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Zusammenfassung 

Aufgrund des globalen Klimawandels ist die Gewährleistung der Ernährungssicherheit für eine 

wachsende Weltbevölkerung eine große Herausforderung. Insbesondere abiotische Stressoren 

wirken sich negativ auf Ernteerträge aus. Um klimaangepasste Nutzpflanzen zu entwickeln, ist 

ein umfassendes Verständnis molekularer Veränderungen in der Reaktion auf unterschiedlich 

starke Umweltbelastungen erforderlich. Hochdurchsatz- oder "Omics"-Technologien können 

dazu beitragen, Schlüsselregulatoren und Wege abiotischer Stressreaktionen zu identifizieren. 

Zusätzlich zur Gewinnung von Omics-Daten müssen auch Programme und statistische 

Analysen entwickelt und evaluiert werden, um zuverlässige biologische Ergebnisse zu erhalten.  

Ich habe diese Problemstellung in drei verschiedenen Studien behandelt und dafür zwei Omics-

Technologien benutzt. In der ersten Studie wurden Transkript-Daten von den beiden 

polymorphen Arabidopsis thaliana Akzessionen Col-0 und N14 verwendet, um sieben 

Programme hinsichtlich ihrer Fähigkeit zur Positionierung und Quantifizierung von Illumina 

RNA Sequenz-Fragmenten („Reads“) zu evaluieren. Zwischen 92% und 99% der Reads 

konnten an die Referenzsequenz positioniert werden und die ermittelten Verteilungen waren 

hoch korreliert für alle Programme. Bei der Durchführung einer differentiellen 

Genexpressionsanalyse zwischen Pflanzen, die bei 20 °C oder 4 °C (Kälteakklimatisierung) 

exponiert wurden, ergab sich eine große paarweise Überlappung zwischen den Programmen. In 

der zweiten Studie habe ich die Transkriptome von zehn verschiedenen Oryza sativa (Reis) 

Kultivaren sequenziert. Dafür wurde die PacBio Isoform Sequenzierungstechnologie benutzt. 

Die de novo Referenztranskriptome hatten zwischen 38.900 bis 54.500 hoch qualitative 

Isoformen pro Sorte. Die Isoformen wurden kollabiert, um die Sequenzredundanz zu verringern 

und danach evaluiert z.B. hinsichtlich des Vollständigkeitsgrades (BUSCO), der 

Transkriptlänge und der Anzahl einzigartiger Transkripte pro Genloci. Für die hitze- und 

trockenheitstolerante Sorte N22 wurden ca. 650 einzigartige und neue Transkripte identifiziert, 

von denen 56 signifikant unterschiedlich in sich entwickelnden Samen unter kombiniertem 

Trocken- und Hitzestress exprimiert wurden. In der letzten Studie habe ich die Veränderungen 

in Metabolitprofilen von acht Reissorten gemessen und analysiert, die dem Stress hoher 

Nachttemperaturen (HNT) ausgesetzt waren und während der Trocken- und Regenzeit im Feld 

auf den Philippinen angebaut wurden. Es wurden jahreszeitlich bedingte Veränderungen im 

Metabolitspiegel sowie für agronomische Parameter identifiziert und mögliche 

Stoffwechselwege, die einen Ertragsrückgang unter HNT-Bedingungen verursachen, 

vorgeschlagen. 
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Zusammenfassend konnte ich zeigen, dass der Vergleich der RNA-seq Programme den 

Pflanzenwissenschaftler*innen helfen kann, sich für das richtige Werkzeug für ihre Daten zu 

entscheiden. Die de novo Transkriptom-Rekonstruktion von Reissorten ohne Genomsequenz 

bietet einen gezielten, kosteneffizienten Ansatz zur Identifizierung neuer Gene, die durch 

verschiedene Stressbedingungen reguliert werden unabhängig vom Organismus. Mit dem 

Metabolomik-Ansatz für HNT-Stress in Reis habe ich stress- und jahreszeitenspezifische 

Metabolite identifiziert, die in Zukunft als molekulare Marker für die Verbesserung von 

Nutzpflanzen verwendet werden könnten. 

 

 



v 

Summary 

Due to global climate change providing food security for an increasing world population is a 

big challenge. Especially abiotic stressors have a strong negative effect on crop yield. To 

develop climate-adapted crops a comprehensive understanding of molecular alterations in the 

response of varying levels of environmental stresses is required. High throughput or ‘omics’ 

technologies can help to identify key-regulators and pathways of abiotic stress responses. In 

addition to obtain omics data also tools and statistical analyses need to be designed and 

evaluated to get reliable biological results. 

To address these issues, I have conducted three different studies covering two omics 

technologies. In the first study, I used transcriptomic data from the two polymorphic 

Arabidopsis thaliana accessions, namely Col-0 and N14, to evaluate seven computational tools 

for their ability to map and quantify Illumina single-end reads. Between 92% and 99% of the 

reads were mapped against the reference sequence. The raw count distributions obtained from 

the different tools were highly correlated. Performing a differential gene expression analysis 

between plants exposed to 20 °C or 4°C (cold acclimation), a large pairwise overlap between 

the mappers was obtained. In the second study, I obtained transcript data from ten different 

Oryza sativa (rice) cultivars by PacBio Isoform sequencing that can capture full-length 

transcripts. De novo reference transcriptomes were reconstructed resulting in 38,900 to 54,500 

high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and 

evaluated, e.g. for protein completeness level (BUSCO), transcript length, and number of 

unique transcripts per gene loci. For the heat and drought tolerant aus cultivar N22,  I identified 

around 650 unique and novel transcripts of which 56 were significantly differentially expressed 

in developing seeds during combined drought and heat stress. In the last study, I measured and 

analyzed the changes in metabolite profiles of eight rice cultivars exposed to high night 

temperature (HNT) stress and grown during the dry and wet season on the field in the 

Philippines. Season-specific changes in metabolite levels, as well as for agronomic parameters, 

were identified and metabolic pathways causing a yield decline at HNT conditions suggested. 

In conclusion, the comparison of mapper performances can help plant scientists to decide on 

the right tool for their data. The de novo reconstruction of rice cultivars without a genome 

sequence provides a targeted, cost-efficient approach to identify novel genes responding to 

stress conditions for any organism. With the metabolomics approach for HNT stress in rice, I 

identified stress and season-specific metabolites which might be used as molecular markers for 

crop improvement in the future. 
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1 Introduction 

1.1 Analyzing the transcriptome to understand genomic functions 

With the development of high-throughput or ‘omics’ technologies, biological research has been 

revolutionized. Until today, these technologies are constantly evolving for different molecular 

fields such as genomics, transcriptomics, metabolomics, or proteomics. Genomics appeared as 

the first omics discipline, focusing on the analysis of entire genomes (Hasin et al. 2017). 

Already in the early 2000s, it was successfully applied to sequence the first complete human 

genome (Collins et al. 2003) and provided a framework for mapping and studying specific 

genetic variants contributing to both Mendelian and complex diseases (Hasin et al. 2017). At 

this time, also the first plant genomes were sequenced, such as those of Arabidopsis thaliana 

(The Arabidopsis Genome 2000) or Oryza sativa (Goff et al. 2002), revealing new gene 

families, gene losses and duplications.  

To understand genomic functions, the analysis of the transcriptome plays an essential role. The 

transcriptome is defined as the complete set of transcripts in a cell, tissue, or organism, and it 

can be quantified at specific developmental stages or under different physiological conditions 

(Vailati-Riboni et al. 2017). Next to differential gene expression (DGE) analysis, an approach 

to quantify changing gene expression levels under different conditions, key aspects of 

transcriptomics include cataloging all species of transcripts of a cell, tissue or organism and to 

determine the transcriptional structure of genes, splicing patterns and other post-transcriptional 

modifications (Wang et al. 2009). Several technologies have been developed to study these 

aspects including hybridization- or sequence-based approaches such as microarrays or 

quantitative Reverse-Transcription PCR (qRT-PCR), and next-generation sequencing methods 

broadly termed RNA sequencing (RNA-seq). Hybridization-based methods typically involve 

fluorescently labeled complementary DNA (cDNA) to probe custom-made microarrays that 

carry cDNAs or oligonucleotides corresponding to target genes. They have a high throughput 

(Jaluria et al. 2007) but are limited to existing knowledge about the genome sequence. Also, 

they are prone to technical problems, such as high background noise, cross-hybridization among 

closely related genes, and the difficulty to compare expression levels across different 

experiments (Okoniewski & Miller 2006). In contrast to microarray-methods, sequencing-

based technologies determine the cDNA sequences directly. While qRT-PCR is highly 

accurate, it only allows the parallel analysis of a limited number of genes (Nolan et al. 2006), 

RNA-seq provides an unbiased study of all transcripts at the same time. 
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RNA-seq allows the analysis of the whole transcriptome without knowledge of the genome 

sequence (Stark et al. 2019). It normally starts with a population of RNA which is converted 

into a library of cDNA fragments with adapters attached to one or both ends. Those fragments 

are amplified by PCR and then sequenced from one (single-end) or both ends (paired-end) 

normally with a read depth of 10-30 million reads per sample on a high-throughput platform 

such as provided by Illumina. Depending on the sequencing technology these fragments are 

between 30 and 400 base pairs (bp) long (Wang et al. 2009).  

Based on these sequences, different follow-up analyses can be performed such as DGE analysis, 

which is still one of the primary applications of RNA-seq. To perform a DGE analysis after 

sequencing, the final steps are computational. It begins with an alignment or an assembling of 

the reads to a transcriptome or genome sequence, quantifying the reads that overlap the 

reference sequence, filtering, and normalization between the samples and a statistical approach 

to identify significant changes in the expression levels of individual genes and/or between 

sample groups (Stark et al. 2019). 

1.1.1 Computational challenges of Next Generation Sequencing 

Over the years, different tools and algorithms were developed to address the alignment of reads 

to a reference sequence and to perform statistical modeling to obtain biologically relevant 

information on gene and/or transcript level. But big data also result in big challenges. On the 

one hand, these high-throughput technologies generate enormous amounts of data that need to 

be stored and for which improved computational capacities are needed for the acquisition and 

processing of large data files. On the other hand, implemented tools need to address 

computational performance to analyze the data in a reasonable amount of time and deliver 

statistical reliability for large datasets (Arbona et al. 2013). 

One of the most computationally intensive steps for RNA-seq data processing is the alignment 

or mapping of the short fragmented sequences (reads) against a reference sequence. For 

organisms with an available genome reference, RNA-seq reads are aligned against the reference 

genome and converted into genomic positions. For organisms without a reference genome, a de 

novo transcriptome assembly is needed and RNA-seq reads are mapped back against this 

transcriptome sequence (Li & Li 2018). RNA-seq reads can be divided into two groups: reads 

with full-length alignments to the genome and reads that span exon-exon junctions (Dimon et 

al. 2010). Full-length alignment of reads against a genome sequence has mostly relied on the 

Burrows-Wheeler Transform algorithm yielding significant improvements in speed and 

accuracy for tools such as BWA (Li & Durbin 2009) or bowtie (Langmead et al. 2009). More 
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difficult is the alignment of reads that bridge exon-exon junctions since they by definition form 

intron-gapped alignments to the genome, with a very short flanking sequence (Dimon et al. 

2010). 

Common tools that can perform a gapped alignment of RNA-seq reads against a genome 

reference are for example "hierarchical indexing for spliced alignment of transcripts 2" 

(HISAT2) (Kim et al. 2019) or "spliced transcripts alignment to a reference" (STAR) (Dobin et 

al. 2013). HISAT2 can align both DNA and RNA sequences using a graph Ferragina Manzini 

index and utilizes not only a global index to represent the genome sequence but also small 

indices, which collectively cover the reference genome and its variants. This allows a search on 

local genomic regions, which is especially useful for RNA-seq reads spanning multiple exons, 

and it provides a much faster lookup due to the local index’s small size (Kim et al. 2019). STAR 

instead is based on a sequential maximum mappable seed search in uncompressed suffix arrays 

followed by a seed clustering and stitching procedure (Dobin et al. 2013). However, when no 

reference genome is available, RNA-seq reads can be directly mapped against a transcriptome 

reference. In the past few years, several tools were developed for specific mapping against 

transcriptomic reference sequences such as kallisto (Bray et al. 2016) that is based on pseudo-

alignments or salmon (Patro et al. 2017), which utilizes a quasi-mapping approach. In general, 

these tools do not perform the classical alignment against the reference anymore. Instead, they 

calculate abundances for each read with extremely fast run-times (Patro et al. 2017, Bray et al. 

2016).  

1.1.2 Arabidopsis thaliana as a model organism 

Most of the computational tools and their default parameters are optimized for the human 

genome (Kim et al. 2019, Dobin et al. 2013, Langmead et al. 2009, Li & Durbin 2009). 

Nevertheless, they are also extensively used in plant research such as for Arabidopsis thaliana 

(Herranz et al. 2019, Hofmann et al. 2019, Zhang et al. 2017b). A. thaliana, a small plant in the 

Brassicaceae family, has been established as a plant model organism in the last decades for 

several reasons such as a small size that limited the requirement for growth facilities, or seed 

production through self-pollination (Koornneef & Meinke 2010). Additionally, it has a short 

reproductive cycle including seed germination, the formation of a rosette plant, bolting of the 

main stem, flowering, and maturation of the first seeds which is completed in six weeks 

(Gichner et al. 1995). Arabidopsis also has a broad natural distribution throughout Europe, Asia, 

and North America resulting in local accessions differing both genetically and phenotypically. 

It has been shown previously that these differences may constitute environmental adaptions 

such as a different freezing tolerance (Zuther et al. 2012). Arabidopsis was also the subject of 
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the first plant genome sequencing project (The Arabidopsis Genome 2000) because of its small 

genome size for a higher plant of roughly 130 megabases (Mb) distributed over five 

chromosomes (Michael & Jackson 2013). The many resources available for the Arabidopsis 

experimental system and data from the last decades can be transferred and adapted to other 

plant species such as tomato (Mysore et al. 2001). Moreover, research with Arabidopsis has 

demonstrated the important role that analysis of plant genomes can play in understanding the 

basic principles of biology relevant to a variety of species, including humans (Meinke et al. 

1998). 

1.2 The new generation of sequencing 

Currently, the Illumina short-read sequencing technology is the most commonly used approach 

to study the transcriptome and has generated more than 95% of the published RNA-seq datasets 

(Stark et al. 2019) available in the Sequence Read Archive (SRA) (Leinonen et al. 2011). 

However, this technique is also limited especially when it comes to correctly identify and 

quantify multiple isoforms that are expressed from a gene. Additionally, the analysis of 

complex genomic loci, repetitive elements, multiple mapped reads, or variant phasing 

(haplotyping) is difficult to perform resulting in inefficient transcriptome characterization 

(Kraft & Kurth 2019). Several of these limitations can be overcome by third-generation 

sequencing or long-read sequencing (LRS) methods such as those developed by Pacific 

Biosciences (PacBio) (Rhoads & Au 2015) or Oxford Nanopore (Deamer et al. 2016).  

1.2.1 Long-read sequencing (LRS) technology 

Oxford Nanopore LRS utilizes a tiny protein pore that is embedded in an electrically resistant 

polymer membrane (Figure 1a). By setting a voltage across the membrane, an ionic current is 

passed through this nanopore. When DNA or RNA passes through the pore via a helicase, a 

characteristic change in the current occurs which provides information on the respective 

nucleotide in the nanopore (Deamer et al. 2016). In contrast, PacBio single-molecule real-time 

(SMRT) sequencing uses a single DNA polymerase that is immobilized at the bottom of a well, 

the so-called zero-mode waveguide (ZMW) (Figure 1b). The ZMWs are small enough to allow 

real-time recording of individual emitted fluorescence signals when labeled nucleotides are 

progressively incorporated by the polymerase during the replication process (Rhoads & Au 

2015). Additionally, circular DNAs serve as a sequencing template and allow multiple 

sequencing rounds of the same cDNA that is later used to improve sequence accuracy by 

creating consensus sequences (Kraft & Kurth 2019).  
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Figure 1: An overview of nanopore and single-molecule real-time (SMRT) sequencing. Oxford 

Nanopore sequencing (a) is based on a biological protein pore (e.g. Mycobacterium smegmatis 

porin A, MspA) that is fixed in a polymer membrane. The DNA is unzipped by a helicase and 

nucleotides inside the pore disrupt the ion flow through the channel. The changes in the current 

are recorded and converted to DNA/RNA sequences. Each flow cell can have between 50 

(Flongle) and 3000 (PromethION) pores to sequence in parallel. For PacBio SMRT sequencing 

(b) individual molecules are loaded into a sequencing chip (SMRT cell), where they bind to a 

polymerase immobilized at the bottom of a zero-mode waveguide (ZMW). As each of the 

fluorescently labeled nucleotides is incorporated into the growing strand, the emitted light is 

detected and translated into a DNA/RNA sequence. Each SMRT cell can have between 150.000 

(RSII) and 8 million (Sequel 2) ZMWs. Image adapted from Kraft and Kurth (2019). 

LRS also has its weaknesses regarding library preparation, sequencing error rate, and 

bioinformatic analysis. For PacBio sequencing, there is a preference for shorter molecules due 

to the diffusion loading of the sample on the SMRT cell, which might negatively affect 

sequencing runs (Ardui et al. 2018). Additionally, the sequence template may not bind to the 

polymerase or may be too short to sequence, leading to a reduced overall output (Kraft & Kurth 

2019). But at least loading biases can be addressed for example by using size selection to 

remove short molecules (Ardui et al. 2018). However, for Nanopore sequencing very large 

DNA molecules tend to block the pores (Kraft & Kurth 2019). Another major challenge is the 

high error rate. SMRT sequencing has error rates between 13-15%, where errors are distributed 

randomly across the reads (Rhoads & Au 2015). This randomness allows the creation of highly 

accurate consensus sequences by applying the circular consensus chemistry that permits to 

sequence the same molecule multiple times (Eid et al. 2009). Finally, to handle the long-reads 

new bioinformatic tools still need to be adapted and/or developed such as for alignment (Li 
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2018, Križanović et al. 2017, Chaisson & Tesler 2012) and assembly (Koren et al. 2017, Li et 

al. 2017a, Vaser et al. 2017). Many PacBio specific tools and pipelines are openly available, 

including demultiplexing, creating circular consensus sequences, de novo assemblies, or 

epigenetic analyses (https://www.pacb.com/support/software-downloads/, accessed on 

30.06.2020).  

1.2.2 Applications in biology 

Besides providing full-length transcripts, LRS offers a range of different applications to study 

complex biological questions. In contrast to short-read sequencing (e.g. Illumina), these 

technologies enable unambiguous mapping of reads, for example in regions of high homology, 

low complexity, or in pseudogenes. Additionally, phasing of alleles (haplotypes) is possible 

without knowledge of parental single nucleotide polymorphisms (SNPs) and allows to 

distinguish whether genetic variants occur on the same allele or the opposite strand. The 

identification of structural variations is one of the biggest advantages, including the detection 

of balanced chromosomal rearrangements (Kraft & Kurth 2019).  

However, these technologies also open up new opportunities in plant research and breeding. 

Natural plant populations have an extensive genetic variation underpinning phenotypic traits 

through evolutionary adaption (Henderson & Salt 2017) and human domestication (Doebley et 

al. 2006). Understanding these genetic polymorphisms and how different genotypes adapted to 

a changing environment is particularly relevant in times of global climate change and the 

resulting alteration in temperature, water availability, and other stressors (Henderson & Salt 

2017). As a first step, high-quality reference genomes and transcriptomes are necessary. LRS 

is a useful tool to sequence large and complex plant genomes without the need for expensive or 

labor-intensive work such as sequencing overlapping BAC clones (Dong et al. 2016). Recently, 

several high-quality plant genomes were published such as for Oryza sativa (430 Mb) (Du et 

al. 2017), Chenopodium quinoa (1500 Mb) (Jarvis et al. 2017), Triticum aestivum (1500 Mb) 

(Zimin et al. 2017), Zea mays (2100 Mb) (Jiao et al. 2017) or Helianthus annuus (3600 Mb) 

(Badouin et al. 2017). Combined with LRS-generated transcriptomes and RNA-seq approaches, 

candidate genes can be identified and introduced via transgenic approaches such as 

CRISPR/Cas (Zhang et al. 2019b) or introgression by crossing (Ellstrand et al. 2013) into 

breeding populations to generate climate-adapted cultivars.   

1.2.3 Using long-read sequencing to study natural variation in rice 

With the fast increase in the world’s population and predicted growth to about 9 billion in 2050 

(FAOSTAT 2020), there is a corresponding demand for improved food production and food 
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security. Global climate change is a constant and severe threat due to increased abiotic stresses 

which negatively affect the yield of all crops (IPCC 2014, FAO 2009). Abiotic stressors are for 

example UV-B, high light intensities, flooding, drought, heat, cold, or salinity (Raza et al. 

2019).  

For improved food security in the future, it is necessary to produce new climate-smart crop 

cultivars, for example for rice (Oryza sativa), resistant to these abiotic stressors (Wheeler & 

von Braun 2013). Rice is a staple crop for more than half of the world’s population and studies 

showed a significant yield decrease due to increased temperatures (Xu et al. 2020b, Jagadish et 

al. 2015), drought (Yang et al. 2019, Lawas et al. 2018) or salinity (Chinnusamy et al. 2005). 

However, rice has a wide natural variation, and cultivars exist which have a natural stress 

tolerance such as cultivars from the Oryza sativa ssp. aus (Lawas et al. 2018, Jagadish et al. 

2008) or Oryza wild species (Bierschenk et al. 2020).  

In the past, most of the studies in rice were based on the japonica cultivar Nipponbare (Goff et 

al. 2002) due to the lack of proper genome assemblies from different Oryza sativa subspecies. 

For instance, the sequences obtained in the 3,000 Rice Genomes Project (RGP 2014) were 

mapped against the Nipponbare genome, excluding all sequences that could not be mapped to 

this reference. This may have led to the loss of genetic information that is specific to the non-

japonica subspecies. To understand and study these different rice genotypes, several high-

quality genomes were published using LRS technology, for example for Oryza sativa indica 

(IR8, Shuhui498, Zhenshan97, Minghui63) and aus subspecies (N22) (Stein et al. 2018, Du et 

al. 2017, Zhang et al. 2016), although the degree of completeness and annotation remains 

variable. Nevertheless, these new genome sequences can be exploited as a useful genetic 

resource to generate climate-adapted rice cultivars. 

1.3 Metabolomics as a direct connection between genotype and phenotype 

Various molecular elements such as DNA, RNA, proteins, and metabolites, as well as 

environmental factors, define the phenotype of an organism. While gene and protein expression 

describe the potential of plants to respond to different conditions and environments, metabolites 

represent the integration of these regulatory aspects with the environment (Arbona et al. 2013). 

Metabolites constitute the biological endpoint of metabolism, considering the time difference 

and regulatory processes that occur between gene expression and its physiological 

manifestation and are therefore bridging the gap between phenotype and genotype (Hall 2006). 

The quantitative and qualitative profiling of metabolites in an organism is called 

‘metabolomics’ (Dunn et al. 2013) and has emerged as a widely adopted technology in plant 

7



science (Kumar et al. 2017). Over the past years, plant metabolomics has developed steadily 

(Nakabayashi & Saito 2020, Sawada et al. 2008, Lisec et al. 2006) and revealed a better 

understanding of the plant metabolome including crop species under abiotic stresses (Matich et 

al. 2019, Dawid & Hille 2018, Arbona et al. 2013, Krasensky & Jonak 2012, Obata & Fernie 

2012). Additionally, integrated ‘omics’ data-centered on metabolomics revealed novel 

pathways associated with stress tolerance (Perez de Souza et al. 2019, Nakabayashi & Saito 

2015) and were applied for the dissection of complex traits in plants (Fang & Luo 2019, Chen 

et al. 2016, Luo 2015). Furthermore, metabolomics can be used to predict metabolite markers 

for stress tolerance in plants that can be used for marker-assisted selection in breeding programs 

(Lawas et al. 2019, Sprenger et al. 2018, Degenkolbe et al. 2013). 

In rice, different metabolomic studies were performed to assess the impact of different abiotic 

stresses such as drought (Casartelli et al. 2018, Degenkolbe et al. 2013), heat (Yamakawa & 

Hakata 2010), high night temperature (Schaarschmidt et al. 2020, Glaubitz et al. 2017, Glaubitz 

et al. 2015) or combined heat and drought (Lawas et al. 2019, Li et al. 2015).  

1.3.1 High night temperature stress influences the yield of rice 

During the last decades, the global surface temperature has increased by an average of 0.38°C, 

and until 2100 an increase of 3.7°C has been predicted (IPCC 2014). The temperature increase 

develops asymmetrically, causing a reduction in the diurnal temperature range which is defined 

as the difference in daily maximum and minimum temperature (Davy et al. 2017, Vose et al. 

2005, Easterling et al. 1997) that leads to ‘high night temperatures’ (HNT). Crop species like 

rice are negatively affected by HNT such as shown by reduced yield and grain quality, including 

increased chalk formation or an altered grain growth dynamic (Shi et al. 2017, Shi et al. 2013, 

Mohammed & Tarpley 2011, Nagarajan et al. 2010, Peng et al. 2004). Studies have also shown 

a possible natural variation in HNT tolerance among various rice cultivars based on grain yield, 

yield-related parameters (Bahuguna et al. 2017, Shi et al. 2017, Shi et al. 2013, Zhang et al. 

2013) or phenotypes in the vegetative stage (Glaubitz et al. 2014). Additionally, higher rates of 

respiration in leaves and panicles were reported. Photosynthetic activity was not affected or 

decreased, and a reduction of nitrogen and carbohydrate translocation after flowering was 

observed, with negative effects on grain yield, especially in sensitive cultivars (Bahuguna et al. 

2017, Glaubitz et al. 2014, Liang et al. 2013, Mohammed et al. 2013, Shi et al. 2013). 

1.3.2 Molecular knowledge of high night temperature stress in rice 

However, despite the increasing knowledge of the physiological and agronomic responses to 

HNT, only little is known of the molecular responses of rice (Table 1). In summary, these 
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studies revealed tissue-specific effects especially on the tricarboxylic acid (TCA) cycle, amino 

acid biosynthesis, and starch metabolism in rice upon HNT stress (Dhatt et al. 2019, Glaubitz 

et al. 2017, Glaubitz et al. 2015). Only a few studies were performed in the field under natural 

conditions and comparing for example the seasonal influence on the metabolome.  

Table 1: Molecular studies on the effects of HNT stress in rice published during the last 10 years. 

Area Reference 

Transcriptome Glaubitz et al. 2017 , Liao et al. 2015 

Proteome/Lipidome  Shi et al. 2017, Shi et al. 2013, Li et al. 2011 

Metabolome Schaarschmidt et al. 2020, Dhatt et al. 2019,  Glaubitz et al. 

2017, Bahuguna et al. 2017, Sharma et al. 2017, Glaubitz et al. 

2015 

bold for studies in the field, italic for studies using more than one omics approach 

 

1.4 Aims of the thesis 

With the predicted changes in the global climate and their effects on global food security, 

analyzing the wide natural variation of plants is essential to ensure food security. For that, 

different omics approaches need to be utilized to identify on a large-scale candidate genes for 

crop improvement and biological markers. But also bioinformatic tools and pipelines need to 

be improved, developed, and finally evaluated to obtain reliable results for further applications 

such as breeding. Especially analyzing the transcriptome is an untargeted, time- and cost-

efficient approach to identify such candidate genes that are regulated under different stress 

conditions in different genotypes.  

I aimed to evaluate seven bioinformatic alignment tools by mapping Illumina single-end RNA-

seq reads against the reference genome or transcriptome, based on experimentally generated 

data from Arabidopsis thaliana. Among those seven tools, I aimed to compare in detail key 

parameters such as mapping rate, raw count distribution, and the positions on the reference 

genome of the mapped single-end reads. Also, the influence on further downstream analysis 

procedures such as DGE should be analyzed. To extend this methodological study, I also 

wanted to expand the analysis of the transcriptome to the more complex transcriptomes of rice 

(Oryza sativa), using a third-generation sequencing technique: PacBio Isoform sequencing 

(IsoSeq). Here, I aimed to identify cultivar-specific transcripts among ten rice cultivars that 

mainly lacked a proper genome assembly. In addition, these cultivars were selected, because 

they showed different tolerance levels to abiotic stressors such as HNT or combined heat and 

9



drought stress to identify possible uncharacterized stress-responsive genes in the tolerant 

cultivars. Also, I wanted to explore and evaluate different data processing pipelines for this 

relatively new sequencing technique. As another aspect of the omics investigations, I aimed to 

analyze the metabolic responses of rice panicles and flag leaves from rice cultivars that were 

partly used in the PacBio study and collected during the exposure to HNT stress. As an 

additional factor, the two experiments were grown in the field once during the dry season and 

once during the wet season to identify possible differences between the metabolic profiles.  

In summary, the work presented here intended to expand the knowledge of existing RNA-seq 

mapping tools and to evaluate it with experimental data from a higher plant. Also, I wanted to 

show that long-read sequencing can indeed be used for targeted sequencing for organisms 

without a proper genome reference and also taking into account the broad natural variation in 

the plant kingdom. Finally, metabolite studies were performed which can help to identify 

potential biological markers for rice breeding under HNT and can also be combined with 

transcriptomic studies.  
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Abstract: Quantification of gene expression is crucial to connect genome sequences with

phenotypic and physiological data. RNA-Sequencing (RNA-Seq) has taken a prominent role

in the study of transcriptomic reactions of plants to various environmental and genetic perturbations.

However, comparative tests of different tools for RNA-Seq read mapping and quantification have

been mainly performed on data from animals or humans, which necessarily neglect, for example,

the large genetic variability among natural accessions within plant species. Here, we compared

seven computational tools for their ability to map and quantify Illumina single-end reads from the

Arabidopsis thaliana accessions Columbia-0 (Col-0) and N14. Between 92.4% and 99.5% of all reads

were mapped to the reference genome or transcriptome and the raw count distributions obtained from

the different mappers were highly correlated. Using the software DESeq2 to determine differential

gene expression (DGE) between plants exposed to 20 ◦C or 4 ◦C from these read counts showed

a large pairwise overlap between the mappers. Interestingly, when the commercial CLC software

was used with its own DGE module instead of DESeq2, strongly diverging results were obtained.

All tested mappers provided highly similar results for mapping Illumina reads of two polymorphic

Arabidopsis accessions to the reference genome or transcriptome and for the determination of DGE

when the same software was used for processing.

Keywords: Arabidopsis thaliana; differential gene expression; natural genetic variation; read mapping

tools; RNA-Seq

1. Introduction

Since the completion of the human genome project in 2003 [1], sequencing technologies have

developed extraordinarily fast. The resulting data have revealed the astonishing complexity of

genome architecture and transcriptome composition. In this context, transcript identification and the

quantification of gene expression play crucial roles in connecting genomic information with phenotypic

and biochemical measurements. These two key aspects of transcriptomics can be combined in a single

high-throughput sequencing assay called RNA-Sequencing (RNA-Seq). This approach allows detailed

transcript profiling including the identification of splicing-induced isoforms, nucleotide variation and

post-transcriptional base modification [2].

While comparative studies of diverse read aligners have been performed using data with

a corresponding reference genome or transcriptome [3–7] or de novo assembly [8–10], only little

evaluation is available of the performance of read mappers for data generated from genotypes within

a species showing sequence polymorphisms. In this study, the algorithmically different mappers

Int. J. Mol. Sci. 2020, 21, 1720; doi:10.3390/ijms21051720 www.mdpi.com/journal/ijms
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bwa, CLC Genomics Workbench, HISAT2, kallisto, RSEM, salmon and STAR were used to map

experimentally generated RNA-Seq data from the two natural accessions Columbia-0 (Col-0) and

N14 of the higher plant Arabidopsis thaliana and to quantify the transcripts.

Bwa (Burrows–Wheeler-Alignment) was developed for mapping short DNA sequences against a

reference genome and was extended for RNA-Seq data analysis. For indexing, the algorithm constructs

a suffix array and Burrows–Wheeler-Transformation (BWT), and subsequently matches the sequences

using a backward search [11]. STAR (Spliced Transcripts Alignment to a Reference) is a specialized

tool for RNA-Seq reads that uses a seed-extension search based on compressed suffix arrays [12] and

can detect splice-junctions. HISAT2 (Hierarchical Indexing for Spliced Alignment of Transcripts 2)

is also a splice-aware aligner using a graph-based alignment approach (graph Ferragina Manzini

index) that can align DNA and RNA sequences [13]. RSEM (RNA-Seq by Expectation Maximization)

is a software package that quantifies transcript abundances. It can employ different pre-defined

mappers such as bowtie2 and based on the generated alignments utilizes a maximum likelihood

abundance estimation, the expectation-maximization algorithm, as the statistical model to quantify

transcripts [14]. By contrast, salmon and kallisto are tools which do not perform a classical alignment

of individual bases, but instead implement new strategies for RNA-Seq quantification. Salmon is

based on the concept of quasi-mapping. It uses a suffix array that is BWT-indexed and searched by an

FMD algorithm, allowing the discovery of shared substrings of any length between a read and the

complete set of transcripts. Mismatches are handled with chains of maximally exact matches [15].

The concept of kallisto is based on pseudo-alignments. Pseudo-alignments define a relationship between

a read and a set of compatible transcripts. This relationship is computed based on “mapping” the

k-mers to paths in a transcript De Bruijn graph. As the pseudo-alignments are generated, equivalence

classes are computed and used for the relative isoform quantification [16]. CLC read mapping utilizes

an approach described by Mortazavi et al. [3] and is the only commercial tool with a graphical user

interface included in our study.

Here, we compare the performance of these seven RNA-Seq mappers in the analysis of

experimentally generated transcriptome data covering more than 30,000 Arabidopsis thaliana genes.

The analysis compares alignment accuracy and quantification to enable comprehensive biological

interpretation. For the RNA-Seq experiment, RNA was isolated from the higher plant Arabidopsis

thaliana and the performance of each software was tested on 150 bp single-end reads from the two

natural accessions Col-0 and N14 [17]. Mappability, raw count expression, overall similarity of the

count distribution and differential gene expression (DGE) were analyzed to compare the mappers.

The two splice-aware aligners HISAT2 and STAR were compared for accuracy by mapping the

reads against the reference genome without an annotation. Additionally, an in silico approach to

characterize the correctness of the mappers was performed (see Figure 1 for a schematic description of

the analysis workflow).
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Figure 1. Analysis workflow. Light gray represents all steps performed for experimental data, light

orange for analysis of in silico generated data analyzed with HISAT2, RSEM and STAR.

2. Results

2.1. Mapping Statistics

After pre-processing, the resulting dataset contained 36 samples [17] with a sequencing data size

ranging from about 21 to almost 33 × 106 reads (Table A1). In general, a high fraction of the total reads

was mapped for both accessions. The mapping for Col-0 was slightly better than for N14 (Figure 2)

with mapped reads between 95.9% (bwa) and 99.5% (STAR). For N14 between 92.4% (bwa) and 98.1%

(STAR) of the reads were mapped against the respective reference sequence of Col-0 (Table A2).

Figure 2. Mapper comparison based on mappability. Number of mapped reads against the

Col-0 reference sequence for all seven mappers and each accession separately. The analysis included

RNA-Seq data from 36 biological samples. Outliers for N14 were in each case sample V for minimum,

sample AF for maximum (see Table A3 for sample information).
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2.2. Raw Count Distribution for Individual Samples

Raw count distributions between the mappers were investigated for both accessions. The unfiltered

expression values for each mapper were plotted against each other and correlations computed.

The results for one control sample of Col-0 (sample A) and N14 (sample B) are shown as an example

(Figure 3). For Col-0 (Figure 3a), high correlation coefficients between 0.977 (STAR vs. CLC) and 0.997

(kallisto vs. salmon) were determined. For N14 (Figure 3b) the correlation coefficients ranged from

0.978 (CLC vs. HISAT2) to 0.996 (kallisto vs. salmon). Regarding the STAR and HISAT2 comparisons

with all other mappers, a higher variance was observed in the direction of STAR and HISAT2 for lowly

expressed genes.

Figure 3. Raw counts of mapped reads determined by each mapper plotted against each other.

Results are shown for sample A of Col-0 (a) and sample B of N14 (b) which both were obtained from

plants grown under control conditions at 20 ◦C (see Table A3 for sample information). Lower triangle

represents scatterplots of log2(counts + 1) transformed, unfiltered raw counts for each mapper plotted

against each other. The diagonal histograms show the density of the raw count distribution for each

mapper. The upper triangle displays the correlation coefficients.

2.3. Overall Comparison of the Mappers

For a more quantitative comparison, the raw counts generated by each mapper from all samples

were compared against each other employing the Rv coefficient to quantify similarity. The raw count

tables generated by the seven mappers have a high similarity indicated by Rv values close to 1 (Figure 4).

Salmon and kallisto showed the highest similarity (Rv = 0.9999). CLC mapped slightly differently

compared to bwa, HISAT2, kallisto, RSEM and salmon. However, it should be stressed that the raw

count tables of all mappers were very similar; with 0.9804 as the lowest Rv value (CLC vs. HISAT2).
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Figure 4. Mapper comparison based on raw count distributions. Graphical representation of the

computed Rv values based on the correlation matrices of the unfiltered raw count tables generated by

all mappers for all samples from both accessions. Values close to 1 indicate high similarity. The color

and shape scales were adjusted to visualize the small differences between the Rv coefficients.

To investigate the effect of mapper choice on further statistical analysis, differentially expressed

genes between control and cold acclimated conditions were determined [17]. In the read mapping steps,

the aligners bwa, salmon and kallisto, using the transcriptomic reference, identified 32,243 expressed

genes and thus 1,359 genes less than the other mappers with 33,602 genes each. This difference is due

to the presence of non-coding RNAs such as transfer RNAs (tRNA) and micro RNAs (miRNA) in the

genomic reference, which are absent from the transcriptomic reference that is based on poly-adenylated

mRNAs. Prior to DGE analysis, transcript raw count tables were filtered to remove lowly expressed

genes with less than five counts over all 36 samples, resulting in 23,903 (CLC) to 25,144 (RSEM) genes

(Table 1). While this cut-off is admittedly arbitrary, most genes are removed with a cut-off of 1 read

count (around 20%), while additional increases from 2 to 10 counts only reduce the number of genes

by 2–0.3% per additional count, making the exact cut-off rather uncritical.

Table 1. Number of expressed genes identified in all samples before and after filtering out lowly

expressed genes.

Bwa CLC HISAT2 Kallisto RSEM Salmon STAR

Before filtering 32,243 33,602 33,602 32,243 33,602 32,243 33,602
After filtering 24,197 23,903 24,840 24,810 25,144 24,574 24,515

The percentage of overlapping DGE (control vs. cold acclimated) identified by each pair of

mappers was analyzed in both directions using DESeq2 [18] in all cases and was plotted in an

asymmetric matrix. For Col-0 (Figure 5a) kallisto and salmon yielded a large overlap of DGE of 98%

(kallisto vs. salmon) and 97.7% (salmon vs. kallisto). For N14 (Figure 5b) slightly smaller overlaps

were detected, but also here salmon and kallisto (97.6% and 96.4%) yielded the largest overlap. On the

other hand, for both Col-0 and N14 the lowest overlaps were detected for bwa and STAR (93.4% and

92.1%, respectively). In general, a smaller overlap of DGE between 92% and 94% was identified for the

comparisons of STAR and HISAT2 with the remaining five mappers.
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Figure 5. Overlap of significantly differentially expressed genes among the different mappers for cold

acclimated vs control plants. Overlap in % for Col-0 (a) and N14 (b). DGE was determined at FDR

p < 0.1 and an absolute log2FC > 1 using the R-package DESeq2. Overlap of differentially expressed

genes among each pair of mappers is represented in an asymmetric matrix.

DGE analysis [19,20] was additionally performed directly in the CLC software instead of using

DESeq2. Using the standard significance levels for these two software packages (FDR < 0.1 and

FDR < 0.05 for DESeq2 and CLC, respectively) this resulted in a much higher number of significantly

differentially expressed genes for the two exemplary comparisons, detailed under Methods, compared

to the DESeq2 analysis (Table 2). Also, there was only a limited overlap between the results of the

two methods.

Table 2. DGE analysis using the CLC software.

DESeq2 CLC

Comparison Accession Baggerly
Overlap
DESeq2

EDGE
Overlap
DESeq2

C28P3/C28 Col-0 2014 3034 1013 2921 1006
N14 2101 3414 1061 3311 1052

C28P3L7T3/C35P3 Col-0 1 98 0 86 0
N14 1 168 0 259 0

Differential gene expression was calculated with DESeq2 (FDR < 0.1, abs (log2FC > 1), based on STAR alignments
and two CLC approaches after Baggerly and EDGE (FDR < 0.05, abs (log2FC > 1)).

All mappers have different options to perform RNA-Seq quantification (Table 3). While most

mappers can only use either a genome or a transcriptome reference, CLC, HISAT2 and STAR are

able to use both types of reference sequences to align transcripts. Depending on the downstream

analysis, it is essential which output each mapper provides. The classical alignment-based mappers

bwa, CLC, HISAT2, RSEM and STAR provide an alignment output of the reads against the references,

whereas salmon and kallisto only provide read quantifications. Nevertheless, kallisto offers a

“pseudo-alignment” which can generate alignment files and salmon provides an option to re-quantify

RNA-Seq reads using previously generated alignments against the transcriptome as obtained,

for example, from STAR. Five out of the seven mappers generate transcript count tables. Only for

HISAT2 and bwa additional tools have to be employed for this purpose.
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Table 3. Comparison of selected key features of the used mappers. Features indicated by X are included

in the specified mapper.

Bwa CLC HISAT2 Kallisto RSEM Salmon STAR

Reference
Genome X X X

Transcriptome X X X X X X X
Needs annotation X X X X X

Specifications
Alignment-based X X X X X
Pseudo-alignment X X
Expression values X X X X X

Splice aware X X X
Commercial software X

For a more detailed investigation of the comparability of the outputs of different mappers, three

of the seven mappers were analyzed in detail regarding read position on the reference sequence.

The overlap of reads from one sample, which were mapped by HISAT2, bowtie2/RSEM and STAR,

was determined and the positions of the mapped reads on the reference genome were compared.

For Col-0 around 11.2 × 106 (Figure 6a) of around 24.9 × 106 mapped reads and for N14 around

10.5 × 106 reads (Figure 7a) of around 22.0 × 106 mapped reads were located on the same genomic

position by all three mappers. For both accessions, bowtie2/RSEM showed a high number of reads

mapping to a different position compared to HISAT2 and STAR. The number of reads with a unique

position was between 20.4-fold and 10.9-fold higher for bowtie2/RSEM than for the other two mappers.

Hence, the differences in read positions were determined, showing that most of these reads had a

position that differed by one base pair. This is the result of soft clipping of the first or last base pair

that is performed by HISAT2 and STAR. After adding the base pair back to the reads in HISAT2 and

STAR, the overlap with RSEM increased to 20.8 × 106 reads for Col-0 (Figure 6b) and to 17.9 × 106 reads

for N14 (Figure 7b). However, RSEM still produced between 18.4-fold and 3.8-fold more uniquely

positioned reads than HISAT2 and STAR that cannot be explained by soft clipping.

Figure 6. Number of reads mapping on the same genomic position comparing HISAT2, RSEM and

STAR for Col-0. Venn diagrams are based on 24,989,667 reads mapped by all three mappers and

represent the overlap of mapped reads on the same genomic position for sample A (see Table A3 for

sample information). A high number of the uniquely mapped reads in RSEM was based on soft-clipping

by one bp performed by HISAT2 and STAR (a). The reads in HISAT2 and STAR were corrected by

adding the soft-clipped bp back and the overlap with RSEM increased strongly (b).
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Figure 7. Number of reads mapping on the same genomic position comparing HISAT2, RSEM and

STAR for N14. Venn diagrams are based on 22,040,847 reads mapped by all three mappers and represent

the overlap of mapped reads on the same genomic position for sample B (see Table A3 for sample

information). A high number of the uniquely mapped reads in RSEM was based on soft-clipping by

one bp performed by HISAT2 and STAR (a). The reads in HISAT2 and STAR were corrected by adding

the soft-clipped bp back and the overlap with RSEM increased strongly (b).

Additionally, the two splice-aware aligners HISAT2 and STAR were tested for accuracy. Reads of

all 36 biological samples were mapped against the reference genome sequence without annotation

and reads on exons were determined with featureCounts (Table 4). For Col-0, 93% (STAR) and

94% (HISAT2), and for N14 around 91% (both mappers) of the primary alignments were mapped to

known exons. A small fraction of reads were not assigned to the annotated exons due to no mapping,

multimapping (i.e., mapping to more than one location) or mapping to intergenic regions.

Table 4. Fraction of reads mapped to known exons for HISAT2 and STAR.

HISAT2 STAR

Col-0 N14 Col-0 N14
Assigned to exon 94.34 90.70 93.05 90.72

Unmapped 1.10 5.16 0.50 1.99
Multimapped 4.01 3.61 5.93 6.77

No Feature (intergenic) 0.55 0.53 0.51 0.53

To test accuracy of HISAT2 and STAR, reads of the 36 biological samples were mapped against the reference genome
without including an annotation. More than 90% of reads were mapped for both accessions and mappers to known
exons while a small fraction was either unmapped, multimapped or mapped to intergenic positions.

2.4. Mapping of in Silico Generated Reads

To investigate whether mappers placed the mapped reads in the correct positions on the reference

genome, the alignment results for in silico generated Col-0 RNA-Seq reads were analyzed using

HISAT2, bowtie2/RSEM and STAR. All three mappers correctly positioned a high percentage (almost

99%) of the reads on the respective reference sequence (Table 5) for the primary alignments. Almost all

remaining reads were mapped to the correct gene, but to a different transcript. Furthermore, only

0.001 to 0.03% of the reads were not mapped against the reference sequence for all mappers. A small

number of reads mapped to intergenic regions for STAR and HISAT2 while for bowtie2/RSEM all

reads were mapped on known genes. This derives from the fact that the used mapper bowtie2 is a

splice unaware aligner that only maps against the transcriptome which was extracted from the genome

reference. For the secondary alignments of HISAT2 and STAR, which only constituted 3.2% (STAR) and

3.8% (HISAT2) of the total alignments, 41.5% (HISAT2) and 36.9% (STAR) of the reads were correctly
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aligned. The majority of the secondary alignments, 55% for HISAT2 and 59% for STAR, mapped

the reads to wrong positions, mostly to wrong (unrelated) or paralogous genes. For bowtie2/RSEM,

almost 43% of these reads were mapped multiple times. Nearly 96% of these reads were mapped to

the wrong gene.

Table 5. Mapping of the in silico-generated Col-0 transcriptome using HISAT2, RSEM and STAR.

HISAT2 in % RSEM in % STAR in %

Primary

Mapped on right transcript 57,981,570 98.7 58,072,536 98.9 58,000,379 98.8
Mapped on wrong transcript 689,541 1.2 658,699 1.1 668,909 1.1

Unmapped 18,022 0.031 773 0.001 19,526 0.033
Mapped not on known exon 42,875 0.073 0 0.0 43,194 0.1

total reads 58,732,008 100 58,732,008 100 58,732,008 100
Secondary

Mapped on right transcript 962,756 41.5 1,788,234 4.1 727,039 36.9
Mapped on wrong transcript 1,280,622 55.1 42,112,759 95.9 1,164,065 59.1

mapped on different gene 825,766 64.5 38,112,265 90.5 842,864 72.4
mapped on paralog gene 454,178 35.5 3,957,169 9.4 320,812 27.6

mapped on different isoform 678 0.1 43,325 0.1 389 0.0
Mapped not on exon 79,118 3.4 0 0.0 77,647 3.9

total reads 2,322,496 100 43,900,993 100 1,968,751 100

For a better overview, the alignments were split into primary and secondary alignments. If a read

maps multiple times against the reference, one mapping is defined as primary (underlying criteria

depend on the mapper), while the other mappings are classified as secondary alignments.

3. Discussion

RNA-Seq data from the Arabidopsis thaliana accessions Col-0 and N14 were mapped with five

alignment-based and two pseudo-alignment tools. For Col-0, high mappability of the 150 bp single-end

Illumina reads to the Col-0 reference genome or transcriptome was found for all seven alignment tools,

ranging from 95.9% (bwa) to 99.5% (STAR). A slightly smaller fraction of the reads obtained from

N14 was mapped to the same references, ranging from 92.4% to 98.1%. The high quality of the reference

sequences may contribute to the high fraction of mapped reads. For both accessions, bwa had the lowest

performance and STAR the highest, although it should be stressed that differences in mappability for

any sample between the mapping tools ranged only from 1% to 4%. Comparable performance of

different mapping tools has been found in previous studies using either simulated reads or RNA-Seq

reads obtained from various non-plant organisms [21–25]. On the other hand, another report showed

that seed-extended approaches used by STAR performed better than e.g., exon-first approaches, when

mapping reads from genetically polymorphic species [26].

Considering the two accessions separately, the high number of mapped reads for Col-0 is in

agreement with the fact that the Col-0 reference sequences were used for mapping. However, a small

number of reads was not mapped, potentially due to sequencing errors or to polymorphisms between

the publicly available genome sequence and the genome of the Col-0 population used in our experiments.

In this context it has to be kept in mind that the Col-0 populations used in various laboratories around

the world have been separated for many generations and have very likely accumulated different

mutations over time [27]. The generally lower percentage of mapped reads for N14 can be explained

by natural variation between the accessions [28,29].

In addition to the percentage of mapped reads, the correctness of the mapping of reads to the

reference genome or transcriptome is also of crucial importance to obtain reliable biological information

from an RNA-Seq experiment. We found that HISAT2 and STAR had a high overlap of reads mapping

to the same position in the reference sequence. The differences in read positions between bowtie2/RSEM

and HISAT2/STAR originated to a large part from the soft-clipping, mostly of the first base of the
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reads, by both aligners. Soft-clipping can be turned off in both tools and that largely eliminates the

observed differences. However, STAR has a higher tolerance for more soft-clipped and mismatched

bases compared to HISAT2, which leads to a higher mapping rate for STAR and more unmapped reads

for HISAT2 [24]. Also, in our analysis, STAR showed the highest fraction of mapped reads for both

accessions among all compared mapping tools.

Our analysis of an in silico generated RNA-Seq data set also indicated that differences in the

mapping quality between the three mappers are most likely due to their different ability to deal with

mismatches. About 99% of the primary aligned reads were correctly positioned and the mappers

showed the same performance when synthetic reads without any mismatches between read and

reference sequences were used. This indicates that mapper performance may also depend on other

factors, such as the complexity of the genome, read length and read quality [22]. The high fraction

of correctly mapped reads may in part be due to the comparatively small genome of Arabidopsis

with roughly 130 megabases and a low content of repetitive DNA sequences [30,31]. Regarding the

secondary alignments, RSEM showed a high number of multimapped reads. The mapping for RSEM

was performed with the mapper bowtie2 which searches for distinct, valid alignments for each read.

As long as no upper limit is defined, bowtie2 will continue to look for all alignments that are as good or

better for one read [32]. If the same read maps multiple times with the same quality string, the primary

alignment is chosen randomly. The quantification algorithm of RSEM also depends on a high number

of multi-mapped reads.

From a biological point of view, the quantification of gene expression is the most important part

of an RNA-Seq experiment as researchers are mostly interested in the identification of differentially

expressed genes, either between conditions or between genotypes. Correct mapping, as discussed

above, is important to identify the correct genes as being differentially expressed. However, determining

the correct read count numbers is of at least equal importance [33]. We have addressed this issue on

two levels by comparing raw counts for the different genes or transcripts among the mapping tools and

by comparing differentially expressed genes between plants grown under ambient and cold conditions

identified by the different tools.

To investigate the results obtained by the different tools on the basis of raw counts, raw count

numbers for each gene/transcript of a single sample from Col-0 and N14 each, generated by the

different mappers, were plotted against each other. In general, high similarities among the mappers

were observed, indicated by correlation coefficients close to 1. Similarly, when the raw counts were

compared between mappers for all 36 biological samples generated in this study, Rv values close to

1 indicated a good correspondence in the expression levels computed by all seven software tools.

To analyse the effects of the mapping tools on the DGE analysis, we compared expression levels of

control plants grown at ambient temperature with expression levels of plants that were exposed to 4 ◦C

for three days (cold acclimation; compare [17] for a detailed description). Significantly differentially

expressed genes were in all cases identified using the DESeq2 tool. The results showed that the raw

counts generated by the different mappers resulted in clear differences in the number of significantly

differentially expressed genes, with an overlap between mappers from 98.0% between kallisto and

salmon in Col-0, and 92.1% between bwa and STAR in N14. The small sample size (three samples

per condition and accession) may of course contribute to the uncertainty in identifying differentially

expressed genes unambiguously [34]. However, this sample size is currently the standard in biological

experiments and therefore our results give a realistic impression of what the user can expect from the

performance of these tools.

Finally, the results from DESeq2 and from the DGE-pipeline of CLC were compared.

Interestingly, CLC identified about 50% more differentially expressed genes than DESeq2. Since the

same alignments for downstream analysis were used in both cases, this difference cannot originate

from differences in the mapping and raw count generation. Therefore, the normalization (to one

million counts) as well as the statistical tests used by CLC must have led to these differences. In a

transcriptome analysis of mouse tissues, different DGE tools such as DESeq2 and CLC were compared,
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resulting in a better performance for DESeq2 compared to both CLC approaches [35]. The results were

experimentally validated by qRT-PCR for 18 differentially expressed genes. For the CLC Baggerly

approach large differences to qRT-PCR results were shown. The CLC EDGE approach yielded results

that were more similar to the expression changes found by qRT-PCR and those detected by DESeq2.

However, in our analysis, the CLC approaches yielded results that were largely different from those

obtained by DESeq2.

4. Materials and Methods

4.1. Experimental Dataset

RNA samples of the Arabidopsis thaliana accessions Col-0 and N14 were used for RNA-Seq as

described in detail recently [17]. Plant material was collected from three independent biological

experiments resulting in a total of 36 samples. Samples were taken after 28 days of growth at 20 ◦C,

after an additional three days of cold acclimation at 4 ◦C, after a subsequent seven day period at

20 ◦C and after a final three days at 4 ◦C. Additionally, samples from developmental control plants

were taken after 35 days at 20 ◦C and a subsequent three days of cold acclimation at 4 ◦C (Details

of all samples are given in Table A3). Library preparation and sequencing were performed by the

Max-Planck Genome Centre Cologne, Germany (https://mpgc.mpipz.mpg.de/home/). Libraries were

constructed with NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs)

including polyA enrichment. Illumina HiSeq 3000 technology was used for sequencing and yielded

150 base pair (bp) long single end reads. RNA-Seq raw counts are available at GEO [36] under the

accession number GSE112225. A detailed biological analysis of the RNA-Seq data has been presented

recently [17].

4.2. Mapping

Quality control of the raw reads and adapter trimming have been described previously [17].

The genomic FASTA sequence, cDNA and GTF annotation files of Arabidopsis thaliana Col-0 were

downloaded from EnsemblPlants [37], version TAIR10, release 31 [38]. For read mapping bwa, CLC

Genomics Workbench, HISAT2, kallisto, RSEM, salmon and STAR were used, employing pre-defined

default parameters as far as possible (Table 6). Bwa aln was used for higher sensitivity and resulting

sai files were converted into alignment files with bwa sampe. For kallisto and salmon it was necessary

to set parameters for single-end data, define the estimated average read length as well as its estimated

standard deviation. As index mode for salmon, –type quasi and a stranded library type were chosen.

For expression quantification kallisto and salmon were run in quant mode. For STAR, 1-pass mode was

used and additional parameters were defined to sort the alignments, to limit multi-mapping and to

keep unmapped reads in the alignments as well as generating the gene count output. HISAT2 was run

with default parameters, for index generation annotation was included (Table 6). All tools are freely

available except the CLC Genomics Workbench which is a commercial tool that requires purchase of a

license. For the mappings without annotation, HISAT2 was run with default parameters and without

inserting the annotation into index generation. STAR was run in the 2-pass mode. To determine the

reads mapping on exons, featureCounts v2.0.0 [39] (–primary -T 10 -f -O -F GTF -t exon -g gene_id) was

used. Expression values were natively generated by five of the seven mappers. For bwa, samtools

idxstat and for HISAT2, featureCounts v. 2.0.0 [39] were used to determine raw counts. For mapping

statistics and further analysis of the alignment files, samtools v1.3 [40] was employed.
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Table 6. Overview of the seven mappers used in this study.

Mapper Version Parameters Reference

bwa aln 0.7.13 Default Li and Durbin (2009) [11]
CLC 9 Default Qiagen, Hilden, Germany [41]

kallisto quant 0.42.5 –single, -l 150 and -s 25 Bray et al. (2016) [16]
HISAT2 2.1.0 Default Kim et al. (2019) [19]

RSEM 1.2.30
–bowtie2, –fragment-length-mean 150 &

–fragment-length-sd 25
Li and Dewey (2011) [14]

salmon quant 0.6.0
–type quasi, -k 31

–fldMean 150, –fldSD 25 and -l SF
Patro et al. (2017) [15]

STAR 2.5.2a

–outSAMtype BAM
SortedByCoordinate

–outFilterMultimapNmax 20
–alignSJDBoverhangMin 8

–outSAMunmapped Within
–quantMode TranscriptomeSAM

GeneCounts

Dobin et al. (2012) [12]

4.3. Comparison Based on Expression Values

For the comparison of the expression values (raw counts), samples A for Col-0 and B for N14

(grown under 20 ◦C control conditions; see Table A3) were chosen as an example. Raw counts

were log2(counts + 1) transformed and results visualized with the R-package ggplot2 [42]. For an

overall comparison the Rv coefficient [43] based on correlation matrices of the unfiltered raw count

tables of samples A and B over all mappers was calculated using the R-package FactoMineR [44].

Spearman correlation was used for correlation analysis and the significance of the results was tested as

described [45]. The results were visualized employing the R-package corrplot [46].

4.4. Differential Gene Expression

Prior to the differential gene expression (DGE) analysis, estimated read counts provided by RSEM,

kallisto and salmon were rounded to obtain integer values. The resulting count tables for all mappers

were filtered to discard lowly expressed genes by keeping only those with a sum greater than five

counts per gene for all 36 samples. The DGE analysis was performed using the R-Package DESeq2 [18]

including the normalization step. For CLC, alignment files were extracted and processed in the same

way as for the other six mappers. Data was loaded with the function DESeqDataSetFromMatrix.

Additional parameters for DGE were used as follows: test = “Wald”, fitType=”local” and including a

batch effect correction in the design formula. For determining differentially expressed genes, a threshold

p-value < 0.1 after false-discovery rate correction [47] and an absolute log2 fold change > 1 were used.

Results of the comparison control vs. cold acclimation (Table A3) for Col-0 (samples A, M, Y vs. C, O,

AA) and N14 (samples B, N, Z vs. D, P, AB) were investigated in detail.

Additionally, the built-in CLC workbench plugin for DGE was tested based on the mappings

generated by CLC. Data was normalized “By totals” to a value of 1,000,000. Normalized data

was used for determination of differentially expressed genes using the “Empirical analysis of

DGE” [19] and “Baggerly’s test on proportions” [20] with multiple testing correction of the generated

p-values [47]. Next to the control vs. cold acclimation comparisons described above, the cold acclimated

developmental controls (samples I, U, AG for Col-0 and J, V, AH for N14) were compared to the second

cold stress treatment (samples K, W, AI for Col-0 and L, X, AJ for N14; Table 1). The numbers of

significantly differentially expressed genes (FDR p < 0.05, abs(log2 fold change) > 1) were compared

with the results obtained by DESeq2 based on the STAR alignments.
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4.5. Mapping of in Silico Generated Reads

To investigate the mapping quality of the tools, reads were generated in silico using the A.

thaliana transcriptome (TAIR10) and applying a sliding window approach (window size: 150 bp,

shift: 1 bp) resulting in approximately 58 × 106 in silico reads. Reads were mapped with HISAT2

(using the same parameters as above), RSEM and STAR (without –outFilterMultimapNmax and

–alignSJDBoverhangMin). For identification, the in silico reads contained the transcript name and the

position of the read on the transcript as identifiers. Additionally, the GTF annotation file was reduced

to the exon entries and the overlap with the resulting alignment files of HISAT2, RSEM and STAR was

determined with bedtools [48]. Furthermore, transcript IDs were compared between alignment entry

and GTF entry to identify correctly mapped reads.

5. Conclusions

All tested mappers provided highly comparable results for mapping Illumina reads from

the genetically distinct Arabidopsis accessions Col-0 and N14 to the Col-0 reference genome or

transcriptome. The same was true for the determination of DGE when DESeq2 was used for processing.

We conclude that all seven mappers can be equally used for RNA-Seq data analysis in Arabidopsis,

even with different accessions. The only caveat is that using the CLC software for the identification

of DGE yielded strongly varying results. Further research will be needed to establish whether read

mapping to more complex genomes with larger non-coding regions or higher ploidy levels would

pose additional challenges that may reveal larger differences between the mappers.

Author Contributions: Formal analysis, S.S.; Funding acquisition, D.K.H.; Methodology, A.F.; Project
administration, D.K.H.; Software, A.F.; Supervision, A.F. and E.Z.; Visualization, S.S.; Writing—original draft, S.S.
and D.K.H.; Writing—review & editing, A.F. and E.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was in part supported by a grant from the German Research Foundation (DFG) through
Collaborative Research Center 973, Project A3 to DKH. The funders had no role in the design of the study and
collection, analysis, and interpretation of the data and in writing the manuscript.

Acknowledgments: We thank the Max-Planck Genome Centre Cologne (http://mpgc.mpipz.mpg.de/home/) for
RNA-Seq sequencing, Jessica Alpers for RNA extraction and Dirk Walther for critical reading of the manuscript
and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

RNA-Seq RNA-sequencing

DGE Differential Gene Expression

BWT Burrows–Wheeler-Transformation

Appendix A

Table A1. Number of reads for raw and pre-processed data.

Sample Number of Reads Raw Data Number of Reads Pre-Processed Data

A 26,551,078 25,965,205
B 24,160,253 23,723,408
C 24,987,211 24,631,398
D 24,679,891 24,314,564
E 32,902,966 32,265,838
F 25,343,870 24,962,434
G 25,633,391 25,255,295
H 24,767,056 24,276,316
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Table A1. Cont.

Sample Number of Reads Raw Data Number of Reads Pre-Processed Data

I 22,434,138 22,074,152
J 27,102,013 26,738,311
K 29,909,220 29,473,355
L 30,039,895 29,625,213
M 25,373,173 25,045,811
N 27,401,911 27,059,316
O 32,172,339 31,758,225
P 26,713,325 26,326,809
Q 28,367,001 27,941,198
R 21,784,606 21,476,277
S 23,466,191 23,142,088
T 25,002,989 24,642,826
U 25,470,737 25,137,081
V 32,322,582 31,890,842
W 31,880,034 31,451,153
X 28,614,863 28,223,380
Y 25,396,753 24,312,026
Z 25,402,962 24,351,761

AA 21,934,477 21,095,112
AB 29,068,271 27,924,700
AC 28,363,133 27,205,327
AD 27,538,807 26,446,048
AE 21,048,979 20,198,121
AF 22,915,893 21,786,356
AG 26,195,089 25,161,103
AH 23,710,160 22,348,705
AI 25,915,840 24,936,936
AJ 27,904,776 26,835,785

Pre-processed raw data was filtered for a minimum read length of 80 base pairs and Illumina adapters
were removed.

Table A2. Number of mapped reads for each mapper and sample.

Sample bwa CLC HISAT2 kallisto RSEM salmon STAR

A 24,990,288 25,070,332 25,727,064 25,202,788 25,068,400 25,488,500 25,877,150
B 22,235,860 22,831,185 22,831,427 22,489,984 22,450,834 22,625,100 23,535,895
C 23,568,631 23,650,969 24,398,527 23,911,331 23,729,822 24,096,400 24,545,823
D 22,665,145 23,292,374 23,392,011 23,182,011 23,001,552 23,294,400 24,114,936
E 31,067,889 31,136,183 31,948,360 31,315,586 31,186,635 31,651,600 32,144,692
F 22,079,186 23,828,249 22,529,274 23,226,055 22,975,469 23,289,400 24,362,368
G 24,360,053 24,368,639 25,003,451 24,630,743 24,435,931 24,818,000 25,152,392
H 22,607,768 23,256,060 23,230,510 22,983,234 22,847,497 23,135,800 23,972,434
I 20,887,128 20,897,575 21,647,744 21,094,905 21,052,741 21,301,500 21,759,724
J 25,002,889 25,748,821 25,729,980 25,530,361 25,258,258 25,626,800 26,525,228
K 28,251,892 28,394,902 29,083,561 28,728,018 28,398,031 28,924,400 29,340,134
L 27,691,133 28,565,611 28,456,640 28,333,833 27,965,330 28,411,700 29,380,081
M 24,027,754 24,158,404 24,771,967 24,370,150 24,159,388 24,539,200 24,947,419
N 25,448,518 26,128,347 26,116,046 25,859,912 25,708,968 25,908,500 26,872,750
O 30,483,322 30,538,741 31,426,082 30,970,549 30,650,488 31,145,900 31,631,436
P 23,748,275 24,471,940 24,562,932 24,318,422 24,070,551 24,406,800 25,332,412
Q 26,863,089 26,968,681 27,679,891 27,157,401 26,977,076 27,405,000 27,843,106
R 19,700,000 20,245,101 20,218,359 19,970,836 19,918,383 20,052,800 20,826,196
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Table A2. Cont.

Sample bwa CLC HISAT2 kallisto RSEM salmon STAR

S 22,171,458 22,274,280 22,902,423 22,444,868 22,280,936 22,624,300 23,035,647
T 23,165,182 23,815,751 23,748,284 23,543,789 23,398,523 23,638,100 24,456,937
U 24,145,575 24,192,319 24,905,595 24,499,411 24,279,099 24,667,800 25,057,610
V 29,305,198 30,181,899 30,105,423 29,951,050 29,635,355 30,012,700 31,037,834
W 30,171,991 30,240,229 31,135,272 30,619,320 30,314,724 30,820,900 31,321,391
X 26,417,781 27,215,579 27,146,639 26,999,068 26,701,971 27,089,600 28,004,846
Y 23,467,493 23,523,457 24,062,637 23,713,957 23,548,791 23,915,800 24,211,437
Z 22,939,890 23,531,637 23,488,307 23,241,258 23,186,262 23,333,700 24,169,828

AA 20,347,062 20,333,841 20,891,798 20,594,460 20,425,031 20,742,500 21,011,777
AB 26,183,324 26,842,810 26,903,033 26,663,997 26,539,902 26,769,800 27,709,817
AC 26,065,885 26,102,795 26,890,847 26,358,644 26,235,209 26,562,400 27,054,414
AD 24,904,560 25,532,006 25,483,657 25,267,366 25,201,022 25,348,100 26,234,545
AE 19,055,414 19,320,692 19,842,597 19,566,392 19,295,597 19,670,300 19,967,391
AF 17,469,949 18,053,590 18,090,815 17,854,059 17,755,997 17,898,700 18,672,118
AG 24,163,365 24,161,812 24,876,952 24,468,971 24,283,108 24,682,500 25,047,179
AH 20,953,174 21,498,746 21,436,520 21,310,760 21,215,866 21,379,400 22,109,670
AI 23,823,058 23,916,429 24,617,944 24,223,766 23,973,245 24,383,700 24,792,766
AJ 25,023,005 25,804,958 25,767,495 25,481,098 25,325,866 25,563,800 26,594,060

Col-0 % 95.9 96.2 98.9 97.2 96.4 97.9 99.5
N14 % 92.4 95.2 94.9 94.2 93.6 94.6 98.1
Total % 94.1 95.7 96.9 95.7 95.0 96.3 98.8

Tools are sorted alphabetically by name. Total describes the fraction of mapped reads for both accessions
Col-0 and N14.

Table A3. Sample list with sample name, condition (Cond.) and accession (Acc.).

Experiment 1 Experiment 2 Experiment 3

Cond. Acc. Sample Cond. Acc. Sample Cond. Acc.

C28 Col-0 M C28 Col-0 Y C28 Col-0
C28 N14 N C28 N14 Z C28 N14

C28P3 Col-0 O C28P3 Col-0 AA C28P3 Col-0
C28P3 N14 P C28P3 N14 AB C28P3 N14

C35 Col-0 Q C35 Col-0 AC C35 Col-0
C35 N14 R C35 N14 AD C35 N14

C28P3L7 Col-0 S C28P3L7 Col-0 AE C28P3L7 Col-0
C28P3L7 N14 T C28P3L7 N14 AF C28P3L7 N14

C35P3 Col-0 U C35P3 Col-0 AG C35P3 Col-0
C35P3 N14 V C35P3 N14 AH C35P3 N14

C28P3L7T3 Col-0 W C28P3L7T3 Col-0 AI C28P3L7T3 Col-0
C28P3L7T3 N14 X C28P3L7T3 N14 AJ C28P3L7T3 N14

Samples were taken from three independent biological experiments. C28/C35: Control plants after 28 days
or 35 days of growth at 20 ◦C; C28P3/C35P3: plants after an additional 3 days of cold treatment at 4 ◦C; C28P3L7:
cold treated plants after a further 7 days at 20 ◦C; C28P3L7T3: plants after an additional 3 days at 4 ◦C.
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Abstract: Rice (Oryza sativa) is the main food source for more than 3.5 billion people in the world.

Global climate change is having a strong negative effect on rice production. One of the climatic factors

impacting rice yield is asymmetric warming, i.e., the stronger increase in nighttime as compared to

daytime temperatures. Little is known of the metabolic responses of rice to high night temperature

(HNT) in the field. Eight rice cultivars with contrasting HNT sensitivity were grown in the field

during the wet (WS) and dry season (DS) in the Philippines. Plant height, 1000-grain weight and

harvest index were influenced by HNT in both seasons, while total grain yield was only consistently

reduced in the WS. Metabolite composition was analysed by gas chromatography-mass spectrometry

(GC-MS). HNT effects were more pronounced in panicles than in flag leaves. A decreased abundance

of sugar phosphates and sucrose, and a higher abundance of monosaccharides in panicles indicated

impaired glycolysis and higher respiration-driven carbon losses in response to HNT in the WS. Higher

amounts of alanine and cyano-alanine in panicles grown in the DS compared to in those grown in the

WS point to an improved N-assimilation and more effective detoxification of cyanide, contributing to

the smaller impact of HNT on grain yield in the DS.

Keywords: high night temperature; rice; grain yield; wet season; dry season; metabolomics

1. Introduction

Rice is a staple food for more than half of the world’s population and the demand is steadily

increasing with the growing human population [1]. Climate change is a significant limiting factor

for enhancing food production, because increasing abiotic and biotic stresses negatively affect the

yield of all major crops [2–4]. During the past century, the global surface temperature has increased

by an average of 0.85 ◦C, and a further increase of up to 3.7 ◦C has been predicted by 2100 [3]. This

temperature increase develops asymmetrically, with a faster rise in daily minimum compared to daily

maximum temperatures [5–9], leading to “high night temperature” (HNT) conditions. Asymmetric

warming causes a reduction in the temperature difference between daily maximum and minimum

Int. J. Mol. Sci. 2020, 21, 3187; doi:10.3390/ijms21093187 www.mdpi.com/journal/ijms
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temperatures, i.e., the diurnal temperature range (DTR), with a negative influence on both wild and

crop plant species [10]. In particular, the main rice-growing countries in Asia, including China [11], the

Philippines [12,13] and India [14,15], are affected.

Several studies have reported a strong decrease in yield and grain quality, such as increased chalk

formation, and altered grain growth dynamics in rice under HNT [16–21]. HNT can have a stronger

impact on grain weight than high day temperatures in rice and wheat [22–24]. Field studies at the

International Rice Research Institute (IRRI) in the Philippines showed that rice grain yield was reduced

by 10% per 1 ◦C increase in night temperatures during the dry season (DS), whereas the effect of

increasing day temperatures was not significant within the investigated time period [12].

Differences in HNT sensitivity among various rice cultivars based on grain yield [25–27],

yield-related parameters, or phenotypes in the vegetative stage [28] have been reported, indicating

natural variation in HNT tolerance. In addition, HNT reduces the starch content in panicles and

negatively affects grain yield and quality (chalk and amylose content) in the sensitive cultivars Gharib

and IR64, but not in the tolerant cultivar N22 [29].

Different factors may cause HNT sensitivity. Physiological effects reported under HNT include

higher rates of respiration in leaves [28,30,31] and panicles [29], whereas photosynthesis is not

affected [28] or may be decreased as well [32]. A reduction in nitrogen and carbohydrate translocation

after flowering as a possible cause of yield reduction in HNT sensitive cultivars was also discussed [25].

Reduced grain weight and quality may be caused by lower sink strength due to lower cell wall invertase

and sucrose synthase activity in sensitive cultivars, accompanied by higher sugar accumulation in the

rachis [29].

Despite the increasing knowledge of the physiological responses to HNT, only little is known about

the metabolomic responses of rice under these conditions. The metabolic status is important for growth,

development and stress tolerance, and additionally influences important traits such as flavor, biomass,

yield and nutritional quality [33–35]. Therefore, the assessment of the metabolomic status of wild

and crop species can help to evaluate natural variation [33]. Additionally, the metabolome integrates

molecular and environmental effects as endpoints of biological processes [36]. Moreover, metabolites

constitute potential markers for the selection of tolerant crop genotypes in breeding programs.

Several studies investigated metabolic changes in rice in response to abiotic stress conditions, such

as salinity [37–41], osmotic stress [42], drought [43–47], heat [44,48], and combined drought and heat

stress conditions [49,50].

In a corresponding study on rice under HNT conditions, sucrose and pyruvate/oxaloacetate-

derived amino acids were shown to accumulate while sugar phosphates and organic acids involved

in glycolysis/gluconeogenesis and the tricarboxylic acid (TCA) cycle decreased in developing

caryopses [48]. A dysregulation of central metabolism and an increase in polyamine biosynthesis was

described for sensitive cultivars, whereas existing metabolic pre-adaptation under control conditions

was found for tolerant cultivars [51,52]. Furthermore, in sensitive cultivars, 4-amino butanoic acid

(GABA) signaling—and in tolerant cultivars, the jasmonate precursor myo-inositol—were linked to

the HNT responses [52]. A metabolomics study investigating early seed development and the early

grain-filling stage in six rice cultivars reported a sugar accumulation peak seven days after flowering

and 19 significantly different metabolites under HNT compared to under control conditions, with a

special focus on the generally higher abundance of sugars and sugar alcohols under HNT [53].

The goal of this study was to investigate the seasonal effects of HNT responses by assessing the

metabolic responses to HNT stress in flag leaves and panicles during the DS and wet season (WS) in

contrasting rice cultivars under field conditions. Previous studies of the comparison of HNT’s effects

during the WS and DS were limited to agronomic traits [13,14,20,26,54], while the influence of HNT on

the rice metabolome has not been reported yet. The present study sheds new light on the responses of

rice to an important climatic stress factor that may severely limit grain yield and quality, and therefore

the global food supply.
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2. Results

Two field experiments were performed at the IRRI in the Philippines during the WS and DS with

eight rice cultivars (Table 1). These cultivars comprised the indica and japonica subspecies and included

HNT tolerant, intermediate and sensitive cultivars, as determined during the vegetative growth stage

from a study under controlled environmental conditions [28].

Table 1. Experimental set-up for high night temperature (HNT) field experiments for eight contrasting

Oryza sativa cultivars. Mean temperatures and relative humidity (RH) are given from the beginning of

HNT treatment till the sampling time, when panicles reached 50% flowering.

Experiment 1 Experiment 2

Season Wet Dry

Conditions Control HNT Control HNT

Cultivars

CT9993-5-10-1M
IR123

IR62266-42-6-2
IR64
IR72
M202

Moroberekan
Taipei309

Tday (◦C) 27.7 26.1

Tnight (◦C) 22.2 27.6 22.2 27.8

RH (%) 98.3 89.4 96.4 80.9

Sampling time Panicle at 50% flowering

Samples Flag leaves, panicles

The WS experiment was performed for 84 to 104 days from transplanting till maturity, and the DS

experiment, for 87 to 118 days, depending on the staggered sowing (Figure A1). Samples for metabolite

analysis were taken at 59 to 78 days after transplanting in the WS, and in the DS, between 58 and

88 days. During the day (6 a.m.–6 p.m.), plants were exposed to ambient conditions, with an average

temperature of 27.7 ◦C during the WS and 26.1 ◦C during the DS. The mean daytime temperature

ranged from 25.4 to 29.7 ◦C during the WS, and from 21.8 to 30.9 ◦C during the DS, with maximum

daily temperatures from 26.5 ◦C to 34.7 ◦C during the WS and from 24.3 ◦C to 36.1 ◦C during the DS

(Figure A2e).

During the night, plots were covered by tents, and the temperature was kept constant by air

conditioners, set to 22 ◦C for the control and 28 ◦C for HNT conditions. The average temperatures

measured in the tents were 27.64 ◦C (± 0.77 ◦C) and 27.82 ◦C (± 1.07 ◦C) under HNT conditions

and 22.24 ◦C (± 0.99 ◦C) and 22.25 ◦C (± 0.46 ◦C) under control conditions during the WS and

DS, respectively (Figure 1A,B). The corresponding ambient night temperatures outside the tents are

shown in Figure A2f. As the average day temperatures for both seasons were very similar, the night

temperature difference of around 5 ◦C is the main temperature factor driving the physiological and

metabolic changes in all cultivars.

Average radiation was about 22% lower in the WS than in the DS and sunshine duration in the

WS reached only 45% of the values measured in the DS (Figure A2A,B). Daily rainfall in the WS was

recorded between 85 and 0 mm, while it was approximately zero in the DS (Figure A2C. Accordingly,

average relative air humidity was lower in the DS with values between 73% and 95%, compared to

those between 76% and 98% in the WS (Figure A2D).
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Figure 1. Average temperature (A,B) and relative humidity (RH) (C,D) during the night (6 p.m.–6 a.m.)

in the wet season (WS) (A,C) and dry season (DS) (B,D) under control and HNT conditions, measured

till the end of sampling at 50% flowering. For comparison, day temperature and humidity are included

(grey lines). Measurements, which were done every 30 min, were averaged. DAS—Days after stress;

WS—wet season; DS—dry season.

2.1. Influence of HNT on Agronomic Parameters

For all agronomic parameters, a significant genotype effect was found in both seasons when

comparing samples from plants grown under HNT with control conditions (Table 2). Furthermore,

a significant seasonal effect was recorded for almost all agronomic parameters. The influence of HNT

conditions on the growth response was recorded as differences in plant height. No significant treatment

effect but a significant Genotype x Treatment (GxT) effect of HNT on plant height was found over all

cultivars for both seasons (Table 2). On average, plant height was slightly lower in the DS compared to

in the WS, but cultivar-specific patterns were conserved (Figure 2). In both seasons, plant height was

significantly (p < 0.05) increased under HNT in three cultivars (IR123, IR64 and IR72), while it was

decreased in Moroberekan. IR62266-42-6-2 and M202 showed reduced plant height only in the WS,

and Taipei309, only in the DS.

Total grain yield under control conditions was significantly lower in the WS, with a maximum

yield among all cultivars of about 617 g·m−2 compared to that in the DS of 762 g·m−2 (Figure 3A,B). A

significant effect of HNT treatment on the grain yield of all eight cultivars compared to control was

only detectable in the WS (Table 2), where yield reduction varied between 23% in M202 and 4% in

IR123 (Figure A3A). In the DS, yield was only reduced between 8% and 3% in four cultivars, while it

was slightly increased (1%–5%) in the other four (Figure A3B). No correlation was found between the

yield reduction in our experiments in the WS or DS and the HNT sensitivity rank of the same cultivars

in the vegetative stage under controlled environmental conditions determined for the same cultivars in

a previous study [28] (not shown).
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Table 2. Analysis of variance (ANOVA) on selected agronomic parameters. Sixty plants for the DS

and 24 plants for the WS were considered for plant height, tiller number and panicle number. For

the remaining parameters, two replicates pooled from twelve plants each were considered for the

WS and five replicates pooled from twelve plants each were considered for the DS. Spikelets/panicle

represents the number of spikelets per panicle. The seed set was calculated as follows: seed set (%) =

filled grains/(filled+half-filled+unfilled grains) × 100. Harvest index was calculated as percentage of

dry weight of filled grains relative to total above-ground biomass. The significance of the influence of

genotype (G), HNT-treatment (T), season (S) or the interaction between two influences (GxT or TxS)

on differences between HNT and control conditions across all eight cultivars is indicated by asterisks:

0.001 < ***; 0.001 > ** < 0.01; 0.01 > * < 0.05. ns—not significant. Original data for plant height, tiller

number, panicle number and all yield components for the WS (2011) and the DS (2014) are available in

Table S1.

Parameter
WS WS WS DS DS DS Both Seasons

G T GxT G T GxT T S TxS

Plant Height (cm) *** ns ** *** ns. * ns ns ns

Biomass g/m2 *** * ns *** ns ns ns * ns

Straw (g) *** ns * *** ns ns ns ns ns

Rachis (g) *** ns ns *** ns ns ns * ns

Tiller No *** ns ns *** ns ns ns ** ns

Panicle No *** ns ns *** ns ns ns ** ns

Panicle/m2 *** ns ns *** ns ns ns ** ns

Spikelet/m2 *** * ns *** ns ns ns *** ns

Spikelets/Panicle *** ** ns *** ns ns ns *** ns

Seed set (%) *** ns ns *** ns ns ** * ns

Grain yield (g/m2) *** *** ns *** ns ns ns ** ns

1000 grain weight (g) *** *** *** *** *** ns ns *** ns

Harvest Index *** *** ns *** ** ns ns *** ns

Figure 2. Plant height of the investigated rice cultivars under control and HNT conditions in the WS

(A) and DS (B). Bars for the WS represent means ± SEM of 24 plants per condition, and bars for the

DS, those of 60 plants per condition. Cultivars are sorted alphabetically within the respective O. sativa

subspecies indica (1–4) and japonica (5–8). Significance levels are indicated by asterisks: 0.001 < ***;

0.001 > ** < 0.01; 0.01 > * < 0.05.
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Figure 3. Grain yield (A,B), 1000-grain weight (C,D) and harvest Index (E,F) of eight rice cultivars

under control and HNT conditions in the WS (A,C,E) and DS (B,D,F). For the WS, bars represent the

means and error bars, the range of two replicates generated from 12 plants, each. For the DS, the bars

represent the means ± SEM of five replicates generated from 12 plants, each. Cultivars are sorted

alphabetically within the respective O. sativa subspecies indica (1–4) and japonica (5–8). Significance

levels were only calculated for the DS due to an insufficient replicate number in the WS and are

indicated by asterisks: 0.001 < ***; 0.001 > ** < 0.01; 0.01 > * < 0.05.

A significant negative HNT treatment effect was also found for the 1000-grain weight in both

growth seasons (Table 2), with the highest reductions in the WS of about 1.7 and 1.8 g for Taipei309

and IR62266-42-6-2, respectively (Figure 3C,D, Table 2).

The harvest index was significantly affected by HNT across all cultivars in both seasons (Table 2)

and showed an overall reduction, except for Moroberekan in the WS and DS and CT9993-5-10-1M

only in the DS (Figure 3E,F, Table 2). Furthermore, a significant treatment effect was determined for

biomass, spikelets per m2 and spikelets per panicle only in the WS, but not in the DS (Table 2). For

cultivar-specific changes in these parameters, see Figure A4.

2.2. HNT’s Effects on the Metabolome Are More Pronounced in Panicles Than in Flag Leaves

Profiling of hydrophilic small metabolites was performed by gas chromatography-mass

spectrometry (GC-MS) on flag leaves and panicles of all eight cultivars grown in both seasons.

Since it has been shown previously that the metabolite profiles of rice flag leaves and panicles differ

widely, making meaningful direct comparisons impossible [49], we treated the data from the two
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organs separately. After the pre-processing of both data sets, a total of 76 metabolites for flag leaves and

69 for panicles were determined that were detected in both seasons. Principal Component Analysis

(PCA) indicated that metabolite profiles of flag leaves were not strongly affected by HNT conditions in

either the WS or DS (Figure 4A,B).

Figure 4. Score plots of the first two Principal Components (PC1 and PC2) from the Principal Component

Analysis (PCA) of the metabolite profiles of rice flag leaves (A, B) and panicles (C, D) of the eight

investigated rice cultivars under control and HNT conditions in the WS (A, C) and DS (B, D). For

flag leaves, means of the median-normalized and log2-transformed mass spectral intensities of 76

metabolites, and for panicles, those of 69 metabolites, were used. Numbers in parentheses indicate the

fractions of the total variance explained by the respective PCs.

Instead, a separation between cultivars belonging to the subspecies indica and japonica was visible

for both seasons and treatments. By contrast, a clear separation along PC1, explaining 38.55% of the

total variance in the data set, between samples from plants grown under control or HNT conditions

was observed for panicles collected in the WS (Figure 4C). The single outlier represents the japonica

cultivar Moroberekan under HNT conditions. For the DS experiment, samples from panicles under

different night temperature conditions were separated by PC2, explaining 24.11% of the variance, while

PC1 separated the subspecies, explaining 32.63% of the total variance (Figure 4D).

The metabolite composition already varied under control conditions between the two growth

seasons in both flag leaves and panicles (Figure 5). Of the 76 metabolites identified in flag leaves,

48 (63%) showed a significantly different content in at least three cultivars in this analysis, while of the 69

metabolites in panicles, 28 (41%) differed between seasons. Only eight of these metabolites (malic acid,

A159003, A221004, cis-4-hydroxycinnamic acid, trans-4-hydroxycinnamic acid, fructose-6-phosphate,

glyceric acid-3-phosphate and raffinose) were identical in both organs, indicating highly organ-specific

metabolic reactions to seasonal variations in rice. In addition, there was variation among the cultivars,

which was, however, largely independent of the subspecies that the cultivars belong to.
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Figure 5. Heat maps showing the log2 fold changes in metabolite levels under control conditions in

the DS compared to the WS for flag leaves (A) and panicles (B). Only metabolites with a significant

change in at least three out of the eight cultivars are displayed. The level of significance is indicated by

asterisks (* p < 0.05; ** p < 0.01; *** p < 0.001) and the log2 fold change is represented by the indicated

color code. Blue indicates a lower metabolite level in the DS compared to the WS, and red, a higher

level. Metabolites are listed alphabetically within the metabolite classes (compare Supplementary

Table S2). Cultivars are sorted alphabetically within the respective O. sativa subspecies indica (1–4) and

japonica (5–8).

Under HNT conditions, only three metabolites in flag leaves were significantly changed relative

to control values in at least three cultivars in the WS, compared to 17 metabolites that were so in the DS

(Figure 6). Only erythritol was significantly affected by HNT in both growth seasons. However, while

it was increased or unchanged in the DS, it showed a cultivar-specific increase (strongest in Taipei309)

or decrease (strongest in IR72) in the WS. In the DS, all metabolites were either reduced/unchanged

or increased/unchanged across all cultivars, except for fructose, which was significantly increased in

Taipei309 and CT9993-5-10-1M, and significantly decreased in IR64. In addition, while most metabolites

showed significant changes in only three or four cultivars, glucose-6-phosphate was significantly

reduced under HNT conditions in seven out of the eight cultivars (Figure 6B).
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Figure 6. Heat maps showing the log2 fold changes in metabolite pool sizes in flag leaves under HNT

compared to control conditions for the WS (A) and DS (B). Only metabolites with a significant change in

at least three out of the eight cultivars are displayed. The level of significance is indicated by asterisks

(* p < 0.05; ** p < 0.01; *** p < 0.001), and the log2 fold change is represented by the indicated color code.

Blue indicates a lower metabolite level under HNT compared to under control conditions, and red,

a higher level. Cultivars were sorted alphabetically within the respective O. sativa subspecies indica

(1–4) and japonica (5–8).

In panicles, metabolite changes caused by HNT conditions were more pronounced than in leaves,

with higher log2 fold changes and a larger number of significantly changed metabolites—25 during

the WS and 12 during the DS. In addition to the larger number of metabolites that were significantly

affected by HNT in the WS than in the DS, opposite to what we observed in flag leaves (Figure 6),

changes were generally also larger in the WS than in the DS in panicles (Figure 7).

Figure 7. Heat maps showing the log2 fold changes in metabolite pool sizes in panicles under HNT

compared to control conditions for the WS (A) and DS (B). Only metabolites with a significant change in

at least three out of the eight cultivars are displayed. The level of significance is indicated by asterisks

(* p < 0.05; ** p < 0.01; *** p < 0.001), and the log2 fold change is represented by the indicated color code.

Blue indicates a lower metabolite level under HNT compared to control conditions, and red, a higher

level. Cultivars were sorted alphabetically within the respective O. sativa subspecies indica (1–4) and

japonica (5–8).

A comparison of the significantly changed metabolites in at least three of the eight cultivars in

the DS with those in the WS revealed an overlap of glutamic acid, arabitol and erythritol (Figure 7,
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Figure A5). Glutamic acid content was mainly reduced in the WS but increased in the DS, while the

polyols arabitol and erythritol were mainly increased by HNT in both seasons. There was very little

overlap in the metabolites significantly affected by HNT between flag leaves and panicles, with only

erythritol affected in the WS and arabitol and erythritol, in the DS. Interestingly, arabitol showed an

opposite behavior in response to HNT in the two organs, with decreased levels in flag leaves and

increased levels in panicles.

In the WS, the levels of organic acids; amino acids (except glycine); the phosphorylated

intermediates fructose-6 phosphate, glucose-6-phosphate, glyceric acid-3-phosphate and glycerol-3-

phosphate; and the sugars raffinose and sucrose were in general reduced during HNT in panicles

compared to under control conditions. On the other hand, glycine, gluconic acid, threonic acid,

arabitol, erythritol, and fructose and glucose were increased (Figure 7A). In a direct comparison of

these significantly changed metabolites in the WS with the metabolite levels in the DS, no reduction of

any of these metabolites could be observed in the DS (Figure A6). In the DS, all 12 of the significantly

influenced metabolites (mainly amino acids, arabitol, erythritol, citric acid, glutamic acid and xylose)

were increased under HNT conditions (Figure 7B).

Alanine and 3-cyano alanine were among the metabolites that were significantly changed under

HNT conditions in panicles in the DS, but not in the WS. Alanine is a major storage amino acid under

stress conditions [55], and the activity of the alanine biosynthetic enzyme alanine aminotransferase

(AlaAT) can influence rice yield [56]. In the WS, the activity of AlaAT was generally reduced under

HNT to values of 62% to 96% (except for Moroberekan) compared to under control conditions, which

was significant at p < 0.05 for IR123 and IR72 (Figure 8A). By contrast, AlaAT activity in the DS

reached values of 77% to 137% higher under HNT in comparison to under control conditions and was

increased in five out of the eight cultivars, although none of the differences were statistically significant

(Figure 8B).

Figure 8. Activity of the enzyme alanine aminotransferase (AlaAT) in panicles of the indicated rice

cultivars under control and HNT conditions for the WS (A) and DS (B). Values are averages of three

replicates per cultivar and condition, with four exceptions with two replicates. The level of significance

is indicated by asterisks (* p < 0.05; ** p < 0.01; *** p < 0.001). Cultivars were sorted alphabetically

within the respective O. sativa subspecies indica (1–4) and japonica (5–8).

To obtain insight into the potential function of particular metabolites in HNT tolerance in the field

and to identify possible candidate marker metabolites for HNT tolerance, we performed correlation

analyses between the grain yield reduction in eight cultivars under HNT compared to under control

conditions and the change in relative metabolite pool sizes (log2 fold change) under HNT in the WS,
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wherein HNT significantly affected grain yield. While we only identified one significant correlation

for metabolites detected in flag leaves (ribitol), we found seven such correlations among panicle

metabolites (Figure 9). In addition to one yet unidentified compound, the others comprised four

amino acids (including 3-cyano alanine), pyroglutamic acid (representing the sum of pyroglutamate,

glutamine and glutamate pools) and fructose-6-phosphate. All eight metabolites showed positive

correlations, i.e., a larger change in metabolite pool size indicates a smaller yield loss.

Figure 9. Metabolites with significant correlations (Spearman’s rank correlation, p < 0.05) between total

grain yield reduction under HNT in the WS and the corresponding changes in metabolite contents (log2

fold change) in flag leaves (A) and in panicles (B). Red color indicates positive correlations. Metabolites

are sorted alphabetically.

3. Discussion

The response of agronomic parameters and metabolic patterns to HNT have been analyzed for

eight rice cultivars with different HNT tolerance under field conditions at the IRRI in two different

seasons. A comparison of the weather data for both seasons and the respective agronomic parameters

identified a slightly longer time to maturity in the DS than in the WS as an important difference. During

the DS, plants were exposed to higher radiation intensity and sunshine duration, but lower rainfall

and relative humidity compared to in the WS. Similar differences for radiation and sunshine have

been reported for a comparison of the DS and the WS from 2005 to 2009 at the IRRI [13]. Furthermore,

temperature data for the two growth seasons largely agree between our study and two earlier reports

for the same location [13,20], indicating that the plants in our study were exposed to normal climatic

conditions without any extreme weather events.

Under control conditions, total grain yield was higher for most cultivars in the DS than in the WS,

in agreement with published data [13]. Under HNT conditions, no clear changes in grain yield were

observed during the DS, while it was reduced to different degrees in all cultivars in the WS. Under

controlled environmental conditions, a yield reduction caused by HNT was previously observed for

the cultivars IR62266-42-6-2 and CT9993-5-10-1M, while IR123 showed no change, and IR72 even

showed an increased grain yield [28]. During the WS, under our field conditions, IR62266-42-6-2 and

CT9993-5-10-1M also showed clear yield reductions of about 22% and 12%, respectively. However,

IR123 and IR72 behaved differently under field than under climate chamber conditions, with yield

reductions of 16% and 11%, respectively, emphasizing the need for field experiments to determine the

effects of stress treatments on rice yield.

A similar influence of the growing season on yield reduction under HNT was previously reported

for the indica cultivar Gharib and six tropical hybrid cultivars [20]. Additionally, for the tolerant aus

cultivar N22, a significantly lower yield under HNT was only recorded in the WS. This yield variation

was mainly attributed to a reduced grain weight and number of spikelets per m2, parameters also with

significant negative treatment effects during the WS in the present study. Grain yield was reduced

in both seasons by around 11% under HNT except for tolerant cultivars in four consecutive years,

again partially attributable to a decrease in grain weight [26]. Other authors also highlighted the

combination of decreased grain weight, spikelet number per panicle, and biomass production together

with a decreased seed set as important for the decline in grain yield under HNT [57]. In general, a

reduction in grain weight under HNT conditions was demonstrated for field-grown rice when exposed

41



Int. J. Mol. Sci. 2020, 21, 3187 12 of 24

to HNT stress from panicle initiation to maturity [18,25–27,58]. In agreement with this, we also found

a negative HNT effect on the 1000-grain weight in both seasons under similar stress conditions as used

in the previous studies.

Grain yield is influenced by carbon and nitrogen supply to the grain, which are affected by

HNT [59]. Temperature-sensitive respiration, known to be increased under HNT (e.g., [28]), might

have resulted in increased respiratory carbon loss, previously described to be important during the

ripening period [60]. Dark respiration was also considered by other reports to be the main factor

affecting biomass and yield under HNT conditions [12,20,25,61] and might be responsible for a decline

in assimilation supply to developing grains [57].

This hypothesis is in agreement with the metabolite data obtained during the WS. We

found a lower abundance of sucrose and the intermediates of glycolysis, such as glucose-6-

phosphate, fructose-6-phosphate, glyceric acid-3-phosphate and glycerol-3-phosphate, whereas the

monosaccharides glucose and fructose were increased in panicles. A similar decrease in sugar

phosphates, but not in sucrose, was also reported for developing rice caryopses exposed to HNT

during the milky stage [48]. Likewise, we also found a significant correlation between the magnitude

of the changes in the fructose-6-phosphate content of the panicles under HNT conditions and the yield

reduction in the WS. This emphasizes the importance of glycolysis for HNT tolerance in rice.

Glycolysis generates biosynthetic intermediates for respiration. Therefore, a high turnover of

glycolysis, as indicated by reduced levels of intermediates, could be expected as respiration is highly

increased under HNT. In addition, the products of glycolysis also feed into the TCA cycle, which was

shown to be dysregulated in leaves under HNT conditions in climate chamber experiments [51,62]. On

the other hand, no significant differences in the metabolites associated with the TCA cycle were found

in the developing seeds of different rice cultivars under HNT [53]. Likewise, our data did not provide

evidence for an altered TCA cycle under HNT conditions in either panicles or flag leaves.

Interestingly, the effects on glycolysis that we found in panicles in the WS were not observed in

either flag leaves in our present study or previously in leaves of the vegetative stage [52]. Apparently,

photosynthesis, which is unimpaired under HNT conditions, results in largely unaltered carbohydrate

pools in leaves [28,52]. It is therefore reasonable to assume that the carbohydrate supply to the panicles

is limiting for grain yield under HNT conditions. Lower sink capacity [26], possibly related to a

reduction in the activity of enzymes involved in starch synthesis, has been discussed as a reason for

the reduction in grain weight under HNT [63], which we have also observed. A further possibility

is an impaired import of sucrose into the panicles under HNT conditions, as has been shown in rice

under heat stress [44]. Further experiments will be necessary to test these hypotheses.

The larger reduction in grain yield in the WS compared to in the DS may nevertheless, at least in

part, be related to carbohydrate availability. One factor may be faster development during a slightly

shorter growing period in the WS, caused by higher daytime Tmin, preventing the accumulation of

sufficient biomass, as shown previously in simulation models [54]. In addition, irradiance levels in the

WS were much lower than in the DS, resulting in lower photosynthesis rates [64]. This may have led to

a lower overall carbon supply for grain filling [20], leading to lower yield in the WS than the DS under

control conditions and a more pronounced effect of HNT on yield in the WS [25] that was mitigated by

the higher carbohydrate supply in the DS.

The amino acid alanine was among the significantly increased metabolites in panicles under

HNT in the DS but not in the WS. Similarly, alanine was also increased under HNT during early seed

development and in the early grain-filling stage in six rice cultivars [53] and in wheat spikes [65].

Alanine is synthesized by the enzyme AlaAT, which catalyzes the reversible synthesis of alanine and

2-oxoglutarate from pyruvate and glutamic acid [66]. It is therefore considered an intercellular nitrogen

and carbon shuttle involved in both carbon fixation and nitrogen metabolism [67]. AlaAT is localized

in various plant organs and is active in developing rice seeds [68]. The activity of AlaAT is increased

in developing rice seeds under heat stress [48], and we observed a moderate increase under HNT

conditions in the DS and a moderate decrease in the WS. While the overexpression of AlaAT from
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barley in rice or canola results in increased nitrogen uptake efficiency and a higher biomass and seed

yield compared to in wild type plants [56,66,69–71], a rice mutant of AlaAT1 exhibits decreased kernel

weight [69]. The higher AlaAT activity in the DS may have led to increased nitrogen uptake and

assimilation, as described for plants overexpressing AlaAT [56], while reduced activity in the WS may

have had the opposite effect.

Another metabolite that was significantly increased in response to HNT in the DS, but not in

the WS, specifically in panicles, was 3-cyano alanine. This compound is generated by the enzyme

3-cyano alanine synthase (EC 4.4.1.9) during the detoxification of cyanide, which is generated as a

by-product of ethylene biosynthesis [72], when the precursor 1-aminocyclopropane-1-carboxylic acid

(ACC) is converted into ethylene and hydrogen cyanide (HCN) by the activity of the enzyme ACC

synthase [73]. The resulting 3-cyano alanine is then enzymatically converted to asparagine [74], which

was also increased under HNT in the DS, indicating a functional detoxification process. Ethylene

is a volatile plant hormone that is important for plant growth and development, and various biotic

and abiotic stress responses [75]. HCN, on the other hand, is toxic to cells and therefore needs to

be efficiently removed [74]. The lower amounts of 3-cyano alanine and asparagine in the panicles

collected in the WS might point to a less efficient detoxification of HCN. This is in agreement with

the finding that the magnitude of the reduction of both 3-cyano alanine and asparagine in panicles

in the WS is significantly correlated with the reduction in grain yield in the WS observed across the

eight cultivars. This may indicate that HCN toxicity plays an important role in the HNT sensitivity of

panicles. Additionally, however, HCN may play a direct regulatory role in gene expression in low,

non-toxic concentrations [76]. Whether this has any impact on HNT tolerance is currently not known.

Two polyols, arabitol and erythritol, were significantly increased in the flag leaves and panicles of

almost all cultivars under HNT in both seasons. Both metabolites were also increased under HNT in

the vegetative leaves of 12 rice cultivars, including the eight in the present study, in climate chamber

experiments [51]. Polyols generally function as compatible solutes and antioxidants under abiotic and

biotic stress conditions [77]. Furthermore, arabitol accumulates in flowering spikelets and developing

seeds under combined drought and heat stress in the tolerant aus cultivar N22 and has a higher content

in N22 compared to in sensitive cultivars in flag leaves in the field under control conditions [49].

Similarly, erythritol is accumulated in flowering spikelets and flag leaves under the same conditions,

while it is decreased in developing seeds under combined drought and heat stress. Increased levels

of erythritol were also found under drought conditions in Arabidopsis [78,79] and in flag leaves of

292 rice accessions [80]. In fact, arabitol and erythritol were both identified as potential metabolic

markers for combined drought and heat tolerance [49], and erythritol content under control conditions

was the best predictor of drought-induced yield loss in rice [80]. In the present study, however, no

correlation between changes in arabitol or erythritol levels and grain yield under HNT was found. The

accumulation of these sugar alcohols may therefore be an unspecific response to HNT stress.

4. Materials and Methods

4.1. Plant Material, Cultivation and HNT Stress Treatment

Eight Oryza sativa ssp. indica (IR123, IR62266-42-6-2, IR64 and IR72) and japonica (CT9993-5-10-1M,

M202, Moroberekan and Taipei309) cultivars with different HNT tolerance in the vegetative stage

under controlled environmental conditions [28] were used (Table 1). IR72, Taipei309 and Moroberekan

were characterized as HNT tolerant; IR64, IR123 and CT9993-5-10-1M showed intermediate tolerance;

and M202 and IR62266-42-6-2 were sensitive to HNT under these conditions [28]. The seeds for all

cultivars were produced at the IRRI. The experiments were carried out during the WS and DS at the

IRRI (14◦11’N, 121◦15’E, 21 MASL) in the Philippines. The seeds were pre-germinated in water after

incubation at 50 ◦C for 3 d to break dormancy and were then sown in seeding trays. Fourteen-day

old seedlings were transplanted to the field to a spacing of 0.2 × 0.2 m. The WS experiment was

started in June 2011, with four seedlings per hill and each cultivar (42–48 hills) randomly assigned to
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two replicate plots per treatment. Phosphorus (15 kg·ha−1 p as single superphosphate), potassium

(20 kg·ha−1 K as KCl), and zinc (2.5 kg·ha−1 Zn as zinc sulfate heptahydrate) were applied to all plots

as a basal fertilizer a day before transplanting. Nitrogen (N as urea) was incorporated in four splits

(30 kg·ha−1 as basal, 20 kg·ha−1 at mid-tillering, 30 kg·ha−1 at panicle initiation (PI), and 20 kg·ha−1 just

before heading). For the DS experiment, seedlings were transplanted in a staggered approach with

one batch in December 2013 and two batches in January 2014. The stagger sowing was based on the

phenology data from the first experiment. Each cultivar was randomly assigned to five replicate plots

per treatment with one seedling per hill and a total of 28–40 hills per plot. Basal fertilizer (30 kg·ha−1 P

as single superphosphate, 40 kg·ha−1 K as KCl, and 5 kg·ha−1 Zn as zinc sulfate heptahydrate) was

applied one day before transplanting. N fertilizer as urea was applied in four splits (45 kg·ha−1 as

basal, 30 kg·ha−1 at mid-tillering, 45 kg·ha−1 at PI, and 30 kg·ha−1 just before heading).

During the day (6 a.m–6 p.m.), plants were exposed to ambient conditions (compare Figure A2

and Table 1). Overnight (6 p.m.–6 a.m.), plants were exposed to the temperature treatments in

manually-covered tents with temperature-control devices as described previously [25]. Air conditioners

were programmed to maintain the temperature setting at control (22 ◦C) or HNT (28 ◦C). Temperature

and relative humidity were monitored by sensors connected to data loggers (HOBO, Onset Computer

Corporation, Bourne, MA, USA). Temperature treatments started at the panicle initiation stage and

lasted until physiological maturity (Figure A1). During the flowering stage, panicles that had flowered

for at least 50% were identified and tagged. These were then collected, together with the corresponding

flag leaves, the next morning just before the tents were opened (~4 a.m.–6 a.m.). All samples were

collected in liquid nitrogen and stored at −80 ◦C until use.

4.2. Weather Data

Weather data (radiation, sunshine duration, rainfall, relative humidity, maximum temperature

(Tmax) and minimum temperature (Tmin)) recorded by the IRRI wetland agrometeorological station

were obtained from the IRRI Climate Unit.

4.3. Growth Analysis, Grain Yield and Yield Components

Twelve hills from each replicate plot were harvested at physiological maturity for the determination

of plant height, tiller number, panicle number, and straw and rachis weight and processed for the

analysis of yield components [81]. Sixty plants for the DS and 24 plants for the WS were considered for

plant height, tiller number and panicle number. For the remaining parameters, two replicates pooled

from twelve plants each were considered for the WS, and five replicates pooled from twelve plants

each were considered for the DS. The number of panicles per hill was counted for the calculation

of panicles per m2. Afterwards, plants were separated into straw and panicles and panicles were

manually threshed. Filled and unfilled grains were submerged in water and separated with a seed

blower. Filled, half-filled and empty grains were counted to obtain spikelets per m2, spikelets per

panicle, seed set and 1000-grain weight. Total above ground biomass was determined from the dry

weight of straw; rachis; and filled, half-filled and empty grains after drying at 70 ◦C until constant

weight. The harvest index was calculated as the percentage of the dry weight of filled grains relative to

the total above ground biomass. Plants from central areas of two m2 from each plot (two for the WS

and five for the DS, per condition and cultivar) were also harvested for the determination of grain

yield. Grain weight data were adjusted to a standard moisture content of 0.14 g H2O g−1.

4.4. Metabolite Profiling and Data Processing

A fraction enriched in small polar metabolites was prepared from 120 mg of fresh weight of

snap-frozen and ground flag leaves or panicles from five biological replicates per cultivar and

condition and analyzed by gas chromatography coupled to electron impact ionization-time of

flight-mass spectrometry (GC/EI-TOF-MS) as described in [82]. Chromatograms were acquired

and baseline corrected by the ChromaTOF software (LECO Instrumente GmbH, Mönchengladbach,
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Germany). TagFinder [83], the NIST08 software, (http://chemdata.nist.gov/dokuwiki/doku.php?id=

start) (U.S. Department of Commerce, Gaithersburg, USA, MD) and the mass spectral and retention

time index reference collection of the Golm Metabolome Database [84,85] were used for the manually

supervised annotation of metabolites. Mass spectral intensities were normalized to fresh weight and
13C6-sorbitol (Sigma-Aldrich, Taufkirchen, Germany) as internal standard. The normalized data are

available in Table S2.

Data pre-processing was done separately for both organs and included the omission of metabolites

with more than 75% missing values and a missing value imputation for the remaining metabolites with

half the minimum amount of the respective mass spectral intensity. Furthermore, contaminations were

identified using hierarchical clustering and correlation matrices with a set of known contaminating

compounds and removed. A batch effect correction of different measurements of the whole data set

was performed using an ANOVA tool [86]. The intensities of each metabolite were divided by the

median intensity across all measurements and log2-transformed to approximate a normal distribution.

All presented metabolite data thus represent relative metabolite abundance measures. Outliers were

detected with the function grubbs.test included in the R-package outliers [87] using a threshold of

p < 0.0001. Finally, 132 metabolite intensities were detected for panicles and 161 metabolite intensities

were detected for flag leaves for the DS, and 195 metabolites were detected for both tissues for the WS.

For further analysis, the overlap of metabolites per tissue was determined, showing 69 metabolites for

panicles and 76 metabolites for flag leaves.

To enable direct comparison, overlapping metabolites for each tissue between both experiments

were determined, resulting in 69 metabolites for panicles and 76 for flag leaves.

4.5. Enzyme Activity

The activity of alanine aminotransferase (AlaAT, E.C.2.6.1.2) was measured according to a

published method [88]. Ground panicle material (20 mg) was used from three biological replicates

per cultivar and condition. In four cases (IR72, IR62266-42-6-2—C, HNT, Moroberekan—C,

Moroberekan—HNT), only two replicates were available.

4.6. Statistical Analysis

PCA was perfomed with the R-package pcaMethods [89]. For the data processing and visualization,

R v3.4.2 [90] and R-Studio v1.1.383 [91] were used including the following packages: ggplot2 [92],

grid [93], gridExtra [94] and reshape2 [95].

Changes in metabolite content were investigated by calculating the log2 fold change between the

averages of metabolite levels under control conditions in the DS compared to in the WS, or under HNT

compared to under control conditions. Unpaired, two-sided t-tests were performed over all replicates,

comparing control and HNT conditions to determine the statistical significance of the observed changes.

For agronomic data, t-tests were applied for the DS. For the WS, only two replicates were available

for most parameters and t-tests were only applied for plant height, tiller number and panicle number.

To test the significance of the influence of genotype (G), treatment (T) and GxT interactions across all

cultivars, a 2-way ANOVA design was used.

The statistical significance of differences in enzyme activity between control and HNT treatments

were evaluated by an unpaired two-sided t-test, performed in RStudio [91].

Correlations between total grain yield reduction under HNT in the WS and the corresponding

changes in metabolite content (log2 fold change) were done in R with the package cor.test using

Spearman Rank Correlation with p < 0.05.
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Abbreviations

ACC 1-aminocyclopropane-1-carboxylic acid

AlaAT Alanine aminotransferase

DAS Days after stress

DAT Days after transplanting

DS Dry season

DTR Diurnal temperature range

FC Fold change

G Genotype

GABA 4-amino butanoic acid

GC-MS Gas chromatography – Mass spectrometry

HCN Hydrogen cyanide

HNT High night temperature

IRRI International Rice Research Institute

PC Principal Component

PCA Principal Component Analysis

RH Relative humidity

S Season

T Treatment

TCA Tricarboxylic acid

WS Wet season

Appendix A

Figure A1. Experimental set-up for the DS and WS experiment. WS—wet season, DS—dry season.
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Figure A2. Weather data for the DS and WS experiment measured at the IRRI weather station as

average values per day. Radiation (A), sunshine duration (B), rainfall (C), relative humidity (D),

maximal temperature Tmax (E), minimal temperature Tmin (F). Broken lines represent a trend line for

the respective data set. DAT—days after transplanting. Average values for all weather parameters

were significantly different (p < 0.05) between WS and DS.

Figure A3. Yield reduction under HNT in the WS (A) and DS (B). Cultivars are sorted from highest to

lowest yield reduction.
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Figure A4. Biomass (A, B), spikelets per m2 (C, D), and spikelets per panicle (E, F) of eight rice cultivars

in response to HNT stress for the WS (A, C, E) and DS (B, D, F). For the WS, variance is displayed

as range between means of two replicates with 12 plants each; for the DS, the standard error of the

mean of five replicates with 12 plants each is shown. Cultivars are sorted alphabetically within the

respective O. sativa subspecies indica (1-4) and japonica (5–8). Significance levels were only calculated

for the DS due to the insufficient replicate number in the WS and are indicated by asterisks: 0.001 < ***;

0.001 > ** < 0.01; 0.01 > * < 0.05.
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Figure A5. Log2 fold changes in significantly changed metabolite pools under HNT compared to under

control conditions in panicles for the DS (A). For comparison, the same metabolites are shown for the

WS (B) independent of a significant change. For the DS, only metabolites that showed a significant

change in at least three out of eight cultivars are displayed in (A). The level of significance is indicated

by asterisks (* p < 0.05; ** p < 0.01; *** p < 0.001), and the log2 fold difference is indicated by the color

code. Blue indicates a lower metabolite level compared to under the control condition, and red, a higher

level. Cultivars were sorted alphabetically within the respective O. sativa subspecies indica (1–4) and

japonica (5–8).

Figure A6. Log2 fold changes in significantly changed metabolite pools under HNT compared to under

control conditions in panicles for the WS (A). For comparison, the same metabolites are shown for the

DS (B) independent of a significant change. For the WS (A), only metabolites that showed a significant

change in at least three out of eight cultivars are displayed. The level of significance is indicated by

asterisks (* p < 0.05; ** p < 0.01; *** p < 0.001), and the log2 fold difference is indicated by the color code.

Blue indicates a lower metabolite level compared to under the control condition, and red, a higher

level. Cultivars were sorted alphabetically within the respective O. sativa subspecies indica (1–4) and

japonica (5–8).
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Abstract 

Background: Reduced yield under increasing environmental stresses due to climate change 

poses severe challenges for crop improvement. The wide natural variation present in rice is an 

important source of genes to facilitate stress tolerance breeding. However, the identification of 

candidate genes from transcriptome (RNA-seq) studies is hampered by the lack of high-quality 

genome assemblies for the most stress tolerant cultivars. A more targeted and therefore more 

cost-effective solution could be the reconstruction of transcriptomes to provide templates to 

map short reads from Illumina RNA-seq experiments. 

Results: We sequenced transcriptomes of ten rice cultivars of the subspecies aus, indica and 

japonica on the PacBio Sequel I platform. RNA was isolated from different organs of plants 

grown under control and abiotic stress conditions in climate chambers, net-houses and in the 

field. De novo reference transcriptomes were reconstructed resulting in approximately 37,500 

to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce 

sequence redundancy and collapsed transcriptomes were evaluated e.g. for protein 

completeness level (BUSCO), transcript length, and number of unique gene loci and transcripts. 

About 40% of all identified transcripts were novel isoforms compared to the Nipponbare 

reference transcriptome. For 17% and 28% of transcripts no homologous sequence or a 

conserved protein domain, respectively, could be identified. About 830 aus-specific transcripts 

were determined, of which 56 were significantly differentially expressed in developing seeds 

of the drought and heat tolerant aus cultivar N22 when well-watered plants were compared to 

plants subjected to combined drought and heat stress in the field.  

Conclusions: The newly generated rice transcriptomes are useful to identify candidate genes 

for stress tolerance breeding that are not present in the reference transcriptome/genome. In 

addition, our approach provides a general, cost-effective alternative to genome sequencing for 

the identification of candidate genes in highly stress tolerant "exotic" genotypes. 

 

Keywords: abiotic stress, dehydrins, natural genetic variation, PacBio Sequel, RNA-seq, 

SMRT sequencing, transcriptome sequencing, rice (Oryza sativa) 

 

  

56



Background 

Global climate change is causing an increase in the severity and frequency of abiotic 

stress conditions such as heat, drought and high night temperatures that all have a strong 

negative impact on crop yield [1-5]. In combination with the increasing world population, plant 

breeders face the challenging task to develop new cultivars that produce higher yield, with 

enhanced quality, and accompanied by reduced environmental footprints [6]. Rice (Oryza 

sativa) is the main source of calories for more than half of the world’s population, especially 

for the poorest in Asia [7]. As an important reservoir for genes that may be used for crop 

improvement, the wide natural genetic diversity within the species and its wild relatives, which 

is preserved in more than 230,000 rice germplasm accessions maintained in gene banks 

worldwide [8], is an invaluable resource.  

While almost 80% of rice cultivation in the world is based on indica varieties [9], the 

current gold standard genome assembly and annotation is derived from the japonica cultivar 

Nipponbare [10]. Due to the lack of proper genomic assemblies, studies of cultivars from 

different Oryza sativa subspecies have largely been based on this reference genome. For 

instance, the sequences obtained in the 3,000 Rice Genomes Project [11] were mapped against 

the Nipponbare genome, excluding all sequences that could not be mapped to this reference 

[12]. This may have led to the loss of genetic information that is specific to the non-japonica 

subspecies. However, more recently the genomes of cultivars belonging to additional Oryza 

sativa subspecies have been sequenced, such as indica (e.g. the cultivars Shuhui498 (R498 

genome; [13], Zhenshan 97, and Minghui 63 [14]), or aus (e.g. Kasalath [15], N22 [6]) cultivars, 

although the degree of completeness and annotation remains variable.  

In particular, the aus subspecies (addressed as a subpopulation within the indica 

subspecies [16]) has been a valuable source of genes underlying traits for disease resistance 

[17], tolerance to phosphate starvation [18], submergence [19], deep water [20], anaerobic 

germination [21, 22] and drought [23]. For example, the phosphate-starvation tolerance gene 

OsPSTOL1, the deepwater escape genes OsSNORKEL1/2 and the submergence tolerance gene 

OsSUB1A were identified in the genomes of aus cultivars. Significantly, these genes are absent 

in the genome sequence of the japonica reference cultivar Nipponbare.  

During the last years, RNA sequencing (in particular Illumina-based short-read RNA-

seq) has emerged as a powerful tool for analyzing transcriptomes to identify genes that show 

differential expression between unstressed control and various environmental stress conditions. 

However, the determination of transcript levels from RNA-seq data requires reference genome 

or transcriptome sequences for read mapping and annotation. In rice, the identification of 
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differentially expressed genes and transcript isoforms is determined by the reference genome 

[24]. Obviously, the expression data of any gene that is not represented in the reference 

genome/transcriptome will be lost from the analysis. This could be particularly relevant when 

investigating stress-tolerant exotic cultivars, land races or wild rice species, as they may contain 

tolerance genes not present in the reference cultivar Nipponbare. This would then severely limit 

the possibility to identify novel candidate genes that can support crop improvement programs. 

An obvious solution to this problem would be the sequencing, assembly, and annotation 

of the required genomes. However, this is still comparatively expensive and time-consuming. 

Here, we have explored a more targeted approach of sequencing and reconstructing partial 

transcriptomes of rice cultivars from three different subspecies that can be used as references 

to map RNA-seq reads from abiotic stress experiments. For this purpose, we have used Pacific 

Bioscience (PacBio) Single-Molecule Real-Time (SMRT) long-read sequencing technology 

isoform sequencing (Iso-Seq), belonging to a new generation of sequencing methods that 

provide full-length transcript sequences with high throughput [25]. It thus offers the ability to 

sequence transcriptomes without the need for an assembly based on an existing reference 

genome. This approach has been successfully applied to explore and extend existing plant 

transcriptomes and annotations for example in sorghum [26], wheat [27, 28], sugarcane [29], 

wild cotton [30], different panicoid grass species [31], and alfalfa [32].  

 

Data description 

We selected ten rice cultivars of the subspecies aus (Dular, N22), indica (Anjali, 

IR6226-42-6-2, IR64, IR72) and japonica (CT9993-5-10-1M, M202, Moroberekan, 

Nipponbare) for this study that we have used in previous stress experiments [33-37 and 

unpublished obervations]. RNA was isolated from different organs and tissues of plants grown 

under various control and stress conditions in climate chambers, net-houses, and in the field 

(Table 1 and Additional file 1). It should be stressed that we did not aim to obtain (near) 

complete transcriptomes, but rather to assemble targeted partial transcriptomes with relevance 

to the RNA-seq analysis of these stress treatments. Pooled RNA samples were sequenced on 

the PacBio Sequel I platform. The raw data have been deposited at the NCBI’s Sequence Read 

Archive (SRA) [38] under the BioProject number PRJNA640670 and are freely available. 

Based on the PacBio isoform data, de novo reference transcriptomes were reconstructed 

resulting in approximately 37,500 to 54,600 plant-specific high-quality isoforms per cultivar. 

High-quality isoforms were collapsed to reduce redundancy in the sequences using the tools 

TAMA, cDNA cupcake, and cogent. The collapsed transcriptomes from all three approaches 
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can be found in the additional folders 1-3. Reconstructed transcriptomes were evaluated 

regarding their protein completeness level (BUSCO), length, and GC content of the transcripts, 

as well as the number of unique gene loci. Finally, 834 aus-specific transcripts were identified. 

Among these, we identified 56 transcripts in an Illumina RNA-seq data set (raw reads have 

been deposited in the NCBI’s Gene Expression Omnibus (GEO) [39] under the accession 

number GSE153030 and are freely available) that were significantly changed in abundance in 

developing seeds of the aus cultivar N22 under combined drought and heat stress in the field 

[35]. As an example, we provide a more detailed analysis of one of the encoded proteins. Our 

data indicate that reconstructing targeted partial transcriptomes can indeed aid in the analysis 

of RNA-seq data and allows identification of rice subspecies-specific candidate genes for stress 

tolerance traits.  

 

Table 1. Sampling for PacBio isoform sequencing. RNA of ten Oryza sativa cultivars from different 

organs and conditions was extracted and pooled for each cultivar (FL - flag leaves, LE - leaves, PA - 

panicles, FS - flowering spikelets, DS - developing seeds, SH - sheaths, RO - roots, SO - shoots, PP - 

pollinated pistils, AN - anthers). Seed database accession numbers (IRTP/IRGC/IRIS ID No.) from the 

International Rice Research Institute (IRRI) are shown. Plants were grown in climate chambers (CC), 

net-houses (NH), and/or in the field (F). Cultivars were sorted alphabetically within the subspecies 

(Subsp.) aus, indica, and japonica. See Additional file 1 for a more detailed description of all samples 

used for RNA isolation.  

Cultivar Subsp. ID No. Organ Set-up 
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Dular 
aus 

IRGC 636 X     X X           

  

  X  

N22 IRTP 3911 X    X X           X  

Anjali 

indica 

IRTP 23206 X     X X           

  

  

  

  X  

IR62266-42-6-2 IRGC 117597 X X X X  X      X X  

IR64 IRTP 12158 X X X      X X   X X X 

IR72 IRTP 14747 X X X X   X       X X  

CT9993-5-10-1M 

japonica 

IRIS 71-1229921 X X X X   X         X X  

M202 IRGC77142 X X X X  X        X X  

Moroberekan IRGC12048 X X X X       X X X X  

Nipponbare IRGC12731 X X X               X X  
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Analysis 

De novo reconstruction of transcriptomes 

Pooled samples representing mRNAs from ten different Oryza sativa cultivars were 

collected from various tissues and treatments (see Table 1 and Additional file 1) and were 

sequenced on two or three SMRT cells per cultivar (Table2). In total, between 15.49 and 24.51 

gigabases (GB) of sequences were obtained for the different cultivars. Sequence raw data was 

processed with the software IsoSeq3 using the steps ccs and lima, resulting in between 

460,340 and 736,747 full-length non-chimeric reads (FLNC, containing 5’ primer, 3’ primer 

and poly(A) tail) for the combined SMRT cells per cultivar. After the IsoSeq3 cluster and 

polish steps, between 37,951 and 54,684 high-quality (HQ), as well as between 1,233 and 

2,170 low-quality (LQ) sequences were obtained. Possible sequence contaminations by non-

plant organisms were identified by alignment against the NCBI nucleotide database using 

blastn [40] (E ≤ 1e-10). Isoforms without a significant hit were aligned against the NCBI 

protein database using blastx [40] (E ≤ 1e-10). All sequences that showed no significant 

similarity to sequences from the Viridiplantae (green plants) family were removed, resulting in 

between 37,535 and 54,594 HQ full-length transcripts for further analysis (Table 2). 

 

Table 2. Overview of results from PacBio full-length isoform sequencing from ten Oryza sativa 

cultivars. Identified high (HQ) and low quality (LQ) isoforms were analysed for non-plant 

contamination using blast. Contaminating sequences (not in the group of Viridiplantae) were removed 

(HQ after filt.). PB - number of PacBio SMRT cells, GB - total number of sequenced basepairs in 

gigabases, FLNC - full-length non-chimeric reads. Cultivars were sorted alphabetically within the 

subspecies (Subsp.) aus, indica, and japonica. 

Cultivar Subsp. PB GB FLNC HQ  LQ  HQ after filt. 

Dular 
aus 

2 18.46 460,340 42,252 1,960 41,396 
N22 3 24.17 736,747 54,572 1,807 52,333 

Anjali 

indica  

2 15.49 481,094 40,208 1,732 39,438 

IR62266-42-6-2 2 22.48 649,085 50,569 1,659 50,510 

IR64 2 21.97 622,881 49,633 1,279 49,327 
IR72 2 20.31 554,872 44,176 2,170 44,049 

CT9993-5-10-1M 

japonica 

2 20.81 620,595 48,537 1,465 48,401 
M202 2 24.07 656,740 48,836 1,501 48,676 
Moroberekan 2 24.51 675,251 54,684 1,721 54,594 
Nipponbare 3 15.65 544,792 37,951 1,233 37,535 

 

It has been shown for the previous PacBio sequencing platform (RSII) that correcting 

long reads using corresponding RNA-seq data could lead to an increased number of HQ 
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sequences [26, 28, 29, 32]. This was necessary because of a relatively high rate of LQ sequences 

with insertions and deletions (InDels). However, the newer PacBio Sequel platform produces a 

higher sequencing output compared to the RSII, including a higher number of HQ and a lower 

number of LQ sequences [41] which we have also seen in our own data when comparing it to 

previous RSII studies [26, 42]. To evaluate, whether InDels could be a problem in our data set, 

we mapped all uncorrected HQ transcripts with minimap2 against the genome sequences of 

the corresponding subspecies. The number of InDels was extracted from the cigar string of the 

alignment files (Additional file 2). The analysis indicated that the uncorrected sequences 

showed only a small fraction of InDels (between 0.08% and 0.14%). Because of this low 

frequency of InDels and the low number of LQ sequences (Table2), further data analysis was 

performed without error correction and excluding LQ transcripts.  

 

Collapsing redundant isoforms 

During library preparation, 5’ RNA degradation products can be formed and are 

subsequently sequenced. These degraded products have the same exonic structure but lack some 

5’ sequence information and hence yield redundant isoforms that are not associated with 

technical bias or biological context. To tackle the problem, three different approaches to 

collapse redundant isoform models were tested, namely cogent, cDNA cupcake, and 

TAMA. While cDNA cupcake and TAMA perform collapsing based on a reference genome 

sequence, cogent can be used without a reference sequence. Instead, it reconstructs a coding 

genome based on the PacBio sequences and maps the same sequences back to the reconstructed 

genome. Based on this mapping, it then collapses the redundant isoforms using the cDNA 

cupcake algorithm. For TAMA and cDNA cupcake, transcripts were mapped against the 

respective Oryza sativa subspecies genome sequences using minimap2. Only a small number 

of transcripts were not mapped by these approaches (Table 3). With cogent, a much larger 

number of transcripts (5,441 to 7,979) could not be mapped back against the respective 

reconstructed coding genomes. In general, all three tools reduced the number of isoforms 

strongly, by 47.6% (cDNA cupcake, Nipponbare) to 68.3% (cogent, Dular) after collapsing. 
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Table 3. Number of isoform models after collapsing with TAMA, cDNA cupcake, and cogent. #Tr. - 

number of filtered, high-quality isoforms used for collapsing. Cultivars were sorted alphabetically 

within the subspecies (Subsp.) aus, indica, and japonica.  

 Reference-based Reference-free 

Cultivar Subsp. Reference # Tr. TAMA cDNA cupcake Unmapped cogent Unmapped 

Dular 
aus N22 

41,396 13,995 18,239 313 13,107 7,340 

N22 52,333 18,787 23,954 149 19,026 6,603 

Anjali 

indica S498 

39,438 14,371 18,170 178 13,237 6,476 

IR62266-42-6-2 50,510 18,926 23,803 220 18,773 6,913 

IR64 49,327 19,064 23,435 1,911 17,874 7,979 

IR72 44,049 15,954 20,646 143 15,251 7,426 

CT9993-5-10-1M 

japonica Nipponbare 

48,401 18,789 23,415 223 18,359 6,611 

M202 48,676 18,925 23,670 240 18,091 6,695 

Moroberekan 54,594 20,604 26,009 268 20,378 7,358 

Nipponbare 37,535 16,584 19,674 42 14,345 5,441 

 

Uncollapsed (Figure 1, A) and collapsed (Figure 1, B) isoforms were evaluated by a 

BUSCO assessment against a set of 430 highly conserved ortholog proteins in plants and shown 

here for HQ transcripts collapsed with TAMA. Because of the incomplete sampling, between 

54% and 27% of the essential proteins were missing, while in the reference transcriptome of 

Nipponbare (IRGSP) only six essential proteins were missing. The tissue localization of the 

missing proteins was checked exemplary in the InterPro database [43]. This only provided 

information on a small fraction of the proteins but those were mostly expressed in roots, 

flowers, stems and seedlings, or expressed during a specific developmental stage (Additional 

file 3). Due to our pooling of several RNA samples before library construction, we would also 

expect to miss rare transcripts due to a dilution effect. 

For all cultivars, between 3% and 7% of all identified proteins were fragmented before 

collapsing. This fraction decreased to 2% to 5% after collapsing (Figure 1). Similarly, the 

number of complete and duplicated transcripts was reduced in favor of single-copy proteins. 

While for the uncollapsed isoforms, around 19% (Dular) up to 40% (CT9993-5-10-1M) of the 

proteins were complete and duplicated, this fraction decreased after collapsing to approximately 

8% (Anjali) and 18% (IR64) with a corresponding increase of complete and single-copy 

proteins. For the IRGSP Nipponbare reference transcriptome the majority of transcripts 

encoded complete and single-copy proteins. Similar results were obtained for cDNA cupcake 

(Additional file 4, panel B). For cogent (Additional file 4, panel A) more than 50% of the 

BUSCO proteins were missing, most likely due to not mapping back to the reconstructed 

genome. 
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Figure 1. BUSCO assessment analysis of uncollapsed (A) and collapsed (B) transcripts. Results of 

collapsed transcripts obtained by TAMA are shown. Corresponding results obtained by cDNA cupcake 

and cogent are shown in Additional file 4. Cultivars were sorted alphabetically within the subspecies 

aus, indica, and japonica. IRGSP indicates the Nipponbare reference transcriptome. 

Through collapsing, the median transcript length increased for all cultivars and for all 

three methods, as shown for TAMA in Additional file 5. The length distribution and median 

length of the transcripts from each cultivar were more similar to the Nipponbare reference 

transcriptome after collapsing. Additionally, the number of isoforms per gene locus was 

determined for all three collapsing methods (Figure 2). TAMA yielded the highest fraction of 

unique isoform models per gene locus, with around 75% for each cultivar. cDNA cupcake 

resulted in around 60%, whereas cogent, the reference-free approach, collapsed around 50% 

of the HQ isoforms into unique isoform models. The relative number of isoforms per gene locus 

was also determined for the Nipponbare reference transcriptome (IRGSP) resulting in 85% 

unique isoform models per gene locus. 

The three O. sativa subspecies aus, indica, and japonica differ in their genomic 

sequences and cultivars from the same subspecies are more closely related in their genome 

sequences [16]. To evaluate genetic distances among our candidate cultivars and to compare 

the effect of collapsing by different tools, a phylogenetic study was performed. Single 

nucleotide polymorphisms (SNPs) were called in the collapsed transcriptome datasets based on 

the IRGSP Nipponbare genome reference and phylogenetic trees were drawn based on an 

analysis with SNPhylo (Figure 3). SNPhylo extracts high-quality and representative SNPs 

for the analysis and resulted in around 30,000 SNPs for cDNA cupcake, 23,200 SNPs for 

cogent and around 16,000 SNPs for TAMA. For all three approaches, the cultivars of the same 

subspecies clustered together. The trees constructed from the cogent (Figure 3, A) and TAMA 

(Figure 3, C) analyses were more similar to each other than to the tree obtained after collapsing 
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with cDNA cupcake (Figure 3, B). By all three approaches, the aus cultivars were clearly 

separated from the indica and japonica cultivars. However, the separation between cultivars of 

the indica and japonica subspecies was less clear for cogent and TAMA than for cDNA 

cupcake. 

 

Figure 2. Fraction of isoforms per gene locus for the ten Oryza sativa cultivars and the Nipponbare 

reference transcriptome (IRGSP). Cultivars were sorted alphabetically within the subspecies aus, 

indica, and japonica. 

 

Figure 3. Phylogenetic trees constructed with SNPhylo. Trees are based on SNPs from the 

transcriptomes of ten Oryza sativa cultivars from the subspecies aus, indica and japonica after 

collapsing redundant transcripts with cogent (A), cDNA cupcake (B) and TAMA (C). Red – japonica, 

purple – indica, green – aus. 
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Evaluation of reconstructed transcriptomes 

For further biological analysis, collapsed HQ transcripts obtained with TAMA were used. 

Because TAMA only collapses transcripts mapped against the reference genome, unmapped 

transcripts were collapsed additionally with cogent. The combined data for each cultivar 

resulted in 10,511 (Dular) to 15,011 (IR64) reconstructed gene loci as well as between 14,255 

(Dular) and 20,803 (Moroberekan) unique isoform models (Table4). Compared to the 

Nipponbare transcriptome reference (IRGSP), around one third of the gene loci and about half 

of the transcript models were reconstructed. The average number of transcripts per gene locus 

was about 1.4 to 1.5 for each cultivar, which was slightly higher than for the reference 

transcriptome with 1.2. The median transcript length ranged from 986bp (Dular) to 1,394bp 

(Nipponbare) and was similar to the Nipponbare reference of 1,385bp. The average GC content 

was between 50.87% (Dular) and 52.76% (IR64), again similar to the reference GC content of 

51.24%. 

 

Table 4. Summary of reconstructed transcriptomes including the Nipponbare reference transcriptome 

(IRGSP). #GL - Number of gene loci, #TR - Number of transcripts, #TR/GL - average number of 

transcripts per gene locus, Total #bp - total number of bp of all transcripts, Min - shortest transcript in 

bp, Max - longest transcript in bp, Median - median length of transcripts in bp, GC - content of the 

nucleotides G and C in %. Cultivars were sorted alphabetically within the subspecies aus, indica, and 

japonica. 

Cultivar 
Sub-

species 
# GL # TR 

# TR/ 

GL 
Total # bp 

Min 

[bp] 

Max 

[bp] 

Median 

[bp] 

GC 

[%] 

Dular 
aus 

10,511 14,255 1.4 15,447,641 56 4,551 986 50.87 

N22 13,343 18,913 1.4 26,290,969 62 5,911 1,295 52.26 

Anjali 

indica 

10,616 14,499 1.4 17,717,403 75 4,216 1,156 51.99 

IR62266-42-6-2 13,227 19,093 1.4 26,791,848 51 7,190 1,314 51.37 

IR64 15,011 20,672 1.4 28,663,408 56 6,919 1,299 52.76 

IR72 11,647 16,081 1.4 19,678,018 53 5,475 1,149 51.16 

CT9993-5-10-1M 

japonica 

13,354 18,963 1.4 26,757,988 55 5,752 1,318 51.97 

M202 13,143 19,105 1.5 26,258,012 59 6,644 1,287 51.74 

Moroberekan 14,324 20,803 1.5 28,446,682 57 7,072 1,278 51.80 

Nipponbare 11,366 16,622 1.5 24,760,098 75 6,035 1,394 52.60 

IRGSP japonica 38,866 45,660 1.2 69,184,066 30 16,029 1,385 51.24 

 

The de novo reconstructed transcriptomes of the ten O. sativa cultivars were compared 

with the existing Nipponbare reference annotation using gffcompare. This tool reports 

transcripts that fully match, partially match or do not match a reference transcript. A full match 

transcript has an exact intron-exon-chain matching (“Annotated”) to the reference annotation, 

whereas partially matched transcripts share at least one splice junction with the reference 
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transcript or show intron retention (“Novel isoform”, “Retrained intron”). Additionally, 

gffcompare also reports isoforms on the antisense strand (“Novel antisense”) compared to 

the reference, fully contained exon-chains within a reference intron (“Novel intronic”) and on 

intergenic (“Novel intergenic”) regions as well as intron matches on the opposite strand, exonic 

overlap on the opposite strand, and others (“Novel other”). About 60% of our reconstructed 

transcripts were fully matched to a known reference transcript of Nipponbare, while around 

40% were reported in a broader sense as novel (Additional file 6). 

 

Functional annotation 

To get insight into the biological context of the reconstructed transcripts, functional 

annotation was performed. Open reading frames (ORFs) were predicted using 

TransDecoder (Figure 4), including blast and PFAM searches, indicating the presence of 

approximately 60% to 70% complete ORFs (including start and stop codon). Between 26% and 

38% 5´ partial ORFs (only start codon), and low percentages of 3´ partial (only stop codon) and 

internal (neither start nor stop codon) ORFs were additionally identified.  

 

Figure 4. Fraction of predicted open reading frames (ORFs) using TransDecoder. Complete ORFs 

include start and stop codon, 5’ partial/3’ partial ORFs contain only the start or the stop codon, 

respectively, and internal ORFs contain neither start nor stop codon. Numbers represent the number of 

transcripts for each category per cultivar. Cultivars were sorted alphabetically within the subspecies aus, 

indica, and japonica. 
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Functional annotation was performed with Trinotate and Mercator4. 

Mercator4 was developed specifically for plants and uses a simple hierarchical tree structure 

of terms referred to as “bins” that describe biological concepts [44]. Major biological processes 

such as photosynthesis are represented by top-level bins and each offspring bin describes a more 

narrowly focused subprocess, ending at the single-protein level for each parent bin. Currently, 

the ontology comprises 27 functional top-level categories representing a diverse range of 

biological processes in plants. The number of annotated sequences in each Mercator bin for 

the cultivars N22, IR64 and Nipponbare, as representative cultivars for each subspecies, were 

compared with all known genes for O. sativa in the Mercator ontology (Figure 5). The 

relative distribution is similar among the three cultivars and also to the reference. However, the 

Mercator ontology has over 28,000 known O. sativa genes (Additional file 7) that have not 

been assigned to a functional bin and hence, between approximately 8,000 and 10,000 

transcripts were also not assigned to functional bins for the three cultivars. 

 

Figure 5. Classification of transcripts into functional bins. Transcripts of N22 (aus), IR64 (indica) 

and Nipponbare (japonica) were classified into functional bins using Mercator. The bins “not 

assigned.annotated” and “not assigned.not annotated” are not included. 

 

The complete results of the functional annotation using the TransDecoder-

Trinotate pipeline and Mercator are shown for each cultivar (Additional file 8). The 

fraction of sequences with at least one significant hit are summarized in Table 5. For 
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Mercator, blastx, blastp and PFAM retrieved between approximately 60% and 75% 

significant hits for annotations. For GO terms, only around 38-48% of the transcripts of each 

cultivar were connected to a functional annotation. Finally, between about 17% and 28% of the 

transcripts could not be functionally annotated. Because the Swiss-Prot database was used for 

annotation, which only includes manually curated proteins, data of Oryza wild species were 

mainly not represented. To investigate, whether unannotated transcripts were derived from wild 

ancestors of Oryza sativa, cDNA sequences of all available Oryza wild species were 

downloaded from EnsemblPlants and compiled as a blast database. Unannotated transcripts 

were searched against it and between 82% and 92% of these transcripts were highly similar to 

cDNA sequences of Oryza wild species. 

 

Table 5. Fraction of transcripts (%) for which at least one significant annotation was found by Mercator 

or the TransDecoder-Trinotate pipeline (blastx, blastp, PFAM or GO). Also shown is the percentage of 

transcripts for which no annotation was reported. All unannotated transcripts (No annotation) were 

additionally compared with an Oryza wild species cDNA database using blast. The fraction of 

unannotated transcripts with a highly similar sequence to an Oryza wild species cDNA is shown 

(Homologs WS). Cultivars were sorted alphabetically within the subspecies (Subsp.) aus, indica, and 

japonica. 

Cultivar Subsp. Mercator blastx blastp PFAM GO 
No  

annotation 

Homologs  

WS 

Dular 
aus 

61.60 65.17 59.57 59.81 37.98 27.60 90.54 

N22 68.40 72.05 68.43 70.01 45.52 19.24 91.33 

Anjali 

indica 

65.77 69.46 65.43 66.90 43.06 22.03 89.82 

IR62266-46-6-2 68.08 71.53 67.16 68.64 44.85 20.19 91.19 

IR64 67.78 71.27 67.37 69.55 45.31 20.23 82.03 

IR72 63.55 67.20 62.26 63.78 41.22 24.96 88.54 

CT9993-5-10-1M 

japonica 

68.57 71.80 67.58 69.24 45.01 19.62 92.43 

M202 67.78 71.08 66.69 67.97 44.44 20.68 90.71 

Moroberekan 65.72 69.03 64.66 66.85 43.42 22.37 91.68 

Nipponbare 71.25 74.35 70.26 72.16 47.59 16.81 91.31 

 

Common and specific transcripts among cultivars 

To investigate the question of cultivar-specific transcripts, the transcriptome of one 

cultivar of each subspecies (N22, IR64, Nipponbare) was used as a blast database and the 

sequences of the remaining nine cultivars were searched against it. The most highly significant 

hit for each database entry of each cultivar was selected and the common overlap with all other 

cultivars was determined (Figure 6). For N22 (Figure 6, A) around 18,000 transcripts were 

included in the database, of which about 9,000 were highly similar to transcripts from the other 
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nine cultivars. 652 transcripts were unique to N22 and over 184 transcripts were only found in 

the aus cultivars N22 and Dular. The aus specific transcripts were extracted, including their 

annotations (Additional file 9). For the indica cultivar IR64 (Figure 6, B) and the japonica 

cultivar Nipponbare (Figure 6, C) the search space included approximately 15,000 and 20,000 

transcripts each, resulting also in around 9,000 common transcripts over all cultivars. While for 

IR64 2,426 cultivar-specific transcripts were identified, only 349 were determined for 

Nipponbare (Additional file 9).  

 

Differential gene expression analysis for aus specific transcripts 

The aus cultivar N22 is particularly tolerant to combined drought and heat stress [35]. 

We therefore asked whether any of the identified aus specific transcripts were regulated under 

these conditions. A differential gene expression (DGE) analysis was performed for N22 plants 

grown in the field under control and combined drought and heat stress. RNA-seq was performed 

using RNA isolated from developing seeds and the resulting Illumina reads were mapped 

against the de novo reconstructed N22 transcriptome. After identifying significantly 

differentially expressed genes with DESeq2 (FDR p < 0.1, absolute log2 fold-change ≥ 1), 56 

aus specific genes were extracted (Additional file 10). As determined by a blast search, about 

46% of these genes had Arabidopsis thaliana homologs, 27% lacked any annotation, 11% each 

were either only described by a PFAM domain or were homologous to sequences in other plant 

species, while 5% had known homologs in Oryza. 

As an example, we describe the gene B12288, which was significantly up regulated 

during combined heat and drought stress (Additional file 10). It has homologous genes in both 

japonica and indica cultivars annotated as RAB21. The gene is induced by drought and the 

corresponding protein belongs to the dehydrin family of Late Embryogenesis Abundant (LEA) 

proteins. Evolutionary relationships with other Oryza dehydrins [45] were investigated by 

multiple sequence alignment and visualized as a tree (Additional file 11). The N22 gene product 

was closely related to four other dehydrins in wild rice species and Oryza sativa ssp. japonica. 

It showed 89.5% sequence coverage and 86.0% sequence identity compared to the japonica 

protein (Figure 7) including the highly conserved repeat regions characteristic of dehydrins [46, 

47]. The N22 protein was more similar to the proteins from Oryza wild species than to the 

japonica protein (see Figure 7 and Additional file 11).  
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Figure 6. Identified 

common and specific 

transcripts over all 

cultivars. 

 Sequence similarities were 

identified by a blastn search 

using a representative 

cultivar of each subspecies as 

a database. The best hit for 

each database entry was 

selected based on the 

cultivars N22 (A), IR64 (B), 

and Nipponbare (C). The 15 

largest categories were 

visualized in an UpSet plot. 

The barplots on the left of the 

cultivar names represent the 

size of the datasets, with the 

blue bars indicating the size 

of the search space. Dots and 

vertical lines indicate the 

cultivars included in the 

overlap. Barplots in the top 

panels represent the number 

of transcripts in the 

respective comparison. 

Cultivars were sorted 

alphabetically within the 

subspecies aus, indica, and 

japonica. 
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Figure 7. Multiple sequence alignment of five Oryza RAB21 dehydrin proteins.  Os – Oryza sativa 

ssp. japonica, OGLUM - Oryza glumaepatula, ORUF – Oryza rufipogon, ONIVA – Oryza nivara, 

B12288_1_PacBio – RAB21 protein from the Oryza sativa ssp. aus cultivar N22. The encoding 

transcript was identified as aus-specific in our analysis. Color theme is “identity” by MVIEW [88]. 

 

Discussion 

Sequencing performance 

Between 15.7 and 24.5 GB of cDNA were sequenced for each cultivar on two or three 

SMRT cells resulting in 460,340 up to 736,747 full-length non-chimeric (FLNC) reads. Using 

the IsoSeq3 protocol, between 38,000 and 54,700 high-quality (HQ) transcripts for each 

cultivar were obtained before filtering out contaminants. Among the ten cultivars, the 

sequencing output was similar. In previous studies of plant transcriptomes, more SMRT cells 

were used, but resulted in a similar output of FLNC reads and HQ transcripts. For example, for 

the wheat cultivar Xiaoyan 81 [42] around 197,800 FLNC reads were obtained on the RSII 

platform and processed into 91,800 HQ reads based on eight SMRT cells. With the newer 

PacBio Sequel platform that we also used in our study, around 650,000 FLNC reads were 

obtained using five SMRT cells analyzing the transcriptome of the wild cotton species 

Gossypium australe [30] but in this case an older chemistry and software were used. Therefore, 

it is difficult to directly compare the sequencing output from different studies. However, our 

results indicate that two to three SMRT cells are sufficient to obtain useful IsoSeq data with the 

currently available technology. 

The PacBio technology has a relatively high sequencing error-rate, but these errors are 

distributed randomly among the sequence [25]. Since sequencing is performed on circularized 

cDNA molecules, several sequencing passes can be generated for a given cDNA, carrying 

errors in different random locations. The PacBio IsoSeq3 tool is then generating a consensus 

sequence based on the multiply sequenced cDNA template to eliminate these errors. However, 

even after the correction, InDels and SNPs may still occur. In a study on sorghum [26] using 

the older RSII technology, HQ reads were mapped against a reference genome sequence and a 

per-nucleotide error rate of 2.34% was observed. This made a correction using corresponding 
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RNA-seq data necessary. Using the Sequel technology, we found a per-nucleotide error rate 

between 0.08 and 0.14% for the uncorrected HQ reads, based on mapping against the respective 

subspecies reference genome sequences. This low error rate made further correction 

unnecessary. 

 

Collapsing redundant transcripts and transcriptome quality assessment 

During library preparation, degradation products can be formed and are subsequently 

sequenced. These shorter transcripts lack some of the 5’ sequence but are otherwise identical 

to the full-length transcripts, resulting in large numbers of redundant transcripts. This effect can 

be reduced experimentally using specific 5’ end capturing library preparation methods, or it can 

be partly compensated computationally by the use of collapsing software. We compared the 

utility of the tools cogent, cDNA cupcake and TAMA to reduce the number of redundant 

transcripts. Cogent does not need a reference genome sequence to collapse redundant 

isoforms and was successfully applied to transcriptomes from organisms without an available 

genome reference [30, 48, 49]. cDNA cupcake and TAMA, on the other hand, need a reference 

genome sequence and have been more commonly used [50-53]. In our study, the number of 

transcripts after collapsing decreased by up to 68%, indicating the necessity to reduce 

redundancy and thereby improve data quality. While TAMA and cogent resulted in similar 

numbers of collapsed transcripts, the numbers were slightly higher after processing with cDNA 

cupcake. Cogent left more transcripts unmapped, compared to the other tools. This may be 

due to the generation of transcript orphans, i.e. putative single-isoform transcripts that were not 

incorporated into the reconstructed transcriptomes.  

Transcriptome quality improvement after collapsing was shown by the BUSCO 

assessment, where the number of encoded complete and single-copy proteins increased by 

approximately 20% to between about 35% and 55% of all proteins included in BUSCO, while 

for the reference transcriptome this was about 75%. However, as expected, only about 70% of 

all BUSCO proteins were covered by our partial transcriptomes. For comparison, PacBio 

sequencing of the sugarcane transcriptome [29] using a pooled RNA sample derived from leaf, 

internode and root tissues at different developmental stages collected from 22 varieties resulted 

in a coverage of 90% of the BUSCO proteins. However, since no collapsing was performed, this 

study found 66% complete but duplicated BUSCO proteins.  

Collapsing transcripts with TAMA resulted in the highest fraction of one isoform models 

per gene locus and the average number of isoforms per locus in our different transcriptomes 

was very similar to the Nipponbare reference transcriptome. This is, however, not always the 
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case. A PacBio IsoSeq study in maize [54] identified an average of 6.56 isoforms per gene locus 

using the cDNA cupcake pipeline, more than twice the number found for the reference 

genome annotation with an average of 2.84 transcripts per gene locus. Cogent and cDNA 

cupcake yielded lower fractions of one isoform models per gene locus in our study. Since 

there are, to the best of our knowledge, no other direct comparisons of the three collapsing tools 

available, it cannot be judged whether the tools may perform differently with different data sets 

or different reference transcriptomes. Obviously, only cogent could be used in cases where 

no reference genome sequence is available. 

Around 70% of the transcripts covered a complete ORF in most of the cultivars. Only Dular 

and Anjali showed a smaller fraction of complete ORFs. The differences among the cultivars 

are due to a different fraction of 5´truncated ORFs. In these cases, either the collapsing tool 

(TAMA) has not worked sufficiently, or no full-length ORFs were sequenced for these particular 

transcripts. Either way, it seems that a certain fraction of incomplete ORFs cannot be avoided, 

given the methodology we employed in our study. A PacBio IsoSeq study of the chicken 

transcriptome compared brain and embryo RNA libraries, where both libraries were normalized 

to reduce over-represented transcripts, but only for the embryo library a 5’ cap selection was 

performed [55]. Here, the number of transcripts dropped by 60% for the brain data and by 21% 

for the embryo data after collapsing with an older version of cDNA cupcake, indicating lower 

transcript redundancy for the capped library. However, it remains to be tested in detail, whether 

other library preparation methods would yield better results, perhaps in combination with the 

collapsing approach.  

 

Common transcripts and differential gene expression analysis 

Even for the well-annotated Nipponbare transcriptome, around 17% of the transcripts that 

we found did not have a functional description and are therefore considered to be novel 

isoforms. Similarly, for the remaining cultivars, between 19% and 28% of the transcripts could 

not be assigned with a functional description. This is supported by the identification of a large 

fraction of potential novel isoform models by the gffcompare tool compared with the 

Nipponbare reference transcriptome. However, gffcompare also reports isoforms as “novel” 

models which share at least one splice junction with the reference transcript and differ in the 

remaining splice junctions for multiple-exon transcripts. This criterion can be weak for example 

where exon-exon boundaries are shifted due to sequencing errors [56]. 

Since all ten cultivars that we analyzed belong to the same species, they should have a large 

fraction of common transcripts that may be identified by a blast search. We therefore used 
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the transcriptome of one cultivar from each subspecies to generate a database for blast 

searches of the other nine transcriptomes. With this approach, we were able to identify common, 

cultivar- and subspecies-specific transcripts within our datasets. It must be stressed, however, 

that the lack of a transcript in the transcriptome of a particular cultivar may have two reasons. 

It could indeed be absent from the transcriptome and genome of this cultivar, or it could be 

missing from the transcriptome of this cultivar relative to one of the databases because of 

differences in sampling, such as different tissues or growth conditions.  

Our analysis indicated, as expected, that the largest fraction of the transcripts identified in 

N22 (47.6%), IR64 (44.8%) and Nipponbare (55.2%) were common to all transcriptomes. 

Using the aus cultivar N22 as the database yielded 652 N22-specific and an additional 184 aus 

specific transcripts, resulting in a total of 836 transcripts (4.4% of the total N22 transcripts) that 

were only found in the aus cultivars. Interestingly, we also identified 160 transcripts in IR64 

and 166 in Nipponbare that were not present in either of the aus transcriptomes, while neither 

the IR64 nor the Nipponbare transcriptomes contained any transcripts that were specific for the 

respective subspecies. The Nipponbare transcriptome only contained a very small fraction 

(2.1%) of cultivar-specific transcripts. This was very different in the IR64 transcriptome with 

over 2,426 unique transcripts, comprising 11.7% of the transcriptome. We attribute this high 

fraction of cultivar specific IR64 transcripts to the fact that only in this case roots were included 

in the analysis and submergence and salt stress were applied. In all other cultivars, only above-

ground tissues were sampled, and treatments involved exclusively high night temperatures, 

heat, and drought stress. 

Aus cultivars are known to be more stress tolerant than indica or japonica cultivars and 

contain genes, such as the phosphate starvation tolerance gene OsPSTOL1 [18], the 

submergence tolerance gene OsSUB1A [19], and the deepwater escape genes OsSNORKEL1/2 

[20] that are absent in the Nipponbare reference genome. To test whether our transcriptome 

sequencing approach might aid in the identification of such aus specific stress-related genes, 

we performed a differential gene expression analysis by Illumina-based RNA-seq. The samples 

from developing seeds were obtained from N22 plants grown under control and combined 

drought and heat stress in the field [35]. More than 50 significantly differentially expressed 

genes were identified as unique to the aus subspecies transcriptomes. Over 45% of the gene 

products were annotated as homologous to an Arabidopsis thaliana gene, such as the gene 

B12989 annotated as encoding a RALF precursor polypeptide, which may regulate plant stress 

responses, growth, and development in Arabidopsis and tobacco [57].  
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We characterized one of the significantly induced genes in more detail. The gene B12288 

is annotated as RAB21. This gene has homologs in different Oryza sativa subspecies and in 

various wild species of Oryza. It belongs to the dehydrin family of LEA proteins and high levels 

of expression of RAB21 have been found in mature seeds, as well as in vegetative tissues under 

salt and drought stress, and after treatment of rice seedlings with the plant stress hormone 

abscisic acid [58]. The drought and heat induced RAB21 gene we identified in N22 was more 

closely related to RAB21 isoforms from wild rice species than to the homolog from Nipponbare. 

The sequence differences are not large but may nevertheless be functionally significant. It has 

been shown with in-vitro assays that some dehydrins are able to protect enzymes from 

inactivation under heat stress [59, 60], indicating a possible function of RAB21 under combined 

drought and heat stress conditions that led to transcriptional upregulation. It is still unclear 

which structural characteristics determine the ability of a dehydrin to act as an enzyme stabilizer 

under heat stress and therefore, the functional significance of the sequence differences between 

RAB21 from Nipponbare and N22 cannot be evaluated. However, it has recently been shown 

that changes in only four amino acids in the LEA protein COR15A from Arabidopsis 

significantly increased the stabilizing effect of this protein for membranes during freezing [61]. 

It is therefore conceivable that the minor differences in amino acid sequence between the 

RAB21 proteins from different subspecies and wild rice species may have significant functional 

effects. Obviously, further experimental work will be necessary to test this hypothesis. 

 

Potential implications 

The central question of our study was whether targeted partial transcriptomes obtained 

by PacBio IsoSeq may be useful for the down-stream RNA-seq analysis in rice cultivars from 

subspecies such as aus, which are not well represented by the Nipponbare reference genome 

sequence. Our analysis has shown that for all 10 cultivars that were investigated, cultivar-

specific transcripts could be identified. In addition, a number of aus subspecies (i.e. N22+Dular) 

specific transcripts were identified. These results strongly suggest that this approach will be 

useful for future analysis of RNA-seq datasets. The transcriptomes that we have reconstructed 

here will be directly available for the research community. In addition, the general approach 

should also be useful for many other plant species for which no high-quality genome assemblies 

are available, as it represents a much cheaper and computationally less challenging alternative 

when the aim is the targeted analysis of RNA-seq data. In principle, the approach should also 

be applicable to species outside of the plant kingdom. 
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The example of the RAB21 gene shows that the identification of novel homologs of 

genes that have already been annotated in the reference genome and that are most likely 

introgressions from wild relatives, can yield interesting information. In the case of the RAB21 

proteins from Nipponbare, N22 and several wild relatives of Oryza sativa, our analysis suggests 

obvious mutational studies that could be performed to understand the potential functional 

significance of the relatively minor amino acid sequence differences among these proteins. 

Other interesting candidates have been identified that could be functionally characterized using 

available functional genomics tools to improve the environmental stress tolerance of rice in an 

effort to generate climate change resilient cultivars through targeted molecular breeding.  

 

Methods 

Plant material 

Different tissues of ten Oryza sativa ssp. japonica, indica, and aus cultivars were used 

for RNA isolation. Plants were grown under combined drought and heat stress in the field at 

IRRI (Dular, N22, Anjali) [35], under heat and combined drought and heat stress under 

controlled climate conditions at IRRI (N22, Moroberekan) [34], under shoot submergence root 

salinity, and combined shoot submergence and root salinity in net-houses at IRRI (IR64) [37 

and unpublished observations], under high night temperature stress under controlled climate 

conditions at MPI Potsdam (IR62266-42-6-2, IR64, IR72, CT9993-5-10-1M, M202, 

Moroberekan, Nipponbare) [33] and under high night temperature stress in the field at IRRI 

(IR62266-42-6-2, IR64, IR72, CT9993-5-10-1M, M202, Moroberekan) [36]. Samples were 

obtained from plants grown under both stress and control conditions (see Additional file 1 for 

a complete list of all samples). An overview of cultivars, tissues and growth environments is 

given in Table 1. The selection of cultivars was based on their different sensitivity to high night 

temperature [33], heat, drought, or combined heat and drought stress [34, 35]. 

RNA extraction and sequencing 

Total RNA was isolated from homogenized frozen material from all samples listed in 

Additional file 1 using Trizol-based methods [62, 63]. RNA was quantified 

spectrophotometrically (NanoDrop Technologies, Wilmington, DE, USA) and genomic DNA 

contamination was removed by DNase treatment (Rapid Out DNA Removal Kit, Thermo 

Scientific). Absence of genomic DNA was verified by qRT-PCR using a primer pair amplifying 

an intron sequence [64]. Final RNA quality and integrity were assayed using the Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). For each cultivar, RNA isolated 

from all organs and treatments was pooled to generate one sample per cultivar. PacBio library 
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preparation and sequencing were performed at the Max-Planck Genome Center Cologne, 

Germany. cDNA was synthesized and amplified according to the Pacific Biosciences´s protocol 

using the SMARTer PCR cDNA Synthesis kit (Clontech) and amplification by the KAPA HIFI 

PCR Kit (Kapa Biosystems). The cDNAs were not size-selected and PacBio libraries were 

prepared with the SMRTbell Template Prep Kit 1.0 (Pacific Biosciences) and sequenced on the 

PacBio Sequel I with Sequel DNA polymerase and binding kit and sequencing chemistry 

version 2.1 for 600 min. Each library was sequenced on two or three SMRT cells to achieve 

sufficient coverage. 

For RNA-seq analysis, RNA was isolated from developing seeds of the aus cultivar 

N22. Plants were grown in the field in 2013 under either well-watered control conditions or 

under combined drought and heat stress [35] and RNA was extracted using Ribospin Seed/Fruit 

and Riboclear plus! (GeneAll Biotechnology, Songpa-gu, Republic of Korea) following the 

manufacturer´s instructions. Three biological replicates were generated for each condition 

(control/stress). Quantification of RNA and quality controls were performed as described 

above. Library preparation and sequencing were performed at the Max-Planck Genome Centre 

Cologne. Libraries were prepared with NEBNext Ultra Directional RNA Library Prep Kit for 

Illumina (New England Biolabs) and sequenced using Illumina HiSeq 3000 technology 

generating approximately 30 million 150 base pair-long single-end reads per sample. 

De novo transcriptome reconstruction  

To generate full-length isoforms, the software IsoSeq3 v3.0 (PacBio) included in 

smrtlink v5.1 was used to perform the following four steps: consensus (ccs 3.0.0), lima 

(lima 1.0.0), cluster (sierra 0.7.1) and polish (tango 0.7.1). Raw data processing for each 

library was performed on combined data from two or three SMRT cells (using the smrtlink 

command create) with default parameters:  

ccs $in.subreads.bam $out.bam --noPolish --minPasses=1 

lima $in.xml primer.fasta $out.demux.ccs.bam --isoseq --no-pbi --dump-clips 

isoseq3 cluster $in.demux.ccs.bam $out.unpolished.bam 

isoseq3 polish $in.unpolished.bam $out.polished.bam 

As final output high-quality (HQ) and low-quality (LQ) isoforms were obtained. Only 

HQ isoforms were used for subsequent analysis. To identify contaminations, HQ isoforms of 

all cultivars were aligned against the NCBI nucleotide database (downloaded: 24.07.2018) with 

blastn v2.3.0 [40] (E ≤ 1e-10). Isoforms without a hit were aligned against the NCBI protein 

database (downloaded: 24.07.2018) using blastx v2.3.0 [40] (E ≤ 1e-10). All isoforms without 
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a significant hit for the family Viridiplantae (green plants) were defined as contaminations and 

removed.  

Genome references 

For insertion and deletion (InDel) determination, collapsing and mapping, three O. sativa 

genome references from the subspecies aus (N22) [6], indica (Shuhui498 (R498 genome)) [13] 

and japonica (Nipponbare, IRGSPv1.0.44) [10] were used.  

InDel analysis 

HQ isoforms of each cultivar were mapped against the subspecies-specific reference 

genomes using minimap2, v2.17-r941 [65] with the parameters --ax splice, --uf --C5 

and --secondary=no. Insertions and deletions were determined by extracting the cigar 

string from the alignment files in bam format [66].  

Collapsing redundant isoforms 

For the removal of redundant PacBio isoforms, three tools were tested, namely 

Transcriptome Annotation by Modular Algorithms (TAMA) [51], cDNA cupcake [67] and 

COding GENome reconstruction Tool (cogent v3.9) [68] followed by the cDNA cupcake 

collapse pipeline. For further descriptions, we will refer to the latter only as cogent. TAMA 

and cDNA cupcake use a reference genome to collapse PacBio isoforms, while cogent 

employs a reference-free approach, where it reconstructs gene loci based on PacBio isoforms 

creating its own “coding genome”. Afterwards, cDNA cupcake is employed to collapse the 

isoforms based on the created reference. For TAMA, the following parameters were used: -x 

no_cap,-e longest_ends,-a 100,-z 100,-m 30 and -d merge_dup. cDNA 

cupcake and cogent were run with default parameters following the descriptions on the 

corresponding websites [69, 70]. For both reference-based approaches, the respective reference 

genome of the appropriate subspecies was used and HQ isoforms were mapped with 

minimap2 v2.17-r941 [65]. For all downstream analysis, collapsed transcript models obtained 

by TAMA were used. While cogent and cDNA cupcake provide the PacBio transcripts after 

collapsing, TAMA generates a bed file with the coordinates of the collapsed transcripts and 

sequences were extracted from the corresponding genome sequence of each subspecies for the 

ten cultivars using bedtools v2.27.0 [71] getfasta. Additionally, remaining unmapped 

transcripts were collapsed with cogent and added to the final datasets (Additional folder 4). 

BUSCO analysis 

A set of 430 Viridiplantae conserved ortholog proteins was used in BUSCO v3.0.2 

(Benchmarking Universal Single-Copy Orthologs) [72] to assess the completeness of the 
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conserved content of the de novo reconstructed transcriptomes using the BUSCO transcriptome 

mode.  

Phylogenetic analysis 

For phylogenetic analysis, SNPs of the collapsed transcripts from TAMA, cDNA 

cupcake and cogent were used for analyses with SNPhylo [73]. Collapsed transcripts of 

all cultivars obtained by cogent and cDNA cupcake were mapped against the IRGSP 

Nipponbare reference genome and SNPs were called utilizing the bcftools v1.9 pipeline 

[74]. For TAMA, HQ transcripts of all cultivars were collapsed based on the Nipponbare 

reference genome and the generated variant file was used to determine SNPs. Entries were 

filtered for the “M” type and defined as alternative alleles. The respective reference alleles were 

extracted with bedtools v2.27.0 from the reference genome. A simple SNP file was 

generated and used as input for SNPhylo. Phylogenetic trees were visualized with Figtree 

[75].   

Comparison of reconstructed transcriptomes 

HQ collapsed sequences were classified and compared with the existing IRGSP 

Nipponbare annotation using gffcompare v0.11.2 [76]. The classifications defined by 

gffcompare were generalized into annotated (classes “=” and “c”), novel isoform (classes 

“j” and “k”), retrained intron (classes “m” + “n”), novel antisense (class “x”), novel 

intronic/intergenic (classes “i” and “u”) and novel others (classes "o", "y", "e", “s” and “p”).  

Functional annotation  

ORFs were predicted with TransDecoder v5.5.0 [77]. The candidate protein coding 

regions were extracted by transDecoder.LongOrfs with a minimum length of 100 amino 

acids. Resulting ORFs were characterized according to similarities to known proteins by a 

blastp v2.3.0 search [40] (E ≤ 1e-5) of the comprehensive Swiss-Prot protein database [78] 

(downloaded 09 Sep 2019) and for conserved protein domains using Hmmer v3.2.1 [79] based 

on the Pfam database [80] (downloaded 18 Sep 2019). Finally, likely coding regions were 

reported by the transDecoder.Predict module including all peptides with blast or 

domain hits. Additionally, HQ collapsed transcripts of all ten cultivars were searched against 

the Swiss-Prot database using blastx v2.3.0 (E ≤ 1e-10). All results (blastp, blastx and 

Pfam) were parsed by Trinotate v3.2.0 [81], stored in a SQLite relational database and 

then reported as a tab-delimited transcript annotation summary file. Additional Gene Ontology 

(GO) information was extracted by Trinotate based on the Swiss-Prot database entries. 

Mercator v4.2 [44] was used as an additional functional annotation pipeline. HQ collapsed 
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nucleotide sequences were submitted online [82] and resulting tables were downloaded. 

Trinotate and Mercator tables were merged to one table per cultivar (Additional file 8). 

For a detailed comparison with existing Oryza sativa bins, results were also compared to the 

rice MSU7 annotation on the Mercator website and saved. All transcripts without any 

annotation for Mercator or the TransDecoder-Trinotate pipeline were extracted and 

a blastn search (min. identity 85%, E ≤ 1e-10) performed against all available cDNA files of 

Oryza wild species obtained from EnsemblPlants [83].  

Determination of common overlap 

Common overlap of transcripts among the cultivars was determined using blastn 

v2.3.0 [40] with stricter thresholds than before (E ≤ 1e-10; min. identity 95%). The transcriptome 

data of the cultivars N22, IR64, and Nipponbare were transformed into blast databases and the 

transcripts of the remaining nine cultivars were searched against these databases. Results were 

filtered for the best hit for each database entry, the common overlap determined and visualized 

using the R package UpSetR [84].  

Differential gene expression analysis  

RNA-seq data for the aus cultivar N22 were mapped against the reconstructed PacBio 

N22 transcriptome using kallisto v0.45 [85]. Based on the mappings, a differential gene 

expression analysis was performed using the R-package DESeq2 v1.26.0 [86]. Aus-Specific 

differentially expressed genes were extracted, and transcript annotations merged on gene level. 

A selected candidate gene (B12288) investigated in more detail. Based on the annotation, the 

product of B12288 is a dehydrin and hence, a multiple sequence alignment was performed with 

rice specific dehydrin sequences [45] using Clustal Omega [87]. The resulting phylogenetic 

tree was visualized using Figtree [75]. Protein sequences were downloaded from 

www.uniprot.org. The multiple sequence alignment of four closely related protein sequences to 

the candidate protein B12288 was visualized with MView [87]. 

Graphical visualization 

If not mentioned otherwise, the R packages ggplot2 [88], ggpubr [89], 

gridExtra [90] and reshape2 [91] were used for graphical visualization of the results.  

Availability of supporting data and materials 

PacBio raw data are available in the NCBI’s SRA database under the accession number 

PRJNA640670. Collapsed and filtered HQ sequences and functional annotation of all ten 

cultivars will be publicly available soon. RNA-seq data are available at GEO [39] under the 

accession number GSE153030.  
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Availability of source code and requirements 

Project name: PacBio-IsoSeq-Workflow-for-Rice  

Project home page: GitHub (https://github.com/steffi778/PacBio-IsoSeq-Workflow-for-Rice) 

Operating system: Ubuntu 18.04 

Programming language: R, bash 

License: GNU General Public License 

Abbreviations 

bp – Basepairs; BUSCO – Benchmarking Universal Single-Copy Orthologs; FLNC – Full-

Length Non-Chimeric; GB – Gigabases; HNT - High Night Temperature; HQ – High Quality; 

InDel – Insertion/deletion; IRGSP – International Rice Genome Sequencing Project; IsoSeq – 

Isoform sequencing; LQ – Low Quality; ORF – Open Reading Frame; RNA-seq – RNA 

sequencing; SMRT – Single-Molecule, Real-Time; SNP – Single Nucleotide Polymorphism 
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Additional file 1 (XLS). List of samples used for RNA isolation and PacBio sequencing  

HNT - high night temperature. 

Additional file 2 (XLS). Results from InDel analysis 

The total number of InDels (Insertions/deletions) per transcriptome is shown, along with the 

fraction of InDels in each transcriptome as per-nucleotide error rate in %. 

Additional file 3 (XLS). Results of InterPro analysis of proteins missing from our 

transcriptomes, but present in the BUSCO data base  

The table provides the BUSCO ID, the InterPro description of the proteins, the InterPro ID and 

where available information on organ localization and the developmental stage where the 

protein has been detected. 

Additional file 4 (PNG). BUSCO assessment results for the collapsing tools cogent (A) 

and cDNA cupcake (B) 

 

Additional file 5 (PNG). Transcript length distribution for the 10 Oryza sativa cultivars  

Length distribution of uncollapsed transcripts is indicated in green, length distribution of 

transcripts after collapsing by TAMA is indicated in orange and length distribution of the 

Nipponbare IRGSP reference transcriptome is indicated in purple. Dashed lines show the 

median length of transcripts for the respective datasets. 
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Additional file 6 (PNG). Annotated and novel transcripts as identified by gffcompare 

using the Nipponbare reference annotation  

Cultivars were sorted alphabetically within the subspecies aus, indica, and japonica. 

 

Additional file 7 (PNG). Number of genes classified as “annotated” or “not annotated” 

among the genes not assigned to a functional bin in the Mercator ontology for rice  

Data are shown for the transcriptomes of N22, IR64, and Nipponbare and the Nipponbare 

reference transcriptome. 

 

Additional file 8 (XLS). Merged functional annotations using the TransDecoder-Trinotate 

and Mercator pipeline for all ten cultivars 
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Additional file 9 (XLS). Identity and annotation of transcripts specific to representative 

cultivars of the three subspecies 

Data are shown for the aus subspecies cultivar N22, the indica cultivar IR64, and the japonica 

cultivar Nipponbare. In addition to the transcript annotation from Mercator, the table also 

shows annotations retrieved by BlastX and BlastP searches, Pfam and GO annotations. 

Further, we provide information about the best-hit BlastN analysis gene ID from the 

Nipponbare IRGSP genome.  

Additional file 10 (XLS). Drought and heat regulated genes in N22 

Heat and drought regulated genes were determined by Illumina-based RNA-seq in developing 

seeds of plants of the cultivar N22 grown in the field. Therefore, RNA-seq reads were mapped 

against the de novo reconstructed N22 transcriptome using kallisto. Expression of the 

transcripts was summarized on gene level and differential gene expression analyzed with 

DESeq2. Genes identified as aus-specific among significantly induced genes were extracted 

and are listed, including the log2 fold-change values, FDR p-values, and annotation. 

Distribution of these aus-specific genes among different annotation classes is also presented. 

Additional file 11 (PNG). Phylogenetic tree of Oryza dehydrin proteins 

Dehydrin selection was based on Verma et al. (2017) and includes the following Oryza species: 

BGI – Oryza sativa ssp. indica, Os – Oryza sativa ssp. japonica, OB – Oryza brachyantha, 

OPUNC – Oryza punctata, OGLUM – Oryza glumaepatula, ORUF – Oryza rufipogon, 

ORGLA – Oryza glaberrima, ONIVA – Oryza nivara, OBART – Oryza barthii, OMERI - 

Oryza meridionalis. The red box indicates the proteins used for the sequence alignment shown 

in Figure 7. 
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3 Discussion 

With the development of next-generation sequencing technologies, the knowledge of the 

genetic base of diverse plant species increased dramatically in the last years (Michael & Jackson 

2013). To identify the genetic regulators that respond to various abiotic stressors, it is essential 

to  study the transcriptome. One of the most common approaches for that purpose is RNA-seq. 

The first step of RNA-seq data processing is the alignment and quantification of the reads 

against a reference sequence. A variety of studies exist comparing tools performing these tasks 

using either a reference genome or a de novo transcriptome assembly (Zhang et al. 2017a, 

Conesa et al. 2016, Benjamin et al. 2014, Dillies et al. 2012) but only little evaluation is 

available on the performance of read mappers for data generated from genotypes within a 

species showing sequence polymorphisms. To address this issue, I used experimentally 

generated RNA-seq data from two Arabidopsis thaliana accessions that were mapped and 

evaluated with five alignment-based and two alignment-free tools (Paper 1).  

While Arabidopsis thaliana is still a simple model organism, sequencing technologies need also 

to be utilized in more complex plant systems, for example in rice. Since the successful 

sequencing of the first rice genome of the cultivar Nipponbare from the Oryza sativa ssp. 

japonica, most of the available rice studies were based on this genome/transcriptome and 

neglected the wide natural variation of rice (Li et al. 2014, Schatz et al. 2014). Therefore, I 

sequenced the transcriptomes of different organs of ten different Oryza sativa cultivars using a 

third-generation sequencing technology (PacBio IsoSeq) and identified previously unknown 

cultivar-specific stress-responsive genes (Paper 3).  

Finally, a selection of the sequenced rice cultivars was analyzed for their metabolic response to 

high night temperature (HNT) stress under field conditions (Paper 2). Despite the several 

advantages of stress experiments in controlled environments (Telfer et al. 2018), it has been 

shown that plants respond differently to stress under controlled and field conditions (Sprenger 

et al. 2016, Bahuguna et al. 2015). Hence, more accurate quantification and validation of plant 

stress-responses need to be obtained in the field (Hartman et al. 2014, Limpens et al. 2012). To 

the best of my knowledge, this is the first study investigating the primary metabolite profile of 

different rice cultivars under HNT stress during the wet and dry season. 

3.1 Bioinformatic approaches to identify molecular regulators of abiotic stress 

For plants, abiotic stresses such as drought, heat, or cold have dramatic effects on growth as 

well as on crop yield, which can be reduced by as much as 50% (Qin et al. 2011). Many abiotic 

stresses are complex processes controlled by networks of genetic and environmental factors 
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that limit traditional breeding approaches and crop improvements (Akpınar et al. 2013). Yield 

stagnation has been reported over the last decades for major cereals such as maize, rice, or 

wheat and emphasizes the need to adopt new strategies in agriculture that can ensure global 

food security (Ray et al. 2012). Bioinformatic tools including software, databases, and web 

resources have brought major changes in analyzing and interpreting the vast amount of data 

generated by stress experiments and measured on high-throughput platforms (Kumar & 

Shanker 2018). In this study, transcriptomic and metabolomic approaches were applied and 

several bioinformatic tools were evaluated to characterize molecular responses under abiotic 

stress conditions such as cold (Paper 1), HNT (Paper 2), and heat and drought (Paper 3) in rice 

or Arabidopsis thaliana. 

Further applications based on these approaches include quantitative trait loci (QTL) mapping, 

genome-wide association studies (GWAS), or marker-assisted selection (MAS). Molecular 

breeding can help to identify tolerant cultivars at a much faster and cheaper rate compared to 

classical breeding (Shah et al. 2018, Saade et al. 2016). For example, a study in potato identified 

20 metabolite and transcript markers for drought stress utilizing a Random Forest machine 

learning approach. The markers were validated in 16 independent agronomic field trials and 

demonstrated a stable yield prediction under drought that was largely independent of seasonal 

and regional agronomic conditions (Sprenger et al. 2018).  

3.2 The era of high-throughput sequencing  

The analysis of high-throughput data is one of the most challenging tasks today. In 

transcriptomics, the development of RNA-seq introduced new algorithms and tools to address 

correct mapping against a reference sequence in a reasonable amount of time (Kim et al. 2015a, 

Dobin et al. 2013, Li & Durbin 2009), to identify changes in gene expression (Teng et al. 2016, 

Dillies et al. 2012), or to detect alternative splicing isoforms (Shen et al. 2014, Zhou et al. 2012) 

and SNPs (Zhao et al. 2019).  

3.2.1 Comparison of RNA-seq mapping tools using data from Arabidopsis thaliana 

After RNA extraction and library preparation in the wet lab, RNA-seq libraries are sequenced 

to obtain reads. Those reads are mapped to an index of DNA or RNA sequences followed by a 

quantification step that counts the number of mapped reads to an individual transcript or gene. 

Most of the tools such as STAR, kallisto, or salmon include an in-built quantification algorithm 

and hence, can be considered as a wrapper program for both steps (Patro et al. 2017, Bray et al. 

2016, Dobin et al. 2013).  
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Here, five alignment-based and two alignment-free RNA-seq mappers were evaluated using 

experimentally and in silico generated data from the two Arabidopsis thaliana accessions 

Columbia-0 (Col-0) and N14 (Paper 1). It should be pointedout that despite the attempt to assess 

and compare mapping algorithms intensively in several studies, the evaluation is not 

straightforward for RNA-seq data (Engström et al. 2013, Korf 2013). Different factors such as 

sequencing errors, repeats, the complexity of the organism, and genetic variants increase the 

uncertainty in read mapping and challenge algorithms to find the true genomic source for each 

read, and thus, to define a ‘correct mapping’ (Hatem et al. 2013). However, these studies can 

help to determine the top performers and to select the right tool for data analysis, depending on 

the biological question, input data, and application (Finotello & Di Camillo 2015).  

One key aspect of RNA-seq data analysis is to determine how many reads could be mapped 

against the reference sequence (mappability). For the Arabidopsis accession Col-0, a high 

mappability of the 150 bp single-end Illumina reads against the Col-0 reference genome or 

transcriptome was observed, ranging between 95.9% and 99.5% (Paper 1). A slightly smaller 

fraction was obtained for the other accession N14, ranging between 92.4% to 98.1%. The high 

fraction of mapped reads for both accessions may be in part due to the high-quality reference 

sequence, to the comparatively small genome of Arabidopsis with roughly 130 megabases and 

to the low content of repetitive DNA sequences (Kim et al. 2015a, Mayer et al. 1999). 

Another important aspect next to mappability is the ‘correct’ mapping of the reads against the 

reference sequence to obtain reliable biological information. Comparing the alignment-based 

mapper's STAR, HISAT2, and bowtie2/RSEM a high overlap of reads mapping to the same 

position at the reference sequence was observed for STAR and HISAT2 for both accessions 

(Paper 1). The differences in read positions between bowtie2/RSEM and HISAT2/STAR 

originated to a large part from soft-clipping, mostly of the first base of the reads by both 

aligners. An additional approach using in silico reads from the Col-0 reference sequence 

revealed that about 99% of the reads were mapped to the correct position by the three mappers 

and hence showed the same performance when synthetic reads without any mismatches 

between read and reference sequences were used. Finally, HISAT2 and STAR were also tested 

by mapping the experimentally generated reads against the reference genome without 

annotation information resulting in more than 90% of the reads mapped to known exons. These 

results indicate that mappers most likely mapped the reads back to the right position of the 

reference sequence. It was reported that alignment-based methods have a high sensitivity in 

mapping, but longer running times and higher memory costs due to the requirement to align 

each read accurately (Patro et al. 2017, Bray et al. 2016). Much faster are alignment-free 
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approaches such as kallisto (Bray et al. 2016) or salmon (Patro et al. 2017) which were also 

used in our study. Salmon for example only uses unique k-mers that are mapped to the 

transcriptome to identify the transcripts and leads to an increase in speed, but a decrease in 

sensitivity (Babarinde et al. 2019).  

3.2.2 Quantification and biological analysis based on different mapping algorithms 

From a biological point of view, the quantification of gene expression is the most important 

part of an RNA-seq experiment as researchers are mostly interested in the identification of 

differentially expressed genes, either between conditions or between genotypes. Correct 

mapping is essential to determine changes in expression, but read quantification is at least 

equally important (Fonseca et al. 2014). The number of reads or k-mer per feature depends on 

the actual expression level, library size, transcript length, GC content, and other parameters 

(Love et al. 2016, Benjamini & Speed 2012). In this context, we have compared the raw count 

distribution of all seven tools using one sample of each accession by plotting the results against 

each other (Paper 1). High similarities among the mappers were observed, indicated by 

correlation coefficients close to one. Similarly, when the raw counts were compared between 

mappers for all 36 biological samples, Rv values close to one indicated a good correspondence 

in the expression levels between all seven tools. In general, read quantification is an essential 

step and can vary greatly with different algorithms (Fonseca et al. 2014). Alignment-free tools 

are more suited for transcript-level quantification as they exploit unique splicing patterns to 

identify unique k-mers (Bray et al. 2016), but they perform poorly with lowly expressed 

transcripts or short RNAs (Wu et al. 2018) and work better in well-annotated genomes with 

sufficient transcript annotations (Babarinde et al. 2019). However, in well-annotated organisms, 

gene-level quantification may be all that is required for many biological questions because the 

properties of genes are relatively well known, it mostly focus on protein-coding genes 

(Babarinde et al. 2019), and most highly expressed genes have single dominant isoforms 

(Ezkurdia et al. 2015).  

To analyze the effects of the mapping tools on differential gene expression (DGE) analysis 

(Paper 1), expression levels of control plants grown at ambient temperature and plants grown 

for three days at 4°C were compared (cold acclimation, see Zuther et al. 2019) using the R-

package DESeq2 (Love et al. 2014). The results showed that the raw counts generated by the 

different mappers resulted in clear differences in the number of significantly differentially 

expressed genes, with an overlap between mappers of 98.0% in Col-0, and 92.1% in N14. The 

small sample size (three samples per condition and accession) may have contributed to the 

differences in identifying differentially expressed genes (Soneson & Delorenzi 2013). Previous 
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studies have demonstrated that the analysis pipeline affects the results and that no single method 

is likely to perform favorably for all datasets (Rapaport et al. 2013, Seyednasrollah et al. 2013, 

Soneson & Delorenzi 2013). However, higher detection power was reported with increasing 

sample sizes (Conesa et al. 2016, Rapaport et al. 2013). Comparisons of different DGE tools 

for human or mouse data revealed significant differences in differentially expressed genes 

deriving from normalization, statistical model, and sample size (Rapaport et al. 2013, 

Seyednasrollah et al. 2013). In contrast, a study in yeast has shown more comparative results 

among different read aligners and DGE analysis tools (Nookaew et al. 2012). Most of the 

differences in the results are derived from genetic variation and lowly expressed genes. Like 

Arabidopsis, yeast is a well-characterized organism, and high-quality genome and annotation 

data is available that may contribute to mapping a high fraction of reads on the reference 

sequence and hence, to accurately estimate gene expression levels.   

3.2.3 De novo transcriptome assembly using short- and long-read technologies 

The last years short-read sequencing technologies were dominantly used to study the 

transcriptome, recently newer technologies have been emerging to sequence longer, full-length 

transcripts (Deamer et al. 2016, Rhoads & Au 2015). The major advantage of LRS is that 

transcriptomes can be reconstructed without the need for an assembly or a reference genome. 

Especially in plants with a large natural variation including tolerance to abiotic stresses, this 

approach can help to identify cultivar-specific stress-responsive genes (Xu et al. 2020a , Teng 

et al. 2019). Using LRS technology from PacBio, we have explored a targeted approach of 

sequencing and reconstructing partial transcriptomes of ten rice cultivars from three different 

subspecies (Paper 3). These transcriptomes can be used as references to map RNA-seq reads 

from abiotic stress experiments in stress-tolerant genotypes without a reference genome and 

were performed exemplary in this study with RNA-seq data obtained from combined heat and 

drought experiments (see details in Lawas et al. 2018). Large parts of the rice transcriptomes 

were recovered by using only two or three single-molecule real-time (SMRT) sequencing cells 

resulting in 38,000 and 54,700 high-quality transcripts without the need for a reference genome 

or classical short-read de novo assembly. However, it is challenging to compare the sequencing 

output directly with other studies as the technology, chemistry, and software are improved 

constantly resulting in higher throughput and better data quality (Amarasinghe et al. 2020).  

While LRS sequences full-length transcripts, short-read de novo transcriptome assemblers 

reconstruct transcriptomes by the identification of a mutual overlap of the short fragments 

(Babarinde et al. 2019). Different tools and pipelines exist to perform the assembly either with 

or without a reference genome but a reference-free assembly of short-reads is normally less 
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accurate (Steijger et al. 2013). The accurate reconstruction of transcript models with short-reads 

remain a challenging computational problem (Babarinde et al. 2019), for example, a 

comparative study including 24 protocols and 14 independent algorithms reported a poor 

assembly of isoform structures including missing exons and incorrect splice junctions using 

RNA-seq data based on the human genome (Steijger et al. 2013). Nevertheless, with de novo 

assemblies from short-reads, gene expression can be studied from any species and cell type 

within a species (Babarinde et al. 2019). However, these de novo assemblers are restricted, 

especially by the assembly of lowly expressed genes and genes with complex splicing patterns 

(Steijger et al. 2013). LRS technologies can overcome these limitations by sequencing full-

length transcripts without the need of a de novo assembly. This is interesting for plant breeding, 

especially for crops with more complex genomes such as the hexaploid wheat (Clavijo et al. 

2017). Applications varied by using LRS alone or together with short-reads (Miller et al. 2017) 

and helped to identify novel transcripts and to update existing annotations in human (Wu & 

Ben-Yehezkel 2019, Au et al. 2013), animals (Chen et al. 2017) and plants (Feng et al. 2019, 

Minio et al. 2019, Abdel-Ghany et al. 2016).  

3.2.4 Data redundancy and tool development for PacBio isoform sequencing 

During the library preparation mRNA degradation products can be formed and are subsequently 

sequenced. These shorter transcripts lack some of the 5’ sequences but are identical to the full-

length transcripts resulting in a large number of redundant transcripts. This redundancy can 

influence follow-up analyses such as alternative splicing studies. In this study, we have 

compared three collapsing tools to merge redundant transcripts and investigated the influence 

on data quality, number of unique isoform models per gene locus, and phylogenetic resolution 

(Paper 3). The first tool, called cogent, does not need a reference sequence to collapse redundant 

isoforms and was successfully applied to transcriptomes from organisms without an available 

genome reference (Feng et al. 2019, Workman et al. 2018, Li et al. 2017b). The two other tools, 

cDNA cupcake and TAMA need a reference genome sequence and have been more commonly 

used (Xie et al. 2020, Kuo et al. 2019, Zhang et al. 2019a, Wang et al. 2018). In our study, the 

number of transcripts after collapsing decreased by up to 60% indicating a high redundancy in 

the datasets. While TAMA and cogent resulted in similar numbers of collapsed transcripts the 

numbers were slightly higher for cDNA cupcake. Cogent had the highest number of unmapped 

reads compared to the two other tools. This may be due to the generation of transcript orphans, 

i.e. putative single-isoform transcripts that were not incorporated into the reconstructed 

transcriptomes. However, to the best of my knowledge, no studies are available at the moment 

comparing the performance of these tools in more detail.  
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Not only data redundancy is a challenge for LRS analyses, but also the development of new 

bioinformatic tools to process and analyze the data is constantly ongoing. For example, mappers 

that were developed for short-reads have problems with the high raw sequencing error rate and 

the length of the reads (Križanović et al. 2017). Križanović et al. (2017) showed that common 

splice-aware RNA-seq mappers such as HISAT2 and Tophat2 were not able to map long-reads 

to the reference genome at all. STAR was algorithmically extended for long reads and 

performed well in this study aligning 96.8% of the Illumina reads, but for the LRS data, the 

mappability ranged only between 0.1% to 62.2%. The tested data sets had different error rates 

and STAR seemed to be affected by the increased complexity of the reads. However, new 

mappers were developed for LRS such as minimap2 which can handle both short and long reads 

(greater than 1kb at an error rate of 15%) including long insertions and deletions (Li 2018).  

3.2.5 Combining short- and long-read technologies to identify molecular regulators for 

organisms without a reference genome  

Compared to Illumina-based short-read sequencing technologies, LRS has a lower sequencing 

throughput per run, and higher raw error rates, but longer read lengths (Križanović et al. 2017). 

Fortunately, PacBio and Illumina sequencing are highly complementary to each other (Conesa 

et al. 2016). Ideally, both technologies are used for studies, for example, RNA-seq reads can be 

utilized to correct sequencing errors for LRS reads employing tools like LoRDEC (Salmela & 

Rivals 2014) or proovread (Hackl et al. 2014), to verify splice junctions (Zhang et al. 2019a) or 

for hybrid de novo genome assemblies (Li et al. 2020). Furthermore, DGE can be performed 

with RNA-seq reads using the generated LRS transcriptome as a reference sequence if no 

genome sequence is available. In our study, we performed DGE exemplarily for the rice aus 

cultivar N22 (Paper 3). Aus cultivars are known to be more stress-tolerant than indica or 

japonica cultivars and contain genes, such as the phosphate starvation tolerance gene 

OsPSTOL1 (Gamuyao et al. 2012) that are absent in the Nipponbare reference genome. The 

RNA-seq samples included developing seeds obtained from plants grown under control and 

combined drought and heat stress in the field (Lawas et al. 2018). More than 50 significantly 

differentially expressed genes were identified as unique to the aus subspecies transcriptomes in 

our study, most of the gene products were annotated as homologous to an Arabidopsis thaliana 

gene (Paper 3). In more detail, one gene product (Rab21) was characterized that has homologs 

in Nipponbare and different Oryza wild relatives and which is probably induced through water 

deficit (Mundy & Chua 1988). Multiple sequence alignment studies revealed that Rab21 in N22 

was closer related to Rab21 isoforms from rice wild species than to the homolog from 

Nipponbare. Other studies have previously successfully utilized this approach to identify stress-
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responsive genes in non-model plant organisms such as in ryegrass under cadmium stress (Hu 

et al. 2020) or heat and drought stress in pearl millet (Sun et al. 2020). 

3.3 Utilizing metabolomics to understand molecular responses during abiotic stress 

Metabolites are essential for plants regarding growth, development, and defense against 

climatic alterations or natural predators (Oikawa et al. 2008). Abiotic stress can dramatically 

affect the plant metabolome, such as heat and drought (Lawas et al. 2019, Das et al. 2017), salt 

(Siahpoosh et al. 2012), or HNT stress (Dhatt et al. 2019, Glaubitz et al. 2017). Not surprisingly, 

the field of metabolomics has become an important tool for crop breeding and improvement in 

the last years (Fernie & Schauer 2009). 

3.3.1 Metabolite profiles of rice are affected by season upon high night temperature 

stress 

Next to transcriptomics approaches, we performed metabolite profiling for eight rice cultivars 

during the wet and dry season upon HNT stress (Paper 2). Here, primary metabolites were 

measured for flag leaves and panicles using gas-chromatography mass-spectrometry (GCMS). 

So far, only a few studies exist analyzing the impact of HNT on the molecular level under 

controlled or field conditions, mostly for sink and source tissues (Table 1). Additionally, we 

analyzed the differences in the metabolite profiles depending on season. Previous studies have 

shown that the metabolite profile in plants can differ dramatically depending on the season 

(Gong et al. 2020, Kim et al. 2015b). 

For molecular analyses, research in crop plants needs an agronomic characterization to connect 

molecular changes to a phenotype or trait. A key parameter here is the total grain yield. For this 

parameter a reduction was observed for all cultivars during the wet season (WS) upon HNT 

while for the dry season (DS) no significant yield decrease occurred (Paper 2). Under controlled 

conditions total grain yield was higher for most cultivars in the DS compared to the WS which 

was also reported before by other groups (Zhao & Fitzgerald 2013). On the physiological level 

grain yield is influenced by carbon and nitrogen flux to the grain that is affected by HNT 

(Mohammed & Tarpley 2011). The carbon loss could be caused by respiration which is known 

to be increased under HNT (Glaubitz et al. 2014) and may have a strong effect on biomass and 

yield (Shi et al. 2016, Shi et al. 2013, Peng et al. 2004). Therefore, it might be responsible for 

a decline in the assimilation supply to developing grains (Xiong et al. 2017). This hypothesis 

can be supported by the metabolite data obtained during the WS (Paper 2) where glycolysis 

intermediates such as sugar phosphates and sucrose levels were decreased while the abundance 

of monosaccharides was increased in panicles. Glycolysis generates biosynthetic intermediates 
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for respiration and a high turnover indicated by reduced levels of intermediates could be 

expected.  

During HNT stress accumulation of amino acids and regulation of related pathways were 

reported, such as for the shikimate pathway. Metabolites related to this pathway including 

tyrosine, shikimic acid, and quinic acid, were significantly affected by HNT treatment in winter 

wheat leaves (Impa et al. 2019) and rice leaves (Glaubitz et al. 2015) under controlled 

environmental conditions. Increased accumulation of alanine and phenylalanine was observed 

for developing rice seeds (Dhatt et al. 2019) and wheat spikes (Impa et al. 2019). During the 

DS, also higher amounts of alanine in panicles were observed (Paper 2). Alanine is synthesized 

by the enzyme alanine aminotransferase (AlaAT) that catalyzes the reversible synthesis from 

pyruvate and glutamic acid (Good et al. 2007). The pathway is connected to carbon fixation 

and nitrogen metabolism. Overexpression of AlaAT in rice resulted in increased nitrogen uptake 

efficiency, higher biomass, and seed yield (Beatty et al. 2009). In our study, AlaAT activity 

showed a moderate increase during the DS that may have led to increased nitrogen assimilation 

and higher yield (Paper 2). 

In both seasons, the polyols arabitol and erythritol were significantly increased in flag leaves 

and panicles among most of the cultivars upon HNT (Paper 2). The accumulation of polyols in 

many plant species is a common response to abiotic stress. These metabolites interact with 

membranes, protein complexes, or enzymes and act as antioxidants (Djilianov et al. 2005). A 

study in rice analyzing the metabolome under combined heat and drought stress reported an 

accumulation of arabitol and erythritol in flowering spikelets and developing seeds (Lawas et 

al. 2019). Both metabolites were identified as potential metabolic markers to predict combined 

heat and drought tolerance. However, in our studies, no correlations between sugar alcohol 

levels and grain yield were identified and thus, the accumulation of these metabolites may be 

an unspecific response to HNT (Paper 2).  

Finally, correlation analysis between grain yield reduction and changed metabolite contents 

between control and HNT conditions for the WS revealed seven significant positive correlations 

among panicle metabolites. They included one unidentified compound, 3-cyano alanine, 

asparagine, aspartic acid, glutamic acid, pyroglutamic acid, and fructose-6-phosphate. 

Asparagine and aspartic acid have been identified in previous studies to be associated with HNT 

sensitivity under controlled conditions and higher levels were reported for HNT-sensitive rice 

cultivars (Glaubitz et al. 2017, Glaubitz et al. 2015). Thereby, these two metabolites can be 

possible molecular markers for further breeding attempts to improve HNT tolerance in rice. 
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3.3.2 Further applications of metabolomics in plant breeding 

Our study has focused on the changes in metabolite levels of different rice cultivars under HNT 

stress during the DS and the WS. However, metabolomics can be extended to identify molecular 

markers connected to genetic regions in plants, including major crops (Matsuda et al. 2015, 

Schauer et al. 2006, Fiehn et al. 2000). More specifically, the integration of metabolomics, 

linkage mapping studies, and metabolome-based genome-wide association studies (mGWAS) 

provide comprehensive insight into the extent of natural variation in metabolism and its genetic 

control in plants (Chaudhary et al. 2019). For example, the adaption of barley to drought and 

combined heat and drought stress were analyzed by using genotype and metabolite data 

(Templer et al. 2017). Through the combined analysis of mQTL mapping and mGWAS, three 

major QTL for metabolites were identified involved in antioxidative defense that co-localize 

with genes of the corresponding pathways. 

3.4 Future directions 

The results generated from these studies have revealed novel insights into mapper performance 

for RNA-seq data generated from Arabidopsis thaliana (Paper 1), how to utilize PacBio IsoSeq 

to identify novel stress-responsive genes for rice cultivars without a genome reference (Paper 

3) and into the analysis of metabolite changes in rice under HNT stress and season (Paper 2). 

The first study showed that all tested mappers provided highly similar results for mapping 

Illumina reads of two polymorphic Arabidopsis accessions to a reference sequence. In plants, 

not only mapping performance regarding polymorphism but also analyzing the performance of 

mapping tools for polyploid species would be interesting. Only a few studies exist comparing 

mapping pipelines with data from polyploid species such as for a tetraploid blueberry cultivar 

(Payá-Milans et al. 2018). However, the genome and transcriptome assembly of polyploid 

species is still a challenge but LRS can help immensely to reconstruct the necessary high-quality 

reference sequences (Kyriakidou et al. 2018). 

In the second part, PacBio IsoSeq was used to reconstruct the transcriptome of ten rice cultivars 

from different subspecies (Paper 3). This approach provides a general, cost-effective alternative 

to whole-genome sequencing for the identification of candidate genes in highly stress-tolerant 

‘exotic’ genotypes without an available genome sequence. The example of the Rab21 gene 

showed that the identification of novel genes with annotated homologs in other cultivars or 

species can yield interesting information. In the case of the Rab21 proteins from Nipponbare, 

N22, and several wild relatives of Oryza sativa, the analysis suggests mutational studies that 

could be performed to understand the potential functional significance of the relatively minor 
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amino acid sequence differences among these proteins. Also, the data provide a comprehensive 

resource for the identification of other interesting candidate genes that could be functionally 

characterized using available functional genomics tools and to improve the abiotic stress 

tolerance of rice through targeted molecular breeding.  

In the last study, the response of agronomic parameters and metabolic patterns to HNT has been 

analyzed for eight rice cultivars under field conditions in two different seasons (Paper 2). 

Possible marker metabolites (asparagine, aspartic acid) were identified that could be used as a 

starting point for metabolomics-based breeding. These markers will still need further validation 

involving more cultivars and experiments before an established biomarker could be determined 

(Zabotina 2013). As metabolomics is considered to complement other ‘omics’ technologies, 

transcript-based profiling could give a more holistic overview of the response to HNT stress 

and could be used as a source for additional transcript-markers. An integrated data analysis 

using the metabolite and transcriptome data can give novel insights into pathways and regulated 

genes under field conditions using tools such as MetaboAnalyst (Chong et al. 2019) or MapMan 

(Schwacke et al. 2019), both previously applied for rice under HNT stress at controlled 

conditions (Glaubitz et al. 2017). For further breeding programs the identification of genetic 

regions correlated to HNT stress by using mQTL and/or mGWAS approaches could be 

interesting and so far, have not been performed for HNT (Xu et al. 2020b).  

Clearly, these studies cover only a small part of the huge field of omics technologies. 

Nevertheless, the insights discovered in the transcriptomic studies can help researchers to 

choose the right tool and explore new technologies for their research questions. Additionally, 

the metabolite profiling in rice under HNT is a first step that can help to develop cultivars with 

higher stress resilience. In the future, ‘omics’ approaches need to be integrated and connected 

to understand complex traits in crop plants and for the application of novel insights in molecular 

breeding to ensure global food security.   
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