareto e¢ cient allocations where all possible gains are
realized.

� Market participants behave as if they possess all available information even when it is
initially asymmetrically distributed.

� The market mechanism o¤ers incentives that market participants seek an e¢ cient
amount of new information.

According to the e¢ cient markets hypothesis (EMH) all information is re�ected in prices
of e¢ cient markets (Fama 1970) which holds irrespective whether the traders are fully or
partly informed (Dahan et al. 2007, p. 10). This is shown in classical rational expectation
models (e.g. Grossman 1981; Plott & Sunder 1982) when traders are assumed to update
their beliefs by observing market prices and quantities (Dahan et al. 2007, pp. 9). Plott
& Sunder (1982) presume that the market price in the equilibrium may re�ect even more
information than the sum of the individual information of the traders. This is called crystal
ball hypothesis.
These �ndings have actually been observed for �nancial and betting markets297 showing a
good prediction ability.298 Therefore, a new class of prediction markets,299 that are conducted
on prediction market platforms,300 has been developed. Prediction markets are strongly
related to the idea of measuring market expectations. The payo¤s in such prediction markets
solely depend on the realization of an uncertain risk factor (e.g. CO2 price in 2013) or the
outcome of the elements of an uncertain future event (e.g. election results of parties or
concepts of products301 in marketing).302

297Very often stock, bond, currency, and commodities markets are called speculative markets as they allow
traders to bet on future prices. A special case of speculative markets are betting markets that trade securities
only designed for traders to bet on particular matters of fact, like horse races or sport events (Hanson Summer
2007, p. 5).
298The current �nancial crisis (since 2007/8) has challenged these claims. However, one of the most promi-
nent Cassandras - Robert Shiller famous for the Case-Shiller index - sees the problems in a bad regulation
not in the markets themselves. Indeed, Robert Shiller even believes that markets on all possible risk factors
can be the solution to the crisis (see section 18.1 as well as Shiller 2008 and Shiller 1993).
299According to Tziralis & Tatsiopoulos (2007), who analyzed 152 articles dealing with prediction markets,
there are �ve highly frequent names for prediction markets: (1) information markets, (2) prediction markets,
(3) electronic (stock) markets, (4) virtual (stock) markets, and (5) decision markets. Beside them, names are
used like idea futures markets (see Hanson 1992; Passmore & Cebeci 2003; Hahn & Tetlock 2006), forecasting
markets (see Berlemann et al. 2005) and arti�cial markets (see Pennock et al. 2001).
300In this paper the name prediction market platform is used to distinguish a prediction market on a special
topic from its platform. E.g., PCXtrade is a platform for several prediction markets on climate related topics.
301Dahan et al. (2007) call this concept trading.
302see section 18.3 for more on winner-takes-all and index markets
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There is no universally accepted terminology and de�nition of prediction markets. Berg et
al. (2003), p. 1, state that prediction markets "... are designed and conducted for the
primary purpose of aggregating information so that market prices forecast future events.
These markets di¤er from typical, naturally occurring markets in their primary role as a
forecasting tool instead of a resource allocation mechanism". Ottaviani & Sørensen (2007),
p. 555, interpret prediction markets as "... simple �nancial markets that are created with
the purpose of collecting information, but serve no liquidity purposes".
Of course, prediction markets do not fully equal real �nancial markets which is rather an
advantage (Berlemann 2008):

� Although there is a large number of real �nancial markets, a market on the topic of
interest (1) does often not exist at all, (2) does not exist in the respective region, or
(3) does not exist for the respective time or maturity. In contrast, a prediction market
can easily be tailored to a speci�c topic of interest. Berlemann et al. (2005) conducted
several prediction markets on the Bulgarian in�ation and US dollar - Bulgarian leva
exchange rate to get additional prediction instruments as Bulgarian �nancial markets
were underdeveloped and regular surveys were not available. Leigh et al. (2003)
analyzed "Saddam Securities" from September 2002 to February 2003 at TradeSports
that only paid if Saddam Hussein is ousted. They used this prediction market as a
proxy for a "war in Iraq" market and achieved the results that a 10% rise in probability
of war increased the oil price by about $1 and the S&P 500 by 1:5%.

� Even when a suitable real �nancial market exists, very strong assumptions on a sto-
chastic process including the market�s risk premium is needed to estimate the market
expectation. In contrast, prediction markets o¤er a full probability distribution since
di¤erent pure/ Arrow-Debreu securities303 are traded.

� Trading at �nancial markets often relies on an assessment of the expected future stock
price. Traders in prediction markets, instead, are explicitly asked to quantify their un-
certainty on the respective risk factor. Consequently, prediction markets could deliver
an extension to common future markets especially in context of the current �nancial
crisis. While future markets o¤er traders (e.g. farmers) a possibility for hedging against
bad weather conditions, a prediction market could deliver likelihoods for the weather
in addition (Hahn & Tetlock 2006, p. 274).

For the purpose of elicitation, prediction markets do a good job for several reasons (Ostrover
2005, p. 12): participation: Everyone with access to relevant information can contribute

303Arrow-Debreu securities pay exactly one unit of money when a certain outcome of an event realizes and
otherwise nothing.
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to public mass (prediction) markets304 (1) wherever they want, because participation in
prediction markets is not restricted on a special place, and (2) whenever they want, because
trading is possible 24 hours per day, 7 days per week during the life-span of the market.
motivation: The reward mechanism sets incentives for informants to reveal their information.
anonymity: The fear of reprisal for revealing unpopular beliefs does not exist. interaction:
The pricing mechanism lets traders interact. computation: The market prices can easily be
observed and employed for forecasts. costs: After a prediction market platform has been
set up, new prediction markets are nearly without any additionally costs for the platform
operator.
A no hierarchies argument is stated by Meirowitz & Tucker (2004), p. 334: Even in large
organizations with very complex hierarchies, where bottom-up information has to pass sev-
eral supervisors, prediction market prices can directly be observed by the top management.
Moreover, prediction markets have inherited the feature of real-time predictions from real
�nancial markets when the liquidity is su¢ cient. Traders are allowed to buy or sell shares
immediately when they get new information. In contrast, online questionnaires or question-
naires sent by mail or e-mail do not reveal changing assessments of the interviewees during
their life-spans. There is the risk that important information becomes public during the
questionnaire life-span which results in a bias between the late and early answers.

18.1 From Past up to Now

The �rst forerunners of today�s prediction markets were betting markets on the U.S. presi-
dential elections starting nearly 150 years ago. In organized markets, contracts were traded
that paid o¤ a �xed dollar amount in the case of the winning of a certain candidate. A
5% commission was common. The amounts invested in the betting markets were enormous.
The maximum was reached in 1916 with 165 million $ (in 2002 $) which was twice the total
spending on the election campaign (Rhode & Strumpf 2004, p. 128).
Rhode & Strumpf (2004) analyzed US presidential elections between 1868 and 1940 and
found very successful betting markets with a remarkable forecasting performance although
the information via media was relatively sparse compared to today.305 In one case, only,
the favored candidate - one month before election - was not the winner. Even state-speci�c
forecasts were quite accurate although there were no scienti�c polls before the mid of the
1930ies (Rhode & Strumpf 2004, p. 129). From 1916 on, the largest non-scienti�c survey

304E.g., the market platform PCXtrade hosts public mass markets on climate change related topics. Every-
body, who is interested in, can trade in the mass markets via internet. Beside them the PCXtrade also runs
expert (prediction) markets which restrict access to select groups of experts.
305However, Rhode & Strumpf (2004), p 128, report that the New York Times nearly published quotes on
daily basis during the elections 1896, 1900, 1904, 1916, and 1924.
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was the Literary Digest poll which sent millions of postcard ballots via mail. In 1916 the
Literary Digest failed to forecast the landslide victory of F. Roosevelt while the betting
markets did. Nevertheless, they disappeared in the late 1930ies - not because of low forecast
accuracy but other forms of gambling306 attracted a wide range of people and scienti�c polls
were introduced.

Hanson (1992), calling the prediction market stocks "idea futures", o¤ered the �rst intro-
ductory article to the concept of prediction markets. A few years before the �rst application
of such a modern prediction market was conducted on the 1988 U.S. presidential elections
(Forsythe et al. 1992). From that time on especially so called political stock markets have
shown good results compared to traditional political forecasts (Berlemann & Schmidt 2001)
which might explain the nearly uncountable number of e¤orts to use prediction markets on
other topics.307

Although Hanson (1992) was one of the �rst who proposed prediction markets as a social
institution that creates visible consensus on topics other than pure election markets, the
research was focused on political stock markets in the 1990ies. Up to 1998 the number of
publications in the area of prediction markets was low with all together less than 20. From
1999 on the number of publications sharply rose to 14 in 2002, 22 in 2004 and 34 in the
�rst 8 months of 2006 (Tziralis & Tatsiopoulos 2007). The majority of prediction market
publications (72%) deal with applications of prediction markets, 22% focused on descriptions,
and 18% on theoretical research (Tziralis & Tatsiopoulos 2007).

In 2004 the concept of prediction markets were popularized by James Surowiecki�s popular
science book "The Wisdom of Crowds" (Surowiecki 2004) as one part of a wise-crowd vision
that also incorporates Wikipedia, MySpace, and open source software. This is related to
the cheap-crowd vision highlighting the possibility to substitute expensive experts by the
cheaper crowd.

There are two additional concepts in the focus of academic discussion on prediction markets:
decision markets and macro markets. Hanson (Oct. 2007), p. 75, de�nes prediction markets
as decision markets designed to directly inform a decision maker (e.g. market operator) who
can in�uence the market�s underlying. E.g., a prediction market on the rati�cation of the
Kyoto protocol by the USA is a decision market for the U.S. government while a market on
the number of hurricanes is not.

In decision markets traders could be discouraged to reveal their information honestly since
the decision maker is expected to change the settings for the underlying (intervention prob-
lem). When the market prices indicate to an adverse outcome the decision maker can change

306New York legalized pari-mutuel markets on horse races in 1939 (Rhode & Strumpf 2004, p 139).
307E.g., Berlemann (2008) concludes that it might be useful to extend political market methodologies to
monetary policy instruments.
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the underlying. The traders detecting the undesirable development are not rewarded for their
information as subsequently the stock prices on the adverse outcome will fall. Therefore, the
traders will incorporate this danger and should no be willing to fully reveal their knowledge
and beliefs (Ledyard 2006, p. 46).

A special version of decision markets are terrorist markets where a subgroup of criminal
traders can in�uence the underlying instead of the decision maker. The Policy Analysis
Market (PAM) platform, part of a program called FutureMap, was feared to be such a
terrorist market. The PAM was planned to forecast military and political instability around
the world that a¤ects US interests. Because of practical reasons PAM should be focused
on eight nations in the Mideast and �ve parameters: military activity, political instability,
economic growth, U.S. military activity, and U.S. �nancial involvement. Forecasts were
planned for each quarter of the following two years (Hanson July 2006, pp. 259). In addition,
PAM traders should give predictions on the U.S. GDP, world trade, total U.S. military
casualties, and total western terrorist casualties. Finally, there was planned to o¤er traders
the possibility to propose some miscellaneous markets (Hanson Oct. 2007, p. 77).308 The
FutureMap project including the PAM was cancelled by the US Senate in 2003 after really
bad press coverage and apprehensions by politicians that terrorists could manipulate prices to
mislead the authorities or try to make money by trading at the PAM beforehand they make
a terrorist attack.309 Hanson (Oct. 2007), p. 83, one of the developers of PAM, disagrees
with these arguments because the PAM was designed as a decision market on geopolitical
trends � not on terrorist attacks. Moreover Meirowitz & Tucker (2004), p. 335, wonder
why the hierarchy mechanism of intelligence apparatus is less objectionable than prediction
markets.

Beside the proposal of decision markets there is the discussion on macro markets. Shiller
(1993) argues that �nancial markets can only be used for hedging relatively small risks.
Hence, he proposes macro markets on main national and international economic variables,
like national incomes. Athanasoulis et al. (1999) believe that such macro markets can help
persons as well as huge pension funds to eliminate �uctuations in country-speci�c growth
performance.

308As the outcomes of the di¤erent markets would not be independent, the PAM was planned as a combina-
torial prediction market platform where the participants can trade conditional stocks of the form: "payment
of 1e when a certain parameter of a certain country in a certain time interval has realized given that another
parameter of a certain country in a certain time interval has occurred". Because this leads to an exponen-
tially increasing number of stocks the PAM is based on Hanson�s market scoring rule (MSR, see section
18.6.7) o¤ering in�nite liquidity. As the MSR needs an initial subsidy $50; 000 were bankrolled (Hanson
Oct. 2007, p. 78). Berg & Rietz (2003) show how conditional political prediction markets can be used for
decision support.
309Meirowitz & Tucker (2004) give an overview about the press coverage on the PAM as "terrorist market".
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The Economic Derivatives platform, set up by Goldman Sachs and Deutsche Bank, can be
seen as a prime example of the application of prediction markets as a large scale hedging in-
strument against macroeconomic risks.310 Economic Derivatives allows institutional traders
to hedge against U.S. non-farm payrolls, retail sales, business con�dence, initial unemploy-
ment claims, and Euro-area harmonized CPI (Wolfers 2006) by using pari-mutuel markets
(see section 18.6.4) - usually open for about one hour one morning before the data release.311

As the markets, partly preceded by another market one or two days before, are conducted
very shortly before the data release, Gürkaynak & Wolfers (2005), p. 5, believe that the
Economic Derivatives markets can be used to hedge event risk rather than business cycle
risk. Besides hedging, Wolfers (2006) recommends such markets for (at least) short-time
economic forecasts instead of complicated models.312

18.2 Basic Structure of Prediction Markets

Prediction markets normally take place via internet or in laboratories (computer pools) on
prediction market platforms. The participants (= traders, experts) have to register and get
a registration code.
In real money markets the participant can invest a certain sum of money that is mostly
restricted to a maximum at academic prediction market platforms. According to the amount
invested the participants get trader accounts which they can use for trading. Apart from
commercial real money prediction markets that earn money via fees on the transactions
(e.g. TradeSports or Betfair) academic prediction markets are generally zero sum games.
This means all invested money is �nally redistributed depending on the traders�success. In
virtual money markets, Wolfers & Zitzewitz (2004) call them pseudo-markets, each trader is
initially endowed by the same amount of virtual money.
After registration (and remittance in real money markets) the traders are allowed to trade
on some or all prediction markets of the prediction market platform. The maturity of the
markets varies from minutes (mainly markets in laboratories) to several months or years

310Of course, Economic Derivatives is not a classical macro market in the sense of Shiller (1993).
311Other macroeconomic markets for GDP, international trade balance, and U.S. CPI have been set up or
are planned. E.g., the Chicago Board of Trade o¤ers federal funds rate futures and options and the Chicago
Mercantile Exchange CPI futures contracts (Gürkaynak & Wolfers 2005, footnote 1).
312Gürkaynak & Wolfers (2005) compared 153 Economic Derivatives auctions within 2.5 years to the survey
forecasts - consensus forecasts of usually about 30 forecasters - released by Money Market Services (MMS)
on the Friday before data release. The result was that market prices contained all information of the surveys
and were better able to explain behavior of stock prices in respect of economic news. Indeed, market prices
seemed to mirror the information level of the �nancial markets (Gürkaynak & Wolfers 2005, p. 12). The
average survey tends to stick too long with bad forecasts instead to incorporate new information. Market
prices did not. This is partly because the markets took usually place days after the surveys.
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(internet markets).313 At each market there are contracts, called stocks or bonds, on all
possible outcomes of a risk factor or on all elements of an event (e.g. parties in an election).
On each stock several shares are issued and can be traded. E.g., assume a "hurricane market
2009" which is on the number of hurricanes in the North Atlantic in 2009. At this market
there are K stocks: stock 1 (0 - 1 hurricane), stock 2 (2 - 3 hurricanes), ..., stock K (15 -1
hurricanes) which cover all possible outcomes (0 - 1 hurricanes). Each stock consists of nk
(mostly nk = n) tradable shares.
Classical prediction markets have some characteristics in common. Traders have the possi-
bility to trade shares on the di¤erent stocks in a so called secondary market where only the
participants can buy and sell. When there are several bids (buy order) or asks (sell order),
the trades are normally ordered by time of entering the market. The prediction market
platform usually displays the highest bid price and the lowest ask price for each stock. The
market price of a stock only re�ects the last price at least one share was traded. This is
called marginal pricing.
A further possibility to buy and sell stocks is the bank (or primary market). At the bank
the participants can only buy and sell complete unit portfolios, also called bundles. Unit
portfolios comprise one share of each stock and can be bought or sold during the whole
duration of the prediction market for a �xed price. Generally, traders are not allowed to go
short or to take out a loan at the bank. The �xed price of the unit portfolio, often set at 1
(e, $, etc.), determines the rational sum of prices at the secondary market.314

For the participants it is only possible to buy shares or unit portfolios when they possess
the adequate amount of money. For selling them it is necessary to possess the appropriate
number of shares on the respective stocks. Buying or selling orders can be limited by time.

18.3 Market Liquidation

Atmaturity, liquidation is normally determined by the observed realization of the event under
consideration while the payo¤ of the unit portfolios equals its �xed price to guarantee a zero
sum game for all traders as a whole. According to the liquidation mechanism prediction
markets are called winner-takes-all markets, index markets and spread markets (see table
45).
In winner-takes-all markets only the shares on the realized outcome get a payo¤ equal to
the �xed price of the unit portfolio. All other shares of the remaining stocks have no payo¤.
Consequently, such shares are pure/ Arrow-Debreu securities (Berlemann & Nelson 2005,

313At the Foresight exchange there are prediction markets that last for several years. E.g., trading on the
claim "Humanly mobile robot, by 2036" started in 1997 and is planned to mature in 2036, at the latest.
314see section 18.5. for more on arbitrage strategies
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mechanisms details market expectation of

winner-takes-all
shares on the realized outcome
pay 1e, other shares nothing

probabilities for the di¤erent
outcomes

index shares pay acccording to a
relative portion

expected value of di¤erent
elements of an event

spread payo¤ if realization of the
outcome is above the share price

expected quantiles of a
risk factor

Table 45: liquidation mechanisms of prediction markets (Wolfers & Zitzewitz 204, table 1)

p. 8). Such a prediction market is complete as the risk originating from the respective risk
factor can fully be hedged by holding a unit portfolio (Berlemann 2008).
In index markets the payo¤ of each stock is proportional to the relative share of di¤erent
elements of an uncertain event. In contrast to winner-takes-all markets, index markets reveal
point estimates instead of uncertainty on the elements. Index markets are popular in political
stock markets where each stock represents a party or a politician. The payo¤ of each stock is
determined by the vote share (= element of the event "election"). Prediction markets could
also assess the energy mix in Europe by 2020.
In the rather academic spread markets traders bid on expected quantiles of a risk factor.
Suppose a market "the average global temperature rise up to 2050 will be more than y�C".
The price of the stock is �xed and the payo¤ too. The trader solely bids on the cuto¤point y.
When the global temperature will be above y, the trader wins the �xed payo¤. Otherwise,
they get nothing. The relationship between �xed stock price and payo¤ determines the
quantile the traders reveal. E.g., a price of 1e and a payo¤ of 2e will lead to the 50%
quantile (median) while a price of 4e and a payo¤ of 5e reveal the market assessment of
the 4/5=80% quantile.
Finally there exists the highly theoretical concept of non-linear index stocks with payo¤s
depending on the squared outcome y2 of the risk factor Y . Prediction markets on such stocks
reveal the market expectation about the squared outcome E (Y 2). Combining a linear and
a non-linear market, the implied market volatility of the risk factor Y can calculated by

Std (Y ) =

q
E (Y 2)� E (Y )2:

However, it is doubtful, whether prediction market traders are able to rationally trade on
such non-linear index stocks.
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18.4 Real Money vs. Virtual Money Markets

At least in real money markets, traders have a monetary incentive to reveal their true assess-
ments about the outcome of a risk factor. Even in virtual money markets (no compensation
or prizes) traders can earn reputation in a community by succeeding in the markets. In
general prediction markets with real money are assumed to achieve better results. Monetary
incentives are presumed to let traders take part and reveal their subjective assessments as
this strategy leads to a maximization of the traders�expected pro�ts and utilities315 while
trading with virtual money is just cheap talk with no consequences (Wolfers & Zitzewitz
2006, p. 20).
Nevertheless, the perception of the superiority of real money markets is more based on
theoretical reasoning than empirical results. Rosenbloom & Notz (2006) found real money
markets on non-sports events signi�cantly more accurate than virtual money markets. Nev-
ertheless, there are some counter-examples: Empirically, Span & Skiera (2003), p. 1317,
could not �nd a di¤erence in the prediction quality compared to real money markets. Luck-
ner (2006) observed non-public real money markets on the FIFA World Cup 2006 to perform
worse than virtual money markets with prizes. Servan-Schreiber et al. (2004) found that
real and virtual money markets on American Football outcomes at TradeSports.com (real
money) and NewsFutures (virtual money) during the 2003-2004 NFL season had a compa-
rable prediction ability. They suppose that this is a result of the higher motivation at real
money markets and the more e¢ cient information aggregation at virtual money markets.
Maybe, this result could be misleading as a general �nding because sport markets are closely
related to a huge sports fan community with motivation patterns others than money.
A commonly used version of virtual money markets is to reward traders with money or prizes
depending on their virtual gains. Traders do not need to invest their own money which could
be less discouraging. This could attract a large number of new traders.
When the best performing traders are rewarded with prizes, traders might only be motivated
that hope to be one of these best. All others have at least no monetary incentive to reveal
their expertise as it makes no di¤erence whether one is the worst of all traders or the best
under the non-rewarded traders. When an active trader comes to the conclusion that she will
most likely not win a prize, the trader could start a more risky strategy to become one of the
best which than results in biased market prices in form of overvalued prices for subjectively
very unlikely events (Berlemann et al. 2005, p. 21). A possibility to ease the problem is to
publicly rank people to give them non-monetary incentives. This could however keep away
some potential traders fearing disgrace.
Although the prediction performance is, at least theoretically, in favor of real money markets,

315In fact, the utility of traders may not be maximized by a faithfully revelation of their expectations when
the no-stakes condition is violated (see section 16.3.1 and Kadane & Winkler 1988).
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a market operator should keep in mind other issues conveyed by real money markets:
(1) time-lag: Even with online banking, traders in online markets cannot trade immediately
after they have registered. The market operator will not activate the trader accounts before
the trader�s money is transferred on the market operator�s bank account. Some people
may not be willing to take part in the market when they are not allowed to start trading
immediately or will have lost their interest up to the activation of their accounts.
(2) transaction costs: Potential investors could be deterred by transaction costs for trans-
ferring and re-transferring the money. Within the Single Euro Payments Area (SEPA),316

starting in 2010, this will be no problem even for international payment transactions all
over European. Global prediction markets should also allow payment systems like PayPal.
The transaction cost argument in the Bulgarian �nancial sector was one of the reasons for
Berlemann et al. (2005) to run virtual money markets.
(3) non-disposable investments: The longer the life-span of a prediction market the harder
it is to motivate people to invest real money as they usually don�t get back their investment
until the maturity of the market. Berlemann et al. (2005), p. 8, propose to pay an interest
on the investment. This could at least reduce the opportunity costs. In the �rst political
stock market in the Czech Republic in 2002, Chalik et al. (2005) subsidized all investments
with additional 10% of the invested amount if at least 20% of the their initial value were
traded.
(4) credibility: A market operator needs credibility as she/ it collects the invested money.
The longer a market lasts the more important the credibility. Risk-averse people may shrink
away from investing money in real money markets because they fear they could lose it when
they are wrong or when the market operator goes bankrupt or is a criminal. Luckner (2006)
argues that in public prediction markets on sports events many traders could be risk-seeking
and therefore the real money markets could perform better.

18.5 Traders

Most academic real money prediction markets are zero sum games for the traders as a whole.
At �rst glance no trader should be willing to take part in such a market with an average
expected payment of zero. Every risk a trader bears in the market in form of not holding
the same number of shares of each stock (= unit portfolio) is unsystematic risk that is not
compensated because of arbitrage arguments. Forsythe et al. (1992) present �ve motives
for trading in a prediction market: Novelty factor: For most people prediction markets are
new and they are curious to trade. Con�dence factor on information: People believe they

316Transaction within SEPA, comprising the 27 EU member states, Liechtenstein, Iceland, and Switzerland,
will be usually zero for private persons.



224 18 PREDICTION MARKETS

possess an above average knowledge in the topic. Consequently, they presume not to take
part in a zero sum game. Con�dence factor on interpretation ability: People believe that
they are superior to others in transforming information, e.g. from news papers, that will
arise during the market. Con�dence factor on trading talent: People believe they are better
traders than others. Risk-seeking factor: People enjoy to gamble. Morris (1995) argues that
especially for events that can only be observed with insu¢ cient frequency it is very likely
that traders have uncommon priors which results in heterogeneous beliefs and are a motive
for trading.

Theoretically, traders can be distinguished by di¤erent trading strategies, namely arbitrage
strategy, expectation strategy, modi�ed expectation strategy and speculation strategy (Berle-
mann 1999, pp. 8; Berlemann & Nelson 2002, pp. 13):

Arbitrage strategy means that participants try to make risk-free pro�ts. When the market
price for an unit portfolio is lower than its �xed bank price the participants should buy
stocks at the secondary market (synthetical unit portfolio) for the lower price and sell them
at the bank. When the market price is higher than the �xed bank price, it is rational to buy
unit portfolios at the bank and sell the stocks separately at the market. Both strategies lead
to a risk-free pro�t. However, this is only true when there is enough liquidity in the market
for all stocks. Otherwise it is not possible to buy all stocks at the low prices to create a
synthetical unit portfolio or there is the risk that the trader is not able to sell all stocks, at
all, or only for a lower price. As long as there is no problem of liquidity in a good functioning
market these arbitrage possibilities should disappear very fast.

Traders who follow the simple expectation strategy decide to buy or sell stocks on the basis
of their expectations of the �nal market outcome. When traders expect a rising (falling)
market prices they buy (sell) shares.

Traders following the modi�ed expectation strategy re�ect the possibility that their expecta-
tions could be wrong. Consequently, traders are more and more willing to sell their stocks
the closer the market prices narrow the expected values.

The speculation strategy is not based on expectation of the �nal market result. Instead,
traders act according to their expectations about the trading behavior of other traders. The
e¤ects of speculative trading can be speculative bubbles and irrational price shifts.

There are also some empirical �ndings on the behavior of traders at prediction markets.
Generally, in academic prediction markets, not all registered traders trade at least one time.
E.g., in a CPI in�ation market at the TU Dresden, only 31 out of 51 registered participants
traded at least one time (Berlemann & Nelson 2005; Berlemann 2008). In their 1994 Dutch
political stock market, Jacobsen et al. (2000), p. 210, observed 40% of the active buyers
and 20% of the active sellers responsible for 90% of the traded shares.

Empirically, Oliven & Rietz (2004) could categorize traders. They used the unit portfolio
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and market structure to identify whether traders are market makers or price-takers. They
found a self-selection of market-makers317 and price-takers. Market makers were less mistake
prone and appeared to be more rational. Traders on the buy side produced less violations
than traders on the sell-side and markets that were more competitive, measured by bid-ask
spread, produced less violations, whereas markets with high total daily dollar volumes were
prone to more mistakes (Oliven & Rietz 2004, p. 342). Altogether, market makers had more
market-speci�c experience and general education on average (Oliven & Rietz 2004, p. 349).

Do these �ndings mean that a market operator should only attract market-makers? Berle-
mann et al. (2005) restricted their virtual money markets to handpicked experts (= expert
markets) to avoid attracting uniformed traders. In contrast, there is a widespread literature
(e.g. Spiegel & Subrahmanyam 1992; Hanson 2006; Bloom�eld et al. 2009) arguing that
prediction markets need uninformed traders, called noise traders, o¤ering incentives for in-
formed traders, called insiders. When the market with solely rational traders and common
knowledge is in an e¢ cient equilibrium the no trade theorem will apply and no trade will
take place (Milgrom & Stokey 1982). This is because everybody knows a trader has private
information when she wants to trade. Hence, rational traders are not willing to accept the
bid or ask o¤er.

Beside these theoretical considerations an important decision for a market operator is whether
a public mass (prediction) market or an expert market should be conducted. Public mass
markets are prediction markets via internet with no restriction on the access. Everybody is
allowed to sign in and trade. There is a self-selection of the traders without any requirement
to ful�l certain requirements. In contrast, trading at expert markets is restricted to preselect
experts or to persons that ful�ll prede�ned criteria.

The adequate market form mainly depends on the topic and on the purpose of the market.
Expert markets are preferable (1) when a professional prediction is needed on a speci�c topic
(e.g. Potsdam Climate Exchange, corporate prediction market for HP, Google, etc.), or (2)
when legislation requires to restrict access (Economic Derivatives).

However, prediction markets are often public mass markets. This seems reasonable (1) when
the topics are not too special, (2) when the public directly in�uences the outcome (e.g. polit-
ical stock markets, Hollywood Stock Exchange, Securities Trading of Concepts (STOC)),318

(3) when prediction markets are set up for entertainment purposes (e.g. TradeSports and
Foresight Exchange), and (4) when prediction market shall measure sentiments in the public
which concern politics, business, NGOs, and research (e.g. Potsdam Climate Exchange).
Additionally, a market operator can be forced to run public mass markets when there is not

317Here, the termmarket maker describes traders that mainly set bid and ask prices instead of just accepting
o¤ered market prices.
318The public elects the candidates or parties, goes to the movies, and purchases products.
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a su¢ cient number of experts available but a prediction is needed.319

18.6 Pricing Mechanisms

A key characteristic of prediction markets is their pricing mechanism that exist in extremely
di¤erent forms. In the following, we present the most important as well as the most promising
and sophisticated mechanisms. Finally, we compare their pros and cons.

18.6.1 Continuous Double Auction (CDA)

Classical prediction markets possess a continuous double auction mechanism (CDA) just
matching the bids and asks of the market participants. There is only trading, when any
trader is willing to buy at least one share for a price (bid order) that must be equal or larger
the price (ask order) another trader is willing to sell at least the same number of shares of
the same stock. Thus, the market operator bears no �nancial risk.
CDA markets can di¤er in small features. Some markets allow partially �lling of orders.
The remainder can be placed as a book order or be dropped. Often, traders are allowed to
impose their o¤ers a time limit. Limit orders, common for CDA markets, are also used in
di¤erent ways. Normally, the limit price for, e.g. a bid (ask) order is de�ned as the maximum
(minimum) price, a trader is willing to buy (sell) at least one share. Sometimes, the limit
prices is understood as the maximum average price of all bought shares. Hence, when parts
of a bid order are ful�lled at a lower than the maximum price, this mechanism also allows
to buy single share above that maximum.
New information in such CDA markets is incorporated very fast. However, the CDA can
su¤er from illiquidity meaning that there are huge bid-ask spreads possible or empty bid-ask
queues. The most successful measures to overcome illiquidity is to increase the number of
traders or to motivate them to trade with higher frequency. Unfortunately this is very often
hardly possible.

18.6.2 CDA with (Non Market Maker) Arti�cial Traders

One approach to eliminate or reduce human shortcomings in markets is the usage of auto-
mated traders. Arti�cial traders called electronic snipers like eSnipe and AuctionBlitz have
established at eBay. In eBay auction markets it is not a reasonable strategy to reveal the
maximum amount of money one is willing to pay. This would give other bidders the chance

319This is mainly the case in research. As there is often no access to experts, students are used to predict
in�ation rates, exchange rates, the success of product concepts, etc. (Berlemann et al. 2005, Berlemann
2008, Dahan et al. 2007).
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to raise their maximum bids. This in�ates the �nal price. Electronic snipers automatically
bid at the last minute of the auction.
Grossklags & Schmidt (2003) have compared the e¢ ciency of CDA prediction markets with
and without arti�cial traders. The automated traders were programmed as arbitrageurs
scanning for purchasing or selling arbitrage possibilities. Markets with automated and human
traders, informed of the arti�cial arbitrageurs, seem to possess an improved e¢ ciency.320

However, in the case that the humans were not informed about the automated traders, the
e¢ ciency of the market prices was worse than in the pure humans�market. A crowding out
of the human by automated traders could not be found.

18.6.3 CDA with Market Maker

At markets with a CDA there can trade one or more (human or automated) market makers.
We call such markets CDA with Market Maker (CDAMM). In general, market makers need
an accreditation of the market operator and often get access to the order books of the market.
They are obliged to permanently o¤er bid and ask rates to raise liquidity in thin markets.
Their pro�t comes from the bid-ask spread. Market makers have the incentive to set fair
prices because they pro�t from a high trading volume. To get optimal narrow bid-ask spreads
the market operators can admit several market makers that compete with each other.
In prediction markets the market maker is usually the market operator and the spread is
often set to zero. The risk in ful�lling the role of a market maker is the danger of large
monetary losses that could lie at least beyond the �nancial capability of at least most of the
academic prediction market operators. That is the reason why professional market makers
are mainly �nancial institutions with profound experience and expert-knowledge.
Automated market makers set prices according to an algorithm determining to what extent
the market price increases (decreases) when a bid (ask) order is processed. The Hollywood
Stock Exchange (HSX) runs an automated CDA market-maker matching bid and ask orders
by generating a market price by a Virtual Specialist software. This bears no risk for the
HSX as virtual money (Hollywood$) is traded only. Other prediction market platforms with
automatic market makers are the Iowa Stock Exchange, NewsFutures, ForesightExchange,
TradeSports, Inkling Markets, Washington Stock Exchange, BizPredict, YooNew, Net Ex-
change and Yahoo! Tech Buzz Game. A market maker was planned at the PAM, too (see
section 18.1 for PAM).
Exactly like the regular CDA, the CDAMM leads the market participants to reveal their
private information continuously as soon as new information arrives. Additionally, a market

320Grossklags & Schmidt (2003) conducted 18 sessions (six markets of each type: no automated traders,
human traders informed about automated arbitrageurs, and human traders not informed about automated
arbitrageurs) with 108 humans and 12 programmed traders.
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maker o¤ers the advantage to aggregate even more information because traders do not need
to wait for a matching o¤er to make the deal (Ondrus et al. 2007). Bruggen et al. (2006)
performed thin prediction markets with market makers and as little as six traders (which
is hardly possible with basic CDA markets). Compared to a simple equal weighting of
experts, the performance of these markets were signi�cantly better when traders had highly
heterogeneous expertise. In the case of rather homogeneous experts, the weighting approach
performed slightly better.

18.6.4 Pari-Mutuel Mechanism

Pari-mutuel (betting) markets are familiar to a lot of people by horse race wagers. Plott
et al. (2003) have no clear theory explaining why pari-mutuel markets should be able to
aggregate information. They �nd empirical evidence in favor of an excellent aggregation -
apart from an overestimation of rare events.
In such markets, gamblers can put their money on mutually exclusive and exhaustive out-
comes of a risk factor, i.e. bets on di¤erent horses to win. After the market has closed
and the outcomes can be observed the shares on the "winning" outcomes equally receive all
staked money M =

PK
k=1Mk reduced by the fees F . Assume that there are K mutually

exclusive and exhaustive outcomes andMk is the amount of money invested in the "winning"
stock k 2 f1; :::; Kg paying

pk =
M � F �M

Mk

=
M � (1� F )

Mk

;

per invested unit of money (Pennock 2004, p. 171). The payo¤ is zero for investments in
the other K � 1.
Normally, pari-mutuel markets quote no prices but odds. At TradebetX there are either
moneyline odds or digital odds. Digital odds di¤er from traditional odds as they include the
traders own stake money as part of the total return. If a trader places a bet of $20 at digital
odds of 5.0 and wins, her total payo¤ is $100 (winnings of $80 plus original stake of $20). In
fractional odds this would be quoted as 4/1 or +400 moneyline. Digital odds are simpler to
use than traditional odds and are the most common form of odds quoted outside the U.S.
Besides, digital odds relate more closely to probabilities: in a race with four equally matched
horses, the probability of each horse winning is 25%. Each horse will have traditional odds
of 3/1 or digital odds of 4.0.
Without any fee - common in academic pari-mutuel markets - it is irrelevant whether the total
stake is redistributed to the winning stocks or only the "losing" stakes and the investment
is repaid

pwin =
Mwin +Mlose

Mwin

!
= 1+

Mlose

Mwin

:
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In contrast to continuous double auction markets, pari-mutuel markets are theoretically not
able to continuously re�ect the aggregated information of its participants as there is an
incentive to place stakes shortly before market close. All investors in the "winning" stock
will get the same payo¤per invested unit of money irrespective the time of investment. Thus,
market participants should wait for possible new information and the latest market prices
and then decide where to invest. Consequently, the market prices don�t re�ect the market
assessment before market close, partly because market participants cannot cash out. The
return on each invested unit of money can only rise when relatively more money is invested
in the other stocks. It is possible to allow bettors to change or to cancel their bets. However,
they cannot pro�t from price changes as every invested unit of money has an exact value of
one up to the market closes (Pennock 2004, p. 171).
Kalovcova (2007), pp. 5, has summarized the main di¤erences between classical prediction
markets and pari-mutuel markets:

� In a prediction market traders with information, also called insiders, will enter the
market as early as possible to pro�t from market price changes. In pari-mutuel markets
such insiders will attend as late as possible because the payo¤ depends on the amount
of money invested on the same stock.

� In prediction markets, traders can immediately calculate their expected payo¤s. In
pari-mutuel markets, they need additional assumptions about invested sum in the
stocks (see also Gürkaynak & Wolfers 2005, p. 3).

� When traders split their money equally on all stocks, their return on investment is
zero. In a pari-mutuel markets such a portfolio is not risk-free.

� In traditional pari-mutuel markets there is no continuous trading as there is no possi-
bility to resell the tickets.

18.6.5 Wagering Markets

Las Vegas style wagering markets are similar to pari-mutuel markets with bookmakers or
oddsmakers acting as market maker and are called book or house. They determine the odds
in the beginning by (their own) expert judgement and later in response to the di¤erent
stakes (Pennock 2004, p. 172). In contrast to pari-mutuel markets the odds are �xed at the
moment the gamblers put in their wagers while odds may change over time. This is similar
to CDA with market makers. The bookmakers earn their money by the bid-ask spread but
can incur huge losses. In contrast, pari-mutuel market operators make their pro�ts by fees.
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18.6.6 Combined-Value Trading (CVT)

From asset pricing theory investors are not interested in single assets but in portfolios to
maximize utility coming from returns and risk (Bossaerts et al. 2002). This is why non-
diversi�able (systematic) risk is only compensated. Bossaerts et al. (2002) propose a port-
folio trading mechanism called combined-value trading (CVT) that induces liquidity in thin
�nancial markets (see section 18.6.6). Investors can submit portfolios of securities they want
to buy or sell. The CVT mechanism computes prices by optimally combining portfolio
orders.

The CVT mechanism is an intermittent call market working in the following way: Assume,
a prediction market has K di¤erent stocks and njk stands for the number of shares of stock
k that trader j� f1; :::; Jg wants to buy (njk > 0) or sell (njk < 0). The budget constraint
bj for trader j states the maximum amount of money this trader is willing to pay for the
portfolio nj = (nj1; :::; njK)

0. Traders need to enter prices pj = (pj1; :::; pjK)
0 beside nj and

bj in an electronic open book. After a predetermined time, the book is closed and prices and
quantities are calculated. Subsequently, the book is opened again.

The CVT algorithm maximizes the market turnover
PJ

j=1 �jbj by �nding adequate �ll frac-
tions �j 2 [0; 1] for all J traders.321 The maximization is not allowed to violate the K
conditions

PJ
j=1 �jnjk � 0 guaranteeing that not more shares of a stock are sold than of-

fered. A market clearing is not required. Once the orders are matched, the optimal prices
p� = (p�1; :::; p

�
K)

0 are chosen such that Walras�law obtains
PK

k=1 p
�
k

PJ
j=1 �jnjk

!
= 0. A solu-

tion to p� always exists but is not unique as no numeraire is assigned (Bossaerts et al. 2002,
p. 1676).

18.6.7 Market Scoring Rule (MSR)

Hanson (2002) developed a market scoring rule (MSR) which can be used as two-side au-
tomated market maker o¤ering continuously bid and ask prices. The advantage of a MSR
compared to a CDA with a market maker (CDAMM) is a bounded maximum loss for the
market maker.

Traders can buy or sell stocks at any time from or to the market maker at prices that are
de�ned by a cost function. The inherent scoring rule s (�) o¤ers incentives that rational
traders change the market prices in accordance with their subjective beliefs as they can
always expect to pro�t when they disagree with the market assessment. The payo¤ for
the traders is determined by the way the agent has changed the prices on the K possible
outcomes.

321It is also possible to interpret J as the number of orders when traders submit several orders.
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Assume that the current market prices for the di¤erent outcomes of a risk factor are p =
(p1; :::; pK)

0 and trader j changes those prices to her reports rj = (rj1; :::; rjK)
0 by buying and

selling shares of the K di¤erent stocks. Now suppose outcome k will �nally realize. Hence,
shares on stock k will pay o¤ (e.g. 1e) and all others nothing. Then trader j�s virtual
number of shares of stock k is

njk = �sk (rj; p) = sk (rj)� sk (p) =

8<:
> 0; rjk > pk
= 0 rjk = pk
< 0 rjk < pk

; (21)

where the scoring rule sk (�) equals to the whole number of shares on stock k in the market.
The portfolio value of trader j calculates by njk � 1.
Equation 21 can be interpreted in the following way: When the realized outcome is k then
the optimal forecast would have been rjk = 1 and rjl = 0, l 6= k. Hence, the market scoring
rule rewards traders increasing the market price for stock k and imposes a �ne on those who
have lowered it. The exact monetary rewards and �nes depend on the scoring rule s (�). The
total turnover (= number of emitted shares on k times one unit of money)

nk (T ) =
TX
t=1

�
sk
�
r(t)
�
� sk

�
r(t�1)

��
= sk

�
r(T )
�
� sk

�
r(0)
�

for T reports on the "winning" outcome k depends on the initial and the �nal report, only.
In the case of a logarithmic market scoring rule (LMSR), sk (rk) = ak+b�ln rk, the automated
market maker calculates the market price according to (see Hanson Jan. 2002, p. 6; Hanson
2003, p. 111)

pk =
exp ([sk � ak] =b)PK
l=1 exp ([sl � al] =b)

:

The corresponding cost function322

C (s1; :::; sK) = b � ln
�XK

k=1
exp ([sk � ak] =b)

�
describes the amount of money so far invested in all stocks.
The maximum expected payment for the market maker is limited to �b

PK
k=1 �k ln

�
p
(0)
k

�
where p(0) =

�
p
(0)
1 ; :::; p

(0)
K

�0
are the initial market prices set by the market operator who

has the subjective probability assessments � = (�1; :::; �K)
0. Hence, the maximum loss is

�b ln
�
maxk p

(0)
k

�
. A market maker who intends to minimize risk should set the initial prices

to her expectations, p(0) = �. Then the maximum expected payment equals the entropy of

322see Pennock (2006) for the two stocks case
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the initial distribution �b
PK

k=1 �k ln (�k). The larger b the more the market maker can lose
but it makes the market more liquid. Thus, the purchase and selling of shares do change the
market prices by a lower magnitude and lead to lower price swings (Pennock 2006).
In the following we adopt a numeric example presented by Pennock (2006). Assume that
the scoring function for the two stocks k = 1; 2 is sk (rk) = 100 � ln rk. The initial investment
of the market operator is

C (s1 = 0; s2 = 0) = C (0; 0) = 100 � ln
�
e0 + e0

�
= 69:31e.

For 10 shares of stock 1, a trader has to pay

C (10; 0)� C (0; 0) = 100 � ln
�
e10=100 + e0

�
� 100 � ln

�
e0 + e0

�
= 5:12e.

Later, when s1 = 400 and s2 = 300 shares circulate, the costs for selling 10 shares of stock
1 are

C (390; 300)� C (400; 300) = 100 � ln
�
e390=100 + e300=100

�
� 100 � ln

�
e390=100 + e300=100

�
= �7:21e.

Meaning that the seller receives this amount of money. The gain for the trader is 7:21e-
5:12e= 2:09e, a return of 41%.
The current market prices for stocks k = 1; 2 are just the prices for an in�nitesimal amount
of shares. Mathematically, this is nothing else than the deviation of the cost function

pk =
exp ([sk � 100] =10)

exp ([s1 � 100] =10) + exp ([s2 � 100] =10)
:

In the example above, the market prices for stock 1 are

p1 (0; 0) =
e0

e0 + e0
= 0:5e, p1 (400; 300) =

e400=100

e400=100 + e300=100
= 0:62e:

Hanson�s market scoring rule is not purely theoretic. It was planned to be used in the Policy
Analysis Market (PAM) which failed for political reasons. Ledyard (2006) still proposes the
MSR for policy markets. And indeed, the logarithmic market maker has been currently
implemented at Inkling, the Washington Stock Exchange, BizPredict, Net Exchange, and
YooNew.

18.6.8 Dynamic Pari-Mutuel Market (DPM)

The dynamic pari-mutuel market (DPM) was developed by Pennock (2004) and has been
already implemented by Yahoo! Tech Buzz Game. The DPM can be conceptualized as an
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one-side market maker that continuously o¤ers ask prices, only (Pennock 2004). However,
there is no guarantee that market participants can sell their shares as selling is accomplished
by a CDA mechanism. Compared to other mechanisms, even the MSR, the market maker in
a DPM bears no risk but a constant pre-determined subsidy is required to start the market.
The DPM theoretically features in�nitive liquidity like a pari-mutuel market but continuously
incorporates new information. In contrast to pari-mutuel markets, the return of investments
in the "winning" DPM stock depends on the state of wagering at the time of purchasing.
This means the prices of stocks are variable and depend on the number of bets on the stocks
so far. The more bets, the more expensive the stock. Similar to pari-mutuel and wagering
markets the payo¤ of a share on the realized outcome in the DPM market is unknown in
advance.

DPM I: Losing Money Redistributed
Pennock (2004), pp. 174, shows how market probabilities can be extracted in a DPM market
where the stakes of the "losing" shares are redistributed while the holders of "winning" shares
get their investments back. In the case of only two di¤erent stocks A and B, the payo¤ per
share k = A;B is

Pk =
�
M�k=nk; k "wins"
0; k "loses" (�k "wins")

where nk, describes the number of shares sold of stock k while M�k is the amount of money
invested in the stock which is not k. The initial investment is paid back.
The market prices pA and pB only hold for purchases and sales of an in�nitesimal amount
"! 0 of those shares as each trading in�uences their prices. Hence, trader j�s expected gain
or loss EjA resulting from buying "! 0 shares of stock A is

EjA = �j (A) � Ej (PAjA) � "� �j (B) � pA � ";

where �j (A) = 1� �j (B) is the subjective probability of trader j that stock A will win and
Ej (PAjA) describes the expected payo¤ of one share of stock A given A wins. Normalized
to exact one share of stock A, the expected gain or loss is

EjA=" = �j (A) � Ej (PAjA)� �j (B) � pA:

A risk-neutral market trader j should purchase shares of A as long as EjA=" > 0. Risk-averse
traders would stop purchasing above this value.
The individual gain or loss expectations of trader j for purchasing ~njA shares of A calculates
by

EjA (~njA) = �j (A) � ~njA � Ej (PAjA)� �j (B) �
~njAZ
0

pA (") d": (22)
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A pro�t maximizing trader would buy tickets up to EjA (~njA) = 0.
In an e¢ cient market, the aggregated expected gains or losses for additional emitted ~nA
shares should be zero

EA (~nA) = � (A) � E (PAjA)� � (B) � pA (~nA)
!
= 0;

as the prediction market is a zero sum game. The variable � (A) describes the market
consensus on the probability of A and on the market expectation E (PAjA) of the payo¤per
share of stock A given A is the "winning" outcome. The market probability can be derived
by:

� (A) =
pA

pA + E (PAjA)
:

The critical problem here is to determine the conditional market expectation of the payo¤.
Pennock (2004) assumes a random walk without trend for PAjA, resulting in E (PAjA) =
PA, and proposes two pricing functions for the market prices that can be used for the integral
in equation 22.
price function I: The payo¤s for tickets on k = A;B equal the prices for �k = B;A

p�k = Pk =
�
M�k=nk; k "wins"
0; k "loses" (�k "wins")

: (23)

Then the price of a share on stock A rises when c.p. more money is invested in such tickets.
Meanwhile, the price of tickets on B falls with the rising number of tickets on A. The
resulting market probability for outcome A is

� (A) =
MAnA

MAnA +MBnB
:

When there already circulate nA shares of stock A, the price for an additional in�nitesimal
number of shares "! 0 is

pA (") =
dCA (")

dnA
=
MA

nB
exp ("=nB)

where

CA (~nA) =

~nAZ
0

pA (") d" =MA � (exp (~nA=nB)� 1)

are the costs to purchase ~nA tickets of A additionally to nA. In a prediction market the
market maker should o¤er a price list for complete shares whose price is calculated by CA (1)
for the �rst share, CA (2) � CA (1) for the second share, and so on. Or the market maker
o¤ers packages like CA (10), CA (20) � CA (10), etc. With these equations the prediction
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market is for the operator a zero sum game although an arbitrarily small subsidy for the
initial shares is needed
price function II: A second price function of Pennock (2004), pp. 175, de�nes the price ratio
by the ratio of wagered money in both stocks

pA
pB
=
MA

MB

. (24)

The more money is invested in a stock the more expensive it becomes. The resulting market
probability is

Pm (A) =
MA

p
nA

MA
p
nA +MB

p
nB

:

Then with already nA circulating shares, the price for additionally "! 0 shares is

pA (") =
dCA (")

dnA
=

MAp
nA + "nB

exp

�
2

r
nA + "

nB
� 2
r
nA
nB

�
where

CA (~nA) =

~nAZ
0

pA (") d" =MA

 
exp

 
2

r
nA + ~nA
nB

� 2
r
nA
nB

!
� 1
!

are the costs to purchase ~nA shares.

DPM II: All Money Redistributed

In the case that all invested money is redistributed the respective payo¤s are

Pk =
�
M=nk; k "wins"
0; k "loses" (�k "wins")

;

where k = A;B and M =MA +MB is the whole investment in the market.
The individual expected gain or loss EjA (~njA) for purchasing ~njA shares calculates by

EjA (~nA) = �j (A) � ~njA � Ej (PAjA)�
~njAZ
0

pA (") d";

while the aggregated expected gains or losses for additional emitted ~nA shares should be zero

EA (~nA) = � (A) � E (PAjA)� pA (~nA)
!
= 0

in an e¢ cient market. Then the market probability calculates by

� (A) =
pA

E (PAjA)
random walk

=
pA
PA

:
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Unfortunately, there results no coherent price function from the price condition in equation
23. Pennock (2004), pp. 176, applies the price condition pA=pB = MA=MB of equation 24.
Then the market probability is

� (A) =
MAnA

MAnA +MBnB
:

Even this approach does not lead to a closed-form solution of CA (~nA). Pennock (2004), pp.
177, proposes to solve the equation

nA (CA) =
CA � (nA � nB)

M
+
nB (M + CA)

MB

ln
M (MA + CA)

MA (M + CA)

numerically. It simply states the number of shares that can be bought for a budget (= costs)
CA.

Comparing DPM I and II
Using DPM I has the advantage that an investment in the "winning" stock will never lead to
a monetary loss (ignoring discounting) as the stakes in the "losing" stocks are redistributed,
only. However, DPM I involves the problem that shares on the stocks k = A;B are not
homogeneous. The value of one share of stock k consists of (1) the equal gains of the
redistributed "losing" money Pk and (2) the respective market price pA which varies over
time. Hence, trading such heterogeneous at a secondary market seems di¢ cult.
A DPM II market deals with homogeneous shares on the same stock k that allow an easy
implementation of a secondary market. Since the initial price paid for the shares of the
"winning" stock is not directly refunded, all shares on k have the same payo¤.

18.6.9 Comparison of Market Types

In the previous sections di¤erent kinds of market pricing were presented which mainly dif-
fered whether they have a market maker or not. Markets without a market maker, i.e.
continuous double auction markets (CDAs), feature a marginal pricing. The current market
price corresponds to the price at least one share of the stock has been traded for the last
time. However, when running a prediction market we are interested in the market assessment
instead of the assessment of one trader, which might be a manipulation e¤ort. Hence, the
new market price should be immediately "reviewed" by the market. This requires su¢ cient
liquidity which is often not the case in prediction markets. A trader with new information
is often not able to immediately buy or sell shares. Moreover, there is the danger of a pric-
ing failure when the market liquidity mainly stems from limit orders (see section 18.7.1) �
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automatically executed orders. When the trading due to the limit orders eventually takes
place traders may prefer di¤erent decisions based on their new information (Tetlock 2008).

An alternative is to enhance CDAs with competing market makers.323 Then, the market
prices immediately re�ect a professional appraisal of the latest market orders. This market
structure seems superior in low liquid markets. However, there is no chance to �nd profes-
sional market makers, e.g. banks, for (academic) prediction markets. At least the market
operator could act as market maker. In virtual money markets there is no �nancial risk
for the operator but often the market operator is no professional in the topic the prediction
market is about.

Therefore, several approaches with automated market makers were analyzed. Such mecha-
nisms always o¤er a market price irrespective of whether the market is liquid or not. Conse-
quently, traders can immediately incorporate their new information in the market, there is
no limit order problem and such markets could attract more active traders which enhances
liquidity.

However, automated market makers do not guarantee e¢ cient market prices but liquidity,
only. When there is no reaction of other traders to the last trader, the new market price
simply results from a pricing function without any evaluation of the new information. An-
other �aw of automated market makers is their inability to adjust to shifts in the trading
volume.324 The impact of a trader on the market price is a (non-)linear function which
may additionally depend on the amounts of money invested in di¤erent stocks. The market
operator has to decide on a function and its parameters before the market starts. To our
knowledge the automatic market maker of Xpree is the simplest algorithm. The operator
decides (by a factor or amount) how much the market assessment is changed by an invest-
ment of virtual $1; 000. The total number and distribution of the shares in the market is
irrelevant. In Hanson�s MSR the operator has to decide on the maximum loss she is willing
to bear. The higher the maximum the less a trader is able to in�uence the market price.

Altogether, a market operator should simultaneously base a decision in favor of a pricing
mechanism according to three or four conditions: (I) guaranteed liquidity, (II) no risk for the
market operator in real money markets, and (III) continuous incorporation of information.
An additional criterion (IV) is whether the payo¤ of a share of the "winning" stock is known
in advance. Otherwise, a trader has to assess both, the probability for the stock to be the
winner and the payo¤ in this situation. In table 46 there is an overview how some of the
presented pricing mechanisms match these requirements.

323Bookmakers can be seen as a special form of market makers.
324see the blog of Chris Hibbert at http://blog.commerce.net/?p=251 (last revised August 26, 2008).
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I II III IV

CDA - + -/+ +
CDA with MM + - + +
pari-mutuel market + + - -
wagering market + - + +
MSR + + + +
DPM -/+ ++ -/+ -

The sign "+" ("-") means that the requirement is (not) ful�lled.

Table 46: comparison of market types (based on Pennock (2004), p. 173)

18.7 E¢ ciency of Prediction Markets

Elicitation tools should provide incentives to seek and reveal truthful information as well
as o¤er an algorithm for aggregating diverse opinions (Wolfers & Zitzewitz 2004). Con-
sequently, prediction markets require that the speculations of Hayek (1945), the rational
expectations theory (Muth 1961), and the e¢ cient markets hypothesis (Fama 1970) hold.
Unfortunately, these theories are no incontrovertible truths but hypotheses which need to
be tested (Passmore & Cebeci 2003, p. 4).
In an e¢ cient �nancial market the market prices are assumed to incorporate all available
information in�uencing the value of the underlying. The prices re�ect everything, more than
a few people know about the stock. Hence, new information of a trader on the stock should
already be discounted in the prices. Buying and selling of stocks on the basis of special
information or interpretation "is not likely to be pro�table" (Black 1975, p. 324). During
the 1970ies the e¢ cient markets theory was the dominant paradigm in �nance. This was
con�rmed by empirical research describing the practicable impossibility to beat the market
(Dimson & Mussavian 1998).325

Some years later, in �nancial economics, behavioral critiques came up against the e¢ cient
markets hypothesis. According to Grossmann & Stieglitz (1980), persistent informational
e¢ cient markets are impossible as in the market equilibrium, where all arbitrage possibilities
are eliminated, informed traders had no pro�t from trading and therefore no incentives for
costly arbitrage activities or to acquire information.
To a broad public, bursting �nancial bubbles like the dotcom or the subprime crises in the
late 1990ies and since 2007/8 have raised doubts about e¢ cient markets. This reasoning is
not made up out of thin air. Brunnermeier & Nagel (2004) found evidence that hedge funds
rode the technology bubble in the late 1990ies for a while because the investor sentiments

325Dimson & Mussavian 1998 overview the pro and con research on the e¢ cient markets hypothesis.
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were predictable. Shortly before the burst the hedge funds deinvested and realized pro�ts.
This was an example where rational behavior did not trade against the mispricing but
boosted the bubble resulting in ine¢ cient market prices. The same result can be observed
when arbitrageurs are not able to enter and exit their trading positions easily or when their
capital is insu¢ cient compared to naive traders.

Surprisingly, since the mid 1990ies, more and more evidence has been found in favour of the
e¢ cient markets hypothesis as it is hard to pro�t from even extreme violations of market
e¢ ciency (Dimson & Mussavian 1998). Fama (1998) argues that most market anomalies
are fragile in the long-term and tend to disappear when they are discovered. Finally, after
examining lots of studies attacking e¢ cient-market hypothesis, Malkiel (2003) concludes
that the markets are more e¢ cient and less predictable than the discussion let us believe.326

Especially for prediction markets Oliven & Rietz (2004) show that despite theoretical argu-
ments against the possibility of market e¢ ciency and the possibility of non-rational maximiz-
ing traders, markets can be e¢ cient. This is why classical prediction markets are zero-sum
games. When an informed trader would not set e¢ cient prices, in a competitive market,
there is the danger that another informed trader would do so. This is in the line with Berg et
al. (1997) who found in an empirical analysis of 16 U.S. political stock markets that "active"
markets predict better.

Despite these �ndings, there is a huge literature dealing with important market failures in
prediction markets like: information traps, informational cascades, herd behavior, overcon-
�dence, winner�s curse, informational �ooding, manipulations, and illiquidity. The extent
of all these stated failures of prediction markets is strongly a¤ected by the traders�level of
information on the underlying (risk factor/ event) of the market (Chen et al. 2001, p. 58).

Normally, it is hard or nearly impossible at least to distinguish between informed and unin-
formed traders. In information traps, traders even interpret actions of uninformed traders
as information driven (Camerer & Weigelt 1991; Nöth et al. 1999). Fortunately, Camerer
& Weigelt (1991) observed in laboratory experiments that such traps are only temporary.
Very close to information traps are informational cascades when single traders join the main
market assessments (= stocks with the highest prices) even when they have contradictory
information (Nöth & Weber 2003; Sunstein 2006). This leads to even higher prices which
might amplify the cascade and a herd behavior could begin when traders mimic the actions
of other traders (Scharfstein & Stein 1990). Overcon�dence results in biases when traders
negatively a¤ect prices as they stick to their forecast even if better informed traders give
other signals (Bruggen et al. 2006, p. 6). Traders put too much weight on their information

326Of course, the current crash of the �nancial markets will again marginalize this understanding of �nance.
However, it does not seem that a signi�cant group of �nancial investors could have had pro�ted from the
current �nancial crisis since 2007/8.
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and do not accept low market prices as an indication that the outcome of the risk factor is
very unlikely. In addition with cash constraints this can lead to the winner�s curse phenom-
enon (Berlemann & Schmidt 2001, p. 27). The buyer pays to much for a stock according to
the unknown fair value.
Another problem for prediction markets is informational �ooding. Especially in illiquid
markets there are only a few active traders who might be overstrained in collecting and
incorporating all relevant information into the market. Hopman (2007), p. 132, found that
the Intel prediction markets on demand risks got worse in the �nal month before the actual
result. He speculates that the amount of information shortly before the event explodes and
the time for assessment shrinks. Hence, humans seemed overburdened.
As illiquidity and manipulations are supposed as beeing among the most crucial hazards for
the e¢ ciency of prediction markets they are presented separately.

18.7.1 Illiquidity

Standard models of market microstructures show that noise traders increase accuracy of
market prices as long as informed traders (= insiders) have the �nancial endowments to pro�t
from the mispricing (Kyle 1985/ 1989;327 Milgrom & Stokey 1982; Spiegel & Subrahmanyam
1992). Liquidity stemming from noise trading - arbitrary trading based on no information328

- attracts additional capital by informed traders as it does not counteract informed trading
but allows such traders to realize pro�ts (Tetlock 2008, p. 5). Indeed, Jacobsen et al. (2000),
p. 227, observed evidence for a better performance of liquid markets, which come along with
low bid�ask spreads, a low price impact of a trade, and a high turnover volume (Baker &
Stein 2004).
Nevertheless, the market e¢ ciency can only be achieved by informed traders and might fail
when their number is too small (Spann & Skiera 2003). Berlemann et al. (2005), p. 20,
speculate that there exists a minimum number of informed and active traders that are needed
to achieve reasonable forecasts, although the gain in forecast accuracy quickly diminishes
with an increasing number of traders above this minimum.
Berlemann & Schmidt (2001), p. 23, propose the number of registered traders as a good
proxy for the number of active traders. Ledyard (2006), p. 51, sees a connection between
the relationship number of traders/ number of stocks and the market e¢ ciency. He cites the

327Kyle (1985) set up a theoretical base model to analyze information aggregation in prediction markets.
The Kyle model describes three types of traders: (1) one risk-neutral trader with information, (2) several
noise traders, and (3) one risk-neutral market maker. The informed trader makes pro�ts by her private
information. However, the market maker has problems to incorporate all information of the informed traders
in the price setting because of the dominance of the noise traders.
328Nevertheless, noise traders are rational and can expect a zero pro�t.
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prediction market of Bossaerts & Plott (2004) (� 13 traders/ stock) which better equilibrated
than the market of Bossaerts & Plott (2002) with � 4 traders/ stock.
However, the number of registered and active traders can signi�cantly di¤er. Out of 6,425
employees registered at the Google prediction market platform just about 1,463 placed at
least one order (Cowgill et al. 2008, p. 4). Even the number of active traders can be delusive.
E.g., roughly 20% of the traders were responsible for 80% of all trades in the in�uenza market
of the Iowa Electronic Markets (Polgreen et al. 2007, p. 278). This ratio might depend on
the fact whether the relevant information is homogeneously or heterogeneously spread over
the traders.

An e¢ cient market equilibrium heavily rests on the assumption of price-taking traders that
cannot in�uence prices. Indeed, this does not hold in thin markets. Kyle (1989) theoretically
analyzes the situation in which traders, with private information, consider their in�uence
on the market prices. This results in non-e¢ cient market prices that do not re�ect all
information spread over the traders. As a consequence a market operator should raise market
liquidity.

Unfortunately, (academic) prediction markets have mostly a low turnover, only. Berlemann
& Nelson (2005) run markets on German CPI in�ation rates with 32 up to 47 traders and
turnovers between 288e and 1,022e. There have only been some markets attracting a lot
of attention and hence a lot of capital. The "Saddam Securities" of TradeSports had up
to about 32,000 active traders and a monthly turnover up to more than $11,000 (Leigh et
al. 2003, table 1). At the winner-takes-all political stock market of the Iowa Electronic
Markets on the 1996 U.S. presidential election 1,151 participants traded with a monthly
volume of $5,800 and a total turnover of more than $137,000. The Economic Derivatives
market platform of Deutsche Bank and Goldman Sachs is the most professional prediction
market. Institutional investors are allowed, only. The market volume is several hundreds of
millions of dollars (Wolfers & Zitzewitz 2006, p. 20).

There are several proposals to improve the liquidity of thin prediction markets. One possi-
bility are call markets. Transactions take place at predetermined intervals only. All bid and
ask orders are aggregated and transacted at once. The clearing price is determined by the
market operator based on the number of bid and ask orders. An example for a call market is
the combined-value trading (CVT) mechanism of Bossaerts et al. (2002) (see section 18.6.6).
An alternative is to run combinatorial matching markets which search for combinations of
market o¤ers that can be matched (Hanson 2003). On the Google corporate prediction mar-
ket platform it was tried to motivate traders by conducting so-called "fun" markets which
comprised 30% of all markets. Cowgill et al. (2008), p. 5, could successfully test for a
positive correlation of the liquidity of "fun" and "serious" markets. Hence, they conclude
this approach creates liquidity rather than crowding out traders.
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The statement that more liquidity improves market e¢ ciency has been challenged in recent
years. Tetlock (2008), p. 33, sees the dotcom bubble during the late 1990ies as a prominent
example for a situation when liquid markets are not superior to liquid ones. Baker & Stein
(2004) built a model which can describe a situation where increased liquidity in a market
with short-sales constraints is rather an indicator of a market sentiment than of e¢ ciency
as the market is dominated by irrational investors which underreact to information.
Linnainmaa (2007) ascribes irrational market behavior to the possibility of limit orders. A
limit order allows a trader to determine for which prices the market operator automatically
sells and buys shares. When the trader does not immediately react according to new infor-
mation, the automatism can trade against the traders information. Based on this insight
Tetlock (2008) analyzed short-term TradeSports markets on �nancial and sporting event
outcomes. He concludes naive liquidity provision (liquidity triggered by limit orders) does
not improve but sometimes reduces market e¢ ciency as prices respond more slowly to new
information (Tetlock 2008, pp. 5):

� As limit orders, based on old information, are executed automatically when new infor-
mation enters the market, an e¢ cient market price response is retarded.

� Limit orders typically buy at low prices and sell at high prices which can result in a
favorite-longshot bias where low probabilities are overpriced and high probabilities are
underpriced.

An example might help to better understand the argumentation of Tetlock (2008). E.g.,
the current market assessment for an outcome is 0:10e. Because of new information all
traders believe the fair price for the outcome is 0:30e. Tetlock (2008) analyzes the situation
where the liquidity mainly rests on the limit orders not on a high number of active traders.
Consequently, only a few active traders try to buy as many shares as possible o¤ered for
less than 0:30e. When these active traders have no deep enough pockets they are not able
to raise the market price to 0:30e although all traders think this is the fair price. This is
because limit orders, based on old information, are automatically triggered. Of course, when
new information turns out to be true these active traders pro�t but the market e¢ ciency
su¤ers.
This subsection shortly overviewed the research on a su¢ cient liquidity level for prediction
markets. It can be summarized that a market operator should raise liquidity to improve
market e¢ ciency. This is especially needed in CDA markets as often in thin markets traders
cannot �nd a counterpart to immediately execute their buy or sell orders. Generally, such
markets allow limit orders which automatically match orders when possible. However, Tet-
lock (2008) empirically showed that liquidity induced by limit orders can reduce market
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e¢ ciency. A possibility to bypass this �aw is to run prediction markets with automatic mar-
ket makers as they possess three bene�ts: (1) Markets with market makers should attract
more traders as traders are not frustrated by queued orders. (2) There is no naive liquidity
provision in the sense of Tetlock (2008) since no limit orders are necessary. (3) Even when
the number of traders is low, the liquidity is fundamentally improved. By means of a market
maker Bruggen et al. (2006) could achieve good results in prediction markets with not more
than six traders.

18.7.2 Foul Play

The market e¢ ciency can be damaged by di¤erent forms of foul play: lying, sabotage,
embezzlement, retribution, and manipulation (Hanson 2006, pp. 128). In this subsection
these forms are discussed in detail.

Lying
Prediction market prices could be in�uenced by lying or misleading advisors who are paid
by third parties with an interest in a certain market result. Moreover, traders with insider
information could launch misleading signals to maintain a low pro�le about their information
level.329 This is an issue all forecasting methods are a¤ected by (Hanson July 2006, p. 266).

Sabotage
When traders cause harm to achieve a pro�t this is called sabotage (Hanson 2006, p. 132).
E.g., explaining the attacks of 09/11 by a sabotage motive would presume that the terrorists
crashed in the World Trade Center to pro�t from subsequently falling stock prices. Hanson
2006, pp. 132, claims that sabotage is not a big problem as prediction markets are thin and
the underlyings are often events, like presidential elections or in�ation, a few traders cannot
fundamentally in�uence.

Embezzlement
A motive for foul play in real money prediction markets on company-related events is embez-
zlement. In markets where employees can win large amounts of money they may neglect their
company duties. Employees could withhold relevant information within their department
hoping to make pro�ts in the market.
Therefore, corporate prediction markets should not o¤er direct �nancial rewards. Sometimes
workmates of the traders are allowed to veto single o¤ers. This however is not possible with
anonymous trading (Hanson 2006, pp. 132). Consequently, the market operator has to deal
with a trade-o¤ between the danger of embezzlement and social pressure.

329Other traders might be reluctant to trade when they fear some market participants to posses insider
information.
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Retribution
Predictions can be deliberately inaccurate when traders hope to pro�t but fraud cannot be
unmasked. When the cheater is in a predominant position, especially in cooperations, other
insiders are often not willing to show her up as they fear retribution. In this context, such
social pressure can be avoided by creating prediction markets with anonymous accounts.

Manipulation
The most prominent form of foul play is manipulation which describes actions that are
in contradiction with the information of the manipulators since they intend to fool other
traders. In prediction markets, the target of the swindle could also be the market operator
or the �nal consumer of a market forecast. Allen & Gale (1992), p. 505, present a reasonable
categorization in action-based, information-based, and trade-based manipulation.330

Action-based manipulations intend to change the perceived value as well as the actual value
which is also called outcome manipulation (Ottaviani & Sørensen 2007, p. 556). Especially
in corporate prediction markets traders could have incentives to in�uence the outcome of the
underlying. Ottaviani & Sørensen (2007) are the �rst ones who set up a formal model that
describes action-based manipulation in cooperations. Their model incorporates optimists
and pessimists on the outcome of an event. Both have the incentive to manipulate the
outcome in their favored direction. Although the di¤erent manipulations typically do not
perfectly o¤-set, the costly manipulations are partly wasted (Ottaviani & Sørensen 2007, p.
556).
Information-based manipulations arise from dissemination of false or misleading information
around the market. To cut o¤ manipulations a disclosure rule has been proposed which
would force traders to reveal their trading activities after executing their orders. However
this approach may even create incentives for insiders to trade against their signals since
announcements of good and bad company news have often been preceded by insider trading
(John & Narayanan 1997).
Most research has been on trade-based manipulations (Rhode & Strumpf 2007, p. 4), which
can be understood as a trading in the "wrong" direction by selling at good news and buying
at bad news (John & Narayanan 1997, p. 218). Jarrow (1992) shows that trade-based
manipulation is not pro�table in e¢ cient markets as manipulators raise the market price
when buying the shares and reducing the price by the same amount when they want to
sell them. Allen & Gale (1992) proofed that trade-based manipulation is pro�table with
rational investors when other traders have a positive probability that the manipulator bases
her actions on insider information.

330All forecasting methods are e¤ected by action- and information-based manipulations while trade-based
manipulation is a special failure of prediction markets.
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There are two main motives for traders to manipulate. A trader can possess monopolistic
information or external stakes. Information monopolists have the incentive not to reveal
all their private information, at once. Especially in thin markets it is not reasonable to
o¤er e.g. relatively high bid quotes for the preferred stocks. In illiquid markets such orders
would change the market prices too fast. The information monopolist cannot pro�t from
purchasing stocks at low prices very long. Consequently, insiders will only gradually disclose
their information which can be theoretically understood as a trade-based manipulation.
Manipulators with external stakes are traders that try to interfere with the market because
of (monetary) interests outside the market which outweigh potential losses and consequences
within the market. This means that the no-stakes condition of Kadane & Winkler (1988) is
violated.
In the previous paragraphs several forms of manipulations have been presented which could
have been, if at all, observed at real �nancial markets, only. Indeed, discussions on prediction
market manipulations are mainly hypothetical331 and little based on empirical data. Rhode
& Strumpf (2007) analyzed a large dataset of betting odds on presidential, gubernatorial,
and mayoral races over the 1880ies to the 1940ies. There were 46 charges of manipulation/
wash-sale/ blu¢ ng events with an average manipulation occurring 7.8 days before the elec-
tion (median 4 days). They �nd in nearly all prediction markets speculative attacks but
no patterns that indicate manipulation events led to large, irreversible changes in prices.
Camerer (1998) tried to manipulate betting odds in horse races by investing large sums in
horses to send signals to the other gamblers. Later, he withdraw the money. Although he
could visibly interfere the odds he could not realize signi�cant pro�ts by this strategy.
Hanson et al. (2006) studied the e¤ects of manipulation on prediction markets prices in
the laboratory. They conducted markets with heterogeneously informed traders in a normal
design and a manipulation design that o¤ered incentives to manipulators to increase me-
dian price even above the fundamental price. They found that manipulators submit higher
bids than non-manipulators. This is the expected result. The bid behavior was a¤ected
by manipulation incentives but the presence of manipulation did not harm the relationship
between price and fundamental value. Moreover, manipulation had no signi�cant e¤ect on
the accuracy of prices measured as the squared di¤erence between market prices and funda-
mental values. In fact, Hanson et al. (2006) recognized a slight improvement of accuracy in
the case of manipulation.
Astonishingly, the average price traded in the markets was higher in the normal design than
in the manipulation design which o¤ered incentives to in�ate prices. However, the results
of Hanson et al. (2006) should be reviewed with care as in these special prediction market
designs the participants were aware of the presence of manipulators and their incentives to

331Hanson (2006) believes that manipulators would reduce average price errors in terrorist markets.
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in�ate the prices. Moreover, the manipulation gains were a public good all manipulators
could participate even manipulators that did not manipulate at all.
Until now, not more than one documented manipulation has been observed in a non-
laboratory prediction market. This was at the German political stock market Wahl$treet
conducted on the 1999 Berlin state election (Hansen et al. 2004). Supporters of the German
liberal party FDP tried to push FDP shares above 5% for more than a week to give the
illusion that the FDP could pass the 5%-barrier to be represented in the state parliament.
After the last media coverage they withdraw and prices fell to 3% immediately. As the
o¢ cial vote share of the FDP on election day was 2.2% the manipulators su¤ered monetary
losses. Hansen et al. (2004), p. 462, calculated that for pushing the FDP to 5% seven
manipulators would need a total endowments of at least 305:26e to counterbalance the 200
traders on Wahl$treet with an average endowment of 29e. The total costs of manipulation
would rise up to 134:31e.
Theoretically, it should not be very surprising that, with the exception above, no other
prediction market manipulations have been noticed. A broad research community argues
that manipulations can make prediction markets even more accurate (Kyle 1985; Milgrom
& Stokey 1982; Spiegel & Subrahmanyam 1992). Hanson & Oprea (2004) theoretically show
that under risk-neutrality and quadratic utility functions, manipulators with unknown price
targets are a special form of noise traders. They de�ne manipulators like noise traders as
market participants that trade on "considerations other than their best estimate of the asset
value" (Hanson & Oprea 2004, p. 16). Hence, the discussion about the consequences of
noise traders in the market holds for manipulators, too (see section 18.7.1). The more noise
traders act in a market the more pro�ts an informed trader can realize and consequently
the more informed traders are attracted or increase their investments (Hanson July 2006, p.
267).

18.8 Market Prices vs. Market Assessments

18.8.1 Real Financial Markets

Markets have been often assumed to disseminate aggregate information e¢ ciently. However
no commonly accepted theoretical model exists explaining why the Hayek Hypotheses should
hold under realistic assumptions (Berlemann 2003, p. 189). The relatively good prediction
abilities of capital markets - especially commodity stocks like orange juice futures332 and pari-

332In fact, there has been a long lasting disagreement about the future market on frozen concentrated orange
juice (FCOJ). The discussion mainly has based on Roll (1984) who stated weather in central Florida as the
most identi�able factor in�uencing FCOJ returns. Nevertheless, he could only empirically explain a small
fraction of the observed variability in futures prices by weather (Roll 1984, pp. 876/ 879). Consequently, this
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mutuel betting markets - have been seen as a veri�cation by reality. There exist two directions
of research on information aggregation of markets that deal with iterative aggregation and
equilibrium aggregation, respectively (Ledyard 2006, pp. 40).
Iterative aggregation: When people start with common prior beliefs, subsequently get new
private information, and their posterior beliefs become common knowledge then the �nal
posterior beliefs are the same for all persons (Aumann 1976). This also holds (under some
conditions) for people that update their information in a Bayesian style (Geanakoplos &
Polemarchakis 1982). Consequently, the opinion pooling problem - experts do not agree with
the aggregated assessment - should not exist in e¢ cient prediction markets given a liquid
market and common priors (Geanakoplos & Polemarchakis 1982; Hanson Nov. 2002). As
long as people share their information honestly and update in a Bayesian style, the iterative
process can result in an aggregation of all information (Ledyard 2006, p. 41).
Equilibrium aggregation: This �eld is based on the rational expectations theory where traders�
demands (and supplies) reveal their assessments of the future. Market prices are formed by
the individuals�demands. Traders incorporate the public information re�ected in the prices
and adjust their expectations as well as their demands. This again e¤ects market prices
that are not in equilibrium as long as not all publicly available information is incorporated.
Otherwise behavior of market participants will always change in accordance with new market
prices (Plott 2000, p. 3). The equilibrium prices equal the common-knowledge posterior
probabilities (Ledyard 2006, p. 41). Nevertheless, this requires Arrow-Debreu securities,
price-taking and risk-neutral agents as well as further assumptions that may not be ful�lled
in thin markets (Ledyard 2006, p. 43).
Indeed, there are also counter-arguments against the theory that the market prices re�ect all
information. In a thin market where a few traders know the future for sure and others are very
uncertain, revealing important information would result in very high bids for the "winning"
stock and very low asks for the "losing" stocks. Uninformed traders could interpret this as
superior information and refuse to trade (Ledyard 2006, p. 43). Thus, informed traders have
no incentives to reveal their full information.

18.8.2 Prediction Markets

The use of prediction markets for the elicitation of market probability assessments has mainly
been justi�ed by references to traditional �nancial markets and by the great success of
political stock markets and laboratory experiments. Actually, probability assessments can
be derived from traditional �nancial markets but they di¤er from those of prediction markets.

was cited as a prominent example of the failure of prices to re�ect fundamentals (e.g. Shleifer 2000; Hirshleifer
2001). In contrast to this conclusion Boudoukh et al. (2007) could empirically show that unexpected freeze
is a crucial factor for future volatility.
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A huge theoretical and empirical literature on �nancial market prices suggests that market
prices result from risk-adjusted weighted and discounted future payo¤s and are normally not
equal or proportional to probabilities (e.g. Björk 2004). Although probability distributions
are widely calculated from market prices they are just risk-neutral, and therefore partly far
away from the "true" market assessments.333

In contrast to real �nancial markets, prediction markets are Arrow-Debreu markets that
possess the same number of stocks as outcomes of the risk factor.334 Such stocks only pay
when the respective outcome realizes. As a consequence prediction markets price the payo¤
for each possible outcome. However, it is not clear immediately whether the prices re�ect the
market�s (probability) assessments.335 This should not be mixed with the question whether
the market�s probability assessments are based on reasonable judgements.
There is indeed �eld and scienti�c evidence for prediction markets to be good mechanisms
for information aggregation (Ledyard 2006, pp. 39). Berlemann & Schmidt (2001) �nd in a
meta study 25 political stock markets to perform better on average than traditional polls.
However, take care, political stock markets are mostly index (vote-share) markets which do
not predict probabilities but the expected share of an element of an event. Plott (2000)
reviews laboratory prediction markets showing that market prices converge to theoretical
market equilibriums of very complex non-linear systems by dynamic adjustments.
In contrast to empirical proofs, there was no clear theoretical proof for the quality of market
prices and market probability assessments up to the beginning of this decade. In the previous
years, there have been several papers by Berlemann (2003), Berlemann & Nelson (2005),
Gjerstad (2005), Gürkaynak & Wolfers (2005), Manski (2006), and Wolfers & Zitzewitz
(2007) o¤ering proofs that partly seem to contradict each other, at �rst glance. Actually
all approaches have in common the assumption of liquid markets that allow to buy or sell
whenever a trader wants to do so. In our opinion this is the most critical assumption and
should be kept at the back of the reader�s mind in the next subsections.

Traders with a Second Order Probability
Wolfers & Zitzewitz (2007) and Manski (2006) analyze the relationship between market
assessments and market prices in the case of prediction markets with two stocks, only. The

333For pricing derivatives the real market probability distribution is normally not known as the risk-adequate
discounting rate is unknown. In fact, the true distribution is not needed. There exists an in�nite number
of distributions that lead to the same pricing. For the sake of convenience the risk-neutral distribution is
normally used as the discounting rate is just the risk-free interest rate.
334In this argumentation, we ignore index markets on events like elections.
335There is one exception: Hanson�s market scoring rule (MSR) is a combination of a traditional prediction
market and a scoring rule approach (see sections 18.6.7 and 16.3.1). Scoring rules have been proved to reveal
the subjective probabilities for risk-neutral people.
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special characteristic of their approach is the assumption of a second order probability of the
traders on the outcome probability.
Manski (2006) shocked prediction market experts that even with risk-neutral price-taking
traders the market price and the average belief of the market can fundamentally diverge.
He assumes a winner-takes-all market on a dichotomous risk factor Y � fA;Bg where the
outcomes A and B can be disjunct intervals. There are traded shares on the two stocks
k = A;B paying 1e when the respective state will realize. The prior distribution of trader
j� f1; :::; Jg on Y can be described by a Bernoulli distribution �j = (�j (A) ; �j (B))

0 where
�j (B) = 1 � �j (A). However, Manski (2006) and Wolfers & Zitzewitz (2007) account for
traders� uncertain on their probability assessments (imprecise probabilities). Hence, the
subjective probability Qk of outcome k = A;B is an uncertain risk factor for the traders.
This we formulize by a second order pdf ~�jk (qk) and the corresponding cdf Fjk (qk).
In the two stocks prediction market of Manski (2006), the risk-neutral trader j invests all her
money (wealth) wj in that stock k = A;B where the market price pk is below her subjective
probability belief. Thus, trader j holds njA = wj=pA shares of stock A and nothing of B
when qjA > pA (= qjB < pB), and vice versa. The resulting aggregated market demand for
shares of stock k is

nk =
1

pk
E
�
w � 1(Qk>pk)

� uncorr.
=

w

pk
[1� Fk (pk)] ;

where E (�) is the market expectation, Fk (�) is the cdf of the market on the probability of
outcome k, and 1(�) is an indicator function. The equal sign only holds in the case that the
market expectations on the total market investment w and the probability of outcome k are
not correlated.
In classical prediction markets there exists a bank where an unit portfolio can be bought or
sold for ce. Without loss of generality, we assume c = 1. Then, a total investment of we
will result in a number of nk = w shares of each stock.336

As risk-neutral traders will invest all their money in one of both stocks, the prices need to
adjust to guarantee that the aggregated supply of both stocks is w and equals the respective
demand in the equilibrium

nA =
w

pA
[1� FA (pA)] = w =

w

pB
[1� FB (pB)] = nB

! 1

pA
[1� FA (pA)] =

1

pB
[1� FB (pB)]

After a simple rearrangement, the market price pk for stock k is de�ned by

pk = P (qk > pk) = 1� Fk (pk) ; (25)

336This rules out arbitrage but only holds in a liquid market.
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corresponding to the (1� pk)-quantile of the market assessment P (�) (respectively ~�k (qk))
of Qk.
The mean market belief E (Qk) is an interval as ~�k (qk) is not univocal. The upper bound for
E (Qk) is 2pk�p2k. It guarantees equation 25 and is the mean of a continuous distribution337
limiting to the bimodal discrete distribution ~�k (pk) = 1 � pk and ~�k (1) = pk. The lower
bound for E (Qk) is p2k and can be derived from a continuous distribution limiting towards

the Bernoulli distribution ~�k (pk + ")
"!0
= pk and ~�k (0) = 1 � pk. Hence, E (Qk) can take

any value in the open interval (p2k; 2pk � p2k) and ~�k (qk) can be any distribution bounded by
the two distributions presented above.
In the Manski (2006) model with the strong assumption of a risk-neutral all-or-nothing
investor the market only incorporates the information of investing traders placing all their
wealth wj in one of both stocks. Hence, the market prices solely re�ect the beliefs of self-
selected traders.
Wolfers & Zitzewitz (2007), p. 3, relax the assumption of all-or-nothing investors by endo-
genizing the investment decision. In fact, they work with an one stock prediction market
allowing short selling where shares pay 1e when A occurs and otherwise nothing. This is
equal to a market with two stocks on A and B and no short selling.
Assume all J price-taking traders in the market are utility maximizers given their probability
assessments �j (A) = qj and �j (B) = 1 � qj for the outcomes A and B. Then the utility
maximizing demand (n�j > 0) or supply (n

�
j < 0) for stock A is

n�j = argmax
nj

Ej (Uj) = qjUj (wj + nj [1� p]) + [1� qj]Uj (wj � njp) ;

where p is the price per share and wj is trader j�s future wealth which is assumed to be known
for simplicity. Once A realizes, trader j gains nj [1� p] as each share pays 1e but she has
bought them at a price of p. In contrast, when B realizes, the loss njp is the purchasing
price times the number of bought shares. Maximization results in the �rst order condition

U 0j (wj + nj [1� p])

U 0j (wj � njp)
=

p

1� p

1� qj
qj

;

which implicates that

� risk-neutral traders (U 0 (a) = U 0 (b), a 6= b) invest all their money in the stock (nj >
0) when their probability belief of the event is greater then the market price as the
expected pro�t is positive. When the beliefs are lower, they will short-sell (nj < 0)
as many stocks as possible. The same is true for risk loving traders (U 0 (a) < U 0 (b),
a < b).

337This continuous distribution has probability on the intervals (pk � "; pk) and (1� "; 1).
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� risk-averse traders (U 0 (a) > U 0 (b), a < b) will not invest all their wealth in the stock
even in the case of an expected pro�t.

This is better to understand by using an example. Assume the special case when traders
follow a log-utility. The optimal demand or supply endogenously calculates by

n�j (qj) = argmax
nj

Ej (U) = nj ln (wj + nj [1� p]) + [1� nj] ln (wj � njp)

= wj
qj � p

p [1� p]
:

The most important special characteristic of the demand under log-utility is that it is linear
increasing in the individual belief qj and there exists a unique solution for p 2 (0; 1).
Just like Manski (2006), Wolfers & Zitzewitz (2007) believe that traders are uncertain on
the probability Q of outcome A. Hence, they also model a second order distribution ~�j (q).
Then, in the equilibrium, the aggregated demand (n� > 0) and supply (n� < 0) in the market
must equal

�
pZ

�1

n� (q) ~� (q) dq =

1Z
p

n� (q) ~� (q) dq

where

n� (q) = w
q � p

p [1� p]
:

and ~� (q) is the market assessment on Q. After some rearrangements the market price
calculates by

p = E (Q) =

1Z
�1

q~� (q) dq:

Wolfers & Zitzewitz (2007), p. 9, conclude:

� In the case of logarithmic utility functions, the market price p for a share on outcome
A equals the mean market expectation on the uncertain probability Q regardless the
second order probability ~� (q).

� The di¤erences between market price p and mean beliefs E (Q) are very low for other
reasonable utility functions.

� The di¤erence is zero when ~� (q) is symmetric in 0:5.
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Prediction Markets as Hedging Instrument
So far, we have analyzed prediction markets with K = 2 stocks and with traders having a
second order probability. Henceforth, we follow the derivation of Gürkaynak &Wolfers (2005)
where the number of stocks K is not restricted but there is no second order probability. The
basic idea, similar to Wolfers & Zitzewitz (2007), is that traders try to smooth their uncertain
future income by hedging their expected wealth by investing in a prediction market.
Assume that the current (known) wealth of investor j is wj. The future wealth depends
on the uncertain outcome k� f1; :::; Kg of the risk factor Y and can be modelled by �jkwj
where �jk 2 R is a factor. The traders can hold shares of stock k paying 1e when outcome
k realizes and nothing otherwise. Then, the optimal numbers of shares n�j =

�
n�j1; :::; n

�
jK

�0
maximizing the expected utility of trader j calculate by

n�j = argmax
nj

Ej (Uj (wj)) =
KX
k=1

�jk � Uj
�
�jkwj + njk �

XK

l=1
plnjl

�
;

where �jk is the assessment of trader j on the probability of outcome k. The term njk �PK
l=1 plnjl simply formalizes the fact that trader j has purchased the shares for the market

prices p = (p1; :::; pK)
0 and only gets a payment of 1e on each share she holds of the winning

stock k.
On an aggregated market perspective and under the zero sum game assumption nk =PK

k=1 pknk, the �rst order condition is
338

pk
�k
=

U 0 (�kw)PK
s=1 �sU

0 (�sw)
; (26)

where �k is the aggregated market assessment of the probability of outcome k.
The interpretation of equation 26 depends on the people trading at the market:

� risk-neutral traders: Risk-neutral traders possess a constant marginal utility (U 0 (a) =
U 0 (b), a 6= b). Consequently, the market prices exactly match the market probabilities

pk =
�kU

0 (�kw)PK
s=1 �sU

0 (�sw)
=

�kPK
s=1 �s

= �k: (27)

338This condition results from

@E (U)

@nk
= �k [1� pk] � U 0

�
�kw + nk �

XK

l=1
plnl

�
� pk

X
s=�k

�s � U 0
�
�sw + ns �

XK

l=1
plnl

�
!
= 0

and nk �
PK
l=1 plnl = 0, where

P
s=�k simply means that summation ignores k.
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� risk-averse traders: Since risk-averse traders su¤er from a loss in wealth more than
they pro�t from the same amount of gains, the marginal utility increases with de-
creasing wealth (U 0 (a) > U 0 (b), a < b). As a rule of thumb, the market prices pk
overestimate the market probability �k of stocks on "bad" outcomes (�k < 1) while
they underestimate probabilities of "good" outcomes (�k > 1). Generally, risk-averse
traders prefer an insurance that pays out in the case of "bad" instead of "good" states.

The previous statements should become clearer with an example. Assume the "true" market
assessment of the future wealth is Gaussian distributed with expected value w (for simplicity
w = 1) and standard deviation 0:01.339 The utility function might be isoelastic with a
constant relative risk aversion (CRRA)

U
 (x) =
1

1� 

x1�
:

In the situation with widely accepted risk aversions of 
 = 5 or 
 = 20, the di¤erences
between the "true" market assessments and those derived from the market prices are quite
low (see �gure 98).
Based on this theoretical reasoning and empirical analyses, Gürkaynak &Wolfers (2005), pp.
30 and pp. 35/ 38, found that the markets on the Economic Derivatives market platform340

feature very low risk premiums and market prices are reasonable approximations of the
market probabilities.

Prediction Markets as an Entertainment Instrument
The previous discussion to compare market prices with market probability assessments pre-
sumes a relationship between wealth of a trader and the outcome of the risk factor. Moreover,
it is supposed that it is possible to hedge the resulting wealth risk with stocks on that factor.
This hedging argument may be correct for the Economic Derivatives market platform, but
it is not for normal (academic) prediction market platforms with minor monetary stakes
(often restricted to a maximum investment). The Iowa Electronic Markets (IEM) only allow
a maximum investment of $500. Traders may not evaluate their stakes in a prediction mar-
kets with their e¤ects on their total wealth. Participation is rather because of entertainment
reasons (Wolfers & Zitzewitz 2004, p. 113; Wolfers & Zitzewitz 2007, p. 3).
In the following, we present elaborated approaches of Kou & Sobel (2004), pp. 284, and
Berlemann (2003), pp. 226/ Berlemann & Nelson (2005), pp. 12, who show that market
prices equal (or are proportional to) the market assessment when (1) prediction markets are
not part of traders�overall investment strategy and (2) their invested money is locked in.

339In a macroeconomic setting a standard deviation of 1% of the wealth might be acceptable.
340business con�dence, initial unemployment claims, non-farm payrolls, and retail sales (ex autos)
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Figure 98: risk aversion - It is assumed that the market�s "true" uncertainty on the future wealth
is known and can be described by N (1; 0:01). In reality, the risk analyst could only deduce the
market�s uncertainty from the market prices. Given the traders follow an isoelastic utility
function with a constant relative risk aversion of 
 = 5 or 
 = 20, the resulting approximations
are good proxies for the "true" distribution.

Kou & Sobel (2004), pp. 284, assume each trader j 2 f1; :::; Jg decides at time t = 0 to
use some "play money" ~wj (0) which is only a part of their much larger total wealth wj (0).
This "play money" marks the maximum amount of money, trader j is willing to spend for
entertainment purposes. As soon as traders have separated or reserved their "play money"
for entertainment they maximize their "play money" pro�t. The development of the total
wealth wj is unimportant, as ~wj (0) is supposed to be negligible small to hedge the total
wealth.

In t = 0, trader j invests money
PK

k=1 �jk � ~wj (0) in some or all stocks. The uncertain
wealth in T calculates by

~Wj (T ) =

"
~wj (0)�

KX
k=1

�jk

#
+

KX
k=1

�jk
pk (0)

Xk (T ) ;

where the term in brackets is the "play money" not invested and �jk=pk (0) is the number of
shares on stock k trader j has purchased for pk (0) each. The exact payo¤Xk (T ) of shares
on stock k are uncertain in t = 0.

Utility maximizing traders will try to maximize Ej
�
Uj

�
~Wj (T )

��
. As individual traders



18.8 Market Prices vs. Market Assessments 255

are assumed to be price-takers, the �rst order condition is simply the right-hand derivative

@+Ej

�
Uj

�
~Wj (T )

��
@�jk

= Ej

 
U 0j

 
~wj (0)i �

KX
k=1

�jk +
KX
k=1

�jk
pk (0)

Xk (T )

!�
Xk (T )

pk (0)
� 1
�!

!
= 0:

Traders will buy and sell stocks until the market price will stabilize in an equilibrium. Then,
traders have no incentive to trade, meaning �j = (�j1; :::; �jK)

0 = 0. Consequently, the
equilibrium market price of stock k re�ects the market expectation of the uncertain future
payo¤

p�k (0) = Ej (Xk (T )) :

When all traders have homogeneous expectations, the market price is the equilibrium price
for all traders. This conclusion can be extended to t 2 [0; T ) (Kou & Sobel 2004, p. 285).
The approach of Berlemann (2003), pp. 226, and Berlemann & Nelson (2005), pp. 12, is
more intuitive and seems to be closer to reality. According to the arbitrage pricing theory
(APT) the equilibrium price in t for pure or Arrow-Debreu securities on outcome k is de�ned
by

pk (t) = exp (� [rf + rr] �) � Et (Xk (T )) ;

where � = T � t, rf is the risk-free return, and rr is the risk premium. The index t indicates
that the market expectation Et (Xk (T )) on the uncertain payo¤ is based on the information
available in t.
Generally, an arbitrage free and risk-free portfolio should be discounted by the risk-free return
rf , only. A di¤erent discounting rate would create arbitrage possibilities. In a prediction
market, there is only the unit portfolio (equal number of shares for all K stocks) that bears
no risk, at all, since it can be bought and sold at the bank for exactly 1e (in the classical
CDA prediction markets) and will pay o¤ 1e in T for sure. Hence, the return of an unit
portfolio is zero and consequently the risk-free return is rf = 0.341 Here the assumption of
"play money" used for the trader�s entertainment purposes is crucial. Otherwise the trader
would not have any incentive to invest in a prediction market as the (nominal) risk-free rate
is generally positive, rf > 0, in real �nancial markets.
Risk-averse traders may wish a risk premium to compensate state-dependent wealth resulting
from trading in the prediction market. However, "play money" wealth is constant irrespective
the �nal outcome of the risk factor in a classical zero sum game. At least within the prediction
market, there is only diversi�able risk. According to arbitrage arguments, diversi�able risks
are not compensated as they are accepted voluntarily. The resulting risk premium is rr = 0.

341Rietz (2005) found in lab experiments that a great deal of arbitrage activity with low pro�ts is needed
to eliminate behavioral mispricing. Thus, it is possible but unlikely that a pro�t maximizing arbitrager will
completely drive out biases. Consequently, behavioral mispricing is extremely robust.
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Consequently, the expected payo¤ of a pure or Arrow-Debreu security on state k is easy to
calculate. It is one in state k and zero else, i.e. Et (Xk (T )) = �k �1+(1� �k) �0 = �k, where
�k, provided that

PK
k=1 �k = 1, is the market assessment on the probability that outcome k

will realize.
Altogether, the market price for shares of the stock k exactly equals the market�s probability
assessment of outcome k in the equilibrium

pk (t) = exp (� [rf + rr] �t) � Et (Xk (T )) = exp (� [0 + 0]�t) � �k = �k:

18.9 No "Objective" Liquidation

Our discussion of prediction markets has rest on the assumption that shortly after the
market close the market will be liquidated according to the �nally realized outcome of the
risk factor. There are two areas were prediction markets cannot hold these assumptions for
di¤erent reason: Prediction markets (1) on the success of di¤erent concepts and (2) on the
outcome of an event far in the future. Additional, there could be no "objective" liquidation
when the Lucas critique (Lucas 1976) applies - human behavior reacts on prediction market
forecasts. E.g., it is hard to judge the forecasts of the limits of growth of the Club of Rome
(Meadows et al. 1972) as "wrong" because they initiated a debate on sustainability.

18.9.1 Concept Markets

Dahan et al. (2007) call prediction markets on competing concepts concept markets that
can only measure the success of the "winning" concept. Chan et al. 2001, p. 21, understand
them as beauty contests in the sense of Keynes (2007). The market value of the concepts is
solely derived from the expectations of the traders as it would be too expensive for �rms to
enter the market with all concepts. In fact, the actual market success of most concepts will
never be observed.
Chan et al. 2001, p. 21 & Dahan et al. (2007) conducted such concept markets with students
in marketing to assess the potential market shares for bike pumps and crossover vehicles.
The markets lasted 10 up to 60 minutes. Traders had got material informing them about the
concepts 10 minutes before trading started. As proxy for the market success of the concepts,
Dahan et al. (2007) proposed the volume-weighted average market price.
The crucial point for the concept market approach is whether it can yield comparable re-
sults to well-established, but expensive marketing methods. Dahan et al. (2007) calculated
statistics like the coe¢ cient of determination R2 and the average absolute di¤erence be-
tween the market shares measured by survey studies and those predicted in the concept
markets. Although the markets were only run with students, Dahan et al. (2007) found a



18.9 No "Objective" Liquidation 257

high consistency among di¤erent markets on the same concepts and signi�cant correlation
with independent survey studies. Consequently, the results should improve the closer the
traders are to the target group of the potential products.
There have also been other attempts to run concept markets. To estimate the future per-
formance of IT technologies, namely mobile payment solutions in Switzerland, Ondrus et
al. (2007) pooled mobile decision-makers from 20 companies. Beside multi-criteria decision-
making (MCDM) methods, which try to �nd a "closest to optimal solution" by analyzing
expert assessments of quantitative (e.g. costs, weight) and qualitative (quality of service,
beauty) criteria, Ondrus et al. (2007) used prediction markets.342 They found both methods
to be complements. While MCDMmethods o¤er an extremely detailed snapshot of a certain
point in time, prediction markets present rather a movie over a time period.

18.9.2 Long-Term Prediction Markets

Prediction markets are originally designed for short up to medium term (< 2 years) matu-
rities. Although there is certainly a motivation problem, virtual-money markets have also
been conducted for several years at the Foresight Exchange. Markets like "Self-driving cars
by 2010" and "CO2 level of 2030" were set up in May 1996 and May 2002 and have been
actively traded since then.343 In real money markets with a long-term life-span, motivation
is a more critical problem (Berlemann & Nelson 2005, p. 26):

� The payo¤ in classical prediction markets cannot take place before the event of the
underlying will have realized. When this is some years in the future there arises a
motivation problem with the traders.

� The safety of the investments and the objectively executed liquidation of the market
far in the future needs to be guaranteed by a commonly accepted institution. Hence,
there exists a counterparty risk.

Previous Approaches
There are several proposals to solve the mentioned problems. Berlemann et al. (2005)
o¤ered a staggered system of prediction markets to motivate traders to take part in medium
term Bulgarian in�ation markets. They accompanied an one year in�ation and an one year

342Ondrus et al. (2007) called their prediction market platform MarMix. All prediction markets were
CDA markets enhanced with an automatic market maker. They only run with play-money and consisted of
Yes/No winner-takes-all stocks. An initial public o¤er (IPO) mechanism for proposing new technologies was
also implemented.
343see www.ideosphere.com/fx-bin/Claim?claim=Cars &
www.foresightexchange.com/fx-bin/Claim?claim=CO2LVL (last revised August 28, 2008)
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exchange rate market by several markets on the same topic but with shorter maturities.
Once traders had registered for shorter markets they could immediately trade in the longer
term markets. Although this approach is promising, it seems rather suitable for medium
term than for long term markets.
Hanson (2008), p. 7, proposes judging fees which are �xed amounts of money or a reduction
of the stocks�face values. This money is used to pay a judging group that decides which
event realized. This method creates incentives to cash out before the market matures to avoid
the judgement group to meet. Therefore, judging fees are reasonable for markets that ask
whether an event will have realized before the end of the market (an invention, a political
regulation, ...). Prediction markets with judgment fees are usually audit lotteries. The
winning stock will only pay o¤ if the total market investments can �nance the judgment.
Otherwise the market is closed without any payo¤. The judgment fees idea is sensible
to reduce the burden for the market operator as it helps to shorten the market life-span.
Nevertheless, it does not o¤er incentives for traders to invest in prediction markets for a long
time.
In normal �nancial markets it is not unusual that considerable amounts are invested for
decades, e.g. by pension funds. The main di¤erence between prediction and �nancial markets
is that the latter ones often allow traders to withdraw their investments and gains at any
time which is not a preferable feature for CDA prediction markets. The proof of the identity
of market prices and market probabilities requires the lock-in of the traders� investments
up to market close (see section 18.8.2). Moreover, allowing withdrawing bears the risk of
thin markets. In mass markets a steady trader switch could be accepted whereas the exit
of some traders would be hard to compensate in expert markets with only a �stful traders.
Consequently, it is not advisable to allow deinvestment as the market prices are not anymore
directly interpretable as probabilities and (expert) markets could dry out.
Despite of all these problems and uncertainties with long term real money prediction markets,
there has been one extremely successful market (Hanson 2008, p. 6). In 1992, Pat Thgisni,
a physics student, wrote a paper about superscattering.344 His professor found the idea
not promising but Pat Thgisni had not the funds to run an experiment. Hence, he set up a
prediction market on a platform and invested $200 as initial market turnover, 20$ for market
operator fees and $100 for a judging group. This judging group has been intended to decide
if his superscattering proposal is proved until 2013. In 2008 his idea seemed to be proved
and Pat Thgisni reaped a total pro�t of $700,000 after investing $20,000 over the years.

Short-Term Markets on Long-Term Events

344"If a neutrino could scatter o¤ all the nuclei in a crystal, at once, the interaction could be a billion billion
times more powerful, perhaps allowing neutrino telescopes" (Hanson 2008, p. 4).
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A new approach has been proposed by the Bayesian Risk Management (BRM) research group
operating the Potsdam Climate Exchange (PCX).345 The PCX with its prediction market
platform PCXtrade346 conducts academic CDA prediction markets on climate change related
topics which will often realize far in the future (> 10 years). As the PCX is an academic
project, �nanced by the German government, there is no institutional framework which can
guarantee the "objective" liquidation of such long-term markets. Moreover, in such speci�c
topics, expert markets of the PCXtrade are normally conducted with a �stful of experts,
only. It seems unrealistic to motivate experts for trading regularly, once a week, a month,
or a quarter, for the next several years when not subsidizing the market with substantial
amounts of money.

Therefore, the PCX has decided to run short-term markets on long-term events which can
last between some minutes, some hours, some days, or some weeks - although the risk
factor will realize lots of years in the future. The markets are liquidated shortly after the
market close according to the last market quote or the (weighted) average of the last market
quotes.347 To avoid foul play prices manipulations shortly before trading stops, the life-span
of the markets is stochastic or is not disclosed to the traders.

A special characteristic of such short-term markets is that there generally comes no further
substantial external information into the market during the trading time. Consequently, the
price shifts are driven by the following pattern: (1) When the market starts, traders set their
bid and ask orders according to their initial information level or wait for the placements of
other traders. (2) After this �rst round, traders can observe the aggregated assessments
of all traders. This increases their knowledge level which may lead them to change their
assessments on the topic. Then, they may change their previous bid and ask orders or place
new ones. (3) After the second round the traders get informed how the aggregated market
assessments of all traders have changed. This again increases the level of knowledge of
the traders and may lead to further trading. Theoretically, this process should iterate with
ongoing time. If there actually enters no further external information and the life-span is long
enough, a market equilibrium should be reached and trading stops. A challenge for research
is to study how a market equilibrium can be distinguished from an illiquid market and

345see www.potsdamclimateexchange.org
346see www.forecastmarkets.org/pik/?action=setlanguage&language=EN
347The Hayek theorem assumes that the last traded price of a stock bases on more (or at least the same)
information than the prices before. Chalik et al. (2005), p. 9, argue that the chance for successful speculation
reduces when maturity of the market approaches. Then, it becomes harder to liquidate for bubble prices.
Therefore, they advise not to use interim prices as market assessments but the last traded price (LTP).
Unfortunately, interim prices often transmit important information in longitudinal studies (see Ondrus et
al. 2007) and LTPs entail the danger that single traders could be interested to in�uence the market price in
the last seconds as no correction can take place.
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Figure 99: Pittsburgh prediction market - In the upper subplot, the �nal market prices are
presented for the U.S. emission peak. In the lower subplot, you can �nd the price paths for all
stocks (dashed lines) and for the market forecast on the peak year (solid line, right axis). All
price paths start when the respective stock has been traded for the �rst time.

whether it seems reasonable to stop trading in such a situation without o¤ering additional
manipulation possibilities. Nevertheless, the main research objective for these markets is to
theoretically and empirically prove whether the market prices in such short-term markets
can be interpreted as market probabilities.

In the following, we present three prediction markets we have run between June 2008 and
June 2009. During the Bayesian Risk Management workshop at Carnegie Mellon University
(Pittsburgh, Pennsylvania) on June 11/13, 2008, we run a prediction market on the time
when U.S. green house gas emissions will start to fall long-lasting. We could motivate six
workshop participants to trade in our market that was closed after 13 minutes. In the upper
subplot of �gure 99 you can �nd the �nal (normalized) market prices at market close.

The surprising result is that traders either believed in a medium-term peak in the period
2015 up to 2035 (23%) or in a long-term peak not before 2050 (65%). There is no exact
speci�cation for "later than 2100". From logical reasoning it does not mean "never". In the
lower subplot of �gure 99, we present the price paths of the di¤erent stocks and the price-
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Figure 100: CIRCE prediction market - In the upper subplot, the �nal market prices are
presented for the �rst year when there is sustainable regulation on water in Spain. In the lower
subplot, you can �nd the price paths for all stocks. All price paths start when the respective
stock has been traded for the �rst time.

weighted mean peak year (2062).348 The price paths stabilized in the end of the market and
trading dried out. Hence, the stop of the market after 13 minutes seems justi�able.
On September 18/19, 2008 we conducted another market during a Bayesian Risk Manage-
ment training workshop for researchers of the international CIRCE project.349 Within this
workshop we run a prediction market with twelve researcher, mainly from the Mediterranean
on the question "When will water prices for Spanish farmers be determined by demand and
supply?". The �nal (normalized) prices (after 20 minutes trading) are presented in the upper
subplot of �gure 100. Similar to the market on the U.S. emission peak, the market assess-
ment is bimodal. There is high probability on a short-term regulation "2008-2010" - 10%
p.a. (three years) � while a regulation in the periods 2011-2015 (�ve years) and 2021-2030

348The stock "later than 2100" is interpreted to stand for the year 2101.
349The CIRCE Integrated Project, funded under the European Commission�s Sixth Framework Programme,
aims to highlight impacts and possible adaptation actions of the climate change in the Mediterranean region
including Europe, North Africa and Middle East. See for more details: www.circeproject.eu (last revised
August 31, 2009).
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(ten years) has only low probabilities of 1:6% and 1:9% p.a. The period 2016-2020 (�ve
years) has a slightly higher probability of 3:8% p.a. The results should be taken with a
pinch of salt as the market price for the short-term stock "2008-2010" had featured a price
jump shortly before the market closed. In retrospect, it is hardly to ascertain whether this
jump is in accordance with the general market assessment or whether there were no time for
the other traders to correct. The (normalized) market prices before the jump result in an
unimodal distribution: "2008-2010" 4% (1:33% p.a.), "2011-2015" 9% (1:8% p.a.), "2016-
2020" 21% (4:2% p.a.), "2021-2030" 39% (3:9% p.a.), "later than 2030" 26%, and "never"
1%. A regulation is seen most probable during "2016-2020" while there is nearly no support
for the assessment that there will never be such a regulation.

At an advanced training on Bayesian risk management, we ran a prediction market (16
minutes) on the average oil price level in 2020 (in 2009 US-$). We could gain nine traders
� graduate students (global change management) from the University of Applied Science
Eberswalde (Germany) on June 12, 2009. The �nal market price distribution (see upper
subplot of �gure 101) is unimodal and the interval "$60:00� $99:99" - corresponding to the
Brent oil spot price at that time - is seen as most likely (33%). Prices below $60 (at least
$100) were assumed to have a probability of 29% (37%). Surprisingly, students seemed to
think that an oil price in 2020 higher than the peak in mid 2008 is not more likely than 21%.
As the price paths seem to have converged, we believe the market life-span of 16 minutes
was adequate. Since those students were no experts on commodities, we do not want to
overstate the results.

A general assessment of the quality of our market results is hard to �nd. A widespread
method is to calculate the accuracy measuring the distance between market forecasts and
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Figure 101: Eberswalde prediction market - In the upper subplot, the �nal prediction market
prices are presented for the average oil price level in 2020 (in 2009 $). In the lower subplot, you
can �nd the price paths for all stocks (dashed lines) and for the market forecast of the oil price
level in 2020 (solid line, right axis). All price paths start when the respective stock has been
traded for the �rst time.

realizations.350 However, the accuracy is a problematic measure in the context of non-

350There exist two basic measures in the evaluation of prediction markets accuracy: mean absolute error
(MAE) and the mean squared error (MSE)

MAE =
1

K

KX
k=1

jyk � pkj ; & MSE =
1

K

KX
k=1

[yk � pk]2

measuring the di¤erence between the (�nal or weighted) market prices pk, for k = 1; :::;K, and the �nal
outcome of the risk factor Y (winner-takes-all markets, e.g. CO2 price in 2013)

yk =

�
1; k is the realized outcome of Y
0; k is not the realized outcome of Y

;

or the realized elements yk� [0; 1], for k = 1; :::;K and
PK
k=1 yk = 1, of the event Y (index markets, e.g.

election results). Especially in political prediction markets, a forecast is usually preferred that shows small
prediction errors for all parties in contrast to a forecast that is very accurate for all but two parties which are
totally misspeci�ed. Hence, low MSE could give better indications for possible party coalitions rather than
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repeatable events and subjective probabilities which are no frequencies but degrees of beliefs.
Consequently, prices of prediction markets only need to (1) continuously respond to new
information (Passmore & Cebeci 2003, p. 2) and (2) re�ect the aggregated believes of the
market.
The �rst claim does not apply to our short-term markets as during the trading minutes no
external information on the topic could reach the traders. To assess the aggregation ability of
the market, we would need to measure the traders�information levels which is only possible
in laboratory experiments where the market operator can spread information by providing
traders with di¤erent information (Hanson et al. 2006).
Nevertheless, it is possible to analyze the initial and �nal disagreement of traders.351 Berle-
mann & Nelson (2002), pp. 15, propose the Gini-coe¢ cient

Gini (t) = 1� 2

J � 1

"
J �

PJ
j=1 j � ~wj (t)PJ
j=1 ~wj (t)

#
2 [0; 1] ;

to calculate the initial (t = 0) and �nal (t = T ) dispersion of "play money" between the
J traders. The term ~wj (t) is the jth largest "play money" value. The Gini-coe¢ cient lies
between zero and one, while zero means equal distributed funds. The closer Gini is to
one, the more the funds are concentrated to a single trader. In all three markets we have
presented above, we cannot measure the initial disagreement by the Gini-coe¢ cient as we
have equally endowed all traders with 100 (virtual) units of play money. Hence, Gini (0) = 0.
Nevertheless, we can calculate the diversity of the �nal trader portfolios: Ginipeak (T ) =
0:047, Giniwater (T ) = 0:104, Ginioil (T ) = 0:025. The coe¢ cients are extremely low. This
means that the �nal portfolio values are rather equal. This we interpret as a sign that there
was a low level of disagreement in the markets. All three price distributions are rather �at
which indicates high uncertainty while the low Gini-coe¢ cients support the assumption of a
low disagreement.

a low MAE . In such situations, the value of the MSE, punishing larger errors disproportional compared to
small errors, is more informative (Berlemann & Schmidt 2001, p 10).
351Disagreement is the traders�diversity of opinions while uncertainty re�ects their individual con�dence.
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19 Results and Conclusions

In this dissertation we have discussed the idea of a Bayesian Risk Management (BRM)
proposed by the research group Bayesian Risk Solutions (BRS). In the following, we �rst
review our results in respect of our four fundamental goals formulized in the introduction
(see section 1). Subsequently, we translate our �ndings into proposals for a risk management
that is better prepared to anticipate upcoming menaces comparable to the current �nancial
crisis since 2007/8.

19.1 BRM Structure

Our �rst goal was to condense the wide scope of BRM into a clear structure based on the
concepts Hardcore-Bayesianism (HCB) and Softcore-Bayesianism (SCB). We separated HCB
and SCB according to their updating processes that critically depend on the information
available (see section 2.1). HCB summarizes all data analysis pro�ting from the normative
mathematical Bayesian updating via the famous Bayes rule while SCB covers all informal
(Bayesian) updating that transparently and conscientiously mobilizes human expertise.
Bayesianism is intrinsically tied to subjective probabilities - a measure for the personal degree
of belief. Nevertheless, for a more comprehensive and di¤erentiated overview, we include all
e¤orts that apply the Bayes rule but avoid an incorporation of prior information (see �gure
1).
We could identify a clear structure for HCB and SCB and their interrelations (see �gure
2). We found SCB as an extremely �exible and stand-alone concept since it accounts for
miscellaneous kinds of information. In contrast, HCB is rather restricted because it requires
(a) an adequate form of data to apply the Bayes rule, (b) data and model assumptions
conjectured to be reliable for inference, as well as (c) advanced information in form of prior
distributions. Although uninformative or even improper priors can water down the last
claim, HCB always depends on personal appraisals of the reliability of the data and model
assumptions. Consequently, there is no HCB without SCB.

19.2 Improved Data Analysis

Our second goal was an in-depth discussion on a Bayesian alternative to classical data
analysis. We identi�ed several reasons supporting our preference for Bayesian over frequentist
statistics:

� The Bayesian understanding does not believe in physical randomness but in uncertainty
solely emanating from a lack of information (see section 2).
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� Bayesian statistics abandons the traditional idea of maximum likelihood or least square
point estimates in favor of a mathematical updating of parameter as well as model
uncertainty via the Bayes rule (see sections 6 up to 8). It is rational to account for
both parameter and model uncertainty and to make transparent how these propagate
into projections and derived risk measures like value-at-risks or option prices. This is
highly relevant in the case of a low number of observations.

� The consideration of parameter and model uncertainty results in a convenient side
e¤ect. Bayesian statistics does not require any classical hypothesis testing of estimates
and of preconditions for those tests. Direct model probabilities can be calculated
instead (see sections 8 and 10.3).

� The central Bayesian (parameter) estimation technique is the Markov Chain Monte
Carlo (MCMC) simulation (see section 7). After convergence, this powerful technique
e¢ ciently generates (parameter) samples that can describe multivariate uncertainty
(on several parameters). Although MCMC samples o¤er far more information than
classical point estimates, this estimation technique is most often not much more time-
consuming than classical estimation. In fact, MCMC simulation is often faster for
complex models with latent variables - the main reason for the recent popularity of
Bayesian statistics even amongst opponents of the Bayesian paradigm. Moreover,
the MCMC technique is a universal remedy for an amazing number of heterogeneous
estimation problems.

To complement our theoretical discussion we aimed to illustrate the performance of Bayesian
statistics on the basis of an empirical study about the European CO2 price risk. We ex-
emplarily �t twelve stochastic processes to four years (April 2005 - May 2009) of European
Union Allowance (EUA) price observations. Such a long time-series is unique in empirical
work on EUA pricing. Because of a restriction on banking between the �rst (2005-2007) and
second (2008-2012) trading period, we had to deal with two separated spot markets. Our
proposal was to pro�t from a much more liquid future market starting in 2005. By using
the cost-of-carry relationship we generated synthetic spot rates from the European Climate
Exchange Dec09 future (see section 9.2).
Our time-series covers the turbulent period April/ May 2006 when an oversupply of EUAs
was o¢ cially announced by the authorities. Therefore, we ran all parameter estimations
twice - for the time-series with and without April/ May 2006.
In general, the MCMC algorithms converged fairly quickly and produced impressing esti-
mation results in form of marginal and multivariate posterior parameter distributions (see
section 10.2). The variations in the posteriors between the full and short (without April/
May 2006) time-series were reasonable and consistent between all models.
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In contrast to frequentist statistics, Bayesian statistics allows for a cardinal performance
rating by model probabilities. We could identify the log-variance models with leverage
e¤ect as superior for the full and short time-series (see section 10.3). As these models are
highly complex we do not believe in their practicability for day-to-day business. Hence, we
have analyzed some plain vanilla models (Geometric Brownian motion (GBM), Ornstein-
Uhlenbeck, Cox-Ingersoll-Ross, and constant elasticity of variance process). Unfortunately,
none of them could systematically outperform.
Another sub-goal of this dissertation was to empirically compare the di¤erences in the risk
appraisals between Bayesian and classical statistics. Bayesian statistics generally provided
more conservative value-at-risks propagating into higher capital charges (see section 11).
Therefore, we embrace Pollard�s (Nov. 2007) Bayesian explanation for the capital charge
puzzle: Observed capital charges exceed regulatory claims according to Basel II because risk
managers unconsciously or o¤ the records account for parameter and model uncertainty.
We additionally analyzed the impact of parameter uncertainty on Bayesian option prices.
We found strong evidence that option prices based on the assumption of a GBM - the
workhorse in �nance - are virtually not a¤ected by parameter uncertainty. This is why option
prices only depend on the volatility parameter for which we estimated a highly informative
(= concentrated) and symmetrical posterior distribution. However, we could exemplarily
identify di¤erences between frequentist and Bayesian option prices for the more complex
Geometric Brownian motion with jumps, and the basic log-variance process (see section
12.3).
Beside all pros, we see some obstacles that need to be overcome for a better mainstreaming
of Bayesian statistics: (a) There is a lack of user-optimized application packages. At the
moment, the most prevalent Bayesian statistics software WinBugs - that we partly used
for our estimations - is far from an Apple-like user interface. (b) Lectures in statistics
often cover Bayesian statistics as a special subarea of classical statistics whereas it is an
alternative understanding of statistics. (c) Bayesian statistics is often discredited because
of its subjectivity. In fact, we believe this is not a bug but a feature. Nevertheless, in most
cases subjectivity can be reduced to a negligible level (see section 6.2).

19.3 Risk Management Beyond Data Analysis

Our third goal was to �nd practicable guidelines and options to transparently and rationally
incorporate human expertise in risk management beyond pure data analysis.
First, we identi�ed risk analysts, experts, and decision makers as the most important persons
(or groups) in risk management (see section 14).
Based on this taxonomy, we designed the integrated Bayesian Risk Analysis (iBRA) concept
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(see section 15) proposing a basic framework for an expertise-driven risk quanti�cation and
management accompanied by an informal Bayesian updating - a permanent re�ection and
challenge of the �ndings.

Although iBRA highlights the risk analyst as expert, it allows for a simple integration of
in house and external experts when the additional e¤orts are well justi�ed. Therefore, we
overviewed the scope of expert elicitation (see sections 16 up to 18).

We designed iBRA as a multi-step guideline for the risk analysis of a target variable (e.g.
company value) mostly depending on several critical factors (e.g. production costs, demand).
It starts with the identi�cation of the critical factors that can be prioritized by means of
probability-impact maps and variability-impact tables (see �gures 74 and 75). Interrelations
between the factors are often complex. Risk maps (see �gure 76) or in�uence diagrams (see
�gure 78) are helpful to structure the problem in a model.

For simplicity, iBRA propagates a separate quanti�cation of the identi�ed factors (see section
15.2 for SRQ step). In section 16.3 we discussed dominant elicitation techniques that can
be used for quanti�cation. Mostly, they are well grounded on theory but lack practical
feasibility. Therefore, we can only recommend the �xed interval technique and variable
interval technique by which experts (or the risk analyst) express their uncertainty in form
of interval weights or by the calibration of elicitation distributions (see sections 16.3.5 and
16.3.6).

Unfortunately, people tend to biases when they have to formulize their uncertainty (see
section 16.1). That is why we conducted a study on the projection quality of human (credible)
interval statements (see section 16.4). By the means of Bayesian statistics, we could quantify
a posterior distribution for the credible level of di¤erent kinds of credible intervals. We found
people tend to overcon�dence when they are asked for intervals covering the actual outcome
of a factor with high or 50% probability - i.e. they stated too narrow intervals. People also
showed evidence for overestimation.

An ignorance of critical dependencies between factors or auto-correlation of factors can
fundamentally underestimate relevant risks. Although iBRA summarizes guidelines and
techniques to deal with such problems (see section 15.3 for the IRQ step), we advised to
focus on those factor interrelations that the analyst thinks to be most important. Analyses of
cause-and-e¤ect chains can help to identify independent factors or to de�ne transformations
like factor ratios.

If no elimination of dependencies is possible, we proposed the envelope method as well as our
visual copula technique for situations with a few correlated factors. The envelope method
models correlation by forming a range for dependent factors given the outcome of a numeraire
factor (see section 16.5.2). If there is no hierarchic dependence structure, we conceived our
visual copula technique for discussing the correlation of the factors on the basis of scatter
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plots produced by a copula function for di¤erent correlation levels (see section 16.5.1).

When the number of correlated factors is too large, we see no alternatives to stress tests and
Bayesian scenario analysis including probability weights for scenarios (see section 15.3). The
concept of consistency matrices can support the creation of scenarios (see �gure 79).

The approximation of auto-correlations is another tricky task for an expertise-driven risk
management. We identi�ed stochastic processes, weighted projections and time-series cop-
ulas as promising approaches (see section 15.3.2): The calibration of stochastic processes is
easy to implement but their �exibility is modest (see section 16.5.3). Weighted projections
in form of scenarios are extremely �exible but can result in contradictory marginal distri-
butions for the factors. Alternatively, we introduced the time-series copula approach (see
section 16.5.4). It combines a modi�ed envelope method with the copula concept and allows
for a �exible calibration of positive auto-correlation.

Although data analysis is also prone to ambiguous results, an expertise-driven risk man-
agement in particular has to deal with a diversity of opinions. Within iBRA we discussed
options to present competing assessments to decision makers (see section 15.5).

Optimally, there is a self-aggregation of competing assessments by the direct or indirect
interaction of experts (see below for behavioral aggregation tools). Unfortunately, there is
often no such behavioral aggregation. Then disagreement can fully be displayed. Alterna-
tively, competing expert assessments can be summarized by mathematical aggregation in
form of a basic assessment weighting or a Bayesian expert aggregation.

We found basic assessment (or expert) weighting as most �exible and practicable (see 16.6.1).
It is a simple arithmetic or geometric averaging of di¤erent personal uncertainties - weighting
of di¤erent continuous or discrete distributions instead of point estimates. Since there is no
"objective" weighting scheme, we suggested experts to self-rate their assessments. In a survey
we elicited people�s con�dence in such expert self-ratings (see section 15.5). Interestingly,
people tend to rely in an expert statement the more certain the expert is but partly tend to
mistrust "very con�dent" experts.

Based on expert statements, Bayesian expert aggregation is a normative updating of a de-
cision maker�s advanced uncertainty (see 16.6.2). It is rather academic but useful for some
theoretical reasoning because it propagates to judge information according to its newswor-
thiness instead of the pure number of supporters.

Beside elicitation techniques, a Bayesian Risk Management requires some elicitation tools
bringing together experts and elicitation techniques (see section 17 and �gure 97).

Expert panels feature a direct (e.g. focus groups) or indirect interaction (Delphi groups) of
experts while expert interviews are more or less complex interrogations of experts. We call
panels and interviews direct elicitation tools. They require a direct contact (incl. telephone)
of experts and an inquirer. This is extremely expensive and time consuming.
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We instead favored surveys (= indirect elicitation tools) that do not need an arrangement
of appointments between experts and inquirer. Although classical surveys like traditional
questionnaires are more dominant, we focused on automated elicitation tools like online
questionnaires and prediction markets.
Online questionnaires minimize the level of cooperation for the experts improving acceptance
for integration into day-to-day business (see section 17.2). We set up the PCXquest - our
online questionnaire platform. It summarizes four basic question types corresponding to the
constant and variable interval elicitation technique (see above). The PCXquest allowed us to
run parallel surveys each comprising a number of questions where experts can additionally
self-rate their assessments.
Prediction markets are an alternative. Their excellent prediction performance and their
theoretical fundamentals have been well documented by research (see section 18). Prediction
markets pro�t from an interaction between experts via a pricing mechanism. They measure
probability assessments in an unconstrained form of "willingness to bet".
Classical prediction markets need to be liquidated according to the �nal outcome of a risk
factor. This restricts them to short-term or medium-term problems. Unfortunately, climate
related risks are mostly medium-term up to long-term problems. Therefore, we re�ned the
idea of concept markets, successfully applied in marketing, to our idea of short-term markets
on long-term events (see section 18.9.2) - a kind of "beauty contest" in the sense of Keynes
(2007).
So far, we have run three test markets with di¤erent kinds of traders (students, climate
scientists, risk experts) on our prediction market platform PCXtrade. We could achieve
encouraging results. However, we have seen that experts without experience in trading need
to acquaint themselves with this tool. Consequently, we have concluded that we must train
the experts more intensively beforehand. Moreover, we plan to implement Hanson�s market
maker to reduce market complexity (see section 18.6.7).

19.4 Non-Arbitrary Risk Management

Our fourth goal was to discuss options to curb the risk of arbitrariness of an expertise-
driven risk management. Unfortunately, the basic Bayesian theory does not provide any
guidance. Except for the normative mathematical Bayesian updating, it is purely descriptive.
In fact, the concept of validation or falsi�cation of human uncertainty is meaningless for a
Bayesian thinker since Bayesianism understands probabilistic statements as an expression of
the personal level of uncertainty (= degree of belief).
For addressing the risk of arbitrariness, we moot the proposal of a Bayesian due diligence.
Bayesian due diligence o¤ers a framework to judge subjective statements according to their
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usability for risk management.
Since there is no chance for undisputed "objective" assessments in real live, we compiled
some basic inter-subjective criteria rational people should agree on (see �gure 82 in section
15.5 for our reputation map). We hope they allow to rate the level of reliable information
an assessment is based on.
Our proposal is outside the traditional Bayesian and of course frequentist paradigm. Hence
we embedded our Bayesian due diligence concept into a new risk classi�cation referencing
to the familiar terms "risk" and "uncertainty" (see section 2.2): We found

� A risk factor is described by probabilistic assessments judged as reliable.

� Although an uncertain factor has been identi�ed as relevant it cannot be described by
probabilistic assessments judged as reliable.

We believe a probabilistic quanti�cation according to our iBRA concept (see above) is only
advisable for risk factors whereas we oppose an arbitrary quanti�cation of uncertain factors.
Instead, we favor a transparent documentation and stress tests for such factors.
Since our Bayesian due diligence propagates a conservative risk management we enhanced
our risk classi�cation by black swans - critical but unforeseeable factors. Consequently, a
risk management should mobilize risk cushions that can absorb unexpected adverse events
of minor up to medium size. Besides, it should seek for new information sources that might
provide a better appraisal of possible risks and opportunities. Indeed, a black swan for the
risk analyst might be a clear risk for an expert.

19.5 Conclusions for the Current Financial Crisis

This dissertation was deliberately designed for providing a Bayesian toolbox for universal
purpose. In consideration of the �nancial crisis since 2007/9 we want to complete our work
with a short discussion of potential Bayesian contributions to an improved risk management
without arguing that Bayesian Risk Management could have had saved the world from the
devastating crisis. In particular, we focus on some catchwords: model failure, insu¢ cient
data, and frivolous subjectivism.
In their groundbreaking paper, Colander et al. 2009 believe in amodel failure explanation for
the �nancial crisis. Economists have developed oversimpli�ed risk and derivatives models
propagating unjusti�able stability. In fact, these models could not anticipate the crisis.
Maybe, they have even contributed to it.
Bayesian statistics does not deliver new kinds of models but can contribute to a more pru-
dent analysis of existing models (that, of course, have had often proven inadequate during
the crisis). It accounts for the generally limited number of observations by a transparent
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disclosure of data-induced parameter uncertainty hitherto ignored in quantitative risk mod-
els (see section 6). This generally results in more conservative risk assessments (see section
11). Additionally, Bayesian statistics can cardinally measure the relative performance of
competing models by posterior model probabilities (see section 8). This allows to identify
inferior models more clearly than by classical information criteria. In fact, we were amazed
at the distinct model ratings resulting from our empirical analysis of the CO2 price risk (see
section 10.3).
Another important explanation suspects the �nancial crisis to originate from a risk manage-
ment relying on insu¢ cient data that does not re�ect coming menaces. Roughly speaking,
more complex (empirical) models would have not anticipated the crisis because the available
data from the last decades does not cover comparable turbulent phases. The project "Main-
streaming of Climate Risks and Opportunities in the Financial Sector" has been pioneering
in propagating the basic idea of insu¢ cient or devalued historical data (see the project pub-
lications at www.climate-mainstreaming.net and especially Onischka 2008). Because of the
infrequence or singularity of extreme (�nancial) crises, we favor unorthodox approaches.
For instance, the Supervisory Capital Assessment Program (SCAP) was a stress test, con-
ducted by the Federal Reserve System, for the 19 largest U.S. �nancial institutions (see Fed
Apr. 2009 and Fed May 2009 for design and results). SCAP analyzed whether these insti-
tutions could withstand a worsening recession and further market turmoil. Amongst others,
the adequacy of their capitalization was calculated for a pessimistic scenario based on some
key macroeconomic factors (GDP: �3:3%/ 0:5%, unemployment rate: 8:9%/ 10:3%, house
prices: �22%/ �7% for 2009/10).
In the �rst half of 2010 there has been conducted a similar stress test by the Committee of
European Banking Supervisors (CEBS) for European banks. Only seven out of 91 banks
(e.g. Hypo Real Estate Holding) failed the test.352 In retrospective of the subsequent turbu-
lences of the Irish banks the risk assessments of the stress test have been widely criticized.
Nevertheless scenario based stress tests are strongly supported from the Bayesian point of
view. However they need to be propagated transparently to prevent pressure groups of banks
to erode stress scenarios and to advocate legal loopholes in underhand dealings (e.g. only
government bonds in the trading book were stressed).
In this dissertation, we have summarized guidelines supporting the risk management to
quantify information not contained in historical data (see section 15). Since the designing of
scenarios requires statements on diverse factors, an incorporation of in house and external
experts seems advisable.
Fortunately, we have summarized elicitation techniques (see section 16) and elicitation tools
(see sections 17 and 18) for mobilizing experts�expertise. Unfortunately, an expertise-driven

352see http://stress-test.c-ebs.org/documents/Summaryreport.pdf
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risk management without any strict supervision would provoke some opposition because of
the threat of human insu¢ ciency (see section 16.1 for pitfalls in expert elicitation) and,
maybe even more relevant, moral hazard.
In fact, there are more and more people localizing the causes for the crisis in a frivolous
subjectivism, i.e. (unconsciously practiced) Bayesianism. Exemplarily, we cite Prof. Richard
A. Posner (judge on the United States Court of Appeals for the Seventh Circuit in Chicago)
and the �nancial juggler and billionaire George Soros who lament unsupervised subjective
risk management in the �nancial sector where quantitative models only serve as a �g leaf.353

In personal conversations, (credit) risk managers from di¤erent large European banks ac-
knowledged this perception.
In answer to this, we have started the discussion on a criteria based subjective risk manage-
ment where assessments need to pass some minimum standards. We call this Bayesian due
diligence (see sections 2.2 and 15.5). Nevertheless, this is not more than a �rst step in - we
hope - the right direction to nip coming crises in the bud.

353At iTunes, you can download the interviews: "Posner Says U.S. Will Spend $13 Trillion to Fight a Depres-
sion", Bloomberg on the Economy (April 27, 2009) and "Soros Says Economic Crisis Was Self-Generated by
System, Policy", Bloomberg on the Economy (July 8, 2009). See the popular science book Posner (2009)[258].
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A Appendix

A.1 Distributions

In the following we describe some important distributions often used in this dissertation:

beta distribution: Pk � Dirichlet (�; �) (see Dirichlet distribution)

Dirichlet distribution: P = (P1; :::; PK) � Dirichlet (a1; :::; aK) with pdf

Dirichlet (pj a) = 1

B (a)

KY
k=1

pak�1k ;

is a multivariate distribution for the random vector P = (P1; :::; PK)
0 � [0; 1]K under the con-

dition
PK

k=1 pk = 1. The term B (a) =
QK

k=1 � (ak) =�
�PK

k=1 ak

�
is the beta function, where

� (a) =
R1
0
exp (��) �a�1d� is the gamma function, and a = (a1; :::; aK)

0 is the respective
parameter vector. The marginal mean and variance are E (Pk) = ak=~a and

V ar (Pk) =
ak [~a� ak]

~a2 [~a+ 1]
;

where ~a =
PK

k=1 ak. Dirichlet distributed variables Pk, k = 1; :::; K, can be sampled by
pk = zk=

PK
k=1 zk, where Zk � �22�ak . In the special case of P = (P1; P2)

0 = (P1; 1� P1)
0 the

Dirichlet distribution equals a beta distribution

Dirichlet (pj a) = 1

B (�; �)
p��1k p��1k ;

where � = a1, � = a2, E (Pk) = �= [�+ �] and

V ar (Pk) =
�b

[�+ �]2 [�+ � + 1]
:

gamma distribution: X � Gam (a; b) with pdf

fX (x) =
b�a

� (a)
xa�1 exp (�x=b) ;

where � (a) =
R1
0
exp (��) �a�1d� is the gamma function. E (X) = ab and V ar (X) = ab2.

Take care for the speci�cation of the gamma distribution in your software! There is no
general binding formulation.
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inverse gamma distribution: X � IG (a; b) with pdf

fX (x) =
ba

� (a)
x�a�1 exp (�b=x) ;

where � (a) =
R1
0
exp (��) �a�1d� is the gamma function. E (X) = b= [a� 1], for a > 1, and

V ar (X) = b2=
�
[a� 1]2 [a� 2]

�
, for a > 2. Unfortunately, the inverse gamma distribution

is often not implemented in statistical software. Fortunately, there is the link X = g (Y ) =

1=Y � IG (a; b) with Y � Gam (a; 1=b). Hence, we need just to sample y and than transform
it to x = 1=y.

multivariate Gaussian (or normal) distribution: X = (X1; :::; XK) � NK (�;�) with
pdf

fX (x) = [2�]
�K=2 j�j�1=2 exp

�
�1
2
[x� �]0��1 [x� �]

�
;

where � = (�1; :::; �K)
0 is the vector of means and � is the covariance matrix. In the

univariate case (K = 1) this simpli�es to

fX (x) =
1p
2��

exp

 
�1
2

�
x� �

�

�2!
;

where E (X) = � and Std (X) = �.

log-Gaussian (or normal) distribution: X � logN (�; �) with pdf

fX (x) =
1

x
p
2��

exp

 
�1
2

�
lnx� �

�

�2!
;

where E (lnX) = � and Std (lnX) = �. Consequently, it follows E (X) = exp (�� �2=2)

and V ar (X) = [exp (�2)� 1] exp (2�+ �2).

non-central Student�s t distribution: X � tv (�; �) with pdf

fX (x) =
�
�
v+1
2

�
p
v��

�
v
2

�
�

"
1 +

1

v

�
x� �

�

�2#�[v+1]=2

where v is the degree of freedom, E (X) = �, and V ar (X) = �v= [v � 2], for v > 2. The
Student�s t distribution is the special case for � = 0 and � = 1.
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Figure 102: rejection & importance sampling

A.2 Rejection & Importance Sampling

Assume, we are interested in a target density � (�) which is too complex to sample from.354

However, there is a standard distribution � (�) which guarantees � (�) � c �� (�) for the whole
domain of �, where c > 1 is a scaling factor. The distribution � (�) is called envelope density
as c � � (�) needs to envelope the target density everywhere.
This simulation algorithm is called rejection sampling:

1. Set w = 1.

2. Sample a proposal value ~� from the envelope density � (�).

3. Accept the proposal value, �(w) = ~�, as wth draw from the target distribution � (�)

with acceptance probability �
�
~�
�
= �

�
~�
�
=
h
c � �

�
~�
�i
and set w = w + 1. If w < W

go back to 2.

An example for rejection sampling is plotted in �gure 102. We generated a total of 40; 000
samples (red & blue boxes) from the proposal density � (�) (here ~� � Gam (6; 0:52)). Finally,
just 26; 534 samples (blue boxes, only) were accepted to stem from the target density � (�)
(here � � logN (1:1; 0:3)). The acceptance probability was calculated with with a scaling
factor c = 1:5.
354In the following we base our discussion on Rachev et al. (2008), pp. 63, and Chan & Wong (2006), pp.
110.
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Generally, every standard distribution can be used as envelope density by increasing c.
It is only required that � (�) has positive density for the full domain of the target density.
However, the speed of the rejection sampling critically depends on c. For an e¢ cient envelope
density a c � 1 is su¢ cient to guarantee dominance.
A related concept is importance sampling which incorporates all samples generated from the
proposal distribution, meaning �(w) = ~� with probability one. The expected value of a real
value function g (�), E (g (�)) =

R
g (�) � (�) d�, can be approximated by the arithmetic mean

of W sampled parameters �(w), w = 1; :::;W . Actually, the samples need to be generated by
� (�), which might be intractable. Fortunately, a simple extension of the formula

E (g (�)) =

Z
g (�)

� (�)

� (�)
� (�) d� �

WX
w=1

g
�
�(w)

�
w
�
�(w)

�
allows to sample i.i.d. �(w), w = 1; :::;W , from a standard distribution � (�). The samples
originating from the wrong distribution are simply reweighted by w (�) = � (�) =� (�).
The approximation quality of the importance sampling estimator critically depends on the
variance of the weights. Consequently, the mode and shape of proposal and target density
should be matched.

A.3 Sampling-Importance-Resampling (SIR)

The sampling-importance-resampling (SIR) approach of Rubin (1988) is the most important
alternative to the MCMC samplers. The SIR bases on the idea of sequential updating where
the updated prior corresponds to the old posterior

� (�j y0; :::; yt�1; yt) / fY (ytj �) � � (�j y0; :::; yt�1) :

Then the SIR algorithm355 allows to sample from � (�j y0; :::; yt�1; yt)

1. Sample �(w), w = 1; :::;W , from the updated prior � (�j y0; :::; yt�1).

2. Calculate the mean likelihood �Lyt =
PW

w=1 fYt

�
ytj �(w)

�
=W .

3. Calculate the importance weight !w = fYt

�
ytj �(w)

�
=
�
W � �Lyt

�
for �(w), w = 1; :::;W .

4. Resample �( ~w), ~w = 1; :::; ~W < W , from � (�j y0; :::; yt�1; yt)
355see Rubin (1988), Pitt & Shephard (1999), p. 591, Bunnin et al. (2002), pp. 39, or Koch (2007) for
more details
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(a) Construct W intervals on (0; 1] where interval w is (aw; bw] with aw =
Pw�1

k=1 !k
and bw =

Pw
k=1 !k.

(b) Generate ~W independent samples u ~w from Uni (0; 1).

(c) The ~wth sample from � (�j y0; :::; yt�1; yt) is �( ~w) = �(w) such that u ~w� (aw; bw].

A.4 Ito�s Lemma

Assume a stochastic di¤erential process (SDP)

dSt = � (t; st; �) dt+ � (t; st; �) dWt;

where dSt = St+dt � st and dWt � N
�
0;
p
dt
�
, for W0 = 0, is the di¤erential of a Wiener

process. The terms � (t; st; �) and � (t; st; �) are functions of the time t, the current realization
St = st, and a vector of parameters �. Then Ito�s lemma o¤ers the SDP formulation for a
function Ft = g (t; St) by

dFt =

�
@Ft
@t

+ �t
@Ft
@St

+
1

2
�2t
@2Ft
@S2t

�
dt+ �t

@Ft
@St

dWt;

where dFt = Ft+dt � ft, �t = � (t; st; �) and �t = � (t; st; �).

Take care whether the function Ft = g (t; St) depends on t explicitly. In �nancial applications
the function often reduces to Ft = g (St). Then @Ft=@t = 0.

Ito�s lemma can also be extended to jump-di¤usion processes

dSt = � (t; st; �) dt+ � (t; st; �) dWt + Z (t; st; �) dNt;

where Zt = Z (t; st; �), t = 1; :::; T , are independent jump magnitudes and Nt is a counting
process. In the case of independent dWt and dNt, Ito�s lemma can be formulized for jump-
di¤usions by

dFt =

�
@Ft
@t

+ �t
@Ft
@St

+
1

2
�2t
@2Ft
@S2t

�
dt+ �t

@Ft
@St

dWt + [g (t; st + Zt)� g (t; st)] dNt:

For a better illustration we apply Ito�s lemma for Merton�s (1976) jump-di¤usion model

dSt =

�
�+

1

2
�2
�
st � dt+ �st � dWt +

�
eJ � 1

�
stdNt;
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where J is a Gaussian variable, Nt is a Poisson process with independent dWt and dNt. As
the model is generally estimated for log-returns Ft = g (St) = lnSt, we apply Ito�s lemma

d lnSt =

��
�+

1

2
�2
�
st
@Ft
@St

+
1

2
[�st]

2 @
2Ft
@S2t

�
dt+ �st

@Ft
@St

dWt

+
�
ln
�
st +

�
eJ � 1

�
st
�
� ln st

�
dNt

=

�
�+

1

2
�2 � 1

2
�2
�
dt+ �dWt + ln

st +
�
eJ � 1

�
st

st
� dNt

= �dt+ �dWt + J � dNt;

where J is the jump magnitude (or size, width) of the log-returns.

A.5 Univariate Density Transformation

Assume the density of an uncertain univariate variable X is fX (x) and a second uncertain
variable Y = g (X) is just a function of X. Then the density fY (y) of Y can be calculated
by the density transformation

fY (y) =

����@g�1 (y)@y

���� � fX �g�1 (y)� ;
where j�j is the Jacobian. For the density transformation the inverse X = g�1 (Y ) needs to
exist.

A.6 Truncation of Distributions

A truncated variable Y � FY results from X � FX restricted to (a; b). The pdf calculates
by

fY (y) =
fX (y)

FX (b)� FX (a)
:

Samples from Y can easily be generated as long as the inverse cdf, F�1X (�), is implemented
in your statistical software package. The procedure is the following: Sample u from U �
Uni (0; 1) and calculate

y = F�1X ([FX (b)� FX (a)] � u+ FX (a)) :

A.7 MCMC Samplers

A.7.1 GBM Gibbs Sampler

Our Gibbs sampler for the GBM can be described by the following algorithm:
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1. De�ne ~�
(w)
=
�
~�2
�(w)

as well as start values ~�(0) and ~�
(0)
. Set w = 1.

2. Sample
h
~�(w)

�� ~�(w�1); yi � N (m1; s1), where

m1 = s21 �
h
m0=s

2
0 +

XT

t=1
yt=~�

(w�1)i
& s21 =

h
1=s20 + T=~�

(w�1)i�1
:

3. Sample
h
~�
(w)
��� ~�(w); yi � IG (a1; b1),356 where

a1 = a0 + T=2 & b1 = b0 +
1

2

XT

t=1

�
yt � ~�(w)

�2
:

4. Set w = w + 1. As long as w � W go back to step 2.

5. Discard the pre-convergence samples �(w) =
�
~�(w); ~�

(w)
�0
, w � B < W , where B marks

the burn-in phase.

A.7.2 GBMJ Gibbs Sampler

Our GBMJ Gibbs sampler is de�ned by the following steps:

1. De�ne ~�
(w)
=
�
~�2
�(w)

and ~�
(w)

J =
�
~�2J
�(w)

. Set start values �(0) =
�
~�(0); ~�

(0)
; �

(0)
J ; ~�

(0)

J ; ~p
(0)
J

�0
,

x(0) =
�
j(0); n(0)

�0
,357 and w = 1.

2. Sample
h
~�(w)

�� �(w�1)�~� ; x(w�1); y
i
� N (m1; s1), where

m1 = s21 �
h
m0=s

2
0 +

XT

t=1

h
yt � j

(w�1)
t � n(w�1)t

i
=~�
(w�1)i

s21 =
h
1=s20 + T=~�

(w�1)i�1
:

3. Sample
h
~�
(w)
��� �(�w)�~� ; x(w�1); y

i
� IG (a1; b1),358 where359

a1 = a0 + T=2

b1 = b0 +
1

2

XT

t=1

h
yt � j

(w�1)
t � n(w�1)t � ~�(w)

i2
:

356See appendix A.1 for the generation of inverse gamma distributed variables and A.5 for the algorithm
of an univariate density transformation.
357We set j(0)1 = yt=2, for t = 1; :::; T , and n

(0)
t = 0, if y2t � y2t , else n

(0)
t = 1.

358The formulation �(�w)�~� re�ects the sampled parameter vector � without ~� = ~�2. The index states that

� comprises parameters sampled in step w, here ~�(w), and parameters sampled in step w � 1, here �(w�1)J ,
~�
(w�1)
J , and p(w�1)J .
359See appendix A.1 for the generation of inverse gamma distributed variables and A.5 for the algorithm
for univariate density transformation.
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4. Sample
h
p
(w)
J

��� �(�w)�pJ ; x
(w�1); y

i
� Beta (�1; �1), where

�1 = �0 +
XT

t=1
n
(w�1)
t & �1 = �0 + T +

XT

t=1
n
(w�1)
t

5. Sample
h
~�
(w)
J

��� �(w�1)=(w)�~�J ; x(w�1); y
i
� N

�
m
(J)
1 ; s

(J)
1

�
, where

m
(J)
1 = %1 �

h
m
(J)
0 =%0 +

XT

t=1

h
j
(w�1)
t � n(w�1)t

i
=~�
(w�1)
J

i
%1 =

h
1=%0 +

XT

t=1
n
(w�1)
t =~�

(w�1)
J

i�1
;

and %k =
h
s
(J)
k

i2
, k = 0; 1.

6. Sample
h
~�
(w)

J

��� �(w)�~�J
; x(w�1); y

i
� IG

�
a
(J)
1 ; b

(J)
1

�
, where

a
(J)
1 = a

(J)
0 +

XT

t=1
n
(w�1)
t =2

b
(J)
1 = b

(J)
0 +

1

2

XT

t=1

h
j
(w�1)
t � ~�(w)J

i���2
n
(w�1)
t =1

:

7. Sample
h
N
(w)
t

��� �(w); j(w�1) ; yi, for t = 1; :::; T , from
P
�
N
(w)
t = 1

��� �(w); j( w�1) ; y� = fYt (ytj �; 0) � ~p
(w)
J

fYt (ytj �; 0) � ~p
(w)
J + fYt (ytj �; 1) �

h
1� ~p(w)J

i ;
where

fYt (ytj �; k) =
�
ytj ~�(w) + k � ~�(w)J ;

q
~�
(w)
+ k � ~�(w)J

�
and P

�
N
(w)
t = 0

��� �; y� = 1� P
�
N
(w)
t = 1

��� �; y�.
8. Sample

h
J
(w)
t

��� �(w); n(w) ; yi � N (d; c), for t = 1; :::; T ,

d = c2 �
h�
yt � ~�(w)

�
=~�
(w)
+ ~�

(w)
J =~�

(w)

J

i
& c2 =

h
1=~� + 1=~�

(w)

J

i�1
:

9. Set w = w + 1. If w � W go back to step 2.

10. Discard the pre-convergence samples �(w), w � B < W .
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A.7.3 OU MCMC Sampler

We implement the following hybrid Metropolis-Hastings sampler for the OU process on log-
returns:

1. Run a ML estimation on

�ML = argmax
�

T�1Y
t=1

�

 
ln st+1j ~�+ [ln st � ~�] exp (���) ; �

r
1� exp (�2��)

2�

!
;

and store the respective covariance matrix �ML.

2. Set start values �(0) =
�
�(0); ~�(0); �(0)

�0
= �ML. Set hyper parameters m� = �ML,

m~� = ~�
ML, m� = �ML, &2� = �

ML
� , &2~� = �

ML
~� � c, and &2� = �ML

� � c for a factor c. Set
w = 1.

3. Use a Random Walk Metropolis sampler for �

(a) Generate a proposal value from �� � N
�
�(w�1); %�

���
��>0

, where %� is the standard
deviation of the proposal distribution.

(b) Accept proposal value �(w) = �� with probability min
�
� (��) =�

�
�(w�1)

�
; 1
�
,

where

� (�) =
T�1Y
t=1

� ( ln st+1jm (t; w � 1) ; & (w � 1)) � � (�jm�; &�)jk�0 ;

for m (t; w � 1) = ~�(w�1) +
�
ln st � ~�(w�1)

�
exp (���) and

& (w � 1) = �(w�1)
p
[1� exp (�2��)] =2�:

Otherwise, set �(w) = �(w�1).

4. Use a Random Walk Metropolis sampler for ~�

(a) Generate a proposal value from ~�� � N
�
~�(w�1); %~�

���
~���[~�min;~�max]

, where %~� is the

standard deviation of the proposal distribution.

(b) Accept proposal value ~�(w) = ~�� with probability min
�
� (~��) =�

�
~�(w�1)

�
; 1
�
,

where

� (~�) =

T�1Y
t=1

� ( ln st+1jm (t; w � 1) ; & (w � 1)) � � ( ~�jm~�; & ~�)j��[~�min;~�max] ;



A.7 MCMC Samplers 283

for m (t; w � 1) = ~�+
�
ln st � ~�(w�1)

�
exp

�
��(w)�

�
and

& (w � 1) = �(w�1)
q
[1� exp (�2�(w)�)] =2�(w):

Otherwise, set �(w) = �(w�1).

5. Use a Random Walk Metropolis sampler for �

(a) Generate a proposal value from �� � N
�
�(w�1); %�

���
��>0

, where %� is the standard
deviation of the proposal distribution.

(b) Accept proposal value �(w) = �� with probability min
�
� (��) =�

�
�(w�1)

�
; 1
�
,

where

� (�) =
T�1Y
t=1

� ( ln st+1jm (t; w � 1) ; & (w � 1)) � � (�jm�; &�)j�>0 ;

for m (t; w � 1) = ~�(w) +
�
ln st � ~�(w)

�
exp

�
��(w)�

�
and

& (w � 1) = �
q
[1� exp (�2�(w)�)] =2�(w):

Otherwise, set �(w) = �(w�1).

6. Set w = w + 1. If w � W go back to step 3.

A.7.4 Student�s t GARCH MCMC Sampler

Our MCMC sampler for the GARCH (1; 1) model with the Student�s t errors is a hybrid
Metropolis-Hastings algorithm:

1. Set start values �(0) =
�


(0)
0 ; 


(0)
1 ; !(0); �(0); �(0); v(0)

�0
and w = 1.

2. Calculate ~�(w)t , based on !(w�1), �(w�1), �(w�1), and u(w)t = yt � 

(w�1)
0 � 


(w�1)
1 rt for

t = 1; :::; T .360

3. Sample �(w)t

��� v(w�1); yt � Gam (a; 1=bt), t = 1; :::; T , where a =
�
v(w�1) + 1

�
=2 and

bt =

h
u
(w)
t

i2
2
�
~�2t
�(w) + v(w�1)

2
:

360We set ~�20 = dV ar (y) and u0 = 0.
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4. Sample v(w) via the Griddy Gibbs sampler from the log-kernel

Tv�
2
ln
v�
2
� T ln

�
�
�v�
2

��
+
hv�
2
� 1
i
�

TX
t=1

ln �
(w)
t � v�

2
�

TX
t=1

�
(w)
t � v��0;

for the �xed points v� = 2:1; 2:2; :::

5. Sample
�


(w)
0 ; 


(w)
1

�0
� N2 (m
;�
), where

m
 = �

�
z0D�1z
LS + ��10 m0

��1
& �
 =

�
z0D�1z + ��10

��1
:

The matrix z = (1; r) is a T � 2 matrix with 1 as a vector of ones and the EURIBOR
rates r = (r1; :::; rT )

0. The matrix D is a T � T identity matrix with
�
~�2t
�(w)

=�
(w)
t ,

t = 1; :::; T , on the main diagonal, and 
LS = [z0D�1z]
�1
z0y is the least square estimate

on yt = 
0 + 
1 � rt.

6. Sample the GARCH parameters !(w), �(w), and �(w).361

(a) Run a ML estimation

�ML = argmax
!;�;�

TY
t=1

�

�
ytj 
(w�1)0 + 


(w)
1 rt; ~��t=

q
�
(w)
t

�
;

where �ML =
�
!ML; �ML; �ML

�0
and ~�2�t = ! + � �

h
u
(w)
t�1

i2
+ � � ~�2�;t�1. Store the

covariance matrix, �ML, of the ML estimates.

(b) Generate a proposal vector �� � tv(w)
�
�ML;�ML

�
. To account for the prior dis-

tributions repeat sampling as long as �ML =2 (#min; #max]3.

(c) Set
�
!(w); �(w); �(w)

�0
= �ML with an acceptance probability

min
�
w
�
�ML

�
=w
�
�GARCH

�
; 1
�
;

where �GARCH =
�
!(w�1); �(w�1); �(w�1)

�0
and

w (a) = �
�
aj 
(w)0 ; 


(w)
1 ; v(w); �(w); y

�
=tv(w)

�
aj �ML;�ML

�
:

Otherwise, set
�
!(w); �(w); �(w)

�0
=
�
!(w�1); �(w�1); �(w�1)

�0
.

7. Set w = w + 1. If w � W go back to step 2.
361When the GARCH proposals have not been accepted we repeat this step twice at most. This can avoid
to repeat all other steps before to get a new GARCH parameter vector.
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A.7.5 MSGARCH MCMC Sampler

Our MCMC algorithm is a hybrid Metropolis-Hastings with the following steps:

1. De�ne ~�
(w)

t =
�
~�2t
�(w)

and set start values �(0), y0, x
(0), ~�20,

362 and w = 1.

2. Sample from �
(w)
k

��� �(�w)��k ; x
(w�1); y � N (mk; sk),363 where

mk = s2k �

24 TX
tjk

ŷ
(k)
t =~�

(w�1)
t +m0=s

2
0

35 & s2k =

24 TX
tjk

1=~�
(w�1)
t + 1=s20

35�1 :
The mean log-return under regime k is marked by ŷ(k)t and

PT
tjk is only the sum over

dates in regime k.

3. Calculate u(w)t = ut � �
(w)
k and

~�
(w�1)
t = !

(w�1)
x
(w�1)
t

+ �
(w�1)
x
(w�1)
t

�
h
u
(w)
t�1

i2
+ �

(w�1)
x
(w�1)
t

� ~�(w)t�1;

for t = 1; :::; T . We assume ~�
(w�1)
0 =

P4
t=1
~�
(w�1)
t �weightt, whereweight = (4; 3; 2; 1) =10.

4. Count the regime transitions from regime k to regime l by �(w)kl =
PT

t=1 1
h
x
(w�1)
t�1 =k

i �
1h
x
(w�1)
t =l

i.
5. Sample P (w)kk

��� �(w)=(w�1)�pkk ; y; x(w�1) � Beta
�
�0k + �

(w)
k1 ; �0k + �

(w)
k2

�
, for k = 1; 2.364

6. Sample the regimes x(w)t , for t = 1; :::; T , separately.

(a) Calculate the (shortened) conditional posterior �(w)t = P
�
X
(w)
t = k

��� �(w)t ; x
(w)
�t ; y

�
=

1= [1 + exp (cl � ck)] de�ned in equation 9 where cj =
PT

i=t ln�
�
yij�(w)xi ; ~�

(w)
i

�
+

ln p
(w)
xt�1;k

+ ln p
(w)
k;xt+1

.

362(1) For a fast convergence, our algorithm requires heterogeneous start values for the GARCH parameters
in the di¤erent regimes. (2) We set y0 =

P5
t=1 yt=5. (3) For all yt where y

2
t > 3=T �

PT
t=1 y

2
t we set x

(0)
t = 2,

otherwise x(0)t = 1. (4) We match ~�20 to the variance of the log-returns under the regime x
(0)
0 .

363�
(�w)
��k means all parameters except �k. Some of the parameter values have been sampled in MCMC step

w others in w � 1.
364For K � 3 regimes we can receive conjugate priors when we implement Dirichlet distrib-
uted priors (see Dirichlet distribution in section A.1). Then we can sample from Pkj ��pk ; x; y �
Dirichlet (ak1 + �k1; :::; akK + �kK), where Pk = (Pk1; :::; PkK)

0 is the kth row of the transition matrix.
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(b) Sample a variable u from U � Uni (0; 1). If �(w)t � u chose x(w)t = 1, otherwise
x
(w)
t = 2.

7. Sample �
�
#kj ��#k ; x

(w)
�t ; y

�
/
QT

t=1 �
�
ytj�(w)xt ; ~�

(w)
t

�
, for #k = (!k; �k; �k)

0 and k =
1; 2, in a two step procedure with a multivariate Student�s t independence chain
Metropolis-Hastings algorithm (Rachev et al. 2008, pp. 70/ pp. 210)

(a) Use implemented ML tools in your software to �nd GARCH parameters maxi-
mizing the log-likelihood

#ML
k = argmax

#k

TY
t=1

�
�
ytj�(w)xt ; ~�

(w)
t

�
; k = 1; 2;

where ~�
(w�1)
t = !ML

x
(w�1)
t

+ �ML

x
(w�1)
t

�
h
u
(w)
t�1

i2
+ �ML

x
(w�1)
t

� ~�(w)t�1. Generally, ML packages

o¤er the covariance matrix �̂(k;w) of the estimated parameters #ML
k .

(b) Sample a proposal vector #�k � tv�
�
#ML
k ; �̂(k;w)

�
,365 under restriction #k� [#min; #max],

and let it compete with the old vector #(w�1)k by the independence chainMetropolis-
Hastings algorithm.

8. Set w = w + 1 and go back to 2 as long as w < W .

A.8 Copulas

A.8.1 Basics on Copulas

Dependence structures between di¤erent risk factors (Y1; :::; Yn)
0 have a huge in�uence on

risk management as extreme outcomes of di¤erent risk factors can simultaneously emerge.
For simplicity, the multivariate Gaussian distribution is often used to model dependency.
It is implemented in most statistical software packages, e.g. Matlab or R. However the
multivariate Gaussian distribution belongs to the class of multivariate distributions which
require marginal distributions fYi (yi) = fYi (yij �), i = 1; :::; n, from the same distribution
although the parameter values � can be di¤erent. Additionally, the Gaussian approach can
only model linear dependency via a correlation matrix.
For our purposes these requirements are too strict, especially when we want to elicit expert
statements on prices de�ned on the positive line, only. We need the broader class of meta-
distributions which generate (non)-linear dependence structures but do not premise equally

365A sample from a multivariate non-central Student�s t distribution, Y � tv (�;�), can be generated via
Y = �� ��1=2 [v � 2] =v �X, where X � tv (0; 1).
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distributed marginal distributions. Such meta-distributions can be generated by the copula
approach.
A copula is a multivariate uniform distribution on the [0; 1]n hypercube for the quantiles of
the risk factors Y1; :::; Yn

C (u1; :::; un) = P (Y1 � y1; :::; Yn � yn) = FY (Y1 � y1; :::; Yn � yn) ;

where quantile ui is the realization of Ui = FYi (Yi) � Uni (0; 1). The dependence structure
between the quantiles Ui is controlled by the copula function which allows to indirectly
pattern dependence structures between the risk factors.
The theorem of Sklar guarantees that every joint distribution can be modeled by its marginal
distributions and a copula function. If all marginals are continuous distributions the copula
is unique. Consequently, di¤erent meta-distributions can result from di¤erent copulas given
the same marginal distributions. This allows to separate the meta-distribution into the
marginal distributions and the dependence structure

P (Y1 = y1; :::; Yn = yn) = fY (Y1 = y1; :::; Yn = yn)

= �ni=1fYi (yi) � c (FY1 (y1) ; :::; FYn (yn)) ;

where

c (u1; :::; un) =
@C (u1; :::; un)

@u1:::@un
:

The predominant classes of copulas are the elliptical and the Archimedean copulas. The
elliptical copulas have normally no closed form and are restricted to symmetrical dependence
structures. However, they are de�ned by a n-dimensional correlation matrix which allows
�exible (symmetrical) n-dimensional dependence structures. Moreover, the elliptical copulas
can easily be sampled with statistical software when standard distributions are implemented.
Two common elliptical copulas are summarized in table 47.

C (u1; :::; unj#) dependence parameter vector #
Gaussian �� (�

�1 (u1) ; :::;�
�1 (un)) �ij� [�1; 1]

Student�s t tv;� (t
�1
v (u1) ; :::; t

�1
v (un)) �ij� [�1; 1], v� (0;1)

Table 47: elliptical copulas

The class of Archimedean copulas features closed (additive) forms

C (FY1 (y1) ; :::; FYn (yn)j#) = AC (y1; :::; ynj#) = 	�1
�Xn

i=1
	(FYi (yi))

�
;



288 A APPENDIX

where limz!0	(z) ! 1, 	(1) = 1, 	0 (z) < 0, and 	00 (z) > 0. As Archimedean copulas
often only possess one or two dependence parameters they are mostly used to model bivariate
dependence structures. Alternatively, hierarchical models (see Jouini & Clemen 1996, p. 448)

ACn (y1; :::; ynj#i; i = 1; :::; n) = AC (ACn�1 (y1; :::; yn�1j#i; i = 1; :::; n� 1) ; ynj#n)

can be constructed for higher dimensions. Another feature is that some Archimedean copulas
can reproduce positive dependence, only. This can be bypassed byC (FY1 (y1) ; 1� FY2 (y2)j#).
The most dominant Archimedean copulas are summarized in table 48 (see Schmidt 2007, p.
23, or Jouini & Clemen 1996, p. 450).

n = 2 	 (ui) C (u1; u2j#)

Clayton u�#i �1
#

�Pn
i=1 u

�#
i + n� 1

��1=# #� (0;1)
#! 0 independence
#!1 comonotony

Gumble [� lnui]# exp

�
�
hPn

i=1 [� lnui]
#
i�1=#� #� [1;1)

# = 1 independence
#!1 comonotony

Frankn=2 ln
�
e
�#ui�1
e�#�1

�
� 1
#
ln

�
1 +

h
e
�#u1�1

ih
e
�#u2�1

i
e�#�1

� #� (�1;1) n0
#! 0 independence
#! �1 comonotony

Frankn>2 log#

�
1 +

[#
u1�1]�:::�[#

un�1]
[#�1]n�1

�
#� (0; 1)

Table 48: Archimedean copulas

The copula approach allows for a rather �exible generation of correlation structures between
risk factors. These are not restricted to linearity. Even non-linear correlation is allowed.
This �exibility requires the concept of concordance:

� concordance: high (low) values Y1 tend to realize with high (low) values of Y2

� comonotony: perfect positive (non-)linear dependency between Y1 and Y2

� disconcordance: high (low) values Y1 tend to realize with low (high) values of Y2

� counter-comonotony: perfect negative (non-)linear dependency between Y1 and
Y2
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The Fréchet-Hoe¤ding boundaries de�ne the maximum range of correlation levels that can
be described by a copula

W (u1; :::; un) � C (u1; :::; un) �M (u1; :::; un)| {z };
comonotony

where W (u1; :::; un) = max (
Pn

i=1 ui � n+ 1; 0) and M (u1; :::; un) = mini ui are the lower
and upper bounds. The upper bound corresponds to comonotony while counter-comonotony
can only be reached by a copula in the bivariate case. The independence copula is�(u1; :::; un) =
�ni=1ui.
Generally, the widespread bivariate Pearson�s correlation coe¢ cient �� [�min; �max] is not
capable to describe the full range of correlation between the Fréchet-Hoe¤ding boundaries
as it only measures linear correlation. Perfect/ deterministic non-linear positive or negative
correlation can not be identi�ed because �min > �1 and �max < 1. Moreover, Pearson�s
correlation is no suitable concordance measure as it additionally depends on the marginal
distributions. In contrast, rank correlations only require measurability on an ordinal scale,
are more robust to outliners, and solely depend on the copula function. In the copula context,
Spearman�s rank correlation coe¢ cient �S and Kendall�s tau � are dominant.

� Spearman�s rank correlation (see Schmidt 2007, p. 16)

�S = CorrPerson (FY1 (Y1) ; FY2 (Y2)) = 4

Z 1

0

Z 1

0

[C (u1; u2)� u1 � u2] du1du2

= 1� 6

n [n2 � 1]

KX
k=1

[Rank (y1k)�Rank (y2k)]
2 � [�1; 1] :

calculates the Pearson�s correlation between the quantiles of the risk factors, where
yik is the kth observation of factor i = 1; 2. Technically, it measures the di¤erences
between the ranks. Hence, it requires the assumption of identical distances between
the ranks.

� Kendall�s tau (see Genest & Favre 2007, p. 351)

� = 4

Z 1

0

Z 1

0

C (u1; u2) dC (u1; u2)� 1 =
4

n [n� 1]�� 1� [�1; 1] ;

where � =
PK�1

k=1

PK
l=k+1 1(~y2k<~y2l) and ~y2k is the kth observation of risk factor Y2

when ordered according to Y1. It can also be described by the di¤erence between the
probability for concordance and disconcordance and only measures whether the rank of
Y1 is lower/ equal/ higher compared to the rank of Y2. It at least needs the assumption
that the tuples (Y1k; Y2k)

0 and (Y1l; Y2l)
0, for k 6= l, are independent.
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Figure 103: Student�s t copula for � = 0:1 and zero (rank) correlation, i.e. � = �Spearman = � = 0

Unfortunately, even rank correlation measures cannot identify all possible correlation struc-
tures. Although all correlation produced by the multivariate Gaussian distribution is fully
described by (rank) correlation measures, this is not true for the Student�s t copula which
is also de�ned by the degree of freedom v. In �gure 103 you can �nd a Student�s t copula
(v = 0:1) which displays strong dependency although Pearson�s correlation as well as Spear-
man�s and Kendall�s rank correlations are zero. Nevertheless, rank correlations allow for a
stunning �exibility of correlations and can relatively easily converted in the more familiar
Person�s rank correlation (or vice versa) (see table 49).

Gaussian Student�s t Clayton Gumble Frank
�S 6

�
arcsin (�=2) 1� 12

#
[D1 (#)�D2 (#)]

� 2
�
arcsin (�) 2

�
arcsin (�) #

#+2
1� 1

#
1� 4

#
[1�D1 (#)]

Dk (�) =
R �
0
tk= [exp (t)� 1] dt ... Debye function, � ... Person�s correlation coe¢ cient

Table 49: rank correlations

Another important feature of copulas is their lower and upper tail dependence

�L = lim
�!0+

P (FY1 (Y1) � �jFY2 (Y2) � �) = lim
�!0+

C (�; �)

�

�U = lim
�!1�

P (FY1 (Y1) > �jFY2 (Y2) > �) = lim
�!1�

1� 2�+ C (�; �)

1� �
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which describes the dependence structure of the copula for extreme joint lower and upper
realizations (measured in quantiles) of the risk factors (see table 50).

lower tail dependence �L upper tail dependence �U
Gauss (� < 1) 0 0

Gauss (� = 1) 1 1

Student�s t 2 � tv+1
�
�
p
v + 1

q
1��
1+�

�
2 � tv+1

�
�
p
v + 1

q
1��
1+�

�
Clayton 2�1=# 0

Gumble 0 2� 21=#
Frank 0 0

Table 50: lower & upper tail dependence

For a better understanding of the concepts of concordance and tail dependence we compare
scatter plots of our basic copulas for a constant Kendall�s � = 0:6 (see �gure 104). We can
simply distinguish the di¤erent copulas by their ability to reproduce tail dependence. The
Gaussian and Frank copulas have independent tails while the Student�s t copula can

produce correlation in both tails. In contrast, the Clayton copula can generate lower and
the Gumble copula upper tail dependence, only.

A.8.2 Simulation of Copulas

The simulation ofW correlated risk factors y(w) =
�
y
(w)
1 ; :::; y

(w)
n

�0
, for w = 1; :::;W , is easily

done by Monte Carlo techniques. In a �rst step, you need to chose a suitable copula and a
correlation level which should be measured by Kendall�s rank correlation.366 Then, one of
two Monte Carlo algorithm needs to be programmed. For elliptical Gaussian or Student�s t
copulas the code is simple:

1. Set the desired Kendall�s rank correlations for the risk factors, f� (Yi; Yj)gi;j=1;::;n and
transform it to Pearson�s correlations f� (Yi; Yj)gi;j=1;::;n by � = sin (� � �=2). In the
case of a Student�s t copula, you need additionally to de�ne a suitable degree of freedom
v > 0.367

2. SampleW pairs of
n
z
(w)
1 ; ::; z

(w)
n

o
from a multivariate Gaussian, Nn (0;�), or multivari-

ate non-central Student�s t distribution, tv (0;�), with the respective vector of zeros 0
and correlation (= covariance) matrix �.

366Kendall�s � is more �exible than Pearson�s � (see section A.8.1).
367The lower v the more probable become joint extreme events.
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Figure 104: copulas and tail dependence

3. Generate W pairs of
n
u
(w)
1 ; ::; u

(w)
n

o
by the transformations u(w)i = �

�
z
(w)
i

��� 0; 1� or
u
(w)
i = Tv

�
z
(w)
i

�
, for i = 1; :::; n.368

4. Generate W pairs of the risk factors
n
y
(w)
1 ; ::; y

(w)
n

o
by the transformations y(w)i =

F�1Yi

�
u
(w)
i

�
, where i = 1; :::; n and F�1Yi (�) is the marginal inverse distribution of risk

factor Yi.

The generation of Archimedean copulas (Clayton, Gumble, and Frank) is similar but slightly
more complex. Hence, we only present the simulation of bivariate Archimedean copulas for
two correlated risk factors Y = (Y1; Y2)

0. Hierarchical modeling can be used to generate
higher dimensional copulas.

1. Set the desired rank correlation � (Y1; Y2). The Clayton and Gumble copula can only
model negative correlations by j� (Y1; 1� Y2)j.

368� ( �j 0; 1) and u(w)i = Tv (�) are the cdfs of the standard Gaussian and univariate Student�s t distribution.
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2. Find the respective dependence parameter # by369

argmin# j� � #= [#+ 2]j (Clayton)
argmin# j� � [1� 1=#]j (Gumble)
argmin# j� � [1� 4 [1�D1 (#)] =#]j (Frank)

3. Simulate W dependent quantiles
n
u
(w)
1 ; u

(w)
2

o
of the risk factors Y1 and Y2

� Clayton: generate W samples U (w)1 ; ~U
(w)
2 � Uni (0; 1), where U (w)1 and ~U (w)2 are

independent. Subsequently, calculate

u
(w)
2 =

�h
u
(w)
1

i�#
�
�h
~u
(w)
2

i�#=[#+1]
� 1
�
+ 1

��1=#
:

� Gumble: generate W samples V (w); S(w) � Uni (0; 1), where V (w) and S(w) are
independent. Subsequently, minimize

~u(w) = argmin
�

��s(w) � � [1� ln (�) =#]
�� :

and calculate

u
(w)
1 = exp

��
v(w)

�1=#
ln ~u(w)

�
& u

(w)
2 = exp

��
1� v(w)

�1=#
ln ~u(w)

�
:

� Frank: generate W samples U (w)1 ; S(w) � Uni (0; 1), where U (w)1 and S(w) are
independent. Subsequently, calculate

u
(w)
2 = � ln

0@ 1 + s(w) [1� exp (�#)]
s(w)

h
exp

�
�#u(w)1

�
� 1
i
� exp

�
�#u(w)1

�
1A =#:

4. Generate W pairs
n
y
(w)
1 ; y

(w)
2

o
of the risk factors Y1 and Y2 by the transformations

y
(w)
i = F�1Yi

�
u
(w)
i

�
, where i = 1; 2 and F�1Yi (�) is the marginal inverse distribution of

risk factor Yi.

369In Matlab 1� 4 [1�D1 (#)] =# is automatically calculated by copulastat(�Frank�,theta).
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