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Identifying the entirety of gene regulatory interactions in a biological system
offers the possibility to determine the key molecular factors that affect im-
portant traits on the level of cells, tissues, and whole organisms. Despite the
development of experimental approaches and technologies for identification
of direct binding of transcription factors (TFs) to promoter regions of down-
stream target genes, computational approaches that utilize large compendia of
transcriptomics data are still the predominant methods used to predict direct
downstream targets of TFs, and thus reconstruct genome-wide gene-regulatory
networks (GRNs). These approaches can broadly be categorized into unsuper-
vised and supervised, based on whether data about known, experimentally ver-
ified gene-regulatory interactions are used in the process of reconstructing the
underlying GRN. Here, we first describe the generic steps of supervised ap-
proaches for GRN reconstruction, since they have been recently shown to result
in improved accuracy of the resulting networks? We also illustrate how they can
be used with data from model organisms to obtain more accurate prediction of
gene regulatory interactions. © 2020 The Authors.

Basic Protocol 1: Construction of features used in supervised learning of gene
regulatory interactions
Basic Protocol 2: Learning the non-interacting TF-gene pairs
Basic Protocol 3: Learning a classifier for gene regulatory interactions
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INTRODUCTION

A genome-wide gene regulatory network (GRN) consists of all transcription factor (TF)–
target gene interactions that take place in a biological system. Variation in responsiveness
of a target gene to a TF, due to genetic variation, change in the environment, or a combi-
nation thereof, can affect target-gene expression. Therefore, computational predictions of
TF–target gene interactions based on gene expression (i.e., transcriptomics) data are well
established and widely used in modern systems biology (Haury, Mordelet, Vera-Licona,
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Figure 1 Unsupervised versus supervised approaches for construction of gene regulatory networks (GRNs).
The figure represents the two categories of approaches for the reconstruction of GRNs based on transcriptomics
data: unsupervised and supervised methods. Both exploit transcriptomics data, but supervised methods also
need a set of prior known regulatory interactions.

& Vert, 2012; Huynh-Thu, Irrthum, Wehenkel, & Geurts, 2009; Marbach et al., 2012;
Margolin et al., 2006; Meyer, Kontos, Lafitte, & Bontempi, 2007; Mordelet & Vert 2008;
Petralia, Wang, Yang, & Tu, 2015).

The existing approaches for reconstruction of gene regulatory interactions based on tran-
scriptomics data can be grouped into two categories, i.e., unsupervised and supervised
(Maetschke, Madhamshettiwar, Davis, & Ragan, 2014). Unsupervised approaches are
most prominently used due to the relatively simple formulation—they rely on appli-
cation of statistical approaches that make use of the transcriptomics data and thresh-
olding techniques (Omranian, Eloundou-Mbebi, Mueller-Roeber, & Nikoloski, 2016),
without consideration of the accumulated knowledge on experimentally verified gene
regulatory interactions (Fig. 1). In contrast, supervised approaches use knowledge of
known gene regulatory interactions, in addition to transcriptomics profiles, to predict
new gene regulatory interactions. A comprehensive comparative study with synthetic
and experimentally obtained transcriptomics data sets has indicated the superiority of
supervised over unsupervised approaches for GRN reconstruction (Maetschke et al.,
2014).

The supervised approaches are based on the idea that if one TF is known to regulate a
gene, then all TF-gene pairs with similar features are likely to interact as well. There-
fore, supervised approaches necessitate that the expression data profiles for a TF-gene
pair be first transformed into feature vectors and then used as input to a supervised learn-
ing method. The learning method consists of training a classifier, which is employed to
identify whether or not a pair of genes is involved in a regulatory interaction based on the
employed features. The key challenges of supervised learning of GRNs are the construc-
tion of features used in the learning process, as well as the availability of information
that a TF does not have a particular gene as a target, which cannot be readily verified
experimentally.Razaghi-
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Supervised learning approaches for GRN reconstruction can be further grouped into lo-
cal and global (Vert, 2010). In local approaches, a classifier is built to discriminate the
target of each TF separately. In contrast, global approaches use all TF-target gene pairs to
learn a classifier for gene regulatory interactions. The global approaches are better suited
for practical applications, since the learned classifier can be used on any TF-gene pair
and does not require considerable knowledge of gene regulatory interactions for each
TF.

The existing supervised approach for GRN reconstruction, called SIRENE, is local—
it builds a binary classifier based on a support vector machine (SVM) which, for each
TF, distinguishes target from non-target genes (Mordelet & Vert, 2008). SIRENE over-
comes the absence of knowledge that a TF does not directly interact with a given
gene roughly, by randomly selecting such pairs. In the following protocols, we de-
scribe an improved approach for generation of non-interacting TF-gene pairs that can
be used in conjunction with expression-based SVM to improve the prediction accu-
racy of gene regulatory interactions (Razaghi-Moghadam and Nikoloski, submitted).
The code for the following protocols is available at https://github.com/MonaRazaghi/
GRADIS/ .

BASIC
PROTOCOL 1

CONSTRUCTION OF FEATURES USED IN SUPERVISED LEARNING OF
GENE REGULATORY INTERACTIONS

Supervised learning of gene regulatory interactions is based on features of the TF-
gene pair to be classified. To this end, gene-expression profiles provide a plethora
of data based on features that can be extracted. A trivial set of features can be ob-
tained by concatenating the gene-expression profiles of the TF and gene in a given
pair (Ni et al., 2016). However, such a representation does not consider the relation-
ship between the expression of the putative target and TF in a given experiment. Here,
we provide the means to extract transcriptomics features representative for a TF-gene
pair.

Materials

Expression of genes monitored over different developmental and environmental
conditions (perturbation experiments) or over time (time-resolved experiments).
Gene-expression values are usually represented in a table, Expn×p, where n
denotes the number of genes, p stands for the number of experiments (e.g.,
conditions or time points), and the entity Expi,j, denotes the expression level of
gene i in experiment j.

1. Scale the expression profiles of TFs and genes by their respective maximum expres-
sion values (Fig. 2).

The scaled expression values provide the coordinates for a point representation of a TF-
gene pair in each experiment.

The following code snippet scales the expression profile of Exp (Equation 1):

rowmax = max(Exp (:, :) , [ ], 2);
Expscaled = (Exp (:, :)) ./rowmax;

Equation 1

2. Determine the Euclidean distance between every two experiments based on the point
representation (Fig. 2).

The result is represented by a symmetric p × p matrix for every TF-gene pair.

3. Obtain the features of the TF-gene pair by the vectorized form of the resulting
Euclidean distance matrix obtained from step 2 (Fig. 2).
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Figure 2 Steps of Basic Protocol 1. An example of expression profiles (A) of a transcription factor (TF) and
a gene (G) over four samples that are scaled by the respective maximum expression in the second step (B).
The scaled expression profiles for a pair of TF-genes are represented in the unit square (C), and in the second
step the Euclidean distance for each pair of experiments is determined based on the point representation. The
feature (D) for the TF-gene pairs is obtained in the third step by vectorizing the upper triangular matrix (excluding
the diagonal as non-informative).

Every TF-gene pair is presented by p(p −1)/2 features.

p(p − 1)

2
Equation 2

Steps 2 and 3 of Basic Protocol 1 are implemented in lines 98-146 of the code (https:
//github.com/MonaRazaghi/GRADIS/blob/master/GRADIS_neg.m). These lines deter-
mine the Euclidean distance for each TF-gene pair, and vectorize it to form the feature
vector.

The number of features can be reduced by selection of representative experiments. This can be
achieved by clustering the experiments and selecting the cluster representatives as those that
are used in the feature extraction presented above.
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BASIC
PROTOCOL 2

LEARNING THE NON-INTERACTING TF-GENE PAIRS

Training a binary classifier requires access to two types of instances, called positive and
negative, which in our case correspond to presence or absence of gene regulatory inter-
actions for a given pair of TF and gene. Typically, there is little information available
about the absence of gene regulatory interactions between TFs and target genes in real-
world datasets. Hence, it is not straightforward to train a classifier, due to the lack of
negative instances. We describe a detailed procedure for composing a list of negative in-
stances given knowledge about positive instances, i.e., TF-target gene pairs along with
their expression levels.

Materials

Hardware

The approach can be executed on any computer (e.g., i7 processor and 16 GB RAM)
with Windows 7 operating system

Software

The only software needed to run the code is Matlab R2017b

Data

Expression-based features for TF-gene pairs based on the Basic Protocol 1
A list of pairs of interacting TFs and their target genes. These pairs are referred to

as positive instances and are obtained from experimentally verified interactions
with different technologies.
Positive instance can be obtained from different databases: for instance,

DREAM5 challenge (Marbach et al., 2012), RegulonDB (Gama-Castro et al.,
2016), Yeastract (Teixeira et al., 2018), and AGRIS (Yilmaz et al., 2011).

If TF-target gene interactions are not verified in the organism of interest,
consider transfer of interactions according to homology from model
organisms.

1. Form the class of positive instances of the training data by collecting the available
experimentally verified TF-gene interactions.

2. Consider the remaining TF-gene pairs as uncharacterized, and divide them into sub-
sets of size (almost) equal to that of the positive class (in step 1). Assume that there
are k such subsets.

3. Treat one of these subsets, i, 1 ≤ i ≤ k, as a negative class and use it together with the
positive class to train an SVM specific to subset i.

4. Treat the uncharacterized TF-gene pairs in all but the i-th subset as test data and assess
them by the built SVM classifier.

5. Aggregate the individual classifiers for each of the k subsets to form the set of negative
instances.

For a given uncharacterized TF-gene pair, the aggregation amounts to counting the number
of classifiers that classify the pair as positive. A lower count would correspond to a higher
likelihood that the TF-gene pair is negative. The class of negative instances is composed
of those TF-gene pairs whose count is zero.

The implementation for Basic Protocol 2 can be found in the lines 151-189 of the
code (https://github.com/MonaRazaghi/GRADIS/blob/master/GRADIS_neg.m).

The number of negative instances found with this approach is considerably higher than the
number of positive ones, resulting in an unbalanced learning problem, to be considered in
Basic Protocol 3.
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BASIC
PROTOCOL 3

LEARNING A CLASSIFIER FOR GENE REGULATORY INTERACTIONS

Having obtained a labeled training set associated with the feature vectors (see Basic
Protocol 1, above), an SVM can be trained to find an optimal hyperplane that separates
the two classes. The training set consists of m TF-gene pairs p1, p2, …, pm, each of which
belong to either of the two positive and negative classes, respectively denoted by +1 and
−1. Following Basic Protocol 2, the negative class of TF-gene pairs is considerably big-
ger than the positive. Here we describe a protocol for overcoming this challenge.

Materials

Expression-based features for TF-gene pairs (see Basic Protocol 1)
Positive and negative classes of TF-gene pairs: the negative class is obtained based

on Basic Protocol 2

1. Form the class of positive instances of the training data by collecting the available
experimentally verified TF-gene interactions.

2. Form a class of negative instances of the same size as the class of positive instances
by randomly sampling from the negative class instances provided.

3. Train an SVM with the features and classes from steps 1 and 2.

4. Predict the class of the uncharacterized TF-gene pairs based on the SVM.

The implementation for Basic Protocol 3 can be found in lines 191-217 of the code
(https://github.com/MonaRazaghi/GRADIS/blob/master/GRADIS_neg.m).

Average performance and confidence intervals can be obtained by performing several sam-
plings in step 2, above. We recommend performing at least 10 random samplings of nega-
tive instances.

COMMENTARY

Background Information
The class prediction is done by the SVM

based on a scoring function of the form:

f (p) =
m∑

i=1

αiK (pi, p)

Equation 3

with αi denoting the Lagrange multipliers
which are optimized by SVM to enforce large
positive scores for gene pairs in the +1 class
and large negative scores for pairs in the −1
class in the training set. The kernel function
K(pi, p) is a basic component of the SVM
that provides an implicit mapping of features
into a high-dimensional space in which the
optimal hyperplane can be obtained. Several
kernel functions can be used, including: Gaus-
sian (RBF) kernel, radial kernel, or polyno-
mial kernel (Cortes & Vapnik, 1995). The
provided implementation https://github.com/
MonaRazaghi/GRADIS/ is based on the RBF
kernel.

Critical Parameters
The number of experiments for which data

are available affect the number of features
used. The number of representative experi-

ments should therefore be chosen so as to re-
duce the redundant information.

Troubleshooting
If positive-class TF-gene pairs are not

available in sufficient number, the learned
classifier may be either underfitted or overfit-
ted. We recommend inspection of the learning
curves for the respective classifiers.

Anticipated Results
The results of the protocol include:

Set of features representing TF-gene
pairs

Set of negative class TF-gene pairs that
are likely not involved in a regulat-
ory interaction

Predictions for uncharacterized
TF-gene pairs based on whether or
not they are involved in a regulatory
interaction.

Time Considerations
A timeline depends on the number of TFs

and genes in the data set. For a data set that
includes 141 TFs and 999 genes (as is the case
in Escherichia coli) and the hardware speci-
fied in the Basic Protocol 1, the timeline is:
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The generation of the features takes
approximately 3 min

The generation of the negative class
instances takes approximately 6 hr

The generation of the final SVM take
approximately 3 min, while the
classification of the uncharacterized
TF-gene pairs requires 2 min of
computation.
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