
Humanwissenschaftliche Fakultät

Daniel Backhaus | Ralf Engbert | Lars Oliver Martin Rothkegel | Hans Arne 
Trukenbrod

Task-dependence in scene perception: Head 
unrestrained viewing using mobile eye-tracking

Suggested citation referring to the original publication:
Journal of vision 20 (2020) 5, Art. 3 pp. 1 - 21 
DOI: https://doi.org/10.1167/jov.20.5.3
ISSN: 1534-7362

Journal article | Version of record

Secondary publication archived on the Publication Server of the University of Potsdam:
Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe 871
ISSN: 1866-8364
URN: https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-519124
DOI: https://doi.org/10.25932/publishup-51912

Terms of use: 
This work is licensed under a Creative Commons License. This does not apply to quoted 
content from other authors. To view a copy of this license visit https://creativecommons.org/
licenses/by/4.0/.



Journal of Vision (2020) 20(5):3, 1–21 1

Task-dependence in scene perception: Head unrestrained
viewing using mobile eye-tracking

Daniel Backhaus
Experimental and Biological Psychology, University of

Potsdam, Potsdam, Germany

Ralf Engbert
Experimental and Biological Psychology, University of

Potsdam, Potsdam, Germany

Lars O. M. Rothkegel
Experimental and Biological Psychology, University of

Potsdam, Potsdam, Germany

Hans A. Trukenbrod
Experimental and Biological Psychology, University of

Potsdam, Potsdam, Germany

Real-world scene perception is typically studied in the
laboratory using static picture viewing with restrained
head position. Consequently, the transfer of results
obtained in this paradigm to real-word scenarios has
been questioned. The advancement of mobile
eye-trackers and the progress in image processing,
however, permit a more natural experimental setup
that, at the same time, maintains the high experimental
control from the standard laboratory setting. We
investigated eye movements while participants were
standing in front of a projector screen and explored
images under four specific task instructions. Eye
movements were recorded with a mobile eye-tracking
device and raw gaze data were transformed from
head-centered into image-centered coordinates. We
observed differences between tasks in temporal and
spatial eye-movement parameters and found that the
bias to fixate images near the center differed between
tasks. Our results demonstrate that current mobile
eye-tracking technology and a highly controlled design
support the study of fine-scaled task dependencies in an
experimental setting that permits more natural viewing
behavior than the static picture viewing paradigm.

Introduction
Over the course of the past decades, scene viewing

has been used to study the allocation of attention
on natural images. In recent years, however, several
limitations of the paradigm have been criticized and a
paradigmatic shift toward real-world scenarios has been

suggested (e.g., Tatler et al., 2011). Here, we propose
a different approach that gradually moves from scene
viewing toward more natural tasks. This provides a
link between the two opposing approaches and helps
to understand to which degree eye-movement behavior
generalizes across tasks.

In the scene-viewing paradigm, eye movements are
recorded in the laboratory from participants looking
at an image for a few seconds on a computer screen
(Henderson, 2003; Rayner, 2009). Usually, participants
get an unspecific instruction to view the image (“free
viewing”) or alternatively to memorize the image
for a subsequent recall test. In most experiments,
images consist of color photographs of the real world
selected by the experimenter. As a consequence, within
and between experiments, images differ considerably
with respect to their low-level features (color, edges),
features at more complex levels (shapes, objects, 3D
arrangement), and their high-level features (semantic
category, action affordances; Malcolm et al., 2016).

One reason why scene viewing has become an
intensively used paradigm is that it allows researchers
to study eye movements and, hence, the overt allocation
of attention on ecologically valid, complex stimuli
under highly controlled laboratory conditions. Since
the mapping of the eye position to coordinates within
an image is straightforward, much research has focused
on the question of image-features, influence on eye
movements in a bottom-up fashion, that is, independent
of the internal state of the observer. Examples of
correlations between simple low-level features and
fixation positions are local luminance contrast and edge

Citation: Backhaus, D., Engbert, R., Rothkegel, L. O. M., & Trukenbrod, H. A. (2020). Task-dependence in scene perception: Head
unrestrained viewing using mobile eye-tracking. Journal of Vision, 20(5):3, 1–21, https://doi.org/10.1167/jov.20.5.3.

https://doi.org/10.1167/jov.20.5.3 Received April 15, 2019; published May 11, 2020 ISSN 1534-7362 Copyright 2020 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloaded from jov.arvojournals.org on 09/23/2021

https://orcid.org/0000-0002-1291-8762
mailto:daniel.backhaus@uni-potsdam.de
https://orcid.org/0000-0002-2909-5811
mailto:ralf.engbert@uni-potsdam.de
mailto:lars.rothkegel@uni-potsdam.de
mailto:hans.trukenbrod@uni-potsdam.de
https://doi.org/10.1167/jov.20.5.3
http://creativecommons.org/licenses/by/4.0/


Journal of Vision (2020) 20(5):3, 1–21 Backhaus, Engbert, Rothkegel, & Trukenbrod 2

density (Mannan et al., 1997; Reinagel & Zador, 1999;
Tatler et al., 2005). But the correlations are not limited
to low-level image features. More complex high-level
features that correspond to shapes and objects improve
predictions substantially (e.g., faces, persons, cars; Cerf
et al., 2007; Einhäuser et al., 2008; Judd et al., 2009).
The idea of bottom-up selection of fixation locations
based on image features led to the development of
saliency models (Koch & Ullman, 1985; Itti & Koch,
2001), and a large variety of models has been put
forward (e.g., Bruce & Tsotsos, 2009; Kümmerer
et al., 2016; Parkhurst et al., 2002). In particular with
the development of sophisticated machine-learning
algorithms, these models predict fixation locations well
when evaluated with a data set obtained under the
free viewing instruction (Bylinskii et al., 2016). Beside
their influence on fixation locations, both low-level
and high-level image features have also been shown to
influence fixation durations (Nuthmann, 2017; Tatler
et al., 2017).

Already in their anecdotal works, Buswell (1935)
and Yarbus (1967) demonstrated that eye-movement
patterns depend on the instruction given to the viewer
and not just the bottom-up appearance of an image.
This top-down influence has often been replicated
since (Castelhano et al., 2009; DeAngelus & Pelz,
2009; Mills et al., 2011). Furthermore, in paradigms
where participants pursue a specific natural task like
preparing a sandwich (Hayhoe et al., 2003) or making a
cup of tea (Land et al., 1999), the necessities of motor
actions dominate eye-movement behavior. Here, eye
movements support task execution by bringing critical
information to the foveal region just-in-time (Ballard
et al., 1997; Land & Tatler, 2009) or as look-ahead
fixations on objects needed later during a task (Pelz &
Canosa, 2001). Similar conclusions have been made
for various other activities like driving (Land & Tatler,
2001), cycling (Vansteenkiste et al., 2014), walking
(Matthis et al., 2018; Rothkopf et al., 2007), and ball
games (Land & McLeod, 2000; Land & Furneaux,
1997). To align the bottom-up approach with the
contradictory findings of top-down control, it is often
implicitly assumed that scene viewing without specific
instruction provides the means to isolate task-free visual
processing. It is a default mode of viewing that can be
overridden by the presence of specific tasks. But it is
more likely that participants chose a task based on their
internal agenda, and researchers are simply unaware
of the chosen task in the free viewing condition (Tatler
et al., 2011).

In addition, Tatler et al. (2011) criticized several
limitations of the scene-viewing paradigm. Participants
are seated in front of a computer screen with their head
on a chinrest and are asked to minimize head and body
movements. Images are presented for a few seconds
after a sudden onset on a computer screen, limiting the

field of view to the size of the display. The viewpoint is
fixed by the photographer and contains compositional
biases (Tatler et al., 2005). This is a situation that
substantially differs from our experience in daily life,
where we are free to move, where scenes emerge slowly
(e.g., by opening a door) and our binocular field of
view encompasses 200◦–220◦ of visual angle (Loschky
et al., 2017; Rønne, 1915). As a consequence, visual
processing and reconstruction of image content might
differ a lot during scene viewing and in real-world tasks
as some depth cues (stereo and motion parallax) and
motion cues (both egomotion and external motion)
are missing in static images. Furthermore, scene
viewing utilizes only a portion of the repertoire of
eye-movement behaviors needed for other tasks. For
example, participants typically make smaller gaze shifts
during scene viewing than in everyday activities (Land
& Hayhoe, 2001). This is at least in part generated by
the restrictions of the task, since saccade amplitudes
scale with image size (von Wartburg et al., 2007)
and large gaze shifts are usually supported by head
movements (Goossens & van Opstal, 1997; Stahl, 1999),
but in the classical scene-viewing setup, these head
movements are suppressed. Hence, Tatler et al. (2011)
suggested to put a stronger emphasis on the study of
eye guidance in natural behavior.

Only few studies have directly compared viewing
behavior under similar conditions in the real world
and in the laboratory. As an exception, ’t Hart et al.
(2009) recorded eye movements during free exploration
of various indoor and outdoor environments using a
mobile eye-tracker. In a second session, the recorded
head-centered videos were replayed in the laboratory as
a continuous video or randomly chosen frames from
the video were presented for 1 s as in the scene-viewing
paradigm. Interobserver consistency was highest
when observers viewed static images. The result could
partially be explained by a bias to fixate near the center,
which was strongest in the static image condition as
initial fixations are typically directed toward the image
center after a sudden onset (cf. Rothkegel et al., 2017;
Tatler, 2007). In addition, during free exploration,
fixation locations showed a greater vertical variability
as participants also looked down on the path while
moving forward (cf. ’t Hart & Einhäuser, 2012).
Finally, fixations during free exploration were better
predicted by fixations from the replay condition than
the static image condition, demonstrating that the
scene-viewing paradigm has only limited explanatory
power for eye movements during free exploration. In a
follow-up experiment, Foulsham & Kingstone (2017)
demonstrated that keeping the correct order of images
in the static image condition changes gaze patterns and
improves the predictability of fixation locations during
free exploration. But this prediction was no better than
just a general bias to fixate near the center independent
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of image content. In a similar vein, Foulsham et al.
(2011) compared eye movements while navigating on
a campus with eye movements while watching the
head-centered videos. Both conditions showed a strong
bias to fixate centrally. However, during walking, gaze
was shifted slightly below the horizon, while gaze was
shifted slightly above the horizon during watching.
Furthermore, while walking participants spent more
time looking at the near path, they spent less time on
distant objects, and pedestrians were less likely fixated
when they approached the observer, in line with the
observation that social context modulates the amount
of gaze directed toward real people (Laidlaw et al.,
2011; Risko et al., 2016).

It is not surprising that eye guidance during scene
viewing strongly differs from other natural tasks given
the limited overlap of tasks and environments. Even
in studies that sought to directly compare laboratory
and real-world behavior (Foulsham et al., 2011; Dicks
et al., 2010; ’t Hart et al., 2009), several aspects differed
between conditions (e.g., size of field of view, task
affordances). While scene viewing cannot be thought
of as a proxy for eye movements in natural tasks, a
paradigmatic shift away from scene viewing might be
premature. For several reasons, we advocate for a line
of research that makes a smooth transition from the
classical scene-viewing paradigm toward more natural
tasks. First, the scene-viewing paradigm deals with
important aspects of our daily lives as people are
constantly engaged in viewing static scenes. Second, the
extensive research on scene viewing provides a solid
theoretical basis for future research and has led to the
development of computational models that predict
scanpaths (Engbert et al., 2015; Le Meur & Liu, 2015;
Schütt et al., 2017; Schwetlick et al., 2020) and fixation
durations (Nuthmann et al., 2010; Tatler et al., 2017).
Third, due to the advancement of mobile eye-trackers,
it is technically straightforward to address limitations
of the paradigm (Tatler et al., 2011), while keeping
the benefits of the highly controlled experimental
conditions in the laboratory. Fourth, eye guidance in
scene viewing is not decoupled from other tasks as some
behaviors generalize to other domains. For example, the
observation of the central fixation bias (Tatler, 2007),
that is, the tendency of viewers to place fixations near
the center of an image, has been observed in natural
tasks like walking, tea making, and card sorting (’t Hart
et al., 2009; Foulsham et al., 2011; Ioannidou et al.,
2016). Finally, the scene-viewing paradigm provides a
fruitful testbed for theoretical assumptions about eye
guidance derived from other paradigms (for example
inhibition of return; Rothkegel et al., 2016; Smith &
Henderson, 2009) and can advance the development of
theories of eye guidance in general.

We suggest to adjust the scene-viewing paradigm
step-by-step to deal with its limitations. This approach

allows researchers to systematically investigate the
influence of individual factors. In this study, we
remove some limitations of the paradigm while keeping
high overall eye-tracking accuracy. In contrast to the
classical scene-viewing paradigm, in our experiment,
participants stood in front of a projector screen
and viewed images with a specific instruction. Other
experimental aspects (e.g., size of field of view, color
stimulus material, sudden image onset, possible
interactions with the stimulus material) were kept to
stay comparable to the classical scene-viewing setup.
Eye movements were recorded with a mobile eye-tracker
and participants were free to make body and head
movements. Note that we did not encourage large-scale
head or body movements or force participants to move
in front of the screen. But without being explicit, we
reduced participants’ restrictions and gave viewers the
possibility to move.

The main purpose of our study was to investigate
whether established task differences can be reproduced
reliably under relaxed viewing conditions. For example,
a possible body-posture-related modulation of image-
independent fixation tendencies could override task
differences that were observed in earlier studies. Thus,
the key contribution of this study is to demonstrate
the stability of task effects under more natural viewing
conditions.

If task effects turn out to be reliable in our paradigm,
we expect to find differences in basic eye-movement
parameters as in the classical scene-viewing paradigm,
for example shorter fixation durations and longer
saccade amplitudes for search tasks (Mills et al., 2011;
Castelhano et al., 2009). For fixation locations, we
expected a more extended range of fixation locations
for search tasks (Tatler, 2007). For the central fixation
bias, the artificial situation in the laboratory (e.g.,
sudden image onset; Rothkegel et al., 2017; Tatler et al.,
2011) can partly explain the tendency to fixate images
near the image center. We expected modulation of
the central fixation bias by task since search behavior
will typically lead to a broader distribution of fixation
locations.

In the following section, we describe our methods,
where we outline the processing pipeline to check
data quality under this setup and how to convert
gaze recorded by a mobile eye-tracker into image
coordinates. Next, we report our main results, an
early task-independent central fixation bias, and a
late task-dependent central fixation bias. We continue
with analyses of basic eye-movement parameters
such as fixation durations, saccade amplitudes,
and distribution of fixation locations across tasks.
Finally, we investigate how well fixation locations
from one task predict fixation locations from
another task in our relaxed setup. We close with a
discussion.
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Figure 1. Sequence of events in the scene-viewing experiment.

Methods

Participants

For this study, we used data of 32 students of the
University of Potsdam with normal or corrected to
normal vision. On average, participants were 22.8 years
old (18–36 years) and 31 participants were female.
Participants received credit points or a monetary
compensation of 10€. To increase compliance with the
task, we offered participants an additional incentive of
up to 3€ for correctly answering questions after each
image (in sum, 60 questions). The work was carried
out in accordance with the Declaration of Helsinki.
Informed consent was obtained for experimentation
from all participants.

Stimulus presentation, laboratory setup, and
procedure

Participants were instructed to look at images
while standing in front of a 110-in. projector screen
at a viewing distance of 270 cm. Images were
projected with a luminance-calibrated video beamer
(JVC – DLA-X9500B; frame rate 60 Hz, resolution
1,920×1,080 pixels; Victor Company of Japan, Limited,
JVC, Yokohama, Japan). Eye movements were recorded
binocularly using the SMI Eye-Tracking Glasses
(SMI-ETG 2W; SensoMotoric Instruments, Teltow,
Germany) with a sampling rate of 120 Hz. In addition,
the scene camera of the Eye-Tracking Glasses recorded

the field of view of the participant with a resolution of
960×720 pixels (60◦× 46◦ of visual angle) at 30 Hz.

All images were presented with a resolution of
1,668×828 pixels at the center of the screen. Images
were embedded in a gray frame with QR-markers
(126 × 126 pixels; cf. Figure 2) and covered 40.6◦ of
visual angle in the horizontal and 20.1◦ in the vertical
dimension. Images were colored scene photographs
taken by the authors; every single image contained zero
to 10 humans and zero to 10 animals. We used 27 images
with people and animals, one image with only animals,
one image with only people, and one image with neither
people nor animals. Furthermore, images were selected
by having an overall sharpness, were taken in different
countries, and did not contain prominent text. Each of
the 30 images could appear in every condition and was
presented in two conditions to every single participant.

The experiment consisted of four blocks. In each
block, participants viewed images under one of four
instructions. Under two instructions, participants had
to count the number of people (Count People) or count
the number of animals in an image (Count Animals).
Under the two remaining instructions, participants
had to guess the time of day when an image was taken
(Guess Time) and guess the country in which an image
was taken (Guess Country). We expected the count
instructions to resemble search tasks, since the entire
image had to be thoroughly examined to give a correct
answer, while the guess instructions were thought to
resemble the free viewing instruction but with a stronger
focus on one aspect of the image for all participants.
In each block, we presented 15 images for 8 s. While
the order of instructions was counterbalanced across
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Figure 2. Transformation of scene-camera coordinates (subpixel
level) into image coordinates in pixels. Left panel: Frame taken
by SMI ETG-120Hz scene camera with measured fixation
location (circle). Right panel: The same frame and fixation in
image coordinates.

participants, each image was randomly assigned to two
of the four instructions.

At the beginning of each block we presented a
detailed instruction for the upcoming task, followed
by a three-point calibration (Figure 1). Individual
trials began with a 1 s reminder of the instruction,
followed by a black fixation cross (0.73◦ × 0.73◦)
presented on a white background for 3 s. Participants
were instructed to fixate the fixation cross until the
image appeared. Fixation crosses appeared on a grid
of 15 fixed positions: three vertical positions (25%,
50%, and 75% of the projector screen’s vertical size)
and five horizontal positions (20%, 35%, 50%, 65%,
and 80% of the projector screen’s horizontal size).
Afterward, participants were free to explore the image
for 8 s. At the end of a trial, participants had to answer
orally a multiple-choice question with three alternatives
presented on the screen. We gave immediate feedback,
and each correct answer was rewarded with 0.05€.
The instructor pressed a button to continue with the
next trial, which started with a brief reminder of the
instruction. The eyes were calibrated at the beginning
of each block and after every fifth image. In addition,
instructors could force a new calibration after a trial
if fixations deviated more than ∼1◦ from the fixation
cross during the initial fixation check.

Raw data processing

Transformation
The experimentally measured eye positions were

given in coordinates of the scene camera of the mobile
eye-tracker. Thus, raw data subpixel (1/100 pixel)
values had to be transformed into coordinates of the
presented image (Figure 2). To achieve this, we used a
projective transformation provided by the computer
vision toolbox in the MATLAB programming language
(MATLAB 2015b; The MathWorks, Natick, MA,
USA). The required locations of image corners were

extracted from the scene-camera output frame by
frame, using 12 unique QR-markers, which were
presented around the images. Automatic QR-marker
detection and detection of image corners were done
with the Offline Surface Tracker module of the Pupil
Labs software Pupil Player version 1.7.42 (Kassner
et al., 2014). To synchronize the time of both devices,
we sent UDP-messages from the presentation computer
to the recording unit of the eye-tracker. As a result of
this calculation, we worked with three trajectories in
image coordinates: two monocular data streams and
one binocular data stream. First, saccade detection
was performed with both monocular eye-data streams
(see next section). Second, we calculated mean fixation
positions based on the binocular eye-data stream (note
that the binocular data are not the simple mean of both
monocular trajectories). Pilot analyses of the fixation
positions indicated higher reliability of the binocular
position estimate compared to averaging of monocular
positions.

Saccade detection
For saccade detection, we applied a velocity-based

algorithm (Engbert & Kliegl, 2003; Engbert &
Mergenthaler, 2006). The algorithm marks all parts of
an eye trajectory as a saccade that have a minimum
amplitude of 0.5◦ and exceed a velocity threshold for
at least three successive data samples (16.7 ms). The
velocity threshold is computed as a multiple λ of the
median-based standard deviation of the eye trajectories
velocity during a trial. We carried out a systematic
analysis with varying threshold multipliers λ to identify
detection parameters for obtaining robust results
(Engbert et al., 2016). Here, we computed the velocity
threshold with a multiplier λ = 8. We first analyzed
both monocular eye trajectories to identify potential
saccades and kept all binocular events.

Following Hessels et al. (2018), it is important to
clearly define what a fixation means in the context of a
specific analysis. In the current work, fixations refer to
moments of relative stability on an image, regardless
of eye-in-head and body movements. Fixations were
computed as the epoch between two subsequent
saccades. The binocular eye-data stream provided
from the recording unit was transformed and used to
calculate the mean fixation position.

Data quality

Raw data quality
In total, we recruited 42 participants to get our

planned 32 participants. Five participants had to be
replaced as the experimenter was not able to calibrate
them reliably (these participants did not finish the
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experiment). Another five participants had to be
replaced since at least a fifth of their data was missing
due to blinks and low data quality (see next paragraph).

To ensure high data quality, we marked blinks and
epochs with high noise in the eye trajectories. For the
detection of blinks, we made use of the blink detection
provided by the SMI-ETG 2W. All fixations and
saccades that contained a blink as well as all fixations
and saccades with a blink during the preceding or
succeeding event were removed from further analyses.
Several other criteria were applied to detect unreliable
events. First, we detected instable fixations (e.g., due
to a strong jitter in the signal of the eye trajectory) by
calculating the mean 2D standard deviation of the eye
trajectory of all fixations. All fixations that contained
epochs that exceeded the 2D standard deviation by
a factor of 15 were removed from further analyses.
Second, as saccades are stereotyped and ballistic
movements, all saccades with a duration of more than
250 ms (30 samples) were removed. These saccades
would be expected to have amplitudes, which go far
beyond the dimensions of the projector screen; further,
we removed all saccades with amplitudes greater than
or equal to 25◦. Third, we removed fixations located
outside the image coordinates and fixations with a
duration of less than 25 ms as well as with durations of
more than 1,000 ms. As a final criterion, we calculated
the absolute deviation of participants’ eye positions
from the initial fixation cross. We computed the median
deviation of the last 200 ms before the appearance of
an image. Since we were not able to cancel the next
trial and to immediately recalibrate with our setup, we
removed trials with an absolute deviation greater than
2◦. Overall, 40,182 fixations (∼81% of 49,371) and
37,726 saccades (∼80% of 47,425) remained for further
analyses.

Main sequence of saccade amplitude and peak velocity
Since saccades are stereotyped and ballistic

movements, there is a high correlation between
a saccade’s amplitude and its peak velocity. We
investigated this relationship by computing the main
sequence, that is, the double-logarithmic linear relation
between saccade amplitude and peak velocity (Bahill
et al., 1975). The 37,726 saccades in our data set range
from about 0.5◦ to about 25◦ of visual angle, due to
our exclusion criteria (Figure 3). There is a strong
linear relation in the main sequence with a very high
correlation, r = .987. Hence, the detected saccades
behaved as expected and were used for further analyses.

Head and body movements
We realized a more natural body posture by recording

without a chinrest and thereby enabling for small
body and head movements in front of a projector

Figure 3. Main sequence. Double-logarithmic representation of
saccade amplitude and saccade peak velocity.

Figure 4. Projector screen movement. As an approximation of
head movements, the projector screen movement is measured
by tracking the position of QR-markers in the scene-camera
video.

screen. Even so, we did not expect large-scale head or
body movements, as we did not encourage gestures
or movements explicitly in our tasks (Epelboim et al.,
1995). For an approximating measure of participants’
movements in front of the screen, we made use of the
QR-markers presented around the images. By tracking
the marker positions in the scene-camera video, we
receive a measure of participants’ head position and
angle relative to the projector screen. Figure 4 shows
the distribution of the projector screen movements as
an approximation for head and body movements. The
distribution has a peak at around 1◦/s and only few
samples with velocities ≥2.5◦/s. Thus, the majority of
values do not exceed the velocities of fixational eye
movements.

Accuracy of the eye position
Finally, at least two error sources contribute to the

accuracy of the measured eye position in our setup:
measurement error generated by the eye-tracking
device and the calibration procedure as well as error
generated by the transformation of the eye position
from scene-camera coordinates into image coordinates.
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Figure 5. Median horizontal and vertical deviation of participants’ gaze position from the initial fixation cross in the left and right
panels, respectively.

To estimate the overall spatial accuracy of our setup,
we calculated the deviation of participants’ gaze
positions from the initial fixation cross. For each
fixation check, we computed the median difference of
the gaze position minus the position of the fixation
cross for the last 200 ms (24 samples) of the fixation
check. Figure 5 shows the distributions of deviations
from the initial fixation cross in the horizontal (left
panel) and vertical (right panel) dimension. Horizontal
deviations are mostly within 1◦ of visual angle (91.04%)
with a small leftward shift. The distribution of vertical
deviations is slightly broader (76.65% within 1◦ of
visual angle) with a small upward shift. Thus, overall
accuracy of our experimental setup is good but, as
expected, somewhat weaker than in scene-viewing
experiments using high-resolution eye-trackers. Note,
Figure 5 contains trials that were subsequently excluded
from further analysis since their absolute deviation
exceeded 2◦.

Analyses

Beside the analysis of fixation durations and saccade
amplitudes, we used three further metrics to describe
the eye-movement behavior in our experiment. First,
to quantify the central fixation bias (Tatler, 2007),
we computed the distance to image center over time
(Rothkegel et al., 2017). Second, as an estimate for the
overall dispersion of fixation locations on an image,
we computed the informational entropy (Shannon &
Weaver, 1963). Third, we evaluated how well fixation
positions can be predicted by a distribution of fixation
locations (Schütt et al., 2019), for example, computed
from a different set of fixation locations or obtained
as the prediction of a computational model. We
computed linear mixed-effect models (LMMs) for
each dependent variable using the lme4 package
(Bates et al., 2015) in R (R Core Team, 2019). If the
dependent variable deviated remarkably from a normal
distribution, we performed a log-transform. For the
statistical model of the empirical data, we used the task
as a fixed factor and specified custom contrasts (Schad
et al., 2018). First, we compared the two Guess tasks
against the two Count tasks. Second, we tested the

Count Animals against the Count People condition.
The third contrast coded the difference of the Guess
Time and the Guess Country condition. The models
were fitted by maximum likelihood estimation. For
the random effect structure, we ran a model selection
further described in Supplementary Appendix S1.
Following Baayen et al. (2008), we interpret all |t| > 2 as
significant fixed effects.

Central fixation bias
The central fixation bias (Tatler, 2007) refers to

the tendency of participants to fixate near the image
center. The bias is strongest initially during a trial
and reaches an asymptotic level after a few seconds.
To describe this tendency, we computed the mean
Euclidian distance �(t) of the eyes to the image center
over time (Rothkegel et al., 2017),

�(t) = 1
m ∗ n

m∑
j=1

n∑
k=1

||xjk(t) − x′||, (1)

where xjk refers to the gaze coordinates of a participant
j on image k at time t and x′ refers to the coordinates of
the image center. If fixations were uniformly placed on
an image, a value of 12◦ would be expected, which is
the average distance of every pixel to the image center.
Note, here we chose to compute the distance to image
center �(t) for specific time intervals t: 0 to 400 ms,
400 to 800 ms, 800 to 1,200 ms, and 1,200 to 8,000 ms.
These time intervals were chosen because previous work
has shown that the first 400 ms of a scanpath show
more reflexive saccades in response to the image onset,
and after 400 ms, content- or goal-driven saccades
are executed (Rothkegel et al., 2017). Thus, these later
saccades are more likely to be influenced by the specific
viewing task.

Entropy
We use information entropy (Shannon & Weaver,

1963) to characterize the degree of uniformity of a
distribution of fixation locations. We calculate the
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entropy by first estimating the density of a distribution
of fixation locations on a 128 × 128 grid. The density is
computed in R using the spatstat package (Baddeley
& Turner, 2005) with an optimal bandwidth for each
distribution of fixation locations (bw.scott). After
transforming the density into a probability measure
(integral sums to 1), the entropy S is measured in bits
and computed as

S = −
n∑

i=1

pi log2 pi , (2)

where each cell i of the grid is evaluated. In our analysis,
an entropy of 14 bits (n = 128 × 128 = 214) represents
the maximum degree of uniformity, that is, the same
probability of observing a fixation in each cell; a value
of 0 indicates that all fixations are located in only one
cell of the grid.

Predictability
Finally, we estimated the negative cross-entropy

of two fixation densities to quantify to what degree
a set of fixation locations is predicted by a given
probability distribution. The metric can be used to
investigate how well an empirically observed fixation
density (e.g., from a set of fixations recorded from
other participants) or the fixation density generated by
a computational model (e.g., a saliency model) predicts
a set of fixation locations (Schütt et al., 2019). The
negative cross-entropy H(p2; p1) of a set of n fixations
can be approximated by

H (p2; p1) ≈ −1
n

n∑
i=1

log2
(
p̂1

(
f (i)2

))
, (3)

where p̂1 refers to a kernel-density estimate of the
fixation density p1, which is evaluated at the fixation
locations f (i)2 of a second fixation density p2. The
log-likelihood measure approximates how well p1
approximates p2 irrespective of the entropy p2.
We implemented the negative cross-entropy with
a leave-one-subject-out cross-validation. For each
participant on each image and each task, we computed
a separate kernel-density estimate p̂1 by using only the
fixations of all other participants viewing the same
image under the same instruction.

In our analyses, we computed fixation densities
p̂1 on the same 128 × 128 grid used for the entropy
computations. All empirical densities (from sets of
fixation locations) were computed in R using the
spatstat package (Baddeley & Turner, 2005) with
a bandwidth determined by Scott’s rule for each
distribution (bw.scott). In addition, we used fixation
densities predicted by a state-of-the-art saliency model

(Kümmerer et al., 2016). All density distributions were
converted into probability distributions (intergral sums
to 1) before computing the negative cross-entropyH(p2;
p1). A value of 0 bit

fix demonstrates perfect predictability.
A value of −14 bit

fix since 128 × 128 = 214 is expected
for a uniform probability distribution, where all
locations in the probability distribution are equally
likely to be fixated. In the Results section, we report
� log-likelihoods that indicate the gain in predictability
of the negative cross-entropy relative to a uniform
distribution.

Results

In theMethods section, we ensured that the workflow
necessary to measure eye movements in a relaxed
version of the scene-viewing paradigm provides data
quality comparable to the laboratory setup. Next, we
wanted to see if it is possible to replicate task differences
under this setup. As the most commonly used
eye-movement parameters, we first analyzed fixation
durations and saccade amplitudes. Next, we examined
the distributions of fixation locations to quantify
systematic differences in target selection between tasks.
We compared the strength of the central fixation bias
in the four tasks. A direct within-subject comparison of
the central fixation bias on the same stimulus material
has not been reported before. We computed the entropy
to quantify the overall dispersion of fixation locations
on an image, computed a log-likelihood to see how well
fixations can be predicted across tasks, and compared
fixation locations in the four tasks with the predictions
of a saliency model.

In our Results section, we report linear mixed-effect
model (LMM) analyses. Moreover, we used post hoc
multiple comparisons to further investigate differences
between tasks. All reported p values in the multiple
comparisons were adjusted according to Tukey. A
summary of all investigated eye-movement parameters
can be found in Table 1.

Fixation durations

Distributions of fixation durations for the four
different tasks are plotted in Figure 6. All distributions
show the characteristic form typically observed for
eye movements in scene viewing. The distributions in
our tasks peak at around 200 ms and show a long tail
with fixation durations above 400 ms. A LMM (see
Methods section; Bates et al., 2015) revealed significant
fixed effects of task (Table 2). All of our comparisons,
specified by our three contrasts, show significant
differences. To ensure the normal distribution of model
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Count People Count Animals Guess Country Guess Time

Fixation duration [ms] 249 233 244 248
Saccade amplitude [◦] 6.27 6.45 6.76 6.83
CFB[◦]: 0 to 400 ms 5.809 5.573 5.730 5.596
CFB[◦]: 400 to 800 ms 7.678 7.203 6.740 6.420
CFB[◦]: 800 to 1,200 ms 9.672 9.552 8.551 8.482
CFB[◦]: 1,200 to 8,000 ms 10.351 10.899 9.821 9.688
Entropy [bit] 13.051 13.476 13.327 13.394
Predictability [bit/fix] 1.187 0.745 0.936 0.830
DeepGaze2 [bit/fix] 0.434 −0.101 0.726 0.562

Table 1. Mean values of eye-movement parameters under the four task instructions. The central fixation bias (CFB) is reported as the
average distance �(t) to the image center during specific time intervals t.

Figure 6. Fixation duration distributions. The figure shows
relative frequencies of fixation durations in the four tasks.
Fixation durations were binned in steps of 25 ms.

β SE t

Guess - Count 0.02 0.01 2.16
Count Animals - CountPeople −0.05 0.01 −4.80
GuessTime - GuessCountry 0.03 0.01 3.62

Table 2. Fixed effects of linear mixed − effect model (LMM):
Fixation durations (log-transformed) for our contrasts. Note: |t|
> 2 are interpreted as significant effects.

residuals, fixation durations were log-transformed.
Fixation durations were shortest in the Count Animals
condition (233 ms) and post hoc multiple comparisons
revealed that fixation durations in this task differed
significantly from all other tasks (all p ≤ 0.05; Table 3).
The effect seem to be primarily driven by a reduction of
long fixation durations in the range between 350 and
550 ms (blue line in Figure 6). There were no reliable
differences in fixation durations between Count People

and the Guess conditions (all p > 0.5; Count People:
249 ms, Guess Country: 244 ms, Guess Time: 248 ms).
Replicating the results from the linear mixed-effect
model, the Guess conditions also differed significantly
in the post hoc multiple comparisons analysis (p <
0.001).

Saccade amplitudes

Relative frequencies of saccade amplitudes for
the four tasks are shown in Figure 7. In line with
previous scene-viewing experiments, saccade amplitude
distributions show a peak between 2◦ and 3◦ with a
substantial proportion of larger saccades. A LMM
revealed a significant difference across the Guess and
Count tasks for saccade amplitudes (log-transformed
since saccade amplitudes deviated considerably from
a normal distribution). Both within Guess and within
Count conditions were not significant (Table 4).
Post hoc multiple comparisons revealed significant
differences between Count People and Guess conditions
(all p < 0.001; Table 5). Saccade amplitudes in the
Guess Country (6.76◦) and Guess Time condition
(6.83◦) were longer on average than saccade amplitudes
in the Count People (6.27◦) condition. There were no
other significant differences (all p > 0.09).

Central fixation bias

The central fixation bias (CFB) is a systematic
tendency of observers to fixate images, presented on a
computer screen, near their center (Tatler, 2007) and is
strongest during initial fixations (Rothkegel et al., 2017;
Tatler, 2007; ’t Hart et al., 2009). We measured the CFB
as the distance to the image center (Equation 1) and
found a strong initial CFB in all conditions (Figure 8).
Before the first saccade, participants’ gaze positions
were located on the initial fixation cross. The earliest
subsequent fixations of the exploration were on average
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Post hoc comparison Estimate SE z value Pr(>|z|)

Count Animals - Count People −0.054 0.0112 −4.796 <0.001***
Guess Country - Count People −0.017 0.0129 −1.278 0.564
Guess Time - Count People 0.010 0.0129 0.800 0.848
Guess Country - Count Animals 0.037 0.0129 2.889 0.019*
Guess Time - Count Animals 0.064 0.0129 4.983 <0.001***
Guess Time - Guess Country 0.027 0.0074 3.620 0.002**

Table 3. Multiple comparisons of fixation durations (log-transformed) for all tasks. Adjusted p values reported (Tukey). Levels of
significance: ***p < 0.001, **p < 0.01, *p < 0.05.

Figure 7. Distribution of saccade amplitudes. The figure shows relative frequencies of saccade amplitudes in the four tasks. Saccade
amplitudes were binned in steps of 0.5◦.

β SE t

Guess - Count 0.10 0.03 3.95
CountAnimals - CountPeople 0.06 0.04 1.56
GuessTime - GuessCountry 0.01 0.01 0.43

Table 4. Fixed effects of linear mixed − effect model (LMM):
Saccade amplitudes (log-transformed) for our contrasts. Note:
|t| > 2 are interpreted as significant effects.

closest to the image center. All later fixations were
less centered and the average distance to image center
reached an asymptotic level after 1,000 to 2,000 ms. We
computed the average distance of all image coordinates
from the image center. A distance to image center of
12◦ would be expected if fixations were uniformly
placed on the image.

We compared the distance to image center in the
four tasks with LMMs for specific time intervals.
There was no significant fixed effect of task during
the earliest fixations (0 to 400 ms; Table 6), but we
observed differences between tasks for all later time
intervals: for fixations in between 400 and 800 ms,
we found that Guess and Count conditions as well
as Count People and Count Animals conditions
differed significantly. Fixations in between 800 and
1,200 ms differed significantly between Guess and
Count conditions, but we could not find significant
differences in between Guess and Count conditions. For
later fixations (1,200 to 8,000 ms), all fixed effects show
significant differences. Post hoc multiple comparisons
revealed no significant differences between tasks for the
earliest fixations (0 to 400 ms) (all p >.3; Table 7).

On the following time interval (400 to 800 ms),
fixations in the Count People condition were
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Post hoc comparison Estimate SE z value Pr(>|z|)

Count Animals - Count People 0.059 0.038 1.560 0.380
Guess Country - Count People 0.127 0.032 3.923 <0.001***
Guess Time - Count People 0.133 0.032 4.100 <0.001***
Guess Country - Count Animals 0.068 0.032 2.104 0.138
Guess Time - Count Animals 0.074 0.032 2.278 0.093
Guess Time - Guess Country 0.006 0.013 0.430 0.971

Table 5. Multiple comparisons of saccade amplitudes (log-transformed) for all tasks. Adjusted p values reported (Tukey). Levels of
significance: ***p < 0.001, **p < 0.01, *p < 0.05.

Figure 8. Temporal evolution of the central fixation bias
measured as the average distance to image center. Each line
corresponds to one of the four instructions. The horizontal line
provides the expected distance to center, if fixations were
uniformly placed on an image. Level of significance: *p < 0.05.

significantly further away from the image center than
fixations in both Guess conditions (all p ≤ 0.003)
and fixations in the Count Animals condition were
significantly further away from the image center
than fixations in the Guess Time condition (p =
0.003). Additionally, in the next time interval (800 to
1,200 ms), fixations in the Count Animals condition
were significantly further away from the image center
than fixations in the Guess Country condition (p <
.001), but there were still no significant differences both
within Guess and within Count conditions (all p > 0.8).
For the later fixations (1,200 to 8,000 ms), all tasks
differed significantly (all p ≤ 0.01).

Entropy

We computed Shannon’s entropy, Equation (2), as a
measure to describe the overall distribution of fixation
locations on an image (Figure 9). If all fixations are
at the same location, Shannon’s entropy would be
0 bit. If all locations are fixated equally often, that
is, distributed uniformly, a value of 14 bit would be
expected. The entropy of fixation locations in the
Count People condition differed the most from a
uniform distribution (13.051 bit). The entropy of the

Time interval β SE t

0 to 400 ms
Guess - Count −0.11 0.15 −0.70
Count Animals - CountPeople −0.20 0.21 −0.96
GuessTime - GuessCountry −0.26 0.22 −1.21
400 to 800 ms
Guess - Count −0.80 0.14 −5.92
Count Animals - CountPeople −0.47 0.19 −2.52
GuessTime - GuessCountry −0.23 0.20 −1.15
800 to 1,200 ms
Guess - Count −1.02 0.18 −5.71
Count Animals - CountPeople −0.01 0.25 0.05
GuessTime - GuessCountry −0.22 0.26 0.82
1,200 to 8,000 ms
Guess - Count −0.89 0.05 −16.42
Count Animals - CountPeople 0.55 0.08 7.43
GuessTime - GuessCountry −0.24 0.08 −3.10

Table 6. Fixed effects of linear mixed − effect models (LMM):
Distance to image center across tasks for different time
intervals for our contrasts. Note: |t| > 2 are interpreted as
significant effects.

Count Animals condition was closest to a uniform
distribution (13.476 bit). The values of the entropy of
Guess Country (13.327 bit) and Guess Time (13.394 bit)
lay between the two Count tasks. A LMM comparing
the entropy of the four tasks showed significant
differences across all our contrasts. Fixations in Guess
conditions are significantly more distributed over the
images than fixations in Count conditions (t = 2.12;
Table 8). Fixations in the Count Animals condition
are more widely spread over the images than those
from Count People condition (t = 3.73) and fixations
in the Guess Country task are more distributed than
fixation locations measured in the Guess Time task (t =
2.06). Post hoc multiple comparison analysis (Table 9)
revealed that the Count People condition differed
significantly from all other conditions (all p ≤ 0.001).
There were no other significant differences between
tasks (all p >.1).
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Post hoc comparison Estimate SE z value Pr(>|z|)

Fixations 0 to 400 ms
Count Animals - Count People −0.199 0.206 −0.963 0.771
Guess Country - Count People −0.073 0.214 −0.340 0.986
Guess Time - Count People −0.338 0.211 −1.598 0.380
Guess Country - Count Animals 0.126 0.214 0.588 0.936
Guess Time - Count Animals −0.139 0.212 −0.655 0.914
Guess Time - Guess Country −0.265 0.220 −1.205 0.623
Fixations 400 to 800 ms
Count Animals - Count People −0.468 0.186 −2.518 0.057
Guess Country - Count People −0.923 0.190 −4.853 <0.001***
Guess Time - Count People −1.151 0.192 −6.007 <0.001***
Guess Country - Count Animals −0.455 0.192 −2.370 0.083
Guess Time - Count Animals −0.682 0.195 −3.507 0.003**
Guess Time - Guess Country −0.227 0.198 −1.147 0.660
Fixations 800 to 1,200 ms
Count Animals - Count People 0.013 0.246 0.054 1.000
Guess Country - Count People −1.125 0.253 −4.452 <0.001***
Guess Time - Count People −0.908 0.260 −3.491 0.003**
Guess Country - Count Animals −1.138 0.248 −4.595 <0.001***
Guess Time - Count Animals −0.922 0.255 −3.613 0.002**
Guess Time - Guess Country 0.216 0.263 0.824 0.843
Fixations 1,200 to 8,000 ms
Count Animals - Count People 0.551 0.075 7.343 <0.001***
Guess Country - Count People −0.496 0.078 −6.345 <0.001***
Guess Time - Count People −0.741 0.077 −9.588 <0.001***
Guess Country - Count Animals −1.048 0.077 −13.672 <0.001***
Guess Time - Count Animals −1.293 0.076 −17.029 <0.001***
Guess Time - Guess Country −0.245 0.079 −3.104 0.010*

Table 7. Multiple comparisons of distance to image center across tasks for different time intervals. Adjusted p values reported (Tukey).
Levels of significance: ***p < 0.001, **p < 0.01, *p < 0.05.

Figure 9. Shannon’s entropy. Average entropy of fixation
densities on an image in the four tasks. A value of 14 bit is
expected for a uniform fixation density. Smaller values indicate
that fixations cluster in specific parts of an image. Confidence
intervals were corrected for within-subject designs (Cousineau,
2005; Morey, 2008).

Predictability

Next, we computed negative cross-entropies of
fixation densities to investigate how well fixation
locations from one observer viewing an image under a

β SE t

Guess - Count 0.09 0.04 2.12
Count Animals - CountPeople 0.39 0.11 3.73
GuessTime - GuessCountry 0.07 0.03 2.06

Table 8. Fixed effects of linear mixed − effect model (LMM):
Entropy for our contrasts. Note: |t| > 2 are interpreted as
significant effects.

specific instruction can be predicted by the distribution
of fixation locations from other observers viewing
the same image under one of the four instructions
(Figure 10). Panels correspond to how well fixation
locations are predicted by the distribution of all
other observers viewing an image under the Count
People (A), Count Animals (B), Guess Country
(C), and Guess Time instruction (D). We report
log-likelihood differences, which give the average gain
in the log-likelihood per fixation relative to a uniform
distribution (Equation 3).
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Post hoc comparison Estimate SE z value Pr(>|z|)

Count Animals - Count People 0.394 0.105 3.733 <0.001***
Guess Country - Count People 0.255 0.071 3.612 0.001**
Guess Time - Count People 0.324 0.071 4.599 <0.001***
Guess Country - Count Animals −0.139 0.071 −1.967 0.178
Guess Time - Count Animals −0.069 0.071 −0.981 0.736
Guess Time - Guess Country 0.070 0.034 2.060 0.147

Table 9. Multiple comparisons of entropy for all tasks. Adjusted p values reported (Tukey). Levels of significance: ***p < 0.001,
**p < 0.01, *p < 0.05.

Figure 10. Average predictability of fixation locations in a task. Predictability was measured in bit per fixation as the average gain in
log-likelihood of each fixation relative to a uniform distribution. Fixations were predicted from the distribution of all fixation locations
measured under (A) Count People, (B) Count Animals, (C) Guess Country, and (D) Guess Time instruction. Confidence intervals were
corrected for within-subject designs (Cousineau, 2005; Morey, 2008).

In a first step, we compared how well fixations of one
observer viewing an image were on average predicted by
other observers viewing the same image under the same
instruction. The values correspond to the cyan bar in
Panel A, the blue bar in Panel B, the red bar in Panel
C, and the orange bar in Panel D (Figure 10). A linear
mixed-effect model revealed that both within Guess and
within Count conditions differ significantly from each
other. Fixations in the Count People condition are more
predictable than those in the Count Animals condition
(t = −4.54; Table 10). And fixations in the Guess
Country condition are better to predict than fixations
of the Guess Time task (t = −2.24). Post hoc multiple
comparisons (Table 11) revealed that predictability of
fixation locations differed significantly between all tasks
(all p ≤ 0.025) except for the two Guess conditions

β SE t

Guess - Count −0.03 0.05 −0.62
Count Animals - CountPeople −0.39 0.09 −4.54
GuessTime - GuessCountry −0.08 0.04 −2.24

Table 10. Fixed effects of linear mixed − effect model (LMM):
Predictability for our contrasts. Note: |t| > 2 are interpreted as
significant effects.

(p = 0.104) and the Guess Time and Count Animals
condition comparison (p = 0.209). Thus, when fixations
were predicted by other observers viewing an image
under the same instruction, fixations from the Count
People condition (1.19 bit

fix ) were better predicted than
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Post hoc comparison Estimate SE z value Pr(>|z|)

Count Animals - Count People −0.388 0.086 −4.538 <0.001***
Guess Country - Count People −0.182 0.066 −2.782 0.025*
Guess Time - Count People −0.263 0.066 −4.015 <0.001***
Guess Country - Count Animals 0.206 0.065 3.147 0.008**
Guess Time - Count Animals 0.125 0.065 1.913 0.209
Guess Time - Guess Country −0.081 0.036 −2.240 0.104

Table 11. Multiple comparisons of predictability for all tasks. Adjusted p values reported (Tukey). Levels of significance: ***p < 0.001,
**p < 0.01, *p < 0.05.

fixations in the Guess Country (0.94 bit
fix ) and Guess

Time (0.83 bit
fix ) conditions, which in turn were better

predicted than fixations in the Count Animals condition
(0.74 bit

fix ).
In a second step, we investigated whether predictions

of the same task differed from the predictions of other
tasks. Figure 10A shows how well the distribution of
fixation locations from the Count People condition
predicted fixation locations of another observer viewing
the same image under one of the four instructions. As
expected, the distribution of fixation locations from the
Count People condition predicted fixation locations in
the Count People condition better than fixations in any
other condition (∼ 1.2 bit

fix vs. ∼ 0.5 bit
fix ). We computed a

LMM with treatment contrasts of the fixed factors to
test the deviations from the Count People condition.
Our analysis confirmed that all conditions differed
significantly from the Count People condition (all |t| ≥
20.92; Table 12).

Likewise, our analysis confirmed that all conditions
differed significantly from the Guess Country condition.
Figure 10C shows that the distribution of fixation
locations from the Guess Country condition differed
significantly in their prediction of fixation locations of
another observer viewing the same image under the
Guess Country task versus one of the other instructions
(all |t| ≥ 2.70). While fixation locations were best
predicted by the same task in the Count People and
the Guess Country conditions, the results for the other
conditions were less clear-cut. For the Count Animals
condition (Figure 10B), we also found significance
across all treatment contrasts (all |t| ≥ 3.81), but the
distribution of fixation locations from the Count
Animals condition predicted fixation locations of other
observers viewing the same image under the Count
People condition better than fixation locations of other
observers viewing the same image under the Count
Animals condition (β = 0.06). And finally, predictions
of the Guess Time condition (Figure 10D) did not
reveal differences between Guess Time, Guess Country,
and Count People (all |t| ≤ 1.02), while predictions of
fixation locations in the Count Animals condition were
significantly reduced (t = −22.57).

Treatment comparison β SE t

Count People
Intercept: Count People 1.19 0.07 16.89
Count Animals - Count People −0.77 0.03 −28.17
Guess Country - Count People −0.59 0.03 −20.92
Guess Time - Count People −0.69 0.03 −24.57
Count Animals
Intercept: Count Animals 0.75 0.06 12.74
Count People - Count Animals 0.06 0.02 3.81
Guess Country - Count Animals −0.19 0.02 −11.83
Guess Time - Count Animals −0.24 0.02 −14.97
Guess Country
Intercept: Guess Country 0.94 0.07 13.48
Count People - Guess Country −0.05 0.02 −2.70
Count Animals - Guess Country −0.50 0.02 −26.16
Guess Time - Guess Country −0.14 0.02 −7.26
Guess Time
Intercept: Guess Time 0.86 0.06 13.53
Count People - Guess Time 0.02 0.02 1.02
Count Animals - Guess Time −0.40 0.02 −22.57
Guess Country - Guess Time 0.01 0.02 0.77

Table 12. Fixed effects of linear mixed − effect models (LMM):
Predictability with treatment contrasts for the gain in
log-likelihood over a uniform distribution. Each block represents
the predictions based on the distribution of fixation locations
from one task. The intercept corresponds to a prediction of the
same task; treatment contrasts represent deviations from this
prediction. Note: |t| > 2 are interpreted as significant effects.

Saliency

Finally, we evaluated whether fixation locations in
the four tasks can be predicted by the currently most
successful saliency model (DeepGaze2; Kümmerer
et al., 2016). For each task, we computed the log-
likelihood gain of the DeepGaze2 model over a uniform
prediction (Figure 11). We chose DeepGaze2 on the
basis that it is currently the best-performing saliency
model in the MIT-saliency benchmark (Bylinskii
et al., 2016) and selected the model option that took
the central fixation bias from the MIT1003 data set
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Figure 11. Average predictability of fixation locations in each
task by the DeepGaze2 model. Predictability was measured in
bit per fixation as the average gain in log-likelihood of each
fixation relative to a uniform distribution. Confidence intervals
were corrected for within-subject designs (Cousineau, 2005;
Morey, 2008).

β SE t

Guess - Count 0.46 0.08 6.11
Count Animals - CountPeople −0.59 0.15 −4.07
GuessTime - GuessCountry −0.19 0.07 −2.61

Table 13. Fixed effects of linear mixed − effect model (LMM):
DeepGaze2 predictability gain for our contrasts. Note: |t| > 2
are interpreted as significant effects.

(Judd et al., 2009) into account. Images were
downsampled to 128 × 128 pixels and uploaded to
the authors’ web interface deepgaze.bethgelab.org that
provided the model predictions. As the predictions are
computed in units of natural logarithm, we converted
all log-likelihoods to base 2.

Since DeepGaze2 was developed to predict eye
movements in scene viewing, our results show that
fixation locations in the Guess Country condition were
most similar to fixation locations in scene viewing
(∼ 0.7 bit

fix ). Fixation locations in the Guess Time and
Count People conditions were also predicted better
than by a uniform distribution (∼ 0.5 bit

fix and ∼ 0.4 bit
fix ).

In contrast, fixation locations in the Count Animals
condition were not well predicted by DeepGaze2.
Performance was not better than predictions by a
uniform distribution of fixation locations (∼ −0.1 bit

fix ).
A linear mixed-effect model revealed significant
differences of our three specified contrasts. Fixation
locations in Guess conditions can be better predicted
by DeepGaze2 than in Count conditions (t = 6.11;

Table 13). Predictions of fixation locations in the
Count People task differed significantly from the Count
Animals task (t = −4.07) and fixation locations of the
Guess Country condition showed better predictability
by DeepGaze2 than fixation locations of Guess Time
conditions (t = −2.16). Post hoc multiple comparisons
are listed in Table 14. Predictability of fixation locations
differed significantly between all tasks (all p < 0.05)
except for the Count People and the Guess conditions
(all p > 0.08).

Discussion

Eye movements during scene viewing are typically
studied to investigate the allocation of visual attention
on natural, ecologically valid stimuli while keeping
the benefits of a highly controlled laboratory setup.
However, several aspects of the scene-viewing paradigm
have been criticized that question the generalizability of
results, and a paradigmatic shift toward the study of
natural tasks has been proposed (Tatler et al., 2011).
Here, we demonstrate how to adapt the scene-viewing
paradigm to make a smooth transition from the
scene-viewing paradigm to more natural tasks. This
transition allows us to keep the high experimental
control of a laboratory setting, bases new research on a
solid theoretical ground, and simultaneously deals with
the limitations of the classical scene-viewing paradigm.

As a starting point, we demonstrated the general
viability of our approach, where we used mobile
eye-tracking and a projective transformation to convert
gaze coordinates from head-centered coordinates
into image-centered coordinates. In the experiment,
participants were allowed to move their body and
head, since we took away the chinrest, but we did not
induce interaction with the stimulus material, which
might have produced different gaze patterns (Epelboim
et al., 1995). In the presence of such interaction, the
control of the gaze deployment system might be rather
different. Therefore, we kept interaction at minimum
in the current study. However, care has to be taken in
follow-up studies that include forms of interaction with
stimuli for even more natural behavior. They viewed
the same images under four different instructions.
We implemented two counting instructions, where
participants had to determine the number of people or
animals present in a given image. In the two remaining
conditions, participants were asked to guess the country,
where the given image was taken, or the time of day, at
which the image was recorded. Our analyses replicated
the sensitivity of various eye-movement measures to
specific tasks (Castelhano et al., 2009; DeAngelus &
Pelz, 2009; Mills et al., 2011). We observed differences
between tasks in fixation durations, saccade amplitudes,
strength of the central fixation bias, and eye-movement
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Post hoc comparison Estimate SE z value Pr(>|z|)

Count Animals - Count People −0.591 0.145 −4.066 <0.001***
Guess Country - Count People 0.261 0.111 2.350 0.082
Guess Time - Count People 0.074 0.111 0.666 0.906
Guess Country - Count Animals 0.852 0.111 7.678 <0.001***
Guess Time - Count Animals 0.665 0.111 5.996 <0.001***
Guess Time - Guess Country −0.187 0.072 −2.609 0.041*

Table 14. Multiple comparisons of DeepGaze2 predictability gain for all tasks. Adjusted p values reported (Tukey). Levels of
significance: ***p < 0.001, **p < 0.01, *p < 0.05.

measures related to distributions of fixation locations.
Furthermore, fixation locations in the four tasks were
reasonably well predicted by a recent saliency model
(Kümmerer et al., 2016).

Central fixation bias across tasks

An important observation in our study concerned
the central fixation bias (Tatler, 2007). While it is well
documented that viewers prefer to fixate near the center
of images and that this behavior generalizes to other
tasks (Ioannidou et al., 2016), a direct within-subject
comparison of the central fixation bias across tasks
on the same stimulus material has not been reported
before. As the central fixation bias typically is strongest
during initial fixations (Rothkegel et al., 2017; Tatler,
2007; ’t Hart et al., 2009), we investigated the temporal
evolution of the central fixation bias in the four tasks.
We observed a strong initial response toward the
image center on the earliest fixations and found no
differences in the strength of the early central fixation
bias between tasks. The central fixation bias decreased
on later fixations and reached an asymptotic behavior
after 1,000 to 2,000 ms. Interestingly, from the second
inspected time interval (400 to 800 ms) onward, the
central fixation bias depended on the task given to a
participant. Our data suggest a task-independent early
central fixation bias and a later task-dependent central
fixation bias that reflects differences in the selection of
fixation locations during exploration.

Predictability of fixation locations across tasks

Since their seminal work (Buswell, 1935; Yarbus,
1967), it has been known that eye movements on an
image depend on the instruction given to an observer.
While task differences have often been replicated
(Castelhano et al., 2009; DeAngelus & Pelz, 2009;
Mills et al., 2011), prediction of a specific task from a
given eye-movement trace has resulted in incoherent
success. While Greene et al. (2012) reported a failure
to recover task from eye movements reliably, Borji and

Itti (2014) demonstrated successful prediction of task
from eye movements using the same data set. Here,
we investigated how well fixation locations can be
predicted by the distribution of fixation locations from
other participants viewing an image under the same or
a different instruction (Schütt et al., 2019). We made
three important observations.

First, when fixation locations were predicted by
fixations of other observers viewing an image under the
same instruction, predictability of fixation locations
differed across tasks. The log-likelihood gain relative to
a uniform distribution was highest in the Count People
condition, lowest in the Count Animals condition,
and in between in the two Guess conditions. Thus,
there was no simple relation in predictability between
the Count and Guess instructions. The entropy of the
fixation location distributions resembled this result.
Fixation locations deviated the most from a uniform
distribution in the Count People condition and deviated
the least from a uniform distribution in the Count
Animals condition. Thus, predictability in our tasks
can at least partially be explained by the degree of
aggregation of fixation locations in the four tasks. It
is important to note, however, that this relation is not
mandatory, as the entropy only affects the upper limit
of the predictability measure. Our results demonstrate
that the chosen task influences the interobserver
predictability of fixation locations and confirms the
need to deliberately choose an instruction in the scene-
viewing paradigm that is appropriate for the research
question.

Second, we compared predictability of fixation
locations across tasks. In general, log-likelihood
gains were highest for fixation locations predicted by
other participants viewing an image under the same
instruction in the majority of tasks. However, fixation
location distributions from half of the tasks were not
very specific in their predictions, and log-likelihood
gains for at least one other task were as high as the
log-likelihood gains for the task itself or another
log-likelihood gain for another task was higher. Thus,
while it is possible to find tasks that lead to very different
distributions of fixation locations (Buswell, 1935;
Yarbus, 1967), many tasks will result in overlapping
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distributions, at least on static images in a laboratory
setup. The strong overlap in fixation locations between
some tasks makes it difficult to differentiate these tasks
on the basis of their fixation locations.

Third, fixation locations recorded in the Count
People condition showed a distinct pattern. While
fixation locations from the Count People condition
were well predicted by all other tasks, fixations from the
Count People condition primarily predicted fixations
from the task itself. We believe that this asymmetry
arose from the peculiar role of people and faces for
eye movements on images. It is well known that people
and faces attract gaze in scene viewing (Cerf et al.,
2007; Judd et al., 2009) and that at least some of
these fixations are placed involuntarily (Cerf et al.,
2009). Torralba et al. (2006) showed that participants
who had to count the number of people in a scene
used their prior spatial knowledge and directed their
fixations toward locations likely to contain people. As a
consequence, increased fixation probabilities might be
caused by expectations of faces/people rather than the
actual existence of corresponding features. This effect
might even be enhanced in the Count People task, which
puts a particular emphasis on people and locations
with high expectations to find people, so it is likely
that participants made even more fixations in related
regions. This interpretation is supported by the low
entropy in the Count People condition, which indicates
that fixations clustered more in the Count People task
than in any other task. Since people and faces attracted
gaze in all tasks and in particular in the Count People
condition, all tasks were well able to predict fixation
locations in the Count People condition. At the same
time, the Count People condition mostly predicted
fixations on people and faces in the other conditions.
Since these are only a fraction of all fixations in the
other conditions, predictability performance of the
Count People condition was relatively low for these
tasks.

Search vs. free viewing

Images in our experiment were viewed under four
different instructions: two Guess and two Count
instructions. The Guess instructions were intended
to produce gaze behavior similar to free viewing with
fewer task constraints than in the Count instructions
that require identification of and search for objects.
Contrary to free viewing, however, under Guess
instructions, eye behavior across participants was
expected to be guided more strongly by the same
aspects of the image to solve the tasks (e.g., shadows,
daylight, vegetation). In the two Count conditions,
participants needed to examine the entire image to
detect and count all target objects. Thus, both Count

tasks were considered a form of search task as they
included a search for target objects in an image.

We compared tasks similar to free viewing (Guess)
with tasks similar to search (Count) by quantifying
how well fixation locations in the four tasks were
predicted by a recent saliency model (DeepGaze2;
Kümmerer et al., 2016). Since saliency models were
designed to predict fixation locations during free
viewing, we expected a better match between the
predictions of the saliency model and the two free
viewing tasks than the two search tasks (cf. Schütt
et al., 2019). Numerically, target selection in the Guess
conditions was in better agreement with predictions
from the saliency model than in the Count conditions.
Statistically, the predictions for the Guess conditions
outperformed predictions of the Count Animals
condition. The Count People condition lay nearby
the Guess conditions and did not differ significantly
from these. Since saliency models typically incorporate
detectors for persons and faces, a large fraction of
fixations on persons and faces can be predicted in the
Count People condition (cf. Mackay et al., 2012). In
summary, the Guess conditions resembled free viewing
more than the Count conditions and, consequently,
the Guess conditions generated eye movements similar
to the free viewing instruction. It is important to note
that the DeepGaze2 model included the central fixation
tendency, so that the better prediction of the Guess
conditions could be partly explained by the stronger
central fixation bias in these conditions.

Low predictive power of saliency models for fixation
locations in search tasks has also been reported for
the search of artificial targets embedded in scenes
(Rothkegel et al., 2019; Schütt et al., 2019) as well
as for searching images of real-world scenes for
real-world objects (Henderson et al., 2007; Foulsham &
Underwood, 2008). While eye-movement parameters
like fixation durations and saccade amplitudes adapted
to the visibility of the target in the periphery (Rothkegel
et al., 2019), fixations were differently associated with
features in search and free viewing tasks. Even training
a saliency model based on early visual processing to
the data set did not improve predictions considerably
(Schütt et al., 2019). Our results demonstrate that
the low predictive power of saliency models in the
search tasks is also true for search tasks with non
manipulated real-world scenes. However, while fixation
locations were not well predicted by the saliency
model in the search tasks and in particular not in the
Count Animals tasks, several other eye-movement
parameters adapted to the search task. Fixation
durations were shortest in the Count Animals condition
and saccade amplitudes were shorter and the central
fixation bias smaller in the Count conditions than the
Guess conditions. Thus, there is no simple relation
between low-level image features and fixation locations
in search, but other parameters demonstrate that
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eye movements adapt to the specificities of the
task.

Conclusions

Due to several limitations, the generalizability of
theoretical implications of the scene-viewing paradigm
has been criticized. However, real-world scenarios
often lack experimental control and are detached
from the previous research. Here we demonstrate that
the advancements in mobile eye-tracking and image
processing make it possible to deal with the limitations
of the scene-viewing paradigm, while keeping high
experimental control in a laboratory setup. Our
setup provides a fruitful, highly controlled, but less
constrained environment to investigate eye-movement
control across tasks.

Keywords: scene viewing, real-world scenarios, mobile
eye-tracking, task influence, central fixation bias
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