
Hasso–Plattner–Institut für Softwaresystemtechnik
an der Universität Potsdam

Quantitative Modeling and Analysis
with FMC-QE

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr.-Ing.)
in der Wissenschaftsdisziplin "Software Engineering"

eingereicht an der
Mathematisch Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Stephan Kluth

Wolfsburg, den 18.07.2011

This work is licensed under a Creative Commons License:

Attribution ‐ Noncommercial ‐ Share Alike 3.0 Germany

To view a copy of this license visit

http://creativecommons.org/licenses/by‐nc‐sa/3.0/de/

Published online at the

Institutional Repository of the University of Potsdam:

URL http://opus.kobv.de/ubp/volltexte/2011/5298/

URN urn:nbn:de:kobv:517‐opus‐52987

http://nbn‐resolving.de/urn:nbn:de:kobv:517‐opus‐52987

Gutachter:

Prof. Dr.-Ing. Werner Zorn
Prof. Dr. Dr. h.c. Otto Spaniol
Prof. Dr. Paul Müller

Abstract

The modeling and evaluation calculus FMC-QE, the Fundamental Modeling Concepts for
Quantitative Evaluation [143], extends the Fundamental Modeling Concepts (FMC) for per-
formance modeling and prediction. In this new methodology, the hierarchical service requests
are in the main focus, because they are the origin of every service provisioning process. Simi-
lar to physics, these service requests are a tuple of value and unit, which enables hierarchical
service request transformations at the hierarchical borders and therefore the hierarchical mod-
eling. Through reducing the model complexity of the models by decomposing the system
in different hierarchical views, the distinction between operational and control states and the
calculation of the performance values on the assumption of the steady state, FMC-QE has a
scalable applicability on complex systems.

According to FMC, the system is modeled in a 3-dimensional hierarchical representation space,
where system performance parameters are described in three arbitrarily fine-grained hierar-
chical bipartite diagrams. The hierarchical service request structures are modeled in Entity
Relationship Diagrams. The static server structures, divided into logical and real servers, are
described as Block Diagrams. The dynamic behavior and the control structures are specified as
Petri Nets, more precisely Colored Time Augmented Petri Nets. From the structures and pa-
rameters of the performance model, a hierarchical set of equations is derived. The calculation
of the performance values is done on the assumption of stationary processes and is based on
fundamental laws of the performance analysis: Little’s Law and the Forced Traffic Flow Law.
Little’s Law is used within the different hierarchical levels (horizontal) and the Forced Traffic
Flow Law is the key to the dependencies among the hierarchical levels (vertical). This calcula-
tion is suitable for complex models and allows a fast (re-)calculation of different performance
scenarios in order to support development and configuration decisions.

Within the Research Group Zorn at the Hasso Plattner Institute, the work is embedded in a
broader research in the development of FMC-QE. While this work is concentrated on the theo-
retical background, description and definition of the methodology as well as the extension and
validation of the applicability, other topics are in the development of an FMC-QE modeling
and evaluation tool and the usage of FMC-QE in the design of an adaptive transport layer in
order to fulfill Quality of Service and Service Level Agreements in volatile service based envi-
ronments. Especially the close collaboration the development of the FMC-QE Tool promotes
the validation of FMC-QE.

This thesis contains a state-of-the-art, the description of FMC-QE as well as extensions of FMC-
QE in representative general models and case studies. In the state-of-the-art part of the thesis
in chapter 2, an overview on existing Queueing Theory and Time Augmented Petri Net models
and other quantitative modeling and evaluation languages and methodologies is given. Also
other hierarchical quantitative modeling frameworks will be considered. The description of
FMC-QE in chapter 3 consists of a summary of the foundations of FMC-QE, basic definitions,
the graphical notations, the FMC-QE Calculus and the modeling of open queueing networks

i

ABSTRACT

as an introductory example. The extensions of FMC-QE in chapter 4 consist of the integra-
tion of the summation method in order to support the handling of closed networks and the
modeling of multiclass and semaphore scenarios. Furthermore, FMC-QE is compared to other
performance modeling and evaluation approaches. In the case study part in chapter 5, proof-
of-concept examples, like the modeling of a service based search portal, a service based SAP
NetWeaver application and the Axis2 Web service framework will be provided. Finally, con-
clusions are given by a summary of contributions and an outlook on future work in chapter
6.

ii

Zusammenfassung

FMC-QE (Fundamental Modeling Concepts for Quantitative Evaluation [143]) ist eine auf
FMC, den Fundamental Modeling Concepts, basierende Methodik zur Modellierung des Leis-
tungsverhaltens von Systemen mit einem dazugehörenden Kalkül zur Erstellung von Leis-
tungsvorhersagen wie Antwortzeiten und Durchsatz. In dieser neuen Methodik steht die Mo-
dellierung der hierarchischen Bedienanforderungen im Mittelpunkt, da sie der Ursprung aller
dienstbasierenden Systeme sind. Wie in der Physik sind in FMC-QE die Bedienanforderungen
Tupel aus Wert und Einheit, um Auftragstransformationen an Hierarchiegrenzen zu ermögli-
chen. Da die Komplexität durch eine Dekomposition in mehreren Sichten und in verschiedene
hierarchische Schichten, die Unterscheidung von Operations- und Kontrollzuständen, sowie
dazugehörige Berechungen unter Annahme der Stationarität reduziert wird, skaliert die An-
wendbarkeit von FMC-QE auf komplexe Systeme.

Gemäß FMC wird das zu modellierende System in einem 3-dimensionalen hierarchischen Be-
schreibungsraum dargestellt. Die quantitativen Kenngrößen der Systeme werden in drei belie-
big frei-granularen hierarchischen bi-partiten Graphen beschrieben. Die hierarchische Struk-
tur der Bedienanforderungen wird in Entity Relationship Diagrammen beschrieben. Die sta-
tischen Bedienerstrukturen, unterteilt in logische und reale Bediener, sind in Aufbaudiagram-
men erläutert. Außerdem werden Petri Netze, genauer Farbige Zeit-behaftete Petri Netze, da-
zu verwendet, die dynamischen Abläufe, sowie die Kontrollflüsse im System zu beschreiben.
Anschließend wird eine Menge von hierarchischen Gleichungen von der Struktur und den
Parametern des Modells abgeleitet. Diese Gleichungen, die auf dem stationären Zustand des
Systems beruhen, basieren auf den beiden Fundamental Gesetzen der Leistungsanalyse, dem
Gesetz von Little und dem Verkehrsflussgesetz. Das Gesetz von Little definiert hierbei Bezie-
hungen innerhalb einer hierarchischen Schicht (horizontal) und das Verkehrsflussgesetz wie-
derum Beziehungen zwischen hierarchischen Schichten (vertikal). Die Berechungen erlauben
Leistungsvorhersagen für komplexe Systeme durch eine effiziente (Neu-)Berechnung von Leis-
tungsgrößen für eine große Auswahl von System- und Lastkonfigurationen.

Innerhalb der Forschungsgruppe von Prof. Dr.-Ing Werner Zorn am Hasso Plattner Institut an
der Universität Potsdam ist die vorliegende Arbeit in einen größeren Forschungskontext im
Bereich FMC-QE eingebettet. Während hier ein Fokus auf dem theoretischen Hintergrund, der
Beschreibung und der Definition der Methodik als auch der Anwendbarkeit und Erweiterung
gelegt wurde, sind andere Arbeiten auf dem Gebiet der Entwicklung einer Anwendung zur
Modellierung und Evaluierung von Systemen mit FMC-QE bzw. der Verwendung von FMC-
QE zur Entwicklung einer adaptiven Transportschicht zur Einhaltung von Dienstgüten (Quali-
ty of Service) und Dienstvereinbarungen (Service Level Agreements) in volatilen dienstbasier-
ten Systemen beheimatet. Speziell die Kooperation im Bereich der Anwendungsentwicklung
führte die Entwicklung von FMC-QE in dieser Arbeit im Bereich Validierung voran.

Diese Arbeit umfasst einen Einblick in den Stand der Technik, die Beschreibung von FMC-QE
sowie die Weiterentwicklung von FMC-QE in repräsentativen allgemeinen Modellen und Fall-

iii

ZUSAMMENFASSUNG

studien. Das Kapitel 2: Stand der Technik gibt einen Überblick über die Warteschlangentheorie,
Zeit-behaftete Petri Netze, weitere Leistungsbeschreibungs- und Leistungsvorhersagungstech-
niken sowie die Verwendung von Hierarchien in Leistungsbeschreibungstechniken. Die Be-
schreibung von FMC-QE in Kapitel 3 enthält die Erläuterung der Grundlagen von FMC-QE,
die Beschreibung einiger Grundannahmen, der graphischen Notation, dem mathematischen
Modell und einem erläuternden Beispiel. In Kapitel 4: Erweiterungen von FMC-QE wird die
Behandlung weiterer allgemeiner Modelle, wie die Modellklasse von geschlossenen Netzen,
Synchronisierung und Mehrklassen-Modelle beschrieben. Außerdem wird FMC-QE mit dem
Stand der Technik verglichen. In Kapitel 5 werden Machbarkeitsstudien, wie die Modellierung
eines dienstbasierten Suchportals, einer dienst-basierten SAP-NetWeaver Anwendung und des
Axis2 Web Service Frameworks, beschrieben. Schließlich werden in Kapitel 6 eine Zusammen-
fassung und ein Ausblick gegeben.

iv

Acknowledgements

First of all, I would like to gratefully thank Prof. Dr.-Ing. Werner Zorn for the opportunity
to work in his research group. Through his ideas of FMC-QE [137–146] and a lot of fruitful
discussions and support, this thesis was possible.

I would also like to thank the other reviewers for the time and effort they spent to supervise
this thesis.

Additionally, I would like to thank the HPI Research School for the support and the constant
pressure especially through the biannually retreats with it’s demanding reports and presenta-
tions. A special thank in this area goes to Prof. Dr. Andreas Polze, the head of the research
school. I would also thank the other members of the Research School for the cooperations and
discussions. Especially I would like to thank Michael Schöbel for discussions on mathematical
questions.

Another thank goes to my colleagues Tomasz Porzucek, Flavius Copaciu, Rami-Habib Eid-
Sabbagh, Dominic Wist, Dr.-Ing. Ralf Wollowski, Sebastian Kuhle, Nanjun Li and Raveendra
Babu Darsi in the research group for their support as well as the FMC research group especially
Dr.-Ing. Peter Tabeling and the Operating Systems and Middleware research group especially
Dr. Martin von Löwis.

I would also like to thank the co-authors of my papers for their cooperation. Here I especially
would like to thank Marcel Seelig and Mathias Fritzsche.

Another thank goes to the administration of the Hasso Plattner Institute and Hasso Plattner
himself for providing the environment for the research. Here a special thank goes to Prof. Dr.
Christoph Meinel, Annett Seidler, Sabine Wagner, Ilona Pamperin, Ralf Gruner and Jens Luef.

Last but not least I would like to thank my parents, family and friends for their support. Espe-
cially I would like to thank Britta Knüppel for the careful proofreading of my thesis.

v

Contents

Gutachter Reviewer

Abstract i

Zusammenfassung iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xvii

1 Introduction 1

2 State of the Art 5

2.1 Queueing Theory . 6

2.1.1 Quantitative Measures . 6

2.1.2 Fundamental Laws . 8

2.1.3 Server Performance Values . 8

2.1.4 Open Queueing Networks - Jackson’s Theorem 11

2.1.5 Closed Queueing Networks - Gordon-Newell Theorem 13

2.1.6 Mixed Open and Closed Queueing Networks - BCMP Theorem 17

2.1.7 An Algorithm for Product Form Networks - Mean Value Analysis (MVA) 23

2.2 Time Augmented Petri Nets . 26

2.2.1 Classification . 26

2.2.2 Continuous Time Stochastic Petri Nets (SPN) 27

2.2.3 Generalized Stochastic Petri Nets (GSPN) 32

2.2.4 Product Form Petri Nets . 35

vii

CONTENTS

2.2.5 Queueing Petri Nets (QPN) . 40

2.3 Quantitative Hierarchical Modeling . 42

2.3.1 Decomposability . 43

2.3.2 Norton’s Theorem . 44

2.3.3 Formal Hierarchies and Combination of Models 46

2.3.4 Hierarchies in Time Augmented Petri Nets 46

2.3.5 Forced Traffic Flow Law . 49

2.3.6 Layered Queueing Networks (LQN) . 50

2.4 Summary . 53

3 FMC-QE Fundamentals 55

3.1 Foundations . 56

3.1.1 Fundamental Modeling Concepts (FMC) 56

3.1.2 FMC-eCS . 60

3.2 Basic Definitions . 68

3.2.1 Service Request . 68

3.2.2 Hierarchical Service Requests . 69

3.2.3 Quantitative Measures in FMC-QE . 70

3.3 Graphical Representation . 73

3.3.1 Service Request Structures . 73

3.3.2 Static Structures . 74

3.3.3 Dynamic Structures . 78

3.4 Calculus . 85

3.4.1 Fundamental Laws . 86

3.4.2 Experimental Parameters . 86

3.4.3 Service Request Section . 91

3.4.4 Server Section . 93

3.4.5 Dynamic Evaluation Section . 94

3.4.6 Multiplexer Section . 106

3.4.7 Computation Algorithm / Complexity Analysis 107

3.5 FMC-QE Example - Open Queueing Network . 108

3.5.1 Original Model and Calculation . 108

3.5.2 Transformation . 110

3.5.3 Service Request Structure and Static Structure 116

3.5.4 Summary . 118

3.6 FMC-QE Tool . 120

viii

CONTENTS

4 FMC-QE Extensions 121

4.1 Closed Queueing Networks . 122

4.1.1 General Discussion . 122

4.1.2 Closed Tandem Network . 123

4.1.3 Central Server Network . 131

4.1.4 Summary . 136

4.2 Handling of Multiclass Scenarios . 137

4.3 Semaphore Synchronization . 142

4.3.1 GSPN Model . 142

4.3.2 FMC-QE Model . 144

4.3.3 Summary . 149

4.4 Comparisons . 150

4.4.1 Queueing Theory . 152

4.4.2 Time Augmented Petri Nets . 153

4.4.3 Layered Queueing Networks (LQN) . 155

4.4.4 Performance Simulations . 157

5 FMC-QE Case Studies 159

5.1 HPI Search Portal - a Service based Case Study . 160

5.1.1 Architecture . 160

5.1.2 FMC-QE Model . 161

5.1.3 Summary . 166

5.2 Modeling of a Service based System: ERMF . 167

5.2.1 Introduction . 167

5.2.2 Service Request Structure and Dynamic Behavior 168

5.2.3 Measurements . 170

5.2.4 Analysis . 171

5.2.5 Simulation . 171

5.2.6 Summary . 172

5.3 Modeling of interacting hierarchical Protocol Stacks - Axis2 173

5.3.1 Axis2 Web Services Framework . 173

5.3.2 Axis2 Model . 176

5.3.3 Testbed Description . 180

5.3.4 FMC-QE Tableau . 180

5.3.5 Summary . 183

ix

CONTENTS

6 Conclusions 185

Publications 189

Bibliography 193

Glossary 205

Index 209

A Server Performance Values 213

B Tables 225

C Figures 239

x

List of Figures

2.1 Sample Queueing Net . 6

2.2 Performance Parameters and Values . 7

2.3 Little’s Law . 8

2.4 Sample Open Network - Jackson’s Theorem . 12

2.5 Sample Closed Network - Gordon Newell . 15

2.6 Sample Open Network - BCMP . 22

2.7 Sample Closed Network - MVA . 25

2.8 Range of Steady State Variables . 26

2.9 SPN Example . 29

2.10 SPN Example - Reachability Graph . 30

2.11 State Transition Rate Diagram of the SPN Example 30

2.12 GSPN Example . 34

2.13 GSPN Example - Reachability Graph . 35

2.14 Queueing Place and Queueing Place Shorthand Notation 40

2.15 QPN Example . 40

2.16 Hierarchies . 42

2.17 Norton’s Theorem . 44

2.18 Norton’s Theorem for Queueing Networks - Example 45

2.19 Communicating Time Petri Nets Example - Modules 47

2.20 Communicating Time Petri Nets Example - Composition 47

2.21 Hierarchically combined Queueing Petri Nets (HQPN) - Example 48

2.22 Memory Constrained System . 49

2.23 LQN Example - File Server Application - LQN . 51

2.24 LQN Activity Graph Example - Quorum Consensus 51

2.25 LQN Example - File Server Application - Sequence Diagram 52

3.1 FMC Block Diagram - Example . 57

xi

LIST OF FIGURES

3.2 FMC Petri Net - Example . 58

3.3 FMC Entity Relationship Diagram - Example . 59

3.4 Critical Section . 61

3.5 Critical Actionfield . 61

3.6 Types of Critical Sections . 62

3.7 Joint Action - Client/Server . 63

3.8 Joint Action - Producer/Consumer . 63

3.9 Joint Action - Short Notations . 64

3.10 Unreliable Service . 65

3.11 Checked Service . 66

3.12 Transactional Service . 66

3.13 Service Request Entity . 73

3.14 Entity Relationship Diagram Tree Metastructure 73

3.15 Traffic Flow Coefficient v . 74

3.16 External Service Request Generator . 74

3.17 Barbershop - Service Request Structure . 74

3.18 Basic Server Station . 75

3.19 Queueing Station . 75

3.20 Infinite Server . 76

3.21 Hierarchical Server Station . 76

3.22 Hierarchical Server Station - Short Notation . 76

3.23 Multiplexer Server . 77

3.24 Mapping between Logical and Multiplexer Servers 77

3.25 Barbershop - Static Structures . 78

3.26 Controlled Operational Transition . 78

3.27 Dynamic Behavior of a Queueing Station . 79

3.28 Parallel Server - Activity Refined . 79

3.29 Infinite Queues . 80

3.30 Infinite Server . 80

3.31 Hierarchical Transition . 81

3.32 Branch . 81

3.33 Parallel Activities . 82

3.34 Serial Activities . 82

3.35 Most Simple FMC-QE Petri Net . 83

3.36 Parallelism on Logical Server Level - Threads . 83

xii

LIST OF FIGURES

3.37 Barbershop - Dynamic Behavior . 84

3.38 Basic FMC-QE Model . 87

3.39 Steady State Systems - Notation . 88

3.40 Steady State Systems - Paternoster . 89

3.41 Steady State Systems - Soup Kitchen . 89

3.42 Steady State Systems - Roller coaster . 90

3.43 Chart External Service Time . 90

3.44 Multiplexer/Demultiplexer . 95

3.45 Multiplex Example . 95

3.46 Multiplex - Service Requestor’s View . 96

3.47 Parallel Server . 97

3.48 Infinite Server . 98

3.49 Hierarchical Activities . 100

3.50 Serial Activities . 100

3.51 Parallel Activities . 101

3.52 Branch . 102

3.53 Original While Loop . 103

3.54 While Loop Transformation (Serialization) . 103

3.55 While Loop Transformation (Combination) . 104

3.56 Feed Backward Loop . 104

3.57 Feed Forward . 105

3.58 Open Queueing Example - Original Model . 108

3.59 Open Queueing Example - Initial Petri Net . 110

3.60 Open Queueing Example - Load Generation . 111

3.61 Open Queueing Example - Persist Data Branch . 112

3.62 Open Queueing Example - Unreliable Execution 113

3.63 Open Queueing Example - Feed Forward - Feed Backward 114

3.64 Open Queueing Example - Transformed Petri net 115

3.65 Open Queueing Example - Service Request Structures 116

3.66 Open Queueing Example - Server Structures . 117

3.67 Open Queueing Example - Chart: Response Time - Arrival Rate 118

3.68 Open Queueing Example - Chart: External Service Time - Population 119

3.69 Open Queueing Example - Chart: Utilization, Response Time - Arrival Rate . . . 119

3.70 FMC-QE Tool - Screenshot . 120

4.1 Closed Tandem Network - Original Model . 123

xiii

LIST OF FIGURES

4.2 Closed Tandem Network - State Transition Diagram 123

4.3 Closed Tandem Network - Service Request Structure 124

4.4 Closed Tandem Network - Server Structure . 125

4.5 Closed Tandem Network - Dynamic Behavior . 125

4.6 Closed Tandem Network - M/M/1 - Chart: Adjustment External Service Time - f 126

4.7 Closed Tandem Network - Summation Method Chart: n System - f 130

4.8 Central Server - Original Model . 132

4.9 Central Server - Original Model Reengineered . 132

4.10 Central Server - FMC-QE Model (Service Request Structure) 133

4.11 Central Server - FMC-QE Model (Server Structure) 133

4.12 Central Server - FMC-QE Model (Dynamic Behavior) 134

4.13 Central Server - Chart: Throughput - Population 136

4.14 Multiclass Example - Class A - Service Request Structures 137

4.15 Multiclass Example - Class A - Dynamic Behavior 137

4.16 Multiclass Example - Class B - Service Request Structures 138

4.17 Multiclass Example - Class B - Dynamic Behavior 138

4.18 Multiclass Example - Static Structures . 139

4.19 Multiclass Example - Chart: Response Times A, B - Arrival Rate A 140

4.20 Multiclass Example - Chart: Response Times A, B - Service Time Req. A.2 Srv. . . 141

4.21 Semaphore Synchronization - GSPN Model . 142

4.22 Semaphore Synchronization - Reachability Graph 143

4.23 Semaphore Sync. with Inter-Server Control Flows (Static Structures) 144

4.24 Semaphore Sync. with Inter-Server Control Flows (Dynamic Structures) 145

4.25 Semaphore Sync. without Inter-Server Control Flows (Static Structures) 146

4.26 Semaphore Sync. without Inter-Server Control Flows (Dynamic Structures) . . . 146

4.27 Semaphore Synchronization - Chart: Throughput - Critical Action 2 Service Time 149

4.28 Range of Steady State Variables and Methods . 150

4.29 Fork-Join Queueing Model . 153

4.30 SM/M/1 Queue . 153

5.1 HPI Search Portal - Architecture . 160

5.2 HPI Search Portal - Service Request Structure . 162

5.3 HPI Search Portal - Behavior . 163

5.4 HPI Search Portal - Chart: Overall Response Time - Arrival Rate 165

5.5 HPI Search Portal - Chart: External Service Time - Arrival Rate 165

xiv

LIST OF FIGURES

5.6 HPI Search Portal - Chart: Response Time - Number of Parallel Main Processors 166

5.7 ERMF - Static Structure . 168

5.8 ERMF - Service Request Structure . 169

5.9 ERMF - Dynamic Behavior . 169

5.10 ERMF - Chart: Traffic Service - Response Time . 170

5.11 ERMF - Chart: Weather Service - Response Time 170

5.12 ERMF - Chart: Result Comparison . 172

5.13 Axis2 Based System - Block Diagram . 174

5.14 Axis2 Dynamic Behavior - Petri Net . 176

5.15 Axis2 Hierarchical Service Request Structure - Entity Relationship Diagram . . . 177

5.16 Axis2 Input Flow - Petri Net . 178

5.17 Axis2 Output Flow - Petri Net . 179

5.18 Axis2 - Optional Handlers . 180

5.19 Axis2 - Chart: Response Time - Arrival Rate . 181

5.20 Axis2 - Chart: External Service Time - Population 182

5.21 Axis2 - Chart: Response Time - Number of CPUs 182

5.22 Axis2 - Dynamic - All . 184

C.1 HPI Search Portal - Architecture . 240

C.2 HPI Search Portal - Service Request Structure . 241

C.3 HPI Search Portal - Behavior . 242

C.4 Axis2 - Dynamic - All . 243

xv

List of Tables

2.1 SPN Example - Parameters . 29

2.2 GSPN Example - Parameters . 34

3.1 Operational vs. Control Variables . 60

3.2 Tableau Example . 85

3.3 Tableau Example - Experimental Parameters . 91

3.4 Tableau Example - Service Request Section . 92

3.5 Tableau Example - Server Section . 94

3.6 Tableau Example - Dynamic Evaluation Section . 105

3.7 Tableau Example - Multiplexer Section . 106

3.8 Open Queueing Example - Tableau . 118

4.1 Closed Tandem Network - M/M/1 Tableau . 127

4.2 Closed Tandem Network - M/M/1/K Tableau . 128

4.3 Closed Tandem Network - Summation Method Tableau 131

4.4 Central Server - Original Parameters . 132

4.5 Central Server - Tableau . 134

4.6 Multiclass Example - Tableau . 139

4.7 Semaphore Synchronization - Parameters . 143

4.8 Semaphore Synchronization - Tableau . 147

4.9 Comparison of Modeling Aspects . 151

4.10 Comparison of LQNS to FMC-QE and other Layered Queueing Systems 155

5.1 HPI Search Portal - Tableau . 164

5.2 ERMF - Tableau . 171

5.3 Axis2 - Tableau . 181

A.1 D/D/1 . 214

A.2 D/D/m . 215

xvii

LIST OF TABLES

A.3 M/M/1 . 216

A.4 M/M/m . 217

A.5 M/M/∞ . 218

A.6 M/M/1/K . 219

A.7 M/M/m/K . 220

A.8 M/M/m/K/M . 221

A.9 M/M/m/m . 222

A.10 Server Performance Values - Overview . 223

B.1 Tableau Example . 226

B.2 Open Queueing Example - Tableau . 227

B.3 Closed Tandem Network - M/M/1 Tableau . 228

B.4 Closed Tandem Network - M/M/1/K Tableau . 229

B.5 Closed Tandem Network - Summation Method Tableau 230

B.6 Closed Tandem Network - Tableaux - Comparison 231

B.7 Closed Central Server Example - Tableau . 232

B.8 Semaphore Synchronization - Tableau . 233

B.9 Multiclass Example - Tableau . 234

B.10 ERMF - Tableau . 235

B.11 Axis2 - Tableau . 236

B.12 HPI Search Portal - Tableau . 237

xviii

Chapter 1

Introduction

In the area of mathematical-analytic performance modeling and analysis there are essentially
two methodical approaches: Queueing Theory and Time Augmented Petri Nets, whereas both
approaches have their assets and drawbacks. The advantages of the Queueing Theory are the
matured analysis techniques and the good computability. A disadvantage is limited power in
modeling of complex systems, as for example systems are only modeled from the perspective
of the server structures and therefore control flows are often neglected. Time Augmented Petri
Nets are more powerful in concerns of modeling concurrent processes and control flows. But
here, with rising complexity, the problem of state space explosion arises, which could set a
border for the practical applicability. As in Queueing Theory, in Time Augmented Petri Nets
only one view of the system, here the dynamic view, including the control flows, is modeled.
The server structures behind are often neglected, which could cause problems, when shared
resources or special queueing or scheduling strategies should be considered.

The modeling and evaluation calculus FMC-QE, the Fundamental Modeling Concepts for
Quantitative Evaluation, extends the Fundamental Modeling Concepts (FMC) by aspects of
performance modeling and performance prediction. In this new methodology the hierarchical
service requests are in the main focus, because they are the origin of every service provision-
ing process. Similar to physics, the service requests are a tuple of value and unit, in order
to provide a service request transformation at the borders of the different hierarchical levels.
Through reducing the complexity of the models by decomposing the system in different hier-
archical views, the distinction between operational and control states and the calculation of the
performance values on the assumption of the steady state, FMC-QE has a scalable applicability
on complex systems.

According to FMC, the modeled system is represented in a 3-dimensional hierarchical represen-
tation space. The system performance parameters are described in three arbitrarily fine-grained
hierarchical bipartite diagrams. The hierarchical service request structures are modeled in En-
tity Relationship Diagrams. The static server structures, divided into logical and multiplexer
servers, are described in Block Diagrams. The dynamic behavior and the control structures
are specified in Petri Nets, more precisely Colored Time Augmented Petri Nets. From the
structures and parameters of the performance model, a hierarchical set of equations is derived.
The calculation of the performance values in this hierarchical set of equations is done on the
assumption of stationary processes and is based on fundamental laws of the performance ana-
lysis: Little’s Law and the Forced Traffic Flow Law. Little’s Law is used within the different
hierarchical levels (horizontal) and the Forced Traffic Flow Law is the key to the connections
among the hierarchical levels (vertical). This calculation is suitable for complex models and

1

CHAPTER 1. INTRODUCTION

allows a fast calculation of different performance scenarios in order to support system devel-
opment and configuration decisions.

In this thesis FMC-QE is described, extended and applied to different representative examples
as well as compared to other existing performance modeling and evaluation frameworks. The
thesis is structured as follows:

In chapter 2 the State of the Art of performance modeling and evaluation from the viewpoint of
FMC-QE is explained. This includes an overview on the Queueing Theory and an explanation
of quantitative measurements, fundamental laws and formulas as well as algorithms for the
prediction of performance values for queueing servers and queueing networks in the Queue-
ing Theory. This chapter gives also a resume on Time Augmented Petri Nets, describes some
classifications and outlines important types of Time Augmented Petri Nets. While hierarchies
and the hierarchical modeling are the key to complexity, other hierarchical quantitative model-
ing and aggregation methods are also discussed. This includes decomposability, the adaption
of Norton’s Theorem to Queueing Theory, formal hierarchies, aggregation and hierarchies in
Time Augmented Petri Nets and the Forced Traffic Flow Law. In addition to this, Layered
Queueing Networks (LQN) are summarized, as a special quantitative hierarchical modeling
methodology.

The main concepts of FMC-QE are described in chapter 3. This starts with a description of the
basis of FMC-QE, the Fundamental Modeling Concepts (FMC) and the Fundamental Model-
ing Concepts extended for Communication Systems (FMC-eCS). After that, basic definitions of
the service request, the hierarchical modeling as well as performance parameters and values
are given. Then, the 3-dimensional graphical representations divided in service request struc-
tures, static (server) structures as well as dynamic behavior and control flow are described. The
mathematical calculus and the computation of the performance predictions in the Tableau are
also specified. An Open Queueing Network is modeled as an example for the modeling and
transformations as well as the calculations of FMC-QE. The development of an FMC-QE Tool
for the quantitative modeling and evaluation is in the focus of another PhD. student (Tomasz
Porzucek) in the research group and is shortly referenced in this chapter.

In chapter 4 FMC-QE is used to model and evaluate selected types of problems, to provide
extensions to the core methodology in order to to solve these problems. In the first part sam-
ple Closed Queueing Networks are modeled and the corresponding performance values are
derived. This includes an integration of the summation method [17] into FMC-QE in order
to extend the range of applications to closed models through the summation approximation
method. The handling of multiclass scenarios is also described in this chapter. Then, the
semaphore synchronization, a classical Time Augmented Petri Net problem, is addressed. This
part describes and compares an approximation for the performance prediction of semaphore
synchronization problems. Furthermore, FMC-QE is compared to other performance modeling
and prediction approaches.

Chapter 5 provides case studies, modeled and evaluated. The HPI Search Portal illustrates the
applicability to larger systems. The second example, the modeling of a service based system
inside an SAP NetWeaver / SAP WebAS environment1, focuses on the comparison of the per-
formance predictions of a performance model, a simulation and the corresponding measured
values in the real system. The third example, the modeling of interacting hierarchical Proto-

1SAP AG, SAP NetWeaver, Website: http://www.sap.com/germany/plattform/netweaver/index.epx, August
2009

2

http://www.sap.com/germany/plattform/netweaver/index.epx

col Stacks in Apache Axis22, is a Proof-of-Concept for the hierarchical modeling with the key
aspects of multiplex and synchronization in the calculations.

Chapter 6 summarizes the main contributions and the author proposes possible future work.

2Apache Software Foundation, Apache Axis2 Architecture Guide, Website: http://ws.apache.org/axis2/1_3/
Axis2ArchitectureGuide.html, August 2007

3

http://ws.apache.org/axis2/1_3/Axis2ArchitectureGuide.html
http://ws.apache.org/axis2/1_3/Axis2ArchitectureGuide.html

Chapter 2

State of the Art

The following chapter describes the State of the Art of performance modeling and performance
predictions from the viewpoint of FMC-QE. This chapter is given to provide an overview of
other quantitative modeling and evaluation approaches and to form the basis for further chap-
ters.

The chapter is structured as follows: Section 2.1 provides an overview of the main mathemat-
ical background of FMC-QE, the Queueing Theory, especially the fundamental laws Little’s
Law and the Forced Traffic Flow Law, the calculation of the different servers and algorithms
and theorems for the calculation of the performance values of Queueing Networks. In addition
to the Petri Nets used in FMC to model the dynamic behavior of systems, the Time Augmented
Petri Nets influenced the development of the FMC-QE Petri Nets and are therefore described
in section 2.2. The hierarchical modeling is the key to complex systems and therefore of cen-
tral concern in FMC-QE. Section 2.3 gives an overview of other quantitative hierarchical and
aggregation modeling techniques. As a special hierarchical quantitative modeling technique,
Layered Queueing Networks are also briefly explained in this section.

5

CHAPTER 2. STATE OF THE ART

2.1 Queueing Theory

The Queueing Theory forms the main mathematical basis for FMC-QE. Therefore this section
provides an overview of the most important measures, laws, theorems and algorithms. Impor-
tant quantitative measures are defined in subsection 2.1.1. After that, two fundamental laws
of the Queueing Theory, Little’s Law [98] and the Forced Traffic Flow Law [43, 95] are intro-
duced. In order to define and calculate the quantitative measures of single stations or servers
in a Queueing Network, the Kendall Notation for server stations [83] and equilibriums for gen-
eral systems are described in 2.1.3. This is further enriched by formulas for different special
types of queueing stations in the appendix A. In the sections 2.1.4 to 2.1.7, important theorems
and algorithms for the estimation of performance values for whole Queueing Networks are ex-
plained. This includes Jackson’s Theorem for Open Queueing Networks [77, 78], the Theorem
of Gordon and Newell [64] for Closed Queueing Networks, the networks of Baskett, Chandy,
Muntz and Palacios (BCMP-Networks) [8] and the Mean Value Analysis (MVA) [118].

�1

�2

�3

p1,2=0,4

p1,3=0,5

p1,1=0,1

CPU

Disk1

Disk2

Figure 2.1: Sample Queueing Net [68]

Figure 2.1 provides a small Queueing network example in order to give an impression of the
way of modeling in Queueing Theory as a graph of servers, queues and links with routing
probabilities. This example shows a Closed Queueing Network with three servers (CPU, Disk1
and Disk2) and queues in front of the servers. The service requests are processed at the CPU,
then routed to Disk1 with a probability of 40%, routed to Disk2 with a probability of 50% or
recalculated with a probability of 10%. After the service requests have passed one of the disks
they are routed back to the CPU. This example will be later calculated using the Theorem of
Gordon and Newell in section 2.1.5 and the Mean Value Analysis in section 2.1.7 as well as in
FMC-QE in section 4.1.

2.1.1 Quantitative Measures

In the Queueing Theory a number of quantitative measures are defined. The most important
ones are illustrated in figure 2.2 and described as:

Arrival Rate λ The arrival rate denotes the mean rate of service requests arriving at a service
station.

Service Time X The service time is the time a server needs to process a service request.

Multiplicity m The parameter multiplicity defines the number of parallel servers in a server
station. It is possible, that m = ∞. In this case every service request has a dedicated
server. An example could be the user in a client server scenario, where every user-input
request has a dedicated user.

6

2.1. QUEUEING THEORY

Service Rate µ The service rate is a parameter for the mean maximal number of service re-
quests a server could process in a given time period.

Departure Rate D The departure rate (throughput) denotes the rate, fulfilled service requests
(service responses) leave the server.

Number of Service Requests n The mean number of service requests in a service station is
denoted by n. It is the sum of the service requests in service ns and the queued service
requests nq.

Waiting Time W The waiting time (queueing time) denotes the mean time a service request is
queued in a service station.

Utilization ρ The utilization denotes the fraction of time the server is processing service re-
quests (busy).

Response Time R The response time is defined as the time interval between the arrival of the
service request and the corresponding departure of the service response at a service sta-
tion.

Queue Size K The queue size defines the maximum number of service requests inside the ser-
vice station (queued + in service).

Arrival Rate

λ

Queue Size

K

1

2

Multiplicity

m

Service Time

X

Waiting Time

W

Response Time

R

Number of

Queued SRqs

nq

Number of SRqs in the Station

n

Number of

SRqs in Service

ns

Service Rate

%
&

&

&
Utilization

ρ

Throughput

D

Figure 2.2: Performance Parameters and Values

In general usage, the term performance is also often used when quantitative measures are con-
sidered. In a more specific usage, performance would be a measure like throughput in terms
of service requests per time unit or response time and not measures like the service time or the
multiplicity. But as said, in general use service time could also be defined as a performance
parameter which then is also the case in this thesis. Furthermore, there is a distinction between
performance parameters and performance values, while performance parameters are an input
in a the calculation and performance values are the results. In the further parts the relations
between the different measures are described.

7

CHAPTER 2. STATE OF THE ART

2.1.2 Fundamental Laws

Little’s Law and the Forced Traffic Flow Law are two fundamental Queueing Theory laws.

Little’s Law

Little’s Law [98] is one of the fundamental laws in the Queueing Theory. As described in [125],
the law defines the dependence between the mean number of jobs in a system n, the mean
arrival rate λ and the mean response time R.

n = λ ∗ R (2.1)

Little’s Law is illustrated in figure 2.3. Little’s Law is a black box law which includes measures
of the servers and the queues inside the black box.

Arrival Rate

λ

Response Time

R

Number of SRqs in the Station

n

Figure 2.3: Little’s Law

Forced Traffic Flow Law

The Forced Traffic Flow Law [43, 68, 79, 95] defines the transformation of a global arrival rate
λ into a specific arrival rate λi using a traffic flow coefficient vi as a law, defining relations for
the network.

λi = vi ∗ λ (2.2)

A more detailed discussion on the Forced Traffic Flow Law can be found in section 2.3.5 and
3.4.1 and is therefore omitted here.

2.1.3 Server Performance Values

The Queueing Theory distinguishes between a broad range of different server types with differ-
ent queueing strategies, service time distributions and other parameters. The Kendall-Notation
was established in order to define and classify these different types. This notation is described
in this subsection. Also some general formulas on the server level are described. There are a lot
of equilibriums for different Kendall-Servers in literature. In the different sources, the different
variable identifiers are slightly different (sometimes conflicting) and information for one type
of server is sometimes scattered over several sources. Therefore, the tables A.1 to A.9 in the ap-
pendix A consolidate and recapitulate these equilibriums using one consistent nomenclature,
without repeating the derivations and proofs.

8

2.1. QUEUEING THEORY

Kendall-Notation

The Kendall-Notation is the de facto standard for the description of elementary queueing sys-
tems. The basics of this notation are defined by David George Kendall in 1953 [83]. The nota-
tion defines a Queueing Station and the corresponding arrival process by a series of symbols (
Ax/B/m/K/C), which are defined as [67]:

A Interarrival-time distribution, where x defines a group arrival process [125]

B Service-time distribution

m Number of parallel servers

K Capacity restrictions

C Queueing discipline

A and B are further specified by the following distribution notations [18, 67, 125]:

M Markov - exponential distribution (Poisson Process)

D deterministic distribution (constant interarrival or service time)

GI General Independent, General distribution with independent interarrival or service times

Ek Erlang-k-distribution

Hk Hyperexponentional distribution with k phases

The number of servers m denotes the number of parallel servers at the station and is defined in
the range from 1 to ∞.

The parameter K defines the queue size including the places for the service requests in service
(m). Often this parameter is omitted, if K = 1 or K = ∞

The standard queueing discipline C is FIFO (first in, first out resp. FCFS first come, first served)
and is therefore often omitted. But other possible disciplines, then defined, are amongst others
[67]:

LIFO Last In, First Out resp. LCFS Last Come, First Served

RSS Random Selection for Service

PR Priority Based

GD General Discipline

In special cases an additional /M is defined, which defines the overall fixed population of
service requests (or customers) each with an "arriving" parameter λ [88]. The corresponding
formulas for this case are provided in table A.8.

9

CHAPTER 2. STATE OF THE ART

General Systems

While in the tables A.1 to A.9 in appendix A different formulas for the calculation of server
performance values are defined for the different server types, some formulas are defined for
general systems and are therefore true for all of the systems.

The utilization ρ is defined as the fraction of time, a server is busy and could be calculated as
the quotient of the arrival rate λ and the service rate µ (where the service rate µ is multiplicative
inverse of the service time X: µ = 1

X) [88]:

ρ =
λ

µ
(G/G/1) (2.3)

For queueing stations with multiple servers m, this definition is the same, extended by the work
capacity of the system [88]:

ρ =
λ

mµ
(G/G/m) (2.4)

For systems, where the the maximum service rate is not independent of the system state, ρ is
defined as traffic intensity [88].

The response time R is defined as the sum of waiting time W and the service time X [88]:

R = W + X (2.5)

Through Little’s Law [98] the mean number of service requests in the system are defined as
[88]:

n = λR, (2.6)

where in systems, where the the maximum service rate is not independent of the system state,
the arrival rate λ is substituted by the effective arrival rate λe f f .

The mean number of queued service requests is also defined through Little’s law [98] as [88]:

nq = λW (2.7)

or as the difference from the mean number of service requests in the system n and the mean
number of service requests in service ns (where ns = mρ, if the maximum service rate is inde-
pendent of the system state) [88]:

nq = n− ns. (2.8)

Therefore, Little’s Law is valid for the whole station or system (n = λR) as well as the server
(ns = mρ = λX) and the queue (nq = λW).

10

2.1. QUEUEING THEORY

2.1.4 Open Queueing Networks - Jackson’s Theorem

The results of Jackson [77, 78] have been considered as a break through in the analysis of Queue-
ing Networks [18], because he developed Product Form Solutions for open networks. Through
Product Form Solutions, the complexity of the computation of the overall steady-state proba-
bilities and the global performance values could be reduced, as the steady-state probability of
the network can be computed as the product of the steady-state probabilities of every node.

Jackson’s Theorem [77]: If in an open network the ergodicity (λi < µimi) holds for every node
(i = 1, ..N), then the steady-state probability of the network can be computed as the product of
the steady-state probabilities of every node:

p (k1, .., kN) = p1 (k1) ∗ .. ∗ pN (kN) (2.9)

The Jackson Networks have some constraints, which are listed in the following [18]:

• There exists only one single class of service requests in the network.

• The overall number of service requests is not limited.

• Each of the N nodes in the network can be connected to an external Poisson source and a
service response can leave the network at each node.

• All service times are exponentially distributed.

• The queueing discipline at each node is FIFO (FCFS).

• A node i consist of mi ≥ 1 identical servers with the service rate µi with i = 1, .., N. The
arrival rates λ0i and the service rates µi could depend on the number of ki service requests
in the node i. In this case the service and arrival rates would be load dependent. 1

An algorithm for the calculation of open networks, based on this theorem, is then mainly com-
posed of three steps [18, 132]:

• Step 1: Calculation of the arrival rates λi for every node i = 1, .., N, based on the setup
and solving of the equation system of the traffic equations.

• Step 2: Ergodicity check and computation of the state probabilities pi (ki) for every sta-
tion i. While every node could be considered as a M/M/1 resp. M/M/m station, the
performance values of the nodes could be computed using the formulas in table A.3 and
A.4.

• Step 3: Finally the overall steady-state probabilities and the global performance values
can be computed.

The following network from [18] in figure 2.4 will exemplify this algorithm. This example
will also be used in section 3.5 for the explanation of the FMC-QE transformations and the
comparison of classic open network computation and the FMC-QE computations.

1 A Queueing Station with more than one server and constant arrival rates is equivalent to a service station with
one server and a load dependent service rate [18]:

µi =

{
kiµi ki ≤ mi

miµi ki ≥ mi

11

CHAPTER 2. STATE OF THE ART

�1

�2

�3

p1,2=

0,5

p1,3=

0,5

p2,1=1

�4

p3,1=0,6

p3,5=0,4I/O�Device CPU

Disk

Printer

Source

Sink

Figure 2.4: Sample Open Network - Jackson’s Theorem [18]

In this example all nodes are single server FCFS stations. The service rates are exponentially
distributed and defined as [18]:

µ1 = 25
[Jobs]
[s]

; µ2 = 33
Jobs

3
[1]
[s]

; µ3 = 16
2
3
[Jobs]
[s]

; µ4 = 20
[Jobs]
[s]

The exponential distributed arrival rate is defined as [18]:

λ = λ0,4 = 4
[Jobs]
[s]

,

and the routing probabilities are defined as [18]:

p12 = p13 = 0, 5; p41 = p21 = 1, 0; p31 = 0, 6; p30 = 0, 4.

In this example the performance values: utilizations ρi, mean number of jobs at a nodeni, mean
response timesRi, mean waiting times Wi, mean queue lengths nq,i and mean overall response
time R as well as the steady-state probability of state (k1, k2, k3, k4) = (3, 2, 4, 1) are sought.

In step 1 the traffic equations are set up [18]:

λ1 = λ2 p2,1 + λ3 p3,1 + λ4 p4,1 = 20
[Jobs]
[s]

; λ2 = λ1 p1,2 = 10
[Jobs]
[s]

;

λ3 = λ1 p1,3 = 10
[Jobs]
[s]

; λ4 = λ0,4 = 4
[Jobs]
[s]

.

In step 2 the performance values and state probabilities for the different nodes are calculated
as [18]:

Utilizations ρi as ρi =
λi
µi

[18]:

ρ1 =
λ1

µ1
= 0, 8; ρ2 =

λ2

µ2
= 0, 3; ρ3 =

λ3

µ3
= 0, 6; ρ4 =

λ4

µ4
= 0, 2.

Mean number of jobs at a node (M/M/1) ni =
ρi

1−ρi
[18]:

n1 = 4 [Jobs]; n2 = 0, 429 [Jobs]; n3 = 1, 5 [Jobs]; n4 = 0, 25 [Jobs].

12

2.1. QUEUEING THEORY

Mean response times of the servers Ri =
ni
λi

[18]:

R1 = 0, 2 [s]; R2 = 0, 043 [s]; R3 = 0, 15 [s]; R4 = 0, 0625 [s].

Mean waiting times Wi =
ρi

µi−λi
[18]:

W1 = 0, 16 [s]; W2 = 0, 013 [s]; W3 = 0, 09 [s]; W4 = 0, 0125 [s].

Mean queue lengths ni,q =
ρ2

i
1−ρi

[18]:

n1,q = 3, 2 [Jobs]; n2,q = 0, 129 [Jobs]; n3,q = 0, 9 [Jobs]; n4,q = 0, 05 [Jobs].

Marginal probabilities pi(k) = (1− ρi) ρk
i for (k1, k2, k3, k4) = (3, 2, 4, 1)[18]:

p1(3) = 0, 1024; p2(2) = 0, 063; p3(4) = 0, 0518; p4(1) = 0, 16.

Finally in step 3 the mean overall response time is calculated by aggregating the mean number
of jobs at every node and Little’s Law [18]:

R =
n
λ
=

1
λ

4

∑
i=1

ni = 1, 545 [s]

and the state probability for state (k1, k2, k3, k4) = (3, 2, 4, 1) is [18]:

p(3, 2, 4, 1) = p1(3) ∗ p2(2) ∗ p3(4) ∗ p4(1) = 0, 0, 0000534.

2.1.5 Closed Queueing Networks - Gordon-Newell Theorem

While in open networks with service request sources and sinks, the arrival rate is a free pa-
rameter of the source and the overall number of service requests in the system is dependent
upon this arrival rate, in closed networks the overall number of service requests in the system
is the free parameter and the arrival rate, more precisely the throughput, is a dependent value.
Furthermore, in closed networks the overall number of service requests in the system is an
integer in comparison to the resulting real value in an open network. In closed networks not
a service request source is considered, but a global balance of the network with this constant
number of service requests. Therefore a normalization constant is defined in the calculation of
the steady-state probabilities. This section will give a general introduction into the handling of
closed (Product Form) networks in the Queueing Theory. Further general discussions on the
model of closed networks beyond this introduction could also be found later in section 4.1.1,
where questions like: ‘Who inserted the service requests in the system?’ (initialization of a
closed network) are raised.

13

CHAPTER 2. STATE OF THE ART

Gordon and Newell [64] transfered and refined the results of Jackson to closed networks (while
Jackson also already considered closed systems in [78]). Gordon Newell Networks have the
same assumptions than Jackson Networks except, that no service request can enter or leave the
system and therefore the number of service requests in the system is constant [18]:

K =
N

∑
i=1

ki (2.10)

According to the Gordon-Newell Theorem, each network state in a Gordon Newell Network
could be calculated using the following product-form expression [18, 64]:

p (k1, .., kN) =
1

G(K)

N

∏
i=1

Fi (ki) (2.11)

The normalization constant G(K) is then defined as [18]:

G(K) = ∑
∑N

i=1 ki=K

N

∏
i=1

Fi(ki), (2.12)

with Fi(ki) defined as [18]:

Fi(ki) =

(
ei

µi

)
1

βi(ki)
. (2.13)

Where the visit ratios are defined as [18]:

ei =
N

∑
j=1

ej pji f or i = 1, .., N. (2.14)

and the function βi(ki) is defined as [18]:

βi(ki) =


ki! ki ≤ mi,
mi!m

ki−mi
i ki ≥ mi,

1 mi = 1.

(2.15)

Another definition of the function Fi(ki) for load dependent service rates is given as [18]:

Fi(ki) =
eki

i
Ai(ki)

, (2.16)

with Ai(ki) as [18]:

Ai(ki) =

{
∑ki

j=1 µi(j) ki > 0,

1 ki = 0.
(2.17)

Where a constant service rate is a special case in this generalized function.

14

2.1. QUEUEING THEORY

An algorithm for the computation of Gordon Newell Networks is separated into four steps
[18]:

• Step 1: Calculation of the visit ratios ei for all nodes.

• Step 2: Computation of the functions Fi(ki) for all nodes.

• Step 3: Computation of the normalization constant G(K).

• Step 4: Computation of the state probabilities of the network and the required perfor-
mance values.

Figure 2.5 illustrates an exemplary Gordon Newell Network (example 4.3-3 from [68], exem-
plary calculations from [18]).

�1

�2

�3

p1,2=0,4

p1,3=0,5

p1,1=0,1

CPU

Disk1

Disk2

Figure 2.5: Sample Closed Network - Gordon Newell [68]

In this example the queueing discipline is FCFS at every node and the routing probabilities are
defined as [68]:

p11 = 0, 1; p120, 4; p13 = 0, 5;
p21 = 1, 0; p220, 0; p23 = 0, 0;
p31 = 1, 0; p320, 0; p33 = 0, 0.

The exponentially distributed service times are:

µ1 = 0, 5; µ2 = 0, 40; µ3 = 0, 25.

There are 3 service requests in the system:

K = 3.

This network consists of 10 states:

(3, 0, 0); (2, 1, 0); (2, 0, 1); (1, 2, 0); (1, 1, 1);
(1, 0, 2); (0, 3, 0); (0, 2, 1); (0, 1, 2); (0, 0, 3).

In the first step the visit ratios ei are determined as:

e1 = e1 p11 + e2 p21 + e3 p31 = 1;
e2 = e1 p12 + e2 p22 + e3 p32 = 0, 4;
e3 = e1 p13 + e2 p23 + e3 p33 = 0, 5.

15

CHAPTER 2. STATE OF THE ART

In the second step the functions Fi(ki) with Fi(ki) =
(

ei
µi

)ki
for i = 1, 2, 3 are computed:

F1(0) = 1; F1(1) = 2; F1(2) = 4; F1(3) = 8;
F2(0) = 1; F2(1) = 1; F2(2) = 1; F2(3) = 1;
F3(0) = 1; F3(1) = 2; F3(2) = 4; F3(3) = 8.

In the third step the normalization constant G(3) is determined:

G(3) = F1(3)F2(0)F3(0) + F1(2)F2(1)F3(0) + F1(2)F2(0)F3(1)+
F1(1)F2(2)F3(0) + F1(1)F2(1)F3(1) + F1(1)F2(0)F3(2)+
F1(0)F2(3)F3(0) + F1(0)F2(2)F3(1) + F1(0)F2(1)F3(2)+

F1(0)F2(0)F3(3) = 49.

In the fourth step the different state probabilities p(k1, k2, k3) =
1

G(3)

N
∏
i=1

Fi (ki) are calculated:

p(3, 0, 0) =
8

49
; p(2, 1, 0) =

4
49

; p(2, 0, 1) =
8
49

; p(1, 2, 0) =
2
49

; p(1, 1, 1) =
4
49

;

p(1, 0, 2) =
8

49
; p(0, 3, 0) =

1
49

; p(0, 2, 1) =
2
49

; p(0, 1, 2) =
4
49

; p(0, 0, 3) =
8
49

.

This leads to the following marginal state probabilities:

p1(0) = p(0, 3, 0) + p(0, 2, 1) + p(0, 1, 2) + p(0, 0, 3) =
15
49

;

p1(1) = p(1, 2, 0) + p(1, 1, 1) + p(1, 0, 2) =
14
49

;

p1(2) = p(2, 1, 0) + p(2, 0, 1) =
12
49

;

p1(3) = p(3, 0, 0) =
8
49

;

p2(0) = p(2, 0, 1) + p(1, 0, 2) + p(0, 0, 3) + p(3, 0, 0) =
32
49

;

p2(1) = p(2, 1, 0) + p(1, 1, 1) + p(0, 1, 2) =
12
49

;

p2(2) = p(1, 2, 0) + p(0, 2, 1) =
4
49

;

p2(3) = p(0, 3, 0) =
1
49

;

p3(0) = p(3, 0, 0) + p(2, 1, 0) + p(1, 2, 0) + p(0, 3, 0) =
15
49

;

p3(1) = p(2, 0, 1) + p(1, 1, 1) + p(0, 2, 1) =
14
49

;

p3(2) = p(1, 0, 2) + p(0, 1, 2) =
12
49

;

p3(3) = p(0, 0, 3) =
8
49

.

16

2.1. QUEUEING THEORY

Finally, the performance values are derived, like the utilization ρi = 1− pi(0):

ρ1 = 0, 69; ρ2 = 0, 35; ρ3 = 0, 69.

The mean number of service requests at a station ni = ∑3
k=1 kpi(k):

n1 = 1, 27; n2 = 0, 47; n3 = 1, 27.

The throughput at every node Di = miρiµi:

D1 = 0, 35; D2 = 0, 14; D3 = 0, 17,

and the mean response times Ri =
ni
Di

:

R1 = 3, 65; R2 = 3, 38; R3 = 7, 27.

This leads to the overall performance values of:

D = 0, 35; R = 8, 64.

2.1.6 Mixed Open and Closed Queueing Networks - BCMP Theorem

Baskett, Chandy, Muntz and Palacios (BCMP) [8] extended the results of Jackson and Gordon
and Newell to open, closed and mixed networks with several job classes, different kinds of
servers and state dependent arrival processes.

A BCMP network can consist of an arbitrary but finite number of queueing stations (service
centers) of the following type [8]:

• Type-1: -/M/m - FCFS,

• Type-2: -/G/1 - PS,

• Type-3: -/G/∞,

• Type-4: -/G/1 - LCFS PR.

Where the different types of servers are defined as:

Type-1: -/M/m - FCFS [8]:

• first-come-first-served (FCFS) service discipline,

• all service requests get the same service time,

• the service time distribution is negative exponential,

17

CHAPTER 2. STATE OF THE ART

• a state dependent service rate is possible (then: m > 1)2.

Type-2: -/G/1 - PS [8]:

• single server, no queue,

• service discipline: processor sharing,

• each class of service request may have distinct service distributions,

• the service time distributions have Laplace transforms.

Type-3: -/G/∞ (IS) [8]:

• number of servers in the station ≥maximum number of service requests,

• each class of service request may have distinct service distributions,

• the service time distributions have Laplace transforms.

Type-4: -/G/1 - LCFS PR [8]:

• single server,

• preemptive-resume last-come-first-served (LCFS PR) service discipline,

• each class of service request may have distinct service distributions,

• the service time distributions have Laplace transforms.

For open networks two kinds of arrival processes can be distinguished from each other [18]:

In the first case, the arrival process is Poisson and all service requests arrive in the network
from one source with an overall arrival rate λ, which can depend on the number of jobs in the
network. The probability, that an arriving service request is then routed from the source 0 to
the service station i in class r is defined as p0,ir, where [18]:

N

∑
i=1

R

∑
r=1

p0,ir = 1, (2.18)

where N is the overall number of service stations and R is the number of classes in the network.

In the second case, the arrival process consists of U independent Poisson arrival streams, where
each source is assigned to a different chain. An arrival rate λU could be load dependent. A
service request arrives at service station i with the probability p0,ir, where [18]:

2 A queueing station with more than one server and constant arrival rates is equivalent to a service station with
one server and a load dependent service rate [18]:

µi =

{
kiµi ki ≤ mi

miµi ki ≥ mi

18

2.1. QUEUEING THEORY

N

∑
r ∈ Cu; i=1

p0,ir = 1 ∀ u = 1, ..U. (2.19)

For this kinds of networks the BCMP Theorem states [8]:

For a network of service stations which is open, closed or mixed in which each service center is
of type 1,2,3 or 4, the steady-state state probabilities are given by:

p(S1, .., SN) =
1

G (K)
d (S)

N

∑
i=1

fi(Si), (2.20)

where G(K) is the normalization constant, d(S) is a function of the number of service requests
in the system and each fi(Si) is a function that depends on the type of the service center i.

The function d(S) is defined as [8, 18]:

d(S) =



K(S)−1
∏
i=0

λ(i) open network with arrival process 1,

U
∏

u=1

K(S)−1
∏
i=0

λu(i) open network with arrival process 2,

1 closed network.

(2.21)

Where K(S) is the overall number of service requests in the network and Ku(S) is the overall
number service requests in from the uth source.

The function fi(Si) is defined as [8, 18]:

fi(Si) =



(
1
µi

)ki ki

∏
j=1

eisij Type 1,

ki!
R
∏

r=1

uir

∏
l=1

1
kirl !

(
eir Airl

µirl

)kirl
Type 2,

R
∏

r=1

uir

∏
l=1

1
kirl !

(
eir Airl

µirl

)kirl
Type 3,

ki

∏
j=1

eirj Airjmj
µirjmj

,

(2.22)

with [18]:

sij Class of the service request in the j th position of the FCFS queue.

µirl The mean service rate of the node i in the class r at the lth phase (l = 1, .., uir) in a Cox
distribution.

uir The maximum number of exponential phases of the class r in node i.

Airl Airl =
l−1
∏
j=0

airj is the probability, that a class-r service request in node i reaches the lth stage

(Air1 = 1 because of air0 = 1).

airl The probability, that a class-r service request at the node i moves to the (j + 1)th phase.

19

CHAPTER 2. STATE OF THE ART

kirl Number of class-r service requests in phase l.

ki ki =
R
∑

r=1
kir overall number of service requests of all classes in node i.

In their paper [8] Baskett, Chandy, Muntz and Palacios provided also two simplifications of the
equilibrium state probabilities for closed networks and open network, in which the arrival rate
does not depend on the state of the model.

For a closed system the steady-state state probabilities are given by [8, 18]:

p(S1, .., SN) =
1

G (K)

N

∑
i=1

Fi(Si), (2.23)

where the normalization constant G (K) is defined as [18]:

G (K) = ∑
∑N

i=1 Si=K

N

∏
i=1

Fi(Si) (2.24)

and the function Fi(Si) is defined as [8, 18]:

fi(Si) =



ki! 1
βi(ki)

(
1
µi

)ki R
∏

r=1

1
kir ! (eir)

kir Type 1,

ki !
ki
∏
j=1

µi(j)

R
∏

r=1

1
kir ! (eir)

kir Type 1 (mi = 1), load dependent service rate µi(j),

ki!
R
∏

r=1

1
kir !

(
eir
µir

)kir
Type 2, 4,

R
∏

r=1

1
kir !

(
eir
µir

)kir
Type 3.

(2.25)

with [18]:

ki =
R

∑
r=1

kir, (2.26)

βi(ki) =


ki! ki ≤ mi,
mi!m

ki−mi
i ki ≥ mi,

1 mi = 1.

(2.27)

and [18]:

eir =
N

∑
s∈Cq; j=1

ejs pjs,ir. (2.28)

An example for a closed BCMP Queueing network is omitted, while the calculation of the
normalization constant involves the calculation of all states of the network and could therefore

20

2.1. QUEUEING THEORY

be very large. An optimized algorithm for the calculation of these networks is for example
provided through the Mean Value Analysis, explained in the next subsection, where also a
descriptive example is given.

For open BCMP networks with load-independent arrival and service rates the steady-state state
probability simplifies to [8, 18]:

p(k1, .., kN) =
N

∑
i=1

pi(ki), (2.29)

where the individual steady-state state probabilities are defined as [8, 18]:

pi(ki) =

(1− ρi) ρki
i Type 1, 2, 4 (mi = 1),

e−ρi
ρ

ki
i

ki !
Type 3.

(2.30)

with [18]:

ki =
R

∑
i=1

kir (2.31)

and [18]:

ρi =
R

∑
i=1

ρir, (2.32)

ρir =

{
λr

eir
µi

Type 1 (mi = 1),

λr
eir
µir

Type 2, 3, 4.,
(2.33)

where the ergodicity conditions (ρ < 1) holds for every server.

The mean number of service requests per class in every server is then provided as [18]:

nir =
ρir

1− ρir
. (2.34)

For the calculation of the steady-state state probabilities for Type-1 nodes with more than one
server (mi > 1), the formulas from table A.4 are used.

An algorithm for the calculation of the performance values of an open BCMP network with
load-independent arrival and service rates could then be defined as follows [18]:

• Step 1: Compute the visit ratios eir for i = 1, .., N and r = 1, .., R.

• Step 2: Compute the utilizations ρi for each node.

• Step 3: Compute the other performance values.

• Step 4: Compute the steady-state state probabilities for every node.

• Step 5: Compute the overall steady-state state probabilities.

21

CHAPTER 2. STATE OF THE ART

An illustrative example, also used in [18], is defined as follows:

�1

�2

�3

p11,21=0,4

p12,22=0,3

p11,31=0,3

p12,32=0,6

p21,11=0,6

p22,12=0,7

p0,11=1

p0,12=1

p31,11=0,5

p32,12=0,4

p11,0=0,3

p12,0=0,1Type�2

�/G/1�PS

Type�4

�/G/1�LCFS PR

Type�4

�/G/1�LCFS PR

Source Sink

p31,21=0,5

p32,22=0,6

p21,31=0,4

p22,32=0,3

Figure 2.6: Sample Open Network - BCMP [18]

The network is an open network of three nodes (N = 3) and two service request classes (R = 2),
shown in figure 2.6.

The service times are exponentially distributed and the service rates are defined as [18]:

µ11 =
1
8s

; µ21 =
1

12s
; µ31 =

1
8s

;

µ12 =
1

24s
; µ22 =

1
32s

; µ32 =
1

36s
.

The arrival rates are also exponentially distributed as [18]:

λ1 = λ2 =
1
8

SRq
s

.

In the example the demanded values are the mean number of service requests at every node
nir and the probability for the state (k1, k2, k3) = (3, 2, 1)

In the first step the visit ratios eir as eir = p0,ir +
N
∑

s∈Cq, j=1
ejs pjs,ir are computed for r = 1, .., R and

i = 1, .., N [18]:

e11 = p0,11 + e11 p11,11 + e21 p21,11 + e31 p31,11 = 3, 333;
e21 = p0,21 + e11 p11,21 + e21 p21,21 + e31 p31,31 = 2, 292;
e31 = p0,31 + e11 p11,31 + e21 p21,31 + e31 p31,21 = 1, 917;

e12 = p0,12 + e12 p12,12 + e22 p22,12 + e32 p32,12 = 10;
e22 = p0,22 + e12 p12,22 + e22 p22,22 + e32 p32,32 = 8, 049;
e32 = p0,32 + e12 p12,32 + e22 p22,32 + e32 p32,22 = 8, 415.

22

2.1. QUEUEING THEORY

In the second step the utilizations ρi are computed [18]:

ρ1 = λ1
e11

µ11
+ λ2

e12

µ12
= ρ11 + ρ12 = 0, 833;

ρ2 = λ1
e21

µ21
+ λ2

e22

µ22
= ρ21 + ρ22 = 0, 442;

ρ3 = λ1
e31

µ31
+ λ2

e32

µ32
= ρ31 + ρ32 = 0, 354.

In the third step the mean number of service requests at every node (nir =
ρir

1−ρi
) are computed

[18]:

n11 = 2, 500; n21 = 0, 342; n31 = 0, 186;
n12 = 2, 500; n22 = 0, 500; n32 = 0, 362.

In the fourth step the marginal probabilities (pi(ki) = (1 − ρi)ρ
ki
i - Type 1,2,4 (mi = 1)) are

computed [18]:

p1(3) = 0, 0965; p2(2) = 0, 1093; p3(1) = 0, 2287.

Finally in the fifth step the steady-state state probability for the state (k1, k2, k3) = (3, 2, 1) is
computed [18]:

p(3, 2, 1) = p1(3)p2(2)p3(1) = 0, 00241.

2.1.7 An Algorithm for Product Form Networks - Mean Value Analysis (MVA)

The Mean Value Analysis [118] is an algorithm for the calculation of the performance values
of closed queueing networks with product form solutions. It is based on Little’s Law [98] and
the Theorem of the distribution at arrival time (Arrival Theorem, Reiser/Lavenberg-Theorem
[93, 121]), which states, that in a closed Product Form Queueing Network, the probability mass
function of the number of jobs seen at the time of the arrival at node i when there are k service
requests in the network is equal to the probability mass function of the number of jobs at this
node with one less job in the network [18].

This iterative algorithm is then defined as follows [18]:

In step 1 the performance values are initialized:

For i = 1, .., N and j = 1, .., (mi − 1):

ni = 0; pi(0|0) = 1; pi(j|0) = 0. (2.35)

23

CHAPTER 2. STATE OF THE ART

Step 2 is an iteration over the number of service requests k = 1, .., K with the corresponding sub
steps:

Step 2.1 Computation of the mean response times of a service request at each node:

Ri(k) =


1
µi
(1 + ni(k− 1)) Type− 1, 2, 4 (mi = 1),

1
µimi

(
1 + ni(k− 1) + ∑mi−2

j=0 ((mi − j− 1) pi(j|k− 1))
)

Type− 1 (mi > 1),
1
µi

Type− 3,
(2.36)

with the conditional probabilities of:

pi(0|k) = 1− 1
mi

(
eiDi(k)

µi
+

mi−1

∑
j=1

((mi − j) pi(j|k))
)

,

pi(j|k) = Di(k)
µiαi(j)

pi(j− 1|k− 1).

(2.37)

and the function αi(j) defined as:

αi(j) =

{
j i f j ≤ mi,
mi else.

(2.38)

In Step 2.2 the overall throughput D(k):

D(k) =
k

∑N
i=1 eiRi(k)

(2.39)

and the node throughput Di(k) is computed:

Di(k) = eiD(k). (2.40)

The mean number of service requests at every node is computed in Step 2.3:

ni(k) = eiD(k)Ri(k). (2.41)

The other performance values are computed using the known formulas.

The Mean Value Analysis is furthermore extended to multi class networks, mixed networks
and networks with load dependent service rates. More information on this extensions could be
found in [18].

24

2.1. QUEUEING THEORY

An example of the closed Gordon Newell Networks, illustrated in figure 2.7, is used for exem-
plification.

�1

�2

�3

p1,2=0,4

p1,3=0,5

p1,1=0,1

CPU

Disk1

Disk2

Figure 2.7: Sample Closed Network - MVA [68]

The performance parameters are:

µ1 = 0, 5; µ2 = 0, 40; µ3 = 0, 25;
K = 3;
e1 = 1; e2 = 0, 4; e3 = 0, 5.

In step 1, the ni values are initialized. (The conditional probabilities pi(0|0) and pi(j|0) are not
initialized, because there are no Type-1 mi > 1 servers in the example):

n1 = 0; n2 = 0; n3 = 0.

The first iteration (j = 1) of step 2 leads to the following results:

R1 = 2[s]; R2 = 2, 5[s]; R3 = 4[s]; R = 5[s];

D1 = 0, 2
1
[s]

; D2 = 0, 08
1
[s]

; D3 = 0, 1
1
[s]

; D = 0, 2
1
[s]

;

n1 = 0, 4; n2 = 0, 2; n3 = 0, 4; n = 1.

Second iteration (j = 2):

R1 = 2, 8[s]; R2 = 3[s]; R3 = 5, 6[s]; R = 6, 8[s];

D1 = 0, 29
1
[s]

; D2 = 0, 12
1
[s]

; D3 = 0, 15
1
[s]

; D = 0, 29
1
[s]

;

n1 = 0, 82; n2 = 0, 35; n3 = 0, 82; n = 2.

Third iteration (j = 3 = K):

R1 = 3, 65[s]; R2 = 3, 39[s]; R3 = 7, 29[s]; R = 8, 65[s];

D1 = 0, 35
1
[s]

; D2 = 0, 14
1
[s]

; D3 = 0, 17
1
[s]

; D = 0, 35
1
[s]

;

n1 = 1, 27; n2 = 0, 47; n3 = 1, 27; n = 3.

25

CHAPTER 2. STATE OF THE ART

2.2 Time Augmented Petri Nets

The dimension time is not considered in the original Petri Nets by Petri [113] and Holt and
Commoner [75]. In this networks the causal relationships between the associated events or
actions are to be investigated, as for example in the modeling of (business) processes or the
development of asynchronous circuits. The quantitative analysis or steady state behavior of
servers were not in the focus. Later on the Petri Nets were extended by the aspect time (as
Time Augmented Petri Nets) in order to extend them for the quantitative analysis as an ad-
ditional aim. Compared to Queueing Networks, the analysis of such Time Augmented Petri
Nets is often executed on the level of the reachability graph, like illustrated in figure 2.8. While
the Queueing Theory often abstracts from this level of detail through Product Form Solutions
and defined equilibriums on the server level, in Time Augmented Petri Nets the quantitative
behavior of system with complex (Non Product Form) control flows could be predicted with
the trade-off of the possible state-space explosion problem, when considering the system on the
level of continuous time Markov chains (CTMCs). A more extensive comparison in provided
in section 4.4.

n=λ*R

n=(n1,..,ni,..,nN)

ni=ni,q+ni,s i=1,..,N

p=(p0,..,pN)

M=(M0,..,Mi,..)

Steady State Probability

Vector of M

Reachability Graph

(isomorphic to CTMC)

Operational State

Steady State Relation for

Black Box (Little’s Law)

Figure 2.8: Range of Steady State Variables [140]

In this section an overview of some classifications and extensions of Time Augmented Petri
Nets is given on the basis of [14].

2.2.1 Classification

The Time Augmented Petri Nets could be mainly divided into two classes, dependent which
object type had a specified sojourn time [14]:

• Timed Places Petri Nets (TPPNs)

• Timed Transitions Petri Nets (TTPNs)

In Timed Places Petri Nets the sojourn times are connected to the places of the Petri Net. If a
token enters a place, the corresponding transitions, for which this place is an input place, can
only fire after a certain time interval.

On the other hand, in Timed Transitions Petri Nets the sojourn times are connected to the tran-
sitions.The transitions become enabled, but fire only after a certain time interval has elapsed.
This group of Time Augmented Petri Nets could furthermore divided into two subclasses [14]:

26

2.2. TIME AUGMENTED PETRI NETS

• TTPNs with reservation (preselection models)

• TTPNs without reservation (race models)

In preselection models the transition selects all input tokens it needs to fire, when the transition
is enabled, so that the tokens are unavailable for other possible concurrent transitions. When
the corresponding time interval of the transition has elapsed, the input tokens are destroyed
and the output tokens are created by the firing of the transition.

In race models the tokens are not reserved. In these models concurrent transitions get enabled
parallel and the transition, which fires first, disables the other possible concurrent transitions.

Another differentiator is, if the mentioned times are defined deterministic or with a stochastic
distribution.

In some cases also different firing policies of transitions are distinguished. While the considered
Petri Nets have exponential distributed firing delays, this differentiation is irrelevant [14].

In the following some important Time Augmented Petri Net types are listed:

• In continuous time stochastic Petri Nets (SPN) [104, 106] (according to [14]) all transitions
are augmented with a stochastic firing time interval.

• Generalized Stochastic Petri Nets (GSPN) [101, 102] introduce immediate transitions.

• In Deterministic Stochastic Petri Nets (DSPN) [34] the transitions are associated to deter-
ministic as well as stochastic firing times.

• Queueing Petri Nets [9, 10, 14] combine Queueing Networks and Petri Nets within one
net and in a mixed TPPN/TTPN.

2.2.2 Continuous Time Stochastic Petri Nets (SPN)

Continuous Time Stochastic Petri Nets (SPN) [104, 106] (according to [14]) extend a Petri Net
by connecting a transition rate ωi to every transition ti.

While the firing delays in SPNs are exponentially distributed and therefore have a memoryless
property, an SPN is isomorphic to a continuous time Markov chain (CTMC) [102]. Furthermore,
a k-bounded SPN3 system is isomorphic to a finite CTMC [102]. Thus the corresponding CTMC
of an SPN could be obtained by applying the following rules [102]:

• The CTMC state space S = si corresponds to the reachability set RS(M0) of the Petri Net
associated with the SPN (Mi ↔ si).

• The transition rate from state si (corresponding to marking Mi) to state sj (Mj) is obtained
as the sum of the firing rates of the transitions that are enabled in Mi and whose firings
generate marking Mj.

3k-bounded [21]: SPN is k-bounded, if the number of tokens in each place is less or equal to k for all markings in
RS(Mi).

27

CHAPTER 2. STATE OF THE ART

As a simplification, in this section, like in [102], the transitions are associated with single server
semantics and a marking independent speed, but this has not to be the case in every system.

Based on this rules, the infinitesimal generator (state transition rate matrix Q) of the CTMC
could be constructed from the SPN [102]. Every cell in this matrix is then defined as [102]:

qij =

 ∑
Tk∈Ej(Mi)

ωk i 6= j,

−qi i = j,
(2.42)

where:

qi = ∑
Tk∈E(Mi)

ωk, (2.43)

with ωk as firing rate of transition Tk and Ej(Mi) as the set of transitions whose firings bring
the net from Mi to Mj. If the SPN is ergodic, the steady state probability distribution vector π
could then be found by solving the linear system [102]:

πQ = 0. (2.44)

The probability, that a transition Tk ∈ E(Mi) fires (first) in marking Mi has the expression [102]:

p(Tk|Mi) =
ωi

qi
. (2.45)

The average sojourn time in marking Mi is [102]:

SJi =
1
qi

. (2.46)

Through the steady state probability distribution vector π, the probability of being in a subset
B of markings is defined as the sum of the steady state probabilities of the different markings
[14]:

p(B) = ∑
Mi∈B

πi. (2.47)

The throughput of a timed transition Tk is further defined by the mean number of firings in
steady state as the firing rate ωk multiplied by the sum of the steady state probabilities in
which Tk is enabled [14]:

Dk = ωk ∑
Tk∈E(Mi)

πi. (2.48)

In order to calculate the mean number of tokens enabling a transition Tk, also interpreted as nk,
the steady state probabilities πi of all markings Mi enabling Tk are added:

nk = ∑
Tk∈E(Mi)

πi. (2.49)

28

2.2. TIME AUGMENTED PETRI NETS

The continuous time Stochastic Petri Net in figure 2.9 exemplifies an SPN and will be analyzed
in this section. The example originates from [102].

pact1

λ1Treq1

preq1

α1Tstr1

pacc1

1Tend1

pidle

pact2

λ2 Treq2

preq2

α2 Tstr2

pacc2

2 Tend2

Figure 2.9: SPN Example [102]

The performance parameters of this example are defined in table 2.1.

Transition Rate Semantics

Treq1 λ1 = 1 single server

Treq2 λ2 = 2 single server

Tstr1 α1 = 100 single server

Tstr2 α1 = 100 single server

Tend1 µ1 = 10 single server

Tend2 µ2 = 5 single server

Table 2.1: SPN Example - Parameters [102]

29

CHAPTER 2. STATE OF THE ART

In the first step of the calculation of this model, the corresponding reachability graph is set up,
as illustrated in figure 2.10.

��

�� ��

��

�� ��

���	

��
�

���

����
����

���

���

���

��
�

��
�

��
�

���

���

����
����

Figure 2.10: SPN Example - Reachability Graph [102]

After that the reachability set is derived as [102]:

M0 = pact1+ pidle+ pact2

M1 = preq1+ pidle+ pact2

M2 = pacc1+ pact2

M3 = pacc1+ preq2

M4 = preq1+ pidle+ preq2

M5 = pact1+ pidle+ preq2

M6 = pact1+ pacc2

M7 = preq1+ pacc2

This leads to the state transition rate diagram of the associated Markov chain, depicted in figure
2.11.

M0

M1 M5

M4M2 M6

M7M3

α1 λ1 λ2

�1 �2

�1 �2

λ2α1 α2α2 λ1λ2

λ1

Figure 2.11: State Transition Rate Diagram of the SPN Example [102]

30

2.2. TIME AUGMENTED PETRI NETS

Knowing this state transition rate diagram, the state transition rate matrix Q is set up as [102]:

Q =



−λ1 − λ2 λ1 0 0 0 λ2 0 0
0 −α1 − λ2 α1 0 λ2 0 0 0
µ1 0 −λ2 − µ1 λ2 0 0 0 0
0 0 0 −µ1 0 µ1 0 0
0 0 0 α1 −α1 − α2 0 0 α2

0 0 0 0 λ1 −α2 − λ1 α2 0
µ2 0 0 0 0 0 −λ1 − µ2 λ1

0 µ2 0 0 0 0 0 −µ2



If then πQ = 0 and ∑7
i=0 πi = 1 and this linear system is solved, the steady state probabilities

are [102]:

π0 = 0, 61471, π1 = 0, 00842, π2 = 0, 07014, π3 = 0, 01556;
π4 = 0, 00015, π5 = 0, 01371, π6 = 0, 22854, π7 = 0, 04876.

An exemplary performance value could be the utilization of the shared memory. Therefore the
expectation value of the markings, in which the place pidle is occupied, is calculated as [102]:

E(M(pidle)) = π0 + π1 + π4 + π5 = 0, 6370.

The utilization of the shared memory is then defined as [102, 128]:

ρshared memory = 1− E(M(pidle)) = 0, 3630.

Another exemplary performance value is the throughput of the transition Treq1, which could be
interpreted as the throughput of the left subnet, calculated as Dk = ωk ∑Mi∈Ak

πk, in which Ak
is the subset of the result set in which Tj (in this case Treq1) is enabled [102]:

Dreq1 = λ1(π0 + π5 + π6) = 0, 8570.

Compared to a solution of a closed queueing network calculated with the help of the Gordon-
Newell Theorem, like shown in section 2.1.5, in this calculated example the interdependencies
of the different transitions through the semaphore prevented the usage of a Product Form So-
lution. Therefore, the network had to be calculated on the level of reachability graphs. On the
other hand, networks which are accessible to Product Form Solutions could also be calculated
on the level of CTMCs, but this additional effort would not result in more precise calculations
on the level of steady state probabilities, as for Product Form Networks, Product Form Solu-
tions are correct.

31

CHAPTER 2. STATE OF THE ART

2.2.3 Generalized Stochastic Petri Nets (GSPN)

Generalized Stochastic Petri Nets (GSPN) [101, 102] extend the SPN by introducing immediate
transitions alongside the timed transitions. These immediate transitions fire in zero time, while
the timed transitions fire after a random, exponentially distributed enabling time, like in the
SPN [14].

If transitions in a GSPN are enabled concurrently, which transition fires is decided as [14]:

• If the concurrent transitions are timed transitions, the transition, which fires first, disables
the other transitions (like in an SPN).

• If both timed and immediate transitions are enabled, only the immediate transition will
be enabled (immediate transitions have priority).

• If only an immediate transition is enabled, it fires with probability 1.

• If immediate transitions are enabled in parallel, the random switch or switching distribu-
tion is often defined by firing weights ωi. If then, for example, two transitions T1 and T2
are enabled in some marking M, the probability of firing T1 is ω1

ω1+ω2
.

The different states in a GSPN are then partitioned into tangible states T̂ (all transitions enabled
in this state are timed) and vanishing states V̂ (at least one enabled transition in this state is
immediate), where T̂ ∩ V̂ = ∅.

In order to analyze the performance behavior of a GSPN, an embedded Markov chain could be
considered. The corresponding transition state probability matrix is defined as an augmented
matrix with respect to the sets of vanishing and tangible states [14]:

P =

[
C D
E F

]
(2.50)

Where in C are the transition probabilities from marking or state Mi to Mj, where Mi and Mj
are vanishing states [14]:

C = (cij), cij = p(Mi → Mj; Mi ∈ V̂, Mj ∈ V̂). (2.51)

D are the transition probabilities from vanishing states to transition states [14]:

D = (dij), dij = p(Mi → Mj; Mi ∈ V̂, Mj ∈ T̂) (2.52)

and E and F accordingly [14]:

E = (eij), eij = p(Mi → Mj; Mi ∈ T̂, Mj ∈ V̂) (2.53)

F = (fij), fij = p(Mi → Mj; Mi ∈ T̂, Mj ∈ T̂) (2.54)

Every transition probability from marking of state Mi to Mj is then defined as the sum of all
firing rates resp. firing weights ωk, whose transitions Tk are enabled in marking Mi and which

32

2.2. TIME AUGMENTED PETRI NETS

firing produce Mj
4 divided by the sum of of all firing rates resp. firing weights ωr of the

transitions Tr, enabled in state Mi
5 [14, 102]:

p(Mi → Mj) =

∑
Tk∈Ej(Mi)

ωk

∑
Tr∈E(Mi)

ωr
(2.55)

The steady state distribution π̃ of the embedded Markov chain is given by [14]:

π̃P = π̃ (2.56)

and [14]:

∑
Mi∈T̂∪V̂

π̃ = 1. (2.57)

The steady state distribution π of the original stochastic process could be derived from the
steady state distribution π̃ of the embedded Markov chain by weighting the probability π̃j
with the portion of time the process spends in marking Mj [14]:

If Mj is a vanishing marking, πj is 0. If Mj is a tangible marking, the steady state probability πj
is the fraction of time the stochastic process spends in marking Mj. This is characterized by the
mean time the stochastic process spends in this state [14]:

1
∑

Tk∈E(Mj)
ωk

(2.58)

divided by the mean cycle time [14] for this marking:

1
π̃j

∑
Ms∈T̂

 π̃s

∑
Tk∈E(Ms)

ωk

 (2.59)

This leads to the steady state distribution [14]:

πj =


π̃j

1
∑

Tk∈E(Mj)
ωk

∑
Ms∈T̂

 π̃s
∑

Tk∈E(Ms)
ωk

 Mj ∈ T̂,

0 Mj ∈ V̂.

(2.60)

Knowing the steady state distribution π, all other performance values could be derived like for
an SPN.

4Ej(Mi) denotes the set of transitions enabled in Mi whose firings produces Mj [102]
5E(Mi) denotes the set of transitions enabled in marking Mi [102]

33

CHAPTER 2. STATE OF THE ART

As an exemplary GSPN, the SPN example of subsection 2.2.2 has been slightly modified, that
tstr1 and tstr2 are immediate transitions and therefore the token on place pidle could be consid-
ered as a real semaphore. This is illustrated in figure 2.12.

pact1

Treq1

preq1

tstr1

pacc1

Tend1

pidle

pact2

Treq2

preq2

tstr2

pacc2

Tend2

λ1

α1

�1

λ2

α2

�2

Figure 2.12: GSPN Example [102]

The performance parameters of this example are defined in table 2.2.

Transition Rate/Weight Semantics

Treq1 λ1 = 1 single server

Treq2 λ2 = 2 single server

Tstr1 α1 = 1 immediate

Tstr2 α1 = 1 immediate

Tend1 µ1 = 10 single server

Tend2 µ2 = 5 single server

Table 2.2: GSPN Example - Parameters

The new reachability graph, illustrated in figure 2.13, has slightly changed comparing to figure
2.10, because the old state M4 is impossible. This state was deleted, because it was reached
through the firing of transition Treq2 resp. Treq1, while each of the transitions was concurrently
enabled with transition Tstr1 resp. Tstr2. The transitions Tstr1 and Tstr2 are immediate transi-
tions in this model, so the timed transitions Treq2 and Treq1 will be disabled in this concurrent
enabling. Furthermore, the state numberings i have been changed in order to be sorted in the
sets of vanishing V̂ = {M0, M1} and tangible states V̂ = {M2, .., M6}.

34

2.2. TIME AUGMENTED PETRI NETS

��

�� ��

�� ��

����

	
���

	�
��

	
��� 	
���

	�
��

	
���

	�
�� 	�
��

	
��� 	
���

Figure 2.13: GSPN Example - Reachability Graph

The matrix P is then calculated as:

P =

[
C D
E F

]
=



0 0 0 1 0 0 0
0 0 0 0 0 1 0
λ1

λ1+λ2

λ2
λ1+λ2

0 0 0 0 0
0 0 µ1

λ2+µ1
0 λ2

λ2+µ1
0 0

0 1 0 0 0 0 0
0 0 µ2

λ1+µ2
0 0 0 λ1

λ1+µ2

1 0 0 0 0 0 0


If the global balance equations π̃P = π̃ and ∑

Mi∈T̂∪V̂
π̃ = 1 are then solved, π̃i is defined as:

π̃0 =
8
63

; π̃1 =
13
63

; π̃2 =
5
18

; π̃3 =
8
63

; π̃4 =
4

189
; π̃5 =

13
63

; π̃6 =
13
378

.

This leads to the steady state distribution π (computed through formula 2.60):

π0 = 0; π1 = 0; π2 =
175
277

; π3 =
20

277
; π4 =

4
277

; π5 =
65
277

; π6 =
13
277

.

While this example is also used as a comparative example in section 4.3, further performance
values are calculated there.

2.2.4 Product Form Petri Nets

There are several proposals for product form solutions for Time Augmented Petri Nets in order
to address the state-space explosion problem. The approach of Lazar and Robertazzi [94] is
based on investigations of the reachability graph of the SPN. Henderson et al. [19, 20, 35, 46,
70, 72, 73] perform a structural analysis on the net level and Florin and Natkin [52] developed
a product form solution for closed synchronized queueing networks [46, 52]. Furthermore,

35

CHAPTER 2. STATE OF THE ART

Balbo, Bruell and Sereno [5, 6] proposed product form solutions for GSPNs. In this subsection
the approaches are briefly explained. The product form solutions of Queueing Petri Nets [11,
12] are furthermore summarized in section 2.2.5.

Lazar and Robertazzi [94] characterize a product form Petri Net through the investigation of
the corresponding reachability graph. They define an isolated circulation as [46, 94]:

Isolated Circulation An isolated circulation consists of the probability flow along a subset of
edges of the state transition diagram for which there is a conservation of this flow at each
adjacent state.

Through the identification of isolated circulations they define a product form criteria called
Duality Principle [46, 94]:

Duality Principle There is a duality between the existence of local balance and the existence
of isolated circulations. That is to say, the existence of local balance leads to isolated
circulations and vice versa.

While the exploration of the state-space is a weakness of the approach [46], Lazar and Rober-
tazzi also defined a product form criteria on structural level for safe nets6 [46, 94]:

A Safe SPN, consisting of a number of task sequences that are comprised of a series of se-
quential sub-tasks, has product form solution for the equilibrium state probabilities if the state
transition diagram can be naturally associated with a Cartesian coordinate systems, and if the
transition diagram is comprised of integral building blocks (isolated circulations) and corre-
sponding consistent set of local balance equations.

This criteria could also be formulated in terms of blocking at the state space level [46, 94]:

Consider a safe SPN consisting of a number of task sequences that are comprised of a series
of sequential sub-tasks. The product form solution for the probabilities at equilibrium exists if
and only if a task sequence is only allowed to proceed if there is a non-zero probability that it
can return to its current state without the need for a state change in other task sequences.

Henderson, Lucic and Taylor [73] proposed a structural approach for the identification of prod-
uct form Petri Nets. They consider the transitions of the stochastic Petri Net to be themselves
states in a Markov chain, called Routing process. Each transition t has a unique input bag (I(t))
and the probabilistic routing allows for a number of different output bags (O(t)). Furthermore
they define the set R(T) [46, 73]:

R(T) =
⋃
t∈T

O(t) ∪
⋃
t∈T

I(t) (2.61)

as the finite set of all vectors which are either output or input bags for the SPN. Then they
define one step probabilities on the set R(T) as [46, 73]:

p(r, r′) = p(I(t), t, Oj(t)) (2.62)

whenever there exists a transition t and a j such that r = I(t) and r′ = Oj(t) (where no vector
can be the input set of two or more transitions). Then they define the set F as [73]:

6Safe Net [46]: In a safe net, all places are 1-bounded.

36

2.2. TIME AUGMENTED PETRI NETS

F = { f (·) : f (r) > 0, χ(r) f (r) = ∑
r′

χ(r′) f (r′)p(r′, r), ∀r ∈ R} (2.63)

where χ(r) = ω(r) if r = I(t) and χ(r) = 1 else [46].

Then, F needs to be nonempty, where [73]:

• For F to be nonempty, all vectors I(t), t ∈ T must be in positive recurrent communication
classes of the routing process.

• For F to be nonempty, all r ∈ R must be the input bag for some transition t and all r ∈ R
must be the output bag for some transition t.

• If F is nonempty, there exists a one to one correspondence between distinct elements of R
and elements of F.

Through the one to one correspondence of R and T the set F could be defined as [46, 73]:

F = { f (·) : f (t) > 0, ω(t) f (t) = ∑
s

ω(s) f (s)p(s, t), ∀t ∈ T} (2.64)

where p(s, t) = p(I(t), I(s)) with s, t ∈ T.

This leads to the product form theorem [46, 73]:

Assume, there exists a function f (·) ∈ F and a function {g(·) : ZP → R} which have the
property, that for all t ∈ T and m + I(t) in the reachability graph

g(m + I(t))
g(m + I(s))

=
f (t)
f (s)

(2.65)

whenever p(t, s) > 0. Then the equilibrium distribution of the SPN is given by:

p(m) = G ∗ g(m) (2.66)

where G is a normalization constant.

In order to check if a SPN has a product form solution it is necessary [46]:

• to check the input output criteria and

• to find if g(·) exists (analytically or algorithmically (reachability graph)).

In [72] Henderson and Taylor further extended their results by analyzing a general discrete time
model, finding joint equilibrium distributions at adjacent time points, allowing for arbitrary
distributions of firing and enabling time periods and using the discrete time model as a basis
for an embedded SPN analysis.

Boucherie and Sereno [19, 20], Donatelli and Sereno [46] and Coleman, Henderson and Taylor
[35] further extended and generalized these results.

37

CHAPTER 2. STATE OF THE ART

Through this research, a criterion based on minimal closed support T-invariants was estab-
lished. Let x1, .., xh denote the minimal support T-invariants7, then [6, 20]:

Closed Set For T′ ⊆ T define R(T′), the set of input and output bags for the transitions in T′,
as R(T′) =

⋃
t∈T′{i(t) ∪O(t)} is a closed set if for any g ∈ R(T′) there exist t, t′ ∈ T′

such g = I(t), as well as g = O(t′), that is if each output bag is also an input bag for a
transition in T′.

Then the following structural constraint is the key to the identification of a product form SPN
[6, 20, 70]:

Structural Constraint An SPN is said to be closed iff ∀t ∈ T are covered by minimal closed
support T-invariants, i.e. assume, that ∀t ∈ T there exists an i ∈ {1, .., h} such that
t ∈ ||xi|| and ||xi|| is a closed set.

If this structural constraint is true, there exists a positive solution of the traffic equations [20].
These traffic equations of the routing process [73] are the global balance equations of the corre-
sponding Markov chain [70] and calculate the visit ratios v(I(tj)) as follows [70]:

v(I(tj)) = ∑
th∈T

v(I(th))p(I(th), I(tj)) , ∀Tj ∈ T. (2.67)

Following Haddad et al. [70], a positive solution for the traffic equations is not a sufficient
condition to assert a product form solution for an SPN, but a first step in the finding of a
product form solution [6]. In order to state, that an SPN has a product form solution, one other
condition [35, 73] has to be fulfilled.

Product Form for Equilibrium Distribution of SPN [35, 70, 73] Let f = v/µ with v a solution
for the traffic equations. The equilibrium distribution for the SPN has the form:

π(M) =
1
G

|P|

∏
i=1

ymi
i ∀m ∈ RS(M0) (2.68)

if and only if Rank(C) = Rank(
[
C|w f

]
) where

[
C|w f

]
is the incidence matrix C aug-

mented with the row w f and G as a normalization constant. In this case the |P|-
component vector r =

[
log(y1), .., log(y|P|)

]
satisfies the matrix equation −r.C = w f .

with [70]:

w f =

[
log
(

f (I(t1))

f (O(t1))

)
, .., log

(
f (I(t|T|))
f (O(t|T|))

)]
(2.69)

So it must be noted [70], that the condition Rank(C) = Rank(
[
C|w f

]
) depends on the rates and

not only on the structure of the net.

7T-invariant [20]: A vector x ∈ NM
0 is a T-invariant if x 6= 0 and Ax = 0. The support of a T-invariant x is the set

of transitions corresponding to non-zero entries of x and is denoted by ||x||, i.e. ||x|| = t ∈ T|xt > 0. A T-invariant
x is minimal, if there is no other T-invariant x′ such that x′m ≤ xm ∀m. A support is minimal if no proper nonempty
subset of the support is also a support of a T-invariant.

38

2.2. TIME AUGMENTED PETRI NETS

Based on this results, Haddad, Moreaux, Sereno and Silva [70] established a polynomial time
algorithm (O(|T|2) to decide whether a SPN has a product form solution. Furthermore they
developed a rate independent structural characterization of product form SPN. Also, they in-
vestigated some untimed properties and some reachability properties of product form SPNs.

Florin and Natkin [52] developed a product form solution for a special class of SPN called
closed synchronized queueing networks. Closed synchronized queueing networks have the
following properties [52]:

• The underlying Petri Net is a monovaluated place-transition net8.

• The underlying Petri Net is bounded for its initial marking9.

• The reachability graph of the underlying Petri Net is strongly connected (for ergodic
properties).

• The stochastic Petri Net is a Markov Stochastic Petri Net.

• The firing rates of the transitions are marking independent.

The product form solution for closed synchronized Queueing Networks is based on results of
Gordon-Newell [64] and matrix product form solutions.

Balbo, Bruell and Sereno [5, 6] extend the investigations on product form solutions for gener-
alized Stochastic Petri Nets. They state, that every GSPN that satisfies the known structural
constraint:

Structural Constraint [6] A GSPN is said to be closed iff ∀t ∈ T there exists a minimal T-
semiflow, such that t ∈ ||x|| and ||x|| is a closed set.

and an additional criteria:

Free-Killing-Conflict [6] A GSPN is said to be a free-killing-conflict if any extended conflict
set ECS(ti)

10, that involves immediate transitions having the same priority level has the
following property:

• tia ∩ •tib 6= 0 or • tia ∩ ◦tib 6= 0 or ◦ tia ∩ ◦tib 6= 0 ∀tia , tib ∈ ECS(ti) (2.70)

Which means, that the firing of an enabled immediate transition disables all the other
(enabled) transitions of its same ECS(ti) where •ti =

{
pj|I(ti, pj) > 0

}
is the preset of the

transition ti and ◦ti =
{

pj|H(ti, pj) > 0
}

is the inhibition set of the transition ti

admit a solution for its traffic equations and are therefore structurally suitable for a product
form solution. To determine weather a GSPN admit product form solution, Balbo, Bruell and
Sereno [5, 6] apply the results of [35, 70].

8Monovaluated Place-Transition Net [52]: In a monovaluated place-transition net, tokens can be added or re-
moved from a place only one by one - non grouped arrival or departure from queue.

9Bounded [105]: A Petri Net is said to be bounded, if the number of tokens in each place could not exceed a finite
number k for any marking reachable from the initial marking.

10Extended Conflict Set [6]: The extended conflict set ECS(ti) of a transition ti includes all the transitions that are
in structural conflict with ti as well as those firings may disable ti (indirect disable).

39

CHAPTER 2. STATE OF THE ART

2.2.5 Queueing Petri Nets (QPN)

Queueing Petri Nets (QPN) [9, 10, 13, 14] combine Time Augmented Petri Nets and the Queue-
ing Theory from the perspective of Time Augmented Petri Nets. In Queueing Petri Nets queues
are integrated into colored GSPNs (CGSPN). In this kind of Petri Nets the type of queueing
places is defined in addition to the ordinary places, in order be able to compactly define different
scheduling and queueing strategies. The queueing places consist of a queue and a depository
for tokens, as illustrated in figure 2.14.

Figure 2.14: Queueing place and Queueing Place Shorthand Notation [14]

If a token is fired onto this place, the token is unavailable to all connected transitions until the
service in the queue was not finished. When the service, according to the Kendall Notation of
the queue (like described in section 2.1.3), is finished, the token is transmitted to the depository
and is then available for all connected transitions. Through this extension of the colored GSPN,
scheduling strategies could be integrated into the definition of the net without the need of a
complex GSPN notation of the defined strategy [14].

An exemplary QPN is illustrated in figure 2.15.

�

�

�

� �

� � �

�

��

�

�

��������

������	�

������
�
�

������
�
�

� � �

Figure 2.15: QPN Example [14]

For the analysis of quantitative system properties, QPNs must often be analyzed by inspect-
ing the reachability set of the corresponding colored GSPN where the queue is modeled with
CGSPN elements [14]. Though this limitation, they still suffer from the state space explosion
problem.

40

2.2. TIME AUGMENTED PETRI NETS

Product Form Queueing Petri Nets

One approach to cope the state space explosion problem in QPNs, is to introduce product
form solutions for Queueing Petri Nets [11, 12]. A QPN is defined by a triple (CGSPN, P1, P2)
where CGSPN is a colored GSPN, P1 is the set of queueing places and P2 is a set of ordinary
places (P = P1 ∪ P2 is the set of places of the CGSPN). Furthermore, the CGSPN is a 4-tuple
(CPN, T1, T2, W), where CPN is the underlying Coloured Petri Net, T1 ⊆ T is the set of timed
transitions, T2 ⊆ T is the set of immediate transitions (T = T1 ∪ T2 is the set of transitions of the
CPN) and W = (ω1, .., ω|T|) is an array whose entries are possibly marking dependent firing
rates of timed transitions or firing weights of immediate transitions [11]. The QPNs, for which
a product form solution was established, is then defined as follows [11]:

Product Form QPN [11] A product form QPN is a QPN with P1 ∪ T1 6= 0 satisfying the follow-
ing restrictions:

1. All transitions are uncolored.

2. The input bags of immediate transitions are disjoint or equal and do not intersect
with the input bags of timed transitions.

3. The relative firing frequencies of immediate transitions do not depend on the mark-
ing of the QPN.

4. Output places of immediate transitions are not input places of immediate transi-
tions.

5. No two timed transitions have the same input bag.

6. The input bag of each transitions is the output bag of some other transition and vice
versa.

7. The marking dependent firing rate of each timed transition t ∈ T1 can be expressed
as r(M, t) = ϕ(M−I(t))χ(t)

φ(M)
, where ϕ, χ and φ are arbitrary non-negative functions.

8. Input transitions of queueing places have no further output places, output transi-
tions of queueing places have no further input places and only single tokens arrive
at and leave from a queue.

9. All queues in queueing places p ∈ P1 are of product form type.

The solution of such product form QPNs follows ideas of Henderson et al. [35, 72, 73] and
BCMP Networks [8]. Through restrictions 2-4 all immediate transitions could be eliminated.
Restrictions 5-7 are the restrictions for product from SPNs. Through restriction 8 each queueing
place could be replaced by its simplified interpretation, and through restriction 9 the global
balance equations reduce to the defining equations for function f [11]:

F =

{
f : T → (0, ∞) : χ(t) f (t) = ∑

s∈T
χ(s) f (s)p(s, t), ∀t ∈ T

}
(2.71)

So the product form QPN could be transformed into a product form CGSPN and furthermore
an product form SPN (SPN-skeleton), and therefore product form Queueing Networks and
product form SPNs are special cases of product form QPNs [11]. The calculation of the per-
formance values could then be further optimized by aggregation and disaggregation methods
like described in [11] and [12].

41

CHAPTER 2. STATE OF THE ART

2.3 Quantitative Hierarchical Modeling

Hierarchical modeling is the key to cope with complexity in the modeling of quantitative sys-
tems. Therefore this section gives an overview of related work in the area of quantitative hier-
archical modeling.

In order to classify the different approaches and to clarify the understanding of hierarchies,
some definitions in are given in advance: There are different kinds of hierarchies: organi-
zational hierarchies with super-/subordinate relations and abstraction hierarchies with com-
pose/decompose relations [143]. In organizational hierarchies one instance is the superordi-
nate to a hierarchically lower instance. As shown in figure 2.16(a), in this kind of hierarchies
the elements are of the same type - both the boss and the employee are persons and they do not
compose or decompose to each other. In contrast to this, in the abstraction hierarchy, some
parts are composed to a whole. The elements are of different types, as illustrated in figure
2.16(b). A car is composed by it’s parts, so the parts are different from the car and the car is dif-
ferent from the single parts. Also in the abstraction hierarchy the upper hierarchical instances
not necessarily have to exist (as they could be abstract).

����

������		 ������		

(a) Elements of same Type
Organizational Hierarchy

������

���

	
��
�

(b) Elements of different Type
Abstraction Hierarchy

Figure 2.16: Hierarchies

Furthermore, these two hierarchies could also exist in parallel. As an example, a service re-
quest, handled by a boss could be further decomposed to sub-requests, handled by the em-
ployee. In this case there is a relation between the different views, as the domain representa-
tion of the boss as the handler of the request is decomposed into the sub-requests handlers,
represented by the employees. In this abstraction hierarchy the different elements are not the
same, as the the boss is interpreted as the handler and the employees are interpreted as sub-
handlers. But nevertheless, the organizational hierarchy boss-employees still exists in parallel, as
the different instances are not only abstract entities.

The decomposability in subsection 2.3.1 is an abstraction hierarchy, as parts of the systems are
decomposed into sub-parts. Norton’s Theorem, described in subsection 2.3.2, could also be
used in the development of abstraction hierarchies (or model abstractions). The (sub-)parts or
components of the system have to be carefully chosen in order to define correct hierarchies
and not only a flat refinement of the system or a system with wrong hierarchical borders or
hierarchy violations. The models and techniques shown in subsection 2.3.3 and 2.3.4 also try
to decompose the models represented as Queueing Networks or Petri Nets into smaller sub-
systems in order to reduce the complexity of the model analysis. These hierarchies are model
abstraction hierarchies. The Forced Traffic Flow Law, summarized in subsection 2.3.5, as well as
the Layered Queueing Networks (LQN), summarized in subsection 2.3.6, with a decomposition
of a system into components or nested requests is also aimed to be an abstraction hierarchy. But,
as the right hierarchies are crucial for a correct system understanding, one has to be careful to
model the right hierarchies and hierarchy transformations.

42

2.3. QUANTITATIVE HIERARCHICAL MODELING

2.3.1 Decomposability

Simon and Ando [122] introduced decomposability and nearly-decomposable systems in order
to support aggregation of variables in the analysis of large and complex systems. Through the
aggregation of variables on different levels, the overall state-space of the model and therefore
the complexity of the evaluation of such system could be reduced. Completely decomposable
systems [38] are systems in which state variables could be classified in groups where:

• interactions within groups can be studied as if interactions among groups do not exist
and

• interactions among groups can be analyzed without referring to the interactions within
groups.

This hypothesis is correct [38], but often to rigorous. As mentioned, Simon and Ando [122] in-
troduced nearly completely decomposable systems. In the analysis of such systems, there are
good approximations [38] when interactions among groups are weak compared to the interac-
tions within groups. Simon and Ando [122] showed that in such systems short-run dynamics
and long-run dynamics can be distinguished:

• short-run dynamics represent the interactions of the variables within each subsystem and

• long-run dynamics represent the interactions among the subsystems.

Therefore, the subsystems could be analyzed by local equilibriums and the whole system could
be analyzed by aggregate variables and a global equilibrium.

Courtois [38, 40] transferred the results of Simon and Ando to Queueing Networks and com-
puter performance analysis. He also introduced a hierarchy of aggregate variables in order
to cope with the complexity of large systems. Through the dissection of systems into subsys-
tems with different models, the different models could be evaluated separately and through
the representation of the subsystems in aggregate variables, these systems could be analyzed
at different levels. Courtois also mentioned that, through this technique and the related state-
space partitioning, it is possible to analyze the different subsystems with different methods like
Queueing Theory, simulation and deterministic models.

In the hierarchical aggregation technique of Courtois there remains a known and limited ap-
proximation error [39, 126]. This error is in the same order of magnitude as the maximum
degree of coupling between the different aggregation variables. As a result of this the aggrega-
tion variables or systems should be well conditioned and indecomposable [39]. Courtois also
introduced multilevel aggregation [39].

A special case in the aggregation of matrices are nearly-completely decomposable matrices
which are also block stochastic [39]. Here the eigenvalues of the aggregates matrices are sum-
mations of the eigenvalues of the original matrices, which yields to exact values for the steady
state probabilities. Then the remaining error results only from the aggregation of stochastic
matrices to subsystems.

Based on this results, Vantilborgh [126] introduced conditions under which the aggregation
yields to exact results. He states and proves that the Perron-Frobenius eigenvector1112 of an

11Eigenvector [22]: For the square matrix A of type (n, n) the value λ is the eigenvalue and the vector ~x (~x 6= 0) is
the eigenvector, calculated as: A~x = λ~x.

12Perron-Frobenius Theorem [111, 123]: The Perron-Frobenius Theorem deals with positive matrices (A > 0) and
their eigenvalues.

43

CHAPTER 2. STATE OF THE ART

aggregated matrix is correct if, and only if the Perron-Frobenius eigenvectors of the non ag-
gregated base matrices are subparallel13 to the Perron-Frobenius eigenvector of the aggregated
matrix. The outcome of this is that the aggregative analysis of a system through the succes-
sive analysis of the subsystems yields exact results for all steady-state distributions, if and only
if the Perron-Frobenius eigenvectors of the customer behavior matrices of the subsystems are
subparallel to the Perron-Frobenius eigenvector of the customer behavior matrix of the ag-
gregated system. Vantilborgh also proves that the equilibrium distribution of the aggregated
system is equal to the conditional distributions on the servers of the subsystems conditioned
on the customers served of queued at the servers, if and only if the Perron-Frobenius eigenvec-
tors of the subsystems are subparallel to the Perron-Frobenius eigenvector of the aggregated
system.

2.3.2 Norton’s Theorem

Norton’s Theorem of the electrical circuit theory states that in an electrical circuit of voltage
and current sources and resistors (passive components) it is possible to replace a subsystem by
a single current source and a parallel internal resistance with the same ‘equivalent’ behavior,
as shown in figure 2.17. In this example figure 2.17(a) shows the original circuit, figure 2.17(b)
shows the current source equivalent or Norton Equivalent Circuit and, additionally in figure
2.17(c) the voltage source equivalent or Thévenin Equivalent Circuit is shown.

��

��

�� �

�

�

(a) Original Circuit

�� �

�

�

��

���
����
��	��

���
��
��

(b) Current Source Equivalent
(Norton Equivalent Circuit)

��

��� �

�

�

���
���	
��
�	

������������
�	

��
�	
��

(c) Voltage Source Equivalent
(Thévenin Equivalent Circuit)

Figure 2.17: Norton’s Theorem [41]

Referring to [81] this ’current source equivalent’ was published in parallel in 1926 by Edward
Lawry Norton [107] and Hans Ferdinand Mayer [103], who called this ‘Ersatzschema’ or ‘Er-
satzschaltung’ (equivalent circuits). Both results are based on the studies on Hermann von
Helmholz and Léon Charles Thévenin, who also were apparently unaware of the work of each
other. Therefore the Norton Theorem sometimes is also called Helmholtz-Thévenin, Helmholz-
Norton or Mayer-Norton Theorem [81].

Chandy, Herzog and Woo [30] adapted this results for the use in Queueing Networks in order
to replace a subsystem by a single composite queue, as shown in figure 2.18.

13Subparallel [126]: An m-element vector v is subparallel to a vector u = [u1u2..un], n > m if there exists a scalar
k such that v = k[u1u2..un]

44

2.3. QUANTITATIVE HIERARCHICAL MODELING

�1

�2

�3

p1,2=0,5

p1,3=0,5

CPU �1=1

I/O �2=0,5

I/O �3=0,5

(a) Original Network

�1 �4

CPU �1=1 Composite I/O

(b) Transformed Network

Figure 2.18: Norton’s Theorem for Queueing Networks - Example [30]

They proved Norton’s Theorem for closed Gordon-Newell Networks and showed that it is also
applicable to open networks and networks which satisfy local balance. With this results it is
possible to replace a subsystem by a composite queue in order to simplify the analysis of the
rest of the system. They proved that for closed networks the queue length distribution for a
queue in an equivalent network is the same as in the given network, and the queue length
distribution at arrival for a queue in the equivalent network is also the same as in the given
network. For open networks with exponential service times and Poisson arrivals they state
that the queue length distributions for all queues in a subsystem in the equivalent network
are the same as in the given network. They also show that Norton’s Theorem holds for the
class of networks which satisfy local balance. Here in a closed network the service rates at the
composite queue is set equal to the throughput to the short with the same number of service
requests in the short. For open networks all uninteresting queues in the subsystem are replaced
by a single composite Poisson source which generates service requests of all classes, where each
class is generated independently. The generation rates are set equal to the throughput through
the short of the subsystem under consideration.

Balsamo and Iazeolla [7] extended Norton’s theorem for the use of any number of queues and
arbitrary interface between the subsystem and the rest of the system. They proposed a solution
for BCMP-Networks [8] with one class of customers (extension to several classes is immediate
[7]). They first constructed a closed network, called the reduced network, where the servers of the
subnetwork are shorted (the service times are set to zero) and the service rate of the composite
queue is set to the throughput of the original network with the same number of service requests
in the network. They proved that the marginal probabilities for the queues and the queue
length distributions at arrival on the queues are the same for the original and the equivalent
network. They also described an algorithm for the solution of the reduced network and the
equivalent network.

Walrand [127] proved that Norton’s Theorem is also true for multiclass quasi reversible net-
works.

The results of the transmission of Norton’s Theorem to Queueing Theory are interesting in the
development of aggregation methods in the hierarchical modeling and analysis, as well as the
development of model transformations. However, in the related work discussed in this section
Norton’s Theorem is used for the study of a subsystem without solving for the entire network
by means of a model transformation. The idea is to replace the uninteresting parts of the en-
tire model by the equivalent model and to study the behavior of the rest of the model then -
hierarchies are not mentioned there. When considering hierarchies, some questions arise. Tak-
ing a deeper look in the model understanding, Norton’s Theorem is clear to understand for
electrical circuits, because electricity knows nothing about service requests and service request
hierarchies - it is just a physical flow balance. But, when considering Queueing Networks with

45

CHAPTER 2. STATE OF THE ART

service requests and service request hierarchies, these hierarchies and hierarchical transforma-
tions have to be considered. Service requests have to be served by specialized servers and in
order to define sub-requests, service requests have to be transformed. Also at branches elec-
tricity is driven by resistances of the different paths, whereas the path of the service requests
are defined by control flow decisions (or simplified by probabilities). But anyhow, the usage
of Norton’s Theorem in the Queueing Theory could lead to new ideas and formulas in the de-
velopment of transformations, but, correct model and service request transformations always
have to be considered in order to reach to meaningful results.

2.3.3 Formal Hierarchies and Combination of Models

Malhotra and Trivedi [100] propose a formal expression of abstraction hierarchies in model
specification and solution. In this methodology the models are a composition of different hier-
archical models. Every model is treated as a black box, and in the hierarchical overall model the
input and output variables are combined with the help of an interconnection matrix. Though
the treatment as a black box and the output and input connection many different types of
sub models are possible. If parameters are passed from model Mi to model Mj, an order �
is defined. The relation �� further defines the transitive closure between the models. If the
overall model is acyclic (If Mi �� Mj then not Mj �� Mi), the solution of the overall model is
achieved through the solving of the model from the most-inner sub model to the overall model.
If the overall model is non-acyclic, an iterative solution is possible for the solution of the overall
model.

Bause and Buchholz [12] use aggregation and disaggregation in their Product Form Queueing
Petri Nets [11], described in section 2.2.5. Their results for the exact aggregation are based on
Norton’s Theorem.

Balbo, Bruell and Ghanta [4] propose a technique in which Queueing Network models and
Generalized Stochastic Petri Nets are combined in a hierarchical modeling approach. In their
approach the hierarchical subsystems, which do not violate the BCMP-Theorem [8], are mod-
eled as Product Form Queueing Networks (PFQN). Subsystems, which violate the BCMP as-
sumptions, like systems with synchronization of processes or simultaneous possession of re-
sources by a process, are modeled as Generalized Stochastic Petri Nets (GSPN [102]). Later the
different results are combined to an overall solution. Through this combination it is avoided
that the whole system is modeled as a GSPN model which results in a state space reduction.
In this approach every subsystem is evaluated in isolation and the results are then aggregated.
They refer to the decomposability approach of Courtois [38, 40] and the approximation error
of this approach. They [4] state that, through the solving of the single sub models in isolation
with the appropriate exact model, only the aggregation would lead to an approximative error.

2.3.4 Hierarchies in Time Augmented Petri Nets

Bucci and Vicario [23] propose Communicating Time Petri Nets (CmTPN). CmTPNs augment
the basic model of Petri Nets with inhibitor arcs, the timing constraints of Time Augmented
Petri Nets, and a module construct which permits the decomposition of a complex model into
smaller sub models [23]. This module construct consists of writing and reading ports connected
through communication links to transitions and places that are referred as writing transitions and
reading places. An example in given in figure 2.19, showing two modules N1 and N2, where
each module has a reading port left and a writing port right, respectively up and down. In the

46

2.3. QUANTITATIVE HIERARCHICAL MODELING

internal view it can be seen that through the reading links left? and the writing links right?, up?
and down? these ports are connected to the reading places p0, p1 and p3 as well as the writing
transitions t2, t4 and t5.

�
����� ��	
�

���
��	�

����

������	

����

(a) Module N1

(External View)

��
�����

��
�����

�	

����

������

�	
��

����

��

	��

��������

����������

��������

����� ���� �����!��

��������

"��#

��������

"��#

(b) Module N1

(Internal View)

�
����� ��	
�

��

���

(c) Module N2

(External View)

��
����� ��

	
��

���

��
�

	���

�����

(d) Module N2

(Internal View)

Figure 2.19: Communicating Time Petri Nets Example - Modules [23]

Writing and reading ports of the different sub models can then be connected through channels
to support the communication and interaction between the different sub models, as shown
in figure 2.20, where the two modules of figure 2.19 are connected and composed in order to
integrate them in a larger scenario.

�
����� ��	
�

�
����� ��	
�

�

����

�
�����

(a) Connection Diagram

�
��
����

�

��

(b) Composed Module

Figure 2.20: Communicating Time Petri Nets Example - Composition [23]

The analysis of such models consists of two steps: unit analysis and integration analysis. In the
unit analysis the different subsystems are analyzed. The different sub models are separated
from each other and communicate only through interfaces. Through that interfaces the envi-
ronment of each sub model is defined. Then every sub model is analyzed similar to a Time
Augmented Petri Net. In the integration analysis the whole model is computed by aggregating
the results of the different subsystems.

Haddad and Moreaux [69] combine aggregation and decomposition in order to evaluate Petri
Nets. In their understanding aggregation reduces the state space by grouping states and solv-
ing the corresponding Markov chain on the set of state classes. In their decomposition method,
they follow the decomposition of Plateau and Fourneau [114] (referring to [69]), in which the
state space is a cartesian product of smaller state spaces. In their article they also propose the
concept of internal and external synchronization, where internal synchronization means synchro-
nization within one class and external synchronization means synchronization between several
classes.

Buchholz [24] proposes the hierarchical structuring of Superposed Generalized Stochastic Petri
Nets (SGSPN). In his work he presents a technique in which a hierarchical structure is gener-
ated in a preprocessing step in order to compute a compact generator matrix. Through this

47

CHAPTER 2. STATE OF THE ART

approach the problem of unreachable states is avoided. In the approach macro states and the
generation of a macro transition system are proposed. Macro states combine states of a com-
ponent state space, and a set of macro states defines a partition of the component state space.
Each macro state represents a set of detailed states. In the macro transition system the state
transitions of one macro state to another (not locally) are defined. Through this macro tran-
sition system a global reachability analysis is performed. The unreachablility of a global macro
state implies the unreachability of a detailed state, which allows the exclusion of unreachable
states.

Freiheit and Zimmermann [60] propose a methodology for the automatic decomposition of
models. Their results are based on the decomposition of Stochastic Petri Nets but could be
extended to other modeling techniques. Their divide and conquer approach is divided into three
steps: In the first step the system is decomposed into smaller subsystems. In the second step
the dependencies between the different subsystems are derived and extracted in low-level sub-
systems and an aggregative basic skeleton. In the third step the performance values of the system
are computed by an iterative approximation method.

Another approach to reduce the state-space explosion problem in Queueing Petri Nets (QPNs),
beside the Product Form Queueing Petri Nets described in section 2.2.5, are hierarchically com-
bined Queueing Petri Nets (HQPN) [15]. In HQPNs a timed place can contain a whole subnet.
This subnet has a dedicated input and output place, where the tokens fired onto places in the
subnet are delivered onto the input place and the output place is similar to the depository of a
timed (queueing) place. An example is given in figure 2.21. In figure 2.21(a) an isolated HQPN
subnet is specified. This subnet is then integrated into a larger subnet in figure 2.21(b). Finally,
this larger subnet is then represented by a shorthand notation in figure 2.21(c).

�����

�����	
����	��
��

���� ��
�

������
�

������

�

�����

(a) Subnet

�����

�����	
����	��
��

���� ��
�

������
�

������

�

�����

(b) Integrated Subnet (c) Shorthand
Notation

Figure 2.21: Hierarchically combined Queueing Petri Nets (HQPN) - Example [15]

For the calculation of the performance values of the whole net the state spaces and transition
matrices for each subnet are generated in isolation [15], and then the overall state space could
be determined through a combination of the sub states of the subnets. In [15] the authors
state that through the hierarchical decomposition the calculation of the performance values
could be reduced by one order of magnitude. But, referring to memory constraints in the
calculation [15], an introduction of several hierarchical levels would not extend the size of the

48

2.3. QUANTITATIVE HIERARCHICAL MODELING

solvable problems, and so the reduction of the computation complexity is, as stated, one order
of magnitude.

2.3.5 Forced Traffic Flow Law

The Forced Traffic Flow Law (also called Forced Flow Law) [43, 68, 79, 95] is one of the main
laws for hierarchical decomposition. Through the Forced Traffic Flow Law the hierarchical
service request transformation of the server requests into subrequests is possible, which en-
ables the hierarchical decomposition. In the Forced Traffic Flow Law an arrival rate λ will be
transformed into an arrival rate λi through the use of a traffic flow coefficient vi:

λi = vi ∗ λ (2.72)

In Denning and Buzen [43] the Forced Traffic Flow Law is used for the decomposition of the
overall jobs into requests. They define units for the service request in the definition of rates
like service rates. In their two level models the overall service request is called ‘job’ and the
sub requests are called ‘request’. In their definition of the operational analysis the traffic flow
coefficient is called visit ratio and expresses the mean number of requests per job for a device.

Lazowska et al. [95] extend this and describe the specialization of the term ‘request’ on different
levels of details. For example, a request at a disk is called disc access, and a request at the level
of the entire system could be defined as a user-level interaction. They furthermore make use of
the Forced Traffic Flow Law in combination with Little’s Law for the calculation of performance
values on different levels.

While the main idea of using the Forced Traffic Flow Law for hierarchical decomposition is
very constructive, the main flaw in the approach of Denning and Buzen [43], as well as the
approach of Lazowska et al. [95], is in the modeling only from the view of the static server
structures. In these networks of servers and queues, as shown in the example in figure 2.22,
the hierarchical control flow and hierarchical service request transformations are not modeled,
like they could be modeled using (Time Augmented) Petri Nets. Through this inadequate
representation the service requests have only a different naming at different servers, but there
is no real transformation shown.

�������

�	�	�
��

�

�����
�

�

���������

Figure 2.22: Memory Constrained System [95]

49

CHAPTER 2. STATE OF THE ART

Although there are different levels (1-4) in the model in figure 2.22, the service request transfor-
mations are not visualized. Also the different visit ratios are not represented in this model. In
this view the routing and admission of the overall request to the different servers is modeled.
But, this view does not necessarily map to the real service request structures. Furthermore,
as the service request transformations are not modeled, it is not clearly defined which kind of
(sub-request) flows are in which part of the model. One could argue that inside every dashed
box the corresponding service request type is existent, but then, in the example, the disk re-
quest is also in the queue of the CPU (which could be corrected by extending the level 1 box
around the queue), but furthermore, the disk request is transfered back to the terminal. Where
is the difference between the requests going out from the CPU and the requests to the Disks?
In the mathematical model the flows could be correct, but viewing and questioning the model
from the modeling view raises a lot of question like these.

Also in Haas and Zorn [68] the Forced Traffic Flow Law (there: ‘Verkehrsflussgesetz’) is used
for the decomposition of a system into subcomponents. Through the decomposition the overall
request is departed into subrequests at every component through the visit ratio Vi and the
throughput Di at every component could then be expressed as Di = Vi ∗ D. Furthermore,
they define a distinction of the different throughputs for every service request class. But as
in the former publications referenced in this subsection, the static server view is modeled as
Queueing Networks of queues and servers without the modeling of the control flows, which
raise the same questions.

2.3.6 Layered Queueing Networks (LQN)

Layered queues are an extended queueing network to handle nested multiple resource posses-
sion, where the nesting is defined by layers [59]. Referring to [59], their central idea is to model
networks, where services may have nested services executed by another server, with nesting to
any depth. While Layered Queueing Networks (LQN) [56, 59] subsume a lot of research in this
area [59], is very interesting to investigate.

The Layered Queueing Networks (LQN) were introduced in 1996 by Franks et al. [56]. In
[56] the basic LQN model and the LQN principles were discussed. Parallelism effects were
added to the approach in [53]. Furthermore, the method of complementary delays [71] was
integrated and extended to LQNs in [53]. In [54] two-phase servers are integrated into the
LQN Mean Values Analysis calculation approach. Multiservers with several classes in LQNs
were introduced in [55]. In [108] and [110] the replication of structures in LQNs is introduced.
[109] concentrates on Dependability and the performance modeling of a quorum pattern. [59]
gives an overview of the whole approach as an entry point for further investigations.

In LQN the layered service request structure is modeled with a specification of visits, customer
classes with arrival rates or populations and devices with service disciplines. In LQN diagrams,
as shown in figure 2.23, there is a distinction between logical servers and multiplexers, where
the logical servers are named as software servers or tasks (parallelograms) and the multiplexers
are named as hardware servers and are represented as circles. Tasks can make requests to any
other entity.

50

2.3. QUANTITATIVE HIERARCHICAL MODELING

������

��	
���	��

�
����

������

���������	
�����

���������	
���

������

��	
���	�

������

����

Figure 2.23: LQN Example - File Server Application - LQN [56]

The LQNs, the activities could be modeled in executions graphs which provide parallelism,
sequence, branching and loops. An exemplary activity graph is shown in figure 2.24.

���

���� ����	
 ��
�

��������

��������

��������

������������������

�������� ��	 ������

!"	�����#��� ��$�	%���

Figure 2.24: LQN Activity Graph Example - Quorum Consensus [109]

The dynamic behavior could also be modeled in sequence diagrams, as shown in figure 2.25.
The different nested service calls to the different servers could also be interpreted as an orga-
nizational hierarchy, whereas here the service decomposition is mainly done from the view of
the server structures and client-server / master-slave relations, which could be contradictory
regarding to the real service request structures.

51

CHAPTER 2. STATE OF THE ART

�������������	����

����
��

����
��

����
��

����
��

����
��

����
��

����
��

��

��

���	�� �� ��� ���� �����

Figure 2.25: LQN Example - File Server Application - Sequence Diagram [59]

For the calculations of the performance values in LQN an LQN Solver (LQNS [57]) has been
developed [59]. This solver derives the performance values by solving a set of related submod-
els, where each of the submodels is solved using a Linearizer algorithm of the Mean Values
Analysis [59]. The algorithm of the LQNS is sketched as follows [59]:

LoadModel
ExtendModel
Topological Sort
Layerize (create and initialize layer submodels)
repeat

Solve the layer submodels using Linearizer MVA
until converge or iteration limit
Save results

Where the solving of the submodels is sketched as [59]:

f or all Clients do
Calculate imported service and think times.

end f or
f or all Servers do

Calculate imported mean and variance o f service times.
end f or
solve submodel using mixed−model MVA

52

2.4. SUMMARY

2.4 Summary

The Queueing Theory, discussed in section 2.1, has strengths in the prediction of performance
values, especially of Product Form Queuing Networks, through a sophisticated and mature
mathematical background with a well defined set of formulas and fast algorithms. But, as the
Queueing Theory focuses on the modeling of server structures and the request flow through
this servers, the control flow is neglected in classical queueing networks. This leads to a lack of
expressiveness in modeling power if there are a lot of control flows in the modeled system.

Time Augmented Petri Nets, described in section 2.2, model the systems from the perspective of
the control flow and especially through Colored Generalized Stochastic Petri Nets or Queuing
Petri Nets complex systems could be modeled. However, this often results in a state-space-
explosion problem in the calculation of the performance values, and even in Product Form
Petri Nets complexity is still a problem. Also through neglecting the server structures and only
modeling the dynamic behavior and the control flow, the modeling of shared resources and
specific scheduling strategies is problematic.

Hierarchies are the key to cope with complexity in the modeling of large systems. As described
in section 2.3, there are some approaches to integrate hierarchies in quantitative modeling and
evaluation. Anyhow, these approaches are rare and the important hierarchy law, the Forced
Traffic Flow Law, is rather neglected.

The new methodology FMC-QE, described in the following chapters, tries to cope these prob-
lems in a hierarchical modeling from the perspective of the service requests. In section 4.4 the
author will come back to some of the questions raised here and discuss them in comparison to
FMC-QE.

53

Chapter 3

FMC-QE Fundamentals

This chapter describes the fundamentals of FMC-QE, the Fundamental Modeling Concepts for
Quantitative Evaluation. It starts with a summary of the foundations of FMC-QE, FMC (the
Fundamental Modeling Concepts) and FMC-eCS (the Fundamental Modeling Concepts ex-
tended for Communication Systems). After that some basic definitions are given in section 3.2.
This includes the description of the term service request which is of main concern in FMC-QE.
Main principles of hierarchical modeling in FMC-QE are also described beside the introduction
of the main quantitative measures, defined in the scope of FMC-QE. In section 3.3 the graph-
ical notations are introduced. This includes the service request structures, defined in Entity
Relationship Diagrams, the static (server) structures, defined in Block Diagrams and the dy-
namic behavior including the control flows, defined in Petri Nets. After that, in section 3.4,
the rules and formulas of the performance measures in the calculus and the derived Tableau
are described. This includes fundamental laws, experimental parameters, the description of
the Tableau including a short introduction into model transformations and a complexity anal-
ysis. In section 3.5 an Open Queueing Network is modeled with focus on the description of the
transformations and the precision of the predictions for this class of problems. Model transfor-
mations in FMC-QE are only roughly discussed, while this topic is more focused by the work
of Tomasz Porzucek [115, 116], another PhD-Student in the Research Group. His work is in the
scope of the development of an FMC-QE Tool and in section 3.6 this is referenced.

55

CHAPTER 3. FMC-QE FUNDAMENTALS

3.1 Foundations

In this section the foundations of FMC-QE, the Fundamental Modeling Concepts (FMC) and
the Fundamental Modeling Concepts extended for Communication Systems (FMC-eCS) are
summarized.

3.1.1 Fundamental Modeling Concepts (FMC)

The Fundamental Modeling Concepts (FMC) are a modeling technique, developed to support
the communication about information processing systems [92]. The beginnings of FMC are
dated back to a workshop initiated by Siegfried Wendt in 1974 and were constantly evolved
[92, 124, 130] and used [66, 82, 91]. The author of this thesis has received his FMC background
through lectures within the software systems engineering studies and his master thesis, ana-
lyzing and modeling an Enterprise Resource Planning (ERP) System with FMC [90].

The human to human communication and the support in the understanding of information
processing systems are in the focus of FMC and therefore the main concerns for this modeling
technique are [92]:

• Abstraction,

• Simplicity,

• Universality,

• Separation of concerns and

• Aesthetics and secondary notation.

In this context abstraction means the ability to describe systems on different levels of abstrac-
tion in order to reduce the complexity of the models. Simplicity is achieved through restricting
the modeling technique to a few fundamental concepts and notation elements in order to be
able to create models ad-hoc for example in meetings. With FMC it is possible to model a broad
range of systems without being bound to a specific paradigm. Separation of concerns for re-
ducing the complexity and the ability of describing different aspects of a system are achieved
through the three-dimensional modeling space of compositional structures, behavior and data /
value structures. In FMC aesthetics and secondary notation are supported though modeling
and visualization guidelines and easy formation of the graphical patterns [2, 92].

In FMC the systems are modeled in three different dimensions [92]:

• Compositional Structures,

• Behavior and

• Data / Value Structures.

The compositional structures are modeled in Block Diagrams, referring to [92], based on the
German industrial standard DIN6620 [44]. FMC uses Petri Nets [75, 113] in order to describe
the behavior of systems. Data and value structures are described in Entity Relationship Dia-
grams, originally defined by Chen [31]. In the following the different diagram types are shortly
described:

56

3.1. FOUNDATIONS

Compositional Structures - Block Diagram

The compositional (static) structures are represented in Block Diagrams [92]. FMC Block Di-
agrams are bipartite graphs with the distinction of active and passive system components.
Active components (Agents) are represented in rectangles, passive components (channels and
storage) are represented as round elements. The active components process information, while
on passive components, information is stored or observed. The passive components are fur-
ther distinguished in non-volatile storages and volatile channels. The components are linked
through directed and undirected edges, which represent write, read and read/write accesses.
An example of an FMC Block Diagram is given in Figure 3.1.

�������

���	
����

�������

�
������

Figure 3.1: FMC Block Diagram - Example

In the example there are two active components Agent A and Agent B connected through a
channel X. Additionally, Agent A has a modifying (read/write) access to storage Y.

Control Structures - Petri Net

The control structures of the modeled system are described in Petri Nets [92]. These bipartite
Event Condition [75] nets are used to describe the sequence of actions and events [92] observed
in the system. These actions happen in a certain temporal order (partial order because of con-
currency) dependent on the state of the system and system specific rules [92]. Through Petri
Nets these rules and the causal order of the events or actions could be described. In FMC
actions are represented by a transition of a Petri Net, graphically represented by a rectangle.
The circles in a Petri Net are the places. Places could be marked (with a dot inside) or remain
empty. Places and transitions are linked through directed arcs. The corresponding action of the
transition is performed if the transition fires. This is possible if [92]:

• all its input places (connected to transition - arc ends at transition) are marked and

• all its output places (connected to transition - arc starts at transition) are unmarked
(empty) (strict transition rule [105]).

After the firing [92]:

• the corresponding action has been performed,

• all input places are unmarked and

• all output places are marked.

57

CHAPTER 3. FMC-QE FUNDAMENTALS

These rules could also be extended to places with a capacity greater than one and arc weights
greater than one. Therefore see [92, 105].

If, in a case of a conflict (two transitions are ready to fire (enabled) and share on input place),
the alternatives depend on a specific condition (predicate), this condition is written next to the
input arc and the firing will depend on this predicate [92]. In the distinction of operational and
control states (see 3.1.1) the Petri Net models the control flow and a certain marking represents
the control state of the system. Operational states of the system (observable on channels or
storages) are modeled though conditions or described in the actions of the transitions.

��������

�	
��

��	��

�������� ��������

�������
�������

Figure 3.2: FMC Petri Net - Example

In the example FMC Petri Net, shown in Figure 3.2, Action A will be performed first. Then,
depending if Condition X is true or not, either Action B or Action C will be performed.

Value Structures - Entity Relationship Diagram

After describing the compositional structures in Block Diagrams and the behavior and con-
trol flow in Petri Nets, the value structures in the storages and channels (operational state) are
defined in FMC in Entity Relationship Diagrams [92], adapted from Chen [31]. In this also
bipartite graph entities are represented as round nodes (with labels and attributes inside pos-
sible) and the relations as rectangles. At the links between the relation and the entity a number
(cardinality) defines how many times an instance of an entity takes part in the relation. This is
further supported by arrows in the relationship-rectangle (1 to 1: ↔; 1 to n: → ; n to m no arrow
[1]). The roles of an entity in a relation could also be noted at the links to the relation. Entity
sets could be partitioned through embedding the partitioning entities in the partitioned entity
or through a triangular shape connected to the different entities.

In the example in Figure 3.3 there are the entities Person, Location and Country. A person has the
attributes Name and Gender, a location Name and Area and a country Name. The set of persons
is partitioned into Male and Female and the set of locations is partitioned into Cities, Towns and
Villages. The person lives in up to n different locations as a Habitant and a location has up to
m habitants calling this location their Place of Residence. Furthermore, the location is Part of 1
country which consists of n locations. A location could be (0,1) a Capital of a country and every
country has 1 Capital.

58

3.1. FOUNDATIONS

������
� �	
�

� ������

��	����
��	
�

����	
��	�����

���������

�	���	��

�

��������

�������
� �	
�

��

�	�����

���

�	���	�

�

�	���	����

 �
	��!	��

���� "�#� $���	%�

Figure 3.3: FMC Entity Relationship Diagram - Example

Operational State vs. Control State

In FMC [92, 124, 131] the distinction between operational and control states [63, 129] is im-
portant. The criterion for this distinction is based on semantics (the purpose of the variables)
[92]:

Distinction Criteria - Operational and Control States [92, 131]: Whether a state variable has
to be classified as an operational variable or a control variable, depends on how the do-
main of that variable is defined.

This is then further specified by:

Criteria - Operational State [92, 131]: The domain of an operational variable can be specified
without itemizing each transition between the possible values, explicitly.

and:

Criteria - Control State [92, 131]: The domain of a control variable can only be specified by
explicitly itemizing each value and each permissible transition between those values. The
appropriate means of representation is a graph.

[92] and [124] furthermore compare operational and control variables as shown in table 3.1.

59

CHAPTER 3. FMC-QE FUNDAMENTALS

Operational Variables Control Variables

Criteria of
distinction

Explicit itemization of each value
and each transition between pos-
sible values unnecessary

Every value and every transition
needs to be itemized explicitly

Convenient
Representation

Algebraic Notation,
E/R-Diagram

Graphs like Petri Nets

Power of the do-
main

Virtually unlimited Limited by the human need to
understand the control flow

Extensibility of
the domain

Easy:
for instance, extending the do-
main of some counter variable

Difficult:
extensions are modifications of
the control flow

Naming the va-
riable’s domain

Meaningful labels always possi-
ble

Labeling has no meaning: only
single states have dedicated
meaning

Table 3.1: Operational vs. Control Variables [92, 124]

3.1.2 Fundamental Modeling Concepts extended for Communication Systems
(FMC-eCS)

In FMC-eCS, the Fundamental Modeling Concepts extended for Communication Systems
[135, 145], the hierarchical modeling with a special regard on integrity, consistency and crit-
ical actions is in the main concern. It is based on FMC and can be seen as a preliminary step
to FMC-QE, while the hierarchical modeling and the treatment of service requests is already in
the viewpoint. In FMC-eCS there is a great importance attached to terms and definitions and
therefore the main definitions are given in this subsection. As in FMC (described in section
3.1.1), and later in FMC-QE, the distinction of operational and control states is also regarded
in FMC-eCS. Therefore, the extended definitions on operational and control states in FMC-eCS
are also provided. As the modeling of service request handling and hierarchical modeling in
FMC-eCS is the main bridge to FMC-QE, this will also be provided in this section.

Beside the references from Werner Zorn [135, 136, 145], this subsection is also based on a draft
version of the PhD-thesis of Reinhard Höllerer [74].

Terms and Definitions

Following the fundamental ideas of mutual exclusion, loosely connected processes and
semaphores of Dijkstra [45], in FMC-eCS the integrity of content and the handling and model-
ing of critical actions and critical locations are important, therefore these terms are defined as
followed [136, 145]:

Critical Action / Critical Section Sequence of actions on critical contents on a critical action-
field where at least one inconsistent system state could be reached.

60

3.1. FOUNDATIONS

A critical section is illustrated in figure 3.4. In an implementation, where the critical section is
guarded by a semaphore, the transition at the beginning of the critical section could be associ-
ated to the P-Operation [45] and the transition at the end could be associated to the V-Operation
[45]. Another example for a critical action could be a transaction in a database system which
has to be executed completely (or not at all), otherwise the data in the system could be incon-
sistent. In this case the database is consistent before and after the transaction and in between it
could be in-consistent, which is guarded by the transaction operations.

�����������

	
�����	����

�������������

	
�����	����

�����������

	
�����	����

Figure 3.4: Critical Section [145]

Critical Location / Critical Actionfield Location (channel or storage), whose content is attack-
able by a third party (agent with no agreement concerning any interaction)

Figure 3.5 illustrates a critical actionfield. An example for such a critical location or actionfield
could be a data transmission channel, where the data is transferred from Agent A to Agent B.
In between the agents, the content (data) could get corrupted by noise on the channel, which is
the Third Party in this case.

������� �������
�	
�
��
�

���
���
�
�

��
	����	��

Figure 3.5: Critical Actionfield [145]

Critical Content / Critical Values Content, whose integrity is mandatory.

Integrity Absence of damages to crucial features of contents including information about such
features.

In this notion there could be [136]:

1. Critical values on critical actionfields,

2. Critical values on un-critical actionfields,

3. Un-critical values on critical actionfields,

4. Un-critical values on Un-critical actionfields,

61

CHAPTER 3. FMC-QE FUNDAMENTALS

whereas only in the first case (critical values on critical actionfields) critical actions are neces-
sary.

FMC-eCS furthermore distinguishes between consistent and in-consistent system states as fol-
lowed [136]:

Consistent System State A system state is consistent if inside the modeled system a specific
subject will only allow assertions which do not lead to any objections.

In an FMC-eCS Petri Net, as shown in figure 3.4, this state is illustrated by a token on a green
place.

In-Consistent System State A system state is in-consistent if inside the modeled system the
same subject will allow assertions which, when viewed from different perspectives, agent
may object to. The objections may be lodged against existing as well as future system
states if their occurrence is dependent on the interaction of external agents.

In FMC-eCS this is illustrated by a token on a red place, like shown in figure 3.4.

Types of Critical Actions

In FMC-eCS there is a distinction between unsecured, partially secured and secured critical
actions as [136]:

Unsecured Critical Action Critical actions whose all or nothing execution is not guaranteed.

Partially Secured Critical Action Critical action whose future system state is known as correct
or incorrect (without any correction)

Secured Critical Action Critical action which shall execute completely or not at all. In secured
critical actions all third party actions have to be guarded against.

���������

(a) Unsecured

������� �����

(b) Partially Secured

���

�����

��	
�� �
	��

��
	����	
��

	���
�

(c) Secured

Figure 3.6: Types of Critical Sections [145]

An unsecured critical action is illustrated in figure 3.6(a). An example could be a receiver of
data, who just receives the data, but does no know (undefined) if the data is corrupted or not.
In a partially secured critical action, like shown in figure 3.6(b), the receiver would then know
(for example through a parity bit) if the data is correct or not (error). In a secured critical action,
like illustrated in figure 3.6(c), in the example, the data would be received correctly (all) or the
data would be corrupted (known through the parity bit) and then deleted (nothing) or re-sent
by the sender.

62

3.1. FOUNDATIONS

Joint Actions

Critical actions are often defined among cooperating agents, where the consideration of both
agents is important to know the overall states of the system. One example is the modeling of
a client server scenario, where one critical action is dependent from another critical action, like
shown in figure 3.7(a), with a corresponding abstract short notation in figure 3.7(b).

�����

(a) Client/Server (b) Short Notation

Figure 3.7: Joint Action - Client/Server [135]

Another example of joint actions is a producer/consumer, illustrated in figure 3.8, where again
figure 3.8(a) shows the Petri Net (simplified) and figure 3.8(b) shows the corresponding short
notation.

(a) Producer/Consumer (b) Short Notation

Figure 3.8: Joint Action - Producer/Consumer [135]

In addition to the client/server and producer/consumer example, several other scenarios are
possible. A summary of the described examples and further scenarios are illustrated in figure
3.9.

63

CHAPTER 3. FMC-QE FUNDAMENTALS

(a) Single User (b) Independent User (c) Client/Server (d) Peer to Peer

(e) Three Tier Server (f) Producer/Consumer (g) Pipeline

Figure 3.9: Joint Action - Short Notations [135]

Operational and Control States in FMC-eCS

Like in FMC, as described in section 3.1.1 in FMC-eCS, there is a distinction between op-
erational and control states. In combination with the distinction into consistent and incon-
sistent states this leads to the following definitions [74]:

Consistent Control State A consistent system state is a state at the beginning or the end of a
critical section, where the corresponding atomic operation has not started yet or is already
finished.

Inconsistent Control State An inconsistent control state is a state inside the critical section in
which it is unclear if the critical section could be successfully passed or the system has to
be reseted to the consistent start state. The actual behavior could then be dependent from
agents which are not in a protocol-relation to the actual processing agents (third parties).

Consistent Operational State A system is in a consistent operational state if there are no con-
flicting statements on the system state possible.

Inconsistent Operational State A system is in an inconsistent operational state if conflicting
statements on the same system state at the same time are possible.

Furthermore, the resetting of the control automation of the system implies the resetting of the
operational automation of the system.

64

3.1. FOUNDATIONS

Hierarchical Service Handling of Critical Actions

In FMC-eCS the hierarchical modeling is of main concern as in FMC-QE. A service request
on one hierarchical level could create another service request on another hierarchical layer,
whereas the service request on one layer is then transformed into service requests in the other
hierarchical layer. If the service request at the lower layer is fulfilled, the service response is
submitted back to the higher layer where this response is then handled. Through this view,
also the error handling could be modeled on every fine grained hierarchical level to visualize
it in the model.

If this view on the system is combined with the different types of critical actions and the distinc-
tion in operational and control states, the following three service handling classes are defined
[74, 146]:

Unreliable Service In the unreliable service, as in figure 3.10 it is unclear, if the result of the
critical action on layer n+ 1 is correct, therefore the result has to be checked again at layer
n in order to prove if there were no errors and to reset in case of errors.

�����������	��

�������������
��

�����

��
����	�
��

�������
� �������
���

�	
����
���

���
�����

��
��

Figure 3.10: Unreliable Service [146]

Checked Service In a checked service, as in figure 3.11, the lower layer n + 1 can notify the
layer n if the critical section was passed successfully and the result is correct or if there
was a problem concerning the service execution and the result is corrupted. Here the
layer n + 1 has no error handling, but through the error detection at this layer there is no
need for an error detection at layer n, only an error handling is needed.

65

CHAPTER 3. FMC-QE FUNDAMENTALS

�����������	��

�������������
��

�������
� �������
���

�������������

��
����	�
��

���
�����

��
��

Figure 3.11: Checked Service [146]

Transactional Service In the transactional service in figure 3.12 the critical section in layer n+ 1
is passed all or nothing. On layer n the system state is consistent. Only in the case of
nothing the state is still consistent, but the critical section possibly has to be passed again.

���������

	���
�

�
����
��
��
��

�
����
��
��
��

	��
�
�����

�
�
����� �
�
�������

�	���
���
������

Figure 3.12: Transactional Service [146]

66

3.1. FOUNDATIONS

At the time the FMC-eCS models in figures 3.10 - 3.12 have been developed the development
of FMC-QE was already in progress. Therefore, these two developments influenced each other
and there are a lot of similarities from these models to the ones later explained in section 3.3.3,
like the distinction of operational (gray) and control tokens (red - inconsistent state, green - con-
sistent state and white - control tokens like idle or busy) as well as the intermediate transitions
at the borders of the transitions, here amongst others interpreted as the semaphore operations
p(s) and v(s), in FMC-QE interpreted as admission control and departure control.

67

CHAPTER 3. FMC-QE FUNDAMENTALS

3.2 Basic Definitions

This section provides basic definitions in FMC-QE. This includes the description of service
requests, the hierarchical modeling and main quantitative measures.

3.2.1 Service Request

The modeling of service requests is a central concern in FMC-QE. While in Queueing Theory
the central interest is the static structure of the server system and the dynamic behavior is
implicit in the static structure and in Timed Petri Nets the interest lies in the dynamic behavior
and the static structure beneath is implicitly modeled, in FMC-QE the system is modeled from
the three dimensional view of the service request. Coming from the definition of the service
request structures, both the static and the dynamic behavior are shown. Because of the special
interest in the service requests further definitions are given in this section.

Some of the following definitions do not have to be modeled for every system, but once all
of the FMC-QE performance analysts have to think about this topic in order to model their
systems in a right way.

In physics and engineering sciences nearly all measurements or variables are given as a tuple of
value (here notated in {}) and units ([]). In the Queueing Theory these units for service requests
are almost ignored. So for a service rate the unit is one per second, but then it is hard to
distinguish between different service request types and it is not possible to define hierarchical
service requests. In FMC-QE service request units are defined. A service request SRqi is the
Service Request of type i. To start with a simple example, the request SRqi could be to fill a car’s
tank. Then the unit of this request is the filling of the tank of car XY. Because of the different
sizes of the tanks of the different cars, there has to be a unified service request Ne

i with value 1
per definition. In this example it would be filled one liter gasoline in a tank of a car (in this case
there is no distinction between different fuel-types). So with a capacity of 50 liters the request
would be defined as: 1[SRqi] = 50[Ne

i]. So the normalized service request Ni is a multiple of
the unified service request Ne

i . By that definitions it is possible to map different service requests
(cars with different tank sizes) to one service station.

In the modeling and evaluation of systems the first transformation from service requests to nor-
malized service requests is often done intuitively and is therefore abstracted. When speaking
about the evaluation of systems, the normalized service request Ni is often intuitively taken
and when the distinction between SRqi and Ni is not of special interest, the service request is
taken as synonym to the normalized service request.

In the evaluation of FMC-QE models it is important to distinguish between service requests
or jobs in the server which are in service (Ni,s) and the ones in the queue (Ni,q). So the service
requests in the service station (queue + server) are:

Ni = Ni,q + Ni,s. (3.1)

In the evaluation it is also useful to define ni = {Ni} as the number of service requests in a
station and analogous ni = ni,q + ni,s for the number of requests in the queue and in service.

68

3.2. BASIC DEFINITIONS

If a service request SRqi is fulfilled, the corresponding service response is denoted as SRsi. An
unnormalized service response is further defined as:

SRsi = {SRsi} [SRsi]. (3.2)

In order to define a mapping between different service responses and servers, the normalized
service request is denoted as:

Nr
i = {Nr

i } [Nr
i] (3.3)

with the unified service response Ne,r
i .

3.2.2 Hierarchical Service Requests

The hierarchies of the service request structures are in the main focus in FMC-QE, because the
service request in the origin of every service provisioning process [143] and the hierarchical
decomposition is the key to cope with complex systems, whereas hierarchies are defined as:

Hierarchy [143]: A hierarchy implies a service request decomposition on one layer into differ-
ent service requests on a lower layer.

The systems are modeled from three different hierarchical views: the service request structures,
the (logical) server structures and the dynamic control flow behavior. Furthermore, the service
requests are strictly modeled as a tuple of {Value} and [Unit]:

SRqi = {SRqi} [SRqi] (3.4)

in order to make the hierarchical decomposition possible through the service request transfor-
mation on the hierarchical borders of the model. On the basis of canonical conventions SRqi is
transformed to Ni and therefore:

Ni = {Ni} [Ni] SRqi = {Ne
i } [Ne

i] . (3.5)

The fundamental laws of the quantitative evaluation used in FMC-QE are Little’s Law [98, 143]:

N[bb]
i = λ

[bb]
i ∗ R[bb]

i (3.6)

and the Forced Traffic Flow Law [43, 68, 79, 95, 143]:

λ
[bb]
i = v[bb]

i ∗ λ
[bb−1]
parent(i) (3.7)

In the scope of hierarchies [143] Little’s Law defines relations inside an hierarchical level [bb]1

(horizontal). According to Little’s law, the number of service requests i on the hierarchical level

1The notation [bb] of the hierarchical level in FMC-QE follows the notation of the lexicographical level (LL) in
[25, 26]

69

CHAPTER 3. FMC-QE FUNDAMENTALS

[bb] is a product of the arrival rate λ
[bb]
i of service requests Ni per time unit and the response

time R[bb]
i .

The Forced Traffic Flow Law defines inter-hierarchical relations and defines therefore vertical
relations between the hierarchical levels. It is the key to the hierarchical modeling in FMC-
QE and was therefore extended [143] with hierarchical levels (definition in [143]: λ

[bb]
i = v[bb]

i ∗
λ
[bb−1]
parent(i), classical definition [43, 68, 79, 95]: λi = vi ∗λ). It defines that an arrival rate λ

[bb−1]
parent(i) of

service requests Nparent(i) per time unit on hierarchical level [bb− 1] will be transformed into an

arrival rate λ
[bb]
i of service requests Ni on the hierarchical level [bb]. This transformation is done

with the help of the traffic flow coefficient v[bb]
i . As already mentioned, in FMC-QE the service

requests are modeled as a tuple of {Value} und [Unit]. Therefore, the Traffic Flow Coefficient
is not only a scalar of {Value} but also the basis for the service request transformation from the
unit service request Ne[bb−1]

parent(i) to a number of unit service requests Ne[bb]
i :

v[bb]
i =

{
v[bb]

i

} [
v[bb]

i

]
=
{

v[bb]
i

} Ne[bb]
i

Ne[bb−1]
parent(i)

 =
{

v[bb]
i

} [
Ne[bb]

i

]
[

Ne[bb−1]
parent(i)

] (3.8)

Here the service requests Ne[bb−1]
parent(i) on the hierarchical level [bb− 1] are the hierarchical parents

(parent(i)) of the service request Ne[bb]
i on the hierarchical level [bb].

A simple example for a hierarchical service request could be a grocery list with the items one
liter milk, ten eggs and one loaf of bread. The hierarchical parent is then the service request
Buy everything from the grocery list. This is then decomposed into one request Buy one liter milk,
ten requests Buy one egg and one request Buy one loaf of bread with the corresponding transfor-
mations from the overall request to the sub-requests.

In comparison to [43], the traffic flow coefficient enables now a real hierarchical decomposition
of the service requests into sub-requests and is not only a visit ratio of the mean number of
requests per job for a device in a somehow black box manner. In [43] it was asked: Jobs generate
an average of 5 disk requests and disk throughput is measured as 10 requests/second. What is the system
throughput? With the help of FMC-QE the system can be analyzed on multiple hierarchical
levels and the question would not only be answered by the ratio, but also by questions like:
And from what sub-request(s) were these disk requests required?

3.2.3 Quantitative Measures in FMC-QE

In this subsection the quantitative measures used in FMC-QE are described. The definitions
are near to the definitions in the Queueing Theory, given in section 2.1, but are redefined here
in order to refine them to the hierarchies and service requests in FMC-QE.

Arrival Rate λ

λ
[bb]
i denotes the mean arrival rate of (normalized) service requests arriving at server i. It is

defined as λi = Ni/∆t, where ∆t is the mean inter arrival time. Furthermore, in FMC-QE the
overall top level arrival rate λ[1] is calculated as the bottleneck arrival rate λ

[1]
bott multiplied by a

correction factor f (desired bottleneck utilization).

70

3.2. BASIC DEFINITIONS

Traffic Flow Coefficient v

As discussed in the last subsection, the Forced Traffic Flow Law is a central law to define hier-
archies in FMC-QE. Therefore the traffic flow coefficients are also defined in the model. They
are defined as v[bb]

i as the absolute traffic flow coefficient of service request i on hierarchy level

[bb], v[bb]
i,int as the relative traffic flow coefficient of service request i on hierarchy level [bb] to the

next hierarchical level [bb + 1] and v[bb−1]
parent(i) as the absolute traffic flow coefficient on the next

hierarchical level ([bb− 1]) relative to service request i.

Multiplicity m

With the parameter multiplicity m the number of parallel servers in a server station is defined.
It is possible that m = ∞. In this case every service request has a dedicated server. An example
could be the user in a client server scenario, where every user-input request has a dedicated
user.

There are several multiplicities defined in an FMC-QE model. In order to support parallelism
on logical service request level, the parameters m[bb]

i , m[bb−1]
parent(i) and m[bb]

i,int are defined. m[bb]
i is the

absolute multiplicity of the server of service request i on hierarchy level [bb]. m[bb−1]
parent(i) is the

absolute multiplicity of the server on the higher hierarchical level ([bb− 1]). m[bb]
i,int is the relative

multiplicity of the server of service request i on hierarchy level [bb] to the next hierarchical level
[bb− 1]. So m[bb]

i = m[bb−1]
parent(i) ∗m[bb]

i,int.

On the multiplexer server level the number of parallel servers is defined by mj.

Multiplex Coefficient mmpx

In a multiplex scenario, where one multiplexer server is shared among several logical servers,
the multiplex coefficient m[bb]

i,mpx defines the fraction the logical server receives form the multi-
plexer.

Service Time X

The service time X[bb]
i is the mean time needed by the logical server i to process a service request

i. This service request i is located on hierarchical layer [bb].

Service Duration Y

The service duration is the mean elapsed time for the handling of a service request. While the
service time X[bb]

i is an input parameter of the model, the service duration, denoted as Y[bb]
i , is

a resulting value. If a basic server station is not handled in a multiplex, the service duration
equals the service time, if the basic server station is multiplexed, the service duration is longer
than the service time, because in this case the service time is the time the service request is
actually handled and the service duration is the overall elapsed time from the beginning of the
processing till the end (including the breaks for the other multiplexed servers). Furthermore,
the service duration is also a value for hierarchical server stations, while the service time is only
a parameter for the basic server stations.

71

CHAPTER 3. FMC-QE FUNDAMENTALS

Service Rate µ

The service rate µ
[bb]
i is a measure for the maximal number of service requests a server could

process in a given time period. It will be represented by µ
[bb]
i = SRq[bb]

i /∆t. According to the
discussion about service requests and normalized service requests in chapter 3.2.1, the normal-
ized service rate is denoted by µe

i = Ne,[bb]
i /Xe,[bb]

i . For the sake of simplicity it will henceforth
be assumed normalization as default and the superscripted ‘e’ will be omitted, except when
needed to remind of the units.

Utilization ρ

The utilization of a server is denoted by ρ
[bb]
i . The Utilization is defined as ρ

[bb]
i =

λ
[bb]
i

µ
[bb]
i ∗m

[bb]
i

respectively.

Departure Rate D

The departure rate is the mean rate fulfilled service requests (service responses SRs[bb]
i or Nr[bb]

i)

leave the server. This is denoted by Di =
Nr[bb]

i
∆t for mean departure rate of normalized service

responses i leaving the server with ∆t as mean inter departure time.

In steady state the departure rate equals the arrival rate with the note of the transformation of

the service request to the according service response Di =
λi [N

e,r
i]

[Ne
i]

.

Mean Number of Service Requests n

The mean number of service requests in a service station is denoted by n[bb]
i with n[bb]

i ={
N[bb]

i

}
. It is the sum of the service requests in service n[bb]

i,s and the service requests queued

n[bb]
i,q .

Waiting Time W

The waiting time W [bb]
i denotes the mean time a service request i is queued in a service station.

Response Time R

The response time R[bb]
i is defined as the time interval between the arrival and the departure

of a specific service request at a service station. So the response time is the sum of the waiting
time and the service duration: R[bb]

i = W [bb]
i + Y[bb]

i .

72

3.3. GRAPHICAL REPRESENTATION

3.3 Graphical Representation

FMC-QE follows the idea of FMC of modeling different aspects of the systems in different dia-
gram types. Therefore, the performance analyst models the quantitative aspects of the the static
architecture of the systems in Block Diagrams, the quantitative dynamic behavior in Petri Nets
and the relation between the two plans and the service request structure in Entity Relationship
Diagrams.

3.3.1 Service Request Structures

As already described in chapter 3.2.1, the service requests are the key to FMC-QE models. The
definition of a service request tree in FMC-QE is modeled in Entity Relationship Diagrams.
Referring to figure 3.13, a service request is an entity with a name and the attributes action and
server. The name describes the Service Request in a semantic manner. Due to the discussion
about service requests and normalized service requests in this diagram all service requests are
considered to be normalized and from now on a service request is normalized by definition.

����������	
����
���

��������
�������������

��������
���������������������

Figure 3.13: Service Request Entity

Beside the definition of the service requests the purpose of the Entity Relationship Diagram
is the mapping between the later described dynamic structure in the Petri Net and the server
structure in the Block Diagram. Because of this the action which links to the corresponding
transition in the Petri Net and the corresponding logical server in the Block Diagram is stored.
Of course, in the process of modeling the three diagrams are constructed in parallel, and so in
a first iteration of the modeling of the service request sometimes these references are not given.

The strength of FMC-QE is the hierarchical modeling. A global or higher level service request
can be decomposed into other service requests, down to the basic server requests (operational
service request), and so a tree structure can be defined. A control service request is a hierarchi-
cal service request which controls the process of the child service requests. This child service
request can be decomposed into other service requests, or it can be an operational service re-
quest, which can be processed by a server. By definition, control service requests are timeless
and only the operational service requests consume service time. The meta structure of this tree
is shown in figure 3.14. [bb] identifies the hierarchical level in the service request tree. The root
has level [1] and children or the subtrees have level [bb + 1] and so on. In another layout the
hierarchical level [bb] could also be noted at the side of the diagram with swim lanes separating
the different layers, as illustrated in figure 3.17.

����������	
���

�������

����������	
���

�����������

�����������	
���

� ���� �������

���������������

Figure 3.14: Entity Relationship Diagram Tree Metastructure

73

CHAPTER 3. FMC-QE FUNDAMENTALS

The traffic flow coefficient, defined in section 2.1.2, is a parameter of the service request and is
represented as the cardinality or the composition relation in the Entity Relationship Diagram
as shown in figure 3.15.

������������	
�����

�
����

������������	�����

�
������

������

���� �������

��������	

����

Figure 3.15: Traffic Flow Coefficient v

The service request tree is related to an external source and sink (External World - more dis-
cussions in section 3.4.2), which is by definition linked to the root of the tree. As illustrated in
figure 3.16, both of the requests are on level [1] and the traffic flow coefficient v1,int = v1 is 1 per
definition.

����������	�
���
	��������

����
	����	�
�����������

��
��
������
	����

��

�

����
������������

����
	����	����
������

��
��
������������	���

���

�

���

�������

Figure 3.16: External Service Request Generator

For a better illustration of this diagram type a simple barbershop example is modeled in figure
3.17. In this barbershop the customer is served by washing the hair, cutting the hair in one of
two haircuts (branch in Petri Net), dying the hair or making a perm and collecting the money.

���������	
����
��

���
���
�����
��������

�������
���������	

���
�������

���
���
���
��
�

�������
������

�
��
�
�

��		��������
����
�������

���
���
��
��		��������
����

�������
��		��������
������

�
��
�
�

���
 ��!
�������

���
���
"��
��
�
 ��#

�������
��
���

����
�������

���
���
����
��
�

�������
������

�
��
�
�

����
�������

���
���
$���
����

�������
����
��

�
��
�
�

����
�������

���
���
���
��
����
�

�������
����
%
������

�
��
�
�

���&
�������

���
���
���
��
����
&

�������
���&
' ������

�
��
�
�

�(�
�������

���
���
�(�

�������
�(��

�
��
�
�

)���
�������

���
���
)���

�������
)���
*����

�
��
�
�

+�,

+&,

+-,

Figure 3.17: Barbershop - Service Request Structure

3.3.2 Static Structures

In FMC, as described in section 3.1.1, the static structure diagrams (Block Diagrams) represent
the compositional structure of systems. This is done by using elementary components of type
agent as an active component and storage as well as channels as passive components, together
with arcs as connectors.

In the quantitative extensions of FMC-QE this diagram type is also used and extended. In
FMC-QE it is another view on the system, and especially in the static structure diagrams it is
the architectural or the specification view. In this diagram type the logical servers, following the
service request structure and the multiplexer servers, following the static structure of the real
systems, as well as queues and channels are considered. This diagram type is closely related to

74

3.3. GRAPHICAL REPRESENTATION

the Queueing Theory, but in contrast to the Queueing Networks this diagram only shows the
static structure. The dynamic behavior is not considered here, this is the purpose of the Petri
Nets. In the Block Diagrams system specifications are given like service times of servers or
buffer sizes of queues, which are partly independent from the actual service request scenario.

�����

������	

���
������

���	������	
��

���
����������

Figure 3.18: Basic Server Station

The most simple combination in a Block Diagram is a server together with a queue shown in
figure 3.18. This combination is called basic server station (BSSt). A net as a combination of
different basic server stations would be similar to a Queueing Theory Net. A parameter of
the queue would be the capacity of the queue K. In most cases for the sake to simplicity the
queue size is assumed to be infinite (∞). A Server would be parameterized with a name, its
multiplicity and a service time or a service rate.

Often the communication in real systems is not implemented via shared memory or files
(Queues). The communication is implemented via channels. For this fact the queueing sta-
tion, shown in figure 3.19, is defined. The admission control puts the service request into the
internal queue and after the server served the request, the departure control releases the result.
This view could be mapped to a programmed environment, where a procedure call would
be represented by the channel. The admission control is the handler which takes the call. The
server is the procedure and the return value is handled by the departure control. The departure
control is timeless by definition and is executed immediately.

������ ����	
���

�
�
�
��
�
��
�

�
�
�

�
�

�
�
�
	

�

�

�
�
�

�
�

��
��

��
�����������

��
��

�
�

����

���� �

Figure 3.19: Queueing Station

The second task of admission control and the departure control is the hierarchical transfor-
mation of the service requests. The admission control transforms the service request of level
[bb− 1] into the service request in the hierarchical level of the queueing station [bb]. The de-
parture control is responsible for the re-transformation. In FMC-QE the dispatcher would be
timeless and the workers would consume the service times.

For some cases it is helpful to define a server with infinite parallel servers, as shown in Figure
3.20. This server has no queue because every incoming request has a dedicated server. In
FMC-QE the external source is defined as an infinite server.

75

CHAPTER 3. FMC-QE FUNDAMENTALS

��������

���	��

�
�
�

��
�

�
�
�
��
�
�

�
�
�
�
��
�
��

�
�
�
��
�
�

Figure 3.20: Infinite Server

The main strength of FMC-QE is the ability to define hierarchies. Often the system descrip-
tion gets complex because hierarchies neglected and the system is modeled flat. Of course a
diagram like figure 3.21 looks very complex at the first glance, but knowing and modeling the
system in a fine grained manner, can help for a better understanding of the system and errors
and inconsistencies in the modeling are found almost immediately.

��������	
�����
����
	
�������
���
����

�����
������

���
��
������

�
�
�
�

�
�
�

�
�
�

������
���
����

����	�����	�����
����
	
���
����

�
�

�

�
�
�

�
�
�

��� �������
�!����

������
���
����

���������

���
���
����

�� 	�
���

���
���
����

������
���
���"��

��� �������
�!���"��

��� �������
�!����

Figure 3.21: Hierarchical Server Station

These general considerations about the inner structure of the servers were in the minds of
the FMC-QE developers when implementing the methodology. Of course for larger systems
this kind of diagrams, as shown in figure 3.21, would become to large. Therefore, a short
notation was developed. In this short notation every logical server (Hierarchical Server Station
or Basic Server Station) correspondent for the handling of a service request is represented by
one rectangle annotated by a name and a multiplicity m. Also the hierarchical level [bb] of the
corresponding service request is denoted. An exemplary hierarchical server station with two
basic server stations is illustrated in figure 3.22.

��������	
�	�������
��

���

������

���	�	���������	
�	�������

���

����

��������	
�	�������
��

���

������

Figure 3.22: Hierarchical Server Station - Short Notation

76

3.3. GRAPHICAL REPRESENTATION

While the logical servers follow the structure of the service request, the multiplexer servers are
also modeled in the Block Diagram. As illustrated in figure 3.23, the multiplexer servers are
also named and have a multiplicity attribute.

����������	
��	��	

���

������������
�

Figure 3.23: Multiplexer Server

The mapping between the logical and the multiplexer servers is modeled through a matrix.
At the connection points of the matrix the measured service time X is notated. This is the
time the multiplexer server would need to handle a service request of the logical basic server
when no other service requests is handled by the multiplexer server. An exemplary mapping
is illustrated in figure 3.24. It is also possible that a multiplexer server handles more than one
logical server (multiplex).

����������	
��	��	

��

�������

��	��	�

����������	

��	��	�

��
�
���

���
�������

����������	
��	��	
�

��

�

�
�

���
�����
�

�����
��	��	
������

��

�!!"
�

#��	�	�$����
��	��	
������

��

�!!�

�����
��	��	
������
�

��

�!!"
�

Figure 3.24: Mapping between Logical and Multiplexer Servers

Figure 3.25 illustrates the static structure of the barbershop example. The logical servers on top
are handled by three multiplexer servers, the Barber Boss, the Barber and the Apprentice, whereas
the boss cuts the haircut 1 and makes the perm, the barber cuts the haircut 2 and dyes the hair
and the apprentice washes the hair and collects the money.

77

CHAPTER 3. FMC-QE FUNDAMENTALS

�����������

	
�

������

	
�

�

������

	
�

������

������

���

���

��������

�������

�����
�� ��

�������

!
��"�
�	���

#��$%�

���������

������

���

���

!
�&'()�
�	���

#��$%�

�������
���

������

������

�*� ������

������

�*�

��

��	������

���+��

���

,-��
�*� .��	�

��+��

�*�

!
��)�
�	���

#��$%� !
��&�
�	���

#��$%�

!
����
�	���

#��$%�

!
�*'�)�
�	���

#��$%�

Figure 3.25: Barbershop - Static Structures

3.3.3 Dynamic Structures

The dynamic behavior in FMC-QE is represented in Petri Nets. Within a FMC-QE Petri Net
the inner most structure is called controlled operational transition. This transition consists of
an operational transition (execute operation), an input and an output place for the operational
transition and a control loop, shown in figure 3.26

������

���	
���

��������

����

�	������

�
��
�����

Figure 3.26: Controlled Operational Transition

The operational transition represents the processing of a basic service request in a server. The
tokens in the input-place of this transition represent the service requests in process and the
tokens in the output place represent the service responses. The places are presented in grey
because the tokens are considered to be colored tokens like in Colored Petri Nets [80]. The loop
at the bottom of the controlled operational transition represents the control flow of the server.
If the control token (ready) is in front of the transition, the server is ready and active to process
a request, and if the token is on the place inside the transition, the server is busy and not able
to process another service request.

The controlled operational transition could be integrated into a representation of the activities
a queueing station (admission control, queue service requests, process service requests and the

78

3.3. GRAPHICAL REPRESENTATION

departure control) shown in figure 3.27. In this figure the controlled operational transition is
abstracted to the transition called activity.

�

����

����	��

���
���
������

�����

��������

�����������������

��
�
���
��
���

�
��
��������
�	��
 �
�����
�

������
��������

!���
���"�#��������$
��
��
�

%����
��������

Figure 3.27: Dynamic Behavior of a Queueing Station

The admission control is represented in the black timeless transition at the left. At this time the
admission control discards no service requests. In hierarchical systems the admission control
and the departure control perform the service transformation.

Because of the firing rules of a Time Augmented Petri Net, there is a distinction between the
service requests in service and the ones queued. The token stays before transition in the service
time, and at the end the transition fires timelessly and the token ‘jumps’ from the input place
to the output place. The service requests in service are represented in the tokens in the input
place of the operational transition. Due to the multiplicity m defined in the Block Diagram of
the corresponding server, the place would have the capacity m. The queued service requests
are represented in the place top-left. This place has the capacity K−m also imported from the
Block Diagram. The transition between the queue place and the in service place is a timeless
transition which represents the start of the service processing.

If the corresponding server has a multiplicity m of more than 1, the activity or the controlled
operational transition could be activated more than once. In this case the inner structure of the
activity could be modeled as shown in figure 3.28. A timeless dispatcher sends the request to
the corresponding controlled operational transition. This figure is only shown to illustrate the
FMC-QE view on the multiplicity and has not to be modeled for every scenario.

��������

���	
���

�
��
��

����������

����������

����������

Figure 3.28: Parallel Server - Activity Refined

Coming back to figure 3.27, it is not necessary to define the capacities and queue sizes here
again, first the diagrams could be inconsistent, and second the Petri Net gets more complex.

79

CHAPTER 3. FMC-QE FUNDAMENTALS

But anyway, the performance analyst is free to import this parameters here in order to have the
information together in one diagram. But as mentioned, the multiplicity and the service times
are defined in the static plans and are only imported and not defined here.

The black rectangle at the right in figure 3.27 represents the departure control. It fires per def-
inition timelessly and immediately, so in the steady state there are zero tokens in the response
place.

While tokens in the five gray places in figure 3.27 on the top represent the operational states
(service requests and responses), the tokens in the two place at the bottom represent the control
states to the system [124, 131, 137]. The tokens in the place in front of the start transition (bottom
left) represent the capacity of the server. A token in this place represents that the server is active
to get a request. This parameter is also not defined in this diagram, it is imported from the
Block Diagram. The tokens in the place at the bottom middle represent the number of service
requests in the server. The performance analyst could use Colored Petri Nets in order to define
the operational states of the system.

����

�������	

∞

Figure 3.29: Infinite Queues

If the queue has an infinite size, the station could enqueue every service request arriving at
the station, and therefore, in this case the activation place has an infinite size with an infinite
amount of tokens in it, as depicted in figure 3.29. One could argue, that this infinite place with
infinite tokens is irrelevant for the processing of the Petri Net, but nevertheless the place is
drawn in order to illustrate the activation of the station.

For some cases, like modeling the external world (service request generator), there is the need
of an infinite server and an activity, which could be activated infinite times. In this cases the
structure defined in figure 3.30 could be used. The place in front of the activity has an infinite
capacity and so the station is activated infinite times again.

��������

���	

��������

∞

Figure 3.30: Infinite Server

A hierarchical transition is shown in figure 3.31. At the black border transitions at the left and
the right a service transformation is processed. At the left border the service request N[bb] is
transformed into v different sub requests N[bb−1]. At the right border transition the sub service
responses are reassembled.

80

3.3. GRAPHICAL REPRESENTATION

�

������
��	
��
�������������

����

��������

∞

Figure 3.31: Hierarchical Transition

Again, the tokens in infinite capacity places at the bottom represent the number of service re-
quests in the sub system. Only in exceptional cases, when a limited number of service requests
are allowed to be in the sub system, this place would have a finite capacity.

In the branch, illustated in figure 3.32, every job in level [bb− 1] has to be delivered to one of
the activities A or B. Inside the level [bb− 1] there is no job transformation. The transformation
is at the incoming transitions of activity A and B.

������
���	
��
�	������
������

�	�����	��

���

��������������

�	�����	���

���

��������������

����

�
��������

����

�
��������

∞

∞

∞

Figure 3.32: Branch

An important remark to the parallel service transition in figure 3.33 is that the traffic on all
three outgoing arcs of the service request transformation transitions at the left are the same.
The service request is delivered to both of the activities A and B. The transformation into the
service requests of the activities A and B (N[bb−1] to N[bb]) is not done at this time, this is done
in the next step, the incoming transition of the activities (admission control).

81

CHAPTER 3. FMC-QE FUNDAMENTALS

������
����		
	��
������
�

����

�
��������

�
������

�
����

����

�
��������

∞

∞

∞

Figure 3.33: Parallel Activities

Beside the parallel activities in figure 3.33, a serial processing of activities, shown in figure 3.34,
is also possible.

������
���	
��
��	�	�	��

����

��	�	���

����

��	�	����

∞

∞ ∞

Figure 3.34: Serial Activities

One could argue that in a serial processing of service requests in a hierarchical manner, the
service responses should be redirected to the hierarchical parent after each step and then the
hierarchical parent delivers the next sub-request to the next serial handler. For the sake of sim-
plicity this request-response handling is simplified in figure 3.34 to a sequence in which every
serial sub-request handler delivers the service response to the next sub-handler. In this scenario
the service requests from the hierarchical parent to the hierarchical sub-handlers could also be
envisaged as a list of service requests in which every sub-handler marks its corresponding ser-

82

3.3. GRAPHICAL REPRESENTATION

vice request as done and hands the list of service requests with this requests marked as done
(service response) to the next sub-handler.

In FMC-QE there is a different distinction between open and closed nets. By definition the
transition on level [1] is linked to the external load generator, interpreted as a service request
source and a service response sink, which could be mapped to an open net, together with a
time interval, which defines the time between a response and a request of a single customer.
If this time interval would be zero, the solution could be compared to a closed net. There are
some differences in the calculation of closed and open nets and this hybrid approach, discussed
in section 3.4.2 and 4.1. In figure 3.35 the most simple FMC-QE Petri Net is shown. A service
request generator and one activity are connected. In order to get to more complex solutions,
the Controlled Operational Transition could be replaced by more complex nets.

���

������	�

����
	

���

��	���	�

∞

∞

Figure 3.35: Most Simple FMC-QE Petri Net

If parallelism on logical server level should be explicitly modeled, like the modeling of threads,
a sub-net could be replicated and the multiplicity could be illustrated by dots as shown in figure
3.36. An example of this is used in the case study in section 5.3.

���
�����	�
���
���
�
�������
��

���

�����	�

���
���
�

�����	�
���
���
�
�������
��
���

����
�
�

Figure 3.36: Parallelism on Logical Server Level - Threads

83

CHAPTER 3. FMC-QE FUNDAMENTALS

In figure 3.37 the barbershop is used again to illustrate an example of the diagram type. In this
model first the hair is washed, then cut in haircut 1 or 2, afterwards in a supplemental step
either dyed, permed or left as it is (NOP) and finally, the money is collected from the customer.

���
�����	
�

����
����

���������

���

�������

���

��������

���
����������	������

��������

���������

���

�����	
�

���

�	��� ���

���

�	!"��	
�

���

�	!"

�
�
#	�$��!"������%
&�

�
�

'����	��

(�)��!�

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

Figure 3.37: Barbershop - Dynamic Behavior

84

3.4. CALCULUS

3.4 Calculus

After modeling the system in the three dimensions of FMC-QE, the service request structures,
the server structures and the dynamic behavior, the predictions of the performance values are
calculated with the help of the FMC-QE Calculus. In this section the parameters, values and
formulas of the calculus are explained. Alongside this the FMC-QE Tableau, a representation
of the Calculus, is shown for every section. This part is structured as follows:

In the first subsection 3.4.1 the main laws of the calculus, Little’s Law [98] and the Forced Traffic
Flow Law [79], are recapitulated.

In the experimental parameters section of the Calculus the experimental parameters are de-
fined, as the name implies. These are the overall number of service requests n[1]

ges, the derived

possible bottleneck throughput λ
[1]
bott, the desired bottleneck utilization f and the overall arrival

rate λ[1]. Subsection 3.4.2 describes this Experimental Parameters section and the external load
generation (load model) in FMC-QE.

In subsection 3.4.3 the Service Request Section is described. In this section the performance pa-
rameters of the service request, like hierarchy levels, probabilities, traffic flow coefficients and
arrival rates are defined.

In the Server Section, described in subsection 3.4.4, the performance parameters of the logical
servers including their mappings to the multiplexer servers are stored.

The main calculations of the performance values are processed in the Dynamic Evaluation Sec-
tion. This section, divided into the calculations for operational (parallel and infinite) and control
(hierarchical, serial, parallel, branch and loop) service requests, is explained in subsection 3.4.5.

The performance parameters of the multiplexer servers are defined in a separate section, this
Multiplexer Section in explained in 3.4.6.

Subsection 3.4.7 discusses the complexity of the approach.

Table 3.2: Tableau Example (see Appendix - Table B.1)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

2 1 1,00 1,00 1,00 1,00 2,250 1 1 1 1 0,056 1,000 18,000 0,125 0,018 0,008 0,125 0,056 0,143 0,063
3 2 0,50 1,00 1,00 0,50 1,125 1 ∞ ∞ 4 0,350 1,000 2,857 0,000 0,000 0,394 0,350 0,394 0,350
2 3 1,00 1,00 1,00 1,00 2,250 1 1 1 ∞ 0,000 0,000 0,394 0,175 0,394 0,175
3 4 0,30 1,00 1,00 0,30 0,675 1 1 1 3 0,350 0,467 1,333 0,506 0,519 0,769 0,506 0,750 1,025 1,519
3 5 0,20 1,00 1,00 0,20 0,450 1 2 2 2 0,333 0,125 0,375 0,600 0,675 1,500 1,200 2,667 1,875 4,167
2 6 1,00 1,00 1,00 1,00 2,250 1 1 1 3,750 1,194 0,531 1,706 0,758 2,900 1,289
3 7 0,60 1,00 1,00 0,60 1,350 1 1 1 2 0,333 0,750 2,250 0,600 0,900 0,667 0,600 0,444 1,500 1,111
3 8 0,40 1,00 1,00 0,40 0,900 1 1 1 3 0,300 0,533 1,778 0,506 0,519 0,577 0,506 0,563 1,025 1,139
2 9 1,00 1,00 1,00 1,00 2,250 1 1 1 3,750 1,419 0,631 1,106 0,492 2,525 1,122
2 10 1,00 1,00 1,00 1,00 2,250 1 3 3 1 0,111 1,000 9,000 0,083 0,000 0,000 0,250 0,111 0,250 0,111
1 11 1,00 1,00 1,00 1,00 2,250 1 1 1 3,750 2,631 1,169 3,581 1,592 6,212 2,761
1 12 1,00 1,00 1,00 1,00 2,250 1 1 1 10,572 0,095 0,000 0,000 23,788 10,572 23,788 10,572

j mj Xj
[1]

1 5 0,167
2 1 0,267
3 1 0,225
4 ∞

Job Generation

Barber
Appentice

Namej

Multiplexer Section

Dynamic Evaluation Section

Dryer

Barber Boss

Serveri
[bb]

Cashier

Permer

Supp.
Dyer

Cut2-Cutter
Cut1-Cutter

Dry

Server Section

Washer
Server

Cutter

Cut2
Cut1
Cut

Wash

Service Request Section

Customer

Generator
Barbershop Serv.

SRqi
[bb]

Cash

Perm
Dye

Supp. Work

Blow-Dry Blow-Dryer

λ[1]

Experimental Parameters
nges

[1]

λbott
[1]

f

30
3,750
0,600
2,250

The FMC-QE Tableau is a hierarchical balance sheet used for the performance evaluation of
FMC-QE models. The Tableau consists of three linked tables. The mathematical formulas of
the Calculus are used to provide support for the hierarchical modeling. The exemplary Tableau,

85

CHAPTER 3. FMC-QE FUNDAMENTALS

shown in table 3.2, is the corresponding Tableau of the barbershop example, modeled in section
3.3. In order to integrate the handling of infinite servers, this example is extended by the blow-
drying of the hair by the customer.

3.4.1 Fundamental Laws

In this subsection the two fundamental laws used in FMC-QE, Little’s Law and the Forced
Traffic Flow Law, are described on a high level as a recap of the more detailed discussion on
hierarchies and the fundamental laws in section 3.2.2 as a preliminary for the FMC-QE Tableau.
Also the hierarchical levels ([bb]) and indices (i) are integrated in the notation of the laws.

Little’s Law [98] is one of the fundamental laws in FMC-QE. It is the basis of the performance
evaluation within a hierarchical level (horizontal). The law defines the dependence between
the mean number of jobs in a system n[bb]

i , the mean arrival rate λ
[bb]
i and the mean response

time R[bb]
i [98, 125]:

n[bb]
i = λ

[bb]
i ∗ R[bb]

i (3.9)

The Forced Traffic Flow Law (FTFL) [43, 68, 79] is the second fundamental law in FMC-QE.
It is the key to the hierarchical modeling (vertical). Through this law and the use of a traffic
flow coefficient v[bb]

i , the FMC-QE performance analyst is able to transform an arrival rate at a
hierarchical border. The internal arrival rate is computed as a product of the external arrival
rate and the traffic flow coefficient [43, 68, 79]:

λ
[bb]
i,int = v[bb]

i ∗ λ
[bb−1]
i,ext (3.10)

Beside the transformation of the value the service request itself is transformed (unit-transfor-
mation). The external arrival rate λ

[bb−1]
i,ext has the unit [external service requests per time unit]

and the internal service request has the unit [internal service requests per time unit]. A detailed
description of this service request transformation could be found in section 3.2.2.

3.4.2 Experimental Parameters

In this section the Experimental Parameters of the Calculus are described. Therefore, first the
parameters and the relations between the parameters are described, after that the load model
in FMC-QE is described. Finally an exemplary cutout of a tableau is shown.

The parameters of this part are:

• n[1]
ges – Overall number of top level ([1]) service requests in the whole model (in the system

and external);

• λ
[1]
bott – Maximum bottleneck arrival rate;

• f – Desired bottleneck utilization;

• λ[1] – Arrival rate of top level ([1]) service requests;

86

3.4. CALCULUS

n[1]
ges defines the overall number of top level service requests (SRq[1]) in the model. This includes

the service requests in the system (n[1]
sys) and the service requests in the external world (clients

preparing the service request or following other activities) (n[1]
ext).

The parameter λ
[1]
bott defines the arrival rate, where the bottleneck of the system would have a

utilization of 1. This parameter is derived as the minimum service rate of every logical server
(µ[bb]

i) multiplied by the number of corresponding parallel logical servers (m[bb]
i) normalized to

top level service requests (1
v[bb]

i

):

λ
[1]
bott = min

(
µ
[bb]
i ∗m[bb]

i

v[bb]
i

)
∀ i (3.11)

In order to avoid arrival rates greater than the maximum bottleneck arrival rate (which would
be a conflict to the stability criteria - ρ < 1), the parameter f is established. This parameter
defines the desired bottleneck utilization and allows a simple arrival rate adjustment.

The overall arrival rate of top level ([1]) service requests generated by the load generator (Out-
side World, Client, Customer) is defined as λ[1]. λ[1] is derived as the product of f and λ

[1]
bott:

λ[1] = f ∗ λ
[1]
bott (3.12)

In some cases, due to the modeled systems, λ[1] is directly defined. Then f and λ
[1]
bott are not

used.

External Load Generation / Load Model

In FMC-QE there is no differentiation between closed and open models like in traditional
Queueing Theory or Time Augmented Petri Nets. Therefore, the most basic FMC-QE model is
represented in figure 3.38.

���

������	�

����
	

���

������

����
	

����
	�������	���

�������������	

��	�����������	��
����
	

��������
����
	

��������
����
	������

��

��	�����������
����
	

���

���

����
	

�����

��
�����	

��� ���

������
∞

∞

Figure 3.38: Basic FMC-QE Model

87

CHAPTER 3. FMC-QE FUNDAMENTALS

The external load generation is always represented by a number of clients or load generators in
the Block Diagram which generate the level [1] service requests. In the Petri Net the behavior of
the load generation clients are described as infinite servers because by definition every service
request has a dedicated client, so the client would behave like an infinite server. In the Entity
Relationship Diagram every top level service request has a 1to1 relation to a service request
generation.

In comparison to closed systems, the external time is not defined as zero, because when mod-
eling systems, it nearly always makes no sense to enqueue a service response immediately as
a new service request. The model here is different. First of all, there is a differentiation be-
tween the service request which enters the system and the service response. The client does
not only handle the request generation but also the response. The second difference is that in
FMC-QE models, both, the arrival rate (λ[1]) and the mean overall population (n[1]

ges), could be
defined. The relation between these parameters is defined through the General Response Time
Law [27, 43]:

R[1]
sys =

N

∑
i=1

R[bb]
i v[bb]

i (3.13)

and the Interactive Response Time Formula [43]):

R[1]
sys =

n[1]
ges

λ[1]
− X[1]

ext (3.14)

modified to:

X[1]
ext = (

n[1]
ges

λ[1]
)− R[1]

sys (3.15)

Steady State Systems - Notation In order to explain the different load scenarios, figure 3.39
shows the notation of a steady state system illustration (stationary process). The cycling service
requests or service responses are represented as one moving dot on a circle. The time the dot
is in the system (the service request is served - Rsys), it is moving in the in the lower system
part. The time the service request is in the external client or the external client, it moves in the
upper external part (Xext). The distance between the dots can be interpreted as the inverse of
the overall arrival rate 1/λ[1] (inter arrival time).

Xext

Rsys

1/λ

System

External

Service Request /

Service Response

Figure 3.39: Steady State Systems - Notation

88

3.4. CALCULUS

Steady State Systems - Scenarios Depending on what parameters are fixed and which ones
are variable, different scenarios could be defined. Here the different, simple but representative
scenarios are explained through examples, namely Paternoster, Soup Kitchen and Rollercoaster.

In the Paternoster example the arrival rate λ[1] and the response time R[1] are fixed and the total
number of cycling service request nges is variable. When adding a new service request to the
model, the paternoster ellipse (external time Xext) will be bigger or smaller, as illustrated in
figure 3.40, because the arrival rate and also the interarrival time 1/λ[1] is fixed.

������

����	
��

������

����	
��

Figure 3.40: Steady State Systems - Paternoster

An example of this type could be the situation in an agency where you have to take a number
in order to be served. The agency would know the response time Rsys and the number of
customers in service nsys, so they would provide the new customers with the waiting time, for
that the new customers could leave the agency and could come back after that time. In that
case the waiting time would be mapped to the external time Xext.

The Soup Kitchen model, shown in figure 3.41, is different. Here the external time is always the
same (people are receiving lunch every day). In this model the arrival rate is not a parameter,
but a value, when adding new service requests to the model the arrival rate will grow.

������

����	
��

������

����	
��

Figure 3.41: Steady State Systems - Soup Kitchen

89

CHAPTER 3. FMC-QE FUNDAMENTALS

In the third example Roller Coaster the external service time Xext is zero. In the example the kids
using the roller coasters immediately enqueue again after they took the ride, as illustrated in
figure 3.42. The model can be compared to closed models. In comparison to the paternoster, in
both the Soup Kitchen and the roller coaster model more customers generate a higher arrival
rate and as a result of this longer queues and longer response times. But, there is a significant
difference between the soup kitchen model and the roller coaster. In the soup kitchen there is
still an external source and the overall number of cycling service requests has a mean value
(population) but is not fixed. In the closed roller coaster there is no external source. The popu-
lation is fixed and there is an internal synchronization in the model. An iterative algorithm for
the calculation of closed models has also been developed and is described in section 4.1.

������

����	
��

������

����	
��

Figure 3.42: Steady State Systems - Roller coaster

For the paternoster and soup kitchen model figure 3.43 shows an example of the broad range
of possible configurations of the mean population nges and the arrival rate λ. In the chart the
twelve graphs are the corresponding curves for 1 ≤ nges ≤ 12, where the most left curve is the
curve for nges = 1 and the most right curve is the curve for nges = 12.

Soup Kitchen
Xext = 20 [TU]

Paternoster
λ = 0,3 [SRq / TU]

Soup Kitchen
Xext = 0 [TU]

nges=1 nges=12

0

10

20

30

40

50

60

70

80

90

100

0 0,2 0,4 0,6 0,8 1 1,2

λ [SRq / Time Unit (TU)]

X e
xt

 [T
im

e
U

ni
ts

]

Figure 3.43: Chart External Service Time

For an exemplary paternoster (in a paternoster the arrival rate is the free parameter and the
external service time is a resulting value) with λ = 0, 3 [SRq]

[TU]
, the minimal population is nges = 3

(then Xext = 0[TU]) and for nges = 12, Xext = 30[TU].

For soup kitchen scenarios the chart is read in the different direction (Xext is the free parameter
and λ is the resulting value). In the example a soup kitchen with Xext = 20[TU], the resulting
arrival rates are in the range from λ = 0, 033 [SRq]

[TU]
for nges = 1 to λ = 0, 4 [SRq]

[TU]
for nges =

90

3.4. CALCULUS

12. Accordingly, for Xext = 0[TU] the corresponding arrival rates are at the corresponding
intersection points with the λ-axis of the curves 1 to 12.

More on the Roller Coaster scenario and the corresponding discussion of Closed Queueing Net-
works could be found later in section 4.1.

An exemplary Experimental Parameters section of the Tableau is shown in figure 3.3.

Table 3.3: Tableau Example - Experimental Parameters

λ[1]

Experimental Parameters
nges

[1]

λbott
[1]

f

30
3,750
0,600
2,250

3.4.3 Service Request Section

The Service Request Section describes the service request hierarchies with levels, indices, names,
probabilities traffic flow coefficients and the arrival rates at the different hierarchical levels. The
parameters in this part are:

• [bb] – Hierarchical level

• i – Index

• SRq[bb]
i – Service request labeling

• pparent(i),i – Routing probability from service request parent to to service request i

• v[bb−1]
parent(i) – Absolute traffic flow coefficient on the higher hierarchical level (parent)

• v[bb]
i,int – Relative traffic flow coefficient to the higher hierarchical level

• v[bb]
i – Absolute traffic flow coefficient

• λ
[bb]
i – Arrival rate of service requests i

The hierarchy level [bb] is derived from the service request structure definition in the Entity
Relationship Diagram. The top-most service request and the service request generator have
hierarchy level [1]. The hierarchy level is then incremented by 1 for every refinement level.

The index i is a unique index for every logical service request type. The numbering is estab-
lished through traversing the service request tree in an adapted postorder traversal (right, left,
root). Through this traversal method the order of the service request table is also set up. The
job generation, which is connected to the root of the service request tree, is the one with the
highest index (iJobGenerator = iRoot + 1) in this notation.

Every service request is named in the column SRqi. This name is imported from the corres-
ponding entity in the Entity Relationship Diagram.

The routing probability from the hierarchically higher request (parent(i)) to this service request
(pparent(i),i) is derived from the Petri Net. It is possible that the sum of the probabilities in one
hierarchical part is less than 1, because the NOP transitions in a branch are not shown in the

91

CHAPTER 3. FMC-QE FUNDAMENTALS

corresponding Tableau. As an example: in the barbershop example, as shown in figure 3.4,
the supplemental work is separated in Dye (pDye = 0, 3), Perm (pPerm = 0, 2) and do nothing
- NOP pNOP = 0, 5, so in this example, in the Tableau, the probabilities of the children of the
Supplemental Work sum up to 0, 5.

The parameters v[bb−1]
parent(i), v[bb]

i,int and v[bb]
i specify the traffic flow coefficients of the service request.

These parameters are defined in the corresponding Entity Relationship Diagram of the model
and then imported in the Tableau. In detail, the parameter v[bb−1]

parent(i) imports the absolute value

of the traffic flow coefficient on the next hierarchical level, the parameter v[bb]
i,int defines the value

of the traffic flow coefficient relative to the next hierarchical level, and the parameter v[bb]
i de-

fines the absolute value of the traffic flow coefficient of this service request multiplied by the
probability of the service request:

v[bb]
i = v[bb−1]

parent(i) ∗ v[bb]
i,int ∗ pparent(i),i (3.16)

An example: in a car service the Change Wheels service request is decomposed into four service
requests Change Wheel. If the absolute value of the traffic flow coefficient of the service request
Change Wheels would be 1 (vChangeWheels = 1) then the absolute traffic flow coefficient of the

Change Wheel service request would be 4 (4(v[bb]
i) = 1(v[bb−1]

parent(i)) ∗ 4(v[bb]
i,int) ∗ 1(pparent(i),i)) (under

the assumption, that pChangeWheels = 1).

The last parameter in this part is the individual arrival rate of the service request. The arrival
rate λ

[bb]
i is computed as the overall arrival rate λ multiplied by the traffic flow coefficient of

the service request:

λ
[bb]
i = λ ∗ v[bb]

i (3.17)

The unit of the arrival rate is [Service Requests[bb]
i /Time Unit]. The traffic flow coefficient does

not only describe the value transformation, it also describes the transformation of the top level
service request (SRq[1]) to the service request on this hierarchical level (SRq[bb]

i).

An exemplary Service Request Section of the corresponding Tableau is shown in table 3.4.

Table 3.4: Tableau Example - Service Request Section

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb]

2 1 1,00 1,00 1,00 1,00 2,250
3 2 0,50 1,00 1,00 0,50 1,125
2 3 1,00 1,00 1,00 1,00 2,250
3 4 0,30 1,00 1,00 0,30 0,675
3 5 0,20 1,00 1,00 0,20 0,450
2 6 1,00 1,00 1,00 1,00 2,250
3 7 0,60 1,00 1,00 0,60 1,350
3 8 0,40 1,00 1,00 0,40 0,900
2 9 1,00 1,00 1,00 1,00 2,250
2 10 1,00 1,00 1,00 1,00 2,250
1 11 1,00 1,00 1,00 1,00 2,250
1 12 1,00 1,00 1,00 1,00 2,250

Barbershop Serv.

SRqi
[bb]

Cash

Perm
Dye

Supp. Work

Blow-Dry
Dry

Cut2
Cut1
Cut

Wash

Job Generation

Service Request Section

92

3.4. CALCULUS

3.4.4 Server Section

The Server Section of the FMC-QE Calculus defines the performance parameters of the different
logical servers. In this part logical multiplicities (like processes and threads) and the mapping
to the multiplexer servers are defined. The parameters in this part are:

• Serveri – Labeling of the logical server

• m[bb−1]
parent(i) – Absolute value of the logical multiplicity on the next hierarchical level (parent)

• m[bb]
i,int – Value of the logical multiplicity relative to the next hierarchical level

• m[bb]
i – Absolute value of the logical multiplicity

• Mpxi – Corresponding multiplexer server

• X[bb]
i – Measured service time for every request at the corresponding multiplexer

Serveri labels the corresponding logical server of each service request. This parameter is ori-
ginally defined in the Entity Relationship Diagram and the Block Diagram of the model.

The multiplicity of the logical service requests (logical server multiplicity) is hierarchically de-
fined through the parameters m[bb−1]

parent(i), m[bb]
i,int and m[bb]

i . This logical multiplicity could be com-
pared to the multiplicity of threads and processors. It defines how many service requests could
be logically processed in parallel. It addition to this, the multiplicity of the multiplexer servers
(in the example: processors) would be defined in the Multiplexer Section. This logical multi-
plicity of the service request server structure is originally defined in the corresponding Block
Diagram of the model. The definition is very similar to the definition of the traffic flow coef-
ficients. m[bb−1]

parent(i) denotes the multiplicity of the hierarchical parent of the logical server, m[bb]
i,int

specifies the value of the multiplicity relative to the next hierarchical level and m[bb]
i defines the

absolute value of the multiplicity:

m[bb]
i = m[bb−1]

parent(i) ∗m[bb]
i,int (3.18)

The mapping of a logical basic server (server of a operational service request - the one which
actually does the work) to a multiplexer server is defined through the parameter Mpxi. This
parameter is originally defined in the Block Diagram through the mapping matrix. This pa-
rameter is empty for non leaf nodes (Control Service Requests) of the service request tree.

The parameter X[bb]
i defines the measured service time for each service request processed at

the corresponding multiplexer server. This value is taken under the assumption that the multi-
plexer server does not process other logical service requests at that moment (no multiplex). Of
course, FMC-QE with the Tableau is suitable to handle multiplex scenarios, but for the sake of
normalization this assumption is made. In multiplex scenarios the measurements have to be
measured on dedicated (non multiplexer) servers or have to be normalized. In the model this
value is also defined in the matrix of the Block Diagram.

93

CHAPTER 3. FMC-QE FUNDAMENTALS

An exemplary corresponding Server Section of the Tableau is shown in table 3.5.

Table 3.5: Tableau Example - Server Section

mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb]

1 1 1 1 0,056
1 ∞ ∞ 4 0,350
1 1 1
1 1 1 3 0,350
1 2 2 2 0,333
1 1 1
1 1 1 2 0,333
1 1 1 3 0,300
1 1 1
1 3 3 1 0,111
1 1 1
1 1 1 10,572Generator

Blow-Dryer

Server Section

Washer
Server

Cutter

Dryer

Serveri
[bb]

Cashier

Permer

Supp.
Dyer

Cut2-Cutter
Cut1-Cutter

3.4.5 Dynamic Evaluation Section

The performance values of the service request structures are computed in the Dynamic Evalua-
tion Section. The values in this part are:

• m[bb]
i,mpx – Multiplex coefficient

• µ
[bb]
i – Service rate

• ρ
[bb]
i – Utilization

• n[bb]
i,q – Mean number of queued service requests

• W [bb]
i – Mean waiting time

• n[bb]
i,s – Mean number of service requests in service

• Y[bb]
i – Mean service duration

• n[bb]
i – Mean number of service requests in the station

• R[bb]
i – Mean response time

In the next paragraphs the different formulas for the calculation of the performance values
of an operational service request (leaf node - Basic Server Station BSSt) and a control service
request (non leaf node - Hierarchical Server Station HSSt) are described.

94

3.4. CALCULUS

Multiplexer - Operational Service Request

In FMC-QE it is possible that a multiplexer server is in a role of more than one logical server
(real multiplex). The multiplexer server then is partitioned into several fractions, correspond-
ing for every logical server. This fraction is called multiplex coefficient (m[bb]

i,mpx). A multiplexer
in signal transmission is shown in figure 3.44.

��������

�������	

�������

��
������

��
�����	

��
�����

������

�����	

�����

(a) User View

��������

�������	

�������

�
�
�

��
��
�
�
�

�������

������

�����	

�����

�
�

�
�

��
��
�
�
�

(b) System View

Figure 3.44: Multiplexer/Demultiplexer [130]

The corresponding activities of each of the multiplexed logical servers are handled then in
parallel which results in a longer server duration Y (as the service time X stays constant). An
example: as illustrated in figure 3.45, the service durations Yi and Yj for the handling of the a
service request i and service request j handled by one multiplexer Mpx are twice as long as the
corresponding service times Xi and Xj as the multiplexer handles both activities in parallel and
each logical server receives half of the multiplexer (mi,mpx = mj,mpx = 0, 5).

����

����

�	

��

����	

���

����	

���

��

����

Figure 3.45: Multiplex Example [146]

In such a multiplexer scenario, as illustrated in figure 3.46, only the service requests in service
are transferred to the multiplexers, the different queues for every type of service request are
still at the different logical servers.

95

CHAPTER 3. FMC-QE FUNDAMENTALS

����
∞

����
∞

��� ����	
��
	���	
�
���
�

���

������

������

���� ����

���

�
	��	

����

��� ����	
�����

���

�
	��	

����

��� ����	
�����

�����

�����

Figure 3.46: Multiplex - Service Requestor’s View [146]

If the sum of all logical servers handled by a multiplexer server is less or equal than the sum
of all multiplexer servers (∑∀ SRqi o f Mpxj

m[bb]
i ≤ mj), every logical service request is handled

by a dedicated multiplexer server - multiplex coefficient is one (m[bb]
i,mpx = 1). In this case re-

dundant multiplexer servers (mj,idle = mj − ∑∀ SRqi o f Mpxj
m[bb]

i) would idle. The scenario of
infinite servers (both, the logical and the corresponding multiplexer servers) is a special case
of equal number of logical and multiplexer servers and the multiplex coefficient is also one for
this scenario (m[bb]

i,mpx = 1).

If the sum of logical servers handled by a multiplexer server is greater than the sum of all mul-
tiplexer servers (∑∀ SRqi o f Serverj

m[bb]
i > mj), the multiplexer servers have to work in multiplex

mode. The service rates in which a logical service request operates is smaller because the mul-

96

3.4. CALCULUS

tiplexer servers are handling other service request types in parallel. The logical servers receive
only a fraction of the multiplexer server which is defined as the multiplex coefficient m[bb]

i,mpx.

The multiplex coefficient is calculated as a fraction of this logical service request time X[bb]
i and

the overall amount of service time of a multiplexer server (multiplexer) needs to handle all of
the corresponding service request of a top level service request Xj multiplied by the fraction of
the multiplicity of multiplexer servers (mj) and the number of logical servers.

To summarize the calculation of the multiplex coefficient:

m[bb]
i,mpx =

1 i f ∑∀ SRqi o f Mpxj
m[bb]

i ≤ mj

X[bb]
i ∗v

[bb]
i

Xj
∗ mj

m[bb]
i

i f ∑∀ SRqi o f Mpxj
m[bb]

i > mj
(3.19)

In this way of calculating the multiplex coefficient and the service rate the utilization ρ
[bb]
i is

equal for every logical server handled by the same multiplexer. There are other possible ways
to calculate the multiplexer coefficient if ∑∀ SRqi o f Mpxj

m[bb]
i > mj, like depending only on the

number of logical servers and not on the service time: m[bb]
i,mpx =

mj

∑∀ SRqi o f Mpxj
m[bb]

i

. The used calcu-

lation was chosen because it was considered as fair, but for certain scenarios other multiplexer
coefficients could be more suitable.

Coming back to the Calculus, the service rate µ
[bb]
i then is the reciprocal of the service time,

multiplied by the multiplex coefficient:

µ
[bb]
i =

m[bb]
i,mpx

X[bb]
i

(3.20)

For the calculation of the utilization (ρ[bb]
i), the mean number of queued requests (n[bb]

i,q) and the

mean number of requests in service (n[bb]
i,s) there is a distinction between parallel logical servers

and infinite logical servers.

����

�

∞

����	��

Figure 3.47: Parallel Server

For parallel logical servers, as shown in figure 3.47, the calculation of the values is defined as
[67] (M/M/m):

ρ
[bb]
i =

λ
[bb]
i

m[bb]
i µ

[bb]
i

(3.21)

97

CHAPTER 3. FMC-QE FUNDAMENTALS

n[bb]
i,q =


(

λ
[bb]
i

µ
[bb]
i

)m[bb]
i

∗ ρ
[bb]
i

m[bb]
i !

(
1− ρ

[bb]
i

)2

 ∗ 1

m[bb]
i −1

∑
k=0

(
m[bb]

i ρ
[bb]
i

)k

k! +

 (
m[bb]

i ρ
[bb]
i

)m[bb]
i

m[bb]
i !

(1
1−ρ

[bb]
i

) (3.22)

n[bb]
i,s =

λ
[bb]
i

µ
[bb]
i

(3.23)

��������

���	

��������

∞

Figure 3.48: Infinite Server

For infinite logical servers, as shown in figure 3.48, the calculation of the values is defined as
[88] (M/M/∞):

ρ
[bb]
i = empty (3.24)

n[bb]
i,q = 0 (3.25)

n[bb]
i,s =

λ
[bb]
i

µ
[bb]
i

(3.26)

The mean number of service requests in the station (n[bb]
i) and the times: waiting time W [bb]

i ,

service duration Y[bb]
i and the response time R[bb]

i are calculated the same way for every server

type. The mean number of service requests in the station (n[bb]
i) is defined as the sum of queued

service requests (n[bb]
i,q) and service requests in service(n[bb]

i,s):

n[bb]
i = n[bb]

i,q + n[bb]
i,s (3.27)

and the waiting time (W [bb]
i) as well as the service duration Y[bb]

i and the response time R[bb]
i are

computed through Little’s Law [98] as mean number of service requests in the queue (n[bb]
i,q), in

service (n[bb]
i,s) or in the station (n[bb]

i) divided by the arrival rate at the logical server (λ[bb]
i) as:

W [bb]
i =

n[bb]
i,q

λ
[bb]
i

, Y[bb]
i =

n[bb]
i,s

λ
[bb]
i

, R[bb]
i =

n[bb]
i,q

λ
[bb]
i

. (3.28)

98

3.4. CALCULUS

In contrast to the service time X, the service duration Y is not a parameter, but a resulting
value. If the corresponding basic server station is not multiplexed, the service duration equals
the service time, but if the basic server station is multiplexed, the service duration is the sum
of the service time and the time the multiplexer handles the other multiplexed basic server
stations in parallel (elapsed time).

Control Service Request

For Control Service Requests (non leaf nodes) the FMC-QE Calculus provides the handling of:

• Hierarchical Activities,

• Serial Activities,

• Parallel Activities,

• Branches and

• Loops.

The service rate of the composed service request (µ[bb]
i) is the minimum of all service request

rates of the serial children divided by the internal traffic flow coefficients and the probabilities:

µ
[bb]
i = min

 µ
[bb+1]
child(i) ∗m[bb+1]

child(i),int

v[bb+1]
child(i),int ∗ pi,child(i)

 ∀ children o f i (3.29)

The utilization (ρ
[bb]
i) is empty for all Control Service Requests:

ρ
[bb]
i = empty (3.30)

The calculation of mean number of service requests in the station (n[bb]
i) and the response time

(R[bb]
i) is the same for all Control Service Requests:

The mean number of service requests in the station (n[bb]
i) is defined as the sum of the queued

service requests (n[bb]
i,q) and the service requests in service (n[bb]

i,s):

n[bb]
i = n[bb]

i,q + n[bb]
i,s (3.31)

As in the basic server station the waiting time (W [bb]
i), the service duration Y[bb]

i and the response

time R[bb]
i , according to Little’s Law [98], are calculated as the mean number of service requests

in the queue (n[bb]
i,q), in service (n[bb]

i,s) or in the station (n[bb]
i) divided by the arrival rate at the

logical server (λ[bb]
i) as:

W [bb]
i =

n[bb]
i,q

λ
[bb]
i

, Y[bb]
i =

n[bb]
i,s

λ
[bb]
i

, R[bb]
i =

n[bb]
i,q

λ
[bb]
i

. (3.32)

The other different formulas for the calculation of the mean number of queued service requests
(n[bb]

i,q) and the mean number of service requests in service(n[bb]
i,s) are provided in the next para-

graphs.

99

CHAPTER 3. FMC-QE FUNDAMENTALS

Hierarchical Activity A hierarchical activity with one activity inside, as shown in figure 3.49,
is just a special case of the other hierarchical decompositions like serial activities or parallel
activities, but nevertheless the formulas are shown here.

����
�����	
�	���
	������

������

	������

∞

∞

Figure 3.49: Hierarchical Activities

n[bb]
i,q = n[bb+1]

child(i),q (3.33)

n[bb]
i,s = n[bb+1]

child(i),s (3.34)

Serial Activity In a serial activity service request, as shown in figure 3.50, the service request
is hierarchically decomposed into different serial activities.

����
�����	
��
���
���

������

��
���
�
�

������

��
���
�
�

∞ ∞

∞

Figure 3.50: Serial Activities

The number of queued service requests (n[bb]
i,q) and the number of service requests in service

(n[bb]
i,s) in a serial activity service request is the sum of the corresponding values of the single

serial activities:

n[bb]
i,q = ∑

∀children o f i
n[bb+1]

child(i),q (3.35)

100

3.4. CALCULUS

n[bb]
i,s = ∑

∀children o f i
n[bb+1]

child(i),s (3.36)

Parallel Activities In a parallel activity service request, as shown in figure 3.51, the service
request is hierarchically decomposed into different activities which are processed in parallel.

����
��������	
��
�
�
��

������

��
�
��	�

������

��
�
��	�

∞

∞

∞

Figure 3.51: Parallel Activities

The number of queued service requests (n[bb]
i,q) and the number of service requests in service

(n[bb]
i,s) in a parallel activity service request are:

n[bb]
i,q = max(n[bb+1]

child(i),q) ∀ children o f i (3.37)

n[bb]
i,s = max(n[bb+1]

child(i),s) ∀ children o f i (3.38)

101

CHAPTER 3. FMC-QE FUNDAMENTALS

Branch In a branch activity service request, as shown in figure 3.51, the service request is
hierarchically decomposed into different activities, where each of it is processed with the prob-
ability p.

����
�����	
���
���
��
���
�

�����
���
�

��

���������
�
��

�����
���
�

��

���������
�
��

������

��
���
�
�

������

��
���
�
�

∞

∞

∞

Figure 3.52: Branch

The number of queued service requests (n[bb]
i,q) and the number of service requests in service

(n[bb]
i,s) in a branch activity service request is the sum of the corresponding values of the single

serial activities:

n[bb]
i,q = ∑

∀children o f i
n[bb+1]

child(i),q (3.39)

n[bb]
i,s = ∑

∀children o f i
n[bb+1]

child(i),s (3.40)

Loops In FMC-QE the system is modeled from the perspective of the hierarchical service re-
quest structures processed by the system. In order to evaluate the model through the FMC-QE
Calculus, the model must follow a tree shaped structure. If the modeled system does not fol-
low this assumption, due to modeling with a different modeling technique or special system
behavior, the model is transformed into this tree shape structure. Examples for this behavior
are loops. Loops are transformed, and after the transformation the behavior of the transformed
model is equivalent to the behavior of the original loop but analyzable with the FMC-QE Cal-
culus.

102

3.4. CALCULUS

While Loop: In FMC-QE a while loop is transformed in order to compute the performance val-
ues of the model. Figure 3.53 shows an FMC-QE model of a while loop. The loop body is
represented by the execution of the service request SRqi.

������
���	
��
��
������
����

����

���	
��
��
�

����

����
����

����
��������������������

������

����

����������

�	

��

�������������

��
��

∞

∞

Figure 3.53: Original While Loop

In the service request structures the loop is represented by a hierarchy of service requests.
The service request SRqsup(i) represents the whole execution of all iterations, while the service
request SRqi represents one single loop body execution. The traffic flow coefficient vi,int rep-
resents the mean number of loop iterations. In the Petri Net the inner service request loop
represents the while loop and the corresponding multiplexer server has the multiplicity mi and
the Service time Xi.

In the first step of the transformation the loop is transformed to a sequence of executions of the
loop body (SRqi), as shown in figure 3.54.

������
���	
��
��
������
����

����

���	��
�

������

���	��
�

�����������

∞

∞

Figure 3.54: While Loop Transformation (Serialization)

103

CHAPTER 3. FMC-QE FUNDAMENTALS

Then the single executions of the loop body are combined to one execution, in which the service
time is the sum of the single service times. This step is shown in figure 3.55.

����
�����	
��
��
�������
�

������

�����
��

���

�������
�

���

�������
���
�������

������

����

�
�
�	�
�
�

���
�������

�
�
�
�
�	�

!
 ∞

∞

Figure 3.55: While Loop Transformation (Combination)

In this transformation the arrival rate of the service requests SRqi is not changed:

λ
′ [bb]
i = λ

[bb]
i , (3.41)

but the service time is the sum of the single executions of the loop bodies, respectively the
product of the mean loopcount vi,int and the original service time Xi:

X
′ [bb]
i = vi,int ∗ X[bb]

i (3.42)

Feed Backward Loop: In FMC-QE feed backward loops, as shown in figure 3.56, are transformed
into a feed forward execution, shown in figure 3.57.

������
���	
��
��
������
����

��

������
����

���	��
��

����
��

����

����
����

����
��������������������

������

����

����������

∞

∞

Figure 3.56: Feed Backward Loop

In the feed backward execution there is a probability pret that the execution service request SRqi
has to be repeated (e.g. failure).

104

3.4. CALCULUS

����
�����	
��
��
�������
�

������

�����
��

���

�������
�

���

�������
���
�������

����

������

�
�
�	��
�
�
�	 �����	

∞

∞

Figure 3.57: Feed Forward

In the feed backward - feed forward transformation not the service time Xi but the arrival rate
λi is transformed. The increased arrival rate better corresponds to the real system than the
extension of the service rate. The new arrival rate λ′i is the product of the traffic flow coefficient
vi,int and the old arrival rate λi:

λ
′ [bb]
i = v

′ [bb]
i,int ∗ λ

[bb]
i (3.43)

The traffic flow coefficient is calculated due to the formula of the geometric sum [16, 65]:

s =
∞

∑
n=1

a1qn−1 =
a1

1− q
(3.44)

as:

v
′ [bb]
i,int =

v[bb]
i,int

1− preturn
(3.45)

In comparison to the transformation of the while loop the service time X is not transformed:

X
′ [bb]
i = X[bb]

i (3.46)

After the transformation the performance values are calculated like a normal hierarchical ac-
tivity.

An exemplary Dynamic Evaluation Section of the Tableau is shown in table 3.6.

Table 3.6: Tableau Example - Dynamic Evaluation Section

mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

1,000 18,000 0,125 0,018 0,008 0,125 0,056 0,143 0,063
1,000 2,857 0,000 0,000 0,394 0,350 0,394 0,350

∞ 0,000 0,000 0,394 0,175 0,394 0,175
0,467 1,333 0,506 0,519 0,769 0,506 0,750 1,025 1,519
0,125 0,375 0,600 0,675 1,500 1,200 2,667 1,875 4,167

3,750 1,194 0,531 1,706 0,758 2,900 1,289
0,750 2,250 0,600 0,900 0,667 0,600 0,444 1,500 1,111
0,533 1,778 0,506 0,519 0,577 0,506 0,563 1,025 1,139

3,750 1,419 0,631 1,106 0,492 2,525 1,122
1,000 9,000 0,083 0,000 0,000 0,250 0,111 0,250 0,111

3,750 2,631 1,169 3,581 1,592 6,212 2,761
0,095 0,000 0,000 23,788 10,572 23,788 10,572

Dynamic Evaluation Section

105

CHAPTER 3. FMC-QE FUNDAMENTALS

3.4.6 Multiplexer Section

In the Multiplexer Section the overall parameters of the multiplexer servers are defined to sup-
port the calculation of the individual performance values of the multiplexed logical servers,
defined in the operational service request part of the dynamic evaluation section, explained in
section 3.4.5.

The parameters in this part are:

• j – Index

• Namej – Multiplexer name

• mj – Multiplicity

• X[1]
j – Aggregated normalized service time

In Serverj a server name is defined. This parameter is imported from the corresponding Block
Diagram of the model.

The parameter mj is also imported from the Block Diagram and defines the multiplicity of every
multiplexer server.

X[1]
j is the service time a server needs to serve its parts of the top level service request. It is

defined as the normalized sum of all measured corresponding service times.

X[1]
j = ∑

∀mpxed SRqi

X[bb]
i ∗ v[bb]

i (3.47)

For infinite multiplexer servers (mj = ∞) the aggregated normalized service time X[1]
j is empty

and the multiplexer coefficient m[bb]
i,mpx will be 1 for each logical server i connected to the infinite

server j.

In figure 3.7 an exemplary Multiplexer Section of a Tableau is shown.

Table 3.7: Tableau Example - Multiplexer Section

j mj Xj
[1]

1 5 0,167
2 1 0,267
3 1 0,225
4 ∞Customer

Barber Boss
Barber

Appentice
Namej

Multiplexer Section

106

3.4. CALCULUS

3.4.7 Computation Algorithm / Complexity Analysis

In order to analyze the complexity of the FMC-QE performance predictions and the FMC-QE
Calculus with the corresponding Tableau, the algorithm of the derivation of the values will be
sketched.

In the first step the different parameters of the service request structure tree and the corre-
sponding server structures and dynamic behavior model are imported. Therefore, the tree(s)
- multiple trees in multiclass scenarios - are traversed in an adapted postorder traversal (right
left root). These parameters are: n[1]

ges and f as experimental parameters, [bb], SRq[bb]
i and v[bb]

i,int

from the Entity Relationship Diagram, Server[bb]
i , m[bb]

i,int, Mpx[bb]
i and X[bb]

i from the Block Dia-

gram and p[bb]
parent(i),i and the execution order from the Petri Net. The parameters v[bb]

parent(i), v[bb]
i ,

m[bb]
parent(i) and m[bb]

i have only top-down interconnections and could therefore computed as a
by-product of the tree traversal. Also the index i is defined in the traversal algorithm (order of
traversal). Also as a part of the import procedure, the multiplexer parameters Namej and mj are
extracted from the Block Diagram and the index j is defined. Therefore, the list of multiplex-
ers in the Block Diagram has to be traversed, which is by definition shorter than the number
of nodes in the service request tree (there can not be more multiplexers than logical servers).
While in the first step the model tree is created and traversed, the complexity of this step is
O(n) where n is the number of service request nodes.

In the second step the service request table is traversed in order to aggregate the service times
X[bb]

i for every multiplexer to compute Xj. Therefore, every row in the service request table has
to be traversed (O(n) - n=number of service request nodes) and the multiplexer section has also
to be traversed once (O(n)).

In the third step the multiplex coefficient m[bb]
i,mpx and the service rates µ

[bb]
i are computed. There-

fore, the service request table is traversed from i = 1 to i = n. In order to compute the multiplex
coefficient, the multiplex section has also be traversed for every basic logical server. In this ser-
vice request table traversal the minimum of all normalized logical service rates (see 3.11) is
saved in order to compute λ

[1]
bott. While in this step the service request table has to be traversed

twice and the multiplexer table has to be traversed once, the complexity is again O(n).

In the forth and last step the service request table is traversed one time from i = 1 to i = n in
order to compute λ

[bb]
i , ρ

[bb]
i , n[bb]

i,q , n[bb]
i,s , n[bb]

i and R[bb]
i . The values of the logical basic servers (leaf

nodes in service request tree) can be computed directly and the logical control servers have to
aggregate the values of the sub service requests. In this step the service request table has also
to be traversed once and for every node some calculations (only parameters of the node) have
to be performed. Therefore, the complexity is again O(n).

While all steps in the calculation of the Tableau are performed with a complexity of O(n), where
n is the number of service request nodes, the calculation of the whole Tableau is also performed
with a linear complexity of O(n).

107

CHAPTER 3. FMC-QE FUNDAMENTALS

3.5 FMC-QE Example - Open Queueing Network

In the following example an open Queueing Network (taken from [18] - Example 7.4, page 287f)
is modeled and analyzed. This example has been chosen in order to provide a full example
for FMC-QE and to compare the performance predictions of an exemplary open Queueing
Network, computed through Queueing Theory methods with the performance predictions of
FMC-QE. Another goal of this example is an exemplary description of the transformation of a
Queueing Network into an FMC-QE model.

3.5.1 Original Model and Calculation

The original model is shown in figure 3.58.

�1

�2

�3

p1,2=

0,5

p1,3=

0,5

p2,1=1

�4

p3,1=0,6

p3,5=0,4I/O�Device CPU

Disk

Printer

Source

Sink

Figure 3.58: Open Queueing Example - Original Model [18]

In this example four single server FCFS nodes with exponentially distributed service times are
connected. The mean service rates are [18]:

µ1 = 25
[Jobs]
[s]

; µ2 = 33
1
3
[Jobs]
[s]

; µ3 = 16
2
3
[Jobs]
[s]

; µ4 = 20
[Jobs]
[s]

The example is an open Queueing Network with an exponentially distributed arrival rate of
[18]:

λ = λ0,4 = 4
[Jobs]
[s]

.

In [18] the performance values are calculated using Jacksons Theorem (see 2.1.4). In the first
step the arrival rates are calculated [18]:

λ1 = λ2 p2,1 + λ3 p3,1 + λ4 p4,1 = 20
[Jobs]
[s]

; λ2 = λ1 p1,2 = 10
[Jobs]
[s]

λ3 = λ1 p1,3 = 10
[Jobs]
[s]

, λ4 = λ0,4 = 4
[Jobs]
[s]

.

108

3.5. FMC-QE EXAMPLE - OPEN QUEUEING NETWORK

In the second step the different performance values are derived. The utilizations λi are calcu-
lated as ρi =

λi
µi

[18]:

ρ1 =
λ1

µ1
= 0, 8; ρ2 =

λ2

µ2
= 0, 3; ρ3 =

λ3

µ3
= 0, 6; ρ4 =

λ4

µ4
= 0, 2.

The mean number of jobs at a node for an M/M/1 node are calculated as ni =
ρi

1−ρi
(see table

A.3) and therefore [18]:

n1 = 4 [Jobs]; n2 = 0, 429 [Jobs]; n3 = 1, 5 [Jobs]; n4 = 0, 25 [Jobs].

The mean response times of the servers are computed with the help of Little’s Law [98] as
Ri =

ni
λi

[18]:

R1 = 0, 2 [s]; R2 = 0, 043 [s]; R3 = 0, 15 [s]; R4 = 0, 0625 [s].

The mean overall response time is calculated by aggregating the mean number of jobs at every
node and Little’s Law [18]:

R =
n
λ
=

1
λ

4

∑
i=1

ni = 1, 545 [s]

The mean queue lengths are calculated as ni,q =
ρ2

i
1−ρi

(see table A.3) [18]:

n1,q = 3, 2 [Jobs]; n2,q = 0, 129 [Jobs]; n3,q = 0, 9 [Jobs]; n4,q = 0, 05 [Jobs].

Therefore, the mean waiting times (calculated as Wi =
ρi

µi−λi
- (see table A.3)) are [18]:

W1 = 0, 16 [s]; W2 = 0, 013 [s] W3 = 0, 09 [s]; W4 = 0, 0125 [s].

In the original example in [18] the marginal probabilities and the state probabilities are also
computed, but in FMC-QE these values are not considered and so this is omitted here.

109

CHAPTER 3. FMC-QE FUNDAMENTALS

3.5.2 Transformation

In order to compare these results with the corresponding FMC-QE model, the Queueing Theory
model will be transformed into the corresponding FMC-QE model. In the first step an initial
Petri Net, shown in figure 3.59, was set up.

In this first Petri Net the behavior of the different servers is represented. The transitions are
now labeled with the actions (Retrieve Input, Compute Results, Print, Save to Disk) of the different
servers and not with the names (I/O-Device, CPU, Printer, Disk) as in the Queueing Theory
server structures, because the Petri Net represents the behavioral view of the model, which is
only implicitly modeled in the Queueing Theory. This first Petri Net has no hierarchies (flat)
and is still an open network.

��������

�����

��	

��
��

���

����������

�������

���

������

���

���
����

�����

���

��������

�������

���

�������

 ���

���

!
���

∞

∞

∞

∞

Figure 3.59: Open Queueing Example - Initial Petri Net

110

3.5. FMC-QE EXAMPLE - OPEN QUEUEING NETWORK

Due to the fact that in FMC-QE models there is no distinction between open and closed queue-
ing networks and the outside world is always modeled (see 3.4.2), in the second transformation
step the load generation, represented by the action Generate Request, is added as shown in figure
3.60.

���

������	�

���
��	

���	
�
���

�������
�
���

����
�
���

����
�

���

������

���

��	�����

���
	

���

����
	�

���
 	�

���

!���
	�

"��#

���

$���	

∞

∞

∞

∞

∞

Figure 3.60: Open Queueing Example - Load Generation

An open network with a fixed arrival rate is then represented by a modified paternoster model
(see 3.4.2) in which the external time is calculated as a result from the parameters mean overall
number of service requests n[1]

ges, arrival rate λ[1] and overall mean response time R[1]
sys:

X[1]
ext = (

n[1]
ges

λ[1]
)− R[1]

sys. (3.48)

The mean overall number of service requests n[1]
ges therefore have to be greater than one and

thus have to be greater than the mean number of service requests in the system n[1]
sys:

n[1]
ges ≥ n[1]

sys = R[1]
sysλ

[1]. (3.49)

111

CHAPTER 3. FMC-QE FUNDAMENTALS

In the third step a first hierarchy, the Persist Data Branch, is introduced. This hierarchy abstracts
from the decision if the results are Printed or Saved to the Disk. Though this abstraction the
return probability pret and the finish probability p f inish = 1− pret where adjusted in order to
add the 50% of the printed and then returned service requests:

pret = p1,2 ∗ p2,1 + p1,3 ∗ pret = p1,2 ∗ p2,1 + p1,3 ∗ p3,1 = 0, 8.

The new Petri Net is shown in figure 3.61.

���

�����	�	
	��

�����	�	
	��

�������	����

����	

���

�������	

���

�����

���

����	��	

����

���

���

��������	

�������

���

��������

 ����

���

!�"����	

����#��

∞

∞

∞

∞

∞

∞

Figure 3.61: Open Queueing Example - Persist Data Branch

112

3.5. FMC-QE EXAMPLE - OPEN QUEUEING NETWORK

In the next step, shown in figure 3.62, the serial execution of the Result Computation and the Per-
sist Data Request are abstracted to the Unreliable Execution. It is an unreliable execution because
a return loop envelopes this execution.

���������	
���
����
���

���

�������������

�������������

��
������
�

�
���
�

���

���	����
�

���

�
�	�

� �

!
"���#�

����

� �

���

$�	�

���

%�&����

���

%��
��"�

'	���

���

(#)�����

%������

∞

∞

∞

∞

∞

∞

∞

Figure 3.62: Open Queueing Example - Unreliable Execution

113

CHAPTER 3. FMC-QE FUNDAMENTALS

The return feed backward loop around the Unreliable Execution is resolved through transform-
ing the feed backward loop into an feed forward execution, as shown in figure 3.63. The new
Reliable Execution has an internal traffic flow coefficient v

′ [bb]
i,int calculated as the geometric sum

of the returns:

v
′ [bb]
i,int =

v[bb]
i,int

1− preturn
. (3.50)

����������	
��	�

��

��

���������

�������

��

����
���

�����

∞

∞

������������	
��	��

��

��

��
���������

��
���������

!���
���"���

!�
��

#�

$�����%�

"
��

#�

��

&%'�����

����	��

∞

∞

∞

∞

∞

∞

Figure 3.63: Open Queueing Example - Feed Forward - Feed Backward

114

3.5. FMC-QE EXAMPLE - OPEN QUEUEING NETWORK

Finally the serial execution of Input and Reliable Execution is abstracted to Request, which is the
top-level ([1]) service request generated by the clients. The final transformed Petri Net is shown
in figure 3.64.

����������	
��	�

��

��

���������

�������

��

����
���

�����

∞

∞

������������	
��	��

��

��

��
�������� !

��
�������� !

"���
���#���

"�
��

!�

$�����%�

#
��

!�

��

&%'�����

����	��

∞

∞

∞

∞

∞

∞

���������������

∞

��

Figure 3.64: Open Queueing Example - Transformed Petri net

115

CHAPTER 3. FMC-QE FUNDAMENTALS

3.5.3 Service Request Structure and Static Structure

The corresponding service request structures of the example are shown in figure 3.65. The
service request is partitioned into 5 hierarchical levels. In this diagram the increased traffic flow
between the Reliable Execution and the Unreliable Execution (vint = 5 [UnreliableExecutionRequests]

[ReliableExecutionRequests]) is
visualized.

�������
���	
��
�������
�������
�������
�������
�������

�	��
�
�

�������
�������	
�
���	
��
��������
�������

�������
��	���
���

�����
���	
��
����	���
�����
�������
�����
����	����

�	��
�
�

 ����	�!��
������	
�
���	
��
�������
 ����	�!��
�������
 ����	�!��
��������

"���	��
#���
�������

���	
��
"���	��
#���
�������
#���
"���	����

�	��
�
�

"�	��	�$
�������
���	
��
"�	��

�������
�������
"�	����

�	��
�
�

���	�$
�������
���	
��
����
�

#	�%
�������
�������
�����

�	��
�
�

�&�

�'�

�(�
�
)�����	
�
�������
���	
��
�
)����
�������
�������
�������
�
)�����

�	��
�
�

�	��
�
�

���	�!��
������	
�
���	
��
�������
���	�!��
�������
���	�!��
��������

���

Figure 3.65: Open Queueing Example - Service Request Structures

116

3.5. FMC-QE EXAMPLE - OPEN QUEUEING NETWORK

The third diagram of the model, the server structures are represented in the Block Diagram, as
shown in figure 3.66. In this model the five hierarchies of the logical server structures and the
mappings to the four multiplexer servers (CPU, Printer, Disk and I/O-Device) are defined. The
different service times for the basic servers are also defined in this diagram.

����������	�
���

�������

�
����

������

���

���

���

��������
��

���

 !"�
���

#�
��
�

$����%��	�

#�
��
�

&�!�%'���()(*�
���
���'����'�

�������
�����

�������

#���

�*�

���

&�
������()(+�
���
���
����

��,�

���

�
����
�

���

&��%�����()(��
���
����%������'�

�������
�!�%���

�*�

&#������

()(-�
���
��#����

���.�

���

��������/��0��

���

��%��
���
����

���

,�
���������	�
���

�+�

Figure 3.66: Open Queueing Example - Server Structures

117

CHAPTER 3. FMC-QE FUNDAMENTALS

3.5.4 Summary

FMC-QE delivers exact solutions for this open Product From Queueing Networks. Through
transformations the flat example could be transformed to a hierarchical model. After the trans-
formation a broad range of performance values could be calculated in the FMC-QE Tableau, as
shown in table 3.8.

Table 3.8: Open Queueing Example - Tableau (see Appendix - Table B.2)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

5 1 0,50 5,00 1,00 2,50 11,250 1 1 1 3 0,060 1,000 16,667 0,675 1,402 0,125 0,675 0,060 2,077 0,185
5 2 0,50 5,00 1,00 2,50 11,250 1 1 1 2 0,030 1,000 33,333 0,338 0,172 0,015 0,338 0,030 0,509 0,045
4 3 1,00 5,00 1,00 5,00 22,500 1 1 1 33,333 1,574 0,070 1,013 0,045 2,586 0,115
4 4 1,00 5,00 1,00 5,00 22,500 1 1 1 1 0,040 1,000 25,000 0,900 8,100 0,360 0,900 0,040 9,000 0,400
3 5 1,00 1,00 5,00 5,00 22,500 1 1 1 25,000 9,674 0,430 1,913 0,085 11,586 0,515
2 5 1,00 1,00 1,00 1,00 4,500 1 1 1 5,000 9,674 2,150 1,913 0,425 11,586 2,575
2 6 1,00 1,00 1,00 1,00 4,500 1 1 1 4 0,050 1,000 20,000 0,225 0,065 0,015 0,225 0,050 0,290 0,065
1 7 1,00 1,00 1,00 1,00 4,500 1 1 1 5,000 9,739 2,164 2,138 0,475 11,877 2,639
1 8 1,00 1,00 1,00 1,00 4,500 1 1 1 15,139 0,066 0,000 0,000 68,123 15,139 68,123 15,139

j mj Xj
[1]

1 1 0,200
2 1 0,075
3 1 0,150
4 1 0,050

Experimental Parameters
80

5,0000
0,9000
4,5000

Service Request Section

nges
[1]

λbott
[1]

f
λ[1]

Dynamic Evaluation Section

Data Persister

Disk

Serveri
[bb]

Request Computer

Input Retriever

Unreliable Executer

Request Handler

Persist Data Request

Request Generation

Server Section

Request
Client

SRqi
[bb]

Computation Request
Unreliable Execution

Input

Printing Request

I/O-Device

Saving Request Request Saver
Request Printer

Printer
CPU

Namej

Multiplexer Section

Reliable Execution Reliable Executer

One example could be the dependency of overall response time Rges from the overall arrival
rate λ, as shown in figure 3.67. In this chart it can be seen that for an arrival rate from approxi-
mately λ > 4, 3 [SRq]

[s] the overall response time Rges begins to grow rapidly and goes to infinity

for λ = λbott = 5 [SRq]
[s] .

λbott = 5

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6
λ [SRq]/[s]

R
ge

s [
s]

Figure 3.67: Open Queueing Example - Chart: Response Time - Arrival Rate

Another example is the dependency of the external service time Xext on the mean overall num-
ber of service requests in the model (mean population nges), as depicted in figure 3.68. This
type of chart could help in drawing conclusions to the behavior of the clients. In an example of

118

3.5. FMC-QE EXAMPLE - OPEN QUEUEING NETWORK

a mean population of nges = 80[SRq] every single client could request the system every 15, 1s
in a configuration of a desired mean overall arrival rate of λ = 4, 5 [SRq]

[s] (resp. f = 0, 9).

0

5

10

15

20

25

0 20 40 60 80 100 120 140
nges [SRq] (f=0,9; λ=4,5 [SRq]/[s])

X e
xt

 [s
]

Figure 3.68: Open Queueing Example - Chart: External Service Time - Population

Figure 3.69 shows the changes of the utilization of the different servers ρj depending on the
arrival rate λ. While the CPU is the bottleneck, the utilization of the CPU grows until ρCPU = 1
for λ = λbott = 5 [SRq]

[s] . The Disk, the Printer and the I/O Device are the respectively lower utilized
servers with a utilization of ρDisk = 0, 8, ρPrinter = 0, 375 and ρI/O Device = 0, 25 for λ = λbott. In
addition to the utilization of the different servers the corresponding overall response time Rges
is also plotted.

ρDisk

ρPrinter

ρCPU

ρI/O-Device

Rges

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6
λ [SRq]/[s]

ρ j

0

5

10

15

20

25

R
ge

s [
s]

Figure 3.69: Open Queueing Example - Chart: Utilization, Response Time - Arrival Rate

119

CHAPTER 3. FMC-QE FUNDAMENTALS

3.6 FMC-QE Tool

The development of an FMC-QE Tool is in the main focus of Tomasz Porzucek, who is also a
member of the Research Group of Prof. Dr.-Ing. Werner Zorn. While this thesis is focused on
the theoretical background and the further development of FMC-QE, his thesis will be focused
on the development of the FMC-QE framework and research questions in the development of
the Tool, like model transformations. Through this topic there are close cooperations between
the author and Mr. Porzucek, as in [115]. Figure 3.70 shows a screenshot of a prototype of the
tool.

Figure 3.70: FMC-QE Tool - Screenshot [115]

With the help of the Tool the performance analyst is able to model the quantitative behavior of
the analyzed system. From this model a Tableau is generated, which could be evaluated with a
broad range of different system and load parameters in order to predict many different system
scenarios.

Additionally, existing models, which are not modeled using FMC-QE and are possibly not
hierarchical, could also be imported in this tool, as described in [116].

120

Chapter 4

FMC-QE Extensions

This chapter provides extensions of FMC-QE, explained with the help of representative basic
examples as well as comparisons of FMC-QE to related work.

In section 4.1 FMC-QE is extended to handle Closed Queueing Networks. In this section, the
integration of the summation method [17] into FMC-QE is explained in order to support the
approximative evaluation for the class of Closed Queueing Systems. Section 4.2 illustrates the
handling of multiclass scenarios in FMC-QE. In section 4.3 a classical Time Augmented Petri
Net problem, the semaphore synchronization, is modeled and the methodology is extended
to handle such scenarios. In section 4.4 related work is compared to FMC-QE. This includes
the Queueing Theory, Time Augmented Petri Nets, Layered Queueing Networks (LQN) and
performance simulations.

121

CHAPTER 4. FMC-QE EXTENSIONS

4.1 Closed Queueing Networks

In the following section the extension of FMC-QE for the handling of closed queueing networks
is described. Therefore, first the general model of closed queueing networks is discussed. Then
the performance predictions for exemplary closed queueing networks, modeled and computed
through Queueing Theory approaches, are compared to the predictions of the corresponding
FMC-QE model and Tableau and the extensions of FMC-QE are explained with the help of
these models.

4.1.1 General Discussion

In closed queueing networks there is a short circuit from the system output to the system input.
In the moment the service request is fulfilled and the service response is delivered from the
system, this response is immediately inserted in the system, again. In section 3.4.2 this model
was referenced as the Roller Coaster (the children instantly queue up again). From the viewpoint
of FMC-QE the common model of closed queuing networks raises some questions. The first
question comes from the distinction of service requests and service responses. In the steady
state of closed queueing networks the numerical value of the throughput (service response
rate) equals the arrival rate (service request rate), but the service request is not the same as the
service response. The handling of the service response was done for some reason and therefore
it makes no sense to immediately queue up the response again. Even in the roller coaster model
the response (child did the ride and is happy) has to be changed into the service request (child
wants to ride again). Therefore, the consideration of the external (outside) world is important,
because even if the external service time would be zero, the external world is to be considered
for the generation of the service request and the receiving of the service response.

Another question concerning the classical closed model also results from the neglection of the
outside world and the service request generation: ‘Who inserted the service requests in the
system?’ or ‘Who initialized the system?’. In the standard model there is no service request
generation and therefore, the single servers are not of type M/M/m (or similarly) but -/M/m.
The output (throughput) of the system is transformed (or not - as discussed) into the arrival
rate. Therefore, there is no service request generation M/M/m. The arrivals are a result of the
network throughput -/M/m. As the arrival rate λ is not a free parameter in this model, also
the basic laws, like Little’s Law [98] (n = λ ∗ R), have to be interpreted differently. While in
standard FMC-QE models the number of service requests in the system (nsys) is a result, here
nsys is the parameter and the arrival rate (or throughput) is the result.

From the viewpoint of FMC-QE closed queueing networks and the not modeling of the request
generation and outside world is questionable, but as closed queueing networks are used as a
standard model in a broad range of literature, this class of models will also be handled in FMC-
QE. The extensions of FMC-QE for closed networks are described in this section. The extensions
will be discussed on examples in order to exemplary compare the different approaches. In this
examples first the networks are modeled and analyzed with Queueing Theory techniques, and
later on an FMC-QE model and Tableau are set up. It will be seen that the standard FMC-
QE performance evaluation techniques are not a good approximation for this class of models.
Therefore, the methodology will be extended in order to solve this class of problems.

122

4.1. CLOSED QUEUEING NETWORKS

4.1.2 Closed Tandem Network

As a simple but significant example a tandem network consisting of two servers connected to
each other in a closed network will be examined. First the example will be calculated using
standard Queueing Theory approaches, calculating the global balance equations and solving a
linear equation system. Then the example is calculated using the standard FMC-QE load model
and setting the external time to zero. It will be seen that there are large approximation errors
in this model. In a second Tableau the performance values are calculated using an M/M/1/K
model. This model leads to correct solutions for this special case of a closed network, but in
order to compute the performance values, some results of the calculations had to be known in
advance. In the third model the summation method [17] is adapted to FMC-QE. The adaption
will be explained and it will be seen that this is a good approximation method.

Original Example -/M/1

The original model, shown in figure 4.1, is defined in [18].

�1 �2

Figure 4.1: Closed Tandem Network - Original Model [18]

In this example the two servers have exponentially distributed service times with mean values
of 5s (µ1 = 1

5

[
SRq1

s

]
) and 2,5s (µ1 = 1

2,5

[
SRq1

s

]
) and a FCFS service discipline. There are 3

service requests in the network (nges = 3), which lead to the state transition diagram shown in
figure 4.2 [18]:

�2 �2

�1�1

�2

0,3

�1

3,0 2,1 1,2

Figure 4.2: Closed Tandem Network - State Transition Diagram [18]

In [18] the global balance equations are set up as:

p(3, 0)µ1 = p(2, 1)µ2;
p(2, 1)(µ1 + µ2) = p(3, 0)µ1 + p(1, 2)µ2;
p(1, 2)(µ1 + µ2) = p(2, 1)µ1 + p(0, 3)µ2;

p(0, 3)µ2 = p(1, 2)µ1.

This leads to the steady state probabilities [18]:

p(3, 0) = 0, 5333; p(2, 1) = 0, 2667; p(1, 2) = 0, 1333; p(0, 3) = 0, 0667.

123

CHAPTER 4. FMC-QE EXTENSIONS

Using this steady state probabilities, the marginal probabilities are computed as [18]:

p1(0) = p2(3) = p(0, 3) = 0, 0667;
p1(1) = p2(2) = p(1, 2) = 0, 1333;
p1(2) = p2(1) = p(2, 1) = 0, 2667;
p1(3) = p2(0) = p(3, 0) = 0, 5333.

After computing these probabilities, the performance values, starting with the utilization ρi,
could be derived as [18]:

ρ1 = 1− p1(0) = 0, 9333; ρ2 = 1− p2(0) = 0, 4667.

The arrival rates (throughput in the closed network) are then derived as [18]:

λ = λ1 = λ2 =
rho1

µ1
=

rho2

µ2
= 0, 1867

[
SRq

s

]
.

The mean number of service requests ni are [18]:

n1 =
3

∑
k=1

k ∗ p1(k) = 2, 2667 [SRq1] ; n2 =
3

∑
k=1

k ∗ p2(k) = 0, 7333 [SRq2] .

The mean response times Ri are [18]:

R1 =
n1

λ1
= 12, 1429[s]; R2 =

n2

λ2
= 3, 9286[s].

FMC-QE Model

The corresponding FMC-QE model is shown in figure 4.3 - 4.5. The service request structure is
defined in figure 4.3. The actions of the two connected servers are now defined as Sub-Request
1 and Sub-Request 2, which are parts of an overall Request. Furthermore, in this model there is
also a request generation associated to the overall request.

�������
���	
��
�������
�������
�������
�������
��������

�������
�������	
�
���	
��
��������
�������

�������
��	���

�����������
�
���	
��
�������
�����������
�
�������
�����������
�
��������

�	��
�
� �	��
�
�

���

���
�����������
�

���	
��
�������
�����������
�
�������
�����������
�
��������

Figure 4.3: Closed Tandem Network - Service Request Structure

The server structure of this model is shown in figure 4.4. The two servers Server 1 and Server
2 are connected to the two actions, executed by the logical servers Sub-Request 1 Executer and
Sub-Request 2 Executer.

124

4.1. CLOSED QUEUEING NETWORKS

����������	
�

�
���	��

�����	

���

���

������
�

���

�������

�������

���	����
��

�������

 �
�
�!"

���
#������

������	

�
���	��

����������	
�

�
���	��

���

���

������
�

���

 �
�
"

���
#������

Figure 4.4: Closed Tandem Network - Server Structure

Finally, the dynamic behavior and the control flow are described in figure 4.5. Beside the def-
inition of two hierarchical layers (one for Execute request and one for the two Sub-Requests) the
main difference between this model and the original model in figure 4.1 is the introduction of
a request generation, as usual in FMC-QE. In order to extend FMC-QE to closed networks, the
think time of this external server (Client/Request Generator) has to be reduced to zero ("short-
circuit") and furthermore, the overall number of service requests in the system has to be ad-
justed to a constant natural number.

���

������	�

����
	

�����	��
����
	
���

���

�����	��

����
�����

���

�����	��

����
�����

∞ ∞

∞

∞

Figure 4.5: Closed Tandem Network - Dynamic Behavior

In the following some approaches for the extension of FMC-QE to closed networks are de-
scribed with the help of this example.

125

CHAPTER 4. FMC-QE EXTENSIONS

M/M/1 Approximation Method

In a first approximation approach for a closed network the performance values are derived in
a standard FMC-QE Tableau with M/M/1 servers (formulas are also in table A.3):

ni, q =
ρ2

1− ρ
ni, s = ρ ni =

ρ

1− ρ
(4.1)

and an external time Xext = 0. In this model the network is handled like an open network,
including an external service request generation (M/M/1 servers), whereas the service request
generation and the handling of the service response (outside world) is handled with a service
time of zero (Xext = 0).

In order to achieve an external service time of zero, the arrival rate λ is adjusted in an iterative
approximation approach until Xext = 0 for nges = 3. In figure 4.6 the functional dependency of
the external service time Xext from the desired bottleneck utilization f , where λ = f ∗ λbott and
0 < f < 1, is shown, which is then later adjusted though the iterative approach (values of first
iterative steps are plotted). For a small f the external service time is large, because the arrival
rate is small and therefore only a few service requests are in the system and the external service
time Xext for the rest of the service requests (next = nges − nsys) has to be large. If the desired
bottleneck utilization f is too large and therefore the arrival rate λ is also too large, there are
too many service requests in the system (nsys > nges) and therefore the external service time
Xext converges against −∞ (the external world is a "time machine").

0,710102

-400,0

-300,0

-200,0

-100,0

0,0

100,0

200,0

300,0

400,0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

f (nges= 3[SRq])

X e
xt

 [s
]

Figure 4.6: Closed Tandem Network - M/M/1 - Chart: Adjustment External Service Time - f

The corresponding FMC-QE Tableau is shown in table 4.1. The desired bottleneck utilization f
with the value 0, 710102 was calculated through an iterative approximation approach in which
this value was adjusted until n[1]

2 = 3 (overall number of requests in the system) as predefined
in the parameter nges of the original model.

126

4.1. CLOSED QUEUEING NETWORKS

Table 4.1: Closed Tandem Network - M/M/1 Tableau (see Appendix - Table B.3)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

3 1 1,00 1,00 1,00 1,00 0,142 1 1 1 2 2,500 1,000 0,400 0,355 0,195 1,376 0,355 2,500 0,551 3,876
3 2 1,00 1,00 1,00 1,00 0,142 1 1 1 1 5,000 1,000 0,200 0,710 1,739 12,247 0,710 5,000 2,449 17,247
1 3 1,00 1,00 1,00 1,00 0,142 1 1 1 0,200 1,935 13,624 1,065 7,500 3,000 21,124
1 4 1,00 1,00 1,00 1,00 0,142 1 1 1 0,000 #### 0,000 0,000 0,000 0,000 0,000

j mj Xj
[1]

1 1 2,500
2 1 5,000

f
λ[1]

Server 2

Multiplexer Section
Namej

Server 1

Request Executer
Req. Generation Client

Sub-Request 1 Executer 1

SRqi
[bb] Serveri

[bb]

Sub-Request 2 Executer 2

Service Request Section Server Section Dynamic Evaluation Section

Experimental Parameters
3

0,2000
0,710102
0,1420

nges
[1]

λbott
[1]

The approximation errors (relative error δxi = ∆xi
x ∗ 100) [22] in the prediction of the overall

arrival rate:

λGlobalBalanceCalculation = 0, 1867; λM/M/1 Approx. = 0, 1420

δλ =
|λGlobalBalanceCalculation − λM/M/1 Approx.|

|λGlobalBalanceCalculation|
= 23, 9%

and the response times of the servers (especially R1):

R1,GlobalBalanceCalculation = 12, 1429; R1,M/M/1 Approx. = 17, 2474;

δR1 =
|R1,GlobalBalanceCalculation − R1,M/M/1 Approx.|

|R1,GlobalBalanceCalculation|
= 29, 6%;

R2,GlobalBalanceCalculation = 3, 9286; R2,M/M/1 Approx. = 3, 8763;

δR2 =
|R2,GlobalBalanceCalculation − R2,M/M/1 Approx.|

|R2,GlobalBalanceCalculation|
= 1, 3%

are very high, because in this solution the number of service requests in the system is only a
mean number derived by calculations for open networks and not a constant natural number as
usually for closed networks.

M/M/1/K Method

In a second calculation approach the two servers are represented by M/M/1/K servers with a
capacity of K = 3 and so the server formulas are (formulas are also in table A.6):

ρi =
λi
µi

ni,q =


ρi

1−ρi
− ρi(KρK

i +1)
1−ρK+1

i
ρi 6= 1

K(K−1)
2(K+1) ρi = 1

ni,s =

{
1− 1−ρi

1−ρK+1
i

ρi 6= 1

1− 1
K+1 ρi = 1

ni =

{ ρi
1−ρi
− K+1

1−ρK+1
i

ρK+1
i ρi 6= 1

K
2 ρi = 1

(4.2)

127

CHAPTER 4. FMC-QE EXTENSIONS

The problem is that in this method the arrival rates are an input parameter of the model and not
a result, as usual for closed models. Furthermore, in M/M/1/K models there is a distinction
between the arrival rates λ

[bb]
i and the effective arrival rates λ

[bb]
i,e f f which is dependent on the

utilization of the different servers. So in order to adjust the right effective arrival rates, not only
the overall arrival rate but also the different traffic flow coefficients had to be adjusted. For
this proof-of-concept the known effective arrival rates from the original example, calculated in
the beginning of this section, are used to solve this problem. So in order to receive the correct
results, in the Tableau shown in table 4.2, the different effective arrival rates λ

[bb]
i,e f f are adjusted

by the overall arrival rate λ[1] and the traffic flow coefficients v[bb]
i in order to fit with the value

0, 1867 of the original example [18], calculated via the global balance equation.

Table 4.2: Closed Tandem Network - M/M/1/K Tableau (see Appendix - Table B.4)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] λi,eff
[bb] mp(i)

[bb-1] mi,int
[bb] mi

[bb] Mpxi Xi
[bb] mi,mpx

[bb] μi
[bb] ρi

[bb] ni,q
[bb] Wi

[bb] ni,s
[bb] Yi

[bb] ni
[bb] Ri

[bb]

3 1 1,00 1,00 0,50 0,5 0,200 0,187 1 1 1 2 2,500 1,000 0,400 0,500 0,267 1,429 0,467 2,500 0,733 3,929
3 2 1,00 1,00 1,00 1 0,400 0,187 1 1 1 1 5,000 1,000 0,200 2,000 1,333 7,143 0,933 5,000 2,267 12,143
2 3 1,00 1,00 1,00 1 0,400 0,187 1 1 1 0,200 1,600 8,571 1,400 7,500 3,000 16,071
1 4 1,00 1,00 1,00 1 0,400 1 1 1 0,000 #### 0,000 0,000 0,000 0,000 0,000

j mj Xj
[1]

1 1 5,000
2 1 1,250

3
0,4000

Experimental Parameters
nges

[1]

λ[1]

Client

SRqi
[bb]

Request

Sub-Request 2

Dynamic Evaluation Section

Executer 1

Serveri
[bb]

Executer

Executer 2

Server SectionService Request Section

Sub-Request 1

Req. Generation

Server 2
Server 1
Namej

Multiplexer Section

In the special case of the tandem network the performance values are exactly the same for the
M/M/1/K model and the calculation via the global balance equations, but this in not true
for every closed network (in the second example of this section the values are not the same).
Furthermore, for the calculation of this model the effective arrival rates had to be known in
advance in order to adjust the traffic flow coefficients for this model or a more complex equation
system or multi dimensional iteration approach had to be solved in order to retrieve the results.
Because in this closed tandem model the effective arrival rates:

λi,e f f =

λ

(
1− 1−ρi

1
ρK

i
−ρi

)
ρi 6= 1

λ
(
1− 1

K+1

)
ρi = 1

(4.3)

had to be the same for every server in the tandem network, so the arrival rates λi had to be
adjusted through the traffic flow coefficient λi = vi ∗ λ and also the overall number of service
requests in the system nges, with:

ni =

{ ρi
1−ρi
− K+1

1−ρK+1
i

ρK+1
i ρi 6= 1

K
2 ρi = 1

(4.4)

and

nges =
2

∑
i=1

ni (4.5)

had to be 3[SRq] (nges = 3[SRq]). For this proof-of-concept tandem network the M/M/1/K
model was calculable, but for larger networks this model and calculation is not feasible.

128

4.1. CLOSED QUEUEING NETWORKS

Summation Method

While in FMC-QE the arrival rate is an input parameter and the number of service requests in
the system is a result, in closed systems this normally is the opposite, as the number of service
requests in the system is an input parameter and the arrival rate or throughput is a result. The
summation method [17] is an exception and fits to this model of the arrival rate as input and the
number of service requests in the system as a result and so it solves problems of the M/M/1/K
model.

In the summation method the mean number of service requests in each node is a function of
the throughput of the node [18]:

ni = fi(λi). (4.6)

[17] propose the following formulas for fi(λi) [18]:

fi(λi) =


ρi

1− K−1
K ρi

, Type− 1, 2, 4 (mi = 1),

miρi +
ρi

1− K−mi−1
K−mi

ρi
pi(mi), Type− 1 (mi > 1),

λi
µi

, Type− 3.

(4.7)

with the utilization [18]:

ρi =
λi

miµi
(4.8)

and the waiting probabilities (for Type-3 Server, mi > 1) [18]:

pi(mi) =


mi! (1− ρi)

mi−1
∑

k=0

(miρi)
k

k!

(miρi)
mi

+ 1


−1

(4.9)

The function fi(λi) is correct for Type-3 servers (infinite servers) and an approximation for
Type-1,2 and 4 [18].

If fi is given for every basic server station (number of basic server stations = I) in the network,
the overall number of service requests in the system is given by [18]:

I

∑
i=1

ni =
I

∑
i=1

fi(λi) = K (4.10)

and including the traffic flow coefficients vi, the overall number of service requests in the sys-
tem is a function of the arrival rate [18]:

I

∑
i=1

fi(viλ) = g(λ) = K. (4.11)

129

CHAPTER 4. FMC-QE EXTENSIONS

For the usage of the summation method in the FMC-QE calculations the basic server formulas
are substituted by the summation formulas (4.7), and then the solution is derived in an iterative
calculation, modified from [18]:

While the desired bottleneck utilization f (λ = f ∗ λbott) is 0 for the lower bound of the arrival
rate and 1 for the upper bound (arrival rate λ = bottleneck throughput λbott), the bounds are
fl = 0 and fu = 1 in the first step (desired bottleneck utilization f 6= fi).

Then in the second step f = fl+ fu
2 and the Tableau is solved. If the overall number of service

requests in the system is K± ε, then the solution is found, else the bounds are set to

• f ′u = fl+ fu
2 if the overall number of service requests in the system > K and

• f ′l =
fl+ fu

2 if the overall number of service requests in the system < K,

and then the next iteration is started with the second step.

The corresponding chart, which shows the dependency of the desired bottleneck utilization (f)
and the number of service requests in the system (nsystem) for the example, is depicted in figure
4.7 (including the first iterative steps). In this configuration the desired bottleneck utilization
is adjusted to f = 0, 9144 to achieve an overall number of service requests in the system of 3
service requests (nsystem = 3[SRq]).

3,0000

0,9144

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
f (λbott= 0,2[SRq]/[s])

n s
ys

te
m

(n
3)

 [S
R

q]

Figure 4.7: Closed Tandem Network - Summation Method Chart: nSystem - f

130

4.1. CLOSED QUEUEING NETWORKS

Table 4.3 shows the corresponding Tableau of the closed tandem network example.

Table 4.3: Closed Tandem Network - Summation Method Tableau (see Appendix - Table B.5)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

3 1 1,00 1,00 1,00 1,00 0,183 1 1 1 2 2,500 1,000 0,400 0,457 0,200 1,096 0,457 2,500 0,658 3,596
3 2 1,00 1,00 1,00 1,00 0,183 1 1 1 1 5,000 1,000 0,200 0,914 1,428 7,808 0,914 5,000 2,342 12,808
1 3 1,00 1,00 1,00 1,00 0,183 1 1 1 0,200 1,628 8,904 1,372 7,500 3,000 16,404
1 4 1,00 1,00 1,00 1,00 0,183 1 1 1 0,000 #### 0,000 0,000 0,000 0,000 0,000

j mj Xj
[1]

1 1 2,500
2 1 5,000

f
λ[1]

Server 1
Server 2

Req. Generation Client

Multiplexer Section
Namej

Sub-Request 1 Executer 1
Request Executer

SRqi
[bb] Serveri

[bb]

Sub-Request 2 Executer 2

Service Request Section Server Section Dynamic Evaluation Section

Experimental Parameters
3

0,2000
0,9144
0,1829

nges
[1]

λbott
[1]

The approximation error (relative error δxi = ∆xi
x ∗ 100) [22] in the prediction of the overall

arrival rate and the response times of the servers are:

λGlobalBalanceCalculation = 0, 1867; λSUM Approx. = 0, 1829

δλ =
|λGlobalBalanceCalculation − λSUM Approx.|

|λGlobalBalanceCalculation|
= 2, 04%

R1,GlobalBalanceCalculation = 12, 1429; R1,SUM Approx. = 12, 8078;

δR1 =
|R1,GlobalBalanceCalculation − R1,SUM Approx.|

|R1,GlobalBalanceCalculation|
= 5, 48%;

R2,GlobalBalanceCalculation = 3, 9286; R2,SUM Approx. = 3, 5961;

δR2 =
|R2,GlobalBalanceCalculation − R2,SUM Approx.|

|R2,GlobalBalanceCalculation|
= 8, 46%

Although there are two approximations in the new FMC-QE algorithm extension - one through
the iteration and the second through the summation method itself [18], the approximation er-
rors for this example are quite small. Furthermore, as discussed later in the summary of this
section, the computational complexity of the summation method in FMC-QE is small for a large
overall number of service requests (population) in comparison to the Mean Value Analysis.

4.1.3 Central Server Network

The second closed network example is a classical CPU - Disk(s) closed model (Central Server).
In this part the solution following the Theorem of Gordon and Newell [64], already discussed
in section 2.1.5, is compared to the FMC-QE summation method.

Original Model

The original example is the example 4.3-2 in [68]. It was described using a graph, shown in
figure 4.8, and a table, shown in table 4.4.

131

CHAPTER 4. FMC-QE EXTENSIONS

���

�������

������	

Figure 4.8: Central Server Model - Original Model [68]

Table 4.4: Central Server Model - Original Parameters [68]
Name Index i Bi pi,1 pi,2 pi,3 N = 3
CPU 1 0,50 0,10 0,40 0,50
Platte1 2 0,40 1,00 0,00 0,00
Platte2 3 0,25 1,00 0,00 0,00

In order to have consistent Queueing Network models in this thesis, the model was reengi-
neered to a more convenient model, shown in figure 4.9.

�1

�2

�3

p1,2=0,4

p1,3=0,5

p1,1=0,1

CPU

Disk1

Disk2

Figure 4.9: Central Server - Original Model Reengineered

This model has the visit ratios:

e1 = 1, 000; e2 = 0, 400; e3 = 0, 500.

In [68] the model was calculated using the Theorem of Gordon and Newell [64], further ex-
plained in section 2.1.5. For a system with three Service Requests inside (nges = 3[SRq]) the
calculations lead to the following results [68] (recalculated manually and using WinPEPSY1

[86]):

ρ1 = 0, 6939; ρ2 = 0, 3469; ρ3 = 0, 6939;
D1 = 0, 3469; D2 = 0, 1388; D3 = 0, 1735;
n1,q = 0, 5714; n2,q = 0, 1224; n3,q = 0, 5714;
n1,s = 0, 6939; n2,s = 0, 3469; n3,s = 0, 6939;
n1 = 1, 2653; n2 = 0, 4693; n3 = 1, 2653;
R1 = 3, 6471; R2 = 3, 3824; R3 = 7, 2941;
R = 8, 6471 D = 0, 3469

(4.12)

1WinPESPY, Website: http://www7.informatik.uni-erlangen.de/~prbazan/pepsy/, January 2010

132

http://www7.informatik.uni-erlangen.de/~prbazan/pepsy/

4.1. CLOSED QUEUEING NETWORKS

FMC-QE Model

In the corresponding FMC-QE model, shown in figure 4.10, figure 4.11 and figure 4.12, there
have also been done some transformations, as in the example in section 3.5. The different steps
will not be shown here in detail, but these were a transformation to a Petri Net, the integration
of the external load generation, a feed-forward - feed-backward transformation for the loop
around the CPU, a hierarchy for the disk branch and another hierarchy for the whole service
request. For the sake of simplicity and a smaller model the branch of if the data has to be written
(pwrite = 0, 9) or not (pout = 0, 1 - request finished) has no additional hierarchy. This probability
is integrated into the model and corresponding tableau without an additional hierarchical level.

���������	�

���	������������	��
������	�
�����������������	��
�������

��������������������

���	�������������
�������������������

��������

���������	����������	�

���	���������������������	�
�����������������	���������	�

����������������

���	��������������������������

����������������������

��������!

���������������

���	����������	����"��

�����������"��

��������

��������������#

���	����������	����"�#

�����������"�#

��������

$��������	�����%

���	���$��������
��������$�������	�

��������

&�'

&#'

&('

&)'

Figure 4.10: Central Server - FMC-QE Model (Service Request Structure)

���������	�
��
���
�

����
�

����
�

���
��

���

���

���

���

���

�	�����

�
��
��

 ����!�
�
�

�
��
��

"#���
�
�
$%&

����
'�����
��

����
����
�

����
$

����
�

�$�

���

"#���
$
�
(

����
'�����
$�

����
�

���

����
$

���

��������	�
���

"��������

�
$

����
'�����)�

*��
����
�+��
�
�$�

Figure 4.11: Central Server - FMC-QE Model (Server Structure)

133

CHAPTER 4. FMC-QE EXTENSIONS

���
�����	
���	
���
�	��	��

��� �
��	
����

������

�

�
��

������

�

�
��

��
��	

�
� �

!"	#��	
$
����#��%�
���

���

&��#����	

∞

���

'	�	
��	

$
����#��%�

∞

���

�
��	
�%

����
�

∞

���

�
��	
�%

����
�

∞

∞

∞

∞

�%��

�
� �

Figure 4.12: Central Server - FMC-QE Model (Dynamic Behavior)

The corresponding Tableau in table 4.5 shows the performance predictions of the FMC-QE
model.

Table 4.5: Central Server - Tableau (see Appendix - Table B.7)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

4 1 0,56 9,00 1,00 5,00 0,172 1 1 1 3 4,000 1,000 0,250 0,690 0,587 3,403 0,690 4,000 1,276 7,403
4 2 0,44 9,00 1,00 4,00 0,138 1 1 1 2 2,500 1,000 0,400 0,345 0,103 0,746 0,345 2,500 0,448 3,246
3 3 0,90 10,00 1,00 9,00 0,310 1 1 1 0,450 0,690 2,222 1,034 3,333 1,724 5,556
3 4 1,00 10,00 1,00 10,00 0,345 1 1 1 1 2,000 1,000 0,500 0,690 0,587 1,702 0,690 2,000 1,276 3,702
2 5 1,00 1,00 10,00 10,00 0,345 1 1 1 0,500 1,276 3,702 1,724 5,000 3,000 8,702
1 6 1,00 1,00 1,00 1,00 0,034 1 1 1 0,050 1,966 57,016 1,724 50,000 3,000 87,016
1 7 1,00 1,00 1,00 1,00 0,034 1 1 1 0,000 #### 0,000 0,000 0,000 0,000 0,000 0,000

j mj Xj
[1]

1 1 20,000
2 1 20,000
3 1 10,000

f
λ[1]

Experimental Parameters

Service Request Section

nges
[1]

λbott
[1]

Server Section Dynamic Evaluation Section

3
0,0500
0,6895
0,0345

SRqi
[bb] Serveri

[bb]

Write Request 2 Disk2 Writer
Write Request 1 Disk1 Writer

Data Writing Request Data Writer
Calculation Request Calculator

Internal Request Internal Exec.
Transaction Trans. Exec.

Transaction Generation Client

Disk2

Multiplexer Section

Namej

CPU
Disk1

134

4.1. CLOSED QUEUEING NETWORKS

When comparing the results of FMC-QE in table 4.5 to the results of the Queueing Theory
method in equation 4.12, the approximation errors (relative error δxi = ∆xi

x ∗ 100) [22] at the
server level are very small (except the outlier ("Ausreißer") n2,q for which the error is still small):

δρ1 = 0, 63%; δρ2 = 0, 61%; δρ3 = 0, 63%;
δD1 = 0, 61%; δD2 = 0, 65%; δD3 = 0, 63%;
δn1,q = 2, 66%; δn2,q = 15, 93%; δn3,q = 2, 66%;
δn1,s = 0, 63%; δn2,s = 0, 61%; δn3,s = 0, 63%;
δn1 = 0, 86%; δn2 = 4, 60%; δn3 = 0, 86%;
δR1 = 1, 49%; δR2 = 4, 03%; δR3 = 1, 49%.

On the net level (D and R) the approximation error seems to be very high at the first moment
(DQueueing Theory = 0, 3469 SRq

s vs. DFMC−QE = 0, 0345 SRq
s and RQueueing Theory = 8, 6471s vs.

RFMC−QE = 87, 016s), but in the FMC-QE model the repetition of the internal requests is trans-
formed into a higher traffic flow within the Internal Request. The throughput at the highest level
is 10 times lower than in the original model, which is just another interpretation of the model
and not an error. - In the original model the CPU (including the repetitions of the internal re-
quests) is the reference for the network throughput and the the new model the real net level
throughput is the reference (loop above CPU). - Analogical, the overall response time has to
be changed in order to consider these repetitions. With this "normalization" the approximation
errors are:

δD = 0, 63%, δR = 0, 63%.

The problems with the normalization and the different understanding reveal another already
discussed problem of the classical models: no distinction between the different service re-
quest types. Through the flat original model there is no distinction between the internal re-
quests and the transactions (real system requests) and therefore these interpretation problems
arise. In [68] in example 4.3-6 they also define this different net-throughput, which then
leads to the normalized values of the original calculation of D′Queueing Theory = 0, 0347 SRq

s and
R′Queueing Theory = 86, 47s (resp. 85, 71s - rounded values in the calculation of [68]).

After setting up the model and the corresponding Tableau, system and performance parame-
ters could be changed in order to predict a broad range of scenarios. An exemplary parame-
ter change is depicted in figure 4.13, where the population (nges) is changed and the derived
throughput of the system (λ[1]) is plotted. For comparative values the network was also mod-
eled and evaluated using WinPEPSY2 [86]. In the comparison of the predicted throughput of
FMC-QE and the MVA [118] calculations of WinPEPSY the prediction is very precise, with a
maximal error of δ = 0, 75% for nges = 1..100.

2WinPESPY, Website: http://www7.informatik.uni-erlangen.de/~prbazan/pepsy/, January 2010

135

http://www7.informatik.uni-erlangen.de/~prbazan/pepsy/

CHAPTER 4. FMC-QE EXTENSIONS

λbott=0,05

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0 10 20 30 40 50 60 70 80 90 100
nges [SRq]

λ
[S

R
q]

/[s
]

FMC-QE
WinPEPSY MVA
λbott

Figure 4.13: Central Server - Chart: Throughput - Population

4.1.4 Summary

Three methods have been presented: The first two approaches of the integration of closed
Queueing Networks into FMC-QE, more precisely the approximation using M/M/m servers
and an external service time of zero time units as well as the second model of M/M/m/K
servers, were either to imprecise or inapplicable. But the third approach, the integration of the
summation method [17, 18] into FMC-QE, explained and exemplified in this section, extends
FMC-QE to the class of closed Queueing Networks, providing an iterative algorithm and good
approximation for closed systems3. The approximative errors in the examples, evaluated us-
ing the summation method, are, except for the outlier n2,q in the second example, within the
maximal error of 15% descibed in [17] and often even better than the average error of 5% for
the number of service requests and the response time, as also described in [17]. The values for
the throughput also deliver precise values, as descibed in [17].

Referring to [118], the operations count of the fast, simple and widely distributed closed Queue-
ing Network analysis algorithm, the algorithm of the Mean Value Analysis (MVA) is 5MR per
service center and recursive step, where M is the number of parallel servers at the service cen-
ter and R is the number of chains which visit the service center (number of classes). Therefore,
the overall complexity is O(n ∗m), where n is the number of service centers and m is the overall
number of service requests (nges). Comparing to this, the complexity of the FMC-QE summa-
tion method is independent from the overall number of service requests, while every value is
calculated independently in contrast to the iteration over the number of service requests in the
MVA. In the summation method in FMC-QE there is an iteration in order to adjust the desired
bottleneck utilization respectively the throughput, here the number of iterations could be seen
as a constant4 and therefore the complexity is still O(n), where n is the number of service cen-
ters (stations). Therefore, for a small overall number of service requests nges MVA is faster than
FMC-QE, but in this region both algorithms are very efficient. For a large number of service re-
quests FMC-QE outperforms MVA, while it is independent from the overall number of service
requests in the system.

3The iterative algorithm converges to the overall number of service requests in the system, but there is still an
approximative error for servers of Type-1,2 and 4 in the system [18].

4In the approximation of f , where (0 ≤ f < 1), the search space is bisected in every iteration, so f has a accuracy
of ε ≈ 10−4,5 after 15 steps.

136

4.2. HANDLING OF MULTICLASS SCENARIOS

4.2 Handling of Multiclass Scenarios

If there are different kinds of service requests and it is not reasonable to combine the different
arrivals to a single class of service requests, multiclass models are the way of modeling such
systems. In FMC-QE the multiclass scenario is an extension of the multiplex case. In multiclass
models the logical structures differ from each other, so there is a different model for every class.
The different logical structures meet at the server level, were the the different logical servers of
the different classes are handled by overlapping multiplexers. The model is then partitioned
by the multiplex coefficients and calculated separately. The handling of multiclass scenarios is
a pre-step for the handling of semaphores, explained in the next section, where there are more
inter relations between the different sub-nets.

The handling of multiclass scenarios is explained on an example of two classes A and B as
follows: In figure 4.14 the service request structures and in figure 4.15 dynamic behavior of
service request class A are shown. In class A a service request A is decomposed into a serial
execution for two service requests A.1 and A.2.

���

���

����	
����
������

�
�	������������
������

����������
�������������

����	
����
��������

�
�	������������
��������

����������
���������������

�	������

����	
����
��������

�
�	������������
��������

����������
���������������

�	������

����	
����
������������	��

�
�	���������������
������

����������	�����

Figure 4.14: Multiclass Example - Class A - Service Request Structures

�����������	
��
�
�

���

�����������

��

���

�����������

���

∞ ∞

∞

�
�

������
�

����	��
���

∞

Figure 4.15: Multiclass Example - Class A - Dynamic Behavior

137

CHAPTER 4. FMC-QE EXTENSIONS

In the other class B (described in figure 4.16 and 4.17), there is also a decomposition into two
service requests B.1 and B.2. The service request B.2 is furthermore decomposed into two par-
allel executed service requests B.2.1 and B.2.2.

���

���

����	
����
������

�
�	������������
������

����������
�������������

����	
����
��������

�
�	������������
��������

����������
���������������

�	������

����	
����
��������

�
�	������������
��������

����������
���������������

�	������

����	
����
���������	��

�
�	���������������
������

����������	���

����	
����
����������

�
�	������������
����������

����������
�����������������

�	������

����	
����
����������

�
�	������������
����������

����������
�����������������

�	������

���

Figure 4.16: Multiclass Example - Class B - Service Request Structures

���
������	�
���
����

������	�
���
��
���

���

������	�
��

���

∞

���

������
�

�������
���

∞

���

������	�
��
�����

∞

���

������	�
��
�����

∞

∞

∞

Figure 4.17: Multiclass Example - Class B - Dynamic Behavior

138

4.2. HANDLING OF MULTICLASS SCENARIOS

In addition to the service request structures and the dynamic behavior of the two classes A and
B, the static structures are defined in figure 4.18. There is a multiplex of server X for the logical
servers Request A.1 Server and Request B.1 Server and a multiplex of server Y for the logical
servers Request A.1 Server and Request B.2.1 Server. The server Z is a dedicated server for the
service request B.2.2 in class B.

����������	�
��

�������
�

	�
��

���������

	�
��

�
�

��� ���

����������	�
��

�������
�

	�
��

������������	�
��

���������
�

	�
��

�����������

	�
��

�
�

��� ���

��� ���

	�
��
���

����

	�
��
��

����

	�
��
��

����

������

�
�

����� ��

	�
��
�

!����"��#�

	�
��
�

���
 ��$%�

������

�
�

���� ��$%��

���
 ��$%�

�����
 ��$%�

������ ��$%

Figure 4.18: Multiclass Example - Static Structures

The corresponding Tableau of of the multiclass example is shown in table 4.6. In comparison to
a non multiclass model this table consists of more than one experimental parameter and service
request sections.

Table 4.6: Multiclass Example - Tableau (see Appendix - Table B.9)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

2 1 1,00 1,00 2,00 2,00 1,509 1 1 1 2 0,330 0,623 1,887 0,800 3,200 2,120 0,800 0,530 4,000 2,650
2 2 1,00 1,00 1,00 1,00 0,755 1 1 1 1 0,200 0,500 2,500 0,302 0,131 0,173 0,302 0,400 0,432 0,573
1 3 1,00 1,00 1,00 1,00 0,755 1 1 1 1,887 3,331 4,413 1,102 1,460 4,432 5,873
1 4 1,00 1,00 1,00 1,00 0,755 1 1 1 33,877 0,030 0,000 25,568 33,877 25,568 33,877

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

3 5 1,00 2,00 2,00 4,00 1,887 1 1 1 3 0,100 1,000 10,000 0,189 0,044 0,023 0,189 0,100 0,233 0,123
3 6 1,00 2,00 1,00 2,00 0,943 1 1 1 2 0,200 0,377 1,887 0,500 0,500 0,530 0,500 0,530 1,000 1,060
2 7 1,00 1,00 2,00 2,00 0,943 1 1 1 1,887 0,544 0,577 0,689 0,730 1,233 1,307
2 8 1,00 1,00 1,00 1,00 0,472 1 1 1 1 0,200 0,500 2,500 0,189 0,044 0,093 0,189 0,400 0,233 0,493
1 9 1,00 1,00 1,00 1,00 0,472 1 1 1 1,887 0,588 1,246 0,877 1,860 1,465 3,106
1 10 1,00 1,00 1,00 1,00 0,472 1 1 1 60,494 0,017 0,000 28,535 60,494 28,535 60,494

j mj Xj
[1]

1 1 0,400
2 1 1,060
3 1 0,400

Namej

Server X
Server Y
Server Z

Serveri

Req. B Srv.
Client B

Server Section

Req. B.2.2 Srv.
Req. B.2.1 Srv.
Req. B.2 Srv.
Req. B.1 Srv.

Dynamic Evaluation Section

Dynamic Evaluation Section

Serveri

Req. A.2 Srv.
Req. A.1 Srv.

Req. A.2.2 Srv.
Client A

Server Section

0,9434

Generate Request A

SRqi
[bb]

Service Request B.2.2
SRqi

[bb]

Service Request A

0,4717

nges

Service Request Section

Service Request A.2
Service Request A.1

Service Request B
Generate Request B

Multiplexer Section

Service Request Section

Service Request B.2
Service Request B.1

Service Request B.2.1

λB

nges

λbott

f
λA

Experimental Parameters

Experimental Parameters

λbott

f

0,8000
0,7547

30
0,9434
0,5000

30

139

CHAPTER 4. FMC-QE EXTENSIONS

Through the change of parameters in the Tableau and the corresponding plotting of the results
interesting observations could be illustrated. Figure 4.19 shows the dependency of the response
times RA and RB on the arrival rate of one class (λA).

RA [s]

RB [s]

0

10

20

30

40

50

60

70

80

90

100

0 0,05 0,1 0,15 0,2 0,25
λA [SRq]/[s] (λB=0,4717[SRq]/[s])

R
ge

s [
s]

Figure 4.19: Multiclass Example - Chart: Response Times A, B - Arrival Rate A

In this figure it can be seen that the change of the arrival rate in one class has no influence
on the response time of the other class. This is the case because the multiplex coefficient is
precomputed independent from the actual arrival rate, as described in section 3.4.5:

m[bb]
i,mpx =

1 i f ∑∀ SRqi o f Mpxj
m[bb]

i ≤ mj

X[bb]
i ∗v

[bb]
i

Xj
∗ mj

m[bb]
i

i f ∑∀ SRqi o f Mpxj
m[bb]

i > mj
(4.13)

The dependency of the different classes is defined through this multiplex coefficient, and there-
fore, a change of the service time of one logical server in one class changes the response times
of both classes, as shown in figure 4.20, where the service time of server Request A.2 Server
(XA.2) is variated and the corresponding overall response times of both classes (RA and RB)
are recorded. If the service time XA.2 grows, the overall response times of the corresponding
class A also grows as well as the response time of the other classes, in which a logical server
is handled by the same multiplexer as Request A.2 Server - here Server Y also multiplexes the
Request B.2.1 Server of class B, and therefore, the response time of class B also grows for a larger
service time XA.2 for Request A.2 Server with constant arrival rates of λA = 0, 7547 [SRq]

[s] and

λB = 0, 4717 [SRq]
[s] .

140

4.2. HANDLING OF MULTICLASS SCENARIOS

RA [s]

RB [s]

0

5

10

15

20

25

0 0,5 1 1,5 2 2,5
XA.2 [s] (λA =0,7547[SRq]/[s]; λB=0,4717[SRq]/[s])

R
ge

s [
s]

Figure 4.20: Multiclass Example - Chart: Response Times A, B - Service Time Req. A.2 Srv.

As a further extension of the methodology the different arrival rates of the classes could influ-
ence the multiplex coefficient and therefore the division of the subnets. The next section on the
integration of semaphore synchronization scenarios into FMC-QE addresses this issue.

141

CHAPTER 4. FMC-QE EXTENSIONS

4.3 Semaphore Synchronization

The performance modeling of processes, which have to synchronize, or the modeling of
semaphores is a classical Time Augmented Petri Net task. In this section an exemplary
semaphore synchronization scenario is modeled and evaluated using FMC-QE. While this
problem is a Non Product Form problem, an approximation for the calculation has been de-
veloped and presented in this section. For comparative reasons this system is also modeled
using Generalized Stochastic Petri Nets (GSPN [102]).

In Time Augmented Petri Nets the mutual exclusive usage of resources could be synchronized
via semaphores and drills down to the modeling and simulation or calculation of the discrete
steady state distribution including the state space explosion problem of this kind of calcula-
tions. In FMC-QE the mutual exclusive usage of the resources and therefore the inter-server
control flows are approximated by shared resources and a stochastic model without the syn-
chronization and therefore without inter-server control flows. The example will show that al-
though the real synchronization through the semaphore is neglected, this simplification leads
to quite accurate results without the state space explosion problem.

While early ideas of modeling semaphore synchronization scenarios through shared resources
and multiplexers were already published by Zorn in 2007 [143], the method in section gives a
clearer definition of the interdependencies of the different sub-nets through a pre-calculation
step extending the ideas of the last section about multiclass scenarios. Furthermore, the usage
of the summation method, discussed in section 4.1, including the iterative calculation of closed
networks, brings the integration of semaphore synchronization scenarios into FMC-QE to a
round figure.

4.3.1 GSPN Model

In figure 4.21 a semaphore synchronization scenario is modeled. This model was already de-
scribed in section 2.2.3 where this network was used as an exemplary Generalized Stochastic
Petri Net.

pact1

Treq1

preq1

tstr1

pacc1

Tend1

pidle

pact2

Treq2

preq2

tstr2

pacc2

Tend2

λ1

α1

�1

λ2

α2

�2

Figure 4.21: Semaphore Synchronization - GSPN Model [102]

The performance parameters of this semaphore synchronization model are defined in table 4.7.

142

4.3. SEMAPHORE SYNCHRONIZATION

Transition Rate/Weight Semantics

Treq1 λ1 = 1 single server

Treq2 λ2 = 2 single server

Tstr1 α1 = 1 immediate

Tstr2 α1 = 1 immediate

Tend1 µ1 = 10 single server

Tend2 µ2 = 5 single server

Table 4.7: Semaphore Synchronization - Parameters

The reachability graph of this Petri Net is illustrated in figure 4.22.

��

�� ��

�� ��

����

	
���

	�
��

	
��� 	
���

	�
��

	
���

	�
�� 	�
��

	
��� 	
���

Figure 4.22: Semaphore Synchronization - Reachability Graph

The transition state probability matrix P is defined as:

P =



0 0 0 1 0 0 0
0 0 0 0 0 1 0
λ1

λ1+λ2

λ2
λ1+λ2

0 0 0 0 0
0 0 µ1

λ2+µ1
0 λ2

λ2+µ1
0 0

0 1 0 0 0 0 0
0 0 µ2

λ1+µ2
0 0 0 λ1

λ1+µ2

1 0 0 0 0 0 0


This results in the steady state distribution π̃ of:

143

CHAPTER 4. FMC-QE EXTENSIONS

π̃0 =
8
63

; π̃1 =
13
63

; π̃2 =
5

18
; π̃3 =

8
63

; π̃4 =
4

189
; π̃5 =

13
63

; π̃6 =
13

378
.

Finally, the steady state distribution π is calculated as:

π0 = 0; π1 = 0; π2 =
175
277

; π3 =
20
277

; π4 =
4

277
; π5 =

65
277

; π6 =
13
277

.

The throughput of the different timed transition Tk is calculated as Dk = ωk ∑
Tk∈E(Mi)

πi and

therefore:

Dreq1 = λ1 (π2 + π5) =
240
277

; Dreq2 = λ2 (π2 + π3) =
390
277

;

Dend1 = µ1 (π3 + π4) =
240
277

; Dend2 = µ2 (π5 + π6) =
390
277

.

The throughput of the left subnet equals:

Dreq1 = Dend1 =
240
277
≈ 0, 8664

and the throughput right subnet is:

Dreq2 = Dend2 =
390
277
≈ 1, 4079.

4.3.2 FMC-QE Model

In the corresponding FMC-QE model, illustrated in figure 4.23 and 4.24, the transitions Treq1
and Treq2 were interpreted as the request generation denoted as Generate Request of Type 1 and
Generate Request of Type 2. The transitions Tend1 and Tend2, which are guarded by the semaphore,
are denoted as Execute Critical Action 1 and Execute Critical Action 2. This model includes inter-
server control flows in order to implement the semaphore synchronization.

����������

	
������

�����������������

	
������

�������

���

���

���

������������������

���

������������������

���

��������

�������

��������
��

�������

�
��

����������

	
������

�����������������

	
������

�������

���

���

���

�
��

����� ���

!��"���

Figure 4.23: Semaphore Sync. with Inter-Server Control Flows (Static Structures) [147]

144

4.3. SEMAPHORE SYNCHRONIZATION

���������
��	
�����

������

���

∞

���������
��	
�����

������

���

∞

��������	
�����
�������
���

∞

��������	
�����
�������
���

∞

����
��
���������
��������

���

∞

����
��
���������
��������

���

∞

����������

 ��!���"

�����#

������

��������

��$

Figure 4.24: Semaphore Sync. with Inter-Server Control Flows (Dynamic Structures) [147]

In order to eliminate the inter-server control flows, in figure 4.25 and 4.26, the model has been
transformed. Instead of synchronizing two independent critical resources, in this model the
critical actions are handled by one critical resource modeled as a multiplexer. This model is an
approximative model because the different service requests are now handled in parallel by the

145

CHAPTER 4. FMC-QE EXTENSIONS

multiplexer and are not really synchronized, like in the semaphore synchronization model in
figure 4.24.

����������

	
������

�����������������

	
������

�������

���

���

���

����������������

���

��������

�������

��������
��

�������

�
��

����������

	
������

�����������������

	
������

�������

���

���

���

�
��

Figure 4.25: Semaphore Sync. without Inter-Server Control Flows (Static Structures)

���������
��	
�����

������

���

∞

��������	
�����
�������
���

∞

��������	
�����
�������
���

∞

����
��
���������
��������

���

∞

����
��
���������
��������

���

∞

���������
��	
�����

������

���

∞

Figure 4.26: Semaphore Sync. without Inter-Server Control Flows (Dynamic Structures)

146

4.3. SEMAPHORE SYNCHRONIZATION

Table 4.8: Semaphore Synchronization - Tableau (see Appendix - Table B.8)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

2 1 1,00 1,00 1,00 1,00 0,880 1 1 1 1 0,100 0,733 7,333 0,120 0,000 0,000 0,120 0,136 0,120 0,136
1 2 1,00 1,00 1,00 1,00 0,880 1 1 1 7,333 0,000 0,000 0,120 0,136 0,120 0,136
1 3 1,00 1,00 1,00 1,00 0,880 1 1 1 1,000 1,000 1,000 0,880 0,000 0,000 0,880 1,000 0,880 1,000

#####

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

2 1 1,00 1,00 1,00 1,00 1,415 1 1 1 1 0,200 0,967 4,833 0,293 0,000 0,000 0,293 0,207 0,293 0,207
1 2 1,00 1,00 1,00 1,00 1,415 1 1 1 4,833 0,000 0,000 0,293 0,207 0,293 0,207
1 3 1,00 1,00 1,00 1,00 1,415 1 1 1 0,500 1,000 2,000 0,707 0,000 0,000 0,707 0,500 0,707 0,500

#####

j mj Xj
[1]

1 1 0,300

1
2,0000
0,7073
1,4146

Experimental Parameters

Experimental Parameters
1

1,0000
0,8800
0,8800

nges
[1]

λbott
[1]

f
λ[1]

Critical Resource

Request 2 Executer 2
Critical Action 2 CA 2 Executer

Req. Generation 2 Client 2

Multiplexer Section

Namej

Server Section Dynamic Evaluation Section

SRqi
[bb] Serveri

[bb]

Service Request Section Server Section Dynamic Evaluation Section

SRqi
[bb] Serveri

[bb]

Critical Action 1 CA 1 Executer
Request 1 Executer 1

Req. Generation 1 Client 1

Service Request Section

nges
[1]

λbott
[1]

f
λ[1]

In the Tableau in table 4.8 the performance values of the multiplexer semaphore synchroniza-
tion model are calculated. While the original model is an closed Petri Net, in this Tableau
the summation method formulas, explained in section 4.1, have been used. As depicted in
the model, the critical actions Critical Action 1 and Critical Action 2 are executed by one server
Critical Resource as a multiplexer, like proposed in [147].

Here the multiplexer coefficient formula:

mi,mpx =

1 i f ∑∀ SRqi o f Mpxj
mi ≤ mj

X[bb]
i ∗v

[bb]
i

Xj
∗ mj

mi
i f ∑∀ SRqi o f Mpxj

mi > mj
(4.14)

with

Xj = ∑
∀ SRqi o f Critical Resourcej

X[bb]
i ∗ v[bb]

i , (4.15)

from section 3.4 has been adapted for the semaphore case. When the two critical actions are
handled by one critical resource, the critical resource has to be multiplexed if the respectively
opposite critical action k is executed. The respectively opposite critical action k is executed with
the probability ρk and not executed with the probability (1− ρk). So with a probability of ρk the
multiplex coefficient of formula 4.14 is used and with a probability of (1− ρk) the semaphore
multiplex coefficient is 1 (the critical action i is the only action on the critical resource). So the
semaphore multiplex coefficient mi,sem−mpx is defined as:

mi,sem−mpx =


1 i f ∑

∀ SRqi o f Critical Resourcej

mi ≤ mj

(1− ρk) + ρk

(
X[bb]

i ∗v
[bb]
i

Xj
∗ mj

mi

)
i f ∑
∀ SRqi o f Critical Resourcej

mi > mj,
(4.16)

where ρk is the probability that the respectively opposite critical action k is active (utilization).
For more than two critical actions competing for one server this probability could be adapted.

147

CHAPTER 4. FMC-QE EXTENSIONS

These values could then be calculated iteratively. In the Tableau in table 4.8 this iterative cal-
culation has been omitted because this does not results in a significant improvement of the ap-
proximation value while resulting in a more complex calculation. Here the utilizations ρi =

λi
µi

are used, where λ1 = 1, λ2 = 2, µ1 = 10 and µ2 = 5, as defined in the model.

The approximation errors (relative error δxi =
∆xi

x ∗ 100) [22] for the throughputs Di are:

δDreq1 = δDend1 =
|0, 8800− 0, 8664|

0, 8664
= 1, 55%;

δDreq2 = δDend2 =
|1, 4146− 1, 4079|

1, 4079
= 0, 48%.

For the comparison of the prediction of the mean number of service requests ni, the mean
number of tokens in the places pact1, pact2 in the GSPN model is interpreted as nClient 1 resp.
nClient 2 and calculated as:

pact1 = π2 + π5 =
240
277
≈ 0, 8664;

pact2 = π2 + π3 =
195
277
≈ 0, 7040.

The mean numbers of service requests executed in the critical actions nCritical Action 1 resp.
nCritical Action 2 are the sums of the mean number of tokens in the places preq1 (waiting) and pacc1
(executed) as well as preq2 (waiting) and pacc2 (executed) because in the multiplexer model the
requests are handled in parallel:

preq1 + pacc1 = π3 + π4 + π6 =
37
277
≈ 0, 1336;

preq2 + pacc2 = π5 + π6 + π4 =
82
277
≈ 0, 2960.

This results in the following approximation errors:

δnClient 1 =
|0, 8664− 0, 8800|

0, 8800
= 1, 55%;

δnClient 2 =
|0, 7040− 0, 7073|

0, 7040
= 0, 47%;

δnCritical Action 1 =
|0, 1336− 0, 1200|

0, 1336
= 10, 18%;

δnCritical Action 2 =
|0, 2960− 0, 2927|

0, 2960
= 1, 11%.

After setting up the FMC-QE model and the corresponding Tableau, several different system
and load scenarios could be predicted, as shown in figure 4.27. In this chart the service time of
the second critical action XCA2 is varied from 0, 001s to 0, 8s, with a constant service time of 0, 1s
for the first critical action (XCA1 = 0, 1). Then the corresponding throughputs of subnet 1 (λ1)
and subnet 2 (λ2) are observed. For comparative reasons the network was also modeled and
evaluated using the Time Augmented Petri Net Tool TimeNET5 [133, 134]. In the chart it can be
seen that for the upper throughput, the throughput λ2 of the network with the critical action

5TimeNET, Website: http://www.tu-ilmenau.de/TimeNET, January 2010

148

4.3. SEMAPHORE SYNCHRONIZATION

2, the performance predictions of FMC-QE and the Time Augmented Petri Net predictions of
TimeNET are nearly identical. For the lower curve λ1, the predictions are fine for XCA2 < 0, 5.
For XCA2 ≥ 0, 5 the precomputed utilization ρCA2, needed for the calculation of msem−mpxCA1 ,
which is defined as ρCA2 = λ2

µ2
, would be ≥ 1 (λ2 = 0, 5, µ2 = 1

XCA2
≤ 0, 5) and is therefore

set to 1. This is the case if the critical action becomes the bottleneck of the subnet because this
pre-defined utilization calculates the utilizations of the servers if the bottleneck server is fully
utilized (ρbott = 1). However, initializing ρCA2 ≤ 0, 9, as also shown in figure 4.27, leads to more
precise results. In future work the pre-calculation of this value could be further optimized.

λ2

λ1

0,0

0,5

1,0

1,5

2,0

2,5

0 0,2 0,4 0,6 0,8 1
XCA2 [s] (XCA1= 0,1[s])

λ
[S

R
q]

/[s
]

λ2 FMC-QE
λ2 TimeNET
λ1 FMC-QE
λ1 TimeNET
λ1 FMC-QE ρCA2<=0.9

Figure 4.27: Semaphore Synchronization - Chart: Throughput - Critical Action 2 Service Time

4.3.3 Summary

For this exemplary semaphore synchronization problem the integration of the handling of the
semaphore by a multiplexed resource and therefore elimination of the control flow [147], the
summation method [17, 18] and ideas from the method of complementary delays [71] result in a
very precise approximation of the performance values, as seen in figure 4.27, without the need
of the calculation of the steady state distribution. Therefore, the complexity reduces from the
exponential calculation of the (n

k) states, where n = number of Petri Net - places (≈ number of
queues ≈ number of service stations) and k = number of tokens (service requests) to the linear
complexity calculation (O (n)) of FMC-QE, where n is the number of basic and hierarchical
service stations.

149

CHAPTER 4. FMC-QE EXTENSIONS

4.4 Comparisons

In this section FMC-QE is compared to the foundations described in chapter 2. As an intro-
duction to this section figure 4.28 relates the compared methods to the range of the considered
steady state variables.

n=λ*R

n=(n1,..,ni,..,nN)

ni=ni,q+ni,s i=1,..,N

p=(p0,..,pN)

M=(M0,..,Mi,..)

Steady State

Probability

Vector of M

Reachability

Graph

(isomorphic to

CTMC)

Operational

State

Steady State

Relation for

 Black Box

FMC,QE
Queueing

Networks

Time,Augmented

Petri Nets

Black Box

Local

Balance

Global

Balance

LQN

Product Form

Network

Non

Product Form

exact

approx.*

*exact if solved

via CTMCs

exact

exact

approx.

Open

Closed

Little’s Law

approx.
+

+
Algorithm based on

Linearizer Algorithm

Figure 4.28: Range of Steady State Variables [140] and Methods

The range of steady state variables in figure 4.28 can be mainly divided into three sections:
black box, local balance and global balance. On the black box level the steady state relation
of the black box is computed on the basis of Little’s Law [98]. If the considered system is of
type product form, where the overall state of the system could be computed as a product of
the single states of the different stations and the states of the different systems are independent
from each other, the different stations are in local balance. This leads to an efficient computation
of the steady state probability vector and the corresponding operational states through product
form solutions. The operational state and the steady state probabilities are in a close relation as
for example the number of service requests in a station maps onto the steady state probability
of that station. If the steady state probabilities of the different stations are not independent
from each other, the underlying problem is of type non product form. Then the performance
values of the system have to be calculated on the basis of global balance through reachability
graphs or continuous time Markov chains (CTMCs).

Time Augmented Petri Nets, further compared in subsection 4.4.2, analyze the systems on
the basis of reachability graphs respectively the corresponding continuous time Markov chain
(CTMC). Therefore, Non-Product Form problems can be addressed with the drawback of high
computational complexity due to state-space explosion. There are also product form solutions
defined for Time Augmented Petri Nets which are further discussed in section 2.2.4 and in
subsection 4.4.2.

Methods of the Queueing Theory, further compared in subsection 4.4.1, and especially methods
for Product Form Queueing Networks could abstract from this level and solve the networks
on the basis of independent steady state probabilities of the different servers. Product form
solutions of the Queueing Theory are therefore powerful in terms of computational complexity
in solving this kind of questions. If the underlying problem is of type Non-Product Form,

150

4.4. COMPARISONS

they also analyze the network on the level of CTMCs (as Time Augmented Petri Nets) or use
approximations [18].

Layered Queueing Networks (LQN), further compared in subsection 4.4.3, evaluate the models
on the basis of an approximative Linearizer algorithm of the Mean Value Analysis [29, 59]. They
consider open as well as closed workloads where an open workload can also generate a closed
sub-behavior [58].

In FMC-QE the performance values of every basic server is computed and then the perfor-
mance values of the network are computed in a bottom up approach. There are exact solutions
for open product form networks as well as approximative solutions for closed networks (see
section 4.1) and selected non product form problems as the semaphore synchronization (see
section 4.3).

Beside the calculation of the performance values there are also many differences in the model-
ing of the different methods where fundamental differences are summarized in table 4.9.

Queueing Networks Time Augmented Layered Queueing FMC-QE
Petri Nets Networks

System Math. System Math. System Math. System Math.
Modeled Type of Structures Modeling Model Modeling Model Modeling Model Modeling Model

Server Structures (static)
flat Yes Yes No Yes Yes Yes Yes Yes
hierarchical No1 Yes2 No Yes Layered3 Yes Yes4 Yes

Control Structures (dynamic)
flat No5 Yes Yes Yes Yes Yes Yes Yes
hierarchical No1,5 Yes2 Yes6 Yes Layered3 Yes Yes4 Yes

Service Req. Structure (content)
flat Yes Yes Yes Yes Yes Yes Yes Yes
hierarchical No1 Yes2 Yes6 Yes Layered3 Yes Yes4 Yes

1: Only early ideas like in Denning, Buzen [43] (section 4.4.1 and 2.3.5)
2: Hierarchies are distinguished through names of stations = indices
3: Layered flat Network - no mandatory usage of the Forced Traffic Flow Law and units of service requests,
no hierarchical transformation (section 4.4.3)

4: Hierarchical transformations through units of service requests and the Forced Traffic Flow Law (section 3.2.2)
5: Data Flow - only exceptions like Fork/Join or Synchronization Nodes (section 4.4.1)
6: Through Colored Petri Nets [80]

Table 4.9: Comparison of Modeling Aspects

Table 4.9 differentiates the compared methodologies by their type of modeled structures
(server, control and service request) and if the structures are defined flat or hierarchical in the
system modeling and the underlying mathematical analytical model. Amongst others, this is
further described in subsection 4.4.1 to 4.4.3 where FMC-QE is further compared to the other
methodologies. An important definition in this distinction is:

Hierarchy [143]: A hierarchy implies a service request decomposition on one layer into differ-
ent service requests on a lower layer.

In FMC-QE the decomposition is done by control service requests, the final service by opera-
tional service requests.

151

CHAPTER 4. FMC-QE EXTENSIONS

Beside mathematical analytical approaches, performance simulation is another method to pre-
dict the quantitative behavior of systems. In subsection 4.4.4 FMC-QE and simulative ap-
proaches are shortly compared to each other.

4.4.1 Queueing Theory

The Queueing Theory, described in section 2.1, delivers the main mathematical basis for the
FMC-QE Calculus. The hierarchical calculations in the Calculus are based on the Forced Traffic
Flow Law [68, 79, 95] for relations between hierarchical layers (vertical) and Little’s Law [98] for
relation within a hierarchical layer (horizontal). For the calculations of the performance values
of the logical and multiplexer servers FMC-QE also uses the mathematical background of the
Queueing Theory [67, 79, 83, 88, 89, 125]. Despite the Forced Traffic Flow Law and Little’s Law,
in the calculations of whole nets the investigations of Jackson [77, 78] and Baskett, Chandy,
Muntz and Palacios [8] on Product Form Queueing Networks and the independence of the
different servers were used. In the calculations of closed networks the summation method
[17] was integrated into the calculus and compared to results examples calculated through the
results of Gordon and Newell [64] and the Mean Value Analysis (MVA) [118]. The summa-
tion method in combination with the idea of modeling the synchronization through a multi-
plexer [147] and complementary delays [71] was also used for the performance estimation of
semaphore synchronization problems.

While the Queueing Theory has strengths in the calculations of performance values, especially
of Product Form Queueing Networks, the weaknesses are in the lack of expressiveness model-
ing power. While Queueing Networks focus on the modeling of server structures and service
request flows, the modeling of control flows is not possible. There are extensions, discussed
later, in which Fork-Joins or Synchronizations are modeled but in the classical case control
flows could not be modeled. Furthermore, in this extensions the control flow is integrated into
the static structures. While in FMC-QE the modeling of server structures, which is related to
Queueing Theory, is only one view in the three-dimensional modeling space, in Queueing The-
ory this leads to this control flow modeling problem and therefore less expressiveness in the
modeling of complex systems.

Furthermore, in FMC-QE the modeling of service requests as a tuple of value and unit, which
enables the transformation of service requests at hierarchical borders and therefore the hier-
archical modeling, has roots in the Queueing Theory - especially through the investigations of
Denning and Buzen [43]. But there this approach was not systematically used in order to define
hierarchies of service requests on arbitrary hierarchical levels, in [43] there were only two lev-
els of job and requests. As already described in section 2.3.5, there was no definition of service
request transformations in [43] and [95] and therefore real hierarchies could not be defined.

Queueing Networks with Fork-Join and Synchronization Nodes

There are extensions of classical Queueing Networks to include Fork-Join Queues [3, 84, 96] or
Synchronization nodes [117]. Fork-Join queues [3] are queueing systems with parallel servers
and a synchronized arrival and departure stream. Service requests could arrive in a batch and
are then immediately dispatched to one server each (fork). The different service requests are
then queued into infinite buffers and individually handled by the corresponding server. If
all service requests of the batch are finished, the batch is recomposed and departed (join), as
shown in figure 4.29.

152

4.4. COMPARISONS

�1

�2

�N

λ

Fork

Point

Join

Point

Figure 4.29: Fork-Join Queueing Model [96]

Synchronization nodes consist of M infinite capacity buffers where service requests arriving on
M distinct random input flows are stored (one buffer per flow), as depicted in figure 4.30.

�

λ1

λM

Figure 4.30: SM/M/1 Queue [117]

The service requests are stored until each buffer contains at least one service request. Then the
service requests are grouped to one service request and instantaneously released in a synchro-
nization departure [117]. In [117] it is shown that the synchronization of independent Poisson
flows at a synchronization node converge to a Poisson process with a rate which is equal to
the minimum of all input flows. They also integrate the synchronization nodes into Jackson
networks [77, 78] and state that [117]: If in a generalized Jackson network with an acyclic syn-
chronization process (every synchronization node is disconnected from itself - routing proba-
bility pii = 0) and finite synchronization buffers, the joint distribution of the equilibrium queue
length process at all exponential server nodes is asymptotically product form and the equilib-
rium departure process converges weakly to independent Poisson processes, as the size of the
synchronization buffers goes to infinity.

The results of the investigations of the Fork-Join Queues and especially the Synchronization
nodes support the performance predictions of the hierarchical (parallel) activities of FMC-QE,
described in section 3.4.5, while in these predictions the overall service rate is also equal to the
minimum of all rates.

4.4.2 Time Augmented Petri Nets

For the modeling of the dynamic behavior and the control flow the time augmented adapta-
tions of the FMC Petri Nets in FMC-QE also consist of timed and immediate transitions like
Generalized Stochastic Petri Nets (GSPN) [101, 102], described in section 2.2.3. The distinction
of operational and control flow in FMC-QE Petri Nets has similarities to Colored Petri Nets
[80] where attributes are associated to tokens like in Colored GSPNs [33] (referring to [12]).
Following the classification of section 2.2.1, FMC-QE Petri Nets are in the class of Timed Tran-
sitions Petri Nets (TTPN) without reservation while the reservation is often irrelevant because
conflicts are mostly modeled using immediate transitions.

In networks with several inter-server dependencies, the performance estimations of Time Aug-
mented Petri Nets are more precise than the FMC-QE approximations because in Time Aug-
mented Petri Nets the global balance state of a Non-Product Form Network is computed, while

153

CHAPTER 4. FMC-QE EXTENSIONS

in FMC-QE these Non-Product Form problems are approximated though transformations into
product form solutions. But, in contrast to FMC-QE with it’s linear complexity in the calcula-
tion of the performance values, the algorithms for the calculation of the performance values of
Time Augmented Petri Nets suffer from the state space explosion problem through the calcu-
lations of the global balance equations and the associated linear equation systems.

In FMC-QE the steady state behavior of the systems is of interest. In contrast to Time Aug-
mented Petri Nets and Petri Nets in general, the transient behavior as well as an analysis for
deadlocks is not in the focus in FMC-QE.

In the following some extensions of the Time Augmented Petri Nets are briefly compared to
FMC-QE.

Product Form Petri Nets

In comparison to Non Product Form SPNs, stochastic Petri Nets with product form solutions,
described in section 2.2.4, can calculate larger Petri Nets by avoiding the state-space explosion
problem through product form solutions. But still, in comparison to the linear complexity in
FMC-QE, the different approaches need complex calculations. In the approach of Lazar and
Robertazzi [94] there is a need for the investigation of the reachability state which is the main
drawback in this approach. In the approach of Henderson et al., even in the highly optimized
version of Haddad et al. [70], only the recognition if an SPN could have a product form so-
lution has a complexity of O(|T|2) steps [70] where T is the set of transitions. The approach
of Florin and Natkin [52] is limited to closed synchronized queueing networks and there are
efficiency problems in the solving of the linear system for the determination of the constant
vector of their matrix product form approach [52]. Furthermore, Robertazzi [119] states that
the general limitations of product form solutions for SPNs in concurrent resource sharing and
synchronization limit the modeling space of SPNs. For resource sharing models Robertazzi
[119] states that blocking excluded an SPN from product form solutions and only if resources
are immediately available or requests for resources which are not immediately available are
immediately cleared from the system, for which he states that this kind of resource sharing
is not so widely distributed in real systems. From the viewpoint of isolated circulations [94]
Robertazzi [119] also conjectures that synchronization could prevent higher dimensional mod-
els of having a product form solution. Furthermore, the product form SPNs still only model
the behavior of the systems and not the server structures, like FMC-QE, and therefore this clear
distinction for a complexity reduction and larger modeling capability is not included.

Queueing Petri Nets (QPN)

While the foundations of FMC-QE are mainly FMC and the Queueing Theory and mathemat-
ical foundation relies on the Queueing Theory, the Queueing Petri Nets [9, 10, 13, 14], fur-
ther described in section 2.2.5, are an extension of a colored GSPN, through the integration
of scheduling strategies into the places. This is the basis for the main differences between
QPNs and FMC-QE. While in FMC-QE the quantitative system properties are modeled in three
views, in a QPN both quantitative and qualitative (logical) properties are mixed in one net-
work. The analysis of qualitative properties, like timeless traps or boundness, is not in the
scope of FMC-QE. For the analysis of quantitative system properties QPNs must often be ana-
lyzed by inspecting the reachability set of the corresponding colored GSPN where the queue is
modeled with CGSPN elements [14]. Though this limitation QPNs could describe queues in a

154

4.4. COMPARISONS

more convenient way without having to specify queues by pure Petri Net elements [14] but in
the calculations they still suffer from the state space explosion problem of the Time Augmented
Petri Nets.

Product form QPNs [11, 12] could address some problems of the state-space explosion problem
in QPNs but since the networks are transformed to an equivalent SPN, the problems of product
form SPNs are still the same and the complexity in the calculation of the performance values is
still high while the modeling power of the original QPNs is reduced.

The HQPNs [15] deliver exact solutions for large networks and reduce the state pace explosion
problem by one order of magnitude but still in contrast to FMC-QE with it’s linear complexity
in the calculation of the performance values, the HQPN suffers form the state space explosion
problem. Also in HQPNs the different subnets have to be isolated through the input and output
places while in the different views in FMC-QE and a clearer distinction of logical and multi-
plexer servers a logical server could be handled by an arbitrary multiplexer. But of course, if
there are a lot of control flows and synchronization issues in the modeled system, an HQPN
could be more attractive than an FMC-QE model if the HQPN is still computable while FMC-
QE uses approximations for synchronizations.

4.4.3 Layered Queueing Networks (LQN)

In [59] the LQN approach, further described in section 2.3.6, especially the LQN Solver (LQNS),
was compared to other layered queueing system approaches where as a result LQN covers
more system features than any other attempt. In table 4.10 this comparison is imported and
extended by a comparison to FMC-QE.

Feature LQNS FMC-QE MOL SRVN TDA Ramesh MOD Fontenot WSQN-HQN Kurasugi APERA

FULL-ACCESS yes yes no yes yes no no no no no yes
Device Scheduling FHPSh Mpx FPHS FPH F FP FP F FP FP FP
Task Scheduling FH FPSh F F F F F F F F F
Open arrivals (OPEN) yes yes no yes no ? ? yes yes yes ?
Infinite-servers yes yes yes yes yes yes yes yes yes yes yes
SERV-PATTERN SD SD S SD S SD D S SD SD SD
VAR yes yes yes yes no yes no ? yes no no
PAR yes yes no no no no no no no no no
REPL yes yes yes no no no no no no no ?
ASYNC yes yes no yes no yes ? no no yes ?
Forwarding yes yes no no no no no no no no no
FAST, INTERLOCK yes - no yes no no no no no no no

Where F: FIFO, P: Preemptive Priority, H: Head-of-Line Priority, R: Random, Sh: Processor Sharing, Mpx: Multiplex
S: Stochastic Phase, D: Deterministic Phase, ?: Unclear from the reference

Table 4.10: Comparison of LQNS to FMC-QE and other Layered Queueing Systems [59]

FULL-ACCESS means that a server can issue a request to any server at a lower layer, rather
than just to the layer below it [59]. In FMC-QE, through the distinction of logical and multi-
plexer servers, this is also possible but hierarchically embedded. While the logical servers are
defined through the service request structures, the relations through logical server layers are by
definition only to the lower layer but this is no restriction while the servers are the logical lay-
ers following the service request structure. From the logical to multiplexer servers a connection
from every layer to every layer is possible.

155

CHAPTER 4. FMC-QE EXTENSIONS

For the modeling of device scheduling in LQN the strategies FIFO, Preemptive Priority, Head-
of-Line Priority and Processor Sharing and for task scheduling FIFO and Head-of-Line Priority
are realized. In FMC-QE the device (multiplexer server) is modeled as a multiplexer and there-
fore the scheduling strategies are molded at Task (logical server) level. There, in FMC-QE, all
possible scheduling strategies of the Kendall Notation, for which steady-state formulas have
been set up, could be used. By now, FIFO, Preemptive Priority and Processor Sharing as well
as deterministic server and infinite server have been realized but the calculus could be easily
extended to other strategies by importing the formulas at the basic server station level.

The LQN Solver supports open Poisson arrival processes as well as closed models [59]. The
standard hybrid load model in FMC-QE, where the arrival rate as well as the overall number of
service requests could be defined, as described in section 3.4.2, follows the calculations of open
queueing networks where the integration of the summation method with an iterative solution,
described in section 4.1, enhances the modeling power to closed models. So in FMC-QE open
and closed models are also handled.

The handling of infinite-servers for the modeling of for example client behavior is integrated
into the LQN Solver as well as in FMC-QE.

In the LQN Solver both stochastic and deterministic patterns of request for lower-layer service
(SERV-PATTERN [59]) are integrated. While in the FMC-QE Tableau the formulas for the dif-
ferent basic servers could be exchanged in order to fit to the real behavior of the system, also
both stochastic and deterministic patterns are integrated.

An arbitrary variance of CPU demands (VAR), possible in LQN, is also possible to model and
evaluate in FMC-QE.

Parallelism (PAR) and replication (REPL) used in LQN to model parallel scenarios as well as
increasing the scalability of solutions by replicating servers or structures [59, 108] is also sup-
ported in FMC-QE. In FMC-QE parallelism in the handling of service requests, like the han-
dling of sub-request 1 by server X and handling of sub-request 2 by server Y, is modeled in the
Petri Net and then the different sub-requests are represented by one line each in the Tableau.
Replication is supported by the ability of defining multiplicity coefficients for both logical and
multiplexer servers on all hierarchical levels.

Asynchronous messages (ASYNC) and the forwarding of service requests (Forwarding) have
not been explicitly modeled in this thesis but could also be modeled and evaluated in FMC-QE.

The solver features FAST (a fast-coupling correction for multiclass FIFO servers with differ-
ent service times [59]) and INTERLOCK (a correction for correlated requests due to shared
resources in generating arrivals [59]) are integrated into the LQN Solver for the improvement
of the approximations. While the calculation of the performance values in FMC-QE is different
to LQNS, these improvements have not been considered.

Whereas LQN and FMC-QE address similar problems, as described in this section, the calcu-
lation of the performance values differ fundamentally. The FMC-QE Tableau is mainly based
on Little’s Law and the Forced Traffic Flow Law. Although the visit ratios are mentioned, the
Forced Traffic Flow Law is not a central concern. The LQN Solver is mainly based on Mean
Value Analysis [59]. Furthermore, when hierarchies are defined through service request trans-
formations and service request unit transformations [143], the Layered Queueing Networks are
considered as flat networks with layers and no hierarchies because the Forced Traffic Flow Law
is used in the detection of bottlenecks in LQNs [58] but it is not mandatory in the system mod-
eling and the transformation of service requests and units of service requests like in FMC-QE.
Also in FMC-QE there are many other fundamental differences to LQN like that in FMC-QE

156

4.4. COMPARISONS

is a stricter modeling from the view of the service request structures. But overall, the whole
approach is interesting and in later collaborations to the LQN Research Group, where a first
contact has already been initiated, further differences and similarities could be found.

4.4.4 Performance Simulations

The results of the cooperation with the Enterprise Platform and Integration Concepts Group
of Prof. Dr. h.c. Hasso Plattner in the comparison of the Perfact Simulation environment [42]
to FMC-QE and a cooperation [116] with Mathias Fritzsche, SAP Research CEC Belfast, for a
coupling of FMC-QE and the Model-Driven Performance Engineering (MDPE) [61, 62] show
that performance simulations and analytical methods like FMC-QE are more supplementations
to each other than rivals.

If in a system there are a lot of control flows or side effects, an analytical model, like in FMC-
QE is sometimes hard to derive. Therefore, a simulation and especially a simulation which
is embedded in the real environment, like Perfact, is easier to establish and sometimes more
precise. So analytical models and simulations could complete each other through comparisons
for a higher precision and also through the integration of the respectively other methodology.
The comparison of Perfact and FMC-QE through a case study accelerated the development of
both approaches. In addition, the hierarchical modeling and calculations in FMC-QE would
allow an integration of simulated performance values into the Tableau and thereby extending
the modeling and evaluation power of FMC-QE. Through the integration of FMC-QE into sim-
ulation environments, like in the cooperation with SAP Research CEC Belfast, FMC-QE could
provide other performance values like the simulation environment. Additionally, through the
linear complexity of the performance value calculation a broad range of possible parameters
could be covered in order to support sensitivity analyses which are very time consuming if
every simulation takes some time. If interesting parameters are found, the simulation of the
system with this parameters could support and refine the computed performance values.

In the next chapter some case studies with FMC-QE are summarized. The results of the compar-
ison of the Perfact Simulation environment and FMC-QE are a part of this and are summarized
in section 5.2.

157

Chapter 5

FMC-QE Case Studies

This chapter provides case studies modeled and evaluated with FMC-QE. Each case study
focuses on different FMC-QE related questions.

In the first case study in section 5.1 a service-based search portal was modeled and evaluated
using FMC-QE. The focus is on modeling a larger system with, in this case, 62 logical servers -
44 basic server stations and 18 hierarchical server stations on 7 hierarchical levels with a main
interest in the computational complexity of the corresponding Tableau.

The second example in section 5.2, the Emergency Risk Management Framework (ERMF), fo-
cuses on the comparison of the performance predictions of an FMC-QE performance model,
a simulation and the corresponding measured values in the real system. The Emergency Risk
Management Framework (ERMF) is a system in the SAP NetWeaver and SAP WebAS Environ-
ment1, originally developed by SAP Research France. This case study was also a case study in
the development of the performance simulation environment Perfact [42]. For the validation of
Perfact and the FMC-QE predictions the performance values of the real system were compared
to the performance predictions of the Perfact simulation and the mathematical-analytical pre-
dictions of FMC-QE. Therefore, in this case study, also published in [120], the focus is on the
differences respectively compliances between the applied methods.

In the third example in section 5.3 the Axis2 web service framework2 is investigated. This case
study focuses on the modeling of an hierarchical protocol stack and the performance prediction
of multiplexers and synchronizations in the context of threads and processes. In [37] this case
study was also published.

1SAP AG, SAP NetWeaver, Website: http://www.sap.com/germany/plattform/netweaver/index.epx, August
2009

2Apache Software Foundation, Apache Axis2 Architecture Guide, Website: http://ws.apache.org/axis2/1_3/
Axis2ArchitectureGuide.html, August 2007

159

http://www.sap.com/germany/plattform/netweaver/index.epx
http://ws.apache.org/axis2/1_3/Axis2ArchitectureGuide.html
http://ws.apache.org/axis2/1_3/Axis2ArchitectureGuide.html

CHAPTER 5. FMC-QE CASE STUDIES

5.1 HPI Search Portal - a Service based Case Study

HPI Search Portal was a joint project of the "Service-Oriented Systems Engineering" Research
School at the Hasso-Plattner-Institute 3. It has been initiated to serve as a common scenario
for research activities in the domain of Service-based systems. One of the major goals of the
HPI Search Portal project was to provide a common playground for need finding purposes,
problem identifications, technology testing and proof of concepts. A second important goal of
the HPI Search Portal project is to show and present the benefits of this SOA-based approach
and the distributed development and to integrate many different techniques and programming
languages and using only interface descriptions for the integration.

While in this joint project every participant benefited from a different perspective, the gain of
the author was in the performance - as well as architecture modeling of the system. From the
viewpoint of FMC-QE this case study was a proof-of-concept for a larger system with many
hierarchical layers as well as a performance test for a larger Tableau.

The author wants the thank the other Research School members contributed to this project, es-
pecially Flavius Copaciu, Benjamin Hagedorn, Frank Kaufer, Harald Meyer, Hagen Overdick,
Michael Schöbel and Matthias Uflacker.

5.1.1 Architecture

The HPI Search Portal is a Service-based application which provides a distributed search engine
inside a research institute in order to find informations about lectures, lecturers, locations and
important events. This composite application aggregates information, gathered and combined
from different services, in order to offer a unique search interface combining several other
(external) search services. An overview on the architecture of this system is provided in figure
5.1.

�������

��	
��
��

��	
������
������
�����������

����
�
����������

���� ����
��
��	

����
��!�"�

��	
#�$�%

���� ����
��

������
��&���

'(
������(

����
�)�($

��	
*�
�

���� ����
��

������
��&���
$'(
������(

*+,
�������

��	
*�
��

�����(�-�
������
.�������/

*00,
���1!������

��	
��$�

�21

��	
*�
�
3

���� ����
��

������
��&���
�'(
������(

�21

��	
*�
�
4

*+

��	
*�
�
5

*+,
*6�,
	��&���&��7

��	
*�
�
5

��� (��

8
����

������ �������

8
����

������
������

������
��&���

������
��&���

�6��
������

8
�6��

������
������

������
��&���
$

������
��&���
$

"�2
�������(

8
8���

�.��
�������

8
�6��

��	
.�����
������

8
�.��

�.�	��������

8
����

*����1���������

8
�21

������
������

������
��&���
�

������
��&���
�

"�2(���

8
����

	�1�)�������

8
8���

*���1���������/�9���

8���
������

8
��������

8
����(,
*������,
��������

8 8
�.�.�(�������

8

����9��
������

�9���������

������
��7��

8����

��� (

:���
������

8
������ (

�21

��	
*�
�
4

����9���������

8
�21

������
������

�����(
�-
���
.�/

8
���

�9���������
;
�������
*��������

8
�6��

8
�6��

8
�6��

�9���������
;
�&&��&����
�9���������
;
������
��19��

8

8<8�(

������ (

8

Figure 5.1: HPI Search Portal - Architecture (see Appendix - Figure C.1)

3HPI Research School on Service-Oriented Systems Engineering, Website: http://kolleg.hpi.uni-potsdam.de/,
February 2010

160

http://kolleg.hpi.uni-potsdam.de/

5.1. HPI SEARCH PORTAL - A SERVICE BASED CASE STUDY

In the HPI Search Portal Application the search for information is divided into 5 sub searches, the
Super Search, the File Search, the People Search, the Room Search and the Events of the Day.

The Super Search integrates different public available search engines by using different tech-
niques. The first search engine is integrated by connecting to the SOAP4 interface of the engine,
the second is connected via REST5 Web Services and the third is integrated by a HTML Website
wrapper. The different search responses then are aggregated and ranked and further enriched
by previews of the different results.

The File Search performs a search for files at the local file servers (Index Search) and also enriches
the results with previews.

Names, mail addresses and other contact information of the lecturers and the other institute
staff-members could be searched via the People Search. The contact information is further en-
riched by a photo of the person and a 3D path to the person’s office.

The Room Search could also be directly accessed in order to find a path to a seminar room or an
office of a known person.

The search is further complemented by newsworthy event schedules, provided by the Events
of the Day service.

From a high level the overall service request is composed as follows:

Portal Search Request
• Super Search Request

- Search Request
- Preview Request

• File Search Request
- Index Search
- Preview Request

• People Search Request
- List Search Request
- People Detail Search Request

• Room Search Request
• Event Search Request

In the next subsection on the FMC-QE model this service request structure is further refined
and embedded into the technical environment.

5.1.2 FMC-QE Model

The figures 5.2 and 5.3 show an excerpt (service request structures and behavior) of the FMC-
QE Model of the HPI Search Portal scenario. Due to the size of the diagram the author will
not give a closer description of the model. This figures shall only illustrate that larger FMC-QE
models (62 logical servers (44 basic, 18 hierarchical) on 7 hierarchical levels) are also possible
and the models and especially the Tableau (table 5.16) scale.

4W3C, SOAP Version 1.2, W3C Recommendation 27 April 2007, http://www.w3.org/TR/soap12, February 2010
5Representational State Transfer, REST, In: Roy Thomas Fielding, Architectural Styles and the Design of

Network-based Software Architectures, Dissertation, University of California, Irvine, 2000, Website: http://www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm, February 2010

6The performance parameters in this Tableau are test values to show the capabilities of the Tableau and do not
reflect the performance behavior of the real system.

161

http://www.w3.org/TR/soap12
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

CHAPTER 5. FMC-QE CASE STUDIES

��� ��� ��� ��� ��� ��� �	�

��
������
����������������
��
������

��
��
��
��
��������������

 ��!�
��"� ������
�������� ��!�
�
��#$"�
��
��
��
��#$"�� ��!�
�

 ��#%�&�'
����(���""
�"$����
���������""
%� ��#%�&�'
����(�

��
��
���""
�"$��

�����)��

�����)��

*���
$����� ������
��������*���
$��� ������

��
��
��+�����

��#$"�� ������
�������� �������
��#$"�
��
��
��
��#$"�� �������

�����)��

'�
�$�� ������
����������������'�
�$�� ������

��
��
��'�
�$����
��

�����)��

���, ��������*���
$����
��������*���
$������, �������
��
��
�����, �������*���
$��

�����)��

'�
�$����$
�-���
������ ������
��������

 ��%�'�
�$����$
�-���
�%
��
��
�

'�
�$����$
�-���
��
�����)��

��#�
���$
�-� ������
����������#�
���$
�-

��
��
����#�
���$
�-���
��

�����)��

�����)��

 ��%�&��.�'�*���
$����
��������*���
$��� ��%�$�!��.�'
��
��
�� ��%�&��.�'�*���
$��

�����)��

�""
�"$�����&�*���
$����
���������""
%� ��%/�*��%�'
����(�
��
��
���""
�"$��
�&�*���
$��

�����)��

��$
�-� �������
����������$
�-
��
��
����$
�-�

�����)��

�""
�"$����
���������""
%� ��#%�&�'
����(�

��
��
���""
�"$��

�����)��

�������$
�-� ������
����������$
�-���
������
��
��
���������$
�-�

�����)��

�������$
�-� ��%�*��%�
��������*��%��������$
�-� ��%
��
��
�� �������*���
$��

�����)��

0�!�����$
�-
�������� ���0�!�����$
�-
��
��
��0�!�����$
�-�

�����)��

�""
�"$�����&�*���
$����
���������""
%� ��%/�*��%�'
����(�
��
��
���""
�"$��
�&�*���
$��

�����)��

1234�'$
���"
��������'$
���1234� ��#����

��
��
��1234�'$
��

�����)��

'
����(� ������
��������1$�!���'
����(�
��
��
��'
����(�1$�!��

�����)��

'
����(�*���
$����
��������*���
$���'
����(�
��
��
��'
����(�*���
$��

�����)��

1234�*���
$����
��������*���
$���1234� ������

��
��
��1234�*���
$��

�����)��

'��#�����$
�-� ������
����������$
�-���
�'��#���
��
��
��'��#�����$
�-�

�����)��

 ��#��������!��"
�����������!� ��#�����
��
��
�� ��#��������!�

�����)��

'��#�����$
�-� ��%�*��%�
��������*��%�'��#�����$
�-� ��%
��
��
�� �������*���
$��

�����)��

 ��#�����'$
���"
��������'$
��� ��#����
��
��
�� ��#�����'$
��

�����)��

45�'���
����� ������
��������

1$�!���45�'���
����� ��%
��
��
��45�'�1$�!��
�����)��

'��#�����$
�-
�������� ������#�����$
�-
��
��
��'��#�����$
�-�

�����)��

45�'� �������*���
$�����
��������*���
$���45�'� ������
��
��
��45�'� ��%�*���
$��

�����)��

�""
�"$�����&�*���
$����
���������""
%� ��%/�*��%����%, ��%
��
��
���""
�"$��
�&�*���
$��

�����)��

'��#���5��$�����$
�-� ������
��������

����%�'��#���5��$�����$
�-
��
��
��

'��#���5��$�����$
�-�1$�!��
�����)��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

 ��6���$
�-� ������
����������$
�-���
� ��6
��
��
�� ��6���$
�-�

�����)��

�5�'$�-�*���
$����
��������*���
$����5�'$�-
��
��
���5�'$�-�*���
$��

�����)��

���
$������$�!�*���
$����
�����������
%� ��605�&�*��%� ��%
��
��
�����
$���
�$�!�*���
$��

�����)��

 ��#������""
�"$����
���������""
�"$��� ��#�����
��
��
�� ��#������""
�"$��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

'����
����$
�-� ������
����������$
�-���
�'����
��
��
��
��'����
����$
�-�

�����)��

'����
����"������$
�-
����������$
�-����'����
����"���

��
��
��'����
����"���
�����)��

 �������*���
$�����
��������*���
$��� ������
��
��
�� �������*���
$��

�����)��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

 ��6���$
�-� ������
����������$
�-���
� ��6
��
��
�� ��6���$
�-�

�����)��

�5�'$�-�*���
$����
��������*���
$����5�'$�-
��
��
���5�'$�-�*���
$��

�����)��

���
$������$�!�*���
$����
�����������
%� ��605�&�*��%� ��%
��
��
�����
$���
�$�!�*���
$��

�����)��

1234�'$
���"
��������'$
���1234� ��#����

��
��
��1234�'$
��

�����)��

��$
�-���"������1$�!���"
��������

1$�!�����$
�-���"�����
��
��
�

��$
�-���"������1$�!��
�����)��

��$
�-���"��������$
�-
����������$
�-������"�����
��
��
����$
�-���"�����

�����)��

1234�*���
$����
��������*���
$���1234� ������

��
��
��1234�*���
$��

�����)��

 ��2�7�(
$##��"
��������7�(
$#� ��2

��
��
�� ��2�7�(
$##�

�����)��

��$
�-���"������1$�!���"
��������

1$�!�����$
�-���"�����
��
��
�

��$
�-���"������1$�!��
�����)��

��$
�-���"��������$
�-
����������$
�-������"�����
��
��
����$
�-���"�����

�����)��

 ��2�*���
$����
��������*���
$��� ��2
��
��
�� ��2�*���
$��

�����)��

�.�'�7�(
$##��"
��������7�(
$#��.�'�������#�
��
��
���.�'�7�(
$##�

�����)��
��$
�-���"������1$�!���"

��������
1$�!�����$
�-���"�����

��
��
�
��$
�-���"�����1$�!��
�����)��

��$
�-���"��������$
�-
����������$
�-������"�����
��
��
����$
�-���"�����

�����)��

�.�'�*���
$����
��������*���
$����.�'�������#�

��
��
���.�'�*���
$��

�����)��

1234�'$
���"
��������'$
���1234� ��#����

��
��
��1234�'$
��

�����)��

'
����(� ������
��������1$�!���'
����(�
��
��
��'
����(�1$�!��

�����)��

'
����(�*���
$����
��������*���
$���'
����(�
��
��
��'
����(�*���
$��

�����)��

1234�*���
$����
��������*���
$���1234� ������

��
��
��1234�*���
$��

�����)��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

��������$
�-� ������
����������$
�-���
�������
��
��
����������$
�-�

�����)��

+$���!$
���$
�-� ������
����������$
�-����+$���!$
�

��
��
��+$���!$
�
�����)��

 �������*���
$�����
��������*���
$��� ������
��
��
�� �������*���
$��

�����)��

Figure 5.2: HPI Search Portal - Service Request Structure (see Appendix - Figure C.2)

162

5.1. HPI SEARCH PORTAL - A SERVICE BASED CASE STUDY

�
�
�
��
�

��
	

�

	

�
�
�
�
��

�
�

�
�
�
�
�
�

��
	

�
�
�
�
��

�
�

�
�
�
�
�

�
�
�
�
��
�
�

��
	

��
	

�
�
�
��
�

�
�
��
�
�
��
�
�

��
	

�
�
�
��
�
��
�
�
��
�
�

��
�
�

��
�
�

!
�
"
��
�
�

�
�
�
�
�

�
�
�
�
��
�
�

∞

��
	

�
�
�
�
��

�
�

�
�
�
#

��
	

��
	

�
�
�
��
�

�
�
��
�
�
��
�
�$

��
	

�
�
�
��
�
��
�
�
��
�
�$
��
�
�

��
�
�

!
�
"
��
�
�

�
�
�
#

∞

��
	

�
�
�
�
��

�

�
#
%
&
�

�
�
�
�
�
�

��
	

��
	

�
�
�
��
�

�
�
��
�
�
��
�
�'

��
	

�
�
�
��
�
��
�
�
��
�
�'
��
�
�

��
�
�

�
�
��
�

�
#
%
&
�

�
�
�
�
�
�
�
�

∞

∞

��
	

�
�
�
�
��

�

�
�
�
�
�
�

�
�

�
�

��
�
�
�

��
	

�
�
�
��
�
�

�
�

�
�
�
(�
�
�

��
�
�
(�
�

�
��
�
��
"
�

��
	

�
�
�
�
��

�

�
#
%
&
�

�
�
�
�
�
�

��
	

��
	

�
��
��
�
"

�
�
��
�

�
#
%
&
�

�
�
�
�
�
�
�
�

��
	

�
�
�
��
�
�

�
�

�
�
�
�
(�
�
�

�

�
��
�
��
"
�

��
	

�
�
�
�
��

�
�

�
��
�
��
"
�

�
�
�
�
��
�
�
�
��
�

��
	

�
�
�
��
�
�

�
�

�
�
�
(�
�
�

��
�
�
(�
�

�
��
�
��
"
�

��
	

�
�
�
�
��

�

�
#
%
&
�

�
�
�
�
�
�

��
	

��
	

�
�
�

��
��
��
�
��
"
�

�
�
��
�

�
#
%
&
�

�
�
�
�
�
�
�
�

∞

��
	

�
�
�
��
�
�

�
�

�
�
�
�
(�
�
�

�

�
��
�
��
"
�

��
	

�
�
�
�
��

�
�

�
��
�
��
"
�

��
	

�
�
�
�
��

�
�

)
���
��
�
�
��
�
�

�
�
�
�
�
�

∞

)
���
�
�
�
��
�

��
	

�
�
�
�*
�

�
+
�

�
�
�
��
�

��
	

�
�
�
�
��

�
�

�
�
�
�
��
�

�
�
�
��
�
��
�
�
(

��
	

�
�
�
�
��

�
�

&
,
�
�
��
�
�
(

��
	

��
	

&
,
�
�
��
�
��
��
�
��
�
�
�
�
�

�
�
��
�
�

�
�
�
�
�
�
�
�

∞

��
	

�
�
�
��
�
�

�
�

�
�
�
(�
-
�
�
�
(�
�

�
�
.
-�
�
�
(

��
	

�
�
�
��
�
�
�
��
�

�
�
�
��
�

�
+
�
�
�

�
��
�
�
�
��
�,
�

�
���
�
�
�
��
�

��
	

��
	

�
�
�
�
��

�
�

�
�
�
�
�
�

��
	

��
	

�
�
�
��
�
�/
�
��
�
��

�
��
�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

��
	

�
+

�
�
�

�

�
�
�
0
*,
��
�

�

�
�
�
�
��

�
��
�
�
(

��
	

��
	

�
�
�
0
��
�
�
��
�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

∞

��
	

�
�
�

�

�
�
�
�
�
�
�
�
�

�
�
�
��
�
�/
�
��
�
�
�
�
��
�

�
�
�
�
�
�

�
�
�
�

�
��
�
�
�
��
�
��
�
��
��
�
�

�'
	

��
	

�
+

�
�
�

�
�
�
�
0
*,
�

�
�

��
�
�
�
��

�
�

�
�
�
(

��
	

�1
	

�
�
�
��
�
�/
�
��
�
�
�
0
�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

��
	

�
�
�
�
��

�
�

�
�
�
�
�
�

��
	

�1
	

�
�
�
��
�
�/
�
��
�
�
�
�

�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

∞

�1
	

�'
	

�
�
�
�
��

�
�

�
�
.
-

�
�
�
�
�
�

�

�'
	

�
�
�
��
�
�

�
�

�
�
�
�
�
�
�
�
�

�$
	

�
�
�
�
�
�

�

2
�
.
�
�
�
�

�$
	

�
�
�

�
��

2
�
.
�
�
�
�

∞

�$
	

�

	

)
�
�/
���
��
�
�

�
��
�
�
�
�
�
�

)
�
�/
���
�2

�
.
��
�
�
�
�

∞

�1
	

�1
	

��
	

�
�
�
��
�
��
�
�

3
�
��
�

�
�

��
	

�
�
�
�
��

�
�

'
,
��
�

�

��
	

�
�
�
�
��

�
�

'
,
��
�

�

��
	

�
�
�
��
�

�
�
��
��

�
��
�

�
�
�
��
�

∞

∞ ∞
∞

∞

∞
∞

∞
∞

∞

∞
∞∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞ ∞
∞

∞

∞
∞

∞
∞

∞
∞

∞
∞

∞ ∞
∞

∞

Figure 5.3: HPI Search Portal - Behavior (see Appendix - Figure C.3)

163

CHAPTER 5. FMC-QE CASE STUDIES

Table 5.1: HPI Search Portal - Tableau (see Appendix - Table B.12)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

2 1 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0005 0,007 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
3 2 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,002 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
5 3 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,000 0,000 0,900 0,077 0,900 0,077
6 4 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
6 5 1,00 1,00 20,00 20,00 232,764 1 3 3 2 0,0001 1,000 19230,769 0,004 0,000 0,000 0,012 0,000 0,012 0,000
6 6 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
5 7 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 16,200 1,392 1,812 0,156 18,012 1,548
5 8 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0003 0,004 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
7 9 1,00 5,00 1,00 5,00 58,191 3 1 3 3 0,0001 0,152 1515,152 0,013 0,000 0,000 0,038 0,001 0,038 0,001
7 10 1,00 5,00 1,00 5,00 58,191 3 ∞ ∞ 4 0,0087 1,000 64,657 0,000 0,000 0,938 0,016 0,938 0,016
7 11 1,00 5,00 1,00 5,00 58,191 3 1 3 3 0,0001 0,182 1515,152 0,013 0,000 0,000 0,038 0,001 0,038 0,001
6 12 1,00 1,00 5,00 5,00 58,191 1 3 3 1515,152 0,000 0,000 1,015 0,017 1,015 0,017
7 13 1,00 5,00 1,00 5,00 58,191 4 1 4 5 0,0008 0,053 65,789 0,221 0,000 0,000 0,885 0,015 0,885 0,015
7 14 1,00 5,00 1,00 5,00 58,191 4 ∞ ∞ 6 0,0090 1,000 111,111 0,000 0,000 0,885 0,015 0,885 0,015
7 15 1,00 5,00 1,00 5,00 58,191 4 1 4 5 0,0030 0,197 65,789 0,221 0,004 0,000 0,885 0,015 0,888 0,015
6 16 1,00 1,00 5,00 5,00 58,191 1 4 4 65,789 0,004 0,000 2,654 0,046 2,657 0,046
7 17 1,00 5,00 1,00 5,00 58,191 5 1 5 7 0,0024 0,102 42,553 0,273 0,008 0,000 1,367 0,024 1,375 0,024
7 18 1,00 5,00 1,00 5,00 58,191 5 ∞ ∞ 8 0,0008 1,000 1250,000 0,000 0,000 0,047 0,001 0,047 0,001
7 19 1,00 5,00 1,00 5,00 58,191 5 1 5 7 0,0023 0,098 42,553 0,273 0,005 0,000 1,367 0,024 1,373 0,024
6 20 1,00 1,00 5,00 5,00 58,191 1 5 5 42,553 0,013 0,000 2,782 0,048 2,794 0,048
5 21 1,00 1,00 1,00 1,00 11,638 1 1 1 42,553 0,013 0,001 2,782 0,239 2,794 0,240
5 22 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0008 0,010 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
4 23 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 32,413 2,785 7,294 0,627 39,707 3,412
5 24 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0006 0,008 12,931 0,900 32,413 2,785 0,900 0,077 33,313 2,862
6 25 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
6 26 1,00 1,00 20,00 20,00 232,764 1 3 3 2 0,0050 1,000 200,000 0,388 0,083 0,000 1,164 0,005 1,247 0,005
6 27 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 12,931 0,900 8,183 0,703 0,900 0,077 9,083 0,780
5 28 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 16,366 1,406 2,964 0,255 19,330 1,661
5 29 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0003 0,004 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
5 30 1,00 1,00 1,00 1,00 11,638 1 1 1 9 0,0050 1,000 200,000 0,058 0,004 0,000 0,058 0,005 0,062 0,005
5 31 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0008 0,010 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
4 32 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 64,983 5,584 5,722 0,492 70,705 6,075
5 33 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0054 0,070 12,931 0,900 0,000 0,000 0,900 0,077 0,900 0,077
7 34 1,00 10,00 1,00 10,00 116,382 1 1 1 1 0,0015 0,194 129,313 0,900 0,000 0,000 0,900 0,008 0,900 0,008
7 35 1,00 10,00 1,00 10,00 116,382 1 1 1 10 0,0040 1,000 250,000 0,466 0,405 0,003 0,466 0,004 0,871 0,007
7 36 1,00 10,00 1,00 10,00 116,382 1 1 1 1 0,0057 0,737 129,313 0,900 8,100 0,070 0,900 0,008 9,000 0,077
6 37 0,40 5,00 5,00 10,00 116,382 1 1 1 129,313 8,505 0,073 2,266 0,019 10,771 0,093
7 38 1,00 5,00 1,00 5,00 58,191 1 1 1 1 0,0025 0,162 64,657 0,900 8,100 0,139 0,900 0,015 9,000 0,155
7 39 1,00 5,00 1,00 5,00 58,191 1 2 2 11 0,0025 1,000 400,000 0,073 0,001 0,000 0,145 0,003 0,146 0,003
7 40 1,00 5,00 1,00 5,00 58,191 1 1 1 1 0,0021 0,136 64,657 0,900 8,101 0,139 0,900 0,015 9,001 0,155
6 41 1,00 5,00 1,00 5,00 58,191 1 1 1 64,657 16,202 0,278 1,945 0,033 18,147 0,312
5 42 1,00 1,00 5,00 5,00 58,191 1 1 1 64,657 24,707 0,425 4,211 0,072 28,918 0,497
5 43 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0098 0,127 12,931 0,900 0,000 0,000 0,900 0,077 0,900 0,077
6 44 1,00 1,00 1,00 1,00 11,638 1 1 1 12 0,0090 1,000 111,111 0,105 0,000 0,000 0,105 0,009 0,105 0,009
6 45 1,00 1,00 1,00 1,00 11,638 1 1 1 13 0,0024 1,000 416,667 0,028 0,001 0,000 0,028 0,002 0,029 0,002
6 46 1,00 1,00 1,00 1,00 11,638 1 1 1 12 0,0025 1,000 400,000 0,029 0,001 0,000 0,029 0,003 0,030 0,003
5 47 1,00 1,00 1,00 1,00 11,638 1 1 1 400,000 0,002 0,000 0,162 0,014 0,163 0,014
5 48 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0080 0,103 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
4 49 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 32,809 2,819 7,073 0,608 39,881 3,427
5 50 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0012 0,047 38,794 0,900 40,909 1,172 0,900 0,026 41,809 1,197
5 51 1,00 3,00 1,00 3,00 34,915 1 1 1 14 0,0090 1,000 111,111 0,314 0,144 0,004 0,314 0,009 0,458 0,013
5 52 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0090 0,349 38,794 0,900 8,100 0,232 0,900 0,026 9,000 0,258
4 53 1,00 1,00 3,00 3,00 34,915 1 1 1 38,794 49,153 1,408 2,114 0,061 51,267 1,468
5 54 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0001 0,005 38,794 0,900 49,153 1,408 0,900 0,026 50,053 1,434
5 55 1,00 3,00 1,00 3,00 34,915 1 2 2 11 0,0025 1,000 400,000 0,044 0,000 0,000 0,087 0,003 0,087 0,003
5 56 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0002 0,006 38,794 0,900 8,100 0,232 0,900 0,026 9,000 0,258
4 57 1,00 1,00 3,00 3,00 34,915 1 1 1 38,794 57,253 1,640 1,887 0,054 59,140 1,694
3 58 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 64,983 5,584 7,294 0,627 72,277 6,210
3 59 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0003 0,004 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
2 60 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 81,183 6,976 9,094 0,781 90,277 7,757
2 61 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
1 62 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 97,383 8,368 10,894 0,936 108,277 9,304
1 63 1,00 1,00 1,00 1,00 11,638 1 1 1 Client 334,3927 0,003 0,000 0,000 3891,723 334,393 3891,723 334,393

j mj Xj
[1]

1 2 0,155
2 8 0,101
3 1 0,001
4 ∞
5 1 0,019
6 ∞
7 1 0,024
8 ∞
9 4 0,005
10 2 0,040
11 4 0,020
12 2 0,009
13 4 0,002
14 4 0,027

λ[1]

Experimental Parameters
nges

[1]

λbott
[1]

f

4000
12,9313
0,9000
11,6382

HPI LDAP Server
HPI C-1.18 - Event Srv.

HPI C-1.14 - Index Serv.Srv.
HPI C1.18 - Pic. Serv. Srv.
HPI A-2.11 - 3DBIMService
HPI C1.3 - LDAP Serv. Srv.

SOAP Unwrapping SOAP Unwrapper

HPI C1.17 - SE 3 Serv. Srv.
Search Engine 3 Server

HPI C1.1 - SE 2 Serv. Srv.
Search Engine 2 Server

Search Engine 1 Search Search Engine 1
SOAP Generation SOAP Generator

Preview

Preview Generator
HTML Parsing

Aggregation + Generation

HTML Generator
Preview Handler

HTML Generation

Aggregator + Gen.

Preview Generation

AggregatorResp. + Previews Agg.
HTML Parser

File Search Req. Gen. Generator

Search Engine 1 Handling SE 1 Handler
REST Unwrapping

Search Engine 2 Handling

Aggregation + Gen.
Index Search Index Searcher

Room Search Room Searcher

3D Path Generation 3D Path Generator
Extraction and Generation Extractor and Gen.

Picture Search
Response Handling

HTML Parsing HTML Parser
Preview Generation Preview Generator
HTML Generation HTML Generator

Preview Preview Handler

Response Handler

Picture Engine Search Picture Engine
Request Generation Request Generator

Response Handling Response Handler
Calendar Search Req. Calendar

 People Search Req. Gen. Request Generator
People Search People Searcher

LDAP Request Generation LDAP Req. Gen.
LDAP Service Request LDAP Handler

Response Parsing Response Parser
People Search People Searcher

Aggregation Aggregator

People Search H.
Aggregation + Generation Aggregator + Gen.

File Search File Searcher
Response Sending Response Sender
Response Handling

Req. + SOAP Generation Req. + SOAP Gen.
Super Search Request Super Search Srv.

HPI B-1.3 - Main
Namej

Multiplexer Section

Service Request Section

Search Engine 2 Search

Webpage Request

People Detail Search

REST Generation

HTML Parsing

SRqi
[bb]

HPI V-2.01 - SE 1 Serv.Srv.

Serveri
[bb]

Request Generator

3D Path Generator

Room Searcher
Extractor and Gen.

Portal Searcher
Sub-Request Gen.

Job Generation

HPI C-1.14 - Preview Srv.

Dynamic Evaluation Section

Response Handler

REST Unwrapper
Search Engine 2
REST Generator

SE 2 Handler

Server Section

Response Agg.
Webpage Renderer

Picture Searcher

Webpage Req.
Webrequest Exec.

Portal Server

HTML Parser
Search Engine 3
HTML Generator

SE 3 Handler
Searcher

Response Handler

Aggregator + Gen.

Request Generation

3D Path Generation
Extraction and Generation

Event Search Request
Response Handling

Search Engine 3 Search
HTML Generation

Search Engine 3 Handling
Search Request

Rendering Request
Response Aggregation

Search Engine 1 Server

Generator
Webrequest

Room Search

Event Searcher

Portal Search Serv. Req.
Sub-Request Generation

Portal Request

With the help of the Tableau some performance predictions, examples in figure 5.4 - figure 5.6,
could be performed.

The chart in figure 5.4 shows the overall response time Rges dependency of the overall arrival
rate λ. While in the initial system configuration in table 5.1 the bottleneck throughput is λbott ≈
12, 93 [SRq]

[s] , the overall response time grows significant when λ > 10 [SRq]
[s] . The Tableau shows

that the Main Server (HPI B-1.3 - Main) is the bottleneck because all associated logical servers
have the highest utilization of ρ = 0, 9, and therefore, an improvement of the Main Server could

164

5.1. HPI SEARCH PORTAL - A SERVICE BASED CASE STUDY

speed up the whole system. Three configurations, one with one more CPU (m1 = 3), one with
two more CPUs (m1 = 4) and one with three more CPUs (m1 = 5), are also shown in figure 5.4.
It can be seen that the upgrade of the Main Server results in a better overall performance of the
system for m1 = 3 and m1 = 4. A further upgrade of the Main Server to 5 CPUs does not result
in such a huge performance gain as then the Picture Engine is the new bottleneck.

λbott, m=2=
12,93

λbott, m=4=5=
25

λbott, m=3=
19,40

m1=2 m1=3 m1=4 m1=5

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30
λ [SRq]/[s]

R
ge

s [
s]

Figure 5.4: HPI Search Portal - Chart: Overall Response Time - Arrival Rate

Figure 5.5 shows the relation between the overall arrival rate λ and the external service time
Xext for the initial system configuration of table 5.1 with a mean overall population of nges =

4.000[SRq]. In this configuration a desired overall arrival rate λ in a range from λ = 1 [SRq]
[s]

to λ = 10 [SRq]
[s] results in an external service time from approximately 7 to approximately 66

minutes (more precisely 396s to 3.965s). If then, in this configuration, the mean external service
time would be longer that 7 minutes, referring to figure 5.4, the overall response time Rges is still
small (λ ≤ 10 [SRq]

[s] for the initial configuration of a Main Server with 2 CPUs). In the example
everyone of the 4.000 students could request the portal (nges = 4.000[SRq]) every 7 minutes.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14
λ [SRq]/[s] (nges=4000 [SRq])

X e
xt

 [m
in

]

Figure 5.5: HPI Search Portal - Chart: External Service Time - Arrival Rate

165

CHAPTER 5. FMC-QE CASE STUDIES

Figure 5.6 shows the relation of the overall response time Rges from different configurations
of the number of processors in the main server (HPI B-1.3 (Main)), which is referred as mul-
tiplexer 1 (mj=1). For two different overall arrival rates (λ = 8 [SRq]

[s] (+) and λ = 12 [SRq]
[s] (x))

the corresponding overall response times are plotted. This chart then shows that for the con-
figuration with an arrival rate of λ = 8 [SRq]

[s] , two or three processors (mj=1 = 2) would be the
best choice because the change from three processors to more processors does not significantly
gain in more performance in this specific scenario. For the configuration with an arrival rate of
λ = 12 [SRq]

[s] it is highly appreciated to install at least three processors because there is a huge
performance increase from two to three processors.

λ=8
[SRq/s]

λ=12
[SRq/s]

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14
mj=1 (HPI B-1.3 (Main))

R
ge

s [
s]

Figure 5.6: HPI Search Portal - Chart: Response Time - Number of Parallel Main Processors

5.1.3 Summary

In this section is was shown that FMC-QE is also suitable for larger models (62 logical servers
(44 basic, 18 hierarchical) on 7 hierarchical levels). With the help of the Tableau and the exem-
plary charts in figures 5.4 to 5.6 different system and load configurations could be evaluated
in order to have indications for future system dimensioning of the modeled system. Further-
more, this section gave further insights into FMC-QE, as figure 5.2 shows a slightly modified,
more compact layout for larger service request structures. Also this case study shows that the
calculations in the Tableau are very fast. For a performance evaluation study 1.000 parameters-
changes (recalculation of the whole Tableau + value logging) in the Tableau in table 5.1 were
performed in 3,0 seconds 7, which means that a performance prediction for one system config-
uration of the performance parameters in the Tableau is calculated in approximately 3 millisec-
onds. In another case study [116], which is not a part of this thesis, another scenario with 46
actions in two classes was evaluated with a prototype version of the FMC-QE Tool by Tomasz
Porzucek in approximately 1 millisecond 8.

7Tableau developed in Microsoft Office Excel 2003 (11.8307.8221) SP3 in Microsoft Windows XP Professional
(Version 5.1.2600 Service Pack 3 Build 2600) on Dell OptiPlex GX620, Intel Pentium 4 HT 3192 Mhz (Family 15
Model 4 Stepping 3) with 2 GB DDR2 RAM

8FMC-QE Tool developed under Java 1.6 and deployed on Microsoft Windows XP Professional (Service Pack 3)
on Apple MacBook Pro, Intel Core2Duo 2,16 GHz with 2 GB DDR2 RAM

166

5.2. MODELING OF A SERVICE BASED SYSTEM: ERMF

5.2 Modeling of a Service based System: ERMF

In a joint Bachelor’s Project of the Research Groups of Prof. Dr. Hasso Plattner / Dr. Alexander
Zeier and Prof. Dr.-Ing. Werner Zorn at the Hasso-Plattner-Institute in 2006/2007, called Per-
fact,too, the performance simulation framework Perfact, developed in preliminary Bachelor’s
Project, was further developed and extended. With the help of Perfact the performance of a
service-oriented system could be simulated through implementing dummy-components in the
real system environment in order to detect bottlenecks and performance problems in the early
design phase of the development. As a proof-of-concept for the performance predictions of the
Perfact framework and the FMC-QE predictions, a benchmark of an existing system was com-
pared to the corresponding Perfact simulation and the FMC-QE model. For this case study the
Emergency Risk Management Framework (ERMF) was used, a system in the SAP NetWeaver
and SAP WebAS Environment9, originally developed by SAP Research France. Besides the
modeling part the main interest for the FMC-QE development was the comparison and vali-
dation of the performance values of the three approaches and the analysis of a Service based
system.

As a result of this work the paper "Comparison of performance modeling and simulation - a
case study" was written and presented at the 15th IEEE International Conference on Engineer-
ing of Computer-Based Systems (ECBS 2008) in Belfast, UK [120]. This section is based on this
paper, especially on the FMC-QE part.

This section is structured as follows: After a short introduction in 5.2.1 the service request
structures and the behavior of the system is modeled in 5.2.2. The measurements taken are
explained in 5.2.3. In 5.2.4 the corresponding FMC-QE Tableau is shown. In section 5.2.5 the
Perfact Simulation is explained. Finally, some results are shown in section 5.2.6.

The author would like to thank the co-authors of the paper "Comparison of performance mod-
eling and simulation - a case study" and the other project members of the "Perfact, too" Bache-
lor’s Project. In addition, the author wants to thank SAP Research France, especially Cedric Ul-
mer, Volker Gersabeck and Martin Grund, providing the case study and supporting the project.

5.2.1 Introduction

The system modeled and analyzed in the case study is a Service-based application for the
automatic generation of alerts based on pre-defined rules, web service calls and an Event-
Condition-Action (ECA) rule engine.

The sketch of the flow in the system is as follows: Due to dynamically defined rules some web
services are called from the system. This web services deliver environment data with which
alerts could be generated.

9SAP AG, SAP NetWeaver, Website: http://www.sap.com/germany/plattform/netweaver/index.epx, August
2009

167

http://www.sap.com/germany/plattform/netweaver/index.epx

CHAPTER 5. FMC-QE CASE STUDIES

Figure 5.7 shows the static structures of the system and its environment. The Timer Application
generates the service requests for the system. The different service requests are received then
by the Control Unit and dispatched for further processing. The main part of the system is the
ECA Engine (Event-Condition-Action Engine). This component is responsible for the applying
of the rules in order to generate the risk estimation. This is done by to choosing the most
relevant web services and evaluating the web service responses together with the rules. In this
case study public available weather and traffic services were used. The responses of the ECA
Engine are passed to the Action Performer through the Control Unit. Finally the alert is generated
in the Action Performer.

��������	
�

�
�	�
�����	

���������

�
�	�
��
�

���
������

�
���
����
���
��

�

�

�

��
��
��
�� �

!��
��""��� 	
�

#$
 �%
�
� 	
�&

�
 	'
���
��
�

��	�
���
�(
��
�

�

�

�

!� ((����
��
�

�

Figure 5.7: ERMF - Static Structure

The test platform was provided by SAP Research France and consists of the SAP NetWeaver
Developer Studio 2004s as a development environment and the SAP Web Application Server
6.40 as the application server.

5.2.2 Service Request Structure and Dynamic Behavior

Figures 5.8 and 5.9 illustrate the service request structure and the dynamic behavior of the
system. These two diagrams have the same hierarchies and complement each other. While
the whole structure with traffic flow coefficients and the corresponding servers are shown in
the Entity Relationship Diagram, the dynamic flow with parallelism and the right order of
execution is defined in the Petri Net.

As shown in figure 5.8 the Make Forecast request is the topmost request which is then hierarchi-
cally decomposed into Initialize Request, Evaluate Rules and Call Web Services and Generate Alert
requests. Accordingly the Make Forecast transition in the dynamic structure (figure 5.9) is de-

168

5.2. MODELING OF A SERVICE BASED SYSTEM: ERMF

composed into a sequence of three corresponding transitions. Furthermore, the Evaluate Rules
and Call Web Services request was decomposed, as shown in figure 5.8 and figure 5.9.

�����������	
������	�

������������������	
���

��������������
����

�����������	
���

���������������������
�������������������

��������

 �������!��������	
���

������� �������!����	
���

��������"�������#���

�������	
���

����������������
����

��������
������$��%�����

����
��������	
���

�����������
�����
������&�"����'�(���������

���������"
���)����"���������

������)���	
���

�������*���������������)�
���������"
�����
�����)���

�
����������
��������	
���

�����������
�����
�����

���������"
�����
�����)���

'�(������������	
���

�������"����'�(���������

���������"
����'�(���������$��+��

���%%����������

����������%%����������

�����������%%�����������,��&���

'���-����������

�������'���-����������

��������'���-�����������,��&���

.�/

.0/

.1/

.2/

�������� ��������

�������� �������� ��������

�������� ��������

Figure 5.8: ERMF - Service Request Structure

�����������	
���

�	�����
��	
���

������	
��	
���

�
�����������
����������������	
���

�������	���
�
���

���

���

� � � �

���

!���	���

��"��
�

∞

���

#�������$��
��"��
�

∞

���

!���	����
%��	�

∞

���

&���	'����
��((��)

∞

���

�
������
����
��

∞

∞

∞

∞

∞ ∞

Figure 5.9: ERMF - Dynamic Behavior

169

CHAPTER 5. FMC-QE CASE STUDIES

5.2.3 Measurements

The original ERMF source code was modified by including a measurement mechanism in order
to provide measurements as basis for the simulation and analysis as well as for the comparison
of the obtained results. The events handled by the ERMF framework are artificially generated
by the Timer Application. These events are traced throughout the system on a limited number
of measurement points where the trace data is asynchronous written to a database for later
evaluation. For measurements on the real system and during the simulation the same mea-
surement points where used. Thereby, any influence on the systems performance through the
tracing is equal on both results.

The charts in figures 5.10 and 5.11 show the response times of the traffic and weather services
for 720 respectively 56 measured values. The measured response times have an average of
285.8± 1.09ms and 454.91± 8.21ms with the corresponding confidence intervals of (95%). The
discrete values are a result of measurement resolution.

0,25

0,26

0,27

0,28

0,29

0,3

0,31

0,32

0,33

0,34

0,35

0 100 200 300 400 500 600 700 800
Experiment Number

R
Tr

af
fic

 S
er

vi
ce

 [s
]

Figure 5.10: ERMF - Chart: Traffic Service - Response Time

0,4

0,42

0,44

0,46

0,48

0,5

0,52

0,54

0,56

0,58

0,6

0 10 20 30 40 50 60
Experiment Number

R
W

ea
th

er
 S

er
vi

ce
 [s

]

Figure 5.11: ERMF - Chart: Weather Service - Response Time

170

5.2. MODELING OF A SERVICE BASED SYSTEM: ERMF

5.2.4 Analysis

The mean values obtained from the experimental data were used as input parameters for the
model evaluation.

In this case study the static structure is simplified to the ERMF Server with two processors and
the web servers with infinite capacity. The corresponding Tableau is shown in table 5.2. In
this Tableau the multiplexer is also exemplified: the queues are at the multiplexers and the
logical servers see a fraction of their service request in the multiplexer queue as defined by the
multiplexer coefficient:

mmpx,i =
v[bb]

i X[bb]
i

Xj

mj

m[bb]
i

.

Table 5.2: ERMF - Tableau (see Appendix - Table B.10)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

2 1 1,00 1,00 1,00 1,00 1,000 1 2 2 1 0,010 0,014 1,408 0,355 0,001 0,001 0,010 0,010 0,011 0,011
3 2 1,00 1,00 1,00 1,00 1,000 1 2 2 1 0,150 0,211 1,408 0,355 0,022 0,022 0,150 0,150 0,172 0,172
4 3 1,00 1,00 1,00 1,00 1,000 1 ∞ ∞ 2 0,470 1,000 2,128 0,000 0,000 0,470 0,470 0,470 0,470
4 4 1,00 1,00 1,00 1,00 1,000 1 ∞ ∞ 3 0,300 1,000 3,333 0,000 0,000 0,300 0,300 0,300 0,300
3 5 1,00 1,00 1,00 1,00 1,000 1 1 1 ∞ 0,000 0,000 0,770 0,770 0,770 0,770
3 6 1,00 1,00 1,00 1,00 1,000 1 2 2 1 0,200 0,282 1,408 0,355 0,029 0,029 0,200 0,200 0,229 0,229
2 7 1,00 1,00 1,00 1,00 1,000 1 1 1 2,817 0,050 0,050 1,120 1,120 1,170 1,170
2 8 1,00 1,00 1,00 1,00 1,000 1 2 2 1 0,350 0,493 1,408 0,355 0,050 0,050 0,350 0,350 0,400 0,400
1 9 1,00 1,00 1,00 1,00 1,000 1 1 1 2,817 0,102 0,102 1,480 1,480 1,582 1,582
1 10 1,00 1,00 1,00 1,00 1,000 1 1 1 1,418 0,705 0,000 0,000 1,418 1,418 1,418 1,418

j mj Xj
[1] λj

[bb] μj
[bb] ρi

[bb] ni,q
[bb] ni,s

[bb] ni
[bb]

1 2 0,710 1,000 1,408 0,355 0,102 0,710 0,812
2 ∞ 0,470 1,000 2,128 0,000 0,470 0,470
3 ∞ 0,300 1,000 3,333 0,000 0,300 0,300

Ruleset Eva. Req.
Weather Service
Traffic Service

Traffic Server

Namej

Multiplexer Section

Initialization Request

Weather Server

Control Unit

Mapping Request
Evaluation Request

Dynamic Evaluation Section

ECA-E. WS Proxy

ERMF Server

Serveri
[bb]

ECA-E. Rule Engine
ECA-Engine Cont.

ERMF-System

Web Services Req.

Request Generation Timer Application

M/M/m rsp. M/M/∞

Service Request Section Server Section

Forecast Request

Weather Serv. Hdl.
Traffic Service Hdl.

SRqi
[bb]

Alert Request Action Performer
ECA-E. Rule Engine

Experimental Parameters
3

1,0000
nges

[1]

λ[1]

5.2.5 Simulation

For the simulation the Perfact framework is used [42]. In order to run the simulation the fol-
lowing steps are taken iteratively.

First building blocks and their connections are defined. This includes already existing compo-
nents as well as their interactions. For this case study the external web services exist, whereas
the whole ERMF system is simulated. Communication between both sides is taking place on
the actual application server. The simulated components also communicate with each other
(see figure 5.7).

Next, the system is enriched with setup information needed for the simulation. Connection
parameters for the external web services are defined, and the behavior of the generic simula-
tion components (GSC) is customized. In order to run the simulation the dynamic architecture
is defined by use cases. The model is based on the UML 2.0 Sequence Charts 10. All compo-
nents defined in the first stage can be used in the scenarios. For each activity the performance
relevant behavior can be defined by choosing a scenario from a predefined set. Work on stor-
ages, algorithmic computation, and main memory consuming processes as the core parts of
performance relevant behavior has been identified.

10Object Management Group, Unified Modeling Language Specification v. 2.0, OMG UML 2.0 Superstructure
Specification, formal/05-07-04, http://www.omg.org/spec/UML/2.0/, July 2005

171

http://www.omg.org/spec/UML/2.0/

CHAPTER 5. FMC-QE CASE STUDIES

During the simulation phase generic simulation components are deployed and configured ac-
cording to this setup. After executing the simulation the system components are triggered
according to the workload intensity and performance measurements are traced. The trace data
is collected and aggregated then into simulation results where they can be used for comparison
and further evaluation of the system.

5.2.6 Summary

Figure 5.12 shows a comparison between simulated results, calculated results and measure-
ments of the real system. The values are computed by changing experimental data in the
FMC-QE Tableau and running experiments in the real system and the Perfact simulation. The
calculated results are comparable as long as the system is operating under normal conditions
(ρ < 1). Running at its limits (ρ ≥ 1), the calculation predicts infinite response times due to the
mathematical formulas of Queueing Theory, whereas the real system crashes because of buffer
overflows. Similarly the simulation predicts invalid values. In this case the calculated results
of FMC-QE helped in understanding the system crashes due to overload and in finding and
correcting an error in the implementation of Perfact.

���

����

����

����

����

����

����

����

����

����

����

���

��	
��

����	����������������
���

�
����

�	��������
�

�	���

���� !"#$�

�%&��

'	
(
�
�
)
��
��
�

�*
(
�
��
�
�
)
�

�
�
�
+
�
	
�
�
�,

�
�
�-
�
�
.

���
(�����
��-��/���
�0�.

Figure 5.12: ERMF - Chart: Result Comparison

172

5.3. MODELING OF INTERACTING HIERARCHICAL PROTOCOL STACKS - AXIS2

5.3 Modeling of interacting hierarchical Protocol Stacks - Axis2

As a result of a collaboration inside the Research Group, the case study "Analysis and Modeling
of the Axis2 Web Service Framework with FMC-QE" was prepared. In this case study the Axis2
Web Service framework was modeled using FMC-QE. This case study was a Proof-of-Concept
for the hierarchical modeling and the performance prediction of models with synchronization
and multiplexers. Another specialty was the modeling of worker threads and pipelines of
sequential tasks. On the basis of this work the paper "Hierarchical Modeling of the Axis2
Web Services Framework with FMC-QE" was written and presented at the 3rd International
Conference on COMmunication Systems softWAre and middlewaRE (COMSWARE 2008) in
Bangalore, India in 2008 [37].

This section is based on this paper and structured as follows: section 5.3.1 provides an overview
on the main components of Axis2, the Apache framework for Web Services and some details
of the SOAP processing. In section 5.3.2 the Axis2 FMC-QE model including the Input- and
Output-Flows is described. In order to initialize the FMC-QE Tableau in section 5.3.4, perfor-
mance measurements of an Axis2 installation are conducted in a test environment. This testbed
is described in section 5.3.3. Finally, some results are summarized in section 5.3.5.

The author wants to thank the co-authors of the paper "Hierarchical Modeling of the Axis2 Web
Services Framework with FMC-QE", especially Flavius Copaciu, for the cooperation.

5.3.1 Axis2 Web Services Framework

Axis2 is a highly modular web service framework developed under the guidance of the Apache
Software Foundation11. Originally the first implementation was developed by IBM under the
name soap4j12, later donated to the Apache Software Foundation and offered to the public as
Apache SOAP13. This implementation was a proof of concept with the goal to promote web
services and to offer to the users a first contact with this, at that time new, technology. The sec-
ond iteration, called Apache Axis14, was developed with the goal of improving the support for
the web services specifications (collectively known as WS-∗) that appeared in the community.
Axis215, the third iteration, is a redesign of the original Axis code with the purpose of making it
easier to provide support for the WS-∗ standards as well as improving the performance issues
that were noticed with the previous implementations.

The Axis2 architecture can be split into two main parts: the core components and the non-core
components. Most of the non-core components are available as plug-in modules with multiple
implementations available to choose from.

In a system build using Axis2 the framework can be deployed on the service consumer side,
the service provider side or both sides of the system. One of such system built with Axis2 is
presented in figure 5.13. The client application encapsulates the client logic and makes use
of the Axis2 libraries to invoke services offered by the service provider. On the server side,
Axis2 is deployed as a web application inside a Tomcat16 application container. Axis2 does not

11Apache Software Foundation, Website: http://www.apache.org/, February 2010
12IBM, SOAP for Java, Website: http://www.alphaworks.ibm.com/tech/soap4j/, August 2007
13Apache Software Foundation, Apache SOAP, Website: http://ws.apache.org/soap/, August 2007
14Apache Software Foundation, Web Services - Axis, Website: http://ws.apache.org/axis/, August 2007
15Apache Software Foundation, Apache Axis2 Architecture Guide, Website: http://ws.apache.org/axis2/1_3/

Axis2ArchitectureGuide.html, August 2007
16Apache Software Foundation, Apache Tomcat Servlet Container, Website: http://tomcat.apache.org, August

2007

173

http://www.apache.org/
http://www.alphaworks.ibm.com/tech/soap4j/
http://ws.apache.org/soap/
http://ws.apache.org/axis/
http://ws.apache.org/axis2/1_3/Axis2ArchitectureGuide.html
http://ws.apache.org/axis2/1_3/Axis2ArchitectureGuide.html
http://tomcat.apache.org

CHAPTER 5. FMC-QE CASE STUDIES

depend on Tomcat, it can be deployed as an web application on any J2EE compliant servlet
container. The services themselves, containing the business logic, are deployed inside Axis2.
For an extensive discussion regarding figure 5.13 as well as the other diagrams that form the
model please refer to section 5.3.2.

��������	��

���
�����������������
���

���
������������

����
������

�����������
�

��������

���
����

������������

�����

��
��
������ �
���!��!��

"�

��!��

�������

#!������������

$�%!����

&!�!�

"��

�����

���������

�������

��'��(�)
����� *!�'��(�)
�����

��'��(�)
����� *!�'��(�)
�����

Figure 5.13: Axis2 Based System - Block Diagram

More then a SOAP17 processing stack Axis2 provides the functionality required to address
many of aspects that appear when building a service-oriented environment [112]:

1. Framework to develop, deploy, invoke and manage Web Services.

2. Extensible SOAP processing model.

3. Framework for supporting different Message Exchange Patterns (MEPs), including syn-
chronous as well as asynchronous service invocation.

4. Modular transports and data bindings.

17W3C, SOAP Version 1.2, W3C Recommendation 27 April 2007, http://www.w3.org/TR/soap12, February 2010

174

http://www.w3.org/TR/soap12

5.3. MODELING OF INTERACTING HIERARCHICAL PROTOCOL STACKS - AXIS2

5. WS-∗ support via pluggable modules, e.g. WS-Addressing, WS-ReliableMessaging, WS-
Coordination or WS-Security [50].

6. Support for Message Transmission and Optimization Mechanism (MTOM18).

7. Representational State Transfer (REST19) support.

SOAP Processing in Axis2

The Axis2 SOAP processing engine and the different processing stages are in the focus of this
case study and will be presented in detail in the following sections. In Axis2 the SOAP pro-
cessing is implemented as a three layer architecture consisting of handlers, phases and flows
[32].

The processing handlers are situated at the lowest abstraction level in this three layer architec-
ture. These handlers are the smallest components in the SOAP processing flow, encapsulating
well defined functionality. All handlers implement a well defined interface.

The processing phases are located on the second abstraction level. Each phase manages a spe-
cific, logically independent task. The phases implement the same interface as the handlers, and
this makes it possible to implement phases through a single handler. In order to realize com-
plex functionality, multiple handlers are chained together implementing a phase. The position
of a single handler inside a phase can be specified via a set of rules in one of the configuration
files of Axis2. The SOAP processing engine in Axis2 is based on a set of predefined phases and
can be extended by user defined phases. The most important phases in Axis2 are20:

• Transport - responsible for processing transport related information, e.g. transport head-
ers, and adding this data to the Axis2 message context; in the output flow this phase is
responsible for invoking the associated transport handler.

• Pre-Dispatch - in this phase data used for dispatching the message is gathered, e.g. from
the HTTP or SOAP headers.

• Dispatch - responsible for matching the incoming message with one of the services de-
ployed in the Axis2 instance.

• User Defined Phases - used for enhancing the capabilities of the framework.

The processing flows belong to the highest hierarchical level in the processing model. These
flows are built by chaining multiple processing phases together. Each incoming or outgoing
service request is processed by one of the incoming or outgoing flows (InFlow, OutFlow).

The SOAP processing model of Axis2 can be extended in several ways:

• Adding user defined phases: New phases, implemented via single or multiple handlers,
can be inserted in the incoming and outgoing flows. This way new functionality is added
to the system.

18W3C, SOAP Message Transmission Optimization Mechanism, W3C Recommendation 25 January 2005, http:
//www.w3.org/TR/soap12-mtom/, February 2010

19Representational State Transfer, REST, In: Roy Thomas Fielding, Architectural Styles and the Design of
Network-based Software Architectures, Dissertation, University of California, Irvine, 2000, Website: http://www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm, February 2010

20Apache Software Foundation, Web Services - Axis, Website: http://ws.apache.org/axis/, August 2007

175

http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://ws.apache.org/axis/

CHAPTER 5. FMC-QE CASE STUDIES

• Adding new handlers: This is done to change or enhance the functionality of one of the
existing phases, and these changes can not be done in a user specified phase.

• Adding a new module: Complex Axis2 extensions can also be implemented as modules.
These usually are employed when implementing WS-∗ extensions (e.g. WS-Addressing)
and are a set of new modules and/or user phases logically grouped together. The mod-
ules are realized as jar files containing a set of handlers and an XML descriptor that spe-
cifies the placement of each handler in the processing flows. The modules have to be
deployed first and then enabled in the Axis2 configuration files.

5.3.2 Axis2 Model

Axis2 can be used in two different ways, a standalone mode or deployed inside an applica-
tion server. Due to the limitations of the standalone implementation it is usually deployed on
application servers as a web application. This second case is already shown in figure 5.13.

This figure 5.13 describes the mechanism employed when new service requests are received.
After the requests pass the Admission Control, they are queued in the Request Queue. Then the
Dispatcher is responsible for allocating available threads from the Thread Pool for processing
the service requests. The allocated thread performs all the processing required by the service
request and is returned to the pool as soon as the processing has ended. The size of the thread
pool is not static, it grows during the start phase, then it stabilizes between a minimum and
a maximum thread count. New threads can be spawned to deal with usage peeks, and idle
threads are removed from the pool after a certain period of time. As soon as the processing of
a service request has been completed, the service response is sent. The Departure Control shows
the processing performed upon outgoing service responses.

���
�����	�
���
���
�������
��

���

������

������

�����
���
���
�����	�
���
���
 �!���	
���

�����	�
���
���
�������
"�
���

���

#�����	�

 �!���	

∞

∞

���
�����	�
$�������

%�&��

���

������

'�	����

Figure 5.14: Axis2 Dynamic Behavior - Petri Net

176

5.3. MODELING OF INTERACTING HIERARCHICAL PROTOCOL STACKS - AXIS2

The dynamic behavior of the system is presented in figure 5.14. The external world represent-
ing the clients generating service requests is modeled via the Generate Requests transition. This
transition is at hierarchical level [1] just as the Supervise and Execute Service Request transition
used to model the Axis2 instance. The processing threads are represented using the hierarchical
level [2] transition Execute Service, while the processing flows and the business logic associated
with the service are represented via the corresponding level [3] transitions. In section 5.3.2
the two processing flows are presented in detail. The service requests queue is represented by
the infinite place between level [1] and level [2] transitions. By default, Axis2 uses an infinite
queue, as shown in the picture. If a specific queue size is set, the model has to be adapted by
replacing the infinite place by a finite, multi-token place.

��� ��� ��� ��� ���

�	
	��
��
��	��	�

��
��
��

�	
	��
	��	��	�

�	��	���

��
	�
��������	

���	������
��
��

��	��
��
��	��	�

��
��
��

���	����	��
��

��	��
	�

�	����	��	��	�

�	��	���

���
	

�
����
��
��	��	�

��
��
���
����

�	��	����
����
	�

��

�!��

"�
#��$��	��	�

��
��
��

%�
��	�"�
#��$

�	��	���

"�
#��$�%�
��	�

&	���'	"�
��	��	�

��
��
��&	���'	"�

�	��	���&	���'	"�
��	��	�
��

�!��

(������)	
	� �
�
'��	�*
��
��
��)	
	� �
	�(�����
�	��	���(������)	
	� �
	�

��

�!��

"�	��
��
"�
�(+��	��	�*
��
��
��"�	��
��
"�
�(+��	
�	��	���"�*"�
�(+��	����

��

�!��

��	��
��
��	��	�

��
��
��

��	��
	��	����	

�	��	���

�	����	���	��
	�

,���
	���-�'����	��	�

��
��
����	��
	�,���
	���-�'��

�	��	���,���
	���-�'��
��

�!��

.
#��$��	��	�

��
��
�

%�
��	�.
#��$

�	��	��

.
#��$�%�
��	�

)���*�.
�
�
�	��	��	�

��
��
��)���*�.
�
�
�	�

�	��	���.
�
�
�	�)����
�+	��
��

�!��

)����
�+��	��	�

��
��
��)����
�+

�	��	���)����
�+	�

%//(�-���
��
�)���*��	�*
��
��
��)���*�,*��
�%//(�-��*
�	��	���%//(�-��*�)����
�+	��

��

�!��

�"�(�&�',����)���*��	�*
��
��
��)���*�,*��
��"�(�&�',���
�	��	����"�(�&�',����)����
�+	��

��

�!��

0�.�"�*�)���*��	�*
��
��
��)���*�,*��
�0�.�"�*
�	��	���0�.�"�*�)����
�+	��

��

�!��

��

�!
��

"�	��
��
.
�(+��	��	�*
��
��
��"�	��
��
.
�(+��	
�	��	���"�*.
�(+��	����

��

�!��

����	���)���*��	�*
��
��
��)���*�,*��
�����	��
�	��	�������	���)����
�+	�

��

�!��

(�)����
�+��	��	�

��
��
��(�)����
�+
�	��	���(�)����
�+	�

��

�!��

)	����
��	��	�

��
��
��)	����
�
�	��	���)	����
	�

��

�!��

�	��	�
�0�.�)���*��	�*
��
��
��)���*�,*��
��	�*�0�.

�	��	����	��	�
�0�.�)����
�+	�
��

�!��

/��
����
��	��	�

��
��
��/��
����

�	��	���/��
����
	�

�"�(���
��
�)���*��	�*
��
��
��)���*�,*��
��"�(���
��

�	��	����"�(���
��
�)����
�+	�

��

�!��

��

�!
��

��

�!
��

��

�!
��

��

�!
��

Figure 5.15: Axis2 Hierarchical Service Request Structure - Entity Relationship Diagram

177

CHAPTER 5. FMC-QE CASE STUDIES

The service request structure is presented in figure 5.15. This figure describes the hierarchi-
cal structure of the modeled Axis2 Service Request. This diagram describes among others the
mapping between Petri Net transitions and agents in the Block Diagram, for example the Exe-
cute Service is handled by the Worker Thread. Besides this, the hierarchical levels and traffic flow
coefficients are presented.

Axis2 Flows

In the Axis2 framework, important parts are the four SOAP processing flows that are part
of the framework core: InFlow, OutFlow, InFaultFlow and OutFaultFlow. The first two are
responsible for input and respectively output processing, while the last two are responsible for
input and output processing in the case that errors have appeared. The error processing flows
are quite similar to the regular ones and no longer considered.

The Petri Net detailing the input flow is presented in figure 5.16. This flow is the most complex
one in this case study, spawning over three hierarchy levels, from level [3] to level [5].

���
�����	
��

���

����������
�

���
���	����

���
���	�����
������
�
�������

���
���	����
������
�
�����	�

���
���	�������

�� ��!
"�#�
�$

���
���	��������

��
��!�
%
����
�

���

���	�����

��������

���

�	�����
���

!����

���

!�����	����

���

����$	�

���
���	��������

�� ��!�
����
�

���
���	��������

����&'����

���

Figure 5.16: Axis2 Input Flow - Petri Net

The output flow, presented in figure 5.17, is simpler than the input flow and has only two
hierarchical levels. This simplification is explained by the fact that the output flow has to take
into account parameters that have been set during the input flow and by this the range of
possible changes that can appear has been reduced. For example, if during the input flow the
transport protocol has been decided as HTTP, the output flow will use this information and
will not have to do any extra processing in order to determine a transport stack.

178

5.3. MODELING OF INTERACTING HIERARCHICAL PROTOCOL STACKS - AXIS2

���
�����	
��
����

���
��	��
���
��

����	

���

�	
	����	

������

���

�	����	

��

���

������

Figure 5.17: Axis2 Output Flow - Petri Net

When comparing the graphical representation from figure 5.14 and 5.16 with the ones found in
section 3.3.3, it can be noticed that the transitions have been simplified. This has been done by
removing the place representing the queued service requests waiting to be served. This sim-
plification is possible because there are no queues in the processing flows. All the transitions
belonging to the same thread will start executing as soon as the operation corresponding to the
previous transition has finished. Inside Axis2 the only place where service requests are being
queued is the queue in front of the Thread Pool.

Extending the Axis2 Model

One of the strengths of Axis is its flexibility and the possibilities to customize its behavior. The
core of the system, presented in section 5.3.2, can be extended in order to incorporate other
WS-∗ extension, deployed as modules, that can be enabled or disabled individually for each
service or group of services.

When a new module is added to the handler chain and all services make use of that module,
the model could be extended. Such changes could be reflected in the dynamic structure of
the model by adding new handlers or phases in the existing handler chains, according to the
specification of the newly activated module.

It is also possible to have specific modules activated and used only by some of the deployed
web services, as mentioned before. In order to cover such a case a decision-making part has
to be integrated in the model, as illustrated in figure 5.18, where the Encrypt handler is not
mandatory but optional. If encryption is activated, the service responses will be processes via
the Encrypt handler. If encryption is not used, no processing will be performed, as indicated by
the no-operation (NOP) transition.

For this situation it is necessary to determine the usage probability of the optional handler and
to extend the model to incorporate this, as in figure 5.18. This solution is appropriate if most of
the services follow one branch and only a small percent follows the other. The drawback of this
solution is the fact that when there are many optional handlers, treating them through averages
leads to a loss of representativity of the final results. This can be considered acceptable when
such cases account only for a small amount of the total service requests.

179

CHAPTER 5. FMC-QE CASE STUDIES

���
�����	
�	�
����
�����������
�����	��

����������

�������	�

����������

���
�������	�

�����	
�
�����

���

�	����	�
� ���

�������

!"
���#

$
���	

!"
���#

$
���	

Figure 5.18: Axis2 - Optional Handlers

The second solution to this problem implies transforming the scenario into a multiclass one.
Services that use the same path or closely related paths through the handler chain can be
grouped together in service classes and the modeling can be done for these classes. Both of
these approaches can be modeled and evaluated with FMC-QE.

5.3.3 Testbed Description

In order to perform the performance evaluation and prediction using FMC-QE a benchmark
of a server running Axis2 has been done. The benchmarking has been done by using the
Java method call System.getNano(). According to JAVA API documentation 21 the method re-
turns the current value of the most precise available system timer in nanoseconds and provides
nanosecond precision, but not necessarily nanosecond accuracy. On Apple Mac OS X 10.422 this
method delivers results with micro second precision. The Axis2 code has been extended with
measuring points connected to each handler.

The server instance runs on an Apple MacBook Pro machine with an Intel Core 2 Duo CPU at
2.16 GHz and 2 GB RAM. The machine runs Axis2 version 1.2 inside a Tomcat 6.0.10 application
server on a Mac OS X 10.4.10 with Java 1.5.0_07. The experiments were repeated 1.000 times,
and the mean value corresponding to each handler has been calculated. For the experiments
the service Version available by default with each Axis2 distribution has been invoked.

5.3.4 FMC-QE Tableau

With the the help of the Tableau, shown in table 5.3, performance predictions could be derived.
In this Tableau, the special behavior of worker threads and a worker pool, as described in this case
study, is modeled. The worker threads and the corresponding logical servers (level [2] and

21Oracle Corporation, Java 2 Platform Standard Edition 5.0 API Specification, http://java.sun.com/j2se/1.5.0/
docs/api/, February 2010

22Apple Inc., Mac OS X, newer Version 10.6 Snow Leopard, Website: http://www.apple.com/macosx/, February
2010

180

http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/
http://www.apple.com/macosx/

5.3. MODELING OF INTERACTING HIERARCHICAL PROTOCOL STACKS - AXIS2

below) are modeled as infinite servers with a multiplex coefficient of m[bb]
i,mpx = #Workers

#CPUs . While
the queued service requests are queued at the worker pool, the system is modeled as an M/M/n
server with the corresponding queue and the aggregated service rates of the worker threads.

Table 5.3: Axis2 - Tableau (see Appendix - Table B.11)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

4 1 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0006 0,400 689,66 0,002 0,000 0,000 0,012 0,001 0,012 0,001
4 2 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0045 0,400 89,89 0,019 0,000 0,000 0,094 0,011 0,094 0,011
4 3 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0004 0,400 1000,00 0,002 0,000 0,000 0,008 0,001 0,008 0,001
4 4 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0004 0,400 930,23 0,002 0,000 0,000 0,009 0,001 0,009 0,001
3 5 1,00 1,00 1,00 1,00 8,42 5 1 5 170,65 0,000 0,000 0,123 0,015 0,123 0,015
3 5 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0325 0,400 12,33 0,137 0,000 0,000 0,683 0,081 0,683 0,081
4 6 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0006 0,400 645,16 0,003 0,000 0,000 0,013 0,002 0,013 0,002
5 7 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0329 0,400 12,15 0,139 0,000 0,000 0,693 0,082 0,693 0,082
5 8 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0003 0,400 1481,48 0,001 0,000 0,000 0,006 0,001 0,006 0,001
5 9 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0001 0,400 4000,00 0,000 0,000 0,000 0,002 0,000 0,002 0,000
5 10 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0001 0,400 4000,00 0,000 0,000 0,000 0,002 0,000 0,002 0,000
5 11 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0287 0,400 13,93 0,121 0,000 0,000 0,604 0,072 0,604 0,072
4 12 1,00 1,00 1,00 1,00 8,42 5 1 5 16,10 0,000 0,000 1,308 0,155 1,308 0,155
4 13 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0050 0,400 80,00 0,021 0,000 0,000 0,105 0,013 0,105 0,013
4 14 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0005 0,400 816,33 0,002 0,000 0,000 0,010 0,001 0,010 0,001
5 15 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0397 0,400 10,07 0,167 0,000 0,000 0,836 0,099 0,836 0,099
5 16 1,00 1,00 1,00 1,00 8,42 5 1 5 1 0,0437 0,400 9,14 0,184 0,000 0,000 0,921 0,109 0,921 0,109
4 17 1,00 1,00 1,00 1,00 8,42 5 1 5 11,98 0,000 0,000 1,757 0,209 1,757 0,209
3 18 1,00 1,00 1,00 1,00 8,42 5 1 5 6,59 0,000 0,000 3,193 0,379 3,193 0,379
2 19 1,00 1,00 1,00 1,00 8,42 5 1 5 5,26 0,000 0,000 4,000 0,475 4,000 0,475
1 20 1,00 1,00 1,00 1,00 8,42 1 5 5 0,400 2,11 0,800 2,216 0,263 4,000 0,475 6,216 0,738
1 21 1,00 1,00 1,00 1,00 8,42 1 1 1 118,0118 8,42 993,784 118,012 993,784 118,012

j mj Xj
[1]

1 2 0,190

Service Request Section

SRqi
[bb]

OpOut Phase Req.
OutFlow Request

MessageOut Req.
Encryption Req.

CPU
Namej

Multiplexer Section

Dynamic Evaluation Section

Policy Det.

Serveri
[bb]

Server Section

MessageOut Srv.
Encrypter

Policy Det. Req.

SOAP MB. Disp. R.
HTTP Loc. Disp.

OpIn Phase Srv

OutFlow Handler
OpOut Phase Srv.

SOAP Act. Disp.

OpIn Phase Req.
Business Logic R.

URI Op. Disp. Req.
Address Disp. Req.
Dispatch Request

Business Logic

Instance Disp.

PreDispatcher
Decrypter

HTTP Loc. Disp. R.
Disp. Instance Req.

Req. URI Disp.

SOAP MB Disp.
URI Op. Disp.
Address Disp.

Dispatcher
PreDispatch Req.

Decrypt Req.
SOAP Act. Disp. R.

Transporter
InFlow Handler
Service Exec.

External Source
System

λ[1]

Sup. and Ex. Req.
Generation Request

Req.t URI Disp. R.
Transport Request

InFlow Request
Execution Request

Experimental Parameters
nges

[1]

λbott
[1]

f
8,421
0,800
10,526
1000

Figure 5.19 shows the prediction of the response time of the whole system Rges in relation to
the overall arrival rate λ for a configuration with 5 worker threads and 2 CPUs. While in this
configuration the bottleneck throughput is λbott ≈ 10, 5 [SRq]

[s] , the response times grow rapidly

for λ > 9, 5 [SRq]
[s] . In addition to this, three other system configurations with more processors

are also shown in this figure as an example for the support in future system configuration
questions with different ranges of possible arrival rates.

λbott, 2 CPUs=
10,526

λbott, 3 CPUs=
15,789

λbott, 5 CPUs=
26,316

λbott, 4 CPUs=
21,053

2 CPUs 3 CPUs 4 CPUs 5 CPUs

0

2

4

6

8

10

12

0 5 10 15 20 25 30
λ [SRq]/[s] (5 Worker)

R
ge

s [
s]

Figure 5.19: Axis2 - Chart: Response Time - Arrival Rate

181

CHAPTER 5. FMC-QE CASE STUDIES

Figure 5.20 shows the dependence on the total number of service requests (nges) and the exter-
nal service time (Xext) as a result of the Response Time Law Xext = (nges/Ai)− Rsys. For the
initial configuration of 5 workers and 2 CPUs and an desired bottleneck utilization f = 0, 8
(λ = 8, 421 [SRq]

[s] , 1.000 clients could request the server every 2 minutes (118s) each. Diagrams
like this could lead to a better understanding of the clients behavior and the relation between
the number of clients and their external service time (Think Time [43]).

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400
nges [SRq] (5 Worker; 2 CPU; f=0,8; λ=8,421)

X e
xt

 [s
]

Figure 5.20: Axis2 - Chart: External Service Time - Population

In figure 5.21 the number of available CPUs is increased for the configuration of 5 workers and
an overall arrival rate of λ = 8, 421 [SRq]

[s] as an example for decision support of a system configu-
ration question under a specific load scenario. It can be seen that the increase to 3 CPUs results
in a strong improvement of the system performance, while in this special configuration more
CPUs do not result in a significant performance improvement. A configuration of 1 CPU is not
shown here because an arrival rate of λ = 8, 421 [SRq]

[s] is larger than the maximum bottleneck

throughput for this configuration (λbott, 1CPU = 5, 262 [SRq]
[s]).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 1 2 3 4 5 6
Number of CPUs (5 Worker; λ=8,421)

R
ge

s [
s]

Figure 5.21: Axis2 - Chart: Response Time - Number of CPUs

182

5.3. MODELING OF INTERACTING HIERARCHICAL PROTOCOL STACKS - AXIS2

During the evaluation differences have been noticed between the hierarchically estimated ser-
vice times and some measurements done at the phase level. The hypothesis is that the differ-
ences are due to Java object instantiation time, partially not taken into account in the bench-
mark.

5.3.5 Summary

In this section an analysis on Axis2 has been done and based on this, an FMC-QE model of
the framework has been developed. A complex system has been modeled using FMC-QE and
the methodology has shown to be suitable for modeling such systems and depicting their hier-
archical structure. A performance model of Axis2 has been done using measurements from
a test system. The results have confirmed the methodology and the usability of FMC-QE for
performance estimations. The experience and knowledge gathered through this process have
provided a better understanding of Axis2 and systems based on Axis2, and is to be of further
use in the implementation an adaptive system for service-based Systems by Flavius Copaciu
[36].

After setting up the FMC-QE model and Tableau of Axis2, performance predictions could be
performed in a fast and simple way. A set of parameters, e.g probabilities, service time or
number of CPUs, can be changed in the Tableau and allow to investigate the behavior of the
system under a broad range of possible configurations, as depicted in figures 5.19 to 5.21.

183

CHAPTER 5. FMC-QE CASE STUDIES

��
�

�
�
�
�
�
	�

�
�
�

��
�

�
�
�
��
�
�

�
�

�
�
�
�
�

��
�

�
�
�

�
��
�
�
	�

�
�
�

��
�

�
�
�
�
�
�
	

��
�

�
�
�
�
�
	�

�
�
�

��
�

�
�
�
��
�
�

�
�

��
�

��
�

�
�
�
�
�
	�

�
�
�
��
�
�
�

�
�

��

∞

��
�

!
�
�
�
"�

#
�
	$
"�
%

�&
�

#
�
�
��
	�
�
�

#
�
	

'
�
�
�
�

�&
�

(
�
	�
��

��
�

'
�
"��
)

�&
�

*
�
�
��

�

#
�
	

�&
�

�
�
��
)
�
	

�&
�

�
��
�
��
�
�	

��
�

!
�
�
�
"�

+
�
$
"�
%

�&
�

(
��
�
�
	�
�

�,
�

(
��
�
�
	�
�

�
�
�
�
�

�
�

-
�
�
��
�
�

�,
�

(
��
�
�
	�
�

�
�
�
�
�

�
�

.
�
+

#
�
/

�,
�

(
��
�
�
	�
�

�
/

�
�

�
#
-
'

*
�

�
�
�
)

�,
�

(
��
�
�
	�
�

�
/

�
�

!
�
�
'

�
�
�
�
	��
�

�,
�

(
��
�
�
	�
�

+�
�
	�
�
�
�

�&
�

#
�
�
��
	�
�
�
+�

'
�
�
�
�

�&
�

'
��
(
��
�
�
	�
�

�&
�

(
�
�
�)
�
	

�,
�

(
��
�
�
	�
�

�
/

�
�

�
#
-
'

-
�
	�
�
�

�,
�

(
��
�
�
	�
�

�
/

�
�

�
�
�
�
�
�
	

.
�
+

��
�

0
�
�
�
��
	�

�
�
�
�
�
�
	

∞

Figure 5.22: Axis2 - Dynamic - All (see Appendix - Figure C.4)

184

Chapter 6

Conclusions

This chapter summarizes the main contributions and gives an outlook on future work.

Contributions of FMC-QE

The new methodology FMC-QE contributes through:

• The extension of the modeling technique FMC for quantitative modeling and perfor-
mance predictions as a powerful approach to predict the quantitative behavior of systems
adapting FMCs 3-dimensional modeling space with service request structures, server
structures and dynamic control flow.

• A consistent modeling from the perspective of hierarchical service requests with a hi-
erarchical multi-level modeling through the usage of the Forced Traffic Flow Law and
the modeling of service requests as a tuple of value and [unit] like physical units.
Through this hierarchical modeling the model transformations and the complexity reduc-
tion through distinction of operational and control states allow the modeling and analysis
of complex hierarchical systems in steady state.

• A calculus based on hierarchical equilibriums in steady state with Little’s Law for rela-
tions within a hierarchical layer (horizontal) and the Forced Traffic Flow Law for relations
among hierarchical layers (vertical), deducing a system of equations used in development
of interpretable Tableau with easy to change system- and load-parameters which scales
for complex systems, without the state space explosion problem through achieving an
algorithmical complexity of the Tableau of approximately O(n) –> (n = number of service
stations).

• With the different levels of parallelism in both logical and multiplexer server structures,
FMC-QE gives the ability to compute a very broad range of possible system configura-
tions instantly. This number of possible system configurations is extended by the ability
to change probabilities and experimental parameters, like arrival rate and number of cir-
culating service requests through a strictly modeling of the outside world as servers with
a handling of open and closed system as special cases.

• The ability to model and compute multiplexer servers that serve many logical servers
(multiplex) which enables FMC-QE to model complex scenarios and the handling of mul-
ticlass scenarios integrated through multiplexers and partitioning.

185

CHAPTER 6. CONCLUSIONS

Contributions of the Author

While early ideas of FMC-QE were developed by Prof. Dr.-Ing. Werner Zorn, the author
contributed through completing and validating the methodology and making it accessible to
a broader community through this thesis including foundations, a description of the whole
methodology and the extension and usage of this methodology in examples and case studies.
These contributions are in particular:

In the chapters 2 and 3 the author contributed through validating, completing and updating
the results of Prof. Dr.-Ing. Werner Zorn through:

• The further development of the FMC-QE graphical notations.

• The development of a more implementation oriented Tableau in cooperation with Tomasz
Porzucek and Flavius Copaciu with a specification for parallel and branch request hand-
ling and a generalization and standard integration of the multiplexer in the Tableau as
well as the further development and integration of parallelism in both logical and multi-
plexer servers.

The chapter 4 contains the exclusive contribution of the author. These contributions are:

• The handling of closed networks through the integration of the summation method in
an iterative computation which complexity is independent from the overall number of
service requests in the system.

• The handling of semaphore synchronization scenarios through extending the idea of
modeling the critical resource through a multiplexer and combine this approach with
the summation method and ideas of the method of complementary delays with the goal
of precision and the reduction of computational complexity.

• The comparison of FMC-QE to other performance modeling and evaluation approaches.

• The integration of multiclass problems through a modified multiplexer.

In chapter 5, in cooperations with others, the author applied FMC-QE through case studies as
a proof of concept, mostly in the context of service based systems. The contributions of the
author were:

• The development of a larger FMC-QE model in order to show the scalability of the ap-
proach.

• The support in the quantitative modeling of a service based system as a case study to
compare the performance values of a real system, a simulation and the FMC-QE predic-
tions.

• The FMC-QE part in the modeling of the Axis2 Web Service Framework in order to im-
prove the hierarchical modeling diagrams and to focus on performance prediction of mul-
tiplexers and synchronizations.

186

Future Work

The most important future work is actually the implementation of an FMC-QE Tool in order
to open the methodology to a broader usage. This includes the development of a FMC-QE
tableaux interpreter as well as the development of transformations of other, possibly non hier-
archical, models to FMC-QE in order to further broaden the addressed systems, available for
modeling with FMC-QE.

Furthermore, this includes the extension of statistical evaluations, e.g. quantiles and approx-
imation of mathematical distributions through preprocessing, like Weibull or log-normal for
the service times and arrival rates. Suggested papers from the area of High Performance Com-
puting are: [76, 85] (Bags-of-Tasks, distributed systems, power awareness), [97] (cluster job
start time predictions through traces and simulation) and [47] (workload model for parallel
computers). A further investigation of performance bounds, like in [48, 49], is also interesting.

Another field of interest is a systematic comparison of the algorithmic complexity of FMC-QE
with different other methodologies.

Also the investigation of further usage domains and case studies is of interest. In the area of
dependable systems [99] the integration of performance modeling and performance prediction
into the research of dependable systems, called performability, is one possible topic. The pre-
diction of the influence in the performance for a gain in availability is an important question
and addressable. Related work in this area is also done in the research of Layered Queueing
Networks [59] (Dependable-LQN) where especially the performance modeling of a quorum
pattern in [109] is interesting. Another possible area of interest are mathematical/analytical
models for production planning in comparison to existing simulation methods. An interesting
domain is also the usage of the performance predictions of FMC-QE in the negotiation and
guaranteeing of service level agreements (SLAs).

187

Publications

Journal Articles

Stephan Kluth, Tomasz Porzucek, Flavius Copaciu, Werner Zorn: Quantitative Modellierung und
Analyse mit FMC-QE, PIK Special Issue on Service-oriented Computing, PIK - Praxis der Infor-
mationsverarbeitung und Kommunikation, 2008/4, pages 218-224, Special Issue Editors: Nico-
las Repp, Sebastian Hudert, Steffen Bleul, Editor: Hans Meuer, K. G. Saur Verlag, December
2008, ISSN Print 0930-5157, ISSN Online 1865-8342

Conference Contributions

Tomasz Porzucek, Mathias Fritzsche, Stephan Kluth and David Redlich: Combination of a Dis-
crete Event Simulation and an Analytical Performance Analysis through Model-Transformations, In
Roy Sterrit, Brandon Eames, Jonathan Sprinkle (Ed.): Proceedings of the 17th IEEE Interna-
tional Conference and Workshop on the Engineering of Computer Based Systems (ECBS 2010
- Oxford), 183-192, March 2010, IEEE Computer Society, Los Alamitos, CA, USA, ISBN: 978-0-
7695-4005-4

Tomasz Porzucek, Stephan Kluth, Flavius Copaciu and Werner Zorn: Modeling and Evaluation
Framework for FMC-QE, In: Ted Bapty, Brandon Eames (Ed.): Proceedings of the 16th IEEE
International Conference and Workshop on the Engineering of Computer Based Systems (ECBS
2009 - San Francisco), 237-243, IEEE Computer Society, Los Alamitos, CA, USA, April, 2009,
ISBN: 978-0-7695-3602-6

Marcel Seelig, Stephan Kluth, Tomasz Porzucek, Flavius Copaciu, Nico Naumann, Steffen
Kühn: Comparison of Simulation and Performance Modeling - A Case Study, in: David W. Bustard
and Roy Sterritt (Ed.): Proceedings of the 15th IEEE International Conference and Workshop
on the Engineering of Computer Based Systems (ECBS 2008 - Belfast), 49-56, IEEE Computer
Society, Los Alamitos, CA, USA, March 2008, ISBN: 978-0-7695-3141-0

Flavius Copaciu, Stephan Kluth, Tomasz Porzucek, Werner Zorn: Hierarchical Modeling of the
Axis2 Web Services Framework with FMC-QE, In: 3rd International Conference on COMmunica-
tion Systems softWAre and middlewaRE (COMSWARE 2008 - Bangalore), 74-81, IEEE Com-
puter Society Press, Los Alamitos, CA, USA, January, 2008, ISBN: 978-1-4244-1796-4

Doctoral Symposia Contributions

Stephan Kluth: Quantitative Modellierung des Leistungsverhaltens SOA-basierter Systeme mit FMC-
QE, In: Thomas Kühne, Wolfgang Reisig and Friedrich Steimann: Modellierung 2008 (Proceed-
ings of the Modellierung 2008 Doctoral Symposium), 229-232, In Series: Lecture Notes in Infor-
matics (LNI), Volume P-127, Gesellschaft für Informatik e.V. (GI), Bonn, Germany, March 2008,
ISBN: 978-3-88579-221-5

189

PUBLICATIONS

Reports

Stephan Kluth: Spring 2010 Activity Report, Presented at the Spring 2010 Workshop of the HPI
Research School on Service-Oriented Systems Engineering, Hasso-Plattner-Institute for Soft-
ware Systems Engineering, Potsdam, Germany, April 2010

Stephan Kluth: Handling of Closed Networks in FMC-QE, Presented at the Fall 2009 Workshop
of the HPI Research School on Service-Oriented Systems Engineering, Hasso-Plattner-Institute
for Software Systems Engineering, Döllnsee, Germany, October 2009. In: Christoph Meinel,
Hasso Plattner, Jürgen Döllner, Mathias Weske, Andreas Polze, Robert Hirschfeld, Felix Nau-
mann and Holger Giese (edt.): "Proceedings of the 4th Ph.D. Retreat of the HPI Research School
on Service-oriented Systems Engineering", Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam, Vol. 31, Universitätsverlag Potsdam, Pots-
dam, 2010, ISBN: 978-3-86956-036-6

Stephan Kluth: Spring 2009 Activity Report, Presented at the Spring 2009 Workshop of the HPI
Research School on Service-Oriented Systems Engineering, Hasso-Plattner-Institute for Soft-
ware Systems Engineering, Potsdam, Germany, April 2009

Stephan Kluth: FMC-QE - Hierarchies, Transformations and Rules, Presented at the Fall 2008
Workshop of the HPI Research School on Service-Oriented Systems Engineering, Hasso Plat-
tner Institute for Software Systems Engineering, Potsdam, Germany, October 2008. In:
Christoph Meinel, Hasso Plattner, Jürgen Döllner, Mathias Weske, Andreas Polze, Robert
Hirschfeld, Felix Naumann and Holger Giese (edt.): "Proceedings of the 3rd Ph.D. Retreat of
the HPI Research School on Service-oriented Systems Engineering", Technische Berichte des
Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam, Vol. 27, Uni-
versitätsverlag Potsdam, Potsdam, 2009, ISBN: 978-3-940793-81-2

Stephan Kluth: FMC-QE - Calculus, Presented at the Spring 2008 Workshop of the HPI Re-
search School on Service-Oriented Systems Engineering, Hasso-Plattner-Institute for Software
Systems Engineering, Potsdam, Germany, April 2008

Stephan Kluth: FMC-QE - Case Studies, Presented at the Fall 2007 Workshop of the HPI Re-
search School on Service-Oriented Systems Engineering, Hasso Plattner Institute for Software
Systems Engineering, Potsdam, Germany, October 2007. In: Profs. Dres. Christoph Meinel,
Andreas Polze, Mathias Weske, Jürgen Döllner, Robert Hirschfeld, Felix Naumann, Holger
Giese and Hasso Plattner (edt.): "Proceedings of the 2. Ph.D. retreat of the HPI Research School
on Service-oriented Systems Engineering", Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam, Vol. 23, Universitätsverlag Potsdam, Pots-
dam, 2008, ISBN: 978-3-940793-42-3

Stephan Kluth: FMC-QE - Positioning, Basic Definitions and Graphical Representation, Presented
at the Spring 2007 Workshop of the HPI Research School on Service-Oriented Systems Engi-
neering, Hasso-Plattner-Institute for Software Systems Engineering, Potsdam, Germany, April
2007

190

PUBLICATIONS

Other Publications

Stephan Kluth: Quantitative Modeling and Analysis with FMC-QE, In: Kai Bollue, Dominique
Gückel, Ulrich Loup, Jacob Spönemann, Melanie Winkler (Ed.): Dagstuhl 2010: Proceedings
of the Joint Workshop of the German Research Training Groups in Computer Science, DFG
Research Training Group 1298 AlgoSyn, RWTH Aachen University, Verlagshaus Mainz GmbH,
Aachen, 2010, p. 198, ISBN: 3-86130-146-6

Stephan Kluth: Performance Modeling and Performance Prediction with FMC-QE, In: Artin Avanes,
Dirk Fahland, Joanna Geibig, Siamak Haschemi, Sebastian Heglmeier, Daniel A. Sadilek,
Falko Theisselmann, Guido Wachsmuth, Stephan Weißleder (Ed.): Dagstuhl 2009: Proceed-
ings des gemeinsamen Workshops der Informatik-Graduiertenkollegs und Forschungskollegs,
Graduiertenkolleg METRIK, Institut für Informatik, Humboldt Universität zu Berlin, GITO
mbH - Verlag für Industrielle Informationstechnik und Organisation, Berlin, Germany, June
2009, p. 197-198, ISBN: 978-3-940019-73-8

Stephan Kluth: Quantitative Modeling and Analysis of Service-Based Systems, In: Malte Diehl,
Henrik Lipskoch, Roland Meyer, Christian Storm (Ed.): Proceedings des gemeinsamen Work-
shops der Graduiertenkollegs 2008, In: Trustworthy Software Systems, Graduiertenkolleg ver-
trauenswürdiger Software - Systeme (Trustsoft), University of Oldenburg, GITO mbH - Ver-
lag für Industrielle Informationstechnik und Organisation, Berlin, Germany, May 2008, p. 96,
ISBN: 978-3-940019-39-4

Stephan Kluth: Quantitative Modeling and Analysis of Service-oriented Architectures, In: Dagstuhl
zehn plus eins, Volume 1, Verlagshaus Mainz GmbH, Aachen, Germany, June 2007, p. 198,
ISBN: 3-86130-882-7

191

Bibliography

[1] Rémy Apfelbacher and Anne Rozinat. FMC Notation Reference Sheets. Online, May
2005. URL http://www.fmc-modeling.org.

[2] Rémy Apfelbacher, Andreas Knöpfel, Peter Aschenbrenner, and Sebastian Preetz. FMC
Visualization Guidelines. Hasso-Plattner-Institute, Potsdam, Germany, January 2005. URL
http://www.fmc-modeling.org.

[3] Francois Baccelli, Armand M. Makowski, and Adam Shwartz. The Fork-Join Queue and
Related Systems with Synchronization Constraints: Stochastic Ordering and Computable
Bounds. Advances in Applied Probability, 21(3):629–660, September 1989. ISSN 00018678.
URL http://www.jstor.org/stable/1427640.

[4] Gianfranco Balbo, Steven C. Bruell, and Subbarao Ghanta. Combining Queueing Net-
works and Generalized Stochastic Petri Nets for the Solution of Complex Models of Sys-
tem Behavior. IEEE Transactions on Computers, 37(10):1251–1268, October 1988. ISSN
0018-9340. DOI: http://doi.ieeecomputersociety.org/10.1109/12.5986.

[5] Gianfranco Balbo, Matteo Sereno, and Steven C. Bruell. Embedded Processes in Gener-
alized Stochastic Petri Nets. In Proceedings of the 9th IEEE International Workshop on Petri
Nets and Performance Models (PNPM’01), Los Alamitos, CA, USA, 2001. IEEE Computer
Society. ISBN 0-7695-1248-8. DOI: http://doi.ieeecomputersociety.org/10.1109/PNPM.
2001.953357.

[6] Gianfranco Balbo, Steven C. Bruell, and Matteo Sereno. Product Form Solution for Gen-
eralized Stochastic Petri Nets. IEEE Transactions on Software Engineering (TSE), 28(10):915–
932, October 2002. ISSN 0098-5589. DOI: http://dx.doi.org/10.1109/TSE.2002.1041049.

[7] Simonetta Balsamo and Giuseppe Iazeolla. An Extension of Norton’s Theorem for
Queueing Networks. IEEE Transactions on Software Engineering (TSE), 8(4):298–305,
July 1982. ISSN 0098-5589. DOI: http://doi.ieeecomputersociety.org/10.1109/TSE.1982.
235424.

[8] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios. Open,
Closed, and Mixed Networks of Queues with Different Classes of Customers. Journal
of the ACM (JACM), 22(2):248–260, 1975. ISSN 0004-5411. DOI: http://doi.acm.org/10.
1145/321879.321887.

[9] Falko Bause. Queueing Petri Nets: A Formalism for the Combined Qualitative and
Quantitative Analysis of Systems. In Proceedings of the 5th International Workshop on
Petri Nets and Performance Models (PNPM93 - Toulouse, France), pages 14–23, Los Alami-
tos, CA, USA, October 1993. IEEE Computer Society. ISBN 0-8186-4250-5. DOI: http:
//doi.ieeecomputersociety.org/10.1109/PNPM.1993.393439.

193

http://www.fmc-modeling.org
http://www.fmc-modeling.org
http://www.jstor.org/stable/1427640
http://doi.ieeecomputersociety.org/10.1109/12.5986
http://doi.ieeecomputersociety.org/10.1109/PNPM.2001.953357
http://doi.ieeecomputersociety.org/10.1109/PNPM.2001.953357
http://dx.doi.org/10.1109/TSE.2002.1041049
http://doi.ieeecomputersociety.org/10.1109/TSE.1982.235424
http://doi.ieeecomputersociety.org/10.1109/TSE.1982.235424
http://doi.acm.org/10.1145/321879.321887
http://doi.acm.org/10.1145/321879.321887
http://doi.ieeecomputersociety.org/10.1109/PNPM.1993.393439
http://doi.ieeecomputersociety.org/10.1109/PNPM.1993.393439

BIBLIOGRAPHY

[10] Falko Bause and Heinz Beilner. Eine Modellwelt zur Integration von Warteschlangen-
und Petri-Netz-Modellen. In Günther Stiege and J. S. Lie, editors, Proceedings of the
5. GI/ITG-Fachtagung: Messung, Modellierung und Bewertung von Rechensystemen, Braun-
schweig, 26.-28. September 1989, volume 218 of Informatik-Fachberichte, pages 190–204.
Springer, September 1989. ISBN 3-540-51713-8.

[11] Falko Bause and Peter Buchholz. Product Form Queueing Petri Nets: A Combination
of Product Form Queueing Networks and Product Form Stochastic Petri Nets. Technical
Report 529, Fachbereich Informatik Universität Dortmund, Dortmund, Germany, 1994.

[12] Falko Bause and Peter Buchholz. Aggregation and Disaggregation in Product Form
Queueing Petri Nets. In Proceedings of the 7th IEEE International Workshop on Petri Nets and
Performance Models (PNPM’97), pages 16–25, Los Alamitos, CA, USA, 1997. IEEE Com-
puter Society. DOI: http://doi.ieeecomputersociety.org/10.1109/PNPM.1997.595533.

[13] Falko Bause and Peter Kemper. Queueing Petri Nets. In E. Schnieder, editor, Proceedings of
the 3. Fachtagung "Entwurf komplexer Automatisierungssystem, Braunschweig (Germany), In:
Methoden, Anwendungen und Tools auf Basis von Petri-Netzen, pages 219–236. Verlag Tech-
nische Uni Braunschweig Inst. f. Regelungs- und Automatisierungstechnik, May 1993.

[14] Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets. Friedr. Vieweg & Sohn Verlags-
gesellschaft mbH, Braunschweig / Wiesbaden, Germany, 2 edition, 2002. ISBN 3-528-
15535-3.

[15] Falko Bause, Peter Buchholz, and Peter Kemper. Quantitative Evaluation of Computing
and Communication Systems - 8th International Conference on Modelling Techniques and Tools
for Computer Performance Evaluation Performance Tools ’95, volume 977 of Lecture Notes in
Computer Science (LNCS), chapter QPN-Tool for the specification and analysis of hierar-
chically combined Queueing Petri nets, pages 224–238. Springer, Berlin / Heidelberg,
Germany, 1995. ISBN 978-3-540-60300-9. DOI: http://dx.doi.org/10.1007/BFb0024318.

[16] Frank-Michael Becker, Gunter Boortz, Volkmar Dietrich, Lutz Engelmann, Christine
Ernst, Günter Fanghänel, Hein Höhne, Rudi Lenertat, Günter Liesenberg, Lothar Meyer,
Christa Pews-Hocke, Gerd-Dietrich Schmidt, Reinhard Stamm, and Karlheinz Weber.
Formeln und Tabellen für die Sekundarstufen I und II. Peatec, Gesellschaft für Bildung und
Technik mbH, Berlin, Germany, 6 edition, 1996. ISBN 3-89517-253-7.

[17] Gunter Bolch, Georg Fleischmann, and R. Schreppel. Ein funktionales Konzept zur Anal-
yse von Warteschlangennetzen und Optimierung von Leistungsgrößen. In Ulrich Her-
zog and Martin Paterok, editors, Messung, Modellierung und Bewertung von Rechensyste-
men, 4. GI/ITG-Fachtagung, Erlangen, 29. September - 1. Oktober 1987, Proceedings, volume
154 of Informatik-Fachberichte, pages 327–342, Berlin / Heidelberg, Germany, September
- October 1987. Springer. ISBN 3-540-18406-6 (Springer Berlin, Heidelberg, New York),
0-387-18406-6 (Springer New York, Berlin, Heidelberg).

[18] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor Shridharbhai Trivedi.
Queueing Networks and Markov Chains : Modeling and Performance Evaluation With Com-
puter Science Applications. John Wiley & Sons, Inc., 1998. ISBN 0-471-19366-6.

[19] Richard J. Boucherie and Matteo Sereno. A structural characterisation of product form
stochastic Petri nets. Technical Report BS-R9402, Department of Operations Reasearch,
Statistics, and System Theory, Centrum voor Wiskunde en Informatica, Amsterdam, Am-
sterdam, The Netherlands, 1994.

194

http://doi.ieeecomputersociety.org/10.1109/PNPM.1997.595533
http://dx.doi.org/10.1007/BFb0024318

BIBLIOGRAPHY

[20] Richard J. Boucherie and Matteo Sereno. On Closed Support T-Invariants and the Traffic
Equations. Journal of Applied Probability, 35(2):473–481, 1998. ISSN 00219002. URL http:
//www.jstor.org/stable/3215700.

[21] Nikolaos Bourbakis and Anya Tascillo. An SPN-Neural Planning Methodology for Co-
ordination of two Robotic Hands with Constrained. Journal of Intelligent and Robotic Sys-
tems - Springer Netherlands, 19(3):321–337, July 1997. DOI: http://dx.doi.org/10.1023/A:
1007985805475.

[22] Ilja N. Bronstein, Konstantin A. Semendjajew, Gerhard Musiol, and Heiner Muehlig.
Taschenbuch der Mathematik. Verlag Harri Deutsch, Thun, Frankurt am Main, 2 edition,
1995. ISBN 3-8171-2002-8.

[23] Giacomo Bucci and Enrico Vicario. Compositional Validation of Time-Critical Systems
Using Communicating Time Petri Nets. IEEE Transactions on Software Engineering (TSE),
21(12):969–992, December 1995. ISSN 0098-5589. DOI: http://doi.ieeecomputersociety.
org/10.1109/32.489073.

[24] Peter Buchholz. Hierarchical Structuring of Superposed GSPNs. IEEE Transactions on
Software Engineering (TSE), 25(2):166–181, March/April 1999. ISSN 0098-5589. DOI: http:
//doi.ieeecomputersociety.org/10.1109/32.761443.

[25] Burroughs B 6700 Handbook - Volume I Hardware (Form No. 5000276). Burroughs Coopera-
tion, City of Industry, CA, USA, January 1972.

[26] Burroughs B 6700 / B 7700 System Software Handbook (Replaces Volume II of Form No.
5000276). Burroughs Cooperation, City of Industry, CA, USA, July 1973.

[27] Jeffrey P. Buzen. Fundamental laws of computer system performance. In SIGMETRICS
’76: Proceedings of the 1976 ACM SIGMETRICS conference on Computer performance modeling
measurement and evaluation, pages 200–210, New York, NY, USA, 1976. ACM. DOI: http:
//doi.acm.org/10.1145/800200.806196.

[28] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event Systems.
Kluver Academic Publishers, 1999. ISBN 0-7923-8609-4.

[29] K. Mani Chandy and Doug Neuse. Linearizer: A Heuristic Algorithm for Queueing Net-
work Models of Computing Systems. Communications of the ACM, 25(2):126–134, Febru-
ary 1982. ISSN 0001-0782. DOI: http://doi.acm.org/10.1145/358396.358403.

[30] K. Mani Chandy, Ulrich Herzog, and Lin S. Woo. Parametric Analysis of Queuing Net-
works. IBM Journal of Research and Development, 19(1):36–42, January 1975.

[31] Peter Pin-Shan Chen. The entity-relationship model—toward a unified view of data.
ACM Transactions on Database Systems (TODS), 1(1):9–36, March 1976. ISSN 0362-5915.
DOI: http://doi.acm.org/10.1145/320434.320440.

[32] Eran Chinthaka. Web Services and Axis2 Architecture. IBM developerWorks - SOA
and Web services - Technical Library, November 2006. URL http://www-128.ibm.com/
developerworks/webservices/library/ws-apacheaxis2/.

[33] Giovanni Chiola, G. Bruno, and T. Demaria. Introducing a Color Formalism into Gener-
alized Stochastic Petri Nets. In Proceedings of the 9th European Workshop on Application and
Theory of Petri Nets, Venezia, Italy, June 1988.

195

http://www.jstor.org/stable/3215700
http://www.jstor.org/stable/3215700
http://dx.doi.org/10.1023/A:1007985805475
http://dx.doi.org/10.1023/A:1007985805475
http://doi.ieeecomputersociety.org/10.1109/32.489073
http://doi.ieeecomputersociety.org/10.1109/32.489073
http://doi.ieeecomputersociety.org/10.1109/32.761443
http://doi.ieeecomputersociety.org/10.1109/32.761443
http://doi.acm.org/10.1145/800200.806196
http://doi.acm.org/10.1145/800200.806196
http://doi.acm.org/10.1145/358396.358403
http://doi.acm.org/10.1145/320434.320440
http://www-128.ibm.com/developerworks/webservices/library/ws-apacheaxis2/
http://www-128.ibm.com/developerworks/webservices/library/ws-apacheaxis2/

BIBLIOGRAPHY

[34] Gianfranco Ciardo and Christoph Lindemann. Analysis of deterministic and stochastic
Petri Nets. In 5th International Workshop on Petri Nets and Performance Models, pages 160–
169, Toulouse, France, October 1993. IEEE Computer Society.

[35] J. L. Coleman, William Henderson, and Peter G. Taylor. Product form equilibrium distri-
butions and a convolution algorithm for stochastic Petri nets. Performance Evaluation,
26(3):159–180, 1996. ISSN 0166-5316. DOI: http://dx.doi.org/10.1016/0166-5316(95)
00023-2.

[36] Flavius Copaciu. A Framework for Adaptive Transport in Service-Oriented Systems
based on Performance Prediction. In Proceedings of the Fall 2006 Workshop of the HPI Re-
search School on Service-Oriented Systems Engineering, volume 18. Hasso Plattner Institute
for Software Systems Engineering, 2006.

[37] Flavius Copaciu, Stephan Kluth, Tomasz Porzucek, and Werner Zorn. Hierarchical Mod-
eling of the Axis2 Web Services Framework with FMC-QE. In 3rd International Conference
on COMmunication Systems softWAre and middlewaRE (COMSWARE 2008, Bangalore, In-
dia), pages 74–81. IEEE Computer Society, January 2008. ISBN 978-1-4244-1796-4. DOI:
http://doi.ieeecomputersociety.org/10.1109/COMSWA.2008.4554382.

[38] Pierre-Jacques Courtois. Decomposability, instabilities, and saturation in multiprogram-
ming systems. Communications of the ACM, 18(7):371–377, July 1975. ISSN 0001-0782.
DOI: http://doi.acm.org/10.1145/360881.360887.

[39] Pierre-Jacques Courtois. Error Analysis in Nearly-Completely Decomposable Stochastic
Systems. Econometrica, 43(4):691–709, July 1975. ISSN 00129682. URL http://www.jstor.
org/stable/1913078.

[40] Pierre-Jacques Courtois. Decomposabilty, Queueiing and Computer System Applications.
ACM Monograph Serices. Academic Press, Inc., New York, San Francisco, London, 1977.
ISBN 0-12-193750-X.

[41] Horst Czichos, editor. Hütte - Die Grundlagen der Ingenieurwissenschaften. Akademischer
Verein Hütte e.V., Berlin, Springer Verlag, Berlin Heidelberg, 31 edition, 2000. ISBN 3-
540-66882-9.

[42] Gero Decker, Volker Gersabeck, Jan Schaffner, and Marcel Seelig. Architecture-Based Per-
formance Simulation. In Sio Iong Ao, Oscar Castillo, Craig Douglas, David Dagan Feng,
and Jeong-A. Lee, editors, Proceedings of the International MultiConference of Engineers and
Computer Scientists (IMECS 2007), Lecture Notes in Engineering and Computer Science,
pages 1183–1191, Hong Kong, China, March 2007. IMECS, Newswood Limited. ISBN
978-988-98671-4-0, 978-988-98671-7-1.

[43] Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of Queueing Network
Models. ACM Computing Surveys (CSUR), 10(3):225–261, September 1978. ISSN 0360-
0300. DOI: http://doi.acm.org/10.1145/356733.356735.

[44] DIN66200:1992-03 - Betrieb von Rechensystemen - Begriffe, Auftragsbeziehungen. Deutsches
Institut für Normung e.V., March 1992.

[45] Edsger Wybe Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Program-
ming Languages: NATO Advanced Study Institute, pages 43–112. Academic Press, 1968.

196

http://dx.doi.org/10.1016/0166-5316(95)00023-2
http://dx.doi.org/10.1016/0166-5316(95)00023-2
http://doi.ieeecomputersociety.org/10.1109/COMSWA.2008.4554382
http://doi.acm.org/10.1145/360881.360887
http://www.jstor.org/stable/1913078
http://www.jstor.org/stable/1913078
http://doi.acm.org/10.1145/356733.356735

BIBLIOGRAPHY

[46] Susanna Donatelli and Matteo Sereno. On the Product Form Solution for Stochastic Petri
Nets. In Kurt Jensen, editor, Proceedings of the 13th International Conference on Application
and Theory of Petri Nets, number 616 in Lecture Notes in Computer Science, pages 154–
172, London, UK, June 1992. Springer. ISBN 3-540-55676-1. DOI: http://dx.doi.org/10.
1007/3-540-55676-1_9.

[47] Allen B. Downey. A parallel workload model and its implications for processor allo-
cation. Cluster Computing, 1(1):133–145, May 1998. ISSN 1386-7857 (Print) 1573-7543
(Online). DOI: http://dx.doi.org/10.1023/A:1019077214124.

[48] Derek L. Eager and Kenneth C. Sevcik. Performance bound hierarchies for queueing
networks. ACM Transactions on Computer Systems (TOCS), 1(2):99–115, 1983. ISSN 0734-
2071. DOI: http://doi.acm.org/10.1145/357360.357363.

[49] Derek L. Eager and Kenneth C. Sevcik. Bound hierarchies for multiple-class queuing
networks. Journal of the ACM (JACM), 33(1):179–206, January 1986. ISSN 0004-5411. DOI:
http://doi.acm.org/10.1145/4904.4992.

[50] Jaliya Ekanayake and Dennis Gannon. Common Architecture for Functional Extensions
on Top of Apache Axis2. Technical report, Indiana University Bloomington, 2006.

[51] Muhammad El-Taha. Lecture Notes - Queueing Networks (incompete classnotes). De-
partment of Mathematics and Statistics University of Southern Maine, August 2007.

[52] Gerard Florin and Stéphane Natkin. Generalization of Queueing Network Product Form
Solutions to Stochastic Petri Nets. IEEE Transactions on Software Engineering (TSE), 17
(2):99–107, 1991. ISSN 0098-5589. DOI: http://doi.ieeecomputersociety.org/10.1109/32.
67591.

[53] Greg Franks and C. Murray Woodside. Performance of Multi-level Client-Server Sys-
tems with Parallel Service Operations. In Proceedings of the First International Work-
shop on Software and Performance (WOSP98 - Santa Fe, New Mexico, United States), pages
120–130, New York, NY, USA, October 1998. ACM. ISBN 1-58113-060-0. DOI: http:
//doi.acm.org/10.1145/287318.287346.

[54] Greg Franks and C. Murray Woodside. Effectiveness of Early Replies in Client-Server
Systems. Performance Evaluation, 36-37:165–184, August 1999. ISSN 0166-5316. DOI:
http://dx.doi.org/10.1016/S0166-5316(99)00034-6.

[55] Greg Franks and C. Murray Woodside. Multiclass Multiservers with Deferred Oper-
ations in Layered Queueing Networks, with Software System Applications. In Pro-
ceedings of the 12th IEEE / ACM Int. Symp. on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS 2004), pages 239–248, Los Alamitos, CA,
USA, 2004. IEEE Computer Society. DOI: http://doi.ieeecomputersociety.org/10.1109/
MASCOT.2004.1348262.

[56] Greg Franks, Shikharesh Majumdar, John E. Neilson, Dorina C. Petriu, Jerome A. Ro-
lia, and C. Murray Woodside. Performance Analysis of Distributed Server Systems. In
Proceedings of the Sixth International Conference on Software Quality, pages 15–26, Ottawa,
Canada, October 28-30 1996.

[57] Greg Franks, Peter Maly, Murray Woodside, Dorina C. Petriu, and Alex Hubbard. Lay-
ered Queueing Network Solver and Simulator User Manual. Department of Systems and

197

http://dx.doi.org/10.1007/3-540-55676-1_9
http://dx.doi.org/10.1007/3-540-55676-1_9
http://dx.doi.org/10.1023/A:1019077214124
http://doi.acm.org/10.1145/357360.357363
http://doi.acm.org/10.1145/4904.4992
http://doi.ieeecomputersociety.org/10.1109/32.67591
http://doi.ieeecomputersociety.org/10.1109/32.67591
http://doi.acm.org/10.1145/287318.287346
http://doi.acm.org/10.1145/287318.287346
http://dx.doi.org/10.1016/S0166-5316(99)00034-6
http://doi.ieeecomputersociety.org/10.1109/MASCOT.2004.1348262
http://doi.ieeecomputersociety.org/10.1109/MASCOT.2004.1348262

BIBLIOGRAPHY

Computer Engineering, Carleton University, Ottawa, Canada, 6840 edition, December
2005.

[58] Greg Franks, Dorina Petriu, Murray Woodside, Jing Xu, and Peter Tregunno. Layered
Bottlenecks and Their Mitigation. In Proceedings of the 3rd International Conference on
Quantitative Evaluation of Systems (QEST2006), pages 103–114, Los Alamitos, CA, USA,
2006. IEEE Computer Society. ISBN 0-7695-2665-9. DOI: http://doi.ieeecomputersociety.
org/10.1109/QEST.2006.23.

[59] Greg Franks, Tariq Al-Omari, C. Murray Woodside, Olivia Das, and Salem Derisavi.
Enhanced Modeling and Solution of Layered Queueing Networks. IEEE Transactions
on Software Engineering (TSE), 35(2):148–161, 2009. ISSN 0098-5589. DOI: http://doi.
ieeecomputersociety.org/10.1109/TSE.2008.74.

[60] Jörn Freiheit and Armin Zimmermann. A Divide and Conquer Approach for the Perfor-
mance Evaluation of Large Stochastic Petri Nets. In Proceedings of the 9th IEEE Interna-
tional Workshop on Petri Nets and Performance Models (PNPM’01), Los Alamitos, CA, USA,
2001. IEEE Computer Society. DOI: http://doi.ieeecomputersociety.org/10.1109/PNPM.
2001.953359.

[61] Mathias Fritzsche and Jendrik Johannes. Putting Performance Engineering into Model-
Driven Engineering: Model-Driven Performance Engineering. In Holger Giese, editor,
MoDELS 2007 Workshops in: Models in Software Engineering, volume 5002/2008 of Lecture
Notes in Computer Science (LNCS), pages 164–175, Berlin / Heidelberg, Germany, 2008.
Springer. ISBN 978-3-540-69069-6. DOI: http://dx.doi.org/10.1007/978-3-540-69073-3_
18.

[62] Mathias Fritzsche, Michael Picht, Wasif Gilani, Ivor Spence, John Brown, and Peter Kil-
patrick. Extending BPM Environments of your choice with Performance related Deci-
sion Support. In U. Dayal et al., editor, Business Process Management (BPM2009), vol-
ume 5701/2009 of Lecture Notes in Computer Science (LNCS), pages 97–112, Berlin / Hei-
delberg, Germany, 2009. Springer. ISBN 978-3-642-03847-1. DOI: http://dx.doi.org/10.
1007/978-3-642-03848-8_8.

[63] Victor M. Glushkov. Automata theory and structural design problems of digital ma-
chines. Cybernetics and Systems Analysis, 1(1):3–9, January 1965. ISSN 1060-0396 (Print)
1573-8337 (Online). DOI: http://dx.doi.org/10.1007/BF01071436.

[64] William J. Gordon and Gordon F. Newell. Closed queueing systems with exponential
servers. Operations Research, 15(2):254–265, March - April 1967. ISSN 0030364X. URL
http://www.jstor.org/stable/168557.

[65] Baerbel Grimm, Willi Woerstenfeld, Peter Pfeil, and Karlheinz Martin. Das grosse Tafel-
werk. Volk und Wissen Verlag GmbH, Berlin, Germany, first edition, 1994. ISBN 3-06-
000730-6.

[66] Bernhard Gröne. Konzeptionelle Patterns und ihre Darstellung. PhD thesis, Hasso Plat-
tner Institut für Softwaresystemtechnik an der Universität Potsdam, Potsdam, Germany,
August 2004.

[67] Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory. John Wiley & Sons,
Inc., New York, NY, USA, 3rd edition, 1998. ISBN 0471170836.

198

http://doi.ieeecomputersociety.org/10.1109/QEST.2006.23
http://doi.ieeecomputersociety.org/10.1109/QEST.2006.23
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.74
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.74
http://doi.ieeecomputersociety.org/10.1109/PNPM.2001.953359
http://doi.ieeecomputersociety.org/10.1109/PNPM.2001.953359
http://dx.doi.org/10.1007/978-3-540-69073-3_18
http://dx.doi.org/10.1007/978-3-540-69073-3_18
http://dx.doi.org/10.1007/978-3-642-03848-8_8
http://dx.doi.org/10.1007/978-3-642-03848-8_8
http://dx.doi.org/10.1007/BF01071436
http://www.jstor.org/stable/168557

BIBLIOGRAPHY

[68] Martin Haas and Werner Zorn. Methodische Leistungsanalyse von Rechensystemen. R. Old-
enbourg Verlag GmbH, München, Germany / Vienna, Austria, 1995. ISBN 3-486-20779-2.

[69] Serge Haddad and Patrice Moreaux. Evaluation of High Level Petri nets by Means of
Aggregation and Decomposition. In Proceedings of the 6th IEEE International Workshop on
Petri Nets and Performance Models (PNPM’95), pages 11–20, Los Alamitos, CA, USA, 1995.
IEEE Computer Society. DOI: http://doi.ieeecomputersociety.org/10.1109/PNPM.1995.
524311.

[70] Serge Haddad, Patrice Moreaux, Matteo Sereno, and Manuel Silva. Structural Char-
acterization and Qualitative Properties of Product Form Stochastic Petri Nets. In J.-
M. Colom and M. Koutny, editors, Applications and Theory of Petri Nets 2001 (ICATPN
2001), volume 2075/2001 of Lecture Notes in Computer Science (LNCS), pages 164–183,
Berlin / Heidelberg, Germany, 2001. Springer. ISBN 978-3-540-42252-5. DOI: http:
//dx.doi.org/10.1007/3-540-45740-2_11.

[71] Philip Heidelberger and Kishor S. Trivedi. Analytic Queueing Models for Programs with
Internal Concurrency. IEEE Transactions on Computers, 32(1):73–82, January 1983. ISSN
0018-9340. DOI: http://doi.ieeecomputersociety.org/10.1109/TC.1983.1676125.

[72] William Henderson and Peter G. Taylor. Embedded Processes in Stochastic Petri Nets.
IEEE Transactions on Software Engineering (TSE), 17(2):108–116, 1991. ISSN 0098-5589. DOI:
http://doi.ieeecomputersociety.org/10.1109/32.67592.

[73] William Henderson, D. Lucic, and Peter G. Taylor. A Net Level Performance Analysis of
Stochastic Petri Nets. J. Australian Math. Soc. Series B, 31(2):176–187, 1989.

[74] Reinhard Höllerer. Modellierung und Optimierung von Bürgerdiensten am Beispiel der Stadt
Landshut. PhD thesis, Hasso-Plattner-Institute at the University of Potsdam, Potsdam,
Germany, June 2009. Draft Version.

[75] Anatol Holt and Frederic Commoner. Events and Conditions. In Jack B. Dennis, editor,
Record of the Project MAC conference on concurrent systems and parallel computation, pages
3–52, New York, NY, USA, 1970. ACM.

[76] Alexandru Iosup, Ozan Sonmez, Shanny Anoep, and Dick Epema. The performance of
bags-of-tasks in large-scale distributed systems. In HPDC ’08: Proceedings of the 17th
international symposium on High performance distributed computing, pages 97–108, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-997-5. DOI: http://doi.acm.org/10.1145/
1383422.1383435.

[77] James R. Jackson. Networks of waiting lines. Operations Reseach, 5(4):518–521, August
1957. ISSN 0030364X. URL http://www.jstor.org/stable/167249.

[78] James R. Jackson. Jobshop-like Queuing Systems. Management Science, 10(1):131–142,
October 1963. ISSN 00251909. URL http://www.jstor.org/stable/2627213.

[79] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley & Sons, New York, NY, USA,
1991. ISBN 0471503363.

[80] Kurt Jensen. Coloured Petri Nets, Volume 1, Basic Concepts, Analysis Methods and Practical
Use. Springer, Berlin, Germany, 2nd edition, Februar 1997. ISBN 3-540-60943-1.

199

http://doi.ieeecomputersociety.org/10.1109/PNPM.1995.524311
http://doi.ieeecomputersociety.org/10.1109/PNPM.1995.524311
http://dx.doi.org/10.1007/3-540-45740-2_11
http://dx.doi.org/10.1007/3-540-45740-2_11
http://doi.ieeecomputersociety.org/10.1109/TC.1983.1676125
http://doi.ieeecomputersociety.org/10.1109/32.67592
http://doi.acm.org/10.1145/1383422.1383435
http://doi.acm.org/10.1145/1383422.1383435
http://www.jstor.org/stable/167249
http://www.jstor.org/stable/2627213

BIBLIOGRAPHY

[81] Don H. Johnson. Origins of the equivalent circuit concept: the voltage-source equivalent.
Proceedings of the IEEE, 91(4):636– 640, April 2003. ISSN 0018-9219. DOI: http://doi.
ieeecomputersociety.org/10.1109/JPROC.2003.811716.

[82] Frank Keller. Über die Rolle von Architekturbeschreibungen im Software-Entwicklungsprozess.
PhD thesis, Hasso Plattner Institut für Softwaresystemtechnik an der Universität Pots-
dam, Potsdam, Germany, August 2003.

[83] David George Kendall. Stochastic Processes Occurring in the Theory of Queues and
their Analysis by the Method of the Imbedded Markov Chain. The Annals of Mathematical
Statistics, 24(3):338–354, September 1953. ISSN 00034851. URL http://www.jstor.org/
stable/2236285.

[84] Cheeha Kim and Ashok K. Agrawala. Analysis of the Fork-Join Queue. IEEE Trans-
actions on Computers, 38(2):250–255, February 1989. ISSN 0018-9340. DOI: http://doi.
ieeecomputersociety.org/10.1109/12.16501.

[85] Kyong Hoon Kim, Rajkumar Buyya, and Jong Kim. Power Aware Scheduling of Bag-of-
Tasks Applications with Deadline Constraints on DVS-enabled Clusters. In Proceedings
of the Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGRID
’07 -Rio De Janeiro), pages 541–548, Washington, DC, USA, May 14-17 2007. IEEE Com-
puter Society. ISBN 0-7695-2833-3. DOI: http://doi.ieeecomputersociety.org/10.1109/
CCGRID.2007.85.

[86] Matthias Kirschnick. The Performance Evaluation and Prediction SYstem for Queueing
NetworkS PEPSY-QNS. Technical Report TR-I4-18-94, Computer Science Department
Operating Systems - IMMD IV, Friedrich-Alexander-University , Erlangen-Nürnberg, Er-
langen, Germany, June 1994.

[87] Leonard Kleinrock. Communication Nets: Stochastic Message Flow and Delay. Dover Publi-
cations, New York, NY, USA, 1973. ISBN 0-486-61105-1.

[88] Leonard Kleinrock. Queueing Systems Volume I: Theory. John Wiley & Sons, New York,
NY, USA, 1975. ISBN 0-471-49110-1.

[89] Leonard Kleinrock. Queueing Systems Volume II: Computer Applications. John Wiley &
Sons, New York, NY, USA, 1976. ISBN 0-471-49111-X.

[90] Stephan Kluth. Analyse und Modellierung des ERP-Systems Sage Office Line. Master’s
thesis, Hasso Plattner Institute for Software Systems Engineering, Potsdam, Germany,
November 2005.

[91] Andreas Knöpfel. Konzepte der Beschreibung interaktiver Systeme. PhD thesis, Hasso Plat-
tner Institut für Softwaresystemtechnik an der Universität Potsdam, Potsdam, Germany,
August 2004.

[92] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental Modeling Concepts:
Effective Communication of IT Systems. John Wiley & Sons, März 2006. ISBN 0-470-02710-X.

[93] Stephen S. Lavenberg and Martin Reiser. Stationary State Probabilities at Arrival Instants
for Closed Queueing Networks with Multiple Types of Customers. Journal of Applied
Probability, 17(4):1048–1061, December 1980. ISSN 00219002. URL http://www.jstor.
org/stable/3213214.

200

http://doi.ieeecomputersociety.org/10.1109/JPROC.2003.811716
http://doi.ieeecomputersociety.org/10.1109/JPROC.2003.811716
http://www.jstor.org/stable/2236285
http://www.jstor.org/stable/2236285
http://doi.ieeecomputersociety.org/10.1109/12.16501
http://doi.ieeecomputersociety.org/10.1109/12.16501
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2007.85
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2007.85
http://www.jstor.org/stable/3213214
http://www.jstor.org/stable/3213214

BIBLIOGRAPHY

[94] Aurel A. Lazar and Thomas G. Robertazzi. Markovian Petri Net protocols with product
form solution. Performance Evaluation, 12(1):67–77, January 1991. DOI: http://dx.doi.
org/10.1016/0166-5316(91)90016-V.

[95] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quan-
titative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, Februar 1984. ISBN 0137469756.

[96] Abigail S. Lebrecht and William J. Knottenbelt. Response Time Approximations in Fork-
Join Queues. In Proceedings of the 23rd Annual UK Performance Engineering Workshop
(UKPEW), Edge Hill University, Ormskirk, Lancashire, UK, June 2007.

[97] Hui Li, David Groep, Jeff Templon, and Lex Wolters. Predicting job start times on clus-
ters. In Proceedings of the 2004 IEEE International Symposium on Cluster Computing and the
Grid (CCGRID ’04 - Chicago, IL), pages 301–308, Los Alamitos, CA, USA, 2004. IEEE Com-
puter Society. ISBN 0-7803-8430-X. DOI: http://doi.ieeecomputersociety.org/10.1109/
CCGrid.2004.1336581.

[98] John D. C. Little. A Proof of the Queueing Formula L = λ ∗W. Operations Research, 9(3):
383–387, May - June 1961. ISSN 0030364X. URL http://www.jstor.org/stable/167570.

[99] Miroslaw Malek, Bratislav Milic, and Nikola Milanovic. Analytical Availability As-
sessment of IT Services. In T. Nanya et al., editor, Service Availability - Proceedings
of the 5th International Service Availability Symposium (ISAS 2008 Tokyo, Japan), volume
5017/2008 of Lecture Notes in Computer Science, pages 207–224, Berlin / Heidelberg, Ger-
many, May 2008. Springer. ISBN 978-3-540-68128-1. DOI: http://dx.doi.org/10.1007/
978-3-540-68129-8_16.

[100] Manish Malhotra and Kishor S. Trivedi. A methodology for formal expression of hi-
erarchy in model solution. In Proceedings on the 5th International Workshop on Petri Nets
and Performance Models, pages 258–267, Toulouse, France, October 1993. IEEE Computer
Society. DOI: http://doi.ieeecomputersociety.org/10.1109/PNPM.1993.393445.

[101] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of generalized
stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM
Transactions on Computer Systems (TOCS), 2(2):93–122, 1984. ISSN 0734-2071. DOI: http:
//doi.acm.org/10.1145/190.191.

[102] Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and Giu-
liana Franceschinis. Modelling with Generalized Stochastic Petri Nets. Wiley Series in Paral-
lel Computing. John Wiley & Sons, Inc., New York, NY, USA, 1995. ISBN 0-471-93059-8.

[103] Hans Ferdinand Mayer. Über das Ersatzschema der Verstärkerröhre [On equivalent cir-
cuits for electronic amplifiers]. Telegraphen- und Fernsprech-Technik, 15:335–337, 1926.

[104] Michael Karl Molloy. On the integration of delay and throughput measures in distributed
processing models. PhD thesis, University of California, Los Angeles, 1981.

[105] Tadao Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings of the
IEEE, volume 77-4, pages 541–580. IEEE Computer Society, April 1989. DOI: http://doi.
ieeecomputersociety.org/10.1109/5.24143.

[106] Stéphane Natkin. Les Reseaux de Petri Stochastiques et leur Application a L’evaluation des
Systemes Informatiques. PhD thesis, Le Conservatoire national des arts et métiers (Cnam),
Paris, France, 1980.

201

http://dx.doi.org/10.1016/0166-5316(91)90016-V
http://dx.doi.org/10.1016/0166-5316(91)90016-V
http://doi.ieeecomputersociety.org/10.1109/CCGrid.2004.1336581
http://doi.ieeecomputersociety.org/10.1109/CCGrid.2004.1336581
http://www.jstor.org/stable/167570
http://dx.doi.org/10.1007/978-3-540-68129-8_16
http://dx.doi.org/10.1007/978-3-540-68129-8_16
http://doi.ieeecomputersociety.org/10.1109/PNPM.1993.393445
http://doi.acm.org/10.1145/190.191
http://doi.acm.org/10.1145/190.191
http://doi.ieeecomputersociety.org/10.1109/5.24143
http://doi.ieeecomputersociety.org/10.1109/5.24143

BIBLIOGRAPHY

[107] Edward Lawry Norton. Design of finite networks for uniform frequency characteristic.
Technical Report TM26-0-1860, Bell Laboratories, 1926.

[108] Tariq Omari, Greg Franks, C. Murray Woodside, and Amy Pan. Solving Layered
Queueing Networks of Large Client Server Systems with Symmetric Replication. In
Proceedings of the 5th International Workshop on Software and Performance (WOSP 2005),
pages 159–166, New York, NY, USA, July 2005. ACM. ISBN 1-59593-087-6. DOI:
http://doi.acm.org/10.1145/1071021.1071038.

[109] Tariq Omari, Salem Derisavi, Greg Franks, and C. Murray Woodside. Performance Mod-
eling of a Quorum Pattern in Layered Service Systems. In Proceedings of the 4th Inter-
national Conference on Quantitative Evaluation of SysTems (QEST2007 - Edinburgh), pages
201–210, Los Alamitos, CA, USA, September 2007. IEEE Computer Society. ISBN 0-7695-
2883-X. DOI: http://doi.ieeecomputersociety.org/10.1109/QEST.2007.25.

[110] Tariq Omari, Greg Franks, C. Murray Woodside, and Amy Pan. Efficient performance
models for layered server systems with replicated servers and parallel behavior. Journal
of Systems and Software, 80(4):510–527, April 2007. ISSN 0164-1212. DOI: http://dx.doi.
org/10.1016/j.jss.2006.07.022.

[111] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Variables and Stochastic
Processes. McGraw-Hill, New York, NY, USA, 4 edition, 2002. ISBN 0-07-366011-6.

[112] Srinath Perera, Chathura Herath, Jaliya Ekanayake, Eran Chinthaka, Ajith Ranabahu,
Deepal Jayasinghe, Sanjiva Weerawarana, and Glen Daniels. Axis2, Middleware for Next
Generation Web Services. In Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS’06), pages 833–840, Washington, DC, USA, September 2006. IEEE Computer
Society. DOI: http://doi.ieeecomputersociety.org/10.1109/ICWS.2006.36.

[113] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Bonn, Germany, 1962.

[114] Brigitte Plateau and Jean-Michel Fourneau. A methodology for solving Markov models
of parallel systems. Journal of Parallel and Distributed Computing, 12(4):370–387, 1991. ISSN
0743-7315. DOI: http://dx.doi.org/10.1016/0743-7315(91)90007-V.

[115] Tomasz Porzucek, Stephan Kluth, Flavius Copaciu, and Werner Zorn. Modeling and
Evaluation Framework for FMC-QE. In Proceedings of the 16th IEEE International Con-
ference on the Engineering of Computer-Based Systems (ECBS2008), pages 237–243, Los
Alamitos, CA, USA, April 2009. IEEE Computer Society. ISBN 978-0-7695-3602-6. DOI:
http://doi.ieeecomputersociety.org/10.1109/ECBS.2009.28.

[116] Tomasz Porzucek, Mathias Fritzsche, Stephan Kluth, and David Redlich. Combina-
tion of a Discrete Event Simulation and an Analytical Performance Analysis through
Model-Transformations. In Proceedings of the 17th IEEE International Conference on the
Engineering of Computer-Based Systems (ECBS2010), pages 183–192, Los Alamitos, CA,
USA, March 2010. IEEE Computer Society. ISBN 978-0-7695-4005-4. DOI: http://doi.
ieeecomputersociety.org/10.1109/ECBS.2010.26.

[117] Balaji Prabhakar, Nicholas Bambos, and T. S. Mountford. The Synchronization of Poisson
Processes and Queueing Networks with Service and Synchronization Nodes. Advances
in Applied Probability, 32(3):824–843, September 2000. ISSN 00018678. URL http://www.
jstor.org/stable/1428415.

202

http://doi.acm.org/10.1145/1071021.1071038
http://doi.ieeecomputersociety.org/10.1109/QEST.2007.25
http://dx.doi.org/10.1016/j.jss.2006.07.022
http://dx.doi.org/10.1016/j.jss.2006.07.022
http://doi.ieeecomputersociety.org/10.1109/ICWS.2006.36
http://dx.doi.org/10.1016/0743-7315(91)90007-V
http://doi.ieeecomputersociety.org/10.1109/ECBS.2009.28
http://doi.ieeecomputersociety.org/10.1109/ECBS.2010.26
http://doi.ieeecomputersociety.org/10.1109/ECBS.2010.26
http://www.jstor.org/stable/1428415
http://www.jstor.org/stable/1428415

BIBLIOGRAPHY

[118] Martin Reiser and Stephen S. Lavenberg. Mean-Value Analysis of Closed Multichain
Queuing Networks. Journal of the ACM (JACM), 27(2):313–322, 1980. ISSN 0004-5411.
DOI: http://doi.acm.org/10.1145/322186.322195.

[119] Thomas G. Robertazzi. Why most stochastic Petri nets are non-product form networks.
Technical report, Stony Brook, N.Y.: State University of New York at Stony Brook, College
of Engineering, New York, NY, USA, 1991. URL http://hdl.handle.net/1951/37249.

[120] Marcel Seelig, Stephan Kluth, Flavius Copaciu, Tomasz Porzucek, Nico Naumann, and
Steffen Kühn. Comparison of Performance Modeling and Simulation - a Case Study.
In David W. Bustard and Roy Sterritt, editors, Proceedings of the 15th IEEE Interna-
tional Conference on Engineering of Computer-Based Systems (ECBS 2008 - Belfast, UK),
pages 49–56, Los Alamitos, CA, USA, March 2008. IEEE Computer Society. DOI: http:
//doi.ieeecomputersociety.org/10.1109/ECBS.2008.47.

[121] Kenneth C. Sevcik and Isi Mitrani. The Distribution of Queuing Network States at Input
and Output Instants. Journal of the ACM (JACM), 28(2):358–371, 1981. ISSN 0004-5411.
DOI: http://doi.acm.org/10.1145/322248.322257.

[122] Herbert A. Simon and Albert Ando. Aggregation of Variables in Dynamic Systems.
Econometrica, 29(2):111–138, April 1961. ISSN 00129682. URL http://www.jstor.org/
stable/1909285.

[123] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton, NJ, USA, 1994. ISBN 0-691-03699-3.

[124] Peter Tabeling. Softwaresysteme und ihre Modellierung. Springer, Berlin / Heidelberg, Ger-
many, 2006. ISBN 3-540-25828-0.

[125] Phuoc Tran-Gia. Einführung in die Leistungsbewertung und Verkehrstheorie. Oldenbourg
Wissenschaftsverlag GmbH, München, Germany, 2 edition, Oktober 2005. ISBN 3-486-
57882-0.

[126] Hendrik Vantilborgh. Exact Aggregation in Exponential Queueing Networks. Journal
of the ACM (JACM), 25(4):620–629, 1978. ISSN 0004-5411. DOI: http://doi.acm.org/10.
1145/322092.322102.

[127] J. Walrand. A Note on Norton’s Theorem for Queuing Networks. Journal of Applied
Probability, 20(2):442–444, June 1983. ISSN 00219002. URL http://www.jstor.org/stable/
3213821.

[128] Jiacum Wang. Timed Petri Nets - Theory and Application. Kluwer Academic Publishers,
Boston / Dordrecht / London, 1998. ISBN 0-7923-8270-6.

[129] Siegfried Wendt. Eine Methode zum Enfwurf komplexer Schaltwerke unter Verwendung
speziller Ablaufdiagramme. Elektronische Rechenanlagen, 12(6):314–323, December 1970.

[130] Siegfried Wendt. Nichtphysikalische Grundlagen der Informationstechnik. Interpretierte For-
malismen. Springer, Berlin, Germany, 2 edition, 1991. ISBN 3-540-54452-6.

[131] Siegfried Wendt. Operationszustand versus Steuerzustand - eine äußerst zweckmäßige
Unterscheidung. Technical report, University of Kaiserslautern, Kaiserslautern, Ger-
many, Februar 1998.

203

http://doi.acm.org/10.1145/322186.322195
http://hdl.handle.net/1951/37249
http://doi.ieeecomputersociety.org/10.1109/ECBS.2008.47
http://doi.ieeecomputersociety.org/10.1109/ECBS.2008.47
http://doi.acm.org/10.1145/322248.322257
http://www.jstor.org/stable/1909285
http://www.jstor.org/stable/1909285
http://doi.acm.org/10.1145/322092.322102
http://doi.acm.org/10.1145/322092.322102
http://www.jstor.org/stable/3213821
http://www.jstor.org/stable/3213821

BIBLIOGRAPHY

[132] Andreas Willig. Lecture Notes - Performance Evaluation Techniques. Hasso-Plattner-
Institute, University of Potsdam, Potsdam, Germany, April 2005.

[133] Armin Zimmermann, Reinhard German, Jörn Freiheit, and Günther Hommel. TimeNET
3.0 Tool Description. In Proceedings of the International Conference on Petri Nets and Perfor-
mance Models (PNPM’99), 1999.

[134] Armin Zimmermann, Jörn Freiheit, Reinhard German, and Günter Hommel. Petri Net
Modelling and Performability Evaluation with TimeNET 3.0. In Proceedings of the 11th
International Conference on Computer Performance Evaluation: Modelling Techniques and Tools
(TOOLS ’00), pages 188–202, London, UK, 2000. Springer. ISBN 3-540-67260-5.

[135] Werner Zorn. Kommunikationssysteme - durch Abstraktion zum Durchblick, am
Beispiel eines der meistgenutzen Protokolle. Inaugural Lecture at the Hasso-Plattner-
Institue at the University of Potsdam, October 2002.

[136] Werner Zorn. A Different Approach to Network Modelling. Presentation, March 2003.

[137] Werner Zorn. Distinguishing between Control States and Operational States - a well
Proven Paradigm to Cope with the Complexity of Discrete Dynamic Systems. Hasso-
Plattner-Institute, University of Potsdam, 2005.

[138] Werner Zorn. Lecture Slides: Quantitative Modeling. Hasso-Plattner-Institute, University
of Potsdam, Potsdam, Germany, 2005.

[139] Werner Zorn. Lecture Slides: Communication Systems I & II. Hasso-Plattner-Institute, Uni-
versity of Potsdam, Potsdam, Germany, 2005-2006.

[140] Werner Zorn. Quantitative Modeling as a Special Abstraction of Systems Modeling. Sub-
mitted to the 3rd International Conference on the Quantitative Evaluation of SysTems
(QEST2006), 2006.

[141] Werner Zorn. Hierarchical Modeling based on Service Requests. Hasso-Plattner-
Institute, University of Potsdam, 2007.

[142] Werner Zorn. Calculus Paper. Internal, status 20070313, March 2007.

[143] Werner Zorn. FMC-QE - A New Approach in Quantitative Modeling. In Hamid R.
Arabnia, editor, Proceedings of the International Conference on Modeling, Simulation and Vi-
sualization Methods (MSV 2007) within WorldComp ’07, pages 280 – 287, Las Vegas, NV,
USA, June 2007. CSREA Press. ISBN 1-60132-029-9.

[144] Werner Zorn. Hierarchische Modellierung basierend auf Bedienanforderungen. Pre-
sented at the 21.DFN- Arbeitstagung über Kommunikationsnetze, Technical University
Kaiserslautern, Germany, May 2007.

[145] Werner Zorn. Lecture Slides: Communication Systems I. Hasso-Plattner-Institute, Univer-
sity of Potsdam, Potsdam, Germany, 2007.

[146] Werner Zorn. FMC-QE - Introduction with Examples. Presentation, April 2007. Internal
Presentation at the Research Group of Prof. Dr.-Ing. Werner Zorn at the Hasso-Plattner-
Institute at the University of Potsdam.

[147] Werner Zorn. Hierarchische Modellierung auf Basis von Bedienanforderungen. Pre-
sented at the Institut für Operations Research, Humboldt-Universität zu Berlin, April
2007.

204

Glossary

A Arrival rate with deterministic inter-arrival times

B Service Rate, deterministic

BSSt Basic server station

D Throughput

f Desired bottleneck utilization

HSSt Hierarchical server station

K Queue-capacity (including service requests in service)

K Overall number of service Requests in a Closed System - also nges

λ Arrival rate with stochastic inter-arrival times

λ[1] Arrival rate of top level ([1]) service requests

λ
[1]
bott Saturation arrival rate of bottleneck (Unit: [Top level Service requests / Timeunit])

λ
[bb]
i Arrival rate of service request SRqi on hierarchy level [bb] (Unit: [SRqi/Timeunit])

m Number of parallel servers (multiplicity)

M Population

µ Service Rate, stochastic

m[bb]
i Absolute multiplicity of the server of service request i on hierarchy level [bb]

m[bb]
i,mpx Multiplex coefficient of logical server i

m[bb−1]
parent(i) Absolute multiplicity of the server of on the next hierarchical level ([bb− 1])

m[bb]
i,int Relative multiplicity of the server of service request i on hierarchy level [bb] to the

next hierarchical level [bb− 1]

mj Number of parallel (Multiplex-)Servers

µ
[bb]
i Service rate of the server of service request i on hierarchy level [bb]

N[bb]
i Normalized service request i on hierarchical level [bb]

205

GLOSSARY

n Mean number of service requests in the station

N Overall number of service stations in the network

Ne[bb]
i Normalized unity service request i on hierarchical level [bb]

nges Overall number of circulating service requests

n[bb]
i Mean number of service request i on hierarchy level [bb]

N[bb]
i,q Queued normalized service request i on hierarchical level [bb]

Nr[bb]
i Normalized service response i on hierarchical level [bb]

nq Mean number of queued service requests

n[bb]
i,q Mean number of queued service request i on hierarchy level [bb]

Ne,r[bb] Normalized unity service response i on hierarchical level [bb]

N[bb]
i,s Normalized service request i on hierarchical level [bb] in service

ns Mean number of service requests in service

n[bb]
i,s Mean number of service request i on hierarchy level [bb] in service

ρ Utilization, stochastic

R Response time

ρ
[bb]
i Utilization of the server of queued service request i on hierarchy level [bb]

R[bb]
i Response time of the server of the service request i on hierarchy level [bb]

Serveri Corresponding (Multiplex-)Server of service request i

Serverj Non-ambiguous name of a (Multiplex-)Server

SRq[bb]
i Unnormalized service request i on hierarchical level [bb]

SRq[bb]
i Non-ambiguous name of the service request i on hierarchy level [bb]

SRs[bb]
i Unnormalized service response i on hierarchical level [bb]

U Utilization, deterministic

v Absolute traffic flow coefficient

vext External traffic flow coefficient

vint Internal traffic flow coefficient

v[bb]
i Absolute traffic flow coefficient of service request i on hierarchy level [bb]

v[bb−1]
parent(i) Absolute traffic flow coefficient on the next hierarchical level ([bb− 1]) relative to

service request i[bb]

206

GLOSSARY

v[bb]
i,int Relative traffic flow coefficient of service request i on hierarchy level [bb] to the next

hierarchical level [bb + 1]

W Queue time

W [bb]
i Waiting time for service request i on hierarchy level [bb]

X Service time

X[bb]
i Service time for service request i on hierarchy level [bb]

Y Service duration

Y[bb]
i Service duration for service request i on hierarchy level [bb]

207

Index

A

Abstraction Hierarchy . 42
Approximation Error 127, 135, 148
Arrival Rate . 6, 70
Arrival Theorem. .23
Axis2 . 173

B

Basic Definitions .68
Basic Server Station . 75
BCMP Theorem . 17
Black Box . 150
Block Diagram . 74
Bottleneck . 87
Bounded . 39
Branch . 81, 102

C

Calculus . 85
Checked Service . 65
Client/Server. .63
Closed Queueing Networks 122
Closed Set . 38
Closed Tandem Network 123
Communicating Time Petri Nets (CmTPN).47
Comparison . 150
Complexity Analysis . 107
Consistent Control State 64
Consistent Operational State 64
Consistent System State 62
Cont. Time Stochastic Petri Net (SPN) 27
Control Service Request 99, 151
Controlled Operational Transition 78
Critical Action . 60
Critical Actionfield . 61
Critical Content . 61
Critical Location . 61
Critical Section . 60
Critical Values . 61

D

D/D/1 . 214
D/D/m . 215
Decomposability . 43
Departure Rate . 7, 72
Divide and Conquer Approach 48
Duality Principle . 36
Dynamic Evaluation Section 94
Dynamic Structures . 78

E

Eigenvalue . 43
Eigenvector . 43
Entity Relationship Diagram 58, 73
Erlang’s loss formula . 222
ERMF . 167
Experimental Parameters 86
Extended Conflict Set . 39
External Load Generation 87
External Service Time . 91

F

Feed Backward Loop . 104
Feed Forward . 105
Firing Delay . 27
Firing Rate . 28, 41
Firing Time . 27
Firing Weight . 32, 41
First Come, First Served (FCFS).9, 17
First In, First Out (FIFO) . 9
FMC-eCS . 60
FMC-QE Tool . 120
Forced Traffic Flow Law 8, 49, 69, 86
Fork-Join Queue . 153
Formal Hierarchies . 46
Free-Killing-Conflict . 39
Fundamental Laws

Forced Traffic Flow Law 8, 49, 69, 86
Little’s Law . 8, 69, 86

Fundamental Modeling Concepts 56

209

INDEX

Behavior . 57
Compositional Structures 57
Main Concepts . 56
Operational and Control State 59
Value Structures . 58

G

G/G/1 . 10
G/G/m . 10
General System . 10
Generalized Stochastic Petri Nets (GSPN) . . 32
Global Balance . 150
Gordon-Newell Theorem 13
Graphical Representation

Dynamic Structures 78
Service Request Structures 73
Static Structures . 74

H

Hierarchical Activity . 100
Hierarchical Modeling 42, 69

Decomposability . 43
Forced Traffic Flow Law 49
Formal Hierarchies . 46
Norton’s theorem . 44
Time Augmented Petri Nets 46

Hierarchical Server Station 76
Hierarchical Service Request 69
Hierarchically combined QPN (HQPN) 48
Hierarchy . 69, 151
HPI Search Portal . 160

I

In-Consistent System State 62
Inconsistent Control State 64
Inconsistent Operational State 64
Independent User . 64
Infinite Server . 80
Infinite Server (IS) . 17
Integrity . 61
Inter-Server Control Flow 146
Interactive Response Time Formula 88
Isolated Circulation . 36

J

Jackson’s Theorem. 11

K

k-bounded . 27
Kendall-Notation . 9

L

Last Come, First Served (LCFS) 9, 17
Last In, First Out (LIFO) . 9
Layered Queueing Networks (LQN) . . 50, 155
Lexicographical Level . 70
Little’s Law . 8, 69, 86
Local Balance. .150
Logical Server . 76, 97
Loop . 102
Loosely Connected Processes 60
LQN Activity Graph . 51
LQN Algorithm . 52
LQN Sequence Diagram 52
LQN Solver . 52

M

M/M/∞ . 218
M/M/1 . 216
M/M/1/K . 219
M/M/m . 217
M/M/m/K . 220
M/M/m/K/M . 221
M/M/m/m . 222
Mean Value Analysis (MVA) 23, 52, 135
Model Transformation . 110
Monovaluated Place-Transition Net 39
Multiclass . 137
Multiplex Coefficient 71, 97
Multiplexer . 95, 97, 106
Multiplexer Section . 106
Multiplexer Server .77
Multiplicity . 6, 71
Mutual Exclusion . 60

N

Non Product Form . 150
Norton’s theorem. 44

O

Open Queueing Network 108
Operational and Control State 59
Operational Service Request 95, 151
Organizational Hierarchy 42

210

INDEX

P

Parallel Activities . 82, 101
Partially Secured Critical Action 62
Peer to Peer . 64
Perron-Frobenius Eigenvector 44
Perron-Frobenius Theorem 43
Petri Net . 78
Pipeline . 64
Preselection Model . 27
Priority Based Queuing (PR) 9
Processor Sharing (PS) . 17
Producer/Consumer . 63
Product Form . 150
Product Form Petri Nets 35, 154

Closed Set . 38
Duality Principle . 36
Free-Killing-Conflict 39
Isolated Circulation 36
Structural Constraint 38

Product Form QPN . 41

Q

Queue Size . 7
Queueing Petri Nets (QPN) 40, 154

Hierarchically combined QPN 49
Product Form QPN . 41

Queueing Station . 75
Queueing Theory . 6, 152

R

Race Model . 27
Random Selection for Service (RSS) 9
Reachability Graph. .30, 35
Reachability Set 27, 30, 154
Reiser/Lavenberg-Theorem 23
Relative Error 127, 135, 148
Response Time 7, 10, 72, 88
Response Time Law . 88
REST . 161, 175
Routing Probability . 6

S

Safe Net . 36
Secured Critical Action . 62
Semaphore . 60
Semaphore Multiplex Coefficient 147
Semaphore Synchronization 142
Serial Activities . 82, 100

Server Section . 93
Service Duration. .71
Service Rate . 7, 72
Service Request . 68
Service Request Section . 91
Service Request Structures 73
Service Response . 69, 83
Service Time . 6, 71
Simulation . 157, 167
Single User . 64
SM/M/1 . 153
SOAP. 161, 174
Sojourn Time . 26
SPN-skeleton . 41
Static Structures . 74
Steady State . 11, 88
Stochastic Petri Nets (SPN) 27
Subparallel . 44
Summation Method . 129
Superposed GSPN (SGSPN) 48
Synchronization Node . 153

T

T-invariant . 38
Tangible State . 32
Think Time . 182
Three Tier Server . 64
Throughput . 7
Time Augmented Petri Nets 26, 153

GSPN . 32
QPN . 40
SPN . 27
TPPN . 26
TTPN . 26

Timed Places Petri Nets (TPPN).26
Timed Transitions Petri Nets (TTPN) 26
Traffic Flow Coefficient 71, 74
Transactional Service . 66

U

Unreliable Service . 65
Unsecured Critical Action 62
Utilization . 7, 10, 72

V

Vanishing State . 32

W

Waiting Time . 7, 72

211

INDEX

While Loop . 103

212

Appendix A

Server Performance Values

213

APPENDIX A. SERVER PERFORMANCE VALUES

Table A.1: D/D/1

D/D/1 - Single Server, Deterministic Service Time

Model: Arrival Rate [68]:

�
�

A

Service Time [68]:

X

Service Rate [68]:

B = 1
X

Utilization:

U = A
B U ≤ 1

Exp. Number of Queued SRqs: nq = 0

Exp. Number of SRqs in Service: ns =
A
B

Exp. Number of SRqs in the Station: n = ns =
A
B

Exp. Waiting Time: W = 0

Exp. Response Time: R = 1
B

214

SERVER PERFORMANCE VALUES

Table A.2: D/D/m

D/D/m - Parallel Server, Deterministic Service Times

Model: Arrival Rate [68]:

�

�

�

�

�

�

�

A

Service Time [68]:

X

Service Rate:

B = 1
mX

Utilization:

U = A
B U ≤ 1

Exp. Number of Queued SRqs: nq = 0

Exp. Number of SRqs in Service: ns = m A
B

Exp. Number of SRqs in the Station: n = ns = m A
B

Exp. Waiting Time: W = 0

Exp. Response Time: R = 1
B

215

APPENDIX A. SERVER PERFORMANCE VALUES

Table A.3: M/M/1

M/M/1 - Single Server, Exponential Distributed Service Time

Model: Arrival Rate [88]:

�
λ

∞

λk = λ k = 0, 1, 2, ..

Service Rate [88]:

µk = µ k = 0, 1, 2, ..

Utilization [67]:

ρ = λ
µ < 1

Markov Chain [88]:

�

λ

�

λ

�

λ

�

λ

0 1 2 k�1 k k+1

State Probabilities [67, 87–89]: pk = (1− ρ) ρk k = 0, 1, 2, ..

Exp. Number of Queued SRqs [67, 79]: nq =
ρ2

1−ρ

Exp. Number of SRqs in Service: ns = ρ

Exp. Number of SRqs in the Station [79,
87, 88]:

n = ρ
1−ρ

Exp. Waiting Time [67, 88]: W =
nq
λ = ρ2

λ(1−ρ)
= ρ

µ−λ

Exp. Response Time [67, 79, 88]: R = n
λ = ρ

λ(1−ρ)
= 1

µ−λ

216

SERVER PERFORMANCE VALUES

Table A.4: M/M/m

M/M/m - Parallel Server, Exponential Distributed Service Times

Model: Arrival Rate [88]:

�

λ

∞

1

�
2

�
m

λk = λ k = 0, 1, 2, ..

Service Rate [67]:

µk =

{
kµ 1 ≤ k < m
mµ m ≤ k

Utilization [67, 88, 125]:

ρ = λ
mµ < 1

Markov Chain [88]:

m�

λ

m�

λ

(m�1)�

λ

2�

λ

�

λ

0 1 2 m�2 m�1 m m+1

State Probabilities [88]: p0 = 1
m−1
∑

k=0

(mρ)k
k! +

(
(mρ)m

m!

)(
1

1−ρ

)

pk =

p0
(mρ)k

k! 1 ≤ k ≤ m

p0
ρkmm

m! k ≥ m

Exp. Number of Queued SRqs [67, 125]: nq =
λ
µ

m
ρ

m!(1−ρ)2 p0

Exp. Number of SRqs in Service [125]: ns = mρ = λ
µ

Exp. Number of SRqs in the Station [67]: n = mρ +
λ
µ

m

m!(1−ρ)2 p0

Exp. Waiting Time [67, 125]: W =
nq
λ =

λ
µ

m

m!(mµ)(1−ρ)2 p0

Exp. Response Time [67]: R =
nq
λ + ns

λ =
λ
µ

m

m!(mµ)(1−ρ)2 p0 +
1
µ

217

APPENDIX A. SERVER PERFORMANCE VALUES

Table A.5: M/M/∞

M/M/∞ - Infinite Server, Exponential Distributed Service Times

Model: Arrival Rate [88]:

�

�

�

λ

1

2

3

λk = λ k = 0, 1, 2, ..

Service Rate[88]:

µk = kµ k = 1, 2, 3, ..

Utilization:

-

Markov Chain [88]:

(k+1)�

λ

k�

λ

2�

λ

�

λ

0 1 2 k
1 k k+1

State Probabilities [88]: pk =
(λ/µ)k

k! e−λ/µ k = 0, 1, 2, ..

Exp. Number of Queued SRqs: nq = 0

Exp. Number of SRqs in Service: ns =
λ
µ

Exp. Number of SRqs in the Station [88]: n = λ
µ

Exp. Waiting Time: W = 0

Exp. Response Time [88]: R = 1
µ

218

SERVER PERFORMANCE VALUES

Table A.6: M/M/1/K

M/M/1/K - Single Server, Exponential Distributed Service Time, Finite Storage

Model: Arrival Rate [88]:

�
λ

K

λk =

{
λ k < K
0 k ≥ K

Effective Arrival Rate [67]:

λe f f = λ (1− pK) =

λ

(
1− 1−ρ

1
ρK −ρ

)
ρ 6= 1

λ
(
1− 1

K+1

)
ρ = 1

Service Rate [88]:

µk = µ k = 1, 2, .., K

Traffic Intensity [67]: ρ = λ
µ

Markov Chain [88]:

�

λ

�

λ

�

λ

0 1 2 K�1 K

State Probabilities [18, 67, 79, 88]:

p0 =

{ 1−ρ
1−ρK+1 ρ 6= 1

1
K+1 ρ = 1

pk =


(1−ρ)ρk

1−ρK+1 0 ≤ k ≤ K; ρ 6= 1
1

K+1 0 ≤ k ≤ K; ρ = 1
0 else

Exp. Number of Queued SRqs [67, 79]: nq =

 ρ
1−ρ −

ρ(KρK+1)
1−ρK+1 ρ 6= 1

K(K−1)
2(K+1) ρ = 1

Exp. Number of SRqs in Service [67]: ns = (1− p0) =

{
1− 1−ρ

1−ρK+1 ρ 6= 1

1− 1
K+1 ρ = 1

Exp. Number of SRqs in the Station [18,
67, 79]:

n =

{
ρ

1−ρ −
K+1

1−ρK+1 ρK+1 ρ 6= 1
K
2 ρ = 1

Exp. Waiting Time [67]: W =
nq

λe f f
=


1

ρK−2−Kρ+ρ2(K−1)

λ(1−ρ)2 ρ 6= 1
K−1
2λ ρ = 1

Exp. Response Time [67]: R = n
λe f f

= n
λ(1−pK)

219

APPENDIX A. SERVER PERFORMANCE VALUES

Table A.7: M/M/m/K

M/M/m/K - Parallel Server, Exponential Distributed Service Times, Finite Storage

Model: Arrival Rate [67]:

�

K

1

�
2

�
m

λ

λk =

{
λ k < K
0 k ≥ K

Effective Arrival Rate [67]:

λe f f = λ (1− pK)

Service Rate [88]:

µk =

{
kµ 0 ≤ k ≤ m
mµ m ≤ k

Traffic Intensity [67, 79]:

ρ = λ
mµ

Markov Chain [79]:

m�

λ

m�

λ

(m�1)�

λ

m�2 m�1 m m+1

m�

λ

2�

λ

�

λ

0 1 2 K�1 K

State Probabilities [67, 79]:

p0 =



(
m−1
∑

k=0

(
λ
µ

)k

k! +

(
λ
µ

)m

m!
1−ρK−m+1

1−ρ

)−1

ρ 6= 1(
m−1
∑

k=0

(
λ
µ

)k

k! +

(
λ
µ

)m

m! (K− n + 1)

)−1

ρ = 1

pk =


λk

k!µk p0 1 ≤ k ≤ m
λk

mk−mm!µk p0 c ≤ k ≤ K

Exp. Number of Queued SRqs [51, 67]:

nq =


p0

(
λ
µ

)m
ρ

m!(1−ρ)2

(
1− ρK−m+1 − (1− ρ) (K−m + 1) ρK−m) ρ 6= 1

mm−1 (K−m)(K−m+1)
2 ρ = 1

Exp. Number of SRqs in Service [67]: ns =
λe f f

µ = λ(1−pK)
µ

Exp. Number of SRqs in the Station [67]: n = nq +
λe f f

µ = nq +
λ(1−pK)

µ

Exp. Waiting Time [67, 79]: W = R− 1
µ =

nq
λe f f

Exp. Response Time [67, 79]: R = n
λe f f

= n
λ(1−pK)

220

SERVER PERFORMANCE VALUES

Table A.8: M/M/m/K/M

M/M/m/K/M - Parallel Server, Exp. Dist. Service Times, Finite Storage, Finite Population

Model: Population[67, 88]:

�

K

1

�
2

�
m

λ
1

λ
2

λ
M

M

Arrival Rate [67, 88]:

λk =

{
λ (M− k) 0 ≤ k ≤ K− 1
0 else

Effective Arrival Rate [67]:

λe f f =
M−1
∑

k=0
(M− n) λpk = λ (M− n)

Service Rate[67, 88]:

µk =

{
kµ 0 ≤ k ≤ m
mµ k ≥ m

Traffic Intensity:

ρ = λ
mµ

Markov Chain [88]:

m�

(M�m)λ

m�

(M�m+1)λ

(m�1)�

(M�m+2)λ

m�2 m�1 m m+1

m�

(M�K+1)λ

2�

(M�1)λ

�

Mλ

0 1 2 K�1 K

State Probabilities [28, 88]:

p0 = 1

1+
m−1
∑

k=1
(M

k)
(

λ
µ

)k
+(M

m−1)
(

λ
µ

)m−1 K
∑

k=m

(M−m+1)!
(M−k)!

(
λ

µm

)k−m+1

pk =

p0

(
λ
µ

)k
(M

k) 0 ≤ k ≤ m− 1

p0

(
λ
µ

)k
(M

k)
k!
m! m

m−k m ≤ k ≤ K

Exp. Number of Queued SRqs [67]: nq = n− λe f f
µ = n− λ

µ (M− n)

Exp. Number of SRqs in Service [67]: ns =
λe f f

µ = λ
µ (M− n)

Exp. Number of SRqs in the Station [67]: n =
M
∑

k=1
kpk

Exp. Waiting Time [67]: W =
nq

λ(M−nq)

Exp. Response Time [67]: R = n
λ(M−n)

221

APPENDIX A. SERVER PERFORMANCE VALUES

Table A.9: M/M/m/m

M/M/m/m - Parallel Server, Exponential Distributed Service Times, no Storage

Model: Arrival Rate [88]:

�
1

�
2

�
m

λ

λk =

{
λ k < m
0 k ≥ m

Effective Arrival Rate [67]:

λe f f = λ (1− pm)

Service Rate[88]:

µk =

{
kµ k ≤ m
0 k > m

Traffic Intensity:

ρ = λ
mµ

Markov Chain [88]:

m�

λ

(m�1)�

λ

m�2 m�1 m

2�

λ

�

λ

0 1 2

State Probabilities [67, 88]: p0 =

(
m
∑

k=0

(
λ
µ

)k
1
k!

)−1

pk =

p0

(
λ
µ

)k
1
k! k ≤ m

0 k > m

Exp. Number of Queued SRqs: nq = 0

Exp. Number of SRqs in Service [125]: ns =
λe f f

µ = λ(1−pm)
µ

Exp. Number of SRqs in the Station [125]: n = ns =
λe f f

µ = λ(1−pm)
µ

Exp. Waiting Time: W = 0

Exp. Response Time [125]: R = 1
µ

Erlang’s loss formula [67, 79, 88, 125]: pm =
(λ

µ)
m

m!

m
∑

k=0

(λ
µ)

k

k!

222

SERVER PERFORMANCE VALUES

Table A.10: Server Performance Values - Overview
D

/D
/1

D
/D

/m
M

/M
/1

M
/M

/m
M

/M
/∞

M
/M

/1
/K

M
/M

/m
/K

M
/M

/m
/K

/M
M

/M
/m

/m

M
od

el
�

�

�

�

�

�

�

�

�

�
λ

∞

�

λ

∞

1

�
2

�
m

� � �

λ

1 2 3

�
λ

K

�

K

1

�
2

�
m

λ

�

K

1

�
2

�
m

λ
1

λ
2

λ
M

�
1

�
2

�
m

λ

A
rr

iv
al

R
at

e
A

A
λ

k
=

λ
k
=

0,
1,

2,
..

λ
k
=

λ
k
=

0,
1,

2,
..

λ
k
=

λ
k
=

0,
1,

2,
..

λ
k
=

{ λ
k
<

K
0

k
≥

K
λ

k
=

{ λ
k
<

K
0

k
≥

K
λ

k
=

{ λ
(M
−

k)
0
≤

k
≤

K
−

1
0

el
se

λ
k
=

{ λ
k
<

m
0

k
≥

m

Ef
fe

ct
iv

e
A

rr
iv

al
R

at
e

λ
ef

f
=

λ
(1
−

p K
)

=

  λ

(1
−

1−
ρ

1 ρ
K
−

ρ

) ρ
6=

1

λ
(1
−

1
K
+

1

)
ρ
=

1

λ
ef

f
=

λ
(1
−

p K
)

λ
ef

f
=

M
−

1
∑ k=

0
(M
−

n)
λ

p k
=

λ
(M
−

n)
λ

ef
f
=

λ
(1
−

p m
)

Se
rv

ic
e

R
at

e
B
=

1 X
B
=

1 m
X

µ
k
=

µ
k
=

0,
1,

2,
..

µ
k
=

{ kµ
1
≤

k
<

m
m

µ
m
≤

k
µ

k
=

kµ
k
=

1,
2,

3,
..

µ
k
=

µ
k
=

1,
2,

..,
K

µ
k
=

{ kµ
0
≤

k
≤

m
m

µ
m
≤

k
µ

k
=

{ kµ
0
≤

k
≤

m
m

µ
k
≥

m
µ

k
=

{ kµ
k
≤

m
0

k
>

m

U
ti

liz
at

io
n

U
=

A B
≤

1
U

=
A B
≤

1
ρ
=

λ µ
<

1
ρ
=

λ m
µ
<

1

Tr
af

fic
In

te
ns

it
y

ρ
=

λ µ
ρ
=

λ m
µ

ρ
=

λ m
µ

ρ
=

λ m
µ

St
at

e
Pr

ob
ab

i-
lit

ie
s

p k
=

(1
−

ρ
)

ρ
k

k
=

0,
1,

2,
..

p 0
=

1
m
−

1
∑ k=

0

(m
ρ
)k

k!
+
((mρ

)m
m

!

)(
1

1−
ρ

)

p k
=

  p 0
(m

ρ
)k

k!
1
≤

k
≤

m

p 0
ρ

k m
m

m
!

k
≥

m

p k
=

(λ
/

µ
)k

k!
e−

λ
/

µ

k
=

0,
1,

2,
..

p 0
=

{ 1
−

ρ
1−

ρ
K
+

1
ρ
6=

1
1

K
+

1
ρ
=

1

p k
=

      (1
−

ρ
)ρ

k

1−
ρ

K
+

1
0
≤

k
≤

K
;ρ
6=

1
1

K
+

1
0
≤

k
≤

K
;ρ

=
1

0
el

se

p 0
=

          
1

m
−

1
∑ k=

0

(
λ µ
)k

k!
+
(

λ µ
)m

m
!

1−
ρ

K
−

m
+

1
1−

ρ

ρ
6=

1

1
m
−

1
∑ k=

0

(
λ µ
)k

k!
+
(

λ µ
)m

m
!

(K
−

n+
1)

ρ
=

1

p k
=

  λ
k

k!
µ

k
p 0

1
≤

k
≤

m
λ

k

m
k−

m
m

!µ
k
p 0

c
≤

k
≤

K

p 0
=

1

1+
m
−

1
∑ k=

1
(M k

)(λ µ

) k +
(

M m
−

1)
(λ µ

) m−1
K ∑ k=

m

(M
−

m
+

1)
!

(M
−

k)
!

(λ µ
m

) k−m
+

1

p k
=

    p 0
(λ µ

) k (M k
)

0
≤

k
≤

m
−

1

p 0
(λ µ

) k (M k
)

k! m
!m

m
−

k
m
≤

k
≤

K

p 0
=

(m ∑ k=
0

(λ µ

) k 1 k!

) −1
p k

=

  p 0
(λ µ

) k 1 k!
k
≤

m

0
k
>

m

Ex
p.

N
um

be
ro

f
Q

ue
ue

d
SR

qs

n q
=

0
n q

=
0

n q
=

ρ
2

1−
ρ

n q
=

λ µ

m
ρ

m
! (

1−
ρ
)2

p 0
n q

=
0

n q
=

  ρ
1−

ρ
−

ρ
(K

ρ
K
+

1)
1−

ρ
K
+

1
ρ
6=

1
K
(K
−

1)
2 (

K
+

1)
ρ
=

1
n q

=

        p 0
(λ µ

) m ρ

m
! (

1−
ρ
)2

(1
−

ρ
K
−

m
+

1

−
(1
−

ρ
)
(K
−

m
+

1)
ρ

K
−

m
) ρ

6=
1

m
m
−

1
(K
−

m
)(

K
−

m
+

1)
2

ρ
=

1

n q
=

n
−

λ
ef

f
µ

=
n
−

λ µ
(M
−

n)
n q

=
0

Ex
p.

N
um

be
ro

f
SR

qs
in

Se
rv

ic
e

n s
=

A B
n s

=
m

A B
n s

=
ρ

n s
=

m
ρ
=

λ µ
n s

=
λ µ

n s
=

{ 1
−

1−
ρ

1−
ρ

K
+

1
ρ
6=

1

1
−

1
K
+

1
ρ
=

1
n s

=
λ
(1
−

p K
)

µ
n s

=
λ µ
(M
−

n)
n s

=
λ
(1
−

p m
)

µ

Ex
p.

N
um

be
ro

f
SR

qs
in

St
at

io
n

n
=

A B
n
=

m
A B

n
=

ρ
1−

ρ
n
=

m
ρ
+

λ µ

m

m
! (

1−
ρ
)2

p 0
n
=

λ µ
n
=

{ ρ 1−
ρ
−

K
+

1
1−

ρ
K
+

1
ρ

K
+

1
ρ
6=

1
K 2

ρ
=

1
n
=

n q
+

λ
(1
−

p K
)

µ
n
=

M ∑ k=
1

kp
k

n
=

λ
(1
−

p m
)

µ

Ex
p.

W
ai

ti
ng

Ti
m

e
W

=
0

W
=

0
W

=
ρ

µ
−

λ
W

=
λ µ

m

m
! (

m
µ
)(

1−
ρ
)2

p 0
W

=
0

W
=

  1
ρ

K
−

2
−

K
ρ
+

ρ
2 (

K
−

1)

λ
(1
−

ρ
)2

ρ
6=

1
K
−

1
2λ

ρ
=

1
W

=
n q λ
ef

f
W

=
n q

λ
(M
−

n q
)

W
=

0

Ex
p.

R
es

po
ns

e
Ti

m
e

R
=

1 B
R
=

1 B
R
=

1
µ
−

λ
R
=

λ µ

m

m
! (

m
µ
)(

1−
ρ
)2

p 0
+

1 µ
R
=

1 µ
R
=

n
λ
(1
−

p K
)

R
=

n
λ
(1
−

p K
)

R
=

n
λ
(M
−

n)
R
=

1 µ

Er
la

ng
’s

Lo
ss

Fo
rm

ul
a

p m
=

(
λ µ
)m

m
!

m ∑ k=
0

(
λ µ
)k

k!

223

Appendix B

Tables

225

APPENDIX B. TABLES

Table B.1: Tableau Example (Table 3.2)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

2
1

1,
00

1,
00

1,
00

1,
00

2,
25

0
1

1
1

1
0,

05
6

1,
00

0
18

,0
00

0,
12

5
0,

01
8

0,
00

8
0,

12
5

0,
05

6
0,

14
3

0,
06

3
3

2
0,

50
1,

00
1,

00
0,

50
1,

12
5

1
∞

∞
4

0,
35

0
1,

00
0

2,
85

7
0,

00
0

0,
00

0
0,

39
4

0,
35

0
0,

39
4

0,
35

0
2

3
1,

00
1,

00
1,

00
1,

00
2,

25
0

1
1

1
∞

0,
00

0
0,

00
0

0,
39

4
0,

17
5

0,
39

4
0,

17
5

3
4

0,
30

1,
00

1,
00

0,
30

0,
67

5
1

1
1

3
0,

35
0

0,
46

7
1,

33
3

0,
50

6
0,

51
9

0,
76

9
0,

50
6

0,
75

0
1,

02
5

1,
51

9
3

5
0,

20
1,

00
1,

00
0,

20
0,

45
0

1
2

2
2

0,
33

3
0,

12
5

0,
37

5
0,

60
0

0,
67

5
1,

50
0

1,
20

0
2,

66
7

1,
87

5
4,

16
7

2
6

1,
00

1,
00

1,
00

1,
00

2,
25

0
1

1
1

3,
75

0
1,

19
4

0,
53

1
1,

70
6

0,
75

8
2,

90
0

1,
28

9
3

7
0,

60
1,

00
1,

00
0,

60
1,

35
0

1
1

1
2

0,
33

3
0,

75
0

2,
25

0
0,

60
0

0,
90

0
0,

66
7

0,
60

0
0,

44
4

1,
50

0
1,

11
1

3
8

0,
40

1,
00

1,
00

0,
40

0,
90

0
1

1
1

3
0,

30
0

0,
53

3
1,

77
8

0,
50

6
0,

51
9

0,
57

7
0,

50
6

0,
56

3
1,

02
5

1,
13

9
2

9
1,

00
1,

00
1,

00
1,

00
2,

25
0

1
1

1
3,

75
0

1,
41

9
0,

63
1

1,
10

6
0,

49
2

2,
52

5
1,

12
2

2
10

1,
00

1,
00

1,
00

1,
00

2,
25

0
1

3
3

1
0,

11
1

1,
00

0
9,

00
0

0,
08

3
0,

00
0

0,
00

0
0,

25
0

0,
11

1
0,

25
0

0,
11

1
1

11
1,

00
1,

00
1,

00
1,

00
2,

25
0

1
1

1
3,

75
0

2,
63

1
1,

16
9

3,
58

1
1,

59
2

6,
21

2
2,

76
1

1
12

1,
00

1,
00

1,
00

1,
00

2,
25

0
1

1
1

10
,5

72
0,

09
5

0,
00

0
0,

00
0

23
,7

88
10

,5
72

23
,7

88
10

,5
72

j
m

j
X j

[1
]

1
5

0,
16

7
2

1
0,

26
7

3
1

0,
22

5
4

∞

Jo
b

G
en

er
at

io
n

B
ar

be
r

A
pp

en
tic

e
N

am
e j

M
ul

tip
le

xe
r S

ec
tio

n

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

D
ry

er

B
ar

be
r B

os
s

Se
rv

er
i[b

b]

C
as

hi
er

P
er

m
er

S
up

p.
D

ye
r

C
ut

2-
C

ut
te

r
C

ut
1-

C
ut

te
r

D
ry

Se
rv

er
 S

ec
tio

n

W
as

he
r

S
er

ve
r

C
ut

te
r

C
ut

2
C

ut
1

C
ut

W
as

hSe
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

C
us

to
m

er

G
en

er
at

or
B

ar
be

rs
ho

p
S

er
v.

SR
q i

[b
b]

C
as

h

P
er

m
D

ye
S

up
p.

 W
or

k

B
lo

w
-D

ry
B

lo
w

-D
ry

er

λ[1
]Ex

pe
rim

en
ta

l P
ar

am
et

er
s

n g
es

[1
]

λ b
ot

t[1
]

f

30
3,

75
0

0,
60

0
2,

25
0

226

TABLES

Table B.2: Open Queueing Example - Tableau (Table 3.8)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t[b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

5
1

0,
50

5,
00

1,
00

2,
50

11
,2

50
1

1
1

3
0,

06
0

1,
00

0
16

,6
67

0,
67

5
1,

40
2

0,
12

5
0,

67
5

0,
06

0
2,

07
7

0,
18

5
5

2
0,

50
5,

00
1,

00
2,

50
11

,2
50

1
1

1
2

0,
03

0
1,

00
0

33
,3

33
0,

33
8

0,
17

2
0,

01
5

0,
33

8
0,

03
0

0,
50

9
0,

04
5

4
3

1,
00

5,
00

1,
00

5,
00

22
,5

00
1

1
1

33
,3

33
1,

57
4

0,
07

0
1,

01
3

0,
04

5
2,

58
6

0,
11

5
4

4
1,

00
5,

00
1,

00
5,

00
22

,5
00

1
1

1
1

0,
04

0
1,

00
0

25
,0

00
0,

90
0

8,
10

0
0,

36
0

0,
90

0
0,

04
0

9,
00

0
0,

40
0

3
5

1,
00

1,
00

5,
00

5,
00

22
,5

00
1

1
1

25
,0

00
9,

67
4

0,
43

0
1,

91
3

0,
08

5
11

,5
86

0,
51

5
2

5
1,

00
1,

00
1,

00
1,

00
4,

50
0

1
1

1
5,

00
0

9,
67

4
2,

15
0

1,
91

3
0,

42
5

11
,5

86
2,

57
5

2
6

1,
00

1,
00

1,
00

1,
00

4,
50

0
1

1
1

4
0,

05
0

1,
00

0
20

,0
00

0,
22

5
0,

06
5

0,
01

5
0,

22
5

0,
05

0
0,

29
0

0,
06

5
1

7
1,

00
1,

00
1,

00
1,

00
4,

50
0

1
1

1
5,

00
0

9,
73

9
2,

16
4

2,
13

8
0,

47
5

11
,8

77
2,

63
9

1
8

1,
00

1,
00

1,
00

1,
00

4,
50

0
1

1
1

15
,1

39
0,

06
6

0,
00

0
0,

00
0

68
,1

23
15

,1
39

68
,1

23
15

,1
39

j
m

j
X j

[1
]

1
1

0,
20

0
2

1
0,

07
5

3
1

0,
15

0
4

1
0,

05
0

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
80

5,
00

00
0,

90
00

4,
50

00

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

n g
es

[1
]

λ b
ot

t[1
]

f λ[1
]

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

D
at

a
P

er
si

st
er

D
is

k

Se
rv

er
i[b

b]

R
eq

ue
st

 C
om

pu
te

r

In
pu

t R
et

rie
ve

r

U
nr

el
ia

bl
e

E
xe

cu
te

r

R
eq

ue
st

 H
an

dl
er

P
er

si
st

 D
at

a
R

eq
ue

st

R
eq

ue
st

 G
en

er
at

io
n

Se
rv

er
 S

ec
tio

n

R
eq

ue
st

C
lie

nt

SR
q i

[b
b]

C
om

pu
ta

tio
n

R
eq

ue
st

U
nr

el
ia

bl
e

E
xe

cu
tio

n

In
pu

t

P
rin

tin
g

R
eq

ue
st

I/O
-D

ev
ic

e

S
av

in
g

R
eq

ue
st

R
eq

ue
st

 S
av

er
R

eq
ue

st
 P

rin
te

r

P
rin

te
r

C
P

U
N

am
e j

M
ul

tip
le

xe
r S

ec
tio

n

R
el

ia
bl

e
E

xe
cu

tio
n

R
el

ia
bl

e
E

xe
cu

te
r

227

APPENDIX B. TABLES

Table B.3: Closed Tandem Network - M/M/1 Tableau (Table 4.1)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

3
1

1,
00

1,
00

1,
00

1,
00

0,
14

2
1

1
1

2
2,

50
0

1,
00

0
0,

40
0

0,
35

5
0,

19
5

1,
37

6
0,

35
5

2,
50

0
0,

55
1

3,
87

6
3

2
1,

00
1,

00
1,

00
1,

00
0,

14
2

1
1

1
1

5,
00

0
1,

00
0

0,
20

0
0,

71
0

1,
73

9
12

,2
47

0,
71

0
5,

00
0

2,
44

9
17

,2
47

1
3

1,
00

1,
00

1,
00

1,
00

0,
14

2
1

1
1

0,
20

0
1,

93
5

13
,6

24
1,

06
5

7,
50

0
3,

00
0

21
,1

24
1

4
1,

00
1,

00
1,

00
1,

00
0,

14
2

1
1

1
0,

00
0

##
##

0,
00

0
0,

00
0

0,
00

0
0,

00
0

0,
00

0

j
m

j
X j

[1
]

1
1

2,
50

0
2

1
5,

00
0

f λ[1
]

S
er

ve
r 2

M
ul

tip
le

xe
r S

ec
tio

n
N

am
e j

S
er

ve
r 1

R
eq

ue
st

E
xe

cu
te

r
R

eq
. G

en
er

at
io

n
C

lie
nt

S
ub

-R
eq

ue
st

 1
E

xe
cu

te
r 1

SR
q i

[b
b]

Se
rv

er
i[b

b]

S
ub

-R
eq

ue
st

 2
E

xe
cu

te
r 2

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

Se
rv

er
 S

ec
tio

n
D

yn
am

ic
 E

va
lu

at
io

n
Se

ct
io

n

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
3

0,
20

00
0,

71
01

02
0,

14
20

n g
es

[1
]

λ b
ot

t[1
]

228

TABLES

Table B.4: Closed Tandem Network - M/M/1/K Tableau (Table 4.2)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
λ i

,e
ff[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

3
1

1,
00

1,
00

0,
50

0,
5

0,
20

0
0,

18
7

1
1

1
2

2,
50

0
1,

00
0

0,
40

0
0,

50
0

0,
26

7
1,

42
9

0,
46

7
2,

50
0

0,
73

3
3,

92
9

3
2

1,
00

1,
00

1,
00

1
0,

40
0

0,
18

7
1

1
1

1
5,

00
0

1,
00

0
0,

20
0

2,
00

0
1,

33
3

7,
14

3
0,

93
3

5,
00

0
2,

26
7

12
,1

43
2

3
1,

00
1,

00
1,

00
1

0,
40

0
0,

18
7

1
1

1
0,

20
0

1,
60

0
8,

57
1

1,
40

0
7,

50
0

3,
00

0
16

,0
71

1
4

1,
00

1,
00

1,
00

1
0,

40
0

1
1

1
0,

00
0

##
##

0,
00

0
0,

00
0

0,
00

0
0,

00
0

0,
00

0

j
m

j
X j

[1
]

1
1

5,
00

0
2

1
1,

25
0

3
0,

40
00

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
n g

es
[1

]

λ[1
]

C
lie

nt

SR
q i

[b
b]

R
eq

ue
st

S
ub

-R
eq

ue
st

 2

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

E
xe

cu
te

r 1

Se
rv

er
i[b

b]

E
xe

cu
te

r

E
xe

cu
te

r 2

Se
rv

er
 S

ec
tio

n
Se

rv
ic

e
R

eq
ue

st
 S

ec
tio

n

S
ub

-R
eq

ue
st

 1

R
eq

. G
en

er
at

io
n

S
er

ve
r 2

S
er

ve
r 1

N
am

e j

M
ul

tip
le

xe
r S

ec
tio

n

229

APPENDIX B. TABLES

Table B.5: Closed Tandem Network - Summation Method Tableau (Table 4.3)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

3
1

1,
00

1,
00

1,
00

1,
00

0,
18

3
1

1
1

2
2,

50
0

1,
00

0
0,

40
0

0,
45

7
0,

20
0

1,
09

6
0,

45
7

2,
50

0
0,

65
8

3,
59

6
3

2
1,

00
1,

00
1,

00
1,

00
0,

18
3

1
1

1
1

5,
00

0
1,

00
0

0,
20

0
0,

91
4

1,
42

8
7,

80
8

0,
91

4
5,

00
0

2,
34

2
12

,8
08

1
3

1,
00

1,
00

1,
00

1,
00

0,
18

3
1

1
1

0,
20

0
1,

62
8

8,
90

4
1,

37
2

7,
50

0
3,

00
0

16
,4

04
1

4
1,

00
1,

00
1,

00
1,

00
0,

18
3

1
1

1
0,

00
0

##
##

0,
00

0
0,

00
0

0,
00

0
0,

00
0

0,
00

0

j
m

j
X j

[1
]

1
1

2,
50

0
2

1
5,

00
0

f λ[1
]

S
er

ve
r 1

S
er

ve
r 2

R
eq

. G
en

er
at

io
n

C
lie

nt

M
ul

tip
le

xe
r S

ec
tio

n
N

am
e j

S
ub

-R
eq

ue
st

 1
E

xe
cu

te
r 1

R
eq

ue
st

E
xe

cu
te

r

SR
q i

[b
b]

Se
rv

er
i[b

b]

S
ub

-R
eq

ue
st

 2
E

xe
cu

te
r 2

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

Se
rv

er
 S

ec
tio

n
D

yn
am

ic
 E

va
lu

at
io

n
Se

ct
io

n

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
3

0,
20

00
0,

91
44

0,
18

29

n g
es

[1
]

λ b
ot

t[1
]

230

TABLES

Table B.6: Closed Tandem Network - Tableaux - Comparison
(a) M/M/1

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

3
1

1,
00

1,
00

1,
00

1,
00

0,
14

2
1

1
1

2
2,

50
0

1,
00

0
0,

40
0

0,
35

5
0,

19
5

1,
37

6
0,

35
5

2,
50

0
0,

55
1

3,
87

6
3

2
1,

00
1,

00
1,

00
1,

00
0,

14
2

1
1

1
1

5,
00

0
1,

00
0

0,
20

0
0,

71
0

1,
73

9
12

,2
47

0,
71

0
5,

00
0

2,
44

9
17

,2
47

1
3

1,
00

1,
00

1,
00

1,
00

0,
14

2
1

1
1

0,
20

0
1,

93
5

13
,6

24
1,

06
5

7,
50

0
3,

00
0

21
,1

24
1

4
1,

00
1,

00
1,

00
1,

00
0,

14
2

1
1

1
0,

00
0

##
##

0,
00

0
0,

00
0

0,
00

0
0,

00
0

0,
00

0

j
m

j
X j

[1
]

1
1

2,
50

0
2

1
5,

00
0

f λ[1
]

S
er

ve
r 2

M
ul

tip
le

xe
r S

ec
tio

n
N

am
e j

S
er

ve
r 1

R
eq

ue
st

E
xe

cu
te

r
R

eq
. G

en
er

at
io

n
C

lie
nt

S
ub

-R
eq

ue
st

 1
E

xe
cu

te
r 1

SR
q i

[b
b]

Se
rv

er
i[b

b]

S
ub

-R
eq

ue
st

 2
E

xe
cu

te
r 2

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

Se
rv

er
 S

ec
tio

n
D

yn
am

ic
 E

va
lu

at
io

n
Se

ct
io

n

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
3

0,
20

00
0,

71
01

02
0,

14
20

n g
es

[1
]

λ b
ot

t[1
]

(b) M/M/1/K

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
λ i

,e
ff[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

3
1

1,
00

1,
00

0,
50

0,
5

0,
20

0
0,

18
7

1
1

1
2

2,
50

0
1,

00
0

0,
40

0
0,

50
0

0,
26

7
1,

42
9

0,
46

7
2,

50
0

0,
73

3
3,

92
9

3
2

1,
00

1,
00

1,
00

1
0,

40
0

0,
18

7
1

1
1

1
5,

00
0

1,
00

0
0,

20
0

2,
00

0
1,

33
3

7,
14

3
0,

93
3

5,
00

0
2,

26
7

12
,1

43
2

3
1,

00
1,

00
1,

00
1

0,
40

0
0,

18
7

1
1

1
0,

20
0

1,
60

0
8,

57
1

1,
40

0
7,

50
0

3,
00

0
16

,0
71

1
4

1,
00

1,
00

1,
00

1
0,

40
0

1
1

1
0,

00
0

##
##

0,
00

0
0,

00
0

0,
00

0
0,

00
0

0,
00

0

j
m

j
X j

[1
]

1
1

5,
00

0
2

1
1,

25
0

3
0,

40
00

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
n g

es
[1

]

λ[1
]

C
lie

nt

SR
q i

[b
b]

R
eq

ue
st

S
ub

-R
eq

ue
st

 2

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

E
xe

cu
te

r 1

Se
rv

er
i[b

b]

E
xe

cu
te

r

E
xe

cu
te

r 2

Se
rv

er
 S

ec
tio

n
Se

rv
ic

e
R

eq
ue

st
 S

ec
tio

n

S
ub

-R
eq

ue
st

 1

R
eq

. G
en

er
at

io
n

S
er

ve
r 2

S
er

ve
r 1

N
am

e j

M
ul

tip
le

xe
r S

ec
tio

n

(c) Summation Method

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

3
1

1,
00

1,
00

1,
00

1,
00

0,
18

3
1

1
1

2
2,

50
0

1,
00

0
0,

40
0

0,
45

7
0,

20
0

1,
09

6
0,

45
7

2,
50

0
0,

65
8

3,
59

6
3

2
1,

00
1,

00
1,

00
1,

00
0,

18
3

1
1

1
1

5,
00

0
1,

00
0

0,
20

0
0,

91
4

1,
42

8
7,

80
8

0,
91

4
5,

00
0

2,
34

2
12

,8
08

1
3

1,
00

1,
00

1,
00

1,
00

0,
18

3
1

1
1

0,
20

0
1,

62
8

8,
90

4
1,

37
2

7,
50

0
3,

00
0

16
,4

04
1

4
1,

00
1,

00
1,

00
1,

00
0,

18
3

1
1

1
0,

00
0

##
##

0,
00

0
0,

00
0

0,
00

0
0,

00
0

0,
00

0

j
m

j
X j

[1
]

1
1

2,
50

0
2

1
5,

00
0

f λ[1
]

S
er

ve
r 1

S
er

ve
r 2

R
eq

. G
en

er
at

io
n

C
lie

nt

M
ul

tip
le

xe
r S

ec
tio

n
N

am
e j

S
ub

-R
eq

ue
st

 1
E

xe
cu

te
r 1

R
eq

ue
st

E
xe

cu
te

r

SR
q i

[b
b]

Se
rv

er
i[b

b]

S
ub

-R
eq

ue
st

 2
E

xe
cu

te
r 2

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

Se
rv

er
 S

ec
tio

n
D

yn
am

ic
 E

va
lu

at
io

n
Se

ct
io

n

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
3

0,
20

00
0,

91
44

0,
18

29

n g
es

[1
]

λ b
ot

t[1
]

231

APPENDIX B. TABLES

Table B.7: Closed Central Server Example - Tableau (Table 4.5)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t[b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

4
1

0,
56

9,
00

1,
00

5,
00

0,
17

2
1

1
1

3
4,

00
0

1,
00

0
0,

25
0

0,
69

0
0,

58
7

3,
40

3
0,

69
0

4,
00

0
1,

27
6

7,
40

3
4

2
0,

44
9,

00
1,

00
4,

00
0,

13
8

1
1

1
2

2,
50

0
1,

00
0

0,
40

0
0,

34
5

0,
10

3
0,

74
6

0,
34

5
2,

50
0

0,
44

8
3,

24
6

3
3

0,
90

10
,0

0
1,

00
9,

00
0,

31
0

1
1

1
0,

45
0

0,
69

0
2,

22
2

1,
03

4
3,

33
3

1,
72

4
5,

55
6

3
4

1,
00

10
,0

0
1,

00
10

,0
0

0,
34

5
1

1
1

1
2,

00
0

1,
00

0
0,

50
0

0,
69

0
0,

58
7

1,
70

2
0,

69
0

2,
00

0
1,

27
6

3,
70

2
2

5
1,

00
1,

00
10

,0
0

10
,0

0
0,

34
5

1
1

1
0,

50
0

1,
27

6
3,

70
2

1,
72

4
5,

00
0

3,
00

0
8,

70
2

1
6

1,
00

1,
00

1,
00

1,
00

0,
03

4
1

1
1

0,
05

0
1,

96
6

57
,0

16
1,

72
4

50
,0

00
3,

00
0

87
,0

16
1

7
1,

00
1,

00
1,

00
1,

00
0,

03
4

1
1

1
0,

00
0

##
##

0,
00

0
0,

00
0

0,
00

0
0,

00
0

0,
00

0
0,

00
0

j
m

j
X j

[1
]

1
1

20
,0

00
2

1
20

,0
00

3
1

10
,0

00

f λ[1
]

Ex
pe

rim
en

ta
l P

ar
am

et
er

s

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

n g
es

[1
]

λ b
ot

t[1
]

Se
rv

er
 S

ec
tio

n
D

yn
am

ic
 E

va
lu

at
io

n
Se

ct
io

n

3
0,

05
00

0,
68

95
0,

03
45

SR
q i

[b
b]

Se
rv

er
i[b

b]

W
rit

e
R

eq
ue

st
 2

D
is

k2
 W

rit
er

W
rit

e
R

eq
ue

st
 1

D
is

k1
 W

rit
er

D
at

a
W

rit
in

g
R

eq
ue

st
D

at
a

W
rit

er
C

al
cu

la
tio

n
R

eq
ue

st
C

al
cu

la
to

r
In

te
rn

al
 R

eq
ue

st
In

te
rn

al
 E

xe
c.

Tr
an

sa
ct

io
n

Tr
an

s.
 E

xe
c.

Tr
an

sa
ct

io
n

G
en

er
at

io
n

C
lie

nt

D
is

k2

M
ul

tip
le

xe
r S

ec
tio

n

N
am

e j
C

P
U

D
is

k1

232

TABLES

Table B.8: Semaphore Synchronization - Tableau (Table 4.8)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

2
1

1,
00

1,
00

1,
00

1,
00

0,
88

0
1

1
1

1
0,

10
0

0,
73

3
7,

33
3

0,
12

0
0,

00
0

0,
00

0
0,

12
0

0,
13

6
0,

12
0

0,
13

6
1

2
1,

00
1,

00
1,

00
1,

00
0,

88
0

1
1

1
7,

33
3

0,
00

0
0,

00
0

0,
12

0
0,

13
6

0,
12

0
0,

13
6

1
3

1,
00

1,
00

1,
00

1,
00

0,
88

0
1

1
1

1,
00

0
1,

00
0

1,
00

0
0,

88
0

0,
00

0
0,

00
0

0,
88

0
1,

00
0

0,
88

0
1,

00
0

##
##

#

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

2
1

1,
00

1,
00

1,
00

1,
00

1,
41

5
1

1
1

1
0,

20
0

0,
96

7
4,

83
3

0,
29

3
0,

00
0

0,
00

0
0,

29
3

0,
20

7
0,

29
3

0,
20

7
1

2
1,

00
1,

00
1,

00
1,

00
1,

41
5

1
1

1
4,

83
3

0,
00

0
0,

00
0

0,
29

3
0,

20
7

0,
29

3
0,

20
7

1
3

1,
00

1,
00

1,
00

1,
00

1,
41

5
1

1
1

0,
50

0
1,

00
0

2,
00

0
0,

70
7

0,
00

0
0,

00
0

0,
70

7
0,

50
0

0,
70

7
0,

50
0

##
##

#

j
m

j
X j

[1
]

1
1

0,
30

0

1
2,

00
00

0,
70

73
1,

41
46

Ex
pe

rim
en

ta
l P

ar
am

et
er

s

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
1

1,
00

00
0,

88
00

0,
88

00

n g
es

[1
]

λ b
ot

t[1
]

f λ[1
]

C
rit

ic
al

 R
es

ou
rc

e

R
eq

ue
st

 2
E

xe
cu

te
r 2

C
rit

ic
al

 A
ct

io
n

2
C

A
 2

 E
xe

cu
te

r

R
eq

. G
en

er
at

io
n

2
C

lie
nt

 2

M
ul

tip
le

xe
r S

ec
tio

n

N
am

e j

Se
rv

er
 S

ec
tio

n
D

yn
am

ic
 E

va
lu

at
io

n
Se

ct
io

n

SR
q i

[b
b]

Se
rv

er
i[b

b]

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

Se
rv

er
 S

ec
tio

n
D

yn
am

ic
 E

va
lu

at
io

n
Se

ct
io

n

SR
q i

[b
b]

Se
rv

er
i[b

b]

C
rit

ic
al

 A
ct

io
n

1
C

A
 1

 E
xe

cu
te

r
R

eq
ue

st
 1

E
xe

cu
te

r 1
R

eq
. G

en
er

at
io

n
1

C
lie

nt
 1

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

n g
es

[1
]

λ b
ot

t[1
]

f λ[1
]

233

APPENDIX B. TABLES

Table B.9: Multiclass Example - Tableau (Table 4.6)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

2
1

1,
00

1,
00

2,
00

2,
00

1,
50

9
1

1
1

2
0,

33
0

0,
62

3
1,

88
7

0,
80

0
3,

20
0

2,
12

0
0,

80
0

0,
53

0
4,

00
0

2,
65

0
2

2
1,

00
1,

00
1,

00
1,

00
0,

75
5

1
1

1
1

0,
20

0
0,

50
0

2,
50

0
0,

30
2

0,
13

1
0,

17
3

0,
30

2
0,

40
0

0,
43

2
0,

57
3

1
3

1,
00

1,
00

1,
00

1,
00

0,
75

5
1

1
1

1,
88

7
3,

33
1

4,
41

3
1,

10
2

1,
46

0
4,

43
2

5,
87

3
1

4
1,

00
1,

00
1,

00
1,

00
0,

75
5

1
1

1
33

,8
77

0,
03

0
0,

00
0

25
,5

68
33

,8
77

25
,5

68
33

,8
77

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t [b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

3
5

1,
00

2,
00

2,
00

4,
00

1,
88

7
1

1
1

3
0,

10
0

1,
00

0
10

,0
00

0,
18

9
0,

04
4

0,
02

3
0,

18
9

0,
10

0
0,

23
3

0,
12

3
3

6
1,

00
2,

00
1,

00
2,

00
0,

94
3

1
1

1
2

0,
20

0
0,

37
7

1,
88

7
0,

50
0

0,
50

0
0,

53
0

0,
50

0
0,

53
0

1,
00

0
1,

06
0

2
7

1,
00

1,
00

2,
00

2,
00

0,
94

3
1

1
1

1,
88

7
0,

54
4

0,
57

7
0,

68
9

0,
73

0
1,

23
3

1,
30

7
2

8
1,

00
1,

00
1,

00
1,

00
0,

47
2

1
1

1
1

0,
20

0
0,

50
0

2,
50

0
0,

18
9

0,
04

4
0,

09
3

0,
18

9
0,

40
0

0,
23

3
0,

49
3

1
9

1,
00

1,
00

1,
00

1,
00

0,
47

2
1

1
1

1,
88

7
0,

58
8

1,
24

6
0,

87
7

1,
86

0
1,

46
5

3,
10

6
1

10
1,

00
1,

00
1,

00
1,

00
0,

47
2

1
1

1
60

,4
94

0,
01

7
0,

00
0

28
,5

35
60

,4
94

28
,5

35
60

,4
94

j
m

j
X j

[1
]

1
1

0,
40

0
2

1
1,

06
0

3
1

0,
40

0

N
am

e j
S

er
ve

r X
S

er
ve

r Y
S

er
ve

r Z

Se
rv

er
i

R
eq

. B
 S

rv
.

C
lie

nt
 B

Se
rv

er
 S

ec
tio

n

R
eq

. B
.2

.2
 S

rv
.

R
eq

. B
.2

.1
 S

rv
.

R
eq

. B
.2

 S
rv

.
R

eq
. B

.1
 S

rv
.

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

Se
rv

er
i

R
eq

. A
.2

 S
rv

.
R

eq
. A

.1
 S

rv
.

R
eq

. A
.2

.2
 S

rv
.

C
lie

nt
 A

Se
rv

er
 S

ec
tio

n

0,
94

34

G
en

er
at

e
R

eq
ue

st
 A

SR
q i

[b
b]

S
er

vi
ce

 R
eq

ue
st

 B
.2

.2
SR

q i
[b

b]

S
er

vi
ce

 R
eq

ue
st

 A

0,
47

17

n g
es

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

S
er

vi
ce

 R
eq

ue
st

 A
.2

S
er

vi
ce

 R
eq

ue
st

 A
.1

S
er

vi
ce

 R
eq

ue
st

 B
G

en
er

at
e

R
eq

ue
st

 B

M
ul

tip
le

xe
r S

ec
tio

n

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

S
er

vi
ce

 R
eq

ue
st

 B
.2

S
er

vi
ce

 R
eq

ue
st

 B
.1

S
er

vi
ce

 R
eq

ue
st

 B
.2

.1

λ Bn g
es

λ b
ot

t

f λ A

Ex
pe

rim
en

ta
l P

ar
am

et
er

s

Ex
pe

rim
en

ta
l P

ar
am

et
er

s

λ b
ot

t

f

0,
80

00
0,

75
47

30
0,

94
34

0,
50

00

30

234

TABLES

Table B.10: ERMF - Tableau (Table 5.2)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t[b

b]
v i

[b
b]

λ i
[b

b]
m

p(
i)[b

b-
1]

m
i,i

nt
[b

b]
m

i[b
b]

M
px

i
X i

[b
b]

m
i,m

px
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
W

i[b
b]

n i
,s

[b
b]

Y i
[b

b]
n i

[b
b]

R
i[b

b]

2
1

1,
00

1,
00

1,
00

1,
00

1,
00

0
1

2
2

1
0,

01
0

0,
01

4
1,

40
8

0,
35

5
0,

00
1

0,
00

1
0,

01
0

0,
01

0
0,

01
1

0,
01

1
3

2
1,

00
1,

00
1,

00
1,

00
1,

00
0

1
2

2
1

0,
15

0
0,

21
1

1,
40

8
0,

35
5

0,
02

2
0,

02
2

0,
15

0
0,

15
0

0,
17

2
0,

17
2

4
3

1,
00

1,
00

1,
00

1,
00

1,
00

0
1

∞
∞

2
0,

47
0

1,
00

0
2,

12
8

0,
00

0
0,

00
0

0,
47

0
0,

47
0

0,
47

0
0,

47
0

4
4

1,
00

1,
00

1,
00

1,
00

1,
00

0
1

∞
∞

3
0,

30
0

1,
00

0
3,

33
3

0,
00

0
0,

00
0

0,
30

0
0,

30
0

0,
30

0
0,

30
0

3
5

1,
00

1,
00

1,
00

1,
00

1,
00

0
1

1
1

∞
0,

00
0

0,
00

0
0,

77
0

0,
77

0
0,

77
0

0,
77

0
3

6
1,

00
1,

00
1,

00
1,

00
1,

00
0

1
2

2
1

0,
20

0
0,

28
2

1,
40

8
0,

35
5

0,
02

9
0,

02
9

0,
20

0
0,

20
0

0,
22

9
0,

22
9

2
7

1,
00

1,
00

1,
00

1,
00

1,
00

0
1

1
1

2,
81

7
0,

05
0

0,
05

0
1,

12
0

1,
12

0
1,

17
0

1,
17

0
2

8
1,

00
1,

00
1,

00
1,

00
1,

00
0

1
2

2
1

0,
35

0
0,

49
3

1,
40

8
0,

35
5

0,
05

0
0,

05
0

0,
35

0
0,

35
0

0,
40

0
0,

40
0

1
9

1,
00

1,
00

1,
00

1,
00

1,
00

0
1

1
1

2,
81

7
0,

10
2

0,
10

2
1,

48
0

1,
48

0
1,

58
2

1,
58

2
1

10
1,

00
1,

00
1,

00
1,

00
1,

00
0

1
1

1
1,

41
8

0,
70

5
0,

00
0

0,
00

0
1,

41
8

1,
41

8
1,

41
8

1,
41

8

j
m

j
X j

[1
]

λ j
[b

b]
μ j

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
n i

,s
[b

b]
n i

[b
b]

1
2

0,
71

0
1,

00
0

1,
40

8
0,

35
5

0,
10

2
0,

71
0

0,
81

2
2

∞
0,

47
0

1,
00

0
2,

12
8

0,
00

0
0,

47
0

0,
47

0
3

∞
0,

30
0

1,
00

0
3,

33
3

0,
00

0
0,

30
0

0,
30

0

R
ul

es
et

 E
va

. R
eq

.
W

ea
th

er
 S

er
vi

ce
Tr

af
fic

 S
er

vi
ce

Tr
af

fic
 S

er
ve

r

N
am

e j

M
ul

tip
le

xe
r S

ec
tio

n

In
iti

al
iz

at
io

n
R

eq
ue

st

W
ea

th
er

 S
er

ve
r

C
on

tro
l U

ni
t

M
ap

pi
ng

 R
eq

ue
st

E
va

lu
at

io
n

R
eq

ue
st

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

E
C

A
-E

. W
S

 P
ro

xy

E
R

M
F

S
er

ve
r

Se
rv

er
i[b

b]

E
C

A
-E

. R
ul

e
E

ng
in

e
E

C
A

-E
ng

in
e

C
on

t.

E
R

M
F-

S
ys

te
m

W
eb

 S
er

vi
ce

s
R

eq
.

R
eq

ue
st

 G
en

er
at

io
n

Ti
m

er
 A

pp
lic

at
io

n

M
/M

/m
 rs

p.
 M

/M
/∞

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

Se
rv

er
 S

ec
tio

n

Fo
re

ca
st

 R
eq

ue
st

W
ea

th
er

 S
er

v.
 H

dl
.

Tr
af

fic
 S

er
vi

ce
 H

dl
.

SR
q i

[b
b]

A
le

rt
R

eq
ue

st
A

ct
io

n
P

er
fo

rm
er

E
C

A
-E

. R
ul

e
E

ng
in

e

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
3

1,
00

00
n g

es
[1

]

λ[1
]

235

APPENDIX B. TABLES

Table B.11: Axis2 - Tableau (Table 5.3)

[b
b]

i
p p

(i)
,i

v p
(i)

[b
b-

1]
v i

,in
t[b

b]
v i

[b
b]
λ i

[b
b]

m
p(

i)[b
b-

1]
m

i,i
nt

[b
b]

m
i[b

b]
M

px
i

X i
[b

b]
m

i,m
px

[b
b]

μ i
[b

b]
ρ i

[b
b]

n i
,q

[b
b]

W
i[b

b]
n i

,s
[b

b]
Y i

[b
b]

n i
[b

b]
R

i[b
b]

4
1

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
00

06
0,

40
0

68
9,

66
0,

00
2

0,
00

0
0,

00
0

0,
01

2
0,

00
1

0,
01

2
0,

00
1

4
2

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
00

45
0,

40
0

89
,8

9
0,

01
9

0,
00

0
0,

00
0

0,
09

4
0,

01
1

0,
09

4
0,

01
1

4
3

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
00

04
0,

40
0

10
00

,0
0

0,
00

2
0,

00
0

0,
00

0
0,

00
8

0,
00

1
0,

00
8

0,
00

1
4

4
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

1
0,

00
04

0,
40

0
93

0,
23

0,
00

2
0,

00
0

0,
00

0
0,

00
9

0,
00

1
0,

00
9

0,
00

1
3

5
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

17
0,

65
0,

00
0

0,
00

0
0,

12
3

0,
01

5
0,

12
3

0,
01

5
3

5
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

1
0,

03
25

0,
40

0
12

,3
3

0,
13

7
0,

00
0

0,
00

0
0,

68
3

0,
08

1
0,

68
3

0,
08

1
4

6
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

1
0,

00
06

0,
40

0
64

5,
16

0,
00

3
0,

00
0

0,
00

0
0,

01
3

0,
00

2
0,

01
3

0,
00

2
5

7
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

1
0,

03
29

0,
40

0
12

,1
5

0,
13

9
0,

00
0

0,
00

0
0,

69
3

0,
08

2
0,

69
3

0,
08

2
5

8
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

1
0,

00
03

0,
40

0
14

81
,4

8
0,

00
1

0,
00

0
0,

00
0

0,
00

6
0,

00
1

0,
00

6
0,

00
1

5
9

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
00

01
0,

40
0

40
00

,0
0

0,
00

0
0,

00
0

0,
00

0
0,

00
2

0,
00

0
0,

00
2

0,
00

0
5

10
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

1
0,

00
01

0,
40

0
40

00
,0

0
0,

00
0

0,
00

0
0,

00
0

0,
00

2
0,

00
0

0,
00

2
0,

00
0

5
11

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
02

87
0,

40
0

13
,9

3
0,

12
1

0,
00

0
0,

00
0

0,
60

4
0,

07
2

0,
60

4
0,

07
2

4
12

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
16

,1
0

0,
00

0
0,

00
0

1,
30

8
0,

15
5

1,
30

8
0,

15
5

4
13

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
00

50
0,

40
0

80
,0

0
0,

02
1

0,
00

0
0,

00
0

0,
10

5
0,

01
3

0,
10

5
0,

01
3

4
14

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
00

05
0,

40
0

81
6,

33
0,

00
2

0,
00

0
0,

00
0

0,
01

0
0,

00
1

0,
01

0
0,

00
1

5
15

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
03

97
0,

40
0

10
,0

7
0,

16
7

0,
00

0
0,

00
0

0,
83

6
0,

09
9

0,
83

6
0,

09
9

5
16

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
1

0,
04

37
0,

40
0

9,
14

0,
18

4
0,

00
0

0,
00

0
0,

92
1

0,
10

9
0,

92
1

0,
10

9
4

17
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

11
,9

8
0,

00
0

0,
00

0
1,

75
7

0,
20

9
1,

75
7

0,
20

9
3

18
1,

00
1,

00
1,

00
1,

00
8,

42
5

1
5

6,
59

0,
00

0
0,

00
0

3,
19

3
0,

37
9

3,
19

3
0,

37
9

2
19

1,
00

1,
00

1,
00

1,
00

8,
42

5
1

5
5,

26
0,

00
0

0,
00

0
4,

00
0

0,
47

5
4,

00
0

0,
47

5
1

20
1,

00
1,

00
1,

00
1,

00
8,

42
1

5
5

0,
40

0
2,

11
0,

80
0

2,
21

6
0,

26
3

4,
00

0
0,

47
5

6,
21

6
0,

73
8

1
21

1,
00

1,
00

1,
00

1,
00

8,
42

1
1

1
11

8,
01

18
8,

42
99

3,
78

4
11

8,
01

2
99

3,
78

4
11

8,
01

2

j
m

j
X j

[1
]

1
2

0,
19

0

Se
rv

ic
e

R
eq

ue
st

 S
ec

tio
n

SR
q i

[b
b]

O
pO

ut
 P

ha
se

 R
eq

.
O

ut
Fl

ow
 R

eq
ue

st

M
es

sa
ge

O
ut

 R
eq

.
E

nc
ry

pt
io

n
R

eq
.

C
P

U
N

am
e j

M
ul

tip
le

xe
r S

ec
tio

n

D
yn

am
ic

 E
va

lu
at

io
n

Se
ct

io
n

P
ol

ic
y

D
et

.

Se
rv

er
i[b

b]

Se
rv

er
 S

ec
tio

n

M
es

sa
ge

O
ut

 S
rv

.
E

nc
ry

pt
er

P
ol

ic
y

D
et

. R
eq

.

S
O

A
P

 M
B

. D
is

p.
 R

.
H

TT
P

 L
oc

. D
is

p.

O
pI

n
P

ha
se

 S
rv

O
ut

Fl
ow

 H
an

dl
er

O
pO

ut
 P

ha
se

 S
rv

.

S
O

A
P

 A
ct

. D
is

p.

O
pI

n
P

ha
se

 R
eq

.
B

us
in

es
s

Lo
gi

c
R

.

U
R

I O
p.

 D
is

p.
 R

eq
.

A
dd

re
ss

 D
is

p.
 R

eq
.

D
is

pa
tc

h
R

eq
ue

st

B
us

in
es

s
Lo

gi
c

In
st

an
ce

 D
is

p.

P
re

D
is

pa
tc

he
r

D
ec

ry
pt

er

H
TT

P
 L

oc
. D

is
p.

 R
.

D
is

p.
 In

st
an

ce
 R

eq
.

R
eq

. U
R

I D
is

p.

S
O

A
P

 M
B

 D
is

p.
U

R
I O

p.
 D

is
p.

A
dd

re
ss

 D
is

p.
D

is
pa

tc
he

r
P

re
D

is
pa

tc
h

R
eq

.
D

ec
ry

pt
 R

eq
.

S
O

A
P

 A
ct

. D
is

p.
 R

.

Tr
an

sp
or

te
r

In
Fl

ow
 H

an
dl

er
S

er
vi

ce
 E

xe
c.

E
xt

er
na

l S
ou

rc
e

S
ys

te
m

λ[1
]

S
up

. a
nd

 E
x.

 R
eq

.
G

en
er

at
io

n
R

eq
ue

st

R
eq

.t
U

R
I D

is
p.

 R
.

Tr
an

sp
or

t R
eq

ue
st

In
Fl

ow
 R

eq
ue

st
E

xe
cu

tio
n

R
eq

ue
st

Ex
pe

rim
en

ta
l P

ar
am

et
er

s
n g

es
[1

]

λ b
ot

t[1
]

f
8,

42
1

0,
80

0
10

,5
26

10
00

236

TABLES

Table B.12: HPI Search Portal - Tableau (Table 5.1)

[bb] i pp(i),i vp(i)
[bb-1] vi,int

[bb] vi
[bb] λi

[bb] mp(i)
[bb-1] mi,int

[bb] mi
[bb] Mpxi Xi

[bb] mi,mpx
[bb] μi

[bb] ρi
[bb] ni,q

[bb] Wi
[bb] ni,s

[bb] Yi
[bb] ni

[bb] Ri
[bb]

2 1 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0005 0,007 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
3 2 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,002 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
5 3 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,000 0,000 0,900 0,077 0,900 0,077
6 4 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
6 5 1,00 1,00 20,00 20,00 232,764 1 3 3 2 0,0001 1,000 19230,769 0,004 0,000 0,000 0,012 0,000 0,012 0,000
6 6 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
5 7 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 16,200 1,392 1,812 0,156 18,012 1,548
5 8 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0003 0,004 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
7 9 1,00 5,00 1,00 5,00 58,191 3 1 3 3 0,0001 0,152 1515,152 0,013 0,000 0,000 0,038 0,001 0,038 0,001
7 10 1,00 5,00 1,00 5,00 58,191 3 ∞ ∞ 4 0,0087 1,000 64,657 0,000 0,000 0,938 0,016 0,938 0,016
7 11 1,00 5,00 1,00 5,00 58,191 3 1 3 3 0,0001 0,182 1515,152 0,013 0,000 0,000 0,038 0,001 0,038 0,001
6 12 1,00 1,00 5,00 5,00 58,191 1 3 3 1515,152 0,000 0,000 1,015 0,017 1,015 0,017
7 13 1,00 5,00 1,00 5,00 58,191 4 1 4 5 0,0008 0,053 65,789 0,221 0,000 0,000 0,885 0,015 0,885 0,015
7 14 1,00 5,00 1,00 5,00 58,191 4 ∞ ∞ 6 0,0090 1,000 111,111 0,000 0,000 0,885 0,015 0,885 0,015
7 15 1,00 5,00 1,00 5,00 58,191 4 1 4 5 0,0030 0,197 65,789 0,221 0,004 0,000 0,885 0,015 0,888 0,015
6 16 1,00 1,00 5,00 5,00 58,191 1 4 4 65,789 0,004 0,000 2,654 0,046 2,657 0,046
7 17 1,00 5,00 1,00 5,00 58,191 5 1 5 7 0,0024 0,102 42,553 0,273 0,008 0,000 1,367 0,024 1,375 0,024
7 18 1,00 5,00 1,00 5,00 58,191 5 ∞ ∞ 8 0,0008 1,000 1250,000 0,000 0,000 0,047 0,001 0,047 0,001
7 19 1,00 5,00 1,00 5,00 58,191 5 1 5 7 0,0023 0,098 42,553 0,273 0,005 0,000 1,367 0,024 1,373 0,024
6 20 1,00 1,00 5,00 5,00 58,191 1 5 5 42,553 0,013 0,000 2,782 0,048 2,794 0,048
5 21 1,00 1,00 1,00 1,00 11,638 1 1 1 42,553 0,013 0,001 2,782 0,239 2,794 0,240
5 22 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0008 0,010 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
4 23 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 32,413 2,785 7,294 0,627 39,707 3,412
5 24 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0006 0,008 12,931 0,900 32,413 2,785 0,900 0,077 33,313 2,862
6 25 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
6 26 1,00 1,00 20,00 20,00 232,764 1 3 3 2 0,0050 1,000 200,000 0,388 0,083 0,000 1,164 0,005 1,247 0,005
6 27 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 12,931 0,900 8,183 0,703 0,900 0,077 9,083 0,780
5 28 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 16,366 1,406 2,964 0,255 19,330 1,661
5 29 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0003 0,004 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
5 30 1,00 1,00 1,00 1,00 11,638 1 1 1 9 0,0050 1,000 200,000 0,058 0,004 0,000 0,058 0,005 0,062 0,005
5 31 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0008 0,010 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
4 32 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 64,983 5,584 5,722 0,492 70,705 6,075
5 33 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0054 0,070 12,931 0,900 0,000 0,000 0,900 0,077 0,900 0,077
7 34 1,00 10,00 1,00 10,00 116,382 1 1 1 1 0,0015 0,194 129,313 0,900 0,000 0,000 0,900 0,008 0,900 0,008
7 35 1,00 10,00 1,00 10,00 116,382 1 1 1 10 0,0040 1,000 250,000 0,466 0,405 0,003 0,466 0,004 0,871 0,007
7 36 1,00 10,00 1,00 10,00 116,382 1 1 1 1 0,0057 0,737 129,313 0,900 8,100 0,070 0,900 0,008 9,000 0,077
6 37 0,40 5,00 5,00 10,00 116,382 1 1 1 129,313 8,505 0,073 2,266 0,019 10,771 0,093
7 38 1,00 5,00 1,00 5,00 58,191 1 1 1 1 0,0025 0,162 64,657 0,900 8,100 0,139 0,900 0,015 9,000 0,155
7 39 1,00 5,00 1,00 5,00 58,191 1 2 2 11 0,0025 1,000 400,000 0,073 0,001 0,000 0,145 0,003 0,146 0,003
7 40 1,00 5,00 1,00 5,00 58,191 1 1 1 1 0,0021 0,136 64,657 0,900 8,101 0,139 0,900 0,015 9,001 0,155
6 41 1,00 5,00 1,00 5,00 58,191 1 1 1 64,657 16,202 0,278 1,945 0,033 18,147 0,312
5 42 1,00 1,00 5,00 5,00 58,191 1 1 1 64,657 24,707 0,425 4,211 0,072 28,918 0,497
5 43 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0098 0,127 12,931 0,900 0,000 0,000 0,900 0,077 0,900 0,077
6 44 1,00 1,00 1,00 1,00 11,638 1 1 1 12 0,0090 1,000 111,111 0,105 0,000 0,000 0,105 0,009 0,105 0,009
6 45 1,00 1,00 1,00 1,00 11,638 1 1 1 13 0,0024 1,000 416,667 0,028 0,001 0,000 0,028 0,002 0,029 0,002
6 46 1,00 1,00 1,00 1,00 11,638 1 1 1 12 0,0025 1,000 400,000 0,029 0,001 0,000 0,029 0,003 0,030 0,003
5 47 1,00 1,00 1,00 1,00 11,638 1 1 1 400,000 0,002 0,000 0,162 0,014 0,163 0,014
5 48 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0080 0,103 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
4 49 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 32,809 2,819 7,073 0,608 39,881 3,427
5 50 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0012 0,047 38,794 0,900 40,909 1,172 0,900 0,026 41,809 1,197
5 51 1,00 3,00 1,00 3,00 34,915 1 1 1 14 0,0090 1,000 111,111 0,314 0,144 0,004 0,314 0,009 0,458 0,013
5 52 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0090 0,349 38,794 0,900 8,100 0,232 0,900 0,026 9,000 0,258
4 53 1,00 1,00 3,00 3,00 34,915 1 1 1 38,794 49,153 1,408 2,114 0,061 51,267 1,468
5 54 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0001 0,005 38,794 0,900 49,153 1,408 0,900 0,026 50,053 1,434
5 55 1,00 3,00 1,00 3,00 34,915 1 2 2 11 0,0025 1,000 400,000 0,044 0,000 0,000 0,087 0,003 0,087 0,003
5 56 1,00 3,00 1,00 3,00 34,915 1 1 1 1 0,0002 0,006 38,794 0,900 8,100 0,232 0,900 0,026 9,000 0,258
4 57 1,00 1,00 3,00 3,00 34,915 1 1 1 38,794 57,253 1,640 1,887 0,054 59,140 1,694
3 58 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 64,983 5,584 7,294 0,627 72,277 6,210
3 59 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0003 0,004 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
2 60 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 81,183 6,976 9,094 0,781 90,277 7,757
2 61 1,00 1,00 1,00 1,00 11,638 1 1 1 1 0,0002 0,003 12,931 0,900 8,100 0,696 0,900 0,077 9,000 0,773
1 62 1,00 1,00 1,00 1,00 11,638 1 1 1 12,931 97,383 8,368 10,894 0,936 108,277 9,304
1 63 1,00 1,00 1,00 1,00 11,638 1 1 1 Client 334,3927 0,003 0,000 0,000 3891,723 334,393 3891,723 334,393

j mj Xj
[1]

1 2 0,155
2 8 0,101
3 1 0,001
4 ∞
5 1 0,019
6 ∞
7 1 0,024
8 ∞
9 4 0,005
10 2 0,040
11 4 0,020
12 2 0,009
13 4 0,002
14 4 0,027

λ[1]

Experimental Parameters
nges

[1]

λbott
[1]

f

4000
12,9313
0,9000
11,6382

HPI LDAP Server
HPI C-1.18 - Event Srv.

HPI C-1.14 - Index Serv.Srv.
HPI C1.18 - Pic. Serv. Srv.
HPI A-2.11 - 3DBIMService
HPI C1.3 - LDAP Serv. Srv.

SOAP Unwrapping SOAP Unwrapper

HPI C1.17 - SE 3 Serv. Srv.
Search Engine 3 Server

HPI C1.1 - SE 2 Serv. Srv.
Search Engine 2 Server

Search Engine 1 Search Search Engine 1
SOAP Generation SOAP Generator

Preview

Preview Generator
HTML Parsing

Aggregation + Generation

HTML Generator
Preview Handler

HTML Generation

Aggregator + Gen.

Preview Generation

AggregatorResp. + Previews Agg.
HTML Parser

File Search Req. Gen. Generator

Search Engine 1 Handling SE 1 Handler
REST Unwrapping

Search Engine 2 Handling

Aggregation + Gen.
Index Search Index Searcher

Room Search Room Searcher

3D Path Generation 3D Path Generator
Extraction and Generation Extractor and Gen.

Picture Search
Response Handling

HTML Parsing HTML Parser
Preview Generation Preview Generator
HTML Generation HTML Generator

Preview Preview Handler

Response Handler

Picture Engine Search Picture Engine
Request Generation Request Generator

Response Handling Response Handler
Calendar Search Req. Calendar

 People Search Req. Gen. Request Generator
People Search People Searcher

LDAP Request Generation LDAP Req. Gen.
LDAP Service Request LDAP Handler

Response Parsing Response Parser
People Search People Searcher

Aggregation Aggregator

People Search H.
Aggregation + Generation Aggregator + Gen.

File Search File Searcher
Response Sending Response Sender
Response Handling

Req. + SOAP Generation Req. + SOAP Gen.
Super Search Request Super Search Srv.

HPI B-1.3 - Main
Namej

Multiplexer Section

Service Request Section

Search Engine 2 Search

Webpage Request

People Detail Search

REST Generation

HTML Parsing

SRqi
[bb]

HPI V-2.01 - SE 1 Serv.Srv.

Serveri
[bb]

Request Generator

3D Path Generator

Room Searcher
Extractor and Gen.

Portal Searcher
Sub-Request Gen.

Job Generation

HPI C-1.14 - Preview Srv.

Dynamic Evaluation Section

Response Handler

REST Unwrapper
Search Engine 2
REST Generator

SE 2 Handler

Server Section

Response Agg.
Webpage Renderer

Picture Searcher

Webpage Req.
Webrequest Exec.

Portal Server

HTML Parser
Search Engine 3
HTML Generator

SE 3 Handler
Searcher

Response Handler

Aggregator + Gen.

Request Generation

3D Path Generation
Extraction and Generation

Event Search Request
Response Handling

Search Engine 3 Search
HTML Generation

Search Engine 3 Handling
Search Request

Rendering Request
Response Aggregation

Search Engine 1 Server

Generator
Webrequest

Room Search

Event Searcher

Portal Search Serv. Req.
Sub-Request Generation

Portal Request

237

Appendix C

Figures

239

APPENDIX C. FIGURES

�
�
�
��
�
�

�
�
	

�
�

��

�
�
	

�
�
�
��
�

�
�
��
�
�

�
�
�
���
�
��
�
�

�
�
�
�

�

�
�
�
�
�
�
��
�
�

�
�
�
�

�
�
��

�
�

�
�
	

�
�
�
�

�
�
!
�"
�

�
�
	

#
�$
�%

�
�
�
�

�
�
��

�
�

�
�
�
��
�

�
�
&
��
�

'(

�
�
��
�
�(

�
�
�
�

�
)
�(
$

�
�
	

*
�

�

�
�
�
�

�
�
��

�
�

�
�
�
��
�

�
�
&
��
�

$
'(

�
�
��
�
�(

*
+
,

�
�
�
��
�
�

�
�
	

*
�

��

�
��
��
(
�
-�

�
�
��
�
�

.
��
�
�
��
�/

*
0
0
,

�
�
�
1
!
�
��
��
�

�
�
	

�
�$
�

�2
1

�
�
	

*
�

�

3

�
�
�
�

�
�
��

�
�

�
�
�
��
�

�
�
&
��
�

�
'(

�
�
��
�
�(

�2
1

�
�
	

*
�

�

4

*
+

�
�
	

*
�

�

5

*
+
,

*
6
�
,

	�
�
&
�
�
�
&
��
7

�
�
	

*
�

�

5

�
��

(
�
�

8
�
�
�
�

�
��
�
��

�
�
��
��
�

8
�
�
�
�

�
�
�
��
�

�
�
��
�
�

�
�
�
��
�

�
�
&
��
�

�
�
�
��
�

�
�
&
��
�

�
6
�
�

�
�
�
��
�

8
�
6
�
�

�
�
�
��
�

�
�
��
�
�

�
�
�
��
�

�
�
&
��
�

$

�
�
�
��
�

�
�
&
��
�

$

"
�
2

�
�
��
��
�
(

8
8
�
�
�

�
.
�
�

�
�
��
��
�

8
�
6
�
�

�
�
	

.
�
�
�
��

�
�
��
�
�

8
�
.
�
�

�
.
�
	�
�
�
��
��
�

8
�
�
�
�

*
�
��
�
1
�
��
�
��
��
�

8
�2
1

�
�
�
��
�

�
�
��
�
�

�
�
�
��
�

�
�
&
��
�

�

�
�
�
��
�

�
�
&
��
�

�

"
�
2
(
��
�

8
�
�
�
�

	�
1
�
)
�
�
��
��
�

8
8
�
�
�

*
�
�
�1
��
�
��
��
�
�
/
�
9
��
�

8
�
�
�

�
�
�
��
�

8
�
�
��
��
��

8
�
�
�
�
(
,

*
�
�
��
�
�,

�
�
��
��
��

8
8

�
.
�.
�
(
��
�
��
�
�

8

�
��
�9
��

�
�
�
��
�

�
9
�
�
��
�
�
��
�

�
��
�
��

�
�
7
�
�

8
�
��
�

�
��

(

:
���

�
�
�
��
�

8
�
��
�
��

(

�2
1

�
�
	

*
�

�

4

�
��
�9
��
�
�
��
��
�

8
�2
1

�
�
�
�
��

�
�
�
��
�

�
�
�
�
�(

�
-

��
�

.
�
/

8
��
�

�
9
�
�
��
�
�
��
�

;

�
�
��
��
�

*
�
�
�
�
�
��
�

8
�
6
�
�

8
�
6
�
�

8
�
6
�
�

�
9
�
�
��
�
�
��
�

;

�
&
&
��
&
�
��
�

�
9
�
�
��
�
�
��
�

;

�
��
�
��

�
�
1
9
��

88
<
8
�
(

�
��
�
��

(

8

Figure C.1: HPI Search Portal - Architecture (Figure 5.1)

240

FIGURES

��� ��� ��� ��� ��� ��� �	�

��
������
����������������
��
������

��
��
��
��
��������������

 ��!�
��"� ������
�������� ��!�
�
��#$"�
��
��
��
��#$"�� ��!�
�

 ��#%�&�'
����(���""
�"$����
���������""
%� ��#%�&�'
����(�

��
��
���""
�"$��

�����)��

�����)��

*���
$����� ������
��������*���
$��� ������

��
��
��+�����

��#$"�� ������
�������� �������
��#$"�
��
��
��
��#$"�� �������

�����)��

'�
�$�� ������
����������������'�
�$�� ������

��
��
��'�
�$����
��

�����)��

���, ��������*���
$����
��������*���
$������, �������
��
��
�����, �������*���
$��

�����)��

'�
�$����$
�-���
������ ������
��������

 ��%�'�
�$����$
�-���
�%
��
��
�

'�
�$����$
�-���
��
�����)��

��#�
���$
�-� ������
����������#�
���$
�-

��
��
����#�
���$
�-���
��

�����)��

�����)��

 ��%�&��.�'�*���
$����
��������*���
$��� ��%�$�!��.�'
��
��
�� ��%�&��.�'�*���
$��

�����)��

�""
�"$�����&�*���
$����
���������""
%� ��%/�*��%�'
����(�
��
��
���""
�"$��
�&�*���
$��

�����)��

��$
�-� �������
����������$
�-
��
��
����$
�-�

�����)��

�""
�"$����
���������""
%� ��#%�&�'
����(�

��
��
���""
�"$��

�����)��

�������$
�-� ������
����������$
�-���
������
��
��
���������$
�-�

�����)��

�������$
�-� ��%�*��%�
��������*��%��������$
�-� ��%
��
��
�� �������*���
$��

�����)��

0�!�����$
�-
�������� ���0�!�����$
�-
��
��
��0�!�����$
�-�

�����)��

�""
�"$�����&�*���
$����
���������""
%� ��%/�*��%�'
����(�
��
��
���""
�"$��
�&�*���
$��

�����)��

1234�'$
���"
��������'$
���1234� ��#����

��
��
��1234�'$
��

�����)��

'
����(� ������
��������1$�!���'
����(�
��
��
��'
����(�1$�!��

�����)��

'
����(�*���
$����
��������*���
$���'
����(�
��
��
��'
����(�*���
$��

�����)��

1234�*���
$����
��������*���
$���1234� ������

��
��
��1234�*���
$��

�����)��

'��#�����$
�-� ������
����������$
�-���
�'��#���
��
��
��'��#�����$
�-�

�����)��

 ��#��������!��"
�����������!� ��#�����
��
��
�� ��#��������!�

�����)��

'��#�����$
�-� ��%�*��%�
��������*��%�'��#�����$
�-� ��%
��
��
�� �������*���
$��

�����)��

 ��#�����'$
���"
��������'$
��� ��#����
��
��
�� ��#�����'$
��

�����)��

45�'���
����� ������
��������

1$�!���45�'���
����� ��%
��
��
��45�'�1$�!��
�����)��

'��#�����$
�-
�������� ������#�����$
�-
��
��
��'��#�����$
�-�

�����)��

45�'� �������*���
$�����
��������*���
$���45�'� ������
��
��
��45�'� ��%�*���
$��

�����)��

�""
�"$�����&�*���
$����
���������""
%� ��%/�*��%����%, ��%
��
��
���""
�"$��
�&�*���
$��

�����)��

'��#���5��$�����$
�-� ������
��������

����%�'��#���5��$�����$
�-
��
��
��

'��#���5��$�����$
�-�1$�!��
�����)��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

 ��6���$
�-� ������
����������$
�-���
� ��6
��
��
�� ��6���$
�-�

�����)��

�5�'$�-�*���
$����
��������*���
$����5�'$�-
��
��
���5�'$�-�*���
$��

�����)��

���
$������$�!�*���
$����
�����������
%� ��605�&�*��%� ��%
��
��
�����
$���
�$�!�*���
$��

�����)��

 ��#������""
�"$����
���������""
�"$��� ��#�����
��
��
�� ��#������""
�"$��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

'����
����$
�-� ������
����������$
�-���
�'����
��
��
��
��'����
����$
�-�

�����)��

'����
����"������$
�-
����������$
�-����'����
����"���

��
��
��'����
����"���
�����)��

 �������*���
$�����
��������*���
$��� ������
��
��
�� �������*���
$��

�����)��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

 ��6���$
�-� ������
����������$
�-���
� ��6
��
��
�� ��6���$
�-�

�����)��

�5�'$�-�*���
$����
��������*���
$����5�'$�-
��
��
���5�'$�-�*���
$��

�����)��

���
$������$�!�*���
$����
�����������
%� ��605�&�*��%� ��%
��
��
�����
$���
�$�!�*���
$��

�����)��

1234�'$
���"
��������'$
���1234� ��#����

��
��
��1234�'$
��

�����)��

��$
�-���"������1$�!���"
��������

1$�!�����$
�-���"�����
��
��
�

��$
�-���"������1$�!��
�����)��

��$
�-���"��������$
�-
����������$
�-������"�����
��
��
����$
�-���"�����

�����)��

1234�*���
$����
��������*���
$���1234� ������

��
��
��1234�*���
$��

�����)��

 ��2�7�(
$##��"
��������7�(
$#� ��2

��
��
�� ��2�7�(
$##�

�����)��

��$
�-���"������1$�!���"
��������

1$�!�����$
�-���"�����
��
��
�

��$
�-���"������1$�!��
�����)��

��$
�-���"��������$
�-
����������$
�-������"�����
��
��
����$
�-���"�����

�����)��

 ��2�*���
$����
��������*���
$��� ��2
��
��
�� ��2�*���
$��

�����)��

�.�'�7�(
$##��"
��������7�(
$#��.�'�������#�
��
��
���.�'�7�(
$##�

�����)��
��$
�-���"������1$�!���"

��������
1$�!�����$
�-���"�����

��
��
�
��$
�-���"�����1$�!��
�����)��

��$
�-���"��������$
�-
����������$
�-������"�����
��
��
����$
�-���"�����

�����)��

�.�'�*���
$����
��������*���
$����.�'�������#�

��
��
���.�'�*���
$��

�����)��

1234�'$
���"
��������'$
���1234� ��#����

��
��
��1234�'$
��

�����)��

'
����(� ������
��������1$�!���'
����(�
��
��
��'
����(�1$�!��

�����)��

'
����(�*���
$����
��������*���
$���'
����(�
��
��
��'
����(�*���
$��

�����)��

1234�*���
$����
��������*���
$���1234� ������

��
��
��1234�*���
$��

�����)��

 ��#�����1$�!���"
��������1$�!��� ��#����
��
��
�� ��#�����1$�!��

�����)��

��������$
�-� ������
����������$
�-���
�������
��
��
����������$
�-�

�����)��

+$���!$
���$
�-� ������
����������$
�-����+$���!$
�

��
��
��+$���!$
�
�����)��

 �������*���
$�����
��������*���
$��� ������
��
��
�� �������*���
$��

�����)��

Figure C.2: HPI Search Portal - Service Request Structure (Figure 5.2)

241

APPENDIX C. FIGURES

�
�
�
��
�

��
	

�

	

�
�
�
�
��

�
�

�
�
�
�
�
�

��
	

�
�
�
�
��

�
�

�
�
�
�
�

�
�
�
�
��
�
�

��
	

��
	

�
�
�
��
�

�
�
��
�
�
��
�
�

��
	

�
�
�
��
�
��
�
�
��
�
�

��
�
�

��
�
�

!
�
"
��
�
�

�
�
�
�
�

�
�
�
�
��
�
�

∞

��
	

�
�
�
�
��

�
�

�
�
�
#

��
	

��
	

�
�
�
��
�

�
�
��
�
�
��
�
�$

��
	

�
�
�
��
�
��
�
�
��
�
�$
��
�
�

��
�
�

!
�
"
��
�
�

�
�
�
#

∞

��
	

�
�
�
�
��

�

�
#
%
&
�

�
�
�
�
�
�

��
	

��
	

�
�
�
��
�

�
�
��
�
�
��
�
�'

��
	

�
�
�
��
�
��
�
�
��
�
�'
��
�
�

��
�
�

�
�
��
�

�
#
%
&
�

�
�
�
�
�
�
�
�

∞

∞

��
	

�
�
�
�
��

�

�
�
�
�
�
�

�
�

�
�

��
�
�
�

��
	

�
�
�
��
�
�

�
�

�
�
�
(�
�
�

��
�
�
(�
�

�
��
�
��
"
�

��
	

�
�
�
�
��

�

�
#
%
&
�

�
�
�
�
�
�

��
	

��
	

�
��
��
�
"

�
�
��
�

�
#
%
&
�

�
�
�
�
�
�
�
�

��
	

�
�
�
��
�
�

�
�

�
�
�
�
(�
�
�

�

�
��
�
��
"
�

��
	

�
�
�
�
��

�
�

�
��
�
��
"
�

�
�
�
�
��
�
�
�
��
�

��
	

�
�
�
��
�
�

�
�

�
�
�
(�
�
�

��
�
�
(�
�

�
��
�
��
"
�

��
	

�
�
�
�
��

�

�
#
%
&
�

�
�
�
�
�
�

��
	

��
	

�
�
�

��
��
��
�
��
"
�

�
�
��
�

�
#
%
&
�

�
�
�
�
�
�
�
�

∞

��
	

�
�
�
��
�
�

�
�

�
�
�
�
(�
�
�

�

�
��
�
��
"
�

��
	

�
�
�
�
��

�
�

�
��
�
��
"
�

��
	

�
�
�
�
��

�
�

)
���
��
�
�
��
�
�

�
�
�
�
�
�

∞

)
���
�
�
�
��
�

��
	

�
�
�
�*
�

�
+
�

�
�
�
��
�

��
	

�
�
�
�
��

�
�

�
�
�
�
��
�

�
�
�
��
�
��
�
�
(

��
	

�
�
�
�
��

�
�

&
,
�
�
��
�
�
(

��
	

��
	

&
,
�
�
��
�
��
��
�
��
�
�
�
�
�

�
�
��
�
�

�
�
�
�
�
�
�
�

∞

��
	

�
�
�
��
�
�

�
�

�
�
�
(�
-
�
�
�
(�
�

�
�
.
-�
�
�
(

��
	

�
�
�
��
�
�
�
��
�

�
�
�
��
�

�
+
�
�
�

�
��
�
�
�
��
�,
�

�
���
�
�
�
��
�

��
	

��
	

�
�
�
�
��

�
�

�
�
�
�
�
�

��
	

��
	

�
�
�
��
�
�/
�
��
�
��

�
��
�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

��
	

�
+

�
�
�

�

�
�
�
0
*,
��
�

�

�
�
�
�
��

�
��
�
�
(

��
	

��
	

�
�
�
0
��
�
�
��
�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

∞

��
	

�
�
�

�

�
�
�
�
�
�
�
�
�

�
�
�
��
�
�/
�
��
�
�
�
�
��
�

�
�
�
�
�
�

�
�
�
�

�
��
�
�
�
��
�
��
�
��
��
�
�

�'
	

��
	

�
+

�
�
�

�
�
�
�
0
*,
�

�
�

��
�
�
�
��

�
�

�
�
�
(

��
	

�1
	

�
�
�
��
�
�/
�
��
�
�
�
0
�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

��
	

�
�
�
�
��

�
�

�
�
�
�
�
�

��
	

�1
	

�
�
�
��
�
�/
�
��
�
�
�
�

�

�
�
�

��
�

�
�
�
�
�
�
�
�

∞

∞

�1
	

�'
	

�
�
�
�
��

�
�

�
�
.
-

�
�
�
�
�
�

�

�'
	

�
�
�
��
�
�

�
�

�
�
�
�
�
�
�
�
�

�$
	

�
�
�
�
�
�

�

2
�
.
�
�
�
�

�$
	

�
�
�

�
��

2
�
.
�
�
�
�

∞

�$
	

�

	

)
�
�/
���
��
�
�

�
��
�
�
�
�
�
�

)
�
�/
���
�2

�
.
��
�
�
�
�

∞

�1
	

�1
	

��
	

�
�
�
��
�
��
�
�

3
�
��
�

�
�

��
	

�
�
�
�
��

�
�

'
,
��
�

�

��
	

�
�
�
�
��

�
�

'
,
��
�

�

��
	

�
�
�
��
�

�
�
��
��

�
��
�

�
�
�
��
�

∞

∞ ∞
∞

∞

∞
∞

∞
∞

∞

∞
∞∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞ ∞
∞

∞

∞
∞

∞
∞

∞
∞

∞
∞

∞ ∞
∞

∞

Figure C.3: HPI Search Portal - Behavior (Figure 5.3)

242

FIGURES

��
�

�
�
�
�
�
	�

�
�
�

��
�

�
�
�
��
�
�

�
�

�
�
�
�
�

��
�

�
�
�

�
��
�
�
	�

�
�
�

��
�

�
�
�
�
�
�
	

��
�

�
�
�
�
�
	�

�
�
�

��
�

�
�
�
��
�
�

�
�

��
�

��
�

�
�
�
�
�
	�

�
�
�
��
�
�
�

�
�

��

∞

��
�

!
�
�
�
"�

#
�
	$
"�
%

�&
�

#
�
�
��
	�
�
�

#
�
	

'
�
�
�
�

�&
�

(
�
	�
��

��
�

'
�
"��
)

�&
�

*
�
�
��

�

#
�
	

�&
�

�
�
��
)
�
	

�&
�

�
��
�
��
�
�	

��
�

!
�
�
�
"�

+
�
$
"�
%

�&
�

(
��
�
�
	�
�

�,
�

(
��
�
�
	�
�

�
�
�
�
�

�
�

-
�
�
��
�
�

�,
�

(
��
�
�
	�
�

�
�
�
�
�

�
�

.
�
+

#
�
/

�,
�

(
��
�
�
	�
�

�
/

�
�

�
#
-
'

*
�

�
�
�
)

�,
�

(
��
�
�
	�
�

�
/

�
�

!
�
�
'

�
�
�
�
	��
�

�,
�

(
��
�
�
	�
�

+�
�
	�
�
�
�

�&
�

#
�
�
��
	�
�
�
+�

'
�
�
�
�

�&
�

'
��
(
��
�
�
	�
�

�&
�

(
�
�
�)
�
	

�,
�

(
��
�
�
	�
�

�
/

�
�

�
#
-
'

-
�
	�
�
�

�,
�

(
��
�
�
	�
�

�
/

�
�

�
�
�
�
�
�
	

.
�
+

��
�

0
�
�
�
��
	�

�
�
�
�
�
�
	

∞

Figure C.4: Axis2 - Dynamic - All (Figure 5.22)

243

	Titlepage
	Imprint

	Gutachter
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Queueing Theory
	Quantitative Measures
	Fundamental Laws
	Server Performance Values
	Open Queueing Networks - Jackson's Theorem
	Closed Queueing Networks - Gordon-Newell Theorem
	Mixed Open and Closed Queueing Networks - BCMP Theorem
	An Algorithm for Product Form Networks - Mean Value Analysis (MVA)

	Time Augmented Petri Nets
	Classification
	Continuous Time Stochastic Petri Nets (SPN)
	Generalized Stochastic Petri Nets (GSPN)
	Product Form Petri Nets
	Queueing Petri Nets (QPN)

	Quantitative Hierarchical Modeling
	Decomposability
	Norton's Theorem
	Formal Hierarchies and Combination of Models
	Hierarchies in Time Augmented Petri Nets
	Forced Traffic Flow Law
	Layered Queueing Networks (LQN)

	Summary

	FMC-QE Fundamentals
	Foundations
	Fundamental Modeling Concepts (FMC)
	FMC-eCS

	Basic Definitions
	Service Request
	Hierarchical Service Requests
	Quantitative Measures in FMC-QE

	Graphical Representation
	Service Request Structures
	Static Structures
	Dynamic Structures

	Calculus
	Fundamental Laws
	Experimental Parameters
	Service Request Section
	Server Section
	Dynamic Evaluation Section
	Multiplexer Section
	Computation Algorithm / Complexity Analysis

	FMC-QE Example - Open Queueing Network
	Original Model and Calculation
	Transformation
	Service Request Structure and Static Structure
	Summary

	FMC-QE Tool

	FMC-QE Extensions
	Closed Queueing Networks
	General Discussion
	Closed Tandem Network
	Central Server Network
	Summary

	Handling of Multiclass Scenarios
	Semaphore Synchronization
	GSPN Model
	FMC-QE Model
	Summary

	Comparisons
	Queueing Theory
	Time Augmented Petri Nets
	Layered Queueing Networks (LQN)
	Performance Simulations

	FMC-QE Case Studies
	HPI Search Portal - a Service based Case Study
	Architecture
	FMC-QE Model
	Summary

	Modeling of a Service based System: ERMF
	Introduction
	Service Request Structure and Dynamic Behavior
	Measurements
	Analysis
	Simulation
	Summary

	Modeling of interacting hierarchical Protocol Stacks - Axis2
	Axis2 Web Services Framework
	Axis2 Model
	Testbed Description
	FMC-QE Tableau
	Summary

	Conclusions
	Publications
	Bibliography
	Glossary
	Index
	Server Performance Values
	Tables
	Figures

