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Abstract

One of the key challenges in modern Facility Management (FM) is to digitally reflect the
current state of the built environment, referred to as-is or as-built versus as-designed

representation. While the use of Building Information Modeling (BIM) can address the
issue of digital representation, the generation and maintenance of BIM data requires a
considerable amount of manual work and domain expertise. Another key challenge is
being able to monitor the current state of the built environment, which is used to provide
feedback and enhance decision making. The need for an integrated solution for all data
associated with the operational life cycle of a building is becoming more pronounced as
practices from Industry 4.0 are currently being evaluated and adopted for FM use. This
research presents an approach for digital representation of indoor environments in their
current state within the life cycle of a given building. Such an approach requires the
fusion of various sources of digital data. The key to solving such a complex issue of digital
data integration, processing and representation is with the use of a Digital Twin (DT).
A DT is a digital duplicate of the physical environment, states, and processes. A DT
fuses as-designed and as-built digital representations of built environment with as-is data,
typically in the form of floorplans, point clouds and BIMs, with additional information
layers pertaining to the current and predicted states of an indoor environment or complete
building (e.g., sensor data). The design, implementation and initial testing of prototypical
DT software services for indoor environments is presented and described. These DT
software services are implemented within a service-oriented paradigm, and their feasibility
is presented through functioning and tested key software components within prototypical
Service-Oriented System (SOS) implementations. The main outcome of this research
shows that key data related to the built environment can be semantically enriched and
combined to enable digital representations of indoor environments, based on the concept
of a DT. Furthermore, the outcomes of this research show that digital data, related to FM
and Architecture, Construction, Engineering, Owner and Occupant (AECOO) activity,
can be combined, analyzed and visualized in real-time using a service-oriented approach.
This has great potential to benefit decision making related to Operation and Maintenance
(O&M) procedures within the scope of the post-construction life cycle stages of typical
office buildings.
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Zusammenfassung

Eine der wichtigsten Herausforderungen im modernen Facility Management (FM) besteht
darin, den aktuellen Zustand der gebauten Umgebung digital wiederzugeben und die tat-
sächliche mit der geplanten Gebäudedarstellung zu vergleichen. Während die Verwendung
von Building Information Modeling (BIM) das Problem der digitalen Darstellung lösen
kann, erfordert die Generierung und Pflege von BIM-Daten einen erheblichen manuellen
Aufwand und Fachkenntnisse. Eine weitere wichtige Herausforderung besteht darin, den
aktuellen Zustand der gebauten Umgebung zu überwachen, um Feedback zu geben und
die Entscheidungsfindung zu verbessern. Die Notwendigkeit einer integrierten Lösung für
alle Daten im Zusammenhang mit dem Betriebslebenszyklus eines Gebäudes wird immer
deutlicher, da derzeit Praktiken aus Industrie 4.0 evaluiert und für die FM-Nutzung
übernommen werden. Diese Studie präsentiert einen Ansatz zur digitalen Darstellung von
Innenräumen in ihrem aktuellen Zustand innerhalb des Lebenszyklus eines bestimmten
Gebäudes. Ein solcher Ansatz erfordert die Fusion verschiedener Quellen digitaler Daten.
Der Schlüssel zur Lösung eines solch komplexen Problems der Integration, Verarbeitung
und Darstellung digitaler Daten liegt in der Verwendung eines Digital Twin (DT). Ein
DT ist ein digitales Duplikat der physischen Umgebung, Zustände und Prozesse. Ein DT
verschmilzt die entworfenen und gebauten digitalen Darstellungen der gebauten Umwelt
mit aktuellen Repräsentationsdaten, typischerweise in Form von Grundrissen, Punkt-
wolken und BIMs, mit zusätzlichen Informationsebenen, die sich auf die aktuellen und
vorhergesagten Zustände einer Innenumgebung oder eines kompletten Gebäudes beziehen
(z.B. Sensordaten). Das Design, die Implementierung und die ersten Tests prototypischen
DT-Software-Dienstleistungen für Innenräume werden vorgestellt und beschrieben. Die
DT-Software-Dienstleistungen werden innerhalb eines serviceorientierten Paradigmas
implementiert, und ihre Machbarkeit wird durch funktionierende und getestete wichtige
Softwarekomponenten in prototypischen SOS-Implementierungen dargestellt. Das Haupt-
ergebnis dieser Forschung zeigt, dass Schlüsseldaten in Bezug auf die gebaute Umgebung
semantisch angereichert und kombiniert werden können, um digitale Darstellungen von
Innenumgebungen basierend auf dem Konzept eines DT zu ermöglichen. Darüber hinaus
zeigen die Ergebnisse dieser Forschung, dass digitale Daten in Bezug auf FM und Archi-
tektur, Bauwesen, Ingenieurwesen, Eigentümer- und Insassenaktivitäten mithilfe eines
serviceorientierten Ansatzes in Echtzeit kombiniert, analysiert und visualisiert werden
können. Dies hat ein großes Potenzial für die Entscheidungsfindung in Bezug auf Betriebs-
und Wartungsverfahren im Rahmen der Lebenszyklusphasen typischer Bürogebäude nach
dem Bau.
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Chapter 1

Introduction

The modern world is becoming digitized and connected. From smart phones and tablets
for communication on a daily basis, to self-driving autonomous vehicles, to smart health
devices, there is currently a beginning of a convergence between the realms of the real
and digital world. The built environment is no exception to this phenomena [6], and in
the last two decades there have been great leaps in terms of digitizing its representation.
In turn, this has proved to be beneficial by enabling stakeholders to inspect, assess and
forecast the current and future states of the built environment, specifically related to its
sustainability, and humans comfort, safety, productivity and well-being within it.

In recent years, the term Internet-of-Things (IoT) has been used to describe the
concept of multiple connected devices all used to provide a link to real-time and historic
data for specific applications [101, 282]. With advancements in computational resources,
novel systems can combine digital representations of cities, specifically buildings where
we live and work in, with IoT data. The concept of a Smart City [20], takes form by
fusing various digital data sources, obtained from multiple connected digital devices (e.g.,
sensor data measuring natural and man-made phenomena), historical documentation and
digitized representations [139].

When such data sources are combined, useful insights and results generated from
visualization and analysis methods can contribute to enhanced decision making, and
help create safer, more comfortable and more energy efficient working and living envi-
ronments [35]. This also contributes greatly to the sustainability of the environment,
human comfort and health, safety as well as providing greater return of investment for
stakeholders. For example, city planners can assess various sustainability factors for
a specific building or factory before it is given building permission – by analysing its
relation to the surrounding environment within a digital representation system [28].

Such digital representation and analysis systems have historically been tied to
Geographic Information System (GIS) software for large scale environment assessment
and planning [63]. However, for finer analysis of individual buildings, greater detail and
insight is required. In the last two decades Building Information Modeling (BIM) has
been standardized and used to represent digital versions of buildings for complete life
cycle analysis and management [67]. This includes the digital representation of buildings,
including all related documentation pertaining to the design, planning, construction,
operation and demolition phases of a building.

1
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Figure 1.1: High-level overview of semantic enrichment and use of indoor point clouds as base

data for DT representations within the context of FM and Real Estate 4.0.

A Digital Twin (DT) is a digital duplicate of the physical environment, states, and
processes [97], and can be thought of an "umbrella term" for the concept of fusing related
historic and current data sources together in an unified model. Thus a DT representation
fuses as-designed and as-is physical representations, with additional information layers
pertaining to the current and predicted states of an indoor environment or complete
building. The use of a DT and its associated paradigm therefore plays a critical role in
enabling the implementation of systems for smart buildings and built infrastructure [158].

Data sources used by a DT for analysis, visualization, prediction and enhancing
decision making include digital data related to a given building or infrastructure object
(e.g., bridges, roads, power plants, etc.). This type of data can be defined as either historic

or current data. Historic data may include 2D and 3D Computer-Aided Design (CAD)
drawings and models, as-designed or as-built BIM data, floorplans, historic sensor data
and digitized documents [252]. Current data may include as-is BIM and other digital
representations, and real-time sensor data. The fusion and analysis of these data sources
by a DT software system enables the generation of useful analytics for enhanced decision
making, particularly concerning everyday Operations and Maintenance (O&M) tasks
within the domain of Facility Management (FM) [242]. Thus, it can be argued that the
DT and is associated paradigm is one of the main driving forces (along with BIM and
IoT), of the fourth technological revolution within the domain of property development,
infrastructure and management i.e., Real Estate 4.0 [274].

Since a DT relies on both historic and current data sources, the use of the later is
more beneficial for up-to-date reflection, analysis and resulting decision making. One
of the key current data sources are point clouds. Point clouds allow for capturing of
the current state of the built environment, at varying scales and densities. This may
include point clouds of entire cities generated from Light Detection and Ranging (LiDAR)
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data [204], down to point cloud representations of small office spaces [236]. A DT can
also be expended to different scales, and may include a Geospatial DT [60], which enables
for the combination of data sources not just related to a single building or an object, but
an entire geographical area e.g., a city [140].

1.1 Motivation

General Motivation The main motivation behind this research is to investigate, imple-
ment and evaluate key software components, based on the paradigm of a DT, for indoor
environments and to demonstrate their feasibility for further use in the realm of Real
Estate 4.0 (Fig. 1.1). For FM applications, especially O&M tasks, stakeholders need
access to the current representation of the built environment, which in turn requires
routine generation of an up-to-date BIM. Unfortunately, the generation of up-to-date
digital representation of buildings, specifically using BIM, is an expensive, time consuming
and cumbersome process [265].

The generation and maintenance of BIM data is also largely tied to monolithic
software systems. The use of such software systems requires domain expertise, and they
cannot easily be integrated into existing software platforms used for assessing the current
and predicted operational state of a building. This includes the combination of additional
data sources i.e., IoT data and existing digital documentation, and creates new problems
concerning the analysis of such data in a way that is meaningful and insightful to FM
stakeholders for decision making. The key to solving such a complex issue of digital data
integration, processing and representation is with the use of a DT.

Indoor Point Cloud Capture and Processing Point clouds can be used as base-data
for a DT, but for any meaningful representations and automated assessment point clouds
need to be processed further in order to generate useful semantics. The use of point clouds
poses two particular challenges: (1) Their capture, and (2) their processing required
for generation of useful semantics. While point clouds can provide a snapshot of the
physical environment, point cloud data itself does not feature any semantics by default.
With recent hardware advances in consumer mobile devices, it is now possible to capture
point clouds in an affordable and flexible manner [127], using phones and tablets with
integrated LiDAR and depth perception hardware as part of on-board camera systems.
With this paradigm shift, such hardware can be used by FM operators to capture point
clouds of specific indoor areas without the need of using expensive LiDAR equipment.

Segmentation of captured point clouds is used to mark similar features of point
clusters, which allows for quicker identification of particular objects (e.g., structural
features, furniture in an office, cars on the street, etc.). Evaluations of shape contours
derived from point clouds can further be used to generate 2D and 3D boundary approxi-
mation representations (e.g., computed geometric envelopes or floorplans). Additionally,
data clustering methods can also be used to generate segmented 3D point clusters, and
partitioning algorithms can be used to accelerate their spatial evaluation.
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Point Cloud Classification Segmented point clusters need to be classified to generate
understandable and usable semantics for further evaluation. Classification of point clouds
typically uses deep learning to recognize 2D or 3D spatial and visual features [113].
Training data used to train a deep learning model (e.g., a Convolutional Neural Network
(CNN)) can either be segmented 3D point cloud clusters, geometric approximations of
point regions (e.g., voxels), or 2D images of a specific point cloud or 3D objects (or
real-life photographs of their counterparts).

A flexible and practical method for classification of point clouds is generating multiple
images of point clusters and classifying them using a 2D CNN. This is known as multiview

classification. Generated multiview images can be classified in a service-oriented manner,
and the classification results can be streamed back and associated with each partitioned
cluster of the 3D point cloud. This allows for automated semantic enrichment of point
clusters, and these generated semantics can be further used for reconstruction purposes,
or to provide useful information to stakeholders.

Sensor Data Processing and Visualization Another important component of a DT
representation is the use of sensor data. Sensors measuring building-related natural and
man-made phenomena (e.g., temperature, humidity, electricity usage, carbon emissions,
etc.), can provide information and insights about the current operational status of a
building or office space within it. Visualization of such sensor data can in turn provide
useful insights into the current operational status of a building. Additionally, processed
sensor data can be visualized alongside a 3D representation of the building e.g., those
captured by semantically enriched point clouds.

Interactive Visualization The complete DT representation can be visualized using
interactive 2D and 3D computer graphics. The use of interactive visualization can benefit
stakeholder engagement, information sharing and collaboration by allowing real-time
display and analysis of 2D and 3D visual outputs generated from the captured data.
Furthermore, the use of interactive visualization software libraries and frameworks based
on Web3D standards encourages their implementation within a service-oriented paradigm.

Service-Oriented Architectures and Systems A Service-Oriented Architecture (SOA)
is able to provide scalable integration of processing components, interfaces and data
sources for varying application requirements, thus making it suitable for implementing a
DT representation system. Additionally, an Service-Oriented System (SOS) implementa-
tion typically allows for decoupling of hardware requirements from client devices used by
stakeholders.
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1.2 Problem Statement

The original research presented in this thesis is used to form the answer to the fundamental
research question: "How can digital data representing the built environment be semantically

enriched and combined in order to enable digital representations of such environments

within a service-oriented paradigm, and based on the concept of a Digital Twin (DT)?"

This original research presents methods and approaches for a DT-based representation
and analysis of indoor environments, with a focus on FM-related applications. Specific
challenges and problems addressed by this research include:

1. How can indoor point clouds be processed and semantically enriched in order to

make them useful as base-data for further FM-related analysis and applications?

2. How can as-is point clouds be compared against as-built and as-designed BIM

geometry in order to highlight any spatial deviations?

3. How can indoor sensor data be processed and visualized alongside an indoor point

cloud?

4. How can data related to the the digital representation of indoor environments be

accessed, processed, analyzed and visualized within a service-oriented paradigm?

1.3 Research Contributions

The outcome of this research demonstrates the feasibility of key prototypical software
components and services implementations for digitized FM within a SOS paradigm, and
in turn proves the feasibility of a future DT platform for FM applications within the
realm of Real Estate 4.0. This has the potential to aid in important decision making
related to O&M procedures within the scope of the post-construction life cycle stages of
typical office buildings. Additionally, the following research contributions are presented
in this thesis:

1. A conceptual SOA for a FM-oriented DT platform, which was used as a reference
for implementing and testing key prototypical SOS implementations and software
components.

2. Semantic enrichment of indoor point clouds using deep-learning.

3. Generation and spatial analysis of corresponding geometry obtained from point
cloud data.

4. Processing and visualization of sensor data for indoor point clouds.

5. Processing and visualization of indoor point cloud data.
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Specifically, the following software components and systems have been designed,
implemented and tested as part of the original research contributions for this thesis:

• A service oriented point cloud processing pipeline (Chpt. 3).

• A software component used for generating 2D and 3D floorplan approximations
from 3D point clouds (Chpt. 5).

• A deviation analysis software component capable of highlighting spatial differ-
ences between an as-is point cloud and corresponding as-designed or as-built BIM
geometry (Chpt. 6).

• A classification software component capable of classifying 3D point clusters using
both multiview and object-based classification (Chpt. 7).

• A sensor data processing software component used for parsing spatio-temporal data,
alongside a point cloud, for combined visual analytics (Chpt. 8).

Key Publications The key research contributions described in this thesis have previously
been published in the following 11 peer-reviewed journal and conference papers:

1. Stojanovic, V., Richter, R., Döllner, J., and Trapp, M. (2018). "Comparative
visualization of BIM geometry and corresponding point clouds". In: International

Journal of Sustainable Development and Planning, 13, 1, pp. 12-23.

2. Stojanovic, V., Trapp, M., Richter, R., and Döllner, J. (2018). "A service-oriented
approach for classifying 3D points clouds by example of office furniture classification".
In: Proceedings of the 23rd International ACM Conference on 3D Web Technology

(Web3D ’18), p. 9.

3. Stojanovic, V., Trapp, M., Richter, R., Hagedorn, B., and Döllner, J. (2018).
"Towards the Generation of Digital Twins for Facility Management Based on 3D
Point Clouds". In: Gorse, C and Neilson, C J (Eds.), Proceedings 34th Annual

ARCOM Conference. Association of Researchers in Construction Management,
pp.270–279.

4. Stojanovic, V., Trapp, M., Richter, R., and Döllner, J. (2019). "Generation of
Approximate 2D and 3D Floor Plans from 3D Point Clouds". In: Proceedings of the

14th International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications - Volume 1: GRAPP, pp. 177-184.

5. Stojanovic, V., Trapp, M., Richter, R., and Döllner, J. (2019). "Classification of
Indoor Point Clouds Using Multiviews". In: Web3D ’19: The 24th International

Conference on 3D Web Technology (Web3D ’19), p.9.
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6. Stojanovic, V., Trapp, M., Richter, R., Hagedorn, B., and Döllner, J. (2019).
"Semantic Enrichment of Indoor Point Clouds: An Overview of Progress towards
Digital Twinning". In: Architecture in the Age of the 4th Industrial Revolution -

Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2. pp.
809-818.

7. Stojanovic, V., Trapp, M., Richter, R., and Döllner, J. (2019). "Service-Oriented
Semantic Enrichment of Indoor Point Clouds using Multiview-Based Classification".
In: Graphical Models. Elsevier.

8. Stojanovic, V., Trapp, M., Hagedorn, B., Klimke, J., Richter, R., and Döllner,
J. (2019). "Sensor Data Visualization for Indoor Point Clouds". In: Advances in

Cartography and GIScience of the ICA, 2.

9. Stojanovic, V., Trapp, M., Richter, R., and Döllner, J. (2019). "A Service-
oriented Indoor Point Cloud Processing Pipeline". In: The International Archives

of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, pp.339-
346.

10. Isailović, D., Stojanovic, V., Trapp, M., Richter, R., Hajdin, R., and Döllner,
J. (2020). "Bridge Damage: Detection, IFC-Based Semantic Enrichment and
Visualization". In: Automation in Construction. Elsevier.

11. Stojanovic, V., Trapp, M., Richter, R., and Döllner, J. (2020). "Comparison of
Deep-Learning Classification Approaches for Indoor Point Clouds". In: Publikatio-

nen der DGPF, Band 29, 2020. pp.437-447.

Additionally, one other published paper describes a conceptual approach to the
formulation of the answer to one of the potential future research questions(Chpt. 10.3 -
future work question two): Stojanovic, V., Hagedorn, B., Trapp, M., and Döllner, J.
(2020). "Ontology-Driven Analytics for Indoor Point Clouds". In: RE: Anthropocene,

Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume

2. pp.537-546.
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1.4 Structure

The remaining nine chapters of this thesis are structured as follows:

Chapter 2, Foundations and Related Work Introduction to key ideas and concepts
that influenced the formation of the research problem as well as an overview of all related
work.

Chapter 3, Service-Oriented Architecture and Systems Presentation and discussion
of a conceptual reference SOA used for the prototypical implementation of key software
components, along with system designs for each of the corresponding prototypical SOS
implementations.

Chapter 4, Capture and Processing Indoor Point Clouds using Commodity Mobile

Devices Description of key approaches and methods used for capturing, processing and
visualizing indoor point clouds – with a specific focus on indoor point clouds captured
using commodity mobile devices.

Chapter 5, Point Cloud Reconstruction Overview and description of methods used
for geometric reconstruction of point clouds as well as approximate floorplan generation.

Chapter 6, Spatial Deviation Analysis Description of the spatial deviation analysis
approach used to highlight spatial differences between point clouds and corresponding
BIM geometry.

Chapter 7, Semantic Enrichment of Indoor Point Clouds Methods and approaches
for classification and semantic enrichment of indoor point clouds, with a specific focus on
deep learning-based approaches.

Chapter 8, Processing and Visualization of Indoor Sensor Data Methods and ap-
proaches for processing and visualization of indoor sensor data, with a focus on combined
visualization using point clouds.

Chapter 9, Discussion Presentation of the answer to the key research question, and
the answers to the related research questions. A general discussion of approaches, case
studies and outcomes is also presented.

Chapter 10, Conclusions and Outlook Concluding discussion of the presented original
research based on the initial research question and motivation, summary of key findings
and outline of future research topics.



Chapter 2

Foundations and Related Work

This section provides a detailed overview of core foundations and related work used to ad-
dress the stated research problem (Chpt. 1.2). The foundations behind the approaches and
methods presented in this thesis are strongly related to software engineering, particularity
computer graphics systems, service-oriented computing and Artificial Intelligence (AI)
(including the subset fields of machine and deep learning). The areas of application are
related to Architecture, Engineering, Construction, Owner and Occupant (AECOO) and
FM domains.

2.1 Overview of Digital Representations of Built Environments

The digital representation of the built environment was historically restricted to 2D
CAD drawings and static rendered images of 3D models, or "walk-through" animated
videos. Along with various advancements in real-time 3D rendering at the beginning of
the 21st century, it became possible to visualize complete 3D representations of buildings
using various interactive 3D software and game engines [225]. Such software allowed
stakeholders (e.g., architects, city planners, draftsman, etc.), to inspect various regions
of the 3D model representation of a building, and to ultimately aid in decision making
concerning the design, construction, and intended use of a building [107].

However, static 3D models and 2D CAD drawings can only show the building at a
particular stage during its life cycle, and cannot be used to detect any spatial or temporal
changes that are crucial for examining various important factors e.g., construction and
maintenance times, building status and operational costs. This sort of multi-dimensional
analysis requires the use of a more generalized model that can encompass the digital
representation of the building at various stages during its life cycle, and at a varying
Level-of-Detail (LOD), while factoring in additional variables e.g., time and money [230].
The concept of a BIM was created to address this issue.

According to Eastman et al. [67] BIM encompasses all of the key representational,
analytical and documentation properties in order to enable information sharing between
stakeholders involved in the life cycle of a building. The sharing of information and
multidimensional analysis enables stakeholders to check for specific clashes between
different building elements within a Common Data Environment (CDE) (e.g., structural
components, electrical fittings, etc.) [117]. The use of BIM for engaging stakeholders who
may not have domain-specific expertise in Architecture, Engineering and Construction

9
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(AEC) also provides a distinct advantage, as simplified models shown with specific
attributes related to decision making, can be viewed and assessed without needing to use
complex CAD-related visual metaphors [276].

BIM is therefore supposed provide a greater Return on Investment (ROI) for its
practitioners, and ultimately replace non-digital documentation and provide centralized
data sharing between involved stakeholders. While the adaptation of BIM has also
become mandated in various countries (e.g., in the UK, the use of BIM is mandatory for
public procurement) [100, 65], the adaptation of BIM in various AECOO sectors poses
particular challenges, which have been summarized by Volk et al. [265]:

• Increasing costs, effort and time for generation of usable and semantically-rich data
for generation of up-to-date BIMs.

• Lack of flexible and accurate automated methods for updating of existing BIM
documentation, often requiring domain expertise for manual generation of models.

• Paucity of approaches and methods for processing and analyzing digitized docu-
mentation, entities and relations within the BIM model.

Thus, while the use of BIM, in theory, can provide a solution for completely cen-
tralized and digitized building documentation, in reality its adaptation and use are still
problematic. This is especially the case within the realms of FM and Real Estate 4.0,
where up-to-date representations are crucial for daily assessment and decision making
activities.

2.2 Facility Management and Real Estate 4.0

Facility managers are becoming more aware of the need to update and reference building
features with existing or newly generated BIM datasets in order to provide an updated
building O&M infrastructure. According to Kensek [134], one key challenge in modern
FM is to digitally reflect the current state of the built environment. Another key challenge
is to enable users to monitor and forecast the current state of the built environment,
especially if digital documentation is integrated with real-time or historic data that is
used to provide feedback and support decision making [52]. These challenges create a
demand for automated generation, and updating of digital representations of indoor areas
- using methods that suit the modern IoT environment. There is currently a disparity
in FM between owners and tenants, specifically as to which groups have what specific
access to O&M data (Fig. 2.1).

Current documentation practices for O&M procedures within the FM realm include
using redundant, often outdated, information that is usually available in paper format
only [252]. A centralized and digitized system that can be used to replace any paper-based
documentation, while giving specific access to legible stakeholders, can greatly increase
the operational efficiency of modern buildings. This need for integrated solutions is also
becoming more pronounced as practices from Industry 4.0 are currently being evaluated
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Figure 2.1: The current landscape of building management is usually divided between owner

and tenant/occupant access to processes and decision making. A key concept of using Industry

4.0 practices within FM is creating a new paradigm, called "Real Estate 4.0", which in turn

enables the unification of owner and tenant stakeholder decision making using a centralized digital

representation of a building in the form of a DT.

and adopted for FM use [253, 146]. This in turn leads to the term of "Real Estate 4.0"
or "Real Estate Management 4.0" when describing the use of such practices within in
post-construction context of a given building [180]. There are a number of different
acronyms used in FM for referring to integrated building management systems and
software. Certain systems are best suited for complex operational environments e.g.,
warehouses and factories, and others are more suited for office buildings. While there is
some overlap between these acronyms, it is important to define each one for clarity [123]:

• Building Management System (BMS) or Building Automation System (BAS): In-
tegrated systems used for monitoring various Mechanical, Electrical and Plumb-
ing (MEP) equipment and resources. They are also used to control safety-critical
systems e.g., fire, security, and occupancy comfort systems – using automated
features often tied to enterprise software solutions.

• Computerized Maintenance Management System (CMMS): Software systems used
for management of maintenance specific tasks, often aimed at technical maintenance
personnel (e.g., engineers), and include in-depth representations of various MEP
installations (e.g., air-conditioning and ventilation system diagrams).

• Computer-Aided Facility Management (CAFM): Similar to a CMMS, but includes
a broader range of monitoring and management components e.g., machinery, room
usage, stock control and health and safety.

• Integrated Workplace Management System (IWMS) or Facility Management Infor-

mation System (FMIS): Also similar to CMMS and CAFM, but focused more on
real-estate management, an particular subsets of O&M e.g., space management.
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• Environmental Management Systems (EMS): Systems use for monitoring environ-
mental features related to sustainability e.g., carbon footprint calculations, water
and electricity usage and alternative energy sources management (e.g., solar panels).

According to Roper and Payant [206] the use of building automation, combined with
computer controlled and digitally represented state of a building, can be accomplished
with the use of an IWMS. These IWMSs must be able to communicate and provide
an informative analytical output of the state of a given FM operation to stakeholders,
provided adequate Information Technology (IT) infrastructure is present within the
organization using them. It is therefore crucial that these systems have access to current
and historical operational data of a given building. The use of digitized representations
of the built environment, along with various IoT and digital documentation integration,
has lead to the development of prototypical software solutions aimed at providing useful
insights into the the operational status of buildings to FM stakeholders. An early example
of such an approach has been described by Khan and Hornbæk [137]. Other recent
examples include:

• The use of modern games engines to integrate various data sources and present
them interactively to stakeholders via a BMS-oriented user interface [136].

• A web-based, BAS software prototype for assessing energy usage within a school
building, making use of interactive 3D visualization of a BIM model and 2D data
analysis of related energy usage readings [148].

• An integrated BMS, encompassing a sensor data framework, and making use of
BIM models for representation and focusing on occupancy comfort analysis [184].

• A conceptual software system for Visual Management of construction progress
monitoring, integrating various digital data sources and streaming this data to a
database for further use by an Enterprise Resource Planning (ERP) system [254].

• A cloud-based BIM platform for building services management, making use of
detailed indoor BIM models with associated identification numbers for all items
and areas, alongside location-specific sensor data visualization [49].

While the cited prototypical and experimental software solutions can be considered
feasible, most of them rely on the use of existing BIM data as the primary data source.
There is currently a paucity for software solutions for integrated FM and Real Estate 4.0
that are not dependant on BIMs for up-to-date building representations.

2.3 Visualization for Facility Management

FM stakeholders require support for updating and referencing available building features
with respect to existing or newly generated BIMs. Taking into account the whole life cycle,
the operational cost of a building is generally far higher than the construction cost (five to
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Figure 2.2: Illustration showing the scope of the visualization problem within FM applications.

seven times) and, therefore, the use of intuitive, transparent, and informative stakeholder
engagement systems based on BIM provides benefits to operations, optimizations, and
cost reduction [149]. The use of visualization and analysis of relative data is therefore
crucial for transparent and collaborative decision making amongst involved stakeholders.
For example, to visualize any spatial differences between as-designed/as-built versus as-is
data (Chpt. 6), it is important to understand where this visualization fits into the FM
decision-making scope.

Additionally, the use of interactive visualization allows FM stakeholders to gain
a better understanding of the built environment and make decisions more quickly.
This also enables the important practice of data sharing, and enables FM stakeholders
from all other related FM sub-domains to have access to essential building operation
information [134]. Therefore, each level of decision making for stakeholder engagement
(including visualization) can be thought of as a layer within a decision making system
associated with the FM stage of the building life cycle process (Fig. 2.2).

2.4 Digital Twin Representation of Buildings

In terms of built environment representations, a DT representation fuses as-designed,
as-built and as-is physical representations, with additional information layers pertaining
to the current and predicted states of their corresponding physical entity [188]. Therefore,
a DT can be thought of as a system with constantly updated inputs and processing
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parameters, which can adapt to changes and provide outputs in terms of analytics. Such
analytics can be used for assessment and forecasting of the state of a given process or
the current physical representation of a built environment element (e.g., building, office,
machinery, etc.).

Figure 2.3: A comparative diagram illustrating the hierarchies between data and representations

associated with an existing building. The Data Hierarchy (left), illustrates the concept of a

DT representation that fuses current and historic data sources in order to generate an up-

to-date representation of a building. This includes the physical representation of a building,

real-time and historic data (e.g., sensor data), and any other associated digital documentation.

The Representation Hierarchy (right) illustrates the DT as a highest level representation when

compared to as-is BIM and semantically-enriched point clouds. This level in the representation

hierarchy is based on the ability of the DT to make use of data analytics in addition to as-is

representations, and to potentially forecast states based on current analysis of outputs concerning

various processes associated with the O&M stages of a buildings management.

The use of BIM-related data, along with real-time or historic sensor data as well
as digital documentation (e.g., floorplans, contracts or manuals, etc.), can be combined,
analyzed and provide useful analytic insight into the building that can be addressed by
FM personnel [242]. Although there is some overlap in terms of applications between
DT and BIM representations for visualization, analytics and decision making, for this
research DTs are treated as a higher-level representation that includes both as-designed,
as-built and as-is BIM data and any other associated semantics. A DT representation
fuses these representations with additional information layers pertaining to the current
state of the built environment (Fig. 2.3).

DT systems greatly benefit from AI concepts and methods, particularly with the use
of Machine Learning (ML) for training certain components of a system to predict outputs
based in given inputs (e.g., historic spatio-temporal data found in recorded sensor data
readings) [60]. There have been previously published case-studies where prototypical DT
platform implementations and framework components have been evaluated:

• Qiuchen Lu et al. [197] describe the development and testing of a prototypical DT
of a university campus. They propose an integrated system architecture, making
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use of as-is BIM models as the main representational data source, along with other
data sources (e.g., real-time sensor data, IoT devices, asset management data, tags
and other digital documentation).

• Kaewunruen and Xu [126] describe the development of a DT for a metropolitan
railway station, using a multi-dimensional (6D) BIM, implemented with Autodesk
Revit. The railway DT is able to model simulations using time and cost schedule
variables as well as carbon emissions and renovation plans.

• Kaewunruen et al. [125] discuss the use of a DT for evaluating low-carbon potential
for existing buildings, using a BIM model along with a hierarchical flowchart used
for the selection of Net Zero Energy Building (NZEB) refurbishment and integration
specifications.

• Jain et al. [119] describe a prototypical approach for incorporating DTs of buildings
into existing Supervisory Control and Data Acquisition (SCADA) systems, with a
focus on evaluating energy usage and performance.

• Jian et al. [121] present a theoretical framework for integration of various data
layers pertaining to DT representations of buildings. They stress that the use of a
DT to highlight dynamic processes and simulation results, via a centralized and
IoT-enabled platform, provides great potential for enhancing building intelligence
and sustainability.

• Baeder et al. [14] present and discuss a DT platform for simulation of city in-
frastructure and population dynamics. The platform integrates open-source and
commercial data, with the current focus of simulation being on traffic analysis.

• Borth et al. [32] evaluate DT integration into system of systems architectures, with
a focus on smart grid and smart building domains. The authors advocate a modular
approach for DT integration into such systems.

• Martínez et al. [162] describe the use of simulation-based DTs in order to forecast
future states of plant machinery for industrial manufacturing operations. They use
a 3D plant model along with related data in order to simulate processes alongside
actual ones, with the aim of acquiring data for analysis and further decision making.

• Lu and Brilakis [158] describe a prototypical DT of a reinforced concrete bridge,
based on semantically enriched point clouds, and corresponding reconstructed
geometry, which can be used for as-is BIM representations in further condition
assessment and forecasting tasks.

It can be observed from the cited literature that there is a paucity for non-BIM based
representations and analysis, especially for frequently updated digital models of build-
ings. Furthermore, there is a discrepancy between implementation architectures as most
solutions rely on using monolithic and commercial software applications, while others ad-
vocate the use of system architectures tied to common IoT implementation specifications.
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The implementation of a DT platform requires all of the data access to be centralized, so
that relevant stakeholders can have access to specific outputs needed for their sector of
operations (e.g., room management, energy management, occupancy comfort, health and
safety, etc.). The platform must generally satisfy the following requirements, inspired
by the formulation of typical software requirements as described by Wiegers and Beatty
[273]:

• Be non-monolithic and scalable for different Information and Communications
Technology (ICT) infrastructures.

• Provide centralized access to stakeholders.

• Have ability to process different data types as inputs.

• Have ability to analyse the different data types.

• Generate both visual and numeric outputs.

• Must be reliable, robust, secure, maintainable and portable.

These requirements are important as currently the majority of approaches for 3D
visualization in FM rely on desktop-based applications, which do not necessarily offer
flexibility in terms of hardware and software portability, maintenance and usage [103]. In
order to meet these requirements for a DT platform implementation, a suitable software
system architecture must be selected. A prime system architecture candidate for this is a
SOA.

2.5 Service-Oriented Architectures and Systems

Figure 2.4: A high-level example of a service-oriented approach for FM stakeholder engagement.

The fundamental concept behind SOAs, and their SOS implementations, is the
abstraction between the processing components (known as service-components), typically
implemented as back-end software running on dedicated servers, and the front-end client
interface used for requesting and receiving the computed results (Fig. 2.4). An important
feature of SOSs is that they can decouple hardware requirements, needed for computing
complex visualizations and analytics, from client devices that may not have certain
hardware capabilities [108].
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For example, service-based visualisation can enable streaming of complex visualisation
results to clients running various hardware configurations e.g., smartphones and tablets.
Some mobile devices may be older generation and may not have the ability to process
visualisation data in real-time using their native hardware (known as thin clients). Thus,
data can be pre-processed and streamed from a server in real-time to a thin client using
an SOS implementation [62]. Apart from visualization, this approach can also be used
for complex computation such as ML-based classification of certain data (e.g., point
clouds [241]). Other examples of SOAs and SOSs used for built environment visualization,
BIM and DT representations include:

• Franz et al. [83] describe the development and use of a SOS platform for collaborative
reconstruction of indoor point cloud scenes, captured using commodity mobile 3D
scanning devices, and with the stakeholder focus on crime scene investigation.

• Qiao et al. [196] provide an overview of the state-of-the-art for Augmented Re-
ality (AR), via web-based applications and service-oriented architectures. They
describe how the use of lightweight web-based software components can benefit the
application of AR for practical visualization scenarios.

• Research by Zhao et al. [287] describes the use of a SOA for updating BIM and
energy models during the design phase of a building construction project.

• Scully et al. [220] describes how web-based 3D visualization can be used for tracking
of related 3D assets through a service-oriented and BIM-enabled online repository.

• Lee et al. [150] provide details about a prototypical web-based portal for collabora-
tive BIM-based FM decision making, using an interactive 3D visualization approach,
and implemented using an SOS.

• Richter and Döllner [205] describe the design, implementation and testing of an
SOS for visualization of massive point cloud datasets, using Graphics Processing
Unit (GPU)-based rendering methods.

The case studies in the cited literature demonstrate that the use of an SOA is a
suitable software system design candidate for implementing DT platforms – by enabling
the integration of various data sources, processing them and delivering the analysis results
to stakeholders [253]. Furthermore, the advantages of using an SOS for visualizing BIM
models, IoT-enabled smart home visualization, and point cloud for robotics applications
have been described by Zhang et al. [284], Pouke et al. [189] and Toris et al. [256].

Due to the routine and frequent nature of FM operations, a centralized online system
with on-demand processing capabilities and streaming to thick, medium or thin clients
provides an advantage over using monolithic enterprise software on workstations [57].
This enables routinely captured data (e.g., point clouds) to be processed and visualized,
and allows for analytic insight into various spatio-temporal data (e.g., sensor data readings
related to occupant comfort [252]).
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2.6 Point Cloud Representations of Indoor Environments

Figure 2.5: Typical representations of indoor point clouds include Red-Green-Blue (RGB) or

intensity-based point clouds, which may include additional attributes e.g., pre-computed normal

vectors.

Point clouds can be defined as a collection of points in space, with each having the
mandatory attribute of a 3D position (usually in Cartesian coordinates), and optionally
either an RGB color value (optionally with an additional opacity value), or an intensity-
based color value (usually mapped as a single value to a grayscale gradient) as well as
an optional normal vector that is computed post-capture (Chpt. 4.3.4). As such, once
captured (e.g., by means of recorded signals from a scanning device), they can represent
a real-world physical object or space (usually in its static state) (Fig. 2.5). Most notably,
point clouds can provide 3D and textured up-to-date physical representations of the built
environment up to high resolutions (millions of points per square meter), and featuring
intricate details [58]. According to Richter [204] point clouds can "represent almost any

type of physical object, site, landscape, geographic region, or infrastructure...at all scales

and with any precision”.

However, point clouds consist of what can be defined as non-interpreted data – data
that is open to visual interpretation but does not have any semantics associated with
it. While point clouds can be used by themselves to represent the current state of the
physical environment for practical needs (e.g., visual observation and assessment of space
usage in a room), for more complex representations and assessment, the point cloud needs
to be processed further in order generate useful semantics for it. The final output of a
semantically enriched point cloud can then provide great benefit to AECOO practitioners
and stakeholders e.g., FM operators who want a deeper, more detailed and intelligent
insight into the current state of the built environment [198], or for use as e.g., base-data
for reconstruction of indoor 3D floorplans in emergency and disaster management and
planning [174]. Detailed descriptions of key approaches and methods for indoor point
cloud capture, processing, analysis and visualization are further expanded in Chpt. 4
and 5.
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Capture LiDAR systems have been used in the previous few decades for remote sensing
tasks, and have since been adopted for use in AEC sectors [44]. However, the use
of LiDAR devices was up until recently prohibitively expensive for regular use, and
requires domain expertise to setup and to operate [183]. The use Terrestrial Laser
Scanner (TLS) systems for LiDAR-based scanning enable the capture of highly dense
point cloud representations (commonly in ten’s to hundred’s of Gigabytes in size), with
an accuracy between one to ten millimeters for BIM applications, depending on the TLS
method used (e.g., Triangular, Phase Difference or Time-of-Flight (ToF) [157]). These
representations are usually encoded as intensity-based color values (e.g., grayscale), but
may be combined with depth-sensing and Charged-Coupled Device (CCD) technologies
(i.e., digital cameras), in order to fuse digital photography RGB and depth images
with the point cloud – thus adding additional features to each point [18]. With recent
technological advances in commodity mobile devices, some integrated LiDAR solutions
are currently also available at affordable costs [221].

A second alternative method for capturing point clouds is with the use of photogram-

metry techniques. Photogrammetry is based on the concept of matching sequentially
recorded images in order to create a 3D reconstruction of the object or area in focus, using
methods such as Structure from Motion (SfM) and Dense Image Matching (DIM) [175,
202, 94]. Photogrammetry can be more practical for routine capture of point clouds, but
can still require significant processing time depending on the image-matching algorithm
used as well as longer processing time for the generated dense point clouds. Additionally,
close-range photogrammetry requires knowledge of photography methods and domain
expertise when capturing objects e.g., bridges [122]. However, the generation of suitable
point clouds for as-is BIM from photogrammetry is possibly a cheaper, quicker and
practical alternative than using LiDAR-based systems such as TLS [40].

The third alternative method is the use commodity mobile devices, which can combine
LiDAR and photogrammetry-based methods for capture of point clouds. The use of
commodity mobile devices with depth perception capabilities (including recent commodity
mobile devices with integrated LiDAR sensors), for capture of indoor point clouds, is
advocated as the optimal method for capture of indoor spaces for FM applications
(Chpt. 4.2). Commodity mobile devices that feature such capabilities can be termed as
being Point Cloud Capture Technology (PCCT)-enabled. There are particular advantages
and disadvantages for using PCCT-enabled mobile devices for point cloud capture,
specifically concerning the built environment:

• Senthilvel et al. [222] provide a comparison between two earlier prototype devices
based on the Google Tango and ZED camera specifications. They note that the
devices can acquire a point cloud using the depth-estimation provided by a ToF
and stereo-vision capture and reconstruction methods. The authors also noted the
low cost, eas of use, high portability and adequate resolution of captured point
clouds, making the use of such devices suitable for practical indoor capture.
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• Virtanen et al. [263] describe a case study where they used a Matterport mobile
scanning device to acquire an indoor representation of an abandoned psychiatric
hospital for heritage-oriented stakeholder engagement through interactive 3D visu-
alization. The authors noted that the Matterport mobile scanning system was best
suited for capturing details of areas of smaller sizes, as for larger areas (e.g., long
corridors or halls), the captured detail diminished. This point cloud was compared
with a point cloud of the same area acquired using a TLS, using deviation analysis
methods in order to verify its accuracy and suitability for heritage visualization
applications.

• Boboc et al. [30] evaluated scanning results of an outdoor statue for heritage
visualization, captured with a Google Tango-based mobile device. The authors
evaluated the captured point cloud against a photogrammetry-based point cloud for
surface deviations, and found that the point cloud captured with the Google Tango
device was of suitable quality for heritage visualization applications (e.g., important
surface details could be preserved in the reconstructed mesh representation). The
authors also noted that the point cloud captured by the Google Tango devices was
far smaller in terms of points, while being able to preserve all of the important
heritage details of the statue.

• Kalyan et al. [127] present a comprehensive evaluation of the quality of as-built
model capture for Construction Quality Assessment (CQA), using an early Google
Tango prototype. The authors noted that the captured point clouds were not of
high enough quality to be useful for CQA applications, but that they are more
suitable for applications where the accuracy threshold error is tolerated above the
limits of CQA.

Registration Registration of point clouds is the process of transforming and aligning a
point set with another similar point set, 3D geometry or a 2D floorplan. While in most
cases point alignment can be performed manually by the user, an automated approach
can also be used if dealing with more complex point sets. Such automated approaches
make use of spatial transformation in order to transform a point set to match either
the complete set or control points of corresponding geometry, usually using iterative
transformation algorithms [22]. Chen et al. [45] present a plane/line comparison approach
for registering complex real-world point clouds.

An iterative point matching approach is also useful for aligning a given point cloud
to a floorplan section, in order to add location-based semantics [269]. Such an alignment
approach can also be extended to make use of latitude and longitude Global Positioning
System (GPS) coordinates of the points if available (known as geotags), in order to align
a point cloud with a map, site layout or floorplan [128].

Sub-sampling and Noise Removal Captured point clouds usually need to be sub-
sampled, and have any visual noise and clutter removed using manual or automated
methods [55]. In certain cases, the captured point cloud may need to be sub-sampled if
it is too dense (thus takes too much memory or time to load and process).
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Point cloud sub-sampling methods sample the given distribution of points using a
selected point sampling scheme, where a certain number or percentage of points is removed.
Such methods attempt to preserve the overall visual fidelity of the mesh [168, 277]. Point
cloud noise that may be introduced due to surface roughness, partially captured data or
overlapping point clusters, can be removed using manual or automated noise removal
methods. For automated methods, the use of Principal Component Analysis (PCA)-based
methods can be used to detect outlier points [215, 171].

Normal Vectors Calculation The normal vectors for each of the points can be computed
post-capture, and used as an additional feature. The use of vector normals is important
for tasks such as geometric surface reconstruction and segmentation. The computation of
point normals can be accomplished by analyzing the local neighborhood of a point [167],
where the normal vector is oriented according to the represented neighbouring points. The
neighborhood of a point can be computed using the covariance matrix of the k-Nearest
Neighbors (KNN), and corresponding eigenvectors and eigenvalues [109].

Segmentation The segmentation of a point cloud can be described as dividing and
marking similar regions of point clusters, which allows for quicker identification of physical
features [173]. Segmentation can either be performed manually, or using an automated
approach. Most segmentation methods are suited for detection of clusters conforming to
the spatial distribution resembling standard geometric objects e.g., cylinders, spheres,
cubes, and planar surfaces. Using geometric primitive-based approximation methods
such as RANSAC, which try to fit these points to a given geometric surface, objects e.g.,
walls, floors and ceilings can be detected and segmented [218]. Additional methods such
as region growing and semantic segmentation are discussed in Chpt. 4.3.5 and Chpt. 7.6.

Visualization Point clouds can be visualized in 3D by projecting each point as a vertex
primitive in a 3D Certesian space, along with its assigned material properties (this usually
includes the color and the shape of the point based on an assigned texture image). The use
of the modern GPU-based programmable graphics pipeline enables real-time rendering of
larger point cloud data (with millions of points), along with stylized rendering for further
enhancement of visualization results (Fig. 2.6). The use of shaders (special programs
that run on the GPU) can additionally be used to implement specific rendering styles
and effects on given geometry (e.g., point clouds, BIM data, CAD models, etc.) [5].

With the standardization of the Web Graphics Library (WebGL) Application Pro-
gramming Interface (API) for most modern web browsers, it is possible to visualize
in real-time 3D various models and generated outputs on client devices, ranging from
desktop personal computers to mobile phones and tablets. However, one limit of most
web-based 3D visualization frameworks and APIs is the lack of support for out-of-core
rendering of massive amounts of point-cloud data. This requires resorting to streaming
and optimization methods based on scene-partitioning, using data structures e.g., octrees
or k-d trees [219, 205].
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Figure 2.6: Example of edge detection stylized rendering for an indoor point cloud (right),

compared to the default point shading method using the color value of the points only (left).

2.7 Spatial Deviation Analysis

(a) As-designed BIM geometry. (b) As-is point cloud.

(c) Aligned as-is point cloud with as-designed BIM geometry. (d) Misaligned as-is point cloud and as-designed BIM
geometry, with spatially deviating points highlighted in red.

Figure 2.7: Example of spatial deviation analysis between as-designed BIM geometry and as-is

point cloud when aligned and misaligned.

The problem of comparing spatial differences between aligned geometric representations
of as-is or as-built versus as-designed geometry representations is a common occurrence,
especially when comparing point cloud and BIM geometry representations (Fig. 2.7).
This may include comparing the inclusion or exclusion of certain building elements when
compared to the original as-designed built environment representation, their spatial
alignment corresponding to existing documentation (e.g., floorplans), and changes of core
structural elements (e.g., wall constructions or demolitions, or addition of new elements
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such a rough openings for doors and windows frames), which deviate between as-designed

and as-is representations [234].
Previous literature discusses and attempts to find the solution to the problem of

spatial deviation analysis:

• Anil et al. [8] focused on using an existing commercial software tool to import
corresponding as-is BIM and point cloud representations, in order to perform
comparative deviation analysis – using a computationally expensive method based
on minimum Euclidean distance comparison.

• Bosché and Guenet [34] presented a set of methods for evaluating surface regularity,
based primarily on matching points from a point cloud to an as-built BIM component
representation. The points are matched to the corresponding BIM geometry using
either surface proximity (measuring the orthogonal distance of a point to the BIM
geometry surface), or using surface normal similarity (comparing the pre-computed
normal vectors of the each point to the normal vectors of the BIM geometry surface).

• Research by Turkan et al. [260] looks at using spatial deviation analysis methods
for tracking of construction progress on building sites, specifically looking at
detecting primary and secondary components from point clouds. They present
three techniques for deviation analysis, first two of which are based on earlier
research by Bosché and Haas (2008) – based on aligning the as-built BIM geometry
within the corresponding the point cloud, where the range between the as-is and
as-designed point/triangle intersection is measured using ray tracing, while their
third method uses the bounding volumes of negative areas of each BIM geometry
component to detect a number of points contained inside in post alignment [33].

• Bassier et al. [19] evaluated the use of a Finite Element Analysis (FEA) method for
structural analysis of heritage timber roof structures. They compared two aligned
models and checked for deviations in the post-registration phase - one was a simpler
wireframe model and the other was a complex discretized mesh representation.
They noted the benefit of using a more complex geometry discretization scheme for
increased spatial deviation analysis accuracy, as opposed to using the least complex
geometric representations often featured in BIM geometry models.

• Wang et al. [268] used deviation analysis for comparing an as-is point cloud
captured using a remote Unmanned Aerial Vehicle (UAV) and the corresponding
as-designed BIM model. They recommend the use of different registration methods
for alignment of comparative data, particularly the zone fitting algorithms described
by Choi and Kurfess [50] - assuming no matching coordinate information is shared
between the two data sets. The deviation analysis is then performed automatically
using commercial BIM software.

• Bonduel et al. [31] describe the use of as-is point cloud and as-built BIM comparisons
for detecting micro and macro spatial changes. They make use of the CloudCompare
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software tool [88], to carry out the primary deviation analysis for detecting macro
spatial changes, and use a custom plugin for removing certain components (e.g.,
windows), from a BIM model prior to detecting micro damage.

• Talebi et al. [249] present a processing pipeline for tolerance compliance measurement
using point clouds captured with a TLS. The use and visualization of spatial
deviation analysis results is deemed as crucial for evaluation of the registration
accuracy of captured point clouds.

It can be observed from the cited research that there is a paucity for a flexible
and computationally efficient deviation analysis solutions. The two main problems are:
(1) Registration of the two data sets that are to be compared in a same coordinate
system and transformation frame, and (2) Efficiently calculating the spatial deviations
for hundreds of millions of points to the nearest matching geometry surface.

The first problem can in most cases be solved using a selected point registration
scheme e.g., Iterative Closest Point (ICP) [164]. The second problem is more complex to
solve, as it requires the use of a geometry discretization and point-to-polygon comparison
scheme. This may also include the generation of an additional Finite Difference Mesh
(FDM) representation of the as-designed or as-built BIM geometry [21, 93] as well as the
post-processing of the compared point cloud geometry [232].

2.8 Point Cloud Reconstruction

(a) Processing and reconstruction of captured point cloud
data (e.g., segmentation).

(b) Generated as-is BIM representation.

Figure 2.8: Example of reconstruction of an as-is point cloud to an as-is BIM (process known

as "Scan2BIM"). The captured point cloud (left) is processed using various steps such as normals

computation and segmentation as well as semantic-enrichment. The semantically enriched point

clusters from the point cloud can then be used to generate as-is BIM geometry components.

2.8(a) shows the initial results of segmentation of an office hallway, and 2.8(b) shows as-is BIM

reconstruction result of parts of the same hallway.
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The fundamentals of geometry reconstruction of points are rooted in the field of compu-
tational geometry. Important early research by Preparata and Shamos [193] described
efforts to implement computational geometry algorithms, in order to enable the generation
and rasterization of 2D and 3D geometry on early mainframe and personal computers.

The generation of 3D mesh approximation from segmented point cloud clusters
is required for further semantic enrichment operations. Solid-geometry and watertight

mesh representations, based on point clouds, are particularly useful for generation of
as-is and as-built BIM representations [178, 250]. An approach using the Random
Sample Consensus (RANSAC) segmentation method is presented by Liu et al. [154]
for reconstruction of building models from both complete and incomplete point cloud
representations.

Methods for reconstruction vary depending on the intended usage of the generated
mesh representation (Fig. 2.8). This process is often referred to as "Scan2BIM", and
involves a number of sub-processes that parse, optimize, enrich and reconstruct the point
cloud – in order to generate higher-level geometric representations (e.g., BIMs, floorplans,
etc.) [169]. Certain methods provide more accurate reconstruction, by better preserving
the shape of the reconstructed point cluster.

Reconstruction of point cloud geometry to a triangular mesh representation requires
the use of approximation algorithms, which can detect a minimum number of vertex
primitives in order to triangulate the required mesh surfaces. The simplest and least
accurate method is the approximation of a 3D convex hull shape [17]. This approach is
useful for approximating the overall volume dimension of the 3D shape represented by
a reconstructed point cluster, but does not preserve any important details e.g., surface
cavities and curvature.

A more robust method that can preserve the surface curvature to varying levels of
detail include the Poisson surface reconstruction method [130], which is generally more
suited towards reconstructing organic shapes due to its nature to smooth hard edges
in its 3D shape approximation. The Ball-Pivoting Algorithm (BPA) is a simple surface
reconstruction algorithm that approximates a triangular mesh by connecting every three
vertices that touch the radius of a rolling sphere [24]. The BPA method is generally able
to preserve the hard edges often found in built environment representations, thus it is
more suitable for AEC visualization and geometry analysis applications.

A Boundary Representation (B-Rep) of reconstructed point cloud and existing BIM
geometry are also useful as parametric-based descriptions of 3D objects. B-Reps preserve
the structure of the 3D mesh by distinguishing and linking the vertex, edge and face
connections to a given surface – thus forming a boundary between solid and void 3D
spaces [244]. B-Reps have the advantage of not requiring the use of triangular tessellation
for rasterization and display of geometry – as the main topology (e.g., quadrilateral faces)
and connecting geometry (e.g., edge lines and points) are used as the simplest primitive
form for display and further evaluation.

In addition to triangular and B-Reps, a voxelized representation of point cloud and
BIM geometry can also be used as a parametric surface representation. A voxelized
representation of an as-built or as-designed mesh can be generated by evaluating the
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shape and projection properties of the triangular mesh that is used to generate a 3D
voxel grid [71]. This voxelized representation of the mesh can be computed, at varying
resolutions, most commonly using octrees [110] – and can preserve most of the geometric
features of the original polygonal mesh, making it useful for approximating spatial
deviations of both regular or irregular (e.g., curved) geometry. The use of a voxelized
mesh representation is similar to the style of FDM representations used for FEA.

The use of clustering algorithms also plays an important role in evaluating the
topological properties of point sets. Often a 3D point cloud may be of very large
complexity and may require subdivision of the point clusters for reconstruction or
inspection purposes. The most common and established clustering methods for point
data include k-means [155] and Density-based Spatial Clustering of Applications with
Noise (DBSCAN) [74]. The k-means algorithm is best suited for approximating clusters
that have no clear spatial divisions but are of varying density, while the DBSCAN
algorithm is better suited for approximating point sets with uniform density.

The final important element of 3D mesh reconstruction from point clouds is the
ability to use the reconstructed meshes for adding, subtracting or merging operations
with other existing geometry of the same type. This requires the use of Constructive
Solid Geometry (CSG) operations [81]. CSG allows for the approximation of cavities and
merged geometry using Boolean operations. The quality of CSG results depends largely
on the implemented partitioning and tessellation schemes, but often 3D meshes that have
CSG operations performed on them will increase in geometric and visual complexity. The
use of CSG also allows for the introduction of explicit 3D geometries into the implicit
building component geometry representations using B-Reps [177].

2.9 Semantic-Enrichment of Indoor Point Clouds

Specific meaning in the form of semantics needs to be introduced to point clouds,
in order to make them useful for further analysis, visualization and decision making
tasks (Fig. 2.9). Reconstruction of indoor environments e.g., offices, houses, factories,
storage facilities, etc., poses a particular challenge as reconstructed geometric data is
not classified by default, and manual classification is a complex and time consuming
process [43]. Methods for semantic enrichment of indoor point clouds are mostly focused
on automated detection and classification of point clusters with either statistics or
deep-learning-based approaches [270, 13].

Previous approaches for semantic enrichment of point clouds for indoor navigation
have been described by Fichtner [76]. Object-specific classification for further enrichment
of BIMs has also been researched, with examples including lamp detection [259], and door
detection [199]. Additional research focusing on semantic enrichment and segmentation
of point clouds includes:

• Research by Bloch and Sacks [29] describes an approach for room classification of
standard apartment floorplans, and states the requirements for semantic enrichment
of relevant BIM data.
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• Research by Ikehata et al. [112] describes the implementation of structured indoor
modelling for automated segmentation and semantic enrichment of floorplans from
point clouds.

• Research by Poux et al. [191] presents a framework for semantic enrichment of
indoor point clouds, using selected object features and analytic scene information
to automatically insert 3D object models in place of classified point clusters.

• Sadeghineko et al. [213] describe the generation of semantically rich BIM models
from point clouds, where each segmented region of a point cloud is given a unique
annotation and used to form an ontology, thus enabling relationships between BIM
elements to be captured and queried.

The use of semantics for BIM representations is the key factor behind the development
of the Industry Foundation Classes (IFC) file format [36]. The IFC file format is
intended to capture the geometric, spatial and semantic relationships between each of
the components of a building within a representational hierarchy [261]. While the file
format is meant to provide a general interface for all built environment applications,
its complex structure and usage paradigms make it particularly challenging to update
frequently (time, lack of interoperability between systems, and domain expertise being
the main constraints) [133]. Within the scope of building management, the use of IFC
data is mostly limited for infrequent digital building documentation generation, usually
at the early design and construction stages, and less frequently during the operational
phase of a building.

Another file format, which is meant to be more suited towards FM use is the
Construction Operations Building Information Exchange (COBie) data format [66]. The
COBie data format is essentially a spreadsheet-based file format used for assessing the
as-built condition of a building, and for asset management. The file format does not
include any graphical representations of the building by default, and therefore does not
tie any semantics explicitly to any digital representation of a building [147, 252].

File formats for energy consumption and representation of "green buildings" are
also becoming more common. Garwood et al. [87] present a conceptual framework for
Building Energy Modeling (BEM), using as-built BIM geometry reconstructed from as-is
point cloud representations of a modern manufacturing facility. The authors make use of
the reconstructed as-built BEM envelope (based on the point cloud representation to to
assess thermal and energy performance), and convert the as-built BEM model into an
Extensible Markup Language (XML) schema-based file format (gbXML), and then use a
variety of energy simulation software for validation.

Apart from reconstruction to as-is and as-built BIM representations, point clouds
themselves can contain enough information to make them valuable for domain expertise
use within the realm of AEC, and specifically FM. There is a paucity for using frequently
captured point clouds for up-to-date representations of the built environment, specifically
within a file format such as IFC. Krijnen and Beetz [145] propose an IFC schema
extension for including point cloud using a compression method. Poux et al. [190] discuss
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the need for a "smart point cloud" representation, comparable to an analytics platform in
terms of proposed implementation – where point cloud semantics (domain expertise, raw
point clouds, processing, sensor data, classification, etc.) are included with the complete
point cloud representation for various analytical and stakeholder engagement purposes.

Semantic Enrichment Approaches Semantic enrichment of point clouds are typically
based on three approaches: (1) Manual semantic segmentation, (2) Statistics-based and
(3) Deep-learning-based approaches [99]. Manual segmentation involves direct input from
stakeholders with domain expertise, who typically inspect the point cloud within a 3D
software tool [9]. Using such a 3D software tool (e.g., CloudCompare [88]), stakeholders
can also manually segment regions of interest and annotate them with additional layers
of information (e.g., Uniform Resource Identifier (URI) codes, names of objects of
interest, etc.). On the other hand, the use of automated (either fully or semi-automated
approaches), based on either statistics or deep learning approaches allows for more flexible
processing of larger and visually complex point clouds [255].

The use of statistics-based versus deep learning-based approaches is largely case de-
pendent. For more complex environments with lots of clutter (e.g., indoor environments),
the use of deep learning-based approaches provides better results [239]. Statistics-based
approaches favour the analysis of the spatial distribution patterns of captured point
clouds – in order to separate distinguishing clusters from similarly distributed point
regions. Alternative approaches have been described by Ponciano et al. [187] for detection
of objects in point clouds based on an ontology, where the characteristics such as density,
bounding shape, color and distribution of point cloud clusters are used in order to create
a knowledge-base for assignment of semantics.

Wolf et al. [275] provide an overview of statistics-based classification techniques for
semantic-enrichment of outdoor point clouds captured primarily using vehicular mobile
mapping. They conclude that statistics-based classification techniques are useful for fast
classification of outdoor point clouds, and can further be expanded by adding additional
features and dimensions to the point cloud representation (e.g., 4D point clouds that
include changes over time). Tran et al. [257] propose an approach for reconstruction
of 3D floorplans using shape grammars, in order to establish topological relationship
between segmented rooms found in typical office layouts.

Semantic enrichment of point clouds with deep-learning is typically based on using
a CNN in order to classify point clusters using specific representation features [98, 42,
113]. The CNN can be used to recognize 2D or 3D spatial and visual features of a given
point cluster [111]. Classification of 2D raster images of 3D point clusters, known as
multiview classification, uses sequentially generated images of a point cloud cluster in
order to classify them and then assign semantics back to the point clusters. [245]. The
multiview classification results can be streamed back and associated with each point
cluster of the point cloud using a SOS implementation. [236].

Apart from using images for training multiview classification models (typically 2D
CNNs), the use of voxel and actual point data types can be used to train a 3D CNN [246],
which can increase the classification accuracy of different objects belonging to similar
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categories (e.g., a sofa-chair versus a chair). Specific 3D CNNs used for classifying point
clouds e.g., PointNet [194] and PointNet++ [195], have been used successfully for such
object detection scenarios as well as for classification of sub-components of objects (e.g.,
the wheels of a portable office chair, or a computer on top of a desk) [281].

The multiview classification approach requires only the use of 2D images of a 3D
point cluster for classification, thus significantly reducing the bandwidth required to
transfer data between the client and server for classification. However, the accuracy
of the multiview classification approach depends on the quality of the images used for
training as well as the viewpoint entropy of the images being classified [236]. Object-based
classification provides more accurate results, but requires increased bandwidth transfer
times between client and server as well as point clusters for training that are not as
readily available as 2D image data [239].

(a) Input point cloud. (b) Labelled point clusters.

Figure 2.9: Example of semantic-enrichment of an indoor point cloud 2.9(a), where point clusters

representing common office furniture have been semantically-segmented using a deep-learning

method e.g., multiview classification 2.9(b). In this example the probability of each of the segmented

clusters belonging to a specific office furniture class is presented.

2.10 Indoor Sensor Data Integration

One of the key challenges in modern FM is visualization of historic and current sensor
data within as-is built environment representations, e.g., digital floorplans or 3D building
models – derived from a building’s digital representation (e.g., BIM, point cloud, CAD
model, etc.) [251]. Sensors measuring building-related natural and man-made phenomena
can provide information and insights about the current operational status of a building
or a site (Fig. 2.10).

The linking of captured sensor data to the physical assets (e.g., rooms, MEP
components) they refer to, and their combined visualization, and resulting enhancement
of decision making and communication tasks, poses two key challenges for integration
into SOS-based DT platforms [237]. The first challenge is the capture, processing and
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integration of sensor data into a DT platform, especially if the platform is based on SOA
principals. Since sensor data can be either real-time or historic, efficient processing of
data (e.g., normalization of numerical values within a time series), and mapping this data
to a specific building component within its digital representation is required. Previous
research has attempted to address this problem:

• Arthur et al. [12] simulate the use of integrating numerous sensors within a given
building. Their approach simulates the use of temperature and humidity sensors
using a Data as a Service Platform paradigm, which allows for empirical results to
be collected and analyzed for further implementation feasibility studies.

• Research by Kensek [135] focuses on integrating sensor data acquired using affordable
sensors and its mapping to as-built BIM representations using commercial BIM
software and related plugins.

• Pasini et al. [184] propose an integrated sensor framework, using remote sensors
that are stored in a given BMS, and use it to perform analysis and building control
tasks, while sensor data is visualized using the BIM for furthering stakeholder
engagement.

• For construction site monitoring, Tezel, Aziz, et al. [254] state the advantages of
integrating "Site Data Collection" of various IoT sources, and transmitting this
data to a database and associated ERP as well as to thin, medium and thick clients
for further digital documentation and visualization.

• Chien et al. [49] make use of a highly-detailed as-built BIM model together with
associated digital object identification numbers, and then map location specific
sensor data analysis and visualization outputs.

• Scheffer et al. [216] describe a prototype system for integrating sensor data readings
into simple IFC model representations.

• Santhanavanich et al. [214] present a prototypical service-oriented platform for
integrated sensor and geospatial information representation.

• Arslan et al. [11] describe the development of a prototypical BIM and sensor
integration platform for monitoring temperature, activity and water sensor values
using a distributed computation platform.

• Kazado et al. [129] present an approach for integration of real-time and historical
sensor data and BIM, with a focus on utilizing existing CDE software and related
APIs.

The second problem is concerned with transforming and visualizing processed sensor
data. Since the processed sensor data is numerical and takes into account changes over
time, methods for visualization of spatio-temporal data can be used. Such visualization
approaches include: thematic color mapping of segmented indoor areas [185], textual
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information displayed alongside the 3D model [189], abstracted 3D visualization elements
e.g., 3D bar graphs [262], and combined 2D data results with spatially corresponding 3D
scene markers for linked visualization of energy-related building data [227].

Combined visualization of digital building representations and sensor data can further
be benefited with the use of real-time 3D graphics rendering technologies. Visualization
methods enabled by such technologies are typically based on established visualization

idioms used to convey geometric and textual abstractions of processed data [102].
Khalid et al. describes the development of a prototypical BMS using a game engine

to enable combined interactive 3D visualization of built environment and sensor data [136].
The authors state the benefit of using a modern 3D graphics engine to visualize the
information-rich BIM models in 3D, and to enhance stakeholder engagement through
visual communication.

Chang et al. [41] describe the design and implementation of a BIM-based sensor
data visualization platform for assessing occupant comfort in a classroom, based on
temperature data readings and visualization. They note that their approach of sensor
data visualization offers FM operators greater insight into occupant comfort and energy
usage, in comparison the original 2D analytics and textual-based system they previously
used.

Figure 2.10: Example of visualization of sensor data, using visual analytics to map processed

sensor data onto a point cloud representation of an indoor office. In this example, temperature

sensor data is visualized and combined with an indoor point cloud. The color of the point clusters

representing the office change with each new temperature reading.

2.11 Web3D-Based Visualization

Visualization of data provides key insights into problems by enabling communication
of messages in way that is understandable and intuitive to the viewer. The types of
visualization outputs can either be 2D or 3D. 2D visualization includes static images,
videos and graphics. 3D visualization includes the projection of 3D geometry along
with various shading computations in order to portray an object or a scene in either an
abstracted or natural way (but most importantly the viewer is able to perceive depth in
the given scene, and view the scene from any angle or position). 3D visualization can
also either be static or animated, and also interactive in real or semi-real time [5].

According to Keim et al. [131], the process of visualization can be summarized as:
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(1) The collection of data, (2) processing and transformation of data, and (3) mapping of
the transformed data to a specified visualization scheme.

This concept, referred to Visual Analytics [132]. Interactive 3D visualization is
important for presentation and inspection of critical data (e.g., BIM-related data) to
stakeholders, particularly when examining such data for decision making [27].

The main objective of interactive visualization within the context of decision making
is to provide useful insights, which otherwise are too complex to interpret without
visualization, so that it can be used to identify potential concerns or points of interest [233].
For example, layouts of building spaces presented in 3D provide opportunities for FM
personnel to obtain insights how features of a building location are associated with
particular facility use [117].

The term Web3D was first introduced in order to define a set of loose technologies
and standards aimed at delivering real-time 3D content of the World Wide Web [267].
Since then, some of these standards have become widely used and are now supported by
most modern web browsers. Campbell notes the immense benefit Web3D can offer for
the AEC sector in terms of BIM-related data visualization and stakeholder engagement
using web-based platforms [38].

The majority of approaches for 3D visualization in FM rely on desktop-based
applications that do not offer the flexibility of service-oriented applications (e.g., streaming
to lower hardware specification mobile devices). Integration of interactive 3D visualization
with SOSs, especially using Web3D technologies, provides enhanced flexibility to compute
visualization results and stream them to all connected clients - thus further benefiting
and democratizing the decision making process amongst stakeholders [103].

Figure 2.11: A 3D representation of an indoor point cloud can be viewed and inspected interac-

tively within a modern web-browser, implemented using Web3D frameworks and APIs.
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Interactive 3D Visualization for Facility Management The use of interactive 3D visu-
alization can benefit FM stakeholder engagement, information sharing, and collaboration
by allowing real-time display and analysis of 2D and 3D visual outputs generated from
the acquired data sources [280]. Using modern computer graphics rendering approaches,
particularly those based on real-time 3D rendering, complex visualizations of BIM, point
cloud and related digital building data can be visualized using modern web browsers
that support Web3D standards such as WebGL [59]. With the support of the WebGL
3D graphics API for most modern Hyper Text Markup Language (HTML) 5 compliant
web browsers, it is possible to visualize in real-time 3D various models and generated
outputs for AEC applications (Fig. 2.11). Additional examples include:

• Liu et al. [153] describe an approach for parsing and visualizing complex IFC-based
BIM models within a web-browser using Web3D technologies. They note the
need to optimize the BIM data before visualization, and implement this using a
service-oriented paradigm.

• Hamza-Lup and Maghiar [106] present a prototypical hardware-software system for
processing and Web3D-based visualization of temperate and humidity readings.

• Yan et al. [279] describe a multi-agent system for fire evacuation planning and
procedure training using a Web3D-based visualization system.

• Rasys et al. [200] describe a prototypical Web3D information integration framework
for FM applications. Their approach aims to deliver engineering domain-specific
information with 3D representations for FM stakeholder decision making.

• Zhou et al. [288] present a WebGL-based BIM visualization application. Their
application processes and compresses complex BIM geometry and converts it into
simpler triangular mesh representations, which can then be displayed in WebGL
compatible browsers.

Web3D-based technologies are suitable for processing complex BIM, point cloud and
spatio-temporal data (e.g., sensor data), while providing both high and low-level control
over the implementation of their rendering functionality. Since most modern web browsers
support Web3D technology standards, selecting an appropriate Web3D framework or
API is crucial. A number of programming frameworks for Web3D technologies enable the
use of real-time 3D features e.g., model loading in different file formats, scene navigation,
3D data structures, and GPU-based rendering [56].

Three.js is a Javascript-based Web3D framework that offers generalized, high-level
and specific features suitable for visualizing AEC data (e.g., support for different model
file formats including point clouds, scene navigation, 3D data structures, and GPU-based
rendering) [37]. According to Goetz et al. [92], the use Web3D frameworks for SOS
integration is desirable for specific reasons:

• The visualization system does not have to be maintained by the client, as the core
processing and computation tasks can be implemented and maintained server-side.
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• Since the client front-end is usually tied to a web-based interface, it is hardware
and software platform independent (only the clients web-browser needs to support
the specified Web3D standard).

• Use of powerful server hardware enables computation of complex visualization, and
if the client is capable of running the visualizations then the processing can be
scaled and split between the client and server.

• Location independent use of the visualization system, as the client just needs to be
connected to the server to receive any visualization results or data.

• Possibility for collaboration in real-time with multiple users having simultaneous
access to the same 3D scene for enhanced decision making.

Therefore, the combined use of Web3D technologies with an appropriate SOS
implementation is the key combination for enabling processing and visualization of
complex data for use with DTs of indoor built environments.



Chapter 3

Service-Oriented Architecture and

Systems

A SOS allows for computation and streaming of results from a remote server to various
client configurations. In most cases the ability to decouple hardware and software
requirements from the client allows for a more flexible approach to the processing of data,
as the the users are not restricted to using high-end workstation computers, nor monolithic
software implementations, for required computation tasks (e.g., point cloud classification,
sensor data visualization, etc.). In this chapter a conceptual reference SOA is presented,
along with specific details concerning variant prototypical SOS implementations based
on this reference. The implemented SOS prototypes were used to assess the feasibility of
key DT software components, and are referenced through ought the rest of the thesis.
The conceptual reference SOA and prototypical SOS implementations presented in this
chapter are based on previously published work in Stojanovic et al. [241, 232, 237].

3.1 Service-Oriented Architecture Overview

According to the SOA reference model provided by the OASIS organization [159], an SOA
can be thought of as: "....a paradigm for organizing and utilizing distributed capabilities

that may be under the control of different ownership domains". In practice this translates
to the application of a SOA when software requirements state a need for a modular,
scalable and interoperable software components. A SOA is scalable as it does not assume
any software or hardware platform requirements for implementation. Thus, the use of
a SOA paradigm enables the design of software architectures that are able to provide
services for clients, where the SOA is implemented by a service provider as a SOS.

An SOS provides access to services, which are utilized by clients through a defined
API. Services can be thought of as an abstraction layer above the component implemen-
tation within an SOS. A component is a software implementation that provides a specific
processing task for a service. For example this may be a component for segmenting point
clouds, which is part of a point cloud processing service.

The implementation of services and components is largely platform and language
agnostic, however, for applications that require deployment over networked infrastructure,
especially over the Internet, the use of web services becomes important. Web services
can be defined as the implementation of a messaging protocol coupled with functionality

35
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for transporting data packets e.g., implemented using a data description language such
as WSDL 1. Furthermore, according to Endrei et al. [72], the main advantages of web
services for implementing SOAs are that they are highly modular, interoperable and
self-describing (only the format and content of the exchanged messages using a given
protocol are important).

Finally, most SOA implementations follow the principals of loose coupling [124], where
key services run and communicate asynchronously, and can be updated independently of
each other. This allows for the development and implementation of web services using
platform and language agnostic software components.

3.2 Service-Oriented System Requirements for Digital Twins

According to Döllner and Hagedorn [61], the use of SOSs enables the integration of
complex data sources e.g., visualization of 3D city models. This may include CAD,
GIS and BIM data, amongst other digital documentation. In the simplest case, the
use of a SOS enables the rendering of complex scenes on a server, with the final result
being streamed to a client. The use of such a paradigm is beneficial when the main
requirement of a SOS is to provide visualization. However, the need for a SOS such as
in the case for a DT platform, which makes use of routinely updated data and relies on
integration of semantics with processed data, requires the SOS to accommodate specific
functionality [283, 53]. Based on the existing literature review of Real Estate 4.0 and
DT platforms and systems integration (Chpt. 2.2 and Chpt. 2.4), as well as general FM
guidance [206, 252], the following key requirements for an SOS were identified:

1. The ability to process multiple types of data from various sources.

2. The ability to generate and send results to a variety of client configurations.

3. The ability to interface with existing systems e.g., Database Management System
(DBMS), sensor platforms, BAS, IWMS, etc.

4. The ability for key software components to be implemented as services that can
receive and send data to clients.

5. The ability for services to be added, replaced and removed in a modular fashion.

6. The ability for the SOS to provide a level of automation for key data processing
tasks.

Similar requirements and features for SOS implementations for web-based 3D visual-
ization have been previously described by Repplinger et al. [203] and Schiefer et al. [217].
Hagedorn and Döllner [103] describe the use of high-level web-services for implementing
an SOS for BIM visualization and analysis. The presented BIM visualization web service
is designed to stream visualization outputs of complex 3D scenes that are made up of

1WSDL: https://www.w3.org/TR/wsdl.html
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multiple data sources related to BIM and 3D city model visualization. For example, the
use of the Web Feature Service (WFS) Open Geospatial Consortium (OGC) standard 2

allows for streaming and modification of the objects attributes (rather then complete
object files).

The additional use of Web3D services can be utilized for computation of scene
rendering results (e.g., using streamed scene graph descriptions for generation of BIM
models [217]). Such requirements have influenced the design decisions of the presented
conceptual reference SOA and prototypical SOS implementations.

3.3 A Conceptual Reference Service-Oriented Architecture

A conceptual reference SOA is presented in Fig. 3.1, with a focus on DTs within the
realm of Real Estate 4.0. Variants of this architecture are implemented as prototypical
SOSs, and used for demonstrating the feasibility of key DT platform software components
in the presented case studies. Such a system architecture aims to decouple software and
hardware requirements from the client, while being able to communicate with various
external system components (e.g., DBMS and FM-specific interfaces), and to enable
combined analysis and visualization of related data (e.g., BIMs, point clouds, sensor data,
floorplans, digital building documentation, etc.).

The use of SOSs enables scalable integration of key processing components, software
frameworks and data sources for varying application requirements. The scalability of
a SOS implementation depends on the kind of client the end result is sent to, and/or
further processed on - this includes commodity hardware personal computers and mobile
devices.

Client Types Clients are distinguished by their hardware specifications and processing
capabilities as thick, medium, and thin clients. Thick clients are typically workstation
computers or servers that have a high hardware specification. Such clients can be used
to process data e.g., point clouds, sensor data, etc., and can compute the final result for
an analysis or visualization.

Medium clients are defined as commodity personal computers and mobile devices,
which feature hardware that is still capable of visualizing and processing the required
results. However, they are best suited for receiving the partially or fully processed data,
and computing the combined visualization without needing to complete more complex
computations.

Thin clients are usually defined as low-end hardware specification devices (e.g.,
consumer mobile devices), which do not have the sufficient hardware capabilities to
compute the visualization result in real-time. Thus they are provided only with the
finalized visualization result, usually in the form of an image of the current 3D scene,
which is rendered on the server side and streamed to them [62].

2WFS: https://www.ogc.org/standards/wfs
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Figure 3.1: The conceptual reference SOA.
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Client/Server Communication Communication between the server and client requires
the use of a bi-directional client/server model. The server and the client should be
capable of constantly updating each other about their connection status, and must
be able to facilitate appropriate bandwidth for data transfer (in some cases the speed
of data transfer should be real-time). With the introduction and standardization of
the WebSocket protocol 3, it is possible to accomplish such communication and data
transfer tasks. The WebSocket protocol allows bi-directional communication over a
single Transmission Control Protocol (TCP) socket, achieving transfer speeds far higher
than those available with standard Hypertext Transfer Protocol (HTTP) POST and
GET methods. As such, it has been included in various implementations and forms the
back-bone of modern full-stack web technologies e.g., Node.js4.

Node.js is a server-side JavaScript run-time environment, designed to offer cross-
platform support for processing tasks that are not always suitable for client-side processing
as well as interfacing with various database systems, standards and protocols. The use of
Node.js enables the creation of an Express server5, which uses the Socket.IO6 JavaScript
library (a variant implementation of the WebSocket protocol), in order to establish
real-time and uninterrupted communication between the client and the server. With
this setup, the server is able to process requests from the client web-application, using
real-time bi-directional communication, and enable transfer of data and queries processed
by the server.

3.4 Key Architecture Components

The key architecture components are used for accessing, parsing and processing the
related data and the user queries sent by the client. In most cases they are implemented
as either JavaScript classes and executed by the Node.js run-time environment, or are
command-line applications that were implemented using a third-party language (e.g.,
C++, Python, Java, etc.) – but are invoked and used by Node.js via parsing of command
line parameter values and generated results stored on the server.

3.4.1 Point Cloud Processing

The Point Cloud Processing component is responsible for the processing and generation
of semantics for enriching as-is indoor point clouds. It includes three sub-components,
which can be used individually or combined – in order to segment, classify and reconstruct
a given point cloud. The Segmentation sub-component is used to divide and mark similar
regions of point clusters, which allows for quicker identification of physical features 4.3.5.

The Reconstruction sub-component is used to generate triangular mesh representa-
tions of the processed point cloud data. Most of the point cloud reconstruction methods

3WebSocket: https://www.w3.org/TR/websockets/
4Node.js: https://nodejs.org/en/
5Express Server: https://expressjs.com/
6Socket.IO: https://socket.io/
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for BIM applications are based on an automated approach. These are able to detect
important structural features e.g., walls, floors, and ceilings [278], along with methods
for general 3D mesh reconstruction [152], without additional user input.

The Classification sub-component generates labels for inputted point clusters, thus
enabling the point cloud to be further semantically enriched.

3.4.2 Communication Methods

For querying related data and metadata, an approach following the Representational
State Transfer (REST) paradigm, and JSON specification7 is used. REST is a software
architecture used for implementing Web services [77]. The concept of REST relies on
the use of an API (known as RESTful APIs) between a client and a server based on the
CRUD analogy (Create, Read, Update, Destroy) and making use of a URI, the transfer
of data (e.g., JavaScript Object Notation (JSON) data), and the API functionality that
is usually implemented using standard HTTP methods specification 8 (e.g., common
HTTP commands GET, POST, DELETE, etc.). Another alternative to REST is the
Simple Object Access Protocol (SOAP) 9, also designed to facilitate communication
between a client and a server when implementing web-based services, and using exchange
of messages based on the XML schema 10.

3.4.3 Spatio-Temporal Data Processing

The Spatio-Temporal Data Processing component is responsible for the storage, analysis,
monitoring, querying, and web-based streaming of sensor and related spatio-temporal
data. The main function of the component is to interface with sensor hardware and
parse the generated sensor data. Sensors can either be connected through the industry
standard MQTT11 protocol for lightweight data transmission, or by issuing HTTP POST
requests, with both containing JSON-formatted data as payload.

There are numerous types of communication protocols for sensors based on low-energy,
low-bandwidth radio transmission (e.g., ZigBee, Z-Wave, EnOcean, or LoRaWAN), or
wired bus connections, and which are suitable for monitoring of environmental phenomena
in indoor environments [16]. Low-cost edge controllers can also translate the local sensor
data messages sent through low-level protocols into JSON data packets, which can be
evaluated by corresponding software components.

Further, live updates of sensor data values can be subscribed using low-latency,
bi-directional and non-interrupted communication such as a WebSocket message-based
API. Through this, sensor value changes are propagated e.g., to the Mapping Service to
be visually reflected in the final visualization. Additionally, historical sensor data could
be stored in a time series database, which combines efficient access to sensor values as

7JSON: https://jsonapi.org
8HTTP: https://www.w3.org/Protocols/rfc2616/rfc2616.html
9SOAP: https://www.w3.org/TR/soap/

10XML: https://www.w3.org/XML/
11MQTT 5 OASIS Standard: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
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well as memory efficient data organization. The Monitoring sub-component of the SOA
evaluates given rules for sensor data and generates events in case of identified matches.
For such events, an Alerting sub-component can call previously registered notification
targets e.g., IWMS or FMIS APIs. These systems would then be able to react to the
changes or by triggering automated responses e.g., turning on the air-conditioning if the
recorded temperature value is above a certain temperature at a given time of day.

3.4.4 Representation Processing

The Representation Processing component provides a set of services for generating the
visualization result using point cloud and associated data (e.g., sensor data, floorplans,
etc.) – in particular services for geometry generation, mapping, and rendering. The
Geometry Generation Service is used to create the as-is geometry from the semantically-
enriched point cloud or reconstructed geometry.

The Mapping Service is used to map any additional data values to a given point
cloud or reconstructed triangular mesh geometry partition (e.g., sensor data that maps
specific attributes such as temperature for a given room). The Mapping Service can
also be used for assigning specific semantics to data. For example, semantics allow for
the association of labelled geometry segments with associated data, which is physically
located in the real-world counterpart of the 3D representation.

The Rendering Service is responsible for generating the final visualization result.
The rendering service can make use of low or high-level graphics APIs and frameworks
(e.g., Open Graphics Library (OpenGL), WebGL, etc.), in order to generate rendered
images (usually in real-time), which can easily be displayed on the client side (either
processed and displayed by the client hardware, or streamed from the server).

3.4.5 External Systems and Processes

Any data that is used by the SOA for further processing and semantic enrichment, is
given additional attributes via the Entity-ID Provider component. This component
extracts location and other information from existing building documentation (e.g.,
longitude and latitude coordinates and room dimensions acquired from as-built BIM
model, Radio-frequency identification (RFID) or Near-field communication (NFC) tags,
etc.), in order to enable automated or manual adding of semantics into the point cloud,
and allow for combination with other data sources (e.g, floorplans, sensor data, digital
documentation, user annotations, etc.).

These semantics can then be used by stakeholders to identify important physical and
location aspects e.g., using the semantically enriched point cloud or other representations
(BIM, 3D floorplans, etc). The generated visualization result, and any additional data
(e.g., specific location data), are sent to clients. The capture of point clouds is treated
as an external process, and can be accomplished using different approaches (Chpt. 4.2).
This process is not tied to any specific hardware and software, and in most cases is carried
out either by trained FM stakeholders, or is outsourced, with capturing taking place over
a given period time with specified frequency.
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3.4.6 Data Access and Storage Components

The data access and storage components consist of temporary and permanent data
storage (e.g., data stored on the server long term memory), and also a DBMS used for
storing and retrieving processed data, semantics, generated results and various attributes
used by other software components. The selected DBMS can either be relational or
non-relational, but should be oriented towards both spatial and semantics queries. The
main difference between relational and non-relational databases is how they store data.
Relational databases store data in structured manner, within rows and columns, and
each data element is related to a specific row and column. Non-relational databases store
data usually in some sort of schematic format e.g., JSON or XML-based schemas.

The main difference between the two database models is how they access data, and
how fast this can be accomplished based on a specific user query. Relational databases
make use of Structured Query Language (SQL), where data contained in rows and
columns is linked and accessed using an indexing scheme (e.g., hash-value keys can be
used to represent a pointer to each specific location of data, so access time to data is
decreased as the system only has to index the hash-key values, and not the actual data).
Non-relational databases are mostly suited towards large amounts of data, as they do
not depend on any sort of relational organization of data. This provides the benefit
of being able to accommodate complex schema requirements, that may not be clear
in the beginning and may change over time (i.e., new attributes are added). Using a
non-relational database provides slower data access times though, in favour of flexibility.

A special case of a DBMS that is of particular use to DT applications is the spatial

DBMS. A spatial DBMS enables querying of specific data types often found in GIS and
CAD applications, and allows for more dynamic object-relations to be defined. Specifically
they allow the use of spatial data structures (e.g., octrees, k-D trees, etc.), in order to
spatially discretize complex geometric data and allow for faster indexing. Such databases
can either be relational or non-relational, with the main difference being the trade-offs
between performance and support for unstructured and structured data versus query
features [3]. Additionally, a relational DBMS can be easily extended without rewriting
interfaces from scratch, though there are still issues concerning the speed of access to
data from user queries (especially large volumes of data) – including enriching such data
with custom information due to having to parse and convert changing schematics.

Finally, the method of storing data in such databases needs to be determined. Most
databases use an indexing scheme that associates data stored on non-volatile, long-term
memory (e.g., hard-disks), thus the access time to such data can be slow. An alternative
is to cache a portion or complete set of data in volatile Random Access Memory (RAM),
thus increasing the access speed of data. In the presented case studies using variant
SOS implementations of the proposed SOA, a database is not used explicitly, but rather
the implementations make use of JSON and Comma Separated Value (CSV) files stored
locally on the server using a specific directory structure, which is then accessed by the
Express server based on queries obtained from the client. In such a case, the approach
for data access and management can be thought of as a non-relational.
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3.5 Case Study Implementations

With the conceptual reference SOA defined, prototypical SOS implementations based on
the SOA are presented and discussed. Prior to implementation of a SOS, the following
prerequisites need to be defined:

• The type of data that will be processed (e.g., point clouds, sensor data, 2D images,
etc.).

• The hardware configuration of the target client system (e.g., thick, medium or thin

clients).

• The processing requirements of the data (e.g., point cloud classification, reconstruc-
tion, etc.).

• Processes that will be handled server-side versus client-side (e.g., will visualization
outputs be rendered on the client or generated and streamed from the server?).

Once these requirements are defined, the specific processing components, along with
data, interfaces and formats can be selected and implemented, based on the conceptual
reference SOA (Fig. 3.1). Three prototypical SOS implementations are presented and
described. These SOSs were implemented for specific case-studies – focusing evaluating
the feasibility of the core processing components required for a DT platform (point cloud
processing, classification and spatio-temporal data processing and visualization).

3.5.1 Point Cloud Processing, Analysis and Visualization

For the case study looking at point cloud processing, reconstruction and spatial deviation
analysis (Chpt. 5 and 6), a prototypical SOS, with a focus on point cloud processing
capabilities was designed and implemented (Fig. 3.2). Point cloud post-processing tasks
commonly include computation of normal vectors, segmentation, reconstruction and
transformation operations. Once post-processed, the point cloud representation of a
specific indoor environment can be further semantically enriched and evaluated (Chpt.
7), or e.g., compared against the finite element version of its as-designed BIM geometry
counterpart for spatial deviations (Chpt. 6).

Methods for reconstruction can also be implemented e.g., generation of a FDM
from BIM geometry can be accomplished with the use of voxelization-based geometry
processing methods (Chpt. 5.2). While such processes can be implemented as separate
software solutions and components, or using existing software, an integrated solution for
such processes is crucial for use in larger and more complex enterprise systems and data
analysis platforms i.e., DT platforms.

The main processing components are implemented as command line tools that are
executed on the server. The command line tools include segmentation and voxelization
tools. The Segmentation sub-component makes use of the Point Cloud Library (PCL)
framework [211], in order to perform segmentation operations on a given point cloud. The
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Figure 3.2: High-level design of the implemented SOS used for processing and visualization of

point clouds.
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Binvox voxelization command line tool is used by the Reconstruction sub-component to
generate a voxelized representation either of reconstructed as-is, or as-built or as-designed

triangular mesh geometry [166]. This voxelized mesh representation can then be aligned
and compared against the as-is point cloud representation in order to highlight any
spatial deviations (Chpt. 6).

A custom command-line tool used for segmentation and bounding-box reconstruction
based on PCL was implemented in C++, with the ability to directly pass user-defined
parameters when invoked. Since compiled C++ programs run faster than interpreted
JavaScript on native clients [229], process-intensive tasks e.g., segmentation, can be
accomplished faster and have better memory management options (thus being able to
process larger point cloud scenes).

3.5.2 Point Cloud Classification and Semantic Enrichment

Service-oriented computation also allows for computation and streaming of classification
results from remote servers to clients. The benefit of this approach is that classification
results can be viewed on thin clients, which otherwise would not be suitable for performing
classification tasks due to hardware limitations. The process used in the classification
case study (Chpt. 7.8), is implemented as three different system components that capture
user control and data input, perform processing both on the client and server-side, and
stream the results back to the client (Fig. 3.3).

The client-side data generation system is used to load in the point cloud, generate the
3D partitioning and the 2D images used for classification, and send this to the server for
processing. The server-side classification system performs the classification and streams
the results back to the Data Mapping and Rendering Service components. The Rendering

Service is used to display the classification results to the user as well as to enable further
inspection, segmentation, reconstruction and annotation of the classified point cloud.

Using the client-side interface, a user is able to load in a point cloud for classification.
The web application then automatically partitions the point cloud using a given scene
partitioning approach. These scene partitioning approaches can make use of octree-based
partitioning for cubemap image generation (Chpt. 7.5.1), or clustering methods for
generating point clusters for optimal viewpoint entropy computation and multiview-
image generation (Chpt. 7.5.2), and object-based classification (Chpt. 7.6). The scene
partitioning parameters are set through the client-side user interface.

The Semantic Labelling component is used to associate the generated classification
results with a given point cluster. Prior to classification, each of the point clusters is
assigned a ID, which is sent as an additional data attribute along with the point clusters,
to the classification components. The generated classification results are then sent back
to the Semantic Labelling component, along with the original assigned cluster ID, and the
component generates the final classification value of the specific point cluster (Chpt. 7.7).
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Figure 3.3: High-level design of the point cloud classification and semantic enrichment SOS

implementation.
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3.5.3 Spatio-Temporal Data Processing and Visualization

The prototypical SOS used for the case study of spatio-temporal data processing and
visualization was designed and implemented (Chpt. 8.5), using the main processing
components (Fig. 3.4). The target client specification for such an architecture is a
medium client, though provisions could be made to target lower-specification client
devices (e.g., if all of the point cloud visualization was computed server-side).

For this specific case-study implementation, JSON files are stored on the server, and
used for encoding the processed sensor values obtained for a given time period using the
Data Parsing sub-component of the Spatio-Temporal Data Processing component. These
values obtained from the JSON data are then mapped and transformed using the Data

Mapping sub-component of Representation Processing component.
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Figure 3.4: High-level design of the spatio-temporal data processing and visualization SOS, used

for processing and visualization of indoor sensor data.



Chapter 4

Capture and Processing of Indoor

Point Clouds using Commodity

Mobile Devices

Figure 4.1: Examples of indoor point clouds captured using a commodity mobile device. These

scans contain between 200 000 to 500 000 points, and feature RGB color values in addition to

spatial attributes.

This chapter provides details concerning the selected approaches for capture and processing
of indoor point clouds (Fig. 4.1). While there is a wealth of different methods and
algorithms that can be used for analyzing point clouds, the selected approaches and
algorithms described in this section have been evaluated as being the most appropriate
for indoor point clouds. The majority of the point cloud processing algorithms described
in this section have been implemented as SOS software components (Chpt. 3.5.1), and
tested in the presented case studies.

4.1 Representational Structure and Attributes

A point can be thought of as a vertex in terms of representation within the field of
computer graphics. The vertex is the simplest primitive representation in 2D and 3D
computer graphics. Formally, it can be defined as a data structure containing at least the
position in 2D or 3D Euclidean space, and referenced using a defined coordinate system
(i.e., Cartesian coordinates). Additionally, a point can also contain a directional vector
(called a normal), color information (Red-Green-Blue-Alpha (RGBA) color channels),
and also scalar and intensity information (usually one dimensional). The intensity
information is commonly associated with point clouds captured using laser scanning,

49
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where the reflectivity of a given surface is encoded rather than its color value. The
scalar value can be thought of as auxiliary feature, and can be used to assign additional
information to a point cloud post-capture (e.g., estimated surface roughness mapped
to given color range). Therefore the point P as is defined as P := {XYZ ∈ R

3, þN ∈

[−1, 1]3, RGB ∈ [0, 1]3, S ∈ [0, 1], I ∈ [0, 1]}.

In terms of computer data representation, a 3D point cloud can be stored in a
number of different file formats. While the organization of point cloud data varies
amongst different file format specifications, in most cases point cloud data representation
can be generalized (Tbl. 4.1).

Attribute Data Type Description

Position Posxyz Float32 1
Normal þN Float32 2
Color Crgb UByte 3
Intensity I UByte 4
Scalar S Float32 5

Table 4.1: Example data structure for a point cloud. The specific attributes have the features:

(1) Position in 3D space e.g., XYZ Cartesian coordinates. Values are usually stored with 32-bit

floating point precision can be both negative and positive, (2) Normal vector computed for each

point. The direction of the vector is represented by normalized XYZ coordinates and stored with

32-bit floating point precision in the same space as the position attribute, (3) Color values for

each of the RGB channels, with an optional opacity channel (A). The color values are stored in

the range from 0-255 for each channel, represented as by an unsigned byte, (4) The intensity value

of a point of captured. Usually represented as a grayscale value in the range of 0-255 and stored

as an unsigned byte, and (5) Scalar value for the point cloud that can be used to add additional

numeric information, in most cases using a normalized value range from 0 to 1.

Common point cloud file formats include PLY1, e572 and LAS3. The PLY file format
is most commonly used by the SOS implementations for the presented case studies, as
it is able to encode positional, normal and color information. It is also supported as a
default file format by the Three.js and PCL frameworks (used both for processing and
representation of point cloud data for the presented case studies). Specific point cloud
data formats can store additional longitudinal and latitudinal coordinates (e.g., the LAS
format). Overall, the representational structure and attribute specification of a point
cloud depend on use case requirements. The presented processing SOS components are
designed to work with indoor point clouds captured using ToF or based on Red-Green-Blue
and Depth (RGB-D) data.

1PLY: https://wiki.fileformat.com/3d/ply/
2e57: http://www.libe57.org/
3LAS: https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-

exchange-activities
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4.2 Point Cloud Capture using Commodity Mobile Devices

The primary method for capturing the current physical state of the built environment,
advocated in this thesis, is with the use of point clouds. Point cloud representations can
be thought of as “snapshots of reality”, in a sense that they encapsulate the physical and
spatial properties of the space they capture as non-homogeneously distributed points in
3D space [173].

Advantages of using a commodity PCCT-enabled mobile device with depth perception
capabilities, including low costs and practicality, has been described by Froehlich et al.

[85]. Depth Perception allows for devices to determine distances to objects in the real
world. Mobile devices with depth perception technology can usually detect objects at
distances between 0.5 to 4 meters. A device equipped with such senors can capture an
environment with a sensor that casts an infrared dot pattern, mapping and illuminating
any nearby surfaces. The sensors measure the time taken for these dots to reach the
surface and reflect back (larger dots are farther away) [183]. The size of all the dots
are then interpreted as a depth measurement. Combined with an RGB camera (e.g.,
Structured-Light Stereo (SLS) [120]), the depth and color of each dot can be approximated,
and thus an RGB point cloud of the environment can be captured.

Alternatively, point clouds can also be derived from the already triangulated meshes
of the captured environment that are generated by the same process such a device.
Key technologies used to enable depth perception include RGB-D stereo cameras, and
Infrared (IR) sensors and projectors with integrated Structured Light (SL) and ToF
technology [170, 47]. Recent consumer mobile devices also included integrated LiDAR
sensors [221].

However, there are also certain considerations and limitations to take into account
when using PCCT-enabled commodity mobile devices that do not have explicit LiDAR
capability. In such cases, the main disadvantage is that captured point clouds may feature
lower fidelity in terms of visual details, and contain more noise in comparison to using
high-end 3D scanners for capturing.

Investigations into the capturing process presented by Froehlich et al. [85] describe
how the operator of a PCCT-enabled commodity mobile device (e.g., tablet, smartphone)
has to walk around a given indoor space, and sequentially scan each of the surfaces in the
area of interest. The average recorded time taken to complete a scan of a 20m2 room is
approximately 15 minutes. In most cases, the operator would typically start at the entry
point to the room and walk around the room in a clockwise or anti-clockwise manner,
while scanning items of interest. This would typically first involve scanning the walls,
floor and ceiling, than all of the furniture items. Depending on the memory capacity of a
given mobile device and the size of a given room/area, multiple scans may be required.

Froehlich et al. [85] also noted that a common limitation to this capture approach is
that lighting conditions can affect the quality of the capture (e.g., environment is too
dark, too reflective or has non-distinctive edge features).
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Following this capturing approach, the software application that was selected and
used for capturing was the DotProduct Dot3D mobile app4. Using the Dot3D app on
an compatible mobile device, the user has to point the mobile device camera in the
direction of a given area and wait, while the software processes the given frame (Fig. 4.2).
The captured 3D point cloud also needs to be filtered for overlapping duplicate points
(using the Dot3D app). As multiple scans are required for large areas, the final point
cloud representation, in most common use cases, needs to be merged into one single
presentation using the partial post-capture scans that have been registered and aligned.

This can be accomplished using specific software tools (e.g., CloudCompare [88]),
where multiple partial scans of a given indoor area are parsed and aligned manually with
both floorplan images as references as well as visual anchors within the point clouds
themselves (i.e., an item that is distinguishable and featured in all related scans, which
is used as a reference to transform and correctly align the partial point cloud scans). In
most cases, the point cloud can also be sub-sampled to around 100 000 points per 20m2,
in order to decrease processing time, while preserving the visual fidelity of the original
point cloud (Sec. 4.3.2).

Figure 4.2: Example of the capture process of indoor point cloud featuring common office

furniture, using a Google Tango compatible mobile phone with the Dot3D.

4.3 Point Cloud Processing

Once captured, point clouds generally need to be processed further before they can be
considered useful. This most commonly includes manual removal of visual noise, clutter
and other artefacts that may have been captured unintentionally by the device operator,
or due to environmental conditions. At the most basic level, a point cloud should be
inspected visually, and manually edited prior to any further processing and semantic
enrichment. Using such a manual approach, the point cloud is first imported into a point
cloud processing tool. Any remaining visual artefacts can then be manually selected and
removed by the user when inspecting the point cloud. This step would generally require
some domain knowledge of the represented indoor space for the intended function and
representation. Domain knowledge would also be required to perform the alignment of
the point cloud clusters without introducing spatial errors above a given threshold.

However, point cloud processing can be partially or fully automated, giving the user

4Dot3D App: https://www.dotproduct3d.com/dot3dedit.html
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control over specific processing parameters that would be accessible via a client-side
Graphical User Interface (GUI). The user in this case is able to set specific parameters once
they load in a point cloud, and send it to the server to for processing. The following sections
discuss the most essential point cloud processing tasks. These include: Registration, Sub-

Sampling, Noise and Outlier Removal, Normals Computation, Segmentation, Clustering

and the representation of point clouds using a spatial data Structure for increased
processing performance. Each of these tasks are in turn implemented as SOS software
components (Chpt. 3.5.1).

4.3.1 Registration of Point Clouds

(a) The captured point cloud
transformed to undefined coordinates
relative to its own coordinate frame.

(b) The 2D floorplan featuring the
hallway area represented by the point

cloud.

(c) The post-transformation result of the
point cloud registered to the

corresponding floorplan layout.

Figure 4.3: Alignment of a captured point cloud with an existing floorplan.

Registration is the process of transforming and aligning two sets of points in 3D space,
using their frame of reference to describe their position and orientation. The resulting
transformation would use one or more secondary reference frames to act as anchors,
which in turn would be used to align the original point cloud in the most optimal way. If
a given indoor space was captured using multiple scans, then the multiple point clusters
can be manually aligned to form the complete indoor space.

Automated methods for alignment are based on an iterative approach, where a
number of sequential transformation operations are applied to a given point set in order
to optimally align with the reference point set. A common algorithm for point set
registration is ICP, using the Least Squares regression analysis in order to match the
input point set to the referenced one [46].

Another example would be registration of a point cloud to a 2D floorplan obtained
from digitised documents or CAD data. In such a case points from a 2D projected point
cloud could be iteratively compared with the pixels contained in the line segments of
a binary 2D floorplan or image using e.g., edge comparisons [128], or methods based
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(a) Original: 222 084 points. (b) Sub-sampled: 108 378 points. (c) Sub-sampled: 30 797 points.

Figure 4.4: Examples of consecutive sub-sampling of an indoor point cloud using the Random

Point Selection (RPS) method.

on detection of line segments using the generalized version of Hough Transform [15].
Additionally, it is possible to align a point cloud with existing BIM geometry using an
automated comparative approach. Such an approach can either be used for deviation
analysis comparisons (based on ICP) [8], comparison between voxelized BIM geometry
and point clouds [241] as well as evaluation of graph-based spatial relationships between
as-is and as-build point cloud and BIM components [86].

For the case studies presented in this thesis, a manual registration approach was
selected, due to not dealing with very large or complex indoor point cloud scans. Thus, it
was possible to align the point cloud by projecting it onto a 2D plane, and using manually
entered rotation, scaling and position transformations to align it to the 2D floorplan
image projected onto the same plane (Fig. 4.3).

4.3.2 Sub-sampling of Point Clouds

Since point clouds can contain a large amounts of points, it can be beneficial in terms of
increasing computational performance to sub-sample them. Sub-sampling in such a case
refers to removing points from the original point set, while attempting to preserve the
shape of the original point cloud in subsequent versions of the sub-sampled point cloud
(Fig. 4.4). This reduction amount depends on the density of the original point cloud, and
the distribution of captured points as well as the intended application (e.g., point clouds
used for floorplan generation would typically have less points than point clouds used for
spatial deviation analysis [240]).

There are three main methods for sub-sampling of point clouds. These include
RPS, space and octree-based point cloud sub-sampling methods. Each of the sub-
sampling methods are included in the CloudCompare software tool [88], and were used for
testing prior to selecting an appropriate method for default use by the prototypical SOS
implementation. Variations of the space and octree-based methods were also researched
and presented by Moenning and Dodgson [168] and Palomer et al. [181].
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(a) Point size 4 - too small, too much white space. (b) Point size 8 - optimal.

Figure 4.5: Examples of different point sizes for rendering of point clouds.

The RPS method takes in the desired percentage of points to keep from the original
point set, after which it randomly selects and removes points until the approximate
number of points based on the selected input percentage are remaining in the point
subset. The space-based method takes in the minimal distance value between two points
(as a value between 1.0 and 0.0), before creating a new point subset where each sub-
sampled point is not within the minimal distance value to the neighbouring point. The
octree-based method generates an octree of a given density, where each point closest to
the center of the octree node is kept in the new point subset. Therefore the coarser the
octree is, the more points that will be removed for the new subset.

Another important artefact of the sub-sampling process to consider is the introduction
of more space between points due to the newly acquired coarseness of the sub-sampled
point set. The RPS sub-sampling approach was chosen as the main sub-sampling
component in the prototypical SOS implementation, as it allows for the approximation
of remaining points through simple heuristics.

Selecting Point Size Post Sub-Sampling Certain point cloud processes require point
clouds to have an optimal visual density e.g., multiview classification (Chpt. 7.5). There-
fore, the selection of an optimal point size (as well as the "shape" - i.e., the texture used
represent the shape of a point), for the representation of the point cloud is required
post sub-sampling. This means that the selected size and shape of the points does
not introduce too much space between points, so that the scene background color (e.g.,
"whitespace") is not dominant in the generated multiview images (Fig. 4.5).

4.3.3 Noise and Outlier Removal from Point Clouds

Point clouds often contain noise, visual clutter and artefacts as a result of the capturing
process, which need to be removed prior to further processing. Methods for removing
noisy areas of the point cloud are mostly based on statistical inference. They include
common pass-through filtering methods e.g., detecting points whose average distance
from neighbouring points is above or below in comparison to partial neighboring, or
complete set, of other points. All three of the methods are implemented in the PCL
library [211], namely as bounding box filtering, Radius Outlier Removal (ROR) and
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(a) Original point cloud. (b) Same point cloud with SOR filtering
applied.

(c) Difference between points in original
(red), and filtered (blue) point clouds.

Figure 4.6: SOR filtering applied to an indoor point cloud cluster. In this example, 100 points

are sampled for the filter, with the difference between the original (4.6(a)) and filtered (4.6(c))

point cloud illustrated.

Statistical Outlier Removal (SOR) (Fig. 4.6). Furthermore, research by Skinner et al.

[228] evaluated all three methods for filtering a point cloud representation of an exhumed
water pipe. They note how the ROR and SOR methods both rely on KNN searching in
order to detect neighbouring points for evaluation.

Apart from removing clutter and spatially deviating points, captured noisy point
clusters can also be denoised using variants of the PCA algorithm. Narváez and Narváez
[171] use such an approach for noise reduction in complex point clouds, noting that
the use of a variant of PCA is capable of preserving sharp features of post-processed
point clusters. Finally, the use of clustering methods can be used to group together with
similar spatial distribution of points (usually groups of points forming smaller clusters in
comparison to other larger clusters), and remove them. Both the k-means and DBSCAN
algorithms can be used to accomplish this (Sec. 4.3.6).

4.3.4 Normal Vector Computation of Point Clouds

Per-point normal vectors approximate the surface of the local point proximity. This
allows the point to have an orientation in 3D space (Fig. 4.7), and is thus a very useful
attribute for further feature evaluation (e.g., clustering, reconstruction, classification,
visualization, etc.). Normal vectors can be computed efficiently by analyzing the local
neighborhood of a point. The neighborhood of a point can be defined based on a sphere
or a number of nearest neighbors with the KNN algorithm [167]. It is computed using the
covariance matrix of the neighbors and corresponding eigenvectors and eigenvalues [109].

The crucial part of normal estimation is fitting a plane for a given sample of
neighbouring points, using the Least Squares method [69]. From the orientation of the
plane, the tangent vector can be computed and used as a normal vector. This is also the
standard method used by the PCL framework, and has been further described in detail
by Rusu [210].
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(a) Original point cloud without
normals.

(b) Point cloud with shading applied
based on computed normals.

(c) Visualization of surface shading
using the computed normal vectors of

each point.

Figure 4.7: Computation of normals for a point cloud cluster. With computed normals, the use

of various shading techniques can also be applied to point clouds.

4.3.5 Segmentation of Point Clouds

Segmentation of point clouds is the process of clustering together similarly distributed
point regions. This way, neighbouring points that have similar positional, normal or
surface color attributes can be grouped together. Segmentation is crucial for further
semantic enrichment, and optimal segmentation of point clouds is important for correct
classification, reconstruction and visualization of point clouds.

Horizontal-Slicing Segmentation The first and simplest segmentation method is based
on the spatial distribution of points along the projected height axis (e.g., Y -axis), and
is referred to as horizontal-slice segmentation. It is assumed that the point cloud of an
indoor area contains planar walls, which are used to partition the interior space. The
horizontal-slicing method generates the 2D horizontal point cloud layers by segmenting
the point cloud into three vertical levels – based on the minimum, average, and maximum
height of the points in the 3D reference coordinate system (Fig. 4.8).

The vertical levels used for segmentation are selected by computing an Axis-Aligned
Bounding Box (AABB) for each of the three levels, and selecting the level with the
highest number of points in the AABB for floorplan generation. This method is suitable
for floorplan boundary extraction and evaluation (Chpt. 5.3) Any of the segmented
layers can be used to generate the floorplan, but usually the mid or top layers are used
as they do not necessarily feature any gaps in the wall segments (e.g., door frames). In
most cases segmented layers with higher point density are preferable, because they can
be used to better approximate possible concave attributes of the floorplan boundary.

Additionally, outlier points are removed from each segmented layer, since they are
not part of dense point clusters (with respect to the overall distribution of point clusters).
This is typically done using an SOR filter pass on each segmented layer. The maximum
height variable used by the horizontal-slicing segmentation method is typically based on
the maximum wall height in a given interior space.
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Figure 4.8: Example of horizonal slicing of a layer for e.g., floorplan generation, using an AABB

(left), sampled from the height-based segmentation of an office room point cloud (right).

RANSAC Segmentation The RANSAC method is a segmentation method that itera-
tively attempts fit clusters of spatially distributed points to a given geometric primitive [79].
In the most simplest case, the RANSAC method is able to detect clusters of points that
fit to a planar geometric primitive, thus it is useful for detecting walls, floor and ceilings.

The RANSAC method works by sampling a subset of a points from a complete point
set (either in 2D or 3D), and attempting to find the best model to fit a geometric primitive
to a given number of inlier points. This model is then tested against all other points in
the set – with the points fitting the model within a given error threshold (e.g., calculated
using the Least Squares method), and being considered as part of the consensus set.

This model generation and fitting is performed a given number of times, until the
model is able to obtain enough fitting inlier points as part of the consensus set. Each
model-fitting iteration can be repeated with adjusted parameters to determine the "best"
model. The RANSAC method can also be expanded to include point fitting comparison
tests to other 3D geometric primitives e.g., cubes, spheres and cylinders [218] (Fig. 4.9).

Region Growing Region Growing relies on iterative sampling of neighbouring points
for determining the segmented point clusters based on their similarity (Fig. 4.10). The
measure of point similarity is obtained using either pre-computed point normals [25]
(specifically the surface curvature value of each point [285]), or color properties [266]
of sampled neighbouring points, which are iteratively searched within a voxelized data
structure.

If the region growing is based on point normals, the algorithm first sorts all the
points based on their surface curvature, after which the algorithm selects a point with
the minimum curvature (e.g., closest to belonging to a flat region), and compares this
point normal to the neighbouring one. If the normal angle between the two points is less
than the inputted threshold value, the point is added to the region growing point cluster.
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(a) Original point cloud. (b) Computed plane primitives for each of the closest
matching point clusters.

Figure 4.9: Segmentation results of an indoor point cloud using a variation of the RANSAC-based

method described by Schnabel et al. [218].

(a) Original point cloud. (b) Resulting segmented point clusters.

Figure 4.10: Example of Region Growing segmentation applied to an indoor point cloud.
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(a) Original point cloud. (b) Semantically segmented point cloud.

Figure 4.11: Example of semantic segmentation applied to an indoor point cloud, where all

objects are assigned to a unique point cluster and color – based on the probability of belonging to

the class representing the actual object label.

Semantic Segmentation using Deep Learning Semantic segmentation of indoor point
clouds is possible to achieve using CNNs (Chpt. 7.4). CNNs can be trained using a
supervised learning approach with example point cloud data that contains semantic labels
(Fig. 4.11).

In this way, the CNN learns to detect features specific to point clusters that are
labelled as specific objects (e.g., common furniture items – office chairs, walls, doors,
clutter, etc.). Once the CNN has been trained using the example point cloud data, it
can detect within a given degree of probability point clusters in out-of-core data (i.e.,
point clouds which have not been used for training), and segment them.

There is however need to use point cloud datasets for training that have high enough
visual fidelity and density, in order to extract useful features for training a CNN or other
supervised learning models [272]. The use of semantic segmentation based on 3D CNNs
is discussed further in Chpt. 7.

4.3.6 Clustering of Point Clouds

Clustering methods originating from data science and statistics have found common
use in big data analytics and machine learning, but are also useful for analysis of point
clouds. Clustering enables the detection of points with similar spatial distribution and
neighbourhood density.

The two main clustering methods implemented as software components in the
prototypical SOS implementations are the k-means and DBSCAN clustering algorithms.
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(a) Horizontally sliced floorplan
segment (using only 2D X and Y

coordinates of the points for clustering).

(b) k-means applied to a point cloud
segment using 3D coordinates of the

points.

(c) Use of k-means clustering to
generate clusters for classification, with

the post-classification result shown.

Figure 4.12: Examples of k-means clustering applied to different point cloud data.

These clustering methods are further evaluated for semantic enrichment applications
based on deep-learning in Chpt. 7.6.

k-means Clustering The k-means clustering algorithm is an unsupervised machine
learning method used to partition 2D or 3D point sets based on each points proximity to
a given cluster mean point (Fig. 4.12). The number of means is based on the number of
clusters that are required to be generated (usually defined as an input parameter). The
method is iterative and begins by calculating the Euclidean distance of each point to
each of the means, and assigns each point to a mean that it is closest to, thus forming a
cluster [155].

A second update step is also performed where the means of each cluster are re-
calculated, based on the amount of new points assigned to it. The algorithm converges
when new mean values are no longer assigned, since no new points are assigned to the
clusters whose centroids are obtained by computing the mean value. It is expected for the
algorithm to converge to a solution after a given number of iterations (size of iterations
depends on the density of the point cloud and number of desired clusters).

DBSCAN Clustering The DBSCAN algorithm clusters points together that belong to
areas of similar spatial distribution. The algorithm uses the measure of a radius of a
given point in a set to determine if any other points are within this radius, before moving
onto the next point and checking the same condition. Points that are contained in the
radii of neighbouring points are clustered together (Fig. 4.13).

A minimum number of points needs to be set when initializing the algorithm, and
this defines the minimum number of points that must be within the radius of an initial
point. The minimum number of points that are reachable or within the radius of the
sampling point are called core points. Points that are reachable but themselves cannot
reach any other minimum number of points within their radius are defined as non-core

points and form the edge of a given cluster. All other points are considered outliers, and
are not included in the given cluster approximation.
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(a) Applied for clustering of common office furniture
objects.

(b) Applied to a more complex scene indoor scene.

Figure 4.13: Examples of DBSCAN clustering of point clusters representing common office

furniture. The use of DBSCAN clustering algorithms enables the generation of AABBs for each

of the point clusters, which is useful for segmentation applications.

Comparison of Clustering Methods for Indoor Point Clouds The two clustering meth-
ods are used as clustering software components in different prototypical SOS implemen-
tations e.g., for detection of points for secondary boundary detection in floorplans (Chpt
5.3), and for clustering of objects in point cloud scenes for classification (Chpt 7.5.2).

The DBSCAN algorithm is preferable for point clouds that contain more defined
spatial divisions between the furniture objects. Otherwise, the use of k-means clustering
is suitable for clustering cluttered scenes or scenes where no clear spatial divisions are
present (e.g., if chairs are tucked in partially under the tables).

The DBSCAN algorithm is sensitive to the density of the point cloud, and the
number of generated clusters depends on the user parameter inputs that need to be
configured for each given scene [7]. For DBSCAN, the minimum number of sampled
points is one by default. Alternatively, k-means clustering can be used by setting a
default number of clusters and increasing the number of cluster segments to the 3D point
cloud with each iteration until a stopping condition is reached [138], or heuristically with
the user determining how many clusters are required by visually inspecting the given 3D
point cloud. The number of required clusters can also be determined using numerical
methods [247].

4.3.7 Data Structures for Point Clouds

The use of space partitioning for point clouds is beneficial for increasing computational
performance. For most processing tasks, it is necessary to partition a point cloud into
smaller clusters that can be accessed without the need to traverse the entire point set.
Typical space partitioning schemes using quadtree [78], octree [163] and k-D tree [23] data
structures can be utilized in order to accomplish this.
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(a) Initial octree partitioning of a point
cloud.

(b) Partitioning with decreased point
sampling size, resulting in increased

generated octree nodes.

(c) A dense octree partitioning scheme.

Figure 4.14: Examples of consecutive octree-based partitioning of an indoor point cloud at varying

octree resolutions. For increasing the resolution of the of the octree (e.g., more nodes), a smaller

size of points are sampled.

The use of an octree data structure is particularly useful for partitioning a given
point cluster into a balanced discritized representation for processing and classification
tasks as well as for optimizing rendering performance for visualizing large point clouds in
real-time [219]. Data structures such as k-D trees can also be used for acceleration of
out-of-core rendering of large point clouds [205], and are particularly suited for nearest-
neighbour search operations. The use of an octree data structure was selected for geometry
processing (Chpt. 5.2) and multiview classification (Chpt. 7.5), since its density or
coarseness can be adjusted depending of the processing needs for a given point cluster as
well as providing fast indexing of point clusters for spatial searches.

Quadtrees and Octrees The quadtree algorithm starts by partitioning a given point
set into four children nodes, and each of those four children are partitioned further into
four more child nodes, until a maximum partitioning depth is reached. The condition for
recursive subdivision depends on the application, but for point cloud data the minimum
number of points per child node are typically used. In that sense, the quadtree algorithm
partitions the point cloud until a minimum number of points are contained in the deepest
child node(s) in the tree.

Octrees are an extension of the quadtree data structure, and both methods use a
uniform spatial partitioning scheme of recursively dividing a given data set into 2D quads
or 3D octants (where each subdivision is composed of eight cube nodes, Fig. 4.14).

While octrees and quadtrees are in most cases surpassed in searching performance by
k-D trees, they are useful for accelerating the rendering of complex data structures e.g.,
dense point clouds – by spatially partitioning the point cloud in a way so that each node
can be evaluated by the view-frustum of the 3D perspective camera when rendering the
scene (nodes containing points outside this frustum are not rendered or can be rendered
using sparse representations).
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(a) An initial point used for starting to
search for nearest neighbouring points.

(b) Illustration of the partitioning
scheme using a k-D tree.

(c) Result of a nearest-neighbour search,
with the search radius highlighted.

Figure 4.15: Example of using a k-D tree for nearest-neighbour searching in a point cloud scene.

k-D Trees k-D trees are useful for partitioning 2D and 3D representations of point
clouds (Fig. 4.15). Additionally, they can also be used to optimize classification processes
using e.g., CNNs [141]. A k-D tree splits a given point set as left or right-sided tree
branches. Point data is split either left or right side, depending if each value of the chosen
attribute (e.g., point coordinate) in the feature set is greater or smaller than the previous
value in the tree.

As the algorithm traverses down either the left or right side of the tree, it uses
cascading features (e.g., X then Y , in swapping sequence), thus why the k-D tree
partitioning has both horizontal and vertical lines for 2D representations and hyperplanes
for 3D representations of spatial partitioning of point data.

For nearest-neighbour searching with k-D trees, the algorithm begins by checking
distance from the query point to the root node, and iteratively selecting the "best" (or
shortest) distances of points you transverse down the left or right side of the k-D tree.
If the query point is to the left or right side compared to the root node, the algorithm
traverses and searches the side the query point is on. If searching for more than one
neighbouring point, a hypersphere can be used. The radius of the hypersphere calculated
from the center of the query point, and any points within its radius, are checked for their
distances to the query point.

The main benefit of k-D trees for nearest neighbour searching is that it uses the
tree properties to quickly eliminate large portions of the search space (Fig. 4.15(c)).
Specifically, the current "best" point is used to determine if any other areas of the k-D

tree should be searched - areas where the point could not possibly belong to are pruned.
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4.4 Concluding Remarks

This chapter has provided an overview into the most essential point cloud capture,
processing and analysis methods. These methods form the foundation for further semantic
enrichment, reconstruction, analysis and visualization operations, which are covered in
the following chapters. The majority of the processing methods are implemented as
prototypical SOS software components (Chpt. 3.5), which run either on the client or the
server, and are used to automate otherwise time consuming tasks that require domain
expertise.

The presented methods were evaluated and selected after thorough state-of-the-art
literature review (Chpt. 2.6). Additionally, the presented methods were also used for the
software component prototypes to obtain results for previously published work related
to this thesis. The methods provide adequate approximations, and are suitable for
processing the complexity of point clouds associated with indoor representations.





Chapter 5

Point Cloud Reconstruction

The process of point cloud reconstruction is used to generate higher-order 2D and 3D
geometric mesh approximations of the physical objects based on the shape of a point
cloud. Such approximations may include generation of triangulated, voxel or B-Rep
geometry. Each of the reconstruction methods generates mesh objects from the point
clouds that have use for further analysis and visualization tasks (e.g., deviation analysis,
floorplan approximations, as-is BIM generation, etc.).

This chapter describes the main point cloud reconstruction methods that were used
for specific analysis and visualization tasks – specifically used by software components of
the prototypical implementation of the SOS for point cloud analysis and visualization
(Chpt. 3.5.1). The presented case studies and results in this chapter are based on the
following previously published research: Stojanovic et al. [240, 232, 239] and Isailović
et al. [116].

5.1 Triangular Geometry Reconstruction

The process of triangular geometry reconstruction from a given point cloud is concerned
with approximating and generating triangle primitives for every three vertices found
by a selected triangulation algorithm. These vertices are then used to wind a triangle
primitive, by introducing non-intersecting connecting edges between each of the three
selected vertices in a clockwise or counter-clockwise winding direction. The edges of each
of the wound triangles are shared between neighbouring triangles, so an in essence a
"mesh" network is formed between every n + 3 vertices. Normal vectors for each of the
point clusters also need to be pre-computed prior to most kinds of reconstructions that
require surface approximations.

The two methods used for triangular geometry reconstruction that are discussed
and evaluated are the BPA [24] and the Poisson Surface Reconstruction (PSR) [130]
algorithms.

PSR was initially evaluated, but it was found not to be suitable for reconstruction for
FM and BIM applications, as it does not preserve sharp edges of building elements that
are typically found in indoor and outdoor built environments (e.g., non-curved structural
features). BPA was in turn selected as the main triangular geometry reconstruction
method, as it can preserve the sharper edge features in the reconstructed geometry and
can evaluate secondary boundaries (Fig. 5.1(c)). One notable disadvantage of BPA is that
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it can also introduce holes into the mesh as a consequence of generating non-manifold
edges (Fig. 5.1(d)).

Both reconstruction methods usually require further manual editing of the recon-
structed geometry. The resulting triangulated mesh can be exported either in the PLY or
OBJ file formats, which allows it to be processed by the Representation Processing com-
ponent of the SOS for further visualization tasks. In most cases, the normals computed
as part of the reconstruction process are preserved.

(a) The original input point cloud. (b) Reconstruction using the PSR method – note the lack of
preservation of hard edges and secondary boundaries (empty

spaces within the mesh).

(c) Reconstruction using the BPA method. (d) Artefacts generated as a result of the BPA method
include introduction of holes in the reconstructed triangular

mesh, as highlighted by the green edges.

Figure 5.1: Examples of point cloud reconstruction using the PSR and BPA reconstruction

methods.

5.2 Voxel Geometry Reconstruction

The use of voxelization is important for various geometry analysis tasks e.g., spatial
deviation analysis (Chpt. 6). Generally, a voxelized mesh is approximated from a
triangulated geometry mesh, where a spatial discretization scheme is used to subdivide
the evaluated mesh into smaller connected elements, which are aligned to a 2D or 3D
grid structure (i.e., essentially a FDM). This can either be obtained from triangulated
mesh reconstruction of point cloud, or from triangulated meshes of existing as-designed

or as-built models extracted from BIM or CAD data.
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The Point Cloud Processing component is responsible for the generation of the
voxelized meshes. The voxelization method implementation used by the Point Cloud

Processing component is an external command line tool called Binvox [166]. The Binvox
voxelization command line tool is used to generate a voxelized representation of either
reconstructed as-is, or as-built or as-designed triangular mesh geometry. Voxelization
can approximate the general shape of the 3D geometry, including irregular boundaries,
by fitting a number of n × m × k voxel elements within the given polygonal shape
boundaries projected within a 3D grid (usually an octree). The voxel mesh generated by
the Binvox tool is exported in the .MSH file format (a simple native file format used by
the Gmsh FEA tool1), where each center point of a voxel is recorded. The actual size of
the voxels is calculated by finding the common difference between XYZ coordinates of
each current and next voxel element.

The accuracy of any analysis based on voxles is correlated to the resolution of the
voxelized mesh. If the voxelized mesh is too coarse, certain geometry features may be
omitted or too simplified to create an accurate enough analysis result. However, the
higher the resolution of the voxelized mesh is, the longer it takes to compute the selected
analysis result. The resolution for the computed voxel mesh is set by the user, and
referred to as the approximate resolution - since the voxel fitting algorithm tries to adjust
the voxel resolution based on the width, height and depth parameters that are set by
the user. A good balance between accuracy and resolution is use-case dependent, but in
most cases resolution should be high enough to feature all of the extruded, protruded
and non-regular geometry features that are required for specific analysis tasks (Fig. 5.2).

(a) The captured as-is indoor point
cloud.

(b) The generated as-is BIM geometry
mesh from the point cloud

(triangulated).

(c) The voxelized mesh result based on
the as-is BIM geometry.

Figure 5.2: Example of reconstruction of a triangulated as-is BIM geometry to a voxel mesh.

The as-is BIM geometry model is in turn generated form an as-is point cloud.

The voxelization methods use by the Binvox tool are based on the parity count

and ray stabbing methods [176]. The ray stabbing method is preferable for non-organic
geometry that has intersecting components (e.g., double walls featured in building models),
as the depth sampling only takes into account the initial and final ray sections along a
given direction (that in turn is sampled multiple times in different directions for each
polygon within a voxel grid). This allows for more accurate generation of complete voxel
models (e.g., voxel models where the inside of the model is voxelized, rather than just
the shell of the model).

1Gmsh FEA Tool: http://gmsh.info/
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The actual visualization of the voxelized mesh typically makes use of geometry data
in the form of cube object primitives – where every cube element representing a voxel
position is rendered (i.e., a "greedy" rendering method). A more efficient polygon-based
geometry rendering method can be used if rendering speed is a requirement for viewing
the voxelized mesh interactively [160].

5.3 Approximate Floorplan Generation

(a) Example 3D point cloud of a
building’s interior.

(b) A 2D vector contour around the
horizontal point cloud slice.

(c) An extruded 3D mesh representation
of the primary 2D floorplan boundaries
based on the generated vector contours.

Figure 5.3: Example generation of a 2D and 3D floorplan approximation based on a point cloud.

A floorplan commonly provides an overview used to assess the dimensions of a room and
other structural features. Generation of floorplans from existing buildings, especially
point cloud representations of the physical environment, pose particular challenges for
reconstruction. Reconstruction of 2D floorplans from point clouds requires the use of
appropriate shape approximation and line regularization algorithms. Such approximation
methods can in turn be used to generate outlines of walls for the approximation of a 2D
or 3D floorplan (Fig. 5.3).

Two approaches for reconstruction of floorplans are presented. The first approach
extends on the detection of regularized 2D shape boundaries, where the vectorized paths
of such boundaries are used to extrude 3D shapes. This approach is known as Regularized

Boundary Approximation. The second approach makes use of segmentation of planar
distributions of point clusters, using the Region Growing algorithm (Chpt. 4.3.5), in
order to detect point clusters whose AABB or Object-Oriented Bounding Box (OOBB)
elements can be extracted and used as basis dimension and position descriptors for
generating higher level geometry representations (e.g., B-Reps used for IFC geometry
representation).

5.3.1 Regularized Boundary Approximation

The approach for approximate generation of floorplans from point clouds is based on
detection, regularization and extrusion of Primary Boundaries (PB) of an indoor point
clouds as well as detection and approximation of Secondary Boundaries (SB) using CSG
operations. This approach is based on the previously published research in [240].
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The main challenges include selection of appropriate point cloud vertical segmentation
layers (referred to as horizontal slices), evaluation and regularization of PBs and SBs, and
generation of vector paths used for 2D vector image and extruded 3D mesh representations.

Horizontal Slice Segmentation The horizontal slice segmentation method described in
Chpt. 4.3.5 is used to generate the point cloud segments used for evaluating the PB and
SB for approximate floorplans. A selected horizontal slice should be of suitable point
cloud density. Outlier points are removed (either manually or using SOR), as they are
typically points that are a certain threshold distance away from the main point cluster
and are not part of dense point clusters (with respect to the overall distribution of point
clusters). The maximum height of the point cloud is typically based on the maximum
wall height of the points in a given room scan.

The final step extracts the X and Z Cartesian coordinates of the points from the
segmented horizontal layers, and these are exported as a CSV data file, which is then
loaded in the by the Reconstruction sub-component – for both 2D and 3D PB and SB
detection, regularization and approximate floorplan generation.

PB Detection and Regularization The first step for PB detection is the approximation
of the concave hull defined by a consecutive distribution of points, which define the
general shape of a wall of an indoor space (Fig. 5.4). This data is obtained from parsed
values of the CSV file generated in the previous step. The generation of the concave hull
is accomplished using the Gift Opening algorithm described by Rosen et al. [207]. The
algorithm works by iterative calculation of the convex hull using the standard Divide and

Conquer algorithm [142], before converting the best point candidate set into a concave
hull (by means of convex hull edge collapsing). In order to capture the accurate concave
shape of points that define walls, the Gift Opening algorithm creates usually very noisy
convex hull outlines. In order to smooth and rectify these concave hulls for further
approximation as floorplan data, the use of line regularization algorithms is required.

Each of the presented line regularization algorithms have their strengths and weak-
nesses when attempting to regularize the approximated line elements of the concave hull.
In the software component implementation, the regularization of the generated concave
hull lines is accomplished by a combination of the Douglas-Peucker algorithm [64], the
Visvalingam algorithm [264], and radial distance simplification [143] (Fig. 5.4(d)).

By themselves each of the line regularization algorithms have specific features and
constrains (Fig. 5.4(a)-5.4(c)). The radial distance simplification method does not smooth
out very noisy lines, while the Douglas-Peucker algorithm can over-evaluate straight line
elements that have breaks in them, thus introducing dents in the line regularization. The
Visvalingam algorithms preserves the overall shape of the concave hull, but introduces
smoother corner evaluations. Selection of the line simplification algorithms was established
after reviewing existing implementations [224], and testing the selected algorithms on 2D
point cloud slices.

SB Detection and Regularization One particular challenge of generating 2D vector
floorplans is detecting smaller closed boundaries inside the PB of a given floorplan
partition. For example, the 2D horizontal point cloud slice may contain the walls of a
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(a) Regularization generated using the radial distance
simplification method.

(b) Regularization generated using the Douglas-Peucker
algorithm.

(c) Regularization generated using the Visvalingam
algorithm.

(d) Chosen combined method using all three methods to
achieve desirable line regularization.

Figure 5.4: Examples outputs of three different line regularization methods that were evaluated

(radial distance, Douglas-Peucker, Visvalingam and combined). The epsilon values were based on

the average distance between the points in the given horizontal slice partition.
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(a) The SB region defined by a
cluster of points, contained
within the PB region (blue

outline).

(b) Using k-means clustering
the SB region is separated as a

unique cluster.

(c) The concave boundary is
generated and regularized, but
includes points from the PB
which need to be removed.

(d) The correct boundary is
generated after all innermost
points of the SB are detected.

Figure 5.5: Illustration of the SB detection and generation process.

smaller room or region within a larger room that is not connected to the PB walls (e.g.,
an elevator or office cubicle), thus the resulting floorplan slice may contain what can
be described as SBs. A challenge arises on how to detect these SBs to generate their
regularized concave contours (Fig. 5.5).

The Gift Opening algorithm applied for concave generation only works on closed
point sets that form a PB, so an alternative approach is required. k-Means clustering
can be employed in this case as a method to detect point regions in a 2D horizontal slice
that have a higher concentration of points, and to cluster them as potential regions for
SB generation (Fig. 5.5(b)).

For the selected horizontal slice, the k-means cluster that contains the highest number
of points is assumed to be the cluster that contains points representing the SB. The
number of k-means clusters is usually set as the number of secondary boundaries plus
one (SBs are determined visually prior to approximation, though other methods exist to
heuristically determine a number of required clusters [26]).

The algorithm for SB detection is described in Alg. 1 as the GenerateSecondaryBounds

function, which passes in the point set from the current k-means cluster of a floorplan
partition where the SB is located, along with the PB line segments.

Algorithm 1 GenerateSecondaryBounds() function definition, returns a SB polygon.

Require: Points, Polygon

Pointsaverage to AvgDist(Points)
Pointscenter to CenterPoint(Points)
for i = 0 to length(Points) do

Dist to SqrDist(Pointsi, Pointcenter

if PointIsInPolygon(Pointsi, Polygon) then

if Dist < Pointsaverage then

GenBoundary(Pointsi)
end if

end if

end for
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Alg. 1 computes the average distance between all the points in the cluster with the
AvgDist function call. This function randomly samples a given percentage of the points in
the given cluster (taken as 75%, though this is can be adjusted if required), and returns
the average distance between them. The 2D coordinates of the current k-means center
point from a given cluster are then obtained with the CenterPoint function call. This
distance value Dist is tested to see if it is smaller than the average point distance, so that
outlier points from the cluster are not used for the SB computation. This test is performed
in addition to testing if the given point is within the previous boundary polygon. In
the first instance of the GenerateSecondaryBounds function call, this previous boundary
polygon is the PB polygon, but with subsequent calls to GenerateSecondaryBounds the
previous boundary becomes the last SB to be computed. This is used to refine the SB to
a satisfactory boundary shape as determined by the user.

The function PointIsInPolygon is used for checking if the point is inside or outside
of a polygon. This function casts a ray that is projected horizontally from a given point,
and the number of intersections with the edges of the boundary polygon are detected
as a switchable Boolean statement (Chpt. 6.3.2). To generate the SB contour, the
algorithm makes use of the isPointInStroke HTML5 Canvas API function to select only
the innermost points of the SB (Fig. 5.5(c)). A stroke thickness of approximately ten
pixels is used for each of the polygon lines that the points are tested against (Alg. 2).
Through experimentation it was determined that this pixel size captures most points in
a line segment (minimum three pixels width).

Finally it should be noted that the floor and ceiling parts of a floorplan partition are
not selected as horizontal slices nor used for k-means clustering – as such point clusters
contain homogeneous and continuous distributions of points, and there would be no
distinguishable concentration of point clusters to detect.

Algorithm 2 GenBoundary() function definition, returns a SB points.

Require: Points

conBoundary to GenerateConcaveBoundary(Points)
conBoundary to RegularizeBoundary(conBoundary)
linewidth = 10

for i = 0 to length(conBoundary) do

lineTest to Line(conBoundaryi, conBoundaryi+1)
for j = 0 to length(Points) do

if isPointInStroke(Pointsj , lineTest, linewidth) = FALSE then

secondaryBoundaryShape to Pointsj

end if

end for

end for

Vectorized Paths The vector line paths that form the regularized PBs and SBs are
generated as the main 2D floorplan artefact. Additionally, these vector paths are used
later on for extrusion and CSG operations of the 3D mesh version of the floorplan



5.3. Approximate Floorplan Generation 75

approximation. The HTML5 Canvas API is used to draw line strokes with varying
widths, forming a line contour along each of the points. These contours are then used
as the basis for the boundary representation. These vector contours are then exported
as Scalable Vector Graphics (SVG) vector paths2. One disadvantage of using the SVG
file format is that any geo-references contained in the original 3D point cloud must be
included separately (usually as JSON data), and the corresponding SVG image must be
re-projected (if specific geo-referencing is required).

(a) The regularized PB vector paths
(blue).

(b) Generated 3D mesh based on the
regularized PB vector paths.

(c) Wireframe of the generated 3D mesh,
showing the geometric complexity.

Figure 5.6: Example of a 3D mesh approximated from the regularized PBs.

Approximation of the 3D PB and SB Shapes The vectorized line paths from the
2D floorplan approximation are exported into the SVG file format, mainly since it is
supported by Three.js for 3D vector path extrusion (Fig. 5.6). Additionally, other popular
vector-based image formats that could also be used e.g., Shapefiles3 and JSON-encoded
vector data. The PB is extruded as a 3D mesh based on the height of the walls from the
original point cloud.

With the use of CSG operations, the extruded PB 3D volume can be subtracted,
added or intersected with any SB 3D volumes using Boolean geometry operations. CSG
operations can be implemented using Binary Space Partitioning (BSP), where each
triangular mesh used as a primitive is first converted to a BSP node prior to performing
constructive operations [192]. The BSP tree is then traversed and the new polygon faces
are approximated using polygon splitting – where each vertex belonging to each edge of
polygon is tested to see if it is inside, outside, or co-planar to the next polygon in the
hierarchy.

The Boolean operations of subtraction, addition, and intersection of elements are
represented as a series of function calls, which clip and invert each polygon in the BSP
hierarchy to approximate the final CSG result. This allows for the approximation of
triangulated 3D floorplan meshes, with variable wall thicknesses and interior SB areas
that are not connected to the primary wall boundary geometry.

2SVG: https://www.w3.org/Graphics/SVG/
3Shapefile: https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
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5.4 Bounding-Box Approximation

(a) Point clusters generated using
Region Growing segmentation.

(b) Resulting OOBBs can then be
exported and used to generate e.g., an

as-is BIM representation.

(c) Example of as-is B-Rep BIM
geometry generated from the

approximated OOBBs.

Figure 5.7: Example bounding-box approximation reconstruction of the main hallway and office

areas of an indoor point cloud.

An OOBB or an AABB representation of point clusters can be extracted and used for
generating a 3D floorplan model. These planar clusters are the result of the segmentation
process (e.g., Region Growing, RANSAC, semantic segmentation, etc.). The 3D geometry
generation involves computing the bounding box for each of the segmented planar point
clusters, and exporting them as a text file along with the associated semantic label
(Fig. 5.7).

This process is handled by a custom command-line tool implemented using the PCL
framework and run by the Point Cloud Processing component of the SOS implementation.
The resulting clusters are exported and used for further editing, analysis, representation
and decision making tasks (e.g., generation of IFC data).

The generated bounding boxes can offer a good approximation of the dimensions
of each of the main structural components, but one downside to this approach is that
the reconstructed bounding boxes, especially OOBBs, are not always aligned optimally
with each other. This requires the use of further geometric evaluation e.g., for example
intersecting edges along the vertical axis between two bounding boxes are merged together
and a new bounding box is recalculated.

5.5 Reconstruction to Industry Foundation Classes

The use of the IFC file format has in the last 15 years become a standardised exchange
format for BIM data within the AEC industries [67]. As a result of this, the generation
of as-is and as-built BIM models has posed a challenge of how to generate up-to-date
BIMs without needing to create them manually from scratch, which can be an expensive
and time consuming process [265]. The concept of Scan-To-BIM has been used in the
past decade to describe manual, semi and fully-automated methods for reconstruction
of as-is and as-built BIM data from segmented and semantically-enriched point clusters
[250, 178, 104]. The use of semantic enrichment methods e.g., deep-learning based
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classification of point clusters, enables the transfer of the clusters dimensions and labels
to a corresponding IFC element. The current standard IFC file format specification
allows for complete digital description of a building at varying levels of details4.

Generation of IFC files can either be accomplished manually using specialist software
(e.g., Autodesk Revit, Graphisoft ArchiCAD), or can be generated in a programmatic
manner. The programmatic approach for generating IFC files is based on existing open-
source IFC software libraries. The most notable of this is the xBIM Toolkit, which enables
generation of IFC data using C# language bindings [156]. Another custom command-line
tool used by the Reconstruction sub-component of the SOS is able to parse OOBB
dimensions, coordinates and labels (generated by the Classification sub-component of the
Point Cloud Processing component), and use them to generate IFC components at LOD
100-300 representation (using common IFC components e.g., IfcWall and IfcSlab). The
resulting IFC model can then be imported into an existing BIM database of specialist
software for further evaluation.

Furthermore, the 3D geometry data stored in IFC files are a major source for
comparative representation and clash detection [67]. Since the geometric representations
are stored as space partitions, a connectivity graph can be computed to generate a
3D volume of a building partition by linking all of the described nodes as edges [54].
Additional geometric representations besides B-Reps e.g., curves, swept solids, etc., can
also be used for geometric and spatial analysis if available in the IFC dataset5.

5.6 Case Study

The results of the discussed reconstruction methods are presented, with a focus on
methods for reconstruction of indoor point clouds containing the core structural features
(e.g., walls, floors, and ceilings). The voxelized mesh, approximate floorplan and IFC
reconstruction approaches are methods in the Reconstruction software component of the
prototypical SOS implementation for point cloud classification and semantic enrichment
(Chp. 3.5.1). The triangular mesh reconstruction using BPA was obtained separately
using the MeshLab software tool [51].

5.6.1 Triangular Mesh Reconstruction

The triangulated mesh reconstruction results are based on the mesh complexity as well as
the observed visual fidelity of the reconstructed meshes. The normals of the point cloud
were pre-computed prior to reconstruction. The reconstruction results are generated
using BPA. The complexity is measured in terms of the number of triangular mesh faces
(Fig. 5.8). From the reconstruction results, it can observed that the resulting triangular
mesh has considerably high geometric complexity (Fig. 5.8(b)). A possible optimization
for this would be to use a sub-sampled point cloud as the input for reconstruction –

4IFC4: https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
5IFC Geometry Representation: https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2/HTML/

schema/ifcrepresentationresource/lexical/ifcshaperepresentation.htm
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though the preservation of the visual fidelity and original shape (especially the main
structural boundaries that are reconstructed as hard edges), would be of importance.
Additionally, while the use of a filter to close any holes in the mesh corrects the majority
of the artefacts from BPA reconstruction (Fig. 5.8(c)), additional manual editing and
reconstruction may still be required for further visualization and analysis applications.

(a) The input point cloud, containing 464 713 with pre-computed normals.

(b) The triangulated geometry mesh reconstructed using the BPA algorithm. Note the holes in the mesh that are generated as using a
constant radius of 30.0 units for the BPA sampling (resulting mesh boundaries highlighted in green).

(c) Post-filtering result of the BPA reconstructed mesh, used to close the majority of the holes in the mesh (faces generated to close the
holes in the mesh are highlighted in red).

Figure 5.8: Reconstruction of the hallway point cloud using the BPA. The resulting complexity

of the reconstructed mesh is 464 713 vertices and 890 416 faces (increased to 895 230 faces

post-filtering), with the majority of the mesh holes closed.



5.6. Case Study 79

5.6.2 Voxelized Mesh Reconstruction

The comparison of the voxelized mesh reconstruction is based on the results reported
in Stojanovic et al. [232]. The input mesh used for generating the voxelized meshes
is based on triangulated geometry derived from the corresponding as-designed BIM at
LOD 300, with three different voxelized meshes being generated at increasing resolutions
(Fig. 5.9(b)–5.9(d)). Voxel meshes are also used for spatial deviation analysis (Chpt. 6).

(a) The as-designed triangulated BIM mesh at LOD 300. (b) 3608 voxels (approximate resolution of 64
3).

(c) 8345 voxels (approximate resolution of 96
3). (d) 14 604 voxels (approximate resolution of 128

3).

Figure 5.9: Example of progressively increasing voxelized mesh, based on the corresponding

as-designed BIM geometry.

5.6.3 Approximate Floorplan Generation

The approximate floorplan generation results are based on the results reported in Sto-
janovic et al. [240]. For the testing of the approximate floorplan generation algorithm,
a point cloud featuring a typical office plan was used in order to evaluate the PB and
SB approximation both in 2D and 3D. The floorplans and room segments were obtained
from an externally obtained 3D point cloud of a building interior, which was scanned
using a portable LiDAR scanner. For certain tests (e.g., those for the SB detection and
curved surfaces), the point cloud clusters were artificially added. The results from the
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(a) The input horizontal point cloud
slice.

(b) Generation of the non-regularized
concave shape.

(c) Regularization of the concave
outlines, using a combination of the
Douglas-Peucker and Visvalingam

algorithms.

Figure 5.10: Results of the PB generation for a floorplan featuring a curved wall segment.

2D PB and SB detection are evaluated against boundaries detected using the α-shape
algorithm [70]. The results from the 3D PB and SB detection are evaluated in terms of
their geometric complexity (introduced as a result of the applied CSG operations for the
detection of SBs).

2D PB Detection The presented results in Fig. 5.10-5.11 show two different versions
of a floorplan, one with straight walls and another with an artificially added curved
wall section. The results were computed using a non-partitioned floorplan slice, selected
from the mid-level height of the point cloud (so no points for the floor or ceiling are
contained in the slice). The PB was computed using a two pass filtering combination of
Douglas-Peucker and Visvalingam algorithms. The epsilon value used for the Douglas-

Peucker generalization parameter was 2.4, while the epsilon value for the Visvalingam

generalization parameter was 0.2.

2D SB Detection The results for the SB detection presented in Fig. 5.12 were compared
against results generated using the α-shape algorithm. The epsilon values for the combined
passes of the Douglas-Peucker and the Radial Distance Simplification algorithms were
between 5.0-10.0, while the epsilon value for the α-shape algorithm was set to 150.0.
An additional comparison including regularization of the α-shape with a default epsilon
value of 10.0 is also included. These metrics were determined using a larger size that was
subsequently decreased until suitable approximations were computed.

3D PB and SB Reconstruction Results for the generation of 3D meshes based on
detected PB and SB vectorized floorplan paths are presented. The meshes are generated
using CSG operations and extrusion, and are not optimized in terms of triangulated
mesh complexity. The 3D meshes are generated and visualized using the Three.js 3D web
development framework. Results featuring regularized 3D PBs and SBs of a floorplan
are presented in Fig. 5.13 and Fig. 5.14.
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(a) The input horizontal point cloud
slice.

(b) Generation of the non-regularized
concave shape.

(c) Regularization of the concave
outlines, using a combination of the
Douglas-Peucker and Visvalingam

algorithms.

Figure 5.11: Results of the PB generation for a floorplan featuring straight wall segments.

5.6.4 Bounding Box-based Reconstruction

The results of the bounding box-based methods for reconstruction of segmented point
clusters are presented in Fig. 5.15. The point clusters were segmented using Region
Growing segmentation, and the IFC model was reconstructed using the OOBBs of the
segmented point clusters. The results for the IFC reconstruction are based on the results
reported in Stojanovic et al. [239].

The reconstructed IFC elements (IfcWall, IfcDoor and IfcSlab) are based on the size
and position of the bounding box coordinates obtained from the bounding box-based
reconstruction method. The resulting IFC can be reconstructed using either AABBs
or OOBBs, though AABB representations are only suitable for building layout where
all the structural segments are aligned at right angles with each other, otherwise any
rotations of elements are not preserved in the AABB representation.

OOBBs can preserve not only the complete volume and position of each point
cluster, but also the local rotation related to a given point cluster. That way if the given
point cluster (e.g., a wall segment) is intentionally not at right angles to any connecting
structural elements, its specific rotation can be preserved. Since the generated OOBBs
are generally not correctly aligned, further manual editing is needed in order to create
the final IFC model.
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(a) SB method epsilon value: 10.0, α-shape epsilon value: 150.0, α-shape with regularization epsilon value
of 10.0.

(b) Uses same parameters as (a).

(c) SB method epsilon value: 5.0, α-shape epsilon value: 150.0, α-shape with regularization epsilon value of
10.0.

(d) Uses same parameters as (c).

Figure 5.12: Results of SB detection using the presented SB detection method (left), in comparison

to SB detection using the α-shape algorithm (center), and the α-shapes with regularization (right).
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(a) A generated 3D mesh featuring square elements, with a mesh complexity of 137 106 vertices and 45 702 faces.

(b) A Generated 3D mesh featuring a curved wall element, with a mesh complexity of 93 204 vertices and 31 068 faces.

Figure 5.13: Examples of 3D meshes of vectorized floorplan paths, generated from regularized

PBs.
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(a) 3D mesh featuring SB in the form of a hollow square, with a mesh complexity of 34 386 vertices and 11 462 faces.

(b) 3D mesh featuring an curved PB with a curved and hollow SB, with a mesh complexity of 45 102 vertices and 15 034 faces.

Figure 5.14: Examples of 3D meshes of vectorized paths from detected and regularized SBs of a

floorplan partition.
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(a) The input point cloud, with segmented point clusters and associated OOBBs for each point cluster.

(b) The reconstructed IFC model at LOD 300.

(c) Misaligned regions of the IFC model elements that require further manual editing with specialist BIM software.

Figure 5.15: Reconstruction result of an indoor point cloud to an IFC using the Bounding

Box-based reconstruction method.
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5.7 Concluding Remarks

The presented methods are suitable for reconstruction of point clouds to higher level
geometric representations, which can be used for specific applications e.g., spatial deviation
analysis (Chpt. 6) and as-is BIM model generation. In most cases the accuracy of the
reconstruction methods is not accurate enough when compared to manually reconstructed
models made using expert CAD or BIM software, but the outputs are suitable for
approximating spatial relations and performing visualization tasks of the reconstructed
objects.

The triangular geometry reconstruction methods, PSR and BPA, can be used to ap-
proximate the triangulated mesh from a point cloud. BPA is usually more suited towards
reconstruction of non-organic shapes (or shapes that do not have curved surfaces), while
the PSR algorithm is suited towards approximating smooth and curved surfaces. Both
methods usually require further post-processing of the mesh (most notably closing any
open areas that are featured on the triangulated mesh surface). For most reconstruction
requirements of indoor point clouds, the use of the BPA method is preferred as it is able
to preserve the hard edges often found in building elements.

The voxel geometry reconstruction method is suited towards discretized spatial
approximations (e.g., deviation analysis). As such, it cannot be used to generate an actual
as-is mesh representations, but can rather be used as auxiliary data for further assessment
alongside an as-is BIM model. Further uses of the voxel geometry reconstruction method
for spatial deviation analysis are discussed in Chpt. 6.

The approximate floorplan generation method is suited towards approximating 2D
and 3D floorplans of particular indoor building areas. While the method does not produce
approximations with the accuracy obtained by traditional CAD or physical drawings, it
can be used to quickly approximate spatial dimensions, and create basis visualization
data for enhancing communication and decision making for FM operations. Furthermore,
it is better suited for evaluating regularized SBs for an airtight floorplan representation,
in comparison to the α-shape algorithm (which is more accurate, but is prone to over-
evaluation) [240]. Rectification methods for generated 3D floorplan meshes can further
be used to make them more visually appealing and possibly increase accuracy [91].

The bounding box approximation method is suited towards generation of as-is BIM
models up to LOD 300 [36]. The method is able to capture either AABBs or OOBBs of
planar segmented point clusters and reconstruct these as floors, walls and ceilings. While
the method can capture most of the planar geometry, further semantics can be added to
each of the clusters (either manually or using semantic segmentation methods discussed
in Chpt. 7), and the bounding box meshes representing each of the IFC components are
usually re-aligned post-reconstruction.
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Spatial Deviation Analysis

One of the core functions of point cloud analysis is being able to compare their repre-
sentation of the physical environment with as-designed or as-built BIM data at a given
LOD. The captured point clouds represent the building, by default, as a collection of
discrete surface points. In contrast, an existing as-designed BIM represents the building
typically as a polygonal 3D model with attributes that refer to the semantics of building
parts. Point clouds capturing the current state of the built environment can be compared
against an existing BIM, and this way they are a key data source for all BIM update
processes, particularly those concerning O&M procedures.

The problem of comparing spatial differences between geometric representations of
as-is or as-built versus as-designed geometry is a common occurrence, especially when
comparing point cloud and BIM geometry. This process is known as Spatial Deviation

Analysis. The process of spatial deviation analysis may include comparing the inclusion
or exclusion of certain building elements captured by point clouds – when compared
to the original as-designed or as-built elements as well as the their spatial alignment
corresponding to existing geometric documentation (e.g., floorplans – Fig. 6.1). The use
of spatial deviation analysis therefore plays an important role for FM applications e.g.,
space management and refurbishment or renovation.

Figure 6.1: Examples of an aligned and triangulated as-designed BIM element with as-is point

cloud geometry. The next step is to compare any spatial deviations between intersecting and

non-intersecting points of the as-is point cloud with the as-designed BIM.

87
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Selected Approaches Three approaches are presented for spatial deviation analysis, two
of which are based on previously published work and results in Stojanovic et al. [234, 241].
The first approach, Parametric Shape comparison, is based on comparing a geometric
primitive approximation (e.g., a plane), from as-designed or as-built BIM model elements
(e.g., floors, walls and ceiling), to an as-is point cloud representation.

The second approach, Voxelized Shape comparison, is based on using the concept of
FEA by comparing voxelized elements of as-designed or as-built BIM geometry to the
as-is point cloud, and subsequently detecting the points that share the same 3D space as
the voxelized geometry.

A third deviation analysis method, Point to Mesh comparison, is evaluated using
the CloudCompare software tool. The most important aspect of these deviation analysis
methods is thus the ability to visually analyze the results that highlight differences between
as-designed, as-built, and as-is elements, and to possibly combine it together with other
related spatio-temporal data and building documentation. Finally, the integration of
spatial deviation analysis approaches as software components within an prototypical SOS
implementation are discussed in detail.

6.1 Implementation Overview

SOS Integration of Deviation Analysis Components The combined use of Web3D-
based graphics frameworks allows for processing and visualization of indoor point clouds
and associated semantics for spatial deviation analysis tasks, capable of running on
different client hardware configurations (including mobile devices) [241]. Therefore, such
processes can be implemented as SOS software components and services (Chpt. 3.5.1).
Web3D frameworks such as Three.js [37] can be used to visualize important scene elements
e.g., deviating points.

The visualization for the deviation analysis is implemented as part of the Repre-

sentation Processing component, specifically the Data Mapping sub-component, making
use of the programmable graphics pipeline. Using the default shader for point cloud
materials provided by Three.js, the color and the opacity of any selected point group can
be modified during run-time of the application, thus deviating points ca be highlighted
and visualized.

Data Processing for Deviation Analysis The deviation analysis process requires the
compared geometry to be processed in order to contain specific attributes. For as-is
point clouds, this processing may include computation of normal vectors, segmentation,
reconstruction and transformation operations (Chpt. 4).

For as-designed or as-built BIMs, this may include the generation of voxelized FDMs
for specific geometric elements. The main processing components used for preparing
BIM and point cloud data for deviation analysis are implemented as command line tools
that are executed on the server (forming part of the Deviation Analysis component).
These command line tools makes use of the PCL framework [211] for initial point cloud
processing, and the Binvox tool for generating voxelized FDMs [166].



6.2. Visualization Characteristics of Deviation Analysis 89

6.2 Visualization Characteristics of Deviation Analysis

(a) Binary distance coloring with blending. (b) Gradient distance coloring with blending.

Figure 6.2: Example of blending with the two different visualization styles for deviation analysis.

Given the computed spatial deviation values, the deviation analysis visualization can be
generated. Two visualization methods used to highlight spatial deviations are presented
and discussed: (1) binary distance coloring and (2) gradient distance coloring visualization
styles. The binary approach uses a threshold value to determine at what distance the
points are deviating. This value can be adjusted by the user. This allows the user to
set an acceptable "fault tolerance" for the comparison of as-designed versus as-is built
geometry types.

For example, the binary visualization style shades all points beyond a threshold
level as red, and all points within the threshold value as blue. The gradient visualization
method allows for continuous shading of points from those smaller than the threshold to
those greater by linearly interpolating a color scale between them.

Formally, the mapping of the binary and gradient distance coloring can be defined
as: the distance between the point and the compared geometry element Drelative, which
is computed as Drelative = Drelative−Dmin

Dmax−Dmin
where Dmin is the minimum distance from

the point to the compared element and Dmax is the maximum. The gradient color
mapping can then be defined as a linearly interpolate value Cgrad, where Cgrad =

Drelative · Cend + (1.0 − Drelative) · Cstart, and where Cstart and Cend are the starting and
ending RGB color values the gradient will be interpolated between. The binary color
mapping operation is defined as Cbinary, which can only have two values assigned to it,

and is defined as Cbinary =







C0, Drelative < T

C1, Drelative >= T
, and where C0 and C1 are the two

binary RGB color values, and T is the threshold value. Additionally, the use of blending
operations can be applied to both points and the compared geometry, and provides better
visualization results when dealing with occluded scene elements (Fig. 6.2 and Fig. 6.3).
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(a) Gradient distance coloring with blending between points and reconstructed mesh.

(b) Binary distance coloring with blending between points and reconstructed mesh.

Figure 6.3: Further example of blending with the two different visualization styles for deviation

analysis using an actual indoor point cloud and reconstructed triangulated geometry based on it.

6.3 Deviation Analysis Methods

The two main deviation analysis methods, Parametric Shape and Voxelized Shape compar-
ison, are presented and discussed. Additionally, the use of the Point to Mesh comparison
method via the CloudCompare software tool, is used to generate ground truth devia-
tion analysis results to compare with the results obtained using the Voxelized Shape

comparison method.
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6.3.1 Point to Mesh Comparison

(a) The as-designed BIM geometry element. (b) As-is point cloud that is intentionally misaligned with
the as-designed BIM geometry.

(c) Resulting point to mesh distance evaluation, using a maximum distance threshold of 1.0 units.

Figure 6.4: Example of point to mesh distance evaluation using the ColoudCompare.

The Point to Mesh comparison method is implemented as the standard deviation analysis
method in the CloudCompare software tool (Fig. 6.4). The method measures the distance
of each point to the nearest triangle of a given mesh [68]. The distance from a point to a
given triangle is defined as either the orthogonal distance from the point to the triangle
plane (assuming that the orthogonal projection of the point on a given plane falls inside
the triangle), or the distance from the point to the nearest triangle edge. In order to
select what triangle is nearest to a given set of points, an octree data structure is used to
partition triangulated mesh, and the distance between points and triangles contained in
each octree node is computed [89].

The distances of each point to a nearest triangle are stored as a normalized scalar
value (0.0 to 1.0 if unsigned, or from −1.0 to 1.0 if taking into account both sides of
a triangle) for each point, and mapped to a given color scale gradient. Additionally,
the maximum deviating distance as well as the average distances distributed across the
analyzed point clusters are recorded. This allows for approximate visualization and
assessment of deviating points to a given triangulated mesh. In most use cases, the
parametric mesh would be the extracted and triangulated geometry from a given LOD
representation of a BIM element in the IFC file format.

The alignment between the as-is point cloud and the as-designed/as-built mesh
can either be performed manually, or using an appropriate point registration method
(Chpt. 4.3.1). The longitude and latitude coordinates, if available, can be obtained from
either of the models and used to transform both to the same location in 3D space prior
to deviation analysis.
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6.3.2 Parametric Shape Comparison

(a) Measurement of the distance value
Drelative from a point to the plane

parametric shape.

(b) Example of how the parametric plane shape is projected in 3D space and
relative to the 3D BIM geometry and points.

Figure 6.5: Illustration of the parametric shape comparison, every point is compared against a

plane object derived from the bounding area of BIM geometry element.

The Parametric Shape comparison method for deviation analysis makes use of an ap-
proximated plane that is derived from triangles of a given as-built/as-designed model,
and compares how far each point is from the given plane (Fig. 6.5). This approach is
the simplest and fastest approach for deviation analysis, but also the least flexible and
accurate – as each of the as-designed/as-built BIM components needs to be evaluated
separately, and the distance from a point to a given BIM component is measured using
the center of the components approximated plane.

Additionally, as the plane has no depth, it is geometrically treated as a planar object
defined as L, with a given width Lw and height Lh. As such, this approach is mostly
suitable for spatial deviation analysis of planar objects (e.g., walls, floors and ceilings).

Extension for Parametric Shape Comparison

(a) Point outside the shape bounding
box.

(b) Point inside the bounding box, but
outside the shape.

(c) Point inside the bounding box and
inside the shape.

Figure 6.6: Illustration of the three cases when testing for a point outside the shape bounding box,

inside the bounding box and inside the shape. Each time a ray intersects with a shape inside the

bounding box, the value of the Boolean variable used for intersection testing is switched between

true and false. If the value is true, then it can be assumed that the point is inside the shape.
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An extension of this method is to compute the actual bounding boxes (usually OOBBs)
of each BIM element, and compare which points intersect the bounding box. However,
since a bounding box can enclose both concave and convex manifold shapes that represent
various BIM elements, it is not sufficient to just check if a point is inside the bounding
box, but if it is inside the shape enclosed by the bounding box (Fig. 6.6).

A function for checking if the point is inside or outside of a polygon can be imple-
mented to achieve this task (as described by Franklin [82]). The idea of such intersection
testing is based on the concept of a Jordan Curve [105] i.e., the boundary polygon is
treated as a simple closed shape that separates the inside region of the curve from the
outside region. For such a test, a ray that is projected horizontally from a given point
can be cast, and the number of intersections with the edges of the boundary polygon are
detected as a switchable Boolean statement. Additionally, methods for testing ray to
triangle or ray to volume intersections can also be used [258].

6.3.3 Voxelized Shape Comparison

The Voxelized Shape comparison approach is used to evaluate and visualize how close
a cluster of points of a given as-is point cloud is to the overlapping voxel element of a
voxlized as-designed BIM mesh element in the same 3D space. The deviation threshold
value is used to determine beyond what threshold (measured as distance in Euclidean
space), a 3D point is considered to be deviating. This value can be adjusted by the user
or based on the required use-case specific parameters. The deviation threshold value
allows for setting an acceptable fault tolerance when comparing different geometric and
primitive-type representations.

Generally, the generated voxel mesh does not have any void spaces inside it (i.e., every
voxel is connected to a neighbouring one). Since the captured point cloud representation
is usually projected along a given plane (point clouds are not projected in a volume), the
use of a voxelized mesh (i.e., a FDM), without void spaces between the voxels, allows for
comparison of points that might otherwise be missed if they were located inside these
voids (Fig. 6.7).

If the point is contained in an voxel, it can be marked as non-deviating, otherwise
the point is marked as deviating (Fig. 6.8). The first test is to see what points from the
complete point cloud are inside the bounding box of a voxel, which are then copied to a
temporary array – along with an additional integer key value to indicate which specific
points in the point cloud array are copied. This array is then spliced using these key
values in order to obtain a new temporary array containing the deviating points. These
deviating points are then added as a new point cluster to the scene and marked visually
as being deviating (Fig. 6.8(a)).

Apart from the binary deviation, it also needs to be taken into account if the
deviation is present as a surface damage or erosion element (e.g., damaged, missing or
eroded elements). This approximation is referred to as the point sparsity. In order to
assess point sparsity, an average threshold value based on the number of points contained
for each voxel element must first be determined.
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Figure 6.7: Example of voxelized as-designed BIM geometry.

The point sparsity computation then checks to see if each voxel contains a number of
points equal to or above this average threshold value. If the case is that the voxel contains
a number of points below the average threshold, it can be assumed that the missing points
present a deviation (Fig. 6.8(b)). The Voxlized Mesh comparison method can therefore
capture deviations of points when comparing a number of different voxelized forms of
BIM elements, making it more flexible, albeit also more computationally expensive, than
the Parametric Shape comparison method. Due to this flexibility, it is the default method
for deviation analysis in the prototypical SOS implementation.

6.4 Case Study

The Voxelized Shape comparison method is part of the Deviation Analysis software
component of the prototypical SOS implementation (Chpt. 3.5.1). The performance
and the accuracy of this method is evaluated in this case study, using point clouds and
as-designed LOD 300 BIM geometry elements representing typical office environments.
The point cloud used for the comparison originally contained 2 506 858 points, but was
sub-sampled to 501 372 points to decrease processing time. The voxelized BIM geometry
mesh used for comparison contains 14 604 voxel elements (approximate resolution of
1283).

For generating the final visualization and performance evaluation results, a com-
modity laptop with an Intel i5 1.8 GHz Central Processing Unit (CPU), 8 GB RAM,
and NVidia GeForce MX150 GPU with 2 GB video memory was used. These results are
based on the case studies previously published in Stojanovic et al. [232].
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(a) Result of the spatial deviation analysis, where all non-deviating points are colored blue.

(b) Result of the point sparsity deviation analysis variant, where voxels with too few points are marked red.

Figure 6.8: Example of spatial deviation analysis using the Voxelized Shape comparison method.

Both binary and point sparsity visualisation methods are used to highlight spatial
differences between the compared as-is and as-designed geometry. The voxelized BIM
geometry was compared against the corresponding point cloud for obvious deviations
(Fig. 6.9), where deviating points are highlighted in red. Point sparsity deviation analysis
is also performed - highlighting voxels with eroded or missing deviations in red, while
healthy voxels are highlights in blue (Fig. 6.10). Furthermore, for empirical evaluation,
the CloudCompare software tool was used to generate the ground truth results, which
are then compared visually against the obtained results (Fig. 6.11).

The CloudCompare software tool can compare point cloud versus point cloud as
well as point cloud versus mesh spatial deviations – generating both visual and numerical
deviation analysis results using an octree-based approach with a linearly interpolated
color map to visually highlight any spatial deviations.

A threshold level of 100.0 units was used in order to mark deviating points in the
CloudCompare software tool. For both comparison methods, the BIM geometry and the
point cloud were aligned manually. The ground truth results show that the majority of
the points which are aligned with the as-designed BIM mesh are marked as deviating, as
they exceed the threshold value of 100.0 units. It can be observed that the majority of
deviating points correspond spatially to the deviating points that were computed using
the Voxelized Mesh comparison method (Fig. 6.9).

Finally, the computational performance using Voxelized Shape Comparison method
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to obtain spatial deviation analysis results is evaluated. The average computation taken
(in milliseconds) is measured, for the two different spatial deviation analysis methods
(binary and point sparsity deviation analysis). The average time taken to perform the
binary deviation analysis was 645 368 milliseconds, while the average time taken to
perform the point sparsity deviation analysis was 452 215 milliseconds.

(a) (b)

(c)

Figure 6.9: Visualization results for the binary deviation analysis, with detected deviating points

colored in red, using the Voxelized Shape comparison method.

(a) (b)

(c)

Figure 6.10: Visualization results for point sparsity deviation analysis, using the Voxelized Shape

comparison method.
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(a) (b)

(c) (d)

Figure 6.11: Ground truth deviation analysis results generated using the CloudCompare software

tool. The points that exceed the deviation threshold are colored in red.
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6.5 Concluding Remarks

The key advantage of using point clouds for deviation analysis is that they directly
provide added values for stakeholder decision making tasks, through visualization and
analysis outputs. This is especially beneficial for O&M procedures where changes in
interior environments need to be recorded and compared.

The methods presented for spatial deviation analysis provide suitable approximations
for measuring the spatial differences between as-is and as-designed/as-built representations.
However, they cannot be used to measure spatial deviation distances for AECOO or CQA
applications where accuracy is required (in contrast to using precise manual measurements
alongside accurate CAD models). As such, the spatial deviation analysis methods are
suitable fro providing initial assessment overviews of built environment changes.

The integration of the presented spatial deviation methods as SOS software compo-
nents (Parametric Shape and Voxelized Shape comparison) also removes the dependency
on using third party monolithic software tools, though it is still important to compare
the deviation analysis results against the the ground truth approximations obtained from
such software tools (Fig. 6.11).

The use of discritized parametric surfaces, particularly voxelized geometry i.e.,
FDMs, is key to enabling the computation of distances between points and corresponding
as-designed/as-built BIM elements – such elements are often represented as triangulated
or simplified bounding-box or plane geometry. Furthermore, the use of Web3D-based
technologies within the Representation Processing components of the SOS implementation
enables the visualization of the spatial deviation analysis results on both thin, medium
and thick client devices.

Finally, the aspect of performance needs to be considered. While the presented
approaches are suitable for quick approximations, if higher precision is required then the
corresponding FDM needs to be of higher granularity, thus increasing the processing time
(usually the deviation analysis performed using the Voxelized Shape comparison method
corresponds to O(nlog(n)) computation time). This can be mediated by finding the right
balance between the compared model geometry complexity and the required deviation
analysis accuracy – either using a heuristic approach or by evaluation by stakeholders
who can adjust the required parameters needed for the analysis.



Chapter 7

Semantic Enrichment of Indoor

Point Clouds

(a) The input RGB point cloud representing a
common office area.

(b) The segmented and classified output point cloud, where red
nodes indicate point clusters belonging to the chair class, and blue

to the sofa class.

Figure 7.1: Example of octree-based multiview classification.

A 3D point cloud consists of what can be defined as non-interpreted data – data that is
open to visual interpretation but does not have any semantics associated with it. While
point clouds can be used by themselves to represent the current state of the physical
environment for practical needs (e.g., assessment of space usage in a room), for any
further representations and assessment the point cloud needs to be processed in order to
generate useful semantics for it (Fig. 7.1).

This chapter describes the approaches for semantic enrichment of indoor point clouds,
focusing primarily on unsupervised and supervised learning methods for automated
classification of point clusters as well as manual user-based semantic enrichment to a
lesser extent. The semantic enrichment methods presented in this chapter have been
previously published in Stojanovic et al. [238, 236, 241, 239].
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7.1 Semantic Enrichment

Since raw point clouds do not provide any semantics by default, there is a need to add
semantics to them in order to make them more related to an existing domain in a given
assessment context (i.e., point clouds used to represent indoor environments would need
to differentiate between office furniture and structural elements such as door frames and
walls). This may include adding explicit meaning to an object represented within a point
cloud cluster, or by adding additional information into the point cloud (e.g., textual
annotation), which can be used to derive understanding when assessing it further for
decision making. The term semantic enrichment is based on the definition given by Sacks
et al. [212].

Such types of semantics may include human-readable labels (e.g., "chair", "table",
"office table", "book shelf", etc.), or it may include specific attributes related to a higher
level semantic representation or an ontology (e.g., IFC schema specific attribute names
(Chpt. 5.5)). The main reasons for adding semantics to point clouds are: (1) It enables
them to be better interpreted for decision making tasks within a specific AECOO domain
(e.g., to complement visual inspection), and (2) Enables reconstruction to higher-level
representations that require explicit semantics to be associated with geometry (e.g., BIMs
represented using the IFC format).

There are three main ways in order to add semantics to a given point cloud: (1)
Manual Semantics, (2) Unsupervised Learning Methods, and (3) Supervised Deep Learn-
ing Methods. All three methods usually require point clouds that have been processed
(e.g., registered with a given floorplan), and include additionally computed attributes
that can be used as features (e.g., color and normal vectors).

7.2 Manual Semantics

The process of manual annotation of point clouds introduces semantics as a product
of the user explicitly adding information for a selected point cloud cluster (Fig. 7.2).
Common methods for manual annotation of point clouds include manual selection of
regions of interest in 3D space, with the user then adding specific textual or numerical
information for the selected clusters via a user input interface (e.g., a GUI dialog). Such
methods are based on common computer graphics principals of user interaction within a
3D scene, and the annotations can be displayed using common visualization idioms [243].

Typically, the user input for semantic enrichment tasks is part of the user interface
implementation of the client-side processing of the SOS. In such a case, users are able
to adjust each of the input parameters, options and information boxes for semantic
enrichment tasks, send this to the server for processing, and interactively view and
inspect the generated results sent back by the server.

The use of a client-side GUI enables user adjustment of processing parameters, thus
making the process of semantic enrichment via user input adaptive to various indoor
point cloud representations. This can also encourage users to experiment and learn
optimal parameter configurations are for their specific needs.
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(a) Calculation of the square area between four selected points. (b) Example of measurement of distances
between two points.

(c) Chair object selection using a bounding box volume, and
user inputted textual annotation.

(d) Alignment of a selected point cluster with corresponding
region in a 2D floorplan.

Figure 7.2: Example user inputted annotation and distance/area measurements of a selected

region of a point cloud.
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However, one key requirement for user inputted semantic enrichment is that it is
assumed the user has adequate domain expertise in order to add meaningful, factual and
correct semantics to a given point cloud representation.

The two main steps for user inputted annotation are: (1) Point cluster selection
and (2) Annotation input. For selection of point clusters, a number of approaches can
be adopted. The most common way is to use a picking algorithm in order transform a
2D vector, based on the mouse cursor screen coordinates controlled by the user, into a
3D projection and detect if any object is behind the mouse cursor. The selection of the
object behind the mouse cursor is performed using a ray-based intersection test, where
a ray projected from the position of the mouse cursor is tested against the geometry
type of the object it is attempting to pick. This may include intersection tests between
OOBBs and AABBs, points, triangles or other geometric primitives [286]. If the point
cloud object is already segmented, the point clusters may be individually selected as well
by using their OOBB for the object picking intersection test.

Apart from object picking, the other method is based on volume selection (Fig. 7.2(c)).
With this method, a 3D volume based on a given primitive (e.g., a box, cylinder, sphere,
etc.), is drawn by the user by specifying its width, length and height. Then, the user
is able to move this 3D volume shape around the 3D scene and select a location. At
this location, any 3D points that are within the volume are selected. Thus the user is
able to select a desired region of the point cloud for manual segmentation and further
annotation.

There are are also different methods for user inputted textual, numerical and pictorial
annotation of 3D point clouds. Firstly, users can measure distances and areas between
two selected points, which allows them to obtain measurements of spatial regions in
3D space (Fig. 7.2(b)). Secondly, the users are able to add custom text annotations to
specific point cloud clusters, so that any important information (e.g., measurements),
can be viewed by other stakeholders who may be inspecting the point cloud (Fig. 7.2(a)).
Thirdly, users can also load 2D images (e.g., floorplans), and associate these with a point
cloud – so that when a user clicks on a point cloud, additional pictorial information is
presented along with the textual and numerical information (Fig. 7.2(d)).

7.3 Use of Unsupervised Learning Methods

ML approaches are deeply rooted in statistics, and as such they usually attempt to
distinguish types of data based on specific features, using an unsupervised learning

approach i.e., where knowledge of what the data represents is not known prior to any
analysis). A common use of unsupervised ML approaches is for clustering of data (i.e.,
grouping of data based on the metric of similarity of one of the features of data e.g., color
or position in 3D space).

Widely used clustering methods that are suitable for cluster analysis of point clouds
include k-means and DBSCAN clustering (Chpt. 4.3.6). Considering the structure of
point clouds (Chpt. 4.1), their features can be used to derive relations between similar
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regions made up of other points e.g., for applications such as segmentation of rooms
using k-Means clustering, etc., (Fig. 7.3).

Typical features of points that can be used for clustering include their spatial
distribution, color and orientation (i.e., normal vectors). Such features are used to
represent physical surface properties that point clouds attempt to capture e.g., walls of a
building with a similar color or surface curvature measured using pre-computed normal
vectors.

Additionally, segmentation of point clusters based on Region Growing is discussed
in Chpt. 4.3.5.

Figure 7.3: Example of k-Means clustering-based segmentation of an indoor point cloud.

7.4 Use of Supervised Deep-Learning Methods

Deep-learning is a subset of ML that makes use of supervised learning methods i.e., where
the knowledge of what the data represents and how it is supposed to be classified is

known prior to any analysis. Deep-learning methods thus attempt to predict what the
data is supposed to represent, based on a model that is trained to detect the same types
of existing data.

The use of supervised deep-learning in the presented context relies on using a CNN
to predict the probability of input data belonging to one or more classes. In turn,
the process of training such a CNN requires the use of example training data and its
specific features, in order to train a given CNN model to make correct predictions. The
correctness of these predictions depends on increasing the prediction accuracy during
training using iterative optimization methods. Applications of deep-learning for point
clouds are typically concerned with semantic segmentation and classification.

Semantic segmentation and classification enables the assignment of points to classes
i.e., labels and categories (e.g., "wall", "chair", etc.). Furthermore, semantically enriched
point clouds can be used as base-data for BIMs and DT representation [242]. Babacan
et al. [13] present an approach of semantically enriching indoor point clouds using a
combined approach of classification with a 3D CNN and further segmentation of planar
point clusters using the RANSAC algorithm. Other recent approaches for semantic
segmentation of indoor scenes make combined use of both 2D and 3D CNNs for clustering
and semantic labelling of indoor point clouds [48, 271].
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Figure 7.4: An illustration of a typical neural network with one input layer, one hidden layer,

and one output layer. The predicted output yn is based on the output of the function g(z) that

uses linear combination of the weights and biases of the previous input nodes from the hidden

layer nodes aj to aj+1. The hidden layer nodes aj to aj+1 in turn receive their inputs from the

linear combination making use of the input layer nodes ai to ai+1 as well as their associated

weights and biases.

Neural Networks Typical feed-forward neural networks are based on the model of
biological signal processing, where signals are received by neurons, which are usually
modelled as layers based on mathematical functions. The input signals are processed and
sent forward either to another layer or as an output signal [4]. The output signal is then
used to create a prediction value. The neurons process the input signal based on weights,
biases and activation functions that attempt to evaluate and categorize the input signal.
The values used by the biases and weights for each neural layer are adjusted during the
training of the neural network.

A cost function is used to approximate how well the neural network is fitting the
classification of input data with its current parameters. The cost function compares the
value of the predicted classification to what the actual classification is supposed to be,
and assigns an accuracy score for the current configuration of the neural network.

The objective is to minimize the value of the cost function, thus increasing the
predicted accuracy of the current neural network model. The continuous adjustment of
neural network parameters during training, in order to minimize the value of the cost
function, is achieved using backpropagation.

Backpropagation iteratively adjusts the values of the weights and biases for each
neural layer in the network. These values are then used to test the sensitivity of the cost
function in order to reduce the error value. Backpropagation is enabled by differentiating
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the activation functions of each of the neural layers, from the last output to the first
one, with respect to the current cost function value. This way the sensitivity of the cost
function to the weights and bias parameters can be approximated.

After a number of iterations, the neural network should converge to optimum values
of the biases and weights (where the cost function is at the minimum value). The ultimate
goal of the neural network is to bring the value of the outputted label classification as
close as possible to the value of the data label that the ground truth is supposed to
represent. This ground truth data, used during training, is known as training data. The
training data for each class contains a number of different examples of what the entities
belonging to it are supposed be i.e., if the neural network is used to classify pictures of
cars, then the training data will include various types of cars that can be classified based
on specific features (e.g., the color of the car).

Usually a neural network is used for non-binary classification, where there can be
more than two types of classes that the data can belong to. In such a case, the input data
is usually vector data containing features that represent the key distinguishing attributes
of the data the neural network is trying to classify. The neural network attempts to assign
the inputted data, based on the classification of its features, as a probability measure of
belonging to each of the corresponding classes. In the presented context, such classes
may include different kinds of office furniture or other indoor built environment features
captured by point clouds.

In case of point clouds, the features used for training and classification may include
position, normals, color and/or any other semantics, or in some cases this may be data
in different dimensions (e.g., 2D images representing ground truth data). These features
are usually mapped to a vector, which is then fed through the neural network, and
the output is a 1 × n vector, where the size of n is the number of classes, and the nn

component of the vector represents the probability value of the input data belonging
to a given class. The term deep learning can refer to the use of neural networks that
contain more then one neural layer, known as hidden layers (Fig. 7.4). The increased
number of hidden layers has the potential to increase the accuracy of a neural network
for multi-class detection, but requires longer training times.

Convolutional Neural Networks CNNs are a special kind of deep-learning neural net-
works, designed to work with multidimensional structured data [95], by performing
convolutions on the data between at least one of the hidden layers (Fig. 7.5).

The convolutions allow the mapping of features in the form of reduced dimensionality
(known as pooling), onto a feature map. A convolution consists of applying a kernel to a
2D or 3D data set, represented either as a n × n or n × n × n input layer (n being the
dimension size), where the results of the convolution are used to generate a new output
layer. A convolution makes use of the concept of a sliding window, where a kernel moves
over the defined area of the image or volume, and maps the weighted sum as a reduced
feature space output layer. This output layer is subsequently processed by additional
convolutional neural layers, each of which further extract specific features with the use of
various kernels and generate subsequent feature maps.



106 Chapter 7. Semantic Enrichment of Indoor Point Clouds

(a) A simple 2D CNN, with two convolution and max pooling layers, and one fully connected layer for classifying an image into three
different classes.

(b) A simple 3D CNN, with three convolutional and max pooling layers, one fully connected layer, and classification value mapping to
three different classes.

Figure 7.5: Example of conceptual 2D and 3D CNN architectures to illustrate how CNNs perform

classification on 2D and 3D data.
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Figure 7.6: Illustration of the process of feature selection from training data, training the CNN,

data input and generation of predicted results for 3D point clusters and 2D images.

A fully connected layer is used in the final stage to compute the output values, which
are transformed via an activation function into a probability value, for each of the classes
that the CNN is trained to detect.

Segmented regions (point clusters) of point clouds for AECOO applications can be
classified using such CNNs [113, 111]. Training data used to train a CNN for classification
of indoor point clouds can either be 3D point cloud clusters, geometric approximations
of point regions (e.g., voxels), or 2D images of specific 3D objects as well as real-life
photographs of their counterparts.

The two presented approaches for supervised deep-learning rely on either 2D image
data of point clouds, known as multiview classification, and the classification of actual
point cloud data, known as object-based classification. Fig. 7.6 illustrates the high-level
process of classification of 3D point cloud and 2D image data for semantic enrichment of
point clouds.

7.5 Multiview-based Classification

The use of 3D CNNs such as PointNet++ impose a considerable amount of overhead
in terms of hardware resources and computation times. Additionally, access to existing
point cloud training data is required, which can be difficult to obtain. The development
and release of Google’s Inception V3 CNN model and TensorFlow API allows for more
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Figure 7.7: Illustration of the multiview classification process. Captured multiview images of

point clusters are classified using a retrained version of the Inception V3 CNN, after which the

classified image results are associated with the corresponding point cluster.

practical implementation and application of deep-learning-based methods for classification
of 2D image data [1, 248].

Therefore, an alternative to using 3D CNNs for classification of point clouds is
using 2D CNNs instead, which classify images depicting multiple views of point clusters
and associating the classification results of such views back with corresponding point
clusters (Fig. 7.7). Such an approach is called multiview classification, and focuses on
classification of 2D raster images of 3D point clusters [245]. Subsequent evaluation of
this approach has shown that it can, in certain cases, provide just as accurate or better
results as using a 3D CNN – but without the data bandwidth requirements needed for
parsing and processing large point cloud datasets [246]. The main requirement is then
to classify images of indoor scenes featuring multiple objects (e.g., office furniture), and
link the classification result back to the corresponding point clusters, using a multiview
classification approach.

This classification result obtained from classified images can be applied to the
corresponding point cluster of the partitioned point cloud, and allow each classified
cluster to have an associated semantic. The use of multiview classification generally
requires the following steps:

1. Discretize the 3D scene into spatial partitions.

2. Generate appropriate images for each partition.

3. Classify the generated images.

4. Associate each partition with the classification result.

The generated multiview images can also be classified in a service-oriented manner,
and the classification results can be streamed back and associated with each point cluster
of the indoor point cloud [241]. This allows for automated semantic enrichment of indoor
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point cloud data, which in turn enables the point clouds to be used as base data for
as-is BIM or DT representations. Two main approaches for multiview classification are
presented and described. These include the octree-based and viewpoint entropy-based

multiview classification approaches. Both approaches rely on the generation of images of
spatially partitioned point clusters, and have been tested for classification of furniture
items commonly found in indoor point clouds.

7.5.1 Octree-based Multiview Classification

Figure 7.8: Illustration of the octree-based multiview classification process. Generated cubemap

images, captured from the center of an octree node, are sent to a 2D CNN for classification,

after which the results are associated with the corresponding point cluster. Not all cubemap faces

capture enough information, in which case mostly blank cubemap faces are disregarded prior to

classification.

The octree-based multiview classification algorithm captures multiview projections of
point clusters partitioned within octree nodes. These multiview images are then classified,
and the classification result is associated back with the corresponding node (Fig. 7.8).
While 3D and 2D CNNs can be used successfully to classify single objects, including
multiple objects for classification requires partitioning of the 3D scene in order to treat
each partition as a unique point cluster belonging to a given object type.

The use of an octree for spatial partitioning provides a reasonable performance in
terms of node traversal in comparison to other solutions (e.g., kd-trees), and can be used
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to partition a point cloud of varying resolutions (e.g., from very dense to very sparse
point clouds).

The octree partitioning scheme has to correspond to the density of points in the
point cloud e.g., a spare point cloud that is partitioned using a dense octree scheme will
generate too many octree nodes containing too few points to make it useful for multiview
classification. In most cases, and average of 63 octree nodes are used for a point cloud
with an average resolution of 330 000 points for 20m2. The use of an octree partitioning
is best suited for capturing the macro details of the scene at this resolution.

In case of using cubemap images to train a 2D CNN, the chosen octree resolution
has to be similar to the resolution used when generating the training image data for the
CNN. If a very sparse octree resolution is used, and the CNN was trained on images
containing finer point elements obtained from denser octree nodes, then it can be assumed
that the classification will not provide the most accurate results. Therefore, a target
for each scene is to have an average of 45 valid octree nodes, from which the cubemap
images for classification can be generated. It is also assumed that the point cloud scene
is already segmented, so that walls, ceilings and floors are removed (along with any other
non-classifiable segments), and not featured in any of the generated multiview images.

Octree-based Multiview Generation Algorithm The formal mathematical definition
for the generation of multiviews using octree-based spatial partitioning is described. The
octree data structure, defined as O, partitions the point cloud defined as P , into a number
of nodes defined as Oi,j,k. Each of these nodes contain points representing a cluster,
defined as Pc, which form part of the whole point cloud representation P . At each node
center Oi,j,k, a center point is defined as Oc. At this center point, a virtual perspective
defined as C is placed (described further in Sec. 7.5.2). This process is described in
Alg. 3.

Algorithm 3 Octree-based Multiview Generation

Require: O, P

P → O {Partition point cloud using octree}
for x = 0 to length(Oi) do

for y = 0 to length(Oj) do

for z = 0 to length(Ok) do

Oc → Ox,y,z {Set node center point to current node}
Capture Equirectangular Projection of Pc at Oc

end for

end for

end for

The following describe the generation of cubemap images from equirectangular

projected images [231], based on the procedures described by Reed [201] and Greene
[96]. The camera object Oc captures an image using equirectangular projection, from the
center point Oc in the current octree node Onijk

(all other point clusters in each of the
nodes are set to invisible).
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This image, defined as Im := {Imwidth,height ∈ R
2, Imx,y ∈ R

2, Imu,v ∈ [0, 1]2, RGB ∈

[0, 1]3}, is then used to generate six different cubemap images that are used for classifica-
tion.

The definition of each cubemap is defined as Cmface := {Cmwidth,height ∈ R
2, Cmx,y ∈

R
2, Cmu,v ∈ [0, 1]2, Cmface ∈ [0...6], RGB ∈ [0, 1]3}, while the complete cubemap is

defined as a unit cube in 3D space with normalized coordinates Ccube := {Ccube ∈ R
3, þP ∈

[−1, 1]3}. Im can be mapped onto a unit sphere object, which is aligned with Ccube

coordinates in 3D space. This unit sphere object is defined as B := { þM ∈ [−1, 1]3, r, φ, θ}

(Sec. 7.5.2).
The polar coordinates of such a sphere can then be mapped to Cartesian coordinates,

in order to enable the sampling of the equirectangular image pixels onto the corresponding
cubemap face. These coordinates can be defined as Crxyz, where Crx = rsin(θ)cos(φ),
Cry = rsin(θ)in(φ) and Crz = rcos(θ), and where θ = u2π and φ = vπ. The coordinates
from Imu,v are sampled as normalized coordinates u, v ∈ [0, 1]2, where u = Imx/Imwidth

and v = Imy/Imheight, and where Imx,y represent the current x, y pixel coordinates
Imx,y.

The procedure of mapping a cubemap image to an equirectangular map involves
projecting a ray þR from Bcenter, converting the spherical coordinates of þR to Cartesian
coordinates, recording the pixel the ray intersects on one of the faces Cmface of Ccube,
and copying the corresponding pixel color value from the current Cmface into Imx,y.

To determine what face of the cube the ray intersects, the absolute value of the sam-
pled pixel position in 3D Cartesian coordinates is computed as x → xx = x

maximum
, y →

yy = y
maximum

, z → zz = z
maximum

, and where maximum = max(abs(x), abs(y), abs(z)).
The reverse of this procedure is therefore the final step in the process to generate cubemap
images from an equirectangular image. Each pixel position from each of the faces of
Ccube (e.g., Cmfaceposx

, Cmfacenegx
, Cmfacenegz

) is mapped back to spherical coordinates
in order to sample the pixels in the equirectangular image.

The sampling is accomplished also using a ray that is projected from Ccube into B

(onto which the equirectangular image is projected). Additionally, when projecting a ray
from each pixel in Cm, the location of the pixel in the relevant cubemap face needs to be
normalized between [−0.5, 0.5], and these 2D coordinates are used to form the redefined
unit 3D vector þR, where the third coordinate is related to the absolute normalized value
for the current face projection.

Once the Cartesian coordinates of þR have been established, they are converted back
into spherical coordinates, so that þR → þRs can be used as a ray for an intersection test
back into B. In this case θ and φ are redefined as θ = atan2(

þSx

þSy
) and φ = acos

þSz

R
, and

where R =
√

þSx · þSx + þSy · þSy + þSz · þSz.
The final step of this reverse mapping procedure is to redefine u and v as coordinates

for sampling the pixels in Im. Therefore, u is redefined as u = θ
π

, and v = φ
π

. This
conversion process from equirectangular projection to cubemap projection is defined in
Alg. 4, and further illustrated in Fig. 7.9.
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(a) The indoor point cloud represented
in the maps.

(b) An equirectangular projection captured from a given center point of an octree node
partitioning the indoor point cloud.

(c) The resulting cubemap faces generated from the equirectangular projection.

Figure 7.9: Example of conversion of an equirectangular projection image to corresponding

cubemap faces, representing an area of an indoor point cloud.
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Algorithm 4 Equirectangular to Cubemap

Require: Im, Cm, Ccube, B, þR, Crxyz

Im → B {Map equirectangular image to unit sphere}
Cm → Ccube {Map cubemap faces to unit cube}
Ccube þP

= B þM
{Set center point of unit cube to the center point of unit sphere}

for Cface = 0 to length(Ccubefaces
) do

for x = 0 to length(Cmfacewidth
) do

for y = 0 to length(Cmfaceheight
) do

Crxyz ∈ [−0.5, 0.5]3 {Normalize Cartesian coordinates projected from unit cube
into unit sphere}
þR = Crxyz {Assign projected Cartesian coordinates to unit vector}
þR → þRs {Transform Cartesian coordinates of sampling vector to spherical
coordinates}
þRs ∈ [0, 1]3 {Normalize spherical coordinates to unit vector}
þRs → Imu,v {Sample UV coordinates of equirectangular map}
Imu,v ∈ [0, 1]2 {Normalize UV coordinates}
Cmx,y = Imu,v {Map sampled UV coordinates onto relevant cubemap face}

end for

end for

end for

7.5.2 Viewpoint Entropy-based Multiview Classification

The use of optimal viewpoints is based on the concept of viewpoint entropy [39]. Entropy
is the measure of information conveyed for a given signal, and can be applied to images in
order to measure how much information is contained in them. This approach is inspired
by the concept of Shannon entropy [223]. The viewpoint entropy-based multiview
classification algorithm generates images of clustered point cloud segments, using an
entropy-based function to select multiview images with the highest amount of visual
information.

The entropy value used to select multiviews for image synthesis is obtained as a vector
parallelism measure between the randomly sampled cluster bounding sphere vertices
(used as virtual camera positions and directions), and point cluster normal vectors. This
concept is illustrated in Fig. 7.10.

Viewpoint Entropy-based Multiview Classification Algorithm The formal mathemat-
ical definition of selection of viewpoints is described. A point cluster C is defined as
C := {P ∈ R

3, þN ∈ [−1, 1]3, RGB ∈ [0, 1]3}. For each cluster C representing a finite set
of points, a bounding sphere is generated, which is defined as a 3D sphere object, with
additional geometric divisions, as B := { þM ∈ [−1, 1]3, r, Sw, Sh, φ, θ}, with þM being the
center point, r the sphere radius from the center point, Sw and Sh horizontal and vertical
sphere divisions, and φ and θ the horizontal and vertical sweep angles.
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The bounding sphere B generated for each cluster, based on B, can be defined as
B := B(C). Vertices are then randomly sampled from the bounding sphere, defined as
subset Bv, where Bv = σ(B) := {P ∈ R

3, þN ∈ [−1, 1]3}. Each of the randomly-sampled
inverted bounding sphere vertex normal vectors are tested for parallelism with the normal
vectors from each of the points in C.

The Entropy Function is the main function used to determine the selection of
optimal viewpoints, and is defined as f : R3 → R, with R → {0, 1}, where f(Cp, Bp) =






1, T ≥ CþN · BþN ≤ 1.0

0
, and where the bounding sphere vertices and cluster points

that have normal vectors considered close to parallel within threshold level T (e.g., if
the dot product is between 0.75 - 1.0, and this is within the range of T ), are marked
as TRUE positions and directions for the virtual camera. The normal vectors of the
segmented point cloud can then be pre-computed (Chpt. 4.3.4), with a preferred normal
orientation along the positive Y-axis.

The virtual camera object is used to synthesize the multiview 2D images is defined as
as Cm := { þLd ∈ R

3, þLu ∈ R
3, P ∈ R

3}, where þLd represent the camera direction, þLu the
camera up vector, and P as the camera position. This approach is further summarized
in Alg. 5.

Algorithm 5 Viewpoint selection

Require: C, Bv, Cm

B ← C {Generate bounding sphere around each point cluster}
Bv = σ(B) {Randomly sample vertices from the bounding sphere}
for i = 0 to length(Bv) do

for j = 0 to length(CP ) do

if T ≥ CþN · BþN ≤ 1.0 then

Cm ← Bp, BþN {Set camera position and direction to bounding sphere vertex
position and inverted normal}

end if

end for

end for

Cluster Generation Prior to generation of the viewpoint entropy-based multiview
images, the point clusters used for classification need to be determined. The use of
k-means or DBSCAN clustering can be used to cluster regions of points for multiview
classification (Fig. 7.11). The desired amount of clusters corresponds to the visual
observation of how many are required to sufficiently partition the given point cloud.
The spatial distance between each of the points is used as the main attribute for both
clustering approaches.
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Figure 7.10: Example of selection and generation of multiviews for a chair object point cluster.

Bounding sphere vertices (blue) are selected as multiview camera positions and directions (red),

based on the parallelism entropy measure between the inverted bounding vertex normal (blue) and

the point cluster normal vectors (purple).

(a) The input point cloud representing
common office furniture.

(b) k-means clustering with nine
clusters.

(c) DBSCAN clustering result, with
seven generated clusters.

Figure 7.11: Examples of k-Means and DBSCAN clustering.



116 Chapter 7. Semantic Enrichment of Indoor Point Clouds

Figure 7.12: A flowchart illustrating the process of viewpoint entropy-based multiview classifica-

tion.

Viewpoint Entropy-based Multiview Image Generation By using optimal viewpoints
for taking images of 3D point clusters, the amount of time and data required for
classification can be reduced, and such an approach is suitable for use within an SOS
implementation alongside Web3D-based visualization (Fig. 7.12). The views captured
as 3D perspective projections of point clusters are selected such that the most useful
amount of visual information, i.e., those with highest entropy, is shown.

The viewpoint entropy-based multiview classification method takes in an RGB point
cloud. It is assumed that the RGB point cloud has planar regions representing walls,
floor and ceilings removed using segmentation (e.g., using RANSAC or Region Growing).
Once the remaining point clusters representing furniture objects have been generated
(using either DBSCAN or k-means clustering), for each cluster a bounding sphere with
994 vertices is generated.

The bounding sphere encloses each furniture object point cluster. A shuffling method
based on Fisher, Yates, et al. [80] is used to shuffle an array copy of the generated
bounding sphere vertices, whose position and inverted normal vectors are then used to
randomly sample a portion of as a set. This set is in turn used for sampling potential
camera directions and positions.

The inverted sphere vertex normal vectors from this set are compared to each of the
corresponding 3D point cluster normal vectors. This process is repeated for each cluster
in the 3D point cloud. An average of 11 images per point cluster are generated with this
approach. The generated images are then sent for classification.
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7.6 Object-based Classification

Figure 7.13: A simplified illustration of semantic-segmentation using a 3D CNN (PointNet++).

The two main features of point clouds used for classification are spatial position of points in 3D

space, and their color. The input point cloud is then iteratively sub-sampled via convolutional

operations, resulting a final classification value that is then mapped back to the relevant point

clusters, thus semantically enriching them.

The use of 3D CNNs for classification tasks has proven to be a viable option for enrichment
and segmentation of point clouds (Fig. 7.13). A notable CNN for classification of point
clouds is PointNet++ [195]. The PointNet++ CNN architecture is able to learn specific
features of point clouds in a supervised manner, and apply this model to semantic
enrichment and segmentation of various point cloud models - including point clouds
representing the built environment [161] and urban scenes [275].

PointNet++ is able to classify point clouds regardless of their scale, density or
orientation, and is invariant to permutations. It uses local distance between neighbouring
points projected in Euclidean space to enable direct feature learning from point cloud
training data, and recursively sub-samples point regions for evaluating the local features
of a point neighbourhood. The training of the network is based on mapping an input
point set to a vector representation that is first fed to a multilayer perceptron, then to
a max pooling layer. The global feature vector used for generating the output score is
obtained from the subsequent local feature vectors of sub-sampled regions.

7.7 Implementation of Supervised Deep-Learning Approaches

Key SOS Component Implementation The supervised deep-learning methods are im-
plemented as SOS software sub-components within the Point Cloud Processing and
Classification components of the prototypical Point Cloud Classification SOS implemen-
tation (Chpt. 3.5.2). The multiview and object-based classification is implemented with
three different system components that capture user control and data input, perform
processing both on the client and server-side, and stream the results back to the client.
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The main task of the server-side processing includes the classification of 2D image
and 3D point cloud data. The client-side system implementation is used to load in the
point cloud, generate the 3D partitions using a given clustering method, and send this
to the server for processing. Optionally, the client-side could be used instead of the
server-side system to generate the multiview images, assuming the client is a higher-
specification device (i.e., Thick Client or Medium client). The server-side classification
system performs the classification and streams the results to the Semantic Labelling

sub-component, which in turn sends the classified point clusters to the Representation

Processing.
For the prototypical SOS implementation, the final visualization result is generated

client-side, using a Web3D-based visualization system (based on the Three.js framework).
The visualization system is used to display the classification results to the user as well as
to enable further inspection and annotation of the classified 3D point cloud.

2D CNN Retraining and Classification The Inception V3 CNN architecture was used
to retrain two CNN models for classifying common office furniture items (chairs, tables
and sofas). The retraining of the CNN was implemented using TensorFlow 1.11 and
Python 3.6. The version of Tensorflow 1.11 is compiled for AVX2 CPU instructions for
cross-system compatibility, and did not have multi-GPU support enabled. Only the last
bottleneck layer of the complete CNN model was retrained; Inception V3 was originally
trained using ImageNet dataset [208]. For the training data, 9759 different RGB images
of chairs, tables and sofas were used (with a 70/30 split for training and validation
images). These images were obtained by using a batch image download script for Google
Image search written in Python.

Additionally, the images were reviewed and those that featured pictures of furniture
items without too much visual clutter were selected and resized to 300 × 300 pixels
(with the aspect ratio preserved). The training data input vector size is 300 × 300 ×

3 elements. Random distortion of training data (brightness, scale, and cropping) was
not utilized for the retraining. The predicted classification accuracy using the retrained
Inception V3 CNN is 92.9%, using 4000 training steps with a learning rate of 0.01.

The second version of the CNN is used for classifying scenes with only chairs and
tables, being retrained using the same training parameters, except using only photos
of chairs and tables. The second CNN model has a predicted classification accuracy
of 94.5%. Initial classification experiments showed that using a CNN with only two
object furniture classes for scenes that feature only two types of furniture provides more
accurate classification results.

For both the octree and multiview-based classification approaches, the generated
multiview images are resized to 300 × 300 pixels and saved as Joint Photographic Experts
Group (JPEG) images prior to classification. The classification probability scores for the
input image data are calculated based on a linear softmax function.
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3D CNN Training and Classification A PyTorch 1 implementation of the PointNet++
3D CNN architecture was used for training and testing the CNN for semantic segmentation
of indoor point clouds. Two different versions of the PointNet++ model were trained,
using the S3DIS dataset [10] (one with and one without additional RGB features of the
point data). Both the RGB and non-RGB versions of the PointNet++ CNN model were
trained using 112 different scenes from the S3DIS dataset, featuring typical indoor offices
(with a 81/31 split for training/testing data).

The CNN was trained for 200 epochs, with a learning rate of 0.001. 8192 points
were sampled for each training cycle. The validation accuracy for the RGB version of
the CNN was 64.4%, while for the non-RGB version it was 67.2% (this includes the
validation accuracy of the whole scenes, not just furniture objects).

Point normals were not used as a training feature, since by default the S3DIS set
does not contain any normals. A small batch size of one was chosen due to computational
hardware restraints of training the CNN on a commodity computer (though if access to
GPU clusters is available, the batch size used for training, and the number of training
cycles, can be increased). The S3DIS already featured labelled data, which was used
later on to generate ground truth models to test the accuracy for semantic segmentation
of the specific scenes (for evaluating the multiview classification approach as well).

Octree-based Multiview Classification Implementation At each octree node that con-
tains a point cluster, a virtual camera position is computed. This virtual camera generates
an equirectangular projection from the center of the current node, while the visibility of
other octree nodes is disabled (this also prevents occlusion and points from other nodes
intruding the current node whose equirectangular map is being generated). The cubemap
images are generated from a equirectangular projection (Alg. 4), which captures all the
points in a given octree node from the center view from inside the current node. This
approach enables the capturing of the complete environment around each node center as
a single image. The generation of the cubemaps is handled via a fragment shader [5] and
saved as a JPEG image.

The Multiview Generation sub-component of the SOS implementation (Chpt. 3.5.2)
then generates six cubemap images from the single equirectangular projection image.
The Multiview Generation sub-component also checks the generated cubemap images
to determine if they have an average color value of less than 250 for each of the RGB
color channels. These faces are then marked as being valid, otherwise they are marked
as invalid and are not classified. This prevents images with too much whitespace (the
default background color), from being classified. File names of the generated cubemap
faces that are marked as valid are given a numerical ID that corresponds to a specific
octree node in the scene. Each of the valid cubemap images are then classified as having
a probability of representing one of the furniture object classes, with the result mapped
to each corresponding octree node (via the Semantic Labelling sub-component).

1PyTorch: https://pytorch.org/
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Multiview Classification Implementation For implementation of multiview classifica-
tion, communication with the server is established via the Sockets.io library using an
bi-directional client/server architecture.

The server listens to any communication by the client from a given port, such as
incoming SEND responses for receiving data and GET responses for sending classification
results. The server calls the image classifier script implemented in Python (using the
Tensorflow library). Once the classification results have been generated by calling the
image classifier Python script, the server loads in the classification results (saved as text
files on the server), parses them and sends the results back to the client as JSON data.

The result for each corresponding node that the valid cubemap faces were generated
from is then averaged. The server then removes the generated cubemap faces and results
once the classification has been completed.

Object-Based Classification Implementation The object-based classification method
is used to generate semantically segmented versions of input point clouds. The point
clouds do no need to be segmented to remove wall, floors and ceilings, as these object
classes are classified by the retrained CNN, in addition to detecting occluding cluster
features (e.g., furniture objects). The object-based classification implementation makes
use of both RGB and non-RGB point clouds, without any normals. The classification
system is implemented in Python using PyTorch, where the classifications script loads in
a point cluster in the Hierarchical Data Format (HDF5) 2.

The HDF5 file format is used to initially generate the ground truth models, which
combine the actual point cloud in the PLY file format, along semantic labels for each of
the objects classes that the clusters in the point cloud belong to. During classification,
the classified cluster regions of the point cloud are compared with the ground truth point
clusters in order to predict the classification accuracy.

The point clouds that are to be semantically segmented can either be stored on the
server or on the client, before being labelled by the Classification sub-component of the
the server-side Point Cloud Processing component. The labelled point clusters are then
sent to the Representation Processing component, from where they can be processed
further for reconstruction and visualization tasks.

7.8 Case Study

Experimental results for the multiview and object-based classification approaches are
presented. These results were previously published and discussed in Stojanovic et al. [238,
236, 241, 239]. The results are presented as three different case studies, each one focusing
on a particular deep-learning classification approach.

The results for viewpoint entropy-based multiview and object-based classification
accuracy were obtained by detecting and finding the average of intersection points between
the ground truth and predicted point sets. An intersecting point is defined as having the
same location and color as the corresponding point in the ground truth set.

2HDF5: https://www.hdfgroup.org/solutions/hdf5/
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The results for the octree-based multiview classification accuracy were obtained by
comparing classified octree nodes between the predicted results and corresponding ground
truth data. The point clouds that were used for generating results feature positional and
RGB color attributes.

7.8.1 Detection of Common Office Furniture

The two multiview classification approaches were initially designed for detection of
common office furniture objects for inventory-related O&M tasks. These methods were
evaluated using pre-segmented point clusters, where point clusters representing different
furniture objects were used for testing.

Octree-based Multiview Classification Results For the evaluation of the octree-based
classification approach, the number of correctly classified nodes are compared against
ground-truth models. Each of the octree nodes are color coded to represent each particular
furniture class (red for chairs, green for tables and blue for sofas). The accuracy of the
classification result is compared against how many nodes are correctly labelled between
the predicted model and the ground truth model – using the same octree resolutions for
to spatially partition both models.

The eight selected test scenes were constructed using point clusters from a custom
dataset and from an publicly available one [118]. The test scenes feature RGB point
clusters with both simple and complex furniture arrangement as well as different point
cloud resolutions. The test data also includes variations of the three different furniture
types, with different spatial arrangements and rotations of multiple objects in a given
scene. This allowed for testing the presented approach for dealing with versatility of
point cloud data, which was captured using different sources.

The presented results show the classified nodes in respect to the spatial arrangement
of objects in the scene. Tbl. 7.1 provides the ground truth as an object type composition
overview for each test scene. Fig. 7.14-7.15 show the ground truth and predicted results.

Viewpoint Entropy-based Multiview Classification Results Two different datasets
were used for the evaluation of the viewpoint entropy-based multiview classification
approach. The first dataset was based on a custom dataset captured using a commodity
mobile device, depicting a common indoor office. The other dataset used was Area 1
from the S3DIS dataset, which was chosen as it features a high number of cluttered
items in the desired classification categories (e.g., chairs, tables and sofas). The 3D point
clusters featuring the furniture objects were extracted using manual segmentation. The
k-means clustering method was evaluated as the primary method for generating clusters
for multiview evaluation. The selected number of clusters for each scene was determined
visually by counting how many objects of each type are present in the scene.
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Table 7.1: Ground truth table showing number of chair, sofa and table objects for each test scene,

along with with number of points and the sampling size for the generated octree (maximum number

of points sampled per octree node).

Scene Points Chairs Sofas Tables Sampling

Set_1_1 48 783 6 0 2 30

Set_1_2 121 739 2 6 1 50

Set_1_3 36 797 3 1 0 20

Set_1_4 50 962 3 1 1 20

Set_1_5 56 176 3 0 2 50

Set_2_1 350 655 3 2 3 200

Set_2_2 1 097 427 4 2 1 1200

Set_2_3 16 166 0 1 2 30

Set_2_4 845 205 3 2 1 1000

Set_3_1 1 061 387 3 0 1 1200

Set_3_2 691 316 0 3 1 500

Set_3_3 703 299 4 0 1 500

Set_3_4 557 234 0 1 1 500

Set_4_1 10 974 4 0 2 5
Set_4_2 23 936 3 1 1 10

Set_4_3 12 524 3 0 1 7
Set_4_4 18 812 2 1 1 30
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(a) Ground truth for Set_1_1. (b) Ground truth for Set_1_3.

(c) Ground truth for Set_2_3. (d) Ground truth for Set_3_1.

(e) Ground truth for Set_3_2. (f) Ground truth for Set_3_3.

(g) Ground truth for Set_4_1. (h) Ground truth for Set_4_3.

Figure 7.14: Ground truth images for the test scenes used for the comparison of the octree-based

multiview classification results.
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(a) Set_1_1 - Valid Nodes: 42/67, Chair nodes: 34,
Sofa nodes: 8, Table nodes: 8.

(b) Set_1_3 - Valid Nodes: 61/84, Chair nodes: 22,
Sofa nodes: 39, Table nodes: 0.

(c) Set_2_3 - Valid Nodes: 2/20, Chair nodes: 0,
Sofa nodes: 1, Table nodes: 1.

(d) Set_3_1 - Valid Nodes: 32/39, Chair nodes: 7,
Sofa nodes: 0, Table nodes: 25.

(e) Set_3_2 - Valid Nodes: 40/64, Chair nodes: 0,
Sofa nodes: 6, Table nodes: 34.

(f) Set_3_3 - Valid Nodes: 59/67, Chair nodes: 28,
Sofa nodes: 0, Table nodes: 31.

(g) Set_4_1 - Valid Nodes: 43/87, Chair nodes: 30,
Sofa nodes: 0, Table nodes: 13.

(h) Set_4_3 - Valid Nodes: 37/76, Chair nodes: 30,
Sofa nodes: 0, Table nodes: 1.

Figure 7.15: Octree-based multiview classification results for the eight selected point cloud scenes.
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To reduce the number of generated multiview 2D images, while keeping the probability
of correct classification at an acceptable percentage, it was decided to sample up to
36 different views per point cluster (3.6% of the bounding sphere vertices). Using this
sampling size, an average of 11 multiview images are generated per cluster. The selected
parallel threshold level was chosen to be 0.75, as in most cases it was required to sample
a majority of parallel normal vectors when calculating the entropy for the veiwpoint
selection. The results from the viewpoint entropy-based multiview classification show
that the approach has an accuracy of 52.22% for the custom dataset (Fig. 7.16), and an
average accuracy of 39.56% for the S3DIS dataset (Fig. 7.17).

7.8.2 Semantic-Segmentation of Indoor Point Clouds

Both RGB and non-RGB based semantic segmentation approaches were evaluated using
PointNet++ on the 14 office areas from Area 1 of the S3DIS dataset (same as for the
viewpoint entropy-based multiview classification). They contain three of the furniture
object categories used to train the multiview CNN to classify the data (tables, chairs
and sofas).

The obtained results from the object-based semantic segmentation of the S3DIS
dataset show that it has an average classification accuracy of 83.51% for the version of
the PoinNet++ CNN trained only on spatial point features, and an average classification
accuracy of 81.14% for the version of the PointNet++ CNN trained using both spatial
and RGB point features (Fig. 7.18).

7.9 Concluding Remarks

The methods for semantic enrichment are required in order to inject meaning into
otherwise ambiguous point clusters. Semantically-enriched point clusters can then be
used for further reconstruction, visualization and decision making tasks within the realm
of FM-based applications – particularly for inventory-based tasks defined within the
scope of O&M procedures.

Out of the three different approaches for semantic-enrichment (manual, unsupervised
machine learning, and supervised deep-learning), the supervised deep-learning approaches
provides the most promising results as they can be scaled to deal with large amounts
of data (as manual segmentation and user-based annotation tends to be a very time
consuming process, often requiring domain expertise). Additionally, supervised deep-
learning can be applied to both classification of 2D and 3D data using different object-
based and semantic segmentation approaches based on the use of CNNs.

Three different supervised deep-learning methods were compared, namely two
multiview-based classification methods based on a 2D CNN, octree-based partition-
ing and viewpoint entropy-based, and an object-based approach using a 3D CNN for
semantic segmentation. There is a trade-off between practicality and performance versus
classification accuracy when deciding which approach to use for deep-learning-based
semantic segmentation.
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(a) Ground truth. (b) Predicted result.

(c) Ground truth. (d) Predicted result.

(e) Ground truth. (f) Predicted result.

(g) Ground truth. (h) Predicted result.

Figure 7.16: Results comparison between ground truth (left), and predicted (right) multiview

classification results with the custom dataset. Red point clusters indicate chairs, blue sofas and

green table objects.
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(a) Ground truth. (b) Predicted result.

(c) Ground truth. (d) Predicted result.

(e) Ground truth. (f) Predicted result.

(g) Ground truth. (h) Predicted result.

Figure 7.17: Results comparison between ground truth (left), and predicted (right) multiview

classification results with the S3DIS dataset. Red point clusters indicate chairs, blue sofas and

green table objects.
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(a) Ground truth. (b) Ground truth.

(c) Predicted semantic-segmentation using non-RGB
feature version of CNN.

(d) Predicted semantic-segmentation using non-RGB
feature version of CNN.

(e) Predicted semantic-segmentation using RGB
feature version of CNN.

(f) Predicted semantic-segmentation using RGB
feature version of CNN.

Figure 7.18: Results comparison between ground truth (7.18(a)-7.18(b)), non-RGB feature

trained version of PointNet++ CNN (7.18(c)-7.18(d)), and the RGB feature trained version of

PointNet++ CNN (7.18(e)-7.18(f)). Red point clusters represent chair objects, copper represents

sofas and purple represents tables.
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The two most important features for multiview classification are the color attributes
of point clusters, and the shape of the clusters depicted in the multiview images (3D
spatial features in Cartesian coordinates converted to 2D image space). However, for
applications where classification accuracy is more critical, the use of a 3D CNN such
as PointNet++ is a better option if high-end computing resources are available. The
main challenge when using PointNet++ for semantic segmentation is that it relies on
point cloud data for training, and this is impractical for integration with commodity
computing hardware compared to the multiview-based classification approaches (as most
implementations of PointNet++ are designed to leverage the computing power of parallel
multi-GPU architectures). The retraining of the Inception V3 CNN with images of
real-life furniture, used for the multiview-based approaches, takes only a fraction of
the time compared to training the PointNet++ 3D CNN using the S3DIS dataset for
example.

Comparing the the two multiview classification approaches - octree and viewpoint
entropy-based, the later provides better classification results and does not generate as
many redundant images for classification as the octree-based approach (which generates
six cubemap images for each node regardless what type and features of point clusters
are contained in the node - disregarding only images which feature a majority of the
background color). Furthermore, an additional evaluation was conducted in previously
published work [236], where the viewpoint entropy-based multiview method was compared
against the octree-based multiview classification method, in order to establish which
method is more accurate. The results show that the viewpoint entropy-based method
has a higher classification accuracy of up to 25.3% in comparison to the octree-based
multiview classification method.

Both multiview classification approaches can be considered appropriate for implemen-
tation as lightweight classification components within an SOS implementation (meaning
they do not require extensive hardware and software resources to perform training and
classification). While the multiview-based approaches offer worse classification accuracy
in comparison to the object-based approach, they are generally more adaptable for use on
commodity hardware, and retraining the 2D CNN (using only the last bottleneck layer),
is more convenient with access to potentially millions of images on the internet depicting
common office furniture in different categories (in comparison to having to find and use
point clouds of such objects, which is often difficult).

One drawback of the viewpoint entropy-based multiview approach is that its multi-
view image generations relies on correctly calculated point normals that conform to the
surface curvature (in terms of viewing the object from a given distance from its center
with 3D perspective). For the octree-based multiview approach, an adequate resolution
of the octree is required in order to capture macro details for classification (this also
relies on using a point cloud with enough density in order to be able to visually depict
non-whitespace regions in generated 2D images, which can then be classified).

Selected clustering approaches used for the viewpoint entropy-based multiview
classification also require specific clustering parameter adjustment – based on the observed
density and distribution of the point cluster.





Chapter 8

Processing and Visualization of

Indoor Sensor Data

Figure 8.1: Example of a combined visualization of various sensor data, mapped onto an indoor

point cloud, and demonstrating the implemented visualization styles.

Analysis of real-time and historic sensor data provides important insights into the
operational status of buildings. There is a need for the integration of sensor data and
digital representations of the built environment for furthering stakeholder engagement
within the realms of Real Estate 4.0 and FM, especially in a spatial representation context.
This chapter describes a prototypical SOS implementation (Chpt. 3.5.3), which processes
sensor data, and generates visualization and analysis outputs. The key requirements and
challenges for analyzing sensor data for indoor spaces within the scope of FM are:

1. The use of indoor point clouds for adding spatial context to the visualization.

2. The acquisition and processing of data from multiple sensors.

3. The interactive visualization using implemented SOS software components.

Furthermore, a prototypical implementation using the discussed software components
demonstrates the application for integration, analysis and visualization of sensor data

131
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from a typical office building, with the aim to communicate and analyze occupant comfort
(Fig. 8.1). The empirical results presented in the case study are used to demonstrate the
feasibility of utilizing such software components for the service-oriented integration of
sensor data processing, analysis and visualization. The foundations and case study of
this chapter are based on previously published work in Stojanovic et al. [237].

8.1 Overview of Sensor Data Analysis

Sensor data plays an important role in assessing the current state of the built environment.
Once processed, the analysis and visualization results can be used to show important
temporal changes in a given FM context. This may include occupancy comfort criteria
e.g., room temperature or ambient noise levels, or important energy efficiency data e.g.,
power usage and carbon emissions.

Additionally, temperature and energy-usage data captured from indoor sensors has
been used alongside BIM for the monitoring and analysis of building energy perfor-
mance [172]. Such real-time or previously collected sensor data (e.g., historic sensor
data) can then be visualized in combination with the as-is digital representation of the
indoor environment (e.g., BIM geometry or indoor point cloud models), thus adding an
important layer of information by associating the sensor data with a physical location.

Once captured, the sensor data can be processed and analyzed using implemented
SOS components (notably the Spatio-Temporal Data Processing component as well as the
Data Mapping sub-component of the Representation Processing component, Chpt. 3.5.3).
The client visualization system can then map these values using different visualization
methods for different FM scenarios (e.g., monitoring of temperature and humidity in an
office). This allows for the application of visual analytics to enhance decision making
and forecasting using quantifiable attributes of the built environment.

8.2 Service-Oriented System Implementation

The challenge of mapping and visualizing sensor data is addressed using a prototypical
SOS implementation based on the conceptual reference SOA (Chpt. 3.3). While state-
of-the-art methods promote IoT integration with BIM and associated technologies (e.g.,
IWMSs) [251], in practice the integration of sensor technology is complex due to the
heterogeneity of sensor equipment (accuracy, availability, cost) and its interfaces, and the
expertise required to combine these two areas in one as-is built environment representation.
The presented approach therefore focuses on use of affordable hardware for sensing of
room properties (e.g., temperature, humidity, and carbon dioxide concentration), and
processing, analyzing and visualizing the captured raw sensor data.

The raw sensor data is filtered and stored by the Spatio-Temporal Data Processing

component, from where it can be queried by the Representation Provider and external
FM related systems (e.g., FMIS and CMMS). The filtered sensor data, along with
the point cloud representation, is given additional attributes via the Entity Provider
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component. This component extracts location and other information from existing
building documentation (e.g., longitude and latitude coordinates and room dimensions
acquired from the as-built BIM, room information contained in RFID or NFC tags,
etc.), in order to enable automated or manual adding of semantics into the combined
point cloud and sensor data information model. These semantics can then be used by
stakeholders to identify important physical and location aspects, using the as-is point
cloud representation.

The captured and filtered sensor data is computed server-side and the result is
typically sent to a medium client, where the final visualization result is computed. In the
presented case study, the processed sensor data is mapped onto the point cloud, using
selected visualization techniques that are discussed in detail.

8.3 Processing of Sensor Data

The Spatio-Temporal Data Processing component is responsible for the storage, analysis,
monitoring, querying, and web-based streaming of sensor data. Sensors can either be
connected through the industry standard MQTT1 protocol for lightweight data transmis-
sion, or by issuing HTTP POST requests, with both containing JSON-formatted data as
the payload. There are numerous types of communication protocols for sensors based on
low-energy, low-bandwidth radio transmission (e.g., ZigBee 2, Z-Wave 3, EnOcean 4, or
LoRaWAN 5), or wired bus connections. Additionally, software solutions e.g., KNX 6

are able to integrate various IoT data sources and perform analysis (e.g., energy usage
monitoring). Low-cost edge controllers translate the local sensor data messages sent
through such low-level protocols into JSON data packets that can be evaluated by the
services of the SOS implementation (Chpt. 3.5.3).

For querying sensor data and corresponding metadata, such a platform can provide
an API following the REST paradigm and JSON API specification (Chpt. 3.4.2). Further,
live updates of sensor data values can be subscribed using a WebSocket message-based
API. Through this, sensor value changes are propagated e.g., to the Data Mapping sub-
component of the Representation Processing component to be visualized. The historical
sensor data can be stored in a e.g., time series database [186] – which combines efficient
access to sensor values and memory efficient data organization.

Additionally, a Monitoring sub-component (Chpt. 3.3) can be used to evaluate given
rules for sensor data, and to generate event notifications in case of identified matches.
For such generated event notifications, an Alerting sub-component can call previously
registered notification targets (e.g., using specific IWMS or FMIS APIs).

1MQTT 5 OASIS Standard: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
2ZigBee: https://zigbeealliance.org/
3Z-Wave: https://z-wavealliance.org/
4EnOcean: https://www.enocean.com/
5LoRaWAN: https://lora-alliance.org/about-lorawan
6KNX: https://www.knx.org/
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Finally, the forecasting component can be used to analyse the current sensor data in
order to predict the current state of a given physical environment or MEP component. In
such a case, Bayesian probability can be used in order to predict the future state based
on previously recorded sensor readings and other associated data [115]. Within a Smart

Building paradigm, such systems would be able to work in cohesion and react to changes
by triggering automated responses e.g., turning on the air-conditioning if the recorded
temperature value is above a certain temperature at a given time of day.

8.4 Visualization of Sensor Data

8.4.1 Combined Visualization with Point Clouds

Visualizing sensor data with point clouds enables the depiction of the physical loca-

tions where sensor data readings are measured, and can enhance analysis, intervention,
forecasting, and decision making processes within the context of FM (specifically O&M
procedures).

In that sense, the combined visualization of sensor data and indoor point clouds
forms a key component of representation for DTs. However, the linking of captured
sensor data to the physical assets (e.g., rooms, MEP components) they refer to, and their
combined visualization and resulting enhancement of decision making and communication,
remains a key challenge in today’s AECOO domains.

Semantically enriched point clusters are critical to this task, as semantics allow for
the association of labelled geometry segments with sensor data that is physically located
in the real-world counterpart of the 3D representation (e.g., labelled point clusters that
distinguish different types indoor environment and building elements).

8.4.2 Use of Visual Analytics

Visual analytics enable key decision making tasks to be carried out through the use of
intuitive graphical user interfaces, data processing, visualization, aggregation and analysis.
Specifically, according to Keim et al. [132] "visual analytics combines automated analysis

with interactive visualisations techniques for an effective understanding, reasoning and

decision making on the basis of very large and complex datasets."

Key concepts of visual analytics can be applied to the processing, visualization and
decision making based on analyzing acquired sensor data for indoor environments. The
application of visual analytics to sensor data related to building occupancy comfort
and performance is based on established methods used for analysis and visualization of
spatio-temporal data. The process of applying visual analytics to data, such as sensor
data, can be defined as a function, which transforms unprocessed data into visual outputs
providing important insights – based on the hypothesis of what the data and visual
outputs should provide and be driven by user interaction Keim et al. [131].
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Furthermore, the application of this visual analytics process expands the visualization
mantra proposed by Shneiderman [226]: "Overview first, zoom and filter, then details

on demand" to "Analyze First - Show the Important - Zoom, Filter and Analyze Further

- Details on Demand" [131] – making it applicable for use in visualizing analytical
outputs using multi-variable and multi-dimensional data associated with AECOO domains
(e.g., BIM [234] and CAD/GIS/spatio-temporal data [233]). Previous works concerning
integration of visual analytics for sensor data related to buildings have successfully
combined its use with BIM and FM data, in order to engage relevant stakeholders about
the current state of a building [41, 49, 148]. These examples are described further in
Chpt. 2.10.

8.4.3 Implementation of Visualization Components

In terms of generating visualization outputs, key software components used for processing
the sensor data and generating the visualization outputs are utilized. These include
the Representation Processing component, along with the Data Mapping and Rendering

Service sub-components (Chpt. 3.5.3).
The Representation Processing component provides a set of services for generating

the visualization result using the captured and processed point cloud and sensor data –
in particular services for geometry generation, mapping, and rendering. The Geometry

Generation sub-component is used to create the as-is geometry from the semantically-
enriched point cloud or reconstructed geometry.

The Data Mapping sub-component is used to map the captured sensor data values
to a given point cloud or reconstructed triangular mesh geometry partition. This may
include sensor data that maps specific attributes e.g., temperature for a given room.

The Rendering Service sub-component is responsible for generating the final visual-
ization result. The rendering service can make use of low or high-level graphics APIs
and frameworks (e.g., OpenGL, WebGL, Three.js, etc.), in order to generate rendered
images (usually in real-time), which can easily be displayed on the client side.

8.4.4 Visualization Methods

Since visualizing sensor data often requires reflecting the changes in real or semi-real
time, the use of Web3D frameworks can be used to implement such visualization methods.
For example, the use of WebGL-based frameworks allows for accessing the programmable
graphics pipeline and utilize various per-vertex and per-pixel rendering techniques based
on shader programs. This enables the implementation of real-time rendering methods for
visualizing 3D geometry (e.g., point clouds, triangulated meshes), and to perform any
texture-based rendering tasks (e.g., mapping the given sensor data readings to a given
color value).

The visualization processing can either be implemented client or server-side, with
the Representation Processing component streaming different stages of the complete
visualization to the different client configurations (e.g., thin, medium and thick clients -
Chpt. 3.3).
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Three different visualization methods are used for graphical display of sensor data
analytics: (1) thematic color-mapping, (2) textual data display, and (3) abstracted 3D
geometric representation. The selected visualization methods are based on established
visualization idioms used to convey geometric and textual abstractions of processed
numerical data [102], and are described further in Chpt. 2.10.

Additionally, 2D graphs can also be utilized to plot spatio-temporal data and to
complement the overall visualization. In such cases, the use of 2D Web-based rendering
frameworks e.g., (D3.js 7), can be combined with the rendered 3D outputs in order to
enhance the visualization by providing additional layers of information. Such layers of
information, particularly 2D graphics, can sometimes be better understood by stakeholders
who do not have experience in interpreting 3D visualizations [114]. Combining both 2D
and 3D visual analytics in this sense allows for a complete visualization output of the
analyzed spatio-temporal data, which has the farthest visual impact and engagement
factor amongst stakeholders with different domain expertise levels [233, 28].

Thematic Color-Mapping The Thematic Color-Mapping method maps the sensor data
variables (e.g., temperature, humidity, etc.), to a given color. If multiple sensor data
variables need to visualized, each one can be mapped using e.g., different thematic color
scales based on diverging, saturated or multi-hue color scales to visually represent the
related changes (Fig. 8.2(a)). Such color scales were based on research by Engel et al. [73]
looking at qualitative and quantitative evidence – collected from a user study evaluating
impact of rendering techniques on information and spatial perception.

Textual Data Display The Textual Data Display method renders the parsed sensor
data as a 2D billboard [5], displaying the current temperature. The billboard is further
associated with each 3D cuboid used in the Abstracted 3D Geometric Representation

method, using a line element whose starting point changes with the current height of the
3D cuboid (Fig. 8.2(b)). Billboard rendering is accomplished using the provided 2D text
rendering functionality of the Web3D framework such as Three.js. This method is useful
for giving better context alongside the other two visualization methods.

Abstracted 3D Geometric Representation The Abstracted 3D Geometric Representa-

tion method makes use of a vertically scaled 3D cuboid for 3D bar-graph style visualization
(Fig. 8.2(c)). The scaling and the RGB color value of the cuboid is based on the current
sensor value. This method is based on using an abstracted 3D solid to visualize spatio-
temporal changes associated with the processed sensor data point that is currently being
visualized, and is often used to emphasize changes over time [132].

7D3.js: https://d3js.org/
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(a) Example of thematic color mapping, based on different sensor data values, mapped onto an indoor point cloud.

(b) Example of textual sensor data display, projected as a 3D billboard texture.

(c) Example of the use of abstracted geometric representation visualized alongside a point cloud representation. In this example the 3D
bar object changes in color and scale based on different sensor data readings.

Figure 8.2: Examples of different sensor data visualization methods using thematic color mapping,

textual and abstracted geometry representations.
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8.5 Case Study

(a) The office area
floorplan.

(b) The captured and processed 3D point
cloud used for the case study.

(c) Point cloud representation of the specific room
according to the office floorplan, and an illustration
of where one of the sensors (temperature sensor) is

located within the room.

Figure 8.3: The indoor point cloud used in the presented case study.

The main focus of the presented case study was to visualize room temperature, humidity
and carbon dioxide recordings for occupant comfort assessment of a typical office en-
vironment – by linking this data to a given point cloud representation that visualizes
the physical features of the corresponding room location. A point cloud of an indoor
office area was captured and processed (Fig. 8.3(b)), based on the approaches discussed
in Chpt. 4.2. While the entire office area was captured, the case study is focused on
visualizing temporal changes for a single office where the sensors are located (Fig. 8.3(c)).

For the case study, captured sensor data was stored as JSON files on the server, and
accessed to process sensor values obtained for a given time period. Three different sensor
data variables were measured and visualized using the described visualization methods.
These include: temperature, humidity and carbon dioxide readings. The readings for
each of the sensor data variables were recorded over a period of one month. Since the
sensors produced a large amount of sensor data, and for practicality in the case study,
100 time points in increments from the filtered sensor data were sampled and visualized
(instead of all of the time points which were recorded once per hour for over a period of
30 days).

In order to visualize the sample sensor data, the time points needed to be normalized
within given ranges that allowed them to be mapped to the scalar ranges used for the
three different visualization methods. The maximum and minimum room temperatures,
humidity and carbon dioxide levels were recorded in the sampled sensor data time-
series. The minimum and maximum values were then used to interpolate between the
selected color ranges every time new sensor data was parsed and sent to the visualization
component.

Ranges from 0◦ to 30◦ Celsius were used for the temperature mapping, 0 to 100

percent for humidity mapping, and 0 to 1000 parts per million (ppm) for the carbon
dioxide mapping. An additional 2D bar graph is also included alongside the main
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visualization of each individual sensor data type to provide better visualization context
in relation to previous and future sensor data values.

The presented empirical results of the case study show the visualization changes
using two different time points (t0, t1), with different temperature, humidity and carbon
dioxide readings (Fig. 8.4-8.7). Also shown are the simultaneous visualization results
using a combined approach, featuring thematic color-mapping, textual and abstracted
geometry visualization for each parsed time point of the temperature, humidity and
carbon dioxide readings.

8.6 Concluding Remarks

The experimental results obtained for the case study demonstrate a simple but effective
approach for mapping acquired sensor data to an interactive 3D visualization, using
visual analytics principals. The use of a spatially corresponding indoor point cloud adds
an additional layer of information for better spatial association of the visualization results.
In addition to this, the use of a prototypical implementation used in the case study
demonstrates the following three key requirements outlined in the chapter introduction:

1. The prototypical application demonstrates that indoor point clouds, especially
those acquired using photogrammetry and/or depth sensing with commodity mobile
devices, provide enough visual information to enhance the spatially-aligned sensor
data visualization. This means that they can be used as a practical alternative to
BIM models for combined sensor data visualization.

2. The results of the case study demonstrate that multiple sensor data sources can
be utilized for capturing different natural and man-made phenomena from a given
indoor environment, by processing and visualizing room temperature, humidity
and carbon dioxide levels.

3. With the use of Web3D-based visualization frameworks, which are implemented as
visualization components within a prototypical SOS, stakeholders can interactively
and simultaneously visualize the indoor point cloud with the corresponding spatially
correlated sensor readings for a given period of time – allowing the visualization
system to intuitively present insights into the underlying spatio-temporal data
through visualization to stakeholders.

Finally, the sensor data analysis and visualization approach has potential for inte-
gration as a flexible and practical solution for DTs and IWMSs platforms, which require
the fusion of sensor data analytics and visualization for digital representations of indoor
environments.
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(a) t0: 23.3◦ Celsius.

(b) t1: 25.6◦ Celsius.

Figure 8.4: Visualization of room temperature captured for two time points.
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(a) t0: 38%.

(b) t1: 22%

Figure 8.5: Visualization of room humidity captured for two time points.
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(a) t0: 681 ppm.

(b) t1: 406 ppm.

Figure 8.6: Visualization of room carbon dioxide captured for two time points.
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(a) t0: 22.6◦ Celsius, 27% and 415 ppm

(b) t1: 26
◦ Celsius, 23% and 557 ppm

Figure 8.7: Visualization of combined room temperature, humidity and carbon dioxide captured

for two time points.





Chapter 9

Discussion

This section presents and discusses the answers that were formed to address the proposed
research question. The associated research contributions are also discussed.

9.1 Research Outcomes

Fundamental Research Question The presented original research and contributions
form the answer to the fundamental research question defined in Chpt. 1.2: "How can

digital data representing the built environment be semantically enriched and combined

in order to enable digital representations of such environments within a service-oriented

paradigm, and based on the concept of a Digital Twin (DT)?"

The cumulative findings based on the the descriptions of approaches used as well as
the evaluations of the results presented in each chapter case study, allow for the formation
of an answer to this question.

The Answer to the Fundamental Research Question The answer to the proposed
fundamental research question can thus be formulated in the following statement:

Data related to the digital representation of the built environment, primarily based

on as-is point cloud representations, can be semantically enriched and combined with

existing digital documentation, and further used to create an up-to-date cyberphyscial

representation based on the concept of a DT. The feasibility of the presented approach is

proven by implementing key software components and services within a SOS paradigm,

which enables decoupling between hardware and software requirements for processing

of digital data related to O&M applications within the realms of FM and Real Estate

4.0. Such software components and services could then be implemented in a future DT

platform, and be used by stakeholders in order to gain potentially useful insights into the

current and predicted state of a building.

This answer then leads onto the formulation of the answers to the four additional
key research questions initially proposed in Chpt. 1.2, which form the foundations of the
main research question. An attempt is made to answer each one, based on the conclusions
of each associated chapter and case study findings.

145
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Research Question 1 How can indoor point cloud representations be processed and

semantically enriched in order to make them useful as base-data for further FM-related

analysis and applications?

From the presented research findings of case studies in Chpt. 4-7, it can be concluded
that point cloud representations of indoor environments play a fundamental role in the
capture of the current as-is physical state of such environments. While raw point clouds
do not contain any semantics by default, through various processing steps they can be
enriched with semantics in order to make them suitable for further use in reconstruction,
visualization and decision making.

These processing steps also include the generation of additional features for point
clouds that otherwise contain only spatial and color information. Such features (e.g.,
normal vectors), can then be used by segmentation algorithms to spatially partition the
point cloud into homogeneous regions. The point clusters that form these segmented
regions can further be used as base data for generation of higher-level geometric repre-
sentations e.g., reconstructed triangulated or voxelized geometry, or B-reps used by the
IFC file format. The use of various geometry reconstruction methods allow point clouds
to be used for generation of approximate boundary representations, including use for 2D
and 3D floorplan approximations.

Furthermore, with the use of supervised machine-learning methods, point clouds
can be semantically segmented with the use of deep-learning. The use of CNNs with
either multiview or object-based classification approaches allows for the generation and
injection of semantic labels into point clusters. This allows for such point clusters to be
visualized and processed with additional context provided by the added semantics.

Research Question 2 How can as-is point cloud be compared against as-built and

as-designed BIM geometry in order to highlight any spatial deviations?

The use of as-is point cloud representations allows for comparison with existing
as-designed or as-built BIM geometry. This comparison is focused on evaluation of spatial
deviations between the two models, providing insight into the current physical dimensions
of the as-is point cloud model versus the intended spatial constraints and dimensions
found in the as-designed or as-built BIM model. Specifically, the implications of spatial
deviation analysis for O&M procedures within the realm of FM is that it can be used to
highlight spatial differences between the current state of the physical environment and
its original design.

The comparison between the as-is point cloud and an as-designed or as-built BIM is
enabled by aligning the two models in the same coordinate space, and approximating the
distances between each of the points in the as-is model to the nearest geometric element
from the as-designed or as-built BIM model. The geometry used for comparison that is
extracted from the BIM model can either be based on projections of simplified boundary
evaluations (e.g., planar surfaces or bounding boxes), or triangulated meshes with spatial
partitioning schemes, or based on voxelized representations. These methods are discussed
and evaluated in Chpt. 6.
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Research Question 3 How can indoor sensor data be processed and visualized alongside

an indoor point cloud?

The use of visual analytics principals can be applied to spatio-temporal data associ-
ated with the built environment. Particularly, the use of visual analytics for processing,
transforming, mapping and visualizing indoor sensor data associated with occupancy
comfort and building performance can provide useful insights for FM stakeholders. With
the approach described in Chpt. 8, captured sensor data can be processed and the
visualization results can be combined with a point cloud representation in order to
provide enhanced spatial context.

The use of visualization idioms allows the processed sensor data to be mapped
to various textual, geometric and thematic color representations, and to be presented
alongside the point cloud model of the associated indoor environment for enhanced spatial
context. In turn the analysis and visualization of sensor data has the potential to benefit
FM stakeholders by allowing them to better address the needs of occupants as well as to
monitor and forecast energy usage and associated sustainability indicators.

Research Question 4 How can data related to the the digital representation of indoor

environments be accessed, processed, analyzed and visualized within a service-oriented

paradigm?

The implementation of the key processing components and services, using the
prototypical SOS variants, enables the decoupling of hardware and software requirements.
This allows the software implementation to be potentially scaled to enterprise-level
systems – using a SOA-based system design, and allows for the flexible implementation
and maintenance of key processing components. Since a DT is based on processing
data from multiple sources, an SOS enables a centralized system to capture and process
data from different sources, and to stream results of selected processes to different client
configurations (with possible integration with DBMSs).

Furthermore, due to the requirement of having to deal with large amounts of data
(e.g., point clouds, sensor data, BIMs, CAD, etc.), the use of a SOS allows for out-of-core
processing and streaming of results without the explicit requirement of having to use a
high-end workstations for client configurations.

The proposed SOA is described in Chpt. 3, and prototypical SOS implementations
are used for evaluating key software components in related chapter case studies, and
are based on the DT paradigm. The SOS software components (e.g., reconstruction,
classification, etc.), are implemented and tested for each of the main processing tasks
concerned with analysis and visualization of data in the presented case studies.
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9.2 Discussion of Research Contributions

An applied research methodology was used to form the conclusions based on case studies.
In turn, the presented case studies were used to provide data for the generation of the
results from testing of key software components, which were implemented for processing
tasks that were determined as being core requirements for proving the feasibility of the
presented approach. The original research contributions form the foundation for future
development of a DTs, aimed at FM and Real Estate 4.0 use.

Point Cloud Representations The key data source that has been the focus of the
implemented and evaluated methods for indoor representations for this research are point
clouds. A particular focus was placed on the use of PCCT-enabled commodity mobile
devices for capturing indoor point clouds, and the subsequent processing, reconstruction
and semantic enrichment methods applied to them – in order to make them useful for FM
applications. While the focus has been using lower-fidelity point clouds, the presented
approaches and methods can be applied to more denser and larger point cloud datasets.

Key SOS Software Components The presented SOS software components are primarily
focused on the processing, semantic enrichment, reconstruction and visualization of indoor
point clouds for O&M applications within the scope of FM. The approaches used for
semantic enrichment of the captured point clouds rely heavily on machine and deep-
learning methods, with a particular focus on the use of CNNs for supervised learning
applications. While the presented methods for semantic enrichment leave a lot of room
for improvement in terms of classification accuracy, with increased access to training data
and computational resources, the implemented CNN models can further be retrained and
new versions of the CNN models can be used to increase the classification accuracy.

Web3D-based Visualization The use of Web3D-based visualization is deemed as suit-
able for processing and representation of visualization results on a variety of client
configurations. Modern web-based 3D graphics APIs such as WebGL and associated
frameworks allow for computation of complex and real-time visual outputs, and enable
rendering of point clouds with associated data on modern web browsers. The presented
visualization methods did not explicitly focus on out-of-core rendering of point clouds,
but rather on how semantically-enriched point clouds can be further be combined with
other data sources for visualization-driven decision making tasks (e.g., analysis and
visualization of sensor data for decision making).

Point Cloud Reconstruction The reconstruction of semantically enriched point clouds
is another feature of the original research contributions, and methods for generation
of approximate higher-level geometric representations were presented and evaluated.
The reconstruction of point clouds to highly accurate models, as offered by manual
reconstruction using professional CAD-based software, is not yet feasible. However, the
use of automated methods for approximation of geometric reconstructions allows for
the at least partial alleviation of the associated time and cost requirements – based on
domain expertise and labor investment typically involved with manual generation of
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such data [265]. Additional methods for comparison of as-is point clouds and existing
geometry were also presented, and such methods based on spatial deviation allow for
further beneficial use in FM decision making.

Sensor Data Analysis The processing and visualization of spatio-temporal data, par-
ticularly the combined use of sensor data analytics and visualization of point clouds,
demonstrates the feasibility of using Web3D-based technologies for visualization of such
data. The integration of visual analytics within a prototypical SOS implementation allows
for decoupling of hardware and software requirements, while enabling the processing and
analysis of multiple data sources within one centralized system.

Case Study Evaluations All of the presented case studies made of use of real-world
data, and in most cases the data sets, particularly indoor point clouds, were captured
specifically for the required evaluations. What can be noted is that point clouds can
be seen as versatile data for representation of the physical built environment, and that
through further processing and semantic enrichment, they can provide useful insights.
This is also the case regardless of the source of the point clouds, as even with point
clouds that are captured using commodity mobile devices, in most common cases enough
information could be extracted from them to be used for further semantic enrichment
operations within the realm of FM and Real Estate 4.0.

Additionally, the case studies are presented with the aim of demonstrating the
potential benefits of using a service-oriented approach for DT-driven representations of
indoor environments. These case studies demonstrate the feasibility of the overall concept
of DTs and their use within an SOS paradigm. This includes specific approaches for
processing, analyzing and visualizing indoor environments with the use of point clouds,
sensor and floorplan data.

The implemented software components, while prototypical, are able to handle the
processing requirements of structured and spatio-temporal data. While the size and the
complexity of the data used by DTs are expected to increase exponentially in the near
future, the implemented technology based on the presented case studies, would only need
to be changed or updated to reflect the bigger data requirements.





Chapter 10

Conclusions and Outlook

10.1 Conclusions Summary

The research findings demonstrate the feasibility of key software components and services
for a DT representation of indoor environments, implemented within a service-oriented
paradigm, and aimed at enhancing decision making related to O&M procedures within
the scope of the post-construction life cycle stages of typical office buildings. These key
software components and services include point cloud processing, semantic enrichment,
data analytics, visualization as well as reconstruction to higher-level geometric repre-
sentations that make use of semantics generated through applications of machine and
deep-learning methods.

The findings also conclude that the digital representation of built environments,
based primarily on semantically enriched point clouds, can be used to create an up-to-date
digital versions for generating useful insights. Such insights, based on the computed
visual and analytical results, can be used to assess past and current states of a built
environment object (e.g., a building), with the possibility to forecast future states.

Furthermore, the presented conceptual SOA, and the variations of the prototypical
SOS implementations, provide a suitable foundation for further integration and expansion
within FM-related ICT infrastructure.

10.2 Summary of Research Contributions

The following research contributions demonstrate the feasibility of a DT implementation
for FM and Real Estate 4.0 use – focusing on the current life cycle assessment of indoor
environments of modern buildings:

1. Design of a conceptual SOA for a FM-oriented DT, where key processing components
were implemented and tested as prototypical SOSs related to presented case studies.

2. Research, implementation and evaluation of methods for semantic enrichment of
indoor point clouds based primarily on machine and deep-learning.

3. Research, implementation and evaluation of methods for spatial deviation analysis
between as-is and as-designed and/or as-built BIM geometry.
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4. Research, implementation and evaluation of methods for higher-level geometric
reconstruction of semantically-enriched point clouds, with the ability to generate
both approximate 2D and 3D floorplans, and IFC model representations.

5. Research, implementation and evaluation of methods for processing and visualization
of sensor data associated with indoor point clouds.

6. Methods for Web3D-based visualization, interactive annotation and inspection of
semantically-enriched point cloud representations of indoor environments within a
service-oriented paradigm.

10.3 Future Work and Outlook

The obvious future work would be the development and testing of an actual complete
DT software solution. However, the development, deployment and maintenance of such
solutions, especially at enterprise levels, requires a vast amount of further research and
development. It will be a few years into the future until DT software solutions become
mainstream (and have the same wide adaptation as BIM), and are used commonly for
management of smart buildings and cities.

However, prior to this, the following research questions and themes could possibly
help form solutions to tackling such a large and complex problem, from the perspectives
of software engineering and academic research. The proposed future research can be
summarized in five possible key questions :

1. The first question for future research is: What kind of a predictive maintenance

model could be used, if it is based on a DT representation of a building?.

Since one of the key features of a DT that makes use of machine and deep-learning
capabilities are to analyze current and historical data, the possibility to form
predictions and forecast future operational states of a building should be included.
This could make use of methods e.g., Bayesian probability and Multi-Criteria
Decision Analysis (MCDA) [75].

2. The second question is: How can an ontology-driven approach be used for better

FM decision making within a DT paradigm?.

Even when point clouds are semantically enriched, they seldom contribute to the
ontology of a building. Thus they are only used for single-use decision making cases
without contributing to any sort of Knowledge Base (KB) for future evaluation.
An ontology needs to be formed that relates to the building’s digital representation
as well as the associated O&M processes. There is a paucity for an ontology-driven
analytics approach, where users can simply query such a system in order for it to
generate, associate and present possible answers for FM decision making tasks.



10.3. Future Work and Outlook 153

In turn, the knowledge of such a “smart” system, based on a DT paradigm, would
be expended when performing any subsequent tasks (e.g., recommended selection
of optimal algorithms and associated parameters when processing new point cloud
data). An initial conceptual approach to solving this question is proposed by
Stojanovic et al. [235].

3. The third question is: How can changes, comments and decisions made by stake-

holders, using a digital and semantically-rich representation of a built environment

(e.g., point clouds, BIMs, etc.), be immutably recorded in the form of digital docu-

mentation for future use?.

This digital documentation can then be used for further analysis, review of decisions
or even as proof of contractual obligations with third parties. Recording of changes
and annotations in an immutable manner requires the use of a specific data
structure (e.g., Merkle tree [165]), which can ensure immutability between current
and previously recorded data segments. The use of a private distributed ledger,
based on Blockchain Technology (BT) principals, allows for a such a data structure
to be used for immutable recording of transaction data [151].

4. The fourth question is: How beneficial, informative and practical, is a DT for

routine FM stakeholder engagement and decision making?.

The presented research has only focused on the feasibility of key DT software com-
ponents and services, based on their implementation and evaluation of quantitative
case study results. For future work it would be of interest to generate and evaluate
qualitative results based on FM domain expert user feedback, specifically concerning
the use of the investigated software components for O&M decision making. Such
an approach could be based on testing of complete and specific DT features for
different scenarios (Fig. 10.1), with selected stakeholder groups [28].

5. The fifth question is: How can the presented approach be expanded for more general

use, not just for indoor building environments, but for core built infrastructure (e.g.,

roads and bridges) as well as city-scale analysis and visualization?.

Research by Isailović et al. [116] and Döllner [60] describes the use of point cloud-
based approaches for semantic enrichment, visualization and analysis of built
infrastructure. Therefore an approach is needed to scale the use of DT systems to
meet the data processing demands of such large scale and complex entities. It can
be expected these approaches will be developed further, and eventually evolve into
complex SOSs capable of autonomous and predictive analysis and decision making.
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Figure 10.1: An example conceptual approach for future work, focusing on semantic enrichment

and use of indoor point clouds and associated data for FM decision making, and as base data for

DT representations.
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Outlook The overall goal of a DT for FM and Real Estate 4.0 is to unify all of the
processes and decision making tasks through ought the entire life cycle of a building. While
the implementation of such DTs are still in infancy with the current state of technological
advances, they will eventually become a standard for data-driven analysis, forecasting,
and decision making related to buildings and larger built environment infrastructure.
The main driving factor behind this is the unification of Big Data analytics [209], and
existing data (e.g., BIM data).

The paradigm of Big Data is to enable the analysis of data with increasing velocity,
volume and variety. It should also be taken into account that the growth of data for
Real Estate 4.0 applications follows the principals of Big Data, and in most use cases it
can be predicted that the size of the data used by a DT would increase exponentially.
Thus adequate ICT infrastructure, especially storage and suitable DBMSs are required
for access and processing of required data, and should be considered when planning the
implementation of DTs based on the approaches presented in this research.

Apart from point cloud representations of the built environment, the use of higher-
level representations (e.g., IFC representations, voxelized meshes, approximated floor-
plans), can provide further useful insight into the state of the built environment, as they
can be used for further analysis, decision making as well as asset management [182].
It can also be expected that the use of the IndoorGML 1 specification will need to be
supported by future DT implementations [179], alongside standard IFC, CAD and other
FM-related digital data. This will help address the need of FM stakeholders to have
access to semantically richer and up-to-date representations of indoor environments.
Furthermore, the unification of all related data, entities, relationships and an ontology
into a common model, could be used by various component implementations and versions
of DTs – allowing for portable DT systems and platforms that are applicable to any
existing or new building.

The use of visualization and analytics for Big Data related to building management
and operations would also allow FM stakeholders to gain insight and better understanding
into the O&M requirements of a building – based on captured and analyzed data sources.
This in turn creates greater domain intelligence within FM, provides better return of
investment, and allows FM stakeholders to make faster and more accurate decisions.

Furthermore, new generation consumer electronic and robotic devices (e.g., UAV
drones for as-is building inspection [84], etc.), will enable the use of once expensive
technology for capturing of indoor point clouds to be affordable and practical for routine
FM applications (e.g., use of an integrated LiDAR sensor in modern mobile phones [221],
using new generation Vertical-Cavity Surface-Emitting Laser (VCSEL) amplifiers [144]).
The affordability of new generation RFID-based sensors and RFID tags [90] will also
allow them to be commonly used in environmental sensing and IoT applications (e.g.,
room ambient intelligence). Finally, the use of AI and ML paradigms will shift towards
the use of models whose processes and results can be better understood by stakeholders –
by utilizing the concepts and methods of Explainable AI (XAI) [2].

1IndoorGML Specification: http://www.indoorgml.net/
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"Let the future tell the truth, and evaluate each one according to his work and

accomplishments. The present is theirs; the future, for which I have really worked, is

mine." – Nikola Tesla.
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