
Enforceability Aspects of
— Smart Contracts —
on Blockchain Networks

Jan Ladleif

Enforceability Aspects of Smart Contracts
on Blockchain Networks

Jan Ladleif

Business Process Technology Group

Hasso Plattner Institute
Digital Engineering Faculty

University of Potsdam

Potsdam, Germany

— Dissertation —

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

Date of Defense: September 16th, 2021

May 2021

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this license visit:
https://creativecommons.org/licenses/by/4.0

Supervisor: Prof. Dr. Mathias Weske, University of Potsdam
Reviewers: Prof. Dr. Cesare Pautasso, University of Lugano, and
Prof. Dr. Jan Mendling, Humboldt University of Berlin

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-51908
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-519088

Abstract

Smart contracts promise to reform the legal domain by automating clerical
and procedural work, and minimizing the risk of fraud and manipulation.
Their core idea is to draft contract documents in a way which allows ma-
chines to process them, to grasp the operational and non-operational parts
of the underlying legal agreements, and to use tamper-proof code execu-
tion alongside established judicial systems to enforce their terms.

The implementation of smart contracts has been largely limited by
the lack of an adequate technological foundation which does not place an
undue amount of trust in any contract party or external entity. Only re-
cently did the emergence of Decentralized Applications (DApps) change
this: Stored and executed via transactions on novel distributed ledger and
blockchain networks, powered by complex integrity and consensus proto-
cols, DApps grant secure computation and immutable data storage while
at the same time eliminating virtually all assumptions of trust.

However, research on how to effectively capture, deploy, and most of
all enforce smart contracts with DApps in mind is still in its infancy. Start-
ing from the initial expression of a smart contract’s intent and logic, to
the operation of concrete instances in practical environments, to the lim-
its of automatic enforcement—many challenges remain to be solved before
a widespread use and acceptance of smart contracts can be achieved.

This thesis proposes a model-driven smart contract management ap-
proach to tackle some of these issues. Ametamodel and semantics of smart
contracts are presented, containing concepts such as legal relations, au-
tonomous and non-autonomous actions, and their interplay. Guided by
the metamodel, the notion and a system architecture of a Smart Contract
Management System (SCMS) is introduced, which facilitates smart con-
tracts in all phases of their lifecycle. Relying on DApps in heterogeneous
multi-chain environments, the SCMS approach is evaluated by a proof-of-
concept implementation showing both its feasibility and its limitations.

Further, two specific enforceability issues are explored in detail: The
performance of fully autonomous tamper-proof behavior with external
off-chain dependencies and the evaluation of temporal constraints within
DApps, both of which are essential for smart contracts but challenging
to support in the restricted transaction-driven and closed environment
of blockchain networks. Various strategies of implementing or emulating
these capabilities, which are ultimately applicable to all kinds of DApp
projects independent of smart contracts, are presented and evaluated.

v

Publications

Some ideas and figures found in this thesis have previously appeared in
the following publications:

1. Jan Ladleif and Mathias Weske. Time in blockchain-based process
execution. In 24th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2020, Eindhoven, The Netherlands, Oc-
tober 5-8, 2020, pages 217–226. IEEE, 2020. doi: 10.1109/EDOC49727.
2020.00034

2. Jan Ladleif, IngoWeber, and Mathias Weske. External data monitor-
ing using oracles in blockchain-based process execution. InAleksan-
dre Asatiani et al., editors, Business Process Management: Blockchain
and Robotic Process Automation Forum, BPM 2020, volume 393 of Lec-
ture Notes in Business Information Processing, pages 67–81. Springer,
Cham, 2020. doi: 10.1007/978-3-030-58779-6_5

3. Jan Ladleif, Christian Friedow, and Mathias Weske. An architec-
ture for multi-chain business process choreographies. In Witold
Abramowicz and Gary Klein, editors, Business Information Systems,
volume 389 of Lecture Notes in Business Information Processing, pages
184–196. Springer, Cham, 2020. doi: 10.1007/978-3-030-53337-3_14

4. Jan Ladleif andMathiasWeske. A unifyingmodel of legal smart con-
tracts. In Alberto H. F. Laender et al., editors, Conceptual Modeling,
volume 11788 of Lecture Notes in Computer Science, pages 323–337.
Springer, Cham, 2019. doi: 10.1007/978-3-030-33223-5_27

5. Jan Ladleif, Anton von Weltzien, and Mathias Weske. chor-js: A
modeling framework for BPMN 2.0 choreography diagrams. In José
Ignacio Panach et al., editors, Proceedings of the ER Forum and Poster
& Demos Session 2019, 38th International Conference on Conceptual
Modeling (ER), volume 2469 of CEURWS Proceedings, pages 113–117,
2019. URL http://ceur-ws.org/Vol-2469/ERDemo02.pdf

6. Jan Ladleif and Mathias Weske. A legal interpretation of choreogra-
phy models. In Chiara Di Francescomarino et al., editors, Business
Process Management Workshops. BPM 2019, volume 362 of Lecture
Notes in Business Information Processing, pages 651–663. Springer,
Cham, 2019. doi: 10.1007/978-3-030-37453-2_52

vii

7. Jan Ladleif, Mathias Weske, and Ingo Weber. Modeling and en-
forcing blockchain-based choreographies. In Thomas Hildebrandt
et al., editors, Business Process Management. BPM 2019, volume 11675
of Lecture Notes in Computer Science, pages 69–85. Springer, Cham,
2019. doi: 10.1007/978-3-030-26619-6_7

A further manuscript based on a chapter of this thesis has been prepared:

8. Jan Ladleif and Mathias Weske. Which event happened first? De-
ferred choice on blockchain using oracles. CoRR, abs/2104.10520,
2021. URL https://arxiv.org/abs/2104.10520

viii

Acknowledgments

Pursuing a doctoral degree is said to be a journey like no other, and having
ventured through it myself now I am inclined to agree. Before and while
conducting the work that ultimately resulted in this thesis, I was lucky
enough to have a wide network of support. Many thanks are due:

To my supervisor, Mathias Weske, for giving me plenty of room and
time to evolve my ideas—and advice on how to narrow them down again,
often after fruitful and intense discussions. I enjoyed a degree of freedom
and opportunity which should not be taken for granted, and for which I
am very grateful.

To Jan Mendling and Cesare Pautasso, for agreeing to review this the-
sis. Their excellent work on blockchain technology in general and in the
Business Process Management (BPM) domain in particular served as a
steady inspiration to me.

To Ingo Weber, for introducing me to the topic of blockchain-based
process execution. His invitation to join his group in Australia for myMas-
ter’s thesis sparked a string of ideas and collaboration which principally
shaped this dissertation.

To Adriatik Nikaj, for motivating me to actually commence on this
journey when I was struggling with the decision. His advice has certainly
had an impact and helped me when it felt like there was no end of open
questions in sight.

To Anton von Weltzien, for becoming more involved with the devel-
opment of chor-js than I ever anticipated and contributing significantly
to its success. I fondly remember the many evenings spent discussing just
how broken the choreography diagram standard is.

To my former and current colleagues, for becoming friends inside and
outside of work, divulging in lighthearted gossip, and of course participat-
ing in the occasional discussion actually relating to research. In particular,
Stephan Haarmann, Simon Remy, Maximilian Völker, and Sven Ihde for
proofreading manuscripts of this thesis.

Tomy family, formakingmewho I am today and continuing to provide
me the best foundation imaginable. To my friends, for distracting me from
the constant struggle of writing papers. And to Nicole, for always forcing
me to focus again—and offering me room and board.

ix

Contents

1 Introduction 1

1.1 Research Questions . 2
1.2 Approach . 3
1.3 Thesis Structure . 4

2 Preliminaries 7

2.1 Smart Contracts in Law 7
2.1.1 Legal Contracts . 7
2.1.2 Formalization of Legal Contracts 10
2.1.3 Smart Contracts . 12

2.2 Blockchain Technology 14
2.2.1 Blockchain Data Structure 14
2.2.2 Blockchain Networks 16
2.2.3 Transaction Lifecycle 18
2.2.4 Decentralized Applications 19
2.2.5 Oracle Patterns . 21

2.3 Business Process Management 22
2.3.1 Business Processes 23
2.3.2 Business Process Management Systems 24
2.3.3 Business Process Choreographies 25

3 Smart Contract Modeling 29

3.1 Smart Contract Metamodel 29
3.1.1 Terminology . 30
3.1.2 Reasoning . 31
3.1.3 Metamodel Structure 33

3.2 Operational Semantics 39
3.2.1 Running Example 39
3.2.2 State Space . 42
3.2.3 Operating Environment 43
3.2.4 State Transitions 44

3.3 Choreographies and Smart Contracts 47
3.3.1 Element Mapping 48
3.3.2 Actions and Constraints 49
3.3.3 Legal Interpretation 50

xi

Contents

4 Smart Contract Management Systems 53

4.1 Blockchain-Based Enforcement 54
4.1.1 Non-Blockchain Baseline 54
4.1.2 Single-Chain Approach 55
4.1.3 Multi-Chain Approach 58

4.2 Functional Requirements 60
4.2.1 Negotiation and Formation 61
4.2.2 Notarization and Storage 62
4.2.3 Performance and Monitoring 63
4.2.4 Modification, Disputes, and Termination 64

4.3 System Architecture . 65
4.3.1 Local Components 67
4.3.2 Metadata Storage 68
4.3.3 Smart Contract DApps 69

5 Proof-of-Concept Implementation 71

5.1 System Design . 71
5.1.1 System Overview 72
5.1.2 Frontend Components 72
5.1.3 Share Server . 74

5.2 Blockchain Network Adapters 75
5.2.1 Adapter Interface 75
5.2.2 Tezos Adapter . 77
5.2.3 Corda Adapter . 78

5.3 Insights and Maturity . 78
5.3.1 Functional Coverage 78
5.3.2 Non-Functional Properties 80
5.3.3 Current Status . 82

5.4 Modeling Choreographies with chor-js 83
5.4.1 Feature Overview 83
5.4.2 Tool Comparison 84
5.4.3 Scientific Contribution 84

6 Autonomous Actions on Blockchain 87

6.1 Performing Autonomous Actions 88
6.1.1 Enablement Criteria 88
6.1.2 External Events . 89
6.1.3 Competing Actions 90

6.2 Event Detection Approaches 91
6.2.1 Retroactive Event Detection 91
6.2.2 Publish-Subscribe Event Detection 94

6.3 Extended Oracle Architectures 95
6.3.1 History Oracles . 96
6.3.2 Publish-Subscribe Oracles 97
6.3.3 Conditional Oracle Variants 98

6.4 Oracle Implementation and Usage 99
6.4.1 Overview . 100

xii

Contents

6.4.2 On-Chain Components 102
6.4.3 Off-Chain Components 103

6.5 Simulation Results . 103
6.5.1 Correctness . 104
6.5.2 Cost . 105
6.5.3 Overall Feasibility 106

7 Time on Blockchain 111

7.1 Timing of Transactions 111
7.1.1 Technical Restrictions 112
7.1.2 Approximation Measures 113

7.2 Qualitative Comparison 114
7.2.1 Accuracy . 115
7.2.2 Trust . 116
7.2.3 Cost . 118
7.2.4 Reliability . 118
7.2.5 Retrieval . 119
7.2.6 Resolution . 119
7.2.7 Monotonicity . 120

7.3 Application to Smart Contracts 120
7.3.1 Absolute Temporal Constraints 121
7.3.2 Relative Temporal Constraints 123
7.3.3 Usage Guidelines 124
7.3.4 Limitations and Outlook 126

8 Related Work 127

8.1 Legal Focus . 127
8.2 Business Process Focus 131
8.3 Generic Focus . 134

9 Conclusion 137

9.1 Contributions . 137
9.2 Limitations and Future Work 139

Bibliography 141

xiii

List of Figures

1.1 Enforcement of a smart contract 2
1.2 Overall approach of this thesis (shaded background) in-

tegrated with the structure of smart contracts 4

2.1 Lifecycle of a legal contract as adapted from Governatori
et al. [39] . 9

2.2 Legal relations according to Hohfeld [48] 11
2.3 Components of the Ricardian triple 13
2.4 Structure of a blockchain 15
2.5 Excerpt from a blockchain network showing three nodes

and their connections, as well as block and transaction
propagation . 17

2.6 Lifecycle of a transaction 19
2.7 Architecture and behavior of the storage and request-re-

sponse oracles . 21
2.8 Business process lifecycle as adapted from Weske [112] . 23
2.9 Architecture of a Business Process Management System

(BPMS), adapted from Dumas et al. [31] 24

3.1 Overview of the Model-Driven Engineering (MDE) ap-
proach for modeling smart contracts 30

3.2 Petri net model of a legal relations and associated actions
in the train ticket scenario 32

3.3 Containment and inheritance hierarchy of the smart con-
tract metamodel with some associations omitted for brevity 34

3.4 Actions and legal relations of𝑡𝑖𝑐𝑘𝑒𝑡 40
3.5 Excerpt of a state space of a smart contract 47
3.6 Excerpt from a choreography diagramwith elements rep-

resenting types of smart contract actions 49
3.7 Patterns of norms of conduct 51

4.1 Smart contract enforcement approaches adapted fromBPM
orchestration and choreography enactment [112] 54

4.2 Smart contract enforcement approach using a single block-
chain network . 56

4.3 Mapping of the performance of an action of a smart con-
tract to a blockchain transaction 56

xv

List of Figures

4.4 Blockchain networks potentially involved in the train ticket
scenario . 59

4.5 Smart contract enforcement approach usingmultiple block-
chain networks . 59

4.6 Approximate relationship between the contract lifecycle
by Governatori et al. [39] and the business process life-
cycle by Weske [112] . 61

4.7 Reference architecture of a generic SCMS approach . . . 66

5.1 Overview of Mantichor’s overall system design 73
5.2 Screenshot and components of the Mantichor frontend . 74
5.3 Sequence diagram of the interactions of two participants

𝑝1, 𝑝2 to exchange a model using the share server 75

6.1 Enablement of 𝑎𝑐 due to a change of the operating envi-
ronment state . 89

6.2 A race between competing actions which needs to be re-
solved by the DApp . 90

6.3 Pseudocode of the retroactive event detection approach . 93
6.4 Pseudocode of the publish-subscribe event detection ap-

proach . 95
6.5 Architecture and behavior of the history oracles 97
6.6 Architecture and behavior of the publish-subscribe oracle 98
6.7 Structure of the smart contracts considered in the evalu-

ation . 100
6.8 Architecture of the prototype developed for the experi-

mental evaluation . 101
6.9 Normalized, relative operating cost of an oracle per con-

sumer with the given number of data updates u and con-
sumers c . 107

7.1 Delays in the network leading to an action 𝑎𝑡 not being
performed . 112

7.2 Accuracy of the approximation measures 116
7.3 Trust of the approximation measures 117
7.4 Timeline of absolute temporal performance constraints . 121
7.5 Occurrence of false positives and false negatives when

detecting absolute deadlineswith the approximationmea-
sures . 122

7.6 Timeline of relative temporal performance constraints . . 123
7.7 A transaction 𝑡𝑥 ′ overtaking a previously sent transac-

tion 𝑡𝑥 . 125

8.1 Categorization of related work 127

xvi

List of Tables

2.1 Business Process Model and Notation (BPMN) choreogra-
phy diagram notation (excerpt) 26

3.1 Requirements for contract formalisms by Hvitved [50] . . . 33
3.2 Temporal constraint definitions in ISO-8601 format 38
3.3 Additional specification of the smart contract 𝑡𝑖𝑐𝑘𝑒𝑡 . . . 41
3.4 Mapping of smart contract model aspects to their repre-

sentation in BPMN choreography diagrams 48

4.1 Key differences between smart contract enforcement strate-
gies . 55

5.1 Interface of the blockchain network adapters 76
5.2 Coverage of the SCMS functional requirements in Mantichor 79
5.3 Tool comparison between chor-js and selected competi-

tors, reproduced from [69] 85

6.1 Influence of smart contract state and operating environ-
ment state on the enablement of actions 88

6.2 Interfaces of the oracles from the perspective of the con-
sumer DApp . 98

6.3 Share of 𝑘 = 60 simulated smart contracts in which the
action 𝑎0 was correctly performed 104

6.4 Average smart contract deployment cost 105

7.1 Relative comparison of the approximation measures, with
an assessment in parentheses being subject to exceptions . 115

7.2 Relative comparison of the approximation measures for
implementing temporal constraints 121

8.1 Related work with a business process focus, ordered by
whether they discuss certain topics and issues 132

xvii

Acronyms

ABI Application Binary Interface
BPMN Business Process Model and Notation
BPMS Business Process Management System
BPM Business Process Management
DApp Decentralized Application
DLT Distributed Ledger Technology
DSL Domain-Specific Language
EVM Ethereum Virtual Machine
ISO International Organization for Standardization
LO Legal Ontology
MDE Model-Driven Engineering
OMG Object Management Group
RIM Railway Infrastructure Manager
SCMS Smart Contract Management System
UML Unified Modeling Language
UTC Coordinated Universal Time
WfMC Workflow Management Coalition
zkSNARK Zero-Knowledge Succinct Non-Interactive Ar-

gument of Knowledge

xix

Chapter 1

Introduction

Contracts have been an integral part of human life for centuries. Wide-
spread trade and the emergence of services required a common ground
as to which actions are appropriate, and which must be performed to the
benefit of all involved parties [25]. As society evolved, so did the under-
standing of such permissions and obligations, of liberty, of law and juris-
diction [48]. While the legal framework surrounding them continued to
grow more complex, the written contract as an artifact seemed to with-
stand change over a long period of time. Whether it is carved in a stone,
stamped on a clay tablet, or written on paper; the mainly notarial purpose
of contract documents did not significantly change.

In the era of computers, however, this status is finally being challenged.
By storing them digitally and interacting with them via the internet, elec-
tronic contracts allow humans to get rid of physical contract documents
and even automate many aspects of their performance [27]. Consider, for
instance, a contract of carriage—or train ticket, for short. Germany’s na-
tional railway company sold around 45million digital train tickets through
their smartphone application in 2019 [29]. Not only did this, according to
their calculation, save around 222 tons of paper; rather, it seemingly con-
stitutes a paradigm shift. The contract as well as its state are stored in a
digital form, managed by the railway company. To top it off, all contrac-
tual interactions—payments and discount applications, cancelations, even
the check-in previously done by a conductor within the train—can be per-
formed by electronic means.

And yet, the interactive façade still hides a lengthy contract document
written in complex legal language paired with general terms and condi-
tions, devoid of any instructions actionable by an information system [30].
The operational logic is proprietary, largely invisible to the passenger, and
centralized within the railway company. While this imbalance of power
between the parties may be widely tolerated for inconsequential contracts
like a train ticket, many types of agreements do not lend themselves well
to this architecture; especially when large sums of money and mutually

1

Chapter 1. Introduction

Smart Contract

Law Tamper-Proof
Code

enforced by

complement

Figure 1.1: Enforcement of a smart contract

distrustful parties are involved. This only becomes obvious when disputes
arise and legal mechanisms kick in—for example, when a train is canceled
and the passenger sues for a refund.

The vision of smart contracts is to close the gap between the specifica-
tion and the performance of a contract, and to alleviate any imbalance of
power between its parties [104]. The core idea is that the contracts them-
selves are not destined to be passive artifacts. Instead, they could be drafted
so that information systems understand their intent and grasp the legal
relations between the parties [24]. Instead of the law being the only en-
forcement contingency, tamper-proof code could enable the autonomous
enforcement of certain terms of the legal agreement (see Fig. 1.1). As an
effect, the probability a dispute even occurs, let alone grows into a costly
lawsuit, would be reduced significantly.

1.1 ResearchQuestions

Smart contracts are still very much a vision, despite the uptake in elec-
tronic contracting. A tangible deficiency in practice is certainly the lack
of a technological framework to enforce smart contracts in a way that can
not be manipulated or rigged by any party or outside entity [24]. Only
recently did the introduction of blockchain technology [85] provide new
impulses at resolving this issue:

Blockchain technology enables a network of computer nodes to store
and share arbitrary information—like account balances and transfers of
cryptocurrency—, ensuring its integrity, immutability, and transparency
to all network participants [115]. This is achieved using the underlying
blockchain data structure, which employs cryptographic techniques com-
bined with an assortment of network protocols to reach consensus on
the state of all data. Second-generation blockchain networks like Ethe-
reum [114] extend on these capabilities by introducing Decentralized Ap-
plications (DApps): Applications whose code and state are persisted en-
tirely as data in the blockchain. DApps offer fully autonomous and tam-
per-proof execution of code such that no single network participant yields
any elevated rights or may repudiate any of their actions.

Ostensibly, blockchain technology is a perfect fit for smart contracts—
so much so that DApps are often also called “smart contracts” themselves,
though they do not by default suggest any legal meaning. The research on

2

1.2. Approach

how exactly blockchain networks can power smart contracts in the sense
introduced above is still in its infancy, however—not least due to the many
idiosyncrasies that users face when developing and using DApps [78]: The
restrictive runtime environment, co-existing blockchain networks with
vastly different properties, as well as high stakes and low tolerance for pro-
gramming errors. Overall, the development landscape poses many chal-
lenges.

The goal of this thesis is to solve some of these challenges, and pave
the way towards a structured smart contract specification, management,
and enforcement approach that regards blockchain technology and DApps
as a first-class citizen and enabler. We will advance the state of the art in
this area by tackling the following research questions:

(RQ1) How can a management system for smart contracts built on
blockchain technology be designed?

(RQ2) Can DApps correctly and autonomously enforce smart con-
tracts?

Both of these research questions rely on an underlying assumption,
which is that there must be a way to fully specify smart contracts formally
in the first place; expressive enough to capture all the legal and behav-
ioral facets of smart contracts, while remaining accessible to the involved
parties—specifically their human actors.

1.2 Approach

The ultimate enabler of smart contracts seems to be a common modeling
language and notation which is actionable for humans of different back-
grounds as well as for information systems alike [24]. Such models would
be a necessary step for smart contracts to find widespread use and accep-
tance, since they fully specify smart contracts and at the same time do “not
alienate the lawyer” [59]. We adopt this view and follow a Model-Driven
Engineering (MDE) approach [99] throughout this thesis:

To this end, we devise a smart contract metamodel capturing the basic
legal and structural aspects of smart contracts as derived from literature
(see Fig. 1.2). We will formally define the operational semantics of the re-
sulting smart contract models, including a notion of autonomous behavior
which is peculiar to smart contracts. While the metamodel may be used to
assess concrete modeling languages as to their suitability for smart con-
tract modeling—which we will show on an example from the Business
Process Management (BPM) domain—or even create new languages, its
main purpose is to guide our approach:

We use the smart contract metamodel to design a management and
execution platform for smart contracts, and argue about the distribution
of their state and features required for their proper enforcement (RQ1).

3

Chapter 1. Introduction

Blockchain Technology

Smart Contract

Law Tamper-Proof
Code

Smart Contract Model

DApp

formalized as

supports

RQ1

RQ2

Smart Contract
Metamodel

describes

enforced by

Figure 1.2: Overall approach of this thesis (shaded background) inte-
grated with the structure of smart contracts

Furthermore, we transfer the operational semantics of smart contracts to
the peculiar properties of DApps like their transaction-driven runtime and
their protocol-induced isolation. The goal is to explore whether a faithful
implementation of the semantics is possible and feasible (RQ2).

As a theme throughout this thesis, we will draw inspiration from the
BPM domain [112, 31]. Ultimately being concerned with behavioral mod-
els as well, and running into similar issues when modeling and executing
processes, we aim at leveraging existing work and draw from decades of
expertise which has yet to be established for smart contracts. Indeed, there
is a growing interest in blockchain technology from the area in its own
right, which complements our efforts directly [83].

1.3 Thesis Structure

The thesis is structured as follows:

Chapter 2 (Preliminaries)

This chapter conveys the fundamental knowledge required to appre-
ciate the main contents of this thesis. First, the notion of legal con-
tracts, their formalization, and how they eventually lead to smart
contracts are outlined. Second, blockchain technology and DApps
are introduced, with a focus on the latter’s capabilities and restric-
tions. Lastly, the domain of BPM is briefly introduced, with a focus
on the areas that overlap with how smart contracts may be managed
and enforced.

Chapter 3 (Smart Contract Modeling)

In this chapter, a smart contract metamodel is compiled which en-
capsulates the major smart contract components and their relation-

4

1.3. Thesis Structure

ships. The operational semantics are introduced and explained using
a concrete example model which is subsequently used throughout
the thesis. Lastly, the metamodel is used to assess the suitability of
Business Process Model and Notation (BPMN) choreography dia-
grams for modeling smart contracts.

Chapter 4 (Smart Contract Management Systems)

Based on the requirements the smart contract metamodel and se-
mantics pose, the Smart Contract Management System (SCMS) ap-
proach is proposed in this chapter. The SCMS draws inspiration from
the analogue Business Process Management Systems (BPMSs) from
the BPM domain, in particular when it comes to transferring ex-
isting enforcement approaches to blockchain networks and DApps.
The general design principles as well as functional requirements of
SCMSs are then discussed in detail.

Chapter 5 (Proof-of-Concept Implementation)

In this chapter, parts of the SCMS architecture are implemented in a
prototype called Mantichor. This includes a web-based frontend ap-
plication allowing users to model smart contracts as BPMN chore-
ography diagrams, which are then deployed and enforced by DApps
using adapters to two different blockchain networks. In this chap-
ter, the choreography diagram modeling framework chor-js, which
was implemented as part of this thesis and has since gained some
recognition in its own right, is also briefly presented.

Chapter 6 (Autonomous Actions on Blockchain)

Being able to autonomously enforce certain parts of the contractual
agreement is one of the major novelties of smart contracts. DApps,
however, possess properties which make it difficult to correctly im-
plement smart contract semantics without working around restric-
tions or sacrificing some of their integrity guarantees. In this chap-
ter, several such approaches are introduced and evaluated as to their
feasibility in practice.

Chapter 7 (Time on Blockchain)

Time is an important aspect for contracts, since terms and actions
are often tied to specific temporal constraints. However, the pecu-
liar properties of blockchain technology often prohibit the use of
traditional methods of telling the time in computer systems. In this
chapter, the aspects of time in blockchain networks and methods
for enforcing temporal constraints autonomously in DApps are ex-
plored.

Chapter 8 (Related Work)

While smart contract enforcement using blockchain technology is
still in its infancy, there is already an expanding body of related

5

Chapter 1. Introduction

work. The most important approaches from literature will be pre-
sented, including also the BPM domain, and compared to the work
done in this thesis.

Chapter 9 (Conclusion)
In the concluding chapter, the results of this thesis are discussed
in detail, with a critical focus on whether the research questions
could be answered. Furthermore, future challenges and remaining
gaps in research which would warrant a closer look in the future
are identified.

6

Chapter 2

Preliminaries

This thesis is built on a substantial body of existing literature as well as on
research that is still ongoing. In this chapter, themain ideas and definitions
which shaped our work and are critical for its general understanding are
introduced.

We present a notion of smart contracts in Sect. 2.1, focusing on its ori-
gins in law. Decentralized Applications (DApps) are introduced in Sect. 2.2
alongside the foundations of blockchain technology. Lastly, we present
certain areas of Business Process Management (BPM), in particular the
modeling of choreographies, in Sect. 2.3.

In this chapter and the remainder of this thesis, we will use standard
mathematical notation for our formal definitions [53], with some excep-
tions and additions: [𝑎, 𝑏] ∶= {𝑥 ∈ ℕ | 𝑎 ≤ 𝑥 ≤ 𝑏} denotes the inclusive
interval from 𝑎 ∈ ℕ to 𝑏 ∈ ℕ in the natural numbers. Given a set 𝑆, then
(𝑆) denotes its power set, and 𝑆∗ denotes the set of all tuples of arbitrary
length over 𝑆. Given a tuple 𝑇 = (𝑠1, ..., 𝑠𝑛) ∈ 𝑆∗, we say 𝑠 ∈ 𝑇 if and only if
𝑠 is an element of the tuple, that is, ∃𝑖 ∈ [1, 𝑛] ∶ 𝑠𝑖 = 𝑠. An empty tuple is
equal to the empty set ∅.

2.1 Smart Contracts in Law

Legal contracts are a fixture in law, and endeavors towards their formal-
ization eventually led to the common notion of smart contracts.

2.1.1 Legal Contracts

Legal contracts are a standard part of every lawyer’s repertoire, and even
though countless contracts are formed each day, their exact definition
and meaning is surely a matter of far-reaching philosophical considera-
tions [25]. In this thesis we follow current practices in law as documented
by the widely used reference work Black’s Law Dictionary, and adopt a

7

Chapter 2. Preliminaries

two-layer view: the contract document on the one, and the binding legal
agreements it represents on the other hand [37].

Definition 1 (Legal Contract). A legal contract is “an agreement between
two or more parties creating obligations [and other legal relations] that
are enforceable or otherwise recognizable at law.” [37] ⋄

To avoid ambiguity in the remainder of this thesis, we will consistently
refer to those types of contracts with the qualifier “legal” in distinction to
“smart” contracts.

A legal contract is intangible in nature and does not necessarily possess
any physical representation. It can be formed orally, for example. The par-
ties to a contract—both individuals as well as entities and organizations—
usually have an interest in fixing the terms of the contract before it be-
comes legally binding, though. This is done using contract documents:

Definition 2 (Contract Document). The contract document puts in writ-
ing, either digitally or physically, the terms of a legal contract between
two or more parties. ⋄

The contract document may also be used as a template, being cus-
tomized and personalized for specific scenarios and participants. A legal
contract is entered when all parties sign or otherwise acknowledge the
contract document in a way that demonstrates their intention to do so.

Legal contracts and contract documents must be viewed in the con-
text of their local jurisdiction and local customs, that is, it must be “valid
under the law of the residence of the party wishing to enforce the [legal]
contract” [37]. The same contract document may have vastly different in-
terpretations depending on which country or region it is drafted and en-
tered in. Laws govern how contracts should look, which clauses they may
contain, and which implicit terms, for example regarding customer pro-
tection, are always required. These overarching rules are also calledmeta-
rules [59].

As already insinuated, there are several steps to take in order to enter
a legal contract. It does not end there, though, as all parties still need to
perform their obligations, disputes need to be resolved, and eventually
the legal contract may terminate. The different stages in a legal contract’s
existence are subsumed in the contract lifecycle. In this thesis, we adopt
the contract lifecycle as presented byGovernatori et al. (see Fig. 2.1), which
has the following phases [39]:

Negotiation
The parties gather and take the decision to enter into an agreement
in pursuit of a common goal. The terms of the agreement are dis-
cussed to make sure all parties eventually agree to enter into the
agreement.

8

2.1. Smart Contracts in Law

Negotiation

Formation

Storage

Performance

Monitoring

Modification

Dispute Resolution

Termination

Notarization

Figure 2.1: Lifecycle of a legal contract as adapted from Governatori
et al. [39]

Formation
The negotiated terms are fixed in legal writing as a contract docu-
ment that may cross-reference laws or general terms and conditions.

Notarization
The finished contract document is verified and signed. Possibly, wit-
nesses are present to attest that all parties intentionally entered the
ensuing legal agreement.

Storage
The contract is stored and remains accessible for reference.

Performance
The parties perform the actions necessary to fulfill their obligations
as part of the legal contract.

Monitoring
To make sure that all parties correctly and honestly perform the
contract, mutual monitoring is used. In case of breaches of contract
countermeasures may be taken, that is, modification, dispute reso-
lution, or termination.

Modification
The legal contract may be appended and modified freely as long as
all parties agree, for example in reaction to changed circumstances.

Dispute Resolution
In case of conflicts which can not be easily resolved the parties may
seek an arbitration or litigation process or find amutual way to settle
the legal contract.

Termination
Lastly, a legal contract is terminated when the parties have fulfilled

9

Chapter 2. Preliminaries

all of their obligations, or agreed to end their relationship prema-
turely.

Of course, these phases are not necessarily in order or even exclusive
to each other, as shown in the flowchart in Fig. 2.1. However, they give
an intuition as to which phases a legal contract goes through from nego-
tiation to termination. We will use the contract lifecycle throughout the
thesis for both legal as well as smart contracts—although the adoption of
smart contract may eventually yield new or altered phases, current re-
search suggests that the contract lifecycle remains largely applicable as of
today [39].

2.1.2 Formalization of Legal Contracts

A contract document is, for all intents and purposes, a formal document
owing to its complicated rule-based structure and language. Legal English,
or legalese [37], is often regarded to be its own language entirely, having
distanced itself from colloquial and spoken English over centuries. In the
context of smart contracts, however, formalization rather refers to achiev-
ing a degree of mathematical preciseness readable and analyzable for ma-
chines [105].

Legal Relations

When parties enter into a legal contract, they are subject to the legal rela-
tions given by the terms of the contract document. There are various types
and categorizations of legal relations in literature [27]. In this thesis, we
adopt the seminal categorization of legal relations (see Fig. 2.2) according
to Hohfeld, who discerns norms of conduct and norms of power [48]:

Definition 3 (Norms of Conduct). Let 𝐴 and 𝐵 be two parties to a contract,
and Φ be an action describing some concrete behavior or interaction of 𝐴
or 𝐵. Then there are four norms of conduct relating to Φ:

• RightA,B(Φ), the right of 𝐴 that 𝐵 performs Φ,

• ObligationA,B(Φ), the obligation of 𝐴 to perform Φ in face of 𝐵,

• No-rightA,B(Φ), the no-right of 𝐴 to Φ performed by 𝐵, and

• PermissionA,B(Φ), the permission of 𝐴 to perform Φ in face of 𝐵.

Some authors additionally recognize the notion of liberties, LibertyA,B(Φ) ≡
PermissionA,B(Φ) ∧ PermissionA,B(¬Φ), which emphasize that a party has
the express choice to accept or decline performing an action [40, 6]. ⋄

Norms of conduct are fundamentally related to each other as shown in
Fig. 2.2a. A correlative legal relation is one that must exists in conjunction
with another. For example, the right RightA,B(Φ) of𝐴 to an actionΦ against

10

2.1. Smart Contracts in Law

RightA,B(Φ)

PermissionB,A(Φ)

No-rightA,B(Φ)

ObligationB,A(Φ)

opposite

opposite

correlative correlative

(a) Norms of conduct

PowerA,B(Φ)

ImmunityB,A(Φ)

DisabilityA,B(Φ)

LiabilityB,A(Φ)

opposite

opposite

correlative correlative

(b) Norms of power

Figure 2.2: Legal relations according to Hohfeld [48]

𝐵 directly implies there is an obligation ObligationB,A(Φ) of 𝐵 to perform
or allow the performance of said action Φ against 𝐴. The same is true
for no-rights and permissions, respectively. Further, legal relations can be
opposites. A right is the opposite of a no-right, and an obligation is the
opposite of a permission.

In addition to norms of conduct, there are norms of power. They char-
acterize situations in which a participant may extinguish and create legal
relations:

Definition 4 (Norms of Power). Let 𝐴 and 𝐵 be two parties to a contract,
and Φ be an action describing some concrete behavior or interaction of
𝐴 or 𝐵. Then norms of power are legal relations allowing a party to cre-
ate, modify, and extinguish other legal relations. There are four norms of
power:

• PowerA,B(Φ), the power of 𝐴 to impose Φ on 𝐵,

• LiabilityA,B(Φ), the liability of 𝐴 to be imposed to Φ by 𝐵,

• DisabilityA,B(Φ), the disability of 𝐴 to impose Φ on 𝐵, and

• ImmunityA,B(Φ), the immunity of 𝐴 to be imposed to Φ by 𝐵. ⋄

Norms of power are similarly connected to each other as norms of con-
duct, a power being correlative to a liability and a disability being correl-
ative to an immunity (see Fig. 2.2b). That is, for example, if 𝐴 has a power
PowerA,B(Φ) over 𝐵 regarding an action Φ, then 𝐵 is liable as to that action.
For example, a common term in contracts is that a party is liable for all
damages should they occur.

11

Chapter 2. Preliminaries

More elaborate systems to capture legal relations have been proposed.
For example, Crawford and Ostrom extend legal relations to institutions,
and specify them in the so-called ADICO format [28]: Attributes specify
for whom the legal relation holds, which is represented by a deontic mod-
ifier expressing the proposed conduct towards a concrete aim—the “I” in
ADICO—, under certain conditions and with or else sanctions. More re-
cently, Pace and Schneider developed a language for composing and argu-
ing about deontic notions [89].

Legal Ontologies

Ontologies are a means of structuring knowledge in certain areas of in-
terest, and are an important gateway to mediate semantics and meaning
between human beings and machines [19]. In law, Legal Ontologies (LOs)
capture legal concepts:

The Legal Knowledge Interchange Format (LKIF) approach introduces
a multi-level core ontology used for interchanging generic legal informa-
tion between different legal knowledge systems [47]. Kabilan and Johan-
nesson use a similar multi-tier ontology framework for modeling contract
knowledge for the semantic web [56]. Legal contracts are modeled as Uni-
fied Modeling Language (UML) class diagrams on three layers relating to
the high-level contract terms down to a template view with some support
for performance and enforcement concepts.

More specialized approaches such as the Unified Foundational On-
tology for Legal Relations (UFO-L) embrace standard deontic notions as
posed by Hohfeld [48] and Alexy [6] and focus on small subsets of knowl-
edge, in this case legal relations and how they relate parties [40]. There
is no concept of time or the passing of the same; instead, each UFO-L in-
stance represents a static snapshot of the situation at a concrete point in
time.

LOs lift the legal meaning and the legal implications of a legal contract
as posed by the contract document from their prosaic form to a format
accessible by machines. This makes them an essential help in conceptu-
alizing and modeling smart contracts, especially since they abstract from
complex and non-obvious concepts like open-textured terms in legal prose
such as “without delay”, which are difficult to capture precisely and not are
immediately enforceable by machines [39].

2.1.3 Smart Contracts

As the name suggests, smart contracts not just correspond to a legal agree-
ment like legal contracts, but provide some additional value or features.
The initial idea for smart contracts dates back decades when electronic
contracting was becoming more and more commonplace [73, 104]. Most
of these early notions of smart contracts rely on two observations:

First, that the validity and performance of legal contracts can be en-
hanced via cryptographic methods. For example, a contract documentmay

12

2.1. Smart Contracts in Law

Parameters
apply toapply to

Legal Prose Code
link

Figure 2.3: Components of the Ricardian triple

be electronically signed and encrypted to exchange it digitally, or the per-
formance of certain actions may be certified digitally. Grigg introduced
the concept of the Ricardian contract in an early electronic payment sys-
tem based on this observation [41]. Basically, a Ricardian contract is a text
file that is cryptographically signed by a legal issuer and expresses some
value to its holders.

Second, that legal contracts contain operational aspects which can be
automated using software systems. For instance, recurring payments as
part of a subscription are often susceptible to this. The Ricardian contract
was further refined to this end to form Ricardian triples (see Fig. 2.3), which
propose three major components [24, 23]:

Code
Code is written in an executable programming language, possibly
a Domain-Specific Language (DSL), and allows software systems to
automate certain parts of the underlying legal contract. This com-
ponent captures the operational aspects of legal contracts.

Legal Prose
Some clauses of legal contracts, such as open-textured terms or basic
norms of power mentioned above, do not necessarily contain imme-
diately actionable descriptions of behavior for a machine. Such non-
operational aspects are intangible, ambiguous, or interpretive in na-
ture.

Parameters
Lastly, parameters represent the results of negotiations on the level
of a concrete, binding agreement. The code and legal prose compo-
nents may be seen as templates, which get finalized for a concrete
purpose by fixing the parameter values, e.g., the price of a train ticket
or a custom deadline.

Figure 2.3 shows the interplay of the three components. Legal prose
and code are interlinked in someway, e.g., by references or hyperlinks, and
are both influenced by parameters. This model, lastly, mainly influenced
the general definition of smart contracts by Clack et al., which we will use
throughout this thesis when referring to smart contracts:

Definition 5 (Smart Contract). “A smart contract is an automatable and
enforceable agreement. Automatable by computer, although some parts

13

Chapter 2. Preliminaries

may require human input and control. Enforceable either by legal enforce-
ment of rights and obligations or via tamper-proof execution of computer
code.” [24] ⋄

The existence of smart contracts has manifold implications for the le-
gal domain, since a rising degree of automation and enforcement via code
would in the long run diminish the importance of legal enforcement. From
a conceptual point of view, legal experts also differ on whether smart con-
tracts actually fit the definition of a legal contract, alluding primarily to
whether they properly match the contract lifecycle and fulfill the legally
required steps to enter into a binding agreement [111].

Some of this debate may stem from the conflation of DApps, which
are also sometimes called smart contracts [114] (see Sect. 2.2), with the
legal concept of a smart contract as described above. Whereas the former
is ultimately a means to implement the tamper-proof enforcement portion
of the smart contract, the latter is strictly aligned with legal contracts in
itself. It is out of scope of this thesis to assess any philosophical conflicts
regarding the exact placement of smart contracts within the legal domain.

2.2 Blockchain Technology

The term blockchain technology encapsulates the frameworks and proto-
cols surrounding the implementation and use of blockchains as introduced
by Bitcoin [85], and is considered to be a concrete example for the more
general Distributed Ledger Technology (DLT). Blockchain technology has
since grown frommerely handling cryptocurrency to supporting the trad-
ing of generic assets, andmanagingDApps, applicationswhose entire code
and state is persisted as data within a blockchain [18].

In this section, we provide a high-level overview and formalization of
a common architecture for blockchains and blockchain networks, as well
as the lifecycle of transactions. The formalization is then used to introduce
the concept of DApps and their peculiar properties, along the widely-used
oracle pattern to deal with the isolation of the blockchain network.

2.2.1 Blockchain Data Structure

The fundamental data structure at the core of blockchain technology is
the blockchain, which provides an append-only data store built around
transactions. Blockchains have an innate temporal aspect, which we will
capture using a discrete time model of timestamps:

Definition 6 (Timestamp). A timestamp 𝑡 ∈ ℕ specifies a distinct point in
time. An increased timestamp 𝑡 + 1 ∈ ℕ marks the passing of a uniform
unit of time. ⋄

We specifically chose the natural numbers ℕ as our time domain in this
thesis for its simple arithmetic properties, and the fact that most computer

14

2.2. Blockchain Technology

systems rely on a notion of timewhich directlymaps toℕ, e.g., the number
of seconds since theUnix epoch for Unix time. Then a blockchain is defined
as follows:

Definition 7 (Blockchain). A blockchain  = (𝐵0, ..., 𝐵𝑛) is a cryptograph-
ically linked list of 𝑛 numbered blocks. A block 𝐵𝑖 = (𝑡𝑖 , 𝑇𝑖) with block
number 𝑖 contains

• the block timestamp 𝑡𝑖 ∈ ℕ, which strictly increases from the previ-
ous block, 𝑡𝑖−1 < 𝑡𝑖 ∀ 𝑖 ∈ [1, 𝑛], and

• an ordered list of transactions 𝑇𝑖 ∈ 𝕋∗ where 𝕋 is the set of all trans-
actions, that is, instructions to the blockchain.

The first block 𝐵0 is called the genesis block and does not contain any trans-
actions, i.e., 𝑇0 = ∅. ⋄

In practical implementations, blocks are limited in how many transac-
tions they can contain for storage size reasons. The delay between subse-
quent blocks, sometimes called block time, thus mainly determines how
many transactions and how much data the blockchain can hold in total:

Definition 8 (Block Delay). Let 𝐵𝑖 with 𝑖 > 0 be a block of a blockchain =
(𝐵0, ..., 𝐵𝑛) other than the genesis block. Then the block delay 𝑑𝑖 ∶= 𝑡𝑖 − 𝑡𝑖−1
is the amount of time passed between block 𝐵𝑖 and its predecessor. ⋄

The resulting blockchain structure is shown on a timeline in Fig 2.4.
Using a combination of cryptographic methods, the blockchain data struc-
ture guarantees integrity of its contents. Each block on its own can be val-
idated very quickly depending on the concrete implementation, e.g., by
computing the number of trailing zeroes of its hexadecimal hash value
against a network-mandated threshold in Ethereum [114]. Inversely, this
makes it exceedingly expensive from a computational perspective to cre-
ate valid new blocks, as they can only be found by repeatedly changing a
specific section of the block until a fitting hash is produced. This reduces
the probability of an adverse agent being able to manipulate blocks.

This integrity mechanism in conjunctionwith the cryptographical link
connecting a block and its predecessor, i.e., storing the previous block’s

B0

Time

t0 ti

Block Bi Bi+1

di+1

ti+1

...Blockchain ... Bn

tn

Transactions Ti

Figure 2.4: Structure of a blockchain

15

Chapter 2. Preliminaries

hash, effectively make blockchains immutable. It is easily detectable that
a blockchain has been tampered with by validating the integrity of all
blocks, as any change in a block breaks the chain of hashes. Thus, the only
way of “adding” data to or “modifying” data in a blockchain is by append-
ing a new block to its end, essentially creating an extended blockchain.
This procedure is generally called mining:

Definition 9 (Mining). Let  = (𝐵0, ..., 𝐵𝑛) be a blockchain and 𝐵𝑛+1 =
(𝑡𝑛+1, 𝑇𝑛+1) be a new block. Then the new block can be appended to form-
ing a new, extended blockchain ′ = (𝐵0, ..., 𝐵𝑛, 𝐵𝑛+1), iff

• 𝐵𝑛+1 fulfills all integrity requirements, i.e., it has a valid hash and
includes a hash of the previous block 𝐵𝑛,

• 𝑡𝑛 < 𝑡𝑛+1, that is, the new block was created after 𝐵𝑛, and

• all transactions 𝑡𝑥 ∈ 𝑇𝑛+1 are properly signed and valid with respects
to, i.e., there is no previous transaction which in any way conflicts
with 𝑡𝑥 . ⋄

Transactions may have different purposes, from simply storing some
attached payload data to performing calculations on already existing data.
For example, initially storing the information attached to a train ticket in a
blockchain may be one transaction, and setting its validity state to “used”
may be another. The overall state of the data stored in the blockchain is
thus given by the subsequent application of all contained transactions in
order.

In the scope of this thesis, we abstract from how data is attached to
transactions and how the stored data can be addressed in detail. Block-
chain implementations like Ethereum, for instance, will employ data struc-
tures like Merkle trees which allow for efficient storage and retrieval of
data without having to replay all transactions constantly [114].

2.2.2 Blockchain Networks

Blockchains are stored and distributedwithin networks. Such a blockchain
network is formed by a set of nodes run by individuals, organizations, or
other entities who have a common interest inmaintaining some data using
a blockchain, e.g., a ledger of account balances of some cryptocurrency like
Bitcoin.

Definition 10 (Blockchain Network). A blockchain network  = (𝑁, 𝐴)
consists of a set of nodes 𝑁 , which are linked to form a connected net-
work, and accounts 𝐴. Each node owns a replica of the currently accepted
blockchain  . Further, a global transaction pool 𝑇 ⊆ 𝕋 holds transac-
tions which are signed by an account and pending to be included in a
subsequent extended blockchain. ⋄

16

2.2. Blockchain Technology

Node n1

n2

n3

Blockchain Transaction
pool

New block

New transaction

Propagate
blocks

Propagate
transactions

tx1
tx2

tx1
tx2
tx3

tx3

tx1
tx2

Figure 2.5: Excerpt from a blockchain network showing three nodes and
their connections, as well as block and transaction propagation

Blockchain networks are inherently distributed systems and there is no
central authoritative entity (see Fig. 2.5). The above definition abstracts
from some of the resulting complications: For one, each node actually
maintains its own transaction pool and new transactions are propagated
within the network, only virtually achieving a global transaction pool 𝑇 .

Arguably the major contribution of blockchain technology in general
is consensus, that is, figuring out exactly which blockchain is currently
accepted across the network. Such consensus is driven by the integrity and
immutability properties of the blockchain data structure. Starting from an
initial empty blockchain containing only the genesis block, nodes take on
the role of miners:

They collect transactions from the transaction pool and assemble them
into a new block, yielding an extended blockchain ′. The new block is
propagated within the blockchain network, validated by other nodes, and
′ is eventually accepted by amajority of the network as the current block-
chain . All of this is backed by an incentive mechanism, which rewards
miners of new blocks with cryptocurrency partly generated and partly
paid for by the senders of transactions.

It could happen that multiple conflicting blockchains exist simultane-
ously if miners create and propagate new blocks at the same time. These
conflicting blockchains are called forks, and one needs to be chosen above
all others eventually. One approach is to accept longer blockchains over
shorter blockchains based on the number of blocks, which makes it un-
likely that forks exist for an extended period of time. Still, a practical
consequence is that recently included transactions may be “removed” by
switching to a fork, which is why it is advisable to wait for a certain period
of time, the confirmation time (see Sect. 2.2.3), until acting upon a transac-
tion [117].

17

Chapter 2. Preliminaries

Of course, the above formalization is an abstraction. Many consensus
algorithms like Proof-of-Work (PoW), Proof-of-Stake (PoS), and Practical
Byzantine Fault Tolerance (PBFT) exist, which dictate how the network
approaches mining, block validation, forks, and other things in detail [16].
More traditional blockchains like Bitcoin [85] and Ethereum [114] follow
a very transparent approach based on equal rights, that is, all nodes 𝑁
have full access to all the blockchain’s contents and pending transactions,
and can participate in the mining procedure. In practice, the strictly public
nature of blockchain networks is often not desirable for organizational or
confidentiality reasons, which is why permissioned blockchain networks
were devised [90]:

Definition 11 (Permissioned Blockchain Network). A blockchain network
 = (𝑁, 𝐴) is permissioned, if some nodes in 𝑁 have elevated rights over
the others. These rights may, for example, pertain to submitting transac-
tions, participating in the mining and consensus procedures, or accessing
data stored in the blockchain. ⋄

Permissioned blockchain networks, like those built on Corda [45] or
Hyperledger [9], sacrifice some of the fundamental properties of their pub-
lic counterparts, invoking disparity and the need for trust between nodes.
Consortium blockchain networks are an example for permissioned block-
chain networks, e.g., formed by a consortium of railway companies to
manage cross-border ticketing. In most settings, only nodes part of the
consortium would be allowed to append new transactions to the block-
chain. Some consortium blockchain networks may even be hidden entirely
from non-privileged members.

2.2.3 Transaction Lifecycle

As already hinted above, a transaction 𝑡𝑥 ∈ 𝕋 passes through several
phases before it is safely included in the currently accepted blockchain
 of a blockchain network  = (𝑁, 𝐴). These phases are subsumed in
the transaction lifecycle. While there are several views on which phases
the transaction lifecycle should include depending on which blockchain
network it captures, we adopt a very simple and minimal version loosely
based on Xu et al. [117] containing only four phases (see Fig. 2.6):

Created
The sender locally created the transaction 𝑡𝑥 . It encapsulates the
payload and all other necessary information according to the in-
tent of the sender in the format required by the target blockchain
network. Further, 𝑡𝑥 is signed using a blockchain account from 𝐴
belonging to the sender.

Submitted
The sender submitted 𝑡𝑥 to the blockchain network via a block-

18

2.2. Blockchain Technology

Local

Created Submitted Included Confirmed

Blockchain Network

Figure 2.6: Lifecycle of a transaction

chain node. The transaction 𝑡𝑥 has subsequently been propagated
and placed in the global transaction pool, i.e., 𝑡𝑥 ∈ 𝑇 .

Included
The transaction 𝑡𝑥 was picked up by a miner and has been included
in an extended blockchain ′.

Confirmed
The extended blockchain ′ containing 𝑡𝑥 is widely accepted as the
current blockchain  within the blockchain network, and it is im-
probable that it will be displaced by the emergence of a longer fork.
When this phase is reached depends on the individual risk tolerance
of the sender.

The transaction lifecycle gives rise to a number of timestamps charac-
terizing a single transaction:

Definition 12 (Transaction Timestamps). The exact time at which a trans-
action 𝑡𝑥 ∈ 𝕋 entered the Created, Submitted, Included, or Confirmed life-
cycle state is referred to as the creation, submission, inclusion, or con-
firmation timestamp of 𝑡𝑥 , respectively. We will refer to the submission
timestamp simply as the transaction timestamp 𝑡𝑡𝑥 ∈ ℕ. ⋄

Note that this lifecycle mirrors only the scenario in which a transac-
tion is successfully confirmed eventually. In practice, transactions may be
dropped or rejected by the network for several reasons, which has to be
considered by a sender [117]. Also, senders have to take into account the
variable delays between the lifecycle phases, which depend on the average
block time of the blockchain network and the monetary incentives asso-
ciated with a transaction [118]. In this context, the inclusion delay is an
important measure:

Definition 13 (Inclusion Delay). Let 𝑡𝑥 ∈ 𝕋 be a transaction contained in a
block 𝐵𝑖 of a blockchain, i.e., 𝑡𝑥 ∈ 𝑇𝑖 . Then the inclusion delay 𝑑𝑡𝑥 ∶= 𝑡𝑖 −𝑡𝑡𝑥
of 𝑡𝑥 is the delay between its submission timestamp 𝑡𝑡𝑥 and its inclusion
timestamp, which is equal to its including block’s timestamp 𝑡𝑖 . ⋄

2.2.4 Decentralized Applications

Many second-generation blockchain networks introduced the notion of
DApps under different names: “smart contracts” in Ethereum [114] and
Tezos [38], “chaincode” in Hyperledger [9], and “CorDapp” in Corda [45],

19

Chapter 2. Preliminaries

to name a few. For disambiguation reasons, especially in distinction to
smart contracts as a legal concept, we will consistently refer to them as
DApps in this thesis, and define them as follows:

Definition 14 (Decentralized Application). A Decentralized Application
(DApp) Ð is a uniquely identified computer programwhose code and state
is entirely persisted as data in a blockchain . DApps are called using
transactions and executed during the mining procedure. Their interface
functions as well as their input and output parameters are stated in the
Application Binary Interface (ABI) of the DApp. ⋄

DApps are developed using general-purpose programming languages
like Java, or domain-specific languages like Solidity tailored to certain
blockchains. Interacting with a DApp is inherently asynchronous: A user
sends a transaction, and only receives a result once the transaction has
been successfully included within the blockchain network.

A DApp Ð needs to be initially deployed to a blockchain using a spe-
cial kind of transaction carrying the code as its payload. During themining
process, this code is added to the blockchain, Ð is initialized, and a unique
identifier—called address—is created, which must be used to identify Ð in
future transactions. The address is also used by other DApps to interact
with Ð, allowing the development of complex interacting systems.

DApps must adhere to a number of restrictions, which we express in
three fundamental properties:

Immutability Property
As the code of a DApp Ð is stored as data in the blockchain and
blockchains are inherently immutable, it can not be changed once
deployed. While this can certainly be regarded as a feature, assur-
ing participants that Ð can not be manipulated, it also places high
demands on the maturity of individual DApps intended for use in
production.
This has to be taken into account in all stages of DApp development.
Verification techniques like model-checking may be used to ascer-
tain that no mistakes or unintended functions were introduced [78].
It is also possible to use proxy and adapter patterns involving mul-
tiple linked DApps to allow replacement of certain components by
changing the pointers between them, which are part of the state and
not the code of the DApps [61].

Isolation Property
Every block of a blockchain, including transactions and other data,
needs to be independently verifiable by all nodes of a blockchain net-
work to achieve integrity [115]. This is only guaranteed to be pos-
sible if all the data a DApp uses is contained within the blockchain.
This directly results in a strict isolation property: DApps can not
directly access data or services outside the blockchain, since those
may be tampered with or may cease to exist.

20

2.2. Blockchain Technology

Non-Continuity Property
A DApp Ð is only executed during the mining procedure when an
atomic transaction 𝑡𝑥 targeting one of its exposed functions accord-
ing to the ABI is being included. Thus, Ð essentially lies dormant
between subsequent blocks. That is, neither can its state be changed
between blocks, nor can it implement continual behavior such as
busy waiting or polling. Algorithms requiring these kinds of be-
havior need to be adapted to fit this transaction-driven execution
scheme.

2.2.5 Oracle Patterns

DApps may require access to data that is maintained outside of the block-
chain despite the isolation property, for example currency exchange rates
or timestamps provided by a time server. Oracles are a means to allow ac-
cess to such external data from within a DApp [116], and many variants of
the pattern have since been devised [84, 80, 113]. The idea is not to break
the isolation property, but to circumvent it using the regular mechanisms
available to DApps.

Bl
oc

kc
ha

in

Consumer DApp

Oracle DApp

Oracle Provider

Data Update

Data Value

1a

1b

1c
2a

2b

Update Data

Transaction
Call
Return

Legend

(a) Storage oracle

Bl
oc

kc
ha

in

Consumer DApp Oracle DApp

Oracle Provider

Event L.

Data Update

Data Value

Callback

1a

1b

2a

2b
Emit

Query

3a

3b

Listen

Transaction
Call
Listener

Legend

(b) Request-response oracle

Figure 2.7: Architecture and behavior of the storage and request-re-
sponse oracles

21

Chapter 2. Preliminaries

One of the most well-known types of oracles is the storage oracle (see
Fig. 2.7a). Here, an external oracle provider, which can be an organization
or a software system maintained by some entity operating independently
of the blockchain network, constantly keeps track of the external data.
When the data is updated and its value changes (1a), the oracle provider
sends a transaction containing the new value as the payload to a dedicated
oracle DApp (1b). The oracle DApp stores this value as part of its state
on the blockchain (1c). The exact address of the oracle DApp is publicly
known, and it provides interfaces to acquire the most recent value of the
data it possesses. As such, consumer DApps can query the oracle DApp
(2a), which immediately returns the queried value (2b).

The second oracle type is the request-response oracle (see Fig. 2.7b).
Again, there is an oracle provider and an oracle DApp. In this case, though,
the oracle provider reacts to updates of the data (1a) by storing the value lo-
cally and thus off-chain (1b). To acquire the current value consumerDApps
call the oracle DApp (2a), which then emits a query using the blockchain
network’s event mechanism (2b). Such an event, in short, can be regarded
as a flag that outside entities may observe. The event further contains the
address of the consumer DApp. The oracle provider picks up the event
(3a), and sends the value of the data directly to the consumer DApp in a
new transaction (3b).

Actual oracles may of course deviate from these patterns. OrFeed1, for
instance, provides current cryptocurrency exchange rates using a storage
oracle approach, extended by paid tiers of subscription services. Maker2
provides similar services, but adds a way of aggregating oracle values in
a so-called “medianizer” component. Provable3 is perhaps the most well-
known request-response oracle, including optional verification features
and the option to query arbitrary external services by providing a URL.
Oracle providers may also organize in networks themselves, to avoid con-
centration of power in a single oracle provider [4]. A survey of these and
other approaches has recently been given by Al-Breiki et al. [5].

2.3 Business Process Management

Businesses offer services or products to their customers, which rely on cer-
tain activities being performed both internally and in exchangewith exter-
nal partners. These activities follow explicit or implicit guidelines, gener-
ate data artifacts, and are restrained by rules; all things considered forming
a business process. BPM encapsulates the large body of methods, research,
and techniques towards identifying, modeling, enacting, and evaluating
those business processes [112]. In this section, selected concepts used in
1https://www.orfeed.org/
2https://developer.makerdao.com/feeds/
3https://provable.xyz/

22

https://web.archive.org/web/20201202004939/https://www.orfeed.org/
https://web.archive.org/web/20210419161012/https://developer.makerdao.com/feeds/
https://web.archive.org/web/20210223164149/https://provable.xyz/

2.3. Business Process Management

BPM are introduced, with a particular focus on business process choreog-
raphies.

2.3.1 Business Processes

A business process is characterized by a set of activities, which are per-
formed in a coordinated fashion within one organization [112]. The activ-
ities may be performed by human actors or software systems, and collec-
tively work towards reaching a business goal. The goal of BPM is to make
processes palpable for all stakeholders, to describe them in an understand-
able way, analyze as well as optimize them, and ultimately automate them.
This is generally done using models:

Definition 15 (Process Model). A process model is a blueprint for pro-
cesses containing specifications of activities and their coordination. Co-
ordination often pertains to a causal ordering of activities, but may also
be contingent on process data [94], resource usage and availability [95],
as well as complex event and workflow patterns [96]. ⋄

In BPM, the introduction of processes in organizations follows a cer-
tain structure, the so-called business process lifecycle. Figure 2.8 shows this
lifecycle as described by Weske [112].

The first phase is the combined design and analysis phase. Here, the
business process is properly identified and modeled in the design step.
The result is a processmodel, which serves twomajor purposes: It formally
specifies all components and activities of the process, and can be visualized
and displayed in various degrees of abstraction to convey the process to its
stakeholders. In the analysis step, validation, simulation, and verification
techniques are applied to the business process. These may bring to light
formal or compliance issues which can then be resolved.

In the configuration phase, the automation environment is configured
to support the automation of the process. This includes selecting a fit-
ting system infrastructure, implementing parts of the process in computer

Design

Identification
Modeling

Analysis

Validation
Simulation
Verification

Configuration

System Selection
Implementation
Test and Deployment

Enactment

Operation
Maintenance
Monitoring

Evaluation

Process Mining
Activity Monitoring

Figure 2.8: Business process lifecycle as adapted from Weske [112]

23

Chapter 2. Preliminaries

code, and testing the smooth operation of the result. Once the configu-
ration completes, the process enters the enactment phase, in which it is
operated in production. Carefully monitored and maintained, the process
may be partly automated and executed.

Data from the enactment phase and feedback from persons involved
then flows into an evaluation phase. Process mining may be used to detect
whether the process was actually followed or whether there were devia-
tions to address in the next iteration of the lifecycle.

2.3.2 Business Process Management Systems

Software systems can support organizations in implementing the business
process lifecycle and facilitate their adoption of BPM. The culmination of
this tooling support is the BPMS, which has its roots in early workflow
management systems:

Definition 16 (Business Process Management System). A Business Process
Management System (BPMS) is a software system that supports an orga-
nization in all phases of the business process lifecycle. ⋄

In a recent systematic literature review, Pourmirza et al. analyzed 41
proposals for BPMS architectures, and found that there are fundamental
differences in their scope, design, and level of abstraction. Particularly,
there are multiple reference architectures and no clear preferences when
it comes to adoption. Still, more than a third of the reviewed proposals (15)
were at least partly based on the seminalWorkflowManagement Coalition
(WfMC) reference model. This reference model also inspired the compo-
nent-based BPMS architecture of Dumas et al. [31], which we will adopt
as a reference in this thesis.

An overview of the architecture is shown in Fig. 2.9. In this context it
is important to appreciate that a BPMS is assumed to run within the con-
fines of a single organization, powering their internal processes. The cen-
tral component is the execution engine, which drives the execution of pro-

BPMS

Process
Modeling Tool

Worklist
Handler

Administration &
Monitoring Tools

Execution
Engine

Process Model
Repository

External
Services/BPMSs

Execution
Logs

Figure 2.9: Architecture of a BPMS, adapted from Dumas et al. [31]

24

2.3. Business Process Management

cesses based on process models. It is responsible for deploying processes,
maintaining process data, and distributing work items to automated sys-
tems or human actors within the organization. The latter human actors in-
teract primarily with the worklist handler, which offers interfaces to view
assigned tasks, commit to them, and input data.

Process models are initially created using a process modeling tool, often
employing visual languages like BPMN. The resulting models are stored in
the process model repository, which can be queried by the execution engine
during process execution. All runtime information and events occurring
are also logged in execution logs, which are used by administration and
monitoring tools to allow insights into the current process landscape.

Lastly, a BPMS—or groups of BPMSs partaking in a choreography—
usually does not operate in an isolated environment, but interacts with
other external services or BPMSs. External services may be queried for
data interactions [94], for example. The connection to other BPMSsmainly
serves the realization of business process choreographies.

2.3.3 Business Process Choreographies

Organizations may decide to collaborate with other organizations to opti-
mize their operations, outsource specific tasks, and make use of business
synergies. In BPM, these kinds of collaborations between multiple partic-
ipants are captured using the notion of choreographies, and are described
by choreography models. While ultimately realized via the participants’
local process orchestrations, choreography models take on a more global
view [112]:

Definition 17 (Choreography Model). A choreography model specifies the
interactions, mainly consisting of exchanges of control and data, that a
number of participants agree upon to reach a common business goal. The
choreography model specifies the ordering of said interactions and all as-
sociated constraints on a global level, essentially prescribing interaction
interfaces for each participant. ⋄

A choreography model may be described “as a business contract” [87]
since it essentially contains terms and conditions of a collaboration agree-
ment, and may thus pass through several negotiation and design phases
as well [112]. It is the responsibility of the individual participants to sub-
sequently design their business processes in a way that is compatible with
the choreography model, meaning that the choreography directly affects
the entire business process lifecycle.

Business Process Model and Notation

The de-facto standard modeling framework used in BPM is Business Pro-
cess Model and Notation (BPMN), maintained by the Object Management

25

Chapter 2. Preliminaries

Table 2.1: BPMN choreography diagram notation (excerpt)

Choreography tasks

Interaction

A

B

Interaction

A

B

Request

Interaction

A

B

Request

Response

Gateways Events

Parallel
gateway

Data-based
exclusive gateway

Event-based
exclusive gateway

(None) start event

Timer intermediate
catch event
Conditional intermediate
catch event

(None) end event

Terminate end event

Group (OMG), which provides both a metamodel as well as several dia-
gram types for visualizations on different layers of abstraction, including
choreographies [87].

A subset of the modeling elements available in choreography diagrams
is shown in Tab. 2.1. The general structure is that flow nodes are con-
nected using sequence flows, i.e., directed arrows, which impose a causal
ordering. The main flow nodes are choreography activities, of which we
only consider choreography tasks in this thesis: Each choreography task
models an atomic message exchange between the initiator (the partici-
pant with the white background) and the receiver (the participant with
the gray background). Optionally, message decorators may be used, and a
response message may be specified to form a request-response exchange.
The remaining choreography activities are structural in nature, and allow
for hierarchical diagrams.

The other flow nodes used are gateways and events. Gateways are
used to represent workflow patterns in which the control flow is some-
how influenced. The parallel gateway splits the execution into parallel
branches when used in a diverging direction, and joins them again when

26

2.3. Business Process Management

used in a converging direction. The exclusive gateway similarly forks and
merges execution branches based on an exclusive choice, so only one of
the branches will be chosen. The event-based gateway is only used in a di-
verging direction, and represents the deferred choice pattern, an exclusive
choice based on the occurrence of events [96].

The term “event” is somewhat overloaded in BPMN choreography di-
agrams and carries several meanings. For one, events mark the start of the
choreography. They may also constrain the control flow by waiting for
conditions on message data (conditional event) or the system time (timer
event) to become true. Lastly, events mark the end of a specific execution
branch (end event) or the choreography as a whole (terminate end event).
In case of a termination, it must be assured that all participants are aware
of the termination by being included in some previous message exchange.

Choreography models are usually used for documentation purposes.
The main reason for this is the lack of a central coordinator who could en-
force the choreography [87]. Instead, a choreography is realized through
the business processes of the individual participants, which have to be
compatible to the choreography model. That is, choreography models are
not directly executed, but serve as a guideline for the underlying busi-
ness processes of the participants [70]. The BPMN standard accordingly
defines the semantics of choreography models in terms of a mapping to
collaboration models, which consist of multiple process models and their
interactions.

27

Chapter 3

Smart Contract
Modeling

Proponents of smart contracts are largely unanimous in that their practi-
cal adoption depends—among other factors—on the availability of proper
expression and modeling languages [111, 24]. The smart contract speci-
fications ought to be understandable by all signatories and contain suffi-
cient instructions for their partial or full enforcement via code [103]. Yet,
comprehensively expressing smart contracts in such a way remains an
unsolved challenge, and many approaches are only currently being ex-
plored [44]. Still, it is vital to have a common notion of what exactly con-
stitutes a smart contract to argue about a management system or eventual
enforceability concerns regarding DApps.

For the purpose of this thesis, we resort to aModel-Driven Engineering
(MDE) approach [99]. To this end, we first clarify the taxonomy of smart
contracts, and then reason towards a unifying metamodel of smart con-
tracts (see Sect. 3.1). We give an example of how a smart contract model
directly derived from the metamodel looks like, and introduce an opera-
tional smart contract semantics (see Sect. 3.2). We then apply the meta-
model to an established modeling language from the BPM domain, BPMN
choreography diagrams, and gauge whether they may be suitable to par-
tially or fully specify smart contracts (see Sect. 3.3).

Parts of this chapter are based on various of our previous publica-
tions, in which we (i) introduced a unifying metamodel of legal smart con-
tracts [66], (ii) discussed the appropriateness of BPMN choreography di-
agrams for smart contracts from an operational perspective [70], and (iii)
provided a novel legal interpretation of these diagrams [65].

3.1 Smart Contract Metamodel

The goal of a metamodel in MDE is to “define the relationships among
concepts in a domain and precisely specify the key semantics and con-

29

Chapter 3. Smart Contract Modeling

straints associated with these domain concepts” [99], which we will do in
this section for the notion of smart contracts.

3.1.1 Terminology

The MDE approach is inherently hierarchical, as is evident from standards
like the OMGMeta-Object Facility (MOF) [88], which has four layers from
instance to meta-metamodel. It is helpful to clearly settle the terminology
on every layer of the hierarchy (see Fig. 3.1): A smart contract is a concrete
contractual agreement that is being performed by a number of parties en-
gaging in legal relationships and fulfilling their agreed-upon obligations.
The correct progression of the smart contract is enforced using twomeans:
via tamper-proof execution of code, as well as via legal enforcement per
the law. This understanding directly follows the definition of smart con-
tracts from literature as presented in Sect. 2.1.3.

A smart contract is an instance of a smart contract model, which pro-
vides a general blueprint of the terms that were negotiated by the involved
parties. Essentially, such a smart contract model is similar to a contract
document in traditional legal contracts, which can be replicated arbitrar-
ily often and is then signed to form a legal contract.

The smart contract model in turn is an instance of the smart contract
metamodel. The metamodel describes and interrelates the fundamental
concepts that may be contained in a smart contract model in an abstract
fashion.

Finally, some researchers such as Hazard and Haapio advocate for a
visual approach to smart contract modeling, referring to a general trend
in law to augment legal prose with figures and clearer structuring [44].

Model

Instance

Metamodel

Law

Smart Contract
Metamodel

Smart Contract
Language

Tamper-Proof
Code Execution

Smart Contract
Model

Smart Contract

describesinstance of

describesinstance of

expresses

enforced by

Figure 3.1:Overview of the MDE approach for modeling smart contracts

30

3.1. Smart Contract Metamodel

Metamodels define an abstract syntax, though, and the derived models
are not inherently designed to be visually appealing or even a primary
communication artifact between human stakeholders. For that, smart con-
tract languages are used, which express smart contract models in different
ways, including textual representations, for various purposes.

In the remainder of this chapter, we propose a generic smart con-
tract metamodel encapsulating the current state-of-the-art understanding
of smart contracts. It is not the goal, however, to conceive of a novel smart
contract language, i.e., a DSL—instead, we will directly express smart con-
tract models in terms of their abstract syntax. We will evaluate whether
BPMN choreography diagrams may be an appropriate visual notation at
the end of this chapter.

3.1.2 Reasoning

The early model of the Ricardian triple divided smart contracts into three
distinct components: parameters, as well as operational (code) and non-
operational (legal prose) aspects (see Sect. 2.1.3). This understanding per-
sists in state-of-the-art attempts to implement smart contracts like Corda,
in which a smart contract’s non-operational terms and conditions are at-
tached to an operational implementation as static data which is not nec-
essarily machine-readable [45].

While the presence of such non-operational aspects places a hard limit
on the potential for automation, it is widely considered to be a necessity
given the intricacy of the legal domain [24]. Even more so, many contracts
may be deliberately designed to be ambiguous or leave room for interpre-
tation for reasons such as flexibility and adaptability [39]. We thus adopt
the general distinction introduced in the Ricardian triple for our meta-
model as well, but strive for a high degree of coupling between operational
and non-operational aspects to close the gap between them.

General Structure

The operational side pertains to the behavior of the parties and the smart
contracts itself. Behavior in modeling is typically expressed using behav-
ioral models such as Petri nets [93]. In fact, Petri nets were very early
on discovered as an adequate formalism for the operational side of con-
tracts in the seminal work on electronic contracting by Lee [73]. There,
the authors employ Petri nets to argue about causal and relative tempo-
ral relationships through the structure of the net in addition to first-order
logic specifications.

In general, a Petri net is a directed graph containing two types of
nodes, places and transitions, which are connected via flows [93]. Places
can hold tokens, which are consumed and produced by transitions as spec-
ified by the incoming and outgoing flows, respectively. This relatively sim-
ple model allows the specification of complex workflow patterns like par-

31

Chapter 3. Smart Contract Modeling

a1

Cancel
ticket

a2

Register
departure

l

CANCEL
«Role»

Railway
Company

«Role»
Passenger

«Relator»
Permission to Cancel Ticket

. . .

. . .

. . .

Figure 3.2: Petri net model of a legal relations and associated actions in
the train ticket scenario

allel split, exclusive choice, or deferred choice [96]. The number and loca-
tion of the tokens within the Petri net constitutes its state.

We adopt Petri nets as the basis for our smart contract metamodel fol-
lowing the proposal by Lee [73]. The idea is that places capture the legal
relations between the participants. A place could, for example, be con-
nected to a complex legal relation modeled as an UFO-L instance, captur-
ing also non-operational contract aspects. A token on the place signifies
that the associated legal relation currently holds, and at the same time
enables certain actions—that is, transitions—to be performed. This results
in an interplay of operational and non-operational aspects, which can be
specified in different levels of detail.

Figure 3.2 shows an example of this understanding of a mutual inter-
play between actions and legal relations using Petri nets on an excerpt
from the train ticket scenario. The place 𝑙 represents a legal relation be-
tween the railway company and the passenger, e.g., the right to use a spe-
cific train as modeled using a simplified UFO-L model [40]. This enables
two actions: 𝑎1 to cancel the ticket, and 𝑎2 which registers the departure
of the train and validates the ticket.

Requirements

Of course, smart contracts do not only rely on control flow constructs and
may require more expressive modeling elements. While general modeling
formalisms like colored Petri nets [54] could be used to add capabilities,
we strive for a more domain-specific and deliberate extension based on
concrete requirements for (smart) contract specifications.

We primarily base our requirements on a survey byHvitved, who iden-
tified 16 such requirements from an “ought-to-be” perspective [50]. That
is, contract formalisms were compared with the intention that they should
specify what should be done, not what the current state of affairs is—which

32

3.1. Smart Contract Metamodel

Table 3.1: Requirements for contract formalisms by Hvitved [50]

No Description Metamodel
𝑅1 Contract model, language, semantics —
𝑅2 Contract participants ✔
𝑅3 (Conditional) commitments ✔
𝑅4 Absolute temporal constraints ✔
𝑅5 Relative temporal constraints ✔
𝑅6 Reparation clauses (✔)
𝑅7 Instantaneous and continuous actions ✔
𝑅8 Potentially infinite and repetitive contracts ✔
𝑅9 Time-varying, external dependencies (observables) ✔
𝑅10 History-sensitive commitments ✔
𝑅11 In-place expressions ✔
𝑅12 Parametrized contracts ✔
𝑅13 Isomorphic encoding ✔
𝑅14 Run-time monitoring —
𝑅15 Blame assignment —
𝑅16 Amenability to (compositional) analysis —

makes the requirements useful for capturing the operational aspects of
contracts. The requirements are reproduced in Tab. 3.1.

With the exception of 𝑅1, a meta-requirement, and 𝑅14–𝑅16, which de-
scribe particular use-cases, all requirements pertain to structural and op-
erational features and will be represented in our metamodel in some form
as indicated in Tab. 3.1. We will refer to these requirements throughout
this chapter.

Pace and Schneider examine further challenges and associated require-
ments, in particular concentrating on temporal and causal relationships
between deontic notions, most of which are already covered above [89].
However, they additionally refer to introspection and reflection, i.e., the ca-
pability of a smart contract model to refer to itself or parts of itself and its
current state. The operational semantics wewill introduce later in this the-
sis support this to a degree by allowing conditions to reference the entire
history of an instance.

As a preliminary disclaimer, we will not consider separate reparation
clauses (𝑅6) or exception clauses [89] in the metamodel, since they can
principally be modeled in the same way as the “happy path” and do not
require special treatment from a metamodel perspective. Smart contract
languages may still be designed to provide elements specifically targeting
exceptions.

3.1.3 Metamodel Structure

Taking into account the reasoning outlined above, we compiled a compre-
hensive metamodel for smart contracts based on the general structure of

33

Chapter 3. Smart Contract Modeling

Smart Contract

Meta-Rule

0..*obeys to

2..*P

Party

Temporal
Constraint

Data Source

External
Data Source

Internal
Data Source

Parameter

0..*

Variable

D
Performance

Constraint

Causal
Constraint

Data
Constraint

0..*C

D
E

DVD
P

C
C C

D

CT

Legal Relation

1..*L

Action

1..*A

Figure 3.3: Containment and inheritance hierarchy of the smart contract
metamodel with some associations omitted for brevity

34

3.1. Smart Contract Metamodel

Petri nets. An abbreviated version is shown in Fig. 3.3, which gives rise to
the following formal notion of a smart contract model:

Definition 18 (Smart Contract Model). A smart contract model  = (𝑃,
𝐷, 𝐿, 𝐴, 𝐶) is a tuple containing

• 𝑃 a set of at least two parties,

• 𝐷 a set of data sources, subdivided into

– 𝐷𝐸 external data sources,
– 𝐷𝑃 internal parameters,
– 𝐷𝑉 internal variables,

• 𝐿 a non-empty set of legal relations between the parties,

• 𝐴 a non-empty set of actions, and

• 𝐶 a set of performance constraints, subdivided into

– 𝐶𝐶 causal constraints,
– 𝐶𝑇 temporal constraints, and
– 𝐶𝐷 data constraints. ⋄

Smart contracts are subject to the laws, norms, and restrictions within
the jurisdiction or jurisdictions they are used in. Meta-rules (see Fig. 3.3)
describe those additional elements of a smart contract which are not ex-
plicitly part of the smart contract model itself [59]. Instead, references to
legal texts or bills would be embedded in the smart contract model, ref-
erencing relevant sections of law. We do not impose any specific way to
represent these references.

Parties and Legal Relations

A smart contract model = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) represents the blueprint of an
agreement between at least two parties 𝑃 who are eventual signatories to
the smart contract, akin to the notion of smart contract templates [24]. A
party may be a person, an organization, or any other entity capable of en-
tering into a legal agreement [37]. In the train ticket scenario, for instance,
the set of parties could be 𝑃 = {PS, RC, PP}, meaning the passenger, rail-
way company, and payment provider, respectively. They are ultimately
responsible for performing actions for the duration of the smart contract.

The parties 𝑃 enter into a contractual agreement, and are subject to
legal relations (see Sect. 2.1.2):

Definition 19 (Legal Relation). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a smart con-
tract model. Then a legal relation 𝑙 ∈ 𝐿 relates a subset of parties of a
smart contract model . A legal relation is further specified by a pred-
icate Initial ∶ 𝐿 → {true, false}, which is true iff the legal relation holds
immediately in every new smart contract instance. ⋄

35

Chapter 3. Smart Contract Modeling

Concrete legal relations could be expressed using the fundamental le-
gal relations of Hohfeld [48] including obligations and permissions, com-
plex ontology models like UFO-L [40], or any other formalism capable of
relating parties.

In the course of this thesis, we will stick to the former fundamental
legal relations of Hohfeld on account of their conciseness. For example,
an obligation 𝑙 ∶= ObligationPS,PP(Pay upgrade fee) then is a legal relation,
stating that the passenger has the obligation to pay a fee via the payment
provider. Legal relations could also be more complex or hierarchical, and
even relate more than two parties.

Data Sources

The data sources 𝐷 are crucial to the functioning of a smart contract: Pa-
rameters 𝐷𝑃 represent the individual results of the negotiation phase for a
particular smart contract instance. For example, the price of a train ticket
may vary depending on which store the passenger bought it at, or which
kind of discount card they possess. Parameters are an inherent part of
the smart contract from its instantiation, and basically allow template-like
modifications of each new instance.

Variables 𝐷𝑉 , on the other hand, are things the contract keeps track of
itself, e.g., a total of already paid expenses or whether a class upgrade was
purchased by the passenger. They are similar to parameters, but are not
negotiated beforehand and may be set and changed during runtime of a
smart contract in updates due to an action. Parameters and variables are
internal data sources, meaning they are stored within and at the respon-
sibility of the smart contract.

This is not the case for all data sources, though. Contracts often make
use of external data, as expressed by external data sources 𝐷𝐸 . For exam-
ple, the price of a stock from the stock exchange or the current weather
warning level according to a meteorological service may be used within
smart contract models, without its managing entity being a legally bound
party in the smart contract. In Tab. 3.1, this is called a “time-varying, ex-
ternal observable” (𝑅9) [50]. When using DApps as an enforcement mech-
anism, those external data sources would be provided by oracle services
(see Chapter 4).

We will largely abstract from the types, formats, and individual do-
mains of data sources, instead using a generic common data domain for
all of them in the following:

Definition 20 (Data Domain). The data domain 𝔻 contains all possible
values of data. ⋄

Actions

Actions (𝑅7) are the center pieces of smart contract behavior:

36

3.1. Smart Contract Metamodel

Definition 21 (Actions). Let = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a smart contractmodel.
Then an action 𝑎 ∈ 𝐴 encapsulates activities, operations, or other behavior
which may be performed, and which is atomic from an enforcement point
of view. Actions are further specified by

• Pre ∶ 𝐴 → (𝐿), a set of legal relations the action requires to hold
and subsequently extinguishes,

• Post ∶ 𝐴 → (𝐿), a set of legal relations created or otherwise caused
by performing the action,

• ChoiceOf ∶ 𝐴 → (𝑃), a set of parties who have the choice and
subsequently share the responsibility of performing the action,

• Terminating ∶ 𝐴 → {true, false}, a predicate indicating whether per-
forming this action terminates the smart contract. ⋄

Actions may also read from data sources and write to variables, although
this will not be further specified in the formalization.

Our smart contract models follow a structure closely related to Petri
nets, and actions can be seen as the equivalent to transitions: They con-
sume or extinguish a number of legal relations (the preset Pre of the tran-
sition), and create new ones (the postset Post of the transition). In con-
junction with the legal relations 𝐿, this interlinking essentially provides
an isomorphic mapping (𝑅13 in Tab. 3.1) between non-operational and op-
erational contract aspects, or legal relations and actions, respectively.

The decision whether an action 𝑎 ∈ 𝐴 is actually performed is the
choice of one or a group of parties ChoiceOf(𝑎). If there is more than one
party assigned to an action in this way, they must reach consensus on
whether to perform the action. Note that performing actions can also be
delegated within parties. For example, an organization has many employ-
ees capable of acting in the name of the organization, and some actions be
even be automated by software systems. However, this kind of automation
is done within within an organization, that is, it pertains to the internal
business logic and deliberation of a party.

There is a second kind of automation in smart contracts, of those ac-
tions which are completely autonomous and disassociated from any single
party:

Definition 22 (Autonomous Actions). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a smart
contract model. Then an action 𝑎 ∈ 𝐴 is autonomous iff no party is respon-
sible for its performance, i.e., ChoiceOf(𝑎) = ∅. Autonomous actions are
enforced automatically via tamper-proof code execution. ⋄

Autonomous actions and their enforcement are the fundamental nov-
elty of smart contracts as compared to their traditional legal contract coun-
terpart. Implicitly, they elevate the smart contract itself to be an active
party, although narrowly bound by the specification of themodel. No party

37

Chapter 3. Smart Contract Modeling

has any direct power over an autonomous action, since it is executed via
tamper-proof code. In the train ticket scenario, for instance, the automatic
validation of the ticket as soon as the booked train departs is an example
of an autonomous action.

In the metamodel we do not impose any level of abstraction for the
specification of actions, including how exactly performance constraints
or modifications of data sources are expressed. Actions could, for example,
contain many steps—similar to a process—with multiple involved actors.
In that case, an implementation of the smart contract must make sure that
proper locking and concurrency mechanisms are used so actions do not
interfere with each other. In the following, we will assume for the sake of
simplicity that actions are internally atomic and can be performed instan-
taneously.

Performance Constraints

Whether an action can be performed or not may be subject to so-called
performance constraints. They model terms and condition of the contrac-
tual agreement which pose restrictions as to when an action may be per-
formed, and pertain to several contract requirements (𝑅3–𝑅5, 𝑅10, 𝑅11 in
Tab. 3.1).

Definition 23 (Performance Constraints). Given a smart contract model
 = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶), a performance constraint 𝑐 ∈ 𝐶 ties the performance
of an action to additional conditions being satisfied. A performance con-
straint affects one or more actions Affects ∶ 𝐶 → (𝐴). Further, a data
performance constraint reads some data sources Reads ∶ 𝐶𝐷 → (𝐷). ⋄

Causal constraints express requirements regarding past actions. This is
mostly used to model immediate consecutiveness of actions, e.g., payment
before delivery, or exclusive and parallel branching. It should be noted that
some types of causal constraints may also be modeled using legal relations
and the Pre and Post sets. However, this may require duplication of equiva-
lent legal relations to accommodate for actions 𝑎 ∈ 𝐴with Pre(𝑎) = Post(𝑎)
that are still part of a causal chain of actions. This could potentially pol-
lute the smart contract model, especially when more complex patterns are
concerned. We thus opted for the separate specification of complex causal
constraints.

Temporal constraints describe situations in which an action may re-
quire waiting until a certain deadline has passed. Similar mechanisms to

Table 3.2: Temporal constraint definitions in ISO-8601 format

Name Example

Date 2020-12-24T12:00:00Z (noon on Dec. 24th, 2020, UTC)
Duration P7D (7 days)

38

3.2. Operational Semantics

timer events in process and choreography models may be obtained [33,
20], including relative and absolute timers. Some examples of concrete
specifications are given in Tab. 3.2: dates are used to wait for a specific,
absolute point in time; durations are used to delay the smart contract ex-
ecution or represent timeouts. For this, all parties must have a common
understanding about the current time, and what time means in the imple-
mentation environment of the smart contract. We will discuss the chal-
lenges in this in more detail in Sect. 3.2.3 and Chapter 7.

Lastly, data constraints make sure that the values of the data sources
fulfill some conditions. For example, an action to perform a stock option
may be contingent on the price of the stock exceeding a predefined strike
price. Alternatively, an obligation to buy additional insurance for a deliv-
ery might depend on the value of the ordered products. Data constraints
are usually specified in the form of expressions, which can be evaluated
by a software system. In Chapter 6, we will discuss the semantics of data
constraints in detail, and for now continue with the operational semantics
of smart contracts as a whole.

3.2 Operational Semantics

Given a fully specified smart contract model = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶), it can be
instantiated to yield arbitrarily many smart contract instances 1, 2, and
so on. These instances are executed according to the operational semantics
we are going to introduce in this section.

3.2.1 Running Example

In the remainder of this thesis, we will consider a concrete smart contract
model 𝑡𝑖𝑐𝑘𝑒𝑡 = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) of a contract of carriage—that is, a train
ticket—as a running example.

There are three parties, 𝑃 = {PS, RC, PP}, meaning the passenger, rail-
way company, and payment provider, respectively. The passenger wishes
to take a train to their destination, and for that reason buys a train ticket.
The negotiation phase is not part of the smart contract; in our case, the
passenger picked a second class ticket, prohibiting them from entering the
first class area of the train. They also made use of a personal subscription-
based discount card granting them a percentage off the ticket price.

Figure 3.4 shows a Petri net visualization of the actions 𝐴 = {𝑎1, ..., 𝑎10}
and legal relations 𝐿 = {𝑙1, ..., 𝑙6} as transitions and places, respectively,
with the pre and post sets indicated by flows. The initial legal relations
with Initial(𝑙) = true and terminating actions with Terminating(𝑎) = true—
those immediately ending the smart contract once performed—are shaded
with a gray background, respectively. Further, autonomous actions are
outlined with a bold stroke, and the set ChoiceOf(𝑎) of parties in charge of
an action 𝑎 is added to its label in parentheses. Additional information—

39

Chapter 3. Smart Contract Modeling

Initial Terminating

l1

Permission to
use train

l4

Permission to
request upgrade

a7

Request
upgrade (PS)

l5

Liberty to
accept request

a8

Confirm
upgrade (RC)

a10

Deny
upgrade (RC)

l6

Obligation to pay
upgrade fee

a9

Pay upgrade
fee (PS)

a6

Issue partial
voucher (RC)

l3

Obligation to issue
partial voucher

a4

Register discount
card expiry

a5

Cancel
ticket (PS)

a3

Issue full
voucher (RC)

l2

Obligation to issue
full voucher

a2

Register weather
warning

a1

Register
departure

Figure 3.4: Actions and legal relations of𝑡𝑖𝑐𝑘𝑒𝑡

40

3.2. Operational Semantics

Table 3.3: Additional specification of the smart contract𝑡𝑖𝑐𝑘𝑒𝑡

Data sources

𝐷𝐸 = {𝑑𝑤 , 𝑑𝑑} 𝑑𝑤 : Weather warning level
𝑑𝑑 : Train departure status

𝐷𝑃 = {𝑑𝑝 , 𝑑𝑐} 𝑑𝑝 : Ticket price
𝑑𝑐 : Ticket class

𝐷𝑉 = {𝑑𝑢} 𝑑𝑢 : Upgrade indicator

Performance constraints

𝐶𝐶 = ∅
𝐶𝑇 = {𝑐𝑐} 𝑐𝑐 : Discount card is expired Affects(𝑐𝑐) = {𝑎4}
𝐶𝐷 = {𝑐𝑑 , 𝑐𝑤} 𝑐𝑑 : Train has departed Reads(𝑐𝑑) = {𝑑𝑑}

Affects(𝑐𝑑) = {𝑎1}
𝑐𝑤 : Severe weather warning is active Reads(𝑐𝑤) = {𝑑𝑤}

Affects(𝑐𝑤) = {𝑎2}

Legal relations

𝑙1 : PermissionPS,RC(Use train subject to cancelations) [Initial(𝑙1) = true]
𝑙2 : ObligationRC,PS(Issue full voucher)
𝑙3 : ObligationRC,PS(Issue partial voucher)
𝑙4 : PermissionPS,RC(Request upgrade) [Initial(𝑙4) = true]
𝑙5 : LibertyRC,PS(Accept upgrade request)
𝑙6 : ObligationPS,PP(Pay upgrade fee)

that is, the performance constraints, data sources, and full form of the legal
relations—is given in Tab. 3.3.

The smart contract has a simple “happy path”: The passenger makes
their way to the train station and takes the train upon departure. The ticket
is automatically validated as soon as the train departs (𝑎1) and the smart
contract terminates. This is contingent on the performance constraint 𝑐𝑑 ,
which reads the external data source 𝑑𝑑 holding the train’s departure sta-
tus. The departure status is managed and maintained by the Railway In-
frastructure Manager (RIM), which is not explicitly modeled.

Some things may happen before, though. For one, a severe weather
warning may be issued by the meteorological service as modeled by the
external data source 𝑑𝑤 , which satisfies the data performance constraint
𝑐𝑤 triggering the autonomous action 𝑎2. This cancels the ticket for precau-
tionary safety reasons, but creates the obligation 𝑙2 for the railway com-
pany to issue a full voucher (𝑎3). Similarly, the passenger’s discount card
may expire, satisfying the temporal performance constraint 𝑐𝑐 and trigger-
ing the terminating autonomous action 𝑎4—that is, there is no refund or
voucher. Lastly, the passenger may themselves decide to cancel the ticket
(𝑎5), after which they have the right (𝑙3) to receive a partial voucher (𝑎6).

In parallel, the passenger may also decide to request and upgrade to
first class (𝑎7), which is usually a possibility that is intended and written
in the smart contract (𝑙4) but entirely at the liberty of the railway company

41

Chapter 3. Smart Contract Modeling

(𝑙5). Of course, this requires an additional payment (𝑙6) in coordinationwith
the payment provider (𝑎9), who is a third party to the contract.

Note that this example is chosen to be simple, and practical smart con-
tracts may bemuch larger.We also deliberately do not fully specify all con-
cepts; for example, actions read from and write to internal data sources.
In the scope of this thesis, these relationships are not explored further, but
the metamodel and the following operational semantics do not principally
restrict their usage either.

3.2.2 State Space

An instance  of a smart contract model  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) is primarily
characterized by its single state at any point in time. The state contains all
information specific to the runtime of , particularly including the valua-
tion of internal data sources:

Definition 24 (Smart Contract State). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a smart
contract model. Then 𝕊 is the set of all states of instances of , and a
state 𝑠 = (Λ, 𝜈, H) ∈ 𝕊 is a tuple with

• Λ ⊆ 𝐿 a subset of the legal relations which hold in the state,

• 𝜈 ∶ 𝐷𝑃 ∪ 𝐷𝑉 → 𝔻 a valuation function assigning all internal data
sources to a value from the data domain 𝔻, and

• H a full log of all actions, their effects, and involved parties since the
smart contract was first instantiated. ⋄

We will usually refer to the domain of states 𝕊 without the superscript an-
notation, if the smart contract model it applies to is clear from the context.

The smart contract metamodel is based on Petri nets, and Λ corre-
sponds to the marking of the places with tokens [93], in particular resem-
bling a 1-bounded condition event net [112, Sect. 4.2.1]. The logH ensures
a complete and consistent history of everything that has happened during
the execution of a smart contract. This information may be used for mon-
itoring or blame assignment (𝑅14 and 𝑅15 in Tab. 3.1). However, it is also
used by performance constraints to check whether their specific condi-
tions are satisfied, which often depends on past actions like in the case of
causal constraints. Concrete implementations will specify a sensible data
structure to store and retain only explicitly required information.

In any case, when a smart contract  is initially instantiated, it takes
on an initial state:

Definition 25 (Initial Smart Contract States). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a
smart contract model. Then a state 𝑠 = (Λ, 𝜈, H) is in the set of initial states
𝕊0 ⊆ 𝕊 iff Λ = {𝑙 ∈ 𝐿 | Initial(𝑙) = true} and the log H is empty. ⋄

42

3.2. Operational Semantics

Initial states reflect the results of case-by-case negotiations. For exam-
ple, instances of the same contract model could start with different valua-
tions of the parameters 𝐷𝑃 , like different ticket prices offered by different
vendors. Lastly, once a smart contract has finished, it reaches a final state
characterized by the absence of any currently holding legal relations:

Definition 26 (Final Smart Contract States). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a
smart contract model. Then a state 𝑠 = (Λ, 𝜈, H) is in the set of final states
𝕊𝐹 ⊆ 𝕊 iff Λ = ∅, that is, no legal relations hold anymore. ⋄

3.2.3 Operating Environment

While a smart contract state 𝑠 = (Λ, 𝜈, H) contains all information a smart
contract is responsible for itself, it can never be viewed in complete isola-
tion. Indeed, it is crucial to consider the environment in which  operates.
This includes the external data sources𝐷𝐸 of the smart contract model,
which are maintained by some entity independent of the smart contract.
We define the state of the operating environment as follows:

Definition 27 (Operating Environment States). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be
a smart contract model. Then 𝕆 is the set of all operating environment
states relative to, and a state 𝑜 = (𝑡, 𝜙) ∈ 𝕆 is a tuple with

• 𝑡 ∈ ℕ the current system time, and

• 𝜙 ∶ 𝐷𝐸 → 𝔻 a valuation function assigning a value to each external
data source.

Two operating environment states (𝑡, 𝜙), (𝑡 ′, 𝜙′) ∈ 𝕆 directly follow each
other, or (𝑡, 𝜙) → (𝑡 ′, 𝜙′), iff 𝑡 + 1 = 𝑡 ′. ⋄

Again, if the smart contract model  is clear from the context, we will
omit the superscript annotation on the state domain.

Apart from the valuation of the external data sources, an operating
environment state also contains a notion of a system time. This is the nor-
mative time that all parties agree to adhere to, for example Coordinated
Universal Time (UTC) or Unix time. The current timestamp could either
be provided by a time server, some form of consensus between the par-
ties, or a blockchain network. We will discuss the challenges involved in
finding such an agreed-upon time in Chapter 7.

Operating environment states thus describe the passing of time in the
“real world”. At each point in time, there is exactly one valid and unique
operating environment state, which then transitions to the next one via
the directly-follows relationship →. The frequency of such transitions is
obviously limited by the general computing infrastructure which is used,
but once per second or once per millisecond are common examples. For
now, we assume that all parties and the smart contract itself have ready
and consistent access to this operating environment state, and abstract
from any network influences or latencies.

43

Chapter 3. Smart Contract Modeling

3.2.4 State Transitions

A smart contract instance  is in some state 𝑠 = (Λ, 𝜈, H) ∈ 𝕊, until an
action is performed and  transfers to some new state 𝑠′ ∈ 𝕊. In the fol-
lowing, we will describe state transitions such as this formally.

Enablement of Actions

An action can of course not be performed arbitrarily, but it must be en-
abled. Enablement is contingent on two factors: (i) the presence of all re-
quired legal relations Pre(𝑎) in Λ, as well as (ii) the satisfaction of all at-
tached performance constraints taking into account the current operating
environment state 𝑜 = (𝑡, 𝜙) ∈ 𝕆.

The performance constraints rely on various components of 𝑠 and 𝑜.
Causal constraints, for example, consult the log of actions H. Absolute
temporal constraints check the system time 𝑡 and see whether a deadline
has been passed. Data constraints evaluate the valuation 𝜈 of internal data
sources, as well as the valuation 𝜙 of external data sources. We summarize
this using the following abstract definition:

Definition 28 (Satisfaction of Performance Constraints). Let  = (𝑃, 𝐷, 𝐿,
𝐴, 𝐶) be a smart contract model. Then 𝛾 ∶ 𝐶 × 𝕊 × 𝕆 → {true, false} is a
Boolean predicate determining whether a performance constraint 𝑐 ∈ 𝐶
is satisfied in a smart contract state 𝑠 ∈ 𝕊 and an operating environment
state 𝑜 ∈ 𝕆. ⋄

In the train ticket model 𝑡𝑖𝑐𝑘𝑒𝑡 , we could specify that 𝛾(𝑐𝑐 , 𝑠, 𝑜) ≡ 𝑡 >
1617012992, that is, the passenger’s discount card expires when the system
time passes 1617012992, which is the Unix time as of writing this sentence.
Further, we could specify that 𝛾(𝑐𝑤 , 𝑠, 𝑜) ≡ 𝜙(𝑑𝑤) ≥ 2, that is, a severe
weather warning corresponds to a weather warning level 𝑑𝑤 greater or
equal to 2. Lastly, 𝛾(𝑐𝑑 , 𝑠, 𝑜) ≡ 𝜙(𝑑𝑑) = departed specifies that the train has
officially departed once the external data source equals the literal string
value departed.

Then it is straightforward to determine whether an action is enabled:

Definition 29 (Action Enablement). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a smart
contract model. Then, given a smart contract state 𝑠 = (Λ, 𝜈, H) ∈ 𝕊 and an
operating environment state 𝑜 = (𝑡, 𝜙) ∈ 𝕆, an action 𝑎 ∈ 𝐴 is

• enabled, if all legal relations 𝑎 consumes hold in 𝑠 and all performance
constraints that affect 𝑎 are satisfied,

• active, if all legal relations 𝑎 consumes hold in 𝑠, but there are non-
satisfied performance constraints, or

• disabled, if not all legal relations 𝑎 consumes hold in 𝑠.

44

3.2. Operational Semantics

Formally, action enablement is described by the function 𝜎 ∶ 𝐴 × 𝕊 × 𝕆 →
{disabled, active, enabled} with

𝜎(𝑎, 𝑠, 𝑜) ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

disabled if ∃ 𝑙 ∈ Pre(𝑎) ∶ 𝑙 ∉ Λ
active if Pre(𝑎) ⊆ Λ ∧

∃𝑐 ∈ 𝐶 ∶ (𝑎 ∈ Affects(𝑐) ∧ ¬𝛾(𝑐, 𝑠, 𝑜))
enabled if Pre(𝑎) ⊆ Λ ∧

∀𝑐 ∈ 𝐶 ∶ (𝑎 ∈ Affects(𝑐) → 𝛾(𝑐, 𝑠, 𝑜))
⋄

For example, consider an initial state 𝑠 = (Λ, 𝜈, H) ∈ 𝕊0 of the train
ticket smart contract model 𝑡𝑖𝑐𝑘𝑒𝑡 with Λ = {𝑙1, 𝑙4}. Then 𝜎(𝑎7, 𝑠, 𝑜) =
enabled for any operating environment state 𝑜, since the passenger may
request an upgrade without constraints. However, 𝜎(𝑎2, 𝑠, 𝑜) = active only
holds as long as the weather warning level stays below 2 in 𝑜, after which
it becomes enabled.

Enforceability of Actions

An action that is enabled is ready to be performed; whether an action
must be performed, however, is a question closely related to enforceability
whose answer differs between autonomous and non-autonomous actions.

Autonomous actions are performed by the smart contract itself. Since
the purpose of the tamper-proof smart contract enforcement is to alleviate
the potential for conflicts and reduce any undue influence on the contrac-
tual proceedings, the parties may rightfully assume that there is no lee-
way when it comes to their performance. Instead, the smart contract itself
should be entirely neutral, and should cause no delay potentially affecting
any party. We thus require that autonomous actions are immediately per-
formed without delay as soon as they become enabled. If delays of some
sort are required, they can be modeled as a temporal performance con-
straint which can be autonomously checked.

Of course, multiple autonomous actions may become enabled at the
same time. In that case, one is chosen non-deterministically, even if that
leads to the second action becoming disabled again. Autonomous actions
have priority over non-autonomous actions, that is, they are always per-
formed first. This circumstance should be kept in mind when designing
smart contract models to avoid any conflict of interest.

The enforcement of non-autonomous actions is complicated since it
runs into a very practical issue: It is unethical and—from the perspective
of the smart contract—impossible to physically force any party to perform
an action, even if that action is borne by an obligation and they are respon-
sible for it. This circumstance is the main reason why smart contracts still
rely on a secondary enforcement mechanism via the law, if the behav-
ior of individual parties makes it impossible for the tamper-proof code to
proceed according to the smart contract model. In that case, arbitration
or litigation proceedings have to kick in on the basis of the tamper-proof

45

Chapter 3. Smart Contract Modeling

smart contract history and logHwhich is maintained in the smart contract
state.

In the train ticket example𝑡𝑖𝑐𝑘𝑒𝑡 , for instance, there is no way for the
smart contract to force the passenger to perform 𝑎9 and pay the upgrade
fee, and the smart contract may even terminate before by a terminating
action being performed.While smart contracts can be designed tomitigate
some of these effects, e.g., by explicitly containing penalties and clauses to
pressure parties into proper cooperation, this forms a fundamental limit
to the automated enforceability of smart contracts in general. In the scope
of this thesis, we thus only consider the enforcement of smart contracts
before the lawsuit.

Performance of Actions

Based on its own state and that of the operating environment, a smart
contract  can now transition to a new state when an action is performed,
subject to the restrictions introduced above. We formally define this as
follows:

Definition 30 (Smart Contract State Transitions). Let  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶)
be a smart contract model, 𝑠 = (Λ, 𝜈, H) ∈ 𝕊 be a state of the smart contract,
and 𝑜 = (𝑡, 𝜙) ∈ 𝕆 the current operating environment state.

Then an action 𝑎 ∈ 𝐴 can be performed in 𝑜 leading to a new state
𝑠′ = (Λ′, 𝜈 ′, H′) ∈ 𝕊, or

𝑠 𝑜/𝑎⟶ 𝑠′

iff 𝜎(𝑎, 𝑠, 𝑜) = enabled and no autonomous action must be performed first.
The new state 𝑠′ is defined as follows:

(i) Λ′ ∶=
{

∅ if Terminating(𝑎)
(Λ ⧵ Pre(𝑎)) ∪ Post(𝑎) otherwise

(ii) The effects of 𝑎 are applied to the set of internal data sources it mod-
ifies resulting in a new valuation function 𝜈 ′.

(iii) All relevant information about the action, current system time, and
associated parties is appended to H′. ⋄

In Fig. 3.5, we show an excerpt of the state space of an instance  of the
example train ticket smart contract model𝑡𝑖𝑐𝑘𝑒𝑡 introduced in Sect. 3.2.1.
The smart contract starts in a state 𝑠0 ∈ 𝕊0. The top path models the pas-
senger requesting an upgrade, performing 𝑎7 at 𝑜1 to reach state 𝑠1. This
request could be accepted by the railway company performing, for exam-
ple, 𝑎8 at 𝑜4 to reach state 𝑠3. It could also be rejected by performing 𝑎10 at
𝑜3 to reach state 𝑠2. In all cases, the train departs at 𝑜7 as indicated by the
train departure status in the external data source 𝑑𝑑 changing to departed,
which satisfies the performance constraint 𝑐𝑑 independent of the smart

46

3.3. Choreographies and Smart Contracts

cd

Time

s1

s5

s2

s3s0 o1/a7

Performance Constraints
Train has departed ... satisfied

ϕ(dd
) ... departed

... o0 o1 o2 o3 o4 o5 o6 o7 o8 o9 ...

platformTrain departure status ...

...

s4

...

o7/a1

o4/a8

o3/a10

o7/a1

Operating Environment States

F∈ 𝕊0F

∈ 𝕊0F

𝕊00 ∋

Figure 3.5: Excerpt of a state space of a smart contract

contract state. This in turn enables the autonomous action 𝑎1 which reg-
isters the train’s departure and validates the ticket, terminating the smart
contract by reaching 𝑠4, 𝑠5 ∈ 𝕊𝐹 .

3.3 Choreographies and Smart Contracts

The smart contract metamodel allows us to reason about smart contracts
and their components, to understand and define their semantics, and to
eventually enforce these semantics in an actual execution environment.
We did not, however, propose any non-mathematical notation for smart
contracts (see Sect. 3.2.1), falling short of the domain’s vision of providing
an understandable representation for all parties and stakeholders [24].

It is not the goal of this thesis to develop such a notation. Yet, there are
domains facing similar issues, chiefly among them BPM. Here, stakehold-
ers from diverse backgrounds within and between organizations need to
grasp the processes and choreographies they are part of, and a wide array
of modeling languages and visualizations exists. One of them particularly
stands out in the context of smart contracts: the choreography diagram as
introduced in the de-facto industry standard modeling framework BPMN
(see Sect. 2.3.3). Described as “a type of business contract between two or
more organizations” [87, p. 315], they abstract from the private processes
of participants and focus on interactions only.

The ostensible connection to legal or smart contracts, however, has
since only been casually explored [2]. In this section, we will apply the
smart contract metamodel to assess whether BPMN choreography dia-
grams may be considered adequate visual representations of smart con-
tracts.

47

Chapter 3. Smart Contract Modeling

Table 3.4: Mapping of smart contract model aspects to their representa-
tion in BPMN choreography diagrams

Smart contract metamodel Choreography diagram

Parties 𝑃 Participant bands
Data sources
– Parameters 𝐷𝑃 n/a
– Variables 𝐷𝑉 Messages
– External 𝐷𝐸 n/a*
Legal relations 𝐿 n/a
Actions 𝐴
– Autonomous (Intermediate events, gateways)
– Non-autonomous Choreography tasks
Performance constraints
– Causal 𝐶𝐶 Sequence flow, gateway types
– Temporal 𝐶𝑇 Timer event defs.
– Data 𝐶𝐷 Conditional flows, conditional event defs.
* May be implicitly qualified within arbitrary formal expressions

3.3.1 Element Mapping

Some components of a smart contract model  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) can be
mapped to notational elements of BPMNchoreography diagrams as shown
in Tab. 3.4. As an example, the parties 𝑃 are a first-class citizen of chore-
ography diagrams represented by participant bands.

Data sources are not as easily mapped, though, due to the fundamental
lack of a “mechanism for maintaining any central [choreography] data” in
choreographies [87, p. 319]. Thus, choreography diagrams do not have a
notion of parameters 𝐷𝑃 which can be provided upon instantiation. How-
ever, choreography diagrams do support variables 𝐷𝑉 and external data
sources 𝐷𝐸 to some degree: Data from messages can be used in conditions
attached to conditional flows going out of exclusive gateways, and may
be overwritten and updated by subsequent messages [87, p. 372]. External
data sources may be implicitly modeled by referencing them in the formal
expression attached to conditional event definitions. The standard gives
the example “S&P [stock market index] changes by more than 10% since
opening” [87, p. 240], which would refer to some external data source pro-
viding the current value of the index.

Actions and constraints are perhaps most elaborately represented in
BPMNchoreography diagrams, not least due to their inherently behavioral
nature. In contrast, legal relations are ostensibly missing entirely, as is the
case in the entirety of the BPMN standard for that matter.

48

3.3. Choreographies and Smart Contracts

3.3.2 Actions and Constraints

We differ between autonomous actions and non-autonomous actions, the
latter of which are represented using choreography tasks: A choreography
task describes a message exchange from a sender to a receiver, optionally
with a second response message afterwards. These message exchanges are
deliberately and intentionally initiated by some party, i.e., the sender for
the request and the receiver for the response message, constituting an ac-
tion in the sense of a smart contract.

Fig. 3.6 shows an example, in which the choreography task 𝑛2 labelled
“Issue full voucher” may be interpreted as an action similar to 𝑎3 in the
train ticket running example 𝑡𝑖𝑐𝑘𝑒𝑡 . More properties of the action may
also be derived, like the set ChoiceOf of parties responsible for the action—
in this case the participant RC specified in the initiating participant band.

Autonomous actions, in turn, encapsulate behavior that the smart con-
tract enforces and is responsible for. In choreography diagrams, this de-
scription fits most other flow nodes except for choreography activities,
that is, intermediate events and gateways which represent behavior that
is independent of any party and should still be enforced. That is, some in-
termediate events and gateways can be mapped to an autonomous action,
like the event 𝑛1 in Fig. 3.6.

Of course, these elements have complex definitions and semantics by
themselves. This is where performance constraints come into play: Sim-
ple causal constraints 𝐶𝐶 between two actions are explicitly modeled us-
ing sequence flows. Gateway types may also induce more complex causal
constraints, like fork and join behavior in case of the parallel gateway.
Temporal constraints 𝐶𝑇 are attached to autonomous actions as specified
in the timer event definition. Lastly, data constraints 𝐶𝐷 are mostly repre-
sented in conjunction with causal constraints using conditional flows and
their attached expressions. Conditional events with their associated event
definition likewise give rise to such constraints.

In our previous work, we have shown that groups of modeling ele-
ments in a BPMN choreography diagram—so-called execution units—may
be bundled and enforced together in one blockchain transaction [70]. This
technique of bundling could also be used here to merge subsequent au-
tonomous actions and achieve a more compact smart contract representa-

Severe weather
warning issued

RC

Passenger

Issue full
voucher

n1

n2

.

Figure 3.6: Excerpt from a choreography diagram with elements repre-
senting types of smart contract actions

49

Chapter 3. Smart Contract Modeling

tion. Since this is not pertinent to the core research questions of this thesis,
though, we will not go into further detail on this.

3.3.3 Legal Interpretation

From a modeling perspective, the facet of legal relations remains largely
unexplored in BPMN [87]. Yet, choreography diagrams carry a very con-
crete legal meaning with them: They encapsulate the steps that the partic-
ipants have to take in order to achieve a common business goal. The dia-
gram is the normative blueprint for all corresponding interactions, essen-
tially encapsulating the obligations, permissions, and powers of the partic-
ipants along the way. These legal relations are hidden in the choreography
diagram notation, though. To this end, we propose a novel interpretation
of choreography diagrams which brings to light these legal relations [65]:

Norms of conduct and liberties, by definition, pertain to concrete be-
havior of a party (see Sect. 2.1.2). Ultimately, interactions are the only in-
stance of concrete behavior of a party in choreography diagrams, specify-
ing at which points control and data is transferred to fulfill the expecta-
tions of each respective participant. The interactions form a set of inter-
faces, and we consider these interactions to have legal relevance more so
than the internal activities within a participant.

We identify three basic patterns of norms of conduct (see Fig. 3.7).
An obligation is by far the simplest pattern, and represented by a single
choreography task 𝑛 (see Fig. 3.7a). A participant 𝐴 is supposed to send
a message to a participant 𝐵. As such, 𝑛 represents an obligation of 𝐴
to perform some “Action” as testified by the message in face of 𝐵, i.e., a
ObligationA,B(Action).

Permissions can be represented by event-based gateways, on the other
hand. Figure 3.7b shows an example. This time, the action as represented
by the choreography task 𝑛 is not obligatory, but rather up to 𝐴 to decide
for since there is an alternative path in the model through the intermedi-
ate gateway. That is, the choreography will not necessarily get stuck if 𝐴
does not perform the action, depending on the concrete event definition,
representing a permission PermissionA,B(Action).

Lastly, a liberty LibertyA,B(Action) is similarly represented with two
opposed choreography tasks 𝑛1 and 𝑛2 following an event-based gateway,
where one is the logical negation of the other. That is, the participant
𝐴 may both perform the action or explicitly not perform the action, i.e.,
do the opposite. This is a common pattern in such diagrams, for exam-
ple when accepting or rejecting an order. For all patterns, the correlative
rights and no-rights are obtained automatically.

These patterns allow the derivation of a set of legal relations 𝐿 present
in the model. During the execution of the choreography, they also serve to
determine the set of currently holding legal relations. When implement-
ing a token-based semantics, a token on any of the incoming sequence

50

3.3. Choreographies and Smart Contracts

. . .
A

B

n

. . .f
Action

(a) Obligation BPMN pattern

A

B

n

. . .

. . .

. . .

Action

f

(b) Permission BPMN pattern

A

A

n1

n2

. . .

. . .

. . .

Action

¬Action

B

B

f

(c) Liberty BPMN pattern

Figure 3.7: Patterns of norms of conduct

51

Chapter 3. Smart Contract Modeling

flows 𝑓 would lead to the legal relation being considered binding in that
choreography state.

Of course, these deduction rules do not cover all legal relations. Indeed,
there are legal relations like norms of power which do not have a direct
counterpart in choreography diagrams. No-rights and other norms of con-
duct stating that somethingmust not be done similarly are not represented
explicitly. Such legal relations would require the introduction of newmod-
eling elements [2]. Still, it is evident that smart contracts and business
process choreographies as specified in BPMN exhibit a certain degree of
overlap. We use this circumstance in the following chapter when devising
a management system for smart contracts closely aligned with BPMSs.

52

Chapter 4

Smart Contract
Management Systems

The smart contract metamodel and the attached operational semantics al-
low the reasoning about the structure and behavior of smart contracts. By
doing so, they also pose concrete functional requirements as towhat a ded-
icated management system for smart contract modeling and enforcement
must be capable of. Based on these insights, we introduce an architecture
based on blockchain technology for what we call a Smart Contract Man-
agement System (SCMS). The task of an SCMS is to facilitate all phases of
the contract lifecycle as applied to smart contracts; from their initial mod-
eling and negotiation, to storage and performance, up until supporting
dispute resolution.

The similarity in name and scope to the notion of Business Process
Management Systems (BPMSs) is no coincidence. We draw from the rich
set of techniques and solutions already established in the BPM domain
as a recurring theme throughout this thesis. In this case, we use the fun-
damental architecture of BPMSs (see Sect. 2.3.2) as a basis for the SCMS
approach, and adapt or extend it where appropriate.

To this end, we will first gradually develop the general enforcement
approach the SCMS relies on, namely enforcement via a set of multiple
heterogeneous blockchain networks running DApps (see Sect. 4.1). We
will then propose a non-exhaustive list of functional requirements for an
SCMS based on this enforcement approach and the contract lifecycle (see
Sect. 4.2). Lastly, we will introduce and describe a component-based sys-
tem architecture for an SCMS (see Sect. 4.3).

Parts of this chapter are based on our previous work, in which we
(i) discussed enforceability considerations of business process choreogra-
phies using blockchain technology [70], and (ii) introduced a novel archi-
tecture for multi-chain BPMSs geared towards choreographies [71].

53

Chapter 4. Smart Contract Management Systems

p2 p3

Party p1

s

Interaction

Smart contract
state s

(a) Centralized approach

Party p1

p2 p3

Interaction

ŝ1

ŝ3ŝ2
Smart contract
state s

(b) Distributed approach

Figure 4.1: Smart contract enforcement approaches adapted from BPM
orchestration and choreography enactment [112]

4.1 Blockchain-Based Enforcement

According to its definition (see Sect. 2.1), a smart contract is enforced in
twoways: (i) partly via legal enforcement of its terms by law, and (ii) partly
through automated tamper-proof execution of computer code. The SCMS,
being a software system, will primarily drive the latter mode of enforce-
ment.

4.1.1 Non-Blockchain Baseline

Before we introduce the use of blockchain technology for smart contract
enforcement, wewant to highlight how traditional electronic contracts are
managed and enforced using non-tamper-proof means. One of these, the
centralized approach, was already discussed in the introduction to this the-
sis: When buying a digital train ticket with the German national railway
company, they store all information related to the ticket on their end. The
passenger may receive a digital snapshot, but the single source of truth is
maintained by the railway company. To interact with the contract, other
parties have to use the interfaces provided by the railway company.

Fig. 4.1a shows this enforcement scheme for generic smart contracts
and three parties 𝑃 = {𝑝1, 𝑝2, 𝑝3}. The smart contract state 𝑠 of some smart
contract instance  is stored within 𝑝1, e.g., in an enterprise resource plan-

54

4.1. Blockchain-Based Enforcement

ning system. This approach is very similar to the orchestration approach
of executing business processes with BPMSs in BPM, where one party may
be chosen as the designated “orchestrator” of an inter-organizational cho-
reography.

Anothermethod to enforce a smart contract is the distributed approach
(see Fig. 4.1b), similar to pure choreographies in BPM. In this case, there
is no central orchestrator. Instead, each party manages a part of the smart
contract and its state—, and interactions are used to synchronize. This re-
sults in a distribution of the state of : 𝑝1 owns and manages 𝑠1, 𝑝2 owns 𝑠2,
and 𝑝3 owns 𝑠3. Combined into one, the state fragments yield 𝑠. The exact
distribution of the state must be somehow specified, e.g., in the model. No
party has power over the whole smart contract, but no party has a view
of the whole state either [70].

In the train ticket scenario, choreography was the common way of en-
forcing contracts of carriage when paper tickets were still common. Pas-
sengers would buy a ticket in interaction with the railway company. Dur-
ing the journey, a conductor would check the information printed on the
ticket, and validate it. There is no communication with the railway com-
pany anymore, and the whole state of the contract is generally unknown
to them, e.g., whether the passenger actually ended up taking the train.

Both approaches have a major downside, though, which makes them
unsuitable for smart contract enforcement. There is no guarantee that the
smart contract state 𝑠 or operational logic running locally is not tampered
with—either the orchestrator 𝑝 ∈ 𝑃 needs to be trusted with the whole
state 𝑠, or all of the parties 𝑃 with their state fragments, respectively. This
is summarized in Tab. 4.1. Blockchain technology and DApps provide a
solution to this dilemma by ensuring a completely independent, tamper-
proof execution and storage environment.

4.1.2 Single-Chain Approach

Given a smart contract model  = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) and an instance , the
general idea of blockchain-based enforcement is to store the entire state
𝑠 ∈ 𝕊 of  within a DApp Ð on a blockchain network . This essentially
makes Ð the sole orchestrator of the smart contract [70]. Ð becomes the
single source of truth, logically centralizing the smart contract  within
a distributed, trustless environment. The state 𝑠 benefits from the fun-

Table 4.1:Key differences between smart contract enforcement strategies

Approach Storage type Storage location Tamper-proof

Centralized Whole Participant 𝑝 ∈ 𝑃 No (𝑝)
Distributed Fragmented Participants 𝑃 No (all of 𝑃)
SCMS single-chain Whole DApp Ð Yes
SCMS multi-chain Fragmented DApps Ð1, ..., Ð𝑚 Yes

55

Chapter 4. Smart Contract Management Systems

Bl
oc

kc
ha

in
N

et
w

or
k
N

DApp Đ s

p2 p3

Party p1

Smart contract
state s

Transaction

Event listener

Figure 4.2: Smart contract enforcement approach using a single block-
chain network

damental integrity guarantees of the blockchain network, meaning each
party can independently ensure its validity [115].

A scheme of this approach is shown in Fig. 4.2. The interaction be-
tween the parties is funneled entirely through the DApp Ð on the block-
chain network . Every interaction concerning the smart contract, i.e.,
the performance of actions, is contained in a transaction 𝑡𝑥 targeting Ð.
The immutability property of Ð (see Sect. 2.2.4) guarantees a tamper-proof
execution. The performance of each action is automatically logged in the
ledger, guaranteeing non-repudiation.

Zooming in, each action 𝑎 ∈ 𝐴 is wrapped in a blockchain transaction
𝑡𝑥(𝑎) (see Fig. 4.3). For example, consider a state transition

𝑠 𝑜/𝑎⟶ 𝑠′

of  with an operating environment state 𝑜 ∈ 𝕆. One or all of the parties
𝑝 ∈ ChoiceOf(𝑎) would be responsible for creating 𝑡𝑥(𝑎), and submitting
it to the blockchain network . This procedure is shown in Fig. 4.3. The
state 𝑠 stored in Ð would, of course, not change immediately. Instead, the
transaction must first be picked up by a miner, and be included in a block

tx(a)

Time
tittx

Block Bi ...Blockchain

Transaction
Pool

Party p

...

DApp Đ State s State s'

Figure 4.3:Mapping of the performance of an action of a smart contract
to a blockchain transaction

56

4.1. Blockchain-Based Enforcement

𝐵𝑖 . Ð checkswhether 𝑎 is enabled, and if so, executes all the code associated
with 𝑎 arriving at state 𝑠′.

Transaction-Driven Semantics

Moving the smart contract state and logic to a DApp has significant impli-
cations for the performance of smart contracts. If Ð is to enforce, it needs
to be able to correctly implement the smart contract semantics. However,
two limitations of smart contracts, as stated in Sect. 2.2.4, pose substantial
challenges:

• Due to thenon-continuity property, Ð is only active within trans-
actions during the mining of a new block, and otherwise lies dor-
mant. State transitions of the smart contract must, therefore, (i) wait
until they are included by a miner, causing a delay (see Fig. 4.3), and
(ii) be explicitly triggered by an outside system or party.

• Due to the isolation property, Ð can not access any systems or data
outside the blockchain. Thus, any access to the valuation 𝜙 external
data sources 𝐷𝐸 is severely hampered. In our architecture, we will
make use of oracle patterns to somewhat circumvent this limitation.

The impact of these limitations, especially on the performance of au-
tonomous actions as well as on detecting external events, will be the main
topic of Chapter 6. For now, we assume that any delays are minimal and
within the tolerance of all parties, and that autonomous actions can be
supported.

Confidentiality Issues

This leaves a more immediate issue to deal with concerning the trans-
parency of blockchains and the resulting visibility of  and its state 𝑠
within Ð: Assuming a public blockchain network is used, the smart con-
tract, its state, and all associated communication is not only visible to all
parties, but also to all other members of the blockchain network  and
the general public. Arguably, this high level of transparency is one of the
most fundamental features of blockchain technology, and automatically
enables full auditing, monitoring, and non-repudiation capabilities. These
may especially be helpful when it comes to a legal enforcement of the
smart contract in front of a court.

However, for many smart contracts it may be an obstacle: The under-
lying operational logic, the contract data and all messages, as well as the
identity of the parties are not always supposed to be public or even shared
between all immediate parties to the contract. Yet, the DApp needs ac-
cess to, e.g., the values of the internal data sources 𝐷𝑃 and 𝐷𝑉 to perform
actions autonomously. Using permissioned blockchain networks may be

57

Chapter 4. Smart Contract Management Systems

considered to mitigate this to some degree, but will result in a lack of flex-
ibility. As such, a SCMS must strike a balance between ensuring the in-
dependence and power of the DApp while ensuring privacy to varying
extents, for which we propose a multi-chain approach.

4.1.3 Multi-Chain Approach

In practice, it becomes increasingly evident that different domains call for
very individual requirements when it comes to blockchain networks [108].
As a result, initiatives with various goals have been formed: Estonia, for
example, makes use of a custom blockchain network powered by the KSI
blockchain1 in some of their government agencies. Australia, likewise,
aims at establishing a national blockchain network2 for various uses, such
as aiding businesses in achieving regulatory compliance as well as cre-
dentialing in the education sector. In industry, especially the supply chain
sector is exploring the use of blockchain technology for securing infor-
mation and provenance across supply chains [64], one such productive
example being TradeLens3.

This emerging multi-chain environment poses challenges for smart
contracts, but also inspires a smart contract enforcement approach: When
using multiple blockchain networks to enforce the same smart contract,
each part of the smart contract can be configured separately. Sensitive
parts of the smart contract may be enforced on highly restricted consor-
tium blockchains, while less sensitive parts may be moved to public block-
chains. Other properties of the blockchain network may also be exploited
and configured, e.g., when optimizing the cost of storage and transactions
throughout the smart contract’s lifecycle.

Figure 4.4 shows an example of how such a multi-chain environment
may look like for the train ticket scenario. First, train tickets are sub-
ject to local laws, for example regarding customer protection. A national
blockchain network 1 may be used to track additional data and com-
plaints about the passenger’s experience to handle compensation and re-
fund schemes. Railway companies often cooperate with each other and
merge their infrastructure to offer better deals and more attractive routes.
Such strategic partnerships form consortia: The railway companies may,
as a consequence, decide to run their own railway consortium blockchain
network 2 to keep track of tickets and funds. The same general prin-
ciple applies to payment providers, who may run a payment consortium
blockchain network 3.

The passenger needs access to all three blockchain networks, while
the railway company only accesses1 and2 and the payment provider
only3. As a consequence, the payment information of the passenger can
1https://e-estonia.com/
2https://www.industry.gov.au/data-and-publications/
national-blockchain-roadmap

3https://www.tradelens.com/

58

https://web.archive.org/web/20210424174657/https://e-estonia.com/
https://web.archive.org/web/20210306202117/https://www.industry.gov.au/data-and-publications/national-blockchain-roadmap
https://web.archive.org/web/20210306202117/https://www.industry.gov.au/data-and-publications/national-blockchain-roadmap
https://web.archive.org/web/20210426180953/https://www.tradelens.com/

4.1. Blockchain-Based Enforcement

National Blockchain
Network N1

Railway Consortium
Network N2

Payment Consortium
Network N3

Blockchain Networks

Passenger

Railway Company

Payment ProviderTransaction

Event Listener

Figure 4.4: Blockchain networks potentially involved in the train ticket
scenario

be hidden from the railway company, and the ticketing details can in turn
be hidden from the payment provider. This allows the creation of strict
need-to-know guidelines across a smart contract, balancing the tradeoff
between transparency and trust and the need for privacy and confiden-
tiality.

The consequences for the enforcement of the smart contract  are sig-
nificant. Like in the choreography enforcement approach, the state may
again be fragmented and distributed, this time across a number of block-
chain networks1, ...,𝑚 and corresponding DApps Ð1, ..., Ð𝑚. Figure 4.5
shows this general scheme, and how the state fragments 𝑠1, ..., 𝑠𝑚 are main-
tained by one DApp each. Each participant needs to access and manage
potentially multiple blockchain networks.

A major challenge in this area is that of blockchain interoperability,
i.e., the degree to which heterogeneous and homogeneous blockchain net-
works can exchange information, synchronize their states, or trigger ac-
tions within each other [57]. Such capabilities are vital when working to-

Bl
oc

kc
ha

in
N

et
w

or
k
N
1

DApp
Đ1

N
m

. . . DApp
Đm

ŝ1 ŝm

Party p1

p2 p3

Smart contract
state s

Transaction

Cross-chain comm.

Event listener

Figure 4.5: Smart contract enforcement approach using multiple block-
chain networks

59

Chapter 4. Smart Contract Management Systems

wards a multi-chain smart contract enforcement approach to ensure con-
sistency between the smart contract state fragments.

In a recent survey exploring the state of the art in blockchain interoper-
ability, Belchior et al. found a wide array of approaches which vary in their
complexity and applicability [14]. In the context of smart contracts, it is
critical whether additional trust is needed to allow for blockchain interop-
erability. Many sidechain approaches, for instance, in which assets on one
blockchain are locked and free corresponding “pegged” assets on another
blockchain, work using third-party validators. The same may be true for
blockchain relays, which often rely on a trusted party managing the inter-
actions. Second layer consensus mechanisms and blockchains deliberately
built to support interoperability may remove this restriction, though, and
allow for interoperability between different blockchain networks without
sacrificing the inherent guarantees of using a single network [14]. In the
remainder of this chapter, we will take on a more agnostic view on block-
chain interoperability, and aim not to prescribe any single approach.

4.2 Functional Requirements

Since smart contracts are a relatively novel concept it is difficult to deter-
mine a set of functional requirements for a SCMS that covers all practi-
cal needs. However, in BPM the situation is different: BPMSs have been
in development and productive use for decades [31, 112]. As such, there
is a rather clear picture of the features expected from a BPMS [91] (see
Sect. 2.3.2), which we aim to transfer to the case of smart contracts.

Figure 4.6 lends credibility to this approach: A BPMS facilitates pro-
cesses and choreographies through their entire lifecycle. Fortunately, the
business process lifecycle (see Sect. 2.3) aligns well with the contract life-
cycle (see Sect. 2.1). Essentially, the contract is designed, analyzed, config-
ured, enacted, and evaluated in a similar way to a process. Only the final
dispute resolution and termination phases of the contract lifecycle are not
explicitly contained in the business process lifecycle. Dispute resolution
is usually not necessary when processes within a single organization are
concerned—at least not on a legal level including courts or arbitrators. The
absence of the termination phase is due to the differing perspective be-
tween the two lifecycles: Whereas the business process lifecycle describes
the ongoing management of a repeated process in an organization, the
contract lifecycle describes the phases of an individual, atomic contract.

Still, our assumption is that the features of a BPMS regarding process
and choreography models can be analogously moved to an SCMS regard-
ing smart contract models. Where applicable, we will add new features to
fit the requirements of smart contracts.

60

4.2. Functional Requirements

Design

Analysis

Configuration

Enactment

Evaluation

Negotiation

Formation

Storage

Performance

Monitoring

Modification

Dispute
Resolution

Termination

Notarization

Business Process LifecycleContract Lifecycle

Figure 4.6: Approximate relationship between the contract lifecycle by
Governatori et al. [39] and the business process lifecycle by Weske [112]

4.2.1 Negotiation and Formation

The negotiation and formation phases of the contract lifecycle roughly
correspond to the design phase of the business process lifecycle. This in-
cludes the identification and modeling of a business process, and is pri-
marily covered by the process modeling tool of the BPMS. Adopting this
functionality for the SCMS yields the following functional requirements:

𝐹1 – Create and modify smart contract models.

Of course, the core functionality of initially creating and modifying
existing smart contract models must be given. The smart contract
models should be complete in that they contain all relevant informa-
tion according to our metamodel (see Sect. 3.1), but could be drafted
in any notation or formalism.

𝐹2 – Store smart contract models.

The SCMS should be able to store smart contract models in a smart
contract metadata storage. The repository should be protected with
security and authentication measures so that users can only access
data they are allowed to see.

61

Chapter 4. Smart Contract Management Systems

𝐹3 – Share smart contract models.

Creating a smart contract model is a collaborative procedure. Safely
sharing the smart contract models between all parties for negotia-
tion purposes is essential.

We do not prescribe any specific technology or procedure for creating
and sharing the smart contract models. In research, there are even ap-
proaches which employ blockchain technology at this stage, for example,
to build the entire model on the blockchain or to find consensus on which
parts of a model need to be adapted during negotiation [49]. Naturally, no
step should compromise the integrity of any smart contract model.

4.2.2 Notarization and Storage

The notarization and storage phases of the contract lifecycle overlap with
the analysis and configuration phases of the business process lifecycle. A
deployment in the sense of a business process most directly corresponds to
the signing of the contract, since before there is no legally binding agree-
ment yet. At the time of signing, the configuration—so to say—of the con-
tract has to have finished already as well. This is reflected in the feature
requirements of the SCMS:

𝐹4 – Analyze smart contract models.

Analysis tools should be available to make sure the smart contract
model is free of issues and mistakes. This could pertain to structural
issues, such as infinite loops of immediately enabled autonomous
actions. Targeted analyses regarding the actual content of the smart
contract and its terms are also conceivable, e.g., checking the smart
contract actually makes good on all offers initially negotiated.

𝐹5 – Configure privacy and security parameters.

Since smart contracts are subject to critical privacy and security
considerations, these should be configurable on a per-model basis.
This could for example mean to specific configuration of a consor-
tium blockchain network, or the use of multiple blockchain net-
works with different properties for different parts of the smart con-
tract.

𝐹6 – Sign smart contract models.

Once the parties have agreed on a smart contractmodel, they need to
sign it to demonstrate clear intent to enter the encoded agreement.
This may be facilitated using cryptographic means like electronic
signatures. This step could also be included in the act of deploying
corresponding DApps signed by the accounts of all parties.

62

4.2. Functional Requirements

𝐹7 – Instantiate smart contracts.

After the configuration and signing is done, a smart contract in-
stancemay be created from amodel. This includes the deployment of
all required DApps on potentially multiple blockchains and properly
interlinking them. At this point, code needs to be generated from the
smart contract model, or suitable interpretation frameworksmust be
set up.

𝐹8 – Share access to smart contracts.

Once deployed, parties need to have access to the smart contract.
The SCMS should facilitate the exchange of correlation information
regarding instances, e.g., by sharing addresses to all DApps.

Note that it is not the goal of this thesis to solve all issues of smart con-
tracts on a deployment level. For example, we do not provide any method-
ology, neither automated nor manual, to distribute a smart contract model
among multiple blockchain networks. In previous work, though, we have
shown that the BPMN choreography diagram notation can be extended
with visibility constraints to aid privacy at design-time [70], which could
be used as an indication for a distribution algorithm. Other design-time ap-
proaches have also been proposed, such as the privity spheres introduced
by Köpke et al. [63].

Regarding the implementation of pre-configured privacy parameters,
there is a lack of support in practice for implementing most efforts to-
wards completely or partially private DApps without sacrificing impor-
tant functionality. For example, a DApp on a public blockchain network
can not perform any calculations based on encrypted data, since it would
require the decryption keys—which would automatically become public.
Approaches like homomorphic encryption or Zero-Knowledge Succinct
Non-Interactive Argument of Knowledge (zkSNARK) [15, 32], which could
empower DApps to perform calculations without disclosing any informa-
tion, are not yet ready for widespread use. The goal is rather to keep pri-
vacy in mind during the overall abstract design of a SCMS, so that future
developments can be included.

4.2.3 Performance and Monitoring

Once the smart contract is signed and stored—that is, instantiated—, the
actual performance in which the parties fulfill their respective obligations
begins in the contract lifecycle. This performance phase, along with the
parallel monitoring phase, are captured by the enactment phase of the
business process lifecycle. In a BPMS, the execution engine is the main
driver of this phase, but monitoring tools are needed as well. Together, the
following functional requirements emerge:

63

Chapter 4. Smart Contract Management Systems

𝐹9 – Implement smart contract semantics.

The code generated for the DApps or the interpretation mechanisms
contained in the DApps need tomake sure that the correct semantics
of smart contracts are enforced. An action may only be performed
if it is enabled, and autonomous actions must be performed imme-
diately after they become enabled. Performance constraints must be
monitored and evaluated to ascertain this.

𝐹10 – Interact with smart contracts.

Actions which are enabled by the smart contract need to be visible
to the parties, and interfaces for human actors must exist to perform
these actions. In particular, this means that transactions need to be
created and sent to the appropriate blockchain network to trigger
any associated code in the DApps.

𝐹11 – Monitor smart contracts.

Since smart contracts may be distributed among many blockchain
networks and receive interactions from other parties continuously,
the SCMS must provide appropriate monitoring information. This
includes the current smart contract state, potentially redacted ac-
cording to the parties’ access authorizations.

𝐹12 – Connect to external oracle services.

The SCMSmust facilitate and manage interactions with external or-
acle services. This interaction is not necessarily direct, but may also
be the result of generating specific code during the code generation
phase.

𝐹13 – Connect to blockchain interoperability approaches.

The SCMS should be designed to enable various blockchain inter-
operability approaches. This includes provisions in the code gener-
ators to allow for the use of blockchain relays, or specific adapters
accessing overlay blockchain networks [14].

As discussed in the previous chapter, physically forcing parties to per-
form a non-autonomous action they are obliged to is not possible. Thus,
enforcement via tamper-proof execution of code is principally limited in
its scope. Still, DApps can be used to ensure that a party does not per-
form an action which is not enabled, and that autonomous actions are
performed as soon as possible.

4.2.4 Modification, Disputes, and Termination

Lastly, contractsmay either call formodification, dispute resolution, or ter-
mination during their regular runtime. Whereas modification aligns with
the evaluation phase of the business process lifecycle, dispute resolution

64

4.3. System Architecture

and termination have no direct counterpart. The three phases of the con-
tract lifecycle have in common, though, that they concern the relationship
of the parties, and a consensus about how to proceed with a running smart
contract outside its original terms.We identify the following functional re-
quirements:

𝐹14 – Modify or terminate smart contracts.

Contract terms may be altered during the runtime of the contract, if
all parties agree. An SCMS should support this to some degree. Prac-
tical implementations using blockchain technology are limited by
the immutability property of blockchain data, including the DApp
code. Patterns exist to circumvent this limitation, for instance us-
ing registries and proxy references which redirect function calls to
newly deployed smart contracts [61].
Smart contracts may also be amicably terminated before the speci-
fication calls for it, which is a special case of modification. The exe-
cution layer needs to make this possible, and avoid any autonomous
actions from being performed after the termination [39].

𝐹15 – Extract auditing information from smart contracts.

If parties in a contract feel the need to dispute any part of the con-
tract, this is usually done in arbitration or litigation proceedings.
The SCMS must provide authenticated logs and auditing informa-
tion, which aids the legal enforcement of the smart contract. This
auditing information can also be used for evaluation and later pro-
cess mining activities [62].

Note that we consider blockchain migration, that is, moving one or all
DApps to different blockchain networks without influencing their opera-
tion, to be a modification of the smart contract. Bandara et al. propose a
number of patterns to this end, which adapters may implement [13].

These requirements are not meant to be exhaustive, but provide for a
first design of an SCMS that is extensible for future developments.

4.3 System Architecture

Based on the multi-chain enforcement approach and the functional re-
quirements, we devised a blueprint system architecture for generic SCMS
implementations [71]. The architecture is inspired by the BPMS architec-
ture introduced in Sect. 2.3.2.

Note that the term SCMS refers not to a single component, but essen-
tially the entirety of the distributed components running on-premise at
the parties or on the blockchain network. The overall system architecture
from the perspective of a single party is shown in Fig. 4.7. In the following,
we will describe these components separately.

65

Chapter 4. Smart Contract Management Systems

R

R

Party

Local Components

Blockchain NetworkBlockchain NetworkBlockchain Network

Block-
chain

DApps Smart
Contracts

Oracle
DApps Miner

Node

Transaction
Log Events Transaction

Pool
Interface

Node

Oracle
Provider
Oracle

Provider
Oracle

Provider
Blockchain

Interoperability

. . .

RHTTP RHTTP

RHTTP
R

HTTP

Metadata
Storage

Instances

Models

RPC

AdapterAdapterBlockchain Adapter

Model
Transformation

Execution
Monitor

. . .

Interfaces

Smart Contract
Modeling Tool

Action
Handler

Administration &
Monitoring Tools

Actor

Client

Actor

Client

. . .

RPC

Figure 4.7: Reference architecture of a generic SCMS approach

66

4.3. System Architecture

4.3.1 Local Components

All local components are deployed on-premise at each party depending on
their involvement in the smart contract.

Interfaces

The interface components provide the frontend of the SCMS, and are used
by the human actors at each party to create and interact with smart con-
tracts in some form, spanning all phases of the contract lifecycle. In the
architecture diagram, three examples are shown:

A smart contract modeling tool is used to create smart contract mod-
els in whichever concrete notation is chosen in a particular implementa-
tion (𝐹1). For example, in our prototypical implementation Mantichor (see
Chapter 5), BPMN choreography models visualized using BPMN choreog-
raphy diagrams were used. The modeling tool may, of course, be arbitrar-
ily complex and include analysis features (𝐹4) or collaborative modeling
features among the contract parties (𝐹3) [49]. Further, if privacy and se-
curity parameters are included in the smart contract model, these may be
configured as well (𝐹5).

The action handler is the main gateway to the smart contract’s execu-
tion (𝐹10). As per the semantics (see Sect. 3.2), the current state of the smart
contract enables a number of actions which are the choice of a party. The
action handler allows these parties to view actions enabled for them, and
properly perform them. This is done via a blockchain transaction through
a blockchain adapter, supplying the necessary information to the DApp
for tamper-proof processing.

Lastly, administration and monitoring tools are used to keep track of
running smart contracts, since parties could be involved in more than one
at the same time. A list of active smart contracts, an overview of available
actions in each of them, statistics about the smart contracts, and means of
modifying or extracting information from smart contracts (𝐹14, 𝐹15) are all
offered via this component.

Blockchain Adapters

All of the interface components need access to the DApps actually enforc-
ing the operational logic of the smart contract. To manage the complex-
ity of handling many blockchain networks with potentially varying inter-
faces, we add another layer between the interfaces and the DApps follow-
ing the adapter pattern. The idea is to provide a custom adapter component
for each distinct blockchain network which knows how to generate code
or create transactions for that particular blockchain network.

Blockchain adapters are used together with dedicated interface com-
ponents like the smart contract modeling tool to allow the signing and in-
stantiation of new smart contract instances via the deployment of DApps
(𝐹6, 𝐹7). The challenge here is to find a common interface which unifies

67

Chapter 4. Smart Contract Management Systems

the blockchain networks while also providing all the necessary informa-
tion to the frontend components. We will talk about a concrete proposal
for this interface in the course of introducing Mantichor (see Chapter 5).
In general, though, we see the need for two components at least:

A model transformation takes a smart contract model as an input and
generates some kind of DApp specification, usually code in a domain-spe-
cific programming language (model to text transformation). The model
transformation may be enhanced with analysis and verification tooling to
ensure a semantics-preserving translation of the model semantics to the
DApp (𝐹4). One of two approaches is generally used:

• A code generator transforms the smart contract model into a DApp
specificationwhich can then be deployed to the blockchain network.
The specification may be in any format that the target blockchain
network accepts, e.g., Solidity scripts for Ethereum [114] or Kotlin
applications for Corda [45].

• A separate interpretation infrastructure is available on the blockchain
network, which requires the smart contract model to be converted
to an intermediate format the interpreter understands.

In this step, adapters may also require some coordination between each
other to enable later interoperability between DApps. For example, spe-
cific event types for cross-chain communication may be required to be
generated, which the adapters share between each other [14]. We account
for this possibility by allowing adapters to access other adapters using
their regular APIs. Additionally, a generic blockchain interoperability com-
ponent symbolizes the varying capabilities of blockchain networks to in-
teract with each other (𝐹13).

Second, an execution monitor is used to observe any activity of the
DApp (𝐹11). For example, blockchain networks like Ethereumoffer an event
layer, in which DApps can emit events which outside entities may pick up
following a listener pattern. The execution monitor may serve as such a
listener, and correlate events with smart contract instances to display in
the frontend components. Further, the executionmonitormay also provide
the state of the DApp to the interfaces for analysis.

Depending on the implementation of the DApps, an executionmonitor
may also be taskedwith polling for the enablement of autonomous actions,
and triggering appropriate transactions for them as soon as possible. We
will discuss different strategies of implementing such behavior in oracle
providers in Chapter 6.

4.3.2 Metadata Storage

The metadata storage stores the associated models and instance informa-
tion like DApp addresses (𝐹2, 𝐹3, 𝐹8). The metadata storage is the main
means of sharing information between parties before the smart contract

68

4.3. System Architecture

is notarized and stored on one or more blockchain networks, or before all
parties are aware of the required information needed to access the DApps
in the first place. Thus, it facilitates the negotiation and formation phase
of the contract lifecycle.

Of course, every interaction between the parties which is not pushed
through a blockchain network via a transaction poses a potential risk of
tampering and manipulation. Concrete implementations must therefore
use adequate mechanisms to secure the metadata storage and its inter-
faces. The degree to which this is necessary depends on the parties in-
volved. If there is a complete lack of trust, even the metadata storage and
the eventual negotiation of the smart contract model may be secured via
a blockchain network [101].

In this context, note that the SCMS architecture does not arrange for
additional off-chain storage of any kind. A common pattern, for instance,
is to attach data to DApps by only storing a hash of the data in a DApp,
which allows users to validate their local copy [116]. Patterns like this
are needed due to the impracticability of storing large amounts of data
on many contemporary blockchain networks like Ethereum, since they
rely on fully replicating nodes [114]. As a result, they introduce steep fees
for data storage which may quickly become prohibitively expensive (see
also Sect. 6.5). Research has since been focused on patterns andmethods to
ensure a secure link between off-chain and on-chain data [46]. Projects like
Ethereum Swarm4 even propose incentive-based decentralized file storage
which is enforced through DApps itself.

Using these approaches for smart contracts does not appear adequate,
though. The idea of smart contracts is full enforceability through law or
tamper-proof code. Introducing data which may be tampered with or even
disappear after a while if incentives are not met anymore fundamentally
contradicts this idea. In short, we believe that everything that pertains to a
smart contract and its enforcement after it has been stored and deployed—
that is, its full state and even further attachments—should be contained in
a DApp on a blockchain network.

Still, scalability issues exist in practice, and blockchain networks are
being developed which contain more appropriate, native means to deal
with large amounts of data. A promising approach are zkSNARKs, which
allow reasoning about off-chain data fromwithin DApps in a tamper-proof
way using complex cryptographic schemes [32]. They are, however, very
computationally intensive and may not become viable in the near future.

4.3.3 Smart Contract DApps

The smart contracts are implemented using DApps deployed to one or
more blockchain networks (see Sect. 4.1) and contain the actual opera-
tional logic adhering to their operational semantics (𝐹9). Blockchain adapt-
ers provide a commonAPI for the interface components to use. To this end,
4https://swarm.ethereum.org/

69

https://web.archive.org/web/20210228151209/https://swarm.ethereum.org/

Chapter 4. Smart Contract Management Systems

each party runs and maintains a local blockchain adapter for each block-
chain network they need to interact with. If a smart contract is deployed
to multiple blockchain networks, a party thus only needs those adapters
required to connect to the blockchain networks they are involved in.

Transactions are sent through an interface node. Individual blockchain
adapters may either operate this node themselves, or connect to external
services providing an access gateway. An example for such a gateway is
Infura5, which allows users to interact with public Ethereum blockchain
networks using a web-based REST API. The adapters also provide moni-
toring information to any interested parties. That is, they access the block-
chain networks event layer and listen for changes, and may also provide
other data analysis and aggregation features.

The SCMS makes use of several blockchain technology specific types
of patterns [116]. One of these are oracle patterns (𝐹12), which allow smart
contracts to access external data sources 𝐷𝐸 . Oracles are an important pat-
tern in blockchain networks and are thus also first-class citizens in the
proposed SCMS architecture. There are two parts to each oracle, one be-
ing the oracle provider and one being the oracle DApp. An oracle is often
only serving one particular blockchain network, which needs to be taken
into consideration when choosing a blockchain configuration for deploy-
ment purposes.

5https://infura.io/

70

https://web.archive.org/web/20210416161218/https://infura.io/

Chapter 5

Proof-of-Concept
Implementation

To evaluate key aspects and characteristics of the SCMS approach, we
developed a proof-of-concept implementation dubbed “Mantichor”. The
main goal of Mantichor was to identify whether state-of-the-art block-
chain technology is suitable for smart contract management and enforce-
ment, andwhether the structure of the SCMS system architecture provides
sufficient guidance.

Mantichor was implemented with the help of several Master’s students
at Hasso Plattner Institute, University of Potsdam, during a dedicated sem-
inar in the Summer Semester 2019, namely: Christian Friedow and Oliver
Adameck for the frontend components; Lisa Ihde and Jonas Bounama for
the Corda blockchain adapter; as well as Simon Siegert, Tom Lichtenstein
and Finn Klessascheck for the Tezos blockchain adapter. Christian Friedow
further proceeded to base his Master’s thesis on Mantichor.

In this chapter, we first introduce the design of the Mantichor system
(see Sect. 5.1) and then go into detail on the blockchain network adapters
(see Sect. 5.2). We evaluate Mantichor and discuss its maturity in Sect. 5.3.
On a side note, we will also introduce chor-js, a web-based BPMN chore-
ography diagram editor used in Mantichor and independently developed
with Anton von Weltzien as part of this thesis (see Sect. 5.4).

Parts of this chapter are based on our previous work, in which we (i)
discuss Mantichor in the context of blockchain-based choreography en-
forcement [71], and (ii) present the core features of chor-js [69].

5.1 System Design

To keep the scope of Mantichor in check, the major design decision to use
choreography models visualized using BPMN choreography diagrams as
the underlying modeling formalism for smart contracts was taken. This
decision had multiple reasons:

71

Chapter 5. Proof-of-Concept Implementation

• BPMN is an established andwell-understoodmodeling standard.We
have further established (see Sect. 3.3) that many aspects of smart
contracts are in some way represented in BPMN, and others like
actions and legal relations may be derived to some degree.

• A large set of tooling already exists for BPMN, including ready-to-
use metamodel andmodel data structures supported by state-of-the-
art technologies. In addition, we were in parallel developing a dedi-
cated web-based modeling tool for choreography diagrams, chor-js
(see Sect. 5.4), which could immediately be used in Mantichor.

We therefore believe that using choreography models does not substan-
tially deviate from the general sentiment of the SCMS approach, and that
Mantichor is a valid evaluation of its core ideas. As such, Mantichor pro-
vides some first steps towards practical and fully-featured SCMS imple-
mentations employing blockchain technology.

5.1.1 System Overview

Figure 5.1 shows an overview of Mantichor’s overall system design. Com-
ponents highlighted with a shaded background were originally developed
for Mantichor. Their code is available publicly on GitHub1.

Each party runs their own instance of a dedicated frontend which pro-
vides access to the other components via a web browser. The frontend
communicates with a share server, which is used to exchange models and
instance metadata information between different participants. For Manti-
chor, we chose to provide access to two blockchain networks: Tezos [38]
and Corda [45], resulting in two distinct blockchain adapters and DApp
architectures.

A major development goal of Mantichor was to achieve plug-and-play
connectivity between the different components without the use of compli-
cated setup procedures. Thus, all components support Docker containers,
meaning they can be started and instantiated separate from each other on
any supported target platform.

5.1.2 Frontend Components

The frontend of Mantichor allows parties to interact with the system using
their web browser, and encapsulates the local interface components of the
SCMS approach, namely a modeling tool, action handler, and monitoring
tool in a unified application. The frontend is implemented using the Vue.js
framework and TypeScript, a strongly typed programming language com-
piling to ES6-compliant JavaScript usable across many browsers. All cho-
reography models are created and visualized using chor-js.
1https://github.com/bptlab, projects mantichor-frontend, mantichor-share,
mantichor-tezos, mantichor-corda

72

https://github.com/bptlab

5.1. System Design

Corda
Platform

Party

Mantichor
Frontend

Share
Server

Tezos
Adapter

Corda
Adapter

Web Browser

Tezos
Network

DApps

Corda
NodeDApps

R

R R

HTTP

Adapter API

R

Share
API

Tezos
Node

R RPC

Notary Node

R RPC

Metadata Storage

Database

Choreography
Instances

Choreography
Models

Figure 5.1: Overview of Mantichor’s overall system design

Figure 5.2 shows a screenshot of the frontend in the modeling view.
The frontend is built with the intention of creating and managing multiple
choreography models and several associated choreography instances at
the same time, organized in projects. A menu on the left allows users to
quickly switch between models—“TT” for train ticket and “R” for a rental
contract in the example—, start work on new models, or import models
from the share server.

To import a model from the share server, its unique ID needs to be
known as described in the next section. Conversely, a model can be shared
with others by storing it on the share server. A unique ID is then assigned
and supplied via the frontend. At any time, metadata concerning themodel
can be edited in the model properties modal. In the case of Mantichor, the
only model-level metadata is the project name, which is also used to derive
the abbreviation shown in the model menu.

Lastly, models can be instantiated and deployed to one of the block-
chain networks accessible via the locally available blockchain adapters.
Instances are then managed in the execution view, which shows the un-
derlyingmodel of an instance and visualizes the set of enabled tasks along-
side the possibility to execute them. Overall, the frontend was designed to
be minimal, responsive, and simple.

73

Chapter 5. Proof-of-Concept Implementation

Model
selection

Add
model

Import
model

Deploy instance

Share
model

Model
properties

Modeling view Execution view

Figure 5.2: Screenshot and components of the Mantichor frontend

5.1.3 Share Server

During all phases of the contract lifecycle, but especially during the initial
negotiation and formation phase, participants need to exchange models.
The share server is used for just that, implementing a generic and light-
weight model, instance, and metadata exchange mechanism. The primary
focus as part of theMantichor project was to enable rapidmodel exchange,
somewhat disregarding authentication and security for simplicity. Like the
frontend, the share server was implemented using TypeScript. A Mon-
goDB database instance2 is used for the actual storage of data and artifacts.

The general sequence of interactions to share a smart contract model
between two participants 𝑝1 and 𝑝2 is shown in Fig. 5.3: Participant 𝑝1
sends the model to the share server using the storeModel API, allowing
arbitrary data as a parameter. The share server uses somemethod to assign
a unique ID to the model, e.g., a hash function. In the case of Mantichor,
the result of a hash function was shortened to just a few characters to
facilitate a verbal exchange of the ID. The data is stored under this ID in
a document-centric database. This ID is returned to 𝑝1, who sends it to 𝑝2
using any medium of communication. Participant 𝑝2 can then query the
share server using the ID and the getModel API, receiving the original
model in the end.

Using this scheme, a group of participants may acquire the same ver-
sion of a model for negotiation and formation purposes. Checksums can
be used to validate the integrity of the model, and that no one tampered
with it. In the scope of Mantichor we did not implement any form of au-
thentication when accessing the share server. Instead, security is achieved
through the complexity of the ID, making it hard to guess valid IDs as an
2https://www.mongodb.com/

74

https://web.archive.org/web/20210428041325/https://www.mongodb.com/

5.2. Blockchain Network Adapters

p1 p2 Share Server Database

assignID(:model)

:id

put(:id, :model)

:id

:id

storeModel(:model)

getModel(:id)
get(:id)

:model
:model

Use :model

Figure 5.3: Sequence diagram of the interactions of two participants 𝑝1,
𝑝2 to exchange a model using the share server

outsider to the system. It is thus assumed that any person in possession
of the ID may also access the associated model. Obviously, more sophis-
ticated protection mechanisms could be conceived, including digital sign-
ing and encryption. It may even be advisable for high-stake scenarios to
secure the information exchange at this step using blockchain networks
already [49].

5.2 Blockchain Network Adapters

At the heart of the SCMS approach are the blockchain adapters. Theirmain
purpose is to be the mediator between the frontend components and the
DApps deployed on blockchain networks. They hide the complexity of the
blockchain networks and their idiosyncratic inner workings.

5.2.1 Adapter Interface

The Mantichor project was also intended as a first step towards providing
a unified interface to otherwise diverse blockchain networks. For this rea-
son, a unified API for all adapters was introduced in Mantichor, which
is shown in Tab. 5.1. Each adapter serves a single blockchain network
 = (𝑁, 𝐴), and a route accounts returns the subset of accounts 𝐴 the

75

Chapter 5. Proof-of-Concept Implementation

Table 5.1: Interface of the blockchain network adapters

Verb URL and description

POST /choreographies

Deploy a new choreography instance
Parameters:

xml — Serialization of the choreography model
mappings — Mapping of roles to blockchain network accounts

Responses:

id — Unique choreography instance identifier
GET /choreographies/{id}/tasks

Query the set of enabled tasks in the given choreography instance
Parameters:

xml — Serialization of the choreography model
Responses:

tasks — List of enabled tasks
POST /choreographies/{id}/tasks/execute

Execute a task in the given choreography instance
Parameters:

xml — Serialization of the choreography model
task — Task to execute
address — Address of the local account to be used

GET /accounts

Get the active accounts of this adapter
Responses:

accounts — List of accounts

adapter may use, i.e., owns the private keys to. In a sense, these accounts
are owned by the organization running the adapters and signal the au-
thenticity of all associated transactions and actions within the blockchain
network and to the outside world. While in Mantichor those accounts are
managed by the adapters themselves, in an enterprise setting a centralized
and secured storage within the organization seems appropriate.

The focus of the adapter interface is on the instantiation and execu-
tion of choreographies. Three minimal routes were devised for this: one
deploying new instances from a choreography model, one returning a list
of tasks which are currently enabled, and one executing a task. We de-
signed the adapters to be stateless, which explains why all routes require
the original choreography model XML serialization to be provided. This
serialization is used to properly format transactions targeting specific flow
nodes and also validate the requests. This scheme also requires that the id
contained in the path of the instance-specific routes must contain enough
information to locate the DApp, in our case its address. It would be a sim-
ple switch to re-use the IDs assigned by the share server instead for a more
consistent experience.

76

5.2. Blockchain Network Adapters

Other than that, the initial instantiation requires a mapping between
roles or participants in the choreography model to actual accounts in the
blockchain network for authentication purposes. The frontend provides
a simple interface for this. Lastly, tasks are identified by their ID within
the BPMN choreography model, i.e., the id attribute of the BaseElement
superclass [87, p. 54]. To resolve ambiguities in case the same task is avail-
able through multiple call choreographies—a modeling element allowing
the reuse of existing model fragments—at the same time, the whole trace
of IDs from the root element through the hierarchy of sub and call chore-
ographies needs to be provided.

Both adapters implement a token-based execution semantics as pro-
posed by Weber et al. [109] and refined for the express purpose of BPMN
choreography diagrams in our own work [70]. The state of the choreog-
raphy is characterized by tokens on the sequence flows, and transactions
pertaining to a choreography task are rejected if no token can be found
in front of it. The set of supported modeling elements is limited to simple
event-based and parallel gateways as well as choreography activities.

5.2.2 Tezos Adapter

Tezos is an open-source public blockchain network using a native crypto-
currency called tez (XTZ) [38]. The mining and consensus protocols Tezos
uses are based on Proof-of-Stake (PoS), in which miners for a block—called
bakers—are chosen based on their monetary stake in the procedure. Tezos
also has a special feature which allows protocol changes without forking
or deploying a new blockchain network: Proposals to change the proto-
col, e.g., changing gas limits or costs, can be submitted and voted upon by
members of the network. If a proposal reaches a certain amount of votes,
the protocol changes will become incorporated in the live network.

Listing 5.1: Fi template showing the standard function to execute a task
entry ChoreographyTask_[TASK -ID] () {

assert (SENDER == address "[SENDER]");

assert (storage.ChoreographyTask_[TASK -ID]_active);

storage.ChoreographyTask_[TASK -ID]_active =

bool false;

storage.ChoreographyTask_[NEXT -ID]_active =

bool true;

}

The Tezos adapter generates DApp code in the Fi programming lan-
guage, which is compiled to Michelson. The generated DApp keeps track
of tokens via Boolean flags for each choreography task, sub-choreogra-
phy, and all sequence flows targeting parallel gateways. Each choreogra-
phy task is subsequently translated to a function.

A short snippet is given in Listing 5.1, showing a template function for
a choreography task. In a first step, the address of the sender of the trans-
action is checked so that only the participant specified in the diagram can

77

Chapter 5. Proof-of-Concept Implementation

call the function. The code generator takes into account the role mapping
provided in the API (see Tab. 5.1). Then the function checks if the task is
really enabled by checking the respective flag. If so, the respective flags of
the choreography task and its successor are flipped. If the direct succes-
sor is a parallel gateway, the function would also potentially include the
semantics of the gateway itself.

5.2.3 Corda Adapter

Corda is a decentralized database which is comparable to a permissioned
blockchain, although it internally does not require a strict block struc-
ture [45]. Nodes must be granted access to the network, and obtain certi-
fications and keys pertaining to their real-world identity. Corda is differ-
ent than traditional blockchains like Ethereum or Tezos in that no global
broadcast of transactions and DApps is performed. Instead, messages are
sent between pairs of nodes in a choreographed fashion called flow and ex-
clusively on a so-called “need-to-know” basis, ensuring a level of privacy
that is not usually attainable for public blockchains.

The need-to-know principle has a direct consequence, which is that
no node has the full ledger available locally. Instead, pieces of information
called facts encoding the current tokens present in the choreography, are
only available to nodes which require and were granted access to this par-
ticular information. Two nodes with access to the same fact are guaranteed
to have a consistent view on it.

Facts are associated with a notary service part of the network. Any
proposed transaction modifying some fact, that is, consuming and issuing
a new version of the fact, needs to be notarized by that service. Notariza-
tion serves two purposes: For one, double-spending attacks are avoided by
the notary keeping track of valid facts which can be consumed. Second,
notaries may also validate transactions and check that they conform to the
constraints specified in the associated DApp. This allows Corda to work
without consensus protocols like PoW [45, Sect. 7.1].

5.3 Insights and Maturity

While working on Mantichor we gained valuable insights into the oppor-
tunities but also the challenges of implementing a SCMS.

5.3.1 Functional Coverage

Mantichor covers some of the SCMS features and touches many others, al-
lowing general insights about the full set of features. A summary is shown
in Tab. 5.2. Note that we substitute smart contracts for choreographies in
Mantichor, which limits the generalizability.

By using chor-js, Mantichor allows users to create fully standard-com-
pliant choreography models. Existing models can be loaded and modified

78

5.3. Insights and Maturity

Table 5.2: Coverage of the SCMS functional requirements in Mantichor

Feature Coverage status

𝐹1 Create/modify smart contract models (Frontend)
𝐹2 Store smart contract models (Share server)
𝐹3 Share smart contract models (Share server)
𝐹4 Analyze smart contract models () (Frontend)
𝐹5 Configure privacy/security parameters
𝐹6 Sign smart contract models
𝐹7 Instantiate smart contracts (Adapters)
𝐹8 Share access to smart contracts (Share server)
𝐹9 Implement smart contract semantics () (DApps)
𝐹10 Interact with smart contracts (Frontend/Adapters)
𝐹11 Monitor smart contracts () (Frontend/Adapters)
𝐹12 Connect to external oracle services
𝐹13 Connect to blockchain interoperability
𝐹14 Modify/terminate smart contracts
𝐹15 Extract auditing information

(𝐹1). The share server allows the persistent storage of the resulting mod-
els (𝐹2), and also to share them with other participants (𝐹3). While we do
not support advanced analysis of the choreography models, chor-js does
provide a validator which performs static analysis. It checks the observ-
ability constraints the BPMN standard requires, and makes sure that the
choreography model describes an enforceable choreography (𝐹4).

The adapters are able to deploy choreographies in DApps based on
choreography models to their respective blockchain network (𝐹7). Again,
the share server can be used to exchange metadata about the instance,
which in particular includes the address or ID (𝐹8). The DApps implement
a small subset of the BPMN choreography diagram standard, being limited
to event-based gateways, choreography tasks, and single-level sub-chore-
ography hierarchies. There is no support for autonomous actions in any
form, though, limiting the level of support for smart contract semantics
(𝐹9). In Chapter 6, we go into detail as to how autonomous actions may be
implemented as well.

The frontend component allows the interaction with deployed chore-
ographies using chor-js: Enabled choreography tasks are highlighted, can
be selected, and subsequently executed. The adapter formats and sends an
appropriate transaction to the network (𝐹10). This also fulfills the monitor-
ing requirement to some degree, since the current state of choreographies
can be viewed at any time, though more elaborate monitoring and perfor-
mance metrics are missing (𝐹11).

While we did not implement any of the remaining features, none of
them would require substantial changes to the architecture of Mantichor.
For example, external oracle services (𝐹12) and blockchain-interoperabil-

79

Chapter 5. Proof-of-Concept Implementation

ity (𝐹13) would be implemented in the existing DApps and adapters, if
not a native component of the blockchain network itself [57]. Other fea-
tures are implicitly given, like extracting auditing information (𝐹14); every
transaction to a blockchain network is logged, and is directly attributable
through the fundamental non-repudiation property of blockchains. Block-
chains have been shown to be susceptible to process mining techniques,
further increasing the potential for after-the-fact auditing [62].

For long-running smart contracts, blockchain migration may be an-
other issue. When blockchain networks reach their capacity or are super-
seded by newer versions—see, for example, the sequence of test networks
used for Ethereum—DApps may be prematurely deactivated or migrated
to new blockchain networks. We did not consider such functionality in
Mantichor, but appropriate patterns may be introduced in adapters and
DApps readily [13].

5.3.2 Non-Functional Properties

Developing Mantichor provided insights into to the non-functional prop-
erties of SCMS implementations as well. To structure the following discus-
sion, we will refer to a subset of the ISO 25010:2011 system and software
quality requirements as posed by the International Organization for Stan-
dardization (ISO) [52].

Performance Efficiency

The performance efficiencymetric expresses the performance, i.e., the pro-
cessing times and throughput, of a system taking into account the re-
sources consumed. We found that in the case of Mantichor, the blockchain
networks and interactions with them were the dominant factors for per-
formance and resource usage, and that the minimal frontend and share
server components did not exhibit any noticeable performance issues.

The local Tezos and Corda nodes set up in our tests put a major strain
on the test systems—all regular consumer hardware—, both regarding the
initial startup and setup phase aswell as the inclusion delay of any transac-
tion. In practice, of course, adapters may not need to run their own block-
chain nodes, but use external services like Infura (see Sect. 4.3.3) to use a
gateway to the blockchain network.

The perceived performance especially suffers from the inclusion time,
that is, the delay between submitting a transaction (executing a chore-
ography task) and it being confirmed by the blockchain network. While
we tried to clearly communicate these delays to users through the fron-
tend, e.g., by having modal loading screens and messages, the system as a
whole often feels unresponsive. Blockchain networks are notoriously hard
to scale [118], so this might be a big factor when deploying larger andmore
complex DApps than we did for Mantichor.

80

5.3. Insights and Maturity

Compatibility

The SCMS architecture is component-based, and components were imple-
mented as services. That is, many of the services may co-exist on the same
system without them running into compatibility issues. In fact, Mantichor
was mostly developed and run on individual systems during development,
highlighting the benefits of this architecture.

Interoperability between multiple Mantichor installations, e.g., at dif-
ferent organizations, is achieved via the share server and also through the
blockchain networks. There is no provision for Mantichor installations to
communicate beyond those means, as this would imply interactions be-
yond the scope of the contract lifecycle and specification and introduce a
potential for collusion.

Reliability

We believe that the reliability of the overall SCMS approach heavily relies
on that of the blockchain networks used. That is, reliability [74] and avail-
ability measures [110] as applied to blockchain applications and networks,
respectively, also apply to the SCMS approach. In particular, uncertainties
regarding the eventual inclusion or dismissal of transactions need to be
addressed in implementations [117].

In this context, blockchain networks also provide great benefits. For
one, availability is generally very high, since there is no single point of
failure and larger networks are quite robust. More importantly, the storage
of the entire smart contract state in the DApps guarantees a high degree
of recoverability for all sensitive and critical information.

Security

InMantichor, we relaxed security considerations in favor of more rapid de-
velopment. As such, Mantichor certainly does not meet security require-
ments as would be expected in practice, like the missing authentication
measures for the share server. However, the SCMS architecture and the
use of blockchain technology does, by default, benefit security metrics.

In particular, if private or consortium blockchain networks like Corda
are targeted, a high degree of confidentiality can be achieved. The funda-
mental properties of blockchain—integrity, non-repudiation, accountabil-
ity, and authenticity [115]—are also directly transferred to the operational
logic of the choreography contained within the DApps. As such, even if
we did not particularly strive for security, Mantichor highlights the op-
portunities in these regards.

Maintainability

The act of maintainingMantichor turned out to be one of the major under-
takings during its development due to the ever-changing nature of block-
chain technology. Tezos and Corda would receive updates fairly regularly,

81

Chapter 5. Proof-of-Concept Implementation

often solving some issues we were facing but also containing breaking
changes or new features. In general, we feel like this is a major issue and
uncertainty when developing against blockchain technology as of now,
both for Mantichor and for other software systems using it.

Regarding maintainability, the immutability property of DApps cer-
tainly comes into play. Once deployed, the code of a DApps remains static,
and only its state changes. As a consequence, retroactively changing parts
of the DApp is generally not possible by design. As discussed in Sect. 4.2,
patterns exist to lift this restriction for selected parts of DApps [61], but
more clerical mistakes in other parts may not be covered by the patterns.
This is a major concern for smart contracts, since faulty DApps could lead
to incorrect behavior and disputes.

Portability

Again, the immutability of DApps introduces issues when it comes to their
portability. Different blockchain networks may work radically different
and require individual adapters. The logic used in one adapter is not eas-
ily transferred to another and vice-versa. Like for the maintainability met-
rics, portability also depends on blockchain migration techniques in the
future [13, 61].

Usability

The experience a user has with a system is paramount for their satisfaction
and the overall results. The major challenge when it comes to usability in
the context of blockchain-based applications is the delaywithwhich trans-
actions are safely included in a blockchain (see the transaction lifecycle in
Sect. 2.2.3). Applications and thus any implementation of SCMS needs to
be able to communicate any delays appropriately, and make sure the user
does not perceive the system as being slow or unresponsive. Other than
that, usability was not one of the major goals of Mantichor outside of pro-
viding a minimal, simple, and responsive application.

5.3.3 Current Status

During development, the students would often encounter technical diffi-
culties related to the blockchain networks employed. Corda and Tezos are
complex from both conceptual and infrastructure perspectives, and fre-
quent updates considerably changed techniques and interfaces. Thus, the
originally planned set of features could not be finished in scope of the
seminar.

The Tezos adapter was implemented and tested using a local, sand-
boxed network running the Alphanet protocols. The sandbox mode lim-
ited the use of several features network features like libraries, which could
be used to improve the implementation when used against a live or testing
network.

82

5.4. Modeling Choreographies with chor-js

A particular issue in the case of Corda was the poor performance of
our DApp generation and deployment approach, which generated a large
amount of boilerplate code for every choreography. On regular consumer
hardware (MacBook Pro, 2012), compiling the DApps and embedding them
in the network nodes would take upward of 10 minutes, and nearly twice
as long when using the dockerized variant. While this may certainly be
changed with more sophisticated code generation and deployment strate-
gies, it made the Corda adapter impractical to use in any realistic setting.

For the reasons mentioned above, Mantichor was not pursued further
within the scope of this thesis. While originally planned to be a basis for
future extensions and other prototypes, the dynamic and ever-changing
world of blockchain technology as well as the considerable amount of
work involved in just maintaining the existing set of features rendered it
not worthwhile from a scientific perspective. We will further discuss the
implications of this decision in Chapter 9 of this thesis, especially regard-
ing the perceived feasibility in practice.

5.4 Modeling Choreographies with chor-js

In Mantichor, we used BPMN choreography diagrams to express smart
contracts which are subsequently enforced using DApps. To this end, we
integrated chor-js, a web-based BPMN choreography diagram editor based
on the bpmn-js3 project by bpmn.io and Camunda [69].

chor-js is fully open-source and maintained publicly on GitHub4 with
the help of Anton von Weltzien, and has since gained some popularity in
research and from tool vendors. As such, we consider chor-js itself to be a
major contribution of this thesis, which we briefly wish to outline.

5.4.1 Feature Overview

BPMN choreography diagrams contain some of the most complex atomic
modeling elements in the standard in the form of choreography activities,
which reference and visualize multiple participants and messages using
participant bands and message decorators, respectively [112]. For chor-
js, we implemented several features specifically designed and tailored to
handle their specification and peculiar syntax:

• Participant bands show which participants are involved in a cho-
reography activity and who is the initiator of a choreography task
via their shading. The BPMN standard defines clear rules on how
those participant bandsmay be attached and ordered [87, Tab. 12.33].
These rules are faithfully implemented in chor-js, and features to
move participant bands and switch the initiators are available.

3https://github.com/bpmn-io/bpmn-js
4https://github.com/bptlab/chor-js

83

https://github.com/bpmn-io/bpmn-js
https://github.com/bptlab/chor-js

Chapter 5. Proof-of-Concept Implementation

• Any interaction between participants is further signified by ames-

sage attached to a participant band. Messages can only be attached
to choreography tasks, which may reference up to two of them; one
for the request message, and one for the response message. Both
message decorators may be hidden or shown in the diagram at the
discretion of the model designer, which chor-js readily supports.

• Both means of hierarchical modeling, sub-choreographies and
call choreographies, are fully supported in chor-js. For the latter,
we also support the creation of multiple diagrams in the same file,
after which they can be interlinked and participants can be mapped
between diagrams.

• A validation tool built on top of chor-js provides static analysis
capabilities of several constraints put forward in the BPMN stan-
dard. This particularly includes the initiator rule, violating which
may lead to non-enforceable models, the completeness of partici-
pant mappings when using call choreographies, and more.

We fully implemented the BPMN standard’s diagram interchange XML
format for choreography diagrams in chor-js. This enables interoperability
between other tools working with BPMN choreography models.

5.4.2 Tool Comparison

Several BPMN tooling vendors provide some support for BPMN chore-
ography diagrams, albeit often severely lacking or incomplete in several
aspects. An overview is shown in Tab. 5.3 where a checkmarkmeans (close
to) full and native support, a crossmeans no support, and a bullet means no
or broken support. Most code bases of commercial vendors like Signavio
or Visual Paradigm are closed to the public, making a full assessment dif-
ficult.

Still, chor-js outperforms all other offerings in most aspects, only lack-
ing support for choreographies between collaborations—a combination
with BPMN collaboration diagrams—, boundary events for the reasons de-
scribed in the next section, and global choreography tasks for their insuf-
ficient specification in the standard. Due to chor-js being an open source
project, support for these missing features may be added in the future.

5.4.3 Scientific Contribution

While working on chor-js, several problems concerning the model and
semantics of BPMN choreographies became apparent. For example, it is
not clear how the initiator rule saying that an initiator of a choreography
activity must have been involved in some capacity in the previous cho-
reography activity translates to sub-choreographies, since involvement in
the sub-choreography does not mean a participant is aware of the tasks at

84

5.4. Modeling Choreographies with chor-js

Table 5.3: Tool comparison between chor-js and selected competitors, re-
produced from [69]

chor-js Signavio
BPMN2
Modeler

Visual
Paradigm Trisotech

open closed open closed closed
✓ • ✓ • ✓
✓ ✓ ✓ ✓ ✓
⨯ ⨯ ⨯ • •
✓ ✓ ✓ ✓ ✓

start, end, intermediate ✓ ✓ ✓ ✓ ✓
boundary ⨯ • ⨯ ⨯ •

messages (attached) ✓ ✓ ✓ ⨯ ✓
choreo. task ✓ ✓ ✓ ✓ ✓
sub-choreo. ✓ ✓ • • ✓
call choreo. ✓ • • • ⨯

global choreo. task ⨯ ⨯ • ⨯ ⨯

loop type ✓ ✓ ✓ ✓ ✓
participant multiplicity ✓ ⨯ ✓ ⨯ ✓

code base

markers

elem
ent support

features

gateways
events

choreo.
activities

between collaboration
standalone diagrams
XML diagram interchange

its end. Further, the modeling and referencing of data contained in mes-
sages, which may be used in data-based exclusive gateways, is not clearly
stated. The issue of determining which data is visible to which participant
is only vaguely discussed.

Perhapsmost importantly, the BPMN standard fails to properly explain
the semantics of boundary events attached to choreography tasks, even
omitting them in the metamodel. More on these and other issues we faced
during the development of chor-js is reported in an accompanying blog
post5 co-authored by the author of this thesis. While the BPMN standard
seems to be relatively static since its newest version has been released in
January of 2014, these insights might help to make BPMN choreography
models more complete and sound in the future.

In summary, we hope that chor-js enables researchers to use BPMN
choreography models and diagrams in their research—not least since the
discipline of choreography modeling “may be re-vitalized” [83] by block-
chain technology.

5https://camunda.com/blog/2021/01/chor-js-an-editor-for-
bpmn-choreography-diagrams/

85

https://web.archive.org/web/20210203120036/https://camunda.com/blog/2021/01/chor-js-an-editor-for-bpmn-choreography-diagrams/
https://web.archive.org/web/20210203120036/https://camunda.com/blog/2021/01/chor-js-an-editor-for-bpmn-choreography-diagrams/

Chapter 6

Autonomous Actions
on Blockchain

An important building block of smart contracts are autonomous actions,
which are executed automatically and without delay as soon as they be-
come enabled. They do not belong to an individual party but to the smart
contract as a whole, elevating it to take an active part in the contractual
proceedings. No party should be able to influence the correct and timely
performance of autonomous actions, lest it could be used to manipulate
the outcome of the smart contract—either by changing, delaying or even
completely avoiding their execution.

Ostensibly, the SCMS approach takes care of this by encoding the smart
contract within immutable and tamper-proof DApps, which include pro-
visions to execute autonomous actions. However, owing to its non-con-
tinuity property (see Sect. 2.2.4), the DApp still needs to be triggered by
transactions to do that, and sending a transaction is an inherently inten-
tional act by some entity outside of the blockchain network. Whether this
entity is a party, an oracle provider, or some other software component;
there can be no guarantee that a sufficient amount of transactions is sent
for the timely performance of all autonomous actions. The DApp must
somehow mitigate any influence this has on smart contract enforcement.

In this chapter, we will first outline the issues in detail (see Sect. 6.1),
before devising two approaches to resolve them (see Sect. 6.2). The oracle
patterns necessary for these approaches are introduced in Sect. 6.3 and im-
plemented in Sect. 6.4. We use the implementation to assess the feasibility
of our approach in Sect. 6.5.

Parts of this chapter are based on our previous work, in which we ex-
plored the issues regarding external data monitoring from within the re-
stricted environment of DApps [72]. A significantly extended version of
that work which is also included in this chapter is currently in manuscript
stage [68].

87

Chapter 6. Autonomous Actions on Blockchain

6.1 Performing Autonomous Actions

In a first step, the DApp needs to determine whether an autonomous ac-
tion is enabled in the first place, which depends on various criteria. In the
following, we identify a notion of external events encapsulating the prob-
lematic of these criteria.

For illustration purposes throughout this chapter, we will consider the
smart contract model𝑡𝑖𝑐𝑘𝑒𝑡 = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) from Sect. 3.2.1 (see page 39)
modeling the train ticket smart contract, and further assume it is imple-
mented using a single DApp Ð. We refer with 𝑎𝑐 ∶= 𝑎4 ∈ 𝐴 to the auton-
omous action canceling the ticket in case the passenger’s discount card
expires.

6.1.1 Enablement Criteria

Whether an action is enabled in general depends on the smart contract
state 𝑠 = (Λ, 𝜈, H) and the current operating environment state 𝑜 = (𝑡, 𝜙).
In Tab. 6.1 we summarize the criteria of enablement for an action 𝑎, that is,
(i) the presence of the required legal relations Pre(𝑎) in the current smart
contract state as well as (ii) the satisfaction of all performance constraints
attached to 𝑎 (see Sect. 3.2).

In the case of 𝑎𝑐 , only one legal relation needs to be in the current
smart contract state: 𝑙1, which permits the passenger to use the train. This
is trivial for Ð to check, since it stores and maintains the smart contract
state 𝑠, including Λ, itself. Thus, Λ only changes after a state transition
within a transaction, and allows Ð to immediately react and execute any
newly enabled autonomous actions. Indeed, this is the case for all other
criteria depending on the smart contract state 𝑠, like causal constraints
evaluating the history of past actions H or data constraints depending on
the valuation 𝜈 of internal data sources.

However, data and temporal constraints often depend on the state of
the operating environment—which may change outside of transactions.
In the case of 𝑎𝑐 , the attached temporal constraint 𝑐𝑐 ∈ 𝐶𝑇 pertains to the
expiry of the passenger’s discount card, which is tied to the system time

Table 6.1: Influence of smart contract state and operating environment
state on the enablement of actions

Criterion Affected by state of...
Smart contract Operating environment
𝑠 = (Λ, 𝜈, H) 𝑜 = (𝑡, 𝜙)

Legal relations ✔ Λ —
Performance Causal ✔ H —
constraints Data ✔ 𝜈(𝑑) for 𝑑 ∈ 𝐷𝑃 ∪ 𝐷𝑉 ✔ 𝜙(𝑑) for 𝑑 ∈ 𝐷𝐸

Temporal ✔ H (activation time) ✔ 𝑡

88

6.1. Performing Autonomous Actions

tx Time

Performance
Constraints

DApp Đ ac

cc

active... enabled enabled

tx'

... satisfied

Operating
Environment

...t ...

Figure 6.1: Enablement of 𝑎𝑐 due to a change of the operating environ-
ment state

𝑡 of the current operating environment state 𝑜. As shown in Fig. 6.1, it
may happen that 𝑎𝑐 becomes activated in a transaction 𝑡𝑥 , but its later en-
ablement due to the performance constraint 𝑐𝑐 becoming satisfied is only
detected with a delay once a transaction 𝑡𝑥 ′ arrives. As a result, 𝑎𝑐 will be
performed too late, violating the operational semantics of smart contracts.

6.1.2 External Events

To narrow down the challenges of noticing an action’s enablement in the
first place, we will consider the role of events as its driver. The idea is
that an action which becomes enabled within a transaction is immediately
performed, potentially leaving only those which are active and blocked by
a non-satisfied performance constraint. The performance constraint then
may become satisfied once an event occurs: the change of the valuation of
some external data source for data constraints or the passing of a deadline
for temporal constraints. Using this perspective, the task of noticing an
autonomous action becoming enabled is subsumed in that of detecting an
event. In the following, we will assume for simplicity that each action has
exactly one such event attached to it, and the event is specified by a single
performance constraint.

As we have observed above, only those events originating from the
operating environment state 𝑜 are problematic for the DApp Ð since they
happen outside of transactions. For example, the action 𝑎𝑐 canceling the
train ticket becomes enabled due to the event of the passenger’s discount
card expiring, as specified by the temporal performance constraint 𝑐𝑐 . We
call these events external since they occur outside the influence of the
smart contract:

Definition 31 (External Event). Let = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a smart contract
model. Further, let 𝑠 ∈ 𝕊 be a smart contract state, and 𝑜, 𝑜′ ∈ 𝕆 with
𝑜 → 𝑜′ be two consecutive operating environment states.

Then an external event with respect to an autonomous action 𝑎 ∈ 𝐴
occurs whenever the transition from 𝑜 to 𝑜′ causes 𝑎 to become enabled,
that is, 𝜎(𝑎, 𝑠, 𝑜) = active and 𝜎(𝑎, 𝑠, 𝑜′) = enabled. ⋄

89

Chapter 6. Autonomous Actions on Blockchain

When such an external event occurs, the autonomous action 𝑎 must
immediately be performed by the DApp Ð—that is, Ð needs to detect and
act upon the event promptly. Before that, however, a second issue comes
into play, which is that of competing actions.

6.1.3 Competing Actions

Autonomously canceling the train ticket once the passenger’s discount
card expires using 𝑎𝑐 is not the only autonomous action in the smart con-
tract model 𝑡𝑖𝑐𝑘𝑒𝑡 . In fact, there are two more such actions which may
be active or enabled at the same time:

• 𝑎𝑑 ∶= 𝑎1, which registers the departure of the train and validates the
ticket. It is constrained by 𝑐𝑑 , a data constraint accessing an external
data source 𝑑𝑑 , i.e., a train departure service managed by the RIM. 𝑎𝑑
may thus be enabled by an external event, the train’s departure as
communicated by the organization managing the railway network
as a whole.

• 𝑎𝑤 ∶= 𝑎2, which registers a severe weather warning and entails the
refund of the ticket as a voucher. It is constrained by 𝑐𝑤 , a data con-
straint accessing an external data source 𝑑𝑤 , i.e., a weather warning
service maintained by an approved meteorological institution. 𝑎𝑤
may thus be enabled by an external event, the issuance of a severe
weather warning.

The actions 𝑎𝑐 , 𝑎𝑑 , and 𝑎𝑤 compete in a race against each other: They
are active in every initial state of the smart contract, and whichever one
is enabled first must also be performed first by the smart contract. This
race, of course, may also be joined by non-autonomous actions; in this
case 𝑎𝑡 ∶= 𝑎5 canceling the ticket by the choice of the passenger.

Weather
warning

issued

Timetx

Passenger

DApp Đ

ac
aw
ad

at

active

active

active

enabled

enabled

enabled

enabled

enabled

tx' (at)

Discount card
expired

Cancel
ticket

Operating
Environment

...

...

...

...

Figure 6.2: A race between competing actions which needs to be resolved
by the DApp

90

6.2. Event Detection Approaches

The winner of the race can only be determined by the DApp Ð in a
transaction. Figure 6.2 shows a timeline view of how such a race may play
out, with the operating environment abstracted to just its external event
occurrences. In a first transaction 𝑡𝑥 , the smart contract state changes such
that the autonomous actions 𝑎𝑐 , 𝑎𝑤 , and 𝑎𝑑 are activated, and 𝑎𝑡—choice
of the passenger—is enabled. None of the autonomous actions are enabled
since their performance constraints are not yet satisfied.

After 𝑡𝑥 has finished, the discount card status expires and 𝑎𝑐 becomes
enabled, after which a severe weather warning is issued and 𝑎𝑤 becomes
enabled. Both of these external events are not detected yet by Ð, however,
as it lies dormant and is only called again in a transaction 𝑡𝑥 ′ associated
with action 𝑎𝑡—in essence, the passenger trying to cancel their ticket. Of
course, the only correct state transition would be to perform the autono-
mous action 𝑎𝑐 , since it was enabled first. There is no way for Ð to know
this is the case, though, since it has no knowledge about when exactly an
external event happened. As such, specific strategies are needed to resolve
this uncertainty and correctly enforce smart contracts in DApps.

Overall, this situation is very similar to the deferred choice pattern
in workflow modeling [96]. Deferred choice refers to situations in which
there is an exclusive choice between several execution branches, each as-
sociated with some event caused by circumstances outside the influence of
the workflow engine. Only one of these branches is picked based on which
event is detected first, essentially modeling a “race condition where the
first [e]vent that is triggered wins” [87, p. 298]. However, in the context of
smart contracts we do not necessarily require the competing actions to be
exclusive to each other. Rather, there can also be situations in which the
autonomous actions complement each other, but still need to be executed
in the correct order. As such, the problem stated above subsumes deferred
choice, but takes on a more global perspective.

6.2 Event Detection Approaches

Correctly implementing autonomous actions within DApps comes down
to detecting external events, and resolving associated ordering conflicts.
In this section, we propose two novel solutions to these issues; first, by
retroactively detecting events and postdating the performance of the au-
tonomous actions in the correct order, and second by making sure that
transactions are sent whenever an event may be detected.

6.2.1 Retroactive Event Detection

Since the core problem discussed above is that of not detecting events, we
propose an approach to retroactively detect events and resolve any result-
ing conflicts, i.e., making sure that the order of actions as prescribed by the
operational semantics is honored. For this, we need additional capabilities,
especially regarding the operating environment.

91

Chapter 6. Autonomous Actions on Blockchain

Enablement Time

The core information necessary to decide if, and which, autonomous ac-
tion should be performed is the state of the operating environment. Since
the operating environment is in an ever-changing, transient state, DApps
do not normally have access to past valuations of external data sources
or timestamps. For the retroactive event detection approach, however, we
assume that those historical operating environment states are available.
We can then determine when exactly an autonomous action first became
enabled, which in turn also marks the initial occurrence of the associated
external event. For completeness reasons, we also need a way to express
that an event never became enabled, which we will do using the future
timestamp:

Definition 32 (Future Timestamp). The timestamp ⊤ ∈ ℕ represents a
point in time sufficiently far into the future so that it will never be reached
by any practically observed timestamp 𝑡 ∈ ℕ, i.e., 𝑡 ≪ ⊤. ⋄

The future timestamp essentially serves as a unique flag. We decided
against adding an additional element to the time domainℕ (see Def. 6 on
page 14) for this purpose, since it breaks the basic arithmetic properties of
the time domain and unnecessarily complicates our specification. Further,
implementations thus do not require complex data structures to represent
timestamps (see Sect. 6.8). Then, the enablement time is defined as follows:

Definition 33 (Enablement Time). Let = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) be a smart con-
tract model with an instance  in a state 𝑠 ∈ 𝕊, and 𝑜 = (𝑡, 𝜙) be the current
operating environment state. Further, let 𝑜0 = (𝑡0, 𝜙0), ..., 𝑜𝑛 = (𝑡𝑛, 𝜙𝑛) = 𝑜
be the consecutive operating environment states fromwhen  entered the
state 𝑠, i.e., the last transaction.

Then the enablement time 𝑡enabled of an action 𝑎 ∈ 𝐴 is the timestamp at
which 𝑎 was first enabled since 𝑜0 until 𝑜𝑛, more formally defined as

𝑡enabled(𝑎, 𝑠, 𝑜) ∶=
⎧⎪⎪
⎨⎪⎪⎩

⊤, if 𝜎(𝑎, 𝑠, 𝑜) = disabled

min ({⊤} ∪ {𝑡𝑖 | 𝑖 ∈ [0, 𝑛] ∧ 𝜎(𝑎, 𝑠, 𝑜𝑖) = enabled}),
otherwise

⋄

The enablement time 𝑡enabled(𝑎) of an action 𝑎 ∈ 𝐴 specifies when 𝑎
first could have been performed since the last transaction, and should have
been in the case of autonomous actions.

Conflict Resolution

The enablement time can now be used to perform autonomous actions
retroactively in the correct order, meaning that any conflicts of compet-
ing actions will be resolved. In Fig. 6.3 we show a pseudocode algorithm

92

6.2. Event Detection Approaches

1 Transaction Perform(𝑎 ∈ 𝐴):
2 𝑠 ← Current smart contract state (Λ, 𝜈, H) ∈ 𝕊
3 𝑜 ← Current operating environment state (𝑡, 𝜙) ∈ 𝕆
4 𝑠 ← PerformAutonomousActions(𝑠, 𝑜)
5 If 𝜎(𝑎, 𝑠, 𝑜) = enabled:
6 𝑠 ← New smart contract state 𝑠′ after performing 𝑎, i.e., 𝑠 𝑜/𝑎⟶ 𝑠′
7 𝑠 ← PerformAutonomousActions(𝑠, 𝑜)
8 Endif

9 Set 𝑠 as the new smart contract state

10 Local Function PerformAutonomousActions(𝑠 ∈ 𝕊, 𝑜 ∈ 𝕆):
11 Do:
12 𝐴̃ ← {𝑎′ ∈ 𝐴 | ChoiceOf(𝑎′) = ∅ ∧ 𝑡enabled(𝑎′, 𝑠, 𝑜) ≠ ⊤}
13 If 𝐴̃ ≠ ∅:
14 𝑎̃ ← Pick 𝑎′ ∈ 𝐴̃ such that 𝑡enabled(𝑎′, 𝑠, 𝑜) is minimal
15 𝑜̃ ← Operating environment state at 𝑡enabled(𝑎̃, 𝑠, 𝑜)
16 𝑠 ← New smart contract state 𝑠′ after performing 𝑎̃, i.e., 𝑠 𝑜/𝑎̃⟶ 𝑠′
17 Endif

18 While 𝐴̃ ≠ ∅;
19 Return 𝑠

Figure 6.3: Pseudocode of the retroactive event detection approach

outlining the implementation of the approach, abstracting from the ac-
tual interface of a DApp to a generic function Perform (line 1) describing
a transaction. This function is called with a parameter 𝑎 ∈ 𝐴, designat-
ing the original “target” action of the transaction—i.e., the usually non-
autonomous action which some participant wishes to execute and sent the
transaction for. The target action can also be autonomous if a party wishes
to expedite the performance of 𝑎, or if the smart contract only consists of
autonomous actions to begin with. Every transaction has a target action.

In lines 2–3, the current smart contract state 𝑠 as well as the current
operating environment state 𝑜 are gathered. Before even considering 𝑎,
though, a local function is called that performs all autonomous actions
which are currently enabled (line 4). The resulting new state is stored, and
only if 𝑎 is enabled under these new circumstances (line 5) is it finally per-
formed (line 6). As this may lead to yet another set of autonomous actions
becoming enabled, the local function is executed again (line 7). Only then
is the smart contract state updated to reflect the performed actions (line 9).

The local function PerformAutonomousActions (line 10) expects a
smart contract state 𝑠 and an operating environment state 𝑜 as an input. It
starts by calculating the set 𝐴̃ of autonomous actions which should have
been performed already given the state information (line 12). If this set is
not empty (line 13), then the autonomous action 𝑎̃ which was enabled first
(line 14) is picked from the set. Note that there might be multiple actions
with the same earliest enablement time, and the algorithm has to make an
arbitrary but fixed choice in accordance with the non-determinism of the

93

Chapter 6. Autonomous Actions on Blockchain

smart contract semantics (see Sect. 3.2). In line 15, the operating environ-
ment state 𝑜 which held when 𝑎̃ should have been performed is acquired.
The autonomous action 𝑎̃ is then performed, backdated to 𝑜, leading to a
new smart contract state (line 16).

The procedure is repeated until no autonomous action may be per-
formed anymore. The loop structure is necessary since the performance of
one autonomous action may lead to the initial activation and enablement
of previously disabled actions and vice-versa. For example, a sequence of
autonomous actions with relative temporal constraints keeping them a
fewminutes apart may all be executed one after the other in a single trans-
action.

A noteworthy consequence of this algorithm is that the action 𝑎, the
original target of the transaction, may not even be executed. It is the task of
the algorithm to make sure that the autonomous actions are performed in
the right order, but also that no action which is not enabled is performed—
which also applies to 𝑎. Parties must be aware that the transactions they
send may include such seemingly unrelated activities, and may have un-
expected yet well-defined outcomes.

Of course, the historical states of the operating environment are not
available to a DApp by default. Thus, there must be some entity to keep
track and provide those states on demand for the enablement time to be
calculated within the DApp. To this end, we will propose conservative
extensions to the existing oracle patterns in the next section.

6.2.2 Publish-Subscribe Event Detection

The idea of the publish-subscribe event detection approach is to avoid having
to do retroactive conflict resolution and backdating. Instead, there must
be an assurance that whenever an external event may have occurred in
the operating environment, the DApp Ð is triggered by a transaction.
While this might lead to superfluous transactions, it assures that no exter-
nal event is missed. Within these transactions, Ð could thus be sure that
no action became enabled before another and should take precedence—
assuming the DApp is using a monotonic time measure and no transaction
with an earlier timestamp may arrive later (see Sect. 7.2.7).

The pseudocode algorithm for the publish-subscribe event detection
approach is shown in Fig. 6.4 and is very similar to the retroactive ap-
proach, but notably removes the requirement for knowing any past oper-
ating environment states. A transactionmay now target no specific action,
𝑛𝑖𝑙, at all (line 1), the only purpose being to check the enablement of au-
tonomous actions since something may have happened in the operating
environment. Again, all enabled autonomous actions are performed before
any preferred action 𝑎 given as a parameter (line 4). This time, however,
the local function (lines 10–19) only checks for enablement in the current
operating environment state. Again, there is a non-deterministic compo-

94

6.3. Extended Oracle Architectures

1 Transaction Perform(𝑎 ∈ 𝐴 ∪ {𝑛𝑖𝑙}):
2 𝑠 ← Current smart contract state (Λ, 𝜈, H) ∈ 𝕊
3 𝑜 ← Current operating environment state (𝑡, 𝜙) ∈ 𝕆
4 𝑠 ← PerformAutonomousActions(𝑠, 𝑜)
5 If 𝑎 ≠ 𝑛𝑖𝑙 ∧ 𝜎(𝑎, 𝑠, 𝑜) = enabled:
6 𝑠 ← New smart contract state 𝑠′ after performing 𝑎, i.e., 𝑠 𝑜/𝑎⟶ 𝑠′
7 𝑠 ← PerformAutonomousActions(𝑠, 𝑜)
8 Endif

9 Set 𝑠 as the new smart contract state

10 Local Function PerformAutonomousActions(𝑠 ∈ 𝕊, 𝑜 ∈ 𝕆):
11 Do:
12 𝐴̃ ← {𝑎′ ∈ 𝐴 | ChoiceOf(𝑎′) = ∅ ∧ 𝜎(𝑎′, 𝑠, 𝑜) = enabled}
13 If 𝐴̃ ≠ ∅:
14 𝑎̃ ← Pick any from 𝐴̃
15 𝑠 ← New smart contract state 𝑠′ after performing 𝑎̃, i.e., 𝑠 𝑜/𝑎̃⟶ 𝑠′
16 Endif

17 While 𝐴̃ ≠ ∅;
18 Return 𝑠

Figure 6.4: Pseudocode of the publish-subscribe event detection ap-
proach

nent in this, as the algorithm just picks an arbitrary-but-fixed action if
more than one is enabled.

Such an approach would require an off-chain component, e.g., as part
of the local SCMS components of the parties’ SCMSs, which observes the
operating environment and automatically triggers the sending of trans-
actions in case relevant changes occur. The consideration of what consti-
tutes a relevant change would be up to the implementation. For a data
constraint, a transaction could be sent whenever the valuation 𝜙 changes
at all or only when the change leads to the constraint becoming satisfied.
This may introduce trust issues, since it is possible that participants would
deliberately delay or refrain from sending such transactions selectively.

However, instead of introducing an entirely new component for this
purpose, we opted for extending existing oracle patterns. Events can only
happen when the operating environment changes, and oracles are the
gateway to the operating environment. Thus, oracles can be extended to
handle these responsibilities as well, and notify interested DApps when-
ever a valuation changes.

6.3 Extended Oracle Architectures

To access the operating environment state, particularly the valuation of
the external data sources, from within a DApp, oracles (see Sect. 2.2.5) are
needed. This also applies to the two event detection approaches introduced
in the previous section.

95

Chapter 6. Autonomous Actions on Blockchain

In the following, we assume that each external data source 𝑑 ∈ 𝐷𝐸 of
a smart contract = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) is associated with exactly one unique
oracle, and that the smart contract DApps are the consumers of these or-
acles. Further, we assume that oracles are only used for data constraints,
and that temporal constraints can be evaluated using timing information
of the blockchain network available to the DApp. We will discuss the is-
sues concerning the availability of timing information in Chapter 7.

The two most common oracle patterns, storage and request-response
oracles (see Sect. 2.2.5), can only be used to acquire the current operating
environment state and thus only the current valuation of 𝑑 , however [116,
84]. They lack the capability to provide historical information, or actively
notify the DApp of changes to the valuation of 𝑑 which might enable an
autonomous action. To support the two event detection approaches, we
thus propose a set of purposeful extensions and refinements of the existing
architectures precisely targeting the required capabilities.

6.3.1 History Oracles

History oracles can be used to acquire the historical valuations of exter-
nal data sources, essentially allowing a consumer DApp to reconstruct a
sequence of past operating environment states. This enables the calcula-
tion of the enablement time of actions which is needed to implement the
retroactive event detection approach. We introduce two variants of the
history oracle:

The on-chain history oracle (see Fig. 6.5a) extends the storage oracle
pattern, which allows synchronous access to external data by storing it in
a DApp. To this end, the oracle provider observes the external data source
using any means available to it, and on updates acquires the current value
(1a) and sends a corresponding transaction to the oracle DApp (1b). The
oracle DApp maintains a list of timestamped values of the data source,
including the previous values, to which the new information is appended
(1c). Consumer DApps can then request an arbitrary slice of this current
and past data (2a), which is immediately returned (2b).

The off-chain history oracle (see Fig. 6.5b), on the other hand, is based
on the existing request-response oracle pattern. Again, the oracle provider
observes the external data source, but this time stores any updated val-
ues (1a) locally outside the blockchain network in some list or database
(1b). When a consumer DApp requests a slice of the current and past data
(2a), this request is not immediately answered but emitted using the block-
chain’s event layer (2b). The oracle provider observes this event (3a), lo-
cally prepares a new transaction containing the response data, and directly
targets this to the consumer DApp (3b).

96

6.3. Extended Oracle Architectures

Bl
oc

kc
ha

in

Consumer DApp

Oracle DApp

Oracle Provider

Data Update1a

1b

2a

2b

Data History 1c

Update Data

Transaction
Call
Return

Legend

(a) Synchronous on-chain history oracle

Bl
oc

kc
ha

in

Consumer DApp Oracle DApp

Oracle Provider

Event L.

Data Update

Callback

1a

2a

2b
Emit

Query

3a

3b

Listen

Data History 1b

Transaction
Call
Listener

Legend

(b) Asynchronous off-chain history oracle

Figure 6.5: Architecture and behavior of the history oracles

6.3.2 Publish-Subscribe Oracles

The history oracle patterns both need to observe the external data source
constantly to acquire any updates promptly. While we do not prescribe
any particular technique with which this is done, in practice an observer
or publish-subscribe software pattern is often used: The oracle provider
registers as a subscriber at the external data source or an intermediate,
which then actively notifies them of any data update.

The idea of the publish-subscribe oracle is to extend this pattern to the
consumer DApp. That is, the oracle provider serves as the intermediary
between the provider of the data, the external data source, and the sub-
scriber to the data, the consumer DApp. This way, the consumer DApp
would be kept in the loop about the value of the external data source, and
no large slices of historical data would have to be transferred. This directly
corresponds to the publish-subscribe event detection approach which we
have introduced in the previous section.

Figure 6.6 shows a resulting architecture of such a publish-subscribe
oracle. Again, the oracle provider notices or is notified about data updates
(1a), and stores a cached version of the current value locally (1b). At the
same time, already subscribed consumer DApps are provided with the cur-
rent value with a transaction each (1c). To newly subscribe to the oracle, a

97

Chapter 6. Autonomous Actions on Blockchain

Bl
oc

kc
ha

in

Oracle Provider

Data Update1a

Data Value

Subscribers

1b

3b

Consumer DApp Oracle DApp

Event L.1c

2a

2b

3a

3c

Callbacks

Emit
Query

Listen

...

Transaction
Call
Listener

Legend

Figure 6.6: Architecture and behavior of the publish-subscribe oracle

consumer DApp queries the associated oracle DApp (2a), which emits an
appropriate event using the blockchain’s event layer (2b). This is picked
up by the oracle provider (3a), who adds the new subscriber to its list of
subscribers (3b). Future data updates will then be communicated to the
consumer DApp, and to avoid any gaps of knowledge the cached current
data value is immediately sent to them via a transaction (3c).

6.3.3 Conditional Oracle Variants

In Tab. 6.2 we summarize the interfaces of the oracle architectures from the
perspective of the consumer DApp, that is, which parameters need to be
attached to a query, and which format do the results arrive in. The storage
and request-response oracle architectures, for instance, require no addi-
tional input parameters—assuming again that each oracle is statically as-
sociated with exactly one external data source—and provide the consumer
DApp with a singular value from the data domain 𝔻. The publish-sub-
scribe oracle exposes the same interface, but there may be more than one
callback depending on the evolution of the external data source. The his-
tory oracle, on the other hand, requires consumers to provide a timestamp

Table 6.2: Interfaces of the oracles from the perspective of the consumer
DApp

Variant Oracle pattern Interface domains
Parameters Result

Regular Storage, req/res none 𝔻
History ℕ (ℕ × 𝔻)∗
Publish-subscribe none 𝔻 (repeated)

Conditional Storage, req/res EXPR {true, false}
History ℕ × EXPR ℕ
Publish-subscribe EXPR none

98

6.4. Oracle Implementation and Usage

at which the requested slice of data begins, and returns a timestamped list
of data values.

The interfaces reveal that the oracle architectures follow a strict sep-
aration of responsibilities when it comes to evaluating the conditions at-
tached to performance constraints: Data is requested, and the evaluation
itself happens within the smart contract DApp. This pattern is realistic in
that it protects the exact operational logic specified in the smart contract—
conditions themselves may be confidential and stored in protected areas
of the blockchain, or may be implemented using homomorphic encryption
or zkSNARKs [32]. Yet, it requires potentially large amounts of data to be
transferred.

We thus propose conditional variants of the above oracle architectures
to reduce the number of transactions and the size of the transaction pay-
load itself. The idea is to externalize the evaluation of a condition from
within the smart contract DApp to the oracle, removing the need to trans-
fer any arbitrarily large value of an external data source. The lower half
of Tab. 6.2 shows the changed oracle interfaces of the conditional vari-
ants, notably including a new parameter specifying an expression from a
generic set EXPR of all possible expressions. We do not specify the struc-
ture of those expressions in detail, but require them to yield a Boolean
result and only reference the value of the external data source the specific
oracle is associated with.

The result of querying a conditional oracle variant then reflects the re-
sult of evaluating the given expression, e.g., true or false in the case of the
conditional storage and request-response oracles. For conditional history
oracles, the equivalent of the enablement time is returned, that is, the first
timestamp at which the expression evaluated to true starting at the lower
bound provided as a parameter. Note that ⊤ may be returned to express
that the expression never evaluated to true. Lastly, the conditional pub-
lish-subscribe oracle returns no specific value at all. Instead, a transaction
is only sent once the expression evaluates to true, i.e., the corresponding
event occurs, essentially serving as a signal. Thus, the conditional oracle
variants may significantly reduce both the amount of data transmitted and
the number of transactions.

6.4 Oracle Implementation and Usage

The feasibility of the event detection approaches and oracle architectures
depends on several factors. We will concentrate on one which is partic-
ularly relevant in the scope of oracles: the overall cost. To this end, we
built a custom prototype based on the Ethereum blockchain and performed
several simulations, which are used to evaluate the proposals in realistic
scenarios. The prototype and all associated data is available online1.
1https://github.com/bptlab/blockchain-deferred-choice

99

https://github.com/bptlab/blockchain-deferred-choice

Chapter 6. Autonomous Actions on Blockchain

Initial

...

Terminating

a2

a3

an

l

a1

Figure 6.7: Structure of the smart contracts considered in the evaluation

For the implementation, we concentrate on awell-defined subset of the
problem space. That is, we consider only smart contracts in which a set of
arbitrary actions {𝑎1, 𝑎2, ..., 𝑎𝑛} become active or enabled at initialization,
and then engage in a “race” to be performed first (see Fig. 6.7). Only one
action can be performed, since they all consume the same legal relation.
In the train ticket example, for instance, 𝑙 leads to the autonomous actions
𝑎1, 𝑎2, 𝑎4 becoming active and the non-autonomous action 𝑎5 becoming
enabled at the same time. As discussed in the introduction to this chapter,
this situation essentially corresponds to the deferred choice workflow pat-
tern [96], since each autonomous action is attached to an external event
whose occurrence eventually enables it. Due to these parallels, some ter-
minology used in the prototype alludes to events and deferred choice.

6.4.1 Overview

Figure 6.8 shows the architecture of the prototype as a UML class diagram.
The non-standard DApp and event stereotypes are used for DApp classes
and event types, respectively. There are three distinct groups of compo-
nents, namely (i) those belonging to the simulation framework, (ii) the off-
chain oracle providers, and (iii) the on-chain DApps.

Since the prototype is used for comparing the different oracle archi-
tectures and event detection approaches, the primary design goal was to
provide a level baseline for all of them. No approach should be individually
optimized to a higher or lower degree than the others, and they should use
interfaces with a similar computational overhead. Another major design
decision concerns the distinction between the synchronous and asynchro-
nous oracle patterns, respectively. This results in a visible duality in the
class layout, since the oracle providers, oracle DApps, and smart contract
DApps are available in both forms. For each oracle architecture, for exam-
ple the synchronous on-chain history oracle, the prototype contains a set

100

6.4. Oracle Implementation and Usage

Oracle
(Off-Chain)

Simulation
Framework

Block-
chain

SmartContract
Simulator OracleSimulator

Simulation

AsyncProvider SyncProvider

Simulator

+ onStep(step)

OracleProvider

+ onDataUpdate(val: uint)

«DApp»
SmartContract

+ initialize(index: uint8)
+ perform(index: uint8)

«DApp»
OracleConsumer

+ oracleCallback(
 corr: uint16,
 result: bytes)

«event»
Query

+ sender: address
+ corr: uint16
+ params: bytes

0..*
oracles

1

0..*

1

0..*

subscribers

1

«listen»

«emit»

1

«DApp»
SyncSmartContract

«DApp»
AsyncSmartContract

0..*
oracles

«DApp»
AsyncOracle

+ query(corr: uint16,
 params: bytes)

«DApp»
SyncOracle

+ query(
 params: bytes): bytes
+ set(val: uint)

Figure 6.8: Architecture of the prototype developed for the experimental
evaluation

101

Chapter 6. Autonomous Actions on Blockchain

of three corresponding concrete classes inheriting from the fitting abstract
ones shown in the diagram. In the following, we will walk through each
component of the prototype.

6.4.2 On-Chain Components

We use Ethereum [114] as our target blockchain, since it provides all fea-
tures necessary and its development ecosystem is well-maintained and
accessible. The core smart contract logic—reduced to the resolution of de-
ferred choices between autonomous and non-autonomous actions—is con-
tained within DApps, which are implemented using the associated Solid-
ity programming language. For the data domain𝔻, we use uint256, which
is the largest static and atomic data type that Solidity allows for. Times-
tamps are also stored using uint256, and the future timestamp ⊤ is set to
the type’s largest value 2256 − 1, which is “sufficiently” (see Def. 32) far—
several hundred billion years—in the future.

Oracles

The DApp classes AsyncOracle and SyncOracle contain the interfaces of
the oracles (see Fig. 6.8). Parameters and query results are encoded in raw
byte arrays (bytes) via the same mechanism Ethereum uses to encode
transaction payloads. This allows the use of a common interface for all
oracles, from which data can be extracted according to specific interfaces
(see Tab. 6.2). Larger payloads incur a higher cost following the rules in
the Ethereum standard [114].

For synchronous oracles, the value or historical values are stored on the
blockchain and updated or appended via set. Synchronous oracles may
thus directly return a result upon query being called. For asynchronous
oracles, the off-chain oracle provider stores all data—no setter functions or
on-chain storage are needed. Instead, queries are emitted using a custom
Query event type containing all the required information for the off-chain
oracle provider. Consumers need to extend an additionalOracleConsumer
class to receive the later callback transaction.

A primary concern for asynchronous oracles is achieving correlation:
A consumer needs to be able to link the transaction providing the query
result to the query itself. In practice, there are various strategies. For ex-
ample, some providers like Provable return a unique query ID, which is
attached alongside the query result for later matching2. In our prototype,
consumers choose an ID themselves in the form of the corr value when
querying or subscribing to an oracle.

Smart Contracts

The DApp class SmartContract and its children implement the subset of
the smart contract semantics discussed above, namely the state and be-
2https://docs.provable.xyz/#ethereum-quick-start-the-query-id

102

https://web.archive.org/web/20210307222819/https://docs.provable.xyz/#ethereum-quick-start-recursive-queries

6.5. Simulation Results

havior of a deferred choice. Calling initialize via a transaction “starts” the
smart contract by setting it to an initial state, which activates all autono-
mous actions and enables all non-autonomous actions. Calling perform is
used to perform an action according to one of the algorithms introduced
in Sect. 6.2, potentially resulting in a state transition of the smart contract
which picks one of the actions as a “winner” of the race.

In this context, the non-determinism of the smart contract semantics is
an issue—if multiple autonomous actions are enabled at the same time, all
are valid winners (see Sect. 3.2). DApps are deterministic, though, and one
action needs to be chosen. To this end, we opted for a two-phase strategy:
Transactions may include a preferred action 𝑎𝑖 for each action which is
chosen above all others if it is a valid winner. Otherwise, the first valid
winner is chosen in the order of the actions’ internal indices.

6.4.3 Off-Chain Components

The off-chain components are implemented in JavaScript using Node.js
and the Ethereum connector library web3.js.

Oracle Providers

The oracle providers are responsible for bridging the gap between the or-
acle DApp and the external data source they observe. They manage com-
munication responsibilities, mainly updating the oracle DApp and sending
responses to consumer requests depending on the oracle type. In the scope
of this thesis, we do not further investigate the connection to the original
source of the data.

Simulation Framework

The simulation framework allows the simulation of oracles and a subset of
smart contracts in a reproducible way. For example, one such simulation
may re-enact the scenario explained at the beginning of this chapter in
Fig. 6.2. To this end, a set of Simulator instances replay pre-defined lists of
steps on their targets, e.g., sending data updates to an oracle provider or
calling the initialization or performance logic on a smart contract DApp.

6.5 Simulation Results

We used the implementation described in the previous section to evalu-
ate the different event detection approaches from two perspectives—the
correctness as well as the overall cost. To this end, we designed and simu-
lated several scenarios on a private Ethereum blockchain network with a
single node running an official implementation of the Ethereum protocol
(Go Ethereum, v1.9.21), using a virtual machine with 12 GB of RAM and

103

Chapter 6. Autonomous Actions on Blockchain

4 CPUs. The detailed specification and raw results of all simulations are
available online alongside the prototype.

6.5.1 Correctness

To verify the correctness of implementation, we generated smart contracts
following the pattern shown in Fig. 6.7, each with 𝑛 zero-indexed actions
𝑎0, ..., 𝑎𝑛−1. An associated simulation timeline was chosen specifically such
that the autonomous actions are enabled sequentially in order of their in-
dices, i.e., the associated external events occur in that order as well; that
is, a deadline is passed for temporal constraints, or a condition on an ex-
ternal data source becomes true for data constraints. At the same time, the
non-autonomous actions are being performed by sending a corresponding
transaction as indicated by their index as well. As a result, the action 𝑎0
is always the one that must be performed, since it either becomes enabled
first (autonomous) or is actively being performed when no autonomous
action is enabled yet.

To serve as a baseline, we implemented the regular storage and re-
quest-response oracles as well, and integrated them with the retroactive
event detection approach. Each of the 10 oracle variants was then used
to simulate 𝑘 = 60 random smart contracts, half of which with 𝑛 = 5 ac-
tions and the other half with 𝑛 = 10 actions. With a delay of 60 s between
subsequent groups of transactions, the experiment took around four days
(99:22:10) in total.

The share of simulations which yielded the correct winner 𝑎0 is shown
in Tab. 6.3 for each regular and conditional oracle variant. The newly pro-
posed oracle architectures perform without fail, giving evidence that they
indeed describe the intended semantics of smart contracts and that the im-
plementation is accurate. As expected, the traditional oracles encounter
issues when certain configurations resembling the problematic example
in Fig. 6.2 are generated—they only pick the correct winner in around 35%
of cases, i.e., those in which the first action randomly turns out be non-
autonomous.

Table 6.3: Share of 𝑘 = 60 simulated smart contracts in which the action
𝑎0 was correctly performed

Event detection approach Oracle Correctness
Reg. Cond.

Retroactive Storage 35% 35%
Request-response 35% 35%
On-chain history 100% 100%
Off-chain history 100% 100%

Publish-subscribe Publish-subscribe 100% 100%

104

6.5. Simulation Results

6.5.2 Cost

Cost is a major factor that influences the adoption of any smart contract
enforcement approach in practice. On Ethereum, cost is expressed using
gas, a stable measure that quantifies the computational complexity and
storage requirements of a transaction, and directly translates to its cost
in cryptocurrency [114]. We compare the gas cost of all approaches using
a series of simulations. Again, the traditional oracle patterns storage and
request-response are included for comparison purposes.

Simulation Design

All simulation scenarios follow a pattern in which 𝑐 smart contracts con-
sisting of exactly one initially active action constrained by a data con-
straint each access a single shared oracle. The oracle receives 𝑢 data up-
dates. A perform transaction is sent to each smart contract at each fifth
data update, of which only the last will lead to the data constraint’s satis-
faction by design. This recreates a realistic timeline of events for an oracle
with multiple consumer contracts.

All simulations were executed sequentially for each oracle variant and
for all combinations of 𝑐 ∈ {5, 10, 20} and 𝑢 ∈ {1, 10, 20, 30}. Independent
sets of transactions were spaced 40 s apart. The experiment took a total
time of 25:22:33 to finish.

Deployment Cost

Initially, the DApps need to be deployed to the blockchain network, in-
curring a one-time deployment cost contingent on the code size. Table 6.4
shows the average deployment costs in gas we have observed. For oracles,
there are three significant outliers owing to their more complex code: the
regular on-chain history oracle contains code to return the correct slice of
historical data, and the two synchronous conditional oracles contain code
to evaluate conditions. As expected, they are more expensive to deploy.

For the smart contracts, the differences are less pronounced. There is
a clear indication, though, that the externalization of evaluation logic to
the oracle for the conditional variants reduces the code complexity of the

Table 6.4: Average smart contract deployment cost

Oracle Deployment cost (average, in 103 gas)
Oracle DApps Smart contract DApps
Reg. Cond. Reg. Cond.

Storage 276 / 408 / +48% 1431 / +3% 1406 / +1%

Request-response 281 / +2% 281 / +2% 1502 / +8% 1477 / +7%

On-chain history 467 /+69% 552 /+100% 1520 /+10% 1386 /

Off-chain history 281 / +2% 281 / +2% 1592 /+15% 1448 / +4%

Publish-subscribe 281 / +2% 281 / +2% 1577 /+14% 1490 / +7%

105

Chapter 6. Autonomous Actions on Blockchain

smart contract itself, and that the more powerful approaches like publish-
subscribe and history oracles require larger DApps.

Note that it is moot to attach such gas costs to an amount of fiat cur-
rency like USD, since the value of cryptocurrencies is notoriously volatile
to market fluctuations and the senders of transactions themselves decide
on a fee multiplier to incentivize miners to pick up their transaction faster.
The deployment costs shown in Tab. 6.4 would translate to a few cents,
up to double-digit dollar amounts depending on these variables. It is thus
more helpful to compare the approaches relative to each other.

Operating Cost

The operating cost was derived by dividing the total cost minus deploy-
ment costs by the number of consumers 𝑐, arriving at an average cost
per consumer. The results were normalized globally from the minimum
(165,407 gas for the storage oracle with 𝑐 = 20, 𝑢 = 1) to the maximum
(1,656,007 gas for the publish-subscribe oracle with 𝑢 = 30), producing the
overview shown in Fig. 6.9.

Several observations are immediately apparent: All synchronous or-
acles (Fig. 6.9a–d) become relatively less expensive the more consumers
share the cost, as visible by the decline along the c-axis. This is not the case
for asynchronous oracles (Fig. 6.9e–j), as their cost linearly scales with the
number of consumers.

The more updates there are, the more expensive the approaches tend
to get, albeit on different scales. This is especially evident for the on-chain
history (Fig. 6.9c–d) and the regular off-chain history (Fig. 6.9g) oracles,
which show a clear superlinear trajectory on the u-axis because of storage
and payload cost increases.

This is not the case for the other oracles, which experience at most a
linear growth alongside the number of updates. Notably, while the regular
publish-subscribe oracle is the most expensive in our tests, it exhibits a
very predictable and linear growth of cost per update, which is not tied to
storage or payload requirements.

Interestingly, the conditional variants of the storage and request-re-
sponse oracles are almost exactly as expensive as their regular counter-
parts. This is mainly due to Ethereum’s padding of transaction parameters
to words (256 bit), making a Boolean value take up just as much space as an
integer. However, for history oracles the effect is very apparent, and for
publish-subscribe considerable: the conditional variants outperform the
regular variants by a steady margin the larger the payloads get and the
more transactions are to be sent.

6.5.3 Overall Feasibility

The prototypical implementation and simulation results lend insights into
the feasibility as well as the limitations of the event detection approaches

106

6.5. Simulation Results

1 10 20 30 u

5

10

c 20

0.00 0.07 0.18 0.28

0.00 0.05 0.14 0.22

0.00 0.04 0.12 0.19

(a) Storage
1 10 20 30 u

5

10

c 20

0.01 0.07 0.18 0.29

0.00 0.05 0.14 0.23

0.00 0.04 0.12 0.20

(b) Storage, cond.

1 10 20 30 u

5

10

c 20

0.02 0.18 0.44 0.75

0.01 0.13 0.34 0.60

0.01 0.10 0.28 0.53

(c) On-chain history
1 10 20 30 u

5

10

c 20

0.02 0.15 0.34 0.55

0.01 0.10 0.24 0.40

0.01 0.08 0.19 0.33

(d) On-chain history, cond.

1 10 20 30 u

5

10

c 20

0.06 0.11 0.23 0.34

0.06 0.11 0.23 0.34

0.06 0.11 0.23 0.34

(e) Req/res
1 10 20 30 u

5

10

c 20

0.06 0.12 0.23 0.35

0.06 0.12 0.23 0.35

0.06 0.12 0.23 0.35

(f) Req/res, cond.

1 10 20 30 u

5

10

c 20

0.05 0.13 0.29 0.49

0.05 0.13 0.29 0.49

0.05 0.13 0.29 0.49

(g) Off-chain history
1 10 20 30 u

5

10

c 20

0.05 0.10 0.22 0.33

0.05 0.10 0.22 0.33

0.05 0.10 0.22 0.33

(h) Off-chain history, cond.

1 10 20 30 u

5

10

c 20

0.03 0.32 0.66 1.00

0.03 0.32 0.66 1.00

0.03 0.32 0.66 1.00

(i) Pub/sub
1 10 20 30 u

5

10

c 20

0.01 0.04 0.09 0.15

0.01 0.04 0.09 0.15

0.01 0.04 0.09 0.15

(j) Pub/sub, cond.

Figure 6.9:Normalized, relative operating cost of an oracle per consumer
with the given number of data updates u and consumers c

107

Chapter 6. Autonomous Actions on Blockchain

proposed in this chapter, and thus into the feasibility of the concept of
autonomous actions on blockchain networks in general.

Economical Considerations

Considering the results of the simulations, it is evident that only the con-
ditional oracle variants appear to be feasible for environments in which a
lot of data is changed frequently. However, the question whether an ap-
proach is feasible always also depends on the concrete smart contract. If
the external data sources involved infrequently update their value, e.g.,
once a week, then many of the approaches are economically viable.

The publish-subscribe approach has a major downside, which is that
depending on the concrete performance constraints a lot of superfluous
transactions are being sent. For example, it is not feasible to send a trans-
action every time the system time changes for a temporal constraint—since
this happens constantly based on the resolution of the time domain, and
is naturally bounded by the average block time of the underlying block-
chain network. In practice, it might thus be beneficial to separate the per-
formance constraints based on their type, and perform a publish-subscribe
approach for data constraints and a retroactive approach for temporal con-
straints.

Note that we did not consider potential optimizations that would alle-
viate some of the issues identified above, such as unsubscription mecha-
nisms for the publish-subscribe oracles. Such a feature could be trivially
implemented by exposing an unsubscription function in the oracle DApp,
which leads to the consumer DApp being removed from the list of sub-
scribers. Similar optimizations could be conceived for other oracle archi-
tectures as well, e.g., involving compression or removal of old data.

Transition Scarcity and Backdating

The retroactive event detection approach guarantees that even with de-
layed or scarce transactions, a performance of autonomous actions in the
correct order is guaranteed. With backdating, even the original action
timestamps can be reproduced, which is important for relative temporal
constraints that may otherwise start too late.

This approach has consequences, though. One is that manual transac-
tions of the participants are still required. There is, by default, no mech-
anism to force any party to send transactions, or to automatically send
transactions to drive the progress of the smart contract. If, for instance, an
autonomous action is the last action before a smart contract finally termi-
nates, there is—strictly speaking—no obligation or responsibility for any
of the participants to send the transaction that finally executes the action.
As such, the approach handles transaction scarcity, but not the absence of
transactions overall.

A possible solution would be to artificially add additional transactions,
e.g., perform polling [72]. This would introduce the need for another en-

108

6.5. Simulation Results

tity submitting these polling transactions in certain intervals. As deter-
mined above, though, additional transactions further drive the cost of the
approaches, and may quickly end up becoming unfeasible.

Second, while the DApp is certainly able to backdate action perfor-
mances and reconstruct the correct execution of the smart contract ac-
cording to the operational semantics, outside services may not participate
in this scheme. For instance, a stock option contract which is supposed
to autonomously sell stocks once a certain strike price is reached will not
be able to get that exact price anymore if the autonomous action is only
triggered a week later. In practice, some form of compensation mechanism
may need to be implemented in case a later-than-expected performance of
an autonomous action leads to problems for a party.

Shifting of Trust

Smart contracts require tamper-proof enforcement via computer code, and
the introduction of oracles outside the protected environment of the block-
chain network may introduce potential for tampering. That is, every use
of an oracle shifts some amount of trust their way. Oracles must be trusted
to provide recent data, and promptly react to queries, in order to support
the event detection approaches discussed in this chapter.

This is especially true for the conditional oracle variants. While they
scale better from a cost-perspective, their externalization of the evaluation
of expressions obviously requires even more trust to be put into them.
In some cases such expressions may even be confidential and stored in a
permissioned blockchain, which would prohibit them from being shared
with oracles. However, there are techniques to further secure the usage of
oracles from within DApps, some of which could also be applied to our
extended oracle architectures [5].

Limitations

The prototype has several limitations. For one, each oracle is used to access
exactly one external data source, meaning that there is a 1-to-1 mapping
between oracle and data source. In practice, many oracles may provide ac-
cess to multiple or even arbitrary data sources, e.g., by providing a URL
with the query. While such features could be easily added to publish-sub-
scribe oracles, it is not possible to account for this in the general case with
history oracles: Naturally, to store historical values of data sources, those
must be known before a query arrives.

Second, we did not consider multi-chain environments in the event
detection strategies. In case parts of the smart contract are deployed in
DApps on different blockchain networks, cross-chain communication pro-
tocols would need to be used to synchronize the choice and performance
of actions. The added complications certainly deserve more attention in
future work on enforcing smart contracts on blockchain networks.

109

Chapter 7

Time on Blockchain

Deadlines and the notion of time spans or delays are often found in legal
contracts and smart contracts alike, and are thus a first-class citizen in our
smart contract metamodel (see Sect. 3.1) as temporal constraints. A DApp
running as a part of an SCMSmust be able to correctly determine whether
they are satisfied. After all, an action should not be performed before it is
enabled, but neither should the DApp prohibit its execution prematurely.

In the course of this thesis, we have employed a somewhat simplified
view on these issues: The assumption was that a transaction 𝑡𝑥 sent by
some participant to execute an action was submitted and then mined with
virtually no delay, and that the current system time 𝑡 of the operating
environment state 𝑜 = (𝑡, 𝜙)was readily available to the DApp. In practice,
however, there may be noticeable delays before a transaction is included
after it has been submitted, that is, the transaction timestamp 𝑡𝑡𝑥 may be
different from the system time when 𝑡𝑥 is mined. Further, DApps only
have very limited and peculiar means of telling the system time at all.

In this chapter, we will investigate the issue of telling the time from
within DApps (see Sect. 7.1), and compare available methods using vari-
ous metrics (see Sect. 7.2). The goal is to assess their suitability as to im-
plementing temporal constraints as part of a smart contract enforcement
approach (see Sect. 7.3).

Parts of this chapter are based on our previously published work, in
which we explored the support for temporal constraints found in business
processes within DApps [67].

7.1 Timing of Transactions

Determining the timestamp of a transaction is inherently difficult, but var-
ious approximation methods are available.

111

Chapter 7. Time on Blockchain

7.1.1 Technical Restrictions

We consider the smart contract model 𝑡𝑖𝑐𝑘𝑒𝑡 = (𝑃, 𝐷, 𝐿, 𝐴, 𝐶) introduced
in Sect. 3.2.1 (see page 39) modeling the train ticket smart contract, and
further assume it is implemented using a single DApp Ð. Let 𝑎𝑡 ∶= 𝑎5 ∈
𝐴 be the non-autonomous action allowing the passenger to cancel their
ticket themselves. We extend the example to include a 24 hour deadline
for 𝑎𝑡 , after which the passenger may not cancel their ticket anymore.

Then, situations as shown in Fig. 7.1 may occur: The passenger decides
to cancel the ticket within the allotted timeframe and submits a transaction
𝑡𝑥 to this effect, but due to delays in the blockchain network the inclusion
time 𝑑𝑡𝑥 is longer than usual and it is not immediately included in a block.
As a result, 𝑡𝑥 is only mined and executed after the 24 hour deadline has
expired according to the system time of the operating environment. The
state of 𝑎𝑡 has, of course, since changed from being enabled to just active
and 𝑎𝑡 can not be performed.

The passengermay nowhave grounds to claim that they sent the trans-
action in time and 𝑎𝑡 should have been performed, whereas the railway
company may claim that certain delays are to be expected and should be
factored in by all participants.While this is ultimately a decision that has to
be made by the parties, it comes down to clearly showing intent: The pas-
senger deliberately prepared and submitted a transaction according to the
smart contract model, and initiated the necessary steps towards making
use of the power granted to them. The same would apply when fulfilling
an obligation, or acting on a permission. That is, the underlying techno-
logical framework should not influence any contractual agreement.

We will thus assume that the submission of a transaction as signified
by its transaction timestamp 𝑡𝑡𝑥 should be the decisive criterion when de-
termining whether a temporal constraint was upheld. However, the trans-
action timestamp 𝑡𝑡𝑥—as in “the time of submission of 𝑡𝑥 to the block-
chain network”—is usually not available to DApps in blockchain ecosys-
tems such as Ethereum. As a consequence, transactions are mostly timed
using the block timestamp 𝑡𝑖 of the block 𝐵𝑖 = (𝑡𝑖 , 𝑇𝑖) they are eventually in-

Time

Passenger

DApp Đ at enabled. . . active active

tx (at)

24 hours
expire

Cancel
ticket

Operating
Environment

dtx

ttx

Figure 7.1: Delays in the network leading to an action 𝑎𝑡 not being per-
formed

112

7.1. Timing of Transactions

cluded in, since this is the first point in time consensus has been reached.
However, there are other methods to approximate the transaction time-
stamp as well.

7.1.2 Approximation Measures

In the following, we will introduce several approximation measures. An
approximation measure is a method which allows a DApp Ð to acquire
an estimated value for the transaction timestamp 𝑡𝑡𝑥 of a transaction 𝑡𝑥
targeting it, either using information already available to Ð or using addi-
tional entities and provisions. We will denote an approximation measure
using a function-like syntax, i.e., 𝑡ANY(𝑡𝑥) ≈ 𝑡𝑡𝑥 , with 𝑡ANY(𝑡𝑥) ∈ ℕ and with
ANY being replaced by a unique name. For the remainder of this chapter,
we will assume a blockchain  = (𝐵0, ..., 𝐵𝑛) and a transaction 𝑡𝑥 ∈ 𝑇𝑖 for
some block 𝐵𝑖 = (𝑡𝑖 , 𝑇𝑖) of  is given.

Block Timestamp

The de-facto standard way of determining a timestamp for a transaction
is to take the containing block’s block timestamp as a reference, which we
will define as 𝑡BT(𝑡𝑥) ∶= 𝑡𝑖 . This is equivalent to the transaction’s inclusion
timestamp.

Block Number

Most blockchain networks aim at achieving a predictable and regular sup-
ply of new blocks. That is, the average block delay, say 𝑑 , is supposed to
stay reasonably constant over time. Since blocks are numbered consecu-
tively, it is thus possible to deduce an approximation of the block time-
stamp 𝑡𝑖 of a block 𝐵𝑖 and in turn the transaction timestamp 𝑡𝑡𝑥 . We define
𝑡BN(𝑡𝑥) ∶= 𝑡0 + 𝑖 ⋅ 𝑑 where 𝑡0 is the timestamp of the genesis block 𝐵0. In
short, the product of the block number and the average block delay are
added to the block timestamp of the initial genesis block.

Parameter

Since transactions may carry additional data as a payload, a timestamp can
be attached to the transaction locally by the sender of the transaction dur-
ing its creation and signing.We call that timestamp 𝑡PA(𝑡𝑥). This parameter
has to be included specifically in the ABI of the DApp, like in the following
listing showing a snippet of a Solidity DApp as used for Ethereum:

Listing 7.1: Solidity DApp function with timestamp parameter
function withDeadline(uint timestamp) external {

require(timestamp < 1608811200 ,

"deadline missed");

// ...

}

113

Chapter 7. Time on Blockchain

Notarization

Some blockchain networks and distributed ledgers include so-called no-
taries, trusted nodes which have some form of normative power in the
network, like in the case of Corda [45]. They are trusted to fulfill tasks
like transaction validation, signing, or mining depending on the network’s
configuration. In particular, this notarization process could also include a
timestamping service.

That is, on or immediately before the submission of 𝑡𝑥 to the network’s
transaction pool, a notary node picks up the transaction and assign a time-
stamp to it. We call this measure 𝑡NO(𝑡𝑥).

Oracle Measures

Oracles can be used to access arbitrary external data from within DApps.
As such, they can of course also be used to query external time servers
for the current system time, which can in turn be used for the transaction
timestamp 𝑡𝑡𝑥 . We differentiate between two variants of this technique.
One uses storage oracles to get the latest valid timestamp known to the
oracle DApp which is already on the blockchain. We call this measure
𝑡SO(𝑡𝑥). Alternatively, request-response oracles can be used to asynchro-
nously query the time of a time server, and check temporal constraints
within the callback transaction. We call this measure 𝑡RO(𝑡𝑥).

We do not consider any of the novel oracle architectures which we
have introduced in the previous chapter. They were designed with event
detection in mind, and do not add significant capabilities that would make
them more useful in determining the transaction timestamp than the tra-
ditional oracle architectures used above.

7.2 Qualitative Comparison

The approximation measures for the transaction timestamp 𝑡𝑡𝑥 rely on dif-
ferent mechanisms and exhibit peculiar advantages and drawbacks. To
provide a ranking or assessment of these differences, we will compare the
measures according to a number of quality metrics. The quality metrics
have been selected frommetrics often used in evaluating blockchain-based
systems (trust, cost, and reliability) or hand-crafted for the timestamp ap-
proximation use case (accuracy, retrieval, resolution, monotonicity).

Table 7.1 shows an overview of the results of this comparison, which
we will explain in detail in this section. For some metrics, we employ a
relative point system, where we rank the approximation measures from
best to worst. Note that this does not necessarily imply that the “best”
measure is performing well absolutely speaking.

114

7.2. Qualitative Comparison

Table 7.1: Relative comparison of the approximation measures, with an
assessment in parentheses being subject to exceptions

Measure A
cc
ur
ac
y

Tr
us
t

C
os
t

Re
lia

bi
lit
y

Re
tr
ie
va
l

Re
so
lu
tio

n

M
on
ot
on
ic

Block timestamp 𝑡BT Sync. Block Yes
Block number 𝑡BN Sync. Block Yes
Parameter 𝑡PA Sync. — No
Notarization 𝑡NO Sync. — (No)
Storage oracle 𝑡SO Sync. (Block) Yes
Req/res oracle 𝑡RO Async. (Block) No

7.2.1 Accuracy

The deviations of the approximation measures to the transaction time-
stamp 𝑡𝑡𝑥 are illustrated in Fig. 7.2, which displays the possible range of
outputs for each measure on a timeline.

Due to the assumption that notarization of a transaction happens ex-
actly on or shortly after submission of 𝑡𝑥 to the transaction pool, 𝑡NO is
bound to be the most accurate measure. The parameter measure 𝑡PA is as-
signed shortly before, at creation of 𝑡𝑥 local to the sender. Assuming hon-
est participants—which we will discuss in the section about trust of this
comparison—the accuracy of this measure thus depends on how quickly
the transaction is sent and delivered to the blockchain network’s transac-
tion pool. With modern internet connections and networking technology
in place, this gap will likely by significantly smaller than the inclusion de-
lay, making the parameter measure 𝑡PA the most accurate after the notary
measure 𝑡NO.

The block timestamp measure 𝑡BT deviates from the transaction time-
stamp 𝑡𝑡𝑥 by the transaction’s inclusion delay 𝑑𝑡𝑥 . The actual inclusion de-
lay of a transaction 𝑡𝑥 varies in practice depending on the configuration
of the blockchain network, like an inadequate target block delay result-
ing in congestion or a backlog of pending transactions in the transaction
pool. Furthermore, the maximum fee a sender is willing to pay for the in-
clusion of their transaction also has a large impact. Overall, these factors
have been shown to be predictable in principle [118] and a high accuracy
can still be achieved.

The remaining approximation measures are inherently less accurate
and one can only gauge them on an interval. The storage oracle measure
𝑡SO depends on the frequency of updates by the oracle provider, who stores
the current time within the oracle DApp. Since these updates can only be
performed in an earlier or the same block as 𝑡𝑥 , that is 𝐵𝑖 , it can be asserted
that 𝑡SO(𝑡𝑥) ≤ 𝑡𝑖 = 𝑡BT(𝑡𝑥). If the oracle provider stops updating the oracle
DApp, the measure will become increasingly outdated.

115

Chapter 7. Time on Blockchain

tx

B0

Time

t0 tittx

Block Bi

dtx

.Blockchain

Transaction
pool

Party

Block timestamp

Block number

Parameter

Storage oracle

Req/res oracle

Notary

t BT

t BN

t PA

t NO

t SO

t RO

Figure 7.2: Accuracy of the approximation measures

The request-response oracle measure deviates in the other direction.
Since the request by the consumer DApp can only be publicly seen after
it has been included in a block, this is the earliest the oracle provider can
start working on the callback transaction, i.e., 𝑡RO(𝑡𝑥) ≥ 𝑡𝑖 = 𝑡BT(𝑡𝑥). If there
are delays at the oracle provider or the blockchain network, or the oracle
provider ceases to exist, the return transaction may arrive arbitrarily late
or even never.

Lastly, the block number measure 𝑡BT is the least accurate approxima-
tion of the transaction timestamp in general. To illustrate this, we gathered
the block times of Ethereum’s main network over a span of five years1.
The data indicates a mean block time 𝑑 of 15.19 s (min. 4.46 s, max. 30.31 s)
with a standard deviation of 2.71 s. If these values, including the block
timestamp of the genesis block, are inserted in the definition of the mea-
sure 𝑡BN(𝑡𝑥), this would for example result in a timestamp of 2020-03-
29T06:58:49Z for all transactions in block 9690267, when actually it was
mined at 2020-03-17T16:55:27Z, some 12 days earlier.

7.2.2 Trust

The overall goal of blockchain technology is the removal of trust from any
particular party—external agencies, miners, or participants alike. Likewise,
the approximation measures should be as resistant against tampering as
possible to support smart contracts.

Figure 7.3 shows a visualization of the parties or blockchain network
components trusted for each approximation measure. The block number
1Data from 2015-07-30–2020-03-18 via Etherscan

116

7.2. Qualitative Comparison

Blockchain Network Outside Entities

Oracle ProvidersSmart Contract
Parties

t SO

t ROProtocol

Miners Notaries
t NO

t BN

t BT

t PA

Figure 7.3: Trust of the approximation measures

approach 𝑡BN can be considered the least critical since it only relies on the
inherent protocol of the underlying blockchain technology, the block num-
bers. These are guaranteed to strictly increase by one with each block, and
there is no partywhich can in anyway tamperwith this basic requirement.
A miner particularly can not arbitrarily choose a block number, since this
would violate the integrity property of the blockchain and be immediately
rejected by the network.

This is a difference to the block timestamp measure 𝑡BT, which a miner
sets when beginning to work on creating a new block. Due to potential
network delays and differences in the nodes’ local clocks, miners do have
some degree of freedom in this aspect: The Ethereum blockchain network,
for instance, requires a block timestamp to be “reasonable” [114], whereas
the Tezos whitepaper states that the “protocol design must tolerate rea-
sonable clock drift” [38]. To prevent miners from abusing this freedom,
Bitcoin even adapted its protocol in 2016 to get rid of a monetary “incen-
tive for miners to lie about the time of their blocks”2. However, the actual
potential for these kinds of exploits is limited in practice, since consensus
algorithms tend to prefer younger blocks and often reject blocks which
deviate too much from the current local time of many nodes, e.g., at most
15 seconds into the future for Ethereum3.

Similarly, the notarization measure 𝑡NO puts trust into one or a set of
notaries which ultimately pick the timestamp. It is in the best interest of
the blockchain network to pick honest notaries, and provide some mech-
anism to oust dishonest ones, but they still introduce a potential source of
distrust. In general, we still assume that miners and notaries are unlikely
to have a stake in smart contracts, and can be trusted as an integral part
of the blockchain network.

For the oracle measures 𝑡SO and 𝑡RO, the current system time is acquired
through an external oracle provider. The oracle provider is trusted to serve
correct information, which is not specific to this particular use case. In fact,
oracle providers obviously have an interest in being trusted in general, and
some offer various options to mitigate any amount of distrust. Provable,
for instance, uses a system that provides proofs to certify that they did
2Bitcoin Improvement Proposal (BIP) 113, https://git.io/JfYqt
3Ethereum Ethash protocol (Go version), https://git.io/JvdNc

117

https://git.io/JfYqt
https://git.io/JvdNc

Chapter 7. Time on Blockchain

not tamper with any data received from external APIs before sending it
to the consumer DApp4. Other methods include second-layer consensus
algorithms to combine the output of multiple oracle providers, reducing
the influence of each individual entity [74]. In light of the business model
and the desired customer retention, we assess the needed trust be only
slightly higher than for the network measures.

The parameter 𝑡PA performs worst from a trust perspective. While we
assume that the parties to a smart contract trust each other enough to
enter into a legal agreement in the first place, the purpose of blockchain-
based enforcement is precisely to get rid of any potential for tampering.
Trusting any other party to attach a correct timestamp to a transaction
even if this has detrimental consequences for them is a steep assumption
that can not easily be justified in the context of smart contracts.

7.2.3 Cost

The cost of a measure is made up of two components, (i) the enclosing
transaction cost automatically paid to the network, which is determined
by the size of the transaction payload and the computational complexity
of the executed DApp functions, as well as (ii) any oracle fee payable to the
external oracle providers via cryptocurrency transfers. Naturally, each ap-
proximation measure is used in a transaction to begin with, which incurs a
baseline transaction cost. We derive our ranking in Tab. 7.1 from whether
additional costs are created by a measure.

The block timestamp 𝑡BT and the block number 𝑡BN measures—apart
from a trivial and inexpensive calculation for the latter—rely on readily
available block information that is “free” to the DAppwith little to no addi-
tional overhead. Similarly, if a blockchain network provides notarization,
this service will most likely be mandatory like in the example of Corda
and factored in into any transaction cost.

The parameter approach 𝑡PA requires adding additional payload to the
transaction, which increases the transaction cost by a small degree. Since
timestamps are usually not very big, this cost will most likely be minimal,
especially compared to the oracle measures: They require a relatively ex-
pensive inter-blockchain function call to the oracle DApp, and are subject
to fees imposed by the oracle providers. Provable prices standard API calls
at USD 0.01, up to USD 0.04 if a notary proof is requested5, not even fac-
toring in the callback transaction yet, making the oracle measures by far
the most expensive.

7.2.4 Reliability

Reliability is a software quality metric describing whether a system is
available when required and non-susceptible to system faults [52]. It can
4https://docs.provable.xyz/#security-deep-dive
5https://docs.provable.xyz/#pricing

118

https://web.archive.org/web/20210307222819/https://docs.provable.xyz/#security-deep-dive
https://web.archive.org/web/20210307222819/https://docs.provable.xyz/#pricing

7.2. Qualitative Comparison

be applied to the approximation measures as well, since it is critical that
they can be obtained at all times by a DApp. For the block timestamp 𝑡BT
and block number 𝑡BN approaches this is inevitably the case as they are part
of the blockchain network’s inherent protocols. Similarly, the parameter
measure 𝑡PA does additionally depend on the parties’ local environment
correctly functioning, but ultimately the parameter is always available if
a transaction is being mined.

The remaining measures add considerable uncertainty regarding the
reliability, though. For the notary measure 𝑡NO the notary nodes present a
possible point of failure, especially when they are organized in a second-
layer consensus network. The oracle measures even contain a third-party
external oracle provider which is not otherwise involved in the blockchain
network and unpredictable from a reliability perspective [74]. That means
if the oracle provider fails or ceases to be maintained, e.g., for monetary
reasons, the measure can not be used anymore. While the storage ora-
cle approach 𝑡SO is at least guaranteed to return some value in this case—
albeit potentially outdated or uninitialized—, the request-response oracle
approach 𝑡RO could lead to deadlocks in consumer DApps waiting for a
callback transaction which is never sent. This is a particular problem for
long-running smart contracts since oracle providers which were initially
available might cease operations at some point.

7.2.5 Retrieval

Within the transaction 𝑡𝑥 , the approximation measure needs to be calcu-
lated or otherwise retrieved. This happens in a synchronous way for most
of the measures, that is, they can be directly retrieved and are immediately
usable. For example, the block number and block timestamp are available
to the DApp, as well as any parameters or notarized information. While a
storage oracle needs to be queried, it likewise immediately returns a usable
value since information is already on the blockchain.

Only the request-response oracle measure 𝑡RO uses an asynchronous
retrieval mechanism. That means that a request needs to be emitted by the
DApp before the transaction 𝑡𝑥 ends, and only in a later separate callback
transaction 𝑡𝑥 ′ will the approximation be available. This introduces a delay
and a high degree of complexity in the implementation.

7.2.6 Resolution

A block 𝐵 = (𝑡, 𝑇) contains not only one, but an ordered list of 𝑛 transac-
tions 𝑇 = (𝑡𝑥1, ..., 𝑡𝑥𝑛). Some approximation measures will exhibit a certain
batching behavior, in which all of the transaction in a block are assigned
the same timestamp, i.e.,

∀𝑡𝑥𝑖 , 𝑡𝑥𝑗 ∈ 𝑇 ∶ 𝑡ANY(𝑡𝑥𝑖) = 𝑡ANY(𝑡𝑥𝑗)
for some measure 𝑡ANY. We say that these measures have a block-level res-
olution.

119

Chapter 7. Time on Blockchain

This is the case for the block timestampmeasure 𝑡BT and the block num-
ber measure 𝑡BN, since they are exclusively calculated from properties of
the block 𝐵. The oracle measures also exhibit batching, albeit in a slightly
different form. For 𝑡SO, all transactions between two update transactions to
the oracle DApp will receive the same timestamp. This could potentially
even span multiple blocks. For 𝑡RO, it depends on the implementation of
the side of the oracle provider. Assuming an instant processing of all re-
quests and a prompt sending of the response transaction, batching will be
visible for transactions within the same block.

Only the parameter and notarization approach work on a transaction-
level resolution, and batching does not occur. In a sense, the resolution of
the measures is finer, and allows for a comparison between transactions
even within the same block.

7.2.7 Monotonicity

As a last metric, we considered whether the measures are monotonically
increasing from the perspective of the DApp. That is, when a DApp en-
counters a transaction 𝑡𝑥 , it should never happen that the approximation
measure returns an earlier timestamp for a later transaction 𝑡𝑥 ′—or, more
formally, the following equation should hold for all transactions 𝑡𝑥 , 𝑡𝑥 ′

and for all time measures 𝑡ANY:

𝑡𝑡𝑥 ≤ 𝑡𝑡𝑥′ ⟹ 𝑡ANY(𝑡𝑥) ≤ 𝑡ANY(𝑡𝑥 ′)
The block measures 𝑡BT and 𝑡BN guarantee this property, as does the

storage oracle measure 𝑡SO: They either stay the same or increase for sub-
sequently mined transactions. However, in particular the transaction-level
measures are vulnerable to “overtaking”. That is, a transaction 𝑡𝑥 is sub-
mitted before 𝑡𝑥 ′, but 𝑡𝑥 ′ ends up being mined and included earlier. In case
of the parameter and notarization approach, for instance, this could hap-
pen due to a higher fee attached to 𝑡𝑥 ′ incentivizing miners. The request-
response oracle measure 𝑡RO is also vulnerable to this, since the callback
transactions may overtake each other.

Note that there are different ways of notarizing transactions, and some
blockchain networks or distributed ledgers may include the equivalent of
mining a transaction in the notarization procedure. In that case, the times-
tamps assigned would also be monotonic.

7.3 Application to Smart Contracts

The transaction timestamp 𝑡𝑡𝑥 is essential when evaluating whether tem-
poral constraints are satisfied, and thus certain actions may be performed
within 𝑡𝑥 . There are, in general, two categories of such temporal con-
straints: those which are contingent on an absolute point in time like a
deadline, and those which are relative to previous actions like delays.

120

7.3. Application to Smart Contracts

Table 7.2: Relative comparison of the approximation measures for imple-
menting temporal constraints

Temporal constraint Absolute Relative

Block timestamp 𝑡BT
Block number 𝑡BN
Notarization 𝑡NO
Parameter 𝑡PA
Storage oracle 𝑡SO
Request-response oracle 𝑡RO

In this section, we discuss whether the approximation measures are
suitable for either or even both of these categories of constraints. For this,
we consider implementation aspects as well as the quality metrics intro-
duced above to arrive at a relative comparison of the approximation mea-
sures. The results are shown in Tab. 7.2.

7.3.1 Absolute Temporal Constraints

Consider a generic absolute temporal constraint 𝑐 which is satisfied as
soon as a deadline 𝑡𝛿 ∈ ℕ is passed. In formal terms, given a smart con-
tract state 𝑠 = (Λ, 𝜈, H) and an operating environment state 𝑜 = (𝑡, 𝜙), the
satisfaction function is defined as follows:

𝛾(𝑐, 𝑠, 𝑜) = true ⟺ 𝑡𝛿 ≤ 𝑡

Figure 7.4 shows a timeline of this scenario. An action 𝑎, which has
been activated at some point before in the smart contract execution, is
enabled when the deadline 𝑡𝛿 is passed and the associated temporal con-
straint 𝑐 becomes satisfied. In a transaction 𝑡𝑥 intended to perform 𝑎, the
DApp Ð needs to enforce the temporal performance constraint and check
whether 𝑡𝛿 has actually passed by comparing it to its transaction time-
stamp 𝑡𝑡𝑥 , i.e., evaluate the condition 𝑡𝛿 ≤ 𝑡𝑡𝑥 .

In the extended train ticket smart contract𝑡𝑖𝑐𝑘𝑒𝑡 , the action to cancel
the ticket when the passenger’s discount card expires is an example for
this; the deadline is the date of expiry of the discount card, after which the
autonomous action canceling the ticket becomes enabled.

t𝛿
tx Time

Performance
Constraints

DApp Đ a

c

active. . . enabled enabled

ttx

. . . satisfied

Figure 7.4: Timeline of absolute temporal performance constraints

121

Chapter 7. Time on Blockchain

Absolute temporal constraints are susceptible to false positives and
negatives. Let 𝑡ANY be any of the approximation measures. A false positive
occurswhen 𝑡ANY erroneously reports that 𝑡𝛿 has already passed although it
has not, that is, 𝑡𝑡𝑥 < 𝑡𝛿 ≤ 𝑡ANY(𝑡𝑥). Conversely, a false negative occurs when
𝑡ANY erroneously reports that 𝑡𝛿 is in the future, although it has already
been passed, or 𝑡ANY(𝑡𝑥) < 𝑡𝛿 ≤ 𝑡𝑡𝑥 . Both false positives and negatives
may have severe consequences for participants of a smart contract, since
actions may be enabled or blocked when they should not be.

Figure 7.5 visualizes whether the approximationmeasures exhibit false
positives or false negatives, and if so, within which intervals. The true
transaction timestamp 𝑡𝑡𝑥 is marked by a bold line. A solid gray back-
ground left of this line signifies a false negative if a deadline falls into this
interval; a hatched background signifies that a false negative may occur
depending on the actual deviation. To the right of the bold line the same
applies, just pertaining to false positives.

As an example, consider the deadline 𝑡𝛿1, which is set between the cre-
ation of the transaction 𝑡𝑥 local to the participant and the submission to
the blockchain network at 𝑡𝑡𝑥 . The parameter measure 𝑡PA(𝑡𝑥) will always
yield a false negative for 𝑡𝛿1, since it is fixed at the creation of the transac-
tion 𝑡𝑥 . The block number approach 𝑡BT(𝑡𝑥) and the storage oracle 𝑡SO(𝑡𝑥),
may yield false negatives depending on their accuracy in that instance.
Another example, 𝑡𝛿2 illustrates false positives. Here, the deadline is set
during the time 𝑡𝑥 spends in the transaction pool, i.e., is submitted but not
yet included in a block. The block timestamp measure 𝑡BT(𝑡𝑥) will always

tx

B0

Time

t0 tittx

Block Bi

dtx

.Blockchain

Transaction
pool

Party

Block timestamp

Block number

Parameter

Storage oracle

Req/res oracle

Notary

Examples
t𝛿1 t𝛿2

t BT

t BN

t PA

t NO

t SO

t RO

Figure 7.5:Occurrence of false positives and false negatives when detect-
ing absolute deadlines with the approximation measures

122

7.3. Application to Smart Contracts

yield a false positive here, since the block timestamp is only fixed later
during mining. Similarly, the request-response oracle measure 𝑡RO(𝑡𝑥)will
also yield a false positive, since the oracle provider will return a timestamp
greater or equal to the block timestamp 𝑡𝑖 .

In general, the occurrence of false negatives or positives strongly cor-
relates with the accuracy of a measure, which is ultimately reflected in
their ranking (see Tab. 7.2). Especially those measures which can only
guarantee an accuracy within open-ended intervals will yield far more
errors than those which have fixed and short intervals of uncertainty. It
should also be noted that Fig. 7.5 is not drawn to scale—the delay between a
transaction’s local creation and its submission may regularly only account
for a fewmilliseconds, whereas the inclusion time 𝑑𝑡𝑥 may range from sec-
onds to minutes depending on the blockchain network [118]. The longer
the timespan, the more false positives or negatives potentially occur.

7.3.2 Relative Temporal Constraints

Relative temporal constraints are used to express that a certain delay has to
be kept between parts of the smart contract. Implementations thus need to
compare the timestamps of two transactions, which somewhat multiplies
any inaccuracies already present in the approximation measures.

Figure 7.6 visualizes this issue on a timeline. Two transactions 𝑡𝑥 and
𝑡𝑥 ′ are mined and included after each other in two separate blocks. The
transaction delta 𝑑𝑡𝑥/𝑡𝑥′ ∶= 𝑡𝑡𝑥′ − 𝑡𝑡𝑥 then is the interval between the two
transaction timestamps.

For example, consider a temporal performance constraint 𝑐 prescribing
that an action 𝑎 may only be performed after a delay 𝑑𝛿 , e.g., 14 days,
has passed. Let 𝑡active(𝑎) be the system time when 𝑎 was activated within
a transaction, in this case 𝑡𝑥 . Then the satisfaction of 𝑐 may be defined as
follows:

𝛾(𝑐, 𝑠, 𝑜) = true ⟺ 𝑡 − 𝑡active(𝑎) ≥ 𝑑𝛿
⟺ 𝑡𝑡𝑥′ − 𝑡𝑡𝑥 ≥ 𝑑𝛿
⟺ 𝑑𝑡𝑥/𝑡𝑥′ ≥ 𝑑𝛿

In other words, the satisfaction depends on the timestamps of two trans-
actions: that in which the action 𝑎 was activated (𝑡𝑥), and that in which 𝑎

dtx/tx'

d𝛿

Time
tx

Performance
Constraints

DApp Đ a

c

active. . . enabled enabled

tx'

. . . satisfied

Figure 7.6: Timeline of relative temporal performance constraints

123

Chapter 7. Time on Blockchain

is supposed to be performed (𝑡𝑥 ′). We assume in the following that trans-
action 𝑡𝑥 is included in a block 𝐵𝑖 and 𝑡𝑥 ′ is included in a block 𝐵𝑗 with
𝑖 < 𝑗.

Table 7.2 again shows a relative comparison as to the suitability of the
approximation measures to support these kinds of constraints. Notably,
the block number approach 𝑡BN performs slightly better than for absolute
constraints since some inaccuracies cancel out, that is:

𝑑𝑡𝑥/𝑡𝑥′ ≈ 𝑡BN(𝑡𝑥 ′) − 𝑡BN(𝑡𝑥)
= (𝑡0 + 𝑗 ⋅ 𝑑) − (𝑡0 + 𝑖 ⋅ 𝑑)
= (𝑗 − 𝑖) ⋅ 𝑑

Instead of extrapolating a timestamp all the way from the genesis block,
the average block time is onlymultiplied by the comparatively small differ-
ence between the two block numbers. As such, in most cases the influence
of extrapolation errors will be smaller.

This is not the case for all the other measures. Especially the oracle
approaches may result in arbitrarily bad results, since the open-ended ap-
proximation intervals may lead to inaccuracies. Only the notarization and
parameter measures benefit from their high accuracy and also perform
well when transaction deltas are concerned.

The resolution of an approximation measure further dictates a lower
bound for the length of a relative temporal constraints. For example, if the
average block time of a blockchain network is 60 s, then a relative temporal
constraint demanding that an action is performed within 30 s can not be
supported using all approximation measures such as the block timestamp,
since it will invariably increase by at least the block time of 60 s. Some
measures like the parameter and notarization approach allow for more
flexibility even amidst higher block times, though the actual performance
of the actions is still bound by the block times.

7.3.3 Usage Guidelines

From our results, it is not possible to conclusively recommend any of the
time measures over the others. In practical scenarios, it all depends on
the specific and individual requirements: If trust is paramount and some
inaccuracy may be tolerable, then block timestamps 𝑡BT seem to be a good
choice. On the other hand, if the parties do have a certain degree of mutual
trust, then the parameter approach 𝑡PA is also sensible. DApps may even
use more than one approximation measure at the same time, and average
or cross-validate them.

For actual implementations, the monotonicity of a time measure is a
critical property. Consider, for example, the situation visualized in Fig. 7.7:
The passenger tries to cancel their ticket, and sends an associated transac-
tion 𝑡𝑥 to this effect. The transaction stays pending for a long time, how-
ever, and in the meantime their discount card expires. In some other trans-
action 𝑡𝑥 ′, the DApp registers the expiry and autonomously performs 𝑎𝑐 ,

124

7.3. Application to Smart Contracts

Time

Passenger

DApp Đ
at enabled. . . disabled

tx (at)

Discount
card
expiredCancel

ticket

Operating
Environment

ttx

ac active. . . enabled

tx'

perform ac

disabled

Figure 7.7: A transaction 𝑡𝑥 ′ overtaking a previously sent transaction 𝑡𝑥

which cancels the ticket without issuing a voucher or refund. Only later
𝑡𝑥 is mined, at which point 𝑎𝑡 is not enabled anymore and the transaction
must be rejected.

If the time measure used is monotonic, for example 𝑡BT, then it holds
that 𝑡BT(𝑡𝑥 ′) < 𝑡BT(𝑡𝑥), and the DApp has no way of figuring out that 𝑎𝑡
should have actually had precedence over 𝑎𝑐 . Non-monotonic time mea-
sures like the parameter or notary approach would allow for this, how-
ever, and enable the DApp to roll back or somehow compensate for the
erroneously performed action 𝑎𝑡 .

Obviously, this introduces a certain degree of uncertainty and imple-
mentation overhead, since the DApp would always have to expect the ar-
rival of transactions which invalidate some of the previous smart contract
execution. In addition, since the inclusion time of transactions can be in-
fluenced by paying higher transactions fees, parties may even try to influ-
ence the smart contract execution by strategically trying to overtake other
transactions. There is no clear-cut solution to this issue, and parties must
agree beforehand on which amount of risk they are willing to take.

Further, it is worthy to note that time is by no means an entirely uni-
form concept. There are national and international organizations regulat-
ing the definition and use of time in certain regions. Occasionally, major
or minor adjustments may be made, like changing a time zone for a coun-
try. A more subtle example are leap seconds, which are added to UTC in
varying intervals to adapt to the slowing of the Earth’s rotation. Leap sec-
onds are not reflected in Unix timestamps as used by Ethereum for block
timestamps [114], though, and can thus not be accounted for. If a scenario
requires leap seconds to be observed, the parameter, notary, or oracle ap-
proaches would provide more flexibility after deployment. Corda, for in-
stance, prescribes their notaries to use the “GPS/NaviStar time as defined
by the atomic clocks at the US Naval Observatory”6 for such reasons.
6https://docs.corda.net/docs/corda-os/4.7/
key-concepts-time-windows.html

125

https://web.archive.org/web/20210118185703/https://docs.corda.net/docs/corda-os/4.7/key-concepts-time-windows.html
https://web.archive.org/web/20210118185703/https://docs.corda.net/docs/corda-os/4.7/key-concepts-time-windows.html

Chapter 7. Time on Blockchain

7.3.4 Limitations and Outlook

Our time measures are built on top of the formal model of blockchains
and blockchain networks we introduced in Sect. 2.2. As such, they abstract
from some properties and low-level observations. In particular, we do not
specifically consider forks, that is, alternative blockchains which might
exist at certain points in time until participants find a consensus on which
one is the normative version. However, from the perspective of a DApp,
forks are invisible to begin with. Rather, forks influence how quickly par-
ties should act upon the change of a smart contract state in a DApp, and
reflects the personal risk tolerance.

Some blockchain networks also use other structures and protocols. Hy-
perledger Fabric [9], for instance, does not use block timestamps at all. In-
stead, transaction timestamps are assigned by the sender of the transaction
themselves, i.e., equivalent to the parameter approach 𝑡PA and subject to
the same restrictions. Time-windows in Corda, on the other hand, are han-
dled by the notary nodes who only accept to commit a transaction when
it is inside the window according to the current system time.

Additionally, there are services like Ethereum Alarm Clock7 which al-
low the scheduling of transactions at a fixed point in time in the future. In
this case, the approach works similar to the request-response oracle, but
there is no single off-chain oracle provider. Instead, a second-layer net-
work of “TimeNodes” compete for eventually sending the transaction at
the right time for a monetary bounty. Such approaches could also be used
for absolute temporal constraints, and would in particular help to remedy
the overall absence of transactions (see Chapter 6).

7https://www.ethereum-alarm-clock.com/

126

https://web.archive.org/web/20210122223926/https://www.ethereum-alarm-clock.com/

Chapter 8

Related Work

Since this thesis covers large parts of the lifecycle of smart contracts—
frommodeling and semantics, through system architectures, up to detailed
enforceability aspects—a wide array of existing work is relatable.

We identified three broad categories of related work (see Fig. 8.1): First,
there are approaches rooted in the legal domain, which have a strong
connection to legal contracts (see Sect. 8.1). Second, there are approaches
which originate in the BPM domain, mainly concerned with blockchain-
based process execution (see Sect. 8.2). Third, there are generic approaches
which are not attributable to a specific domain, but still relate to the work
presented in this thesis (see Sect. 8.3).

8.1 Legal Focus

In the legal domain, one of the major questions being discussed is whether
smart contracts—both as an isolated concept and in connection to DApps—
can actually be viewed as a substitute to legal contracts. This pertains to
both the requirements on initially forming a legal contract, i.e., offer, ac-
ceptance, and consideration [37], as well as on the legitimacy and possible
extent of automatic tamper-proof enforcement [111, 103].

This
Thesis

Legal FocusGeneric Focus

Business Process Focus

Related
Work

Figure 8.1: Categorization of related work

127

Chapter 8. Related Work

Despite this uncertainty regarding the eventual standing of smart con-
tracts in the legal domain, which is out of scope of this thesis, numerous
research frameworks are being proposed and start-up companies are being
established. Being mainly based on blockchain networks, there are paral-
lels with the SCMS architecture and enforcement approach introduced in
this thesis on several layers, which we will contrast in the following.

Research Frameworks

Hazard and Haapio introduce the concept of wise contracts, which are
based on the Ricardian triple smart contract structure (see Sect. 2.1.3) [44].
They use the prose object data model that has been introduced by the Com-
monAccord project1 to represent the non-operational legal prose aspect of
the smart contract. Since a prose object is a machine-readable codifica-
tion of contract terms, it can directly reference and be referenced from the
associated operational code. This essentially solves the interlinking issue
found in Ricardian triples. The authors provide many valuable insights
into how such wise contracts could be safely transmitted and signed, but
stop short of tackling low-level automatic enforcement issues as we did in
this thesis.

Notland et al. introduce the minimum hybrid contract, a construct im-
mutably linking on-chain DApps and off-chain contract documents [86].
Like in the wise contract approach, their focus is on the contract lifecy-
cle stages immediately preceding the performance, i.e., the signing, nota-
rization, and storage of the minimum hybrid contract. The capabilities of
the underlying blockchain technology are employed for financial transfers
and auditability, but not specifically for enforcement in the sense of this
thesis. Temporal constraints, autonomous actions, and related concepts
are not mentioned.

Tsai et al. created the Beagle framework, which comprises a five-step
approach to smart contract development: a preliminary domain analysis,
followed by a template-based formal model creation, verification and val-
idation, execution, and runtime monitoring [107]. The authors only give a
brief overview of the whole method, though, and only superficially touch
on the issues of external data sources and monitoring as well as temporal
constraints. There are no provisions for multi-chain enforcement.

Tateishi et al. propose a template-based approach of modeling and en-
forcing smart contracts [106]. They start with a contract document that
is first transformed into an instance of a textual smart contract expres-
sion language [97], then into a state chart, and eventually into DApp code
for Hyperledger Fabric. Again, while the authors acknowledge the impor-
tance of temporal constraints, they are not discussed and a code example
suggests support is preliminary, e.g., the current day in a stock option ex-
ample is modeled as an internal integer variable. Oracles or multi-chain
scenarios are not mentioned.
1http://www.commonaccord.org/

128

https://web.archive.org/web/20210202132704/http://www.commonaccord.org/

8.1. Legal Focus

Azzopardi et al. introduce an interesting issue, which is that enforcing
a legal contract using DApps is not done by only allowing permitted and
rejecting other behavior [11]. They argue that attempting to perform an
action which is not permitted or which is prohibited, i.e., sending a trans-
action to claim a refund even though this is currently not possible, consti-
tutes a violation in itself that should be monitored and potentially sanc-
tioned. The model and tooling we propose in this thesis and none of the
other approaches mentioned in this chapter take this into account. Some
blockchain networks also log rejected transactions, though, which could
then be used by monitoring or evaluation tools attached to the SCMS.

Many research papers are focused on individual aspects of smart con-
tract modeling and enforcement, and do not aim to provide fully featured
frameworks. Previous research in this area has often been focused on ex-
pressiveness, however, specifying and formalizing legal contracts for use
in electronic systems, like in the seminal logic model of Lee [73] or the
extension of the 𝜇-calculus by Prisacariu and Schneider [92]. Kabilan and
Johannesson describe a multi-tier contract ontology expressed using UML
class diagrams which contains interconnected legal relations and actions,
working towards combining non-operational and operational contract as-
pects in the same model [56]. In another work, Kabilan applies their on-
tology to BPMN models [55]. More recently, Flood and Goodenough used
deterministic finite automata with attached natural language legal conse-
quences and correlates to analyze legal contracts from the financial do-
main [35]. Most approaches do not broach the topic of automatic or tam-
per-proof enforceability, however, for example lacking a clear semantics
which is central to the context of this thesis.

Legal Tech Projects and Start-Ups

While many aspects of the legal domain are already heavily automated
and digitized, e.g., regarding the storage and indexing of correspondence,
smart contracts still remain largely academic and are only just entering
the commercial market. With the advent of blockchain and distributed
ledger technology in general, a large community of projects and busi-
nesses have evolved in the legal tech domain. Note that the line between a
legal smart contract development approach and a generic DApp develop-
ment approach (see Sect. 8.3) are in some cases a matter of interpretation.

Legalese2 is a project that is “working on the drafting of legal docu-
ments the way programmers develop software”. Apart from offering sev-
eral products for digitally handling specific types of contracts like service
contracts for contractors and non-disclosure agreements, the goal is to de-
velop a DSL called L4 based on the modal 𝜇-calculus capturing the logic
and deontics of law. However, the capabilities of the Legalese offerings cur-
rently seem to be restricted to document generation solutions, and there
2https://legalese.com/

129

https://web.archive.org/web/20210420014343/https://legalese.com/

Chapter 8. Related Work

does not seem to be a generic enforcement approach using DApps yet,
although they are sometimes mentioned.

The Accord Project3, part of the Linux Foundation, aims at developing
a common format for smart contract specification which integrates with
arbitrary distributed ledgers and blockchain networks. Efforts include a
template-system for machine-readable natural language contracts called
Cicero and a textual DSL called Ergo capturing the operational aspects of
legal contracts. Together, they essentially resemble the components of the
Ricardian triple (see Sect. 2.1.3). It is not clear if and how problems like
competing actions or enforcing temporal constraints are solved from the
publicly available code, i.e., early prototypes of a possible Corda and Hy-
perledger Fabric integration.

OpenLaw4 is built around EthereumDApps, and provides a custom tex-
tual markup language allowing the creation of smart contract models with
both natural language text and operational instructions interlinked. Forms
are automatically generated from the models to populate parameters, and
a secure signing protocol is used to deploy DApps based on the model.
Since OpenLaw uses Ethereum, it is subject to the isolation and non-con-
tinuity properties. To this end, they include both oracles as well as a “re-
layer” component, which periodically sends transactions to the generated
DApps. Again, there is no discussion of the integrity and trust problems
this introduces.

Daml5 is a textual smart contract language built around an abstract
model of so-called Daml ledgers. Given a transformation from the Daml
ledger to an arbitrary blockchain network, it can be used to execute Daml
smart contracts. The abstract Daml ledger uses a fuzzy interpretation of
time. Each transaction has a “ledger time”, which is a timestamp attached
by the submitting participant and thus equal to the submission timestamp
and comparable to the 𝑡PA approximation measures introduced in this the-
sis. Additionally, there is the “record time”, which is the time the transac-
tion was added to the ledger, i.e., the inclusion or transaction timestamp.
To ensure some guarantees, Daml allows a configurable minimum and
maximum skew between the two timestamps, and also takes into account
a per-ledger average transaction delay.

Lastly, some distributed ledgers themselves are specifically built with
the vision of smart contracts in mind. Corda is an example for this, with
Brown et al. even stating in the first version of their whitepaper that they
“envision a future where legal agreements such as business contracts are
recorded and automatically managed without error” [17]. Smart contract
templates, i.e., parametrized contract documents attached to DApps, are
still an integral part of their architecture [45]. There is no dedicated mod-
eling language and semantics for them, however. Still, Corda provides
3https://accordproject.org/
4https://www.openlaw.io/
5https://daml.com/

130

https://web.archive.org/web/20210123141817/https://accordproject.org/
https://web.archive.org/web/20210318151222/https://www.openlaw.io/
https://web.archive.org/web/20210414152216/https://daml.com/

8.2. Business Process Focus

features like schedulable states6 allowing DApps to schedule timed future
transactions within a Corda node, which could be used to alleviate some
of the problems discussed in this thesis.

Overall, we conclude that this thesis provides a novel, holistic view
of a SCMS with enforceability using DApps as its core component. We
consider aspects like multi-chain environments, temporal constraints, and
data constraints including external data monitoring which have largely
been neglected previously.

8.2 Business Process Focus

Blockchain technology has been identified as a major source of opportu-
nity in BPM [83]. Especially choreographies and inter-organizational pro-
cesses between mutually distrustful participants who collaborate towards
a common business goal benefit from the auditing, monitoring, and en-
forcement capabilities provided by DApps [109]. As a consequence, block-
chain technology has been widely tested and applied to all phases of the
business process lifecycle, with research still ongoing [36, 22].

Since we based our design of an SCMS on that of a BPMS, some of
the approaches in blockchain-based business processes are relevant in the
context of this thesis. In the following, we give an overview of the most
prominent approaches with respects to their architectural decisions re-
garding the BPMS or process engine and their integration with blockchain
technology, relating to our first research question RQ1.We also assess their
capabilities when it comes to enforcing the business process equivalents
of temporal and data constraints using external data, possibly in a deferred
choice setting, relating to our second research question RQ2.

An overview is shown in Tab. 8.1, where a check mark means that
a topic is present in the accompanying publication. Note that this does
not necessarily mean that an implementation or analysis was provided, as
clarified in the following for each approach.

Multi-Chain Approaches

Azzopardi et al. present a business process monitoring approach using
multiple blockchains, which is structurally similar to—and postdates [71]—
the SCMS approach introduced in this thesis [12]. A business process col-
laboration, modeled as a BPMN collaboration diagram, is potentially split
up into multiple fragments deployed in individual DApps. An off-chain
notary is used to allow for cross-chain communication and asset transfers
to enact the overall process. The notary can also be used to include com-
pletely private process parts, which are not run on any blockchain. The
authors identify the need for an off-chain notary to be a weak point of
their approach, which might be mitigated by using more elaborate cross-
6https://www.corda.net/blog/scheduling-time-based-events-on-corda/

131

https://web.archive.org/web/20200920172235/https://www.corda.net/blog/scheduling-time-based-events-on-corda/

Chapter 8. Related Work

Table 8.1: Related work with a business process focus, ordered by wheth-
er they discuss certain topics and issues

Approach Year Multi-chain Te
m
po
ra
l

co
ns
tr
ai
nt
s

Ex
te
rn
al

da
ta

co
ns
tr
ai
nt
s

D
ef
er
re
d

ch
oi
ce

Azzopardi et al. [12] 2021 Yes — ✔ ✔
Adams et al. [3] 2020 (Yes) — — ✔
Falazi et al. [34] 2019 (Yes) — — —
Abid et al. [1] 2020 — ✔ — —
Klinger and Bodendorf [60] 2020 — — ✔ ✔
López-Pintado et al. [76] 2019 — — ✔ ✔
López-Pintado et al. [75] 2019 — — ✔ ✔
Lu et al. [77] 2020 — — ✔ —
Weber et al. [109] 2016 — — ✔ —
Ladleif et al. [70] 2019 — — — ✔
Corradini et al. [26] 2020 — — — ✔
Madsen et al. [79] 2018 — — — ✔
Alves et al. [8] 2020 — — — —
Schinle et al. [98] 2020 — — — —
Sturm et al. [101] 2018 — — — —
Sturm et al. [102] 2020 — — — —

chain communication protocols. Overall, the approach seems promising
and is, to the best of our knowledge, the only one to implement working
cross-chain communication for multi-chain process enactment.

Adams et al. propose the notion of a blockchain-integrated BPMS as
a light-weight solution that retains traditional capabilities of BPMSs and
only interfaces to blockchain networks for reliable storage of data and
executing “key contractual terms” [3]. This especially allows the use of
more than one blockchain network in the same process, although their
YAWL-based prototype only implements a connection toHyperledger Fab-
ric. There is no discussion about plans or potential issues regarding cross-
chain capabilities. The authors claim that their architecture allows the us-
age of all workflow patterns, since they are still executed locally in the par-
ticipants’ BPMSs. It is not clear, however, how temporal constraints and
deferred choice patterns can then be enforced by a tamper-proof DApp,
which is the main focus of this thesis.

Falazi et al. introduce the BlockME approach to connect processes and
blockchain networks [34]. Essentially, the authors propose an extension
of BPMN process models that adds elements targeting mostly technical
properties, features, and events of blockchain networks, e.g., submitting
or receiving transactions or reacting to forks. The approach particularly
allows the connection of a single process instance to multiple blockchain
networks. The extension elements are then transformed into standard-
compliant regular BPMN process models, which can be executed in reg-

132

8.2. Business Process Focus

ular BPMSs. There is no enforcement of any process logic or constraints,
which again is essential in the context of smart contracts.

In summary, we identified only few approaches who support or provi-
sion for more than one blockchain network being used for a single process
instance, with only one approach by Azzopardi et al. actually implement-
ing some degree of cross-chain enforcement [12].

Temporal Constraints

Some approaches briefly mention challenges involved in enforcing tem-
poral process constraints within DApps [70, 109], or even seem to sup-
port them to some degreewithout disclosing an implementation [60]. Only
one approach describes and provides an implementation for temporal con-
straints: Abid et al. extend Caterpillar to allow for intra and inter-activity
temporal constraints like task durations or absolute start/end times [1].
Their implementation is based on Ethereum and uses the block timestamp
(see 𝑡BT in Chapter 7) to implement guards that reject transactions violat-
ing temporal constraints.

Research on temporal aspects in blockchain-based process execution
seems to be largely focused on the more technical challenges, e.g., con-
firmation times, of blockchain networks. Yasaweerasinghelage et al., for
instance, evaluate and predict their influence of business process execu-
tion [118]. Haarmann uses annotated BPMN choreography diagrams to
estimate their total execution time in face of varying inclusion and block
delays [42]. None of the approaches mentioned, however, discusses the
feasibility or consequences of using one or more time measures.

External Data Sources and Constraints

Caterpillar, one of the most advanced blockchain-based business process
engines [76], our own work [70], and many others support internal pro-
cess data stored in the DApp with associated data constraints, for example
using data-based exclusive gateways or conditional intermediate catching
events. Since this data is part of the process state and only changes within
transactions to the process DApp, however, there are no fundamental is-
sues regarding the non-continuity or isolation properties of the DApps
which are the focus of this thesis (see Sect. 6.1)

Some approaches provide support for oracles to acquire external data:
Azzopardi et al. state that their cross-chain notary node can also be used as
an oracle provider [12]; the trigger components in the seminal approach by
Weber et al. can likewise assume the role of an oracle provider [109]; Cater-
pillar and an associated interpreted approach use service tasks [76, 75];
Lorikeet includes on-chain asset registries [77]; and Klinger and Boden-
dorf employ black-box message exchanges which may stem from ora-
cles [60]. Almost all approaches provide some form of generic scripting
capability, e.g., via script tasks, which can be used to access oracles, but
not necessarily react to any callbacks.

133

Chapter 8. Related Work

The goal of this thesis and in particular Chapter 6 was to additionally
allow blockchain-based enforcement of constraints referring to regularly
changing external data sources, achieving a kind of continual monitoring
of the operating environment state. None of the approaches we assessed
discussed these issues.

Deferred Choice

Lastly, deferred choice is a common pattern in business processes [96].
The event detection approaches introduced in Chapter 6 of this thesis are
suitable for implementing deferred choice within DApps even in the pres-
ence of temporal and data constraints which depend on events occurring
outside the control of the blockchain network and outside of transactions.

None of the related approaches supports deferred choice to this de-
gree. For example, Caterpillar allows the usage of event-based gateways—
the modeling element used in BPMN to express deferred choice—, but the
events following it are all internal and happen during transactions, like
errors or signals thrown in other parts of the process [76]. In the chore-
ography-based approach by Corradini et al. the events competing in the
deferred choice are all directly mapped to transactions, which leads to the
choice being resolved by the ordering of the transactions itself [26]. This
is the case for all other approaches as shown in Tab. 8.1, as far as we were
able to tell from the publications and open-source implementations.

The insights from this thesis thus provide a considerable step towards
supporting complex workflow patterns like deferred choice, temporal and
data constraints, as well as multi-chain enactment of business processes
in the future, which have until now been largely missing from relevant
research.

8.3 Generic Focus

In addition to approaches using DApps and blockchain technology to di-
rectly enforce smart contracts or business processes and choreographies,
there is a growing interest in developing generic DApps in a secure and
structured way:

Due to the immutability of DApps and the complexity and unfamil-
iarity of their code and design patterns, simple programming errors could
have grave consequences. For example, the famous TheDAO bug resulted
in the theft of around USD 60 million from a DApp in 2016 [78]. The aim
of most model-driven DApp development approaches is thus to allow a
secure development of DApps which makes them less susceptible to po-
tential vulnerabilities, according to several recent surveys [51, 7, 100].

Mavridou and Laszka introduce a code generation approach to design
DApps for Ethereum using finite state machines [81]. The goal is to re-
duce the probability of suffering from DApp vulnerabilities by using the
strict structure and rigorous semantics of state machines, which abstract

134

8.3. Generic Focus

from many of the problematic constructs like external events which we
have identified in this thesis. Notably, though, their approach is among
the few we could identify which specifically include temporal constraints:
Transitions can be annotated with time guards, which use the block time-
stamp (𝑡BT in Chapter 7) of the actual transaction to check for deadlines
or delays. However, there is no critical discussion of the suitability of the
block timestamp or potential alternatives. A subsequent extension of the
approach with extensive model-checking capabilities exhibits similar re-
strictions [82].

Andrychowicz et al. use timed automata to model Bitcoin scripts, in-
structions that can be attached to Bitcoin transactions and which allow
for limited DApp functionality [10]. The timed automata can then be ver-
ified using a model-checker. Unfortunately, the approach does not include
a code generation component, so implementation and model may diverge
and potential enforcement issues remain unexplored.

Kasinathan andCuellar present an interesting approach onDAppmod-
eling for IoT scenarios, e.g., smartmanufacturing and building automation,
using extended Petri nets [58]. They add a special type of place called “or-
acle place”, which represents input from an oracle. They further briefly
describe the semantics of such Petri nets and attached constraints when
executed within DApps, subject to the non-continuity property. However,
the issues of deferred choice and temporal constraints are not mentioned
or solved.

Choudhury et al. use domain-specific ontologies and rules as the ba-
sis of their DApp code generation [21]. As an example, they provide an
ontology of eligibility criteria of a driver in the context of a car rental. To-
gether with an associated rule describing the conditions of being eligible,
code can be generated. The approach, however, only supports static eval-
uation of data already contained in a DApp or provided via parameters.
Similar restrictions apply to the work by Haarmann et al., who generate
DApp code from decision tables specified using the Decision Model and
Notation (DMN) standard [43].

Oracle Architectures

On a side note, we also introduced several novel oracle patterns in this the-
sis (see Sect. 6.3). While we used them specifically to monitor external data
sources in the context of autonomous actions, they are by no means lim-
ited to this use case. To the best of our knowledge, the exact mechanisms
of history and publish-subscribe oracles as described in this thesis have
not been thoroughly discussed or evaluated in research on blockchain or-
acles before. Instead, existing research seems to focus on trust issues [46],
integration aspects [80], or reliability [74] of the more traditional patterns.

Indeed, in a recent exhaustive literature survey, Al-Breiki et al. identify
three major oracle patterns [5]: Two of those correspond to the traditional
storage and request-response oracle patterns—where the former is called
“immediate-read”. The third pattern is named publish-subscribe pattern,

135

Chapter 8. Related Work

but is fundamentally different to our proposal of the same name: An off-
chain or on-chain flag is maintained by the oracle provider and can be
manually queried by consumers DApps, making it unsuitable for imple-
menting our event detection approaches. This further indicates that our
extension of the oracle architectures provides an unexplored direction.

136

Chapter 9

Conclusion

We opened this thesis with the development of two research questions:
first, how a management system for smart contracts built on blockchain
technology may be designed (RQ1); and second, whether DApps can be
used to correctly and autonomously enforce smart contracts (RQ2). In the
course of the thesis, we have introduced, developed, and evaluated possi-
ble answers to these questions, which we will outline and discuss in this
concluding chapter.

9.1 Contributions

The contributions of this thesis can be roughly divided into two groups
following the research questions, and are summarized as follows:

Notion of Smart Contract Management Systems (SCMSs)
The SCMS approach (see Chapter 4) unites insights related to smart
contracts and DApps from our own research, from the legal domain,
and from the BPM community in a single software architecture. We
gave an overview and justification of the architecture’s components
in light of practical multi-chain environments, and incorporated as-
pects which similar proposals are missing. The SCMS approach sug-
gests an answer to RQ1, and provides an end-to-end vision of how
smart contracts may be managed, built, and eventually enforced.
We have evaluated the SCMS architecture using a proof-of-concept
implementation dubbed Mantichor (see Chapter 5). While Manti-
chor does not cover all features, it still generated valuable insights
into how amore complete implementation of an SCMSmay perform
in practice as blockchain technology continues to mature.

Enforcement of smart contracts using blockchain technology
In addition to their discussion in the context of the SCMS approach,
we have considered more specific enforceability aspects of smart

137

Chapter 9. Conclusion

contracts using blockchain technology (RQ2). These pertain to en-
forcing data and temporal performance constraints, which are not
widely covered in previous research in this area.
For data performance constraints, we proposed two strategies as to
how external data can be monitored and evaluated from within the
confines of the DApp on a blockchain network. The strategies take
into account the problem of competing actions, in which the DApp
has to ensure that ordering and precedence conflicts are resolved.
We evaluated our proposals using a tailor-made prototypical imple-
mentation and simulation, which reveals their cost and feasibility
(see Chapter 6).
For temporal performance constraints, we gave a structured over-
view of the peculiar methods of telling the time from within block-
chain networks, and systematically compared their advantages and
drawbacks (see Chapter 7). We gave pointers as to how this affects
the evaluation of temporal performance constraints, and came to the
conclusion that there can be no single usage guideline.

While the above contributions directly relate to our initial research
questions, we also consider some products or insights of this thesis which
were generated along the way to be major additional contributions:

Model and semantics of smart contracts
In Chapter 3 we introduced a model and semantics of smart con-
tracts. Ultimately a necessary tool to argue about requirements for
and enforceability aspects of smart contracts in the context of this
thesis, the metamodel in particular is useful beyond this scope. We
have shown this utility of the metamodel by assessing the BPMN
choreography diagram standard as to its suitability for smart con-
tract modeling. Thus, the model provides a versatile tool for future
research on smart contracts, and the evaluation of new modeling
approaches.

Web-based modeler for BPMN choreography diagrams
Originally developed solely for its eventual use in Mantichor, our
web-based modeler for BPMN choreography diagram, chor-js (see
Sect. 5.4), has grown to be an independent and recognizable tool in
the wider BPMN community. With chor-js, we facilitate the use of
choreography diagrams, which did not yet achieve the same degree
of popularity as their process or collaboration diagram counterparts
since their introduction in the second version of the standard [87].
The tool is available online and continues to be maintained.

Novel oracle architectures
The history and publish-subscribe oracle architectures introduced in
Sect. 6.3 specifically serve to support our two approaches at evaluat-
ing data performance constraints, but are usable in other scenarios

138

9.2. Limitations and Future Work

as well. Many applications implemented using DApps face similar
issues, and may find these capabilities to be useful.

Transaction timestamp approximation measures
Lastly, our structured definition and assessment of transaction time-
stamp approximation measures in Sect. 7.1 is not only helpful in
smart contract or process settings, but for DApp development as a
whole. The insights and methods described are easily transferred,
and are of potential interest to the wider blockchain community in
general.

Taken as a whole, we consider our contributions to consistently ad-
vance the state of the art in smart contract management and enforcement.
We have provided novel insights, strategies, and results which may pro-
vide a foundation allowing the eventual widespread use and acceptance of
autonomous smart contracts.

9.2 Limitations and Future Work

Naturally, there are limitations to our work, many of which we have al-
ready discussed in the parts of the thesis they emerged in. To conclude,
we want to briefly revisit the major limitations, discuss their impact, and
state how they may motivate future work in the area.

Perhapsmost notably, we placed a focus on relatively traditional block-
chain data structures as pioneered by Bitcoin [85] and Ethereum [114]. Our
formal model of blockchain networks (see Sect. 2.2) thus may not apply to
all blockchain networks or distributed ledgers in general, which in exten-
sion limits the applicability of the results founded on the model. While this
was a necessary decision to keep the scope of this thesis in check, some
distributed ledgers may neither be susceptible to the issues nor the solu-
tions described in this thesis. For instance, this could be an explanation for
the difficulty we had to adapt our approach to Corda (see Sect. 5.3), since
Corda notably does not use a block structure.

Yet, many questions still remain open even for the commonly used
traditional blockchain networks which we covered in this thesis: While
our SCMS approach is fundamentally based on the assumption that multi-
chain environments will be the norm in practice, we did not consider or
implement any concrete cross-chain communication techniques in our
SCMS architecture and Mantichor proof-of-concept implementation. As
the required protocols and platforms grow more mature, a more thorough
investigation into the practical feasibility of the multi-chain assumption
is needed. This may include another effort to implement a SCMS, which
supports more features and also implements as well as evaluates detailed
enforceability aspects which were discussed in a more formal setting in
this thesis.

In a similar vein, there is a noticeable lack of modeling support for
smart contracts, even taking into account our targetedmetamodel. Privacy

139

Chapter 9. Conclusion

and security parameters must be configured in the smart contract model
to decide on a suitable distribution across blockchain networks, for which
early works including ours from the BPM domain may provide some in-
spiration [70, 63]. Optimally, these parameters would be susceptible to for-
mal analysis to determine whether a given model fulfills use case specific
requirements, and can be safely used without consistency or disclosure
issues.

This also concerns further properties and components of legal con-
tracts, for example exchanging goods andmoney. Blockchain networks are
especially suitable for financial transactions considering their deep inte-
gration with cryptocurrencies, and novel developments like Non-Fungible
Tokens (NFTs) promise to extend these capabilities even further to arbi-
trary off-chain and on-chain assets. These features should be accounted
for in smart contract specification and enforcement approaches, e.g., by
supporting payments, escrow schemes, and autonomous asset transfers.
The DApps enforcing the smart contract could hold and manage these bal-
ances automatically, eliminating the need for middlemen and third-party
providers. Common contracts like stock options or rental contracts, which
mainly rely on the transfer of money, could as a consequence benefit sub-
stantially.

Encapsulating these conceptual issues is the need for a commonly un-
derstandable notation for smart contract models [24]. It is essential for the
acceptance of smart contracts in practice for them to be at least as acces-
sible as their traditional legal contract counterparts. Our work gives some
hints to this end, but does not ultimately solve the issues. This and related
challenges—for example, whether fully autonomous smart contracts are
even desirable given the flexibility granted by the ambiguity of natural
language and the legal system—will shape the future of smart contracts.

140

Bibliography

[1] Amal Abid, Saoussen Cheikhrouhou, and Mohamed Jmaiel. Modelling
and executing time-aware processes in trustless blockchain environment.
In Slim Kallel et al., editors, Risks and Security of Internet and Systems,
CRiSIS 2019, volume 12026 of Lecture Notes in Computer Science, pages
325–341. Springer, Cham, 2020. doi: https://doi.org/10.1007/978-
3-030-41568-6_21.

[2] Greta Adamo, Stefano Borgo, Chiara Di Francescomarino, Chiara Ghidini,
andMarco Rospocher. BPMN2.0 choreography language: Interface or busi-
ness contract? In Stefano Borgo et al., editors, Proceedings of the Joint On-
tology Workshops 2017, volume 2050 of CEUR WS Proceedings, 2017. URL
http://ceur-ws.org/Vol-2050/FOMI_paper_2.pdf.

[3] Michael Adams, Suriadi Suriadi, Akhil Kumar, and Arthur H. M. ter Hofst-
ede. Flexible integration of blockchain with business process automation:
A federated architecture. In Nicolas Herbaut andMarcello La Rosa, editors,
Advanced Information Systems Engineering, volume 386 of Lecture Notes in
Business Information Processing, pages 1–13. Springer, Cham, 2020. doi:
https://doi.org/10.1007/978-3-030-58135-0_1.

[4] John Adler, Ryan Berryhill, Andreas Veneris, Zissis Poulos, Neil Veira, and
Anastasia Kastania. Astraea: A decentralized blockchain oracle. In 2018
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 1145–
1152. IEEE, 2018. doi: https://doi.org/10.1109/Cybermatics_2018.
2018.00207.

[5] Hamda Al-Breiki, Muhammad Habib Ur Rehman, Khaled Salah, and Davor
Svetinovic. Trustworthy blockchain oracles: Review, comparison, and open
research challenges. IEEE Access, 8:85675–85685, 2020. doi: https://doi.
org/10.1109/ACCESS.2020.2992698.

[6] Robert Alexy. A Theory of Constitutional Rights. Oxford University Press,
2002. ISBN 9780198258216.

[7] Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, and Abdel-
hamid Mellouk. On the verification of smart contracts: A systematic re-
view. In Zhixiong Chen et al., editors, Blockchain – ICBC 2020, volume
12404 of Lecture Notes in Computer Science, pages 94–107. Springer, Cham,
2020. doi: https://doi.org/10.1007/978-3-030-59638-5_7.

141

https://doi.org/10.1007/978-3-030-41568-6_21
https://doi.org/10.1007/978-3-030-41568-6_21
http://ceur-ws.org/Vol-2050/FOMI_paper_2.pdf
https://doi.org/10.1007/978-3-030-58135-0_1
https://doi.org/10.1109/Cybermatics_2018.2018.00207
https://doi.org/10.1109/Cybermatics_2018.2018.00207
https://doi.org/10.1109/ACCESS.2020.2992698
https://doi.org/10.1109/ACCESS.2020.2992698
https://doi.org/10.1007/978-3-030-59638-5_7

Bibliography

[8] Paulo Alves, Ronnie Paskin, Isabella Frajhof, Yang Miranda, João Jardim,
Jose Cardoso, Eduardo Tress, Rogério Ferreira da Cunha, Rafael Nasser,
and Gustavo Robichez. Exploring blockchain technology to improve multi-
party relationship in business process management systems. In Proceed-
ings of the 22nd International Conference on Enterprise Information Systems.
SciTePress, 2020. doi: https://doi.org/10.5220/0009565108170825.

[9] Elli Androulaki, Artem Barger, et al. Hyperledger fabric: A distributed op-
erating system for permissioned blockchains. CoRR, abs/1801.10228, 2018.
URL http://arxiv.org/abs/1801.10228.

[10] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Łukasz Mazurek. Modeling Bitcoin contracts by timed automata. In Axel
Legay and Marius Bozga, editors, Formal Modeling and Analysis of Timed
Systems (FORMATS), volume 8711 of Lecture Notes in Computer Science,
pages 7–22. Springer, Cham, 2014. doi: https://doi.org/10.1007/978-
3-319-10512-3_2.

[11] Shaun Azzopardi, Gordon J. Pace, and Fernando Schapachnik. On observ-
ing contracts: Deontic contracts meet smart contracts. In Legal Knowledge
and Information Systems - JURIX 2018: The Thirty-first Annual Conference,
volume 313, pages 21–30. IOS Press, 2018. doi: https://doi.org/10.
3233/978-1-61499-935-5-21.

[12] Shaun Azzopardi, Joshua Ellul, and Gordon Pace. Runtime monitor-
ing processes across blockchains. In 9th IPM International Confer-
ence on Fundamentals of Software Engineering 2021 (FSEN 2021), Tehran,
Iran, 2021. URL http://www.cs.um.edu.mt/gordon.pace/Research/

Papers/fsen2021.pdf.

[13] HMN Dilum Bandara, Xiwei Xu, and Ingo Weber. Patterns for blockchain
data migration. In Proceedings of the European Conference on Pattern Lan-
guages of Programs 2020, EuroPLoP ’20. Association for Computing Ma-
chinery, 2020. doi: https://doi.org/10.1145/3424771.3424796.

[14] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia.
A survey on blockchain interoperability: Past, present, and future trends.
CoRR, 2005.14282, 2020. URL https://arxiv.org/pdf/2005.14282.

pdf.

[15] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly and
in zero knowledge. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, volume 8043 of Lecture Notes in Computer Sci-
ence. Springer, Berlin, Heidelberg, 2013. doi: https://doi.org/10.1007/
978-3-642-40084-1_6.

[16] Sarah Bouraga. A taxonomy of blockchain consensus protocols: A survey
and classification framework. Expert Systems with Applications, 168:114384,
2021. doi: https://doi.org/10.1016/j.eswa.2020.114384.

142

https://doi.org/10.5220/0009565108170825
http://arxiv.org/abs/1801.10228
https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.3233/978-1-61499-935-5-21
https://doi.org/10.3233/978-1-61499-935-5-21
http://www.cs.um.edu.mt/gordon.pace/Research/Papers/fsen2021.pdf
http://www.cs.um.edu.mt/gordon.pace/Research/Papers/fsen2021.pdf
https://doi.org/10.1145/3424771.3424796
https://arxiv.org/pdf/2005.14282.pdf
https://arxiv.org/pdf/2005.14282.pdf
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1016/j.eswa.2020.114384

Bibliography

[17] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda:
An introduction, 2016. URL http://rgdoi.net/10.13140/RG.2.2.

30487.37284.

[18] Bert-Jan Butijn, Damian A. Tamburri, and Willem-Jan van den Heuvel.
Blockchains: A systematic multivocal literature review. ACM Comput.
Surv., 53(3), 6 2020. doi: https://doi.org/10.1145/3369052.

[19] Núria Casellas. Legal Ontology Engineering: Methodologies, Modelling
Trends, and the Ontology of Professional Judicial Knowledge, volume 3 of
Law, Governance and Technology. Springer Science & Business Media, 2011.
doi: https://doi.org/10.1007/978-94-007-1497-7.

[20] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed
Jmaiel. The temporal perspective in business process modeling: A survey
and research challenges. Serv. Oriented Comput. Appl., 9(1):75–85, 2015.
doi: https://doi.org/10.1007/s11761-014-0170-x.

[21] Olivia Choudhury, Nolan Rudolph, Issa Sylla, Noor Fairoza, and Amar
Das. Auto-generation of smart contracts from domain-specific ontolo-
gies and semantic rules. In 2018 IEEE International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), 2018. doi: https://doi.org/10.1109/
Cybermatics_2018.2018.00183.

[22] Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano García-
Bañuelos, Orlenys López-Pintado, Qinghua Lu, Jan Mendling, Alexander
Ponomarev, An Binh Tran, and IngoWeber. Blockchain support for collab-
orative business processes. Informatik Spektrum, 42(3):182–190, 2019. doi:
https://doi.org/10.1007/s00287-019-01178-x.

[23] Christopher D. Clack, Vikram A. Bakshi, and Lee Braine. Smart con-
tract templates: essential requirements and design options. CoRR,
abs/1612.04496, 2016. URL https://arxiv.org/abs/1612.04496.

[24] Christopher D. Clack, Vikram A. Bakshi, and Lee Braine. Smart contract
templates: foundations, design landscape and research directions. CoRR,
abs/1608.00771, 2016. URL http://arxiv.org/abs/1608.00771.

[25] Morris R. Cohen. The basis of contract. Harvard Law Review, 46(4):553–592,
1933. ISSN 0017811X. URL http://www.jstor.org/stable/1331491.

[26] Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea
Polini, Barbara Re, and Francesco Tiezzi. Engineering trustable chore-
ography-based systems using blockchain. In Proceedings of the 35th An-
nual ACM Symposium on Applied Computing, SAC ’20, page 1470–1479,
New York, NY, USA, 2020. Association for Computing Machinery. doi:
https://doi.org/10.1145/3341105.3373988.

[27] Marcelo Corrales Compagnucci et al., editors. Legal Tech, Smart Contracts
and Blockchain. Perspectives in Law, Business and Innovation. Springer,
2019. doi: https://doi.org/10.1007/978-981-13-6086-2.

143

http://rgdoi.net/10.13140/RG.2.2.30487.37284
http://rgdoi.net/10.13140/RG.2.2.30487.37284
https://doi.org/10.1145/3369052
https://doi.org/10.1007/978-94-007-1497-7
https://doi.org/10.1007/s11761-014-0170-x
https://doi.org/10.1109/Cybermatics_2018.2018.00183
https://doi.org/10.1109/Cybermatics_2018.2018.00183
https://doi.org/10.1007/s00287-019-01178-x
https://arxiv.org/abs/1612.04496
http://arxiv.org/abs/1608.00771
http://www.jstor.org/stable/1331491
https://doi.org/10.1145/3341105.3373988
https://doi.org/10.1007/978-981-13-6086-2

Bibliography

[28] Sue E. S. Crawford and Elinor Ostrom. A grammar of institutions. The
American Political Science Review, 89(3):582–600, 1995. doi: https://doi.
org/10.2307/2082975.

[29] Deutsche Bahn AG. Kennzahlen 2019: Wussten Sie schon, dass..., 2019.
URL https://www.deutschebahn.com/de/konzern/konzernprofil/

zahlen_fakten/kennzahlen_2019-5058430.

[30] Deutsche Bahn AG. Tarifbekanntmachungen und Beförderungsbedingun-
gen der Deutschen Bahn AG, 2021. URL https://www.bahn.de/p/view/
home/agb/agb.shtml.

[31] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fun-
damentals of Business Process Management. Springer, 2nd edition, 2018. doi:
https://doi.org/10.1007/978-3-662-56509-4.

[32] Jacob Eberhardt and Stefan Tai. On or off the blockchain? insights on off-
chaining computation and data. In Flavio De Paoli et al., editors, Service-
Oriented and Cloud Computing, volume 10465 of Lecture Notes in Computer
Science, pages 3–15. Springer, Cham, 2017. doi: https://doi.org/10.
1007/978-3-319-67262-5_1.

[33] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time con-
straints in workflow systems. In Matthias Jarke and Andreas Oberweis,
editors, Advanced Information Systems Engineering, volume 1626 of Lec-
ture Notes in Computer Science, pages 286–300. Springer, Berlin, Heidelberg,
1999. doi: https://doi.org/10.1007/3-540-48738-7_22.

[34] Ghareeb Falazi, Michael Hahn, Uwe Breitenbücher, and Frank Leymann.
Modeling and execution of blockchain-aware business processes. SICS
Software-Intensive Cyber-Physical Systems, 34(2-3):105–116, 2019. doi:
https://doi.org/10.1007/s00450-019-00399-5.

[35] Mark Flood and Oliver Goodenough. Contract as automaton: The compu-
tational representation of financial agreements. OFR Working Paper 15-04,
2015. doi: https://doi.org/10.2139/ssrn.2538224.

[36] Julian Alberto Garcia-Garcia, Nicolás Sánchez-Gómez, David Lizcano, M. J.
Escalona, and Tomás Wojdyński. Using blockchain to improve collabora-
tive business process management: Systematic literature review. IEEE Ac-
cess, 8:142312–142336, 2020. doi: https://doi.org/10.1109/ACCESS.
2020.3013911.

[37] Bryan A. Garner. Black’s Law Dictionary. Thomson/West, 2004. ISBN
978-0-314-15199-5.

[38] LM Goodman. Tezos—a self-amending crypto-ledger white paper, 2014.
URL https://www.tezos.com/static/papers/white_paper.pdf.

[39] Guido Governatori, Florian Idelberger, ZoranMilosevic, Regis Riveret, Gio-
vanni Sartor, and Xiwei Xu. On legal contracts, imperative and declarative
smart contracts, and blockchain systems. Artificial Intelligence and Law, 26

144

https://doi.org/10.2307/2082975
https://doi.org/10.2307/2082975
https://www.deutschebahn.com/de/konzern/konzernprofil/zahlen_fakten/kennzahlen_2019-5058430
https://www.deutschebahn.com/de/konzern/konzernprofil/zahlen_fakten/kennzahlen_2019-5058430
https://www.bahn.de/p/view/home/agb/agb.shtml
https://www.bahn.de/p/view/home/agb/agb.shtml
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/3-540-48738-7_22
https://doi.org/10.1007/s00450-019-00399-5
https://doi.org/10.2139/ssrn.2538224
https://doi.org/10.1109/ACCESS.2020.3013911
https://doi.org/10.1109/ACCESS.2020.3013911
https://www. tezos. com/static/papers/white_paper. pdf

Bibliography

(4):377–409, 2018. doi: https://doi.org/10.1007/s10506-018-9223-
3.

[40] Cristine Griffo, João Paulo A. Almeida, and Giancarlo Guizzardi. Concep-
tual modeling of legal relations. In Juan C. Trujillo et al., editors, Concep-
tual Modeling, volume 11157 of Lecture Notes in Computer Science, pages
169–183. Springer, Cham, 2018. doi: https://doi.org/10.1007/978-
3-030-00847-5_14.

[41] Ian Grigg. The Ricardian contract. In First IEEE International Workshop on
Electronic Contracting, pages 25–31. IEEE, 2004. doi: https://doi.org/
10.1109/WEC.2004.1319505.

[42] Stephan Haarmann. Estimating the duration of blockchain-based business
processes using simulation. In Stefan Kolb and Christian Sturm, editors,
11th Central European Workshop on Services and their Composition (ZEUS),
volume 2339, pages 24–31. CEUR-WS.org, 2019. URL http://ceur-ws.

org/Vol-2339/paper5.pdf.

[43] Stephan Haarmann, Kimon Batoulis, Adriatik Nikaj, and Mathias Weske.
DMN decision execution on the Ethereum blockchain. In Advanced In-
formation Systems Engineering (CAiSE), volume 10816 of Lecture Notes in
Computer Science, pages 327–341. Springer, Cham, 2018. doi: https:
//doi.org/10.1007/978-3-319-91563-0_20.

[44] James Hazard and Helena Haapio. Wise contracts: Smart contracts that
work for people and machines. In Trends and Communities of Legal In-
formatics, 20th International Legal Informatics Symposium IRIS 2017, pages
425–432, 2017. doi: https://doi.org/10.2139/ssrn.2925871.

[45] Mike Hearn. Corda: A distributed ledger, technical whitepaper,
2016. URL https://docs.corda.net/_static/corda-technical-

whitepaper.pdf.

[46] Jonathan Heiss, Jacob Eberhardt, and Stefan Tai. From oracles to trust-
worthy data on-chaining systems. In 2019 IEEE International Conference
on Blockchain, pages 496–503, 2019. doi: https://doi.org/10.1109/
Blockchain.2019.00075.

[47] Rinke Hoekstra, Joost Breuker, Marcello Di Bello, and Alexander Boer.
The LKIF Core ontology of basic legal concepts. 2nd Workshop on Legal
Ontologies and Artificial Intelligence Techniques, pages 43–63, 2007. URL
http://ceur-ws.org/Vol-321/paper3.pdf.

[48] Wesley Newcomb Hohfeld. Fundamental legal conceptions as applied in
judicial reasoning. The Yale Law Journal, 26(8):710–770, 1917. doi: https:
//doi.org/10.2307/786270.

[49] Felix Härer. Decentralized business process modeling and instance track-
ing secured by a blockchain. In Proceedings of the 26th European Confer-
ence on Information Systems (ECIS 2018), 2018. doi: https://doi.org/10.
5281/zenodo.2585718.

145

https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/978-3-030-00847-5_14
https://doi.org/10.1007/978-3-030-00847-5_14
https://doi.org/10.1109/WEC.2004.1319505
https://doi.org/10.1109/WEC.2004.1319505
http://ceur-ws.org/Vol-2339/paper5.pdf
http://ceur-ws.org/Vol-2339/paper5.pdf
https://doi.org/10.1007/978-3-319-91563-0_20
https://doi.org/10.1007/978-3-319-91563-0_20
https://doi.org/10.2139/ssrn.2925871
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://doi.org/10.1109/Blockchain.2019.00075
https://doi.org/10.1109/Blockchain.2019.00075
http://ceur-ws.org/Vol-321/paper3.pdf
https://doi.org/10.2307/786270
https://doi.org/10.2307/786270
https://doi.org/10.5281/zenodo.2585718
https://doi.org/10.5281/zenodo.2585718

Bibliography

[50] Tom Hvitved. Contract Formalisation and Modular Implementation of
Domain-Specific Languages. PhD thesis, University of Copenhagen, 2012.

[51] Adnan Imeri, Nazim Agoulmine, and Djamel Khadraoui. Smart Contract
modeling and verification techniques: A survey. In Francisco Moo-Mena
and Elias Duarte, editors, 8th International Workshop on ADVANCEs in ICT
Infrastructures and Services (ADVANCE 2020), pages 1–8, 2020. URL https:
//hal.archives-ouvertes.fr/hal-02495158.

[52] ISO/IEC 25010:2011. Systems and software engineering — Systems and
software quality requirements and evaluation (SQuaRE)— System and soft-
ware quality models. Standard, International Organization for Standard-
ization (ISO), 2011.

[53] ISO/IEC 80000-2:2019. Quantities and units — Part 2: Mathematics. Stan-
dard, International Organization for Standardization (ISO), 2019.

[54] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets. Springer, Berlin,
Heidelberg, 2009. doi: https://doi.org/10.1007/b95112.

[55] Vandana Kabilan. Contract workflow model patterns using BPMN. In Int.
Workshop on Exploring Modeling Methods in Systems Analysis and Design
(EMMSAD), CAiSE, volume 363 of CEUR-WS.org, 2005. URL http://ceur-
ws.org/Vol-363/paper16.pdf.

[56] Vandana Kabilan and Paul Johannesson. Semantic representation of con-
tract knowledge using multi-tier ontology. In First Int. Conference on
Semantic Web and Databases, CEUR-WS.org, pages 378–397, 2003. URL
https://dl.acm.org/doi/10.5555/2889905.2889930.

[57] Niclas Kannengießer, Michelle Pfister, Malte Greulich, Sebastian Lins, and
Ali Sunyaev. Bridges between islands: Cross-chain technology for dis-
tributed ledger technology. In Proceedings of the 53rd Hawaii International
Conference on System Sciences, 2020. doi: https://doi.org/10.24251/
hicss.2020.652.

[58] Prabhakaran Kasinathan and Jorge Cuellar. Securing the integrity of work-
flows in IoT. In Proceedings of the 2018 International Conference on Embed-
ded Wireless Systems and Networks, EWSN ’18, page 252–257, USA, 2018.
Junction Publishing. ISBN 9780994988621. URL https://dl.acm.org/

doi/10.5555/3234847.3234908.

[59] Firas Al Khalil, Tom Butler, Leona O’Brien, and Marcello Ceci. Trust in
smart contracts is a process, as well. In Financial Cryptography and Data
Security, volume 10323 of Lecture Notes in Computer Science, pages 510–519,
2017. doi: https://doi.org/10.1007/978-3-319-70278-0_32.

[60] Philipp Klinger and Freimut Bodendorf. Blockchain-based cross-organi-
zational execution framework for dynamic integration of process collab-
orations. In 15th International Conference on Wirtschaftsinformatik (WI),
pages 893–908, 2020. doi: https://doi.org/10.30844/wi_2020_i2-
klinger.

146

https://hal.archives-ouvertes.fr/hal-02495158
https://hal.archives-ouvertes.fr/hal-02495158
https://doi.org/10.1007/b95112
http://ceur-ws.org/Vol-363/paper16.pdf
http://ceur-ws.org/Vol-363/paper16.pdf
https://dl.acm.org/doi/10.5555/2889905.2889930
https://doi.org/10.24251/hicss.2020.652
https://doi.org/10.24251/hicss.2020.652
https://dl.acm.org/doi/10.5555/3234847.3234908
https://dl.acm.org/doi/10.5555/3234847.3234908
https://doi.org/10.1007/978-3-319-70278-0_32
https://doi.org/10.30844/wi_2020_i2-klinger
https://doi.org/10.30844/wi_2020_i2-klinger

Bibliography

[61] Philipp Klinger, Long Nguyen, and Freimut Bodendorf. Upgradeabil-
ity concept for collaborative blockchain-based business process execution
framework. In Zhixiong Chen et al., editors, Blockchain – ICBC 2020, vol-
ume 12404 of Lecture Notes in Computer Science, pages 127–141. Springer,
Cham, 2020. doi: https://doi.org/10.1007/978-3-030-59638-5_9.

[62] Christopher Klinkmüller, Alexander Ponomarev, An Binh Tran, Ingo We-
ber, and Wil van der Aalst. Mining blockchain processes: Extracting pro-
cess mining data from blockchain applications. In Claudio Di Ciccio et al.,
editors, Business Process Management: Blockchain and Central and Eastern
Europe Forum, volume 361 of Lecture Notes in Business Information Process-
ing, pages 71–86. Springer, Cham, 2019. doi: https://doi.org/10.1007/
978-3-030-30429-4_6.

[63] Julius Köpke, Marco Franceschetti, and Johann Eder. Balancing privity
and enforceability of bpm-based smart contracts on blockchains. In Clau-
dio Di Ciccio et al., editors, Business Process Management: Blockchain and
Central and Eastern Europe Forum, volume 361 of Lecture Notes in Busi-
ness Information Processing, pages 87–102. Springer, Cham, 2019. doi:
https://doi.org/10.1007/978-3-030-30429-4_7.

[64] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. Digital supply chain
transformation toward blockchain integration. In Proceedings of the 50th
Hawaii International Conference on System Sciences (2017), 2017. doi:
https://doi.org/10.24251/hicss.2017.506.

[65] Jan Ladleif and Mathias Weske. A legal interpretation of choreography
models. In Chiara Di Francescomarino et al., editors, Business Process
Management Workshops. BPM 2019, volume 362 of Lecture Notes in Busi-
ness Information Processing, pages 651–663. Springer, Cham, 2019. doi:
https://doi.org/10.1007/978-3-030-37453-2_52.

[66] Jan Ladleif and Mathias Weske. A unifying model of legal smart contracts.
In Alberto H. F. Laender et al., editors, Conceptual Modeling, volume 11788
of Lecture Notes in Computer Science, pages 323–337. Springer, Cham, 2019.
doi: https://doi.org/10.1007/978-3-030-33223-5_27.

[67] Jan Ladleif and Mathias Weske. Time in blockchain-based process ex-
ecution. In 24th IEEE International Enterprise Distributed Object Com-
puting Conference, EDOC 2020, Eindhoven, The Netherlands, October 5-
8, 2020, pages 217–226. IEEE, 2020. doi: https://doi.org/10.1109/
EDOC49727.2020.00034.

[68] Jan Ladleif and Mathias Weske. Which event happened first? Deferred
choice on blockchain using oracles. CoRR, abs/2104.10520, 2021. URL
https://arxiv.org/abs/2104.10520.

[69] Jan Ladleif, Anton von Weltzien, and Mathias Weske. chor-js: A modeling
framework for BPMN 2.0 choreography diagrams. In José Ignacio Panach
et al., editors, Proceedings of the ER Forum and Poster & Demos Session 2019,
38th International Conference on Conceptual Modeling (ER), volume 2469 of

147

https://doi.org/10.1007/978-3-030-59638-5_9
https://doi.org/10.1007/978-3-030-30429-4_6
https://doi.org/10.1007/978-3-030-30429-4_6
https://doi.org/10.1007/978-3-030-30429-4_7
https://doi.org/10.24251/hicss.2017.506
https://doi.org/10.1007/978-3-030-37453-2_52
https://doi.org/10.1007/978-3-030-33223-5_27
https://doi.org/10.1109/EDOC49727.2020.00034
https://doi.org/10.1109/EDOC49727.2020.00034
https://arxiv.org/abs/2104.10520

Bibliography

CEUR WS Proceedings, pages 113–117, 2019. URL http://ceur-ws.org/

Vol-2469/ERDemo02.pdf.

[70] Jan Ladleif, Mathias Weske, and Ingo Weber. Modeling and enforcing
blockchain-based choreographies. In Thomas Hildebrandt et al., editors,
Business Process Management. BPM 2019, volume 11675 of Lecture Notes
in Computer Science, pages 69–85. Springer, Cham, 2019. doi: https:
//doi.org/10.1007/978-3-030-26619-6_7.

[71] Jan Ladleif, Christian Friedow, and Mathias Weske. An architecture for
multi-chain business process choreographies. In Witold Abramowicz and
Gary Klein, editors, Business Information Systems, volume 389 of Lecture
Notes in Business Information Processing, pages 184–196. Springer, Cham,
2020. doi: https://doi.org/10.1007/978-3-030-53337-3_14.

[72] Jan Ladleif, Ingo Weber, and Mathias Weske. External data monitoring us-
ing oracles in blockchain-based process execution. In Aleksandre Asatiani
et al., editors, Business Process Management: Blockchain and Robotic Pro-
cess Automation Forum, BPM 2020, volume 393 of Lecture Notes in Business
Information Processing, pages 67–81. Springer, Cham, 2020. doi: https:
//doi.org/10.1007/978-3-030-58779-6_5.

[73] Ronald M. Lee. A logic model for electronic contracting. Decision Support
Systems, 4(1):27–44, March 1988. doi: https://doi.org/10.1016/0167-
9236(88)90096-6.

[74] Sin Kuang Lo, Xiwei Xu, Mark Staples, and Lina Yao. Reliability analysis
for blockchain oracles. Computers & Electrical Engineering, 83:106582, 2020.
doi: https://doi.org/10.1016/j.compeleceng.2020.106582.

[75] Orlenys López-Pintado, Marlon Dumas, Luciano García-Bañuelos, and
Ingo Weber. Interpreted execution of business process models on block-
chain. In 2019 IEEE 23rd International Enterprise Distributed Object Com-
puting Conference (EDOC), pages 206–215, 2019. doi: https://doi.org/
10.1109/EDOC.2019.00033.

[76] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo
Weber, and Alexander Ponomarev. Caterpillar: A business process execu-
tion engine on the Ethereum blockchain. Software: Practice and Experience,
49(7):1162–1193, 2019. doi: https://doi.org/10.1002/spe.2702.

[77] Qinghua Lu, An Binh Tran, Ingo Weber, Hugo O’Connor, Paul Rimba, Xi-
wei Xu, Mark Staples, Liming Zhu, and Ross Jeffery. Integrated model-
driven engineering of blockchain applications for business processes and
asset management. CoRR, 2020. URL http://arxiv.org/abs/2005.

12685.

[78] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Ho-
bor. Making smart contracts smarter. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 254–
269. ACM, 2016. doi: https://doi.org/10.1145/2976749.2978309.

148

http://ceur-ws.org/Vol-2469/ERDemo02.pdf
http://ceur-ws.org/Vol-2469/ERDemo02.pdf
https://doi.org/10.1007/978-3-030-26619-6_7
https://doi.org/10.1007/978-3-030-26619-6_7
https://doi.org/10.1007/978-3-030-53337-3_14
https://doi.org/10.1007/978-3-030-58779-6_5
https://doi.org/10.1007/978-3-030-58779-6_5
https://doi.org/10.1016/0167-9236(88)90096-6
https://doi.org/10.1016/0167-9236(88)90096-6
https://doi.org/10.1016/j.compeleceng.2020.106582
https://doi.org/10.1109/EDOC.2019.00033
https://doi.org/10.1109/EDOC.2019.00033
https://doi.org/10.1002/spe.2702
http://arxiv.org/abs/2005.12685
http://arxiv.org/abs/2005.12685
https://doi.org/10.1145/2976749.2978309

Bibliography

[79] Mads Frederik Madsen, Mikkel Gaub, Tróndur Høgnason, Malthe Ettrup
Kirkbro, Tijs Slaats, and Søren Debois. Collaboration among adversaries:
Distributed workflow execution on a blockchain. In Symposium on Founda-
tions and Applications of Blockchain, 2018. URL https://static-curis.
ku.dk/portal/files/194806456/fab18_submission_06.pdf.

[80] Kamran Mammadzada, Mubashar Iqbal, Fredrik Milani, Luciano García-
Bañuelos, and Raimundas Matulevičius. Blockchain oracles: A framework
for blockchain-based applications. In Aleksandre Asatiani et al., editors,
Business Process Management: Blockchain and Robotic Process Automation
Forum, volume 393 of Lecture Notes in Business Information Processing,
pages 19–34. Springer, Cham, 2020. doi: https://doi.org/10.1007/
978-3-030-58779-6_2.

[81] Anastasia Mavridou and Aron Laszka. Designing secure Ethereum smart
contracts: A finite state machine based approach. CoRR, 2017. URL http:

//arxiv.org/abs/1711.09327.

[82] Anastasia Mavridou, Aron Laszka, Stachtiari Emmanouela, and Abhishek
Dubey. Verisolid: Correct-by-design smart contracts for Ethereum. In
Proceedings of the 23nd International Conference on Financial Cryptogra-
phy and Data Security (FC), volume 11598 of Lecture Notes in Computer
Science. Springer, Cham, 2019. doi: https://doi.org/10.1007/978-3-
030-32101-7_27.

[83] Jan Mendling, IngoWeber, et al. Blockchains for business process manage-
ment – challenges and opportunities. ACM Transactions on Management
Information Systems (TMIS), 9(1):4:1–4:16, 2018. doi: https://doi.org/
10.1145/3183367.

[84] Roman Mühlberger, Stefan Bachhofner, Eduardo Castelló Ferrer, Claudio
Di Ciccio, Ingo Weber, Maximilian Wöhrer, and Uwe Zdun. Foundational
oracle patterns: Connecting blockchain to the off-chain world. In Alek-
sandre Asatiani et al., editors, Business Process Management: Blockchain
and Robotic Process Automation Forum, volume 393 of Lecture Notes in
Business Information Processing, pages 35–51. Springer, Cham, 2020. doi:
https://doi.org/10.1007/978-3-030-58779-6_3.

[85] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
URL https://bitcoin.org/bitcoin.pdf.

[86] Jørgen Svennevik Notland, Jakob Svennevik Notland, and Donn Morrison.
The minimum hybrid contract (MHC): Combining legal and blockchain
smart contracts. In Proceedings of the Evaluation and Assessment in Software
Engineering, EASE ’20, page 390–397. Association for Computing Machin-
ery, 2020. doi: https://doi.org/10.1145/3383219.3383275.

[87] OMG. Business Process Model and Notation (BPMN), Version 2.0.2, 2013.
URL http://www.omg.org/spec/BPMN/2.0.2/.

[88] OMG. Meta Object Facility (MOF), Version 2.5.1, 2013. URL https://www.
omg.org/spec/MOF/2.5.1/.

149

https://static-curis.ku.dk/portal/files/194806456/fab18_submission_06.pdf
https://static-curis.ku.dk/portal/files/194806456/fab18_submission_06.pdf
https://doi.org/10.1007/978-3-030-58779-6_2
https://doi.org/10.1007/978-3-030-58779-6_2
http://arxiv.org/abs/1711.09327
http://arxiv.org/abs/1711.09327
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1145/3183367
https://doi.org/10.1145/3183367
https://doi.org/10.1007/978-3-030-58779-6_3
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3383219.3383275
http://www.omg.org/spec/BPMN/2.0.2/
https://www.omg.org/spec/MOF/2.5.1/
https://www.omg.org/spec/MOF/2.5.1/

Bibliography

[89] Gordon J. Pace and Gerardo Schneider. Challenges in the specification of
full contracts. In Integrated Formal Methods, volume 5423 of Lecture Notes
in Computer Science, pages 292–306. Springer, Berlin, Heidelberg, 2009. doi:
https://doi.org/10.1007/978-3-642-00255-7_20.

[90] Julien Polge, Jérémy Robert, and Yves Le Traon. Permissioned blockchain
frameworks in the industry: A comparison. ICT Express, 2020. doi: https:
//doi.org/10.1016/j.icte.2020.09.002.

[91] Shaya Pourmirza, Sander Peters, Remco Dijkman, and Paul Grefen. A sys-
tematic literature review on the architecture of business process manage-
ment systems. Information Systems, 66:43–58, 2017. ISSN 0306-4379. doi:
https://doi.org/10.1016/j.is.2017.01.007.

[92] Cristian Prisacariu and Gerardo Schneider. A formal language for elec-
tronic contracts. In Marcello M. Bonsangue and Einar Broch Johnsen, ed-
itors, Formal Methods for Open Object-Based Distributed Systems, volume
4468 of Lecture Notes in Computer Science, pages 174–189. Springer, Berlin,
Heidelberg, 2007. doi: https://doi.org/10.1007/978-3-540-72952-
5_11.

[93] Wolfgang Reisig. Petri Nets: An Introduction. Springer, Berlin, Heidelberg,
1985. doi: https://doi.org/10.1007/978-3-642-69968-9.

[94] Nick Russell, Arthur HMTer Hofstede, David Edmond, andWil MP van der
Aalst. Workflow data patterns. Technical Report FIT-TR-2004-01, Queens-
land University of Technology, Brisbane, 2004.

[95] Nick Russell, Arthur HMTer Hofstede, David Edmond, andWil MP van der
Aalst. Workflow resource patterns. Technical Report WP 127, Eindhoven
University of Technology, Eindhoven, 2004.

[96] Nick Russell, Arthur HMTer Hofstede,Wil MP Van Der Aalst, and Nataliya
Mulyar. Workflow control-flow patterns: A revised view. BPM Center Re-
port BPM-06-22, BPMcenter. org, pages 06–22, 2006.

[97] Naoto Sato, Takaaki Tateishi, and Shunichi Amano. Formal requirement
enforcement on smart contracts based on linear dynamic logic. In 2018
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 945–
954, 2018. doi: https://doi.org/10.1109/Cybermatics_2018.2018.
00181.

[98] Markus Schinle, Christina Erler, Philip Nicolai Andris, and Wilhelm Stork.
Integration, execution and monitoring of business processes with chain-
code. In 2nd Conference on Blockchain Research Applications for Inno-
vative Networks and Services (BRAINS), pages 63–70, 2020. doi: https:
//doi.org/10.1109/BRAINS49436.2020.9223283.

[99] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineer-
ing. Computer, 39(2):25–31, 2006. doi: https://doi.org/10.1109/MC.
2006.58.

150

https://doi.org/10.1007/978-3-642-00255-7_20
https://doi.org/10.1016/j.icte.2020.09.002
https://doi.org/10.1016/j.icte.2020.09.002
https://doi.org/10.1016/j.is.2017.01.007
https://doi.org/10.1007/978-3-540-72952-5_11
https://doi.org/10.1007/978-3-540-72952-5_11
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1109/Cybermatics_2018.2018.00181
https://doi.org/10.1109/Cybermatics_2018.2018.00181
https://doi.org/10.1109/BRAINS49436.2020.9223283
https://doi.org/10.1109/BRAINS49436.2020.9223283
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58

Bibliography

[100] Nicolás Sánchez-Gómez, Jesus Torres-Valderrama, J. A. García-García,
Javier J. Gutiérrez, and M. J. Escalona. Model-based software design
and testing in blockchain smart contracts: A systematic literature review.
IEEE Access, 8:164556–164569, 2020. doi: https://doi.org/10.1109/
ACCESS.2020.3021502.

[101] Christian Sturm, Jonas Szalanczi, Stefan Schönig, and Stefan Jablonski. A
lean architecture for blockchain based decentralized process execution. In
Florian Daniel et al., editors, Business Process Management Workshops. BPM
2018, volume 342 of Lecture Notes in Business Information Processing. Sprin-
ger, Cham, 2018. doi: https://doi.org/10.1007/978-3-030-11641-
5_29.

[102] Christian Sturm, Jonas Szalanczi, Stefan Jablonski, and Stefan Schönig. De-
centralized control: A novel form of interorganizational workflow interop-
erability. In The Practice of Enterprise Modeling. PoEM 2020, volume 400 of
Lecture Notes in Business Information Processing, pages 261–276. Springer,
Cham, 2020. doi: https://doi.org/10.1007/978-3-030-63479-7_18.

[103] Harry Surden. Computable contracts. UC Davis Law Review, 46(629), 2012.
URL https://ssrn.com/abstract=2216866.

[104] Nick Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997. doi: https://doi.org/10.5210/fm.v2i9.548.

[105] Nick Szabo. A formal language for analyzing contracts, 2002. URL https:
//nakamotoinstitute.org/contract-language/.

[106] Takaaki Tateishi, Sachiko Yoshihama, Naoto Sato, and S. Saito. Auto-
matic smart contract generation using controlled natural language and
template. IBM Journal of Research and Development, 63(2/3):6:1–6:12, 2019.
doi: https://doi.org/10.1147/JRD.2019.2900643.

[107] Wei-Tek Tsai, Ning Ge, Jiaying Jiang, Kevin Feng, and Juan He. Beagle: A
new framework for smart contracts taking account of law. In IEEE Inter-
national Conference on Service-Oriented System Engineering (SOSE), pages
134–13411, 2019. doi: https://doi.org/10.1109/SOSE.2019.00028.

[108] Chibuzor Udokwu, Aleksandr Kormiltsyn, Kondwani Thangalimodzi, and
Alex Norta. The state of the art for blockchain-enabled smart-contract ap-
plications in the organization. In 2018 Ivannikov Ispras Open Conference (IS-
PRAS), pages 137–144, 2018. doi: https://doi.org/10.1109/ISPRAS.
2018.00029.

[109] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Pono-
marev, and Jan Mendling. Untrusted business process monitoring and ex-
ecution using blockchain. In Marcello La Rosa et al., editors, Business Pro-
cess Management (BPM), volume 9850 of Lecture Notes in Computer Science,
pages 329–347. Springer, Cham, 2016. doi: https://doi.org/10.1007/
978-3-319-45348-4_19.

151

https://doi.org/10.1109/ACCESS.2020.3021502
https://doi.org/10.1109/ACCESS.2020.3021502
https://doi.org/10.1007/978-3-030-11641-5_29
https://doi.org/10.1007/978-3-030-11641-5_29
https://doi.org/10.1007/978-3-030-63479-7_18
https://ssrn.com/abstract=2216866
https://doi.org/10.5210/fm.v2i9.548
https://nakamotoinstitute.org/contract-language/
https://nakamotoinstitute.org/contract-language/
https://doi.org/10.1147/JRD.2019.2900643
https://doi.org/10.1109/SOSE.2019.00028
https://doi.org/10.1109/ISPRAS.2018.00029
https://doi.org/10.1109/ISPRAS.2018.00029
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1007/978-3-319-45348-4_19

Bibliography

[110] Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz,
An Binh Tran, and Paul Rimba. On availability for blockchain-based sys-
tems. In 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS),
pages 64–73, 2017. doi: https://doi.org/10.1109/SRDS.2017.15.

[111] Kevin Werbach and Nicolas Cornell. Contracts ex machina. Duke Law
Journal, 67:313, 2017. URL https://ssrn.com/abstract=2936294.

[112] MathiasWeske. Business Process Management. Springer, Berlin, Heidelberg,
3rd edition, 2019. doi: https://doi.org/10.1007/978-3-662-59432-
2.

[113] Maximilian Wöhrer and Uwe Zdun. Design patterns for smart contracts
in the ethereum ecosystem. In 2018 IEEE International Conference on
Blockchain, pages 1513–1520, 2018. doi: https://doi.org/10.1109/
Cybermatics_2018.2018.00255.

[114] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Technical report, Ethereum Project Yellow Paper, 2014.

[115] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass, Ce-
sare Pautasso, and Paul Rimba. A taxonomy of blockchain-based systems
for architecture design. In IEEE Intl. Conf. Software Architecture (ICSA),
pages 243–252, 2017. doi: https://doi.org/10.1109/ICSA.2017.33.

[116] Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber.
A pattern collection for blockchain-based applications. In 23rd European
Conference on Pattern Languages of Programs (EuroPLoP). ACM, 2018. doi:
https://doi.org/10.1145/3282308.3282312.

[117] Xiwei Xu, H. M. N. Dilum Bandara, Qinghua Lu, Dawen Zhang, and Liming
Zhu. Understanding and handling blockchain uncertainties. In Zhixiong
Chen et al., editors, Blockchain – ICBC 2020, Lecture Notes in Computer
Science, pages 108–124. Springer, Cham, 2020. doi: https://doi.org/
10.1007/978-3-030-59638-5_8.

[118] Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber. Predicting
latency of blockchain-based systems using architectural modelling and
simulation. In 2017 IEEE International Conference on Software Architec-
ture (ICSA), pages 253–256, 2017. doi: https://doi.org/10.1109/ICSA.
2017.22.

All links were last followed on April 28th, 2021. Further, all links in the
body of the digital version of this thesis redirect to archived versions of
the referenced websites via Internet Archive valid as of writing this thesis,
if available.

152

https://doi.org/10.1109/SRDS.2017.15
https://ssrn.com/abstract=2936294
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1109/Cybermatics_2018.2018.00255
https://doi.org/10.1109/Cybermatics_2018.2018.00255
https://doi.org/10.1109/ICSA.2017.33
https://doi.org/10.1145/3282308.3282312
https://doi.org/10.1007/978-3-030-59638-5_8
https://doi.org/10.1007/978-3-030-59638-5_8
https://doi.org/10.1109/ICSA.2017.22
https://doi.org/10.1109/ICSA.2017.22

	Cover
	Title
	Imprint

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Research Questions
	Approach
	Thesis Structure

	Preliminaries
	Smart Contracts in Law
	Legal Contracts
	Formalization of Legal Contracts
	Smart Contracts

	Blockchain Technology
	Blockchain Data Structure
	Blockchain Networks
	Transaction Lifecycle
	Decentralized Applications
	Oracle Patterns

	Business Process Management
	Business Processes
	Business Process Management Systems
	Business Process Choreographies

	Smart Contract Modeling
	Smart Contract Metamodel
	Terminology
	Reasoning
	Metamodel Structure

	Operational Semantics
	Running Example
	State Space
	Operating Environment
	State Transitions

	Choreographies and Smart Contracts
	Element Mapping
	Actions and Constraints
	Legal Interpretation

	Smart Contract Management Systems
	Blockchain-Based Enforcement
	Non-Blockchain Baseline
	Single-Chain Approach
	Multi-Chain Approach

	Functional Requirements
	Negotiation and Formation
	Notarization and Storage
	Performance and Monitoring
	Modification, Disputes, and Termination

	System Architecture
	Local Components
	Metadata Storage
	Smart Contract DApps

	Proof-of-Concept Implementation
	System Design
	System Overview
	Frontend Components
	Share Server

	Blockchain Network Adapters
	Adapter Interface
	Tezos Adapter
	Corda Adapter

	Insights and Maturity
	Functional Coverage
	Non-Functional Properties
	Current Status

	Modeling Choreographies with chor-js
	Feature Overview
	Tool Comparison
	Scientific Contribution

	Autonomous Actions on Blockchain
	Performing Autonomous Actions
	Enablement Criteria
	External Events
	Competing Actions

	Event Detection Approaches
	Retroactive Event Detection
	Publish-Subscribe Event Detection

	Extended Oracle Architectures
	History Oracles
	Publish-Subscribe Oracles
	Conditional Oracle Variants

	Oracle Implementation and Usage
	Overview
	On-Chain Components
	Off-Chain Components

	Simulation Results
	Correctness
	Cost
	Overall Feasibility

	Time on Blockchain
	Timing of Transactions
	Technical Restrictions
	Approximation Measures

	Qualitative Comparison
	Accuracy
	Trust
	Cost
	Reliability
	Retrieval
	Resolution
	Monotonicity

	Application to Smart Contracts
	Absolute Temporal Constraints
	Relative Temporal Constraints
	Usage Guidelines
	Limitations and Outlook

	Related Work
	Legal Focus
	Business Process Focus
	Generic Focus

	Conclusion
	Contributions
	Limitations and Future Work

	Bibliography

