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Abstract
While patients are known to respond differently to drug therapies, current clinical practice
often still follows a standardized dosage regimen for all patients. For drugs with a narrow
range of both effective and safe concentrations, this approach may lead to a high incidence
of adverse events or subtherapeutic dosing in the presence of high patient variability. Model-
informed precision dosing (MIPD) is a quantitative approach towards dose individualization
based on mathematical modeling of dose-response relationships integrating therapeutic
drug/biomarker monitoring (TDM) data. MIPD may considerably improve the efficacy
and safety of many drug therapies. Current MIPD approaches, however, rely either on
pre-calculated dosing tables or on simple point predictions of the therapy outcome. These
approaches lack a quantification of uncertainties and the ability to account for effects that
are delayed. In addition, the underlying models are not improved while applied to patient
data. Therefore, current approaches are not well suited for informed clinical decision-making
based on a differentiated understanding of the individually predicted therapy outcome.

The objective of this thesis is to develop mathematical approaches for MIPD, which
(i) provide efficient fully Bayesian forecasting of the individual therapy outcome including
associated uncertainties, (ii) integrate Markov decision processes via reinforcement learning
(RL) for a comprehensive decision framework for dose individualization, (iii) allow for
continuous learning across patients and hospitals. Cytotoxic anticancer chemotherapy with
its major dose-limiting toxicity, neutropenia, serves as a therapeutically relevant application
example.

For more comprehensive therapy forecasting, we apply Bayesian data assimilation (DA)
approaches, integrating patient-specific TDM data into mathematical models of chemother-
apy-induced neutropenia that build on prior population analyses. The value of uncertainty
quantification is demonstrated as it allows reliable computation of the patient-specific
probabilities of relevant clinical quantities, e.g., the neutropenia grade. In view of novel home
monitoring devices that increase the amount of TDM data available, the data processing of
sequential DA methods proves to be more efficient and facilitates handling of the variability
between dosing events.

By transferring concepts from DA and RL we develop novel approaches for MIPD. While
DA-guided dosing integrates individualized uncertainties into dose selection, RL-guided
dosing provides a framework to consider delayed effects of dose selections. The combined
DA-RL approach takes into account both aspects simultaneously and thus represents a holistic
approach towards MIPD. Additionally, we show that RL can be used to gain insights into
important patient characteristics for dose selection. The novel dosing strategies substantially
reduce the occurrence of both subtherapeutic and life-threatening neutropenia grades in a
simulation study based on a recent clinical study (CEPAC-TDM trial) compared to currently
used MIPD approaches.

If MIPD is to be implemented in routine clinical practice, a certain model bias with
respect to the underlying model is inevitable, as the models are typically based on data from
comparably small clinical trials that reflect only to a limited extent the diversity in real-world
patient populations. We propose a sequential hierarchical Bayesian inference framework
that enables continuous cross-patient learning to learn the underlying model parameters
of the target patient population. It is important to note that the approach only requires
summary information of the individual patient data to update the model. This separation of
the individual inference from population inference enables implementation across different
centers of care.

The proposed approaches substantially improve current MIPD approaches, taking into
account new trends in health care and aspects of practical applicability. They enable progress
towards more informed clinical decision-making, ultimately increasing patient benefits beyond
the current practice.





Zusammenfassung
Obwohl Patienten sehr unterschiedlich auf medikamentöse Therapien ansprechen, werden
in der klinischen Praxis häufig noch standardisierte Dosierungsschemata angewendet. Bei
Arzneimitteln mit engen therapeutischen Fenstern zwischen minimal wirksamen und tox-
ischen Konzentrationen kann dieser Ansatz bei hoher interindividueller Variabilität zu
häufigem Auftreten von Toxizitäten oder subtherapeutischen Konzentrationen führen. Die
modellinformierte Präzisionsdosierung (MIPD) ist ein quantitativer Ansatz zur Dosisindi-
vidualisierung, der auf der mathematischen Modellierung von Dosis-Wirkungs-Beziehungen
beruht und Daten aus dem therapeutischen Drug/Biomarker-Monitoring (TDM) einbezieht.
Die derzeitigen MIPD-Ansätze verwenden entweder Dosierungstabellen oder einfache Punkt-
Vorhersagen des Therapieverlaufs. Diesen Ansätzen fehlt eine Quantifizierung der Unsicher-
heiten, verzögerte Effekte werden nicht berücksichtigt und die zugrunde liegenden Modelle
werden im Laufe der Anwendung nicht verbessert. Daher sind die derzeitigen Ansätze nicht
ideal für eine fundierte klinische Entscheidungsfindung auf Grundlage eines differenzierten
Verständnisses des individuell vorhergesagten Therapieverlaufs.

Das Ziel dieser Arbeit ist es, mathematische Ansätze für das MIPD zu entwickeln,
die (i) eine effiziente, vollständig Bayes’sche Vorhersage des individuellen Therapieverlaufs
einschließlich der damit verbundenen Unsicherheiten ermöglichen, (ii) Markov-Entscheidungs-
prozesse mittels Reinforcement Learning (RL) in einen umfassenden Entscheidungsrahmen
zur Dosisindividualisierung integrieren, und (iii) ein kontinuierliches Lernen zwischen Patien-
ten erlauben. Die antineoplastische Chemotherapie mit ihrer wichtigen dosislimitierenden
Toxizität, der Neutropenie, dient als therapeutisch relevantes Anwendungsbeispiel.

Für eine umfassendere Therapievorhersage wenden wir Bayes’sche Datenassimilationsan-
sätze (DA) an, um TDM-Daten in mathematische Modelle der Chemotherapie-induzierten
Neutropenie zu integrieren. Wir zeigen, dass die Quantifizierung von Unsicherheiten einen
großen Mehrwert bietet, da sie eine zuverlässige Berechnung der Wahrscheinlichkeiten re-
levanter klinischer Größen, z.B. des Neutropeniegrades, ermöglicht. Im Hinblick auf neue
Home-Monitoring-Geräte, die die Anzahl der verfügbaren TDM-Daten erhöhen, erweisen sich
sequenzielle DA-Methoden als effizienter und erleichtern den Umgang mit der Unsicherheit
zwischen Dosierungsereignissen.

Basierend auf Konzepten aus DA und RL, entwickeln wir neue Ansätze für MIPD.
Während die DA-geleitete Dosierung individualisierte Unsicherheiten in die Dosisauswahl
integriert, berücksichtigt die RL-geleitete Dosierung verzögerte Effekte der Dosisauswahl. Der
kombinierte DA-RL-Ansatz vereint beide Aspekte und stellt somit einen ganzheitlichen Ansatz
für MIPD dar. Zusätzlich zeigen wir, dass RL Informationen über die für die Dosisauswahl
relevanten Patientencharakteristika liefert. Der Vergleich zu derzeit verwendeten MIPD
Ansätzen in einer auf einer klinischen Studie (CEPAC-TDM-Studie) basierenden Simulations-
studie zeigt, dass die entwickelten Dosierungsstrategien das Auftreten subtherapeutischer
Konzentrationen sowie lebensbedrohlicher Neutropenien drastisch reduzieren.

Wird MIPD in der klinischen Routine eingesetzt, ist eine gewisse Modellverzerrung
unvermeidlich. Die Modelle basieren in der Regel auf Daten aus vergleichsweise kleinen
klinischen Studien, die die Heterogenität realer Patientenpopulationen nur begrenzt wider-
spiegeln. Wir schlagen einen sequenziellen hierarchischen Bayes’schen Inferenzrahmen vor,
der ein kontinuierliches patientenübergreifendes Lernen ermöglicht, um die zugrunde liegen-
den Modellparameter der Ziel-Patientenpopulation zu erlernen. Zur Aktualisierung des
Modells erfordert dieser Ansatz lediglich zusammenfassende Informationen der individuellen
Patientendaten, was eine Umsetzung über verschiedene Versorgungszentren hinweg erlaubt.

Die vorgeschlagenen Ansätze verbessern die derzeitigen MIPD-Ansätze erheblich, wobei
neue Trends in der Gesundheitsversorgung und Aspekte der praktischen Anwendbarkeit
berücksichtigt werden. Damit stellen sie einen Fortschritt in Richtung einer fundierteren
klinischen Entscheidungsfindung dar.
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1
Introduction

It is well-known that individuals differ considerably in their capacity to absorb, metabolize,
and eliminate drugs, which may lead to highly heterogeneous therapy outcomes [1, 2, 3].
Possible sources for this variability include genetic variations, environmental factors, age, and
disease characteristics [4, 5]. Yet, the prevailing approach towards drug therapy regimens
remains focused on an optimal uniform dosing that balances efficacy and safety across the
entire patient population [6]. Accordingly, drug labels only provide very simplified dose
recommendations that rarely take more than one patient characteristic into account [7]. In
particular for drugs that exhibit narrow therapeutic ranges in relation to the variability
between patients, this approach may lead to serious adverse events in some patients and
to subtherapeutic exposure in others. Tailoring the dosing to each individual patient by
balancing the patient-specific efficacy and safety bears, therefore, huge potential to improve
overall drug treatment outcomes beyond the current practice [8].

One challenging example in which inadequate dosing may lead to serious patient outcomes
is cytotoxic anticancer chemotherapy due to its associated severe toxicities [6]. It is common
practice to adapt dosing of anticancer drugs to the patient’s body surface area (BSA) including
toxicity-related dose reductions [2]. Nevertheless, it has been observed that BSA-based dosing
still leads to suboptimal and highly variable drug exposure, resulting in high variability of
clinical outcomes with substantial occurrence of severe toxicities as well as unrecognized
underdosing [1, 3, 9, 10, 11, 12]. Over the years, various patient factors and clinical markers
(biomarkers) have been identified that are linked to the occurrence of severe side effects or
to the overall therapy outcome (e.g., overall or progression-free survival) [10, 13, 14]. These
established relationships provide a scientific rationale for dose adaptations by defining a
well-informed target drug/biomarker concentration range (therapeutic window) for which a
therapeutic effect is expected with minimal occurrence of toxicities [7]. To increase patient
benefits, more elaborate approaches for dosing anticancer drugs are needed that reduce
toxicities without compromising efficacy by integrating relevant patient information [6].

Model-informed precision dosing (MIPD) is a quantitative approach towards dose indi-
vidualization, based on mathematical modeling and simulation integrating multiple sources
of information [15]. The potential of MIPD to increase patient benefits has been largely
recognized, however, the broad application in clinical practice is not yet established [16, 17].
There are multiple potential reasons and obstacles for this, e.g., regulatory and health care
system barriers, as well as the lack of collaborative efforts, necessary clinical infrastructure
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Figure 1.1: Overview of the scientific challenges in model-informed precision dosing addressed in this thesis.

and training of physicians in corresponding software tools [CM4]. But also scientific challenges
remain (Figure 1.1) with respect to

(i) reliable and efficient forecasting of the patient’s individual therapy outcome,

(ii) well-founded clinical decision support for individualized multiple dosage regimens, and

(iii) continuous learning across patients to account for model bias.

Therapy forecasting. The first crucial aspect of MIPD is therapy forecasting, i.e., predict-
ing the response of a patient to a given dose. Therapeutic drug/biomarker monitoring (TDM),
i.e., collecting patient-specific data on drug or biomarker concentrations during ongoing treat-
ment, provides a means to assess how the patient is responding to the treatment [18, 19]. TDM
data, however, are often sparse and therefore as only source of information not well suited
for informing a predictive individualized model. In this context, a Bayesian approach is very
beneficial as it allows to integrate prior knowledge about the drug-patient-disease system [20].
The prior knowledge is generally obtained from population analyses of clinical studies which
use a nonlinear mixed effects (NLME) framework to describe not only the typical therapy
time course but also the associated variability between patients. This knowledge, in the form
of mathematical models describing the pharmacokinetics (PK) and pharmacodynamics (PD)
of the drug, can be used to predict the therapeutic outcome of a patient based on his/her
characteristics (so called covariates) [21]. These (a-priori) predictions are, however, associated
with uncertainty, resulting from the unexplained variability between patients. Applying Bayes’
formula to combine the prior knowledge with patient-specific TDM data results in a posterior
distribution with reduced uncertainty. Ideally, all available information about the patient’s
individual parameters, quantified by the posterior, is used to predict the therapy outcome for
a patient under uncertainty (a-posteriori predictions), see Figure 1.1 (top left). The currently
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most widely used approach, however, is maximum a-posteriori (MAP) estimation, which only
determines the mode of the posterior and thus neglects associated model uncertainties.

Bayesian data assimilation (DA) comprises algorithms for posterior inference by combining
model-generated predictions with observational data for improved forecasting [22]. By approx-
imating the full posterior, fully Bayesian DA algorithms enable a comprehensive uncertainty
quantification on the level of the model parameters, which can be propagated consistently
to the quantities of interest and thus provides a much more meaningful decision support. In
the context of therapy forecasting, sequential DA approaches are of particular interest as
they allow for a comprehensive uncertainty quantification as well as efficient sequential data
processing while TDM data are collected. These approaches have become well-established in
applications where real-time model predictions based on online/monitoring data are required,
such as navigation [23], numerical weather prediction [24, 25] and object tracking [26, 27]. In
health care these methods are only used to a limited extent, e.g., for glucose monitoring [28]
or for intensive care unit (ICU) patients [29]. With the emergence of new mobile health care
devices (e.g., wearables, home-monitoring, point-of-care testing [30, 17]) that enable more
frequent assessment of the patient’s health status, efficient sequential inference algorithms
that also provide reliable and informative predictions based on quantified uncertainties are
becoming increasingly important.

Dose individualization. The second aspect of MIPD is to provide well-informed decision
support for optimal intervention for the individual patient. Optimal multiple dose selections
can be regarded as a sequential decision-making problem under uncertainty [31]. Decisions
must be made throughout the entire course of therapy, and a dose selection may have delayed
or long-term consequences that influence subsequent dose decisions [3]. In addition, the
therapeutic outcome in a patient for a certain dose is, as mentioned above, associated with
uncertainty. Optimal dose selection should take into account the current patient status
(including covariates and TDM measurements), the treatment history and should be made
with respect to the evaluation of short-term markers as well as long-term therapeutic outcomes,
e.g., overall or progression-free survival [3], see Figure 1.1 (right).

Reinforcement learning (RL) is a general class of algorithms in the field of machine
learning (ML) that builds on the theory of Markov decision processes (MDPs) to formalize
and solve decision-making problems where decisions are made in stages and are associated
with uncertainty [32, 33]. The underlying idea is to learn from accumulated experience how
to act best in uncertain environments, guided by a feedback or reward signal (as opposed to
unsupervised learning), but without providing examples of ‘correct behavior’ (as in supervised
learning). RL approaches have been developed mainly in the artificial intelligence (AI)
community focusing on games with the goal that computers learn to play games better than
humans [34, 35]. Over the years, RL has also gained popularity in other areas, including
health care and also oncology; however, mainly focusing on clinical trial design [36, 37], and
only few studies relate to optimal dosing in a PK/PD context [31, 38].

Continuous learning across patients. MIPD approaches are only as reliable as the
underlying model used to predict the therapeutic outcome. When PK/PD models are used
for MIPD a ‘perfect model scenario’ is often assumed, i.e., it is assumed that the model
accurately reflects the drug-patient-disease system and that the variability observed in the
patient population is adequately described. Structural models and prior model parameter
distributions used in MIPD approaches build on prior clinical trials that include only a limited
number of patients selected according to strict exclusion/inclusion criteria. Compared to the
patient population in clinical practice, the prior clinical study population can be expected to
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1 Introduction

introduce a model bias [15, 39]. The nature and extent of this bias are typically unknown, and
it is not clear how a model bias could affect MIPD in routine clinical use. A critical aspect
of applicability of MIPD is therefore to adapt the model to the target patient population as
new patient data are observed. This requires a continuous learning approach that allows to
update and improve the initial model across patients, see Figure 1.1 (bottom). With respect
to data protection, an important consideration is that patient data may not be accessible
across different hospitals or institutions and therefore model learning should be based on
summary information of the data that can be shared. Continuous model learning based on an
ever-growing amount of data has enormous potential to improve the predictive capabilities of
the models and thus enable well-founded MIPD for the large variability encountered in the
whole patient population.

Outline In this thesis the two fields Bayesian DA and RL are introduced in the context
of clinical pharmacology and it is shown how these methods can be used and combined to
advance the reliability, accuracy, and applicability of MIPD. The resulting approaches are
discussed and illustrated using an example in oncology: chemotherapy-induced neutropenia,
the most frequent dose-limiting toxicity in cytotoxic anticancer chemotherapy. In the next
chapter (Chapter 2), the background to the application field, oncology, and the different
methodological fields, DA and RL, is provided, and general concepts are introduced.

In Chapter 3, Bayesian DA approaches for therapy forecasting are comprehensively
compared with respect to their reliability, efficiency, and ability to support informed decision-
making. The unfavorable properties of MAP estimation, currently the most widely used
approach, are outlined in a relevant clinical context. Further, we show that a comprehensive
uncertainty quantification as provided by fully Bayesian DA approaches provides a more
informative and differentiated understanding of the forecasted therapy outcome and thus
better-informed decision-making. Finally, the advantages of sequential DA approaches are
presented in view of novel point-of-care devices.

Next, novel approaches for MIPD based on DA and/or RL are developed in Chapter 4. DA-
guided dosing includes the individualized uncertainty quantification into the objective function
for dose selection. RL-guided dosing is based on the solution of the stochastic sequential
decision-making problem and DA-RL-guided dosing provides a combined framework leveraging
the posterior information provided by DA in RL. In a simulation study, we compare the three
proposed approaches, DA-guided, RL-guided and DA-RL-guided dosing with current dosing
strategies in terms of dosing performance and their ability to provide insights into the factors
driving dose selection.

In order to increase the applicability of MIPD in clinics, we discuss in Chapter 5 how a
bias in the underlying models can be corrected via continuous learning across patients to
bridge the gap between academia/industry and clinical practice. In particular, we propose a
sequential hierarchical Bayesian framework with two stages, that separates the inference on
the individual patient level from the update of the prior knowledge (on the population level)
for the next patient. This separated framework facilitates practical implementation as the
patient data themselves do not need to be shared across hospitals, which is advantageous
compared to approaches based on pooling patient data.

Finally, in Chapter 6 the proposed approaches for MIPD are positioned in the broader
context of health care and general aspects of MIPD that need to be addressed in the future
are outlined.
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2
Background

This thesis leverages, adapts, and combines the methodology from different research areas
to advance approaches towards MIPD in oncology and beyond. Here, a brief overview of
the different areas is given first, introducing general and important concepts as well as
domain-specific terminology used throughout this work.

2.1 Oncology: chemotherapeutic agents and their dose-
limiting toxicity

Cancer is the second leading cause of death worldwide (after cardiovascular diseases) and is
estimated to have accounted for 9.6 million deaths in 2018 [40]. Cancer is a family of many
diseases, characterized by uncontrolled, excessive growth, and spread of abnormal cells [41].
The malignant transformation of normal cells into cancer cells is a multi-step process involving
cellular and genetic changes that give cancer cells a growth advantage, enable them to invade
other tissues, and overcome cell death [42]. Depending on the site of origin, different types of
cancer are distinguished; the most common being lung, breast, colorectal, prostate, stomach,
and cervical cancer [40]. Lung cancer is not only the most common but also the deadliest
type [43], accounting for the highest number of deaths (18 % of cancer deaths [44]).

General treatment strategies in oncology include surgery, radiotherapy, chemotherapy, novel
targeted therapies as well as immunotherapy [45, 46]. Despite advances in novel treatment
options, traditional chemotherapy remains an integral component of cancer treatment, e.g., in
chemoimmunotherapy [12, 47, 48]. Cytotoxic chemotherapy has a non-specific mechanism of
action affecting the cell cycle of rapidly dividing cells of all types [49]. This induces the desired
cytotoxic effect on malignant cancer cells but also affects healthy dividing cells, causing severe
side effects. Therefore, improved therapeutic management is essential to minimize the side
effects of cancer treatment while increasing the benefits and hence address the major public
health burden of cancer.

The cytotoxic chemotherapeutic agents of interest in this thesis are paclitaxel (Taxol®,
marketed since 1993) and docetaxel (Taxotere®, marketed since 1996). Both drugs belong
to the class of taxanes and function as mitotic inhibitors via enhancing and stabilizing the
polymerization of microtubules [50, 51]. Since microtubules are essential for the formation of
the spindle apparatus during mitosis, the drugs prevent cell division. Paclitaxel is used either
as a single agent or in combination with other drugs, e.g., carboplatin or cisplatin [52], against
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2.1 Oncology: chemotherapeutic agents and their dose-limiting toxicity

ovarian [53], breast [54], and non-small cell lung cancer (NSCLC) [55]. Docetaxel is indicated
(alone or in combination) for breast cancer [51], NSCLC, prostate, gastric [56] as well as head
and neck cancer. The main associated toxicities of docetaxel and paclitaxel chemotherapy are
peripheral neuropathy [57] and hematological toxicity, most importantly neutropenia [58].

2.1.1 Chemotherapy-induced neutropenia
Neutropenia is a severe reduction of neutrophil granulocytes, which can be induced by cytotoxic
agents [58]. Neutrophils are the most abundant type of white blood cells and play a key
role in the immune system as they serve as primary responders to infections [59]. Therefore,
neutropenia can lead to life-threatening immunodeficiencies associated with the incidence of
infections and fever [58].

Healthy hematopoiesis. Hematopoiesis refers to the formation of blood cells, which all
originate from hematopoietic stem cells in the bone marrow. Stem cells have the ability
to replicate in order to sustain the stem cell pool (self-renewal) as well as to differentiate
and mature to all cell types (pluripotency) to maintain stable blood counts (homeostasis)
[60]. Proceeding from the stem cells, the common myeloid or lymphoid progenitors form
the starting point for the two main cell lineages: the myeloid arm comprising red blood
cells, platelets, and white blood cells (granulocytes), and the lymphoid arm giving rise to
T and B-lymphocytes. Hematopoiesis is a highly complex hierarchical process involving
the differentiation and maturation over various progenitor (mitotic, i.e., proliferating) and
precursor (post-mitotic) stages until ultimately mature blood cells are released into the
systemic circulation. The mature cell types have often a rather short life span, e.g., the
half-life of neutrophils is approximately 7 h [61]. Therefore, a balance between proliferation,
differentiation, and release is essential, which is ensured by strong regulation via different
cytokines, e.g., granulocyte colony-stimulating factor (G-CSF) for granulopoiesis (production
of granulocytes) [62].

The role of neutropenia in clinical decision-making. The perturbation of normal
hematopoiesis caused by cytotoxic agents has a major impact on the dosing and scheduling
of chemotherapy. For illustration, a typical time course of neutropenia after administration
of docetaxel is depicted in Figure 2.1. The baseline neutrophil value, prior to the dose
administration, should be above 1.5 · 109 cells/L for docetaxel (Taxotere® label) and paclitaxel
(Taxol® label). After drug administration (at time t = 0), the neutrophil concentration is
decreased with a delay. This delay in response is due to the fact that mainly proliferating
hematopoietic progenitor cells in the bone marrow are vulnerable to the cytotoxic effect and
that the maturation process to mature neutrophils takes several days (mitotic 5–7.5 days [64,
65] & post-mitotic 4–6.6 days [66, 62]). The nadir, the lowest neutrophil concentration, is
typically reached around day 9 for docetaxel [67] and day 12 for paclitaxel [11]. The different
grades g of neutropenia range according to the common terminology criteria for adverse
events (CTCAE) [63] from no neutropenia (g = 0) over mild (g = 1), moderate (g = 2),
severe (g = 3), to life-threatening (g = 4), and death (g = 5), see Figure 2.1. Recovery of
neutropenia is initiated via increased G-CSF levels due to low neutrophil counts [68]. Only
when the neutrophil concentration is back at a sufficient level (>1.5 · 109 cells/L), the next
dose can be administered, leading to treatment cycles of 1–4 weeks [69, 70].

Due to the high risk of life-threatening infections associated with neutropenia grade 4,
neutropenia restricts the maximum tolerable dose and insufficient recovery of neutropenia
could delay subsequent treatments [58]. In contrast, neutropenia during chemotherapy has
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Figure 2.1: Typical time course of neutropenia after administration of an anticancer drug. The neutrophil con-
centration Cneutr(t) over time is shown for docetaxel (100 mg/m2 BSA, 1 h intravenous infusion). Neutropenia
grades are defined according to the common terminology criteria for adverse events (CTCAE) [63]. Note that
the shades of red are related to increasing toxicity, however, grade 0 (white) over the whole cycle is associated
with ineffective treatment. Key characteristics for decision-making in cytotoxic chemotherapy related to risk
(dark blue) and recovery (light blue) of neutropenia are indicated on the typical time course: the lowest
neutrophil concentration (cnadir), the time at which the nadir is reached (tnadir), the duration of neutropenia
grade 3 and grade 4 (tdur3 and tdur4, respectively), as well as the times until recovery to neutropenia grade 2
and 0 (trec2 and trec0, respectively). Note that the rebound (overshooting of the neutrophil concentration
above the baseline) is not as apparent due to the log-scale.

been also associated with increased median survival [13, 71, 72]. A possible explanation for
this observation is that the absence of neutropenia could indicate subtherapeutic exposure,
resulting in a sub-optimal effect [73]. A moderate degree of toxicity is therefore desirable, and
consequently, neutropenia also functions as an early and easily measurable marker (surrogate)
for treatment efficacy [74]. Based on this established relationship between neutropenia and
efficacy as well as toxicity, neutrophil counts were suggested to be used as a biomarker to
guide dosing [75, 76, 73].

For decision-support in cytotoxic chemotherapy certain characteristics of the neutropenia
time course related to risk and recovery should be considered [73]. The time tnadir, at which
the nadir is reached, is important for time management of intervention, e.g., intravenous
antibiotics and hospitalization [58]. In addition, risk is also related to the duration tdur3 and
tdur4 of an individual being in grade 3 and 4 neutropenia, respectively [58]. The patient could
be considered out of risk at time trec2, when neutropenia grade 2 is reached post nadir. The
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recovery time to grade 0, trec0, could be conservatively used to schedule the initiation of the
next treatment cycle.

Measuring neutrophil concentrations. Due to the associated risks, neutropenia is rou-
tinely assessed during chemotherapy treatment (as recommended by drug labels). Absolute
neutrophil counts (ANC) are measured within complete blood cell counts using hematology
analyzers [77]. In general clinical settings, neutrophil counts are measured before the start of
the treatment (baseline absolute neutrophil counts, ANC0), during the cycle to assess toxicity
and before administration of the next dose to ensure recovery [52, 30]. Recent advancements
in point-of-care testing now also allow more frequent assessment of neutrophil counts, e.g.,
HemoCue® WBC DIFF system for white blood cell (WBC) counts (HemoCue AB, Ängelholm,
Sweden) [78]. These point-of-care testing devices rely on capillary finger-prick blood samples
which can be taken by the patients themselves at home [30]. It has been demonstrated that the
capillary neutrophil counts measured via HemoCue WBC Diff correlate well with neutrophil
counts measured in venous blood using state-of-the-art hematology analyzers [79, 80] [30,
chapter 5]. The precision, in terms of the coefficient of variation (CV), of HemoCue WBC Diff
is stated in the operating manual as ∼7 % CV for low WBC levels and ∼4 % CV for normal
and high WBC levels. In comparison, the precision of state-of-the-art hematology analyzers
is given as 10 % CV for low neutrophil levels and as 2.5 % CV for normal levels [77]. Overall,
the data situation can be expected to change in the near future, allowing for accurate and
frequent hematologic assessment, which enables more adaptive dosing approaches based on
patient-specific neutrophil concentration measurements.

2.1.2 Dose individualization: CEPAC-TDM study as an example
To achieve therapeutic success, informed decision-making with respect to the dose and
the schedule is critical [81, 45]. The current administration of anticancer drugs is generally
adapted to BSA, e.g., 100 mg/m2 BSA 1 h intravenous (i.v.) infusion for docetaxel [82]. In
addition, toxicity-related dose reductions are indicated [3]. Despite dose adjustments to BSA,
high inter-individual variability (IIV) in efficacy and toxicity outcomes is observed, which
demands more refined approaches to increase patient benefits [2, 12, 6].

To individualize paclitaxel treatment, a dosing algorithm (called PK-guided dosing) based
on the patient’s sex, age, BSA, as well as drug exposure and toxicity was developed [11], and
evaluated in the clinical trial CESAR (Central European Society for Anticancer Drug Research)
study of Paclitaxel Therapeutic Drug Monitoring (CEPAC-TDM) [ClinicalTrials.gov Identifier:
NCT01326767] [83] versus standard dosing 200 mg/m2 BSA (including toxicity-related dose
reductions of 20 % if grade 4 neutropenia was observed in the previous treatment cycle ) [52].
Paclitaxel was given as 3 h i.v. infusion in combination with carboplatin or cisplatin. In the
PK-guided dosing, the dose of the first cycle was determined based on the patient’s age and
sex. For subsequent cycles, the dose was adjusted according to exposure (time during which
the drug concentration is above 0.05 µm) and neutropenia grade of the previous cycle (inferred
from observed ANC at day 15), see Figure A.1. The algorithm relies on a mathematical
model describing the PK of paclitaxel to infer the individual exposure measure [11]. The
study population of the CEPAC-TDM study comprised 365 patients with advanced NSCLC.
NSCLC accounts for 84 % of lung cancer cases and has poor prognosis [41]. The study did
not succeed in reducing life-threatening grade 4 neutropenia, however, paclitaxel-induced
neuropathy was reduced, which could substantially improve the patient’s quality of life. Also,
a similar treatment response has been achieved by administering significantly lower doses [52].

Neutrophil-guided dosing has been suggested earlier using a PK/PD model that describes
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2.1.3 PK/PD modeling of chemotherapy-induced neutropenia

chemotherapy-induced neutropenia [75, 76]. The patient’s neutrophil counts can be used to
infer the individual model parameters within a Bayesian forecasting framework to predict
the individual neutropenia time course. The dose could then be optimized with respect to
a target nadir concentration or a utility function [76, 84]. The dosing strategies mentioned
serve in Chapter 4 as a benchmark for the novel proposed MIPD dosing strategies.

2.1.3 PK/PD modeling of chemotherapy-induced neutropenia
Mathematical models describing the PK/PD of a drug play a key role in academia/industry,
e.g., for dose selection, clinical trial design and to demonstrate safety as well as efficacy of
a drug candidate [85, 86]. For model-informed drug development (MIDD) PK/PD models
are typically developed based on clinical trial data using an NLME framework to describe
not only the typical therapy outcome but also the variability in outcome between patients
(population analysis) [87]. The PK model links a dose d to a drug’s concentration time course
Cdrug(t) in plasma. PK models generally have a compartmentalized structure that groups
together regions of the body that behave kinetically similar [88]. The PD model relates
the drug concentration to a response via a mechanism of drug action [89]. The models can
incorporate mechanistic/semi-mechanistic aspects, i.e., explicitly describing the underlying
physiological process, or data-driven/empirical, i.e., without physiological interpretation. In
PK/PD models the rate of change of concentrations or amounts over time for one individual
i is mathematically described via a system of ordinary differential equations (ODEs), the
structural model,

dxi
dt

(t) = f(xi(t); θi, di), xi(t0) = x0(θi) (2.1)

hi(t) = h(xi(t), θi) , (2.2)

with state vector xi = xi(t) ∈ Rnx (incl. drug/biomarker concentrations), individual
parameter values θi ∈ Rnθ (e.g., volumes, clearances) and rates of change f(xi; θi, di) of all
state variables for a given input di ∈ Rnd (e.g., dose). Since typically only a part of the state
variables is observed, the observational model Eq. (2.2) maps xi to the observed quantities
h(xi(t), θi), e.g., plasma drug or neutrophil concentration, including potential state-space
transformations (e.g., log-transformed output). The initial conditions x0(θi) are defined by
the pre-treatment levels (e.g., baseline values).

Population analyses integrate data from multiple patients, i = 1, . . . , N of a clinical
study. The individual model parameters are not directly estimated based on individual data
but modeled as random variables with specified probability density functions of which the
parameters (population parameters) are estimated.

The covariate and statistical model link patient-specific factors (covariates) ‘covi’ and
observations (tij , yij)j=1,...,ni to the model predictions hij(θi) = h(xi(tj), θi),

Θi ∼ pΘ

(
· ; θTV(covi),Ω

)
, (2.3)

[Yij |Θi = θi] ∼ p
(
· |θi;hij(θi),Σ

)
, j = 1, . . . , ni (independent) (2.4)

where θTV(covi) denotes the typical value (TV) that might depend on covariates, Ω denotes
the magnitude of the unexplained IIV, i.e., the variability between patients in clinical outcome
that cannot be explained by covariates, and Σ the residual unexplained variability (RUV),
accounting for measurement errors and (possibly) model misspecification. Often an additive
error model is chosen, [Yij |Θi = θi] = hij(θi) + εij with εij ∼iid N (0,Σ) potentially on a
log-scale. In case of positive physiological parameters, i.e., θi ∈ Rnθ+ , the most widely used
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2.1 Oncology: chemotherapeutic agents and their dose-limiting toxicity

parametric assumption for the individual parameters Eq. (2.3) is the lognormal distribution,
i.e., Θi = θTV(covi) · eηi , with ηi ∼iid N (0,Ω). The goal of a population analysis within a
NLME framework is to estimate the population parameters θTV, Ω and Σ, and to identify
significant covariates that influence the PK or PD of the drug and thus can explain parts
of the observed variability in clinical outcome, i.e., estimate the functional relationship
cov 7→ θTV(cov) [67]. These established relationships can be used to forecast the therapy
outcome for a patient (under uncertainty) based on his/her characteristics.

Docetaxel pharmacokinetic model. We employed a published model which describes
docetaxel PK by three compartments with first-order elimination [82]. Clearance of docetaxel
was modeled as function of the covariates α1-acid glycoprotein (AAG), age, BSA, and ALB
(plasma albumin). The system of ODEs is provided in Section A.2.1 and parameter estimates
by Bruno et al. [82] in Table A.1. The typical drug concentration time course is depicted in
Figure 2.3 A.

Paclitaxel pharmacokinetic model Paclitaxel PK was previously described by a three
compartment model with nonlinear distribution to the first peripheral compartment and
nonlinear elimination [11], see Figure 2.2 (left part) for a schematic representation of the
compartmental model structure. A typical concentration time course is shown in Figure 2.3 B.
For our analyses, we used the (re-)estimated parameter values by Henrich et al. [90, Table 1],
see also Table A.2. The PK model includes a covariate model on the maximum elimination
capacity VMEL:

VMEL,TV,i =VMEL,pop ·
(

BSAi

1.8 m2

)θVMEL-BSA

·
(
θVMEL-SEX

)SEXi
·

(
AGEi

56 years

)θVMEL-AGE

·
(

BILIi
7 µm

)θVMEL-BILI

,

with SEX (0/1 for female/male) of patient i, AGE (in years) and bilirubin concentration BILI,
a marker for liver function, (in µm). A lognormal distribution was assumed for the statistical
IIV model, Eq. (2.3). In addition to IIV and RUV, inter-occasion variability (IOV) was
included in the model, on the parameters, VMEL as well as the central volume of distribution
V1. An occasion was defined as the start of a treatment cycle c,

Θi,c = θTV(covi) · eηi+κi,c , ηi
iid∼ N (0,Ω), κi,c

iid∼ N (0,Π) . (2.5)

Therefore, model parameters may vary to some extent (given by Π) between dosing events
within one patient.

Models for chemotherapy-induced neutropenia The most well-known and widely
used model (the gold-standard) describing chemotherapy-induced neutropenia for various
drugs is a semi-mechanistic model developed by Friberg et al. [91], Figure 2.2 (right part,
black). The model consists of five compartments reflecting the maturation from rapidly
proliferating progenitor cells (‘Prol’) in the bone marrow (gray dashed box) to neutrophils in
the systemic circulation (‘Circ’). Three transit compartments (‘Transit 1–3’) approximate
the delay (also known as ‘linear chain trick’ [92, 93]) caused by the different maturation
stages, cf. Section 2.1.1 with ktr = 4/MTT denoting the transition rate constant given by
the number of transit compartments plus one divided by the mean transit time (MTT). The
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Figure 2.2: Schematic representation of paclitaxel-induced neutropenia models. The model describing paclitaxel
pharmacokinetics (PK) is depicted on the left with a central compartment and two peripheral compartments.
In black the gold-standard pharmacodynamic (PD) model for neutropenia is depicted, including a compartment
for proliferating progenitor cells ‘Prol’ in the bone marrow and three transit compartments ‘Transit 1–3’
representing the maturation to circulating neutrophils ‘Circ’ in the blood [91]. The extension including a stem
cell compartment ‘Stem’ to account for the long-term exhaustion of the bone marrow is depicted in blue [90].
The parameters and the corresponding model equations are described in the text. The figure is based on [90,
Fig. 1].

drug concentration in the central compartment of the PK model, C1 = Cent/V1, is modeled
to have a linear (inhibitory) effect on the proliferation rate kprol of ‘Prol’, Edrug = Slope · C1.
The transit compartments represent post-mitotic stages and are therefore not (directly)
affected by the drug. The feedback of low neutrophils (Circ(t) small) compared to baseline
neutrophils (Circ0) increases the proliferation rate initiating the recovery. The degradation
rate of neutrophils kcirc is typically set to equal ktr.

The gold-standard model for neutropenia [91] serves as a starting point for the development
of various models for different drugs, see Table A.3 for docetaxel, and for different patient
populations for the same drug, e.g., for paclitaxel [9, 11, 67, 94]. For paclitaxel we will focus,
in this thesis, on the models summarized in Table 2.1. The gold-standard (original) model
was used to develop the previously described PK-guided dosing algorithm [11] (Section 2.1.2
& A.1). Retrospectively, the model parameters were re-estimated for the CEPAC-TDM data
(gold-standard (re-estimated) [95]).

In the CEPAC-TDM study [52], cumulative neutropenia was observed over multiple
treatment cycles, i.e., the nadir and the maximum neutrophil concentration decreased over the
course of treatment. A potential hypothesis for this cumulative behavior is that the drug also
affects the long-term recovery of the bone marrow, causing bone marrow exhaustion (BME)
[90]. The gold-standard model for neutropenia by Friberg et al. [91] does not describe this long-
term effect and was shown to overpredict neutrophil concentrations at later cycles [95, section
3.3]. Therefore, Henrich et al. [90] extended the model to include a stem cell compartment
‘Stem’, representing pluripotent stem cells with slower proliferation, which are also affected by
the drug, see Figure 2.2 (black & blue). The system of ODEs describing the structural model
reads
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2.1 Oncology: chemotherapeutic agents and their dose-limiting toxicity

Table 2.1: Parameter estimates for paclitaxel-induced neutropenia models retrieved from [95]. The parameter
estimates of the gold-standard (original) model are based on [11]. The gold-standard (re-estimated) model
denotes the unchanged structural model but the parameter estimates were re-estimated using the CEPAC-TDM
study data [95]. The bone marrow exhaustion (BME) model [90] describes the long-term effect over multiple
cycles. The typical value (TV) parameters describe the fixed effects and the inter-individual variability (IIV)
parameters the magnitude of the variability between patients. The residual unexplained variability (RUV) an
exponential model was chosen for all models. The IIV and RUV parameters are provided as coefficient of
variation (CV). If originally published, the relative standard errors (RSEs) are provided in brackets (in %).
Note that baseline method B2 [96] was used for baseline absolute neutrophil counts ANC0, i.e., the IIV was
estimated together with RUV as one single parameter. The table is modified from [95, Table 3.7]

Parameter Gold-standard Gold-standard Bone marrow
(original) (re-estimated) exhaustion

Joerger et al. (2012) Henrich (2017) Thesis Henrich et al. (2017)

TV parameters
MTT [h] 141 128 (2.03) 145 (2.65)
Slope [L/µmol] 2.6 4.48 (4.55) 13.1 (4.56)
γ 0.2 0.231 (6.79) 0.257 (5.53)
ftr - - 0.787 (2.76)
IIV parameters (CV%)
MTT 27.0 - -
Slope 44.9 43.8 (8.23) 44.8 (6.54)
ANC0 (=Circ0) 31.6 60.3 (3.27) 51.5 (3.61)
RUV parameters (CV%)
exp. model 31.6 60.3 (3.27) 51.5 (3.61)

dStem(t)

dt
= kstemStem(t) · (1− Edrug(t)) ·

(
Circ0

Circ(t)

)γ

− kstemStem(t) ,

dProl(t)
dt

= kprolProl(t) · (1− Edrug(t)) ·
(

Circ0

Circ(t)

)γ

+ kstemStem(t)− ktrProl(t) ,
dTransit1(t)

dt
= ktrProl(t)− ktrTransit1(t) ,

dTransit2(t)

dt
= ktrTransit1(t)− ktrTransit2(t) ,

dTransit3(t)

dt
= ktrTransit2(t)− ktrTransit3(t) ,

dCirc(t)
dt

= ktrTransit3(t)− kcircCirc(t) ,

Stem(0) = Circ0

Prol(0) = Circ0

Transit1(0) = Circ0

Transit2(0) = Circ0

Transit3(0) = Circ0

Circ(0) = Circ0

with kcirc = ktr and Edrug = Slope ·C1 representing the linear (inhibitory) drug effect and
C1 = Cent/V1, the drug concentration in the central compartment of the paclitaxel PK model.
Note that the model implicitly assumes that the volumes of all compartments are identical.
Henrich et al. [90] calibrated this model in a population analysis to the CEPAC-TDM study
data [52], see Table 2.1. The proliferation rates for the two compartments Prol and Stem are
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2.1.3 PK/PD modeling of chemotherapy-induced neutropenia

given by

kprol = ftr · ktr
kstem = (1− ftr) · ktr ,

respectively, with ftr denoting the fraction of replication in ‘Prol’. The IIV, Eq. (2.3), is
modeled to be lognormal. The baseline neutrophil count Circ0 = ANC0 was modeled based
on the baseline data point yi0 (using the baseline method B2 in [96])

Circ0,i = yi0 · eσ·ηCirc0,i , ηCirc0,i ∼ N (0, 1) , (2.6)

with σ denoting the univariate RUV. This extension leads to a gradual decrease in the nadir
and the maximum neutrophil concentration (recovery) over multiple treatment cycles, see
typical time course in Figure 2.3 C and comparison to the models based on the structure of the
gold-standard model in panel D. Thus, the model was able to describe cumulative neutropenia
as observed in the CEPAC-TDM study [90]. It has been shown that paclitaxel is the main
reason for neutrophil toxicity when given in combination with carboplatin [9]. Therefore, we
restricted our analysis to paclitaxel-induced neutropenia alone although paclitaxel was given
in combination with carboplatin or cisplatin in the CEPAC-TDM study. The gold-standard
model for docetaxel is used in Chapter 3, and the BME model builds the basis for the
simulation studies in Chapters 3 & 4. In Chapter 5 the three different models in Table 2.1
are used to investigate the effect of a model bias on MIPD.
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A Docetaxel pharmacokinetics B Paclitaxel pharamcokinetics

C Bone marrow exhaustion model D Comparison of neutropenia models

central cmt 1st peripheral cmt 2nd peripheral cmt

Stem cmt
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Transit 1 cmt

Transit 2 cmt
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Gold-standard (Joerger et al. 2012)
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BME (Henrich et al. 2017)

1
Figure 2.3: Typical model predictions for docetaxel pharmacokinetics (100 mg/m2 BSA, 1 h i.v. infusion)
(A), paclitaxel pharmacokinetics (200 mg/m2 BSA, 3 h i.v. infusion) (B), paclitaxel-induced bone marrow ex-
haustion (BME) (C). (D) the typical model predictions are compared for the gold-standard model using the
parametrization of Joerger et al. [11], and using the (re-)parametrization of Henrich (2017) [95] with the model
extension to describe bone marrow exhaustion (BME) by Henrich et al. [90]. Typical patient characteristics
were for docetaxel: female, age = 56 years, AAG = 1.34 g/L, BSA = 1.76 m2, ALB = 41 g/L [67] and for
paclitaxel: male, age = 56 years, Circ0 = 6.48 · 109 cells/L, BSA= 1.8 m2 and BILI= 7 µmol/L [52, 95].
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2.2 Bayesian data assimilation (DA)
DA refers to a family of procedures that allows incorporating observations into a mathematical
model of a system in order to improve the prediction skills of the model [22]. These
methods are highly valuable tools to fill the gap between insufficient or partial data for
purely data-driven approaches and imperfect or incomplete models for purely model-driven
approaches [28]. An overview of the different approaches towards DA is provided in Figure 2.4.
DA algorithms comprise methods that process data in a batch (all data points at once) or
sequentially as they become available (one data point at a time). Only selected algorithms
are presented here; a more comprehensive overview and discussion of DA algorithms can be
found for example in [22, 27, 97].

2.2.1 Batch DA approaches
Within a Bayesian framework, the data are not regarded to be stand-alone information about
the system of interest, rather system parameters are seen as random variables, and prior
information about them is incorporated using Bayes’ formula

p(θ|y1:n) =
p(y1:n|θ)p(θ)
p(y1:n)

, (2.7)

with p(θ) denoting the prior distribution of the model parameters, p(y1:n|θ) denoting the
likelihood, the probability of the data y1:n = (y1, . . . , yn)T given the model parameters θ, and
p(θ|y1:n) the posterior, i.e., the conditional distribution of the parameters given the data. The
denominator in Eq. (2.7)

p(y1:n) =

∫

Rnθ
p(y1:n|θ)p(θ)dθ (2.8)

serves as a normalization factor, denoting the marginal probability of the data (also often
called the evidence). In most realistic problems, the normalization constant Eq. (2.8) is
difficult to compute due to the involved (possibly high-dimensional) integral that makes
posterior inference analytically intractable [27, section 2.5] [98]. Even if it is possible to
calculate the normalization constant, sampling from the posterior may not be, which might
be required to derive posterior-based quantities, e.g., marginals or posterior expectations.
Typically, the unnormalized posterior

p̃(θ|y1:n) = p(y1:n|θ)p(θ) (2.9)

can only be evaluated point-wise, which might also be computationally expensive for complex
models as evaluation of the likelihood might require solving complex/stiff ODEs or partial
differential equations.

Maximum a-posteriori (MAP) estimation Variational DA methods transform the
posterior inference problem into an optimization problem, minimizing a cost functional over
all data points [97]. A widely used approach is MAP estimation, i.e., seeking the parameters
that maximize the posterior distribution,

θ̂MAP
n = arg max

θ
p(θ|y1:n) = arg max

θ
p(y1:n|θ)p(θ) , (2.10)

which only requires the point-wise evaluation of the unnormalized posterior Eq. (2.9). The
posterior distribution is summarized by a point-estimate, the mode (the MAP estimate),
without measure of the uncertainty associated with it, see Figure 2.4 left.
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2.2 Bayesian data assimilation (DA)

Normal approximation (NAP) For an extended resolution of the posterior, a parametric
approximation to the posterior can be used. Most often a normal approximation (NAP)
centered at the mode of the posterior is considered, approximating the variance of the
distribution using the curvature at the mode:

p(·|y1:n) ≈ N
(
θ̂MAP
n , I−1

(
θ̂MAP
n

))
, (2.11)

where I denotes the total observed Fisher information matrix (FIM) [99, section 2.5]

I
(
θ
)

:= Ipost
(
θ
)

= − d2

dθ2
log p(θ|y1:n)

of the posterior. The approximation Eq. (2.11) can be derived using a Taylor expansion of
the log-posterior at its mode (following [100, section 4.1]):

log p(θ|y1:n) ≈ log p(θ̂MAP
n |y1:n)︸ ︷︷ ︸

=const.

+(θ − θ̂MAP
n )T

[d log p(θ|y1:n)

dθ

]
θ=θ̂MAP

n︸ ︷︷ ︸
=0

+
1

2
(θ − θ̂MAP

n )T
[d2 log p(θ|y1:n)

dθ2

]
θ=θ̂MAP

n

(θ − θ̂MAP
n ) .

Exponentiating both sides and normalizing leads to

p(θ|y1:n) ≈ N
(
θ̂MAP
n ,

[
− d2 log p(θ|y1:n)

dθ2

]−1

θ=θ̂MAP
n

)
.

The inverse of the variance can be decomposed using Bayes’ formula Eq. (2.7)

− d2

dθ2
log p(θ|y1:n) = − d2

dθ2
log p(y1:n|θ)−

d2

dθ2
log p(θ) , (2.12)

where we retrieve the total observed FIM

I likelihood(θ) = − d2

dθ2
log p(y1:n|θ) .

If the definition for the observed FIM of the likelihood is transferred to prior and posterior,
the previous decomposition Eq. (2.12) can be written as

Ipost(θ) = I likelihood(θ) + Iprior(θ) ,

which allows to rewrite the normal approximation of the posterior as given in Eq. (2.11).
This closed-form approximation is only well suited for uni-modal and symmetric posterior
distributions, see Figure 2.4. The approximation, however, is supported by the asymptotic
normality of the posterior provided by large-sample theory (Bernstein-von-Mises Theorem
[101], see [100, appendix B] for a proof) and can often be improved by transformations [100].

Since these assumptions do not hold in many problem settings, non-parametric approxi-
mations can be used to resolve more complex shapes of the posterior, e.g., multi-modality or
skewness. Instead of optimization (as in variational DA) or a parametric approximation, full
Bayesian inference methods employ a sample approximation to the full posterior

p(θ|y1:n) ≈
M∑

m=1

w(m)
n 1{θ(m)

n = θ}, (2.13)
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based on a sample (called ensemble in DA literature)

En :=
{(
θ(m)
n , w(m)

n

)
, m = 1, . . . ,M

}
, (2.14)

with sample parameters θ(m)
n of the posterior [27, section 2.5], weights w(m)

n , which sum to one,
i.e.,

∑M
m=1 w

(m)
n =1. If w(m)

n = 1/M for all m = 1, . . . ,M , the sample is called unweighted
(or uniformly weighted); leading to the well-known Monte Carlo approximation. Since direct
sampling from the posterior is in general not possible, alternative approaches need to be
employed to generate a sample of the posterior.

Sampling Importance Resampling (SIR) The sampling importance resampling (SIR)
algorithm is based on importance sampling [27, 102, 103]. It generates an unweighted sample
En from the posterior p(θ|y1:n) using a sample from a so called importance distribution
πI , from which samples can easily be generated [100, section 10.4]. Here, the non-iterative
SIR is presented as opposed to the sequential importance resampling algorithm (also often
abbreviated with SIR; see also the following paragraph about particle filters) and proceeds in
only three steps:

S Step: independent and identically distributed (iid) sampling from the importance
distribution πI results in a sample Ẽn = {θ̃(m)

n }Mm=1.

I Step: An importance weight is assigned to each sample point θ̃(m)
n ∈ Ẽn

w̃(m)
n =

p(y1:n|θ̃(m)
n )p(θ̃

(m)
n )

πI(θ̃
(m)
n )

, (2.15)

given by the ratio of the unnormalized posterior Eq. (2.9) and the importance distribution
evaluated at the sample point.

R Step: After normalization of the weights w(m)
n = w̃

(m)
n /

∑
m w̃

(m)
n , a resampling step

is performed: M unweighted samples θ(m)
n are drawn from Ẽn according to weights

w
(m)
n ,m = 1, . . . ,M . There exist many different strategies on how to resample effi-

ciently and effectively. The most widely used are multinomial, residual and systematic
resampling, see e.g., [104].

Generally, this algorithm needs a large number of samples, especially if there is a large
disagreement between the importance distribution and the target distribution. This is
computationally expensive but can be run in parallel up to the normalization of the weights.

Markov chain Monte Carlo (MCMC) In contrast, Markov chain Monte Carlo (MCMC)
methods construct a Markov chain {θ(m)|m = 0, 1, . . . } with the posterior as stationary
distribution [100]. Generating draws from the Markov chain to approximate the posterior
can be done with different algorithms; popular choices are the Metropolis-Hastings (M-H)
algorithm [105, 106] or the Gibbs sampler [107, 108].

The M-H sampler requires a proposal distribution πP (·|θ(m)) which specifies how to move
from a given state θ(m) in the Markov chain to the next state θ(m+1), and must satisfy certain
regularity conditions so that the Markov chain converges to the correct stationary distribution,
i.e., irreducibility and ergodicity (aperiodicity and positive recurrence). First, the Markov
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2.2 Bayesian data assimilation (DA)

chain is initialized, i.e., θ(0) is defined. Then, in each iteration m = 1, . . . ,M a proposal θ∗ is
sampled from πP (·|θ(m−1)). The proposal is accepted with probability

α = min
[
1,

p̃(θ∗|y1:n)/πP (θ∗|θ(m−1))

p̃(θ(m−1)|y1:n)/πP (θ(m−1)|θ∗)
]
, (2.16)

which only involves pointwise evaluation of the unnormalized posterior as the normalization
constant cancels in the ratio. If the proposal is accepted, the Markov chain moves to the
proposal θ(m) = θ∗, else the Markov chain remains at its current location θ(m) = θ(m−1). The
choice of the proposal distribution is key for constructing an efficient simulation algorithm. It
is required to be able to sample from the proposal distribution, the parameter space should
be reasonably explored, and the proposals should not be rejected too often (the optimal
acceptance rate in one dimension is 44% and in higher dimensions 23%) [100, section 11-12].
The original Metropolis sampler requires the proposal to be symmetric which simplifies the
acceptance probability to α = min[1, p̃(θ∗|y1:n)/p̃(θ(m−1)|y1:n)]. A special case is the random
walk Metropolis sampler that relies on a normal proposal distribution. In the independence
sampler, the proposal distribution does not depend on the current location of the Markov
chain, which leads to

α = min
[
1,

p̃(θ∗|y1:n)/πP (θ∗)

p̃(θ(m−1)|y1:n)/πP (θ(m−1))

]
.

For the independence sampler to be efficient, the proposal needs to be close to the target
distribution.

A different approach to generate draws from a Markov chain is the Gibbs sampler, which can
be very efficiently employed in multidimensional inference problems and is based on alternate
conditional sampling [100, section 11]. Suppose θ can be split into K parts, θ = (θ1, . . . , θK).
Define θ−k = (θ1, . . . , θk−1, θk+1, . . . , θK), the parameter vector without component θk. The
Markov chain is generated by sampling in each iteration m from each of the full conditionals
p(θk|θ(m−1)

−k , y1:n). Therefore, the algorithm requires that sampling from the full conditional
distributions of the components is possible. For hierarchical models, the conditionals are
often constructed as conjugate distributions, which allow straightforward sampling within the
Gibbs sampler. The advantage of the method is that no rejections take place; the acceptance
probability equals one which means that fewer iterations are required.

A critical aspect of MCMC methods is, that the Markov chain needs to run long enough
to ensure convergence. There exist various diagnostics to monitor convergence, see [109].
Generally, a certain number of initial samples is discarded, a so called ‘burn-in’ or ‘warm-up’.
However, there is no method for determining the hyperparameters to achieve a good acceptance
rate, which means that for many application problems a considerable tuning effort is required.
In addition, the generated samples θ(m)

n are not iid samples from p(θ|y1:n). Within MCMC
research one important aspect is therefore to investigates methods to reduce autocorrelation.
Standard MCMC methods cannot be used efficiently in a sequential inference context, i.e.,
in which data points are collected over time, as for every updated posterior distribution
p(θ|y1:n+1) a new Markov chain has to be generated [110] and parallelization is restricted to
running multiple chains in parallel.

2.2.2 Sequential DA approaches
Many application fields demand efficient real-time predictions based on monitoring data, e.g.,
as mentioned meteorology, navigation, or tracking. This need motivated the development of
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sequential DA approaches, in which the posterior is iteratively updated via Bayes’ formula
by combining computer-generated Bayesian forecasts with real-time incoming data [22]. The
recursive update of the posterior relies on a sequential formulation of Bayes’ formula

p(θ|y1:n+1) ∝ p(yn+1|θ) · p(θ|y1:n) , (2.17)

in which the current posterior functions as prior for the upcoming data point, see also
Figure 2.4 (right). For n = 0, the distribution p(θ|y1:0) is identical to the prior p(θ) [27,
section 3]. Note that for the likelihood holds p(yn+1|θ) = p(yn+1|y1:n, θ) due to independence
in the statistical error model Eq. (2.4).

The most well-known sequential DA method is the Kalman filter (KF) [111, 112], which
relies on the assumptions of linear model dynamics and Gaussian uncertainty. Thus, it
constitutes a parametric approach, which reduces the Bayesian inference problem to tracking
only the first and second moment (mean and variance) of the posterior density forward in
time as more data are observed.

Particle filters (PF) As aforementioned many application problems do not satisfy the
necessary assumptions for the closed-form solution of the KF. Therefore, particle filters (PFs)
[113, 114] were developed that allow for non-Gaussian error models and nonlinear structural
models. PFs are based on an ensemble prediction with ensemble members referred to as
particles. Filtering algorithms were mainly developed for state estimation with fixed parameters.
However, the parameters can be added to the state, which results in an augmented state space
z = (x, θ),

dx

dt
(t) = f(x(t); θ, d)

dθ

dt
(t) = 0 .

(2.18)

For static parameters, the rate of change of the parameters is zero. In conjunction with
importance sampling, a weighted sample of the posterior is carried forward in time and
re-weighted as new data points become available [22]. The basic version of PF is closely
related to the previously presented batch algorithm SIR, but relies on the sequential Bayes’
formula Eq. (2.17) and is therefore also referred to as sequential importance resampling. To
avoid confusion with the batch SIR algorithm, this term will not be used in the following.

Given a weighted sample En of the posterior p(·|y1:n) and a new data point yn+1, PF
generates a weighted sample En+1 of the posterior p(·|y1:n+1) by updating En using Eq. (2.17).
Analogously to the I-step in SIR, the weights w(m)

n are updated proportionally to the (local)
likelihood

w̃
(m)
n+1 ∝ p(yn+1|θ) · w(m)

n , (2.19)

involving, however, only the new data point yn+1, and normalized (as in the R-step of SIR).
The bootstrap filter [113] performs resampling at every step (as in SIR), however, it is more
efficient to only perform a resampling if too many samples carry an almost negligible weight
and the total weight is limited to only a few samples (weight degeneracy). An often used
criterion is based on the effective sample size

Meff(tn) :=
1

∑M
m=1

(
w

(m)
n

)2 (2.20)
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to decide whether to resample. Starting initially with uniform weights w(m)
0 = 1/M with

Meff(t0) = M , resampling should be carried out once Meff < M/2 (effective ensemble size
half of the initial ensemble size). If resampling is performed, it is followed by a so called
rejuvenation step [22] to prevent sample impoverishment by fixation to limited parameter
values:

θ(m)
n = θ̃(m)

n + ξ(m)
n , with ξ(m)

n ∼iid N (0, τB) (2.21)

with rejuvenation parameter τ > 0 and covariance matrix B ∈ Rnθ×nθ , where θ̃(m)
n denotes

the resampled parameters. For sufficiently small τ this procedure only introduces small
perturbations in the parameter space, hence it can be assumed that x(θ) ≈ x(θ̃). These two
steps, resampling and rejuvenation, ensure that the weighted sample En adequately represents
areas of posterior probability. Algorithm 1 summarizes the described steps of the standard
particle filter. For smoothing over the past predictions the previously predicted paths could
be resampled along with the states and parameters according to the current particle weights
at each step.

There exist many extensions, modifications, and add-on techniques for particle filters.
Depending on how the analysis ensemble is generated from the forecast ensemble, different filter
algorithms are distinguished, see e.g., [115, 116]. Among these, the class of ensemble transform
filters [116] is very promising as it replaces the stochastic resampling and rejuvenation step of
the standard particle filter by a deterministic transformation solving an optimal transport
problem, which allows to ensure certain properties, e.g., 2nd order accuracy [115]. However, in
the augmented state space the connection between the parameters and states is lost as larger
steps in the parameter space are undertaken, which means that the assumption x(θ) ≈ x(θ̃)
is no longer valid, requiring a post-processing step to fulfill the corresponding constraints (see
e.g., [117]).

Algorithm 1 Standard particle filter

Initialization of particles {(x(m)
0 , θ

(m)
0 , w

(m)
0 )}Mm=1

for j = 1 : n do

• Propagation under model equations . Eq. (2.18)

to generate the forecast ensemble {(x(m)f
j , θ

(m)
j−1, w

(m)
j−1)}Mm=1 .

• Update of importance weights w̃(m)
j = p(yj |h(x

(m)f
j ),Σ) · w(m)

j−1 . . Eq. (2.19)

• Normalization of importance weights: w(m)
j = w̃

(m)
j /

∑M
m=1 w̃

(m)
j .

• Calculate Meff . . Eq. (2.20)

if Meff < M/2 then

• Resampling of particles according to weights {w(m)
j }Mm=1

and set w(m)
j = 1/M for m = 1, . . . ,M .

• Rejuvenation of particles. . Eq. (2.21)

end if

end for

The presented batch and sequential DA algorithms are used in Chapter 3 for Bayesian
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forecasting, which also includes an interpretation within the pharmacometric setting. The
Gibbs sampler is applied to the hierarchical Bayesian inference problem in Chapter 5.

2.2.3 DA in health care
Health care applications, or more specific Bayesian forecasting in a PK/PD context, confronts
DA algorithms with different challenges compared to typical DA applications in terms of data
availability and model specifications. In this section, the different challenges arising from the
specific application in health care are described. Then specific application examples of DA in
health care are outlined.

Typical DA applications deal with the estimation of the state of a time-varying system, e.g.,
in navigation and tracking [27]. Diffusion models based on stochastic differential equations
(SDEs) are commonly used to describe uncertainties in the underlying models. The SDE
formulation allows separating model misspecification from measurement error, which is
typically summarized in PK/PD models in the RUV as defined in Eq. (2.4). SDE models
have also been studied in the PK/PD context [118, 119, 120, 121] but have so far not been
widely adopted. It has been found, that SDE-based models on the state level might not be
well suited for describing PK/PD dynamics [87]. The dynamics are represented too irregularly
and fluctuating, and biological laws and constraints are not well preserved, e.g., concentrations
should not be negative, or drug concentrations should not increase, which might require
post-processing steps [117].

Often, the model parameters are considered fixed or known, e.g., in numerical weather
prediction [24]. In contrast, in PK/PD models the parameters are to be estimated from
data. Rather than through stochastic fluctuations at the state level, differences between
individuals but also within one individual (IIV and IOV) are expected on the level of the
parameters, and deterministic state dynamics are considered. Therefore, it could be more
reasonable to model a stochastic process on the level of the parameters [122], which better
preserves biological constraints. The resampling and rejuvenation step in PF also allows a
certain temporal parameter evolution depending on the size of the rejuvenation parameter.
The time-varying nature of PK/PD parameters is already to some extent accounted for by
IOV, see e.g., Eq. (2.5). The hierarchical structure of PK/PD models already adds one more
level of variability, the IIV, which is generally not considered in typical DA applications.

In addition to the differences on the model level, also the data situation is very distinct.
SDE models require high-frequency data, which are generally not available in health care
[122], even with novel point-of-care devices (except in the ICU). The hierarchy of the NLME
framework makes use of the structure of the data in health care; data might be sparse on the
individual patient level, however, data might be available from many patients. In addition,
health care data provide varying information content about the model parameters, i.e., not
all data points are informative about all parameters, and intervention is required to learn
parameters (except for steady-state parameters). Also, health care data pose further challenges
comprising missing data, systematic errors, subjective scores based on physicians’ assessments,
unmeasured confounders, and mixtures of discrete and continuous variables [123]. The sparse
data situation in combination with the nonlinearity of the underlying dynamics hinders the
application of linearization approaches as frequently used in DA.

Despite the outlined differences, DA algorithms have been applied in health care; mainly
in a rich clinical data context, e.g., forecasting glucose values [124, 125, 28] or leveraging ICU
monitoring data [29]. The studies generally do not build on prior knowledge from previous
population analyses, i.e., the prior parameter uncertainty does not reflect the observed
variability in the patient population as estimated in NLME modeling. Novel digital health
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care devices as outlined in Section 2.1.1 demand more efficient real-time inference within the
existing MIPD and Bayesian forecasting framework that also enables model-based predictions
with quantified uncertainty for well-founded clinical decision-making.
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Figure 2.4: Overview of data assimilation (DA) approaches. We categorized the methods according to the
way data are processed—all at once (in a batch) or one data point at a time (sequentially). The two different
approaches rely on different formulations of Bayes’ formula. Within these two approaches we distinguished
between the different levels of approximation of the posterior distribution. Methods that are based on
minimization of a cost functional (also called variational DA) determine a point estimate, the mode, of the
posterior, i.e., maximum a-posteriori (MAP) estimation. Parametric approximations assume a parametric
distribution, e.g., the normal distribution to approximate the shape of the posterior (normal approximation
(NAP)). Non-parametric approximations, in contrast, do not assume any distributional form and generally rely
on sample approximations to the full posterior (displayed as histograms), e.g., sampling importance resampling
(SIR), or Markov chain Monte Carlo (MCMC) methods. Sequential DA approaches also comprise parametric
and non-parametric methods. Parametric methods, e.g., the Kalman filter (KF), rely on the conjugate update
of gaussian distributions. Particle filters provide a consistent extension to nonlinear models and non-gaussian
distributions. The proposed categorization is not universal and many hybrid methods, i.e., combinations
between different algorithms exist.
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2.3 Reinforcement learning (RL)
RL, a subfield of ML, comprises approaches for solving decision problems in which decisions
have to be made in stages and the outcome is to some extent uncertain [126, 31, 32]. These
kinds of problems appear in many application fields, e.g., games [34], robot motion control
[127], or online advertisement [128]. A comprehensive overview of the history of RL is given
in [32]. At the core of an RL setting is the sequential trial-and-error interaction between a
goal-directed agent (or controller) with an uncertain environment. The agent’s task is to
learn how to act best with respect to optimizing a specific long-term goal [129, 32]. The
search is guided by a feedback signal (the so called reward) that evaluates the consequences
of the chosen actions. The field of RL is closely related to dynamic programming [130, 32],
stochastic optimal control [33], AI [131], and bandit problems [132]. The RL problem of
repeatedly making decisions in a stochastic environment can be formalized as an MDP.

Markov decision process (MDP). MDPs build the theoretical foundation for modeling
sequential decision-making problems under uncertainty [133, 134]. An MDP comprises the
tuple (S,A,R, p, γ), with

• States S: a set of states. The current situation of the environment at a certain time
point t is summarized in a state st ∈ S, e.g., the current location of a robot (in x and y
coordinates) in a navigation task. The state should satisfy the Markov property, i.e.,
the present state represents the history relevant for future states. If the state is not
fully observable, the MDP is called partially observable (POMDP), e.g., only noisy or
partial measurements of the state are available.

• Actions A: A set of actions. The agent can interact with the environment by choosing
an action at+1 ∈ A at decision time point t which will change (or control) the state of
the environment, e.g., the robot can choose to go left, straight ahead, or right.

• Rewards R: The reward is the immediate (numerical) value of taking an action, i.e., it
evaluates the change of state of the environment as a consequence of actions. It can be
a function of the state, or the state and the action, R : S → R or R : S ×A→ R. The
definition of the reward function requires domain knowledge and is crucial for achieving
the desired goal. The reward might also be delayed, as e.g., in games like chess, where
often all rewards are zero except for the terminal states (a win or a loss).

• Transition probabilities p: Due to the uncertain nature (or incomplete knowledge) of the
environment, transitions between states as a consequence of an action are characterized
by transition probabilities

p(st+1|st, at+1) = P[St+1 = st+1|St = st, At+1 = at+1] , (2.22)

i.e., the probability of being in state st+1 given that action at+1 was taken in state st.
The transition probability depends only on the current state and not on the history due
to the Markov property.

• Discount factor γ ∈ [0, 1]: The discount factor represents the weighting of future rewards.
If γ = 0, the agent is only interested in collecting immediate rewards, future rewards
are neglected. As γ → 1, future rewards are increasingly taken into account. For γ = 1
the MDP is considered undiscounted; all future rewards are weighted equally.
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The behavior of the agent, i.e., choosing actions in given states of the environment, is modeled
by the policy π,

π(a|s) = P[At+1 = a|St = s]. (2.23)
If the agent follows a random policy, the agent will select each action with uniform probability,
i.e., π(a|s) = 1/|A| , ∀ a ∈ A. Solving an MDP corresponds to finding an optimal policy
π∗, i.e., an optimal interaction of the agent with the environment. The goodness of a policy
is evaluated based on the so called return Gt at time step t, defined as the weighted sum of
rewards over the remaining time horizon

Gt = Rt+1 + γRt+2 + · · ·+ γT−(t+1)RT =

T∑

k=t+1

γk−(t+1)Rk , (2.24)

in the case of a finite-time horizon RL problem, i.e., there are sequences of limited length T ,
called episodes. In contrast, infinite-time horizon RL problems are ongoing tasks without a
clearly defined end (i.e., T = ∞). The objective of the agent is to maximize the expected
long-term return

qπ(s, a) := Eπ[Gt|St = s,At+1 = a] , (2.25)
given the current state St = s and action At+1 = a over the space of policies π. The function
qπ is called the action-value function as it describes the value of taking action a in state s
[32]. Similarly, the value of a state

vπ(s) := Eπ[Gt|St = s] , (2.26)

is the expected return starting from state s, following policy π, and averaging over all possible
actions.
The value functions Eq. (2.25) and Eq. (2.26) take a central role in RL as they represent
an important intermediate step towards improving policies in a state-space search rather
than searching the space of plans/actions. Learning an optimal policy (i.e., solving an MDP)
involves maximizing the expected long-term return qπ, which in turn depends on the current
estimate of π. Therefore, RL approaches are typically based on an iterative process of
value estimation (q̂π) and policy improvement [32]. Dynamic programming can be used to
solve MDPs for small problems (i.e., small state and action spaces) in which the transition
probabilities are known. However, for most real-world problems dynamic programming is not
feasible [135]. RL can be seen as approximate dynamic programming to approach intractable
real-world problems. To reach this goal, RL techniques generally use sampled data of the
transition functions to represent the underlying dynamics [31, 135]. We will focus, in the
following, on solving MDPs via model-based RL and consider finite sets of states and actions.

Model-based RL. Most RL algorithms are data-driven approaches that do not require
a mathematical/computational model of the data generating/underlying process but solely
rely on experience (model-free RL). Model-based RL methods can, however, be used in
applications for which models exist that describe a system and/or if not enough data are
available for a purely data-driven approach. In model-based RL (also called planning), the
model is used to generate data (simulated experience), which is subsequently used within
model-free RL methods instead of ‘real’ experience.

Model-based RL methods that rely on sampling (sample-based planning) estimate the
expected value in Eq. (2.25) via a sample approximation, where each sample k = 1, . . . ,K
corresponds to a model-generated trajectory (episode)

s
(k)
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a
(k)
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(k)
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using a policy πk. For each sample k the current sample approximation of Eq. (2.25)

qk(s, a) =
1

Nk(s, a)

k∑

k′=1

T∑

t=1

1
(s

(k′)
t =s,a

(k′)
t+1 =a)

G
(k′)
t (2.27)

is computed. Here, Nk(s, a) denotes the number of times that action a was chosen in state s
amongst the first k episodes, and G(k)

t = r
(k)
t+1 + γr

(k)
t+2 + . . . is the discounted sum of sampled

rewards. Ideally, Nk(s, a) should be large for each state-action combination to guarantee a
good approximation of the expected return (law of large numbers). This, however, is infeasible
for most applications (curse of dimensionality). A major aspect of RL is therefore the trade-off
between exploration and exploitation; the agent should take actions that—at the current
stage of approximation—give a high return (exploitation), but should also try new actions
that potentially may lead to an even higher return (exploration), i.e., to avoid local maxima.
Different algorithms were developed to provide a good approximation of Eq. (2.25).

In this work, only tabular representations of the action-value function are considered in the
following algorithms assuming discrete states and actions. However, for continuous state or
action representations, or large state-action spaces, function approximations should be used,
e.g., a linear approximation, qk(s, a) ≈ q̂(s, a, ψ) = ψTφ(s, a) with weights ψ and features φ,
or neural networks for a nonlinear function approximation, see e.g. [136].

2.3.1 Q-learning
Q-learning [137, 138] is a model-free RL method based on the decomposition of the action-value
function, Eq. (2.25), into the immediate reward and the discounted action-value of succeeding
state and action

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ[Rt+1 + γGt+1|St = s,At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a] . (2.28)

In contrast to Monte Carlo learning (as described above), the target of so-called temporal
difference (TD) approaches [139] is not the total return Gt but Rt+1 + γqπ(St+1, At+1) or
in terms of value functions Rt+1 + γvπ(St+1). Equation (2.28) is generally called Bellman
expectation equation (for the state-action function) [130]. This decomposition is especially
useful for long sequences (T large) or infinite time horizons (T = ∞). In Q-learning the
sample approximation of Eq. (2.25) is computed via

qk+1(s, a) = qk(s, a) + αk ·
(
Rt+1 + γ ·max

a′
[qk(s′, a′)]− qk(s, a)

)
,

where s′ is the next state when taking action a in state s at decision time t. A crucial parameter
to ensure convergence to the optimal action-value function (i.e., qk(s, a)→ q∗(s, a) as k →∞
[138]) is the learning rate α, which needs to decay appropriately with the number of iterations,
e.g., as a Robbins-Monro sequence [140].

In Q-learning, frequently the ε-greedy approach is used to address the aforementioned
exploration-exploitation trade-off: With probability ε, a random action is chosen, and with
probability 1 − ε, the greedy action, i.e., the current argmax of qk (policy improvement).
Also, ε can be chosen in a decreasing manner, to encourage exploration in the beginning and
exploitation at later training episodes.
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s0

π(a1|s0)

p(s1|a1, s0)

Selection

Expansion

Simulation

Backpropagation

1Figure 2.5: Illustration of Monte Carlo tree search (MCTS). 1.) Selection: Within the search tree, actions
are selected according to the tree policy, until a not yet fully expanded node is reached. 2.) Expansion: The
action is chosen among the unvisited actions according to a roll-out policy (e.g., random) and the new node is
added to the search tree. 3.) Simulation: From the new child node, a simulation is started using the roll-out
policy until the end of the episode/therapy. 4.) Back-propagation: The return is back-propagated through the
tree, i.e., action-values functions and number of visits are updated for each selected state-action pair within
the search tree.

2.3.2 Monte Carlo tree search (MCTS)
Monte Carlo tree search (MCTS) combines the Monte Carlo method with an incremental
asymmetric tree search [141]. It was mainly developed and applied to game tree search, e.g.,
AlphaGo [142]. In contrast to Q-learning, MCTS requires a model or simulator to simulate or
sample from the underlying process (simulation-based search). MCTS comprises four recursive
steps which are repeated in each episode, k = 1, . . . ,K, for building a search tree based on
random samples in the decision space which explores promising directions more exhaustively
[143], see Figure 2.5:

• Selection: Starting at the root node s0 actions are selected according to the tree policy
(πk) until a not yet fully expanded node, i.e., a node with an unvisited action, is reached.

• Expansion: If the selected node is expandable (nonterminal state), one child node is
added by selecting an unvisited action.

• Simulation: Following a default policy (often random) a single simulation is run until a
terminal state is reached. The return of this episode is calculated.
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• Backpropagation: The simulated return is backpropagated to the selected nodes in the
search tree. More specifically, back up means computing incrementally the expected
return via a running mean, i.e., in episode k

qk(st, a) = qk−1(st, a) +
1

Nk(st, a)

(
G

(k)
t − qk−1(st, a)

)
.

Note that just a basic version of MCTS is presented here and various modifications are
possible, e.g., adding several child nodes in the expansion step or running multiple simulations
in parallel. MCTS can also be combined with an efficient exploration and exploitation
strategy—called the upper confidence bound applied to trees (UCT) [144, 132], which was
originally developed in the context of bandit problems.

The upper confidence bound applied to trees. The simplest version of an RL problem
is the setting of a multi-armed bandit, i.e., a one-step decision problem [135]. The agent can
pull the arms of multiple ‘one-armed bandit’ (gambling) machines and observes the resulting
(random) reward. The arms correspond to the actions that the agent in an RL problem can
choose at one time instance (MDP with a single state). Each machine produces rewards with
unknown expectation. As a measure of success, the regret is typically considered in bandit
literature, i.e., the loss associated with not following the optimal policy from the beginning
(not pulling the arm of the machine with the highest expectation).

The bandit algorithm underlying UCT assigns an upper confidence bound (UCB) of the
average reward for each machine based on Hoeffding’s inequality [145]. The principle of
optimism in the face of uncertainty is implemented in the algorithm; instead of choosing the
arm (action) with the highest average return (greedy), one chooses the one with the highest
upper bound (UCB). Thus, integrating additionally how certain we are about the estimate of
the return. We consider the setting of Hoeffding’s second Theorem [145]:

Let X1, . . . , Xn be independent, bounded random variables (the rewards generated by
repeatedly pulling the arm of one machine), i.e., lbi ≤ Xi ≤ ubi with sample mean X̄ =
(X1 + . . .+Xn)/n, then

P
[
E[X] > X̄ + U

]
≤ exp

( −2n2U2

∑n
i=1(ubi − lbi)2

)
, (2.29)

where U represents the size of the one-sided confidence interval (upper confidence bound).
Translating Eq. (2.29) into the RL setting for X = G, i.e., each tree node is considered as a
distinct multi-armed bandit, see [34, 132]

P [qπ(s, a) > qk(s, a) + Uk(s, a)] ≤ exp

(
−2Nk(s, a)2Uk(s, a)2

∑
i(ubi − lbi)2

)
.

Choosing α to represent the probability that the true expected action-value exceeds the upper
bound (qk(s, a) + Uk(s, a))

exp

(
−2Nk(s, a)2Uk(s, a)2

∑
i(ubi − lbi)2

)
= α ,

leads to

Uk(s, a) =
√

(ub− lb)2 ·
√
− logα

2Nk(s, a)
,
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2.3.3 RL in health care

with ub = ubi and lb = lbi for all i = 1, . . . , Nk(s, a), i.e., the upper and lower bounds are
equal for all i. For the bandit problem, it was shown that α = Nk(s)−4 ensures logarithmic
regret [144], where Nk(s) :=

∑
a′ Nk(s, a′) are the number of visits of state s. This leads to

the UCB 1 algorithm [144] for the case [lb,ub] = [0, 1] with

Uk(s, a) =

√
2 logNk(s)

Nk(s, a)
. (2.30)

In [34] a variant of the algorithm

Uk(s, a) =

√
Nk(s)

1 +Nk(s, a)
(2.31)

was successfully used for game tree search (AlphaGo), which corresponds to

α = exp

(
−2Nk(s, a)2 · Nk(s)

(1 +Nk(s, a))2

)
≈ exp (−2Nk(s))

for large Nk(s, a). Note, the UCB 1 Algorithm is actually initialized by taking each action
once; this is, however, not possible in the tree setting due to the higher dimensionality,
therefore, the denominator of Eq. (2.31) was modified to avoid division by zero. The choice in
Eq. (2.31) encourages exploration as the numerator is larger than in Eq. (2.30). In a purely
model-based learning setting, exploration can be encouraged to a greater extent since the
measure of success is not the cumulative regret, but the goal is to search the tree efficiently
and exhaustively (during training). In contrast, to the often-used ε-greedy policy, which
chooses with probability ε a random action, UCT avoids choosing repeatedly actions with low
return (qk(s, a) and Uk(s, a) small) and also chooses actions more frequently that are close to
the maximum but have not been taken often (qk(s, a) and Uk(s, a) large).

We will employ MCTS in conjunction with UCT in Chapter 4 to determine RL-based
dosing policies for neutrophil-guided dosing in individualized chemotherapy.

2.3.3 RL in health care
Computing optimal drug administrations can be regarded as a sequential decision-making
problem under uncertainty in which dose decisions have to be made in stages and the outcome
in a patient for a given dose choice is associated with uncertainty [31]. The agent can be
seen as a virtual physician (also called AI clinician [146]) whose task is to learn a policy (or
strategy) of how to dose (act) best with respect to optimizing a specific expected long-term
response (return) of a virtual patient (an uncertain and delayed feedback environment)[32,
129, 147, 148]. Traditionally, these problems have been addressed with optimal control or
model predictive control, e.g. the artificial pancreas [149] The high potential of RL in health
care has been highlighted in recent review articles [129, 148], especially for delayed feedback
environments and various applications in different areas of health care exist, see [37] for a
comprehensive survey.

One major application area is the design of clinical trials, e.g., when to initiate the second
treatment line and which chemotherapeutic agent to choose [36] but also precision dosing has
been investigated (so called dynamic treatment regimens [37]), e.g., for anemia treatment
in hemodialysis patients [31] or management of sepsis in the ICU [146]. Unlike typical RL
applications, such as robotics or games, model-free RL in health care needs to learn dosing
policies from potentially sparse historical clinical data, i.e., the RL agent cannot directly
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2.3 Reinforcement learning (RL)

interact with the environment to learn a policy. This restricts the action space to actions
taken by clinicians previously, which could lead to suboptimal policies (as exploration is
not possible). PK/PD models, however, allow extrapolating, i.e., simulating the response
of patients to actions that have not yet been taken. Hence, the RL agent can interact with
the model, which enables exploration of the action space to find even better policies than
already existent in clinical practice, e.g., in model-based RL a tumor growth model was used
to simulate the change in mean tumor diameter [38] or an erythropoiesis model to simulate
hemoglobin levels [31].

A decisive quantity for deriving dosing policies using RL is the reward function. Ideally,
it is related to the overall therapy outcome, e.g., survival [146], however, often surrogate
markers of the treatment response are better accessible, e.g., the tumor diameter [38] or
hemoglobin concentration [31]. Improperly defined relationships between surrogate markers
to the overall outcome may have an unintended impact on the resulting policy, e.g., important
additional aspects such as side effects may be neglected. Weighting the various markers of
efficacy and toxicity relative to each other is a difficult task that requires an expert discussion
and preferences may vary from clinician to clinician [37]. Evaluation of the resulting policies
is, therefore, critical and has to be performed with great care before deployment [150, 151]. In
this regard, off-policy evaluation could be beneficial, which is an approach for estimating the
value of a policy (RL-learned policy), without actually applying it, based on data collected by
another policy (e.g., historical data using the current practice by physicians) [146]. Another
key aspect for applicability is to examine the interpretability and transparency of RL policies
in order to build confidence in the dose recommendations so that they are accepted by health
care professionals and eventually integrated into everyday healthcare use.
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3
Bayesian therapy forecasting and
clinical decision support

A crucial element of MIPD and clinical decision support is model-driven forecasting of the
individual therapy outcome integrating patient-specific TDM data and prior knowledge on
the patient-disease-drug system from previous clinical studies [15]. In clinical practice, it is
important that patient data can be processed efficiently, but at the same time, comprehensive
and reliable information about the therapy outcome and potential risks is required for thorough
clinical decision-making.

The challenge in therapy forecasting for MIPD is to infer information on the individual
model parameter values θi of a patient based on his/her covariate values and TDM measure-
ments. As introduced in Chapter 1, a Bayesian approach is very advantageous for this task.
Bayesian forecasting in the context of MIPD builds on prior knowledge in form of a structural
(Eq. (2.1)), observational (Eq. (2.2)), covariate (Eq. (2.3)) and statistical model (Eq. (2.4)).
The functional relationships of the models as well as the parameter estimates are the result of
a population analysis of clinical study data as described in Section 2.1.3. The unexplained
IIV and IOV in the population model (Eq. (2.3)) defines the prior uncertainty about the
individual parameter values. Then, assimilating measurements y1:n = (y1, . . . , yn)T into the
model based on Bayes’ formula Eq. (2.7) allows learning about individual parameter values
from the data. The remaining uncertainty of parameter values is encoded in the posterior
p(·|y1:n).

The currently most common approach for Bayesian forecasting is MAP estimation, as this
approach transforms the posterior inference problem into an optimization problem that can
be solved efficiently (Section 2.2.1). In MAP estimation, only the most probable individual
parameter values, i.e., the MAP estimates, are used to predict the individual therapy outcome
without quantifying associated uncertainties [20]. Thus, relevant risks associated with a dosing
regimen selection, e.g., treatment inefficacy or unacceptable toxicity, are not determined
hindering well-founded therapeutic decision-making. Quantifying associated uncertainties is
at the heart of making more informed decisions. In this chapter, which is based on [CM1],
we thoroughly compare in a TDM context different Bayesian DA methods, as introduced
in Section 2.2, that either (i) estimate only the posterior mode (MAP estimation) without
uncertainty quantification, or (ii) estimate the full posterior distribution (termed full Bayesian
approaches) to quantify uncertainties. The DA approaches comprise not only methods
that process patient data collected over time in a batch (i.e., all at once), like MCMC,
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3.1 Maximum a-posteriori (MAP) estimation: the current state-of-the-art

SIR, and NAP (see Section 2.2.1), but also PFs that allow for efficient sequential data
processing (see Section 2.2.2). In the context of chemotherapy-induced neutropenia, the clear
benefits of uncertainty quantification compared to purely MAP-based predictions (as, e.g.,
in [73]) are presented using the gold-standard model for docetaxel-induced neutropenia [91,
67], see Section A.2 for model details. Further, we compare the full Bayesian approaches
regarding the quality of uncertainty quantification and computational runtime for multiple
cycle chemotherapy using the BME model described in Section 2.1.3 [90]. Finally, the efficient
data processing of the sequential DA approach is discussed in a frequent monitoring context,
where novel health care devices (e.g., home-monitoring devices) allow patients to measure
and report individual biomarker concentrations online.

In this chapter, TDM data are considered for a single individual and therefore there is
no running index for individuals (i.e., we drop the i). The hyperparameters or population
parameters, i.e., all parameters after the semicolon in Eq. (2.3), are assumed to be known
(fixed) in the Bayesian forecasting framework. As a consequence, we drop them as well as
the subscripts in the notation in this chapter. As a result, the likelihood at the individual
level reads p(·|θ) = p(·|θ;hj(θ),Σ) and the prior p(·) = pΘ( · ; θTV(cov),Ω). In the case of
IOV (Eq. (2.5)), the parameter vector contains parameter values, which are constant across
occasions (cycles) θIIV and parameters that are specific for each cycle c, θIOV

c . For a lognormal
distributional assumption for the parameters, this is given by

θc = elog(θTV)+η
︸ ︷︷ ︸

=θIIV

· eκc︸︷︷︸
=θIOV

c

. (3.1)

The θIIV parameters of a patient need to be learned across all treatment cycles and the cycle
specific parameters θIOV

c based on the data observed in cycle c.

3.1 Maximum a-posteriori (MAP) estimation: the cur-
rent state-of-the-art

MAP estimation infers the mode of the posterior distribution, i.e., the most probable individual
parameter values given patient-specific measurements y1:n, Eq. (2.10). It is, however, more
convenient and numerically more stable to minimize the negative log-posterior instead

θ̂MAP
n = arg min

θ
− log p(θ|y1:n) = arg min

θ
− log p(y1:n|θ)− log p(θ) . (3.2)

Choosing an additive normal residual error model (Yj = hj(θ) + εj with εj
iid∼ N (0, σ2)) and a

lognormal IIV model for the parameters (θk = θTVk · eηk with ηk
iid∼ N (0, w2

k)) as in the models
considered in this thesis (Section 2.1.3) yields

θ̂MAP
n = arg min

θ

n

2
log(2π) +

n

2
log σ2 +

1

2

n∑

j=1

(yj − hj(θ))2

σ2
+
nθ
2

log(2π)

+
1

2

nθ∑

k=1

logω2
k +

nθ∑

k=1

log θk +
1

2

nθ∑

k=1

(log(θk)− log(θTVk ))2

ω2
k

,

(3.3)

with data y1:n = (y1, . . . , yn)T observed up to time point tn. The MAP estimate θ̂MAP
n is a

one-point summary of the posterior distribution, i.e., the distribution is approximated with a
delta peak, without quantification of the associated uncertainty. The extension for estimating
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also IOV parameters is given in Section B.2.2. The optimization problem Eq. (3.2) can be
solved efficiently using gradient descent approaches. Since these are, generally, only local
optimizers they should be combined with a sensitivity analysis or multi-start search, see
e.g., [152, 153]. MAP estimation was performed in Matlab R2017b using the interior-point
algorithm in fmincon. The Matlab toolbox AMICI [152] was used for simulation of the system
of ODEs and for computations of sensitivities used in gradient calculations, see Section B.1
for details. The individual prediction of the therapy outcome is typically generated by solving
the structural Eq. (2.1) and observational model Eq. (2.2) for the MAP estimate θ̂MAP

n (in
the sequel called MAP-based predictions).

3.2 Normal approximation (NAP)
To overcome the one-point summary limitation of the MAP estimate, the posterior p(·|y1:n)
may be approximated locally by a normal distribution located at the MAP estimate, see
Eq. (2.11). As discussed in Section 2.2.1, this approximation can be very precise in the case
of highly informative data sets, however, this is often not the case in Bayesian forecasting as
not all data points are informative about all parameters.

The uncertainty of the model parameters can be propagated to the observables using either
a simulation-based approach or the delta method. In the simulation-based approach, a sample
En is generated from the normal distribution in Eq. (2.11). Based on this posterior sample,
we may approximate quantities of interest in the observable space by solving Eq. (2.1)+(2.2)
for all elements in En [154]. This serves as the basis for credible intervals (CrIs); applying
subsequently the residual error model (Eq. (2.4)) is the basis for prediction intervals (PIs).

Alternatively, the delta method [155, section 5.5] could be used to determine the limiting
distribution of a differentiable function of the parameters T (θ) [155, section 5.5]. For forecasting
in the observable space: T (θ) = h(x(t), θ) =: ht(θ). Using the delta method, the uncertainties
are propagated from the parameters to the observable via the output sensitivities Sht (θ̂MAP

n ) =
∇θht(θ)

∣∣
θ̂MAP
n

[155, section 5.5]:

p(ht(θ̂
MAP
n )|y1:n) ≈ N

(
ht(θ̂

MAP
n ), Sht (θ̂MAP

n )TΣMAPSht (θ̂MAP
n )

)

with ΣMAP = [I(θ̂MAP
n )]−1. The CrI in observable space is then given by

CrIα = ht(θ̂
MAP
n )± z1−α/2

√
σ2
CrI(t) , (3.4)

where z1−α/2 is the quantile of the standard normal distribution and σ2
CrI(t) is computed

using the output sensitivities

σ2
CrI(t) ≈ Sht (θ̂MAP

n )TΣMAPSht (θ̂MAP
n ) ,

see also Section B.1 for more details regarding sensitivity computations. For a more con-
servative choice, the quantiles of the Student’s t distribution could be used in Eq. (3.4)
[154].

For determining the PI, the residual variability is additionally taken into account

σ2
PI(t) ≈ Sht (θ̂MAP

n )TΣMAPSht (θ̂MAP
n ) + σ2 ,

with σ2 denoting the univariate RUV Σ. Consequently, the prediction interval is given by

PIα = ht(θ̂
MAP
n )± z1−α/2

√
σ2
PI(t) .
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3.3 Bayesian DA to quantify the uncertainty

Since the delta method involves differentiation of T , it is not straightforward to apply the
method to any desired quantity of interest, e.g., T (θ) = cnadir(θ) = minht(θ) (Figure 2.1).

3.3 Bayesian DA to quantify the uncertainty
Quantifying associated uncertainties is key to making well-founded decisions, particularly in
clinical applications for which dosing decisions are associated with potentially serious risks for
the patient. In the following, the DA algorithms introduced in Section 2.2 for full posterior
inference are described in the specific context of Bayesian forecasting of the therapeutic
outcome combining prior knowledge from NLME analysis with patient-specific TDM data.

3.3.1 Sampling Importance Resampling (SIR)
The SIR algorithm is a fully Bayesian approach that processes data in a batch based on
importance sampling (Section 2.2.1). We considered for Bayesian forecasting the prior as
importance distribution, πI(θ) := p(θ) = p(θ|θTV(cov),Ω) assuming that the patient under
consideration is sufficiently well represented by the clinical patient population given by the
prior. In this case, the importance weight in Eq. (2.15) is given by the likelihood

w̃(m)
n =

p̃(θ̃
(m)
n |y1:n)

p(θ̃
(m)
n )

= p(y1:n|θ̃(m)
n ) .

Note that once a new TDM data point yn+1 becomes available, the SIR algorithm does
not simply update the present sample points θ(m)

n in En, but re-performs all three steps based
on the updated posterior p

(
· |y1:n+1

)
to determine En+1.

3.3.2 Markov Chain Monte Carlo (MCMC)
A popular alternative to SIR in Bayesian inference are MCMC methods with a wide range
of different algorithms (Section 2.2.1). In Bayesian forecasting, MCMC was previously
considered with the prior as fixed proposal distribution (independence sampler) for sparse
patient monitoring data [156]. To counteract large rejection rates and ensure efficient sampling
as the posterior is becoming narrower with more data, we used an adaptive M-H sampler with
lognormally distributed proposal distribution located at the current position in the Markov
chain

πP (·|θ(m−1)) := LN (·|θ(m−1);Cov[p̂(log(θ)|y1:n−1]) .

The variance is computed from the previously estimated posterior based on TDM data
available up to time tn−1. Since we employed the M-H algorithm with a lognormal, hence
asymmetric, distribution as a proposal, a correction term is required in the acceptance
probability to account for the asymmetry. Using the probability density function of the
lognormal distribution, the acceptance ratio Eq. (2.16) in the case of a lognormal proposal
distribution is given by

α = min
[
1,

p(θ∗|y1:n)

p(θ(m−1)|y1:n)
· LN (θ(m−1)|θ∗,Ω)

LN (θ∗|θ(m−1),Ω)
=

p(θ∗|y1:n)

p(θ(m−1)|y1:n)
·

∏
k(θ∗)k∏

k(θ(m−1))k

]
,

where k = 1, . . . , nθ. For the first data point y1 the Markov chain is initialized at the typical
value θ0 = θTV(cov) and for posterior inference at time point tn at the posterior expectation
based on data y1:n−1: θ0 = E[p̂(log(θ)|y1:n−1)].
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3.3.3 Particle filters (PFs)

0 5 10 15 20 25 30 35 40

time [days]

10-1

100

101

102

ne
ut

ro
ph

ils
 [1

0
9
 c

el
ls

/L
]

0 5 10 15 20 25 30 35 40

time [days]

10-1

100

101

102

ne
ut

ro
ph

ils
 [1

0
9
 c

el
ls

/L
]

0 5 10 15 20 25 30 35 40

time [days]

10-1

100

101

102

ne
ut

ro
ph

ils
 [1

0
9
 c

el
ls

/L
]

prior forecast

smoothed analysis

a-posteriori forecast

time [days]

TDM data
median
90% confidence/credible interval
90% prediction interval (incl. RUV)

1
Figure 3.1: Step-by-step description of the particle filter. The different steps of the particle filter are depicted
in the context of forecasting the time course of neutropenia. In grey the prior forecast is depicted with median
(solid line), 90% confidence interval (CI) (shaded area) and 90% prediction interval (PI) (lighter shaded area).
The updated a-posteriori (smoothed) prediction for the first cycle (21 days) and the a-posteriori forecast for
the next cycle based on three observations (black crosses) is depicted in green (solid line: median, shaded area:
90% CrI, lighter shaded area: 90% PI).

3.3.3 Particle filters (PFs)
In contrast to SIR and MCMC, which process data in a batch, PF constitutes a sequential
approach to DA (Section 2.2.2), see also [22, 113, 114] for a detailed introduction. As in SIR
and MCMC, evaluation of the likelihood involves solving the structural model in Eq. (2.1).
Since the structural model is deterministic, one may either solve Eq. (2.1) with initial condition
x0(θ) for the total timespan [t0, tn+1] (as in SIR and MCMC) or with initial condition xn(θ)
for the incremental timespan [tn, tn+1]. The latter approach requires to store for each sample
point (θ

(m)
n , w

(m)
n ) also the corresponding state x(m)

n at time tn, since typically the structural
model cannot be solved analytically. The incremental approach makes use of the Markov
property that the future state is independent of the past when the present state is known.

The resulting triple
(
θ

(m)
n , x

(m)
n , w

(m)
n

)
is called a particle. In our setting, the ensemble

of particles can be interpreted as the state of a population of virtual individuals at time tn,
whose ‘diversity’ represents the uncertainty about the state/parameters of the patient at
time tn, given the individual TDM measurements y1:n. The posterior p(·|y1:n) obtained by n
sequential update steps in Eq. (2.17) is mathematically identical to the posterior obtained in
Eq. (2.7) by assimilating all data y1:n in a batch [103, section 3.3.3]. However, the sequential

35



3.4 Workflow in Bayesian forecasting

update is much more efficient as it involves a reduced integration time span. In addition, in
the case of IOV only the IOV parameters of the current occasion (cycle) need to be taken
into account, thus, reducing the dimensionality of the inference problem. The rejuvenation
was chosen proportional to the absolute value of the parameter in contrast to the general
form Eq. (2.21), i.e., ξ(m)

n ∼iid N (0, τ · |θ̃(m)
n |). The IOV parameters are re-initialized at each

occasion, which has also a rejuvenation effect.
The steps of the particle filter (Algorithm 1) are illustrated in Figure 3.1 including the

prior ensemble forecast, the smoothed analysis of the TDM data, and the a-posteriori forecast
in the context of forecasting the neutropenia time course integrating neutrophil measurements.

3.4 Workflow in Bayesian forecasting
In full Bayesian forecasting, uncertainty is quantified on the parameter level and subsequently
propagated to the observable level, possibly further summarized for some key quantities of
interest, see Figure 3.2. Prior to observing patient-specific data, the parameter uncertainty
is characterized by the prior (Eq. (2.3)). Sampling from the prior allows to make a-priori
predictions of the neutropenia time course and its uncertainty in form of a (1− α)-confidence
interval (CI). Also, a-priori predictions for quantities of interest can be derived, e.g., the
neutropenia grade (Figure 3.2, left column). These predictions (including uncertainties)
correspond to our expectations prior to observing any individual patient data of the patient to
be treated. Once patient-specific data are assimilated into the Bayesian model, the remaining
uncertainty about the parameter values is characterized by the posterior. A posterior sample
En allows to update also the uncertainty in the observable space (CrIs) and the quantities of
interest (Figure 3.2, middle column).

Forward uncertainty propagation corresponds to transforming a probability distribution
(prior or posterior) under a typically nonlinear mapping T (·), resulting in a transformed
quantity ψ = T (θ). For illustration, we assume the one-dimensional case with strictly
increasing T and θ = T−1(ψ). Then, the posterior in terms of ψ is given by [157, section 1]

pΨ(ψ|y1:n) = pΘ(θ|y1:n) · dT
−1(ψ)

dψ
, (3.5)

which is approximated in sampling-based approaches (cf. Eq. (2.13)) by

p̂Ψ(ψ|y1:n) =

M∑

m=1

w(m)
n 1{ψ(m)= ψ} ,

with ψ(m) = T (θ(m)). This allows the computation of any desired summary statistic, e.g.,
posterior expectation or quantiles. MAP estimation, in contrast, characterizes the posterior
by a single value and allows only to make a single MAP-based prediction by mapping the
MAP estimate θ̂MAP

n to the quantity of interest T (θ̂MAP
n ), lacking crucial information on its

uncertainty (Figure 3.2, right column). Importantly, for nonlinear T this does not result in
the most probable outcome, due to the Jacobian factor dθ

dψ = dT−1(ψ)
dψ in Eq. (3.5) [158, 87]:

The most probable outcome is defined as the outcome with maximum posterior probability

ψ̂MAP
n = arg max

ψ
pΨ(ψ|y1:n) ,
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Figure 3.2: Overview of the workflow in Bayesian forecasting for clinical decision support comparing full
Bayesian inference to maximum a-posteriori (MAP)-based prediction. In full Bayesian inference uncertainties
in the parameter values are propagated to uncertainties in the observable space and quantities of interest.
The posterior p(θ|y1:n) is displayed for the parameters ‘Slope’ (drug effect parameter) and ‘Circ0’ (pre-
treatment neutrophil concentration). For the prior and full Bayes (reference) approach (sampling importance
resampling (SIR) with M = 106) samples (dots) from the distributions are shown with contour levels. In the
observable space the point estimates (solid lines) are displayed with the central 90% CrIs (dashed lines and
shaded area) along with the therapeutic drug/biomarker monitoring (TDM) data (crosses). The a-priori/a-
posteriori probabilities are calculated for the neutropenia grades (grade 0 to 4). Note that y1 corresponds to
the measurement of baseline neutrophil counts (‘Circ0’) and is taken into account in the posterior.
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Figure 3.3: Illustration of a nonlinear transformation of a probability density. For illustration a normal
distribution pΘ(θ) = N (·|0, 1) is transformed with ψ = T (θ) = exp(θ), which results in the lognormal
distribution pΨ(ψ) = LN (·|0, 1) (black line with dots). The red line shows the transformation of pΘ(θ)
as a function, pΘ(T−1(ψ)) not integrating to one. The transformed mode of the normal distribution,
exp(µ) = exp(θ̂MAP), is not the mode of the lognormal distribution but the median. The illustration is based
on [159, Figure 1].

which satisfies (assuming for illustration that T is strictly increasing)

0 =
d

dψ
pΨ(ψ|y1:n)

Eq. (3.5)
=

d

dψ

[
pΘ(T−1(ψ)|y1:n) · dT

−1(ψ)

dψ

]

=
d

dθ
pΘ(T−1(ψ)|y1:n) ·

(
dT−1(ψ)

dψ

)2

(3.6a)

+ pΘ(T−1(ψ)|y1:n) · d
2T−1(ψ)

dψ2
. (3.6b)

For the transformed MAP estimate ψ = T (θ̂MAP
n ), the first term, Eq. (3.6a), is zero, since its

first factor vanishes by definition. The second term, Eq. (3.6b), however, is non-zero, since
both its factors are non-zero for nonlinear T . Therefore, the transformed MAP estimate does
not satisfy the condition for the mode of the transformed posterior probability and hence,
T (θ̂MAP

n ) 6= ψ̂MAP
n .

The transformation of random variables is illustrated in Figure 3.3 for the case of trans-
forming a normal distribution N (µ, σ2) with the exponential function T (θ) = exp(θ), which
results in the lognormal distribution LN (µ, σ2) with probability density function

pΨ(ψ) =
1

σ
√

2π
· exp

(
− (lnψ − µ)2

2σ2

)

︸ ︷︷ ︸
=pΘ(T−1(ψ))

· 1

ψ︸︷︷︸
=
dT−1(ψ)

dψ

.
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The mode of the normal distribution is µ = θ̂MAP but the mode of the lognormal is defined
as exp(µ− σ2) 6= exp(µ).

In the following, we investigate this theoretical aspect in the specific application of interest
and compare the different algorithms proposed for Bayesian forecasting in the therapeutically
relevant example of chemotherapy-induced neutropenia.

3.5 Comprehensive and informative therapy forecasting
and decision-support in oncology

Two simulation studies were performed in MATLAB R2017b/2018b to analyze the approaches
regarding their suitability to support MIPD for the frequently used anticancer agents docetaxel
and paclitaxel.

Biomarker data for single/multiple cycle simulation studies. For the single cycle
study with docetaxel (100 mg/m2 BSA, 1 h i.v. infusion), we used the NLME model in [67]
as prior knowledge, see Section 2.1.3 and Section A.2.1+A.2.3. It is based on the well-known
PD model in [91] and describes the effect of a single dose of the anticancer drug docetaxel
based on monitoring neutrophil counts. The covariates AGE and AAG were sampled from a
normal distribution with mean given by the median and an estimated variance from the given
observed range. The parameter estimates used for the PK/PD model are given in Table A.1
& A.3. As in [73] we assume γ to be fixed and estimated the parameters ‘Circ0’, ‘MTT’, and
‘Slope’. A virtual population (N = 100) was generated based on the patient characteristics
provided in [67]. For inference, neutrophil concentrations were considered on a log-scale at
time points t = 0, 3, . . . , 21days post-dose. This simulation study aims to demonstrate the
limitations of MAP estimation for a model frequently used in MIPD (see, e.g. [73, 75]).

Since recursive data processing and decision-support gain in relevance for long-term
monitoring, we performed a simulation study for multiple cycle therapy with paclitaxel using
the BME model in [90] (Figure 2.2). It describes the effect of the anticancer drug paclitaxel
(200 mg/m2 BSA, 3 h i.v. infusion) over 6 cycles of 3weeks each, corresponding to treatment
arm A of the CEPAC-TDM study [52], see Section 2.1.3 and Section B.2.2. The model includes
IOV on PK parameters describing the variability between cycles within one patient. Therefore,
the parameter values comprise the interindividual parameters (θIIV), and a parameter for
each occasion (θIOV), see Eq. (3.1). As a consequence, the size of θ increases with every
occasion/cycle:

θ = (θIIV, θ
1
IOV, . . . , θ

C
IOV) , (3.7)

where C denotes the number of cycles, see Section B.2.2 for details.
We were interested in a setting where data becomes available sequentially (one-by-one)

and assumed that neutrophil concentrations are monitored every third day, e.g., via a home-
monitoring device, see Section 2.1.1. To this end, neutrophil concentration data were simulated
for a virtual patient using Eq. (2.3)-(2.4) and the corresponding model (Section 2.1.3). Then
the individual parameter values were inferred based on the simulated neutrophil concentration
data available up to a certain time point, using the same model. For the statistical analysis,
this procedure was repeated for N = 100 virtual patients (with covariate characteristics
mirroring the real study population underlying the NLME model).
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3.5 Informative decision support in oncology

Method comparison

For all sampling-based methods (NAP, SIR, MCMC, PF) we used a sample of size M = 103.
For MCMC we chose a burn-in of 100 samples in our analysis. For the MAP estimation,
parameter bounds are needed for the MATLAB optimizer fmincon. The lower bounds were
taken from the code provided in [160] and the upper bounds were tested so that the optimizer
did not reach the bound. Since the posterior is analytically intractable, an extensive sample
of size M = 106 was used as a reference, called ‘full Bayes (reference)’ in the sequel, which
was generated by SIR and cross-checked with MCMC (see Figure B.1, since these approaches
are exact in the limit M → ∞). As a statistical measure for the quality of uncertainty
quantification, we considered the Hellinger distance

H(P̂ , P ref) :=
1√
2

√√√√
b∑

i=1

(√
p̂i −

√
prefi

)2

, (3.8)

which measures the difference between the discrete sampling-based a-posteriori probability
distribution P̂ = (p̂1, . . . , p̂b) and the reference solution P ref = (pref1 , . . . , prefb ) generated with
SIR and M = 106 for b fixed bins.

First, we show the limitations of MAP estimation for MIPD and how full Bayesian
approaches can overcome these limitations (using SIR with M = 106 as reference). Next, we
compare different full Bayesian approaches with reduced sample sizes (M = 103) regarding
accuracy and computational efficiency.

3.5.1 Unfavorable properties of MAP-based predictions
The first example of decision support in individualized chemotherapy employs the most
frequently used model of neutropenia [91]. The MAP estimate θ̂MAP

n is derived given experi-
mental data y1:n = (y1, . . . , yn)T , see Eq. (2.10) and Eq. (3.3) for the specific setting of interest.
In the context of TDM, it is used to predict the future time course x(t; θ̂MAP

n ) of the patient
and thereon based observables. In mathematical terms, θ̂MAP

n is mapped to some quantity
of interest T (θ̂MAP

n ), e.g., the nadir concentration. As pharmacometric models are generally
nonlinear, this does, however, not result in the most probable outcome (see Section 3.4). This
is due to the fact that first determining the MAP estimate and then applying a nonlinear
mapping is in general different from first applying the mapping to the full parameter posterior

and then determining its MAP estimate: T
(
θ̂MAP
n

)
6= T̂ (θn)

MAP
. Figure 3.4 illustrates this

aspect with T (θ) = cnadir(θ). Note that the mode of the posterior is correctly identified in
parameter space (left panel), however, due to the nonlinear transformation the MAP-based
nadir concentration cnadir(θ̂MAP

n ) does not correspond to the a-posteriori most probable nadir
(mode of the posterior of the nadir concentration). The MAP-based nadir concentration
predicts grade 3 neutropenia, while the a-posteriori most probable nadir concentration is
within the range of grade 4 neutropenia. In this example the severity of neutropenia is
critically underestimated with possible clinical implications. Additional details and analyses
are provided in Figure B.2.

Thus, MAP-based estimation lacks both, a measure of uncertainty and the feature to
predict the most probable outcome/quantity of interest. In addition, relevant outcomes such
as the risk of grade 4 neutropenia can not be evaluated from the point estimate alone. MAP-
based estimation, therefore, provides a biased basis for clinical decision-making. In contrast,
full Bayesian inference provides access to the full posterior distribution of the parameters
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3.5.2 Uncertainty quantification for informed decision-making
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Figure 3.4: MAP-based predicted nadir concentration is not the most (a-posteriori) probable nadir concentration.
We considered the single cycle study with docetaxel with four observed data points y1:4 and forecasted the
nadir concentration based on the posterior p(θ|y1:4) using MAP estimation and the full Bayes (reference)
approach (SIR with M = 106), where θ comprises the parameters ‘Circ0’ (baseline neutrophil counts), ‘MTT’
(mean transit time) and ‘Slope’ (drug effect). The MAP estimate of the parameters coincides with the mode of
the posterior distribution of the parameters (left panel), however, the mode is not preserved under nonlinear
transformation (see text). Therefore, cnadir(θ̂

MAP) with cnadir(·) denoting some observable T (·) does not
equal the mode of the a-posteriori probability pT (Θ)(·|y1:n) of the nadir concentration. Please also refer to
Figure B.2 for further illustration and analysis.

and correctly transforms uncertainties forward to the observables and quantities of interest,
allowing to compute any desired summary statistic and relevant risks [103, Section 5.2].

3.5.2 Uncertainty quantifications for more comprehensive, differ-
entiated understanding and thus better informed decision-
making

The first scenario served to demonstrate the limitations of MAP-based predictions for the
gold-standard model [91], however, the model does not account for the observed cumulative
neutropenia over multiple cycles. Therefore, we considered for dose adaptations the BME
model accounting for bone marrow exhaution over multiple cycles [90], see Section 2.1.3.
We exemplarily considered the dose selection for the third treatment cycle based on prior
information and patient-specific measurements during the first two cycles. The patient-specific
data together with the full Bayes (reference) model fit and prediction are shown in Figure 3.5 A.
The CrIs (dashed) and PIs (dotted) show the uncertainty about the therapy outcome (in
observable space), without and with measurement errors, respectively.

For optimizing the dose of the third cycle, different dosing scenarios were considered:
the standard dose and a −15 %, −30 %, and +10 % adapted dose. Figure 3.5 B shows the
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Figure 3.5: Uncertainty quantification by full Bayesian methods gives important information for therapy
dosing selection. The scenario described in the ‘multiple cycle study with paclitaxel’ is used and the results
are shown for the full Bayes (reference) solution with SIR using M = 106 samples. (A) Forecasting the third
cycle for different doses based on the patient’s covariates and measurements of the first two cycles. (B) Full
Bayesian inference allows for probabilistic statements of the different grades. Color coding of neutropenia
grades shows the trade-off between efficacy and toxicity. No toxicity (grade 0) is associated with ineffective
treatment (orange) but severe neutropenia (grade 3 and 4) is also not desired (yellow and red). (C) A-posteriori
probabilities of quantities of interest for the third cycle based on the posterior at the end of second cycle (week
6) for the standard dose. Statistics such as day of grade 4 were computed given that grade 4 is reached.
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3.5.3 Comparable accuracy across full Bayesian approaches

probability of the predicted grades of the third cycle for each dose. To find an effective and
safe dose, the risk of being ineffective (neutropenia grade 0) should be minimized jointly with
the risk of being unsafe (neutropenia grade 4). For illustration in Figure 3.5 B, the dashed
horizontal lines indicate a 10 % and 5 % level of being ineffective and unsafe, respectively. The
standard dose and the increased dose have a risk of toxicity larger than 5 % (lower horizontal
line). A decrease in dose also leads to an increased risk of an ineffective dose (upper horizontal
line). The 15 % reduced dose is with 96 % probability safe and efficacious (grade 1–3), with
3 % probability ineffective (grade 0) and with 1 % probability unacceptably toxic (grade 4).
If grade 3 is also to be avoided, the 30 % reduction would be preferable, as it is with 74 %
probability safe and efficacious (grade 1–2), with 15 % probability ineffective (grade 0), and
with 11 % probability toxic (grade 3–4). Thus, the choice of an optimal dose might depend
on how priority is given to the risk of inefficacy and toxicity. As both risks are described by
the tails of the posterior distribution, a point estimate is not able to adequately capture them.
The MAP-based predicted grades were: grade 2 (standard dose and +10 % dose), grade 1
(−15 % dose), and grade 0 (−30 % dose), which do not only make it difficult to distinguish
between some doses but also do not reflect the true most probable grades.

Posterior-based predictions of important statistics related to the neutropenia time course
can help to answer questions like “How probable is it that the patient will suffer from grade
4 neutropenia?" or “How probable is it that the patient will recover in time for the next
scheduled dose so that the therapy can be continued as planned?". To answer such questions,
Figure 3.5 C shows important predicted quantities of interest, illustrated for the standard
dose in cycle 3. We inferred that the risk of grade 4 neutropenia is 8 %, and if the patient
were to reach grade 4, it would be most probable (68 %) on day 12. The probability that the
patient’s duration in grade 4 is a day or longer is very small (<7 %). As the probability of
no recovery until day 21 is negligible, the administration can remain scheduled on day 21 for
cycle 4. Therefore, uncertainty quantification improves the decision-making process regarding
dose adjustments as well as therapy management by quantifying the a-posteriori probabilities
of relevant risks and quantities of interests. Repeating the above analysis for different doses
therefore allows for an improved distinction between dose adjustments.

3.5.3 Approximation accuracies comparable across different
full Bayesian approaches

We next compared different established methods for uncertainty quantification with regard
to their approximation accuracy. To this end, posterior inference was investigated for a
patient on day 5 of the first cycle (Figure 3.6). Whereas the marginal posterior distribution
for the parameter ‘Circ0’ (pre-treatment neutrophil concentration) is close to a normal
distribution, the marginal posterior for the drug effect parameter (‘Slope’) is closer to
a lognormal distribution. Accordingly, the NAP is rather reasonable for ‘Circ0’, but is
questionable for the ‘Slope’ parameter. In addition, sampling from the normal distribution
can lead to unrealistic (negative) parameter values (Figure 3.6 A, right panel). Also, NAP
very clearly underestimated the patient’s risk to reach grade 4 neutropenia (Figure 3.6 B and
C), which could possibly lead to a fatal dose selection. Here shown for the simulation-based
approach to propagate the uncertainty. Using the delta method leads to a similar biased
prediction and does not allow to compute the uncertainties for the nadir concentration, see
Figure B.3. Considering a Student’s t distribution instead of the normal approximation, as in
[154], did not lead to an adequate improvement (Figure B.4). Consequently, the NAP approach
can result in over-optimistic, over-pessimistic and unrealistic predictions. In contrast, the
full Bayesian methods (SIR, MCMC, and PF) adequately represent the tails of the posterior
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Figure 3.6: Uncertainty quantification of the different methods at the level of parameters, observables and
quantities of interest. Exemplary comparison of the different methods for one patient after having observed
four data points up to day 5. (A) The posterior is shown for parameters ‘Slope’ and ‘Circ0’ showing the
kernel density estimates of the marginal sampling distribution and as scatter plots for the bivariate sampling
distributions with contour plots for the full Bayesian approach (full Bayes (reference), SIR with S = 106)
and the normal approximation located at the MAP estimate. (B) On the level of the observable (neutrophil
concentration) the point estimates (median or MAP) are displayed along with the 90% credible intervals
(CrI). For illustration purposes the prediction intervals are not shown here. (C) The forecasted a-posteriori
probability of the different neutropenia grades (0-4) is shown for the different approximations (filled bars) in
comparison with the full Bayes (reference) (dark green outlined bars).
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3.5.4 Sequential DA processes patient data most efficiently
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Figure 3.7: Comparison of methods regarding important aspects for model-informed precision dosing (MIPD).
(A) Approximation error (measured as Hellinger distance) of the probability of neutropenia grades. (‘Single
cycle study docetaxel’ ). (B) Qualitative runtime comparison to sample from the parameter posterior. Median
of N = 100 repeated analyses (‘Multiple cycle study paclitaxel’ ). (C) Comparison of method properties. For
MCMC several chains could be run in parallel, however, in this study only one chain was considered.

and respect the positivity constraint of parameter values. The resulting CrIs are comparable
to the reference CrIs. For the proposed MCMC method, the adaptive M-H sampler, the
acceptance rates are compared with the M-H sampler with fixed variance Ω in Figure B.5.
For illustration, Figure 3.7 A shows the approximation error for the predicted probability of
neutropenia grades, measured in the Hellinger distance Eq. (3.8). Overall, SIR and PF showed
the best approximation, while NAP resulted in the largest errors. MAP is not included as
it does not allow to infer the a-posteriori probability of the neutropenia grades. We also
compared the methods for the previously described dose selection scenario (Section 3.5.2), see
Figures B.6 and B.7.

3.5.4 Sequential DA processes patient data most efficiently
The need for real-time inference algorithms is increasing with the possibility to more frequently
collect patient-specific data (online collection) during treatment. Sequential DA methods (e.g.,
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3.6 Discussion

PF) provide an efficient framework for real-time data processing. At any time, all information
(incl. associated uncertainty) is present in a collection of particles that can be interpreted as
representing the current state and associated uncertainty of a patient via a virtual population.
With a new datum, this information is updated. Approaches that rely on batch data analysis,
i.e., MAP, SIR, MCMC, need to redo the inference from scratch including one more data
point. This has an impact on the computational effort as the number of data points increases.
Figure 3.7 B shows a comparison of the computational cost to assimilate an additional data
point. All approaches show some kind of increase in effort every 21 days—due to the IOV on
some parameters. Clearly, PF shows lowest and almost constant costs, while for batch mode
approaches computational costs increase over time due to an increasing number of parameters
(one additional parameter for every cycle due to the IOV, see Eq. (3.7) and Section B.2.2)
and an increasing integration time span to determine the likelihood. This could become
computationally expensive in view of long term treatments and higher time resolution of data
points provided by new digital health care devices. Figure 3.7 C summarizes the features of
the different inference approaches. Note that all sampling-based approaches can be accelerated
by parallel computing (MCMC only in terms of multiple chains). In summary, it was found
that PF processes patient monitoring data most efficiently and facilitated the handling of
IOV because only the IOV parameter of the current occasion needs to be considered (the size
of the parameter vector is constant).

3.6 Discussion
In the context of chemotherapy-induced neutropenia, we illustrated the severe drawbacks
of MAP-based approaches for Bayesian forecasting and thereon based decision-making. A
prediction based on the MAP estimate does neither necessarily correspond to the most
probable outcome, nor does it allow to quantify relevant risks as the uncertainties are not
quantified. Both are highly undesirable characteristics and make MAP-based inference
difficult to interpret in a TDM setting and unsuitable for MIPD. A normal approximation of
the posterior at the MAP estimate is no alternative, as it retains the same point estimate
and is inappropriate in case of skewed parameter distributions. We demonstrated that
full Bayesian approaches, like SIR, MCMC, or PF provide accurate approximations to the
posterior distribution, enabling comprehensive uncertainty quantification of the quantities
of interest (e.g., nadir concentration). Amongst the three considered approaches, PF is a
sequential approach that is beneficial in a more frequent monitoring context.

Uncertainty quantification in TDM is scarce. In [161] the SIR algorithm was previously
used in the TDM setting to construct CrIs using a Student’s t distribution located at the MAP
estimate as importance function. A sequential approach in the context of MAP estimation
is discussed in [162] and in [163] with a moving estimation horizon (window of data points
that are considered). A sequential DA approach has been investigated previously for glucose
forecasting [125, 28]. Here, we present DA in combination with a NLME modeling framework,
i.e., leveraging the prior distributions resulting from previous population analyses and provide
decision support statistics based on a-posteriori probabilities. A systematic comparison of
approaches for posterior inference in the TDM context, as presented in this chapter is lacking.

In this study, particle filtering is applied in a TDM setting within an NLME modeling
framework to represent the current patient status via an uncertainty ensemble. A challenge
in the application of PF is the potential for weight degeneracy, i.e., a gradual separation
into a few large and many very small weights. A rejuvenation approach (as applied in this
study) resolves this problem but requires to specify an additional parameter (magnitude of
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the rejuvenation). A too large value might result in an artificially increased uncertainty, while
a too small value might hinder exploration of the parameter space. In the present application
context, however, IOV counteracts, in addition to the rejuvenation step, weight degeneracy.

Possible future work. Among the possible extensions of the described approaches is the
use of alternative sequential DA algorithms. In the present thesis, the classical particle
filter has been applied with an augmented state to allow simultaneous state and parameter
estimation. Particle filters are, however, only feasible in a low-dimensional augmented state
space as the necessary ensemble size increases exponentially with the state dimension (curse of
dimensionality) [164]. For more complex models with a larger number of states and parameters,
alternative sequential DA approaches should be considered, e.g., ensemble Kalman filters or
more recently developed hybrid methods that balance robustness, efficiency, and accuracy
[165, 166, 167].

Future research should also explore aspects related to parameter sensitivity. In contrast to
state estimation, where each new data point provides information about the current state, e.g.,
in the case of object tracking, not every new data point is informative for all parameters, e.g.,
data points taken in the elimination phase will not be informative about the absorption phase
of the drug. Therefore, rejuvenation could lead to an inflated variance in the direction of the
parameters for which the data are not informative. This could result in an overestimation
of the a-posteriori uncertainty. Scaling the rejuvenation with the information content of
the data as given by the FIM could be a possible extension. This could allow for a larger
rejuvenation parameter and thus a better exploration of the parameter space. In this respect,
optimal experimental design approaches could also be beneficially exploited to better control
the timing of TDM for improved parameter estimation, see e.g., [168].

Sequential data processing is not only computationally efficient and convenient for IOV
handling, but has the additional advantage that already assimilated experimental data need
not be stored to assimilate future data points. Sampling approaches allow an extension
for hierarchical models to include the uncertainties in the population parameters for an
even more holistic uncertainty quantification [156]. This would enable a continuous learning
process between clinical trials from drug development and continue during the acquisition of
real-world data after market authorization, in quantifying the diverse population of patients
that have taken a given drug. For a future patient, this ‘historic’ diversity would transform
into well-quantified uncertainty in a TDM setting. The absence of the need to store ‘historic’
experimental data can also be helpful for the exchange of information between clinics, health
insurances, and pharmaceutical companies. The current knowledge, present in form of a
sample of particles, can easily be exchanged without the need to exchange the experimental
data. The ‘historic’ data are implicitly present in the particles. This idea will be taken up
again and pursued further in Chapter 5.

In view of new treatments and new mobile health care devices (e.g., wearables) gathering
data from various sources, clinicians have to deal with new challenges and an increasing
complexity of treatment decision-making, which demands comprehensive approaches that
integrate data efficiently and provide informative and reliable decision-support. In this chapter,
we illustrated that a comprehensive uncertainty quantification can lead to a more meaningful,
reliable, and differentiated therapy forecasting and subsequent decision-support. This is not
limited to individualized chemotherapy but has the potential to improve patient care in
various therapeutic areas in which TDM is indicated, such as oncology, infectious diseases,
inflammatory diseases, psychiatry, and transplantation patients.
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4
Dose individualization

The previous chapter was concerned with forecasting the individual therapy outcome for a
given standard dose, including clinical decision support based on forecasting therapy outcomes
for certain fixed dose adjustments. In this chapter, which is based on [CM2], we investigate
quantitative approaches to determine model-informed individual dose recommendations. Dose
individualization is at the core of MIPD, and the way in which an individual dose can be
selected depends on the method used for Bayesian forecasting.

Therefore, a popular approach towards MIPD is to evaluate MAP-based outcomes with
respect to a utility function or a target concentration to determine the optimal next dose
(MAP-guided dosing) [84, 76]. The definition of a target concentration or utility function
is, however, difficult since in many therapies rather subtherapeutic or toxic ranges are
known. For therapeutic ranges, MAP-guided dosing is not readily suited [21], since only a
(potentially biased) point estimate is used, neglecting associated uncertainties, as demonstrated
in Chapter 3 (Figure 3.4). A post-hoc uncertainty quantification for MAP-based predictions
often relies on a normal approximation located at the MAP estimate, which was shown to
not necessarily transform accurately into quantities of interest for nonlinear models, e.g., to
the a-posteriori probabilities of the neutropenia grades (Figure 3.6).

Building on the results of the previous chapter, which showed that Bayesian DA approaches
provide more informative therapy forecasting by fully exploiting patient-specific information,
we develop new approaches for dose selection within MIPD. DA enables individualized
uncertainty quantification, which allows straightforwardly (i) to integrate both, safety and
efficacy aspects into the objective function of determining the optimal dose, or (ii) to compute
the probability of being within/outside the target range (Figure 3.5). However, optimizing
across a whole therapy time frame for multiple dosage regimens to also account for delayed
effects of dose selections can be hard and potentially too costly for real-time decision support.

RL has been applied to various fields in health care, however, mainly focusing on clinical
trial design [36, 37], and only a few studies relate to optimal dosing in a PK/PD context [31,
38], as discussed in Section 2.3.3. In model-based RL, model simulations are used to learn how
to act best in an uncertain environment where decisions have to be made in stages and might
have delayed effects. A key aspect of learning is to make successively use of knowledge already
acquired, while also exploring yet unknown sequences of actions. The result is typically
a decision tree (or some functional relationship). In other words, the physician’s decision
is supported via a pre-calculated, extensive, and detailed look-up table without additional
computation during the course of therapy. So far, RL approaches in health care are limited to
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4 Dose individualization

rather simple exploration strategies (so-called ε-greedy approaches) with one time-step ahead
approximations of the look-up table (Q-learning) [37].

In this chapter, we demonstrate how DA and RL can be very beneficially exploited to
develop new approaches to MIPD. The first approach referred to as DA-guided dosing,
improves existing online MIPD by integrating model uncertainties into the dose selection
process. For the second approach (RL-guided dosing) we propose MCTS in conjunction with
UCT [142, 169] (Section 2.3) as a sophisticated learning strategy for an optimal dosing policy.
The third approach combines DA and RL (DA-RL-guided dosing) to make full use of patient
TDM data and to provide a flexible, interpretable, and extendable framework. We compared
the three proposed approaches with current dosing strategies (standard, PK-guided, and
MAP-guided dosing) in terms of dosing performance and their ability to provide insights into
the factors driving dose selection.

Simulation study framework. We consider a single dose every three weeks schedule for
paclitaxel-based chemotherapy, c = 1, . . . , C, for a total of six cycles (C = 6), as in the
multiple cycle study in Chapter 3. We denote the decision time point for the dose of cycle c by
Tc, and assume T1 = 0 (therapy start). For dose selection, the physician has different sources
of information available, such as the patient’s covariates ‘cov’ (sex, age, etc), the treatment
history (drug, dosing regimen, etc), and TDM data related to PK/PD (drug concentrations,
response, toxicity, etc). Despite these multiple sources of information, it remains a partial
and imperfect information problem, as only noisy measurements of few quantities of interest
at certain time points are available. MIPD aims to provide decision support by linking prior
information on the drug-patient-disease system with patient-specific TDM data.

The standard dosing for 3-weekly paclitaxel, as applied in the CEPAC-TDM study arm
A, is 200 mg/m2 BSA and a 20% dose reduction if neutropenia grade 4 (gc = 4) was observed
[52], see also Section 2.1.2. The aforementioned model-informed dosing table (MIDT) (termed
PK-guided dosing [11]) was evaluated in study arm B, see Section A.1. For dose selection at
cycle start Tc, we chose the patient state

sc−1 =
(
sex, age; ANC0, g1, . . . , gc−1

)
, (4.1)

with s0 = (sex, age; ANC0) the pretreatment state. The covariates sex, age, have previously
been identified as important predictors of exposure [11], and baseline absolute neutrophil
counts ANC0, as a crucial parameter in the PD model [91, 90] (Section 2.1.3). We included
the neutropenia grades of all previous cycles g1:c−1 = (g1, . . . , gc−1) based on the nadir
concentrations to account for the observed cumulative behavior of neutropenia [90, 170].

We used the term ‘model’ to refer to Eqs. (2.1)-(2.3), and the term ‘model state of the
patient’ to refer to a model-based representation of the state of the patient, i.e., a distribution of
state-parameter pairs (x, θ), or just a single (reference) state-parameter pair. In the proposed
approaches, the model is used to simulate treatment outcomes (in RL called ‘simulated
experience’), or to assimilate TDM data and infer the model state of the patient, or both. To
infer the patient state Eq. (4.1), the grade of neutropenia of the previous cycle gc−1 needs
to be determined; either directly from the TDM data (yc−1 7→ gc−1 7→ sc−1) or based on a
model simulation of the model state of the patient ((x, θ) 7→ cnadir 7→ gc−1 7→ sc−1). Since
generally measurements are not taken exactly at the time of nadir, the model-predicted nadir
may provide an improved state estimate.

Overview of the different approaches towards MIPD. We considered three different
approaches towards MIPD, see Figure 4.1:
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Figure 4.1: Overview of different approaches for model-informed precision dosing (MIPD). The different
methods can be categorized according to the time when the computational effort to calculate the optimal dose
must be made. Offline approaches calculate optimal doses for all possible covariates and state combinations
prior to any treatment, like in model-informed dosing tables (MIDT) and reinforcement learning (RL). The
physician selects the dosing recommendation in the table/tree based on specific patient information (covariates,
observations). While the TDM data (measured drug or biomarker) are used to determine the entry in the
table/tree, the table/tree itself is static. Online approaches solve an optimization problem at every decision
time point, i.e., when a dose has to be given. They integrate patient-specific TDM data using Bayesian
data assimilation (DA) or maximum a-posteriori (MAP) estimation. Offline–online approaches allocate
computational resources between offline and online. Pre-calculated dosing decision-trees are individualized
during treatment, based on TDM data.

(i) Offline approaches support dose individualization based on MIDT or dosing decision
trees (RL-guided dosing). At the start of therapy, a dose based on the patient’s
covariates and baseline measurements is recommended. During therapy, the observed
TDM data are used to determine a path through the table/tree; While the treatment is
individualized to the patient (based on a-priori uncertainties), the procedure of dose
individualization itself does not change, i.e., the tree/table is static. As such, it can be
communicated to the physician before the start of therapy.

(ii) Online approaches determine dose recommendations based on a model state of the patient
and its simulated outcome. Bayesian DA or MAP estimation assimilate individual TDM
data to infer the posterior distribution or MAP point-estimate as model state of the
patient, respectively. Online approaches tailor the model (more precisely, the parameters)
to the patient, however, clinical implementation requires an IT infrastructure and/or
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4.1 Offline approaches

easy-to-use software. While this might constitute a challenging problem that hinders
broad application [171], successful examples of implementation already exist [172].

(iii) Offline–Online approaches combine the advantages of dosing decision trees and an
individualized model. The individualized model is used in two ways, to infer the
patient state more reliably than sparsely observed TDM data and to individualize the
dosing decision tree (using individualized uncertainties, rather than population-based
uncertainties).

Key to all approaches is the so-called reward function R (RL terminology), also often termed
cost or utility function, defined on the set S of patient states

R : S → R. (4.2)

Ideally, the reward corresponds to the net utility of beneficial and noxious effects in a patient
given the current state [173]. For neutrophil-guided dosing, a reward function was suggested
that maps (MAP-based) nadir concentrations to a continuous score [84] or penalizes the
deviation from a target nadir concentration (cnadir = 1 · 109cells/L) [76]; we used in this
study a utility function but also provide a comparison of the results with the suggested target
concentration, see also Section C.3 and Figure C.5. The individualized uncertainties quantified
via DA allow to consider the probability of being within/outside the target range in the
reward function [CM1], which is more closely related to clinical reality. For the patient state
Eq. (4.1) used in RL, we also designed the reward function Eq. (4.2) to account for efficacy
and toxicity. We chose to penalize the short-term goal (avoiding life-threatening grade 4)
more than the long-term goal (increased median (overall) survival associated with neutropenia
grades 1–4 [74]) :

R(sc) =





−1 if gc = 0 ,

1 if gc = 1, 2, 3 ,

−2 if gc = 4 ,

(4.3)

see also Section 2.1.1 for more details.

4.1 Offline approaches

4.1.1 Model-informed dosing tables
MIDTs provide a simple format to make model-informed dose adjustments accessible. Yet the
dose adaptations are very limited in resolution and are usually restricted to a few covariates
and previous observations. We considered as an example and also to benchmark the developed
approaches the PK-guided dosing algorithm [11], see Figure A.1. The dose is selected according
to covariates, a model-informed PK measure, and the neutropenia grade of the previous cycle.

4.1.2 RL-guided dosing
As described in Section 2.3, RL problems can be formalized as MDPs, modeling sequential
decision-making under uncertainty. Here, we focus on translating the general RL formulation
into a clinical setting. The virtual physician’s task is to learn a dosing strategy in order to
optimize the expected long-term therapy outcome of the virtual patient, see Figure 4.2 for
an illustration of the typical agent-environment interaction for a single dose selection in the
clinical setting of interest.
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4.1.2 RL-guided dosing
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Figure 4.2: Model-based reinforcement learning (planning). The expected long-term return (action-value
function) is estimated based on simulated experience (sample approximation Eq. (4.4)). For simulating
experience, an ensemble of virtual patients is generated, k = 1 . . . ,K (for all covariate classes COVl, l = 1, . . . , L,
covariates cov(k) are sampled within the covariate class and model parameters θ(k) are sampled from the
prior distribution). At start of each cycle c, a dose d(k)

c+1 is chosen according to the current policy πk, and the

outcome (grade of neutropenia) is predicted based on the model ẋ = f(x; θ(k), d
(k)
c ) for the sample parameter

vector θ(k) and chosen dose. The updated patient state s(k)
c is assessed using the reward function R. The

sequential dose selections (going through the circle C times (left part)) lead to so-called sample episodes; the
entirety of episodes to a tree structure (right part).

The decision time points of the MDP are given by the treatment cycles c. We consider a
therapy of six cycles, c = 1, . . . , C with C = 6, i.e., an episodic task. Every episode corresponds
to a path in the tree of possibilities (Figure 4.2). In each cycle, the patient state Sc is inferred
and a dose Dc selected. Note that we adapted the general RL formulation, introduced in
Section 2.3, to the specific setting, i.e., the decision time instances are the cycles (c instead of
t) and the actions are the different doses (D instead of A). Due to unexplained variability
between patients (and occasions), transitions between states are characterized by transition
probabilities Eq. (2.22), P[Sc+1 = sc+1|Sc = sc, Dc+1 = dc+1]. The reward is defined via the
reward function, i.e., Rc = R(Sc) (Eq. (4.2)), and the dosing policy π (see also Eq. (2.23))
models how to choose the dose for the next treatment cycle

π(d|s) = P[Dc+1 = d|Sc = s].

A dosing policy is evaluated based on the return Gc at time step c, defined as the weighted
sum of rewards over the remaining course of therapy, Eq. (2.24) with c = t. The discount
factor γ ∈ [0, 1] balances between short-term (γ → 0) and long-term (γ → 1) therapeutic
goals (see Section 2.3 and C.5.2).

As aforementioned model-based RL methods that rely on sampling estimate the expected
value in Eq. (2.25) via a sample approximation. To simplify the calculations we have discretized
the continuous covariates age and ANC0 into covariate classes COV l, l = 1, . . . , L. For each
class COV l consider the ensemble

ERL(COV l) :=
{(
x0(θ(k)

c ), θ(k)
c , cov(k)

)}K
k=1
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4.2 Online approaches

with cov(k) sampled within COV l according to the covariate distributions in the CEPAC-TDM
study [52, 95], parameter values sampled from pΘ

(
θTV(cov(k)),Ω

)
and initial states according

to (2.1). Then, for each k = 1, . . . ,K with K large, a sample episode

s
(k)
0

d
(k)
1−→ (s

(k)
1 , r

(k)
1 )

d
(k)
2−→ (s

(k)
2 , r

(k)
2 )

d
(k)
3−→ . . .

d
(k)
C−→ (s

(k)
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(k)
C )

using policy πk is determined and

qk(s, d) =
1

Nk(s, d)

k∑

k′=1

C∑

c=1

1{s(k′)c =s,d
(k′)
c+1=d}G

(k′)
c (4.4)

computed, see also Eq. (2.27). Here, Nk(s, d) denotes the number of times that dose d was
chosen in patient state s amongst the first k episodes.

To balance exploration and exploitation, we employed MCTS in conjunction with UCT as
policy in the iterative training process [132, 144, 141, 142, 169]:

πk+1(dc+1|sc) =





1 if dc+1 = arg max
d∈D

UCTk(sc, d) ,

0 else
(4.5)

with UCTk defined based on the current sample estimate qk(sc, d)

UCTk(sc, d) = qk(sc, d)

︸ ︷︷ ︸
exploitation

+εc

√
Nk(sc)

Nk(sc, d) + 1︸ ︷︷ ︸
exploration

. (4.6)

It successively expands the search tree (Figure 4.2) by focusing on promising doses (exploitation,
large qk(sc, d)), while also encouraging exploration of doses that have not yet been tested
exhaustively (small Nk(sc, d) relative to the total number of visits Nk(sc) :=

∑
d′ Nk(sc, d

′)
to state sc). The parameter εc balances exploration vs. exploitation; it depends on the range
of possible values of the return and current state of the therapy (cycle c), see Eq. (4.9).
Finally, we define π̂UCT = πK as an estimate of the optimal dosing policy in the training
setting (learning with virtual patients), and q̂πUCT = qK as an estimate of the associated
expected long term return. In a clinical TDM setting (RL-guided dosing), we finally use
π∗ = arg max q̂πUCT , i.e., εc = 0 (no exploration) in Eq. (4.6). See Section 2.3.2 for details.

4.2 Online approaches

4.2.1 MAP-guided dosing
MAP-guided dosing is widely applied in various therapeutic areas for online therapy individu-
alization [174, 76] and implemented in assorted software tools, e.g., TDMx [175], InsightRX
[176]. The optimal dose is determined in a two-step procedure:

1. The MAP-estimate θ̂MAP
c is computed according to Eq. (2.10) based on the patient-

specific TDM data y1:c collected up to the end of cycle c, see Section 2.2.1 & 3.1.

2. Then, the MAP estimate is used to generate model predictions for solving the optimiza-
tion problem in the dose selection at start of cycle c+ 1

d∗c+1 = arg min
d

−R
(
cnadir

(
θ̂MAP
c , d

))
,
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4.2.2 DA-guided dosing

where we investigated different evaluation functions R(·) based on the MAP-based nadir
concentration.

We proposed a utility function that was designed to mirror the essence of the reward
function, which we employed in RL-guided dosing, to enable a fair comparison R(sc) =
−s2

c + 3 · sc, see Figure C.5 (top panel), where the model state of the patient state was given
by

sc = min
t∈[Tc,Tc+1]

Cneutr

(
t; θ̂MAP, d

)
.

In order to also offer a comparison to the often-used concept of a target concentration, we
also performed target concentration intervention with a target of cnadir = 1 · 109cells/L [76].
For this, we minimized the squared difference, i.e., R(sc) = (sc − 1)2, see Section C.3.

MAP-guided dosing depends largely on the reliability of MAP-based predictions which,
however, do not necessarily represent the most probable therapeutic outcomes and neglect
model uncertainties as discussed in Chapter 3. In particular, any distributional information
like, e.g., the tails of the posterior distribution, which describe sub-therapeutic as well as toxic
ranges, are completely neglected. These tails provide crucial information for dose selection
and might be pronounced due to the often chosen lognormal prior parameter distributions.
In addition, the choice of the target or utility function has a crucial impact on the optimal
dose selection. While the concept of a utility would be quite desirable, the definition is rather
challenging since clinically rather therapeutic ranges are observed.

4.2.2 DA-guided dosing
Sequential DA approaches have been introduced in Chapter 3 as more informative and
unbiased alternatives to MAP-based predictions of the therapy outcome since they more
comprehensively make use of patient-specific TDM data. The individualized uncertainty in
the model state of the patient is inferred and propagated to the predicted therapy time course,
allowing to predict the probability of possible outcomes. For this, the uncertainty in the
individual model parameters is sequentially updated via Eq. (2.17) for cycle-data, i.e.,

p(θ|y1:c) ∝ p(yc|θ) · p(θ|y1:c−1) ,

where y1:c = (y1, . . . , yc)
T denotes the patient’s TDM data up to and including cycle c, and

yc = (yc1, . . . , ycnc)
T the measurements taken in cycle c. Since the posterior distribution

p(θ|y1:c) generally cannot be determined analytically, DA approaches approximate it by an
ensemble of particles:

E1:c :=
{(
x

(m)
1:c , θ

(m)
c , w(m)

c

)}M
m=1

.

In our context, a particle represents a potential model state of the patient (for the specific
patient covariates cov) with a weighting factor w(m)

c characterizing how probable the state is
(given prior knowledge and TDM data up to c) as presented in Chapter 3. As more TDM
data are gathered, the Bayesian updates reduce the uncertainty in the model parameters and
consequently in the therapeutic outcome, see Figure 3.1 (reduced width of CrI/PI). Since
subtherapeutic as well as toxic ranges, i.e., very low or high drug/biomarker concentrations,
are described by the tails of the posterior distribution, the uncertainties provide crucial
additional information compared to the mode (MAP estimate) for dose selection.
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4.3 Combining offline and online: DA-RL-guided dosing

We chose the optimal dose to be the dose that minimizes the weighted risk of being outside
the target range; in our context the a-posteriori probability of gc = 0 or gc = 4:

d∗c+1 = arg min
d∈D

λ0

M∑

m=1

w(m)
c 1{g(θ(m)

c ,d)=0} + λ4

M∑

m=1

w(m)
c 1{g(θ(m)

c ,d)=4} (4.7)

with g(θ(m)
c , d) denoting the predicted neutropenia grade based on the nadir concentration

by forward simulation of the m-th particle for dose d, see Figure C.6 for an illustration. We
penalized grade 4 more severely than grade 0, i.e., λ4 = 2/3 and λ0 = 1/3, similarly as in
Eq. (4.3).

The integration of an ensemble of particles into the optimization problem, instead of a
point estimate (as in MAP-guided dosing), increases the computational effort and complexity
of the problem. If time or computing power is limited, approximations have to be used,
e.g., by solving only for the next cycle dose rather than all remaining cycles at the cost of
neglecting long-term effects. Alternatively, the number of particles M could be reduced (we
used both approximations in this study). The DA optimization problem is stated in the space
of actions (doses). RL, on the contrary, optimizes in the space of states by estimating the
expected long-term return as an intermediate step (Eq. (4.4)), thereby promising efficient
solutions to the sequential decision-making problem under uncertainty [32].

4.3 Combining offline and online: DA-RL-guided dosing
The particle-based DA scheme and the model-based RL scheme address the problem of
personalized dosing from different angles. A combined DA-RL approach, therefore, offers
several advantages by integrating individualized uncertainties provided by DA within RL,
see Figure 4.3. First, instead of the observed grade (e.g., measured neutrophil concentration
on a given day, translated into the neutropenia grade), we may use the smoothed posterior
expectation of the quantity of interest (e.g., predicted nadir concentration). This reduces the
impact of measurement noise and the dependence on the sampling day, see Section C.6.1 and
C.6.2. Second, for model simulations within the RL scheme, we can sample from the posterior
p(θ|y1:c) represented by the ensemble E1:c, i.e., from individualized uncertainties, instead
of the prior p(θ), i.e. population-based uncertainties. During the course of the treatment,
the ensemble of potential model states of the patient is continuously updated when new
patient-specific data are obtained (see Eq. (2.17)). This allows to individualize the expected
long-term return during treatment as new patient data are observed, see Figure 4.3, i.e., the
dosing decision tree in RL is updated prior to the next dosing decision.

Since the refinement as well as the DA part has to run in real time (online), it has to be
performed efficiently. We do not need to take all possible state combinations into account,
but only those that are still relevant for the remaining part of the therapy. This reduces the
computational effort, in particular for later cycles. The proposed DA-RL approach results in
a sequence of estimated optimal dosing policies π̂1, π̂1:2, . . . with π̂1:c denoting the estimated
optimal dosing policy based on TDM data y1:c, i.e., based on E1:c. In addition, we do not need
to estimate the individualized action-value function from scratch, but can exploit qπ0

:= q̂πUCT

as a prior determined by the RL scheme prior to any TDM data (see paragraph following
Eq. (4.6)). In PUCT (predictor+UCT [169, 34]), the exploitation vs. exploration parameter
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Figure 4.3: The interplay of data assimilation (DA) and reinforcement learning (RL). In the planning phase
prior to therapy, the expected long-term return qπ0 := q̂πUCT is estimated in Monte Carlo Tree search
(MCTS) with upper confidence bound applied to trees (UCT) using an ensemble of covariates cov(k) and
parameter values θ(k) ∼ p(·|θTV(cov(k)),Ω). The first dose is selected based on qπ0 := q̂πUCT for the patient
specific covariate class. The DA algorithm initializes a particle ensemble given the patient’s covariates
cov. The ensemble is propagated forward continuously in time, and observed patient TDM data (black
crosses) is assimilated when it becomes available. This results in updated uncertainty, visible as ’cuts’ in
the credible/prediction intervals. In contrast, the RL state evolves in discrete time steps c according to the
decision time points and only considers selected features/summaries of the model state of the patient, e.g.,
smoothed posterior expectation of nadir concentrations translated into neutropenia grades. At each decision
time point, the posterior model state of the patient is used to refine the prior computed q̂πUCT (grey tree) for
future reachable states (light purple tree). This individualizes the tree based on individualized uncertainties
(E1:c).

εc in Eq. (4.6) is modified to prioritize doses with high a-priori expected long-term return:

Uk(sc, d) = q1:c
k (sc, d)

︸ ︷︷ ︸
exploitation

+ εc ·
exp
(
q̂πUCT (s, d)

)
∑
d′ exp

(
q̂πUCT (s, d′)

)
︸ ︷︷ ︸

prioritizing

√
Nk(sc)

Nk(sc, d) + 1︸ ︷︷ ︸
exploration

. (4.8)

Finally, we define π̂1:c
PUCT = π1:c

K based on E1:c as an estimate of the optimal individualized
dosing policy in the training setting (using Eqs. (4.5)+(4.8)), and q̂πcPUCT

= qK as an esti-
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4.4 Application to manage neutropenia in 3-weekly paclitaxel treatment

mate of the associated expected long term return based on E1:c. For individualized dose
recommendations in a clinical TDM setting, we again use π∗ = arg max q̂π1:c

PUCT
, i.e., εc = 0

in Eq. (4.8). See Figure 4.3 for an illustration, a pseudo code is provided in Algorithm 2,
Table C.1 summarizes the relevant notation, and further details are given in Section C.6.

Algorithm 2 DA-RL guided dosing

Sample particles to get ensemble E0 from the prior pΘ

(
· ; θTV(cov),Ω

)

Get s0 based on covariates and baseline measurement
Choose optimal dose d∗1 = arg max

d∈D
q̂πUCT(s0, d)

for c = 1 : C do
E1:c ← update ensemble E1:c−1 by assimilating data yc . DA part: Algorithm 1
sc ← posterior expectation under ensemble E1:c

q̂π1:c
PUCT

← MCTS with PUCT using the ensemble E1:c . Eq. (4.8)
Choose optimal dose d∗c+1 = arg max

d∈D
q̂π1:c

PUCT
(sc, d)

end for

4.4 Application to manage neutropenia in 3-weekly pacli-
taxel treatment

We compared our proposed approaches with existing approaches for MIPD based on simulated
TDM data in paclitaxel-based chemotherapy. The design was chosen to correspond to the
CEPAC-TDM study [52]: neutrophil counts at day 0 and 15 of each cycle were simulated for
virtual patients employing the PK/PD model for paclitaxel-induced cumulative neutropenia
(BME model, Figure 2.2) [90] described in Section 2.1.3. We also provide a comparison with a
sampling design that better matches the typical nadir time of paclitaxel, i.e., considering the
second sampling time point at day 12, see Section C.2. The simulation study was performed in
MATLAB R2017b/2018b. The generated virtual patient populations for training and testing
(N = 1000) were sampled based on the reported covariate ranges in the CEPAC-TDM study
[52]. In the offline approaches, the second neutrophil measurement (at day 15 of the cycle) is
used to infer the grade of neutropenia (according to the CTCAE [63], see also Figure 2.1).

For the standard dosing approach, we employed the rules applied in the CEPAC-TDM study
arm A, i.e., 200 mg/m2 BSA, and a 20 % dose reduction if grade 4 neutropenia was observed
[52] (Section 2.1.2). For MAP-guided dosing, a utility function based on a hypothetical
survival probability across the different neutropenia grades was investigated in the literature
[84].

In MAP-guided dosing, the sensitivities for gradients used in the MATLAB solver fmincon
were computed using the Toolbox AMICI [177, 152]. To save computational time, we only
optimized over the next cycle (rather than over all remaining cycles) as is also typically done
in the literature. In DA-guided dosing, we solved the one-dimensional optimization problem
Eq. (4.7) using the fminbnd function in MATLAB (golden section search and parabolic
interpolation). Each objective function evaluation corresponds to M model simulations for
the corresponding cycle, therefore, we chose a rather small ensemble size M = 100. Note
that a larger ensemble size could be chosen for the DA step, while subsequently solving the
optimization problem only for a subset of the ensemble.

In RL-guided dosing, we employed MCTS to exploit the characteristics of an episodic task
(six treatment cycles) instead of Q-learning, see also Section C.5. For the considered patient
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4.4.1 Novel approaches decrease occurrence of grade 4 & 0 neutropenia

state representation Eq. (4.1), we obtained in total L = 32 covariate classes COV1, . . . , COVL
(2 genders × 4 age classes × 4 baseline neutrophil count classes), per covariate class we have
19531 possible grade combinations for the 6 cycles, thus leading to a dimension of the discrete
state space of |S| = 624992. As we do not need to make a dose decision after the last cycle we
can exclude the leaves of the tree (grade of the last cycle), reducing the total number of states
to |S| = 124992. The discrete dose steps of 5mg/m2 BSA were chosen within the range of
given doses in the CEPAC-TDM study dmin = 60mg/m2 BSA and dmax = 250mg/m2 BSA
leading to |D| = 39. We chose a discount factor for future rewards: γ = 0.5, see Section C.5.2.
Note that this implies that the current grade of neutropenia was higher weighted than future
grades. Yet, γ is sufficiently large to factor in the impact of the current dose choice on the
grade of neutropenia in future cycles. The exploration-exploitation parameter εc was chosen
cycle-varying, since the expected return changes over time (cycles), due to the intermediate
rewards. Based on Hoeffding’s inequality for random variables that can take values in the
interval [a, b] this gives,

ε(c) = cUCT ·

√√√√
C−c∑

k=1

γk−1 · (bk − ak)2 , (4.9)

with respect to our chosen reward function ak = −2 and bk = 1 for all k. We chose cUCT = 3.
The choice of all tuning parameters/reward function was further investigated in Section C.5.2.

In the DA-RL guided dosing approach, the q values are further individualized whenever
new patient-specific data become available based on a tree search that focuses on relevant
doses through the prior probabilities, see Figure C.17.

We focused only on paclitaxel dosing; we did not take into account drop-outs, dose
reductions due to non-hematological toxicities, adherence, and comedication. The occurrence
of grade 4 neutropenia, therefore, differed between our simplified simulation study and the
clinical study (as might be expected), see Section C.1. This should be taken into account
when interpreting the results.

4.4.1 Novel individualized dosing strategies decreased the occur-
rence of grade 4 and grade 0 neutropenia compared to existing
approaches

Figure 4.4 shows the predicted neutrophil concentrations—median & 90 % CI—over six cycles
of three weeks each. Successful neutrophil-guided dosing should result in nadir concentrations
within the target range (grades 1–3, between black horizontal lines). In all cycles, PK-guided
dosing prevented the nadir concentrations (90 %CI) to drop as low as for the standard dosing
(Figure 4.4 A). However, PK-guided dosing also increased the occurrence of grade 0 at the
nadir (Figure 4.5). Choosing as sampling time point day 12, which better reflects the typical
nadir time, has not substantially improved the results, see Figure C.3 and C.4.

RL-guided dosing controlled the neutrophil concentration well across the cycles (Figure 4.4
B) and the distribution of nadir concentrations over the whole population was increasingly
concentrated within the target range (panel F). The occurrence of grade 0 and 4 neutropenia
was substantially reduced compared to standard and PK-guided dosing (Figure 4.5). For MAP-
guided dosing, the occurrence of grade 4 neutropenia increased over the cycles (Figure 4.5),
showing the typical cumulative trend of neutropenia [90], despite the inclusion of TDM data.
In contrast, DA steadily guided nadir concentrations into the target range (Figure 4.4 D
and F), thereby substantially decreasing the variance, i.e., the variability in outcome. The
occurrence of grade 0 and 4 evaluated at the nadir was reduced considerably in later cycles
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4.4 Application to manage neutropenia in 3-weekly paclitaxel treatment
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Figure 4.4: Comparison of different dosing policies for paclitaxel dosing. Comparison of the 90 % confidence
intervals (CIs) and median of the neutrophil concentration for the test virtual population (N = 1000) using
(A) PK-guided dosing (B) RL-guided dosing (C) MAP-guided dosing, (D) DA-guided dosing, and (E) DA-RL-
guided dosing, each in comparison to the standard dosing (BSA-based dosing). PK-guided dosing is the only
approach that also takes into account exposure (TCdrug≥0.05 µmol/L). (F) Comparison of the distributions of
model-predicted nadir concentrations (smooth by kernel density estimation) for the test virtual population at
cycles 2, 4, and 6. The black solid lines show the target range of neutropenia grades 1,2, and 3. DA-RL-guided
dosing best directs the nadir concentrations into the target range.
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4.4.2 Identification of relevant covariates via RL
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Figure 4.5: Occurrence of grade 0 and grade 4 for the different dosing policies. The percentage is based on
a test virtual population (N = 1000) and six cycles (inferred from the model predicted nadir concentration
shown in Figure 4.4). The y-axes are scaled according to the different weighting of grade 0 and grade 4
neutropenia to allow to evaluate the total bar length. The shorter the total bar length the better. Additional
analysis is provided in Figure C.18.

(Figure 4.5), suggesting that individualized uncertainty quantification played a crucial role in
reducing the variability in outcome. Integrating individualized uncertainties and considering
the model state of the patient in the RL approach (DA-RL-guided dosing) also moved nadir
concentrations into the target range and clearly decreased the variance (Figure 4.4 B+F).
The slight differences between DA and DA-RL (Figure 4.5) might be related to the difference
in weighting grades 0 and 4 in the respective reward functions (Eq. (4.7) vs. Eq. (4.3)). Note
that the different weighting of neutropenia grades 0 and 4 introduces a ‘skewness’ towards
higher neutrophil concentrations. For additional comparisons, see Figure C.18.

In summary, individualized uncertainties as in DA- and DA-RL-guided dosing seemed to be
crucial in bringing nadir concentrations into the target range and reducing the variability of the
outcome, thus achieving the goal of therapy individualization. For this specific example, both
approaches showed comparable results, but DA-RL has the greater potential for long-term
optimization in a delayed feedback environment as well as integrating multiple endpoints.

4.4.2 Identification of relevant covariates via investigating the ex-
pected long-term return in RL

A key object in RL is the expected long-term return or action-value function qπ(s, d), see
Eq. (2.25), which is the expected long-term return and quantifies the benefit of administering
a dose in a given patient state. It plays a critical role in RL as it summarizes and stores
the information from accumulated experience. We demonstrate that it contains important
information to identify relevant covariates to individualize dosing.

Figure 4.6 A shows the estimated action-value function for RL-guided dosing stratified for
the covariates, sex, age, and baseline neutrophil counts ANC0 (covariate classes are shown in
the legend) for the first cycle dose selection. ANC0 was found to be by far the most important
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4.4 Application to manage neutropenia in 3-weekly paclitaxel treatment
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Figure 4.6: Expected long-term return across the dose range for dose selection. (A) across the considered
covariate combinations for the dose selection in cycle 1. The symbols plotted below the x-axis show the optimal
dose for the corresponding covariate class (i.e., the arg max of the plotted line). (B) for fixed sex and age
class (here, male between 50 and 60 years) with different pre-treatment neutrophil values ANC0 and observed
neutropenia grades in cycle 1, i.e., g1. The optimal dose for the second cycle depends on the neutropenia grade
of the previous cycle and the pre-treatment neutrophil count ANC0 in [109cells/L]. The grey dashed line
shows the maximum and minimum possible return from the first cycle (A) and the second cycle (B) onwards,
with γ = 0.5. The covariate classes were chosen based on the CEPAC-TDM study population: inclusion
criteria for the CEPAC-TDM study were ANC0 > 1.5 · 109cells/L; the typical baseline count for male was
ANC0 = 6.48 · 109cells/L (arm B). The median age was 63 years ranging from 51 to 74 years (5th and 95th
percentile of the population in arm B), see [95, 52].
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characteristic for the RL-based dose selection at therapy start. Differences in age and sex
played only minor roles. For comparison, the first cycle dose selection in the PK-guided
algorithm is only based on sex and age. The steepness of the curves gives an idea about
the robustness of the dose selection. For the second dose selection, the grade of neutropenia
in the first cycle (g1) has the largest impact, while larger ANC0 led to larger optimal doses
(Figure 4.6 B). To illustrate the dose selection in RL, we extracted a similar decision tree to
the one developed by Joerger et al. [11], see Figure C.9.

Similar investigations are not straightforward for MAP- or DA-guided dosing as no means
is provided to investigate dose recommendations for an entire population; these approaches
optimize doses for a single patient.

4.5 Discussion
In this chapter, we proposed three promising MIPD approaches employing DA and/or RL
that substantially reduced the number of (virtual) patients in life-threatening grade 4 and
grade 0 neutropenia, a surrogate marker for efficacy of the anticancer treatment. We have
shown that DA and RL techniques can be seamlessly integrated and combined with existing
NLME and data analysis frameworks for a more holistic approach to MIPD. Our study
demonstrates that the incorporation of individualized uncertainties (as in DA) is favorable
over state-of-the-art online algorithms such as MAP-guided dosing. RL provides a flexible
framework to account for the uncertainty and delayed effects associated with a dose selection.
DA as a means to quantify posterior uncertainty naturally fits into this framework to efficiently
further individualize the dose recommendations based on more detailed patient information
compared to the reduced state representation used in RL. The integrated DA-RL framework
allows not only to consider prior knowledge from clinical studies but also to improve and
individualize the model and the dosing policy simultaneously during the course of treatment
by integrating patient-specific TDM data. Thus, the combination provides an efficient and
meaningful alternative to solely DA-guided dosing, as it allocates computational resources
between online and offline and the RL part provides an additional layer of learning to the
model (in form of the expected long-term return) that can be used to gain deeper insights
into important covariates for the dose selection. Therefore showing that RL approaches can
be well interpreted in clinically relevant terms, e.g., highlighting the role of ANC0 values.

We focused on one specific aspect of the larger decision making problem in oncology: the
dosing of a given chemotherapeutic agent. However, RL has also been found to be beneficial
for choosing the optimal drugs for first- and second-line treatment [36]. Also, RL-guided
dosing in oncology has been proposed before [38], however, only considering the mean tumor
diameter. Since only a marker for efficacy was considered this led to a one-sided dosing scheme
and resulted in very high optimal doses. The authors, therefore, introduced action-derived
rewards, i.e., penalties on high doses. In contrast, neutrophil-guided dosing considers toxicity
and efficacy (link to median survival) simultaneously. We limited the application example to
neutropenia alone to guide the dosing. Ideally, however, dosing decisions should also include
other adverse effects (e.g., peripheral neuropathy [178]), tumor response or long-term outcomes
(e.g., overall or progression-free survival) [95], and other concomitant medication (anticancer
combination agents, e.g., carboplatin, supportive medication, e.g., G-CSF and other patient-
specific co-medications). Notably, RL easily extends to multiple adverse/beneficial effects and
co-medication and is especially suited for time-delayed feedback environments [37, 129], as
typical in many diseases. Unlike current less complex MIDT, the decision tree of RL is not
straightforward to navigate or remember, therefore, an application in clinics would require
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4.5 Discussion

the development of easy-to-use software or dashboards, as e.g. for infliximab [172], however,
no online computing time is involved for dose selection.

Using MCTS with UCT, we employed an RL framework that exploits the possibility to
simulate until the end of therapy and evaluate the return. Consequently, it requires fewer
approximations as temporal difference approaches (e.g., Q-learning, used in [38]) that avoid
computation of the return via a decomposition (Bellman equation Eq. (2.28)). For comparison,
we also applied model-based Q-learning (Q-planning), see Section C.5.3, however, we found
that for the specific example MCTS outperformed Q-planning. Yet the decomposition in
Q-planning could be advantageous for long-term therapies that cover a large time span.
Exploration via UCT allows to systematically sample from the dose range (as opposed to an
ε-greedy strategy) and allows to include additional information, e.g., uncertainties or prior
information (as in predictor+UCT (PUCT)), see also Section C.5.1. This becomes key when
combined with direct RL based on real-world patient data, see e.g. [179, 180], which would
allow to compensate for a potential model bias. At the end of a patient’s therapy, the observed
return can be evaluated and used to update the expected return q̂π̂. Thus, moving from a
model-based estimate towards an estimate based on real-world data. This update would even
be possible if the physician did not follow the dose recommendation (off-policy learning) and
could be implemented across clinics, as it could be done locally without exchanging patient
data. Thus, the presented approach builds a basis for continuous learning post-approval,
which has the potential to substantially improve patient care, including patient subgroups
underrepresented in clinical studies.

Possible future work. The proposed combined DA-RL framework serves as a valuable
foundation, to be extended in the future with respect to the considered state/action space,
the reward function, and the integration of observational data. In this study, a simplified
setting for the RL framework was chosen in terms of the state and action space. A categorical
state space was considered with covariate classes as well as neutropenia grades instead of
the intrinsically continuous underlying covariates or neutrophil concentration. Continuous
action/state spaces require the use of function approximations, e.g., deep neural networks
(Deep RL). The possible scope of actions was restricted to fixed dose steps at fixed times.
This could be extended to accommodate varying time steps and a more continuous dose space
while taking into account the practicability of the design space in terms of dosage form and
clinical workflow. An important future aspect to investigate are outliers in the TDM data
that potentially have serious consequences for subsequent decision making. There exist robust
approaches for parameter estimation in a maximum likelihood context that employ heavier
tailed distributions in the error model [181], which should also be investigated for RL and
DA-RL-guided dosing.

The choice of the reward function is, in general, a key aspect of the proposed approach.
Even if it is clear which adverse events to avoid from a therapeutic standpoint, it is not
obvious what the associated numerical reward should be, e.g., grade 4 compared to grade 0
neutropenia. Thus, it is crucial to look into different reward functions within a model-based
framework to understand the effect of the chosen numerical values on the resulting dosing
policy, see Figure C.13 for the considered setting. RL builds a quantitative framework
that allows linking short-term markers with long-term goals, which is lacking in current
stand-alone models for the single aspects. RL can be also seen as a means to learn an adaptive
reward function for short term markers, e.g., neutropenia with respect to long-term outcomes.
Adaptive learning of the reward function could also contribute to the challenge to identify
meaningful biomarkers for drugs with a delayed response. Due to the limited time frame of
clinical studies, the relationships are often not sufficiently explored and a real-world setting
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(phase IV/post-approval) would allow to collect more data related to long-term outcomes.

Well-informed and efficient MIPD bears huge potential in drug development as well as
in clinical practice as it could (i) increase response rates in clinical studies [8], (ii) facilitate
recruitment by relaxing exclusion criteria [7], (iii) enable continuous learning post-approval
and thus improve treatment outcomes in the long-term.
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5
Continuous learning across
patients

In the previous chapters, we have explored how PK/PD models can be used to generate
differentiated predictions of the therapy time course and how they can support informed
clinical decision-making. The PK/PD models themselves have always been assumed—as
commonly done– to be correct and appropriate for the target patient population, i.e., it is
assumed that the model sufficiently well represents the drug-patient-disease system, that the
variability in outcome is adequately described and that the prior study population (used to
develop the model) is representative of the target patient population (to which the model
will be applied). These assumptions, however, often do not correspond to clinical reality. A
certain model misspecification or population shift can be expected due to the limited amount
of data the models were built on: data from clinical trials involving only a limited number
of patients, selected according to strict inclusion/exclusion criteria within a restricted time
frame, or data from different hospitals/study centers [15, 39]. Therefore, models underlying
MIPD will inevitably be confronted with deviating data in clinical routine, e.g., center-related
differences [182], differences in pathophysiology [183] or differences related to the patient
population (patients with comorbidities, comedications, or with special characteristics, e.g.,
morbidly obese, pregnant, or unusual genotypes) [15, 39, 184, 185, 186]. In this ‘imperfect
model scenario’, the benefits of MIPD approaches may not be clear. It is therefore prudent
to improve and adapt a model as clinical routine data on the observed patient population is
obtained.

For a given drug-disease-patient-system, there are often numerous models available from
literature, but based on different patient populations, e.g., for warfarin therapy [187, 188],
vancomycin [183, 189], or ciclosporin [190]. In addition, adjustments to the model used in
a MIPD framework were necessitated after treatment of the first patient cohort [191] or in
retrospect [192, 90]. As an illustrative example, we focus on models for paclitaxel-induced
neutropenia, which build the basis for neutrophil-guided MIPD to individualize chemotherapy
dosing as discussed in the previous chapters [75, 73]. Since the publication of the gold-
standard model for neutropenia [91], it has been used as a starting point for the development
of many model variants, which differ not only in the parameter estimates [67, 94, 9, 11] but
also structurally [193, 194, 195, 90], e.g., to account for cumulative neutropenia [90] (see
Section 2.1.3).
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5.1 Simulation study framework to investigate model bias

The challenge to choose between competing models developed in different clinical settings is
often approached via model averaging or model selection approaches [189]. In model averaging
all candidate models are used, weighting the model predictions with the patient-specific TDM
data. In contrast, in model selection, a single model is selected based on a retrospective
external evaluation of independent data collected previously in the intended setting (from the
same hospital and patient population) [182] and prospective fit-for-purpose verification [183].
None of the approaches, however, does integrate the new data collected during the application
of MIPD into the initial models underlying MIPD. In other words: the initial model itself
remains unchanged and is not improved with data, which limits its predictive performance
in the long run. In this regard, continuous learning approaches based on an ever-growing
amount of data have enormous potential to improve the predictive capabilities of MIPD in
clinical practice. The problem of transferability is a well-known and studied problem in ML
literature, and is often called lifelong learning, continual learning [196, 197], transfer learning
[198, 199], or domain adaptation [200]. Contrary to typical ML applications, however, patient
data may not be accessible across different hospitals or institutions. This may restrict current
approaches based on the pooling of data, which require access to individual TDM data of
all patients [201]. Therefore, approaches for model learning are needed that are based on
summary information of the data that is extracted locally and can then be shared. In the
previous chapter, direct RL, i.e., updating the model-based estimate of the expected long-term
return q with observational data, was discussed as a possibility to correct a potential model
bias in a dosing policy. It would nevertheless actually be preferable to correct a possible
model bias at the level of the model in order to also allow for improved Bayesian forecasting
of the therapeutic outcome. Correcting a potential model bias or following a population shift
on the level of the model parameters is the focus of this chapter, based on [CM3].

We propose an approach that builds on a sequential hierarchical Bayesian framework
for continuous learning. Essentially, the underlying prior model for MIPD is improved on
the level of the population parameters as new data from the target patient population are
collected. In this way, an individual patient’s therapy benefits from every previously treated
patient. Importantly, the approach separates the inference of the individual model parameters
during a patient’s therapy (as described in Chapter 3) from the update of the population
parameters across patients by exchanging information via a sample representation of the
posterior of the parameters instead of the patient data itself. The proposed approach is
based on ideas from Bayesian integration of meta-analyses [202, 203]. First, we demonstrate
how a model bias or population shift could affect MIPD in an in silico trial setting in terms
of misspecified population parameters and structural misspecifications. For the continuous
learning framework, we focus in the present thesis on how to correct a model bias on the level
of the structural model parameters, i.e., updating the typical or variability parameter values.
In particular, we also discuss aspects regarding sampling designs for TDM, which play an
important role in model learning. The proposed approach aims at bridging the gap between
population analyses in academia or industry and informed individualized dosing in clinical
practice, and hence may help to increase the applicability of MIPD approaches in everyday
healthcare use.

5.1 Simulation study framework to investigate model bias
In the subsequent simulation study, we considered a normal distribution for pΘ in Eq. (2.3),
which can be typically derived via transformation, e.g., log-transformation in case of the
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log-normal distribution. As MIPD approach we used DA-guided dosing, as presented in detail
in the previous chapters (Section 4.2.2).

Paclitaxel-induced neutropenia models We investigate the paclitaxel-induced neutrope-
nia models considered in the context of the CEPAC-TDM study, see Table 2.1. The initial
model (hereafter gold-standard [11]) builds on the structure of the gold-standard model for
chemotherapy-induced neutropenia [91] with parameter values estimated based on a pooled
data set of two prior studies [9, 204] including patients with ovarian cancer, NSCLC, and
patients with various solid tumors [11]. Paclitaxel was given either as monotherapy or in com-
bination with carboplatin. In the CEPAC-TDM study, only NSCLC patients were included
and paclitaxel was given in combination with carboplatin or cisplatin over six treatment
cycles. It was observed that the initial model (gold-standard) overestimated the neutrophil
concentration at later cycles since the model does not take into account cumulative neutropenia
[90], see Figure 2.3 D. The parameters were re-estimated (hereafter gold-standard R) based on
the CEPAC-TDM data, and finally, the structure was modified to account for bone marrow
exhaustion, see Figure 2.2. Here, we focus our analyses on the more challenging PD models,
while we considered the PK model to be given with parameter values inferred previously
based on the CEPAC-TDM study data [90], see Section 2.1.3. In Table D.1 we list additional
models proposed in the literature for paclitaxel-induced neutropenia, which illustrates the
challenge of choosing a suitable model for MIPD in practice.

Model bias scenarios Model bias denotes a summary term for different specific biases
originating from, e.g., a limited number of patients the model was built on, misspecified
distributions of model parameters, or differences in analytical methods [15]. Given the
described model components (Section 2.1.3), a model bias can result from a misspecified
structural model Eqs. (2.1)+(2.2), prior parameter distribution Eq. (2.3), and/or likelihood
Eq. (2.4). In the following, we consider two types of model biases:

• Structural bias. A bias in the structural model, e.g., due to the manifestation of
phenomena in the target patient population that have not been observed in the prior
clinical studies. To study structural bias in the context of paclitaxel-induced neutropenia,
we used the BME model [90] (Table 2.1 right column) to generate TDM data, while we
used the gold-standard model [11] (Table 2.1 left column) in MIPD. The latter lacks
the structural feature of cumulative neutropenia over multiple cycles.

• Parameter bias. A bias in the prior parameter distribution. This might include the
distributional assumption (normal, lognormal, etc.) as well as the estimated parameter
values for a given distribution. Here, we only focus on the latter, e.g., we assume that
the type of distribution is the same, but its parameters differ. To study parameter bias,
we used the gold-standard R model [95] (Table 2.1 middle column) to generate TDM
data, while we used the gold-standard model [11] (Table 2.1 left column) in MIPD. Both
rely on the same structural model; the parameter values of the former were re-estimated
to the CEPAC-TDM data.

For reference, we compared the performance of MIPD in the presence of structural or parameter
bias to (i) the MIPD based on an unbiased model (unbiased model scenario) as in Chapter 4,
and (ii) the standard dosing [95] (Section 2.1.2).
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5.2 Hierarchical modeling
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Figure 5.1: Hierarchical Bayesian model framework with separation between the inference on the individual
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estimates, the population parameters are seen as random variables with parametric probability distributions
parametrized with hyperparameters θTV,Sθ

TV
and ψ = (ν − nΩ − 1) Ω, ν. A sample representation of the

individual posterior is used to update the hyperparameters of the population parameter distributions (red
arrow). On the right the corresponding probability distributions are given for the different levels of the
hierarchical model.

TDM sampling scenarios The effect of a potentially misspecified prior model on MIPD is
dependent on the amount of available TDM data per patient to correct for this bias. Therefore,
we considered different TDM sampling schemes:

1. sparse sampling : neutrophil measurements at day 1 and day 15 of each cycle (sampling
design of CEPAC-TDM study).

2. intermediate sampling : weekly neutrophil measurements (as in [9]).

3. rich sampling : neutrophil measurements are taken every third day.

While the first two sampling schemes correspond to current clinical settings, the third mimics
the prospective growing availability of point-of-care devices (e.g., HemoCue® WBC Diff
for measuring neutrophil counts [30] as discussed in Section 2.1.1), foreseeing richer patient
monitoring data to improve and update models.

5.2 Hierarchical modeling
To continuously update and learn population parameters, we considered in addition hyper
priors on the population parameters of the NLME models in Section 2.1.3. The hierarchical
structure of fully Bayesian population models thus comprises three stages [205, 156], see
Figure 5.1:

1. Statistical model for the TDM data, given by Eq. (2.4), which describes the deviations
between the individual model predictions and the observational data. Often, an additive
normally distributed error is assumed (potentially on a log-scale).

2. The distributional assumption for IIV, Eq. (2.3) describes parameter differences between
individuals, possibly including a covariate model. Often a lognormal distribution is
chosen.
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3. Distributional assumptions for population parameters (so called hyper priors)

p(θTV), p(Ω) ,

which describe the uncertainty in the population parameters.

Hyper priors Population analyses are typically performed in a frequentist NLME setting,
reporting maximum likelihood estimates (MLEs) of the population parameters jointly with
their relative standard errors (RSEs) or CV. This leaves the problem of how to determine
suitable hyper prior distributions for the population parameters.

The normal-inverse Wishart distribution has been proposed previously as hyper prior for
the population parameters (θTV,Ω) [206]. The distribution of the typical values is normal with
mean θTV and variance Sθ

TV
. Using the asymptotic normality of the posterior (Section 2.2.1),

we chose the prior p(θTV|ypop) to be normally distributed with mean θTV identical to the
MLE θ̂TV and variance Sθ

TV
identical to the squared standard error (SEθTV)2, see also [100].

Since we considered the log-transformed parameters, the standard error were transformed
appropriately, e.g., using a Taylor expansion at the MLE or a sampling based approach.

The inter-individual variability matrix Ω was assumed to be inverse-Wishart distributed
with parameters Ψ, and degrees of freedom ν, i.e., IW(Ψ, ν). We considered Ω to be
diagonal and chose Ψ such that the population estimate equals the mean Ψ/(ν − nΩ − 1), i.e.,
Ψ = (ν − nΩ − 1)Ω̂. The distributions of the typical and variability values were assumed to
be independent.

5.3 Novel approach to learn population parameters across
patients

To learn and improve a model across patients the information provided by the patient-specific
TDM data needs to be included into the hierarchical model. In mathematical terms, we are
interested in the marginal posterior (to ease notation, we drop the indices):

p(θTV,Ω|y) ∝
∫
p(θ, θTV,Ω|y)dθ (5.1)

with the joint posterior

p(θ, θTV,Ω|y) ∝ p(y|θ, σ2)p(θ|θTV,Ω)p(θTV)p(Ω) (5.2)

determined from a full hierarchical Bayesian procedure. A sample approximation to the joint
posterior Eq. (5.2) allows for a straightforward approximation of the marginal in Eq. (5.1).
For our particle filter based inference, this would require to augment the particle state and
parameter space by the population parameters (θTV,Ω), i.e., two additional parameters per
structural model parameter. This, however, is computationally expensive and thus, limits
real-time inference during the patient’s therapy. Also, direct access to the individual patient
data would be needed for updating the population parameters, which limits learning across
different hospitals.

Therefore, we propose a two-level sequential hierarchical Bayesian approach based on
previous approaches for Bayesian inference for meta-analyses [202, 203] to learn across TDM
patients, i = 1, . . . , NTDM. Importantly, this approach does not change the inference on the
individual level (see Algorithm 3 for pseudo code):
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5.3 Novel approach to learn population parameters across patients

1. Individual level: Estimate individual parameters of the ith patient

p(θi|yi) ∝ p(yi|θi, σ2)p(θi|θ̂TV, Ω̂) ,

e.g., using a PF, SIR or MCMC approach, as described in Section 2.2. We employed
in our analysis a particle filter (‘DA’ in the pseudo-code), as it was shown to be best
suited for our requirements (Chapter 3). This gives rise to a sample representation of
the posterior, {(θ(m)

i , w
(m)
i ),m = 1, . . . ,M}, summarizing the information provided by

the data of the ith patient, see also Eq. (2.14).

2. Population level: Update population parameters by sampling iteratively from the joint
posterior p(θ, θTV,Ω|y) via a Metropolis-Hastings-within-Gibbs sampling scheme [100,
202], i.e., sampling from the full conditionals:

p(θTV|θi,Ωi, y1:i) ∝ p(θi|θTV,Ω)p(θTV|θi−1,Ωi−1, y1:i−1) (5.3)

= p(θi|θTV,Ω)p(θTV|θi−1,Ωi−1)

p(Ω|θi, θTVi , y1:i) ∝ p(θi|θTV,Ω)p(Ω|θi−1, θ
TV
i−1, y1:i−1) (5.4)

= p(θi|θTV,Ω)p(Ω|θi−1, θ
TV
i−1)

p(θi|θTVi ,Ωi, y1:i) ∝ p(y|θi, σ2)p(θi|θTVi ,Ωi) . (5.5)

Sampling from Eq. (5.3) in iteration l = 1, . . . , L corresponds (in our setting) to sampling
from a multivariate normal distribution N (µ

θTV(l)
i ,Σ

θTV(l)
i ) with parameters

Σ
θTV(l)
i =

((
Sθ

TV

i−1

)−1

+
(

Ω
(l−1)
i

)−1
)−1

(5.6)

µ
θTV(l)
i = Σθ

TV

i

((
Ω

(l−1)
i

)−1

θ
(l−1)
i +

(
Sθ

TV

i−1

)−1

θTVi−1

)
, (5.7)

and from Eq. (5.4) corresponds to sampling from an inverse-Wishart distribution
IW(Σ

Ω(l)
i , ν

(l)
i ) with parameters

Σ
Ω(l)
i = (νi − d− 1)Ω̄i−1 +

(
θ

(l−1)
i − θTV(l)

i

)(
θ

(l−1)
i − θTV(l)

i

)T
(5.8)

ν
(l)
i = νi−1 + 1 . (5.9)

Further, sampling from Eq. (5.5) is achieved via a M-H step by using as proposals
the posterior samples generated on the individual level {θ(m)

i }Mm=1, which are drawn
according to weights w(m)

i and accepted with probability

α =
p(θ
∗(l)
i |θ

TV(l)
i ,Ω

(l)
i )/p(θ∗i |θTVi−1, Ω̄i−1)

p(θ
(l−1)
i |θTV(l)

i ,Ω
(l)
i )/p(θ

(l−1)
i |θTVi−1, Ω̄i−1)

. (5.10)

Importantly, Eqs. 5.6-5.9 and the acceptance probability in Eq. (5.10) do not contain any
patient data yi. Thus, given the posterior ensemble generated on the individual level, the
patient data themselves are not required to perform the population parameter updates.
Rather, the patient data yi implicitly enter via the (weighted) sample representation
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of the posterior p(θi|yi). Finally, to start with a parametric distribution for the next
patient a normal and inverse-Wishart distribution is fitted to the MCMC samples (after
removing a ‘burn-in’), i.e., for the typical values p(θTV) ≈ N (θTVi ,Sθ

TV

i ) with

θTVi =
1

L

L∑

l=1

θ
TV(l)
i , Sθ

TV

i =
1

L− 1

L∑

l=1

(θ
TV(l)
i − θTVi )(θ

TV(l)
i − θTVi )T , (5.11)

and for the IIV parameters p(Ω) ≈ IW((νi − nΩ − 1)Ω̄i, νi) with

Ω̄i =
1

L

L∑

l=1

Ω
(l)
i , νi = νi−1 + 1 . (5.12)

For the next patient, the particle ensemble for the individual level is initialized based
on the new parameters θTVi , Ω̄i.

Algorithm 3 Two-level sequential hierarchical Bayesian learning in MIPD

1: Input: θTV, SEθTV , Ω̂, ν0, (yi,1:ni only for individual level)
2: Set hyper prior parameters θTV0 := θ̂TV,Sθ

TV

0 := (SE
θ̂TV)2, Ω̄0 := Ω̂, ν0

3: for i = 1 : NTDM do
4: // Individual level
5: initialize particle ensemble {θ(m)

i0 , x
(m)
i0 , w

(m)
i0 }Mm=1 based on p(θ|θTVi−1, Ω̄i−1)

6: for j = 1 : ni do
7: {θ(m)

ij , x
(m)
ij , w

(m)
ij }Mm=1 ← DA

(
yij , {θ(m)

ij−1, x
(m)
ij−1, w

(m)
ij−1}Mm=1

)
. Alg. 1

8: end for
9: // Population level

10: initialize Markov chain θTVi
(0)

= θTVi−1,Ω
(0)
i = Ω̄i−1

11: and θ(0)
i sampled from p(θ|θTVi−1, Ω̄i−1)

12: for l = 1 : L do
13: // Gibbs sampling part
14: draw θ

TV(l)
i from p(θTV|θ(l−1)

i ,Ω
(l−1)
i , yi) . Eq. (5.3)

15: draw Ω
(l)
i from p(Ω|θ(l−1)

i , θTV(l), yi) . Eq. (5.4)
16: // Metropolis-Hastings part
17: draw proposal θ∗(l)i from {θ(m)

ini
}Mm=1 according to {w(m)

ini
}Mm=1

18: and add rejuvenation
19: Accept proposal with probability α . Eq. (5.10)
20: end for
21: Parametric approximations of hyper priors:
22: p(θTV) ≈ N (θTVi ,Sθ

TV

i ) . Eq. (5.11)
23: p(Ω) ≈ IW((νi − nΩ − 1)Ω̄i, νi) . Eq. (5.12)
24: end for

Continuous learning simulation setting The continuous learning approach was applied
to NTDM = 100 virtual patients with available TDM data over six treatment cycles depending
on the considered sampling scheme. The continuous learning approach was repeated 10 times
to account for statistical variability in the individual patient parameters considered for the
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5.4 Application to paclitaxel-induced neutropenia models

update. The same virtual patients were used in a simulation study using MIPD alone without
continuous cross-patient learning (DA-guided dosing) to demonstrate how MIPD could be
affected by a model bias. On the individual level, model parameters (MTT, Slope,ANC0)T

were estimated. We restricted the population updates to ‘MTT’ and ‘Slope’, as for ‘ANC0’
the baseline method B2 described in [96] is used, i.e., no typical parameter was estimated but
the baseline value was used to initialize the (empirical Bayes) prior (see Eq. (2.6)). Besides,
we consider a setting that includes γ in the individual level inference as the value differs
across the models. In this study, we neither estimated σ on the individual level nor on the
population level. However, the values for σ used to generate the TDM data differed from those
that the models in the ‘imperfect model scenarios’ assume. The considered hyper priors, i.e.,
the distributional assumptions for the population parameters, are summarized in Table 5.1.
Since no relative standard errors are available for the gold-standard model [11], the values
reported in [9] (one of the two pooled studies) were chosen as conservative choice. The choice
of the degrees of freedom ν is generally difficult but was chosen here to balance confidence in
the estimated value while still enabling adaptation. The simulation study was performed in
MATLAB 2019b.

Table 5.1: Hyper priors for the gold-standard model used in the simulation study.

Parameter distribution hyperparameters
TV parameters
log(MTT) N θTV0 = log(2.6) , Sθ

TV

0 = 0.0013

log(Slope) N θTV0 = log(141) , Sθ
TV

0 = 0.016
IIV parameters
ω2
MTT IW ΨMTT = 0.6561 = (12− 2− 1)0.0729, ν0 = 12
ω2
Slope IW ΨSlope = 1.8144 = (12− 2− 1)0.2016, ν0 = 12

5.4 Application to paclitaxel-induced neutropenia models

5.4.1 Current MIPD approaches may not be beneficial in the pres-
ence of model bias

For a performance analysis, we generated TDM data (including RUV) on day 1 & day 15
of each cycle (sparse sampling as in the CEPAC-TDM study) over six treatment cycles.
Figure 5.2 illustrates the performance of MIPD with/without model bias in comparison to
standard dosing (median and 90% CIs).

The left column illustrates the scenario of parameter bias, i.e., the structural model and
the class of prior distributions are identical to the data generating process, but the parameter
values of the prior distribution differ. In this case, MIPD performs comparably to the standard
dosing (top left), also in terms of occurrence of grade 4 and grade 0 neutropenia (bottom
left). For reference, in the corresponding unbiased model scenario, the MIPD approach clearly
reduces the occurrence of grade 4 & 0 (bottom and middle panel). It is worth noting that
the confidence intervals in all panels show a certain ‘skewness’ towards higher neutrophil
concentrations (lower grade of neutropenia). This is due to the choice of the weighting factors
(grade 4 is penalized more strongly than grade 0) in the dose optimization problem Eq. (4.7).

The right column illustrates the more challenging scenario of structural bias, i.e., the
structural model differs from the model underlying the data generating process. Of note,
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5.4.2 Dependence of continuous learning approach on sampling design

in this case, both standard dosing and MIPD perform much worse than in the scenario of
parameter bias (bottom panel). In 3 out of 6 cycles, MIPD results in even larger occurrences
of grade 4 compared to standard dosing. The gold-standard model underestimates the
drug effect on neutrophil concentrations (see Figure 2.3 D) and hence too high doses are
selected, especially in presence of cumulative neutropenia. Despite relying on an inappropriate
structural model, DA is able to correct this initial bias on the parameter level over the course
of a patient’s therapy by integrating TDM data, which leads to a decrease in the incidence
of grade 4 neutropenia in later cycles. For reference, in the corresponding unbiased model
scenario, the MIPD approach clearly and very quickly reduces the occurrence of grade 4 and
grade 0 (bottom and middle panel). This scenario corresponds to the setting of Chapter 4,
Figure 4.4 D. In comparison to the gold-standard R scenario, the occurrence of grade 4 and
grade 0 neutropenia is even further decreased, which might be related to the smaller RUV
parameter, see Table 2.1.

In summary, if the underlying model is not consistent with the observational data, MIPD
might not be beneficial compared to standard dosing that solely relies on TDM data (‘model-
free’). As outlined in the introduction, a model bias can be expected, if MIPD is applied
in clinical routine, therefore, the top panels might better reflect clinical reality than the
middle panels. This is the status-quo of state-of-the-art MIPD approaches. They generally do
not exploit the wealth of TDM data used during MIPD to learn and update the underlying
models—except for the aforementioned recent approaches based on pooling the data for
re-estimating the NLME model [201].

5.4.2 Continuous learning MIPD can counteract parameter bias,
but depends on the sampling scheme

The proposed continuous learning MIPD framework is able to adapt the biased parameter
distribution over time as TDM patients are observed. Figure 5.3 illustrates the sequential
updates of the proposed framework for the posterior distributions of the typical parameters of
‘Slope’ and ‘MTT’ across 100 patients for different sampling schemes. For the rich sampling
scenario (left), the panel shows how the posterior—95% highest posterior density (HPD)
area—evolves over the number of observed patients (displayed after every 5th patient), moving
away from the prior estimate (gray star) towards the value used to generate the TDM data
(black star). As more patients are observed, uncertainty about the typical ‘Slope’ and ‘MTT’
parameters decreases, as indicated by the decreasing size of the HPD area.

Thus, the proposed continuous learning MIPD framework successfully allows to learn the
typical values underlying the TDM data from sample representations of the posterior on the
individual level. Note that the parameters γ and σ were not estimated, although different
values are used to generate the data, which might lead to some deviations. The results for
when γ is also included in the individual level inference are shown in Figure D.1.

To what extent the continuous learning MIPD framework is able to counteract parameter
bias, however, depends on the sampling scheme, see Figure 5.3 (middle and right panel).
For the intermediate sampling scenario (weekly), the posterior distribution moves towards
the parameter values that have been used to generate the data. A final parameter bias,
however, remains, potentially due to parameter identifiability issues. To assess practical
identifiability, we investigated the loglikelihood and logposterior on the individual patient
levels, see Figure D.2. To exclude the possibility that the sampling time points of the
intermediate scheme (weekly) were chosen unfavorably, we performed an optimal design
analysis, see Figure D.3. For the sparse sampling scheme, the TDM data on the individual
level are not sufficient to fully remove model bias. Only for the rich sampling, the data

75



5.4 Application to paclitaxel-induced neutropenia models
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Figure 5.2: MIPD under model bias/population shift. Neutropenia time courses were simulated for NTDM =
10 · 100 virtual patients using MIPD approaches with different underlying models and the standard dosing
approach for paclitaxel (200mg/m2 with 20% reduction if grade 4 neutropenia was observed in the previous
cycle). TDM data were simulated including residual variability on day 1 & day 15 of each cycle (sparse
sampling scenario). In the left column, TDM data were generated using the gold-standard R model. The top
panel demonstrates the ‘imperfect model scenario’; the MIPD approach uses the gold-standard model. The
middle panel corresponds to the ‘perfect model scenario’; the MIPD approach uses also the gold-standard R
model. The median time course is shown along its 90% confidence interval (CI). The bottom panel compares
the occurrence of life-threatening grade 4 neutropenia and subtherapeutic grade 0 neutropenia at the nadir for
the different dosing strategies. In the right column, the TDM data were generated using the bone marrow
exhaustion (BME) model [90]. Note that grade 4 neutropenia is penalized more (λ4 = 2/3) compared to grade
0 neutropenia (λ0 = 1/3) in Eq. (4.7). This is accounted for in the scale of the bottom panels, which allows to
interpret the length of the total bars.
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5.4.3 Potential to improve MIPD
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Figure 5.3: Comparison of the sequential updates of the hyper prior for the typical MTT and Slope value
for different TDM scenarios. Gray star: prior estimate of the parameters; black star: target parameters, i.e.,
the ones used to generate the TDM data. Sparse sampling consists of measurements on day 1 & 15 of each
cycle, weekly sampling corresponds to an intermediate data situation and for rich sampling it is assumed that
neutrophils are monitored every third day. The mean (circle) and 95% highest posterior density (HPD) is
shown (shaded ellipse) after every 5th patient.

are sufficiently informative to move away from the (biased) prior estimate towards the
data-generating value, resolving the practical unidentifiability.

The sequential updates for the corresponding IIV parameters are displayed in Figure 5.4
for the rich sampling scenario. The IIV parameter for ‘MTT’ moves from the prior estimate
towards zero as no IIV has been estimated in the gold-standard R model; in other words,
TDM data were generated with the same parameter value for ‘MTT’ for all patients. The
IIV parameter for ‘Slope’ initially increased (dark blue) as individually estimated ‘Slope’
parameters deviated considerably from the biased prior typical ‘Slope’ parameter. However,
as more TDM data were observed and the typical value was increased, also the IIV parameter
moved back towards the target value (close to the prior value). Overall, it can be observed
that the magnitude of IIV for ‘MTT’ and ‘Slope’ is overestimated to a certain extent, which
may be due to the increased RUV not being taken into account.

5.4.3 Continuous learning in MIPD has the potential to substan-
tially improve therapy outcome even for structural bias, again
depending on the sampling scheme

Finally, we investigated the effects of continuous learning of population parameters on MIPD.
We compared the performance of the proposed continuous learning MIPD approach to the
MIPD approach without learning (DA-guided dosing) as well as standard dosing across 100
patients. The analysis was repeated 10 times to account for statistical variability in the model
parameters used to generate the TDM data. Here, we show only the more challenging scenario
of a structural bias. For the parameter bias scenario, we refer to Figure D.4. Figure 5.5
compares the performance of the different approaches. Standard dosing and DA-guided dosing
are as in Figure 5.2, but here shown for the intermediate sampling design as continuous
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5.4 Application to paclitaxel-induced neutropenia models
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Figure 5.4: Sequential updates of the IIV parameters across patients for the rich sampling scenario.

learning is more effective with more TDM data (as seen above). Here, we also consider
uncertainty with respect to the parameter γ.

As already described in Figure 5.2, we found that DA-guided dosing was able to adjust
also to some extent for cumulative neutropenia over time (see Figure 5.5 (dark green) for
the intermediate sampling scheme). It can be observed that the ‘Slope’ parameter increased,
while parameters ‘Circ0’ and γ decreased over the course of the therapy of six cycles, leading
to a decrease in the occurrence of grade 4 after cycle 3 and a substantial decrease in outcome
variability. Effectively, when considering the data points one at a time, the sequential DA
framework allowed to account for changes in the parameters over time. This is potentially
a very beneficial property, e.g., to better reflect disease progression and intra-individual
variability without explicitly modeling it. While this might be very desirable for MIPD for
the individual patient, it could be misleading when learning across patients. When the final
parameter estimate (after six cycles) was used to update the population parameter (SlopeTV,
MTTTV), this introduced a bias for the first cycle of the next patient, resulting in a high
occurrence of grade 0 for the first cycle (Figure 5.5 bottom left). Continuous learning was
considered across the first 100 patients (blue-green) as well as continued learning of the
second 100 patients (yellow) after gaining experience on 100 patients from the target patient
population (results are displayed for the same virtual patients, different 100 target patients
were considered for the previous experience). It can be observed that the typical ‘Slope’
parameter increases (green vs. blue-green vs. yellow) as it is continuously learned across
patients (initial Slope value at t = 0 in the top right panel). The parameter values are,
however, not comparable to the values of the BME model due to the structural differences
between the models.

A major improvement can be seen for the continuous learning MIPD approach, which
reduced the occurrence of grade 4 substantially across all cycles compared to DA-guided
dosing alone as well as standard dosing. This improvement can be already seen for the first
100 patients (blue-green) but is even more pronounced for the second 100 patients. Only the
aforementioned time-dependence of the parameters leads to an increased occurrence of grade 0
neutropenia in the first cycle, but this is also (to a lesser extent) visible in the ‘perfect model
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Figure 5.5: Sequential DA allows for temporal parameter changes within the course of a patient’s therapy.
The TDM data were generated using the BME model and the results are shown for the intermediate sampling
scheme (sampling timepoints are indicated as grey dots in the right panels). The median (intra-individual)
temporal parameter evolution over the course of a patient’s therapy was computed across all virtual patients
(NTDM = 10 · 100).

scenario’ Figure 5.2. The results for the rich sampling scenario are comparable (Figure D.6),
however, for the sparse sampling scheme, the benefits are not so clear (Figure D.5).

5.5 Discussion
In this chapter, we investigated the transferability of population PK/PD models to different
clinical settings, a crucial application hurdle of MIPD in clinical routine. In a relevant
application scenario, we first showed that model misspecification might severely impact MIPD,
and therefore, models should be adapted to the target patient population. The used MIPD
approach, DA-guided dosing, proved to be able to counteract model bias to some extent, but
only improved MIPD at later cycles when a certain amount of TDM data was collected. As
the used DA approach processed data sequentially, it allowed to account for temporal changes
in the parameters and thus adapted the gold-standard model to some extent to cumulative
neutropenia. As aforementioned this could be a very valuable property to describe disease
progression or time-varying effects, e.g., time-varying drug clearances [207]. We propose a
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5.5 Discussion

sequential hierarchical Bayesian approach to update the population parameters using posterior
samples as a means to exchange information after every treated patient so that the model
better reflects the target patient population. We showed that the approach successfully
allowed to learn the underlying population parameters of the PK/PD model used to generate
the patient data, however, the results depend very much on the sampling scheme. In addition,
we showed that continuous learning has the potential to improve MIPD even in presence of
structural bias, again depending on the amount of available TDM data.

Health care data challenge algorithms and mathematical approaches not only with sparsity,
noise, and missing data. Crucial aspects are also legal, privacy, and confidentiality issues
[208]. These often limit the applicability and implementation of patient data analysis. To
continuously improve models and evaluate their performance, however, a large amount of
patient data is required. In this work, aspects of practical applicability were considered,
for example with respect to data protection. Sample representations of Bayesian posterior
distributions are discussed and presented as a means to exchange information instead of
patient-specific TDM data. The proposed approach has two levels and allows to learn
sequentially over patients without using patient data on the population level. Thus, the
patient data themselves do not need to be stored or shared across clinics, which is a big
advantage compared to pooling approaches [201]. To account for center related differences, an
inter-study variability could be included. Thus, the approach builds a basis to develop more
informed models integrating an ever-growing amount of data potentially better reflecting
rare covariates. This could be particularly relevant in the rare disease area or in therapeutic
areas where human efficacy trials are unethical [86], which requires that models for MIPD are
learned directly in clinical routine.

The selection of the initial model used to start the continuous learning process could be
based on a retrospective external evaluation using historical data from the intended patient
population [182]. Model selection/model averaging approaches do not adapt/improve the
underlying model across patients; the a priori forecast remains the same for all patients (based
on the covariates). In addition, in their general form, these approaches are implemented in
conjunction with MAP estimation which provides potentially biased predictions in the context
of nonlinear models (Chapter 3). The proposed DA-guided dosing also naturally extends to
model averaging and this extension has been considered (on the individual inference level)
previously in the context of Bayesian therapy forecasting [125].

The presented analysis revealed, that an important aspect for practical implementation is
to critically assess the quality of the inference on the individual level. The dependence on the
sampling design clearly showed that more research is necessary and that caution is needed
when updating models based on real-world data, as was demonstrated for time-dependent
parameters and the dependence on the amount of TDM data. With the prospect of novel
digital health care devices, e.g. point-of-care devices, more frequent monitoring could become
clinical reality. This could increase the availability of real-world data, which are currently
underutilized [209] but has great potential to improve MIPD as shown in this study.

Possible future work. The current approach is limited to misspecifications or population
shifts on the structural model parameter level. An important extension in the future would
be to also estimate the RUV parameter σ, as an increased error in measurement precision or
reporting can be expected in clinical routine compared to e.g., controlled clinical study settings.
Currently, the IIV parameters ω2 captured the increased RUV of the data to some extent,
which, however, also increased the uncertainty on the individual level. Further, covariates
observed in the intended study population, which were not included in the population analysis,
could be integrated into the model via an assumed covariate model with prior parameter
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distributions centered at zero. If the covariate is of relevance, the population parameter
updates should move the prior away from zero.

An important issue to resolve in future studies is to directly target potential structural
model bias. Replacing the typical ODE-based models with SDE-based models would allow
to explicitly model the uncertainty in the model dynamics, separating measurement errors
from model misspecification [210]. The discussed DA methods for Bayesian forecasting are
used in most applications with SDE models, therefore the integration of SDE models is
straightforward. With the aforementioned advent of novel digital health care devices that
enable more frequent TDM sampling, parameter estimation for SDE-based PK/PD models
could become feasible. As discussed in Section 2.2.3, however, care should be taken that
biological constraints are preserved. Another means to describe uncertainty in the underlying
model could be via physics-informed neural networks, which balance in the cost functional not
only the deviation of the neural network output from the data but also the deviation from the
(mechanistic) model. Thus, they could bridge the missing or possibly biased physiological or
biological knowledge in the model to learn beyond the existing structural model. Especially
in the context of sparse data as often present in current MIPD applications physics-informed
neural networks have huge potential to improve the predictive capabilities of neural networks 1.

The approach of a learning model (as coined in [15]) for MIPD could be beneficial not only
in clinical practice but also during drug development, where new (clinical) study data are
generated sequentially and should be integrated into previously developed models [85]. The
proposed approach is an important step towards building the underlying models of MIPD on
a growing amount of data and thus make MIPD fit-for-purpose in everyday healthcare use.

1Results based on a project work by Julia Kirchner on “Physics Informed Deep Neural Networks in
Pharmacokinetics” (August 27, 2020) that the author of this dissertation co-supervised jointly with Niklas
Hartung, Niels Landwehr, Wilhelm Huisinga and Tobias Scheffer.
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6
Outlook

In this thesis, mathematical approaches to advance MIPD were developed and successfully
applied in the context of cytotoxic anticancer chemotherapy. The scientific challenges in MIPD
with respect to therapy forecasting, clinical decision-making for dose individualization, and
continuous learning across patients as identified in Chapter 1 were addressed by integrating,
adapting, and combining methodologies from different research fields. Within each chapter,
the proposed approaches were discussed and possible extensions that could be the subject of
future work were outlined. Finally, in this chapter, we want to broaden the discussion beyond
the scientific aspects discussed in this thesis and provide general perspectives on MIPD based
on [CM4]. Specifically, we focus on aspects of MIPD that need to be addressed in the future
for increasing the implementation of MIPD in everyday healthcare use.

First, there is a lack of uniform terminology in scientific literature to describe MIPD and
to differentiate it from alternative approaches towards precision medicine, e.g., pharmacoge-
nomics. Frequently used terms for the same approach (here termed MIPD) comprise Bayesian
feedback [211], optimal/adaptive control [168], target concentration intervention [21], Bayesian
dashboard [212]. In addition, the exact method used for Bayesian inference is often not out-
lined in detail. As a result, the literature is unclear and incomprehensible. Harmonization of
the terminology could increase visibility, prevent misunderstandings, and eventually accelerate
the progress of MIPD. Furthermore, courses and trainings for healthcare professionals are
needed to improve the understanding of model predictions and quantitative pharmacology
for effective and correct use of MIPD tools in clinical practice. At the same time, software
tools need to be user-friendly, e.g., using dashboards as for example for infliximab [172], but
also reliable and easy-to-interpret. The present work has made clear that current MAP-based
predictions are not well interpretable and has demonstrated how more informative, and reliable
forecasting of the therapy outcome could be achieved with full Bayesian DA approaches. The
presented DA approaches could be integrated into user-friendly MIPD software tools for
predicting the therapy outcome under uncertainty to support the decision-making of the
treating physician. A transparent and informative visualization of model predictions based
on a-posteriori probabilities contributes to a differentiated understanding of the capabilities,
but also the limitations of the underlying model. We have also shown how patient covari-
ates can be identified that drive dose selection for RL-based dose recommendations. These
considerations are key to building confidence in mathematical models and MIPD among
clinicians. Since it is ultimately the treating clinician who makes the treatment decision, an
optimal implementation of MIPD in practice involves interaction between the patient, the
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6 Outlook

clinician, and the decision-support tool, i.e., clinician/patient-in-the-loop [213]. Additionally,
practical implementation of MIPD in clinical routine requires an infrastructure that allows
for the seamless and efficient integration of available patient data from different sources, e.g.,
bioanalytical laboratories, bedside monitors, or point-of-care devices, into MIPD software
tools. This environment is not provided in most health care systems and is currently often
rather limited to university hospitals or research institutions. In this thesis, RL was proposed
as a flexible framework that allows integrating multiple sources of data and models. We also
discussed how real-world data could be used for continuous learning across patients to update
and improve the models while they are applied to patient data. These aspects could help to
build fit-for-purpose MIPD tools that integrate various sources of information and improve
the underlying models with new data. However, these MIPD tools are subject to regulatory
and reimbursement questions including the registration of MIPD tools as medical devices
[214, 215] and the costs of software licenses. A key aspect is also the awareness that not
all drugs might benefit from MIPD. Therefore, the selection of the right drugs is decisive
and should be based on the therapeutic index, the amount of PK/PD variability, biomarker
availability for TDM, the risk of morbidity/mortality associated with the disease state, and
also the discrepancy between the patient populations from clinical trials and the real-world
[209]. These considerations will be crucial for demonstrating the clinical benefit of MIPD in
the long-run across different therapeutic areas.

Finally, for patients to benefit from MIPD in the future, MIPD must be early integrated
into drug development, be required by regulatory authorities, and be accepted by healthcare
professionals.

Conclusion. The present dissertation contributed mathematical and algorithmic approaches
to improve the accuracy, reliability, and informative value of MIPD while taking into account
new trends in health care as well as aspects of practical applicability. We demonstrated the
importance of uncertainty quantification, the integration of uncertainties into dose selection,
and continuous learning of the underlying models within MIPD. The proposed approaches
represent an important advancement over the current MIPD approaches, promising decisive
benefits for future individualized therapies and contribute to making MIPD practical for
everyday healthcare use.
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A
Appendix related to the
background

A.1 PK-guided dosing
For the sake of completeness, we repeat here the algorithm by Joerger et al. [11] (called
PK-guided dosing), see Figure A.1, as we used it for comparison throughout the thesis. In
the PK-guided dosing, the dose of the first cycle is determined based on the patient’s age
and sex. For subsequent cycles, the dose is adjusted according to exposure (TC>0.05 time
during which the drug concentration is above 0.05µM in hours [h]) and neutropenia grade
observed in the previous cycle (inferred from observation at day 15). Thus, the algorithm is
not completely offline, since the exposure measure is inferred online using the PK model. The
PD-based adaptations, which were the focus in this thesis, however, were performed offline.
In our setting, we did not take PK samples but considered the true TC>0.05 to be known.

A.2 PK/PD Models used in this thesis

A.2.1 Docetaxel PK model
As PK model for docetaxel, a published three compartment model with first-order elimination
was employed [82], which includes the covariates AAG, AGE, BSA, and albumin (ALB). The
individual clearance (CLi) is computed via

CLi = BSAi · (CLTV + θCL-AAG ·AAGi + θCL-AGE ·AGEi + θCL-ALB ·ALBTV)·
(1− θCL-HEP12 ·HEP12) ,

where we used as typical albumin value ALBTV = 41 g/L and set HEP12=0 (i.e., no elevated
hepatic enzymes (HEP12)). The parameter estimates were taken from Bruno et al. [82], see
Table A.1, and the system of ODEs for the PK model is given by
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A.2 PK/PD Models used in this thesis

cy
cl

e
1

Patient age Paclitaxel dose in Paclitaxel dose in
[y] women [mg/m2] men [mg/m2]

< 46 185 200
46− 50 180 195
51− 55 175 190
56− 60 170 185
61− 65 160 175
> 65 150 165

cy
cl

e
2+

TC>0.05 Dose
[h] adjustment
> 50 −40%

41− 50 −30%
31− 40.9 −25%
< 31 −20%

TC>0.05 Dose
[h] adjustment
> 50 −30%

41− 50 −25%
31− 40.9 −20%
< 31 ±0%

TC>0.05 Dose
[h] adjustment
> 50 −30%

41− 50 −25%
31− 40.9 −20%
26− 30.9 ±0%
20− 25.9 +10%
10− 19.9 +20%
< 10 +30%

previous cycle g
= 4

previous cycle g = 0− 2
previous cycle g = 3

1
Figure A.1: Model-informed dosing table of the PK-guided dosing algorithm adopted from [11].

dCent
dt

= d(t)− k10Cent + k21Per1− k12Cent + k31Per2− k13Cent , Cent(0) = 0

dPer1
dt

= k12Cent− k21Per1 , Per1(0) = 0

dPer2
dt

= k13Cent− k31Per2 , Per2(0) = 0 ,

with ‘Cent’ referring to the central compartment, and ‘Per 1’, ‘Per 2’ to the first and second
peripheral compartment, respectively.

Table A.1: Pharmacokinetic parameter estimates for docetaxel taken from [82].

Structural submodel
V 8.31 [L]
CL 22.1 [L/h]
k10 CL/V [1/h]
k12 1.07 [1/h]
k21 1.74 [1/h]
k13 1.28 [1/h]
k31 0.0787 [1/h]

Covariate submodel
θCL-AAG -3.55
θCL-AGE -0.095
θCL-ALB 0.225

A.2.2 Paclitaxel PK model
We used the PK model in [11], see also Figure 2.2 (left part) for a schematic representation.
In the simulation studies in Chapters 3-5, the re-estimated parameters by [90] were used, see
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A.2.3 Docetaxel-induced neutropenia model

Table A.2. The system of ODEs describing the rate of change of the amount of paclitaxel in
[µmol] is given by

dCent
dt

= d(t)− VMEL · C1

KMEL + C1
+ k21Per1−

VMTR · C1

KMTR + C1
+ k31Per2− k13Cent , Cent(0) = 0

dPer1
dt

=
VMTR · C1

KMTR + C1
− k21Per1 , Per1(0) = 0

dPer2
dt

= k13Cent− k31Per2 , Per2(0) = 0

where Cent refers to the central compartment; Per1, Per2 to the first and second peripheral
compartment, respectively; C1(t) = Cent/V1 refers to the total paclitaxel concentration in
plasma; k13 = Q/V1 and k31 = Q/V3, where V3 refers to the volume of Per2; d(t) is the dosing
input.

Table A.2: Pharmacokinetic parameter estimates of the previously published PK model [11] for the anticancer
drug paclitaxel (re-estimated parameter values taken from [90]).

structural submodel
V1 10.8 [L]
V3 301 [L]
KMEL 0.667 [µm]
VMEL,pop 35.9 [µmol/h]
KMTR 1.44 [µm]
VMTR 175 [µmol/h]
k21 1.12 [1/h]
Q 16.8 [1/h]

covariate submodel
θVMEL-BSA 1.14
θVMEL-SEX 1.07
θVMEL-AGE -0.447
θVMEL-BILI -0.0942

statistical submodel IIV

ω2
V3

0.1639

ω2
VMEL

0.0253
ω2

KMTR
0.3885

ω2
VMTR

0.077
ω2
k21

0.008
ω2
Q 0.1660
statistical submodel IOV
π2
V1

0.1391
π2

VMEL
0.0231

statistical submodel RUV
σ2 0.0317

A.2.3 Docetaxel-induced neutropenia model
Docetaxel-induced neutropenia was previously described using the structure of the gold-
standard model for neutropenia [91] with parameter estimates given in Table A.3 as provided
in [67].
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A.2 PK/PD Models used in this thesis

Table A.3: Parameter estimates for the gold-standard model for docetaxel taken from [67]

Structural submodel
Circ0 5.22 [109cells/L]
MTT 84.2 [h]
Slope 15.6 [L/µmol]
γ 0.145 []

Covariate submodel
θCirc0-AAG≤1.34 0.175
θCirc0-AAG>1.34 0.495
θCirc0-SEX -0.121
θCirc0-PERF 0.131
θCirc0-PC -0.147
θSlope-AAG -0.351

Statistical submodel
ω2
Circ0

0.0606
ω2
MTT 0.0194
ω2
Slope 0.122
ω2
γ 0.0223
σ2 0.180
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B
Appendix related to Chapter 3

B.1 Algorithmic details of MAP estimation
We employed gradient descent algorithms to solve the optimization problem Eq. (3.3). These
algorithms can often be improved by providing the gradient and the Hessian of the objective
function J(θ) = − log p(θ|y1:n). The gradient for this specific problem is given by

∂J(θ)

∂θl
=−

n∑

j=1

(yj − hj(θ))
σ2

· ∂hj(θ)
∂θl

+
1

θl
+

(log(θl)− log(θTVl ))

ω2
l

· 1

θl
,

and the Hessian for l 6= m

∂2J(θ)

∂θl∂θm
=−

( n∑

j=1

(yj − hj(θ))
σ2

· ∂
2hj(θ)

∂θl∂θm
− 1

σ2

∂hj(θ)

∂θl

∂hj(θ)

∂θm

)

and

∂2J(θ)

∂θ2
l

=−
( n∑

j=1

(yj − hj(θ))
σ2

· ∂
2hj(θ)

∂θ2
l

− 1

σ2

∂hj(θ)

∂θl

∂hj(θ)

∂θl

)

+
1

θ2
l

·
[ 1

w2
l

(
1− log(θl) + log(θTVl )

)
− 1
]
.

Note that ∂hi(θ)
∂θl

= Shl are the output sensitivities, which are given by

Shl =
∂h(x, θ)

∂x
Sxl +

∂h(x, θ)

∂θl
,

using the sensitivities of the states

∂Sxl
∂t

=
∂f(x, θ)

∂x
Sxl +

∂f(x, θ)

∂θl
, Sxl (0) =

∂x0(θ)

∂θl
.
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B.2 Additional analyses for the simulation studies

For the computation of the state sensitivities the extended system of ODEs needs to be solved

ẋ = f(x, θ), x(0) = x0(θ)

Ṡxl =
∂f(x, θ)

∂x
Sxl +

∂f(x, θ)

∂θl
, Sxl (0) =

∂x0(θ)

∂θl
.

Alternatively, the gradient could be computed via adjoint sensitivity analysis which is more
efficient for models with a large number of states and parameters [216]. Since the Hessian matrix
requires the computation of the second-order sensitivities ∂2hi(θ)

∂θl∂θm
, which is computationally

expensive, often the (expected) FIM is used as approximation

Ilm(θ) = −
n∑

i=1

1

σ2
· ∂hi(θ)

∂θl
· ∂hi(θ)
∂θm

,

and

Ill(θ) = −
(

n∑

i=1

1

σ2
· ∂hi(θ)

∂θl
· ∂hi(θ)

∂θl
+

1

ω2
l θ

2
l

·
(
log(θTVl )− log(θl) + 1

))
.

B.2 Additional analyses for the simulation studies

B.2.1 Single cycle study docetaxel
Reference posterior. Since the true posterior distribution is analytically intractable (Sec-
tion 2.2.1), we employ as reference solution the SIR algorithm with a large number of samples
(M = 106), as the algorithm is exact forM →∞. This reference was validated via comparison
to the posterior derived by the MCMC algorithm using also M = 106 samples with a burn-in
of 100 samples, see Figure B.1.
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Figure B.1: Comparison of reference posterior. The reference posterior was derived by the SIR algorithm and
by the MCMC algorithm using M = 106 samples.

Potentially biased MAP-based predictions. In Chapter 3, it was described that the
MAP estimate does not correctly transform under a nonlinear mapping. As pharmacometric
PK/PD models are often nonlinear, this is a major drawback for decision support in MIPD.
Figure B.2 (A) shows the posterior of the drug effect parameter ‘Slope’ on the x-axis and the
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B.2.1 Single cycle study docetaxel
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1Figure B.2: Illustration of the unfavorable properties of MAP estimation with regard to reliable decision
support. (A) The MAP estimate (yellow line) does not correctly transform under a nonlinear mapping to
the most probable nadir concentration (based on [103, Figure 5.2]). The posterior of the parameter ’Slope’ is
depicted for an exemplary patient after four data points y1:4 were observed on the x-axis and the corresponding
a-posteriori probability of the nadir concentration on the y-axis (same scenario as in Figure 3.4). (B) The
mode is not preserved under transformation. Here, shown for the time to recovery to grade 2. The same
scenario was considered as for part A. (C) Root mean squared error (RMSE) of selected statistics. Comparison
of the accuracy of the computed statistics cnadir, tnadir and trec0 based on MAP estimation and full Bayesian
inference (SIR using M = 103 samples). The RMSE was computed across the whole considered virtual
population N = 100.

a-posteriori probability of the nadir concentration on the y-axis. The yellow line shows the
MAP estimate for the parameter ‘Slope’ and links to the MAP-predicted nadir concentration,
which clearly does not correspond to the mode of the a-posteriori probability distribution of
the nadir concentration (green histogram). In addition, it is shown how some randomly chosen
samples transform to the nadir concentrations. Note, however, that the nadir concentration
does not only depend on the ‘Slope’ but also on the other model parameters. Figure B.2 (B)
demonstrates the same observation for a different quantity of interest, the time of recovery to
grade 2, which shows a bimodal posterior distribution. The MAP-based time to recovery to
grade 2 could be misleading as it does not reflect the bimodality of the posterior. Further, we
considered as a statistical measure of accuracy the root mean squared error (RMSE) between
the model-predicted outcome Ti(En) given data y1:n for individual i and the reference outcome
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B.2 Additional analyses for the simulation studies

T ref (for which the data were simulated)

RMSE(T )n =

√√√√ 1

N

N∑

i=1

(Ti(En)− T ref
i )2 .

Figure B.2 (C) shows the prediction accuracy of the point-estimates of MAP-estimation
and of the fully Bayesian approach over time (computed for the N = 100 virtual patients).
As more data points are taken into account the RMSE decreases for both estimators. At
the beginning of the cycle, the fully Bayesian approach shows increased accuracy across all
considered quantities of interest, which is especially relevant for the prediction of the nadir
concentration and the nadir time as typically the nadir is around day 9 for docetaxel.

Normal approximation underestimates uncertainty. The delta method leads to a
similar underestimation of the uncertainty as the simulation-based approach (NAP sim), see
Figure B.3. In addition, it is not straightforward to propagate the uncertainty to quantities
of interest (therefore not displayed).

One generally suggested option to overcome the underestimation of the uncertainty is
to use the Student’s t distribution instead of the normal distribution [154]. We have used
quantiles of the Student’s t distribution with ν = 4 degrees of freedom (NAP δ t). The CrIs
show an increased width, but now overestimate the uncertainties regarding subtherapeutic
areas (grade 0), see Figure B.4. This is also not acceptable as underdosing is highly undesirable
in oncology.

Figure B.3: Propagating uncertainties in the normal approximation (NAP) approach using the delta method
instead of the simulation based approach.
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B.2.2 Multiple cycle study paclitaxel

Figure B.4: Propagating uncertainties in the normal approximation (NAP) approach using the delta method
with Student t quantiles instead of normal quantiles.

Improved acceptance rate with proposed adaptive Metropolis-Hastings The ac-
ceptance rate is an important statistic in MCMC diagnostics to assess the trade-off between
exploring the space and efficiently moving the chain. For the M-H algorithm with fixed
proposal variance Ω the acceptance rate decreased to very low levels as more TDM data
are observed. The proposed adaptive M-H sampler counteracts this decrease and achieves
acceptance rates within the suggested range (black horizontal lines) [100], see also Section 2.2.1.

0 2 4 6 8 10 12 14 16 18 20

time of last data point [d]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
v
e

ra
g

e
 a

c
c
e

p
ta

n
c
e

 r
a

te

MH 
MH adapted

Figure B.5: Acceptance rate of the Metropolis-Hastings algorithm with fixed proposal variance (MHΩ) and
with adapted proposal (MH adapted). The black lines mark the area of a good acceptance rate (0.23,0.4).

B.2.2 Multiple cycle study paclitaxel
The data for the simulation study were generated using the BME model prediction including
IOV, see Eq. (2.5). The cycle-specific parameters θIOV

c in Eq. (3.1) are estimated based on
the data observed in cycle c, y1:nc = (y1, . . . , ync)

T . The size of the parameter vector that
needs to be estimated will, therefore, grow with every occasion, in the case the whole data
are processed in a batch (as in MAP, SIR, MCMC).
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B.2 Additional analyses for the simulation studies

MAP-estimation including IOV. Assuming independence between the IIV and IOV,
the optimization problem for the MAP estimation is given by

θ̂MAP
n = arg min

θIIV,θIOV

1

2

( C∑

c=1

nc∑

j=1

(
yj − hj(θ)

)2

σ2

+ 2

nIIV
θ∑

k=1

log(θIIV
k ) +

nIIV
θ∑

k=1

(
log(θIIV

k )− log(θTVk (cov))
)2

ω2
k

+ 2

C∑

c=1

nIOV
θ∑

k=1

log(θIOV
k,c ) +

C∑

c=1

nIOV
θ∑

k=1

(
log(θIOV

k,c )− log(θTVk (cov))
)2

π2
k

)

for the IIV and IOV model θk,c = θTVk · eηk+κk,c , with ηk ∼ N (0, w2
k) and κk,c ∼ N (0, π2

k),
for an additive normal residual error model yj = hj + εj , with εj ∼ N (0, σ2) and for data
observed up to time point tn, i.e., n =

∑
c nc, with nc the number of observations made in

cycle c. The gradient with respect to the IIV parameters is given by

∂J(θ)

∂θIIV
l

=−
n∑

j=1

(yj − hj(θ))
σ2

· ∂hj(θ)
∂θIIV
l

+
1

θIIV
l

+
(log(θIIV

l )− log(θTVl ))

ω2
l

· 1

θIIV
l

,

and with respect to the IOV parameters by

∂J(θ)

∂θIOV
l,c

=−
n∑

j=1

(yj − hj(θ))
σ2

· ∂hj(θ)
∂θIOV
l

+
1

θIOV
l,c

+
(log(θIOV

l )− log(θTVl ))

ω2
l

· 1

θIOV
l,c

.

Comparison of the methods for the multiple cycle study. Figure B.6 shows a com-
parison of the different methods in forecasting the third cycle. The scenario corresponds to
the situation presented in Figure 3.5. All fully Bayesian methods provide almost overlapping
CrIs as well as point estimates (median). However, the MAP-based forecasted trajectory
deviates significantly from the point estimates (median) of the fully Bayesian methods. The
corresponding MAP-based predicted neutropenia grade would be grade 2, although the most
probable grade of the reference is grade 3 neutropenia. The a-posteriori probabilities of key
quantities of interest related to the neutropenia time course are comparable across the full
Bayesian approaches and well match the reference.
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B.2.2 Multiple cycle study paclitaxel
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Figure B.6: Comparison of low-cost approximations regarding forecast accuracy. The third cycle is forecasted
in case the standard dose is given. For the full Bayesian approaches the median is shown as point estimate,
along with the 90% credible interval (CrI) and the 90% prediction interval (PI).

In Figure B.7 the posterior approximations are compared to the reference on the level
of the parameters. Also, we can observe the deviation of the posterior from the prior for
parameters ’Slope’ and ’Circ0’. As we do not consider PK samples the knowledge gain about
the PK parameters is limited. All approximations show good agreement with the reference
and the MAP estimate is located at the mode of the posterior on the level of the parameters.
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B.2 Additional analyses for the simulation studies
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Figure B.7: Comparison of low-cost approximations regarding posterior inference. Approximation of the
posterior of the parameters for the scenario considered in Figure B.6
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C
Appendix related to Chapter 4

Table C.1: Notation related to the reinforcement learning approaches used in RL-guided and DA-RL-guided
dosing.

Common notation
π generic policy
qπ expected return given generic policy π

Notation specific to MCTS+UCT
πk policy in training phase
qk sample approximation of q̂πk in training phase
π̂UCT := πK policy after training phase (incl. exploration)
q̂πUCT := qK sample approx. at the end of training phase
π∗ = arg max q̂πUCT RL-guided dosing policy (clinical setting, no exploration)

Notation specific to MCTS+PUCT
qπ0

:= q̂πUCT prior estimated return
π1:c
k policy in training phase using ensemble E1:c

q1:c
k sample approximation in training phase using ensemble E1:c

π̂1:c
PUCT := π1:c

K policy after training phase using ensemble E1:c (incl. exploration)
q̂π1:c

PUCT
:= q1:c

K sample approx. at the end of training phase using ensemble E1:c

π∗ = arg max q̂π1:c
PUCT

DA-RL-guided dosing policy (clinical setting, no exploration)

C.1 Comparison with reported CEPAC-TDM study out-
comes

In the simulation study, we followed the design of the CEPAC-TDM study. To put the
simulation results into perspective, we compared the simulated occurrence of grade 4 neu-
tropenia (based on simulated observations on day 15 including RUV) with the observed
occurrence in the CEPAC-TDM study for the standard dosing (arm A) and the PK-guided
dosing algorithm (arm B), see Figure C.1. We observed that we overpredict the occurrence
of grade 4 neutropenia for standard dosing (left panel). This may be attributed to the fact
that for the standard dosing in arm A, the dose was also decreased if non-hematological
toxicities occurred (see also comment at the end of Section 4.4). Since the applied model
did only allow to simulate neutropenia we could not take further aspects into account. For
the PK-guided dosing algorithm (right panel), the simulation results were well aligned with

97



C.2 Sampling time points to infer neutropenia grade

the observed results in the CEPAC-TDM study. The occurrence of grade 4 neutropenia was
comparable across all cycles. Additional characteristics of the clinical study that we did not
take into account in our simulation study are drop-outs, adherence to the dosing instructions
and comedication (e.g., therapeutic G-CSF) [95].
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Figure C.1: Comparison of predicted grade 4 neutropenia with observed occurrence in the CEPAC-TDM study.
Blue bars show the results from the simulation study (based on day 15 observation) and white bars show the
results from the CEPAC-TDM study. The results for the CEPAC-TDM study were retrieved from [95].

C.2 Sampling time points to infer neutropenia grade
The observation time points of neutrophil concentrations were chosen following the
CEPAC-TDM study design [52]: the day of the dose administration (day 1) as well as
day 15 of each cycle. However, in the evaluation of the dosing algorithm the average model
predicted nadir time (based on the gold-standard model) was found to be on day 11.5 [11].
Therefore, we investigated also day 12 as alternative sampling time point.
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Figure C.2: Comparison of the model predicted nadir concentration compared to the model predicted neutrophil
concentration at days 12 and 15. The standard dosing was used for simulation of the neutropenia time courses
for 1000 virtual patients.
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In Figure C.2, we examined the correlation between the model predicted nadir (based on
the BME model) and the simulated neutrophil concentration at day 12 and 15. For larger
nadir concentrations (nadir > 1 · 109cells/L) the neutrophil concentrations at day 15 clearly
overpredict the true nadir, i.e., underpredicts the severity of neutropenia. For small nadir
concentrations (nadir ≤ 1 · 109cells/L) the correlation between model predicted nadir and
model predicted neutrophil concentration at day 15 seems to be better. This information
could be relevant for future studies and demonstrates the importance of optimal sampling
time points and the benefit of a model-informed analysis.
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C.2 Sampling time points to infer neutropenia grade
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Figure C.3: Comparison of different dosing policies for paclitaxel dosing based on observations at day 12.
Comparison of the 90 % confidence intervals and median of the neutrophil concentration for the test virtual
population (N = 1000) using (A) the standard dosing and PK-guided dosing (B) RL-guided dosing, (C)
MAP-guided dosing, (D) DA-guided dosing and (E) DA-RL-guided dosing. (F) Occurrence of grade 0 and
grade 4 across the different dosing policies for the test population over the six cycles.
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We also compared the effect of the sampling time point on the PK-guided dosing algorithm
by applying the algorithm to the test virtual population, see Figure C.4. For this the
neutropenia grade of the previous cycle was inferred either based on simulated neutrophil
measurements at day 12 or day 15 in the previous cycle (including RUV). The occurrence of
neutropenia grade 4 (evaluated based on model predicted nadir) was slightly higher if the
previous cycle grade was inferred from the measurement at day 15 compared to day 12. Thus,
the sampling time point affets the PK-guided dosing algorithm and a sampling time point
around day 12 is advantageous.
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Figure C.4: Comparison of the results when PK-guided dosing was based on the neutrophil measurement at
day 12 or day 15.

C.3 Details on MAP-guided dosing
For MAP-guided dosing two possibilities are discussed: either minimizing the deviation to
a target concentration or maximizing a utilty function. For our specific setting, the 90%
CI of the neutropenia time courses of the virtual test population reached lower neutrophil
concentrations for the target concentration intervention compared to the utility function, see
Figure C.5, and increased the occurrence of grade 4 neutropenia across all cycles, see Table C.2.
This result, however, cannot be generalized and depends on the choice of target/utility.

Table C.2: Occurrence of grade 4 neutropenia across cycles for MAP-guided dosing.

cycle 1 2 3 4 5 6
utility function 10.5% 7.4% 11.4% 16.5% 21.3% 23.5%
target deviation 22% 15.3% 22.3% 29.9% 34.6% 41.5%
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C.4 Details on DA-guided dosing
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Figure C.5: Comparison of different objective functions for MAP-guided dosing. Two different objective
functions were considered for MAP-guided dosing: (i) the least squared differences to a target concentration
of cnadir = 1 · 109cells/L, (ii) a utility function which penalizes low nadir concentration (in the range of grade
4 neutropenia) higher compared to high neutrophil concentrations (in the range of grade 0 neutropenia).

C.4 Details on DA-guided dosing
For the DA-guided approach, we chose the optimal dose to be the dose that minimizes
the a-posteriori probability of being outside the target range, i.e., the weighted sum of the
predicted (a-posteriori) probability of the patient having neutropenia grade gc = 0 or gc = 4
in the next cycle, see Eq. 4.7. We illustrated the DA-guided dosing approach exemplarily for
the second cycle dose selection for a virtual patient, see Figure C.6.
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Figure C.6: Exemplary dose selection for cycle 2 in DA-guided dosing. The optimal dose in DA-guided dosing
was defined to be the dose that minimizes the weighted sum of risk of grade 0 and grade 4, i.e., probability
of grade 0 and grade 4 neutropenia. Note for illustration purposes a larger number of particles was chosen
M = 103. For comparison we also propagated the particle ensemble for the case if the standard dose was
chosen (blue).

C.5 Details on RL-guided dosing
The training phase of MCTS is illustrated on the level of the estimate of the action-value
function in Figure C.7, and on the level of the therapeutic outcome in Figure C.8.

The computed q̂πUCT -Matrix can be used as a look-up table. For a certain patient state we
need to determine the corresponding row in the matrix and then select the dose corresponding
to the maximal q̂πUCT -value. This procedure can be visualized in a diagram structure similar
to the one developed by Joerger et al. [11], see Figure C.9. Since RL allows to deal with a
large amount of information regarding patient state/dose combinations, we just depict a small
subtree.

C.5.1 Possible extensions of RL-guided dosing using the variance of
the return

The variance of the return

σq =
√

Varπ[Gc|Sc = s,Dc = d] , (C.1)

provides additional information about the associated uncertainty of a dose selection. For
estimating Eq. (C.1) for each state-action pair the additional statistic

M2,k(sc, d) = M2,k−1(sc, d) + (g(k)
c − qk−1)(G(k)

c − qk)

is saved, which can be used to calculate the variance via s2
k(sc, d) = M2,k(sc, d)/(k − 1) or

σ2
k(sc, d) = M2,k(sc, d)/k (Welford’s online algorithm). Figure C.10 A shows the variance of
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C.5 Details on RL-guided dosing
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Figure C.7: Training stages of Monte Carlo tree search (MCTS): Approximation of qπ. The same virtual
test patient population was dosed according to the current estimate of the action-value function qK after K
episodes of the planning steps for the covariate class: female, age between 50 and 60 years, and pre-treatment
neutrophil counts ANC0 ∈ [5, 10) in [109cells/L].

the return for certain patient states assuming a normally distributed return, i.e., the 95%
CIs are computed via q̂π ± 1.96σq. The variance could be used similar as the UCB in an
exploration strategy, e.g., taking doses less often if the variance is small (see sub-panels for
states g1:5 = (0, 0, 0, 0, 0) and g1:5 = (4, 4, 4, 4, 4)). Panel B shows the visiting counts for the
current implementation with UCT so that states with large estimated action-value are visited
more often.

C.5.2 Investigating the effect of the tuning parameters
First, we investigated the choice of the discount parameter γ ∈ [0, 1]. Since no discount is
applied to the current cycle, small γ values give the current cycle a much higher weighting
compared to later cycles, i.e., prioritizing the short term return rather than the long-term
outcome. On the contrary, large γ values put more weight on the long-term goals. In our
setting, the long-term goal (median survival) is already included in the immediate reward,
since neutropenia grade 0 was also evaluated with −1 in the reward function. Therefore, γ
does not have such a strong impact on the results, see Figure C.11. The parameter is expected
to be more relevant if efficacy is not ’measured’ by the surrogate marker of neutropenia, but
rather evaluated based on a tumor growth model or a survival model. This would result
in rewards with a larger time lag since the choice of a dose impacts tumor growth and in
particular, survival only at (much) later time points.
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C.5.2 Investigating the effect of the tuning parameters
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Figure C.8: Training stages of Monte Carlo tree search (MCTS). The same virtual test patient population (as
in Figure C.7) was dosed according to the current estimate of the action-value function qK after K iterations
of the planning steps per covariate class.
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Figure C.11: Choice of the discount parameter γ. The discount parameter γ ∈ [0, 1] weighs the relation
between short term and long-term goals. Note, this analysis was done with sampling time points day 0 & 12
and a virtual test population of N = 1000.

We further examined the trade-off between exploration and exploitation. For this, we
varied the constant cUCT in Eq. (4.9) in the MCTS with UCT approach. We found that for
smaller cUCT values, the algorithm selected only a small number of doses with relatively high
probability, see e.g., Figure C.12 for the initial dose selection. This led to an un-smooth
action-value function, which is not expected in the considered scenario. Therefore, we chose
cUCT = 3, as this choice showed a balanced exploration of the dose space while still prioritizing
doses with a high expected return.
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C.5 Details on RL-guided dosing
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Figure C.12: Monte Carlo tree search: exploration/exploitation parameter. Expectation of the long-term
return (action-value function) for exemplary states of the covariate class: male, age ∈ [50, 60), ANC0 ∈ [2.5, 5)
(top panel) and visiting counts of dose selections in the initial state s0, N(s0, d) in training phase for K = 106

(bottom panel) for different exploration/exploitation parameter cUCT in Eq. 4.9.
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C.5.3 Q-planning as an alternative to MCTS

Finally, we investigated the effect of changes in the reward function. For this, we exemplary
changed the reward—here corresponding to a penalization—of grade 4 neutropenia. In the
first scenario, the reward of grade 4 neutropenia was set equal to the reward of grade 0
neutropenia (Rc+1 = −1 , if gc = 4). Thus, subtherapeutic and toxic ranges result in the
same (negative) reward value. The second scenario, Rc+1 = −2 , if gc = 4 corresponds to the
scenario presented in Chapter 4. In the third scenario, neutropenia grade 4 was even more
strongly penalized, reflecting the potential of exposing patients to immediate life-threatening
conditions (Rc+1 = −3 , if gc = 4). As expected, the occurrence of grade 4 decreased the
stronger grade 4 neutropenia was penalized, see Figure C.13. Due to the uncertainty, at the
same time, the incidence of grade 0 is increased. Thus, it is crucial to have a clear therapeutic
goal prior to defining the evaluation function. The choice of the evaluation function should be
examined in comparison with potential alternatives, as in Figure C.13 and the results should
be compared with the desired therapeutic outcome.
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Figure C.13: Comparison of RL-guided dosing results for changes in the reward function. In the three scenarios
the rewards for grades 0-3 remained the same and only the reward for grade 4 was changed. In the first panel
the reward value of grade 4 was set to -1, thus equal to the reward of grade 0. The second reward function
corresponds to the scenario presented in Chapter 4 (-2) and in the last scenario a larger penalty (-3) is put on
grade 4 in comparison to grade 0.

C.5.3 Q-planning as an alternative to MCTS
As an alternative to MCTS, Q-planning can be performed to estimate the action-value function.
We employed the same state representation and the same reward function as for the MCTS
approach. We also visualized the training phase for Q-planning, see Figure C.14. For this
specific example and selected patient state representation, the results using MCTS are more
promising and could better reduce the incidence of grade 0 & 4 neutropenia in later cycles.
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C.6 Details on DA-RL-guided dosing
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Figure C.14: Training stages of Q-planning. The same virtual test patient population was dosed according to
the current estimate of the action-value function qK after K iterations of the planning steps per covariate
class.

C.6 Details on DA-RL-guided dosing
DA can be integrated into RL in two ways, (i) by improving the state representation, and
(ii) by using the posterior ensemble in a decision-time planning procedure to update and
individualize the estimate of the qπ-values reflecting the posterior uncertainty.

First, before any patient is treated, a prior dosing policy q̂πUCT is planned, i.e., determined,
via model-based RL, e.g., via MCTS+UCT as in Section 4.1.2. When a patient is to be
treated, the ensemble E0 for the sequential DA algorithm, e.g., particle filter/smoother, is
initialized. The patient-specific TDM data y1:c are integrated, leading to an updated posterior
particle ensemble E1:c. At a decision time point tc, the posterior expectation is computed
for an improved estimate of the current patient state, e.g., a sample approximation to the
posterior expectation of a nadir concentration

ĉnadir =

M∑

m=1

w(m)
c · cnadir

(
x

(m)
1:c , θ

(m)
)
, (C.2)

where cnadir(x
(m)
1:c , θ

(m)) denotes the minimum neutrophil concentration of the m-th particle
within the cycle. The posterior expected nadir ĉnadir is translated to the corresponding
neutropenia grade of the cycle gc and used to update the current patient state sc. An MCTS
search tree is initialized at the current patient state sc and the search within the tree is guided
by the PUCT algorithm [34], where prior probabilities of choosing a dose are computed from
the prior q̂πUCT -values, see Eq. (4.8). For model simulations within each episode in the MCTS
the model state parameter vector x(k) and θ(k) is sampled from the posterior particle ensemble
E1:c.
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C.6.1 Approaches for patient state estimation

C.6.1 Different approaches to estimate the grade of neutropenia ĝc
in cycle c

In DA-RL-guided dosing, the particle ensemble E1:c is used to estimate the patient state more
reliably than just using the observed neutrophil concentration at day 12 or 15. Figure C.15
shows the RMSE between the estimated neutropenia grade ĝc and the true grade gc from the
underlying ‘truth’ used to simulate the data. Note, that we neglected the ‘ˆ’ in the main
text for ease of notation. Overall, the RMSE is lower for day 12 than for day 15. Moreover,
using a model-based state representation reduced the RMSE substantially—and much more
than the difference between day 12 and 15. We further compared the posterior expected
nadir concentration, see Eq. (C.2), translated into discrete grades, with first computing the
probabilities of the different grades and then using the maximum a-posteriori grade, i.e., the
grade with the highest sum of weight. The posterior expected nadir concentration performed
slightly better and was therefore used in Chapter 4 for approximating the patient state using
the particle ensemble E1:c.

C.6.2 RL-guided dosing based on DA state
In the main manuscript, we discussed that DA can be used in two ways to improve RL-guided
dosing: (i) providing an improved state estimate (as in the previous section); and (ii) by using
the posterior particle ensemble E1:c to update the q̂πUCT values in relevant and promising
dose-state-pairs. In Figure C.16, we investigate the scenario (i) alone, i.e., if we only use the
improved state estimate in RL-guided dosing (without decision time planning based on the
posterior particle ensemble). We observed a one-sided improvement, only the occurrence of
grade 0 was reduced compared to RL alone. This indicates again the key role of individualized
uncertainties for MIPD. In short: if the quality of estimating the grade of neutropenia is
improved, also the corresponding dosing table should be updated since the RL dosing table
accounted for the potential ‘bias’ in the state estimation. If not, improved estimates are used
in decision trees that have been determined based on the less accurate estimate of the grade
of neutropenia. Such a mismatch should be avoided.

C.6.3 PUCT algorithm
In the PUCT algorithm, the pre-calculated action-value function values q̂πUCT have to be
translated to probabilities. As described in the main text, we used the Boltzmann distribution
(see Eq. (4.8) ‘prioritizing part’) to convert the expectation values in R to probabilities in [0, 1].
In addition, we performed a kernel density estimation to further smooth the function in case
of a rough action-value function due to small visiting counts (this step is more relevant if less
pre-training steps were possible, e.g., in larger state spaces), compare small K values (rough)
to large K values in Figure C.7. As a result of the updated uncertainties, the action-value
function q̂πPUCT (DA-RL-guided dosing) differs from the static q̂πUCT (RL-guided dosing), see
Figure C.17. This also led to different optimal doses (markers at the x axis). The purple bars
show the visiting counts N of the different doses in the given state, showing that doses are
chosen more often that have high q̂πUCT (red line) as enforced via the PUCT algorithm. It
can be also seen that the q̂πPUCT -curve (purple line) is not very smooth in dose regions which
have low q̂πUCT values as these values are not chosen often. In PUCT, the search focused
more on promising regions of the dose space. In practical applications, deviations from this
highly focused search need to be discussed depending on how much one wants to trust the
prior knowledge or how much we expect the new patients to deviate (see also Chapter 5).
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C.7 Comparison across all considered evaluation functions

50 100 150 200 250

-4

-2

0

cycle 2

50 100 150 200 250

cycle 4

50 100 150 200 250
0

0.025

0.05

no
rm

al
iz

ed
 N

cycle 6

dose [mg/m2]

ac
tio

n-
va

lu
e

fu
nc

tio
n
q̂ π

RL
DA-RL

1
Figure C.17: Comparison of the action-value function values q̂π and visiting counts N (normalized) for
RL-guided dosing and DA-RL-guided dosing. The individual action-value function values (DA-RL) differ from
the population values (RL). Doses are chosen more frequently in regions where the prior probabilities, defined
by the population action-value (red line), are large, see histogram (right axis). Note that it can be observed
that the q̂π values are smoother in regions with high number of samples (e.g., cycle 2 for lower doses). Regions
with low prior probabilities (computed from RL q̂π values (red line)) are chosen less often. The visiting counts
were divided by the maximum number of visits for one dose (i.e., scaled to one, N/max(N)) to allow for
comparison since KRL >> KDA-RL.

C.7 Comparison across all considered evaluation func-
tions

The different methods towards the optimal dose selection problem considered in the manuscript
are based on different evaluation/reward functions. For a more in-depth comparison, we
also show in Figure C.18 the results of the different methods for all considered evaluation
functions: the utility (MAP-guided dosing), deviation from target concentration (MAP-guided
dosing), the weighted sum of occurrence of grade 0/4 (DA-guided dosing), and the total
reward (RL-guided dosing).

110



1 2 3 4 5 6

cycles

-1.5

-1

-0.5

0

0.5

1

1.5

2
ut

ili
ty

105

1 2 3 4 5 6

cycles

0

1

2

3

4

5

de
vi

at
io

n 
fr

om
 ta

rg
et

105

1 2 3 4 5 6

cycles

0

50

100

150

200

250

300

350

400

w
ei

gh
te

d 
su

m
 o

f o
cc

ur
re

nc
e

1 2 3 4 5 6

cycles

-1

-0.5

0

0.5

1

to
ta

l r
ew

ar
d

105

A B

C D

Standard dosing
PK-guided dosing

RL-guided dosing
MAP-guided dosing

DA-guided dosing
DA-RL-guided dosing

1
Figure C.18: Comparison of methods across all evaluation functions. (A) Comparison of the utility used in
the MAP-guided dosing, see Figure C.5. The higher the utility the better (upward arrow). (B) The deviation
from a target concentration (1 · 109 · cells/L) (target concentration intervention). The smaller the deviation
from the target the better (downward arrow). (C) The weighted sum of occurrence was minimized in the
DA-guided approach. The occurrence of grade 4 was penalized more strongly than the occurrence of grade
0. The smaller the weighted sum the better (downward arrow). (D) The total reward as defined for the
RL-guided dosing is to be maximized. The higher the total reward the better (upward arrow).
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C.7 Comparison across all considered evaluation functions
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Figure C.9: Illustration of the decision tree procedure for the dose selection. From the action-value function
values q̂π a decision tree/look-up table can be extracted. Here shown for fixed covariates: male, age ∈ [50, 60).
For example, the optimal dose for the second cycle depends on the neutropenia grade of the previous cycle
and the pre-treatment neutrophil count ANC0.
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Figure C.10: Statistics of Monte Carlo tree search (MCTS) for different states. (A) Expectation of the
long-term return for exemplary states for the covariate class: male, age ∈ [50, 60), ANC0 ∈ [2.5, 5) · 109cells/L
together with the 95% CIs based on the assumption of a normally distributed return. Note that the CIs are
cut off at the minimum/maximum possible return. (B) Visiting counts of states in training phase for K = 106.
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C.7 Comparison across all considered evaluation functions
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Figure C.15: Root-mean squared error (RMSE) of estimating the grade of neutropenia ĝc in cycle c using
different approaches. In RL-guided dosing, the neutrophil measurement is used to infer the neutropenia grade.
We investigated the two sampling time points day 12 (typical nadir time) and day 15 (as in the CEPAC-TDM
study). For DA-RL-guided dosing, the particle ensemble E1:c can be used to infer an improved patient state.
There are two options: (i) the posterior expected nadir concentration is computed and then translated into a
discrete grade; or (ii) the probability of each grade is determined by summing the weights of particle giving
raise to that grade; then, the maximum a-posteriori grade is defined as the grade with highest sum of weights.
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Figure C.16: RL-guided dosing based on the DA-based model state of the patient. The virtual test population
was dosed with RL-guided dosing adding the different aspects of DA. Lower left panel: RL-guided dosing
using the improved DA-based model state of the patient. Here we used the smoothed posterior expected
nadir concentration translated to the discrete neutropenia grades. Lower right panel: DA-RL-guided dosing
as presented in Chapter 4. Note, that we used the scenario with sampling time points day 0 & 12 for this
analysis.
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D
Appendix related to Chapter 5

D.1 Paclitaxel-induced neutropenia models
In Table D.1 we provide multiple models that were all proposed for paclitaxel-induced
neutropenia based on different or even on the same patient population. This shows the
difficulty associated with the selection of a model to use for MIPD. The model structure
was introduced by Friberg et al. [91]. In subsequent publications the model structure (gold-
standard) remained the same, but either the covariate model changed (Kloft et al. [67]),
IOV was modeled (Hansson et al. [94]) or it was fitted to a different patient population
(Joerger et al. [11], Henrich et al. [90]. Later, the model was extended to describe also the
cumulative behavior of neutropenia (BME) which could be observed over multiple cycle
treatment (Henrich et al. [90]).
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D.1 Paclitaxel-induced neutropenia models
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D.2 Results including an estimation of γ
When γ is included on the individual level inference, the estimation of the typical parameter
values for ‘Slope’ and ‘MTT’ across patients is improved, see Figure D.1.
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Figure D.1: Exemplary multivariate update of the typical values for MTT (mean transit time) and Slope
(drug effect parameter) for the rich sampling scheme (TDM data every third day). The initial model used in
the MIPD approach is the gold-standard model and the TDM data are generated using the gold-standard R
model. In this case also the parameter γ was estimated on the individual level.

D.3 Parameter identifiability
To investigate the practical identifiability for the intermediate sampling scheme (weekly), we
exemplarily computed the loglikelihood for four virtual patients at the end of the therapy, see
Figure D.2. In order to exclude effects from other parameters we investigated a simplified
setting in which only the parameters ‘Slope’ and ‘Circ0’ were estimated on the individual level.
For some virtual patients, the loglikelihood takes the same values for various ‘Slope’ values,
which can be seen from the elongated yellow ranges covering a larger range of ‘Slope’ values.
In addition, the data suggest larger ‘Slope’ values as the maximum of the likelihood (ML,
yellow cross) is reached for larger ‘Slope’ values than used to generate the data (black cross)
in the upper panels. Furthermore, it can be observed that the prior only has a minor influence
on the logposterior, when comparing the upper panels (loglikelihood) with the corresponding
lower panels (logposterior). The analysis mean (red cross) is close to the MAP estimate
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D.4 Optimal design

(yellow cross in bottom panels). Note that for skewed distributions the mean is different from
the mode, and therefore, the particle mean should not be directly compared to the MAP.
The particles (red circles) cover areas of high posterior probability well.
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Figure D.2: Practical identifiability for the weekly sampling design. For illustration, M ′ = 100 particles
were resampled from the M = 1000 particles used within the particle filter. ML: maximum likelihood, MAP:
maximum a-posteriori

D.4 Optimal design
To investigate whether the reason for the practical identifiability is the choice of sampling
time points, we investigated the optimal design for a design with three sampling timepoints
where the first sampling time point at day 1 is fixed. To infer the optimal design we used
the frequently used criterion of D-optimality, i.e., choosing the design that maximizes the
determinant of the FIM. The optimal design was determined for the typical patient (Figure D.3
left) and the whole patient population (Figure D.3 right). The optimal second time point is
approximately one day later than in the weekly sampling scheme (day 7) and when only the
typical patient is considered, the third time point of the weekly sampling scheme (day 14) is
chosen well. However, when the design is chosen based on the entire patient population, an
earlier third time point is suggested.
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1
Figure D.3: Optimal design for the gold-standard model. The first sample timepoint at day 1 is fixed and
only two more sample points within one cycle were allowed. The left panel shows the D-optimality criterion
landscape for the typical patient and the right panel for the population.

D.5 Impact on MIPD: parameter bias scenario
Especially at the beginning of a patient’s therapy when the misspecified prior dominated,
MIPD benefited substantially from updating the model with every patient, see Figure D.4.
The occurrence of grade 4 in the first cycle was considerably reduced compared to DA-
guided dosing alone. As more patient-specific data were collected, individual parameters were
increasingly well estimated with the DA approach, and the influence of the misspecified prior
vanished. The occurrence of grade 0 neutropenia is slightly increased in later cycles, which
might be related to the overestimation of the IIV parameters (ω2

MTT, ω
2
Slope), see Figure 5.4.

We do not estimate the RUV parameter σ, however, the TDM data were generated with an
increased parameter value for σ, therefore, the variability parameters capture to some extent
the increased variability in the data. This increases the uncertainty on the individual level.
DA-guided dosing alone has in this case the advantage that the IIV parameters are fairly
similar between the gold-standard and gold-standard R.

The population updates improved the used MIPD approach, especially for the first
treatment cycle, when no patient-specific TDM data were available and the dose was solely
determined based on a priori predictions.
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D.6 Impact on MIPD: structural bias scenario
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Figure D.4: Impact of continuous learning approach on MIPD outcomes. TDM data were generated for
NTDM = 100 virtual patients based on the gold-standard R model. DA-guided dosing based on the gold-
standard model was used alone or in conjunction with continuous learning of the population parameters. The
analysis was repeated 10 times to account for statistical variability.

D.6 Impact on MIPD: structural bias scenario
In Chapter 5, learning of temporal changes was only shown for the intermediate (weekly)
sampling scheme. For completeness, Figure D.5 and Figure D.6 show the results for the sparse
and rich sampling schemes, respectively. In the case of sparse TDM data, the continuous
learning updates decrease the incidence of grade 4 neutropenia in early cycles but even lead to
an increase in later cycles. This might be again related to the overestimation of the magnitude
of IIV. For the rich sampling scheme, the results are comparable to the intermediate sampling
scheme presented in the main manuscript. Comparison of the parameter estimates could be
misleading due to the structural differences of the models.
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Figure D.5: Impact on MIPD: structural bias scenario with sparse sampling scheme. Learning of temporal
changes and adapting to structural model changes considering the sparse sampling scheme.
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D.6 Impact on MIPD: structural bias scenario
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Figure D.6: Impact on MIPD: structural bias scenario with rich sampling scheme. Learning of temporal
changes and adapting to structural model changes considering the rich sampling scheme.
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