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Alexander Zass





Più del presente contava il passato, più del possesso
il ricordarsene. Di fronte alla memoria, ogni pos-
sesso non può apparire che delusivo, banale, insuf-
�ciente.

– Giorgio Bassani, Il giardino dei
Finzi–Contini

These personal histories, old tales from old times
that may not be worth remembering. I remember. I
must. But who else — to whom can this matter?

– Saul Bellow, Herzog





Summary

This thesis focuses on the study of marked Gibbs point processes, in particular
presenting some results on their existence and uniqueness, with ideas and tech-
niques drawn from di�erent areas of statistical mechanics: the entropy method from
large deviations theory, cluster expansion and the Kirkwood–Salsburg equations,
the Dobrushin contraction principle and disagreement percolation.

We �rst present an existence result for in�nite-volume marked Gibbs point pro-
cesses. More precisely, we use the so-called entropy method (and large-deviation
tools) to construct marked Gibbs point processes in ℝd under quite general assump-
tions. In particular, the random marks belong to a general normed space S and
are not bounded. Moreover, we allow for interaction functionals that may be un-
bounded and whose range is �nite but random. The entropy method relies on show-
ing that a family of �nite-volume Gibbs point processes belongs to sequentially com-
pact entropy level sets, and is therefore tight.

We then present in�nite-dimensional Langevin di�usions, that we put in inter-
action via a Gibbsian description. In this setting, we are able to adapt the general
result above to show the existence of the associated in�nite-volume measure. We
also study its correlation functions via cluster expansion techniques, and obtain the
uniqueness of the Gibbs process for all inverse temperatures � and activities z be-
low a certain threshold. This method relies in �rst showing that the correlation
functions of the process satisfy a so-called Ruelle bound, and then using it to solve
a �xed point problem in an appropriate Banach space. The uniqueness domain we
obtain consists then of the model parameters z and � for which such a problem has
exactly one solution.

Finally, we explore further the question of uniqueness of in�nite-volume Gibbs
point processes on ℝd , in the unmarked setting. We present, in the context of re-
pulsive interactions with a hard-core component, a novel approach to uniqueness
by applying the discrete Dobrushin criterion to the continuum framework. We �rst
�x a discretisation parameter a > 0 and then study the behaviour of the uniqueness
domain as a → 0. With this technique we are able to obtain explicit thresholds for
the parameters z and � , which we then compare to existing results coming from the
di�erent methods of cluster expansion and disagreement percolation.

Throughout this thesis, we illustrate our theoretical results with various examples
both from classical statistical mechanics and stochastic geometry.
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Introduction

The aim of this thesis is to give an insight into some aspects of the theory of
marked Gibbs point processes, namely by providing some answers to the age-old
questions of existence and uniqueness of this mathematical object.

Gibbs point processes, and point process theory more generally, lies right at the
intersection of Statistical Physics and Probability Theory. This duality has been
clear from the start, dating back to the seminal papers of R. L. Dobrushin [28, 30]
and O. E. Lanford and D. Ruelle [57] who, in 1968-69, proposed it as a mathematical
description of an equilibrium state of a physical system consisting of a very large
number of interacting components ([42]).

The applications of point processes are not limited, however, to classical (or quan-
tum) physical systems, but are indeed vast ([73, 84]), ranging from economics to bi-
ology ([100]), from epidemiology ([27]) to digital imaging and object identi�cations
([88, 87, 95, 26]), from earthquake modelling ([93, 8]) to criminology ([72]).

Before discussing the results that are included in this work, we look back on the
origins of the �eld to see where these questions originated from and, through some
examples, see how the physical �eld of statistical mechanics connects to the proba-
bilistic theory of point processes.

Equilibrium statistical mechanics

The �eld of statistical mechanics, initiated in the second half of the 19th century
by J. C. Maxwell ([65, 66]), L. E. Boltzmann ([3, 4, 5]), and J. W. Gibbs ([48]), aims
at deriving the laws of thermodynamics, the macroscopic behaviour of matter via
the microscopic behaviour of its atoms or molecules, as described by the laws of
classical (or quantum) mechanics. In this thesis we place ourselves on the grand
canonical scale, exempli�ed below in the setting of a classical system.

In the atomic hypothesis matter is thought of as made up of a very large numberN
of particles of given mass m, located inside a bounded region � ⊂ ℝd , in interaction
via conservative forces. Denote byΩ�,N

..= (ℝd ×�)N , d ≥ 1, the set of all microstates,
that is the description obtained by specifying each of the particles position xi ∈ �
and momentum pi ∈ ℝd . The energy of such a system (often called Hamiltonian) is

1



2 Introduction

de�ned by setting

H(p1, … , pN , x1, … , xN ) =
N
∑
i=1

|pi |2

2m
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

kinetic energy

+ U (x1, … , xN )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
potential energy

.

The dynamics of the system is given by the Newtonian equations
{
ẋi = 1

m pi
ṗi = −∇iU (x1, … , xN ),

with elastic re�ection at the boundary of �.
It is clear that because of the enormous number of microscopic variables (recall

Avogadro’s number of 6.022 × 1023 particles in a mole) one cannot hope for a perfect
description of the macroscopic system. Indeed, the basis of statistical mechanics is
the idea (due to Boltzmann, [6]) that the state of a large physical system can be de-
scribed by a probability measure over the setΩ�,N of all microstates, as the long-time
behaviour of the dynamics (macroscopic observables like free energy, pressure, and
entropy) would converge to the ensemble average under such an equilibrium mea-
sure. But what should this probability measure look like? Three probability spaces,
ensembles, can be used (we do not delve here in the discussion on the equivalence
of ensembles, see [43, 44], but only brie�y present the di�erent descriptions).

Thanks to the principle of conservation of energy, it is natural to assume such
a measure is concentrated on a subset of constant energy level E. This description
is the so-called micro-canonical ensemble and is given by the collection of all uni-
form probability distributions P�,N ,E on the high-dimensional submanifold Ω�,N ,E =
{(p, x) ∈ Ω�,N ∶ H(p, x) = E}. This constraint leads, however, to computational
di�culties, as computing constrained integrals over a very high-dimensional man-
ifold is feasible only in special cases, but not in general ([7], Sections 2.1–2.3). It is
then actually convenient to remove it by letting the energy vary; this is achieved
by �xing the inverse temperature thermodynamic parameter � > 0 instead and in-
troducing a Boltzmann factor e−�H . The canonical ensemble is then described by a
probability measure

P�,N ,� (dp, dx) =
1
N !e

−�H(p,x)dpdx
Z�,N ,�

.

on Ω�,N . The normalisation constant Z�,N ,� , called the canonical partition function,
plays a fundamental role in statistical mechanics, as the macroscopic observables of
free energy, pressure, and entropy of the system can all be expressed in terms of it.

One may also want to randomise the number N of particles in the system by
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adding an exponential weight, via the chemical potential �, in the partition function
above. The grand canonical ensemble is then described by the following probability
measure on the union of phase spaces ∪NΩ�,N :

P�,�,� (dp, dx, N ) =
e��NP�,N ,� (dp, dx)
∑+∞

N=1 e��NZ�,N ,�
.

Since the terms coming from the momenta and from the positions actually factorise,
one can integrate over the momenta to describe the equilibrium position of the sys-
tem. The con�gurational grand canonical ensemble is described by a probability
measure

P�,z,� (dx, N ) ∝ zN e−�U (x1,…,xN )dx1⋯dxN ,

where z = e�� (
2�m
� )

d/2
> 0 is the activity parameter. Note that P�,z,� is absolutely

continuous with respect to the Lebesgue measure on (ℝd )N .
In this presentation we take this grand canonical point of view, and identify the

potential energy U with the Hamiltonian H .

Point process se�ing

In the terminology of point process theory, the grand canonical ensemble is de-
scribed by introducing the space of point con�gurations 
 on � ⊂ ℝd (�-�nite
measures, identi�ed with collections of points in �), and considering probability
measures on such a space. These measures are called point processes, and the most
popular one is the Poisson point process, which provides a natural way of regularly
distributing points in space.

The Poisson point process �z
� of activity measure z dx�, where z > 0 and dx� is

the Lebesgue measure on �, is a probability measure on the space of con�gurations
such that:

• The number of points in � under �z
� is a Poisson distributed random variable

of mean zVol(�).
• Given the number of points in �, the said points are independent and uni-

formly distributed in �.
As before, the interaction is introduced in the system by means of the Boltzmann
factor e−�H , � > 0, and the resulting probability measure is the �nite-volume Gibbs
point process

P�(d
 ) ..=
1
Z�

e−�H(
 )�z
�(d
 ),

with activity z and inverse temperature � , de�ned over the con�gurations of points

 in �.

In order to model systems with a large number of interacting particles, it is natural
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to then consider the thermodynamic limit, that is the limit � ↑ ℝd . In particular one
would like to know whether there exists a limit state, a probability measure on the
space of con�gurations that, on any �nite volume � has the form described above
(and when it is unique). Indeed ([90]), the main problem of equilibrium statistical me-
chanics is to study the in�nite system equilibrium states. In this sense, the behaviour
of the partition function Z� in the thermodynamic limit is of central importance as
the free energy, pressure, and entropy can be expressed in terms of its logarithm –
for example the pressure p = lim�↑ℝd (Vol(�))−1 log(Z�). Below we discuss conditions
for these limits to exist.

Note that the thermodynamic limit is usually considered along a sequence of in-
creasing sets (�n)n that converge to ℝd in the Van Hove sense ([99, 39]), that is with
limn→+∞

|)�n |
|�n | = 0. In the prototypical sequence for such a convergence – and the one

we use throughout this work – this sets are given by the centred cubes �n = [−n, n)d .

Gibbs point processes

In�nite-volume Gibbs point processes are the equilibrium states associated to a
(Gibbsian) speci�cation. Characterised by an energy functional H , the activity pa-
rameter z > 0, and the inverse temperature � > 0, this large class of point processes
is widely used, because of the various types of interaction that it allows for: it can
be in the form of a k-body potential, like interacting hard spheres or three-body po-
tentials ([94]); depend on geometric features like Voronoi tessellation or the Area-
interaction process (see Figure A); be attractive or repulsive. Standard references in
this setting are H.-O. Georgii [42] and D. Ruelle [90].

For many physical models it is natural to consider interactions that come from
a sum of multi-body interactions: more precisely, the energy functional H can be
expressed as the sum H (1) + ⋯ + H (k), where for each 1 ≤ � ≤ k, the corresponding
� -body interaction is

H (� )(
 ) ..= ∑
{x1,…,x� }⊂


�(� )(x1, … , x� ),

and �(� ) ∶ (ℝd )� → ℝ+ ∪ {+∞} some (symmetric) � -body potential. Consider, for
example, the two-body interaction H(
) = ∑{xi ,xj}⊂
 �(xi , xj). Often, this (pair) po-
tential is taken to be radial, so that it only depends on the distance |xi − xj |. This can
be used to describe a model of indistinguishable impenetrable spheres of diameter 1,
which is modelled by considering a hard-core potential

�(u) =

{
+∞ for u < 1
0 otherwise.

This type of interaction has been, and continues to, be widely studied, see [38].
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Gibbs point process theory, however, allows also for interactions of a very dif-
ferent nature. In the framework of geometric interactions, for example, the Area-
interactionmodel is an interaction which, while being quite natural from a geometric
point of view, is not easily described using any potential.

In this model, proposed in [1] by A. J. Baddeley and M. N. M. van Lieshout, one
considers con�gurations given by circles of radius 1/2 centred in random points of
ℝ2; the energy functional H is proportional to the area (in dimension 2) covered by
the con�guration 
 , i.e. equal to � Area ( ∪x∈
 B(x, 1/2)), � ∈ ℝ ⧵ {0}. Notice that,
for positive values of � , this interaction is attractive, and the typical con�gurations
under the Gibbs point process are those that minimise the total area, exhibiting
therefore clustering properties (few but large connected components). On the other
hand, for � < 0 the interaction is repulsive, and typical con�gurations exhibit a
more ordered pattern (more and smaller connected components).

Figure A. Simulations of an attractive (� > 0) and repulsive (� < 0) Area-interaction
model with �xed radius 1/2, same activity z and same |� |. Thanks to F. Lavancier for
the code that generated the points.

The works of Dobrushin, Lanford and Ruelle show that Gibbs point processes
can be described by a set of equations that de�ne their conditional probabilities;
we present these equations – referred to as DLR equations – in Section 1.3. For
an introduction to Gibbs point processes in this spirit, see [20]. For an abstract
approach, based on the works of H. Föllmer [36, 37], see the lecture notes [82] by C.
Preston.

Chapters 2 and 3 explore, for path-space point processes and classical systems,
respectively, the question of how to guarantee the uniqueness of the Gibbs point
process. Indeed, while we do not focus on it in this work, a consequence of the DLR
description is that a Gibbs point process for a given energy functional H may indeed
fail to be unique, which means that the corresponding physical system can have
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distinct equilibria. This phenomenon, known as of phase transition, has a special
physical signi�cance ([22]), but its study – due to its enormous di�culty – is still
very incomplete. It will be the subject of future works.

Stable and superstable interactions. We mentioned before how the treatment of
the partition function is of crucial importance in statistical mechanics. Indeed, the
�rst question that comes up is whether the grand partition function associated to
an energy functional H

Z� = e−z|�|
(
1 +

+∞
∑
n=1

zN

N! ∫�N
e−�H(x1,…,xN )dx1…dxN)

is well de�ned: when does this series converge?
In order to solve this problem, it is usual to consider energy functionals H which

are stable, i.e. there exists a constant B ≥ 0 such that

∀N ≥ 1, ∀x1, … , xN ∈ ℝd , H (x1, … , xN ) ≥ −BN .

This condition is almost always assumed to hold, as it guarantees the convergence
of the above series:

0 < Z� ≤ e−z|�|
(
1 +

+∞
∑
n=1

zN

N!
|�|N e�BN

)
= ez|�|(e

�B−1) < +∞,

in particular making sense of the de�nition of the pressure that we gave above (for
further discussions on the meaning of the stability conditions and its connection to
the existence of the thermodynamic limit, see Section 4.1 of [40]).

An other common assumption is the superstability of the interaction: an energy
functional H is said to be superstable if there exist constants B1, B2 > 0 such that, if
� ⊂ ℝd is a cube of su�ciently large volume,

∀N ≥ 1, ∀x1, … , xN ∈ �, H(x1, … , xN ) ≥ −B1N + B2
N 2

|�|
.

This is satis�ed, for example, by the two-body energy functional H(x1, … , xN ) =
∑1≤i<j≤N �LJ (|xi − xj |), where �LJ is the Lennard–Jones pair potential

�LJ (u) =
a
u12

−
b
u6

, a, b > 0,

pictured in Figure B. In the setting of superstable interactions, the works of Ruelle
[91] and Dobrushin [31] were major stepping stones towards answering the ques-
tion of existence of in�nite-volume Gibbs point processes in ℝd , as well as providing
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�rst methods for proving uniqueness. Moreover, the superstability assumption is
common in the literature, as it allows for a granular control of the density of points
in a bounded domain.

1.5 2 2.5 3

5

10
φLJ(u)

Figure B. The Lennard–Jones pair
potential �LJ (u) = 16(( 3/2u )

12 −

( 3/2u )
6
). It explodes in 0, vanishes

at +∞, and crosses the x-axis at x =
3/2.

On the other hand, in stochastic geometry one deals with interactions that are
seldom superstable. Indeed, the Area-interaction model considered earlier is stable
but not superstable (see Example 1.1).

When describing the results of the �rst chapter, we will see how the superstabil-
ity assumption – quite natural in this Euclidean setting – becomes less so in more
complicated spaces. In Chapter 1 we come back to the di�erent (super-) stability
assumptions that can be considered and the purposes they serve when proving the
existence of an in�nite-volume measure.

Lastly, we mention the integral characterisation of Gibbs point processes given
by the GNZ equations, after H.-O. Georgii, X. X. Nguyen and H. Zessin ([41, 75]).
Generalising the Mecke formula of Poisson point processes ([68, 69]), they consist
of implicit equations that are in particular very useful in statistical settings ([23, 24,
21]), as they can be solved without computing the partition function.

In Chapter 2 we use the GNZ equations to prove convergence of the Kirkwood–
Salsburg equations for the correlation functions.

Marked point processes

Let us come back to the impenetrable-spheres and area-interaction models pre-
sented above, at each point x ∈ ℝd we placed a sphere of �xed radius 1/2. It is
natural to think of a situation in which each point is instead assigned a sphere of
random radius, according to some probability distribution R on ℝ+ (see Figure C).
This is the typical setting of marked point processes: a marked point consists of a lo-
cation x ∈ ℝd , d ≥ 1, and a mark m belonging to a general space S . The state space
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Figure C. Simulations of an attractive (� > 0) and repulsive (� < 0) Area-interaction
model with random radii uniformly distributed in (0, 1), same activity z and same |� |.

is then a product space E ..= ℝd × S , and marked point processes are probability
measures on the space M (E ) of marked con�gurations on E .

As before, a �nite-volume Gibbs point process can be constructed by considering a
perturbation of the Poisson point process �z

� on�×S with intensity measure z dx�⊗
R(dm). In this work we are interested in studying the existence and uniqueness, in
the thermodynamic limit � ↑ ℝd , of marked in�nite-volume Gibbs point processes.

This thesis is structured as follows: in Chapter 1 we present an existence result for
a class of marked Gibbs point processes with unbounded marks and unbounded in-
teraction range. In Chapter 2 we present a point process description for in�nite-
dimensional Langevin di�usions; in this setting, we �rst prove the existence of
an in�nite-volume Gibbs point process in section 2.2, as well as show that a Ru-
elle bound holds for its correlation functions. After this, in sections 2.3 and 2.4,
we present some cluster expansion techniques in order to prove uniqueness of the
in�nite-volume Gibbs point process. Finally, in Chapter 3, in the setting of un-
marked systems, we obtain an explicit uniqueness domain by using a novel approach
to the classical Dobrushin criterion.

The three chapters that make up this thesis explore two main themes, those of
the existence and uniqueness of an in�nite-volume Gibbs point process.
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theme i

existence

From the DLR description of marked �nite-volume Gibbs point processes, one is
then interested in constructing a measure on the full space that, when projected on
any �nite volume satis�es those same equations. Two issues pop up when looking
for such an object: �rstly, while the natural starting point is to consider the ther-
modynamic limit of the �nite-volume measure, proving that such a limiting object
does indeed exist is far from trivial; secondly, the limiting object could very well
not be a Gibbs point process, and showing that it is is an even more delicate matter.
In Chapter 1 we present an approach for solving this problem. These results are
published in [Z2].

Chapter 1. Marked Gibbs point processes with unbounded

interaction: an existence result

Consider a sequence Pn ..= P�n , n ≥ 1, of �nite-volume Gibbs point processes

Pn(d
 ) ..=
1
Z�n

e−�H(
 )�z
�n
(d
 )

with energy functional H , activity z and inverse temperature � . In Chapter 1 we
investigate the question of existence of a corresponding in�nite-volume point pro-
cess, and construct, for any z and � , a certain class of continuous marked Gibbs
point processes with interactions described by an energy functional H acting both
on locations and on marks. This includes, in particular, the case of multi-body po-
tentials, but is indeed a more general framework, useful to treat examples coming
from the �eld of stochastic geometry (as e.g. the area- or the Quermass-interaction
model, see Example 1.1).

The entropy method

The originality of our method for constructing an in�nite-volume point process
consists in the use of the speci�c entropy as a tightness tool. This relies on the fact
that the level sets of the speci�c-entropy functional are relatively compact in the
local convergence topology; see Section 1.3.2. This powerful topological property
was �rst shown in the setting of marked point processes by H.-O. Georgii and H.
Zessin in [47].

We brie�y present this result here:
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Toolbox for the entropy method. Given two probability measures Q and Q′

on M , and any �nite-volume � ⊂ ℝd ,
• The relative entropy of Q with respect to Q′ on � is de�ned as

I�(Q|Q′) ..= ∫ log f dQ� if Q� 4 Q′
� with f ..= dQ�

dQ′
�
,

otherwise I�(Q|Q′) = +∞. Here Q� (resp. Q′
�) is the image of Q (resp. Q′)

under the projection 
 ↦ 
�.
• The speci�c entropy of Q with respect to Q′ is de�ned as the volumic limit

of the relative entropy:

I(Q|Q′) = lim
n→+∞

1
|�n |

I�n (Q|Q
′).

• Let (#�)�∈ℤd be the group of translations in the lattice. For any a > 0, the
a-entropy level set

P(M )≤a ..=
{
Q ∈ P(M ), stationary under (#�)�∈ℤd ∶ I(Q|�z) ≤ a

}

is relatively compact for the local convergence topology �L .

We prove in Proposition 1.13 that the entropy of some sequence of �nite-volume
Gibbs point processes is uniformly bounded. This sequence is therefore tight, and
admits at least one accumulation point.

We also remark that the entropy tool relies mainly on stability assumptions of the
energy H , without the need for superstability. The usual approach (see e.g. [91]), in
fact, uses the superstability condition to precisely control the local density of points;
in our framework, we do this thanks to an equi-integrability property, which holds
on the entropy level sets (see Lemma 1.16). Furthermore, the stability notion we use
here is weaker than the classic one of Ruelle, as it includes a term depending on the
marks of the con�guration. For more details and examples, see Subsection 1.2.3.

The last step of the proof consists in showing that any such accumulation point
satis�es the Gibbsian property. Since the interaction is not local and not bounded,
this property is far from being inherited automatically from the �nite-volume ap-
proximations, requiring instead an accurate analysis, which is done in Subsection
1.3.4.

Let us mention recent works on the existence of marked Gibbs point processes
for particular models. In [18] D. Dereudre proves the existence of the Quermass-
interaction process as a planar germ-grain model; we draw inspiration from his
approach, presenting here an existence result for more general processes, under
weaker assumptions. In [14] and [10] the authors treat the case of unbounded marks
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in ℝd but restricted to the case of a �nite-range energy functional which is induced
by a pairwise interaction.

The novelty of the results presented in this chapter is threefold. Firstly, we do
not assume a speci�c form of the interaction – like pairwise or k-body – but only
make assumptions (in Subsection 1.2.3) on the resulting energy functional H itself.
In particular, we do not assume superstability of the interaction, but only rely on
two stability assumptions (Hst ) and (Hloc.st ). Therefore, our results are applica-
ble, for example, in the �eld of stochastic geometry, as many quite natural energy
functionals considered there are stable but not superstable (Example 1.1).

Secondly, the Gibbsian energy functional we consider has an unbounded range: it
is �nite, but random and not uniformly bounded, see Assumption (Hr ) – as opposed
to models treated for example in [10] which deal with a bounded-range interaction.
For a very recent existence proof in the case of in�nite-range interaction (without
marks) see [25]. Moreover, unlike the hyper-edge interactions presented in [21], we
treat the case of interactions which are highly non local: the range of the conditional
energy (see De�nition 1.5) on a bounded region of an in�nite con�guration requires
knowledge of the whole con�guration and cannot be determined only by a local
restriction of the con�guration.

Lastly, we work with a mark reference distribution whose support is a priori
unbounded but ful�ls a super-exponential integrability condition (see Assumption
(Hm)). This requirement, which can unfortunately exclude some measures (for ex-
ample, Gaussian marks are not allowed), is very much embedded in the method,
as it provides the integrability of the functions that induce the local convergence
topology.

The main thread of our approach is the reduction of the general marked point
process to kind of germ-grain model, where two marked points (x1, m1), (x2, m2) ∈
ℝd ×S do not interact as soon as the two balls with centre xi and radius ‖mi‖, i =
1, 2, do not intersect. The framework we work in requires the introduction of a
notion of tempered con�gurations (see Section 1.2.2) in order to better control the
support of the Gibbs point process we construct. In this way, the growth rate of
the marks of faraway points is bounded. In Section 1.3.3 we see that this procedure
is justi�ed by the fact that the constructed in�nite-volume Gibbs point process is
actually concentrated on the subset of tempered con�gurations.

Chapter 2. Gibbs point processes on path space: existence

Having obtained this general existence result, we were interested in seeing how it
could be applied to di�erent and diverse settings. What caught our attention was
the possibility of considering point processes on path spaces. When I was o�ered to
write a contribution for the Proceedings of the international conference in Armenia
on Stochastic and analytic methods in Mathematical Physics, we decided it was the
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right opportunity to explore this topic. In [Z3], we applied our previous existence
result to the path space setting, along with some �rst results and a conjecture on
the uniqueness of the associated Gibbs point process. This was then rewritten al-
most from scratch and now makes up the rigorous presentation of in�nitely many
Langevin di�usions in interaction of Chapter 2. These results are contained in [Z4],
which has been submitted for publication.

Through the lens of Gibbs point process theory, we see a di�usion – starting in
x ∈ ℝd and with displacement (m(s), s ∈ [0, 1]) – as a marked point x = (x,m) ∈
E ..= ℝd × C0, where C0 is the space of continuous paths (m(s), s ∈ [0, 1]) starting at
m(0) = 0. On this state space we then consider a pair potential Φ that acts on both
the starting points and the trajectories of the marked points. This leads to a Gibbsian
energy functional H , with (�nite but) not uniformly bounded interaction range, for
which the questions of existence and uniqueness of Gibbs point processes are far
from trivial. In particular, we note how the random marks are a priori unbounded.

In this setting we can start from interactions which are common for classical sys-
tems in ℝd , like the Lennard–Jones pair potential, and use them to describe inter-
actions between paths instead. We remark, however, that the typical potentials that
we consider (see Example 2.1) need a hard-core repulsion near the origin in order to
satisfy the stability conditions that are required in the method. Such an assumption
also appears in Chapter 3, in order to control the number of paths starting in a given
cube in ℝd .

In Section 2.2 we tackle the existence question, via the Dobrushin–Lanford–Ruelle
description of Gibbs point processes. Under some stability assumptions for H , we
are able to prove (in Theorem 2.1) the existence of at least one in�nite-volume Gibbs
point process on path space Pz with energy functional H , for any activity z and
inverse temperature � , by applying the entropy method presented for the general
marked setting in the previous chapter.

Moreover, we also show that, for any N ≥ 1, the N -point correlation function
�N of these Gibbs point processes satisfy a (point-dependent) Ruelle bound of the
following form: there exists a function c∶ E → ℝ+ such that, for almost any �nite
path con�guration (x1, … , xN ) ∈ E N ,

�N (x1, … , xN ) ≤
N
∏
i=1

c(xi).

The uniqueness question is tackled next, and spiritually belongs to the second theme
of this thesis.
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theme ii

uniqueness

As mentioned before, the DLR description leaves open the question of (non-)
uniqueness of the in�nite-volume Gibbs point process. While in Chapter 1 we were
able to prove the existence of an in�nite-volume measure for a large class of pro-
cesses, a di�erent, more speci�c, approach is needed when tackling the uniqueness
question. Indeed, we focus on particular models to show that under certain as-
sumptions there exists only one in�nite-volume Gibbs point process. This notwith-
standing, we are hopeful the techniques and assumptions of Sections 2.3 and 2.4 –
presented here making use of the speci�city of the path space properties – could be
adapted to di�erent marked settings.

We do not explore here the topic of phase transition, but mention that the ques-
tion of non-uniqueness of the Gibbs point process is of major interest and very few
results are known. In particular, the existing literature mainly deals with coloured
(multi-species) models like the Widom–Rowlinson model; see for instance [9, 22]. In
these works, phase transition is proved by showing that one species “dominates”
the others when the activity of the points is large enough.

Chapter 2. Gibbs point processes on path space: uniqueness

In Sections 2.3 and 2.4 we present, as a novel result, an explicit activity domain where
uniqueness of the Gibbs point process holds. This is obtained with the approach of
cluster expansion and the Kirkwood–Salsburg equations – a method which was �rst
developed for lattice systems in the 1980s (see e.g. [63]) and then extended to the
continuous case (see e.g. [64, 74]). These results are also contained in [Z4].

The cluster expansion approach to uniqueness

In the case of unmarked continuous point processes, the technique relies on con-
sidering a series expansion of the correlation functions. As presented by D. Ruelle
in [90], one �rst shows that the correlation functions of a Gibbs point process can
be expressed as an absolutely converging series of cluster terms, and then proves
uniqueness by considering a system of integral equations – the so-called Kirkwood–
Salsburg equations – that the correlation functions satisfy. In fact, these equations
can be reformulated as a �xed-point problem for an operator Kz in an appropriately
chosen Banach space, having therefore a unique solution.

The cluster expansion approach is actually well adapted to the marked setting.
Indeed, S. Poghosyan and D. Ueltschi develop, in [80], abstract techniques that can
be used both in the classical and in the marked setting, under assumptions of so-
called modi�ed-regularity of the interaction. These assumptions and techniques
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are further developed in [81] by S. Poghosyan and H. Zessin, proving uniqueness
of in�nite-volume Gibbs point processes for potentials satisfying a certain stability
condition (which they refer to as Penrose stability). Some similar result is presented
by S. Jansen in [51], but making strong use of the repulsive nature of the interac-
tion she considers. These techniques can be restrictive in our setting of unbounded
marks (see Example 2.4), so we use here a di�erent approach: inspired by the work
[56] of T. Kuna, our approach relies on some tree-graph estimates, that allow to
prove a Ruelle bound for the correlation functions of in�nite-volume Gibbs point
processes.

A key point, presented in Section 2.3 under a di�erent set of assumptions than
that of Section 2.2, consists in using cluster expansion to obtain a Ruelle bound for
the correlation functionals of a Gibbs point process of activity z. In particular, we
show that, under an additional regularity assumption for the interaction potential
Φ, there exists an activity threshold zRu(�) > 0 such that, for any z ∈ (0, zRu(�)), the
correlation functions �(P)N of any Gibbs point process P with activity z and inverse
temperature � satisfy a Ruelle bound as above, but where c is uniformly bounded: for
almost any (x1, … , xN ) ∈ E N , �(P)N (x1, … , xN ) ≤ cN . This shows that the correlation
functions belong to a certain Banach space Xc.

In Section 2.4, after showing that there exists an activity threshold zcrit(�) > 0
such that, for any z ∈ (0, zcrit(�)), the norm of the Kirkwood–Salsburg operator Kz
in Xc is bounded by 1, we show that the associated equations have a unique solution
and obtain the following uniqueness domain (in Theorem 2.2): for any � > 0 and
z ∈ (0, zcrit(�)), there exists a unique in�nite-volume Gibbs point process P with
activity z and inverse temperature � associated to the energy functional H .

Chapter 3. An explicit Dobrushin uniqueness region for Gibbs point

processes with repulsive interactions

Cluster expansion is far from the only technique that can be used to prove unique-
ness of an in�nite-volume Gibbs point process. Indeed, di�erent methods exist, and
usually one tries to �nd the one which yields the larger activity domain for the
model at hand.

Already for lattice systems, the uniqueness question is one of main interest in
the community, and di�erent arguments and methods exist, including Peierls’ ar-
gument [78], the criterion proposed by Dobrushin in the pioneering paper [29], the
previously discussed cluster expansion (see [67, 90]), a characterisation due to J. L.
Lebowitz and A. Martin Löf [59], and disagreement percolation (see, for example,
[46, 97, 98]). No one method is a priori stronger than the others: it is a question of
�nding which is better adapted to the speci�c model one wishes to prove uniqueness
of the Gibbs point process for.

This consideration holds true when passing from the lattice to the continuous
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framework, where the uniqueness question is even more delicate. It is with this in
mind that P. Houdebert and I set out to �nd a class of potentials for which we could
not only prove a uniqueness result with a new technique, but also compare our
uniqueness domains with those pre-existing in the literature. The three techniques
we analyse in this setting – namely theDobrushin contraction criterion, cluster expan-
sion, and disagreement percolation – all work under di�erent assumptions, and yield
di�erent parameter domains in which uniqueness holds. It is therefore generally
complicated to compare their e�cacy.

In Chapter 3 we present a uniqueness result for a class of Gibbs point processes
in ℝd , d ≥ 2, where the Gibbsian interaction is given by a non-negative pair poten-
tial �. In the setting of Gibbs point processes that are parametrised by an activity
parameter z > 0 and an inverse temperature � > 0, we placed particular focus on
obtaining an explicit uniqueness domain of the parameters z, � . The results of this
chapter are contained in [Z1], which has been submitted for publication.

We remark how the intuition that, for given � , uniqueness is achieved for activi-
ties z small enough has actually been disproved for the speci�c case of the Widom–
Rowlinson model with random radii with heavy tails, see [22].

The Dobrushin contraction method

In the main result of this chapter, Theorem 3.1, we provide a set of (simple to test)
assumptions which lead to a uniqueness result for small activity. The strength of this
result lies in the explicit nature of the uniqueness domain it yields, i.e. the following
parameter region for z, � :

{
z, � > 0∶ z < ( sup

x∈ℝd
∫
ℝd

e−��(x,y)dy)
−1}

,

and in the simplicity of its proof, which makes use of the Dobrushin criterion. In fact,
we show that the celebrated original uniqueness criterion from [29] – very general,
but presented only for discrete Gibbs models – can be applied to continuum models
by �rst decomposing the space ℝd into disjoint cubes of some side length a > 0. For
di�erent values of a > 0 one then obtains di�erent uniqueness regions which are not
explicit and therefore not easily comparable. However, by letting this discretisation
parameter a tend to 0, we were able to obtain the explicit uniqueness bound above.

The more restricting requirement for our theorem is the assumption (A1), intro-
duced in Section 3.2.1, that the potential � have a hard-core component close to the
origin. This condition is key in the technique, as it allows us to restrict the admis-
sible boundary conditions to those having at most one point in each small cube,
which in turn simpli�es the computations when taking the limit a → 0.

Since the probability of having more than one point in a small cube vanishes
with its size, we conjecture that it could be possible for Theorem 3.1 to still be valid
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without this hard-core assumption. In Section 3.2.3 we discuss further on the as-
sumptions used in Theorem 3.1.

The comparison of our uniqueness region with the one that can be obtained from
existing works using respectively cluster expansion ([51]) and disagreement perco-
lation ([49]) is included in Section 3.2.5. What transpires from this comparison is
that Theorem 3.1 yields a larger uniqueness region than what can be obtained via
cluster expansion [34, 51]. Furthermore, as expected, for � small enough, the result
is also better than the one obtained from disagreement percolation, yielding a larger
range of possible activities z for which uniqueness holds.

thinking back

and looking ahead

The work documented in this thesis has drawn from a wide range of techniques
and methods, ranging more than 150 years. It is therefore no surprise that, while we
have presented quite a few di�erent ideas, discussing when and how one is better
adapted than another, there are many others that I did not explore in depth during
my time as a PhD student.

The elephant in the room that we managed to look away from during this exposi-
tion is the variational principle: we already mentioned the GNZ equations, but an-
other interesting and historically relevant characterisation of Gibbs point processes
– tightly related to a large deviations principle ([47]) – is that they are the unique
minimisers of the free excess energy ([19]). This has been rigorously established so
far only under strong locality assumptions on the interaction (or compactness of the
mark space), so the question of how to extend this theory to a more general marked
space is de�nitely something I look forward to exploring in the future.

A second large project that I would like to undertake is the possibility of gener-
alising the existence result presented in Chapter 1 to interaction ranges that have a
more general dependence on the full con�guration (cf. Assumption 1.1). This would
require a much more precise control of the number of points in a given region, which
could be obtained, for example, thanks to some intrinsic geometrical information of
the model (perhaps building a bridge with the hyperedge potentials, [21, 50]).

In Chapter 3 we gave an overview of several methods of proving uniqueness of
a Gibbs point process. In this direction there are at least two things I plan to look
at: as we focused here on providing a common framework where we could compare
the di�erent methods, the assumptions on the interaction potential are not neces-
sarily optimal, and could hopefully be weakened to obtain a more general result. In
connection to this, I would like to try and extend the technique to a marked space
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setting – for example the path space of Chapter 2, and see if perhaps it is better
adapted than cluster expansion.

On the topic of Gibbs point processes on path space, D. Dereudre showed in [17]
the equivalence between the law of an in�nite-dimensional interacting SDE with
Gibbsian initial law, and a Gibbs point process on the path space with a certain
energy functional. It is therefore a natural question to ask whether a Gibbs point
process with energy functional H as in Chapter 2 is indeed the law of in�nite dimen-
sional interacting SDE. Using Malliavin derivatives, D. Dereudre proved that Gibbs
point processes with regular H are the law of SDEs with a certain non-markovian
drift. The existence and uniqueness results on path space presented here could
therefore be useful in obtaining a criterion for solving in�nite-dimensional SDEs.
We note that this was explored in the lattice case in [70, 13] (for an example of
superstable interactions in this setting, see [62]).

I am hopeful that the methods and techniques I learned during these years can be
adapted and extended to many more settings, and I am eager to expand my obviously
still small knowledge in the huge �eld of Gibbs point processes.
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Marked Gibbs point processes

with unbounded interaction: an

existence result 1

We construct marked Gibbs point processes in ℝd under quite general assump-
tions. Firstly, we allow for interaction functionals that may be unbounded and
whose range is not assumed to be uniformly bounded. Indeed, our typical interac-
tion admits an a.s. �nite but random range. Secondly, the random marks – attached
to the locations in ℝd – belong to a general normed space S . They are not bounded,
but their law should admit a super-exponential moment. The approach used here
relies on the so-called entropy method and large-deviation tools in order to prove
tightness of a family of �nite-volume Gibbs point processes.

1.1 Point-measure formalism

The point con�gurations considered here live in the product state space E ..= ℝd ×S ,
d ≥ 1, where (S , ‖⋅‖) is a general normed space: each point location in ℝd has an as-
sociatedmark belonging to S . The location spaceℝd is endowed with the Euclidean
norm |⋅|, and the associated Borel �-algebra B(ℝd ); we denote by Bb(ℝd ) ⊂ B(ℝd )
the set of bounded Borel subsets of ℝd . A set � belonging to Bb(ℝd ) will often be
called a �nite volume. We denote by B(S ) the Borel �-algebra on S .

The set of point measures (or con�gurations) on E is denoted by M ; it consists
of the integer-valued, �-�nite measures 
 on E :

M ..=
{

 = ∑i �xi ∶ xi = (xi , mi) ∈ ℝd ×S , ∀� ∈ Bb(ℝd ), Card({i ∶ xi ∈ �}) < +∞

}
.

We endow M with the canonical �-algebra generated by the family of local count-
ing functions on M ,


 = ∑
i
�(xi ,mi ) ↦ Card({i ∶ xi ∈ �, mi ∈ A}), � ∈ Bb(ℝd ), A ∈ B(S ).

We denote by o the zero point measure whose support is the empty set. Since, in
the framework developed in this work, we only consider simple point measures, we
identify them with the subset of their atoms:


 ≡
{
x1, … , xn, …

}
⊂ E .

21
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For a point con�guration 
 ∈ M and a �xed set � ⊂ ℝd , we denote by 
� the
restriction of the point measure 
 to the set � ×S :


� ..= 
 ∩ (� ×S ) = ∑
{i∶ xi∈�}

�(xi ,mi ).

Given two con�gurations 
 , ξ ∈ M , we denote their concatenation (or union) by

ξ ..= 
 ∪ ξ.

A functional is a measurable ℝ ∪ {+∞}-valued map de�ned on M . We introduce
speci�c notations for some of them: the mass of a point measure 
 is denoted by |
 |.
It corresponds to the number of its atoms if 
 is simple.

We also denote by m the supremum of the size of the marks of a con�guration:

m(
 ) ..= sup
(x,m)∈


‖m‖, 
 ∈ M .

The integral of a �xed function f ∶ E → ℝ under the measure 
 ∈ M – when it
exists – is denoted by

⟨
 , f ⟩ ..= ∫ f d
 = ∑
x∈


f (x).

For a �nite volume �, we call local or more precisely �-local, any functional F sat-
isfying

F (
 ) = F (
�), 
 ∈ M .

We also de�ne the set of �nite point measures on E :

Mf
..=
{

 ∈ M ∶ |
 | < +∞

}
.

Moreover, for any bounded subset � ⊂ ℝd , M� is the subset of Mf consisting of the
point measures whose support is included in � ×S :

M�
..=
{

 ∈ M ∶ 
 = 
�

}
⊂ Mf .

Let P(M ) denote the set of probability measures (or point processes) on M .
We write ℕ∗ for the set of non-zero natural numbers ℕ ⧵ {0}. The open ball in ℝd

centred in y ∈ ℝd with radius r ∈ ℝ+ is denoted by B(y, r).

1.2 Gibbsian se�ing

1.2.1 Mark reference distribution

The mark associated to any point of a con�guration is random. We assume that the
reference mark distribution R on S is such that its image under the map m ↦ ‖m‖
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is a probability measure � on ℝ+ that admits a super-exponential moment, in the
following sense:
(Hm) There exits � > 0 such that

∫
ℝ+

e�
d+2�

�(d� ) < +∞. (1.1)

Throughout this chapter, the parameter � is �xed.
Remark. The probability measure � is the density of a positive random variable X
such that X 2

d +" is subgaussian for some " > 0 (see e.g. [52], [60]).

1.2.2 Tempered configurations

We introduce the concept of tempered con�guration. For such a con�guration 
 , the
number of its points in any �nite volume �, |
�|, should grow sublinearly w.r.t. the
volume, while its marks should grow as a fraction of it. More precisely, we de�ne
the space M temp of tempered con�gurations as the following increasing union

M temp ..= ⋃
t∈ℕ

M t,

where

M t =
{

 ∈ M ∶ ∀l ∈ ℕ∗, ⟨
B(0,l), f ⟩ ≤ t ld for f (x, m) ..= 1 + ‖m‖d+�

}
. (1.2)

We now prove some properties satis�ed by tempered con�gurations.

Lemma 1.1. The mark associated to a point in a tempered con�guration is asymp-
totically negligible with respect to the norm of the said point: any tempered con-
�guration 
 ∈ M temp satis�es

lim
l→+∞

1
l
m(
B(0,l)) = 0.

Proof. Let 
 ∈ M t, t ≥ 1. From (1.2), recalling that m(
 ) = sup
(x,m)∈


‖m‖, we get that,

for all l ≥ 1,

m(
B(0,l)) ≤ (tld)
1/d + � =

(tld )1/d + �

l
l.

De�ne, for any � ∈ (0, 1),
l1(t, �) ..= (

t

�d+� )
1/�
. (1.3)

Then, if l ≥ l1(t, �),
m(
B(0,l))

l
≤
(tld )1/d + �

l
≤ � ∈ (0, 1), (1.4)
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and the Lemma is proved.

Lemma 1.2. Let 
 ∈ M t, t ≥ 1, and de�ne l(t) ..= 1
2 l1(t,

1
2 ), where l1 is de�ned by

(1.3). Then, for all l ≥ l(t), the following implication holds:

x = (x,m) ∈ 
B(0,2l+1)c ⟹ B(x, ‖m‖) ∩ B(0, l) = ∅.

Proof. Let 
 ∈ M t and (x, m) ∈ 
 such that |x| ≥ 2l + 1.
By de�nition of l1(t, 12 ), since (x, m) ∈ 
B(0,⌈x⌉),

|x| − ‖m‖
(1.4)
≥ |x| − 1

2 ⌈|x|⌉ ≥
1
2 |x| −

1
2 ≥ l.

Figure 1.1. For (x, m) ∈

 ∈ M t, t ≥ 1, such that
|x| ≥ 2 l(t) + 1, B(x, ‖m‖) does
not intersect B(0, l(t)).

The assertion of Lemma 1.2 is illustrated in Figure 1.1. De�ne the germ-grain set
Γ of a con�guration 
 as usual by

Γ ..= ⋃
(x,m)∈


B(x, ‖m‖) ⊂ ℝd ,

where the point x is the germ and the ball B(0, ‖m‖) is the grain. Lemma 1.2 then
implies that, for tempered con�gurations, only a �nite number of balls of their germ-
grain set can intersect a �xed bounded subset of ℝd . This remark will be very useful
when de�ning the range of the interaction in (1.9).

1.2.3 Energy functionals and finite-volume Gibbs point processes

For a �xed �nite volume � ⊂ ℝd , we consider, as reference marked point process,
the Poisson point process �z

� on E with intensity measure z dx� ⊗ R(dm). The co-
e�cient z is a positive real number, dx� is the Lebesgue measure on �, and the
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probability measure R on S was introduced in Subsection 1.2.1. In this model,
since the spatial component of the intensity measure is di�use, the con�gurations
are a.s. simple. Moreover, the random marks of di�erent points of the con�guration
are independent random variables.

We recall brie�y the de�nition of a Poisson point process (for more details see, for
example, [15, 55, 58]):

i. For every bounded set � ⊂ ℝd , the number of points in � × S under �z
� is

given by a Poisson random variable with parameter zdx�(�).
ii. Given the number of points in a bounded set �, the locations x of said points

are independent and uniformly distributed in �, while their marks m are in-
dependently distributed according to the probability measure R.

To model and quantify a possible interaction between the point locations and the
marks of a con�guration, one introduces the general notion of energy functional.

Definition 1.3. An energy functional H is a translation-invariant measurable
functional on the space of �nite con�gurations

H ∶ Mf → ℝ ∪ {+∞}.

We use the convention H(o) = 0.

Con�gurations with in�nite energy will be negligible with respect to Gibbs point
processes.

Definition 1.4. For � ∈ Bb(ℝd ), the �nite-volume Gibbs point process with free
boundary condition with energy functional H , activity z > 0 and inverse temper-
ature � > 0 is the probability measure P� on M de�ned by

P�(d
 ) ..=
1
Z�

e−�H(
�) �z
�(d
 ). (1.5)

The normalisation constant Z� is called partition function. We will see in Lemma 1.7
why this quantity is well de�ned under the assumptions we work with.

Notice how �z
� – and therefore P� – is actually concentrated on M�, the �nite

point con�gurations with atoms in �.
Remark. In this chapter we omit the dependence on z and � from the notations of
the Gibbs point process, as the results presented here are valid for, and indeed do
not depend on, any value of the intensity and inverse temperature parameters.

The process �z
� extends naturally to an in�nite-volume measure �z ; the question

we explore in this work is how to do the same for P�. The �rst step in order to
de�ne an in�nite-volume Gibbs point process is to be able to consider the energy of
con�gurations with in�nitely many points. In order to do this, we approximate any
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(tempered) con�guration 
 by a sequence of �nite ones (
�n )n. Using a terminology
that goes back to Föllmer [35], we introduce the following

Definition 1.5. For � ∈ Bb(ℝd ), the conditional energy of 
 on � given its en-
vironment is the functional H� de�ned, on the tempered con�gurations, as the
following limit:

H�(
 ) = lim
n→∞(H(
�n ) − H(
�n⧵�)), 
 ∈ M temp, (1.6)

where �n
..= [−n, n)d is an increasing sequence of centred cubes of volume (2n)d ,

converging to ℝd .

Remarks. i. Notice that the conditional energy of �nite con�gurations con�ned
in � coincides with their energy: H�(
�) ≡ H(
�). In general, however, the
conditional energy H�(
 ) of an in�nite con�guration 
 does not reduce to
H(
�) because of the possible interaction between (external) points of 
�c and
(internal) points of 
�. In other words, the conditional energy is possibly not
a local functional. In this paper, we are interested in this general framework.

ii. Indeed, we will work with energy functionals H for which the limit in (1.6)
is stationary, i.e. reached for a �nite n (that depends on 
 ). Assumption (Hr )
below ensures this property.

iii. Since �z
� only charges con�gurations in �, P� can be equivalently de�ned as

P�(d
 ) =
1
Z�

e−�H�(
 )�z
�(d
 ).

The key property of such conditional energy functionals is the following additiv-
ity; the proof of this lemma is analogous to the one in [18], Lemma 2.4, that works
in the more speci�c setting of Quermass-interaction processes.

Lemma 1.6. The family of conditional energy functionals is additive, i.e. for any
� ⊂ � ∈ Bb(ℝd ), there exists a measurable function ��,� ∶ M temp → ℝ such that

H�(
 ) = H�(
 ) + ��,�(
�c ), 
 ∈ M temp. (1.7)

Assumption 1.1. Let us now describe the framework of our study, by considering
for the energy functional H a global stability assumption (Hst ), a range assump-
tion (Hr ) and a locally-uniform stability assumption (Hloc.st ):
(Hst ) There exists a constant B ≥ 0 such that the following stability inequality

holds
H(
) ≥ −B ⟨
 , 1 + ‖m‖d+�⟩, 
 ∈ Mf . (1.8)
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(Hr ) Fix � ∈ Bb(ℝd ). For any 
 ∈ M t, t ≥ 1, there exists a positive �nite number
r = r(
 , �) such that

H�(
 ) = H(
�⊕B(0,r)) − H(
�⊕B(0,r))⧵�), (1.9)

where � ⊕ B(0, r) ..=
{
x ∈ ℝd ∶ ∃y ∈ �, |y − x| ≤ r

}
. Equivalently, the limit

in (1.6) is already attained at the smallest n ≥ 1 such that �n ⊃ � ⊕ B(0, r).
Indeed, one can choose

r(
 , �) = 2 l(t) + 2m(
�) + 1.

(Hloc.st ) Fix � ∈ Bb(ℝd ). For any t ≥ 1 there exists a constant B′ = B′(�, t) ≥ 0
such that the following stability of the conditional energy holds, uniformly
for all ξ ∈ M t:

H�(
�ξ�c ) ≥ −B′⟨
�, 1 + ‖m‖d+�⟩, 
� ∈ M�. (1.10)

Remarks. i. Notice how the stability assumption (Hst ) is weaker than the usual
Ruelle stability H(
) ≥ −B|
 | = −B⟨
 , 1⟩, for the presence of the mark-depen-
dent negative term −B⟨
 , ‖m‖d+�⟩.

ii. Two points x = (x,m), y = (y, n) ∈ E of a con�guration 
 are not in inter-
action whenever B(x, ‖m‖) ∩ B(y, ‖n‖) = ∅, so that Assumption (1.9) has the
following interpretation: there is no in�uence from the points of 
(�⊕B(0,r))c on
the points of 
�: H�(
 ) = H�(
�⊕B(0,r)). Therefore, the range of the energy H�
at the con�guration 
 is smaller than r(
 , �), which is �nite but random since
it depends on 
 . This range may not be uniformly bounded when 
 varies.

Lemma 1.7. Under assumptions (Hst ) and (Hm) the partition function Z� is well
de�ned, that is, it is �nite and positive.

Proof. We estimate:

Z� ≥ �z
�(o) = e−z|�| > 0;

Z� = ∫ e−�H(
�)�z
�(d
 )

(1.8)
≤ ∫ e�B⟨
�,1+‖m‖d+�⟩�z

�(d
 )

≤ e−z|�| exp
{
e�Bz|�| ∫

ℝ+
e�B�

d+�
�(d� )

} (1.1)
< +∞.

We provide here examples of energy functionals on marked con�gurations, which
satisfy the assumptions above. In Chapter 2 we describe, in the context of interacting
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di�usions, a further example of a pair interaction that acts on both locations and
marks of a con�guration, where the mark space is a path space.

Example 1.1 (Geometric multi-body interaction in ℝ2). Consider the marked-point
state space E = ℝ2 ×ℝ+, and recall that one can associate, to any �nite con�guration

 = {(x1, m1), … , (xN , mN )}, N ≥ 1, the germ-grain set

Γ =
N
⋃
i=1

B(xi , mi) ⊂ ℝ2.

Consider, as reference mark measure, a measure R on ℝ+ satisfying (Hm), that is,
there exists � > 0 such that

∫
ℝ+

e�
2+2�

R(d� ) < +∞.

The Quermass energy functional HQ (see [54]) is de�ned as any linear combination
of area, perimeter, and Euler-Poincaré characteristic functionals:

HQ(
 ) = �1 Area(Γ) + �2 Per(Γ) + �3�(Γ), �1, �2, �3 ∈ ℝ.

Notice how this interaction, depending on the values of the parameters �i , can be
attractive or repulsive. It is di�cult (and not useful) to decompose this multi-body
energy functional as the sum of several k-body interactions. The functional HQ sat-
is�es assumptions (Hst ), (Hr ), and (Hloc.st ). Indeed, it even satis�es the following
stronger conditions:

• There exists a constant B ≥ 0 such that, for any �nite con�guration 
 ,

|HQ(
 )| ≤ B⟨
 , 1 + ‖m‖2⟩. (two-sided stability)

• For any � ∈ Bb(ℝ2) and t ≥ 1, there exists B′(�, t) ≥ 0 such that, for any

 ∈ M , ξ ∈ M t,

|HQ
� (
�ξ�c )| ≤ B′(�, t)⟨
�, 1 + ‖m‖2⟩. (two-sided loc. stability)

Under these conditions – stronger than ours – the existence for the Quermass-
interaction model was proved in [18]; notice that HQ is not superstable.

For more examples of geometric interactions, see [20].

Example 1.2 (Two-body interactions).
i. Interacting hard spheres of random radii. On E = ℝd × ℝ+, consider a model of

hard balls centred at points xi , of random radii mi distributed according to a
measure R satisfying Assumption (Hm). The hard-core energy functional of
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a �nite con�guration 
 = {(x1, m1), … (xN , mN )}, N ≥ 1, is given by

H(
) = ∑
1≤i<j≤N

(+∞) 1{B(xi ,mi )∩B(xj ,mj )≠∅},

with the convention +∞ ⋅ 0 = 0.
ii. Non-negative pair interaction. On E = ℝd ×S , consider any energy functional

H of the form H(
) = ∑1≤i<j≤N Φ(xi , xj), where

Φ(xi , xj) = �(|xi − xj |) 1{|xi−xj |≤‖mi ‖+‖mj ‖},

where � is non-negative and null at 0.
In both cases, since H is a non-negative functional, it satis�es (Hst ) and (Hloc.st ).

It is also easy to see that, by construction, the range assumption (Hr ) also holds.

1.2.4 Local topology

We endow the space of point measures with the topology of local convergence (see
[45], [47]), de�ned as the weak* topology induced by a class of functionals on M
which we now introduce.

Definition 1.8. A functional F is called tame if there exists a constant c > 0 such
that

|F (
 )| ≤ c (1 + ⟨
 , 1 + ‖m‖d+�⟩), 
 ∈ M .

We denote by L the set of all tame and local functionals. The topology �L of
local convergence on P(M ) is then de�ned as the weak* topology induced by L ,
i.e. the smallest topology on P(M ) under which all the mappings P ↦ ∫ F dP ,
F ∈ L , are continuous.

1.3 Construction of an infinite-volume Gibbs point process

Let us �rst precise the terminology (see [42]).

Definition 1.9. Let H be an energy functional satisfying the three assumptions
(Hst ), (Hr ), and (Hloc.st ). We say that a probability measure P on M is an in�nite-
volume Gibbs point process with energy functional H , activity z > 0 and inverse
temperature � > 0, denoted P ∈ Gz,� (H ), if for every �nite volume � ⊂ ℝd and
for any measurable, bounded and local functional F ∶ M → ℝ, the following
identity (called DLR equation after Dobrushin–Lanford–Ruelle) holds under P :

∫
M

F (
 ) P(d
 ) = ∫
M

∫
M�

F (
�ξ�c ) ��(ξ, d
 ) P(dξ), (DLR)�
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where ��, called the Gibbsian probability kernel associated to H , is de�ned on M�
by

��(ξ, d
 ) ..=
e−�H�(
�ξ�c )

Z�(ξ)
�z
�(d
 ), (1.11)

where Z�(ξ) ..= ∫M�
e−�H�(
�ξ�c )�z

�(d
 ).

Remarks. i. The probability kernel ��(ξ, ⋅) is not necessarily well-de�ned for
any ξ ∈ M . In Lemma 1.17, we will show that this is the case when we
restrict it to the subspace M temp.

ii. The map ξ ↦ ��(ξ, d
 ) is a priori not local since ξ ↦ H�(
�ξ�c ) may depend
on the full con�guration ξ�c .

iii. The renormalisation factor Z�(ξ) – when it exists – only depends on the ex-
ternal con�guration ξ�c . Therefore ��(ξ, ⋅) ≡ ��(ξ�c , ⋅).

We can now state the main result of this chapter:

Theorem 1.1. Let H be an energy functional satisfying assumptions (Hm), (Hst ),
(Hr ), and (Hloc.st ). For any z > 0 and � > 0, there exists at least one in�nite-
volume Gibbs point process P with energy functional H , activity z and inverse
temperature � .

Moreover, it is supported on the tempered con�gurations: P ∈ G
temp
z,� (H ).

This section is structured as follows:
1.3.1 We de�ne a sequence of stationarised �nite-volume Gibbs point processes

(P̄n)n.
1.3.2 We use uniform bounds on the entropy to show the convergence, up to a sub-

sequence, to an in�nite-volume measure P̄ .
1.3.3 We prove, using an ergodic property, that P̄ carries only the space of tempered

con�gurations.
1.3.4 Noticing that, for any �xed � ∈ Bb(ℝd ), P̄n does not satisfy (DLR)�, we intro-

duce a new sequence (P̂n)n asymptotically equivalent to (P̄n)n but satisfying
(DLR)�. We use appropriate approximations, by localising the interaction, to
show that also P̄ satis�es (DLR)�.
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1.3.1 A stationarised sequence

In this subsection, we extend each �nite-volume point process Pn ..= P�n , �n =
[−n, n)d , de�ned on M�n to a probability measure P̄n on the full space M , invariant
under lattice-translations.

We start with the following

Lemma 1.10. There exists a constant a1 such that

∀n ≥ 1, Jn ..= ∫
M
⟨
 , 1 + ‖m‖

d+�
⟩Pn(d
 ) ≤ a1|�n |. (1.12)

Proof. We partition the space of con�gurations M�n in three sets:

M (1)
�n

..= {
 ∈ M�n ∶ ⟨
 , 1 + ‖m‖d+�⟩ ≤ a11|�n |},
M (2)

�n
..= {
 ∈ M�n ∶ ⟨
 , 1 + ‖m‖d+�⟩ > a11|�n |, |
 | > a12|�n |},

M (3)
�n

..= {
 ∈ M�n ∶ ⟨
 , 1 + ‖m‖d+�⟩ > a11|�n |, |
 | ≤ a12|�n |},
for some constants a11, a12 which will be �xed later. Therefore, the integral Jn can
be written as the sum of three integrals, J (1)n , J (2)n , J (3)n , resp. over each of these sets.

The �rst term is straightforward:

J (1)n
..= ∫

M (1)
�n

⟨
�n , 1 + ‖m‖d+�⟩Pn(d
 ) ≤ a11|�n |.

For the second term,

J (2)n
..= ∫

M (2)
�n

⟨
�n , 1 + ‖m‖d+�⟩Pn(d
 )

(1.5)
≤ ∫

M�n

1{|
�n |>a12 |�n |}⟨
 , 1 + ‖m‖d+�⟩
1
Z�n

e−�H(
�n )�z
�n
(d
 )

(1.8)
≤
e−z|�n |

Z�n

+∞
∑

k=a12 |�n |

(z|�n |)k

k! ∫
S k

e�B∑
k
i=1(1+‖mi ‖d+� )

k
∑
j=1
(1 + ‖mj‖d+� )R(dm1) …R(dmk)

≤
+∞
∑

k=a12 |�n |

(z|�n |)k

k!
k (∫ (1 + � d+� )e�B(1+�

d+� )�(d� ))(∫ e�B(1+�
d+� )�(d� ))

k−1

.

Using (1.1), we are able to �nd a constant b1 such that

∫ (1 + � d+� ) e�B(1+�
d+� )�(d� ) ≤ b1.
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We then get

J (2)n ≤
+∞
∑

k=a12 |�n |

(zb1|�n |)k

k!
k ≤

+∞
∑

k=a12 |�n |

(2zb1|�n |)k

k!
≤ e2zb1 |�n |ℙ(S|�n | ≥ a12|�n |),

for a sequence (Sm)m≥1 of Poisson random variables with parameter 2zb1m.
Recalling the Cramér–Cherno� inequality (cf. [11])

ℙ( 1mSm ≥ a12) ≤ e−mL∗(a12),

where L∗(x) = 2zb1 + x log x − x(1 + log(2zb1)) is the Legendre transform associated
to the Poisson random variable of parameter 2zb1, we can choose a12 large enough,
so that log a12 ≥ 1 + log(2zb1). Thus L∗(a12) ≥ 2zb1, and we get that J (2)n ≤ 1.

For the third term,

J (3)n
(1.5)= ∫

M�n

1{⟨
 ,1+‖m‖d+�⟩>a11 |�n |, |
 |≤a12 |�n |}⟨
 , 1 + ‖m‖d+�⟩
1
Z�n

e−�H(
�n )�z
�n
(d
 )

≤
e−z|�n |

Z�n

a12 |�n |

∑
k=0

(z|�n |)k

k! ∫
S k

1{∑k
i=1(1+‖mi ‖d+� )>a11 |�n |}

e�B∑
k
i=1(1+‖mi ‖d+� )

k
∑
j=1
(1 + ‖mj‖d+� )R(dm1) …R(dmk)

≤
a12 |�n |

∑
k=0

(z|�n |)k

k! ∫
ℝk
+

1{∑k
i=1(1+�d+�i )>a11 |�n |}

e�B∑
k
i=1(1+� d+�i )

k
∑
j=1
(1 + � d+�j )�(d�1) … �(d�k).

Applying the Cauchy–Schwarz inequality, we �nd:

J (3)n ≤
a12 |�n |

∑
k=0

(z|�n |)k

k!

√

�⊗k(
k
∑
i=1

(1 + � d+�i ) > a11|�n |)
√

∫
ℝk
+

e2�B∑k
i=1(1+�d+�i )

(
k
∑
j=1
(1 + � d+�j ))

2
�(d�1) … �(d�k)

≤

√

�⊗a12 |�n |(
a12 |�n |

∑
i=1

(1 + � d+�i ) > a11|�n |)

a12 |�n |

∑
k=0

(z|�n |)k

k!

√

k2 ∫ (1 + � d+� )2e2�B(1+�d+� )�(d� ) (∫ e2�B(1+�d )�(d� ))

k−1

.
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Using (1.1), there exists a positive constant b2 such that

∫ (1 + � d+� )2e2�B(1+�
d+� )�(d� ) ≤ b2.

Thus

J (3)n ≤

√

�⊗a12 |�n |(
a12 |�n |

∑
i=1

(1 + � d+�i ) > a11|�n |)
a11 |�n |

∑
k=0

(z
√
b2|�n |)k

k!
k

≤

√

�⊗a12 |�n |(
a12 |�n |

∑
i=1

(1 + � d+�i ) > a11|�n |) e2z
√
b2 |�n |.

Using again the Cramér–Cherno� inequality, we can choose a11 large enough such
that L̄∗, the Legendre transform of the image measure of � by � ↦ 1+ � d+� , satis�es
L̄∗(a11) ≥ 4z

√
b2 (since it is stricly increasing on the positive half-line). Thus

�⊗a12 |�n |
(

a12 |�n |

∑
i=1

(1 + � d+�i ) > a11|�n |) ≤ e−4z
√
b2 |�n |,

which yields J (3)n ≤ 1.
Putting it all together, the claim of Lemma 1.10 follows with a1 ..= a11 + 2.

We start by considering the probability measure P̃n on M , under which the con-
�gurations in the disjoint blocks ��

n
..= �n + 2n�, � ∈ ℤd , are independent, with

identical distribution Pn. We then build the empirical �eld associated to the proba-
bility measure P̃n, i.e. the sequence of lattice-stationarised probability measures

P̄n =
1

(2n)d
∑

�∈�n∩ℤd

P̃n◦#−1� , (1.13)

where #� is the translation on ℝd by the vector � ∈ ℤd .

Remarks. i. As usual we identify the translation #� on ℝd with the image of a
point measure under such translation.

ii. So constructed, the probability measure P̄n is invariant under (#�)�∈ℤd .
iii. An upper bound similar to (1.12) holds also under P̄n:

∃a2 > 0, ∀n ≥ 1, ∫
M
⟨
�n , 1 + ‖m‖

d+�
⟩P̄n(d
 ) ≤ a2 |�n |.

Moreover, using stationarity and the fact that the covering �n = ⋃� ��
1 con-
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tains nd terms,

∫
M
⟨
�1 , 1 + ‖m‖

d+�
⟩P̄n(d
 ) = ∫

M

1
nd

∑
�
⟨
��

1 , 1 + ‖m‖
d+�
⟩P̄n(d
 )

=
1
nd ∫

M
⟨
�n , 1 + ‖m‖d+�⟩P̄n(d
 ) ≤

1
nd
(2n)da2 = 2da2.

(1.14)

As we will see in the following subsection, in order to prove that (P̄n)n admits an
accumulation point, it is enough to prove that all elements of the sequence belong
to the same entropy level set.

1.3.2 Entropy bounds

Let us now introduce the main tool of our study, the speci�c entropy of a (stationary)
probability measure on M .

Definition 1.11. Given two probability measures Q and Q′ on M , and any �nite-
volume � ⊂ ℝd , the relative entropy of Q′ with respect to Q on � is de�ned as

I�(Q|Q′) ..=
⎧⎪⎪
⎨⎪⎪⎩

∫ log f dQ� if Q� 4 Q′
� with f ..= dQ�

dQ′
�
,

+ ∞ otherwise,

where Q� (resp. Q′
�) is the image of Q (resp. Q′) under the projection 
 ↦ 
�.

As usual,

Definition 1.12. The speci�c entropy of Q with respect to Q′ is de�ned by

I(Q|Q′) = lim
n→+∞

1
|�n |

I�n (Q|Q
′).

From now on, the reference measure Q′ will be the marked Poisson point process
�z with intensity measure z dx ⊗ R(dm). In this case, the speci�c entropy of a point
process Q with respect to �z is always well de�ned if Q is stationary under the
lattice translations (#�)�∈ℤd . Moreover, recall that for any a > 0, the a-entropy level
set

P(M )≤a ..=
{
Q ∈ P(M ), stationary under (#�)�∈ℤd ∶ I(Q|�z) ≤ a

}

is relatively compact for the topology �L , as proved in [47].
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Proposition 1.13. There exists a constant a3 > 0 such that,

∀n ≥ 1, I(P̄n |�z) ≤ a3

where P̄n ∈ P(M ) is the empirical �eld de�ned by (1.13).

Proof. Since the map Q ↦ I(Q|�z) is a�ne, it holds

I(P̄n |�z) =
1

(2n)d
∑

�∈ℤd∩�n

I(P̃n◦#−1� |�z)

= I(P̃n |�z) = lim
m→+∞

1
|2m�n |

I2m�n (P̃n |�
z)

= lim
m→+∞

1
(2m)d |�n |

(2m)d I�n (Pn |�
z) =

1
|�n |

I�n (Pn |�
z).

Using the stability of the energy functional, we �nd

I�n (Pn |�
z) = −� ∫ H(
)Pn(d
 ) − log(Z�n )

(1.8)
≤ �B ∫ ⟨
 , 1 + ‖m‖d+�⟩Pn(d
 ) + z|�n |.

From Lemma 1.10, we know that inequality (1.12) holds. De�ning a3 ..= �Ba1 +z, we
conclude that, uniformly in n ≥ 1, I(P̄n |�z) ≤ a3.

From the above proposition we deduce that the sequence (P̄n)n≥1 belongs to the
relatively compact set P(M )≤a3 . It then admits at least one converging subsequence
which we will still denote by (P̄n)n≥1 for simplicity. The limit measure of this sub-
sequence, here denoted by P̄ , is stationary under the translations (#�)�∈ℤd . We will
prove in what follows that P̄ is (one of) the in�nite-volume Gibbs point process we
are looking for.

1.3.3 Support of the infinite-volume limit measure

We now justify the introduction of a set of tempered con�gurations as the right
support of each of the probability measures P̄n, n ≥ 1, as well as of the constructed
limit probability measure P̄ .

Proposition 1.14. The measures P̄n, n ≥ 1, and the limit measure P̄ are all sup-
ported on the tempered con�gurations, i.e.

∀n ≥ 1, P̄n(M temp) = P̄(M temp) = 1.

Proof. Let us show that, for P̄ (resp. P̄n)-a.e. 
 ∈ M , there exists t = t(
 ) ≥ 1 such
that

sup
l∈ℕ∗

1
ld
⟨
B(0,l), 1 + ‖m‖d+�⟩ ≤ t. (1.15)
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From (1.14), we know that

∀n ≥ 1, ∫ ⟨
[−1,1)d , 1 + ‖m‖d+�⟩P̄n(d
 ) ≤ 2da2. (1.16)

Since the integrand is a tame local function, the same inequality remains true when
passing to the limit:

∫ ⟨
[−1,1)d , 1 + ‖m‖d+�⟩P̄(d
 ) ≤ 2da2.

The integrability of ⟨
[−1,1)d , 1 + ‖m‖d+�⟩ under P̄ (resp. P̄n) is precisely what we
need in order to apply the ergodic theorem in [75]. Doing so yields the following
spatial asymptotics, where we have P̄ (resp. P̄n)-a.s. convergence to the conditional
expectation under P̄ (resp. P̄n) with respect to the �-�eld J of (#�)�∈ℤd - invariant
sets:

lim
l→+∞

1
|B(0, l)|

⟨
B(0,l), 1 + ‖m‖d+�⟩ =
1
2d

EP̄[⟨
[−1,1)d , 1 + ‖m‖d+�⟩ | J ]

(resp. EP̄n ). This implies that, P̄ (resp. P̄n)-a.s.,

lim
l→+∞

1
|B(0, l)|

⟨
B(0,l), 1 + ‖m‖d+�⟩ < +∞

so that, a fortiori, (1.15) holds, and the proposition is proved.

In Subsection 1.3.4, in order to prove Gibbsianity of the limit measure, we need
more: a uniform estimate of the support of the measures P̄n, n ≥ 1. For this reason,
we introduce the increasing family (M l )l∈ℕ∗ of subsets of M temp, de�ned by

M l ..=
{

 ∈ M temp ∶ ∀k ∈ ℕ∗, k ≥ l, ∀(x, m) ∈ 
B(0,2k+1)c , B(x, ‖m‖) ∩ B(0, k) = ∅

}
.

Notice that, thanks to Lemma 1.2, for any t ≥ 1, M t ⊂ M l(t) (see Figure 1.1).

Proposition 1.15. For any " > 0, there exists l ≥ 1 such that

∀n ≥ 1, P̄n(M l ) ≥ 1 − ".

Proof. We want to �nd l ≥ 1 such that

P̄n( sup
k≥l

sup
(x,m)∈
B(0,2k+1)c

‖m‖
|x|

≥
1
2)

≤ ". (1.17)

For any � = (�1, … , �d ) ∈ ℤd , let D� = [�1, �1 + 1) × ⋯ × [�d , �d + 1) ⊂ ℝd . We list all
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the elements of ℤd by a sequence (�i)i∈ℕ ⊂ ℤd that forms a spiral, starting at 0; in
particular, there exist constants a, b > 0 (depending on the dimension d), such that
i a ≤ |�i |d ≤ i b. We can then compute, for any l ≥ 1,

∑
�∈ℤd∶
|�|≥2l

P̄n(m(
D� ) ≥
1
2 |�|) = ∑

i≥1∶
|�i |≥2l

P̄n(m(
D�i
) ≥ 1

2 |�i |)

≤ ∑
i≥(2l)d /b

P̄n(m(
D�i
) ≥ 1

2 |�i |) ≤ ∑
i≥(2l)d /b

P̄n(m(
D�i
)d ≥

a
2d

i)

≤ ∑
i≥(2l)d /b

P̄n(
2d

a
∑

(x,m)∈
D0

(1 + ‖m‖d )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=.. F (
 )

≥ i)

≤ EP̄n [1{F(
 )≥(2l)d /b}F (
 )]

=
2d

a
EP̄n[1{∑(x,m)∈
D0

(1+‖m‖d )≥ a
b ld}

∑
(x,m)∈
D0

(1 + ‖m‖d )].

To control this expression, recall the following result (due to H.-O. Georgii and H.
Zessin), which proves that point con�gurations in ℝd with marks in a complete,
separable metric space, satisfy a local equi-integrability property on entropy level
sets, with respect to the marks:

Lemma 1.16 ([47], Lemma 5.2). For any measurable non-negative function f ∶
S → ℝ+ and for every a > 0 and � ∈ Bb(ℝd ),

lim
N→∞

sup
P∈P(M )≤a

EP[1{⟨
�,f ⟩≥N}⟨
�, f ⟩] = 0.

Applying this result to the sequence (P̄n)n, with f (x, m) = 1 + ‖m‖d and � = D0, we
have that, for any " > 0, there exists l ≥ 1 large enough, such that

∀n ≥ 1, P̄n( sup
�∈ℤd , |�|≥2l

1
|�|
m(
D� ) ≥

1
2)

≤ ".

For any (x, m) ∈ 
B(0,2k+1)c , with k ≥ l, there exists � ∈ ℤd with |�| ≥ 2k, such
that (x, m) ∈ 
D� ; since then ‖m‖

|x| ≤ ‖m‖
|�| , we �nd that (1.17) holds, and the claim

follows.

Remark. One could have thought that such a uniform estimate held in M t, for some
t ≥ 1, but this is not the case; we thank one of the referees for pointing how this
would not work. In order to have the uniform estimate, we had then to enlarge the
set of tempered con�gurations by introducing M l instead.
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1.3.4 The limit measure is Gibbsian

We are now ready to prove that the in�nite-volume point process P̄ we have con-
structed satis�es the Gibbsian property.

Lemma 1.17. Consider the Gibbsian kernel �� de�ned by (1.11). It satis�es:
(i) For any ξ ∈ M temp, ��(ξ, d
 ) is well de�ned: Z�(ξ) < +∞;

(ii) For any �-local tame functional F on M , the map ξ ↦ ∫M�
F (
 )��(ξ, d
 )

de�ned on M temp is measurable.
(iii) The family (��)�∈Bb(ℝd ) satis�es a �nite-volume compatibility condition, in

the sense that, for any ordered �nite-volumes � ⊂ �,

∫
M�⧵�

��(��⧵�ξ�c , d
�) ��(ξ�c , d��⧵�) = ��(ξ�c , d(
���⧵�)). (1.18)

Proof. (i) We have to show that, for any ξ ∈ M temp, 0 < Z�(ξ) < +∞. Lemma 1.7
dealt with the free boundary condition case, so this followed from the stability
assumption (1.8). Since H�(
�ξ�c ) ≠ H(
�), this now follows in the same way
from (1.10).

(ii) The measurability of the map ξ ↦ ∫M�
F (
 )��(ξ, d
 ) follows from the mea-

surability of ξ ↦ H(
�ξ�c ) and ξ ↦ Z�(ξ).
(iii) The compatibility of the family (��)� follows, as in [82], from the additivity

(1.7) of the conditional energy functional.

We now state the main result of this section:

Proposition 1.18. The probability measure P̄ is an in�nite-volume Gibbs point
process with energy functional H .

Proof. Since P̄ is concentrated on the tempered con�gurations, we have to check
that, for any �nite-volume �, the following DLR equation is satis�ed under P̄ :

∫
M temp

F (
 ) P̄ (d
 ) = ∫
M temp ∫M�

F (
 )��(ξ, d
 ) P̄ (dξ),

where F is a measurable, bounded and �-local functional.
Fix � ∈ Bb(ℝd ). We would like to use the fact that its �nite-volume approxi-

mations (P̄n)n satisfy (DLR)�; but since they are lattice-stationary and periodic, this
is not true. To overcome this di�culty, we use some approximation techniques,
articulated in the following three steps:
i. An equivalent sequence: We introduce a new sequence (P̂n)n and show it is

asymptotically equivalent to (P̄n)n
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ii. A cut-o� kernel: We introduce a cut o� of the Gibbsian kernel by a local func-
tional

iii. Gibbsianity of the limit measure: We use estimations via the cut-o� kernel
to prove that P̄ satis�es (DLR)�.

i. An equivalent sequence: We introduce a modi�ed sequence of measures (P̂n)n
satisfying (DLR)� and having the same asymptotic behaviour as (P̄n)n: for every
n ≥ 1, consider

P̂n =
1

|�n |
∑

�∈�n∩ℤd∶
#� (�n)⊃�

Pn◦#−1� .

Since the above sum is not taken over all � ∈ �n ∩ ℤd , P̂n is not a probability
measure. Moreover, P̂n is bounded from above by P̄n, in the sense that, for any
measurable A ⊂ M , P̂n(A) ≤ P̄n(A).
We introduce the index i0 ∈ ℕ as the smallest n ≥ 1 such that � is contained in
the box �n. Using the compatibility of the kernels (1.18), since � ⊂ �n. For every
n ≥ i0, the measure P̂n satis�es (DLR)�.
The sequences (P̂n)n and (P̄n)n are locally asymptotically equivalent, in the sense
that, for every tame �-local functional G in L ,

lim
n→∞

||||∫
G(
 )P̂n(d
 ) − ∫ G(
 )P̄n(d
 )

||||
= 0.

In particular, asymptotically P̂n is a probability measure, i.e. for any " > 0, we
can �nd n0 such that

∀n ≥ n0, P̂n(M ) ≥ 1 − ". (1.19)

Indeed: let G be a tame �-local functional in L as in De�nition 1.8, and set

�1 ..=
|||| ∫M temp

G(
) P̂n(d
 ) − ∫
M temp

G(
) P̄n(d
 )
||||
.

We then have

�1 =
1

(2n)d
||||

∑
�∈�n∩ℤd∶
#� (�n)⊃�

∫ G(
)Pn◦#−1� (d
 ) − ∑
�∈�n∩ℤd

∫ G(
)P̃n◦#−1� (d
 )|||

≤
1

(2n)d
∑

�∈�n∩ℤd∶
#� (�n)+�

||| ∫ G(
 )P̃n◦#−1� (d
 )|||,
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and since G is local and tame,

�1 ≤
c

(2n)d
∑

�∈�n∩ℤd∶
#� (�n)+�

∫ (1 + ⟨
�, 1 + ‖m‖d+�⟩)P̃n◦#
−1
� (d
 ).

As � ⊂ �i0 , the number of � ∈ �n ∩ ℤd such that #�(�n) + � is

Card
{
� ∈ �n ∩ ℤd ∶ #�(�n) + �

}
≤ i02d(2n − 1)d−1,

since: for � to be moved out of �n, one of the components of � should be larger
than n − i0 (i0 options for this); there are 2d directions � can be moved through
�n; and the other d − 1 components of � ∈ �n ∩ ℤd are left free (2n − 1 options).
Calling c′ ..= i0dc, we �nd

�1 ≤
c′

n
+

c
(2n)d

∑
�∈�n∩ℤd∶
#� (�n)+�

∫ ⟨
�, 1 + ‖m‖d+�⟩P̃n◦#−1� (d
 ).

Now, for any a4 > 0 (which will be �xed later), we split the above integral over
the set

{
∑(x,m)∈
�(1 + ‖m‖d+� ) ≥ a4

}
and its complement. We obtain

�1 ≤
c′

n
+
a4c′

n

+
c

(2n)d
∑

�∈�n∩ℤd∶
#� (�n)+�

∫
{⟨
�,1+‖m‖d+�⟩≥a4}

⟨
�, 1 + ‖m‖d+�⟩P̃n◦#−1� (d
 )

≤
(1 + a4)c′

n
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�rst term

+ c ∫
{⟨
�,1+‖m‖d+�⟩≥a4}

⟨
�, 1 + ‖m‖d+�⟩P̄n(d
 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
second term

.

Fix " > 0; for n ≥ 2(1+a4)c′
" , the �rst term is smaller than "/2.

To control the second term, we apply Lemma 1.16, to the sequence (P̄n)n, and the
function f (x, m) = 1+‖m‖d+� ; we �nd a4 > 0 such that the second term is smaller
than "/2, uniformly in n, and conclude the proof of this step.

ii. A cut-o� kernel: We know that P̂n satis�es (DLR)�, i.e. for any �-local and
bounded functional F

∫ F(
 ) P̂n(d
 ) = ∫ ∫
M�

F (
 )��(ξ, d
 ) P̂n(dξ).

If ξ ↦ ∫M�
F (
 )��(ξ, d
 ) were a local functional, we would be able to con-
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clude simply by taking the limit in n on both sides of the above expression, since
P̄ = limn P̂n for the topology of local convergence. But this is not the case be-
cause of the unboundedness of the range of the interaction. We are then obliged
to consider some approximation tools.

To that aim, we introduce a (�,m0)-cut o� of the Gibbsian kernels ��(ξ, d
 ),
which takes into account only the points of ξ belonging to a �nite volume � and
having marks smaller than m0.

Definition 1.19. Let � ∈ Bb(ℝd ) with � ⊃ �. The (�,m0)-cut o� ��,m0
� of the

Gibbsian kernel �� is de�ned as follows:
for every measurable, �-local and bounded functional G∶ M� → ℝ,

∫
M�

G(
)��,m0
� (ξ, d
 )

..= 1
Z�,m0
� (ξ�⧵�) ∫M�

1{m(
 )≤m0}G(
)e
−�H�(
�ξ�⧵�)�z

�(d
 ),

where Z �,m0
� (ξ�⧵�) is the normalisation constant.

Remarks. i. ��,m0
� is well de�ned since the normalisation constant Z �,m0

� is
positive and �nite:

0 < e−z|�| ≤ Z�,m0
� (ξ�⧵�) < +∞.

ii. The functional
ξ ↦ ∫

M�

G(
) ��,m0
� (ξ, d
 )

is now local and bounded, since the supremum norm of G is bounded.

We now show that ��,m0
� is a uniform local approximation of the Gibbsian kernel

��, i.e.
For any " > 0, t ≥ 1, for any measurable, �-local and bounded functional F , there
exist m0 > 0 and � ⊃ � such that, for any m0 ≥ m0 and � ⊃ �, we have

sup
ξ∈M t

|||| ∫M�

F (
 )��,m0
� (ξ, d
 ) − ∫

M�

F (
 )��(ξ, d
 )
||||
≤ ". (1.20)

Indeed, let ξ ∈ M t. First notice that, since H�(
�ξ�⧵�) = H�(
�ξ�c ) as soon
as � ⊇ � ⊕ B(0, 2l(t) + 2m(
�) + 1) then e−H�(
�ξ�⧵�) − e−H�(
�ξ�c ) = 0 on the set of
con�gurations {
 ∶ m(
�) ≤ m0 and � ⊕ B(0, 2l(t) + 2m(
�) + 1) ⊂ �}.
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Considering the di�erence between both partition functions, we obtain

|||Z
�,m0
� (ξ�⧵�) − Z�(ξ�c )||| =

||||∫
(1{m(
�)≤m0}e

−�H�(
�ξ�⧵�) − e−�H�(
�ξ�c ))�z
�(d
 )

||||

≤ ∫ 1
{m(
�)>m0}∪{�⊕B(0,2l(t)+2m(
�)+1)*�}(e

−�H�(
�ξ�⧵�) + e−�H�(
�ξ�c ))�z
�(d
 )

(1.10)
≤ ∫ 1

{m(
�)>m0}∪{�⊕B(0,2l(t)+2m(
�)+1)*�}
2e�B

′⟨
�,1+‖m‖d+�⟩�z
�(d
 ).

Notice that this upper bound does not depend on ξ anymore. Thanks to the
integrability assumption (1.1), by dominated convergence this implies that the
map

ξ ↦ Z�,m0
� (ξ�⧵�) − Z�(ξ�c )

converges to 0 as m0 ↑ ∞ and � ↑ ℝd uniformly in ξ ∈ M t. Similarly,

ξ ↦ ∫
M�

1{m(
�)≤m0}F (
�)e
−�H�(
�ξ�⧵�)�z

�(d
 )

− ∫
M�

F (
�)e−�H�(
�ξ�c )�z
�(d
 )

converges to 0 as m0 ↑ ∞ and � ↑ ℝd , uniformly in ξ ∈ M t. This concludes the
proof of this step: we can �nd m0 = m0(", t) and � = �(", t) such that (1.20) holds
for any m0 ≥ m0 and � ⊃ �.

iii. Gibbsianity of the limit measure: To prove the Gibbsianity of P̄ we have to
check that

�2 ..=
|||||
∫

M temp ∫M�

F (
 )��(ξ, d
 ) P̄ (dξ) − ∫
M temp

F (
 ) P̄ (d
 )
|||||

vanishes.
We �rst show that for large enough t ≥ 1, the sets M t,M l(t) are close to the
support of the measures P̄ , P̄n, and P̂n: let m0 and � be large enough in the
above sense, and satisfy � ⊃ � ⊕ B(0, 2l(t) + 2m0 + 1). Thanks to the results on
the supports of P̄ (Proposition 1.14) and P̄n (Proposition 1.15), we can �nd a5 > 0,
independent of n, such that, for any m0 and t larger than a5, and all n ≥ 1,

P̄ (M t) ≥ 1−", P̄n(M l(t)) ≥ 1−", P̄n(
{

 ∈ M ∶ m(
�) ≤ m0

}
)

(1.4)
≥ 1−". (1.21)
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Since, by construction, P̄n dominates P̂n, using (1.19) yields, for n ≥ n0,

P̂n(M l(t)) ≥ 1 − 2", P̂n(
{

 ∈ M ∶ m(
�) ≤ m0

}
) ≥ 1 − 2". (1.22)

The following steps deal with the estimation of �2: using (1.21), we have that
(w.l.o.g. ‖F ‖∞ ≤ 1)

�2 ≤ ‖F ‖∞P̄((M t)c)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤"

+
|||||
∫

M t
∫

M�

F (
 )��(ξ, d
 )P̄ (dξ) − ∫
M t

F (
 )P̄ (d
 )
|||||⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶�21

.

Using the estimates of (1.20), we have

�21
(1.20)
≤ " +

|||| ∫M t
∫

M�

F (
 )��,m0
� (ξ, d
 )P̄ (dξ) − ∫

M t
F (
 )P̄ (d
 )

||||
(1.21)
≤ 2" +

|||| ∫M temp ∫M�

F (
 )��,m0
� (ξ, d
 )P̄ (dξ) − ∫

M temp
F (
 )P̄ (d
 )

||||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶�22

.

By construction, the functional ξ ↦ ∫M�
F (
 )��,m0

� (ξ, d
 ) is local; thus the local
convergence of (P̂n)n to P̄ implies that there exists n1 ∈ ℕ∗ such that, for n ≥ n1,
both estimates hold:
|||||
∫

M temp ∫M�

F (
 )��,m0
� (ξ, d
 )P̄ (dξ) − ∫

M temp ∫M�

F (
 )��,m0
� (ξ, d
 )P̂n(dξ)

|||||
≤ ",

||||∫M temp
F (
 )P̄ (d
 ) − ∫

M temp
F (
 )P̂n(d
 )

||||
≤ ".

Therefore,

�22 ≤ 2" +
|||| ∫M temp ∫M�

F (
 )��,m0
� (ξ, d
 )P̂n(dξ) − ∫

M temp
F (
 )P̂n(d
 )

||||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶�23

.

Now �23 can be further decomposed:

�23
(1.22)
≤ 2" +

|||| ∫M l(t)
∫

M�

F (
 )��,m0
� (ξ, d
 )P̂n(d
 ) − ∫

M l(t)
∫

M�

F (
 )��(ξ, d
 )P̂n(dξ)
||||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶�24

+
|||||
∫

M l(t)
∫

M�

F (
 )��(ξ, d
 ) P̂n(dξ) − ∫
M temp

F (
 )P̂n(d
 )
|||||
.
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We can estimate �4 by conditioning

�24 =
|||| ∫M l(t)

∫
M�

F (
 )(�
�,m0
� (ξ, d
 ) − ��(ξ, d
 ))P̂n(d
 )

||||

=
|||| ∫M l(t)

∫
M�

F (
 )(�
�,m0
� (ξ, d
 )P̂n(dξ)

− ��(ξ, d
 | {
 ∶ m(
 ) ≤ m0})(1 − ��(ξ, {
 ′ ∶ m(
 ′) > m0}))

+ ��(ξ, d
 | {
 ∶ m(
 ) > m0}) ��(ξ, {
 ′ ∶ m(
 ′) > m0}))P̂n(dξ)

≤
|||| ∫M l(t)

∫
M�

F (
 )(�
�,m0
� (ξ, d
 ) − ��(ξ, d
 | {
 ∶ m(
 ) ≤ m0}))P̂n(dξ)

||||

+ 2 ∫
M l(t)

��(ξ, {
 ′ ∶ m(
 ′) > m0})P̂n(dξ).

The �rst term in the above inequality vanishes if the two kernels coincide on
M l(t), which is the case since � ⊕ B(0, 2l(t) + 2m(
�) + 1) ⊂ �. Since P̂n satis�es
(DLR)�, for the second term we have

∫
M l(t)

��(ξ, {
 ′ ∶ m(
 ′) > m0})P̂n(dξ) ≤ P̂n({
 ′ ∶ m(
 ′�) > m0})
(1.22)
≤ 2".

We then have �24 ≤ 4". Putting it all together,

�2 ≤ 11 " +
|||||
∫

M l(t)
∫

M�

F (
 )��(ξ, d
 ) P̂n(dξ) − ∫
M temp

F (
 )P̂n(d
 )
|||||

(1.22)
≤ 13 " +

|||||
∫

M temp ∫M�

F (
 )��(ξ, d
 ) P̂n(dξ) − ∫
M temp

F (
 )P̂n(d
 )
|||||
= 13 ",

since P̂n satis�es (DLR)�. Thanks to the arbitrariness of " > 0, we can conclude
that also P̄ satis�es (DLR)�.

In conclusion, P̄ satis�es (DLR)� for any �nite volume �, so Proposition 1.18 – and
consequently Theorem 1.1 – is proved: for any z > 0 and � > 0, P̄ ∈ Gz,� (H ).

The following chapter presents an application to in�nite-dimensional interacting
di�usions.



Gibbs point processes on path

space: existence, cluster

expansion and uniqueness 2

We study a class of in�nite-dimensional di�usions under Gibbsian interactions,
in the context of marked point con�gurations: the starting points belong to ℝd , and
the marks are the paths of Langevin di�usions. We use the entropy method to prove
existence of an in�nite-volume Gibbs point process and use cluster expansion tools
to provide an explicit activity domain in which uniqueness holds.

2.1 The se�ing

We consider in�nitely-many independent gradient di�usions and add a dependence
between them by introducing an interaction energy in the context of marked Gibbs
point processes. In this setting, we adopt the DLR description and set up the exis-
tence and uniqueness questions that are explored in the later sections.

2.1.1 Infinite-dimensional free system of Langevin dynamics

The basic mathematical object of this work is the following Langevin dynamics on
ℝd :

dX(s) = dB(s) −
1
2
∇V(X(s))ds, s ∈ [0, 1], (2.1)

where B is a standard ℝd -valued Brownian motion, and V ∶ ℝd → ℝ is a smooth
potential satisfying, outside of some compact subset of ℝd ,

∃� ′, b1, b2 > 0, V (x) ≥ b1|x|d+�
′ and �V (x) −

1
2
|∇V (x)|2 ≤ −b2|x|2+2�

′
. (2.2)

It is a known result (see e.g. [86]) that, under these conditions, there exists a unique
solution to the SDE (2.1), which generates an ultracontractive semigroup (see [53,
16]). Moreover, for any � < � ′/2,

E [e
sups∈[0,1] |X (s)−X(0)|d+2� ] < +∞. (2.3)

For the rest of this work, let � > 0 be �xed.

45
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2.1.2 The system with Gibbsian interaction

Consider now that any (continuous) path x on [0, 1] can be decomposed into its
initial location x and a (shifted) path m starting from 0. In other words, we identify
x with the pair (x, m) ∈ E ..= ℝd × C0, where C0 is the space of continuous paths on
[0, 1] starting at 0. The space C0, endowed with the norm ‖m‖ given by the maximum
displacement of the trajectory m, that is ‖m‖ ..= sups∈[0,1]|m(s)|, is a normed space.

On C0, we consider the measure R, given by the law of the process X solution of
(2.1) starting at X(0) = 0. Notice that, thanks to (2.3), for any � < � ′/2,

∫
C0
e‖m‖d+2�R(dm) < +∞. (2.4)

We consider point measures on the product state space E . More precisely, we
take the following product measure on E :

�(dx, dm) = dx ⊗ R(dm).

We denote by M the space of simple point measures (con�gurations) on E , i.e. of
all �-�nite measures of the form


 = ∑
i
�xi , xi = (xi , mi) ∈ E , with xi ≠ xj if i ≠ j.

Since the con�gurations are simple, we identify them with the subset of their atoms:


 ≡
{
x1, … , xn, …

}
⊂ E .

Moreover, for two disjoint con�gurations 
 , ξ ∈ M , we denote by 
ξ their concate-
nation: 
ξ ..= 
 ∪ ξ. For 
 ∈ M , |
 | denotes the number of its points; Mf ⊂ M is the
subset of �nite con�gurations, i.e. with |
 | < +∞. We denote by o the con�guration
supported on the empty set.

For any � ⊂ ℝd , M� ⊂ M denotes the subset of point measures with support in
� × C0, and 
� ..= 
 ∩ (� × C0). Let B(ℝd ) denote the Borel �-algebra on ℝd , and
Bb(ℝd ) the set of bounded Borel subsets of ℝd , which we often call �nite volumes.
For � ∈ Bb(ℝd ), |�| denotes its volume.

We denote by P(M ) (resp. P(M�)) the set of probability measures (or point
processes) on M (resp. M�). Finally, let ℕ∗ ..= ℕ ⧵ {0}.

We consider the following measure (of in�nite mass):

Definition 2.1. Fix z > 0. We de�ne the measure �̃z = 1 + ∑+∞
N=1

zN

N!
�⊗N on Mf .

For any �nite volume �, we consider as reference probability measure the
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marked Poisson point process �z
� ∈ P(M�) with intensity parameter z, de�ned

by renormalising the restriction �̃z
� of �̃z to M� as follows:

�z
�(d
 ) = e−z|�|�̃z

�(d
 ).

As a modi�cation of the Poisson point process, we introduce an interaction between
the paths by considering the �nite-volume Gibbs point process associated to an en-
ergy functional H . More precisely:

Definition 2.2. An energy functional H ∶ Mf → ℝ∪{+∞} is a measurable func-
tional on the set of �nite con�gurations, with H(o) = 0 by convention. In this
chapter we consider the energy of a �nite number N ≥ 1 of paths to be de�ned,
for any 
 = {x1, … , xN } ∈ Mf , by the sum of a self-interaction term and a pair-
potential term:

H(
) ..=
N
∑
i=1

Ψ(xi) + � ∑
1≤i<j≤N

Φ(xi , xj) ∈ ℝ ∪ {+∞}, (2.5)

where � > 0 is the inverse temperature.

We denote the pair-interaction component of the energy as

EΦ(
 ) ..= ∑
1≤i<j≤N

Φ(xi , xj),

and the conditional energy of any path x ∈ E given any ξ ∈ M as

EΦ (x | ξ) ..= ∑
y∈ξ

Φ(x, y).

Note that this in�nite sum is not always well de�ned (see Assumption 2.2).
Finally, for any 
 ∈ M , let

EΦ (
 | ξ) ..= ∑
x∈


EΦ (x | ξ) .

be the conditional energy of the con�guration 
 given the con�guration ξ.
We specify later a growth condition on the self potential Ψ, and consider di�erent

sets of assumptions on the pair potential Φ∶ E × E → ℝ ∪ {+∞}.

Definition 2.3. Let H be an energy functional as in (2.5). For any � ∈ Bb(ℝd ),
the free-boundary-condition �nite-volume Gibbs point process on � with energy
functional H , activity z > 0 and inverse temperature � > 0 is the probability
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measure Pz,�
� on M� de�ned by

Pz,�
� (d
 ) ..=

1
Z z
�
e−�H(
�) �z

�(d
 ), (2.6)

where the partition function Z z
� is the renormalisation constant.

In this work we investigate the existence and uniqueness of an in�nite-volume
Gibbs point process, in the following sense:

Definition 2.4. Let H be an energy functional as in (2.5). A probability measure
P on M is said to be an in�nite-volume Gibbs point process with energy functional
H , activity z > 0 and inverse temperature � > 0, denoted P ∈ Gz,� (H ), if it satis-
�es, for any � ∈ Bb(ℝd ) and any positive, bounded, and measurable functional
F ∶ M → ℝ, the following DLR equation

∫
M

F (
 ) P(d
 ) = ∫
M

1
Z z
�(ξ)

∫
M�

F (
�ξ�c )e−�(H(
�)+EΦ(
� |ξ�c ))�z
�(d
 ) P(dξ), (DLR)

where the partition function Z z
�(ξ) depends on the boundary condition ξ.

A concept that will help in showing that such an in�nite-volume measure exists
is that of tempered con�guration. For such a con�guration 
 , the number |
�|
of its points in any �nite volume �, should grow sublinearly w.r.t. the volume,
while the norm ‖m‖ of its marks should grow as a fractional power of it. More
precisely,

Definition 2.5. The set of tempered path con�gurations is given by the increasing
union M temp ..= ⋃t∈ℕ∗ M t, where

M t ..=
{

 ∈ M ∶ ∀l ∈ ℕ∗, ∑

(x,m)∈

|x|≤l

(1 + ‖m‖d+2� ) ≤ tld
}
. (2.7)

We denote by G
temp
z,� (H ) ..= Gz,� (H ) ∩ P(M temp) the set of tempered Gibbs point

processes, i.e. those whose support is included in the tempered con�gurations.

In what follows we show that a tempered Gibbs point process associated to in�nitely-
many interacting Langevin dynamics exists as soon as the interaction energy satis-
�es some quite natural assumptions.

Assumption 2.1 (Self interaction growth and stability).
(Hself) The self potential Ψ ∶ E → ℝ ∪ {+∞} acting on each path is bounded
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from below by the opposite of a power of its maximum displacement, i.e.

∃AΨ > 0 ∶ inf
x∈ℝd

Ψ(x,m) ≥ −AΨ‖m‖d+� . (2.8)

(Hst.) The pair potentialΦ ∶ E ×E → ℝ∪{+∞} between two paths is a symmetric
functional that satis�es the following stability condition: there exists a con-
stant BΦ ≥ 0 such that for any �nite con�guration 
 = {x1, … , xN } ∈ Mf ,

EΦ(
 ) = ∑
1≤i<j≤N

Φ(xi , xj) ≥ −BΦN . (2.9)

2.2 Existence of a Gibbs point process of di�usions

Figure 2.1. Two interacting
paths of a Langevin di�usion in
ℝ2. Each circle is centred in the
starting point, while the radii of
the coloured circles correspond
to their maximum displacement
in the time interval [0, 1]; the
dotted circles represent the secu-
rity distance a0/2 introduced in
(2.10).

The proof of the existence of an in�nite-volume Gibbs point process that we de-
scribe here makes use of the speci�c entropy functional as a tightness tool, as in the
general approach presented in Chapter 1. In order for our path model of interacting
Langevin di�usions to �t the setting of the aforementioned paper, in this section
we consider energy functionals H that satisfy, in addition to Assumption 2.1, the
following:

Assumption 2.2 (Range and local stability). The pair potential Φ ∶ E × E →
ℝ ∪ {+∞} is such that
(Hr) Two di�usions xi , xj do not interact whenever they start too far away: there

exists a constant a0 ≥ 0 such that

Φ(xi , xj) = 0 whenever |xi − xj | > a0 + ‖mi‖ + ‖mj‖. (2.10)
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(Hloc.st) There exists a constant B̄Φ ≥ 0 such that, for any path x ∈ E , for any
con�guration ξ ∈ M temp,

EΦ (x | ξ) = ∑
y∈ξ

Φ(x, y) ≥ −B̄Φ(1 + ‖m‖d+� ). (2.11)

Remark. We brie�y comment on these two assumptions: the expression in (2.11) is
well de�ned since, as we will see in the proof of Theorem 2.1, the range assumption
(Hr) implies that the in�nite sum of the conditional energy of x given ξ is actually
given by a �nite (random) number of terms.

It is easy to show that the following Lemma holds for the support of any Gibbs
point process:

Lemma 2.6. For any activity z > 0 and inverse temperature � > 0, any in�nite-
volume Gibbs point process P ∈ G

temp
z,� (H ) is supported on con�gurations with

locally �nite energy, that is con�gurations 
 ∈ M temp such that, for any � ∈
Bb(ℝd ), EΦ(
�) < +∞. Note that this is true also whenever Φ takes in�nite values.

Example 2.1. Consider the following class of interactions, described by a path pair
potential of the form

Φ(xi , xj) = (∫
1

0
�(|xi − xj + mi(s) − mj(s)|)ds)1[0,a0+‖mi ‖+‖mj ‖](|xi − xj |), (2.12)

with � given by the sum of two potentials on ℝ+: � = �ℎc + �l , where
• The potential �ℎc is pure hard core at some diameter R > 0, that is

�ℎc(u) = (+∞)1[0,R)(u).

• The potential �l satis�es a stability property, i.e. there exists a constant B� ≥ 0
such that, for any admissible con�guration {y1, … , yN }, N ≥ 1, the following
holds (see [90], paragraph 3.2.5):

N
∑
i=1

�l (|yi |) ≥ −2B� , (2.13)

where a �nite con�guration {y1, … , yN } ⊂ ℝd , N ≥ 1, is called admissible if,
for any pair yi ≠ yj , �(|yi − yj |) < +∞.

Note how the coe�cient a0 here plays the role of a sensitivity parameter (see Figure
2.1): if the pair potential � is repulsive (i.e. positive), then a0 can take any �nite
positive value. If instead � is attractive (i.e. negative) on some region, a0 should be
chosen in such a way that � remains attractive on [a0, +∞): �(u) ≤ 0 if u ≥ a0 (see
Figure 2.2). We now show that this class of potentials satisfy Assumption 2.2.
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10

20

1
0

+∞

2.5 3 3.5

a0

Figure 2.2. A shifted Lennard–
Jones potential �LJ (u − 1) =
16(( 3/2u−1)

12 − ( 3/2u−1)
6
) with hard

core diameter R = 1; it is always
negative after a0 = 2.5, and ex-
plodes as x → 1+.

Proof. Firstly, thank to the previous Lemma, we can actually restrict our study to
the admissible con�gurations. It is easy to see that the stability (2.9) of the potential
Φ holds with BΦ = B� . Moreover, setting l(t) ..= 2

d+�
� −1t

1
� , one can see that the range

of the interaction is bounded by

r(
 , �) = 2l(t) + 2 sup
x∈
�

‖m‖ + 1 + a0,

i.e. for any x = (x,m) ∈ E and ξ ∈ M t, t ≥ 1, setting � ..= B(x, r(
 , �)), the
conditional energy EΦ (x | ξ ⧵ {x}) of x given ξ is actually given by EΦ (x | ξ�⧵{x}): it
is a �nite sum, and is bounded from below by −2B� .

EΦ (x | ξ�⧵{x}) = (∫
1

0
∑

xi∈ξ�⧵{x}

�(|x − xi + m(s) − mi(s)|)ds)1{|x−xi |≤a0+‖m‖+‖mi ‖}

≥ −2B� .

Notice how, under these conditions, the trajectories of two interacting paths x1 =
(x1, m1) and x2 = (x2, m2) are allowed to intersect, but at each time s the paths keep
at a distance of at least R; the hard-core component, indeed, imposes |x1 + m1(s) −
x2 + m2(s)| ≥ R for any s ∈ [0, 1].

A particular case: Let � be given by the sum of a hard-core component and a shifted
Lennard–Jones potential, i.e.

�(u) = �ℎc(u) + �LJ (u − R)1[R,+∞)(u), u ∈ ℝ+,

where �LJ (u) = a
u12 −

b
u6 , a, b > 0. Pictured in Figure 2.2 is an example with R = 1. We

remark that this potential has a non-integrable growth in a neighbourhood of its
hard core component; in particular, it does not satisfy Assumption 2.3 below, which
is used for the uniqueness proof.
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Example 2.2. One can consider a class of translation-invariant pair potentials. More
precisely, let Φ be invariant by translation: Φ(xi , xj) = Φ(xi − xj), with

Φ(x) = (∫
1

0
�(|x + m(s)|)ds)1{|x|≤a0+‖m‖},

where � is given by the above sum of a hard-core component and a shifted Lennard–
Jones potential.

Definition 2.7. Consider a con�guration 
 ∈ M . For any N ≥ 1, its factorial
measure of order N is given by


 (N )(dx1, … , dxN ) ..= 
(dx1)(
 ⧵ {x1})(dx2) … (
 ⧵ {x1, … , xN−1})(dxN ).

By taking the expectation under a point process P we obtain its N -th factorial
moment measure: a measure � (P)N on E N de�ned by

� (P)N (⋅) ..= EP [
 (N )(⋅)].

For any point process P , one can consider, for any N ≥ 1, its N -point correlation
function, de�ned as the Radon–Nikodym derivative of its N -th factorial moment
measure � (P)N with respect to the product measure (z�)⊗N , where

�(dx) ..= e−Ψ(x)�(dx).

Proposition 2.8 ([75]). Let P ∈ Gz,� (H ), z > 0, � > 0. Its N -point correlation
function admits, for �⊗N -almost all (x1, … , xN ) ∈ E N , the following representation:

�(P)N (x1, … , xN ) = e−�EΦ(x1,…,xN ) ∫
M

e−�EΦ(x1,…,xN | ξ)P(dξ), (2.14)

as soon as this expression is well de�ned.

Remark. Note that �(P)N (⋅) is a symmetric function, as for any (x1, … , xN ) ∈ E k and
any permutation {i1, … , iN }, �(P)N (xi1 , … , xiN ) = �(P)N (x1, … , xN ).

We can now state our existence result:

Theorem 2.1. Let H be an energy functional as in (2.5), satisfying Assumptions
2.1+2.2. For any z > 0 and � > 0, there exists at least one in�nite-volume tempered
Gibbs point process Pz,� ∈ G

temp
z,� (H ). Moreover, for any N ≥ 1, the N -point

correlation function of Pz,� exists and can be written as in (2.14).
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Proof. Let z > 0, � > 0. In order to apply the existence result of Theorem 1.1 to this
path space context, we show that a stability condition holds both for the energy of a
�nite con�guration and for the conditional energy, and that the random interaction
range is �nite (possibly unbounded). These are the conditions (Hst.), (Hr), and
(Hloc.st) of Assumption 1.1.

Step 1. We start by noting that (2.13) implies that the potential � – de�ned on the
location space ℝd – is stable in the sense of Ruelle (see [91]), with stability constant
B� , i.e.

∀N ≥ 1, ∀{y1, … , yN } ⊂ ℝd , ∑
1≤i<j≤N

�(|yi − yj |) ≥ −B�N .

The conditions (2.8) and (2.9) – on the self interaction and pair potential, respec-
tively, yield the following stability for the energy of a �nite number of paths:

∀
 ∈ Mf , H (
 ) ≥ −(B� ∨ AΨ)(|
 | + ∑
(x,m)∈


‖m‖d+�).

Step 2. We now focus on analysing the range of the interaction: we show that for
any tempered con�guration 
 ∈ M t, t ≥ 1, and for any �nite volume �, there exists
a positive number r = r(
 , �) such that

EΦ (x | ξ) = ∑
y∈ξ

0<|y−x|≤r

Φ(x, y). (2.15)

Set l(t) ..= 2
d+�
� −1t

1
� . Using the de�nition of tempered con�gurations, one has that,

for all l ≥ l(t) and for any x ∈ 
 ∈ M t such that |x| > 2l + 1 + a0,

|x| − ‖m‖
(2.7)
≥ |x| −

1
2
⌈|x|⌉ ≥ l + a0.

Thanks to condition (Hr), this means that the range of the interaction is bounded
by

r(
 , �) = 2l(t) + 2 sup
x∈
�

‖m‖ + 1 + a0.

Step 3. Fix � ∈ Bb(ℝd ), and consider, for 
 ∈ M and ξ ∈ M temp, the conditional
energy of 
� given ξ�c , that is:

H�(
�ξ�c ) ..= H(
�) + EΦ (
� | ξ�c ) .

Thanks to (2.15), denoting � ..= � ⊕ B(0, r(
 , �)), we have

EΦ (
� | ξ�c ) = EΦ (
� | ξ�⧵�) = ∑
xi∈
�

∑
xj∈ξ�⧵�

Φ(xi , xj). (2.16)
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It is unfortunately not true – as used instead in Section 4 of [Z2] – that we can
control the cardinality of the second sum, i.e. the number of points of ξ�, uniformly
in 
 . On the other hand, thanks to Lemma 2.6, we can assume that ξ� is of �nite
energy, and therefore use (2.13) to estimate

∑
xi∈
�

∑
xj∈ξ�⧵�

Φ(xi , xj)

= ∫
1

0
∑
xi∈
�

∑
xj∈ξ�⧵�

�(|xi − xj + mi(s) − mj(s)|)ds 1{|xi−xj |≤a0+‖mi ‖+‖mj ‖}

(2.13)
≥ ∫

1

0
∑
xi∈
�

−2B� ≥ −2B� |
�|.

Together with the stability of 
� ↦ H(
�), this yields the following lower bound
for the conditional energy:

H�(
�ξ�c ) ≥ −(AΨ ∨ 2B�) ∑
x∈
�

(1 + ‖m‖d+� ),

Having checked the three conditions (Hst.), (Hr), and (Hloc.st), we can now apply
Theorem 1.1: there exists an in�nite-volume Gibbs measure Pz,� ∈ G

temp
z,� (H ).

The correlation functions of a Gibbs point process can be written as in (2.14)
whenever the term e−∑i ∑y∈ξ Φ(xi ,y) is well de�ned. Thanks to (2.11), this is indeed the
case, as we have ∑y∈ξ Φ(x, y) ≥ −B̄Φ(1 + ‖m‖d+� ).

Proposition 2.9. For any N ≥ 1, the N -point correlation function �(P
z,� )

N of any
Gibbs point process Pz,� constructed above satisfy a Ruelle bound: for �⊗N -almost
all (x1, … , xN ) ∈ E N ,

�(P
z,� )

N (x1, … , xN ) ≤
N
∏
i=1

c(xi), (2.17)

where c(x, m) ..= exp (�BΦ + �B̄Φ(1 + ‖m‖d+� )) .

Proof. Putting together (2.9) and (2.11), we estimate

�(P
z,� )

N (x1, … , xN ) ≤ e�BΦN ∫
M temp

e� ∑
N
i=1 B̄Φ(1+‖mi ‖d+� )Pz,� (dξ),

yielding the desired bound.

Example 2.1 (continued). For the class of potentials described in Example 2.1, the
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Ruelle bound holds uniformly in (x1, … , xN ) ∈ E N , and is of the form

�(P
z,� )

N (x1, … , xN ) ≤ e3�B�N . (2.18)

2.3 Ruelle bounds for correlation functions

Suppose you have a pair potential Φ – not necessarily satisfying the assumptions
of the previous section – and that you already have an in�nite-volume Gibbs point
process Pz,� ∈ Gz,� (H ), not necessarily constructed as above. In this section – under
an additional regularity condition (Assumption 2.3) – we use tools from cluster ex-
pansion (see, for example, [89, 91]) to �nd a domain of activity (0, zRu(�)) such that,
for any z ∈ (0, zRu(�)), the correlation functions of Pz,� exist and satisfy a Ruelle
bound.

An important tool is given by the Ursell kernel (see the work by R.A. Minlos and
S. Poghosyan in [71]), introduced in Subsection 2.3.2. As this method requires for
the correlation functions to have a speci�c representation, we assume a priori here
that, for any N ≥ 1, the expression (2.14) for the N -point correlation function �(P)N
of any P ∈ Gz,� (H ) is well de�ned.

2.3.1 Correlation functions

While we have so far decomposed the energy functional in (2.5) into self- and pair-
interaction terms, in order to set ourselves in the framework of cluster expansion –
that typically deals exclusively with pair interactions – in what follows we include
the self-interaction term in the reference measure, and de�ne, for z > 0, the measure

�̃z� =
+∞
∑
N=0

zN

N!
�⊗N ,

and the corresponding Poisson point process �z� . The �nite-volume Gibbs point
process Pz,�

� de�ned in (2.6) on M� can then be equivalently de�ned using �z� and
just the pair interaction EΦ(
 ) = ∑{x,y}⊂
 Φ(x, y) (in place of the full energy functional
H ):

Pz,�
� (d
 ) =

1
Z z�
�

e−�EΦ(
�) �z�
� (d
 ),

where Z z�
� is the normalisation constant.

As we already mentioned, the proof of the uniqueness of the Gibbs point process
revolves around the study of its correlation functions, which we now introduce. We
start by introducing a �nite-volume correlation function induced by the interaction
Φ:
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Definition 2.10. Let z > 0, � > 0. For any �nite volume � ⊂ ℝd , the �nite-volume
correlation function �(z,�)� in � (with free boundary condition) is given, for any

 ∈ M�, by

�(z,�)� (
 ) =
1

Z̃ z�
�

∫
M�

e−�EΦ(ξ
)�̃z�
� (dξ),

where Z̃ z�
� is the normalisation constant.

Remark. Note that, from the stability (2.9) of the pair potential Φ, there exists a
functional

i ∶ Mf ⧵ {o} → E

such that for any non-empty path con�guration 
 there exists a path i(
 ) ∈ 
 where
the sum of its interactions with the other paths in 
 is bounded from below:

∀
 ∈ Mf ⧵ {o}, EΦ (i(
 ) | 
 ⧵ {i(
 )}) ≥ −2BΦ. (2.19)

As a consequence, Φ is bounded from below by −2BΦ:

inf Φ(x, y) ≥ −2BΦ. (2.20)

In Example 2.1 below we make use of (2.20), while (2.19) is used in Proposition 2.17.
In the following we �x the inverse temperature parameter � > 0, and consider

energy functionals H such that, additionally to Assumption 2.1, the following holds:

Assumption 2.3 (regularity). The pair potential Φ satis�es the following uniform
regularity condition (for some, and therefore any, � > 0):

C(�) ..= sup
x∈E

∫
E
|e−�Φ(x,y) − 1|�(dy) < +∞.

Example 2.1 (continued). Suppose the potential � = �ℎc + �l is integrable outside
of the hard core, that is

‖�‖R+ ..= ∫
+∞

R
|�l (u)|ud−1du < +∞,

then Assumption 2.3 holds. Indeed, since for any x ∈ (−∞, +∞],

|e−x − 1| ≤ x−ex
−
+ (1 − e−x

+
) ≤ |x|ex

−
, (2.21)

where x− ..= max(0, −x) and x+ ..= max(0, x) are the negative and positive part of x,
respectively, we have

|e−�Φ − 1| ≤ �|Φ̄|e2�B� ,
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0

2 · 103

+∞

1 2 31

φ(1)

a0

Figure 2.3. The sum of a
hard-core potential �ℎc and the
Lennard–Jones potential �LG .
The integrable component �LG
of the potential has a maximum
in �LG (1).

where we denote by Φ̄ the truncated pair potential, de�ned, for any x, y ∈ E , by

Φ̄(x, y) =

{
1 if Φ(x, y) = +∞
Φ(x, y) otherwise.

Let �̄(u) ..= 1{u<R} + �(u)1{u≥R}. Using the above bound, we can estimate, for any
x1 ∈ E ,

∫
E
|e−�Φ(x1,x2) − 1|�(dx2) ≤ e2�B� ∫

E
�|Φ̄(x1, x2)| �(dx2)

≤ e2�B� ∫
E
∫

1

0
�|�̄(x2 + m2(s) − x1 − m1(s))|ds 1{|x2−x1 |≤a0+‖m2‖+‖m1‖} �(dx2)

(2.8)
≤ e2�B� ∫

C0
∫

1

0
∫
ℝd

�|�̄(x2 + m2(s) − x1 − m1(s))| dx2 ds eAΨ‖m2‖d+�R(dm2)

≤ e2�B�� (bdRd + ‖�‖R+) ∫
C0
eAΨ‖m2‖d+�R(dm2),

which is �nite thanks to the ultra-contractivity assumption, see (2.4).

Aparticular case: Suppose the potential � is given by the sum of a hard-core potential
�ℎc in [0, R) and the Lennard–Jones potential �l ≡ �LJ in [R, +∞). In particular, it
is �nite in [R, +∞), with maximum �l (R). Pictured in Figure 2.3 is an example with
R = 1.

2.3.2 Cluster expansion: Ursell kernel and tree-graph estimates

In this subsection, after introducing the Ursell kernel, we use it to rewrite the corre-
lation functions of a Gibbs point process and – following an approach inspired by
[12, 56] – use tree-graph estimates to obtain a Ruelle bound for them. Our innovation
comes from being able to obtain that the correlation functions of any Gibbs point
process satisfy a Ruelle bound with the same constant cz , uniformly in the �nite
volume, therefore yielding uniqueness in the set of tempered Gibbs point processes.
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We consider here undirected connected graphs. For any non-empty set A ⊂ ℝd , a
graph G on A is given by a pair (V , E): the vertex set V is a subset of A, and the set
of edges is a subset of {{x, y} ⊂ A ∶ x ≠ y}. Indeed, for a graph G = (V , E) on A, we
write {x, y} ∈ G to denote the edge xy ∈ E between two vertices x, y ∈ V . A tree T
is a connected graph without loops. We also introduce the following notations:

• Cn(A) denotes the set of all undirected connected graphs with n vertices be-
longing to A.

• T (A) denotes the set of all trees on A.
Note that the notion of graph G = (V , E) ∈ Cn(A) does not depend on the possible
orderings of the points of the vertex set V = {x1, … , xn} ⊂ ℝd . Moreover, when there
is no risk of confusion, we identify a graph G on {x1, … , xn}with the corresponding
one on the index set {1, … , n} ∈ ℕ (i.e. where the edge {xi , xj} corresponds with
the edge {i, j}, see Figure 2.4).

When using these notations on a �nite con�guration 
 ⊂ ℝd × C0, with an abuse
of notations, we write Cn(
 ) as shorthand for Cn(projℝd (
 )) (analogously for T ).

x1

x2

x5x3

x4 x6x7

x8

Figure 2.4. Example of a treee T ∈ T (A), where
A = {x1, … , x8} ⊂ ℝ2. It can be equivalently
described by placing the points of A on the ver-
tices of a tree T̃ on {1, … , 8} ∈ ℕ. More pre-
cisely, T̃ on {1, … , 8} is constructed by placing
an edge {i, j} ∈ T̃ if and only if there is an edge
{xi , xj} ∈ T .

Definition 2.11. For any two measurable functionals F , G ∶ Mf → ℝ, de�ne
their ∗-product by

(F ∗ G)(
 ) ..= ∑
ξ⊂


F (
 ⧵ ξ)G(ξ), 
 ∈ Mf .

with identity 1∗(
 ) ..= 1{
=o}. The space of measurable functionals with this oper-
ation is an algebra A . Moreover, the set

A0
..= {F ∈ A ∶ F(o) = 0}

is an ideal of A . The exponential and logarithm operators are de�ned by

exp∗ F ..= ∑
n≥0

1
n!F

∗n, log∗(1∗ + F) ..= ∑
n≥1

(−1)n−1
n F ∗n.
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Definition 2.12 (Ursell function and kernel). We introduce the two following
notions:

• The Ursell function k ∶ Mf → ℝ is a functional on �nite con�gurations,
de�ned by setting

k(
 ) ..= log∗(e−�EΦ)(
 ), 
 ∈ Mf .

Equivalently ([12], Proposition 4.3), k(o) = 0 and, for any 
 with |
 | = n ≥ 1,

k(
 ) = ∑
G∈Cn(
 )

∏
{x,y}∈G

(e−�Φ(x,y) − 1) .

• The Ursell kernel k̄ ∶ Mf × Mf → ℝ is de�ned on disjoint con�gurations
by

k̄(
 , ξ) ..= [exp∗(−k) ∗ (e−�EΦ)(
 , ⋅)] (ξ), 
 , ξ ∈ Mf , 
 ∩ ξ = o.

The Ursell kernel relates to the Ursell function as follows:

Lemma 2.13 ([12], Lemma 4.6). For any �nite con�guration 
 ≠ o,

∀x ∈ 
 , k̄({x}, 
 ⧵ {x}) = k(
 ).

Moreover, it provides a new expression for the correlation functions:

Lemma 2.14 ([12], Proposition 4.5). Let 
 ∈ M�,� ∈ Bb(ℝd ). If ∫M�
|k(ξ)|�̃z� (dξ) <

+∞, then
�(z,�)� (
 ) = ∫

M�

k̄(
 , ξ)�̃z� (dξ). (2.22)

Lemma 2.15 ([12], Remark 4.8). The Ursell kernel k̄ is the unique solution of the
so-called non-integrated Kirkwood–Salsburg equation

{
k̄(
 , ξ) = e−� ∑y∈
⧵{x} Φ(x,y)∑�⊂ξ k�(x)k̄((
 ⧵ {x})�, ξ ⧵ �)
k̄(o, ξ) = 1{ξ=o},

(2.23)

where k�(x) ..=∏
y∈�

(e−�Φ(x,y) − 1), and x ∈ 
 is chosen arbitrarily.

We now introduce a second functional Q, which satis�es a similar equation to
(2.23), dominates the Ursell kernel, and its simpler expression allows for more con-
venient computations.
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Definition 2.16. Consider a functional Q on Mf ×Mf de�ned as follows: for any
ξ ∈ Mf , Q(o, ξ) = 1{ξ=o}, and for any 
 = {x1, … , xN }, N ≥ 1,

Q(
 , ξ) ..= ∑
ξ1,…,ξN ⊂ξ
ξi∩ξj=o ∀i≠j

Q({x1}, ξ1) ⋯Q({xN }, ξN ),

where
{
Q({x}, ξ) ..= e2�BΦ(|ξ|+1)∑T∈T ({x}∪ξ)∏{y1,y2}∈T |e

−�Φ(y1,y2) − 1| if ξ ≠ o

Q({x}, o) = e2�BΦ .
(2.24)

Proposition 2.17 ([12], Proposition 4.10). The functional Q de�ned above is the
unique solution of

{
Q(
 , ξ) = e2�BΦ ∑�⊂ξ |k� (i(
 ))|Q (
 ⧵ i(
 ) ∪ �, ξ ⧵ �)
Q(o, ξ) = 1{ξ=o},

where the functional i was de�ned in (2.19).

Corollary 2.18 ([12], Proposition 4.11). For any 
 = {x1, … , xN }, N ≥ 1, and
ξ ∈ Mf such that 
 ∩ ξ = o, we have

|k̄(
 , ξ)| ≤ Q(
 , ξ)

= ∑
ξ1,…,ξN ⊂ξ
ξi∩ξj=o ∀i≠j

Q({x1}, ξ1) …Q({xN }, ξN ),

and
|k(
 )| ≤ e2�BΦ |
 | ∑

T∈T (
 )
∏

{xi ,xj}∈T
|e−Φ(xi ,xj ) − 1|.

Lemma 2.19. For any �nite volume � ⊂ ℝd and N ≥ 1, for �-a.a. x ∈ E ,

∫
(�×C0)N

Q({x}, {y1, … , yN })�(dy1) ⋯ �(dyN )

≤ e2�BΦ(N+1)C(�)N−1(N + 1)N−1 ∫
�×C0

|e−�Φ(x,y) − 1|�(dy).
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Proof. Using (2.24), we rewrite the l.h.s. as

e2�BΦ(N+1) ∑
T∈T ([N+1])

∫
(�×C0)N

∏
{i,j}∈T

|e−�Φ(yi ,yj ) − 1| �(dy1) ⋯ �(dyN )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=.. IN

,

where we set yN+1 ..= x, and [N + 1] ..= {1, … , N + 1}. We estimate IN by induction
on N ≥ 1:

• For N = 1,
I1 = ∫

�×C0
|e−�Φ(x,y1) − 1|�(dy1).

• For the inductive step, assume that, for all T ∈ T ([N ]),

∫
(�×C0)N−1

∏
{i,j}∈T

|e−�Φ(yi ,yj ) − 1|
N−1
⨂
i=1

�(dyi) ≤ C(�)N−2 ∫
�×C0

|e−�Φ(yN ,y) − 1|�(dy).

• Let T ∈ T ([N + 1]) be given, and root it in yN+1. There exists then an edge
{j1, j2} ∈ T , where yj1 is a leaf, and yj1 ≠ yjN+1 . We obtain

∫
(�×C0)N

∏
{i,j}∈T

|e−�Φ(yi ,yj ) − 1|
N
⨂
i=1

�(dyi)

= ∫
(�×C0)N−1

∫
�×C0

|e−�Φ(yj1 ,yj2 ) − 1| �(dyj1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤C(�)

∏
{i,j}∈T ⧵{{j1,j2}}

|e−�Φ(yi ,yj ) − 1|
N
⨂
i=1
i≠j1

�(dyi)

≤ C(�) ∫
(�×C0)N−1

∏
{i,j}∈T ⧵{{j1,j2}}

|e−�Φ(yi ,yj ) − 1|
N
⨂
i=1
i≠j1

�(dyi).

We can then use the inductive step to prove the assertion.
Moreover,

e2�BΦ(N+1) ∑
T∈T ([N+1])

IN ≤ e2�BΦ(N+1) ∑
T∈T ([N+1])

C(�)N−1 ∫
�×C0

|e−�Φ(yN+1,y) − 1|�(dy),

and the claim follows, since the number of elements of T ([N + 1]) is (N + 1)N−1 (see
Theorem 4.1.3 of [76]).
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Lemma 2.20. De�ne the threshold activity

zRu(�) ..= (C(�)e2�BΦ+1)−1 > 0, (2.25)

and let z < zRu(�). For any �nite volume � ⊂ ℝd , for �̃z� -a.a. 
 ∈ Mf , if |
 | = N ≥
1,

∫
M�

|k̄(
 , ξ)|�̃z�
� (dξ) ≤ cNz ,

where
cz ..= e2�BΦ (1 +

e
√
2�

log(
1

1 − z/zRu(�)))
< +∞. (2.26)

Moreover, for any z < zRu(�),

∫
M�

|k(ξ)|�̃z�
� (dξ) < +∞. (2.27)

Proof. Let 
 = {x1, … , xN }. From Corollary 2.18,

∫
M�

|k̄(
 , ξ)|�̃z�
� (dξ) ≤

N
∏
i=1

∫
M�

Q({xi}, ξ)�̃z�
� (dξ).

Thanks to Lemma 2.19,

∫
M�

Q({xi}, ξ)�̃z�
� (dξ) =

+∞
∑
N=0

zN

N! ∫(�×C0)N
Q({xi}, {y1, … , yN }) �(dy1) ⋯ �(dyN )

= e2�BΦ +
+∞
∑
N=1

zN

N!
e2B� (N+1)C(�)N−1(N + 1)N−1 ∫

�×C0
|e−�Φ(x,y) − 1|�(dy)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤C(�)

≤ e2�BΦ
(
1 +

e
√
2�

+∞
∑
N=1

(z C(�)e2�BΦ+1)N

N 3/2 )
≤ e2�BΦ

(
1 +

e
√
2�

+∞
∑
N=1

(z C(�)e2�BΦ+1)N

N )
,

where, in the third step, we used the inequality (N + 1)N−1 ≤ 1√
2� e

N+1 N !
(N+1)3/2 , which

is a consequence of Stirling’s formula: for any n ≥ 0,

√
2�nn+1/2e−ne1/(12n+1) ≤ n! ⇒ nn−2 ≤

1
√
2�

en
(n − 1)!
n3/2

.

For z < (C(�)e2�BΦ+1)−1 = .. zRu(�), the above series converges, and we obtain

∫
M�

Q({xi}, ξ)�̃z�
� (dξ) ≤ e2�BΦ (1 +

e
√
2�

log(
1

1 − z/zRu(�)))
= .. cz .



2.4. Uniqueness via the Kirkwood–Salsburg equations 63

By using Corollary 2.18, and proceeding similarly to the proof of Lemma 2.19, we
obtain that, for z < zRu(�),

∫
M�

|k(ξ)|�̃z�
� (dξ) < +∞.

Remark. Note that cz depends on z but is uniform in �; moreover, c0 = e2�BΦ .

2.3.3 A Ruelle bound for correlation functions

As a consequence of (2.27), we can use the representation (2.22) of the correlation
function

�(z,�)� (
 ) = ∫
M�

k̄(
 , ξ)�̃z�
� (dξ),

and use the above tree-graph estimates to obtain the following Ruelle bound:

Proposition 2.21. Let � > 0 and zRu(�) as de�ned in (2.25). For a pair potential
Φ satisfying Assumptions 2.1+2.3, for any activity z ∈ (0, zRu(�)) and any �nite
volume � ⊂ ℝd , the �nite-volume correlation function �(z,�)� satis�es, for �̃z� -a.a.

 ∈ M�,

�(z,�)� (
 ) ≤ c|
 |z , (2.28)

where the constant cz is de�ned in (2.26). Moreover, a similar bound holds for the
N -point correlation functions of any P ∈ Gz,� (H ): for any z ∈ (0, zRu(�)), for any
N ≥ 1, for �⊗N -almost all {x1, … , xN } ⊂ E N

�(P)N (x1, … , xN ) ≤ cNz . (2.29)

Proof. Fix z < zRu(�). The �rst statement is an immediate consequence of Lemma
2.20. Moreover, as the right hand side of (2.28) does not depend on �, this bound
also holds in the limit as � ↑ ℝd , so for the limiting correlation function �(z)f (
 ) ..=
∫Mf

k̄(
 , ξ)�̃z� (dξ), 
 ∈ Mf .
For the second statement, consider 
 = {x1, … , xN }. It is known (see [81], Lem-

mas 12 and 15), that the limiting correlation functional �(z)f (
 ) coincides with the
correlation function �(P)N (
 ) whenever the expression in (2.14) is well de�ned. As
this is true thanks to (2.14), the Ruelle bound (2.29) holds for any P ∈ Gz,� (H ).

2.4 Uniqueness via the Kirkwood–Salsburg equations

We are in the following situation: we have an in�nite-volume Gibbs point process
P ∈ Gz,� (H ) associated to a potential Φ (not necessarily constructed as in Section
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2.2) and whose correlation functions satisfy a Ruelle bound, and wish to understand
whether it is indeed the unique such process associated to Φ and with activity z.

In this section we assume that, additionally to Assumption 2.1, the correlation
functions of any P ∈ Gz,� (H ) can be represented as in (2.14):

�(P)N (x1, … , xN ) = e−�EΦ(x1,…,xN ) ∫
M

e−�EΦ(x1,…,xN | ξ)P(dξ).

The uniqueness proof is structured as follows: we prove that the correlation func-
tions of a Gibbs point process satisfy the Kirkwood–Salsburg equations. Moreover,
thanks to the Ruelle bounds, these correlation functions belong to an appropriate
Banach space, where these equations have at most one solution. From this, we ob-
tain the uniqueness of the Gibbs point process P .

2.4.1 The Kirkwood–Salsburg equations

The key of this part is to show that the correlation functions (�(P)N )N of any P ∈
Gz,� (H ) solve, for all N ≥ 1, for �⊗(N+1)-almost all (x0, … , xN ) ∈ E N+1, the sequence
of Kirkwood–Salsburg equations

�(P)N+1(x0, … , xN ) = e−�EΦ(x0 | x1,…,xN )(�
(P)
N (x1, … xN )

+
+∞
∑
k=1

zk

k! ∫
k

∏
j=1
(e−�Φ(x0,yj ) − 1)�(P)N+k(x1, … , xN , y1, … , yk)�⊗k(dy1, … , dyk)),

(KS)z

where, by convention, �(P)0 = 1.
Note that the di�erent nature of the Ruelle bounds of Section 2.2 and 2.3 – the

former allows for a dependence on the marks of the N points that the latter does
not – requires two di�erent approaches. We �rst treat, in Subection 2.4.2, the sim-
pler case where the Ruelle bound holds for a constant c > 0; in Subection 2.4.3
we consider the situation in which the Ruelle bound holds for a positive function
c∶ E → ℝ+. Accordingly, the Banach space in which we prove uniqueness is de-
�ned as follows:

Definition 2.22. The Banach space Xc is the set of all sequences r = (rN )N such
that

∃ br ≥ 0 ∶ ∀N ≥ 1, |rN (x1, … , xN )| ≤ br
N
∏
i=1

c(xi),

endowed with the norm ‖r‖c equal to the smallest such br .

Note that, in the case of c > 0 constant, the right hand side reads brcN .
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We can then interpret the Kirkwood–Salsburg equations as an operator acting on
the Banach space Xc.

Definition 2.23. Consider the Kirkwood–Salsburg operator Kz , z > 0, acting on
Xc, given by

(Kzr)1(x0) =
+∞
∑
k=1

zk

k! ∫
k

∏
j=1
(e−�Φ(x0,yj ) − 1)rk(y1, … , yk) �⊗k(dy1, … , dyk));

(Kzr)N+1(x0, … , xN ) = e−� ∑
N
i=1 Φ(x0,xi )(rN (x1, … xN ) (2.30)

+
+∞
∑
k=1

zk

k! ∫
k

∏
j=1
(e−�Φ(x0,yj ) − 1)rN+k(x1, … , xN , y1, … , yk) �⊗k(dy1, … , dyk)), N ≥ 1.

The Kirkwood–Salsburg equations(KS)z can now be rewritten as the following �xed-
point problem in the Banach space Xc:

r = Kzr + 1z ,

where 1z = (1z,N )N is given by 1z,1(x1) = 1, 1z,N = 0 for N ≥ 2.

2.4.2 The case of uniform Ruelle bounds

In this subsection, we work with energy functionals EΦ and activities z > 0 such that
Assumptions 2.1+2.3+2.4 hold. We consider the case of a Ruelle bound that holds
for a constant c, uniformly in the points x1, … , xN , that is:

Assumption 2.4 (Uniform Ruelle bound). Assume there exists a constant c > 0
such that, for any P ∈ Gz,� (H ), for any N ≥ 1, for �⊗N -almost all {x1, … , xN } ⊂ E N ,
its correlation function �(P)N satisfy, uniformly in {x1, … , xN }, the following Ruelle
bound:

�(P)N (x1, … , xN ) ≤ cN . (2.31)

Example 2.3. In what we have seen above, this holds
• For any z > 0, for Φ as in Example 2.1, P = Pz,� (see (2.18)), with c = e3�B� .
• For z ∈ (0, zRu(�)), under Assumption 2.3, with c = cz as de�ned in (2.26).

Proposition 2.24. Let z > 0, � > 0. Under Assumptions 2.1+2.3+2.4, the correla-
tion functions (�(P)N )N of any P ∈ Gz,� (H ) solve, for all N ≥ 1, for �⊗(N+1)-almost
all (x0, … , xN ) ∈ E N+1, the Kirkwood–Salsburg equation (KS)z de�ned above.

Proof. Thanks to the stability of Φ, we can de�ne i as in (2.19), and assume, without
loss of generality, that x0 = i(
 ).
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We note �rst that the absolute convergence of the right hand side of (2.30) is
guaranteed by the Ruelle bound and the Ruelle regularity condition. Indeed,

+∞
∑
k=1

zk

k! ∫
k

∏
j=1

|e−�Φ(x0,yj ) − 1|�(P)N+k(x1, … , xN , y1, … , yk) �⊗k(dy1, … , dyk))

≤
+∞
∑
k=1

zk

k!
C(�)cN+kz = cNz

+∞
∑
k=1

(zczC(�))k

k!
≤ cNz e

zczC(�).

Consider the (N + 1)-point correlation function of a Gibbs point process P :

�(P)N+1(x0, … , xN ) = e−�EΦ(x0,…,xN ) ∫
M

e−�EΦ(x0,…,xN | ξ)P(dξ)

= e−�EΦ(x0 | x1,…,xN )e−�EΦ(x1,…,xN ) ∫
M

e−�EΦ(x0 | ξ)e−�EΦ(x1,…,xN | ξ)P(dξ).

Using the factorial measure ξ(k), we have the following expansion:

e−�EΦ(x0 | ξ) = 1 +
+∞
∑
k=1

1
k! ∫E k

k
∏
j=1
(e−�Φ(x0,yj ) − 1) ξ(k)(dy1, … , dyk),

which is indeed absolutely convergent, since using the GNZ equations (see [75]) one
has:

∫
M (

1 +
+∞
∑
k=1

1
k! ∫E k

k
∏
j=1

|e−�Φ(x0,yj ) − 1| ξ(k)(dy1, … , dyk))
P(dξ)

(GNZ)= 1 +
+∞
∑
k=1

zk

k! ∫E k

k
∏
j=1

|e−�Φ(x0,yj ) − 1| e−�EΦ(y1,…,yk )

∫
M

e−�EΦ(y1,…,yk | ξ)P(dξ) �⊗k(dy1, … , dyk)

= 1 +
+∞
∑
k=1

zk

k! ∫E k

k
∏
j=1

|e−�Φ(x0,yj ) − 1| �(P)k (y1, … , yk)�⊗k(dy1, … , dyk)

(2.31)
≤ 1 +

+∞
∑
k=1

(zc)k

k! ∫
E k

k
∏
j=1

|e−�Φ(x0,yj ) − 1| �⊗k(dy1, … , dyk) ≤ ezcC(�) < +∞,

(2.32)

where in the last line we used the Ruelle bound and the regularity assumption 2.3.
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We can then exchange summation over k and integration over M , yielding

e−�EΦ(x1,…,xN ) ∫
M

e−�EΦ(x0 | ξ)e−�EΦ(x1,…,xN | ξ)P(dξ)

= e−�EΦ(x1,…,xN ) ∫
M

e−�EΦ(x1,…,xN | ξ) P(dξ)

+
+∞
∑
k=1

1
k! ∫M

∫
E k

e−�EΦ(x1,…,xN )−�EΦ(x1,…,xN | ξ)
k

∏
j=1
(e−�Φ(x0,yj ) − 1) ξ(k)(dy1, … , dyk) P(dξ)

= �(P)N (x1, … , xN )

+
+∞
∑
k=1

zk

k! ∫E k
e−�EΦ(x1,…,xN ,y1,…,yk )

k
∏
j=1
(e−�Φ(x0,yj ) − 1)

∫
M

e−�EΦ(x1,…,xN ,y1,…,yk | ξ) P(dξ) �⊗k(dy1, … , dyk)

= �(P)N (x1, … , xN )

+
+∞
∑
k=1

zk

k! ∫E k

k
∏
j=1
(e−�Φ(x0,yj ) − 1)�(P)N+k(x1, … , xN , y1, … , yk) �⊗k(dy1, … , dyk),

and concluding the proof.

Proposition 2.25. Under Assumptions 2.1+2.3+2.4, for any z > 0, � > 0, and any
c > 0, the Kirkwood–Salsburg operator Kz is a bounded operator in Xc.

Moreover, there exists a critical threshold

0 < zcrit(�) ..= inf{z > 0 ∶ c−1z e2�BΦ+zczC(�) > 1} ≤ zRu(�) (2.33)

such that, for any z ∈ (0, zcrit(�)), Kz is a contraction in Xcz , where cz is de�ned in
(2.26), and zRu(�) is de�ned in (2.25). For such activities there exists then at most
one solution of (KS)z in Xcz .

Proof. For any r ∈ Xc, with ‖r‖c ≤ 1, we estimate

|(Kzr)N+1(x0, … , xN )| ≤ e−∑
N
i=1 Φ(x0−xi )(cN

+
+∞
∑
k=1

zk

k! ∫
k

∏
j=1

|e−Φ(x0,yj ) − 1|cN+k �⊗k(dy1, … , dyk)).
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By stability of Φ, we have

|(Kzr)N+1(x0, … , xN )| ≤ e2�BΦcN (1 +
+∞
∑
k=1

(zc)k

k! ∫
k

∏
j=1

|e−Φ(x0,yj ) − 1| �⊗k(dy1, … , dyk))

≤ e2�BΦcN (1 +
+∞
∑
k=1

(zc)k

k!
C(�)k)

= cN+1c−1e2�BΦ+zC(�)c.

The Kirkwood–Salsburg operator is then bounded in Xc: |||Kz |||c ≤ c−1e2�B�+zC(�)c.
Consider now cz as de�ned in (2.26), and set f (z) ..= e2�B�+zczC(�)

cz
. We have f (0) = 1

and
f ′(z) = e2�BΦ

ezczC(�)

c2z
(C(�)(c2z + zc

′
zcz − c′z).

so that f ′(0) < 0. Indeed,

sign f ′(0) = sign (C(�)c20 − c′0) = sign (C(�)e4�BΦ(1 − e2/
√
2�)) = −1.

(see Figures 2.5 and 2.6), The set {z > 0 ∶ c−1z e2�BΦ+zczC(�) < 1} is then non-empty,
and de�ning

zcrit(�) ..= inf{z > 0 ∶ c−1z e2�BΦ+zczC(�) > 1},

we have that, for any z < zcrit(�), the norm of Kz in Xcz is smaller than 1, so that it
is a contraction in Xcz .

Finally, note that, since limz→zRu(�)− cz = +∞ and c−1z e2�BΦ+zczC(�) = +∞ for z ≥
zRu(�), we have that zcrit(�) ≤ zRu(�).

Example 2.1 (continued). Consider a potential Φ in the class of Example 2.1. The
Ruelle bound is satis�ed for c = e3�B� (see (2.18)). For such a value of c, the Kirkwood–
Salsburg operator Kz on Xc is a contraction as soon as c−1e2�BΦ+zcC(�) < 1, that is for
z < �B�(C(�)e3�B� )−1.

2.4.3 The case of non-uniform Ruelle bounds

In this subsection we allow for a weaker notion of stability, in particular, we work
under the following weakening of Assumption 2.1:

Assumption 2.1
′ (Weak stability). Consider an energy functional H as in (2.5),

where the self-potential Ψ satis�es (2.8), but for which the stability condition (2.9)
of the pair potential Φ is replaced by a weaker one:
(Hw.st.) The pair potential between two paths is given by a symmetric functional
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Figure 2.5. Let B� = 0 (i.e. a re-
pulsive potential), � = 1, C(1) = 1.
Plot of z ↦ c−1z ezcz . The curve ex-
plodes as z approaches zRu(1) = 1/e ≃
0.37, and the uniqueness domain is
(0, zcrit(1)), where zcrit(1) ≃ 0.304.

Figure 2.6. Let B� = 1, � = 1,
C(1) = 1. Plot of z ↦ c−1z e2+zcz .
The curve explodes as z approaches
zRu(1) ≃ 0.05, and the uniqueness do-
main is (0, zcrit(1)), where zcrit(1) ≃
0.041.

Φ ∶ E × E → ℝ ∪ {+∞} such that, for any {x0, … , xN } ⊂ E , there exist a
function b∶ E → ℝ+ and some x ∈ {x0, … , xN } (w.l.o.g. x0) with

N
∑
i=1

Φ(x0, xi) ≥ −b(x0). (2.34)

Remark. We know from (2.19) that (Hw.st.) holds whenever Φ is a stable potential.
Conversely, if Φ satis�es (Hw. st.) for a constant b ≡ BΦ, then it is also stable for that
same constant.

While in the previous subection we assumed that the pair potential Φ satis�ed a
uniform regularity condition (Assumption 2.3), here we work with potentials Φ that
satisfy the following weighted regularity condition (see [80]):

Assumption 2.3
′ (Weighted regularity). There exist a function a∶ E → ℝ+ and

a critical activity zcrit(�) > 0 such that, for any x ∈ E ,

zcrit(�) ∫ ea(y)+b(y)|e−�Φ(x,y) − 1| �(dy) ≤ a(x), (2.35)

with

∫
E
ea(x)+b(x)�(dx) < +∞. (2.36)

Let a and b as above. We also assume that the correlation functions satisfy a Ruelle
bound of the following form:



70 Chapter 2. Gibbs point processes on path space

Assumption 2.4
′ (Non-uniform Ruelle bound). For any P ∈ Gz,� (H ), for any N ≥

1, for �⊗N -almost all {x1, … , xN } ⊂ E N , the following holds:

�(P)N (x1, … , xN ) ≤
N
∏
i=1

ea(xi )+b(xi ).

Example 2.4. Consider a potential � = �ℎc + �l , satisfying Assumptions 2.1 and
2.2, given by the sum of a hard core potential (with hard core diameter R > 0) and a
bounded potential �l , on [R, +∞):

∃M� > 0 ∶ �l (u) ≤ M� ∀u ≥ R.

In particular, we recall from (2.11) that there exists a constant B̄Φ ≥ 0 such that, for
any x = (x,m) ∈ E , for any ξ ∈ M temp,

EΦ (x | ξ) ≥ −B̄Φ(1 + ‖m‖d+� ). (2.37)

We show here that there exist functions a and b, and a threshold activity zcrit(�) > 0
such that Assumptions 2.3′ and 2.4′ hold for any z ∈ (0, zcrit(�)).

Proof. Using (2.21), we have |e−�Φ − 1| ≤ �|Φ̄|e2�BΦ , and the weighted regularity con-
dition follows as soon as

ze2�BΦ ∫
E
ea(x2) ∫

1

0
�|�̄(x2 + m2(s) − x1 − m1(s))|ds 1{|x2−x1 |≤a0+‖m2‖+‖m1‖} �(dx2) ≤ a(x1).

Considering a function a of the form a(x, m) = a(m) = A(1 + ‖m‖d+� ), for some
constant A > 0 to be determined, and recalling that Ψ(x,m) ≥ −AΨ‖m‖d+� , this
reduces to

z�e2�BΦ ∫
C0
eA(1+‖m2‖d+� ) ∫

ℝd ∫
1

0

|||�(|x1 + m1(s) − x2 − m2(s)|)
|||ds1{|x1−x2 |≤a0+‖m1‖+‖m2‖}

dx2 eAΨ‖m2‖d+�R(dm2) ≤ A(1 + ‖m1‖d+� ).

Estimating the left hand side leads to:

z�e2�BΦ ∫
C0
(bdRd + M�kdbd (ad0 + ‖m1‖d + ‖m2‖d )) eA(1+‖m2‖d )+AΨ‖m2‖d+�R(dm2),

where kd is such that (x + y + z)d ≤ kd (xd + yd + zd ), and bd the volume of the unit
ball in ℝd . Setting

�A ∶= ∫ eA(1+‖m‖d+� )+AΨ‖m‖d+2�R(dm),
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which is �nite thanks to the de�nition of the measure R, we can �x A by the follow-
ing (note that A ≥ B̄Φ; the reason for this choice will be apparent shortly):

A ..= sup
u≥0

B̄Φ(1 + ud+� ) ∨ bd (Rd + M�kd (ad0 + ud + 1))
1 + ud+�

< +∞,

so that the regularity assumption is satis�ed for a(x, m) = A(1 + ‖m1‖d+� ), b ≡ 2BΦ,
and

zcrit(�) ..= (�A�e2�BΦ)−1.

Note that, as the value of the integral �A is not easily controlled, the threshold ac-
tivity zcrit(�) > 0 may be very small.

From the representation (2.14) of the correlation functions and (2.37), the Ruelle
bound of Assumption 2.4′ follows as well, as A ≥ B̄Φ by construction.

It is easy to see that an analogous to Proposition 2.24 holds also for the case of
non-uniform Ruelle bound. Indeed, the computations are the same, except for using
Assumption 2.3′ to prove the absolute convergence of the series in (2.32).

Proposition 2.26. LetΦ such that Assumptions 2.1′+2.3′+2.4′ hold, and set c(x) ..=
ea(x)+b(x). For any � > 0 and z ∈ (0, zcrit(�)), the operator Kz is a contraction in Xc.
For such activities there exists then at most one solution of (KS)z in Xc.

Proof. For any r ∈ Xc, with ‖r‖c ≤ 1, we estimate

|(Kzr)N+1(x0, … , xN )| ≤ e−∑
N
i=1 Φ(x0−xi )

(

N
∏
i=1

c(xi)

+
+∞
∑
k=1

zk

k! ∫
k

∏
j=1

|e−Φ(x0,yj ) − 1|
N
∏
i=1

c(xi)
k

∏
j=1

c(yj) �⊗k(dy1, … , dyk))

(2.34)
≤ eb(x0)

N
∏
i=1

c(xi)(1 +
+∞
∑
k=1

zk

k! ∫
k

∏
j=1

c(yj)|e−Φ(x0,yj ) − 1| �⊗k(dy1, … , dyk))

= eb(x0)
N
∏
i=1

c(xi)(1 +
+∞
∑
k=1

zk

k! ∫
k

∏
j=1

ea(y)+b(y)|e−Φ(x0,yj ) − 1| �⊗k(dy1, … , dyk))

(2.35)
≤ eb(x0)

N
∏
i=1

c(xi)
+∞
∑
k=0

(z/zcrit(�))kak(x0)
k!

= eb(x0)
N
∏
i=1

c(xi)ea(x0)z/zcrit(�) <
N
∏
i=0

c(xi).

The Kirkwood–Salsburg operator is then a contraction: |||Kz |||c < 1.
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2.4.4 Uniqueness domain

We can now state the main result of this section. Recall that, both for the uniform
and the non-uniform Ruelle bound setting we have a critical threshold zcrit(�) > 0
such that for any z ∈ (0, zcrit(�)), the Kirkwood–Salsburg operator Kz is a contraction
in Xc. In the former case c > 0 is a constant, while in the latter it is a non-negative
function c ∶ E → ℝ+.

Theorem 2.2. Let H be an energy functional as in (2.5), satisfying either Assump-
tions 2.1+2.3+2.4 or Assumptions 2.1′+2.3′+2.4′. For any � > 0 and z ∈ (0, zcrit(�)),
there exists at most one in�nite-volume Gibbs point process P in Gz,� (H ).

Proof. Let � > 0, z ∈ (0, zcrit(�)), and consider two Gibbs point processes P, P̂ ∈
Gz,� (H ).

(i) We know from Proposition 2.24, that the correlation functions �(P) and �(P̂ )

both satisfy the Kirkwood–Salsburg equations (KS)z .
(ii) By assumption, �(P) and �(P̂ ) satisfy a Ruelle bound for the same c, and are

therefore both elements of Xc.
(iii) For z < zcrit(�), (KS)z has a unique solution, so that the correlation functions

of P̂ – and therefore its factorial moment measures (� (P̂ )N )N – must coincide
with those of P .

(iv) For any N ≥ 1 and any bounded Γ ⊂ E , we compute

� (P)N (ΓN ) = E [|
 Γ|(|
 Γ| − 1)… (|
 Γ| − N + 1)]

= ∫
ΓN

�N (x1, … , xN )zN�(dx1) … �(dxN )

≤ ∫
ΓN

N
∏
i=1
(zc(xi))�(dx1) … �(dxN ) = (zc Γ)N ,

(2.38)

with c Γ ..= ∫ΓN c(x)�(dx). We have used here the fact that the Ruelle bound
holds either for c constant (under Assumption 2.4) or integrable (under As-
sumptions 2.3′+2.4′). We can then conclude that P = P̂ (see [61, 58]); in other
words, Gz,� (H ) = {P}.

Example 2.1 (continued). Consider here a potential � = �ℎc with a pure hard core
at some diameter R > 0, i.e. �l ≡ 0. Taking a0 = R in the range Assumption 2.2 yields
a path potential Φ (stable, with stability constant B� = 0) of the form

Φ(x1, x2) = (+∞)1[0,R)( inf
s∈[0,1]

|x1 + m1(s) − x2 − m2(s)|).

Under this interaction, two Langevin di�usions are forbidden from coming closer
than R to each other, at any given time s ∈ [0, 1].
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For such a choice of Φ – which satis�es Assumptions 2.1+2.2+2.3+2.4 – the Gibbs
point process Pz,� constructed in Theorem 2.1 is the unique element of G

temp
z,� (H ).





An explicit Dobrushin

uniqueness region for Gibbs

point processes with repulsive

interactions 3

In this chapter we consider so-called classical systems, i.e. unmarked point con-
�gurations in ℝd , with an interaction coming from a pair potential. In particular,
we study the uniqueness question and provide an explicit uniqueness region for the
Gibbs point process.

The chapter is organised as follows: in Subsection 3.1 we introduce the formalism
used in this work. In Subsection 3.2.1 we introduce the assumptions needed and state
the uniqueness theorem, which is then proved in Subsection 3.2.2. In Subsection
3.2.3 we comment on the assumptions and give possible generalisations to our work.
In Subsections 3.2.4 and 3.2.5 we discuss the optimality of our result, and compare
it to existing results coming from cluster expansion and disagreement percolation.

3.1 The se�ing

In this work we consider point con�gurations in ℝd , d ≥ 2. Though the notations
are mostly analogous to those presented in the previous chapters, we present them
here for clarity.

3.1.1 The configuration space

We endow ℝd with the usual Euclidean distance |⋅| and Borel �-algebra B(ℝd ), and
set the con�guration space M to be the set of �-�nite con�gurations 
 on ℝd , i.e.
measures of the form 
 = ∑i �xi , with Card({i ∶ xi ∈ �}) < ∞ for any bounded
Borel set � ∈ Bb(ℝd ) (here 
� the restriction of 
 to 
�). As the con�gurations we
consider are simple, i.e. with no overlapping points, we also denote a con�guration

 = ∑i �xi by the subset of ℝd on which it is supported: 
 = {x1, … , xn, … } ⊂ ℝd .
Consequently, 
� = 
 ∩ �. We write 
 ′
 ..= 
 ′ ∪ 
 for the concatenation (or union) of
two con�gurations.

We endow M with the usual �-algebra F generated by the counting functions
on bounded Borel sets, 
 ↦ Card(
�), � ∈ Bb(ℝd ). For any � ⊂ ℝd , M� ⊂ M
denotes the subset of con�gurations supported on � (and by F� the corresponding
�-algebra). On the space M , we consider the probability measure �z given by the
distribution of the homogeneous Poisson point process with intensity z > 0.

75
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3.1.2 Interactions and Gibbs point processes

We add an interaction on the Poisson point process by considering an energy func-
tional H coming from a pair potential. More precisely, let � be a symmetric non-
negative (i.e. repulsive) pair potential

�∶ ℝd × ℝd → ℝ+ ∪ {+∞},

and de�ne the energy of a �nite con�guration 
 ∈ Mf as the pair interaction

H(
) = E�(
 ) ..= ∑
{x,y}⊂


�(x, y). (3.1)

For any bounded set � ⊂ ℝd , the conditional energy of 
 in � given its exterior is
then de�ned by setting, for any ξ ∈ M ,

E� (
� | ξ�c ) ..= ∑
x∈
�

∑
y∈ξ�c

�(x, y).

Since the potential � is non-negative, this quantity is always well-de�ned. In Sub-
section 3.2.1 we provide the more precise assumptions that are needed for the main
result of this work, but we remark now that we do not assume translation invari-
ance.

We recall in this setting the de�nition of (in�nite-volume) Gibbs point process:

Definition 3.1. LetH be an energy functional as in (3.1). A probability measure
P on M is said to be a Gibbs point process with energy functional H , activity
z > 0 and inverse temperature � > 0, denoted P ∈ Gz,� (H ), if for every bounded
measurable function f and for all bounded Borel sets � ⊂ ℝd , the following DLR
equation holds

∫
M

f dP = ∫
M

∫
M�

f (
�ξ�c ) �z,�
� (ξ, d
�) P(dξ), (DLR)�

where the Gibbsian probability kernel �z,�
� is given by

�z,�
� (ξ, d
�) ..=

e−�E�(
� | ξ
c
�)

Z z,�
� (ξ)

�z
�(d
�), 
� ∈ M�,

where the normalisation factor is the partition function

Z z,�
� (ξ) ..= ∫

M�

e−�E�(
� | ξ
c
�)�z

�(d
�) ∈ (0, 1].
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Since Z z,�
� (ξ) is �nite, the Gibbsian kernel is always well-de�ned.

The �rst question that arises in Gibbs point processes theory is whether there ex-
ists at least one solution to the DLR equations. This important and di�cult problem
has been studied for many di�erent interactions and settings: from the the classical
works of [90] and [77], to more recent works considering the case of geometrical
interactions ([18, 21]), in�nite-range pair potentials ([25]), and unbounded interac-
tions in the context of marked point processes ([Z2]).

The existence of such a measure in the setting we present here is a known result
(for example by D. Ruelle in [91]), which we state here for completeness:

Proposition 3.2. Let � be a non-negative and symmetric pair potential. Let � > 0
and assume that

∀x ∈ ℝd , ∫
ℝd

(1 − e−��(x,y)) dy < +∞.

Then, for any activity z > 0, there exists at least one Gibbs point process P ∈
Gz,� (H ).

After the existence question, it is natural to explore that of the uniqueness (or
lack thereof) of the Gibbs point process. This question has been of interest to the
statistical mechanics community since the end of the 1960s. In particular, three
techniques are commonly used to approach this problem: the Dobrushin criterion
[29, 77], cluster expansion [64, 51], and disagreement percolation [97, 98, 49]. First
introduced in the lattice setting and later extended to the point process setting, these
techniques have di�erent assumptions, and yield di�erent parameter domains in
which uniqueness holds.

In this chapter we �rst prove a simple and explicit uniqueness criterion derived
from the standard Dobrushin technique, and then compare it to criteria coming from
the two other techniques.

3.2 Uniqueness of the Gibbs point process

In Subsections 3.2.1 and 3.2.2, we derive a simple and explicit uniqueness region, by
applying the discrete Dobrushin contraction criterion from [29] through a discreti-
sation parameter a, and then considering the limit as a goes to 0.

The remainder of the chapter deals with the natural questions that arise from
this result: in Subsection 3.2.3 we discuss the assumptions of Theorem 3.1, as well as
possible generalisations that could be the subject of future works; in Subsection 3.2.4
we perform a numerical study to show that taking the limit for the mesh size a → 0
yields a larger uniqueness region than that of the Dobrushin criterion for any �xed
a > 0. In Subsection 3.2.5 we compare this uniqueness region to the ones coming
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from other approaches, namely cluster expansion and disagreement percolation.

3.2.1 Dobrushin uniqueness region

We present here the assumptions that are required in the statement of our main
result. See Subsection 3.2.3 for some comments on these conditions.

Assumption 3.1. The pair potential � satis�es the following conditions:
(A1) It is non-negative and admits a hard-core component close to the origin:

there exists a measurable neighbourhood U ⊂ ℝd of the origin (i.e. B(0, �) ⊂
U , for some � > 0), such that

∀ x, y ∈ ℝd ∶ x − y ∈ U , �(x, y) = +∞.

(A2) Uniform regularity of the potential:

C(�) ..= sup
x∈ℝd

∫
ℝd

(1 − e−��(x,y)) dy < +∞.

For the third assumption we �rst need to introduce some notations. Let a > 0, and
divide the space ℝd into cubes of side-length a, centred in the points of the lattice:
for any i ∈ aℤd , these are

�a,i
..= (i −

a
2
, i +

a
2]

d
,

then de�ne the following “local supremum” of the Mayer function

Ψa(x, y) ..= sup
ȳ∈�a,i

(1 − e−��(x,ȳ)) if y ∈ �a,i . (3.2)

The last assumption is given by the following
(A3) Regularity of the Mayer function:

sup
x∈ℝd

∫
ℝd

(1 − e−��(x,y)) dy = lima→0
sup
x∈ℝd

∫
ℝd
Ψa(x, y) dy.

We are now ready to state the main result of this chapter:

Theorem 3.1. Let H be an energy functional as in (3.1), where the pair potential
� satis�es assumptions (A1), (A2), (A3). Furthermore, let z > 0 and � > 0, and
assume

z < C(�)−1. (3.3)

There exists then a unique Gibbs point process P ∈ Gz,� (H ).
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3.2.2 Proof of Theorem 3.1

In this subsection we provide the proof to the above theorem. As already stated in
the Introduction, the result is an application to the continuous setting of the classical
Dobrushin technique for lattice models. To do this, we use a standard discretisation
technique, via a parameter a > 0 that de�nes the mesh size a. The novelty of our
result, and what leads to the explicit uniqueness region, is to consider the Dobrushin
criterion in the limit as a → 0.

The Dobrushin contraction method in the la�ice

The proof of Theorem 3.1 relies on the classical Dobrushin criterion [29]. In this
subsection we describe the setting and the results as they apply to our model (for a
general presentation see, for example, [45]).

LetM be a complete separable metric space, which we call the spin space. The
lattice con�guration spaceMaℤd is equipped with the standard cylinder �-algebra.
Let Π = (ΠΓ(⋅|!))Γ⊂aℤd ,!∈Maℤd be a lattice speci�cation, i.e. a consistent family of con-
ditional probability measures indexed by a �nite Γ ⊂ aℤd and a lattice con�guration
! ∈ Maℤd . Furthermore, for any event A, ΠΓ(A|!) only depends on the restriction
!Γc of ! toMΓc .

Definition 3.3. A probability measure Q onMaℤd is said to be a Gibbs measure
compatible with the speci�cation Π if, for any �nite Γ ⊂ aℤd and any bounded
measurable function g, it satis�es

∫ g(!)Q(d!) = ∫ g(!′Γ !Γc )ΠΓ(d!
′
Γ|!)Q(d!).

The original result, proved by Dobrushin in [29], reads:

Theorem 3.2. Let Πi
..= Π{i}. If

sup
i∈aℤd

∑
j≠i

sup
!,!̃∈Maℤd

!k=!̃k ∀k≠j

dTV (Πi (⋅|!), Πi (⋅|!̃)) < 1,

then there exists at most one Gibbs measure onMaℤd compatible with the spec-
i�cation Π.

An easy generalisation is the following

Lemma 3.4. Let A ⊂ Maℤd be such that P(A) = 1 for any Gibbs measure P in
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Maℤd compatible with the speci�cation Π. De�ne, for any i, j ∈ aℤd ,

kAi,j ..= sup
!,!̃∈A

!k=!̃k ∀k≠j

dTV (Πi (⋅|!), Πi (⋅|!̃)) , (3.4)

If
sup
i∈aℤd

∑
j≠i

kAi,j < 1, (3.5)

then there exists at most one Gibbs measure inMaℤd compatible with the speci-
�cation Π.

Remark. As seen in the above Lemma, the hard-core assumption (A1) allows us
to restrict the set of possible boundary conditions in (3.4). This is also achieved
by Dobrushin and Pecherski in [32], where they �rst extended the lattice result of
Dobrushin to the continuous framework. However, it is less suited for �nding an
explicit uniqueness region, which is one of the goals of our work.

For uses of the Dobrushin–Pecherski criterion, see for example [77, 2].

Correspondence between continuous and la�ice models

In order to apply Lemma 3.4, one must express the continuous model as a lattice
model. The representation we make use of here does not lose any of the information
from the continuous model, so that the uniqueness properties of the two models are
indeed equivalent (see [32, 77]). In this it di�ers from the cell-gas model presented
by A. Rebenko in [85], where the idea is that uniqueness for the lattice model implies
uniqueness for the continuous one, but it is not a 1-1 correspondence.

Fix a > 0, and consider again the partition of ℝd into cubes �a,i = i + (−a/2, a/2]d ,
i ∈ aℤd . Set the spin space to be the space of con�gurations supported on the closure
of �a,0, M ..= M�̄a,0 , endowed with its �-algebra F�̄a,0 . The lattice con�gurations
are then subsets ! ⊂Maℤd . The correspondence between the two models is given
by the following measurable embedding

T ∶ M →Maℤd


 ↦ ! = (!j)j∈aℤd ,

de�ned by setting, for all j ∈ aℤd ,

!j = 
�a,j − j ..= {x − j ∶ x ∈ 
�a,j}.

Its inverse T −1 can then be naturally extended from T (M ) to the whole ofMaℤd .
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We next de�ne the lattice speci�cation by setting, for any �nite Γ ⊂ aℤd ,

ΠΓ(⋅|!) ..= �z,�
� (ξ, ⋅),

where � = ∪i∈Γ�a,i and ξ = T −1(!), and let G aℤd

z,� (H ) be the set of probability mea-
sures on Maℤd compatible with the speci�cation Π. Thanks to the hard-core as-
sumption (A1), it can be seen ([77]) that, for a > 0 small enough, the map T induces
a bijective map

T̂ ∶ Gz,� (H ) → G aℤd

z,� (H ).

We introduce the following

Definition 3.5. A con�guration ξ ∈ M is said to be admissible if it satis�es the
hard core condition, i.e.

x, y ∈ ξ ⟹ x − y ∉ U .

Let A ⊂ M denote the set of all admissible con�gurations.

It is easy to see that, for any P ∈ Gz,� (H ), P(A ) = 1, so that we can restrict our study
to only the admissible con�gurations. Indeed, thanks to Lemma 3.4 and the one-
to-one correspondence between continuous and lattice models, in order to prove
uniqueness of the original Gibbs point process, it is enough to show that, for some
a > 0,

sup
i∈aℤd

∑
j∈aℤd

k(a)i,j < 1, (3.6)

where we have set, for any i, j ∈ aℤd ,

k(a)i,j
..= sup

ξ,ξ̃∈A
ξ�ca,j

=ξ̃�ca,j

dTV (�
z,�
�a,i
(ξ, ⋅); �z,�

�a,i
(ξ̃, ⋅)) .

Computation of the coe�icients

In this subection we consider a > 0 small enough such that

�a,0 ⊂ B(0, �) ⊂ U .

Thanks to Assumption (A1), this implies that every admissible con�guration ξ ∈ A
has at most one point in each cube �a,k , k ∈ aℤd .

Fix i ∈ aℤd , and for the sake of simplicity, let � denote the cube �a,i . For any
j ∈ aℤd ⧵ {i}, consider two con�gurations that coincide outside of the cube �a,j , and
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di�er only inside:
ξ, ξ̃ ∈ A ∶ ξ�c

a,j
= ξ̃�c

a,j
.

Without loss of generality, we can assume thatZ z,�
� (ξ̃) ≤ Z z,�

� (ξ). Using an equivalent
formulation of the total variation distance, we write

dTV (�
z,�
� (ξ, ⋅), �z,�

� (ξ̃, ⋅))

= 1 − ∫ min
(
e−�E�(
� | ξ

c
�)

Z z,�
� (ξ)

;
e−E�(
� | ξ̃

c
�)

Z z,�
� (ξ̃) )

�z
�(d
�)

= ∫ (
e−�E�(
� | ξ

c
�)

Z z,�
� (ξ)

− min
(
e−�E�(
� | ξ̃

c
�)

Z z,�
� (ξ)

;
e−�E�(
� | ξ̃

c
�)

Z z,�
� (ξ̃) ))

�z
�(d
�).

Since, thanks to the choice of � , at most one point is “admissible” in �, we have

dTV (�
z,�
� (ξ, ⋅), �z,�

� (ξ̃, ⋅)) = ze−z|�| ∫
� [

e−�E�(x | ξ
c
�)

Z z,�
� (ξ)

−
e−�E�(x | ξ̃

c
�)

Z z,�
� (ξ̃) ]

+

dx,

where [ y ]+ ..= max(y, 0) denotes the positive part of y ∈ ℝ.

Since e−z|�| ≤ Z z,�
� (ξ̃) ≤ Z z,�

� (ξ) ≤ 1, we have that

e−z|�|
[
e−�E�(x | ξ

c
�)

Z z,�
� (ξ)

−
e−�E�(x | ξ̃

c
�)

Z z,�
� (ξ̃) ]

+

≤ e−z|�|
[
e−�E�(x | ξ

c
�)

Z z,�
� (ξ)

−
e−�E�(x | ξ̃

c
�)

Z z,�
� (ξ) ]

+

≤ [e
−�E�(x | ξc�) − e−�E�(x | ξ̃

c
�)]

+
,

and we can now estimate

dTV (�
z,�
� (ξ, ⋅), �z,�

� (ξ̃, ⋅)) ≤ z ∫
�
[e
−�E�(x | ξc�) − e−�E�(x | ξ̃

c
�)]

+
dx. (3.7)

Noting that the right-hand side of (3.7) is largest when ξ = o, and that, thanks to the
hard-core assumption (A1), ξ̃ contains at most one point in the cube �a,j , we obtain
the following bound, that holds uniformly over all pairs of admissible boundary
con�gurations:

∀ξ, ξ̃ ∈ A ∶ ξ�c
a,j
= ξ̃�c

a,j
, dTV (�

z,�
� (ξ, ⋅), �z,�

� (ξ̃, ⋅)) ≤ z sup
y∈�a,j

∫
�
(1 − e−��(x,y)) dx,

In particular, we can take the supremum over the con�gurations ξ, ξ̃ ∈ A such that
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ξ�c
a,j
= ξ̃�c

a,j
:

k(a)i,j ≤ z sup
y∈�a,j

∫
�a,i

(1 − e−��(x,y)) dx.

Obtaining the bound

Summing the coe�cients k(a)i,j over all j ∈ aℤd ⧵ {i}, leads to

∑
j∈aℤd ⧵{i}

k(a)i,j ≤ z ∑
j∈aℤd ⧵{i}

sup
y∈�a,j

∫
�a,i

(1 − e−��(x,y)) dx

≤ z ∫
�a,i

∑
j∈aℤd ⧵{i}

sup
y∈�a,j

(1 − e−��(x,y)) dx.

We want to obtain the expression of the local supremum Ψa(x, y) of the Mayer
function de�ned in (3.2). For this reason, we add an integration over y ∈ �a,j and
rewrite the above as:

z ∫
�a,i

∑
j∈aℤd ⧵{i}

1
|�a,j | ∫�a,j

sup
ȳ∈�a,j

(1 − e−��(x,ȳ)) dy dx

=
z

|�a,i | ∫�a,i
∫
ℝd ⧵�a,i

Ψa(x, y)dy dx

≤ z sup
x∈�a,i

∫
ℝd
Ψa(x, y)dy.

Taking the supremum over all i ∈ aℤd yields

sup
i∈aℤd

∑
j∈aℤd

sup
ξ,ξ̃∈A

dTV (�
z,�
�a,i
(ξ, ⋅), �z,�

�a,i
(ξ̃, ⋅))

≤ z sup
x∈ℝd

∫
ℝd
Ψa(x, y)dy

a→0
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→z sup

x∈ℝd
∫
ℝd

(1 − e−��(x,y)) dy,
(3.8)

where the last convergence follows from Assumption (A3). This means, in partic-
ular, that if z supx∈ℝd ∫ℝd (1 − e−��(x,y)) dy < 1, there exists a > 0 such that the
Dobrushin condition (3.6) is satis�ed: supi∈aℤd ∑j∈aℤd ⧵{i} k

(a)
i,j < 1. This concludes

the proof of Theorem 3.1.

3.2.3 Discussion about the assumptions and possible generalisations

The proof of Theorem 3.1 relies on the assumptions on the interaction made above,
namely that it is coming from a non-negative pair potential � which is hard-core
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close to the origin (A1), with an integrability assumption (A2), and a technical reg-
ularity assumption (A3). We comment here on these requirements.

Firstly, we restrict our study to non-negative potentials � in order to have a set-
ting where all three uniqueness methods can be applied and compared. Moreover,
extending this result to a more general pair potential, e.g. superstable and lower-
regular, would cause some complications in the proof. For example, the observation
made after (3.7) is no longer valid if the potential is allowed to take negative values.

Secondly, as we have already stated, the regularity assumption (A3) is purely tech-
nical, resulting from taking a → 0 in the proof. We remark that it is satis�ed when-
ever the set of discontinuity of �(x, .) is of measure 0, which is the case, for example,
for the radial potentials with hard core presented in Subection 3.2.5.

Thirdly, the integrability assumption (A2) is quite standard, and seems unavoid-
able when using the Dobrushin criterion. Furthermore, a similar assumption is re-
quired when using the cluster expansion technique.

The most restricting requirement we make is therefore assumption (A1), which
excludes interactions that do not have a hard-core component when two points are
too close; notice how the hard core U is not necessarily a sphere B(0, �), but can be
a more general neighbourhood of the origin, for example an ellipse where � is the
length of the minor axis.

The hard-core component of the interaction makes sure that any boundary con-
dition has at most one point if the cubes are small enough; this in turn allows us to
derive the bound in (3.3). However, many interactions – like the widely known
Strauss pairwise interaction from [96] – do not satisfy this assumption. In the
case of a non-negative potential without hard core, as for the Strauss model with
�(x, y) = 1{|x−y|≤1}, we would still be able to apply the classical Dobrushin criterion
and then consider the limit a → 0. However, since in this case there is no restric-
tion on the number of points in each cube, the uniqueness region we would obtain
is z < b−1d , where bd is the volume of the unit ball. Notice how this criterion does
not depend on � anymore.

One possible way to overcome this issue is to use the so-called Dobrushin–Pe-
chersky criterion [32]. While the “general behaviour” of the uniqueness region
obtained with this criterion is known (see [77]), the resulting conditions are too
technical to obtain explicit values of the parameters. However, it seems possible to
develop new techniques inspired by the proof of Theorem 3.1.

Heuristically, when taking a → 0, it is less and less likely for a boundary condi-
tion to have more than one point in a small cube of side-length a. This is precisely
what we use the hard-core assumption (A1) for, so we formulate the following

Conjecture 3.3. Under assumptions (A2) and (A3), there is uniqueness of the Gibbs
point process as soon as

z < C(�)−1.
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3.2.4 Optimality of Theorem 3.1 within the Dobrushin uniqueness

regime

We believe the simplicity of the uniqueness region obtained in Theorem 3.1, as well
as the ability to compare it to other criteria, is itself a justi�cation for considering
this method. It is of course natural to ask whether taking the limit for a → 0 actually
yields a larger uniqueness region than what is obtained by just considering a �xed
a > 0.

Figure 3.1. Dobrushin
uniqueness bound a ↦ z̄� (a)
for the Hard-sphere
model, for several values
of a ∈ [0, 0.7]. We �nd
z̄� (0) ≃ 0.318. 00 0.10.1 0.20.2 0.30.3 0.40.4 0.50.5 0.60.6 0.70.7 0.80.8

0.150.15

0.20.2

0.250.25

0.30.3

0.350.35

This translates to comparing the uniqueness regions obtained by �xing some a >
0 and by taking the limit a → 0, i.e. respectively,

Ia ..= {z > 0 ∶ ∑
j∈aℤd

j≠i

sup
ξ,ξ̃

dTV (�
z,�
�a,i
(ξ, ⋅), �z,�

�a,i
(ξ̃, ⋅)) < 1} = (0, z̄� (a)), a > 0,

and
I0 ..= {z > 0 ∶ z C(�) < 1} = (0, z̄� (0)),

where z̄� (a) is the supremum of the interval Ia, a ≥ 0.
While we do not address this question in the general case, we have performed a

numerical study in the simple case of the Hard-sphere model �(x, y) = (+∞)1{|x−y|<1}
in dimension d = 2. Figure 3.1 displays the upper bound z̄� (a) of the Dobrushin
uniqueness interval that we have computed numerically for several values of a,
showing that that taking the limit for a → 0 yields a larger Dobrushin uniqueness
region than that of any �xed a > 0.

3.2.5 Comparison with the other uniqueness methods

In this subection we brie�y describe the two methods of cluster expansion and dis-
agreement percolation, and see how the uniqueness regions that they yield compare
to our result via the Dobrushin criterion. In particular, we provide a visual compar-
ison between the three uniqueness methods, displayed below in Figure 3.2 for two
potentials with hard core, and in Figure 3.3 for the case of the Strauss potential if
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Conjecture 3.3 holds.
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Figure 3.2. The uniqueness regions (shaded where our method yields a larger
bound) for the three di�erent methods consist in the regions below the respective
curves. Depicted here for the pure hard-core potential �(x, y) = (+∞)1{|x−y|<1} on
the left and for �(x, y) = (+∞)1{|x−y|<1} + 1{1≤|x−y|≤3} on the right.

Figure 3.3. Uniqueness regions
(shaded where our method yields a
larger bound) for the Strauss poten-
tial �(x, y) = 1{|x−y|≤1}, assuming
Conjecture 3.3 is valid. 0.50.5 11 1.51.5
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Cluster expansion

The method of cluster expansion was �rst developed for lattice systems in the 1980s
(see e.g. [63]) and later extended to the continuous case. Indeed, di�erent ap-
proaches exist to show convergence of the cluster terms (see e.g. [64, 80, 74]).

For continuous point processes, the technique (from Ruelle, see [90]) relies on
a series expansion of the correlation functions. More precisely, it consists in show-
ing that the correlation functions of a Gibbs point process can be expressed as an
absolutely converging series of cluster terms, and uniqueness is then proved by con-
sidering a set of integral equations – the so-called Kirkwood–Salsburg equations –
satis�ed by the correlation functions, which can be reformulated as a �xed-point
problem in an appropriately chosen Banach space, having therefore have a unique
solution.

In [51], S. Jansen presents a cluster expansion criterion for Gibbs point processes
with a repulsive interaction �. However – as the most general form of this crite-
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rion yields an implicit uniqueness region – in order to compare it with the domains
obtained through the other methods, we only recall a speci�c uniqueness case, that
allows however to obtain an explicit region.

Theorem 3.4 ([51]). Let H be an energy functional as in (3.1). Let z > 0 and
� > 0, and suppose there exist a non-negative measurable function a and some
t > 0 such that, for a.e. x0 ∈ ℝd ,

zet ∫ (1 − e−��(x0,y)) ea(y)dy ≤ a(x0).

There exists then a unique Gibbs point process P ∈ Gz,� (H ).

Restricting a to be a constant a ≡ a ≥ 0, and remarking that maxa≥0 ae−a = 1/e,
the condition above holds for some a ≥ 0 and t > 0 as soon as the classical Ruelle
condition (e.g. Theorem 4.2.3 of [90]) holds

z < e−1C(�)−1. (3.9)

By considering a non-constant function a in Theorem 3.4, one could hope to ob-
tain a better bound than (3.9).

Moreover, using tree-graph estimates, Fernandez, Procacci, and Scoppola, were
able to improve the classical cluster expansion bound. Their approach, based on
tree-graph estimates, is �rst presented in [33], where they also present a compari-
son to the other methods. In particular, in [34], the authors study the speci�c case
of the 2-dimensional hard-sphere model (here C(�) = b2) and obtain from cluster
expansion an improved bound which they then estimate numerically as

z < 0.5107 b−12 .

While larger than bound (3.9), z < (e C(�))−1, this uniqueness region is still smaller
than the one we obtain, i.e. z < b−12 .

We remark that the restriction to non-negative potentials greatly simpli�es the
cluster expansion approach. Indeed, in this setting it is immediate to see that the
correlation functions of any Gibbs point process are in the same Banach space where
uniqueness holds, which is not in general true (proving this in the setting of [92]
makes use of some superstability estimates).

Disagreement percolation

The method of disagreement percolation was introduced for lattice systems by van
den Berg and Maes [97, 98]. The idea behind disagreement percolation is the con-
struction of a coupling, sometimes called disagreement coupling, which compares
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Gibbs speci�cations with two di�erent boundary conditions outside of a given box,
in such a way that the disagreement points between the two Gibbs speci�cation are
“connected” to the boundary of the box. If the probability of being connected to the
boundary of an increasingly large box goes to zero, uniqueness holds.

Adapting the uniqueness result of [49] to our setting reads

Theorem 3.5 ([49]). Let H be an energy functional as in (3.1), where � is a �nite-
range pair potential on ℝd , i.e. there exists r > 0 such that �(x, y) = 0 if |x − y| > r.
Let � > 0 and

z <
zc(d)
rd

,

where zc(d) is the percolation threshold of the Poisson–Boolean model in dimen-
sion d connecting points at distance at most one. There exists then at most one
Gibbs point process P ∈ Gz,� (H ).

Remark. We recall that the Poisson–Boolean model with �xed radius 1/2 is a Poisson
point process of balls �z where the con�gurations are collections of balls centred in
the Poisson point in ℝd and with radius 1/2. The percolation threshold zc(d) is the
smallest intensity value at which there exists �z-almost surely an in�nite connected
component appears (i.e. the model percolates).

Note that zc(d) ≥ 1/bd and, in the asymptotics as d → ∞, zc(d) ∼ 1/bd , see [79].
We also remark that in dimension d = 2 a numerical simulation (see [83]) yields
zc(2) ≃ 1.43629.
In [49] the above bound is actually proved for interactions that do not necessarily
come from a pair potential, without a hard core, and with a �nite random range that
may depend on the (unbounded) marks of each point of the con�guration. However,
it does not apply for in�nite-range pair potentials, which are instead allowed in
Theorem 3.1.

Finally, we remark that the disagreement percolation uniqueness region is inde-
pendent of the parameter � and depends only on the range of the interaction. Typi-
cally, when � is large, the disagreement percolation uniqueness region is larger than
the one obtained from our bound in Theorem 3.1, but when � is small, our unique-
ness region is larger than the one coming from disagreement percolation (see the
second potential of Figure 3.2).



Computer programmes A

A.1 Langevin di�usions

Code used to generate Figure 2.1.

import numpy as np
from math import sqrt
from pylab import plot, show, grid, axis, xlabel, ylabel,

↪ title
import six
import matplotlib.pyplot as plt

#function simulating a two dimensional diffusion
def langevin(x0,n,dt,delta,out):

x0 = np.asarray(x0)
r = np.random.normal(size=x0.shape + (n,), scale=delta*sqrt(

↪ dt))
if out is None:

out = np.empty(r.shape)
L = np.empty(r.shape)
np.cumsum(r, axis=-1, out=out)

for i in range(1,n):
L[0,i] = -2*L[0,i-1]**3*dt + out[0,i]
L[1,i] = -2*L[1,i-1]**3*dt + out[1,i]

return L

#computing the maximum displacement
def disp(x):

D = np.sqrt(np.amax((x[0,:]-x[0,0])**2+(x[1,:]-x[1,0])**2))
return D

def draw(x,d,c):
# change default range so that new circles will work

89
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ax.set_xlim((-3, 7))
ax.set_ylim((-5, 7))
#plt.autoscale(False)
beingsaved = plt.figure()
plt.plot(x[0],x[1],c,linewidth=0.3)
plt.plot(x[0,0],x[1,0],'x',color='k',markersize=5)
#plt.plot(x[0,-1], x[1,-1], 'wo',markersize=3)
circ=plt.Circle((x[0,0],x[1,0]),d,color=c,alpha=0.2)
plt.gcf().gca().add_artist(circ)
plt.savefig('Langevin.pdf', format='pdf',bbox_inches='tight'

↪ ,pad_inches=0.0)

# Parameter for the BM
delta1 = 2
delta2 = 2
# Total time.
T = 1
# Number of steps.
N = 100000
# Time step size
dt = T/N

#Initialisation
x1 = np.empty((2,N))
x2 = np.empty((2,N))
x1[:, 0] = 0.0
x2[:, 0] = 0.0

#starting points of diffusions
ic1 = 0.0
ic2 = 2.0

#creating the diffusions
x1 = langevin(x1[:,0], N, dt, delta1,out=x1)
d1 = disp(x1)
x2 = langevin(x2[:,0], N, dt, delta2,out=x2)
d2 = disp(x2)

ax = plt.gca()
ax.cla() #clear for plot
axis('equal')
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ax.axis('off')
ax.patch.set_facecolor('#8FBC8F')
ax.patch.set_alpha(0.0)

#drawing the circles of maximum displacement radius
draw(x1+ic1,d1,'b')
draw(x2+ic2,d2,'r')

show()
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A.2 Activity regime

Code used to generate Figures 2.5 and 2.6.

import numpy as np
import matplotlib.pyplot as plt

#parameters of the model
cphi = 1.0
cbeta = 1.0

zR = np.e**(-2*cphi-1)/cbeta

#constant c_z (see Equation 2.25)
def cz(num):

#regime
return (np.e**(2*cphi)*(1 + (2*np.pi)**(1/2)*np.e*np.log

↪ (1/(1-num/zR))))

#function f(z) (see page 68)
def f(num):

return np.e**(2*cphi+num*cz(num)*cbeta)/cz(num)

x = np.linspace(0.000001,0.045,100)
y = f(x)

for i in range(100):
print (x[i],y[i])

plt.xlabel('z')
plt.plot(x,y,'r')
plt.show()



List of frequently used symbols

Notation Description Page
List

ℝd d-dimensional Euclidean space 21
ℤd d-dimensional integer lattice 33
ℕ∗ Positive (non-zero) integers 22
dx , dx� Lebesgue measure on ℝd or on � ⊂ ℝd 24
R Reference probability measure on the mark space S 25
� Finite volume: a bounded Borel set of ℝd 21
�n Cube [−n, n)d ⊂ ℝd 31
|�| d-dimensional Lebesgue measure of a set � ⊂ ℝd 21
bd Volume of the unit ball in ℝd 70
B(ℝd ) Borel �-algebra on ℝd 21
Bb(ℝd ) Subset of bounded Borel sets on ℝd 21
E State space, either ℝd ×S or ℝd 21
S Space of marks; given by a normed space 21
M Set of point measures (con�gurations) on the state

space E
21

Mf Set of �nite con�gurations on the state space E 22
M temp,M t Set of tempered con�gurations 23

 , ξ, � Point con�gurations on E 21
o Empty con�guration, supported on the empty set ∅ 21
! Lattice con�guration 80
�z Poisson point process on E with activity z > 0 24
H Energy functional on Mf 25
H� Conditional energy on � given the environment 26
L Space of tame and local functionals on M 29
�L Topology of local convergence on P(M ) induced by

the tame and local functionals
29

Gz,� (H ),Gz,� (Φ) Set of Gibbs point processes with activity z associated
to an energy functional H or a potential Φ

29

��, �
z,�
� Gibbsian probability kernel 30
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