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Abstract. Models for the predictions of monetary losses
from floods mainly blend data deemed to represent a single
flood type and region. Moreover, these approaches largely ig-
nore indicators of preparedness and how predictors may vary
between regions and events, challenging the transferability of
flood loss models. We use a flood loss database of 1812 Ger-
man flood-affected households to explore how Bayesian mul-
tilevel models can estimate normalised flood damage strati-
fied by event, region, or flood process type. Multilevel mod-
els acknowledge natural groups in the data and allow each
group to learn from others. We obtain posterior estimates that
differ between flood types, with credibly varying influences
of water depth, contamination, duration, implementation of
property-level precautionary measures, insurance, and pre-
vious flood experience; these influences overlap across most
events or regions, however. We infer that the underlying dam-
aging processes of distinct flood types deserve further atten-
tion. Each reported flood loss and affected region involved
mixed flood types, likely explaining the uncertainty in the
coefficients. Our results emphasise the need to consider flood
types as an important step towards applying flood loss mod-
els elsewhere. We argue that failing to do so may unduly
generalise the model and systematically bias loss estimations
from empirical data.

1 Introduction

The estimation of flood losses is a key requirement for as-
sessing flood risk and for the evaluation of mitigation strate-
gies like the design of relief funds, structural protection, or
insurance design. Yet loss estimation remains challenging,
even for direct losses that can be more easily determined than
indirect losses (Figueiredo et al., 2018; Vogel et al., 2018;

Amadio et al., 2019; Meyer et al., 2013). Numerous methods
of inferring flood damage from field or survey data have been
tested, if not validated, with varying degrees of success (Gerl
et al., 2016; Molinari et al., 2020).

Without standard loss documentation procedures in place,
the highly variable losses caused by different flood types (e.g.
pluvial, fluvial, coastal) can make loss modelling particularly
challenging, especially where data are limited or heteroge-
neous. This lack of detailed or structured data motivates most
modelling studies concerned with flood loss to assign just a
single type of flooding to each event (Gerl et al., 2016). An-
other confounding issue is scale: inventories of flood damage
are often aggregated at administrative levels such as munic-
ipalities or states (Spekkers et al., 2014; Bernet et al., 2017;
Gradeci et al., 2019). This aggregation masks links between
damage and exposure or vulnerability at the property scale
(Meyer et al., 2013; Thieken et al., 2016). These unstruc-
tured or aggregated data make damage models prone to un-
derfitting, whilst training models with numerous predictors
may lead to overfitting, reducing the ability to generalise
and transfer to situations where information is unavailable
(Meyer et al., 2013; Gelman et al., 2014; Gerl et al., 2016).
Previous work has emphasised this challenge of transferring
models with respect to different flood types, events, or loca-
tions (Jongman et al., 2012; Cammerer et al., 2013; Schröter
et al., 2014; Figueiredo et al., 2018).

In this context, multilevel or hierarchic models are one al-
ternative and offer a compromise between a single pooled
model fitted to all data and many different models fitted to
subsets of the data sharing a particular attribute or group.
Bayesian multilevel models use conditional probability as
a basis for learning the model parameters from a weighted
compromise between the likelihood of the data being gener-
ated by the model and some prior knowledge of the model
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parameters. These models explicitly account for uncertainty
in data, low or imbalanced sample size, and variability in
model parameters across different groups (Gelman et al.,
2014; McElreath, 2016). There are several approaches to
the bias–variance trade-off (McElreath, 2020). We conduct a
variable selection through cross-validation to achieve a bal-
ance between predictive accuracy and generalisation. Using
priors in the Bayesian framework is using regularisation by
design and keeps the model from overfitting the data (McEl-
reath, 2020).

In contrast to empirical models, synthetic models are de-
veloped based on expert opinion and offer a good approach
to harmonise loss estimations. However, how these models
rely on assumptions is problematic when preparedness and
other behavioural variables are concerned. In general, syn-
thetic models tend to reduce the variability in data and remain
rarely validated (Sairam et al., 2020). Therefore, we train our
Bayesian model using reported data.

In this study, we use survey data from households af-
fected by large floods throughout Germany between 2002
and 2013 (Thieken et al., 2017). These data go beyond ad-
dressing physical inundation characteristics by offering a
broad view of the damaging process including the flood types
that affected the households (i.e. floods from levee breaches,
riverine floods, surface water floods, or rising groundwater
floods).

Mohor et al. (2020) used this database to explore the
most relevant factors for estimating relative loss of residen-
tial buildings with a regression model. From a larger pool
of candidate variables, the authors selected 13 predictors
of the flood hazard, building characteristics, and prepared-
ness, including flood type as an indicator, and suggested that
the influencing factors contribute with different magnitudes
across flood types. Vogel et al. (2018) trained Bayesian net-
works and Markov blankets (MBs) for different flood events
and types in Germany, obtaining varying compositions of
meaningful predictors. Bayesian networks focus on the de-
pendence between variables and flow of information (Vogel
et al., 2018) rather than the weight of each factor into the
final loss, which is the case of Bayesian inference.

Here we expand on the model of Mohor et al. (2020) by
acknowledging structure in the dataset and explore whether a
single regression model can apply not only to different flood
types but also to regions or flooding events. Single flood
events can affect cities differently across regions, likely re-
flecting socioeconomic and geographic conditions and build-
ing codes, for example. These characteristics reflect a given
asset’s resistance to the hazard process (Thieken et al., 2005).
These characteristics may differ on the level of administra-
tive regions, and hence we considered a multilevel-model
variant structured by regions. Additionally, flood prepared-
ness evolved over time, documented, for example, by Kien-
zler et al. (2015) and Thieken et al. (2016) for Germany. Eco-
nomic situations may also change the relative value of ex-
posed assets and its recover or repair costs (Penning-Rowsell,

2005; Kron, 2005). Such changes are challenging to include
in loss models, however. Therefore, we considered a third
model variant structured by flood events, capturing the timely
aspect. Therefore, we estimate relative flood losses in Ger-
many with a Bayesian multilevel model featuring three dif-
ferent groups, i.e. (i) flood types, (ii) administrative regions,
and (iii) individual flood events, to learn which predictors
might aid the transferability of loss models. We hypothe-
sise that the effect of some predictors varies with flood type,
administrative region, or flood event. We use multilevel lin-
ear regression to explore these possible differences. Judging
from previous work, we expect differing socioeconomic con-
ditions or preparedness across regions of Germany (Thieken
et al., 2007; Kienzler et al., 2015), a gradual development of
building standards and preparedness (Kienzler et al., 2015;
Vogel et al., 2018), and differing hazard characteristics and
resistance across flood types (Mohor et al., 2020).

2 Data and methods

2.1 Data

In this study we use the data from a joint effort that conducted
surveys among households affected by large floods through-
out Germany to investigate various aspects of the flood dam-
aging process more systematically. Beginning with the large
Central European floods of 2002, this database has more than
4000 entries from 6 different flood events (Thieken et al.,
2017). The surveys had approximately 180 questions, with
slight adaptations and improvements in clarity in each edi-
tion, and were conducted after major floods that hit Germany
in 2002, 2005, 2006, 2010, 2011, and 2013. These floods
happened in different seasons and involved different weather
conditions that led to varying flood dynamics, i.e. riverine
floods, surface water floods, rising groundwater floods, and
levee breaches (Kienzler et al., 2015; Thieken et al., 2016).
While the floods in 2002, 2005, and 2010 evolved quickly,
the floods in 2006, 2011, and 2013 were slow-onset events.
In all cases, the eastern and the southern parts of Germany
were affected the most.

These data go beyond addressing physical inundation
characteristics and also include aspects of warning, prepared-
ness, and precaution at the level of individual households.
This gathering of socioeconomic information and building
characteristics thus offers a broad view of the damaging
process rarely found elsewhere (Thieken et al., 2017). This
dataset also specifies the flood types that affected the house-
holds in four categories: floods from levee breaches, river-
ine floods, surface water floods, or rising groundwater floods.
Multiple flood types were reported for the same event, even
within the same city, thus giving rise to compound events that
can be defined as the synchronous or sequential occurrence
of multiple hazards (Zscheischler et al., 2020).
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From this dataset, Mohor et al. (2020) identified 13 pre-
dictors via variable selection in a multiple-linear-regression
framework. Flood type was considered to be a categorical or
indicator variable (Gelman and Hill, 2007). These selected
predictors are ranked in order of importance, according to the
number of times the predictor was kept in an iterative vari-
able selection procedure with random sampling (Table 1). A
more detailed description of the variables and the method can
be found in Vogel et al. (2018) and Mohor et al. (2020).

In this study, we used three characteristics to group our
data: (i) flood type, with the categories levee breaches,
riverine, surface, and groundwater floods; (ii) regions of
Germany, with the categories south (Bavaria and Baden-
Württemberg), east (Brandenburg, Mecklenburg-Western
Pomerania, Saxony, Saxony-Anhalt, and Thuringia), and
west and north (Hesse, Lower Saxony, North Rhine-
Westphalia, Rhineland Palatinate, and Schleswig-Holstein
– grouped together due to the low number of cases); and
(iii) flood year, i.e. 2002, 2005, 2006, 2010, 2011, and 2013.
We tested three model variants, each using only one group
variable at a time (Table 2). We refer to these model variants
as the flood-type model, the regional model, and the event
model, respectively.

2.2 Methods

Single-level multiple linear regression is adequate for cap-
turing general trends in data but ignores structure in the data,
such as flood type or region affected. We explore the suit-
ability of a Bayesian multilevel model to estimate relative
building loss (or loss ratio) from models with different pre-
dictor combinations. We use a numerical sampling scheme
for Bayesian analysis implemented in the brms package
(version 2.11.1; Bürkner, 2018) in the R programming en-
vironment (version 4.0.1; R Core Team, 2020). We test and
compare various multilevel models with differing complex-
ity. We trained the model on 70 % of the complete dataset
(no missing data), with a total of 1269 data points in the
training dataset and 543 data points in the testing dataset.
Although the dataset consists of more than 4000 data points
due to random missing data, the testing and training subset
size depends on the variables included in the model. Thus,
1812 data points were available in our case.

2.2.1 Bayesian multilevel model

Bayesian multilevel models weigh the likelihood of observ-
ing the given data under the specified model parameters by
prior knowledge. Bayesian models thus express the uncer-
tainty in both the prior parameter knowledge and the pos-
terior parameter estimates. The multilevel approach allows
us to analyse all data in one model while honouring struc-
ture or nominal groups in the data. Thus, the training of
the group-specific parameters occurs at the same time so
that model parameters can inform each other by means of

specified (hyper-)prior distributions. This approach warrants
more training data than running stand-alone models on sub-
sets of our data, which in turn are more prone to over- and
underfitting and overestimates of the regression coefficients
while reducing effects of collinearity and offering a natural
form of penalised regression (McElreath, 2016). The (un-
normalised) posterior density, i.e. the probability distribution
of the model parameter(s) θ given the observed data y of a
Bayesian model, is proportional to the product of the prior
of the model parameters – a probability distribution describ-
ing previous knowledge about the model parameters – and
the plausibility of observing the data given the model under
these parameter choices, also known as likelihood (Gelman
et al., 2014). The unnormalized posterior density can be writ-
ten as

p(θ |y)∝ p(θ)p(y|θ). (1)

In a multilevel model, the data are structured into J

groups, with model parameters allowed to vary between
these groups (θj ). The vector of group-level parameters θj
is itself drawn from a distribution specified by hyperparame-
ter(s) τ . The model returns parameter estimates for both the
entire (pooled) data and their J groups, although all param-
eters are learned jointly via the specified distribution of the
hyperparameters. The group-level (hyper)parameters are un-
known and learned from the data to inform the posterior dis-
tribution. This relationship can be written as the joint prior
distribution (Gelman et al., 2014):

p(θ,τ )∝ p(τ)p(θ |τ). (2)

The joint posterior distribution can then be written as (Gel-
man et al., 2014):

p(θ,τ |y)∝ p(θ,τ )p(y|θ). (3)

The brms package is an interface for building multi-
level models (Bürkner, 2018) that uses STAN, a program-
ming language for Bayesian statistical inference (Carpenter
et al., 2017). STAN uses a Hamiltonian Monte Carlo (HMC)
method, a type of random sampling to approximate posterior
distributions that are without analytical solutions (Kruschke,
2014), or the extension of HMC, the No-U-Turn Sampler
(NUTS), which is the default option in brms (Bürkner,
2018).

The choice of the likelihood and the priors should follow
assumptions about the data-generation process (Gabry et al.,
2019). Our response variable is relative loss and relates to-
tal direct, tangible flood loss such as repair and replacement
costs (Merz et al., 2010) to the total asset value of a given res-
idential building; relative loss thus varies from 0 to 1. Recent
work on flood loss modelling used an inflated beta distribu-
tion to first model the probability of no loss (Rözer et al.,
2019) or of total loss using a zero-and-one inflated beta dis-
tribution (Fuchs et al., 2019); a beta distribution then serves
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Table 1. Description of potential predictors of flood loss.

Predictor Abbreviation Unit and description

1 Water depth WD In centimetres

2 Building area BA Originally in square metres; due to high skewness, the variable is log-
transformed

3 Contamination Con Indicator from 0 (none) to 2 (heavy contamination)

4 Duration Dur Originally in hours; due to high skewness, the variable is log-
transformed

5 Property-level precautionary measures (PLPMs) Pre Indicator from 0 (none) to 2 (very good precaution)

6 Insured Ins Yes/no

7 Perceived efficacy of PLPMs Eff Likert-type scale from 1 (highly effective) to 6 (highly ineffective)

8 Emergency measures Eme Indicator from 0 (no emergency measures performed) to 17 (many
emergency measures performed effectively; Thieken et al., 2005)

9 Cellar Cel Yes/no

10 Relative flow velocity Vel Likert-type scale from 0 (no flow) to 6 (very high velocity)

11 Flood experience Exp Five classes from 0 (no previous flooding) to 4 (more often and recent
previous flooding)

12 Building quality BQ Likert-type scale from 1 (very high quality) to 6 (very low quality)

Table 2. Number of instances in the training set used across grouping variables flood type, region, and event year (n= 1269).

Flood types Levee breach Riverine Surface Groundwater Sum (n)

Flood events

2002 110 252 103 106 571
2005 8 35 7 6 56
2006 0 25 2 3 30
2010 31 86 19 5 141
2011 1 49 5 11 66
2013 108 236 16 45 405

Regions of Germany

South 52 174 53 58 337
East 205 469 80 111 865
West and north (W+N) 1 40 19 7 67
Sum (n) 258 683 152 176 1269

to estimate intermediate losses (Evans et al., 2000). This ap-
proach is useful in cases where flood damages remain unre-
ported or unaccounted for. Our dataset of affected households
has only 15 instances where relative flood loss was either 0
or 1. Hence, we dismissed those instances and modelled only
partial loss ratios using the beta distribution:

y ∼ Beta(µφ,(1−µ)φ), (4)

where y is the loss ratio that we assume follows a beta dis-
tribution with parameters mean µ and precision φ. The mean
(µ) is estimated from a multiple linear regression with K

predictors as

logit(µi)= α0+αj [i]+Xi,kβk,j [i], (5)

where subscript i refers to each data point, subscript k refers
to the predictors, subscript j refers to the groups, j [i] refers
to the group j that data point i is part of, α0 is the population-
level intercept, αj is the vector of group-level intercepts, Xi,k
is the i×k matrix of predictor values, and βk,j is the k×j co-
efficient matrix. For each data point i there is thus a vector of
group-level coefficients, expressed by the j [i]th-column of
β. The model therefore has one population-level parameter
(α0) and (k+ 1) · j group-level parameters (αj and βk,j ).
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In brms, the multilevel structure of the regression spec-
ifies Gaussian prior distributions for the intercepts αj and
for the predictor coefficients βj with fixed zero means and
unknown standard deviations. The group-level standard de-
viations are hyperparameters that are common to all group
levels but individual for the intercept or for each given pre-
dictor (σα and σ βk ). Therefore, we use standardised input
data that are centred at zero and scaled to unit standard de-
viation. The prior of each group-level standard deviation is
in turn a weakly informative Gamma distribution with shape
and inverse scale (or rate) parameters (2, 5), which accu-
mulates most probability mass at low positive values below
1. This choice of prior is appropriate for standardised input
data even without any specific prior knowledge, for example,
from other studies on flood damage. While previous studies
have indicated consistently that the effect of water depth is
positive, we decided to keep the priors weak enough to al-
low for the possibility of either positive or negative estimates
for all predictor coefficients to explore possible effects of the
multilevel model. The prior for φ is non-informative.

αj ∼N (0,σα) (6)
σα ∼ Gamma (2,5) (7)
βk,j ∼N (0,σβk ) (8)
σβk ∼ Gamma (2,5) (9)
φ ∼ Gamma (0.1,0.1) (10)

Each model run consisted of 4 chains, each with 3000 iter-
ations and 1500 warm-up runs; we used a thinning of ev-
ery 3 samples and obtained a total number of 2000 post-
warm-up samples. To assess whether the simulations con-
verged, we checked the Gelman–Rubin potential scale reduc-
tion factor R̂, which, if below 1.01, indicates that the Markov
chains have converged (Kruschke, 2014). We also checked
the effective number of independent samples Neff, indicat-
ing lower autocorrelation and higher efficiency of the con-
vergence (McElreath, 2016).

2.2.2 Model selection

We trained the models using several different combinations
of predictors to find the best balance between complexity
and predictive accuracy. Our main motivation was to achieve
a good balance of sufficiently detailed but available data,
which is often challenging (Meyer et al., 2013; Molinari
et al., 2020). Each predictor in a multilevel model requires
more than one parameter (i.e. J group-level coefficients plus
one hyperparameter). Hence, considering more parameters
may offer small increases in predictive accuracy only at the
risk of overfitting. We selected the model with the highest
improvement compared to the next simplest one while re-
taining the same multilevel structure. On the one hand, test-
ing all models possible without any underlying concept is
far from good scientific practice and computationally ineffi-
cient; on the other hand, the predictors are rarely fully inde-

pendent. Hence, we fitted candidate models in three steps of
model comparison outlined below. We compare these mod-
els via the expected log pointwise predictive density (ELPD),
which is the sum of a log-probability score of the predictive
accuracy for unobserved data. The distribution of these un-
observed data is unknown, but we can estimate the predictive
accuracy with leave-one-out cross-validation (ELPD-LOO),
which is the sum of the log-probability scores for the given
data except for one data point at a time (Vehtari et al., 2017;
McElreath, 2016). According to Vehtari (2020), an ELPD-
LOO difference> 4 may be relevant and should also be com-
pared to the standard error of the difference. Hence, we se-
lected models as follows:

1. We compared models with a gradually increasing num-
ber of predictors based on the prior knowledge of pre-
dictor importance reported in a study using single-level
linear regression by Mohor et al. (2020). This study con-
sidered water depth, for which data are the most widely
available and adopted in flood loss models (Gerl et al.,
2016), up to a maximum of 12 predictors (Table 1). For
example, model 2 (named “fit2”) has water depth (WD)
and building area (BA) as predictors, while model 3
(“fit3”) has the previous two plus contamination (Con)
as predictors; model 12 (“fit12”) has all 12 predictors
(Table 1). The model candidate with an ELPD-LOO dif-
ference> 4 compared to the previous candidate was se-
lected for the next step.

2. The model selected in step 1 – “fit_s1” – has a sub-
set of the predictor matrix X with s1 (≤K) columns,
i.e., X(s1)

= {x1, . . .,xs1}. We then compared models
with X(s1) predictors plus one of the remaining predic-
tors at a time, i.e. {X(s1)

}, {X(s1),xs1+1}, {X(s1),xs1+2}

, . . ., {X(s1),x12}. All model candidates that present an
ELPD-LOO difference larger than four and with a dif-
ference larger than its standard error were selected for
step 3.

3. We compared the model candidates combining the se-
lected candidates from step 2. If, for example, two dif-
ferent candidates {X(s1),xs1+a} and {X(s1),xs1+b} were
selected, we compared the model candidates {X(s1)

},
{X(s1),xs1+a}, {X(s1),xs1+b}, and {X(s1),xs1+a,xs1+b}.
The model candidate with the lowest number of predic-
tors and an ELPD-LOO difference > 4 as well as a dif-
ference larger than the estimated standard error was se-
lected eventually.

We compared all candidate models using leave-one-out
cross-validation (LOO-CV) with Pareto smoothed impor-
tance sampling (PSIS-LOO), which is an out-of-sample es-
timator of predictive model accuracy (Vehtari et al., 2017),
implemented in the R package loo (Vehtari et al., 2019).

Having identified the models with the most informative
predictors, we checked for credible differences across levels
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using the 95 % highest density interval (HDI) of the marginal
posterior distributions of the model parameters. We refer to
regression intercepts and slopes as credible if their posterior
HDIs exclude zero values and to each pair of parameters as
credibly different if 95 % of the distribution of the difference
in posterior estimates is above (or below) zero.

3 Results

We begin by reporting results form the model selection
where we aimed at a compromise between model complex-
ity, predictive accuracy, and data availability. For example,
the generic model (Eq. 5) has the lowest complexity, with
one (K = 1) predictor water depth (thus called “fit1”) and
three groups for the regional model (J = 3). This model has
eight parameters already, i.e. the population-level intercept
(α0), three group-level intercepts (αj ), three group-level co-
efficients for water depth (β1,3), and parameter φ. Candidate
models with more predictors are more complex might fit the
data better but have a higher chance of missing input data at
random. We test the increase in predictive capacity by adding
predictors parsimoniously in light of this constraint.

3.1 Model selection

Judging from the predictive capacity using LOO-CV, we ar-
rived at a number of models worth further inspection. Table 3
shows how predictive accuracy in terms of the ELPD-LOO
changes from the simplest water-depth model to 11 more
complex candidates of the flood-type model (see Supplement
for other model variants). In this step, we consider a model to
be significantly better if the difference in ELPD-LOO > 4.

We find that models hardly improve beyond the complex-
ity of model “fit6” (Table 3). Given that the choice of pre-
dictors may affect other predictors’ contributions, we tested
another set of models starting with the first six predictors but
adding only one of the remaining predictors at a time to eval-
uate if the order of adding predictors mattered (Table 4).

We find that “fit6+11” is the candidate model with the
highest accuracy, though “fit6+7” is comparable (Table 4).
We tested a final set of models with combinations of the
best candidates, i.e. the predictors that showed significant in-
crease among the further model candidates tested, namely
predictors 6 (insured – Ins), 7 (perceived efficacy of PLPMs
– Eff), and 11 (flood experience – Exp), added to the first five
predictors (i.e. water depth, building area, contamination, du-
ration, and property-level precautionary measures (PLPMs)).
Note that fit5+6 equals fit6, but fit5+7 is not equal to fit7. The
results for the flood-type model are shown in Table 5 (for
other model variants, see Fig. 1 or Table S3).

Table 5 shows that two models are significantly better
than “fit6” (fit5+6), i.e. “fit6+11” and “fit6+7+11”. These
two models are indistinguishable from each other in terms
of their predictive accuracy, although model “fit6+11” has

fewer predictors. We obtain similar results for other model
variants (see Supplement): for the regional model, “fit6+7”
is also within the best candidates, while for the flood-event
model adding more predictors hardly improves the predictive
accuracy. In summary, we report that model “fit6+11” offered
the best balance of complexity and performance among the
model candidates considered.

3.2 Model diagnosis

We fit three multilevel models with the selected candidates
(fit “6+11”, i.e. water depth, building area, contamination,
duration, PLPMs, insured, flood experience) in each of the
flood-type, regional, and event models. All three multilevel
models converged (R̂ < 1.004), with effective sample sizes
Neff from 1164 to 1273 (out of 2000 samples). The multi-
level model was trained with 70 % of the dataset that was
drawn through random sampling, maintaining the proportion
of group levels, totalling 1269 data points without missing
data. The remaining 30 % of the data were used for a perfor-
mance check (Table 6).

We also ran posterior predictive checks by comparing the
observed distribution of the loss ratio with the posterior pre-
dictive distribution drawn from the training and the test data
(Fig. 2). The shapes of the posterior predictive distributions
align well with the observed data, indicating that the models
suitably simulate the response variable.

3.3 The roles of flood type, affected region, and flood
event

In this section we show the group-level coefficient estimate
intervals of each model and whether they are credibly differ-
ent for different groups. We report the highest density inter-
val (HDI) of the posterior model weights and compare these
estimates between the groups of each model. The models
use an inverse-logit transformation over the linear regres-
sion (Eq. 5) to transform any real value to the unit inter-
val. For example, a population-level intercept α0 =−2.37
means that, holding all predictors fixed at zero (or their av-
erage), logit−1(−2.37+ 0) = 0.085; hence the estimated av-
erage loss ratio is 8.5 %. Positive (negative) coefficient esti-
mates of each predictor will result in a larger (smaller) loss
ratio from the average on the log-odds scale.

3.3.1 Flood-type model

Figure 3 shows the 95 % HDI of the predictor weights
grouped by flood types (flood-type model) compared to
that of the pooled model. The groups of surface water and
groundwater flooding have fewer data (levee breaches, n=
258; riverine, n= 683; surface water, n= 152; groundwater,
n= 176) and thus more uncertain parameter estimates with
wider HDIs (Fig. 3), although several of these estimates are
credible. Six out of seven predictors, i.e. water depth, con-
tamination, duration, PLPMs, insured, and flood experience,
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Table 3. Comparison of flood-type model candidates of differing complexity and using their expected log pointwise predictive density
(ELPD-LOO), ranked by increasing predictive accuracy, along with differences and their standard errors with reference to model “fit1” (see
Table S1 for all model variants).

Model ELPD-LOO ELPD-LOO Standard error Predictors
difference of difference

fit1 2018.7 0 0 WD
fit2 2057.3 38.6 8.7 WD+BA
fit3 2093.2 74.5 12.5 WD+BA+Con
fit4 2098.1 79.4 12.8 WD+BA+Con+Dur
fit5 2113.4 94.7 13.6 WD+BA+Con+Dur+Pre
fit6 2124.0 105.3 14.1 WD+BA+Con+Dur+Pre+Ins
fit8* 2125.4 106.8 14.5 WD+BA+Con+Dur+Pre+Ins+Eff+Eme
fit10* 2125.9 107.2 14.8 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel+Vel
fit9* 2126.2 107.5 14.8 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel
fit7* 2127.0 108.3 14.5 WD+BA+Con+Dur+Pre+Ins+Eff
fit11 2131.8 113.1 15.1 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel+Vel+Exp
fit12* 2134.3 115.6 15.3 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel+Vel+Exp+BQ

∗ Difference between ELPD-LOO values between two subsequent models is < 4.

Table 4. Comparison of the flood-type model candidates by their difference in ELPD-LOO using the first six predictors plus one predictor at
a time, ranked by increasing predictive accuracy, along with their differences and the standard error of the differences with reference to the
model “fit6” (see Table S2 for all model variants).

Model ELPD-LOO ELPD-LOO Standard error Predictors
difference of difference

fit6+8 2122.3 −1.7 0.5 WD+BA+Con+Dur+Pre+Ins+Eme
fit6+10 2123.2 −0.9 1.4 WD+BA+Con+Dur+Pre+Ins+Vel
fit6 2124.0 0 0 WD+BA+Con+Dur+Pre+Ins
fit6+12 2124.2 0.2 2.0 WD+BA+Con+Dur+Pre+Ins+BQ
fit6+9 2124.4 0.3 2.0 WD+BA+Con+Dur+Pre+Ins+Cel
fit6+7 2127.0 3.0 3.5 WD+BA+Con+Dur+Pre+Ins+Eff
fit6+11∗ 2130.8 6.7 3.9 WD+BA+Con+Dur+Pre+Ins+Exp

∗ Model with relevant improvement compared to others (elpd_diff> 4 and elpd_diff> se_diff).

have at least one pair of flood types with credibly different
estimates. In these cases the 95 % HDI of the differences be-
tween the posterior estimates is above or below zero. Most
estimates are credibly positive or negative, and only a few
estimates of 95 % HDI contain zero.

For example, the standardised group-level intercepts (α0+

αj ) that estimate the loss ratio for average predictor values
are credibly smaller for groundwater floods than for other
flood types. Water depth has a credibly higher weight for
levee breaches; i.e. the effect of each unit increase in wa-
ter depth on the loss ratio is higher for levee breaches, than
for surface water floods (Fig. 3b, Table 7). In most cases, the
differences show a higher effect of levee breaches over other
flood types. The contamination effect of surface water floods
is also credibly higher than of riverine floods, and the effect
of riverine flood duration credibly outweighs that of ground-
water flood duration.

The effects of flood duration (Fig. 3e), the insurance indi-
cator (Fig. 3g), and the flood-experience indicator (Fig. 3h)

remain inconclusive concerning surface water or groundwa-
ter floods. Similarly, flood PLPMs implementation (Fig. 3f)
is an ambiguous predictor of relative loss caused by levee
breach or groundwater floods.

3.3.2 Regional model

Figure 4 shows the 95 % HDI of the regression coefficients
if we group the loss data across various regions of Ger-
many. The group of flood-affected households from western
and northern Germany is the smallest (south, n= 337; east,
n= 865; west and north, n= 67), so the posterior parameter
estimates are less certain and, in most cases, inconclusive for
this part of the country.

Similar to the flood-type model, all estimates are credibly
different from zero for water depth (Fig. 4b). The HDIs of all
predictors overlap; i.e. there are hardly credible difference
across regions under this model. The only estimate that is
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Table 5. Comparison of flood-type model candidates by their difference in ELPD-LOO using combinations of the first five predictors (fit5)
plus predictors 6, 7, and 11, along with their differences and the standard error of the differences with reference to candidate model “fit5+6”
(see Table S3 for all model variants).

Model ELPD-LOO Standard error ELPD-LOO Predictors
difference of difference

fit5+7 −6.2 6.1 2117.8 WD+BA+Con+Dur+Pre+Eff
fit5+11∗ −3.5 6.4 2120.5 WD+BA+Con+Dur+Pre+Exp
fit6∗ 0 0 2124.0 WD+BA+Con+Dur+Pre+Ins
fit5+7+11∗ 0.1 7.4 2124.1 WD+BA+Con+Dur+Pre+Eff+Exp
fit6+7∗ 3.0 3.5 2127.0 WD+BA+Con+Dur+Pre+Ins+Eff
fit6+11 6.7 3.9 2130.8 WD+BA+Con+Dur+Pre+Ins+Exp
fit6+7+11 9.6 5.4 2133.6 WD+BA+Con+Dur+Pre+Ins+Eff+Exp

∗ Models with predictive accuracy that is indistinguishable from that of the reference model fit6.

Figure 1. Comparison of model candidates by their difference in ELPD-LOO using combinations of the first five predictors (fit5) plus
predictors 6, 7, and 11, along with their differences and the standard error of the differences with reference to candidate model “fit6” for each
model variant.

Figure 2. Density plot of observed loss ratio (y) and simulations
drawn from posterior predictive distribution (yrep) over (a) training
(n= 1269) and (b) testing (n= 543) data with flood-type model.

ambiguous in the southern region is that for flood experience
(Fig. 4h).

3.3.3 Event model

Figure 5 shows the 95 % HDI of the posterior regression
weights if grouping the data across individual flood events
indexed by years. The data subsets of flood-affected house-
holds in 2002 and 2013 are largest (2002, n= 571; 2005,
n= 56; 2006, n= 30; 2010, n= 141; 2011, n= 66; 2013,
n= 405); hence their estimates are more certain than those

for other events. Similar to the results of the regional group-
ing, we notice a large overlap of parameter estimates across
individual floods without credible differences.

Estimates of the intercept (Fig. 5a) are highest for 2002
and 2013, whereas the other, lower estimates overlap, except
for 2010 and 2011, which are also distinct from each other
(Table 7). This result underlines that the floods of 2002 and
2013 were more damaging than other events on average.

The 95 % HDI of estimates of water depth (Fig. 5b) for
2002, 2010, and 2013 are credibly higher than for 2005. The
HDI for 2013 is also credibly higher than that for 2011, while
other pairs of estimates overlap (Table 7). The coefficient es-
timates for duration and the PLPMs implementation (Fig. 5e
and f) for 2002 surpass the estimates for 2010, which in turn
are ambiguous. The estimate for the insurance indicator of
2013 exceeds that for 2005, although all 95 % HDIs except
for the one for 2013 contain zero. We note that many param-
eter estimates cover mostly small values; especially flood ex-
perience (Fig. 5h) is an inconclusive predictor in contrast to
the other models (flood-type model or regional model) that
showed credible estimates for at least one group. There is
no clear tendency of estimates increasing or decreasing with
time; on the contrary, there is a large overlap across most
events and predictors.
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Table 6. Performance indicators over mean values of the posterior predictive distribution (median of performance indicators over the full
posterior predictive distribution) and convergence indicators of the three model variants. RMSE: root mean square error; MAE: median
absolute error; R̂: Gelman–Rubin potential scale reduction factor; Neff: effective sample size.

Model Dataset RMSE MAE Highest R̂ Lowest Neff

Flood-type model
Train 0.102 (0.138) 0.046 (0.053)

1.003 1236
Test 0.108 (0.143) 0.044 (0.055)

Regional model
Train 0.104 (0.140) 0.045 (0.054)

1.004 1273
Test 0.110 (0.145) 0.045 (0.056)

Event model
Train 0.103 (0.139) 0.045 (0.053)

1.004 1164
Test 0.111 (0.144) 0.043 (0.055)

Table 7. Credibly different pairs of estimates with 95 % probability.

Comparison Predictor Median of Per cent above 0
differences

Levee breach–groundwater Intercept 0.323 99.4 %
Riverine–groundwater Intercept 0.212 98.6 %
Surface–groundwater Intercept 0.210 96.7 %
Levee breach–surface Water depth 0.155 98.4 %
Riverine–surface Contamination −0.167 1.6 %
Riverine–groundwater Duration 0.114 95.2 %
Levee breach–riverine PLPMs implementation 0.162 99.0 %
Levee breach–surface PLPMs implementation 0.207 98.6 %
Levee breach–riverine Insured 0.107 96.7 %
Levee breach–surface Insured 0.213 99.6 %
Levee breach–groundwater Insured 0.186 98.9 %
Levee breach–surface Flood experience −0.228 0.6 %
Levee breach–groundwater Flood experience −0.195 1.9 %
2002–2005 Intercept 0.521 100.0 %
2002–2006 Intercept 0.448 98.7 %
2002–2010 Intercept 0.261 99.6 %
2002–2011 Intercept 0.612 99.9 %
2005–2013 Intercept −0.517 0.2 %
2006–2013 Intercept −0.447 1.2 %
2010–2011 Intercept 0.346 95.2 %∗

2010–2013 Intercept −0.259 0.7 %
2011–2013 Intercept −0.609 0.1 %
2002–2005 Water depth 0.343 99.5 %
2005–2010 Water depth −0.369 0.7 %
2005–2013 Water depth −0.394 0.2 %
2011–2013 Water depth −0.259 3.1 %∗

2002–2010 Duration 0.175 98.7 %
2002–2010 PLPMs implementation −0.179 1.8 %
2005–2013 Insured −0.157 4.5 %∗

∗ Although the one-sided hypothesis is satisfied, with 95 % of the posterior distribution being above or below zero, the
95 % HDI of the distribution of the differences contains zero.

4 Discussion

We trained three variants of a Bayesian multilevel model to
test whether flood type, regions within Germany, or flood
events make a case for differing predictor influences on flood
loss concerning these groups. The models help us to iden-

tify the factors most relevant for flood loss estimation and to
assess whether there are credible differences between these
contributions to the estimated loss ratio. In other words, the
models show how considering these groups is a useful step
towards improved model transferability.
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Figure 3. The 95 % HDI of regression estimates of the flood-type model (across four flood types; coloured segments) and the single-level
model (black segments). The intercept is the sum of the population-level effect (common across levels) and group-level effects (for each
flood type).

After comparing the predictive-accuracy estimates of
models with different sets of predictors, we selected the
model “fit6+11” that uses water depth, building area, con-
tamination, duration, PLPMs, insurance, and previous flood
experience as predictors. Considering that we aim to explore
the role of predictors in estimating flood losses rather than
find the best fit model, chain convergence and posterior pre-
dictive checks are a necessary step before interpreting the fit-
ted model (Gabry et al., 2019; Gelman et al., 2020). The three
model variants trained with 1269 data points and, sampled
with four chains each, converged well, with Gelman–Rubin
scales below 1.004 (ideal values are < 1.01) and effective
sample size ratios above 0.58 (ideal values are> 0.5). Visual
assessment of the predictive posterior density plot is an im-
portant step to check whether the model generates data simi-
lar to the observed data. Figure 2 shows that the model repli-
cates the data distribution well, and visual inspection con-
firmed only unimodal estimates.

Our results show that, for most cases across regions or
across flood events, the posterior regression weights are
hardly different. Therefore, distinguishing groups, at least
in the form implemented here, adds little information over

a pooled model taking into account all of the data. Out of
the training dataset of 1269 data points, the groups con-
tained much smaller (< 200 to < 50) samples, thus giving
rise to higher uncertainties regardless of the shrinkage of co-
efficient estimates in a Bayesian multilevel model towards
the pooled means. Credible differences across estimates are
found mostly if considering flood types, and this grouping
also involves more balanced subsets. The estimated coeffi-
cients for loss ratio modelling across flood events and regions
are mostly inconclusive. However, especially in western and
northern Germany, the 2005, the 2006, or the 2011 flood
events return many inconclusive parameter weights, likely
owing to the much fewer data points. Leaving these very
uncertain estimates aside, we can observe several instructive
patterns.

We note that the higher the water depth, the contamina-
tion of the floodwater, or the duration a building is inun-
dated, the higher the loss ratio, assuming all other predictors
are fixed. This is a simple expectation (Kellermann et al.,
2020) being confirmed, also showing that these predictors
add information to the model (see Figs. 3, 4, 5b and e). Next,
the larger the building, the lower the relative damage. This
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Figure 4. The 95 % HDI of regression estimates of the regional model (across three regions; coloured segments) and the single-level model
(black segments). The intercept is the sum of the population-level effect (common across levels) and group-level effects (for each region).

is also reasonable since larger buildings, which mostly have
more floors, would experience lower relative damage with
all else kept constant (Thieken et al., 2005). We also find
that the more recently a household experienced a flood, the
lower the relative damage. People who experienced more re-
cent floods (scored higher in the flood-experience indicator),
on average, appear to be better acquainted with how to act
before and during a flood, thus reducing its risks and direct
impacts. The indicator of whether the household had insur-
ance has mostly positive weights, although often also ones
that are ambiguous. This result is in agreement with previous
studies showing an unclear effect of insurance coverage on
loss reduction (Surminski and Thieken, 2017). Finally, the
indicator of PLPMs implementation also has a mostly nega-
tive weight on predicting the loss ratio. This may mean that
the more PLPMs implemented, the lower the relative dam-
age, as shown by Kreibich et al. (2005) and Hudson et al.
(2014). However, this indicator encompasses several mea-
sures so that the damage-reducing effect of each such mea-
sure in different flood situations is intractable. Hence, this
result only shows a general tendency that PLPMs reduce rel-
ative damage, but to a highly varied degree that deserves fur-
ther research.

Although previous work has indicated more intense flood
events in eastern than in southern Germany, except for the
2005 flood (Schröter et al., 2015), we found no credibly dif-
ferent estimates in our regional model (Fig. 4). It is likely that
different precautionary strategies of residents matter here as
more people in the east have relied on insurance (Thieken,
2018), although the effect of having insurance on flood losses
remains unclear; the effect of PLPMs also overlaps across es-
timates for southern and eastern Germany.

Despite the large overlap across estimates of the flood-
event model, we find that the estimates for 2002, 2010, and
2013 for water depth and contamination are larger and more
credible, reflecting also larger average losses reported by the
households (Table S4). Although the 2006 subsample had
a large average flood duration (Table S4), it still returns a
highly uncertain coefficient estimate. The severe Central Eu-
ropean flood of August 2002 in Germany mainly affected the
rivers Danube and Elbe, and only a few households had im-
plemented PLPMs or had previous flood experience (Thieken
et al., 2007); this situation changed for later floods (Kienzler
et al., 2015). Consequently, the implemented PLPMs made a
larger difference for the flood of 2002 (the only credible es-
timate), whilst the role of previous flood experience remains
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Figure 5. The 95 % HDI of regression estimates of the flood-event model (each event coded by colour) and the single-level model (black
bars). The intercept is the sum of the population-level effect (common across levels) and group-level effects (for each event).

ambiguous in the models. In contrast, as insurance coverage
increased over time, only the 2013 estimate was credibly pos-
itive; having insurance seems to be linked to a higher loss ra-
tio. This finding that insurance has a positive effect – though
only for the later event – may indicate either that moral haz-
ard has increased (i.e. insured people declare more damage)
or that more people in risk-prone areas have purchased in-
surance coverage against flooding. The latter would indicate
that risk communication was partly successful. To confirm
this, however, not only would the increase in insurance up-
take need to be checked, but it would also need to be crossed
with flood risk zones. This is a task for future work.

We emphasise that each event and each region of Germany
contained mixed flood types (or pathways). For most predic-
tors, the factors’ effects are much clearer across flood types.
This reinforces the notion that their importance varies across
flood types. Given that mixed flood types were reported in all
regions and years in our dataset, this might be the reason the
predictor effects are also less certain and overlapping across
regions and years.

It is plausible that the effects of some variables are influ-
enced by others, whether included or ignored in our initial
set. Only a few studies have so far directly compared the ef-

fect of predictors of flood loss ratio across groups in the data,
such as flood types, events, or places. Two of them, i.e. Vogel
et al. (2018) and Sairam et al. (2019), used a similar dataset.
Although these studies adopted different model structures,
we compare our results below.

Sairam et al. (2019) trained and compared hierarchical
Bayesian models for flood loss estimation as we did here,
but they considered only water depth to be a single predic-
tor. Sairam et al. (2019) tested as grouping variables the river
basins, the event years, and a combination of both and con-
cluded that the latter had the best predictive accuracy. This
approach, however, masks the weight of effects across areas
or events as both effects are bundled. Despite the differences
in the grouping, similarly, Sairam et al. (2019) found signifi-
cant differences between regression slopes but not across in-
tercepts, reinforcing the idea that using flood type as a group-
ing variable seems to be more relevant compared to flood
event or region.

Vogel et al. (2018) trained Markov blankets (MBs) for es-
timating the flood loss ratio for different flood types and dif-
ferent events separately. MBs are the smallest components
of Bayesian networks (BNs) and contain all variables that
are relevant, out of the originally chosen, for predicting the

Nat. Hazards Earth Syst. Sci., 21, 1599–1614, 2021 https://doi.org/10.5194/nhess-21-1599-2021



G. S. Mohor et al.: Residential flood loss estimated from Bayesian multilevel models 1611

targeted variable (Vogel et al., 2018). Therefore, we cannot
compare estimates but only the predictor set selection. We
selected the predictors across all levels, which makes a direct
comparison difficult, trained independently. Still, we observe
some similarities between ours and the results by Vogel et al.
(2018). For example, Vogel et al. (2018) showed that pre-
vious flood experience and flood duration are both relevant
for households affected by levee breaches, whereas building
size, which is correlated to building area, is relevant for river-
ine floods. For the MBs trained for each flood event, Vogel
et al. (2018) found water depth to be a common predictor
for all events, except for the flood of 2011, which comprises
one of the smallest subsamples, in which previous flood ex-
perience was the only predictor selected, in contrast to our
findings. Our very uncertain estimates across event years for
this predictor suggests it may be biased and deserve more at-
tention before dismissing all estimates with HDI containing
zero. More data should be collected, or predictors could be
represented differently, for example as a monotonic effect.

Data availability, especially regarding preparedness indi-
cators, is a possible limitation to transferring flood loss mod-
els and their use for ex ante loss estimation. While these in-
dicators have been deemed relevant for loss prediction, they
are rarely collected and are often unavailable in a suitable
form. An alternative is to use proxy data, for example the
aggregated insurance coverage for Germany monitored by
the German Insurance Association (GDV, 2018) as a proxy
for household insurance; a good flood-event database could
be a rough estimate of flood experience for a specific re-
gion, or the precautionary behaviour of flood-affected res-
idents (Bubeck et al., 2020) could be used as a prior es-
timate of PLPMs implementation. Nonetheless, the role of
data availability is directly captured in our models in terms
of (un)certainty of posterior parameter estimates. Bayesian
models excel in situations where data are limited but also ex-
press the associated uncertainties.

When addressing transferability, we seek models that can
generalise well and go beyond local or case-specific data.
Wagenaar et al. (2018) trained two flood loss models using
data from two different countries (Germany and the Nether-
lands) and tested how well each model could predict losses in
the other country. They found that the number of flood events
in the data was more important than simply the number of re-
ported flood loss cases. Although we trained our models with
data from a single country, the data used by Wagenaar et al.
(2018) for Germany comprise 6 event years across 12 fed-
eral states, 4 river basins (Danube, Rhine, Elbe, and Weser),
and 4 flood types. We expanded on this approach by train-
ing models on data from different flood-event years, different
flood types, and different regions, thus allowing for a broad
range of environmental, administrative, and socioeconomic
conditions (representing at least Central Europe) that we treat
explicitly as grouping levels in our analysis. We argue that
exploring these model variants provides more clarity about
whether we should use simple average models or more spe-

cific multilevel models to be able to transfer predicted loss
estimates to new regions, flood types, or other structures in
the data.

5 Conclusions

Previous studies have indicated that the major damaging pro-
cesses during floods may differ by flood type, event, and
affected region. To better understand these differences and
improve the transferability of flood loss models, we trained
and tested Bayesian multilevel models for estimating relative
flood losses of residential buildings.

Our model selection identified seven predictors addressing
the flood magnitude (water depth, contamination, and dura-
tion), the building size (building area), and preparedness of
the household (previous experience, insurance, and an indi-
cator of implemented PLPMs). For at least one group, all
predictors show credible posterior estimates of 95 % HDI.
This result confirms that all these predictors can aid flood
loss ratio estimation and reinforces the need to collect data
after new flood events. This repeated updating is at the core
of Bayesian models, which can also handle missing data and
account for uncertainty intrinsically and are effectively find-
ing a compromise between existing models and new data. We
argue that this strategy might pave one way for transferring
flood loss models more widely.

Credibly different estimates were found for six out of
seven predictors across flood type, region, and event year,
namely water depth, contamination, duration, implementa-
tion of property-level precautionary measures, insurance, and
previous flood experience. The Bayesian multilevel model
grouped by flood type is the most informative of these three
model variants, featuring the most pronounced differences in
the contributions of each predictor. Despite credible differ-
ences between different flood events, the large uncertainties
in the posterior estimates of the regional and the event mod-
els likely indicate that several flood types may have mixed
during a single flood event or region, thus making it diffi-
cult to disentangle individual controls better. In any case, the
dataset is hardly conducive to fully revealing the underlying
physical controls on flood losses.

Our results encourage using pooled data on flood events
and regions and thus mark some transferability in this re-
gard, judging from the minute differences in the posterior
regression weights. The data indicate, however, that flood
loss modelling should consider different flood types explic-
itly. We acknowledge that other groups in the data or a dif-
ferent set of predictors could improve predictions further but
recommend strategies that make use of previous knowledge
as much as possible. We conclude by reporting that grouping
models by flood type adds information and transferability to
flood loss estimation and encourage more research in this di-
rection.
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