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Abstract

In the present work synchronization phenomena in complex dynamical systems exhibiting
multiple time scales have been analyzed. Multiple time scales can be active in different
manners. Three different systems have been analyzed with different methods from data
analysis.

The first system studied is a large heterogenous network of bursting neurons, that is
a system with two predominant time scales, the fast firing of action potentials (spikes)
and the burst of repetitive spikes followed by a quiescent phase. This system has been
integrated numerically and analyzed with methods based on recurrence in phase space.
An interesting result are the different transitions to synchrony found in the two distinct
time scales. Moreover, an anomalous synchronization effect can be observed in the fast
time scale, i.e. there is range of the coupling strength where desynchronization occurs.

The second system analyzed, numerically as well as experimentally, is a pair of coupled
CO2 lasers in a chaotic bursting regime. This system is interesting due to its similarity
with epidemic models. We explain the bursts by different time scales generated from
unstable periodic orbits embedded in the chaotic attractor and perform a synchronization
analysis of these different orbits utilizing the continuous wavelet transform. We find a
diverse route to synchrony of these different observed time scales.

The last system studied is a small network motif of limit cycle oscillators. Precisely,
we have studied a hub motif, which serves as elementary building block for scale-free
networks, a type of network found in many real world applications. These hubs are of
special importance for communication and information transfer in complex networks.
Here, a detailed study on the mechanism of synchronization in oscillatory networks with
a broad frequency distribution has been carried out. In particular, we find a remote
synchronization of nodes in the network which are not directly coupled. We also explain
the responsible mechanism and its limitations and constraints. Further we derive an
analytic expression for it and show that information transmission in pure phase oscillators,
such as the Kuramoto type, is limited. In addition to the numerical and analytic analysis
an experiment consisting of electrical circuits has been designed. The obtained results
confirm the former findings.
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Zusammenfassung

In der vorliegenden Arbeit wurden Synchronisationsphänomene in komplexen Systemen
mit mehreren Zeitskalen untersucht. Es gibt mehrere Möglichkeiten wie diese verschiede-
nen Zeitskalen vorkommen können. Drei verschiedene Systeme, jedes mit einer anderen
Art von zeitlicher Multiskalität, wurden mit unterschiedlichen Methoden der Datenana-
lyse untersucht.

Das erste untersuchte System ist ein ausgedehntes heterogenes Netzwerk von Neuro-
nen mit zwei dominanten Zeitskalen, zum einen die schnelle Folge von Aktionspotenzialen
und zum anderen einer abwechselnden Folge von einer Phase von Aktionspotenzialen und
einer Ruhephase. Dieses System wurde numerisch integriert und mit Methoden der Pha-
senraumrekurrenz untersucht. Ein interessantes Ergebnis ist der unterschiedliche Über-
gang zur Synchronisation der Neuronen auf den beiden verschiedenen Zeitskalen. Des
weiteren kann auf der schnellen Zeitskala eine anomale Synchronisation beobachtet wer-
den, d.h. es gibt einen Bereich der Kopplungsstärke in dem es zu einer Desynchronisation
kommt.

Als zweites wurde, sowohl numerisch als auch experimentell, ein System von gekop-
pelten CO2 Lasern untersucht, welche in einem chaotischen bursting Modus arbeiten.
Dieses System ist auch durch seine Äquivalenz zu Epidemiemodellen interessant. Wir
erklären die Bursts durch unterschiedliche Zeitskalen, welche durch in den chaotischen
Attraktor eingebettete instabile periodische Orbits generiert werden. Wir führen eine
Synchronisationsanalyse mit Hilfe der kontinuierlichen Wavelettransformation durch und
finden einen unterschiedlichen Übergang zur Synchronisation auf den unterschiedlichen
Zeitskalen.

Das dritte analysierte System ist ein Netzwerkmotiv von Grenzzyklusoszillatoren. Ge-
nauer handelt es sich um ein Nabenmotiv, welches einen elementaren Grundbaustein
von skalenfreien Netzwerken darstellt, das sind Netzwerke die eine bedeutende Rolle in
vielen realen Anwendungen spielen. Diese Naben sind von besonderer Bedeutung für die
Kommunikation und den Informationstransport in komplexen Netzwerken. Hierbei wur-
de eine detaillierte Untersuchung des Synchronisationsmechanismus in oszillatorischen
Netzwerken mit einer breiten Frequenzverteilung durchgeführt. Insbesondere beobachten
wir eine Fernsynchronisation von Netzerkknoten, die nur indirekt über andere Oszillato-
ren miteinander gekoppelt sind. Wir erklären den zu Grunde liegenden Mechanismus und
zeigen dessen Grenzen und Bedingungen auf. Des weiteren leiten wir einen analytischen
Ausdruck für den Mechanismus her und zeigen, dass eine Informationsübertragung in
reinen Phasenoszillatoren, wie beispielsweise vom Kuramototyp, eingeschränkt ist. Diese
Ergebnisse konnten wir durch Experimente mit elektrischen Schalkreisen bestätigen.
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1 Introduction

Throughout history natural sciences are continuously moving from simplicity to com-
plexity. In the past we had been focusing on simple fundamental rules governing nature,
such as the harmonic ratios perceived in swinging strings studied by the Pythagoreans or
the newtonian laws governing the movements of rigid bodies. The systems studied had
been becoming more complex within the 19th century, when the laws of thermodynamics
had been discovered which later could be derived by describing matter as made up from
tremendously many particles governed, again, by simple rules. This advance, and that
of many other fields not given here, was driven by a rapid progress in mathematics and
in the design of new experiments. However, if we limit our tools to math merely, we
are only able to describe simple phenomena or complex systems close to an equilibrium
state within a statistical framework.

With the advent of computers in the second half of the 20th century scientists received
a new instrument for studying nature, in addition to experiments and mathematics. Now,
it has become possible to conduct numerical experiments by simulating equations with
the help of computers and, moreover, using computers to analyze data using complex
algorithms. The mathematical treatment of a problem becomes very hard or, as in most
cases, undoable, as soon as the studied system becomes to complex or even chaotic. In
these cases the mathematical shortcut from the describing equation to some observable
of interest, say, the time to reach some threshold, is not available and one has to integrate
the equations entirely.

With the help of computers scientists have made a lot of progress in understanding the
sublime complexity of nature. Many applications have been developed by this approach,
these are, for instance, the weather forecast, chaos theory, advances in genetics and
bioinformatics, solving the Einstein field equation, and, forthcoming, the simulation
of an entire human brain as it is aimed by several projects. In this present work a
phenomenon from nonlinear science and theory of complexity has been studied, namely
synchronization.

Synchronization is ubiquitous in nature and technology. As soon as a dynamical
process possesses some rhythm, i.e. a recurring dynamical pattern within its course of
time, one can speak about oscillation. If two or more rhythmic systems are interacting
in some way, they might synchronize as well, that is, they adapt their rhythms to a
common one [1] in order to communicate [2], or to minimize the their energy [3].

Synchronization is fundamental in biology where rhythms are found everywhere. For
instance, on a molecular scale within cells genetic oscillators may synchronize and control
important cellular processes [4]. On a cellular scale in particular the brain is a common
example, which can be understood as a huge network of interacting oscillators [5]. On the
scale of whole organs synchronization can be found in the cardiorespiratory system [6].
And on the scale of many interacting organisms one finds rhythms and synchronization



2 1 INTRODUCTION

thereof in outbreaks of diseases, such as measles [7]. Synchronization is applied in
medicine, where for example an pathological synchronization is spawned by Parkinson’s
disease and one wishes to suppress this unwanted synchronization in order to remove
the symptoms [8].

Synchronization has numerous applications in engineering, e.g. in communication,
where synchronization has long been used within phase locked loops [9] in FM radio
transmission. Today it is studied widely in in the context of communication based on
chaotic synchronization [2]. It has applications in robotics, where it is used to self-
organize the coordination of robot legs [10]. Further, synchronization is very common in
the huge field of control theory where suppressing or enhancing synchronization is used
in many applications [11].

One particular attribute of synchronization is its ability to bring order to chaos. By
synchronizing, parts of large turbulent systems self-organize and structures emerge on
larger scales, while on a smaller scale chaotic or random behavior may still remain. Hence,
gaining knowledge about synchronization generally helps understanding self-organization
and information transmission in complex systems.

A fundamental property of complex systems is the presence of multiple scales, spatially
as well as temporally. When dealing with rhythms and synchronization especially the
multiple time scales are of interest. Picking up the biological example from above,
multiple time scales can be found all over in biological systems. A popular and widely
studied system exhibiting multiple time scales is the neuron. Here on the one hand one
finds the scale of a singular action potential, usually referred to as spike, and repetitions
of these, and on the other hand, there is the scale of bursts of those spikes, i.e. a fast
repetition of spikes followed by a quiescent phase. In [13] we study the interaction in
large networks of such bursting neurons.

While the multiple time scales found in bursting patterns of neurons are quite obvious,
the multiple time scales present in epidemic models [7] are more devious, but can be
revealed using wavelet transforms. In [14] we have studied synchronization of a pair
of coupled CO2 lasers and a model thereof. This model has been shown to share the
same underlying topology with SEIR measles model [12]. Hence, insights we have gained
within laser physics can be carried over to ecology and epidemiology.

While the former two mentioned multiple time scale patterns are an emergent property
of the interactions of elementary parts of one integral unit, multiple time scales can also
appear as a heterogeneity in a network of interacting units, i.e. a network of, say,
oscillators each one possessing its own characteristic time scale which is (extremely)
different across the network. In [15] we have studied such a situation and analyzed the
synchronization properties found in such a system.

Multiple time scale systems are always challenging to model and analyze. For instance,
taming the multiple scales and their extensive interdependencies observed in turbulent
fluids is a huge topic in the field of fluid dynamics. Especially when heterogeneity is
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introduced in systems with many time and even spatial scales, untangling and under-
standing the emerging effects is very complicated. This present work aims to shed some
more light on synchronization effects found in multiple time scale systems.

2 Discussion

In the following I will discuss the mathematical and physical tools and concepts used
in our publications [13–15]. I will start with networks, which have become a paradig-
matic model for complexity. I will continue with the concept of recurrence which is
fundamental in chaotic and complex systems. Next, I will give a short introduction to
mathematical tools for time scale separation, in particular the wavelet transform. Fi-
nally, I present a quick overview of synchronization and discuss the implications thereof
especially important within my work, while also combining with the former introduced
concepts (networks, recurrence, wavelets).

2.1 Networks

Within the fields of nonlinear dynamics and complex system theory networks are used
as a skeleton for dynamical systems [18–20]. Especially networks of oscillatory units are
studied widely [21–23], since they serve as a modeling basis for a variety of systems,
as for instance in neuroscience [5], in pattern recognition [24], or in engineering [10]
(see [22] and [25] for a list of applications).

In the recent years complex networks have gained a lot of attraction in several areas
of science and engineering. The study of networks is not new—mathematicians have
been studying abstract networks within the field of graph theory, epidemiologists have
been studying the spreading of diseases and epidemics, electrical engineers have been
designing circuits as networks of discrete electrical components, and many more—but
their unified study across many scientific disciplines is. This was in particular due to two
seminal papers.

The first one by Watts and Strogatz published in Nature in 1998, who approached the
famous small-world effect1 with the tools of statistical physics [16] and showed that the
average path length decreases drastically if a network possess sufficiently many shortcut
links. The second paper was published in Science in 1999 by Barabási and Albert, who
discovered that many natural networks obey a scaling law in their degree distribution.

Trivial networks, such as a chain or a grid of nodes, or an all-to-all coupled network,
can be treated quite easily due to their high degree of symmetry. For complex networks

1The small-world effect had been first reported in an experimental study by S. Milgram examining
the average path length in social networks [18]. This effects is also known as six degrees of separation.
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usually no such symmetries exist and one needs to find other ways to describe and analyze
their complex topology. The degree distribution P (k) is one of the first properties
analyzed. That is, the probability P to find a node with degree k, i.e. a node connected
to exactly k other nodes. Many other measures, such as clustering coefficient, shortest
path length or in-betweenness-centrality, have been introduced to characterize certain
properties of networks [20].

The Scale-free networks, discovered by Barabási and Albert, are characterized by a
heavy tailed degree distribution. This manifests in the network by a small set of nodes
holding the bulk of all links while the major part of nodes is connected to a few other
nodes only. These heavily connected nodes are called hubs. Often a mixture of the
scale-free and the small-world property is observed, as one usually finds in particular
densely connected hubs.

A hub motif is a small star like network which captures the essence of the hubs
found in large networks. Network motifs have become a popular tool to study essential
properties of complex networks on a small scale in addition to the statistic measures.
These hubs are an integral part of many real world networks. Thus, investigating their
role in a synchronization and communication framework gives interesting insights on self-
organization in complex, in particular scale-free networks. In our paper [15] we study
such a hub motif of limit-cycle oscillators and focus on a heterogenous distribution of
the oscillators’ natural frequencies. In real world systems one hardly finds a situation in
which all components are identical. Instead a parameter mismatch accommodates this
usually perceived imperfection. And, as we show, new phenomena can be discovered
here.

2.2 Recurrence

The idea of recurrence, that is, a system returns after a certain time to a state (or
a series of states) it had been visiting before, is old and was discussed already by the
Pythagoreans and can be found in different forms in several cultures. It gained a lot of
popularity through the books of Friedrich Nietzsche and his idea of eternal return [27].
In physics and mathematics the concept of recurrence was introduced by Henry Poincaré
who proved in his letter [28], that any conservative system returns infinitely many times
arbitrary closely to its initial conditions [29].

As well as many other concepts the recurrence concept could not be applied in practice
without the aid of computers. In the late eighties when computer power had become
strong enough, Eckmann et al. [30] introduced recurrence plots (RPs) to visualize the
recurrences of dynamical systems [29]. A recurrence plot is a graphic visualization of
the recurrence matrix. For a given sampled trajectory {~xn}Nn=1 of the system in phase
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space the recurrence matrix is defined

R(ε)
nm =

{
1 : ‖ ~xn − ~xm ‖ ≤ ε
0 : ‖ ~xn − ~xm ‖ > ε

. (1)

In the resulting matrix a "1" marks the point n in time when the system has returned
into the ε-neighborhood of time m with respect to the norm ‖ . ‖, otherwise the entry
will be zero. The threshold ε depends on the size of the attractor in phase space. This
threshold value is associated with the recurrence rate (ratio of ones and zeros in the
recurrence matrix), and is in practice usually controlled by this one.

The recurrence approach has become a successful tool in nonlinear data analysis. In
order for it to be applied either the full phase space has to be known or methods of phase
space reconstruction need to be applied [31]. Even though many methods in nonlinear
science don’t relate explicitly to the idea of recurrence, it nevertheless lies at the heart
of many applications. Several techniques based on recurrence have been proposed, such
as recently introduced recurrence networks, where the idea of recurrence is combined
with methods of network theory [32]. A detailed discussion of recurrence analysis and
its applications can be found in [29].

In their paper [33] Romano et al. introduce a recurrence based measure to detect
phase synchronization in coupled chaotic systems with non-phase-coherent attractors.
This method is based on the return probability Pε(τ) which can be estimated from the
recurrence matrix:

Pε(τ) ≈
∑N−τ

n=1 R
(ε)
n,n+τ

N − τ . (2)

The value Pε(τ) is the probability that a system returns to a former visited region in phase
space after the time τ . In [13] we use this approach to analyze phase synchronization in
a network of bursting neurons. A similar approach based on recurrence in phase space to
detect phase synchronization has been proposed by Pereira et al. [34] which we utilized
in [15] to confirm results obtained with other methods. In section 2.4 I discuss both
methods in more detail in the context of synchronization and its application therein.

When analyzing systems with multiple time scales one needs to distinguish between
those time scales. Recurrence analysis is not the tool to manage this. Although, by
tuning the recurrence rate at least some selection of scale is possible as it is used in [13]
in combination with linear filter techniques. Nevertheless, when dealing with several time
scales other, more appropriate tools exist, which are discussed in the following.

2.3 Wavelets

The usual tool to access different time scales within a signal is the Fourier transform2

which has been introduced by Fourier 1822 in the analysis of the heat equation [35]. The
2practically the Fourier series is used, due to the finiteness of any real signal
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Fourier transform is one of the most useful tools developed in higher mathematics and
is today one of the first algorithms which gets implemented when a new hardware sees
the light of day, as, for instance, the recently introduced massively parallel processors
used in modern graphics cards.

However, the Fourier transform lacks in one fundamental property: time resolution,
because it decomposes a signal into a basis of pure harmonic functions b(ω) = eiωt,
which are completely unlocalized. Thus, it is not able to give any information on the
moment in time a frequency is occurring, or, in a more general sense, no information
on instationarities of frequencies in the signal. In order to compute standard indices
of phase synchronization, as introduced in Sec. 2.4, one needs to have access to the
instantaneous phase of a signal. With the Fourier transform there is just one global
phase for each frequency, which renders it useless in detecting phase synchronization.

A general solution to this problem is to localize the underlying basis functions b(ω)
by multiplying them with a window function. The most straight forward approach is to
use a fixed gaussian window, due to its nice mathematical properties. This approach is
today known as Gabor transform, as it has been introduced by Gabor 1946 in order to
reduce the bandwidth of sound when sending it through a communication channel [36,
37]. The window width is an additional parameter which can be tuned either to a
better time localization or to a better frequency localization. Both, time and frequency,
cannot be localized arbitrary sharp simultaneously, due to the time-frequency uncertainty
(mathematical analogue to the Heisenberg uncertainty known from quantum mechanics).

The today’s most popular approach for time-frequency analysis (and synthesis) is
the wavelet transform, which is based on the idea to use small wavelets introduced by
Morlet et al. [38] in the analysis of seismic waves in geophysics. In contrary to the Gabor
transform, the wavelet transform does not keep the window fixed, but instead fixates the
shape of the waveform itself, i.e. within the window the number of oscillations remains
constant. This approach is more natural and accommodates the fact that the resulting
transform remains invariant but a scaling factor under a rescaling in time of the analyzed
signal.

The wavelet transform3 w(s, t) of a signal x(t) with respect to the wavelet ψ(t) is
given by

wψ(s, t) =
1

s

∫

R

ψ

(
t′ − t
s

)
x(t′) dt′, (3)

where s is the scale, which is the inverse of the analyzed frequency, given that the
wavelet has been normalized to frequency 1. The wavelet ψ(t) can be an arbitrary
function, which must be localized and with zero mean.4 There are two ways to read and

3I use wavelet transform synonymously for continuous wavelet transform. Usually one needs to dis-
tinguish to the discrete wavelet transform, which is studied widely in mathematics and signal processing,
but mainly not as a tool for data analysis.

4This is based on a rather mathematical reasoning. Discussion thereof can be found in [39] or [40].
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understand equation (3), either as written now, as a scalar product, i.e. a given signal
is compared with a family of dilated and translated wavelets, or, when rewritten as a
convolution integral, it can be seen as a constant-Q bandpass filter bank.5

An interesting aspect important for synchronization analysis is, that when choosing
a particular class of complex wavelet, so called progressive (or analytic) wavelets, one
has immediate access to the instantaneous amplitude and phase for any point in the
time-frequency plane. These kind of wavelet eliminate negative frequencies and, thus,
implicitly perform a Hilbert transform. This we utilize in our paper [14] to access the
instantaneous phase of the signal on every time scale.

Due to its nice mathematical properties, there has been an explosive growth in pub-
lication on the wavelet transform, its theory and applications (e.g. frame theory, filter
banks, singularity detection). Moreover, there are also many other attempts to tackle
the time-frequency problem, each approach having its benefits and downsides. In the
following three popular approaches will be given. Firstly, the Wigner-Ville distribution,
which originated in quantum theory, is, due to its nonlinear nature, able to bypass
the time-frequency uncertainty and provide a perfect localization in the time-frequency
plane. However, the drawback is the generation of cross-terms which are artifacts of
the nonlinear transform and not true elements of the signal [41]. Nevertheless, several
filter techniques exist, which try to eliminate the cross-terms, but thereby also destroying
the sharp time-frequency localization. Secondly, empirical mode decompositions (also
known as Hilbert-Huang transform) [42] is an algorithmic approach also able to extract
perfectly localized time-frequency modes from a signal, but it lacks in a proper theory
and explanation of the obtained modes. Thirdly, matching pursuit [43] is another popular
method, which uses dictionaries of some kind of wavelets. Even though the problem can
be formulated mathematically rigorously, it is only possible to approximate the solution,
due to the method’s inverse nature (NP hard to solve). Several algorithms to speed up
the problem exist, though.

All the above approaches have in common that they fail for signals which are too
complex or too noisy, either because of interactions between signal parts (Wigner-Ville
transform, empirical mode decomposition), or due to a rapidly growing computational
cost (matching pursuit). It should also be noted that a unique time-frequency transform
does not exist. The choice of the method depends on the precise problem one is at-
tempting to solve and its constraints. The wavelet approach has become that popular,
as it makes the best trade off between side effects and generality, and due to its nice
analytically properties.

5In a constant-Q filter bank the ratio of the filter’s bandwidth and the filter’s center frequency is
constant for all filters.
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2.4 Synchronization

Synchronization is a fundamental phenomenon appearing in many systems made up of
interacting oscillatory nonlinear units. Synchronization can appear in limit cycle systems
as well as in chaotic systems. Several types of synchronization can be distinguished,
including complete, lag, generalized, and phase synchronization [1].

Complete synchronization implies the exact coincidence of the system’s states,
~x1(t) = ~x2(t), and is only possible for interacting identical systems. In the case of
a small parameter mismatch, however, close approximation is possible: ~x1(t) ≈ ~x2(t).

Generalized synchronization is defined by a functional relationship between two tra-
jectories, ~x2(t) = ~F [~x1(t)], which implies that the state ~x2(t) of one system can be
predicted given the state ~x1(t) of the other and the functional relationship ~F (.) [44].
Complete synchronization can be seen as a special case of generalized synchronization
with ~F = 1. Generalized synchronization is accompanied by a collapse of the attrac-
tor of the coupled system from the full phase space onto a sub-manifold, the so called
synchronization-manifold.

Lag synchronization is a situation in which two systems nearly coincide but shifted
in time: ~x1(t) ≈ ~x2(t − τ), where τ is the lag. This type can be found for intermedi-
ate coupling strengths between phase synchronization (discussed below) and complete
synchronization [45].

The most general form is phase synchronization, which is also closest related to the
greek term synchronization itself, which means “together in time”. Phase synchronization
is described by an adaption of the characteristic time scales of two systems. More
precisely, its defined by the phase differences between the two systems being bounded,
i.e. given the phases ϕ1(t) and ϕ2(t) and the finite real number θ, the following must
be fulfilled:

|ϕ2(t)− ϕ1(t)| ≤ θ. (4)

An index oftenly used for measuring the phase coherence of oscillators is the Kuramoto
order parameter [46, 47] given by

r =
∣∣〈ei[ϕn(t)−ϕm(t)]〉

∣∣ , (5)

where the mean 〈.〉 could be either over an ensemble of many oscillators, which measures
the phase coherence of the whole ensemble, or over time for a single pair of oscillators,
in which case it measures the average coherence of that pair. A value of r close to zero
indicates the absence of any coherence, while a value close to one indicates (almost)
perfect coherence. Intermediate values indicate, that either not all oscillators within an
ensemble are synchronized or, in the case of the mean over time, two oscillators are
synchronized just for certain epochs.

The problem which usually arises is how to find a proper mapping from the state
variable ~x to the phase ϕ. In the case in which a clear center of rotation can be found,
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about that the system’s trajectory rotates, a phase can be defined as the angle of the
trajectory with respect to that center. Another approach, especially in the case when just
one observable of ~x is accessible, is the use of the Hilbert transform [1], a tool borrowed
from signal processing [48] which originated in complex analysis. By this approach an
analytic signal can be constructed from which the phase can be extracted easily. In our
paper [14] the Hilbert transform is computed implicitly by the wavelet transform and the
use of an analytic (progressive) wavelet. We also use this tool in [15] to compute the
phase of data acquired by experiments with electrical circuits.

Synchronization and multiple time-scales

Problems arise when no center of rotation exists or the system exhibits several oscillatory
time-scales. In these cases the system’s power spectrum is not band limited and it is not
possible to extract the phase of a specific narrow frequency band. But, however, other
approaches are possible to detect the phase synchronization without the need to define
a phase.

Every attractor, which does not contain a fixed point, possesses at least one vanishing
Lyapunov exponent [49]. This Lyapunov exponent corresponds to the free phase of the
trajectory and can be explained by the fact that a perturbation within direction of the
flow will on average remain constant throughout time. As one couples two oscillatory
systems, each possessing one zero Lyapunov exponent, given that the interaction is
sufficiently strong, one of the zero Lyapunov exponents will become negative. This
is the onset of phase synchronization. The two coupled systems have just one free
phase together and a perturbation of the phase of one of the subsystems will shrink
throughout time, reflecting the attracting force between the phases [50]. By computing
the Lyapunov spectrum it is possible to determine the onset of phase synchronization
in a system of coupled oscillators. I used this technique in our paper [15] to verify
that the phase synchronization found by the simple angular approach described above
has correctly been identified. This was needed, since it was not obvious that the results
obtained by the naïve phase approach are correct, due to the multiple time scales present
it the analyzed system.

Phase synchronization of chaotic systems can also be explained in terms of their
unstable periodic orbits. Embedded in a chaotic attractor lies a set of these unstable
orbits which form a kind of skeleton of the attractor. When two chaotic oscillators
are phase synchronized their unstable periodic orbits are locked [51]. Linked to the
synchronization of the unstable orbits and, thus, the attractors is the coincidence of
the recurrence times of the two systems. Several techniques have been developed that
exploit this fact. These are, for instance, the “classical” stroboscopic observation for
an periodically forced chaotic system [1], its expansion to mutually coupled chaotic
oscillators described in [34], and another approach based on recurrence analysis [33].



10 2 DISCUSSION

In the case of phase synchronization the maxima of the return probabilities P (τ)
(see Sec. 2.2) of two coupled systems will coincide due to the simultaneous returns of
both system which are caused by the locked unstable periodic orbits. In our article [13]
we extend this recurrence based technique to analyze phase synchronization among
bursting neurons, which are systems exhibiting two predominant time scales. We study
large networks of these neurons and report our findings, which is a diverse route to
synchrony on the different time scales. In addition we discover a form of anomalous
synchronization [52] which is only present in the fast time scale.

In our paper [14] we study synchronization in a system of two CO2 lasers coupled
via a master-slave coupling scheme. The synchronization scenario is complicated in that
system. Both lasers are forced by an external sinusoidal signal and, hence, both are in
perfect synchrony with that external force. However, due to the complicated multiple
time scale dynamics active in that system, there is another, concealed, component in
the dynamics, which can synchronize. Such a CO2 laser system also exhibits a form of
bursting pattern, which is different to those observed in neurons, though. These bursts
are time intervals in which the trajectory spends a rather long time close to unstable
periodic orbit of a certain length and amplitude which may differ drastically among the
orbits. The observed synchronization of these high amplitude bursts can be explained
in terms of unstable periodic orbits and the synchronization thereof. We analyzed the
synchronization of these orbits utilizing the continuous wavelet transform and show that
orbits of different length synchronize differently in dependence of the coupling strength.

Analytic treatment of synchronization

Synchronization phenomena can be treated analytically. Without going into much detail
on topics, such as route to chaos and bifurcation theory, I just want to state some facts
which are important for the reader in order to understand the analytically description of
synchronization.

As mentioned above chaos can be understood in terms of a set of unstable periodic
orbits (unstable limit cycles) building up the chaotic attractor. Limit cycles are created
through a Hopf bifurcation, with respect to a control parameter. Any generic two-
dimensional system undergoing a Hopf bifurcation can be transformed into the form
[53, 54]:

u̇ = (α + i)u− |u|2u+O(|u|4). (6)

Equation (6) is known as Hopf normal form. Here u ∈ C is the state variable and α is
the Hopf bifurcation parameter. For α < 0 the system has a stable fixed point at u = 0.
When α = 0 the Hopf bifurcation occurs, and for α > 0 the former stable fixed point
becomes unstable and a new stable limit cycle with radius r =

√
α appears.

Equation (6) is in a bit more generalized form also known as Stuart-Landau oscillator:

u̇ = (α + iω)u− (1 + iβ)|u|2u. (7)



11

Here, a tunable frequency ω has been introduced and the sheer parameter β which
controls isochronicity of the trajectories approaching the limit cycle. This equation is
well studied in literature about synchronization, where systems of coupled Stuart-Landau
oscillators are a simple paradigmatic model to analyze and understand synchronization
phenomena analytically, since implications follow for more complex and chaotic systems
as well.

However, oversimplifying a system may also destroy phenomena which could otherwise
be observed in more realistic models. In [15] we study remote synchronization, that is
mutual phase synchronization of two oscillator, which are coupled only indirectly via
another oscillator which is not in synchrony with the former two. We are able to show
that this phenomena, which is important in heterogeneous oscillatory networks, depends
on the existence of a perturbable amplitude.

This has important implications. Consequently, we can show that oscillators with-
out an amplitude, or precisely with a fixed not perturbable amplitude, are not able to
reproduce remote synchronization. In particular, the popular and widely studied [47] Ku-
ramoto phase oscillator is such a system. Nevertheless, this is only important in stronlgy
heterogeneous oscillatory networks with a complex topology and broad frequency distri-
bution. In such situation it is advisable not to use pure phase oscillators, since certain
aspects of information transmission will be abolished by such systems. We demonstrate
in [15] that the remote synchronization can be tracked by analyzing modulations in the
instantaneous frequency of the oscillators. We also checked with the approach described
in [34] that nonlinear methods are able to reveal the hidden information transfer through
which the remotely synchronized oscillators communicate.

3 Conclusions

This present work has been focusing on synchronization, in particular phase synchro-
nization, in systems exhibiting multiple time scales, which is still a rather untouched
topic. Multiple time scales can be active in different manners within dynamical systems.
Three different systems have been studied, each one having its own characteristic type
of exhibiting multiple time scales.

The first system studied is a large heterogenous network of bursting neurons [13].
This system has been analyzed with methods based on recurrence in phase space. An
interesting result are the different transitions to synchrony found in the two distinct
time scales. Moreover, an anomalous synchronization effect can be observed in the fast
spiking time scale.

The second system analyzed is a pair of coupled CO2 lasers in a chaotic bursting
regime [14]. This system is interesting due to its connection to epidemics [12]. We
explain the bursts by different time scales generated from unstable periodic orbits em-
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bedded in the attractor and perform a synchronization analysis of these different orbits
utilizing the continuous wavelet transform. We find a diverse route to synchrony of these
different observed time scales.

The last system studied is a small network motif of paradigmatic limit cycle oscilla-
tors [15]. Precisely, we have studied a hub motif, which serves as elementary building
block for scale-free networks, a type of network found in many real world applications.
These hubs are of special importance for communication and information transfer in
complex networks. Here, a detailed study on the mechanism of synchronization in oscil-
latory networks with a broad frequency distribution has been carried out. In particular
we find a remote synchronization of nodes in the network which are not directly coupled.
We also explain the responsible mechanism and its limitations and constraints. Further,
we derive an analytic expression for it and show that information transmission in pure
phase oscillators, such as the Kuramoto type, is limited.

open questions and outlook

The observed anomalous synchronization in the fast time scale of the studied neuronal
networks should be analyzed in more detail. In particular, a simpler system must be
derived which can either relate to the mechanism described in [52] or may hint to
another mechanism responsible for the observed phenomenon, which is a loss of phase
coherence for intermediate values of the coupling strength.

The wavelet based method used in the study of the coupled laser system, should be
applied to other systems as well. Also, an extension to detect n:m synchronization6

might be interesting.

The study on remote synchronization has just started and seems promising. There are
several ways how to continue the investigation of this. More complex topologies, such
as two or more coupled hubs, or chains of oscillators can be introduced. Further, when
increasing the complexity of the network’s topology more different heterogeneities are
possible. For instance the two similar nodes could be coupled via different paths, each
path having different lengths and frequency distributions. Here, in particular the paths
of information transmission within the network are of strong interest. Also such simple
changes as complex coupling constants or introducing non-isochronicity in the oscillators
may change a lot in the way the systems synchronizes within that complex time scale and
topology mixture. Further, using more complicated systems (anharmonic limit cycles,
chaotic, multiple time scales) as nodes may most likely introduce new effects, such as
n:m synchronization.

6n:m synchronization is a generalized form of (4) to ratios of different frequencies:
|nϕ2(t)−mϕ1(t)| ≤ θ.
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A Publications

A.1 Synchronization Analysis of Neuronal Networks by
Means of Recurrence Plots

The book chapter Synchronization Analysis of Neuronal Networks by Means of Recur-
rence Plots has been published as part of Lectures in Supercomputational Neuroscience
in Springer-Verlag Berlin Heidelberg, pages 177–191, in 2008. I acknowledge the rights
for republication within my thesis.
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André Bergner and Maria Carmen Romano, Jürgen Kurths and Marco Thiel

Nonlinear Dynamics Group, University of Potsdam
bergner@agnld.uni-potsdam.de

Summary. We present a method for synchronization analysis, that is able to handle
large networks of interacting dynamical units. We focus on large networks with
different topologies (random, small-world and scale-free) and neuronal dynamics at
each node. We consider neurons that exhibit dynamics on two time scales, namely
spiking and bursting behavior. The proposed method is able to distinguish between
synchronization of spikes and synchronization of bursts, so that we analyze the
synchronization of each time scale separately. We find for all network topologies
that the synchronization of the bursts sets in for smaller coupling strengths than the
synchronization of the spikes. Furthermore, we obtain an interesting behavior for the
synchronization of the spikes dependent on the coupling strength: for small values
of the coupling, the synchronization of the spikes increases, but for intermediate
values of the coupling, the synchronization index of the spikes decreases. For larger
values of the coupling strength, the synchronization index increases again until all
the spikes synchronize.

6.1 Introduction

Networks are ubiquitous in nature, biology, technology and in the social sci-
ences (see [1] and references therein). Much effort has been made to describe
and characterize them in different fields of research. One key finding of these
studies is that there are unifying principles underlying their behavior. In the
past, two major approaches have been pursued to deal with networks. The
first approach considers networks of regular topology, such as arrays or rings
of coupled systems with nonlinear and complex dynamics on each node. The
second approach concentrates on the topology of the network and sets aside
the dynamics or at most considers a rather simple one at each node. Some of
the prototypical types of network architectures that have been considered are
random, small-world, scale-free and generalized random networks [2].

Recently, the study of complex dynamics on the nodes has been extended
from regular to more complex architectures [3]. However, in most previous
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work, each node is still considered to be a phase oscillator (system with one
predominant time scale), often pulse-coupled to each other. Much is left, how-
ever, to understand about network behavior with more realistic complex dy-
namics on the nodes of networks of complex architecture, such as chaotic and
stochastic dynamics, which is found in many real application systems, such
as in neural networks. The influence of the topology of the network on the
dynamical properties of the complex systems is currently being investigated
in the context of synchronisation [4–6].

Synchronization of complex systems has been intensively studied during
the last years [7] and it has been found to be present in numerous natu-
ral and engineering systems [8]. Chaotic systems defy synchronization due
to their sensitivity to slight differences in initial conditions. However, it has
been demonstrated that these kind of systems are able to synchronize. In the
case of two interacting non-identical chaotic systems (which is more likely to
occur in nature than if they were identical), several types of synchronization
might occur, dependent on the coupling strength between the systems. For
rather weak coupling strength, phase synchronisation (PS) might set in. In
this case, the phases and frequencies of the complex systems are locked, i.e.
|φ1(t) −φ2(t)| < const. and ω1 ≈ ω2, whereas their amplitudes remain uncor-
related. If the coupling strength is further increased, a stronger relationship
between the interacting systems might occur, namely generalized synchro-
nization (GS). In this case, there is a functional relationship between both
systems. Finally, for very strong coupling, both systems can become almost
completely synchronized. Then, their trajectories evolve almost identically in
time [7].

In the case of phase synchronization, the first step in the analysis is to de-
termine the phases φ1(t) and φ2(t) of the two interacting systems with respect
to the time t. If the chaotic systems have mainly one characteristic time scale,
i.e. a predominant peak in the power spectrum, the phase can be estimated
as the angle of rotation around one center of the projection of the trajec-
tory on an appropriate plane. Alternatively, the analytical signal approach
can be used [9]. However, for most of the complex systems found in nature,
there is more than one characteristic time scale [10]. Hence, the approaches
mentioned above to estimate the phase are not appropriate. Recently, a new
method, based on the recurrence properties of the interacting systems [11],
has been introduced to overcome this problem. By means of this technique,
it is possible to analyze systems with a rather broad spectrum, as well as
systems strongly contaminated by noise or subjected to non-stationarity [12].

In this chapter, we extend the recurrence based technique for phase syn-
chronization analysis to systems with two predominant time scales, so that
it is possible to obtain one synchronization index for each time scale. More-
over, we apply this method to large networks of different architectures with
neuronal dynamics on their nodes.

The outline of this chapter is as follows: in Sect. 6.2, we introduce the con-
cept of recurrence, as well as the synchronization index based on the recurrence
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properties of the system. In Sect. 6.2.2, we present the method to analyze the
synchronization for two different time scales separately. In Sect. 6.3, we apply
the method to complex networks of neurons and present the obtained results.

6.2 Phase Synchronization by Means of Recurrences

First, we show the problem of defining the phase in systems with rather
broad power spectrum by using the paradigmatic system of two coupled non-
identical Rössler oscillators:

ẋ1,2 = −ω1,2y1,2 − z1,2

ẏ1,2 = ω1,2x1,2 + ay1,2 + µ(y2,1 − y1,2) (6.1)

ż1,2 = 0.1 + z1,2(x1,2 − 8.5) ,

where µ is the coupling strength and ω1,2 determine the mean intrinsic fre-
quency of the (uncoupled) oscillators in the case of phase coherent attrac-
tors. In our simulations, we take ω1 = 0.98 and ω2 = 1.02. The parameter
a ∈ [0.15, 0.3] governs the topology of the chaotic attractor. When a is
below a critical value ac (ac ≈ 0.186 for ω1 = 0.98 and ac ≈ 0.195 for
ω2 = 1.02), the chaotic trajectories always cycle around the unstable fixed
point (x0, y0) ≈ (0, 0) in the (x, y) subspace (Fig. 6.1(a)). In this case, the
rotation angle

φ = arctan
y

x
(6.2)

can be defined as the phase which increases almost uniformly. The oscilla-
tor has coherent phase dynamics, i.e. the diffusion of the phase dynamics is
very low (10−5–10−4). In this case, other phase definitions, e.g. based on the
Hilbert transform or on the Poincaré section, yield equivalent results [9]. How-
ever, beyond the critical value ac, the trajectories no longer completely cycle
around (x0, y0) – the attractor becomes the so-called funnel attractor. Such
earlier returns in the funnel attractor happen more frequently with increasing
a (Fig. 6.1(b)). It is clear that for the funnel attractors, usual (and rather
simple) definitions of phase, such as (6.2), are no longer applicable [9].

Another problematic case arises if the systems under consideration have
two predominant time scales, which is common in many real systems, e.g.
neurons with spiking and bursting dynamics. In such cases, the definition of
the phase given by (6.2) is also not appropriate.

Figure 6.2 shows these problems with the time series of a Hindmarsh-Rose
neuron.1

Rosenblum et al. [13] have proposed the use of an ensemble of phase co-
herent oscillators that is driven by a non-phase-coherent oscillator in order
to estimate the frequency of the latter and hence detect PS in such kind

1 For the definition of the Hindmarsh-Rose neuron see Sect. 6.3 and also Chap. 1.
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Fig. 6.1. (a,e): Segment of the x1-component of the trajectory of the Rössler sys-
tems (6.1); (b,f): periodogram of the x-component of the trajectory; (c,g): projection
of the attractor onto the (x, y) plane; (d,h): projection onto the (ẋ, ẏ) plane. Up-
per panel (a,b,c,d) computed for a = 0.16 and lower panel (e,f,g,h) computed for
a = 0.2925

of systems. However, depending on the component one uses to couple the
non-phase-coherent oscillator to the coherent ones, the result of the obtained
frequency can be different.

Furthermore, Osipov et al. [10] have proposed another approach which
is based on the general idea of the curvature of an arbitrary curve. For any
two-dimensional curve r=(u, v) they propose that the phase φ be defined as
φ=arctan v̇

u̇ . By means of this definition, the projection ṙ =(u̇, v̇) is a curve
cycling monotonically around a certain point.

This definition of φ holds in general for any dynamical system if the pro-
jection of the phase trajectory onto some plane is a curve with a positive
curvature. This approach is applicable to a large variety of chaotic oscillators,
such as the Lorenz system [14], the Chua circuit [15] or the model of an ideal
four-level laser with periodic pump modulation [16].
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x versus x; (b) for the Hindmarsh-Rose-neuron
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This is clear for phase-coherent as well as funnel attractors in the Rössler
oscillator. Here, projections of chaotic trajectories on the plane (ẋ, ẏ) always
rotate around the origin (Figs. 6.1(c) and (d)) and the phase can be defined as

φ = arctan
ẏ

ẋ
. (6.3)

Although this approach works well in non-phase-coherent model systems,
we have to consider that one is often confronted with the computation of the
phase in experimental time series, which are usually corrupted by noise. In
this case, some difficulties may appear when computing the phase given in
(6.3), because derivatives are involved in its definition.

6.2.1 Cross-correlation of the Probability of Recurrence

We use a different approach, based on recurrences in phase space, to detect
PS indirectly. We define a recurrence of the trajectory of a dynamical system
{xi}N

i=1 in the following way: we say that the trajectory has returned at time
t=j to the former point in phase space visited at t= i if

R
(ε)
i,j = Θ(ε − ‖xi − xj‖) = 1 , (6.4)

where ε is a pre-defined threshold and Θ(·) is the Heaviside function. A “1”
in the matrix at i, j means that xi and xj are neighboring, a “0” that they
are not. The black and white representation of this binary matrix is called
a recurrence plot (RP). This method has been intensively studied in the last
years [11]: different measures of complexity have been proposed based on
the structures obtained in the RP and have found numerous applications for
example, in physiology and earth science [17]. Furthermore, it has been even
shown that some dynamical invariants can be estimated by means of the
recurrence structures [18].

Based on this definition of recurrence, one is able to tackle the problem of
performing a synchronization analysis in the case of non-phase-coherent sys-
tems. We avoid the direct definition of the phase and use instead the recurrence
properties of the systems in the following way: the probability P (ε)(τ) that
the system returns to the neighborhood of a former point xi of the trajectory2

after τ time steps can be estimated as follows:

P (ε)(τ) =
1

N − τ

N−τ∑

i=1

Θ(ε − ‖xi − xi+τ‖) =
1

N − τ

N−τ∑

i=1

R
(ε)
i,i+τ . (6.5)

This function can be regarded as a generalized autocorrelation function, as it
also describes higher order correlations between the points of the trajectory

2 The neighborhood is defined as a box of size ε centered at xi, as we use the
maximum norm.
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dependent on the time delay τ . A further advantage with respect to the linear
autocorrelation function is that P (ε)(τ) is defined for a trajectory in phase
space and not only for a single observable of the system’s trajectory.

For a periodic system with period T , it can be easily shown that P (ε)(τ)=1
if τ = T and P (ε)(τ) = 0 otherwise. For coherent chaotic oscillators, such
as (6.1) for a=0.16, P (ε)(τ) has well-expressed local maxima at multiples of
the mean period, but the probability of recurrence after one or more rotations
around the fixed point is less than one (Fig. 6.3(b,d)).

Analyzing the probability of recurrence, it is possible to detect PS for non-
phase-coherent oscillators as well. This approach is based on the following idea:
Originally, a phase φ is assigned to a periodic trajectory x in phase space, by
projecting the trajectory onto a plane and choosing an origin, around which
the trajectory oscillates all the time. Then, an increment of 2π is assigned to
φ when the point of the trajectory has returned to its starting position, i.e.
when ‖x(t + T ) − x(t)‖ = 0. Analogously to the case of a periodic system,
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Fig. 6.3. Time series (a and c) and the probability of recurrence (b and d)
of the Rössler system with parameters a = 0.15, b = 0.2, c = 8.5, ω1 = 1 and
ω2 =1.05. The coupling strength for the non-PS case (a and b) is µnonPS =0.01
and µPS =0.07 for the PS case (c and d), respectively. The values for CPR that
have been calculated are CPRnonPS = 0.0102 and CPRPS = 0.9995. The figures
show clearly how the peaks drift apart from each other in the absence of PS and
coincide in the case of PS
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we can assign an increment of 2π to φ for a complex non-periodic trajectory
x(t) when ‖x(t + T )− x(t)‖ ∼ 0, or equivalently when ‖x(t +T )−x(t)‖ < ε,

where ε is a predefined threshold. That means that a recurrence R
(ε)
t,t+τ = 1

can be interpreted as an increment of 2π of the phase in the time interval τ .3

P (ε)(τ) can be viewed as a statistical measure of how often φ in the original
phase space has increased by 2π or multiples of 2π within the time interval τ . If
two systems are in PS, on the average, the phases of both systems increase by
2π k, with k a natural number, within the same time interval τ . Hence, looking
at the coincidence of the positions of the maxima of P (ε)(τ) for both systems,
we can quantitatively identify PS (from now on, we omit (ε) in P (ε)(τ) to
simplify the notation). The proposed algorithm then consists of two steps:

• Compute P1,2(τ) of both systems based on (6.5).
• Compute the cross-correlation coefficient between P1(τ) and P2(τ) (Cor-

relation between probabilities of recurrence)

CPR1,2 =

〈
P̄1(τ)P̄2(τ)

〉
τ

σ1σ2
, (6.6)

where the bar above P̄1,2 denotes that the mean value has been subtracted
and σ1 and σ2 are the standard deviations of P1(τ) and P2(τ), respectively.

If both systems are in PS, the probability of recurrence is maximal si-
multaneously and CPR1,2 ≈ 1. In contrast, if the systems are not in PS, the
maxima of the probability of recurrence do not occur jointly and we would
expect low values of CPR1,2.

In Figs. 6.3 and 6.4, we illustrate the performance of the method with two
examples of the Rössler system.

6.2.2 The Problem of Separating the Time Scales

As already mentioned, neurons can exhibit dynamics on several distinct time
scales (spiking and bursting) and are also able to synchronize on both scales
separately. To perform a synchronisation analysis of such a system, one has
to segregate the two scales of each other. Figure 6.5 shows the RP of a
Hindmarsh-Rose neuron.4 In Fig. 6.5(a), the structures that emerged from the
recurrence of the bursts can be identified quite clearly, namely the “swelling
diagonal lines”. In Fig. 6.5(b), one of those “swellings” is presented magnified.
Here, the recurrences of the spike dynamics can be noticed as diagonal lines
on a smaller scale in the RP.

Separating the scales is a non-trivial task. Filtering the time series could
be one approach, but this is not recommended as the attractor of the fil-
tered time series will be distorted, which will change the recurrence behavior.

3 This can be considered as an alternative definition of the phase to (6.2) and (6.3).
4 For the definition of the Hindmarsh-Rose neuron see Sect. 6.3 and Chap. 1, again.
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Fig. 6.4. Time series (a and c) and the probability of recurrence (b and d) of the
Rössler system in a bursting regime with the parameters a=0.38, b=0.4, c=50,
ω1 = 1 and ω2 = 1.05. The coupling strength for the non PS case (a and b) is
µnonPS =0.005 and µPS =0.23 for the PS case (c and d), respectively. The values
for CPR that have been calculated are CPRnonPS =0.0258 and CPRPS =0.9684.
Clearly, the peaks do not coincide in the non-PS case and do so in the presence
of PS. This example shows quite well that the algorithm is able to detect PS for
systems with a very complicated flow of the phase

Therefore, separating the time scales after calculating the RP or P (τ) is a
better approach. We separate the time scales in two ways: The first one re-
quires the choice of an appropriate recurrence rate and the second one is the
application of some filter to P (τ).

In Fig. 6.6(a) the recurrence probability P (τ) of a Hindmarsh-Rose neuron
is presented. The large peaks correspond to the recurrence of the bursts. The
arrows indicate the smaller peaks generated by the recurrence of the spikes.
There are many methods for separating both scales, e.g. wavelets, etc. In this
analysis, an infinite impulse response (IIR) filter has been used, which can be
implemented easily by simple difference equations.

Figure 6.6(b) shows the highpass filtered P (τ). The cutoff has been chosen
to be 0.2 × sampling rate. The broad peaks, originated by the burst, are fil-
tered out and the smaller peaks corresponding to the spike recurrence become
clearer. Note that the filtered P (τ) cannot be interpreted as a probability of



6 Synchronization Analysis of Neuronal Networks 185

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500(a)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350(b)

Fig. 6.5. Recurrence plot of the time series of a Hindmarsh-Rose neuron on a large
scale (a) and zoomed in to show a small scale features (b)

recurrence any more, since it also assumes negative values. However, it still
captures all the relevant information about the recurrence of the spiking dy-
namics. Thus, a separate synchronization analysis of the spike scale can now
be accomplished by computing the index CPR of the filtered functions.

The recurrence rate is the parameter that specifies the number of black
points in the RP and determines the threshold ε in (6.4). This parameter also
influences the patterns obtained in the recurrence plot. Hence, by varying the
recurrence rate, we can enhance or suppress certain information.

Figure 6.7(a) shows the RP of a Hindmarsh-Rose neuron time series, com-
puted for a high recurrence rate of 0.5. Comparing this plot with the one
in Fig. 6.5(a), it can be observed that the shorter lines originating from the
recurrence of the spikes are “smeared out” The corresponding probability of
recurrence P (τ) in Fig. 6.7(b) shows only the oscillations that are caused by
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Fig. 6.6. Probability of recurrence P (τ ) for the Hindmarsh-Rose neuron: (a) The
original and; (b) highpass filtered. The arrows indicate the features created by the
recurrence of the spikes
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Fig. 6.7. RP with RR = 0.5; (a) and corresponding P (τ ) ; (b) for an exemplary
Hindmarsh-Rose neuron

the recurrence of the bursts. Consequently, the recurrence rate can be used to
analyze the synchronization of the slow time scale (bursts), since the influence
of the fast scale is automatically removed.

Analogously, choosing a rather low value for the recurrence rate causes the
fine structures of the spike recurrences to appear more clearly. Therefore, it is
advisable to use a rather low recurrence rate to analyze the synchronization of
the spikes. In Fig. 6.8, the RP and the corresponding high-pass filtered P (τ)
are presented. This example demonstrates quite well, how the large peaks,
which are usually created by the recurrence of the bursts, are suppressed,
so that the recurrence of the spikes is clearer than for higher values of the
recurrence rate.
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Fig. 6.8. RP with RR = 0.05: (a) and corresponding highpass filtered P (τ ) ; (b)
for an exemplary Hindmarsh-Rose neuron
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A Few Notes on the Parameters

The RP based method has several parameters that need to be chosen in an
appropriate way. These parameters are the already discussed recurrence rate
and cutoff frequency of the filter, the averaging length N in (6.5), and the
maximum recurrence time τmax when calculating CPR.

On the one hand, small values of N and τmax are desirable, such that
the analysis can operate as locally as possible and with as small as possible
computational cost. On the other hand, the values cannot be too small, since
the analyses requires averaging and thus needs a large number of points for a
correct calculation. Therefore, one has to determine the minimum values of N
and τmax to serve both requirements. This can be done by calculating CPR
for different values of these parameters. For large values, one can expect some
kind of asymptotic behavior.

6.3 Application of the Algorithm

In this section, we present a few results that have been obtained by applying
the proposed algorithm to networks of coupled neurons with different topolo-
gies. The neuron model that has been used is a (modified) four-dimensional
Hindmarsh-Rose system (for details, see [19] and [20]),

ẋn = ωfast,n(yn + 3x2
n − x3

n − 0.99zn + In) + µ
∑N

m=1 Anm(xm − xn)
ẏn = ωfast,n(1.01 − yn − 5.0128x2

n − 0.0278wn)
żn = ωslow1,n(−zn + 3.966(xn + 1.605))
ẇn = ωslow2,n(−0.9573wn + 3(yn + 1.619)),

(6.7)

where xn is the membrane potential, and yn, zn, and wn represent inner
degrees of freedom of neuron n, with n=1, . . . , N . Whereas yn is responsible
for the fast dynamics of the spikes, zn and wn represent the slow dynamics of
the bursts. In is the external input current of neuron n, ωfast,n determines the
firing rate, and ωslow1,n and ωslow2,n determine the duration of the bursts. The
neurons are electrically coupled, while the coupling topology of the neurons
is given by the adjacency matrix Anm (see Chap. 3). The parameter µ is the
coupling strength of the whole network.

6.3.1 Analysis of Two Coupled Neurons

First, we apply the algorithm to a pair of coupled Hindmarsh-Rose neurons.
We consider different parameter sets for the two neurons (see Table 6.1), so
that we have three possibilities for the dynamical regime of the neurons: (i)
both neurons in regular bursting regime with different frequencies, (ii) both
neurons in chaotic bursting regime with different frequencies, and (iii) one
neuron in spiking regime and one in regular bursting regime, both neurons
with the same frequencies.
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Table 6.1. A list of parameters in the examined pair of Hindmarsh-Rose neurons

wslow1,1 wslow2,1 wfast1 I1 wslow1,2 wslow2,2 wfast2 I2

regular bursting 0.0015 0.019 1.1 3.0 0.0018 0.0012 0.9 2.9
chaotic bursting 0.0050 0.0010 1.1 3.1 0.0022 0.0007 0.9 3.1
one bursting, one spiking 0.0015 0.0009 1.0 5.0 0.0015 0.0009 1.0 2.5
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Fig. 6.9. CPRbursts and CPRspikes vs. coupling strength µ for a pair of Hindmarsh-
Rose neurons with parameters according to Table 6.1: (a) regular bursting (b)
chaotic bursting; (c) one spiking, one regular bursting

Then, we compute the synchronisation indices CPRbursts and CPRspikes

for each case dependent on the coupling strength (see Fig. 6.9). For all three
cases the spikes need higher coupling strengths to become phase synchronized
than the bursts. This result is in good accordance with [21].

6.3.2 Analysis of Networks of Neurons

Different network topologies (random, small-world and scale-free) with Hind-
marsh-Rose neurons at each node have been analyzed. Each network had
N =200 nodes and an average degree 〈d〉 of 10. The parameters of the neurons
have been chosen as follows: In ∈ N (3.1, 0.05) (chaotic bursting regime),
ωfast,n ∈ N (1, 0.05), ωslow1,n ∈ N (0.002, 0.0005), and ωslow,n = 0.001, where
N (µ̃,σ) denotes a Gaussian normal distribution with mean µ̃ and variance
σ. The coupling strength has been chosen as µ=g/ 〈d〉. The synchronization
indices CPRbursts and CPRspikes have been calculated for each pair of nodes
from the networks for increasing values of the coupling parameter g. Thus,
we obtain two matrices (CPRbursts

nm ) and (CPRspikes
nm ), where n, m = 1, . . . , 200

indicate the nodes.
In Fig. 6.10, we present a few snapshots of those CPR-matrices for different

values of the coupling strength g for the scale free network. We have found
that with an increasing coupling strength, the hubs (nodes with largest degree,
see Chap. 3 for details) will synchronize first, while the rest of the nodes
need a higher coupling strength to become synchronized. This is in good
accordance with [22], where this has been shown for a scale free network of
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Fig. 6.10. Several snapshots of the CPR matrix of a network of 200 Hindmarsh-
Rose neurons are presented for different coupling strengths. The left hand plot of
each pair corresponds to the bursts, the right hand one to the spikes, respectively.
Several phenomena stand out: 1. the hubs synchronize first, “attracting” the
remaining nodes when the coupling increases further; 2. the spikes synchronize
for a higher coupling strength than the bursts and; 3. there is a collapse of the
spike synchronization in a certain domain of the coupling strength

Rössler oscillators. Furthermore, we have found for all three networks, as in
the case of two coupled neurons, that the synchronization of the spikes sets
in for higher values of the coupling strength than for the bursts.

To quantify the degree of phase synchronization of the whole network, we
count the number of values in (CPRnm) that are above a certain threshold
and we call this number “area of synchronization”. The threshold has been
chosen as 0.8. In Fig. 6.11, those areas of synchronization are plotted versus
the coupling strength.

An interesting result can be observed in the plot of the area of synchro-
nization, as well in the snapshots of the CPR-matrices: there is a collapse
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Fig. 6.11. Area of synchronization for; (a) random network; (b) small-world net-
work; and (c) scale-free network for bursts and spikes, respectively

of the synchronization of the spikes for intermediate values of the coupling
strength. In contrast, the synchronization of the bursts remains unchanged.
This could be due to a change of the dynamics, namely the coherence of the
oscillators with increasing values of the coupling strength g.

6.4 Conclusions

In this chapter, we have analyzed phase synchronization in networks with
complex topology and complex dynamics. In particular, we have concentrated
on dynamics on two time scales, as is typically observed in neurons with
spiking and bursting dynamics. In order to analyze the synchronization be-
havior of such systems we extended an existing method, which is based on the
concept of recurrence [11], to treat the two time scales separately. We have
applied the proposed method to complex networks of Hindmarsh-Rose neu-
rons. Our results are in accordance with [21], where it has been shown that
the spikes need higher values of the coupling strength than the bursts in order
to phase synchronize. Moreover, we have found that in a scale-free network of
Hindmarsh-Rose neurons, the hubs synchronize first with increasing coupling
strength, while the rest of the nodes need a higher coupling to synchronize,
as has been reported in [22] for a scale-free network of Rössler oscillators. In
addition, the most interesting result of our analysis is that we have found a
collapse in the synchronization of the spikes in those complex networks for
an intermediate coupling strength. This effect will be discussed in detail in a
forthcoming paper.
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A.2 Continuous wavelet transform in the analysis of burst
synchronization in a coupled laser system

The article Continuous wavelet transform in the analysis of burst synchronization in a
coupled laser system has been published in Physical Review E, issue 78, pages 016211,
in 2008. I acknowledge the rights for republication within my thesis.
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The transition to synchronization of a pair of coupled chaotic CO2 lasers is investigated nu-
merically in a model system. This system displays episodes of bursting of different predominant
frequencies. Due to the multiple time scales present in this system, we use a complex continuous
wavelet transform to perform the synchronization analysis. Thus it enables us to resolve the time of
occurrence as well as the frequency of an event in a given time series up to an intrinsic uncertainty.
Furthermore, due to the complex nature of that wavelet transform, it yields a direct estimate of
the system’s phase. We show that, as the coupling strength of the laser system is increased, the
mutual coherency increases differently for different frequencies. Additionally we test our method
with experimental data.
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I. INTRODUCTION

Chaotic synchronization is of fundamental importance
in a variety of complex systems [1–3]. Synchronization
is often studied in autonomous chaotic systems, that is,
systems not subjected to an external driving. In this
situation, a coupling between two or more systems (iden-
tical or not) can induce changes in some properties of the
dynamics of the systems, leading to a common behavior.

Here, we consider the case of synchronization of cou-
pled non-autonomous systems, where chaos is due to
an external periodic forcing. In particular, we consider
bursting chaotic dynamics originated as a consequence of
an interior crisis [4, 5]. In contrast to a generic chaotic
system, where the attractor is filled almost uniformly in
course of time, in a bursting chaotic dynamics there are
rather long time intervals spent around unstable peri-
odic orbits (UPOs) laying inside the basin of attraction
of the chaotic attractor before the crisis. The time inter-
vals during which the chaotic orbit is attracted by one
of these UPOs lead to bursts of high amplitude, which
have the predominant period of the corresponding UPO.
Thus, a peculiar feature of a bursting chaotic system are
such local structures.

As we couple two such bursting chaotic systems, these
local structures can be synchronized. For low values of
the coupling strength, they become partially synchro-
nized, and as we increase the coupling strength, they
become completely synchronized. In this paper we in-
vestigate a model system of two coupled CO2 lasers, and
focus on the role of the different time scales present in the
system. For this purpose we utilise a complex continuous
wavelet transform to resolve different local structures of
this multi-time scale system.

The paper is organized as follows. In Sec. II the laser
model is presented and the analysis tools are introduced.
In Sec. III the results of our analysis are described and
in Sec. IV we draw the conclusions.

II. MODEL AND ANALYSIS METHODS

A. The laser model

The model describes a setup of two identical lasers with
a common sinusoidal forcing and unidirectional coupling
(master-slave coupling). From an experimental point of
view such a configuration can be implemented by a single
laser whose dynamical regime is controlled via an ade-
quate function generator. Specifically, a master signal is
obtained by recording a long time sequence of the laser
in a condition where it displays chaotic bursts. In a sec-
ond stage, the recorded master signal is reproduced by
the function generator. The difference signal between the
master and the slave laser intensity, amplified by a cou-
pling factor ε, is used as an amplitude modulation applied
to the sinusoidal driving of the slave laser. This coupling
scheme is fairly general allowing coupling between two
lasers with nearly identical parameters. The chaotic and
synchronization behavior can be reproduced by using the
following model of five differential equations for each of
the two lasers:

ẋ1 = kx1(x2 − [1 + α sin2(Fx +B)]),
ẋ2 = −Γ1x2 + γx3 + x4 + p− 2kx1x2,
ẋ3 = −Γ1x3 + γx2 + x5 + p,
ẋ4 = −Γ2x4 + γx5 + z(x2 + p),
ẋ5 = −Γ2x5 + γx4 + z(x3 + p),

(1)
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where x represents the slave laser and an identical set of
equations exists for the master laser y. The coupling and
forcing functions are given by

Fx = A [1 + ε(y1 − x1)] sin(2πft),
Fy = A sin(2πft).

(2)

In the above equations, x1 represents the laser output
intensity, x2 is the population inversion between the two
resonant levels, and x3, x4 and x5 account for molecu-
lar exchanges between the two levels, resonant with the
radiation field and other rotational levels of the same vi-
brational band. The parameters of the model are the
following: k = 30 is the unperturbed cavity loss param-
eter, γ = 0.05 is a coupling constant, Γ1 = 10.0643 and
Γ2 = 1.0643 are population relaxation rates, z = 10 ac-
counts for an effective number of rotational levels, α = 4
accounts for the efficiency of the electrooptic modulator,
B = 0.1794 is a bias voltage, and p = 0.01987 is the pump
rate. The rest of the parameters are related to the ex-
ternal forcing: the frequency f = 1/7 and the amplitude
A = 0.1044, which are set to a value where the system
exhibits chaotic bursting, ε is the master-slave coupling
strenght. For more details on the model see [7–9].

If the system is uncoupled and autonomous (A = 0)
the subsystems show a fixed point dynamics. When the
external forcing is introduced (A > 0) but without cou-
pling (ε = 0), the lasers are in a self sustained regime and
show tonic spiking with the frequency f of the periodic
forcing (an exemplary time series for each laser is shown
in Fig. 1). The spike occurrences of both subsystems are
locked perfectly due to their common forcing, however,
considering that the initial conditions are different, the
spike amplitudes of both systems are uncorrelated. This
is the typical behavior of systems which are phase syn-
chronized due to a common driving signal [2, 3]. On a
larger time scale, it becomes visible that bursts of higher
amplitude – i.e. groups of consecutive spikes with high
amplitude – occur repeatedly but irregularly (see time
series in Fig. 4 (a)). The creation of these bursts can be
explained as follows.

By increasing the amplitude A of the sinusoidal driv-
ing, the laser undergoes a sequence of subharmonic bifur-
cations leading to a small amplitude chaotic attractor. A
further increase of A leads to an interior crisis [4, 5, 10],
whereby the chaotic attractor suddenly expands, includ-
ing phase space regions of other unstable orbits. Shortly
after the crisis, an intermittent regime (crisis-induced
intermittency) is established where bursts of high am-
plitude orbits of period three and four are intercalated
with the chaotic attractor before the crisis. The bursting
regime investigated here is not a bistable regime. Bista-
bility in this model occurs for lower values of the param-
eter A (the amplitude of the intrinsic modulation) [11],
but we do not consider this regime here.

By introducing the coupling into the system (ε > 0) we
can synchronize both lasers. The synchronization studied
here is not the one of the spikes, which are, as already
mentioned, locked perfectly, but the synchronization of
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FIG. 1: Time series of the laser intensities x1 and y1 from the
model system (1) in the uncoupled mode (ε = 0). The portion
of the time series, displayed in the zoomed box, demonstrates
that there is a spike on every period of the forcing frequency
f . Time durations of local structures are denoted by Oi seg-
ments; precisely, O1, O2, O3, and O4 denote intervals during
which the trajectory passes close to an UPO of period 1, 2,
3, 4, respectively. See text and Fig. 2 for more details.

the bursts, or to be more precise the synchronization of
the UPOs of different length. In the numerical system
we only observe in-phase synchronization of those orbits,
however, in the time series recorded from the experiment
we also observe anti-phase sychronization during the high
amplitude bursts [9].

Due to the strong periodic forcing (2), the rotation
times of all orbits are locked to integer factors of the fre-
quency f of the forcing. A spike is created after a full
rotation of the trajectory across the attractor. An ex-
hibition of trajectories passing nearby different periodic
orbits that exist inside the attractor is presented in Fig.
2. We find segments of orbits, which can have cycling
times one to four times the forcing period. Larger spikes
(larger values of x1) are created by orbits with longer
periods.

The orbits of different length create the different time
scales present in this system, i.e., a multi-time scale sys-
tem is generated. A coupling between both laser systems
might lead to a synchronization on these different time
scales between both systems. With an adjustment of the
coupling strength ε, the visitings of the UPOs may occur
simultaneously in both subsystems, which manifests in
a synchronization of the bursts of both lasers. Due to
the multiple time scales in this system, which arise from
the different UPOs present in the attractor, a continu-
ous wavelet transform represents an appropriate tool for
a synchronization analysis.



3

10.5 11 11.5 12 12.5
10

−15

10
−10

10
−5

10
0

x
4

x
1

(a)

10.5 11 11.5 12 12.5
10

−15

10
−10

10
−5

10
0

x
4

x
1

(b)

FIG. 2: x1-x4-projection of the laser’s attractor plotted to-
gether with trajectories passing nearby unstable periodic or-
bits of different length. (a) orbits of length 1 and 4, and (b)
orbits of length 2 and 3.

B. Continous wavelet transform

The continuous wavelet transform (CWT) has been
developed to resolve events localized in time as well as in
frequency. It can be interpreted as a constant Q bandpass
filterbank (Q = bandwidth/center-frequency = const).
In mathematical terms the CWT Wψx of a function x(t)
is defined as

Wψx (σ, τ) :=
1

σ

∫

R
ψ∗( t−τ

σ

)
x(t) dt (3)

with the mother wavelet ψ(t) translated by τ and dilated
by σ. The raised star denotes complex conjugation. The
choice of the mother wavelet ψ is mainly influencing the
time-scale-uncertainty of the resulting wavelet transform.
For more background on the CWT see for example [12].

The numerical computation of the wavelet transform
in this work is performed by using systems of linear dif-
ference equations. This approximate method to calculate
the CWT has the advantage of a very short computation
time which is also independent of the wavelet’s scale. The
wavelet used here is given by its z-transform

Zψ = Ψ(z) = H(z) H∗(1/z∗) (4)

with

H(z) =
1

4

(
1− p
z − ip

)3

(z2 − 1)(z − i), (5)

where H(z) is the systems transfer function and p ∈ [0, 1]
is a parameter which allows to smoothly alter the de-
gree of localization of the wavelet in either time or fre-
quency. However, this method has the drawback that the
transformed signal is not completely analytic, and that
the wavelet changes its shape slightly under the rescal-
ing process. Nevertheless, if p is choosen high enough
(p > 0.6), these problems can be neglected. Figure 3
displays the magnitude of the Fourier transform Ψ(eiω)
of this wavelet for p = 0.75, which is the value that has
been used in our analysis. This wavelet can be compared
with the Cauchy-Paul-Wavelet. A detailed explanation
of this wavelet will be given in a forthcoming paper [13].
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FIG. 3: The magnitude of the Fourier transform Ψ(ω) of the
wavelet (4) for p = 0.75. Note, that the negative frequencies
are basically zero, which gives the wavelet its nice analytic
properties.

The complex valued CWT has the advantage over the
real valued CWT that it can be immediately split into a
phase and an amplitude at each point (σ, τ). Thus the
existing methods for detecting phase synchronization can
be applied very easily.

C. Measuring synchronization and coherency

Phase synchronization (PS) is characterized by the
adaptation of the typical time scales between two sys-
tems, while their amplitudes may stay nearly uncorre-
lated. If one deals with narrow-band oscillatory dynam-
ics, also called phase coherent, simple phase definitions
exist, e.g., based on the rotation of the trajectory or
based on the Hilbert transform [3, 6], that yield good
results (see also [14] for a comparison). However, in case
of non-phase-coherent dynamics, such as multiple time
scales, other approaches are necessary. So far techniques
basing on special filters [15], on curvature [16], or on re-
currence [17, 18] have been proposed. Also in the case of
different time scales being present in the system, there
is no general method to define the phase of the system.
A complex CWT is advantageous for this purpose, be-
cause due to its complex nature, it yields a direct es-
timate of the phase for each time scale of the system.
In order to quantify PS, we use two different measures,
namely, the mean resultant length (also known as vector
strength) and the cross correlation coefficient combined
with a complex CWT.

The mean resultant length is defined as follows

rxy :=
∣∣∣〈ei∆φxy(t)〉

∣∣∣ =

∣∣∣∣∣
1

T

T∑

t=1

ei∆φxy(t)

∣∣∣∣∣ , (6)

where ∆φxy(t) := φx(t) − φy(t) denotes the phase dif-
ference between both systems at time t. We extract the
phases φx,y(t) directly from the argument of the CWT:
φx(t) = argWψx1(σ, t), and analogously for y1. The
mean resultant length rxy can assume values from 0 to
1 and quantifies the strength of the mean angle of the
circularly distributed values (here the phase differences
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∆φxy). If rxy = 0, it indicates that all values of ∆φxy
are equally distributed over the interval [0, 2π), indicat-
ing that there is no synchrony between the phases φx and
φy. The value rxy = 1 indicates that all phase differences
are equal and thus the phase differences are locked per-
fectly at all times. Since the phases of chaotic systems
usually show a certain amount of phase diffusion, one ex-
pects values less than 1, but still considerably larger than
0, if their phases are synchronized. Note, that the mean
resultant length is similar to the Kuramoto parameter
[2, 19], but with mean over time instead of being com-
puted over an ensemble of oscillators.

The cross correlation coefficient (CCC) is a linear mea-
sure for the similarity between two signals and is given
by

ρxy :=
〈xy∗〉√
〈|x|2〉〈|y|2〉

, (7)

where 〈.〉 denotes the mean over time and the signals x
and y are considered to be mean free. This is the case
here, since it is a property of the CWT to remove the
mean from signals. In general ρxy can be complex val-
ued (in the case of analytic signals) with an arbitrary
angle and a modulus between 0 and 1. A modulus of
0 means that there is no linear correlation between the
signals, and a value of 1 indicates that the signals are
completely linearly correlated, thus differ only by a fac-
tor. The modulus of the complex CCC is also known as
coherence.

As Eq. (7) is the normalized scalar product of x and y,
thus, the CCC measures the orthogonality between two
functions. Since we have that 〈sinω1t, sinω2t〉 = δω1ω2

(where δnm denotes the Dirac delta) and that PS also
implies a coincidence of the frequencies, it is clear that
the CCC can be used to detect PS. However, in the case
of two real, oscillatory signals the coefficient’s modulus
fluctuates arbitrarily between 0 and 1 if the phase differ-
ences of the two signals are altered. In the extreme case
we have 〈sinωt, cosωt〉 = 0, even though intuitively they
should be considered to be phase synchronized. In that
case one has to calculate the cross correlation function
and search the appropriate delay (in the sine-cosine case
it is π/2). This requires much more computations com-
pared to the calculation of the mere CCC, which is the
cross correlation function at delay zero.

The complex wavelet used here yields an analytic sig-
nal. For analytic signals the phase delay between two sig-
nals of equal frequency plays no role, since it can be fac-
tored out: 〈ei(ωt+φ), eiωt〉 = eiφ〈eiωt, eiωt〉 = eiφ. Thus,
for analytic signals the CCC is stable under phase shifts
and can be used as a measure for PS.

III. RESULTS AND DISCUSSION

Before applying the measures for synchrony and co-
herency, one needs to consider what the wavelet spectrum

reveals and how it can be used together with the above
measures to get more insights into the synchronization
behavior of the system.

A. Interpretation of the wavelet spectrum

The data has been logarithmized before the computa-
tion of the CWT in order to transform the exponentially
shaped spikes into a more sinusoidal-like shape (see time
series in Fig. 5 in comparison to the time series in Fig.
1). Thus the resulting wavelet spectrum looks cleaner,
since it contains less higher harmonic components. Fig.
4 shows an exemplary (original) time series and the cor-
responding CWT of the logarithmized data.
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FIG. 4: A time series of the x1 component of the model system
(1), (2) (a) and the corresponding wavelet power spectrum (b)
of the logarithmed data. The spiking frequency f of the laser
has been normalized to be scale 0, so that the subharmonics
are numbered with 1,2,3,... for the first, second, third, and so
on subharmoinc, respectivly.

The continuous horizontal line (normalized to be scale
0) in the CWT of the numerically integrated laser model
corresponds to the system’s intrinsic spiking frequency
f which is caused by the periodic forcing. On larger
scales patches occur at those times where we find bursts
in the time series. This can be understood as follows. As
we explained in section II, bursts in the time series are
created by trajectories passing nearby UPOs with cycling
times that are multiples of the forcing’s frequency (see
again Fig. 2). Hereby subharmonics of that frequency
are created which will become visible as patches at the
corresponding scale in the wavelet power spectrum (see
Fig. 4 and also Fig. 5 for a magnification of a burst).

Hence, the CWT of the laser model data allows quan-
tifying easily synchronization between the different time
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FIG. 5: Magnification of the large burst after sample 5000 in
Fig. 4, here with the logarithmed time series in (a). This is a
local structure created by the influence of a period four orbit,
which becomes visible in the CWT as a third subharmonic.

scales and yields a method to indirectly study the syn-
chronization characteristics of the individual periodic or-
bits.

Figure 6 shows the CWT for a time series recorded
from the experiment. The laser intensity signal has been
recorded at the onset of the bursting behavior for an
amplitude value A = 0.108 (such a value is about 3% dif-
ferent from the numerical value). Note, that computing
the logarithm of the data does not reduce the higher har-
monics in the same amount as in the numerical case. The
wavelet power spectrum displays higher harmonics of the
subharmonics, which appear as patches around scale 0.5.
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FIG. 6: Same as Fig. 4, but here for experimental data. See
text for more details.

B. Multiscale synchronization analysis

We combine now the methods of section II to perform
a multiscale synchronization analysis. We calculate (6)
and (7) for different values of the coupling strength ε and
for each scale σ of Wψx1 and Wψy1 of the laser intensi-
ties from the model system (1) and from experimentally
recorded data.
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FIG. 7: The results of the multi-scale synchronization analysis
for the model system (1). Left: the mean resultant length
r(σ, ε), and right: the modulus |ρ(σ, ε)| of the cross correlation
coefficient.

For the model system the measures were calculated for
values of ε from 0 to 200. The resulting functions r(σ, ε)
and |ρ(σ, ε)| are shown in Fig. 7. Qualitatively, both
measures yield similiar results. At ε ≈ 160, both systems
become almost completely synchronized, as it has been
already reported in [9]. But here we see in detail that
there is almost complete synchronization on all scales.

The new result obtained from our analysis is the ob-
servation of a diverse transition to synchronization of the
coupled model system on its different time scales. In
particular we see an increase of phase coherency among
the period three orbits (second subharmonics) between
both subsystems for relatively low values of the coupling
strength ε, whereas the coherency between the other or-
bits (period two and four) starts increasing for much
higher values of ε. This result is obtained with both,
the mean resultant length and the correlation coefficient.
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FIG. 8: The measures of synchronization for the model system
(1) plotted only for the three subharmonics (σ = 1, 2, 3). (a)
mean resultant length r(ε), (b) modulus |ρ(ε)| of the cross
correlation coefficient.
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Figure 8 shows r(ε) and |ρ(ε)| only for the three sub-
harmonics. Here one can follow the transition to full syn-
chronization for each of that three time scales. Especially
for coupling strength bewteen 40 and 80 the difference in
the amount of synchrony of the subsystems beween the
2nd and the 3rd subharmonic is rather strong.
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FIG. 9: Results from experimental measurements. (a) The
mean resultant length r(σ), (b) the modulus |ρ(σ)| of the
correlation coefficient. The coupling strengths are 40, 50, and
60, respectively.

In the analysis of experimental data, collected using
the master-slave experimental setup described at the be-
ginning of Sec. II, we used three different values of the
coupling strength ε. Figure 9 shows again both measures
of sychronization but here plotted against scale. Both
measures reveal clearly an increase of synchronization
between the second subharmonics of both lasers as the
coupling strength is increased. Note, that the maxima
at σ ≈ 0.5 result from the higher harmonics which have
already be discussed in Sec. III A. Further, note that the
maxima of the curves are not aligned for the different cou-
pling strengths. This is caused by the fact that we used
much less data for the calculation of the presented figures
compared to the numerical case. Therefore transients in
which the systems is between two orbits and which ap-
pear between the subharmonic scales in the CWT have
a much larger impact in the statistical analysis. A more
detailed discussion of the experiment will be presented
elsewhere.

IV. CONCLUSIONS

We have numerically studied the synchronization of
bursts in a model system of two externally forced cou-

pled CO2 lasers with master-slave coupling. The bursts
in this system have different predominant frequencies,
which arise from unstable periodic orbits of different
lengths embedded in the chaotic attractor.

For multi-time scale systems no standard measures for
phase synchronization exist. Therefore we have applied
a complex continous wavelet transform to the data of the
lasers’ intensities in order to decompose the multiple time
scales of that system. We have combined this approach
with two measures for phase synchronization, namely,
the mean resultant length and the cross correlation co-
efficient. This procedure enables us to identify details
of synchronization of these multi-time scale systems. In
particular, we have found that as we increase the cou-
pling strength, there is an early increase of synchroniza-
tion between periodic orbits of period three, where the
fundamental period is given by the period of the forcing.
This new insight was not known from previous analysis,
carried out with standard methods. This multiple time
scale synchronization analysis has also been tested with
experimental data, where we have found qualitatively the
same results.

The analysis method presented in this paper can be
extended to apply to a general class of multi-time scale
systems, such as neuronal dynamics, where spiking and
bursting play a key role in the communication among
neurons [20, 21].
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We study phase synchronization (PS) in a network motif with a star-like structure in which the
central node’s (the hub) frequency is strongly detuned against the other peripheral nodes. We find
numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes
form a phase synchronized cluster, while the hub remains free with its own dynamics and serves
just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of
a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic
Kuramoto phase oscillator, are not able to generate this phenomenon. Further we derive an analytic
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I. INTRODUCTION

Networks of oscillatory units have been recently stud-
ied widely [1–4]. These kinds of systems serve as a mod-
eling basis for a variety of systems from neuroscience [5],
pattern recognition [6], chemistry [7], biology [8], clima-
tology [9–11], ecology [12], social systems [13], or engi-
neering as for instance in robot coordination [14], com-
munication [15] and sensor networks [16], and as a gen-
eral concept for understanding complex self-organizing
systems. Gaining knowledge about networks of coupled
dynamical systems helps understanding several phenom-
ena, in particular synchronization, self-organization and
information transfer in complex systems.

Many networks found in nature have a scale-free topol-
ogy [1, 17], which is a structure where just a few nodes—
the so called hubs—hold the major bulk of the links. In
this work we study a typical network motif of such a
hub [Fig. 1]. It is interesting to study synchronization in
such a hub motif as it captures the essence of scale-free
topologies.

FIG. 1. Graphic visualization of a hub network motif (star
motif).

Many articles on oscillatory networks focus on a rather
homogenous distribution of the nodes’ parameters across
the network, i.e. all nodes are either identical or just de-
tuned within a small parameter range. This is very likely
due to the possibility of an analytical treatment of the

underlying equations, which becomes very complicated
or even undoable if the network and thus the describing
equations become too heterogenous. But the assumption
of homogeneity is, in fact, not fulfilled in most realistic
situations, that means it’s quite unlikely to find a real
system made up of several absolutely identical subsys-
tems.

Therefore, we study in this work an oscillatory network
model and focus on a strong heterogeneity, precisely, the
frequency of the hub is strongly detuned with respect to
the peripheral nodes. We investigate phase synchroniza-
tion (PS) in these motifs. Within this setup we focus on
a phenomenon which we will call remote synchronization
(RS), that is a situation in which two or more nodes, say
n and m, which are not coupled directly, but through
other nodes only, are phase synchronized, but, and this
is important, the transmitter nodes, i.e. the nodes along
the path from n to m are not phase synchronized with n
and m, respectively.

We also investigate remote synchronization experimen-
tally. To this aim, we designed a complex network made
of coupled electronic nonlinear oscillators and study it
with respect to different values of the coupling strength.
The experimental results obtained confirm the emergence
of remote synchronization in real systems.

In addition to numerical and experimental studies we
give necessary conditions for the existence of RS and
show that fixed amplitude systems, such as Kuramoto
phase oscillators cannot generate the phenomenon, and
explain this analytically, as well.

The outline of this paper is the following. First we
introduce our model and the parameters and give a de-
scription of the experimental setup. Then we describe
the observed phenomena and present analysis of them.
Finally we discuss the outcome and explain the underly-
ing mechanism.
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II. MODEL AND EXPERIMENTAL SETUP

Since we want to focus on the mere phenomenon of
synchronization, in particular PS, we chose a simple and
paradigmatic model, namely the Stuart-Landau oscilla-
tor. This model is the most simple one having a harmonic
limit cycle without any distortions, so we can exclude n:m
synchronization in our analysis for now.

We consider a network of diffusively coupled Stuart-
Landau oscillators [7, 18]. The equations are given by

u̇n = (α+ iωn−|un|2)un +
κ
dinn

N∑

m=1

gnm(um−un), (1)

where u ∈ C, α is the (Hopf) bifurcation parameter which
controls how fast the trajectory will decay onto the at-
tractor, ωn is the eigen frequency of the individual un-
coupled oscillator n, κ is the overall or global coupling
strength, dinn is the in-degree of node n and is used to
normalize the input into node n, and (gnm) is the ad-
jacency matrix, which is symmetric, since we consider
bidirectional couplings.

Now we give the values of the parameters used for
the simulations in this paper. The number of nodes has
been set to N = 5 in correspondence with our experi-
mental setup, but we also verified numerically the exis-
tence of the phenomenon for higher values of N . The
decay parameter is α = 1. As mentioned in the intro-
duction we are analyzing a hub motif (star-like network,
Fig. 1), due to its importance as building block for scale-
free networks. Node 1 is chosen to be the hub and thus
n = 2 . . . N subscripts the peripheral nodes. The adja-
cency matrix is given by

(gnm) =




0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


 .

The in-degrees are {dinn } = {4, 1, 1, 1, 1}. We chose the
frequency of the hub to be ω1 = 2.5 in the beginning,
but we will discuss the influence of a continuous change
of this value later, as well. The peripheral nodes have a
similar frequency but not identical, since some repelling
force is needed in order to see the transition to PS. The
frequencies used in numerical simulations are {ωn}5n=2 =
{0.975, 0.992, 1.008, 1.025}

For the experimental realization Eq. (1) must be trans-
formed into its equivalent real form which is given by

d

dt

(
xn
yn

)
=

[(
α −ωn
ωn α

)
− (x2n + y2n)1

](
xn
yn

)

+
κ
dinn

N∑

m=1

gnm

[(
xm
ym

)
−
(
xn
yn

)]
.

(2)

The experimental setup is based on an electronic cir-
cuit mimicking the behavior of the Stuart-Landau os-

cillator. The circuit made of discrete components (oper-
ational amplifiers, multipliers realizing the nonlinearities
of the oscillator, and a number of passive components
such as resistors and capacitors) has been designed in or-
der to obey to the same equations [Eq. (2)] of the Stuart-
Landau oscillator, after appropriate scaling in frequency.
We designed the circuit by following the guidelines re-
ported in [19] and used for instance in [20, 21]. The val-
ues of some components of the hub and peripheral circuits
are chosen in a different way so that to realize the dif-
ferent simulation parameters used for hub and peripheral
nodes. The circuits have been then coupled in such a way
that a single resistor for each node controls the value of
the coupling strength in Eq. (2). The circuit schematic,
the governing equations and the used component values
are reported in appendix A.

III. EMERGENCE OF REMOTE
SYNCHRONIZATION

We start our analysis with a visual inspection of nu-
merically integrated time series of system (1). Fig. 2
depicts the excerpts from the time series as well as the
instantaneous frequencies and Lissajous-like patterns of
the phases. For low coupling [Fig. 2(a)] we see that the
nodes are interacting with each other and modulations of
the phase appear, but no synchronization is visible. For
a strong coupling [Fig. 2(c)] we find a regime of full phase
synchronization with an identical amplitude of all nodes
and without any modulations. The phenomenon of RS
appears for intermediate values of the coupling strength
[Fig. 2(b)]. Here we see, that all peripheral nodes become
phase synchronized, while the hub remains with its own
phase and frequency.

In order to study this more precisely, we will introduce
some measures for PS. The most common measure for
PS is the Kuramoto order parameter, which is defined:

rnm =
∣∣∣〈ei[ϕn(t)−ϕm(t)]〉t

∣∣∣ , (3)

where 〈.〉t denotes the mean over time, and ϕn(t) is the
phase of oscillator n. For the Stuart-Landau oscillator
the phase is simply given by ϕ(t) = −i log(u/|u|).

Since we are interested in the situation where the pe-
ripheral nodes form one synchronized cluster and the
hub is separated from this, i.e. it forms another triv-
ial cluster with itself, we introduce two measures ac-
counting for that situation. For measuring the coher-
ence of the hub with the rest of the network we de-
fine rdirect = 1

N−1
∑N
n=2 r1n. As a measure for the co-

herence of the peripheral cluster we define rindirect =
2

(N−1)(N−2)
∑N
n=2,m>n rnm, i.e. the mean of the pairwise

measured phase coherence among the peripheral nodes.
Fig. 3 shows the transition to PS of both measures in

dependence on the coupling strength κ. The measures
have been computed from numerical integration of Eq.
(1) with the parameter setup given in Sec. II. Here it is
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(a) Snapshots for κ = 0.2. Here no synchronization between any
nodes is visible.
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(b) Snapshots for κ = 0.6. Here we find remote synchronization.
The peripheral nodes are synchronized with each other while the

hub (node 1) remains unsynchronized with the rest.
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(c) Snapshots for κ = 0.8. Regime of full phase synchronization.
All nodes of the network are synchronized with each other.

FIG. 2. (Color online) These plots shall help to understand
the observed phenomena. For three different values of the
coupling strength κ snapshots are shown of: the time series
u(t), the instantaneous frequencies ϕ̇(t) and Lissajous-like fig-
ures made by plotting pairwise the phases ϕn of all oscillators
against each other. The red line is the hub.

clearly visible that the phase coherence of the peripheral
nodes increases considerably faster than the synchroniza-
tion of the hub with the rest. The peripheral nodes reach
full PS at a value of the coupling strength κ of about 0.47,
while the hub joins this cluster much later at κ ≈ 0.74,
when it hits the global Arnold tongue of the network. In
the figure we marked three steps in the curve of rindirect.
These steps correspond to the onset of RS between two,
three and all (four in our case) peripheral nodes of the
network. These transitions are more clearly visible in
Fig. 5(b) in which the number of synchronized clusters
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3 osc. sync.
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rindirect
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FIG. 3. (Color online) Transition to phase synchronization
for the hub motif [Fig. 1]. From the plot the onset of RS
is clearly visible. The three annotations indicate synchro-
nization between two, three and four peripheral oscillators,
respectively.

are shown. This figure is discussed in more detail later
in the article.
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FIG. 4. (Color online) Transition to phase synchronization for
the hub motif for experimentally obtained data. The regime
of RS is clearly visible.

Fig. 4 shows the same plot for experimentally gener-
ated data. The data have been obtained by a set of ex-
periments on the implemented network of Stuart-Landau
oscillator circuits performed with respect to different val-
ues of the coupling κ, starting from κ = 1.0 and decreas-
ing this parameter. The coupling strength is decreased
by small steps and for each value of it, the state variable
xn for each circuit has been acquired with a National In-
struments USB6255 acquisition board with the sampling
frequency fs = 300kHz. The phases of the oscillators
have been then calculated by applying the Hilbert trans-
form on the obtained time series and the two parame-
ters rindirect and rdirect have been calculated. The result,
shown in Fig. 4, confirms the existence of RS in real sys-
tems. It should be noted that the coupling strength is
implemented in the circuit through five different compo-
nents, which makes it quite difficult to obtain exactly
the same value for it, taking also into account the tol-
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erances in the whole network circuit. For this reason,
in Fig. 4 the average value 〈κ〉 of this parameter is re-
ported. The scenario observed is qualitatively similar to
that obtained with numerical data, and the two transi-
tions occur at slightly different values of the parameter.
It is clearly visible that there exists a quite large domain
of the coupling parameter, where we have RS while the
hub remains with its own dynamics.
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FIG. 5. (Color online) Fig (a) shows ∆r in dependence on ∆ω
and κ, which can assume values between 0 and 1, whereby
values close to 1 indicate RS (see text). The dotted line shows
the analytically derived border of the Arnold tongue. The red
areas to the left and right of the Arnold tongue are regimes
in which RS occurs. Fig (b) depicts the number of LEs equal
to zero in dependence on ∆ω and κ. The 2-cluster state
corresponds to the RS regime.

As a second analysis tool we are computing the Lya-
punov spectrum (LS). Any non-trivial attractor (limit
cycle, chaotic) of continuous dynamical systems has one
Lyapunov exponent (LE) equal to zero, corresponding to
the free phase of that system. Any perturbation in the
direction of the system’s flow will remain constant over
time. In the case of an ensemble of uncoupled systems
with a limit cycle or chaotic attractor, there will be as
many zero LEs as there are systems included. As one
couples those systems, PS will manifest itself by one or
more (depending on the number of sub-systems forming
the synchronized cluster) LEs becoming strictly negative
due to the attractive force between the former free phases
of the oscillators [22]. Hence, the number of LEs equal to
zero can be used as an indirect measure for the number
of phase synchronized clusters.

In order to examine this phenomenon in more detail,
we also studied the clustering in dependence on the hub’s
frequency. In Fig. 5(a) we plot ∆r := |rdirect−rindirect| in
dependence on the global coupling strength κ and the fre-

quency mismatch ∆ω of the hub with respect to the mean
frequency of the peripheral nodes: ∆ω := ω1 − 〈ωn〉Nn=2.
In the case of RS rindirect will be close to 1, while rdirect

will be rather low, say less than 0.5, so ∆r will be large
here. If we are either in a regime where we have no syn-
chronization or full synchronization rdirect and rindirect

will be about equal (either around 0 or around 1) and
thus ∆r will be low.

Fig. 5(b) shows the number of LEs equal to zero for the
same parameters ∆ω and κ. As already mentioned, this
is an indirect measure for the number of synchronized
clusters.

The red area in Fig. 5(a) corresponds to the regime
where RS exists. We find the same shape in Fig. 5(b)
with a value of 2, thus showing that we have two syn-
chronized clusters here. Both measures are in very good
agreement with each other. For coupling strengths κ > 1
and outside the Arnold tongue we have oscillation death,
which manifests in the Lyapunov spectrum by all LEs
becoming negative, since the system has only one global
stable fixpoint. In both figures we clearly see the classi-
cal V-shaped Arnold tongue of the globally synchronized
state, i.e. a regime of one cluster PS.

For system (1), the Arnold tongue A can be computed
analytically:

A = {(κ, {ωn}Nn=1) | κ > max
n
|Ω− ωn|},

where Ω is the frequency inside the Arnold tongue, given
by

Ω =
1

2

(
ω1 +

1

N − 1

N∑

n=2

ωn

)
.

In Fig. 5(a) the analytically computed border of A is
shown with dotted lines and agree very well with the
border observed from the numerically integrated data.

In the following we discuss the basic mechanism of RS
and give an explanation for the necessary conditions for
RS to occur robustly. We first describe the mechanism
verbally and give a mathematical derivation afterwards.

IV. MECHANISM UNDERLYING REMOTE
SYNCHRONIZATION

Since we are interested in the mechanism of how two
indirectly connected oscillators become synchronized, it
is sufficient to focus on three nodes only: two peripheral
nodes, to which we will refer to as node 2 and node 3
(in correspondence with our initially made numbering),
connected indirectly via the hub (node 1). In order for
node 2 and node 3 to mutually synchronize, actions of
node 2 need to be transmitted to node 3 and vise versa.
It means that the dynamics of node 1 have to be such
that they leave the transmitted actions of node 2 and
node 3 possibly unaltered. Thus, two conditions have to
be fulfilled for RS to occur. Firstly, the average time scale
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of the attractor of node 1 should be sufficiently different
from the ones of the attractors of node 2 and node 3
in order to not to synchronize with them. Furthermore,
node 2 and node 3 must not be too different such that
they are able to synchronize through a weak interaction.
Secondly, perturbations of node 1 must not decay too
fast in order to get transmitted via node 1.

The decay of perturbations of the Stuart-Landau os-
cillator is controlled by the parameter α in Eq. (1). The
larger α the faster a deviation from the limit cycle will
”fall back” onto that. For α → ∞ any deviation of the
amplitude will decay immediately. Thus, we expect the
RS regime disappears for α → ∞. In this case, after
a change into polar coordinates and omitting the am-
plitude, Eq. (1) can be transformed into a network of
coupled Kuramoto phase oscillators [7, 23]:

ϕ̇n = ωn +
κ
dinn

N∑

m=1

gnm sin(ϕm − ϕn), (4)
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FIG. 6. (Color online) ∆r(∆ω,κ) for the hub motif of Ku-
ramoto phase oscillators [Eq. (4)] is shown. By comparing
with Fig. 5(a) it can be observed that there is no RS regime,
here.

We applied the analysis described in Sec. III to this
network of phase oscillators using the same setup and pa-
rameters as in the Stuart-Landau case described in Sec.
II. Fig. 6 shows ∆r(∆ω,κ) for this system. By compar-
ing Fig. 6 with Fig. 5(a) the absence of the RS regime
for the phase oscillators is clearly visible (absence of the
red areas to left and right of the Arnold tongue which in-
dicate RS). We have also checked that by computing ∆r
for different increasing values of α. In this case the disap-
pearance of the RS can be tracked. Thus, our previously
made assumption is correct, that the ability of indirectly
coupled oscillators to synchronize remotely depends on
a certain flexibility or memory of the amplitude of the
transmitting system. Or even more crucial, it depends
on the existence of a free amplitude at all. We show in
fact that when amplitude perturbation is not possible,
as for instance in coupled Kuramoto phase oscillators,
for which a fixed not perturbable amplitude is assumed
indirectly, remote synchronization does not appear!

Interesting is the dependence on the hub’s frequency
of the RS state, which can not be explained with the

above argumentation, alone. In the following we derive
some analytic description, which qualitatively account for
that.

We come back to the situation of three coupled Stuart-
Landau oscillators as discussed in the beginning of this
section. We linearize the hub oscillator around its limit
cycle and leave the other two nodes untouched. We get
the following equations:

u̇h = (−2α+ iωh)uh + 1
2κ(u1 + u2 − 2uh) (5)

u̇1,2 = (α+ iω1,2 − |u1,2|2)u1,2 + κ(uh − u1,2). (6)

These equations describe two Stuart-Landau oscillators
[Eq. (6)] coupled through a linear filter whose dynamics
is described by the Eq. (5). Applying the Laplace trans-
form we can write the transfer function for this filter:

Hh(ω) =
κ

iω + 2α+ κ − iωh
. (7)

Using this, the hub can be replaced by an effective cou-
pling coefficient, which is just a number derived from
Eq. (7). Thus, we can write

u̇1,2 = (α+iω1,2−κ−|u1,2|2)u1,2 + κHh(ω2,1)u2,1. (8)

0 2 4 6 8 10 12 14

∆ω

0.0

0.2

0.4

0.6

0.8

1.0

1.2

real hub

effective hub

FIG. 7. (Color online) Comparison of the transition lines to
RS between a system of three nodes (real hub), described by
Eq. (1) with N = 3, and the linear approximation, described
by Eqs. (8) and (7). The frequencies of node one and two
are 0.975 and 1.025, respectively. The frequency of the hub
has been changed from 1 to 15 (corresponds to 1 + ∆ω). The
dotted lines mark the regions of the Arnold tongue and of
oscillation death, respectively, and are inserted to help the
reader by comparing with Fig. 5

From this perspective we are able to explain two main
properties: Firstly, obviously since limα→∞Hh = 0 the
effective coupling strength between the two peripheral
oscillators drops to zero and they are effectively uncou-
pled and, thus, unable to synchronize. This confirms our
previous discussion of the mechanism as well as the nu-
merically made analysis with Kuramoto phase oscillators.
Secondly, by inspection of Eq. (7) the dependence of the
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coupling strength on the frequency of the hub is clear.
The faster the hub oscillates the lower the effective cou-
pling strength will be. Fig. 7 shows the transition curve
to RS in the (∆ω,κ)-plane for the discussed system of
three oscillators in comparison with the system of two
effectively coupled oscillators as described by Eqs. (8)
and (7). The simplified system can qualitatively describe
the made observations and even agrees quantitatively for
low and high values of the frequency mismatch ∆ω ade-
quately.

V. REMOTE SYNCHRONIZATION IN
COMPLEX NETWORKS

In this section we want to give a short outlook on RS in
complex networks. We will not discuss the phenomenon
in detail in this context, as it needs a lot more preparation
and advanced statistical methods for a detailed analys,
since far more complex synchronization scenario are pos-
sible. However, one is able to find RS in more complex
and asymmetric networks as well. For our demonstration
we generated a network consisting of 100 nodes using the
Barabási-Albert algorithm [17].

Fig. 8 illustrates the scenario of remote synchroniza-
tion in this exemplary complex network. The parame-
ters used for this simulation have been: κ = 0.21 and
α = 0.2. The frequencies of all nodes have been drawn
randomly from a uniform distribution on small interval
of size 0.1 centered at 3.5 for the hubs and 1.0 for the re-
maining nodes. The plot shows overlaid the actual (phys-
ical) network topology as it has been generated. The
thick transparent lines depict synchronized nodes. Two
nodes n and m have been declared phase synchronized
if their PS index is rnm > 0.95. The different coloring
have been chosen to guide the readers eye. Gray coloring
indicates synchronization between peripheral (non-hub)
nodes while red color shows synchronization between two
hub-nodes.

In this chosen situation many remotely synchronized
clusters can be spotted, visual by many gray lines span-
ning across the network. Some of those clusters even
spread across long distances with several hub nodes lying
in between which are not synchronized with the former.
Further the hub nodes connecting the remotely synchro-
nized clusters are synchronized itself into a cluster. This
is especially interesting since the topology one would infer
from analyzing the synchronization state of the network
does not reflect even closely the physical connectivity of
the nodes.

VI. HIDDEN INFORMATION TRANSFER

Finally we want to stress another important point.
From our study we conclude that in the analysis of com-
plex heterogeneous systems the choice of an appropriate
correlation or information measure becomes more impor-

FIG. 8. (Color online) Graphical representation of remote
synchronization scenario in a scale-free network consisting of
100 nodes. Nodes with five or more links have been declared
as hub and are colored red. The hubs have a mean frequency
of 3 while the remaining nodes have a mean frequency of 1.
For each pair of nodes n and m a thick transparent line has
been drawn if rnm > 0.95, i.e if both nodes can be assumed to
be phase synchronized with respect to the PS order parameter
r. Gray lines have been drawn between peripheral nodes and
red lines between hubs. See text for more details.
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FIG. 9. (Color online) Transition of phase synchronization for
the modulation of the instantaneous frequency of the nodes.

tant. We demonstrate this with an example. Analo-
gously to Eq. (3) we introduce another measure

ρnm =
∣∣∣〈ei[θn(t)−θm(t)]〉t

∣∣∣ , (9)

where θ(t) = arctan[Hϕ̈(t)/ϕ̈(t)] and H is the Hilbert
transform operator (see appendix in [18] for details). We
use the second derivative of ϕ in order to eliminate the
bias. The measure ρ is an index for PS between the
modulations of the instantaneous frequencies ϕ̇, which
are visible in Fig. 2(a) and (b). From visual inspec-
tion of those figures one sees that in the case of remote
synchronization these modulations of ϕ̇ are in synchrony
among all nodes. Fig 9 shows for the same data which
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had been used to create Fig 3 the measures ρdirect and
ρindirect which are analogously computed to rdirect and
rindirect with r replaced by ρ. From the resulting graph
one clearly sees that the phase modulations of all the os-
cillators in the network synchronize completely already
at the first transition for κ ≈ 0.47. At κ ≈ 0.74 ρ drops
to zero which is due to the disappearance of the phase
modulations (oscillation death due to a Hopf bifurcation,
see [24]). With the measure ρ we are able to track the
increase of the information transmission within the net-
work. Other nonlinear phase space based measures (such
as described in [25]) are also able to track this transition.
In more complex network this or similar method could
be used to track the path through which certain remotely
synchronized oscillators communicate. This is of special
importance in particular related to the issue of inferring
the network topologies from measured time series. Our
example demonstrates that by using simple PS measures
(as for instance r) the network’s physical connectivity is
obfuscated, but choosing other measures or–even better–
combinations of different measures improved statements
about the true connectivity of networks can be made.

VII. CONCLUSIONS

Our findings shed some new light on the issue of func-
tional versus structural topology in networks of interact-
ing dynamical systems, which is of high importance es-
pecially in the field of neuroscience. We have shown that
the measured topology via a ”näıve“ phase synchroniza-
tion measure gives a wrong picture of the underlying net-
work structure and explained this by a mechanism which
we call remote synchronization (RS). Nodes can ”speak“
with each other through a transmitting nodes without
synchronizing with this one, given that the transmitter
has a sufficiently different frequency.

We verified that RS also occurs in real experiments, by
designing a network of five coupled oscillators showing
the regime of RS for coupling strength values which are
intermediate between the case of no synchronization and
that of PS of the whole network. Therefore, not purely
phase oscillators may reveal phenomena that can be ex-
perimentally observed and that purely phase models are
not able to explain.

We expect that the same phenomenon of RS occurs
in more complex topologies as confirmed by some pre-
liminary results including those obtained on scale-free
networks as discussed above. RS can be also important
with anharmonic or chaotic oscillators, where more com-
plicated dynamics are possible.

RS might also find applications in several fields, such
as neuroscience, here in understanding information trans-
mission inside the brain or help designing new more ef-

ficient artificial neural networks as described in [6]. An-
other application might be in climate research, in par-
ticular in understanding teleconnections (i.e long-range
connections) such as between the Indian Monsoon and
El Niño/Southern Oscillation [10, 11, 26].
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Appendix A: Circuit

An assembly of coupled electronic circuits was used
to test remote synchronization in real physical systems.
In this Appendix, the electronic oscillator used and the
coupling circuitry between the oscillators are briefly de-
scribed.

The circuit that was built is governed by a rescaled ver-
sion of Eqs. (2), i.e. d

dt → τ ddt , where τ is a time scaling

factor (τ = 10−5s in our circuit). The other circuit pa-
rameters were set to the values discussed in Section II.
Figure 10 shows a schematic of the circuit. The values
of the circuit components have been chosen in order to
match Eqs. (2). In particular, the relationships between
the parameters α and ω and the component values are
given by:

α =
R6

R1
− 1 =

R13

R10
− 1

ω =
R6

R4
=

R13

R11

(A1)

Eqs. (A1) have been used to set the component values
for the hub circuit and for the peripheral nodes. The
component values listed in the caption of Fig. 10 refer to a
peripheral node. The hub components differ from that of
a peripheral node for the following resistors: R3 = 667Ω,
R4 = 400Ω, R11 = 1.6kΩ, R12 = 727Ω. Resistors with
1% tolerances and capacitors with 5% tolerances have
been used.

The experimental coupled oscillator setup consisted of
five circuits arranged in a star-like network. The coupling
terms κ(xj − xi) and κ(yj − yi) are produced by adding
the x (respectively y) signals and multiplying them for a
tunable gain factor through an operation amplifier in al-
gebraic adder configuration. The tuning of the coupling
coefficient is realized by using as feedback resistor a po-
tentiometer. The coupling terms are then added into the
equations of the electronic oscillator through the opera-
tional amplifier adders U1 [term κ(xj−xi)] and U2 [term
κ(yj − yi)].
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FIG. 10. Schematic of the circuit described by Eqs. (2)
(rescaled in time with τ). The component values are:
R1 = 500Ω, R3 = R4 = R5 = R6 = 1kΩ, R6 = 100Ω,
R8 = R9 = 4kΩ, R10 = 2kΩ, R11 = 4kΩ, R12 = 1kΩ,
R13 = 4kΩ, R14 = 100Ω, R15 = 1kΩ, R16 = 7.2kΩ,
R17 = 1kΩ, R18 = 7.2kΩ, R19 = R20 = R21 = R22 = 1kΩ,
R23 = R24 = 2kΩ, R25 = 1kΩ, R26 = 2kΩ, R27 = R28 =
R29 = R30 = R31 = R32 = 1kΩ, C1 = C2 = 100nF . The
operational amplifiers U1, . . . , U9 are all type TL084. The
analog multipliers M1, . . . ,M4 are all type AD633. Power
supply is ±9V .
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