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Abstract

The seismicity of the Dead Sea fault zone (DSFZ) during the last two millennia is
characterized by a number of damaging and partly devastating earthquakes. These
events pose a considerable seismic hazard and seismic risk to Syria, Lebanon,
Palestine, Jordan, and Israel. The occurrence rates for large earthquakes along the
DSFZ indicate temporal changes in the long-term view.

The aim of this thesis is to investigate, whether the occurrence rates of large earth-
quakes (M,, > 6) in different parts of the DSFZ are time-dependent and how.
The results are applied to probabilistic seismic hazard assessments (PSHA) in
the DSFZ and neighboring areas. Four time-dependent statistical models (dis-
tributions), including Weibull, Gamma, Lognormal and Brownian Passage Time
(BPT), are applied along with the exponential distribution (Poisson process) as
the classical time-independent model. In order to check, if the earthquake occur-
rence rate follows a unimodal or a multimodal form, a nonparametric bootstrap
test of multimodality has been done. A modified method of weighted Maximum
Likelihood Estimation (MLE) is applied to estimate the parameters of the models.
For the multimodal cases, an Expectation Maximization (EM) method is used in
addition to the MLE method. The selection of the best model is done by two meth-
ods; the Bayesian Information Criterion (BIC) as well as a modified Kolmogorov-
Smirnov goodness-of-fit test. Finally, the confidence intervals of the estimated
parameters corresponding to the candidate models are calculated, using the boot-
strap confidence sets.

In this thesis, earthquakes with M, > 6 along the DSFZ, with an average width
of about 40 km and inside 29.5° < latitude < 37°, are considered as the dataset.
The completeness of this dataset is calculated since 300 A.D. The DSFZ has been
divided into three subzones; the southern, the central and the northern subzone
respectively. The central and the northern subzones have been investigated but
not the southern subzone, because of the lack of sufficient data.

The results for the central part of the DSFZ show that the earthquake occurrence
rate does not significantly pursue a multimodal form. There is also no consider-
able difference between the time-dependent and time-independent models. Since
the time-independent model is easier to interpret, the earthquake occurrence rate
in this subzone has been estimated under the exponential distribution assumption
(Poisson process) and will be considered as time-independent with the value of
9.72 * 1073 events/year.

The northern part of the DSFZ is a special case, where the last earthquake has
occurred in 1872 (about 137 years ago). However, the mean recurrence time of
M, > 6 events in this area is about 51 years. Moreover, about 96 percent of
the observed earthquake inter-event times (the time between two successive earth-
quakes) in the dataset from this subzone are smaller than 137 years. Therefore, the
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next earthquake in this subzone is overdue. The results for this subzone verify that
the earthquake occurrence rate is strongly time-dependent, especially shortly after
an earthquake occurrence. A bimodal Weibull-Weibull model has been selected
as the best fit for this subzone. The earthquake occurrence rate, corresponding to
the selected model, is a smooth function of time and reveals two clusters within
the time after an earthquake occurrence. The first cluster begins immediately after
an earthquake occurrence, lasts about 80 years, and is explicitly time-dependent.
The occurrence rate of this cluster is considerably low immediately after an earth-
quake occurrence, increases strongly during the following ten years and reaches
its maximum of about 0.024 events/year, then decreases over the next 70 years to
its minimum of about 0.0145 events/year. The second cluster begins 80 years after
an earthquake occurrence and lasts until the next earthquake occurs. The earth-
quake occurrence rate, corresponding to this cluster, increases extremely slowly,
so that it can be considered as an almost constant rate about 0.015 events/year.
The results are applied to calculate the time-dependent PSHA in the northern part
of the DSFZ and neighboring areas.
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Chapter 1

Introduction and Problem Definition

1.1 Introduction

Large earthquakes belong to the most hazardous natural disasters. Observing only
the most recent ten years, four earthquakes with severe consequences have oc-
curred, the 1999 Izmit earthquake in Turkey with the official death toll of 17,127
killed' (Barka 1999, Tang 2000, and Marza 2004), the 2003 Bam earthquake in
Iran with 26,271 deaths?, the 2004 Sumatra-Andaman earthquake and the associ-
ated tsunami in the Indian Ocean with a death toll of more than 230,000 people
in 11 countries (Lay et al. 2005) and, finally, the 2008 Sichuan earthquake in
China that killed at least 68,000 people (Jacobs et al. 2009). Altogether, more
than 340,000 people have lost their lives in only these four large earthquakes or
their immediate after-effects, as tsunamis, landslides, fires, etc. These figures cat-
egorize earthquakes as one of the deadliest natural disasters.

As a matter of fact, any knowledge about the hazard due to earthquakes; i.e. the
seismic hazard, can help to reduce the socio-economical losses and to save lives.
One of the essential parameters in seismic hazard analyses is the occurrence rate
of earthquakes. The occurrence rate describes the number of earthquakes in a time
unit. In classic methods of seismic hazard assessments, this rate is considered as
constant and extracted from a Poisson process. However, the classic methods
cannot properly calculate the rate, when it varies with time. In such cases, time-
dependent rate analyses are required.

Recently, various studies (e.g. Ellsworth et al. 1999; Matthews et al. 2002;
Parsons 2004; Gonzalez et al. 2006) have shown that the occurrence rate of earth-
quakes, especially for large events, changes in certain areas with time. In contrast,

'Some sources suggest the actual figure may have been closer to 40,000 dead (Marza 2004).
’Death toll data from BBC News (British Broadcasting Corporation), 2004-03-29, retrieved
2008-10-15. According to Montazeri et al. (2005), over 40,000 deaths.
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some studies (see Musson et al. 2005) declare that time-dependency is of possible
relevance in short time periods, but in general, for engineering purposes, treating
seismicity as time-invariant has usually been considered a useful simplification.
Therefore, it is an important issue to test whether the earthquake occurrence rate
in a given area is time-dependent or not.

The Dead Sea Fault Zone (DSFZ) is an area, where the occurrence rate for large
earthquakes shows an indication of temporal change in the long-term. In this the-
sis, the earthquake occurrence rate in the DSFZ will be analyzed to discover if it
changes significantly with time and how. For that purpose, time-dependent hazard
(rate) models will be developed an discussed. The combinations of these time-
dependent models with ground motion prediction equations, leading to a seismic
hazard assessment will be discribed later in this chapter.

Similar models have been commonly used in various branches of application of
statistical analysis to real-life problems, like: efficiency of treatments in medical
sciences, strength of components in manufacturing, financial planning, insurance
claims, maintenance of facilities, wind velocity and sunshine intensity in renew-
able energy, rock blasting in mining, spare part planning for commercial equip-
ment downtime, and many other problems (Murthy 2004). This broad area of
usage shows the applicability, effectiveness and flexibility of these models.

In the first chapter of this thesis, the main subject will be declared. The time-
dependent methods and models will be reviewed in chapter 2. In chapter 3, a new
time-dependent approach will be introduced and discussed in order to model the
earthquake inter-event times. The dataset, extracted from DSFZ catalogs, will be
presented in chapter 4. The results of application of the approach to the dataset
will be illustrated in chapter 5. Finally, a summary of the thesis as well as the
outcomes will be summarized and discussed further in chapter 6.

1.2 Problem definition

1.2.1 Aim of the thesis

The aim of this thesis is to analyze the temporal changes of occurrence rate, A, of
large earthquakes in a fault zone or a fault segment.

A is in statistical terminology known as the hazard (or rate) function. It should be
mentioned that the term “hazard” in statistics is different from the term "hazard” in
seismic hazard analysis. In statistics, the term “hazard” demonstrates the number
of events (here earthquakes above a certain magnitude threshold) in a time unit at
a generic time, which is, in fact, the same as the term ”occurrence rate” in seismic
hazard analysis. The term “hazard” in seismic hazard analysis is always related
to the ground motion of a specific site. In this thesis, the term “hazard function”
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refers to its meaning in statistical sense. The term “’seismic hazard assessment” is
used in the sense of its application to probabilistic seismic hazard assessments.
The mathematical interpretation of the hazard function is as:

At) = lim Pr{it <T <t+At|T >t}
At—0
lim Pri{t <T <t+At,T >t}
_  At=0
Pr{T >t}
i <T <
Al}tglo Pri{t <T <t+ At} _ £t) wn
Pr{T >t} S(t) '

where A(?) is the hazard function at a generic time ¢, f(t) is the probability density
Sfunction (pdf) corresponding to the distribution of the inter-event times (i.e. the
time between two consecutive events of interest), and S(t) is the survivor (or
reliability) function defined as:

S(t)=1-F(t) with F(t)= / t f(z)dz (12)

where F'(t) is known as the distribution or cumulative distribution function (cdf).
In general, there are two types of hazard functions, namely time-dependent and
time-independent. Time-dependent hazard functions vary with time, like hazard
functions corresponding to Weibull or Gamma distributions. Time-independent
hazard functions do not change with time, like the hazard function of the expo-
nential distribution (Poisson process), which is a constant.

1.2.2 Application to seismic hazard assessment
Classic method, time-independent

A Probabilistic Seismic Hazard Assessment (PSHA) for a specific site consists of
determining the frequency with which an earthquake ground shaking (e.g. peak or
spectral ground acceleration) takes on a defined range of values (e.g. > 0.5 g) with
a fixed probability during a given time (e.g. 10% within 50 years). The seismic
hazard at a site for earthquake ground shaking C' is defined as the frequency A
with which a specific value c is exceeded during time ¢. This total frequency A
is made up of contributions from a number of independent sources j, where the
frequency of exceedance of a specified value ¢ from each source is calculated as:

M@ = [ [ e m att) a0 m) as(m) dmat (13)

where A;(c) is the frequency with which c is exceeded at the site of interest from
earthquakes at source j, A; is the occurrence rate of earthquakes of interest at
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source j, m is magnitude, S;(c | m atl) is the probability that c is exceeded at
the site of interest, conditional on an earthquake at source 7, with magnitude m at
distance I, fr;a (! | m) is the probability that an earthquake of given magnitude
m occurs at location [, and finally fj,(m) is the probability of occurrence of an
earthquake of magnitude m for source j (Cornell, 1968; Mc Guire, 2004). Then,
the total seismic hazard at the site of interest can be calculated as a summation of
hazards on all sources j as:

A(c) :ZAJ- /l/ Si(e | m atl) foar(l| m) far(m) dmdl . (1.4)

According to the classic methods of PSHA, the parameter A; in equations 1.3
and 1.4 (i.e. the hazard function of the earthquake inter-event times) is generally
extracted from a Poisson process and is time-independent.

Toward a time-dependent approach

Time-dependent hazard functions change with time. Suppose that ¢ is a generic
time after an earthquake occurrence, then \(¢) is a non-constant function of ¢ (see
figure 1.1). Considering a time-dependent hazard function, equation 1.4 changes

0.02
Il

Figure 1.1: An example for
time-dependent  and  time-
independent hazard functions.
The red curve shows a time-
dependent hazard function of a
— Time-independent (Poisson) Brownian Passage Time (BPT)
" Time-dependent (BT) distribution.  The blue curve
shows a time-independent haz-
ard function of an exponential
distribution (Poisson process).

Hazard function
0.01
L

0.00
Il

0 160 260 360
Time (left after an earthquake)

to

At = SN0 [ [ Sitelm actfun | m)fa(myamat . (15)
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As mentioned above, the PSHA is generally estimated during some fixed time
span in the future. In the case of time-independent PSHA, the seismic hazard in
a given time unit (e.g. annual seismic hazard) remains constant during the time
(equation 1.4). In contrast, in time-dependent PSHA cases (equation 1.5), the
hazard function A(¢, ¢) changes with time. In order to calculate time-dependent
hazard during a time span [¢1, t5], the A;(¢) in equation 1.5 can be replaced by:

to
/ ors (1.6)
t1
or for the seismic hazard in time unit by:
1 2
/ A;j(t)de . (1.7)
to — 11 Jy,

According to equations 1.6 and 1.7, considering larger time spans (i.e. o — t1)
results in loosing details of seismic hazard variations with time. Therefore, the
time span has to be considered carefully and as short as possible, especially in
those cases, in which the seismic hazard varies vividly with time.

1.2.3 Study area

In this thesis, the Dead Sea Fault Zone (DSFZ) in the Middle East has been cho-
sen as the study area. The seismicity of the DSFZ during the last two millennia is
characterised by a relatively large number of damaging earthquakes. Earthquakes
along the DSFZ pose a considerable seismic hazard to Syria, Lebanon, Palestine,
Jordan, and Israel (figure 1.2).

The DSFZ is an active fault zone, forming the boundary between the Arabian plate
and the Sinai block (Mahmoud et al. 2005), as a part of the African plate, stretch-
ing from the Red Sea in the south to the East Anatolian fault in the north. Based
on geological evidence and kinematic considerations, it is generally accepted that
the Dead Sea Fault is a continental transform with a total of 105 km accumulated
left-lateral displacement (e.g. Garfunkel et al. 1981; Joffe and Garfunkel 1987).
The list of historical large earthquakes in the DSFZ provides a very suitable plat-
form in order to apply time-dependent PSHA. Since the seismicity in the DSFZ
shows large variations in the past 2000 years, time-dependency of the seismicity
rate will be tested for the investigated area. This item will be discussed in detail
in chapter 5.
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Chapter 2

Time-dependent modeling of
earthquake occurrence rate, an
overview

Time-dependent modeling of earthquake occurrence rates has recently been de-
veloped in many studies (e.g. Ellsworth et al. 1999; Matthews et al. 2002; Par-
sons 2004; Gonzalez et al. 2006). These approaches have in common that they
consider time-dependent earthquake occurrence rates. An overview of these ap-
proaches will be given in this chapter.

The time-dependent models are basically divided into two general groups, namely
physical and statistical approaches. Physical approaches explain the earthquake
rates using the theoretical and experimental aspects of the earthquake processes,
considering generally simplified conditions. Although these methods have been
more theoretically developed, they deem in practice many simplifications regard-
ing the real conditions, which may cause unexpected and incalculable errors. Sta-
tistical approaches, conversely, describe earthquake occurrence rates using empir-
ical earthquake data. These data include earthquake inter-event times, censoring
times (the time since the last event), earthquake locations (in the case of spatio-
temporal modeling) and earthquake sizes. In general, the earthquake inter-event
and censoring times provide much information about earthquake occurrence rates,
to be included in statistical methods. In the following an overview of selected
time-dependent models will be given.



2.1 Physics-based model

Rate-and-state model

The so-called rate-and-state model (Dieterich 1994, 1995) is commonly applied
to model the earthquake recurrence time as a physics-based and forward model.
This method is applied to obtain the rate of earthquake activity resulting from
the stressing history. Its concept is implemented for faults with rate-and-state-
dependent constitutive properties which are derived from laboratory experiments.
The goal of this modeling is to find the time at which each source (or area) initi-
ates an earthquake in dependence of the stressing history (Dieterich 1994).

The basic parameters of the rate-and-state models are results of laboratory exper-
iments and field observations. Besides the values and uncertainties of these input
parameters, the initial stress state is of key importance, but rarely known. There-
fore, for the long-term earthquake nucleation (background seismicity or main
shock rate), the determination of the stress level at each source is still a major
problem.

The general formulation of this method is specified, giving the time ¢ at which
a particular source nucleates an earthquake from initial conditions and stressing
history:

t = F[C,7(t)] 2.1)

where C' represents initial stress conditions and 7(t) is some general stressing
history. C' can be expressed as the initial stress relative to the stress threshold
(Dietrich 1994).

Here, the rate-and-state model will not be discussed further, since the focus in
this thesis is on the statistics-based methods. However, it will be included in the
discussion of mixed statistics-physics models later in this chapter.

2.2 Statistics-based models

2.2.1 Short-term time-dependent models, aftershock sequences
The idea of time-dependent earthquake modeling is traditionally related to the
modeling of aftershocks, which is performed on short time scales.

Omori’s law

Omori’s law (Omori 1894) is probably the first time-dependent model for describ-
ing earthquake rates, where the aftershocks rate triggered by a main shock decays
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with the rate

K
)\(t):t+c

where ¢ is the elapsed time since the main shock occurrence and K and c are

model parameters.

Utsu (1957, 1961) improved the Omori’s law and proposed the power-law form
K

At) = Trop (2.3)

(2.2)

as the modified Omori’s law, where p is the power-law parameter of the relation.
Reasenberg and Jones (1989) added a magnitude term to the modified Omori’s
law using the Gutenberg-Richter (G-R) law (Gutenberg and Richter 1944),

10a+b(Mm*M)

(2.4)
where b and a are the slope and the intercept of the G-R law and M, is the mag-
nitude of the main shock. In equation 2.4, \(¢, M) is the aftershock rate at time ¢
elapsed after the main shock with magnitude M.

ETAS model

The Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988) is cur-
rently the most applied statistics-based method to model the aftershock rate. This

model is based on the typical afterschock decay rate v(t) represented by the mod-
ified Omori’s law (Utsu 1957, 1961)

v(it)=K({t+c¢c)™? (2.5)

initiated by the main shock at origin time ¢ = 0.

Typically, the modified Omori’s law holds for relatively long periods of the order
of some tens of years or more, depending on the background seismicity rate in the
neighboring area (Utsu et al., 1995; Ogata and Shimazaki, 1984).

Ogata (1983) proposed a maximum likelihood method to estimate the parameters
of the modified Omori’s law as:

N T
lnL(Q):Zhw(ti)—/ v(t)dt |, 0= (K,cp), (2.6)
i=1 S

where In L(6) is the corresponding log-likelihood function.
Aftershock activity, however, is not always best predicted by the single modi-
fied Omori’s law, especially when it includes the secondary aftershock activities
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triggered by the large aftershocks, as demonstrated by Guo and Ogata (1997) and
Ogata et al. (2003a). Indeed, other complex features of aftershocks can be consid-
ered, such as interactively triggered aftershocks, including those among off-fault
regions, as discussed by Felzer et al. (2002). Therefore, one can assume that
every aftershock can trigger further aftershocks or remote events, and that the
occurrence rate at time ¢ is given by a (weighted) superposition of the modified
Omori’s relations shifted in time

MN(t) = p+ Y MMy (1 1) 2.7)

{:t;<t}

where p (shocks/day) represents the rate of the background seismicity, and the
summation is taken over every j-th aftershock occurred before time ¢ (days) (Ogata
and Zhuang, 2006). The weighted size of aftershocks triggered by the j-th after-
shock is made as the exponential function of its magnitude )/, in accordance with
the study by Utsu (1970), where M. represents the cut-off magnitude of the fitted
data. The coefficient a measures the efficiency of a shock in generating aftershock
activity, relative to its magnitude.

Considering point-process models for the data of occurrence times and locations
of earthquakes, where magnitudes are equal to or larger than a certain threshold
(cut-off) magnitude M., the occurrence rate (¢, x,y|H;) of a space-time point-
process is mathematically defined in terms of the occurrence probability of an
event at time ¢ and the location (x,y) conditional on the past history of occur-
rences, such that

P{aneventin [¢t,t + dt] X [z,z + dz] X [y,y + dy]|H;} =
A(t, z, y|Hy)dtdzdy + o(dtdzdy) (2.8)

where H; = {(t;, x;, yi, M;, S;); ti < t} is the history of occurrence times {¢;} up
to time ¢, with corresponding epicenters {(z;, y;) }, magnitudes {M;}, o(dtdzdy)
is the function of errors, and 2 x 2-matrices {.S;} for anisotropic clusters in equa-
tions 2.10 - 2.12 (Ogata and Zhuang, 2006). As in the typical space-time exten-
sions of the ETAS model, Ogata (1998) considered the separable form in time and
space clustering effects, and compared the following g functions in equations 2.10
- 2.12 in model

No(t,w,y) = plz,y) + Z vt —t;) x g(x — 2,y —y; My — M), (2.9)
{j:t‘j<t}

where

M} (2.10)

g(x,y; M) = exp [— S dealiD)
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or

M e 2.11
g(l’,y, )_ [(Z’,Q)S](ﬂf,y)t—f—d]q ( . )
or
S. t —q
oy ) = | DSV (2.12)

where S is an adimensional 2 x 2 positive definite symmetric matrix, and (x, y)’
indicates the vector transpose. The square brackets have dimension of degree®
where “degree’” corresponds to the global distance in latitude. The quadratic form
within the brackets indicates that the aftershocks are spatially distributed with
ellipsoidal contours. The logarithm of the aftershock area is highly correlated
with the main shock’s magnitude, leading to the Utsu-Seki law, the extension of
which is represented by the denominator e®(™i—Me)  The inverse power decay of
the aftershock distribution with distance takes the remote triggering phenomenon
into account (Ogata and Zhuang, 2006).

Given the dataset of origin times and space coordinates of earthquakes together
with their magnitudes and matrices {(¢;, z;, y;, M;, S;); M; > M., i = 1,...,n}
during a period [0, 7] and in region A, the log-likelihood function of the parameter
0 = (u, K, c,a,p,d, q) characterizing the spacetime point-process model can be
calculated by

N T
I L(O) =Y InXg(ti, 75, 4:) —/S ///\g(t,x,y) dtdzdy. (2.13)
i=1 ‘A

Daley and Vere-Jones (2002) calculated the derivatives of this formula and Ogata
(1998) proposed the numerical calculation of it. Helmstetter and Sornette (2003)
discuss the predictability in the ETAS model.

ETAS models are widely used to model aftershock sequences. The parameter
1, the background earthquake rate or the long-term earthquake rate, is not dis-
cussed in this model. However, the model is used in some studies for space-time
modeling of main shocks too (see Lombardi & Marzocchi, 2007). According to
the structure of the model and its parameters, a complete dataset of aftershocks
triggered by a main shock is required in order to estimate the model parameters.
These data are not always easily available, especially for the historical earthquake
catalogs.

Mixed ETAS-rate-and-state model

Recently, several studies have been developed taking into account the combination
of the ETAS model and physical methods; i.e. Coulomb failure stress (see page
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25) or rate-and-state model. Console et al. (2006) merged ETAS and rate-and-
state models, under the assumption that the temporal behavior of the seismicity,
triggered by a Coulomb stress change in an infinite population of faults, is de-
scribed by the rate-and-state model (Ruina 1983; Dieterich 1986,1992,1994). The
background seismicity in this model is considered time-independent (as in the
original form of ETAS, Ogata 1988).

Llenos et al. (2009) apply both inverse and forward modeling and develop a com-
bined ETAS-rate-and-state model to explain the variations in seismicity rate trig-
gered by transient aseismic processes such as fluid flow, fault creep or magma
intrusion. Two approaches are applied for estimating the time-dependency of the
underlying driving mechanisms, namely the stochastic ETAS model and a physi-
cal approach based on the rate-and-state model of fault friction. They first identify
the parameters related to one another in the two models and then examine their
dependence on stressing rate. A particular conflict arises because the rate-and-
state model predicts that aftershock productivity scales with stressing rate while
the ETAS model assumes that it is time-independent. Llenos et al. (2009) estimate
the triggering parameters for 4 earthquake swarms contemporaneous with geode-
tically observed deformation transients in various tectonic environments. They
find that stressing rate transients increase the background seismicity rate without
affecting aftershock productivity. Finally, they specify a combined model for seis-
micity rate variations that will allow future studies to invert seismicity catalogs for
variations in aseismic stressing rates.

EEPAS model

Rhoades and Evison (2004, 2005, 2006) and Rhoades (2007) propose the EEPAS,
Every Earthquake a Precursor According to Scale, which is a method of long-
range forecasting that uses the previous minor earthquakes in a catalog to forecast
the major ones. The EEPAS model has a rate density A(t, m, x,y) of earthquake
occurrence which is defined for any time ¢, magnitude m, and location (z,y),
where m exceeds a threshold magnitude m,. and (z,y) is a point in a region of
surveillance R. Each earthquake (¢;, m;, z;,y;) contributes a transient increment
Ai(t, m, x,y) to the future rate density in its vicinity, given by

Ai(t,m, @, y) = w; f1;(t) g1 (m) hii(z, v) (2.14)

where w; is a weighting factor that may depend on other earthquakes in the vicin-
ity, and fy;, g1; and hy; are densities of the probability distributions for time, mag-
nitude, and location, respectively. The magnitude density g;; is assumed to take

the form
1 1 /m—ay —bym; 2
gii(m) = exp [—— ( L ) ] (2.15)

C ouV2r 2 oM
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where ay;, by, and o), are parameters. The time density fi; is assumed as:

H(t —t:) 1 (log(t —t;) —ap — bTmZ-)2
(t— t)or m(10)v2r [ 2 p- (2.16)

where H(s) = 1if s > O and H(s) = 0if s < 0, and ag, by, and o7 are
parameters. The location density h,; is considered as:

1 (v —2:)* + (y — 9)?
il220) = o igham: P {— 207 10747

fu®) =

(2.17)

where 04 and b, are parameters. The total rate density is obtained by summing
over all past occurrences, including earthquakes outside R, which could affect the
rate density within R:

)\(t,m,x,y) = u)\o(t,m,:v,y) + Z n(mz))\l@?ma:[;?y) (218)

ti>to;mi>mo

where p is a parameter, )\ is a baseline rate density, ¢ is the time of the beginning
of the catalog, and 7 is a normalizing function. The parameter . can be interpreted
as the failure-to-predict rate, i.e., the proportion of earthquakes that occur without
an appreciable sequence of precursory shocks. The function 7 needs to be such
that the long-run average rate density under the EEPAS model, as a function of
magnitude, is the same as that of the catalog. It thus depends on the Gutenberg-
Richter b-value, the parameters a,;, by, and o), and the mean weight F(w) of
earthquakes in the catalog, and can be shown to have the following form:

n(m) = % exp {—5 (aM + (bay — D)m + 0%245)} (2.19)

with 8 = bln 10, where b is the Gutenberg-Richter b-value.

The EEPAS model is similar to the ETAS model. Like ETAS, the structure is
formally that of a branching process. However, conceptually there is a big differ-
ence; the idea of the EEPAS model is not that a small earthquake triggers a larger
one but that it provides evidence that a larger earthquake may be in preparation
(Evison and Rhoades, 2001). Also, the component distributions by the EEPAS
model do not follow power laws in time, location, or earthquake moment. The
normal, Lognormal, and bivariate normal distributions adopted for gy;, fi;, and
hy;, respectively, are chosen to be consistent with normally distributed errors in
the predictive relations.

In the baseline model adopted in this model, the rate Ay depends on the Proximity
to Past Earthquakes (PPE) in the catalog. The PPE model has most of the features
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of the forecasting model proposed by Jackson and Kagan (1999). The PPE model
has the form

)‘0<t7 m,zT, y) = fO(t)go (m)ho(x, y) (220)

where fj is the time function, g, is the magnitude density and h, is the density for
location. The time function is given by

fo(t) = : (2.21)

The magnitude density is that implied by the Gutenberg-Richter frequency-magnitude
law:

go(m) = Bexp[—B(m — m.)] (2.22)

where [ is defined as above. Finally, the function h is the sum over all earth-
quakes from time ¢, up to, but not including, time ¢ (time-independent) of smooth-
ing Kernels of the form

1 1

where r; is the distance in km between (z, y) and the epicenter (z;, y;) of the i-th
earthquake; a is a normalization constant; d is a smoothing distance; and s is a
small constant to allow for earthquakes far from past earthquakes. The constant
a is set so that the integral of hy over the region of surveillance R is equal to
the number of earthquakes exceeding m,. within R over the period to which the
model is fitted. The rate density under the PPE model thus diminishes gradually
with time between earthquake occurrences and jumps upwards when new earth-
quakes occur. The function hg incorporates the new earthquake locations and f,
takes into account of the passage of time.

The EEPAS method is generally the summation of the two methods for simulta-
neously estimations of the aftershock rate as well as the earthquake background
rate. The assumption that the rate of aftershock triggering decays based on a Log-
normal distribution is not always sufficient. The component f; of the long-term
earthquake rate covers just time-decreasing types of earthquake rates, which are
not always applicable. The role of the censored time (the elapsed time since the
last earthquake in the catalog) is not considered in this model. Also the numerous
parameters in the model result in more uncertainties in the estimation process,
when less data are available.
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2.2.2 Long-term time-dependent models
Kernel estimator for hazard function

Faenza et al. (2007) discuss the time-dependent behavior of seismicity with the
purpose to quantify its impact on seismic hazard in their study region, the Lower
Rhine Embayment, which is one of the regions of highest seismic hazard and risk
in Germany (Hinzen and Oemisch, 2001). Faenza et al. (2007) apply the ETAS
(Ogata, 1988) to model the short-term clustering of the inter-event times, and via
a Monte Carlo technique, the ETAS model is rendered on time scales 50 years
of exposure time, which is the standard seismic safety regulations worldwide for
normal buildings (structures). For the long-term behavior, Faenza et al. (2007)
perform a synthetic test on the impact of possibly cyclic activity on a single major
fault. In this case, the impact for varying degrees of knowledge about the past
fault activity is quantified.

For the evaluation of the hazard for long-term behavior, a sufficient large number
of synthetic catalogs (/V) of time duration ¢ is generated. Each catalog can be con-
sidered as a representation of seismicity in the time period of interest. Then a set of
ground motions is evaluated for each catalog. The probability of non-exceedance
of a level A* of ground motion at a specific site in the time ¢ is computed by
counting the intervals in which A* did not occur

P(A*t) = lim —ZH Anmazi) (2.24)

N—oo N

where NN is the number of catalogs of time duration t; H is the Heaviside func-
tion and A, ; is the maximum ground motion value occurred at a site of interest
during the i-th catalog of time duration ¢. The complement of P(A*;t) is the prob-
ability that A* is exceeded at least once in the time period ¢. An alternative way
to estimate the probability of non-exceedance is to consider directly the empirical
density function of the maximum acceleration values A,,., ;. Each probability
of non-exceedance is identical to the corresponding percentile of this distribution
(further details in Beauval et al. 2006).

For the short-term behavior, Faenza et al. (2007) first discuss how the coefficient
of variation (CV) of the inter-event times can show the behavior of the distribution
of the earthquake inter-event times. The CV is expressed as the ratio of the stan-
dard deviation to the mean. If the CV is less then 1, the distribution corresponds
to a quasi periodic behavior in the temporal domain; if the CV is equal to 1 then
the distribution is random in the temporal domain, since the standard deviation
and the mean have the same value; and, finally, if the CV is larger than 1 the dis-
tribution has a cluster behavior (Cox and Lewis, 1966).

Faenza et al. (2007) discuss two other methods to model the short-term behavior

15



of the earthquakes. The first method is a non-parametric estimation of the hazard
function. The Tanner and Wong (1984) technique is applied and approaches the
problem of estimating the hazard function directly by smoothing the empirical
rate. The random variables considered are the inter-event time and the censoring
time. The consideration of the censoring time, which represents the time elapsed
between the most recent event and the end of the catalog, becomes very important
in time-dependent analyses. The Kernel estimator of the hazard function A(¢) is

At)=> ————Keo(t —y,), (2.25)
=1

where y; is the ith ordered random variable of the system, ¢; is an indicator asso-
ciated to y;, that is §; = 1 in case of inter-event data, §; = 0 in case of censoring;
Kg is the Kernel function depending on a positive smoothing vector ©; and n
is the total number of data points. The smoothing vector O is evaluated using a
modified likelihood criterion. The details of the algorithm can be found in Tanner
and Wong (1984).

Faenza et al. (2007) conclude that neglecting aftershocks lead to an underesti-
mation of the hazard of 8 percent at 90 percent probability of non-exceedance
in 50 years. Although the impact is not very high and taking into account that
each other ingredient within the chain of the hazard computation has further un-
certainties, this result is important since neglecting the time-dependent behavior
(aftershock behavior) leads to a systematic underestimation of the estimated val-
ues.

The second method is applied with the purpose to examine the effect of the re-
peating occurrence of main shocks. Faenza et al. (2007) study the behavior of
a generic fault that follows the Brownian Passage Time (BPT) distribution (also
known as inverse Gaussian distribution). They especially evaluate the influence
of the aperiodicity and the elapsed time on the hazard estimation. Knowing the
fault and the statistic of the earthquake recurrence times (i.e. the elapsed time
and the BPT distribution) the impact on hazard ranges from 5 to 10 percent for
the 90 percent probability of non-exceedance in 50 yr. For the two special cases
of an ongoing aftershock sequence on the one hand and an elapsed time equal to
the mean recurrence time on the other hand, the increase of the hazard value is
more than 10 percent at the level of 90 percent probability of non-exceedance.
However, after the complete decay of the aftershock activity and for aperiodicity
values larger then 0.3, the impact on hazard is negligible for any elapsed time.
Faenza et al. (2007) deduce that the implementation of a "long-term” dependence
of the seismicity via the BPT distribution does not substantially affect the hazard
estimation for the region of the study.
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Proportional hazard function

Faenza et al. (2003) apply a method to model the spatio-temporal occurrence rate
of earthquakes through a non-parametric multidimensional hazard function using
the proportional hazard model described by Cox (1972) and Kalbfleisch & Pren-
tice (1980). This model deals with two kinds of random variables, namely the
inter-event time and the censoring time. At each one of these random variables
a vector of covariates is attached, which carries out some information, i.e. spa-
tial/tectonic information in the corresponding subregion.

Following Cox (1972), the proportional hazard model for a time ¢ since the last
event can be written as:

A(t,z) = A\o(t) exp(zp) (2.26)

where z is the vector of covariates, (3 is a vector of coefficients, and \(¢) is an
arbitrary base-line hazard function. The survivor function, S(.), (or a possible
survivor function) and probability density function, f(.), for this hazard model
are

Sttz) = exp {— /0 t/\g(u)exp(zﬂ)du}

(o0 [ [ )] )exp(zﬁ)

— Sy(1)PED) (2.27)

and
f(t,z) = \(t,z)S(t,2). (2.28)

In this model the covariates act multiplicatively on the hazard function and z does
not depend on time. This means that the form of the base-line A\y(.) is always
the same apart from a multiplication factor. From a physical point of view, the
mechanism of earthquake occurrence described by the function Ay(.) is the same
for different areas; only the parameters of the system, i.e. exp(zf), can vary.
Kalbfleisch & Prentice (1980) suggest the most likely probabilistic model for the
base-line hazard function using the empirical data.

In order to estimate the parameters 3, suppose NN, inter-event times t; (i = 1,..., Ny)
with Z;) as the inter-event times in increasing order and corresponding covari-
ates z1), ..., 2(n,), as well as Ny censored times t, of which n; are censored in
the ¢-th interval [t(i), t(i+1)), i.e. t(i) < tNil, ce ,tNmi < t(i—i—l) (Z =0,..., Nl),
and corresponding covariates z;y, . . ., Z;,,. Considering the rank vector r(¢;) =
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[(1),(2),...,(IN71)] of the inter-event times, the censored times contain only par-
tial information on the rank vector, because the ordering vector including the cen-
sored times is not necessarily the true ordering. The contribution of the censored
times in the time interval [t(i), t(iﬂ)) to the marginal likelihood is considered as,

g(’L —exp[ Zeszwﬁ/

Then the likelihood function is proportional to

P(r; ) = P{r=][1),....(N )]'6}

= / / / Hf Ui Z z ul) duNl du1
0 t(l)
N

eXP(Z(z‘)ﬂ)
i=1 ZjGQ’(t(i)) exp(z;0)

ta
" Ao(u) du] ) (2.29)

(2.30)

where (Y'(t(;)) is the set of labels attached to the inter-event tlmes and censored
times with length >ty ie. U(te) ={1(5),41,....dnjl,i =14,...,Ni}.

The case of ties in the dataset has been also discussed. A tie means two or more
equal inter-events or censoring times in the dataset. In this case suppose d; inter-
event times with length ¢; (¢ = 1,...,N;), then the likelihood function will
change to

) exp(sif)

=1 [Zjeﬂ/(tm) exp(z;/3)

where s; is the sum of the covariates of the inter-event times with length # ;.

The maximum likelihood estimate (3 can be obtained as a solution of the system
of equations

L = (2.31)

d;

dn(L)
0B;

where Uj is the gradient vector. Some mild conditions on the covariates and cen-
soring are required to ensure the asymptotic normality of B (Kalbfleisch & Pren-
tice 1980). Then 3 is a normally distributed random variable with the two param-
eters Mean = (3 and Variance = (3)~!, where [ is the Fisher information matrix
as:

U;(3) = (2.32)

_ 9*In(L)
L= 505 (2.33)
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The asymptotic normality of B is very important, while it allows very simple and
routine tests like to check the relative importance of the factors included in the
covariates (Kalbfleisch 1985).

The next step is to estimate the hazard function base-line A\o(.). For that reason
the survivor function is estimated first. As before, £, %(2), ..., f(n,) are the or-
dered inter-event times, P; the set of labels associated with inter-event times with
length ¢(;), and (Q; the set of labels associated with the censored times censored
in [t(i), t(iﬂ)) (¢=0,...,Ny), where tgy = 0 and t(x,41) = oo. The censored
times in the interval [t(i), t(iﬂ)) are ; where j ranges over );. Then the proposed
likelihood function has the form of

Ny
L = H { H |:So<t(i))exp(zjﬁ) _ So(t?;))exp(zjﬂ)] H SO(.EE‘;))eXp(zkﬁ)} (2.34)

i=0 \jePp keQ;

where So(t?;)) = lims_o+ So(ts + &) and Py is empty. It is clear that L is maxi-
mized by taking So(f) = So(t(;)) for t(;) < & < t(;41) and allowing probability to
fall only at the observed inter-event times ;).

The form of the base-line is completely empirical, therefore it has a discrete form.
The survivor function at a generic time ¢t* since the last event for a discrete process
with censored times is

Sty = ] a-x) (2.35)

Jltg<t*

where \; = P(T = t;|T" > t;). This equation is the discrete form of equation
2.27. The survivor base-line, S, is also measured as a discrete model with hazard
contribution \; at ¢y (j = 0,..., N;). Then

i—1
Soltw) = Soltiv) = [[ o (2.36)
j=0

where og = 1. Substituting equations 2.27 and 2.36 in equation 2.34, and rear-
ranging the terms, the equation

Ny
L = H H [1 o O[Z?XP(ZJ‘B)] H Oé?Xp(sz) (2.37)
=1 jePz kEQ/(t(l))—Pz

will be obtained.
The estimation of the survivor function can be carried out by joint estimation of
«; and [ in equation 2.37. More simply, taken 5 = [ as estimated previously, one
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can maximize the logarithm of equation 2.37 with respect to «;. In this case, the
following equation will be obtained

ZM: S exp(zh). (2.38)

~exp(z ﬁA)
j€P¢ 1 - ai ! kEQ/(t(l))

If there is no tie, equation 2.38 can be directly solved for &;, otherwise an iterative
solution is required. A suitable initial value for such iteration is

—d,
111(0%0) = ~ (239)
> exp(zif)
k)EQ’(t(i))
obtained by approximating """ ~ 1 + exp(z;,3) In(d;). The estimated base-

line of the survivor function for a generic time t* since the last earthquake is
therefore

So(t*) = i, (2.40)

which is a step function. The equation of the proportional model for a generic
time t* and covariates z* is

Srz) = [ arre. (2.41)

3
i|t(i) <t*

In order to check the validity of the modeling, the dataset is divided into two
sets, one to use for the modeling (the learning phase) and the other to use for
the checking the model (the validation phase). A method of the goodness-of-
fit is applied, which can empirically check, how good the model fits the data of
the validation phase. Each inter-event time ¢ of this data set will be transformed
through the equation

~ ~

éi = No(t;) exp(zif3), (2.42)

where

-1

MOESY > exp(zB) | (2.43)
ke (t(s)

Z'|t(i)<t

and B are estimated by the data of the learning phase. If the model is appropriate,
the residuals é; should be similar to a sample drawn by an exponential distribu-
tion with A = 1. Therefore, a comparison of the cumulative of the residuals é;
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with a theoretical exponential curve provides a goodness-of-fit test of the model.
The comparison can be statistically checked through a one-sample Kolmogorov-
Smirnov test (e.g. Gibbons 1971).

Finally, the authors discuss the application of the model to the Italian seismic-
ity using a set of earthquakes with M,, > 5.5 since 1600. They state that their
first results obtained from the model explain that large earthquakes (M,, > 5.5)
in Italy tend to cluster in time and space, and the length of the time-cluster may
reach a few years , and after this time the distribution of the earthquakes becomes
a Poisson distribution. They also did not find any evidence of increasing hazard
function. This method has been already used to model the spatio-temporal distri-
bution of the worldwide big earthquakes (see Faenza et al. 2008).

The method belongs to the minimalist models, in which the concept is to use less
theory but more information. The model thus requires more accurate data and
does not consider any prior form for the distribution of the hazard function.

Renewal models

The renewal models are frequently used to estimate the long-term time-dependent
probability of the next large earthquake on specific faults or fault segments, where
large shocks occur repeatedly at approximately regular intervals. Based on these
types of models, it is assumed that the times between consecutive large earth-
quakes (inter-event times or recurrence intervals) follow a certain statistical distri-
bution. Since the available records of large earthquakes in a given area is typically
scarce (usually including less than ten events), so the empirical statistics are poor
and then a theoretical distribution is fitted to the observed inter-event times and
used to estimate future earthquake probabilities (Gonzalez et al. 2006).

These types of models can be divided into two groups. The first group; includ-
ing Gamma, Lognormal, and Weibull distributions, are frequently used for earth-
quake inter-event time modeling, because they share three properties commonly
observed for earthquake inter-event times (Michael, 2005). First, these times must
be positive, and these distributions only exist for positive times; second, inter-
event times much smaller than the average recurrence interval are rare; and third,
the distribution of inter-event times decays slowly for times longer than the aver-
age . However, the behavior of Gamma and Weibull distributions, as a general-
ization of the Exponential distribution, is different from Lognormal distribution,
which belongs the Gaussian based distributions. These distributions and their
characteristics will be broadly discussed in the next chapter.

The second group is including distributions derived from two simple physical
models of earthquake recurrence which have been proposed as an alternative to
those purely empirical approaches (i.e. the first group). They are the Brownian
Passage Time model (Kagan and Knopoff, 1987; Ellsworth et al., 1999; Matthews
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et al., 2002; WGCEP, 2003), and the Minimalist Model (Vazquez-Prada et al.,
2002; Gomez and Pacheco, 2004). The first one represents the tectonic loading
of a fault by a variable which evolves by superposition of an increasing linear
trend and a Brownian noise term. Then, an earthquake occurs when this variable
reaches a given threshold (Matthews et al., 2002). All earthquakes in this model
are identical to each other!.

The Minimalist Model sketches the plane of a seismic fault, where earthquake
ruptures start and propagate according to simplified breaking rules. This model
generates earthquakes of various sizes, and only the time between the largest ones
(the characteristic earthquakes, that break the whole model fault) are considered
for the inter-event time distribution (Gonzalez et al. 2006). The distributions de-
rived from these two models, as well as the Gamma, Lognormal and Weibull,
generally represent fairly well the observed distribution of large-earthquake inter-
event times (Gomez and Pacheco, 2004). However, they differ significantly in
their probability predictions for times much longer than the mean inter-event time
of the data. Thus, it seems convenient to take all their different predictions into
account.

Gonzalez et al. (2006) use the mentioned models to describe the seven M 6 main
shocks in the Parkfield area. They do not consider the censored time, although
it is an important variable in the case of time-to-failure modeling. They use a
method of moments to estimate the parameters of each continuous parametric
model, i.e. Weibull, Gamma, Lognormal and BPT. This method is a simple es-
timation method, but the estimators corresponding to this method are not nec-
essarily sufficient, because they sometimes fail to take into account all relevant
information in the sample (Stigler 1973). The Maximum Likelihood Estimation
(MLE) method is mostly proposed in such cases.

In order to find the best model among the different models, the authors focus on
the residuals of each distribution. This method is also inconsistent because the
number of data and the likelihood of each model are not involved in the model se-
lection process. On the other hand, they do not discuss the goodness-of-fit, which
shows, how good the models can basically describe the data.

Hebden and Stein (2009) propose a time-dependent model for hazard assessment
for the New Madrid seismic zone and Charleston, South Carolina, and compare
the results with the time-independent hazard maps. They apply two Normal dis-
tributions, with the same mean recurrence time as for the time-independent model
and two different standard deviations, as well as a Lognormal distribution, with
the same mean recurrence time, for the inter-event time distribution of large earth-
quakes. Their results show that the time-dependent model predicts noticeably

"Here “identical” means that earthquakes follow the same distribution in time. In other word,
the earthquake inter-event times are identically distributed
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lower hazard for two various 50-year periods, namely 2000-2050 and 2100-2150.
They also declare that, if the large earthquake has not occurred by 2200, the haz-
ard predicted in the next 50 years would be higher than predicted by the time-
independent model. They state that the dramatic differences between the time-
dependent and time-independent hazard maps point out that the hazard estimation
in those areas, in which there are rare reliable earthquake data is a very uncertain
enterprise. However, they conclude that the lower hazards predicted for the cen-
tral and eastern part of the United States by the time-dependent models are more
plausible.

Ellsworth et al. (1999) discuss the time-dependent time-to-failure models for the
earthquake inter-event time modeling. They first introduce different renewal dis-
tributions, i.e. Weibull, Gamma, Brownian Passage Time and Lognormal. They
declare that at present, it is not possible to discriminate between such candidate
models, given the limited and uncertain nature of earthquake recurrence data, al-
though it can be firmly possible to reject a Poisson process or Exponential dis-
tribution (Ellsworth, 1995). This declaration is possibly not as trivial as stated.
The consideration of more reliable historical data, if possible, can effectively in-
crease the level of reliability of the inter-event time modeling as well as best model
choice process. Furthermore, they introduce the Brownian Passage Time distribu-
tion as a physically based model and discuss the results of this model using the
data from the San Andreas fault in California. After analyzing of 37 series of re-
current earthquakes, with magnitude from -0.7 to 9.2, they suggest a provisional
generic value of o = 0.5 (aperiodicity parameter of Brownian Passage Time dis-
tribution). For this value of «, the hazard function exceeds the mean rate for times
> p/2 and is ~ 2/u for all times > pu (where p is the mean inter-event time).
Application of this model to the next M6 earthquake on the San Andreas fault at
Parkfield, California, suggests that the annual probability of the earthquake is be-
tween 1/10 and 1/13. The Brownian Passage Time distribution has been also used
in some other studies like, Rundle et al. (2006).

Zoller et al. (2008) discuss a statistical distribution to describe the recurrence of
large earthquakes in a specific fault zone. They consider the same class as the
Brownian relaxation oscillator proposed by Matthews et al. (2002). Zoller et
al. (2008) consider a load state variable that increases over time, reaches a static
threshold and relaxes instantaneously back to the ground state. However, consid-
ering the Gutenberg-Richter law, they apply a power-law distribution for fluctua-
tions (the load state variables) instead of the Gaussian distribution as assumed in
the Brownian relaxation oscillator. Then, they build a renewal loading process and
discuss the recurrence time of this process. They show that the coefficient of vari-
ation (the standard deviation divided by the mean recurrence times) of recurrence
times depends solely on the b-value of the corresponding Gutenberg-Richter law.
Zoller et al. (2008) discuss that since the variance of the distribution of the fluctua-
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tions is finite and the number of fluctuations is relative large, then the central limit
theorem implies that the recurrence times follow a Brownian passage-time (BPT)
distribution. They calculate individual recurrence-time distributions for specific
fault zones without tuning free parameters. Then, the mean recurrence time can
be estimated from geological or paleoseismic data, and the standard deviation is
determined from the frequency-size distribution, namely, the Gutenberg-Richter
b-value, of an earthquake catalog. Zoller et al. (2008) apply the approach to the
Parkfield segment of the San Andreas fault in California and for a long simulation
of a numerical fault model. Assuming power-law distributed earthquake magni-
tudes up to the size of the recurrent Parkfield event (M 6), they find a coefficient
of variation that is higher than the value obtained by a direct fit of the BPT dis-
tribution to seven large earthquakes. Finally, Zoller et al. (2008) argue that the
BPT distribution is a reasonable choice for seismic hazard assessment because
it governs not only Brownian motion with drift but also models with power-law
statistics for the recurrence of large earthquakes in an asymptotic limit.

Clock-change in hazard using stress change models

Parsons (2005) discusses the variability, parameter sensitivity, and limitations of
the time-dependent approach as well as the circumstances under which stress in-
teractions should be added. This effort concentrates solely on the concept of static
stress transfer, the theorized lasting change in the stress field resulting from dis-
placements caused by previous fault slip or magmatic intrusions.

The time-dependent probability calculation follows the renewal hypothesis of
earthquake regeneration such that earthquake likelihood on a fault is lowest just
after the last event. As stress increases, the odds of another earthquake increase.
A time-dependent probability calculation sums a probability density function f(¢)
as

t+AL
Pt <T <t+Al)= / f(t)dt (2.44)
t

where f(¢) can be any distribution, such as Lognormal (Nishenko and Buland,
1987), Weibull (Hagiwara, 1974), Gamma (Utsu, 1984), or Brownian Passage
Time (Kagan and Knopoff, 1987; Matthews et al., 2002). These functions dis-
tribute around some mean inter-event time (x), and the width of the distributions
represents inherent variability («) on recurrence. For example, a very narrow dis-
tribution implies very regular recurrence.

Two commonly applied probability density functions, the Lognormal

Flta) = —— exp (M> (2.45)

ta/ 2T 202
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and Brownian Passage Time,

+— 2
f(ta s Oé) = \/ ﬁ exp <_(2,1,L—Oéu22)f> (246)

have characteristics that qualitatively mimic earthquake renewal. The distribu-
tions are asymmetric, with less weight at short recurrence time which, when inte-
grated, translates to very low probability early in the earthquake cycle. They are
defined by two parameters, i.e. the mean inter-event time, and the coefficient of
variation or aperiodicity that govern their shapes. The distributions differ in their
asymptotic behavior; integration of the rate of the Lognormal distribution to very
long times asymptotes to zero, whereas the Brownian passage time distribution
asymptotes to a fixed value. According to Matthews et al. (2002), this behavior
favors the Brownian distribution for hazard calculations. Parsons (2005) explores
effects of input parameter variability on time-dependent probability calculation to
establish its inherent variation before stress changes are applied.

In the next step, he uses the paleoseismic records found on the San Andreas fault
in southern California as well as historical catalogs in the same area. Then he
constructs a forward approach using Brownian Passage Time distributions with a
range of mean inter-event time (1) and aperiodicity (o). In this approach events
were repeatedly drawn at random from each distribution in an attempt to match
the observed event windows. Distributions that succeeded were tallied. After the
consideration of the effects of the unknown elapsed time since the last event, the
choice of the distribution as even long paleoseismic catalogs permit a broad ar-
ray of equally viable earthquake probability forecasts. In some cases the array
appears to have a central peak that might provide some basis for expressing a pre-
ferred value (Savage, 1991, 1992), but in others not. Time-dependent probability
calculations may not be warranted for paleoseismic catalogs with fewer than 10
events. Choice of probability density function and knowledge of elapsed time
(censored time) are shown to have potentially broadening effects on the array of
probabilities. Moreover, the stress transfer is introduced to the calculations to in-
vestigate how large it must be to skew the array of probabilities. The inherent
variability and uncertainty from stress change calculations are explored because
their influence on earthquake probability scales with their magnitude.

The stress changes are estimated due to the co-seismic slip on the rupture plane
and the shear stressing rate (also called tectonic loading) below an a priori defined
locking depth of the fault. Technically the solution is achieved by embedding the
faults in an elastic half space and using the solution scheme of Okada (1992).
For further assessment of the stress change the change of Coulomb Failure Stress
(CFS) is calculated for the fault planes of interest (King et al. 1994) using the
following definition:

ACFS = At + f.(Aoy, + Ap) (2.47)
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where A7 is the change in shear stress on the fault (set positive in the direction
of fault slip of the future earthquake), f. is the coefficient of friction, Ao, is the
change in normal stress acting on the receiver fault (set positive for unclamping),
and Ap is the pore pressure change. Positive AC'F'S brings the fault closer to
failure, indicating a clock-advance with respect to the next earthquake and vice
versa, a negative AC'F'S departs the fault from failure and delays the next event.
Under the renewal model, AC'F'S increases with time due to tectonic plate motion
only, i.e. simply an increase of shear stress only. Thus, the clock-advance or delay
(clock change T") can be estimated by dividing the AC'F'S with the shear stressing
rate 7, as:

o ACFS (2.48)

T

The probability is accrued from the last earthquake time adjusted by the clock
change (T + T") (Working Group on California Earthquake Probabilities, 1990).
Alternatively, the earthquake inter-event time p can be adjusted by the clock
change as 1 = g — 1".

The choice of whether to change the elapsed time or the inter-event time has a
potentially significant effect on the resulting earthquake probability calculation.
Probability calculated with a clock change, or elapsed time shift, is most signifi-
cant at the time of the stress change, and then asymptotes to the maximum prob-
ability value with time. A change in recurrence interval has the opposite charac-
teristic. The probability change is smallest at the time of the stress change, and
then asymptotes to a permanent offset in probability. These differences are caused
because in one instance (recurrence interval change), the mean of the recurrence
distribution is changed and thus the maximum calculated probability changes. In
the case where the last earthquake time is changed (clock change), the center of
the distribution is unaffected; thus, after a long elapsed time, the maximum calcu-
lated probability stays the same.

Making a clock change or inter-event time adjustment in probability calculations
requires an estimate of the shear stressing rate 7. A commonly used approach to
estimate 7 is to simulate the earthquake fault as a dislocation; the seismogenic part
of the fault is locked while the rest of the fault is allowed to slip freely (Parsons,
2002b, 2004).

At this point, Parsons (2005) discusses the effect of time-dependent stress change
on the seismicity rate. A transient change in seismicity rate following an earth-
quake is a long recognized (Omori, 1894; Dutton, 1904), widely observed phe-
nomenon. The physics of the process (Scholz, 1968; Dieterich, 1994; Marcellini,
1997; Kilb et al., 2002; Felzer et al., 2003) and how to work it into earthquake
probability calculations (Dieterich and Kilgore, 1996; Matthews et al., 2002;
Hardebeck, 2004; J. Gomberg et al., 2005) are still debated. Much like the
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overall question whether to incorporate stress transfer into time-dependent earth-
quake probability calculations, the issue whether to fold in transient seismicity
rate changes pits observational evidence against the uncertainty and variability
of probability calculations. At present, three methods for transient probability
change calculations are in use; two techniques from rate-and-state friction theory
(Dieterich and Kilgore, 1996; Toda et al., 1998; Hardebeck, 2004), and one from
the Brownian Passage Time model (Matthews et al., 2002; WGCEP, 2003).

The rate-and-state transient effect describes an expected enhanced rate of earth-
quake nucleation resulting from a stress increase, and can be expressed as a prob-
ability. For a stress decrease, the rate of nucleation declines, and eventually recov-
ers. Dieterich (1994) derived a time-dependent seismicity rate R(t), after a stress
perturbation as

r

lexp(—ACFS/Ac) — 1] exp (—t/t,) + 1

where r is the steady state seismicity rate, ACF'S is the change of Coulomb
Failure Stress, o is the normal stress, A is a fault constitutive constant, and ¢, is
an observed aftershock duration, a fault-specific parameter.

The transient change in expected earthquake rate R(t) after a change of Coulomb
Failure Stress can be related to the probability of an earthquake of a given size
over the time interval At through a nonstationary Poisson process as

(2.49)

R(t) =

P(t,At) =1 —exp {— /HN R(t) dt} =1—exp[—N(t)] (2.50)

after Dieterich and Kilgore (1996), where N () is the expected number of earth-
quakes in the interval A¢. This transient probability change is superimposed on
the permanent change (in both probability and seismicity rate) that results from a
time shift, or a change in the repeat time as discussed previously. Integrating for
N(t) yields

N =, { At i {1 + [exp(—~ACFS/Ac) — 1] exp (—At/ta)] } 051)

exp(—ACFS/Ao)

where 7, is the expected rate of earthquakes associated with the permanent prob-
ability change (Toda et al., 1998). This rate can be determined by again applying
a stationary Poisson probability expression as

- (;_1) In(1 - P) (2.52)

where P, is a conditional probability, and can be calculated using any distribution.
There are advantages in using the rate-and-state model, though a number of impor-
tant assumptions must also be made. Rate-and-state friction includes the friction
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parameter via using AC'F'S. Under the Dieterich (1994) model, a group of faults
or even a single fault is considered an infinite population of earthquake nucleation
sites that are near to failure. These conditions are treated as Poissonian (Dieterich
and Kilgore, 1996), are independent of the fault rupture history, and are applied
on top of the static probability change.

Hardebeck (2004) suggests that superimposing the transient response onto a clock
change, or static probability change is double counting, and proposes a method to
calculate interaction probabilities that uses time-varying clock change corrections.
Integration limits of a probability density function are changed with each time step
to simulate a variety of potential earthquake nucleation sites. If a rate-and-state
nucleation model (Dieterich, 1994) is implemented, as (Hardebeck, 2004)

Too = 2% 10 [ (exp (2297 1) exp (29F5 44 (2.53)
T Ao Ao

then a transient response in probability change is obtained. The probability that
nucleation will occur between the new limits is calculated using the original den-
sity function. Comparison of the two rate-and-state methods shows a similar shape
in the evolution of probability with time; a higher peak is obtained with the time-
varying clock change method (Hardebeck, 2004) than with the Dieterich and Kil-
gore (1996) method.

The problem of the application of both statistical (BPT model) and physical (stress
change) models simultaneously, which results in a superposition of the role of the
stress change in the earthquake time-to-failure modeling, remains anyhow. The
use of a forward method to estimate the aperiodicity parameter of the BPT model
is not very significant. The goodness-of-fit is not checked for the BPT as far as for
the other distributions. The uncertainties of the estimation (or calculation) of the
physical parameters and generalization to the real situations are still non-solved.
Gomberg et al. (2005) focus on the combination of both probabilistic and physical
models. Using the idea of Stein et al. (1997) and Hardebeck (2004), they develop
a general framework based on a simple generalized rate change formulation and
apply it to two approaches, namely probabilistic and physical, to show how they
relate to one another. They also attempt to show the connection between mod-
els of seismicity rate changes applied to populations of independent faults as in
background and aftershock seismicity and changes in estimates of the conditional
probability of failure of a single fault.

One of the critical issues by using both physical and statistical methods simulta-
neously is that the statistical methods are generally based on the earthquake data
including occurrence times, sizes and locations. These data also hold a stage of
the stress change information in the given area. This means that statistical and
physical approaches are correlated. This correlation may result in some superim-
posing of role of the stress change in the earthquake occurrence rate, using both
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physical and statistical methods simultaneously. Hardebeck (2004) discusses this
issue as well.

Another critical issue is the way the stress change is calculated. Uncertainties in
AC'F'S models are relative high and model assumptions over simplify the prob-
lem.

Several other methods

Kuehn et al. (2008) apply the stress release model proposed by Vere-Jones (1978)
and develop a method to consider the stress transfer and stress-triggering between
distant faults and seismogenic zones over a multivariate extension of the sim-
ple form of the method. The hazard rate function corresponding to the model
has an exponential form over the stress scalar (or simply stress), which is a non-
decreasing function over stress, but not necessarily over time. The theory behind
the model is simple. However, the predefined parameters involved in the model
cannot be always easily and correctly guessed or estimated.

Molchan (2005) performs an analysis of the distribution of inter-event times in a
stationary point process. His study is motivated by the discovery of unified scal-
ing laws for 7 (the time between two consecutive events) for the case of seismic
events, e.g. modified Omori’s law (Utsu 1961) and a new scaling law by Bak et al.
(2002) and Corral (2003,2004a,b). He demonstrates that these laws cannot exist
simultaneously in a seismogenic area. He shows under some assumptions that if,
after rescaling to ensure that statistical expectation of 7 is equal 1, the inter-event
time has a universal distribution ', then F' must be exponential (the process must
be Poissonian). This result is however under the assumption of existence of a uni-
versal distribution for 7. In the next chapters, it will be shown that the distribution
function for 7 dose not generally follow the exponential distribution, at least in
the case of this thesis, and it should be checked for every seismogenic zone, if
possible.

Rotondi (1999) applies a multiple-change point problem to identify the periods
with various seismicity in a seismic source zone. She defines the problem as to
find the number and the time of £ > 1 change points of the occurrence rate in
a sequence of earthquake observations under a generalized Poisson process as-
sumption through a stepwise procedure. To solve this problem, she uses a re-
visable jump Metropolis-Hastings algorithm under a Markov Chain Monte Carlo
(MCMC) method.

La Rocca (2008) assumes a renewal process for the large earthquake recurrence
time during long time spans and propose a Bayesian nonparametric estimation of
smooth hazard function for the occurrence rate of large earthquakes. This model,
like other nonparametric models, requires more reliable data, although assuming
a functional form for the Kernel of the nonparametric distribution.
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2.3 Conclusions

It can be concluded that most time-dependent models of the earthquake occur-
rence rate have been focused on aftershock sequences, which are basically short-
term analyses of earthquake occurrence rates in time scales not longer than 50
years of exposure time. The methods applied to model the earthquake occurrence
rate for long-term are generally based on the renewal process. The scarce infor-
mation about large earthquakes as well as the broad domain of application of the
renewal processes, also in other real-life problems, make the renewal process very
applicable in the case of long-term earthquake occurrence rate modeling. In the
next chapter, the renewal process will be discussed as well as various commonly
used distributions under the assumption of the renewal process.
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Chapter 3

An adapted approach to
time-dependent earthquake
occurrence rate modeling

In order to model the earthquake inter-event times, an adapted approach will be
introduced in this chapter. Considering the most powerful statistics-based models
applied in different forms of time-to-failure modeling, they will be developed for
the application to the earthquake inter-event times. Then, the method of parameter
estimation will be investigated. Finally, methods for selection of the best model
will be discussed.

3.1 Empirical modeling

Mathematical models have been used in solving real-life problems from many
different disciplines. This requires building a suitable mathematical model. Two
different approaches applied to develop mathematical models are:

e Theory-Based Modeling, also called physical-based modeling or white-box
modeling, is based on theories (from physical, biological, and social sci-
ences) relevant to the problem.

e Empirical Modeling, also called data-dependent modeling or black-box mod-
eling, is based on the available data forming the basis of model building. It
does not require an understanding of the underlying mechanisms involved.

In the empirical approach, an analysis of data is first carried out. Then, the type of
mathematical formulation appropriate to describe the data is determined (Murthy
et al. 2004).
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3.2 Time-to-failure modeling

The group of models called time-to-failure models is considered to analyze the
time between two events, i.e. failure, in a process. The aim of this type of models
is to find the distribution of the random variable of time between the events.
Consider a stochastic process X = (X;)er, with T as the index set and X, as
the state of the process at time ¢. Let X, be the number of failures within time ¢
since starting time ¢y, with ¢ > ¢, (here considered as ¢, = 0), with Jy, J, ... as
jump times (the time in which an event occurs) and 7y, 7o, . . . as inter-event times
(or holding times; i.e. the time between two successive event occurrences). This
process is illustrated in figure 3.1.

X; Figure 3.1: An example of a
time-to-failure process, sample
evolution of a renewal process X
with inter-event times 7y, 7o, . . .
and jump times Jy, Jo, . .. .

3.3 Renewal Process

A renewal process is a point process characterized by assuming the successive
inter-event times 7, 7o, ... are independently, identically distributed (i.i.d). Let
Jn =1 + 7+ ... + 7, denote the time up to the nth event. Then, the stochas-
tic process X (t),t > 0, where X (t) = max{n : J, < t}, is called a renewal
process. This stochastic process has the following properties:

@ N ﬁ , ast— oo, almost surely. (3.1)
E[X(1)] 1
— Bl ast — 0o (3.2)
Var [X(t)] Var(m]
p — B ast — oo (3.3)

where I/ and Var are the expectation and the variance of the corresponding ran-
dom variable (Taylor and Karlin 1998). These properties state that in order to
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characterize the renewal process, it is sufficient to estimate the distribution of the
corresponding inter-event times 7y, To, . . . , Tp.

If the 71, 72, ... are not identically distributed; i.e. they follow different distribu-
tions, then the process is not renewal anymore but it can be divided into several
subprocesses which are renewal. In such cases, a change-point process will esti-
mate the change-points corresponding to the different subprocesses.

If the 71, 7»,... are not independently distributed, then the process is a nonsta-
tionary process. In this case, the nonstationary time series can be used in order to
model the process.

3.3.1 Earthquake recurrence as a renewal process

The renewal process assumption is generally used in the case of earthquake oc-
currence rate analysis for strong main shocks (see chapter 2). In this thesis, the
process of earthquake recurrence for large earthquakes (i.e. earthquake with mo-
ment magnitude > 6; cf. chapter 4) is assumed as a renewal process, where the
inter-event times (i.e. the time between two successive earthquakes) are statisti-
cally considered as independent and identically distributed (i.i.d).

3.4 Statistical distribution of earthquake inter-event
times

In the case of earthquake inter-event times, the exponential distribution has been
applied as the classical time-independent model. The time-dependent distribu-
tions, generally applied to earthquake inter-event time modeling, are containing:
Weibull (Nishenko 1985), Gamma (Corral 2004a,b; Hainzl et al. 2006), Lognor-
mal (Nishenko & Buland 1987; Michael & Jones 1998) and inverse Gaussian,
known as Brownian Passage Time (Ellsworth et al. 1999). These distributions
will form the base of earthquake inter-event time modeling in this thesis.

3.4.1 Weibull distribution

The Weibull distribution is a continuous, skewed to the right, probability distri-
bution. It is named after Waloddi Weibull who described it in detail in 1951,
although it was first identified by Frechet (1927) and first applied by Rosin &
Rammler (1933) to describe the size distribution of particles. The Weibull distri-
bution is often used in the field of life data analysis due to its flexibility; i.e., it can
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mimic the behavior of other statistical distributions such as normal and exponen-
tial.
The general form of the pdf of the Weibull distribution is:

- Q) [ Q] e e

The parameters 5 > 0 and n > 0 are the shape and the scale parameters re-
spectively. Suppose T is a Weibull distributed random variable, then its mean
(expected value) and variance are defined as:

E(T) = U (1 + %) (3.5)
Var(T) = 12 {F (1 ¥ %) _r? <1 n %)} (3.6)
where
I(y) = /OO 1Y~ texp(—z)dx (3.7)
0

is the Gamma function.
The cdf, F(.), and the hazard function, h(.), corresponding to the Weibull distri-

bution, are:
/ 8
F(t) = O/f(x) dr =1 —exp [— (%) ] , (3.8)

e O [C AE.

For a special case, when = 1, Weibull distribution turns into an exponential
distribution with A\ = 1/7. As a matter of fact, the Weibull distribution can be
characterized as a generalization of the exponential distribution. The hazard func-
tion, h(.), of the Weibull distribution is

e decreasing, for 5 < 1,
e increasing, for 5 > 1,
e constant (exponential distribution), for 5 = 1.

The Weibull distribution can be applied for a wide range of models, since the
corresponding hazard function is flexible and can cover a wide range of hazard
function shapes (see figure 3.2).
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3.4.2 Gamma distribution

The Gamma distribution is a two-parameter, skewed to the right, continuous prob-
ability distribution, with scale parameter f > 0 and shape parameter £ > 0. If £ is
an integer then the distribution represents the sum of £ independent exponentially
distributed random variables, each of which has a mean of § (which is equivalent
to a rate parameter of 6~1).

The Gamma distribution is frequently used as a probability model for waiting
times; for instance, in life testing, the waiting time until death is a random vari-
able that is frequently modeled with a Gamma distribution. Figure 3.3 shows
different shapes of the Gamma distribution.
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The Gamma distribution has the pdf
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The corresponding cdf and hazard function are:

(k,t/6)

) = T (3.13)
_ e (=f) e ()
A (N R0 RN () 19
where
t
v(k,t) = /xklexp(—x)d:c and (3.15)
0
L(k,t) = /Oo:z:k_lexp(—x)dm (3.16)
t

are the lower incomplete Gamma and upper incomplete Gamma functions, respec-
tively.

In a special case, with £ = 1, while ['(k = 1) = 1, the Gamma distribution turns
into an exponential distribution with A = 1/6.

3.4.3 Lognormal distribution

The Lognormal distribution is a single-tailed, skewed to the right probability dis-
tribution of any random variable whose logarithm is normally distributed (figure
3.4). Given X as a random variable with a normal distribution, random variable
Y = exp(X) will be Lognormally distributed; likewise, if Y is Lognormally dis-
tributed, then log(Y") will be normally distributed'.

The Lognormal distribution has been generally used to model the lives of units
whose failure modes are of a fatigue-stress nature. Since this includes most, if not
all, mechanical systems, the Lognormal distribution has widespread application.
Consequently, the Lognormal distribution is a good companion to the Weibull dis-
tribution when modeling these types of units. The Lognormal distribution has the
pdf:

B 1 (Int — p)®

where the parameters 1 and ¢ > (0 are the mean and standard deviation of the
logarithm of the corresponding random variable?. The degree of skewness of the

I'The base of the logarithmic function does not matter: if log, (Y") is normally distributed, then
so is log; (Y"), for any two positive numbers a, b # 1.
ZParameter 1 can be considered as scale parameter, parameter o as shape parameter.
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Lognormal distribution increases as o increases for a fixed , or as y increases for
a fixed o (see figure 3.4).
The mean and the variance of a Lognormally distributed random variable " are:

(o
[exp(0?) — 1] exp (2 + 0?) .
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The cdf and hazard function corresponding to the Lognormal distribution are:

erf <m9—2“) — P <1n(t)T_“> , (3.20)

11
2°
h(t) = ( A > (3.21)

F(t) = 5+

where

erf(t \/_/ e d (3.22)

is the error function, and the functions ¢(.) and ®(.) are the pdf and the cdf of the
standard normal distribution (a normal distribution with mean = 0 and variance =

D).

3.4.4 Inverse Gaussian distribution

In probability theory, the inverse Gaussian distribution (also known as the Wald
distribution) is a two-parameter family of continuous, skewed to the right proba-
bility distributions in the range (0,00).

In physics, the inverse Gaussian distribution is known as the Brownian Passage
Time (BPT) distribution. This term has its grounds in a relationship with the
Brownian motion as a stochastic process. Suppose the stochastic process X; given
by

Xo=0 , Xy=vt+oW, (3.23)

where W, is a standard Brownian motion and v > 0. This process is a Brownian
motion with drift v. Then the first passage time for a fixed level @ > 0 by X is
distributed according to an inverse Gaussian as:

a o?
1nf{t>0|Xt—oz}~IG< 2). (3.24)

vio
Matthews et al. (2002) discusses a probability model for rupture times on a recur-
rent earthquake source. By adding Brownian perturbations to steady tectonic load-
ing, a stochastic load-state process is proposed. This load-state process is a Brow-
nian relaxation oscillator. Then, the intervals between events (inter-event times)
have a BPT distribution that may serve as a temporal model for time-dependent,
long-term earthquake forecasting. This distribution has the following noteworthy
properties:
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The pdf of the BPT distribution can be written as:

A _ 2
f(t) = 573 &XP Al (3.25)

22t
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where the parameters ;4 and \ are the scale and the shape parameters, respectively.
The degree of skewness of the BPT distribution increases as the shape parameter
A increases for a fixed scale parameter p, or as p increases for a fixed A. Figure
3.5 shows different shapes of the BPT distribution.

The mean and the variance of a BPT distributed random variable 7" are:

3

E(x)=pu |, VW(T):“T (3.26)

The cdf corresponding to the BPT distribution can be described as:

P = @(@{%-1}%%1)(%)@(— %EHD,@.W)

where ®(.) is the cdf of the standard normal distribution.

3.4.5 Summary

All the above mentioned distributions; i.e. Weibull, Gamma, Lognormal and BPT,
are from the family of exponential distributions and skewed to the right. They have
been used in different cases of time-to-failure modeling (Hogg & Craig 1978,
Chikara & Folks 1989, Limpert et al. 2001, and Murthy et al. 2004) and will be
the base of the statistical modeling in this thesis.

3.5 Behavior of distributions; multimodality against
unimodality

In several cases of statistical modeling, the data cannot be sufficiently described
by a single unimodal distribution. For example, in the case of clustered data, the
multimodal distributions can generally fit the data better than unimodal distribu-
tions. Therefore, it is important to find out whether the data are multimodally or
unimodally distributed. Figure 3.6 shows the a unimodal and a multimodal pdf.
A multimodal (or mixed) pdf has the following general form

g g
FO)=>"mfit), Y m=1 (3.28)
j=1 j=1

where ¢ is the number of modes (i.e. the number of unimodal pdfs involved in the
multimodal pdf f(.)), f;(.) is the j-th unimodal pdf involved in the multimodal
pdf f(.), and 7; is the percental contribution of the j-th pdf f;(.) to the multimodal
pdf. If g > 1, then f(.) is a multimodal pdf.
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3.5.1 Multimodality test of a population

Efron & Tibshirani (1993) propose a bootstrap method to test the multimodality
of a population. In this method, the histogram of the data is monitored. However,
by just considering the histogram, it will be difficult to confirm if the data are
unimodal or multimodal, because the histogram is not smooth. In order to obtain
a smoother estimate, a Gaussian Kernel estimate has been proposed. Denoting the
observed (calculated) inter-event times by ¢, o, . . . , t,,, a Gaussian Kernel density
can be estimated by

. 1 — —t;
f(t;h)=EZ¢(t ht) (3.29)
=1

where ¢(t) is the standard normal density (1/v/27) exp (—t?/2). The parameter
h is called the band width and determines the amount of smoothing that is applied
to the data. Larger values of h produce a smoother density estimate. One can
think of equation 3.29 as adding up n little Gaussian density curves centered at
each point ¢;, each having standard deviation h. Clearly, any opinion drawn from
the data depends strongly on the chosen value of A. Then, in order to approach
the problem in terms of hypothesis testing, there is a natural way to choose h,
since as h increases, the number of modes in a Gaussian Kernel density estimate
is non-decreasing. Now consider testing

Hy : number of modes = 1 (3.30)
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versus number of modes > 1. Since the number of modes decreases as h increases,
there is a smallest value of A such that f (t; h) has one mode. Call this hy. It seems
reasonable to use f (t; iLl) as the estimated null distribution for the test of Hj. In
a sense, it is the density estimate “’closest” to the data that is consistent with H,.
”Closest” means here that it uses the least amount of smoothing (smallest value
of h) among all estimates with one mode.

There is one small adjustment which has to be made to f (;; izl) Equation 3.29
artificially increases the variance of the estimate (see Efron & Tibshirani, 1993),
so it should be rescaled to have variance equal to the sample variance. Denote the
rescaled estimate by §(.; ).

Now, the test statistic can be selected. A natural choice is le, the smallest band
width producing a density estimate with one mode. A large value of h, indicates
that a large amount of smoothing must be applied to create an estimate with one
mode and is therefore evidence against H,.

Putting all of this together, the bootstrap hypothesis test for H, (number of modes
= 1) is based on the achieved significance level

ASLpgor = Proby i, {41 > I | (3.31)
where 7, is fixed at its observed value, the bootstrap sample ¢1, 25, . . . , ¢;, is drawn
from §(.; hy) and hj is the smallest value of i producing a density estimate with
one mode from the bootstrap data ¢7, 5, ..., ;.

The yj,v5, ...,y are sampled from a smooth estimate of the data, which is called
smooth bootstrap, by replacement from ¢y, %9, ...,%,. Then, t,¢5, ... t; are set
as:

tr =g+ (1+h2/6>) 2y — 7 + he); i=1,2,...,n (3.32)
where 7* is the mean of y;,v5, ..., y", 62 is the plug estimate of variance of the

data and ¢; are standard normal random variables. The factor (1 + h2/62)~1/2

scales the estimate so that its variance is approximately &2.
A summary of the steps of the algorithm, applied in this thesis, can be described
as following:

1. Draw B bootstrap samples of size n from §(.; hy).

2. For each bootstrap sample compute fq the smallest band width that pro-
duces a density estimate with one mode. Denote the B values of hj by

3. Approximate ASLy ., by
ASLpgor = # {hi(6) = I } /B.
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3.6 Modified Weighted Maximum Likelihood Esti-
mation method

The maximum likelihood estimation (MLE) method is a commonly used statis-
tical method, applied to fit a statistical model to desired data, and provides es-
timates for the model’s parameters. The MLE was recommended, analyzed and
vastly popularized by Fisher between 1912 and 1922, although it had been used
earlier by Gauss, Laplace, Thiele, and F. Y. Edgeworth (Aldrich 1997).

The method of MLE can be applied to many well-known estimation problems in
statistics. For example, suppose the heights of Iranians are studied. A sample
of some number of Iranians, but not the entire population, is available, and their
heights are recorded. Further, the heights are assumed to be normally distributed
with some unknown mean and variance. The sample mean is then the maximum
likelihood estimator of the population mean, and the sample variance is a close
approximation to the maximum likelihood estimator of the population variance.
For a fixed set of data and an underlying probability model, the MLE picks the
values of the model parameters that make the data “more likely” than any other
values of the parameters would make them. The MLE gives a unique and easy
estimation in the case of the normal distribution and many other problems. If a
uniform prior distribution is assumed for the parameters, the maximum likelihood
estimate coincides with the most probable values thereof.

3.6.1 The general approach

Suppose 7' is a continuous random variable with pdf fg(¢), where © = {6,,0,,...,0;}
is the set of £ unknown parameters which need to be estimated. Suppose a set of

N independent observations, 1, ts, . ..,ty, of the random variable 7. Then, the
likelihood function is given by the following product:

N

Lty ta,...,tn | ©) =[] fo(t). (3.33)

=1

The logarithmic likelihood function is given by:

N
Aty ta, . tn [ ©) =In[L (t1, ta, ..., tn [ ©)] = Zln [fo(ts)].  (3.34)
i1

The maximum likelihood estimators of 61, s, . . . , 6 are obtained by maximizing
LorA.
By maximizing A, which is much easier to work with than L, the ML-estimators
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of 01,05, ..., 0 are the simultaneous solutions of k equations such that:

()
a(0;)

=0, j=1,2,... k. (3.35)

3.6.2 Case of observed censored times

In the case of time-to-failure modeling, the time since the last event is called the
censored time. In order to use this information for the MLE method, the following
modified MLE approach is proposed in this thesis:

H fo(t;) * Sel(t,) (3.36)

= InL =23 In[fo(t;)] +n[Se(t) (3.37)

where t. is the censored time, and Sg(.) is the survivor function or reliability
function of the random variable 7" with S(t) = 1 — F(t) = 1 — ffoo flz)dx =
[ f(x) dz, where F(.) is the corresponding cdf.

3.6.3 Weighted MLE with censored times

In some cases of time-to-failure modeling, for example in cases of data with dif-
ferent levels of uncertainties, the roles of different observed inter-event times in
the likelihood function are not equivalent. In these cases, the ML-function can be
discriminated using a method of weighting.

In this thesis, where historical earthquake data are used, the use of weights in the
MLE is forced for two reasons. The first is the intrinsic uncertainty of historical
earthquake data. Uncertainties in the earthquake parameters, especially for the
older ones, are neither recognizable, nor calculable. The second reason is the fact
that earthquake rates probably change with time. Therefore, the estimation pro-
cess requires higher weights for earthquakes occurring in the recent past.
Applying weights to the relations of the MLE, they change to

Hf@ Wik S (te)" (3.38)

N
A = InL=>Y win[fo(t)] + w.In[Se(t)] (3.39)
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where W = {wy,wy, ..., w,} is the set of corresponding weights assigned to the
inter-event times ¢, to, . . ., t,, and w, is the weight assigned to the censored time
t,.

In this thesis, the following function is suggested to calculate the weights,

w(z) =exp(—|laln@)|’)+ K, 0<zx<1 (3.40)

where > 0, p > 0 and K > 0 are the scale, shape and location parameters
respectively. The corresponding weights w; can be defined as:
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where ot; is the occurrence time of the i-th event. The reason for considering such
a function is that, the function in equation 3.40 covers different possible shapes of
weight functions and is not decreasing with time (figure 3.7). The parameters of
the weight function in equation 3.40 can be imported in the model as known pa-
rameters, or estimated via the MLE process like other parameters in the likelihood
function.

3.6.4 Method of solving the MLE problem
Case of unimodality

Attaching the censored time to the likelihood function makes the maximizing
problem of the MLE method more complex. In this thesis, the numerical method
of Nonlinear Conjugate Gradients with Newton-Raphson and Fletcher-Reeves
(Shewchuk 1994) is applied in order to solve the problem of maximization of the
likelihood function. Given a function f, a starting value x, a maximum number of
conjugate gradients iterations ¢,,,,, a conjugate gradients error tolerance ec¢ < 1,
a maximum number of Newton-Raphson iterations j,,,., and a Newton-Raphson
error tolerance € yi < 1; the algorithm is defined as:

Algorithm 3.1: Nonlinear conjugate gradients with Newton-Raphson and

‘ Fletcher-Reeves steps.
1<=0

k<=0

r<—f'(x)

d<=r

Onew & rir

50 <~ 5new

while i < ipaz and Gpe > €500 do
i<=0
6d = dtd

do
[/ @)]"d
R e

r<x+ad
j<=j+1
while j < jmas and a2y > e?\,R
r < —f(z)
6old ~ 6new
Spew <=11T

B
d<=r+p3d
k<k+1
Ifk=norrTd<0
d<r
k<0

1<=i+1
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where 7" means “transpose”. This algorithm terminates when the maximum num-
ber of iterations 4,,,, has been exceeded, or when Hr(i)H < €ca HT’(O)H. Each
Newton-Raphson iteration adds ad to z; the iterations are terminated when each
update ad falls below a given tolerance (||ad|| < eyg), or when the number of
sub-iterations exceeds j.,q... A fast inexact line search can be accomplished by
using a small j,,,, and/or by approximating the Hessian f”(z) with its diago-
nal. In Appendix A the log-likelihood functions of five distributions and their
first and second derivatives are presented in order to determine f’(x) and the Hes-
sian f”(x). Nonlinear conjugate gradients method is restarted (by setting d < )
whenever a search direction is computed that is not a descent direction. It is also
restarted once every n iterations, to improve convergence for small n.

The calculation of & may result in a divide-by-zero error. This may occur because
the starting point z g is not sufficiently close to the desired optimal point, or be-
cause f is not twice continuously differentiable. In the former case, the solution
is to choose a better starting point or a more sophisticated line search.

Case of multimodality

The likelihood function in case of multimodal distributions is more complex. Si-
multaneous estimates of the distribution parameters 61, ..., 6, in equation 3.34,
and the proportion parameters 7, . .., 4 in equation 3.28, is too complex, if pos-
sible at all. Therefore, a method of Expectation Maximization (EM) is applied
(Dempster et al. 1977, McLachlan & Krishnan 1996, Cherkassky & Mulier 1998,
McLachlan & Peel 2000, Tsai et al. 2001, Dellaert 2002, Borman 2004, Molen-
berghs & Verbeke 2005).

EM is an effective iterative procedure to compute the ML-estimate in the presence
of missing or hidden data as well as to estimate some unknown parameters for a
given dataset. EM algorithms are used in statistics for finding maximum likeli-
hood estimates of parameters in probabilistic models, where the model depends
on unobserved latent variables. EM is an iterative method, which alternates be-
tween performing an expectation step (E-step), which computes an expectation
of the log-likelihood with respect to the current estimate of the distribution for
the latent variables, and a maximization step (M-step), which computes the pa-
rameters which maximize the expected log-likelihood found on the E-step. These
parameters are then used to determine the distribution of the latent variables in the
next E-step. In the E-step, the missing data, or multimodality parameters, are esti-
mated given the observed data and current estimate of the model parameters. This
is achieved using a conditional expectation. In the M-step, the likelihood function
is maximized under the assumption that the missing data, or the multimodality
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parameters, are known. Suppose a mixed pdf as:

g
flt|v,2) = Zw]f]t@ d om=1 (3.42)
j=1
g
where ©; are the sets of parameters of f;(.;0,),7 = 1,....,9, 2 = |J O; is the
j=1
set of distribution parameters, and ¢ = (7, ..., 7, 1) is corresponding to g — 1

mixing proportions. The corresponding log-likelihood function can be written as:

A<t17"‘»tN|@7E) = Zln t |w7‘—‘>]

- Zln Zﬂjfj(tis(%) : (3.43)
i=1 j=1

Then the EM algorithm can be defined as follows:
Algorithm 3.2: Expectation Maximization (EM) algorithm.

1. Observed random sample obtained from mixture density (equation 3.42)

T T\T
y = (uj,...,uy)
u; = (tlaf(tl |¢7~ = lvzﬂ-]f] tl,(_)

2. Introduce z = (27,...,2%)7 as the unobservable or missing data, where z; are

g-dimensional vectors of zero-one indicator variables.
3. Define z;; = (2);, 2;; is equal to one, if u; arose from j-th component.

4. E-step. Calculate the current conditional expectation of Z;;, given the observed

data y
LB Wj(-k)fj(wi;é)j) B w;k)fj(wi;@j)
(A (k) =y T g
f(w; [ Z) S~ 209 (15 0,)
5. M-step
N
>

2
(k+1) _ =1

T = —
J n

, j=1,...,9.

The convergence of the EM algorithm is discussed in detail by McLachlan & Kr-
ishnan (1996).
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Considering censored time (equations 3.36 and 3.37), as well as the weights (equa-
tions 3.38 and 3.39) in the MLE process, the likelihood function and the log-
likelihood function in equation 3.43 will change to

N
L o= J[ft1e,5)" =St |, 2)", (3.44)
=1

N g
A = Zwiln Zﬂ'jfj(ti;@j) + w,.1n Z?T] (t;0;)] . (3.45)
i= =1

Then the EM algorithm will change to algorithm 3.3.
Algorithm 3.3: EM algorithm for weighted MLE with censored time.
1. Observed random sample obtained from mixture density (equation 3.42)

y = (u{,...,u%,ug)T

u; = (tlaf(t |¢,~)):( f](tzag )) 5 Z:]-vaN

'M“

Il
—

J

g
Ue = (te, S(te |, 5)) = (ter y_ 755;(te; )
j=1
2. Introduce z = (27,...,2% 27T as the unobservable or missing data, where
21y 2g, Zc ATE g—dlmens1onal vectors of zero-one indicator variables.

3. Define z;; = (z;);, zi; is equal to one, if u; arose from j-th component, and
Zej = (2¢) 4, Zcj 18 equal to one, if u, arose from j-th component.

4. E-step. Calculate the current conditional expectation of Z;; and Z.; given the
observed data y

E(Zigly, o™, 5) = P{Z;; =1y, v®,2) =2 ie{l,...,N.c}

k k
O M i 0;) 7 fi(ui;0)) .
7,] - f(U|17ZJ(k) :) — g (k) 1€ {1,,N}
' " om0 filui; ©1)
=1
k k
RO W](' 'S5 (ue: ©;) B W]( 1S, (ue; ©;)
T (k) =)~ 9
S(uc | ’l/J ) ) Z ﬂ_l(k)Sl(uC;el)
5. M-step



3.7 Selection of the best model

In this thesis, two methods have been applied in order to choose the best distribu-
tion. These methods include a method of information criterion and a goodness-

of-fit test.

3.7.1 Methods of information criterion

These methods are based on the comparison among recalculated (or adjusted)
measures of the maximum log-likelihoods calculated using a MLE method. The
most commonly applied information criteria in statistical analyses are the Akaike
Information Criterion (AIC, Akaike 1974) and the Bayesian Information Crite-
rion (BIC, Volinsky & Raftery 1999).

The AIC chooses the best model based on the minimum value of

AIC = 2k — 21In(L) = 2k — 2A (3.46)

where k£ is the number of parameters and L and A are the maximum likelihood
and the maximum log-likelihood of ML-estimates with respect to a model (dis-
tribution). Parameter NV (i.e. the number of the observed data) does not play any
role in the AIC.

The BIC chooses the best model based on the minimum value of the equation

BIC = kIn(N) — 2In(L) = kIn(N) — 2A. (3.47)

The BIC criterion results in consistent outcomes (see Csiszar & Shields 1999). In
this thesis the BIC is used.

3.7.2 Methods of goodness-of-fit test

In order to find out, whether the models chosen by the information criteria can
sufficiently explain the data, the goodness-of-fit tests will be applied. There are
different goodness-of-fit methods divided into two general categories.

The first category includes the tests which concentrate on the average of the data.
An example from this category is the Anderson-Darling test (AD-test, Anderson
& Darling 1952). The AD-test hypotheses are defined as:

Hy, = The data follow a specified distribution
H, = The data do not follow the specified distribution
The AD-test statistic is defined as:
Ay = -N-S (3.48)
M 2i—1
S = ; N I (F (1) +1n (1= Fltyi1-:))] (3.49)
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where F' is the cdf corresponding to the specified distribution, ¢; are the ordered
data, and N is the size of the sample.

The second category includes the tests which concentrate on the details of the data.
The Kolmogorov-Smirnov test (KS-test, Eadie et al. 1971) is in this category. The
test hypotheses of the KS-test are the same as for the AD-test. The KS-test statistic
is defined as:

Dy = sup|Fx(t) = F (1) (3.50)

where F),(.) is the empirical cdf for NV i.i.d observations t;, defined as:

N
1
Fy(t) = NZIW' (3.51)
=1

I, < is the indicator function®. F(.) is the theoretical cdf of the distribution being
tested, which must be a continuous distribution (i.e., no discrete distributions such
as binomial or Poisson).

By the Glivenko-Cantelli theorem (Shorak & Wellner 1986), if the sample comes
from the distribution F'(.), then Dy converges to zero almost surely. If F'(.) is
continuous, then, under the null hypothesis, v/ N Dy converges to the Kolmogorov
distribution. The cdf of the Kolmogorov distribution is given as (Blackman 1956)

> . b V2T )22 /82
Pr(T <t)=1-2) (-1) e = ver e N )
=1

t “
=1

In this thesis, a modified method of the KS-test has been developed in order to test
the goodness-of-fit of different candidate distributions. According to the weighted
MLE with censored time, the KS-test has been adjusted such that the empirical
cdf in equation 3.51 will change to

>, wily< >, wit ) wily
{isti<tc} {itti<tc} {isti>tc}
Fy(t) = —F— i<t + N Iise.  (3.53)
> Wi+ we > Wi

=1 i=1

where t;, t., w; and w, are defined as above.

3.8 Confidence intervals of estimated parameters

A classic method to calculate the confidence intervals of model parameters is to
use the Fisher information matrix, i.e. the Hessian matrix of the log-likelihood

3It,i§t =1 lftl S t, and Itigt = Olftz >t
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function. However, the confidence intervals calculated by the Fisher information
matrix are not always reliable, especially in cases in which the proportion of the
number of observations (data size) divided by the number of parameters is not
large enough. In such cases, nonparametric methods, like Bootstrap confidence
intervals, have been suggested.

In this thesis, the Bootstrap-t method (Efron, 1982) is used in order to calculate
the confidence intervals. This method is based on a given studentized ’pivot”
R, = (én —0)/6,, where én is an estimator of #; i.e. the designated parameter,
and &721 is a variance estimator for én If the distribution G,, of &, is unknown,
then it can be estimated by the bootstrap estimator GG gpoor defined by

Gpoor(z) = PAR;, <z} (3.54)

where R} = (é; — én) /o7, and éj; and ¢ are bootstrap analogs of 0, and 6,,
respectively. The resulting confidence interval for 6 is

C, = [én — 5,G5hor (1 . %) 0, — 5,GEh o (%)} , (3.55)

which has been called the bootstrap-t confidence interval for § with level 1 — «,
where P{0 € C,} >1—-a,0<a< 1.

3.9 Earthquake inter-event time modeling approach

Considering the methods mentioned in this chapter, the following approach will
be adapted for inter-event time modeling:

1. Multimodality test of inter-event times

2. Parameter estimation
For five different distributions: Exponential (Poisson process), Weibull,
BPT, Gamma and Lognormal, as well as for bimodal mixtures of these dis-
tributions in the case of multimodal inter-event time distributions

e Using the modified MLE method for the unimodal cases

e Using the Expectation Maximization and the modified MLE method
for the multimodal cases

3. The choice of the ’best” model using

e Bayesian Information Criterion

e Kolmogorov-Smirnov goodness-of-fit tests

4. Calculation of the confidence intervals

53



Chapter 4

Seismicity in the Dead Sea Fault
Z.one

4.1 Dead Sea Fault Zone and seismicity dataset

The Dead Sea Fault Zone (DSFZ, figure 4.1) is a major left-lateral strike-slip fault
zone (e.g. Garfunkel et al. 1981) that accommodates the relative motion between
Africa and Arabia (Tapponnier 1977, Courtillot et al. 1987, Le Pichon & Gaulier
1988, Salamon 1996), connecting a region of extension in the Red Sea with the
Taurus collision zone in the north (Klinger et al. 2000). Large earthquakes, with
M ~ 6 — 7.3, are known to have occurred repeatedly along the DSFZ throughout
the historical period (Griinthal & Wahlstrom 2009; Griinthal et al. 2009c).
According to the distribution of the earthquakes and associated surface displace-
ments along the DSFZ (Khair et al. 1997; Janssen et al. 2007), the study area
along the DSFZ has been divided into three subareas, a southern, a central and
a northern area (figure 4.2). About 105 km of left lateral displacement has been
observed along the southern and central part of the DSFZ with 29.5° < latitude
< 33.2°. This part of the fault was additionally subdivided into the southern,
with 29.5° < latitude < 31°, and the central, with 31° < latitude < 33.2°,
subzones considering the seismicity distribution. About 60 km of displacement
have been estimated for the northern part of the DSFZ (Khair et al. 1997). This
part is considered as the northern subzone within 33.2° < latitude < 37°. The
time-dependent approach has not been applied for the southern part of the DSFZ,
because only two main shocks with M,, > 6 have occurred in this area since 300
AD, which are not sufficient for a rational statistical analysis.

The DSFZ earthquake catalog is obtained from available catalogs and special stud-
ies for the Middle East area, according to the procedure described by Griinthal et
al. (2009a), Griinthal & Wahlstrom (2009) and Griinthal et al. (2009¢). The
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Figure 4.1: The East-
ern Mediterranean area
including the Dead Sea
fault zone (modified af-
ter Garfunkel 1981). Ar-
rows show relative mo-
tions across faults. AF
= Arava Fault, AV =
Arava Valley, CF =
Carmel Fault, DST =
Dead Sea Transform,
EAFZ = East Anatolian
Fault, ESM = Eratos-
thenes Sea Mount, GAF
= Gulf of Agaba Fault,
GF = Gharb Fault, GS
= Gulf of Sinai, JV =
Jordan Valley, YF = Ya-
muna Fault.

dataset used in this thesis is excerpt from the EMEC catalog (Euro-Mediterranean
Earthquake Catalog; Griinthal & Wahlstrom 2009) which is under construction at
GFZ in a similar way to and as an extension of CENEC (Griinthal et al. 2009a).
All known earthquakes with A, > 6 along the DSFZ, defined with an average
width of about 40 km (figures 4.2 and 4.3), are obtained from the EMEC cata-
log and are here called the "DSFZ catalog”. This dataset is declustered, i.e. the
fore- and aftershocks are removed from the dataset, using a method from Griinthal
(1985) described in details by Burkhard & Griinthal (2009) and Griinthal et al.
(2009b). The completeness period of this dataset has been proved using a new
method to start at about 300 AD. This new completeness check, as well as the
method of declustering, will be described in the following sections.
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Figure 4.2: Seismicity
in the DSFZ, including
the subdivision into a
southern, a central and
a northern zone. The
sources of the seismic-
ity data have been de-
scribed in section 4.1.
Red curves show the
border of each zone.
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4.1.1 Declustering fore- and aftershocks

The declustering is done to identify and to separate the fore- and aftershocks from
the main shocks in a catalog. Several approaches have been applied in order to
decluster earthquake catalogs (Utsu 1969; Gardner and Knopoff, 1974; Griinthal,
1985; Reasenberg 1985; Youngs et al., 1987). Zhuang et al. (2002) summa-
rize that most of these methods remove the earthquakes in a space-time window
around a large event (the main shock); the differences among the methods relate
to the choice of window sizes and some other details (e.g., Utsu 1969; Gardner
and Knopoff 1974; Griinthal, 1985; Kellis-Borok and Kossobokov 1986). In gen-
eral, larger magnitudes of the main shocks result in larger space-time windows.
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year > 300

- IM,>6.0

Figure 4.3: Surface
rupture traces of the
M, > 6.0 earthquakes
in the DSFZ since 300
AD. Red lines show
the fault segments
(data from Heidbach
& Ben-Avraham 2007,
Meghraoui et al. 2003).

Zhuang et al. (2002) explain that an alternative to the window-based declustering
methods is the link method, based on a space-time distance between events (e.g.,
Reasenberg 1985; Frohlich and Davis 1990; Davis and Frohlich 1991).

In reality, these approaches do not produce considerably different results in cases
where the earthquake catalogs (or datasets) include only large events bounded to
a fault zone. The earthquake dataset used in this thesis has been declustered using
an approach by Griinthal (1985) extended to larger magnitudes by Burkhard &
Griinthal (2009)'. Based on this approach, the time windows are calculated for

'Burkhard & Griinthal (2009) describe the advantages of this method and compare it with
several other methods.
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foreshocks as:

_f exp (—4.77+\/0.62+17.32M,,) if M,, < 7.8
ATy (M) = { exp (6.44 + 0.055M,,) otherwise  ’ “.1)
and for aftershocks as:
| exp (—3.95 ++/0.62 + 17.32Mw) if M, < 6.6
ATa(M) = { exp (6.44 4 0.055M,,) otherwise (4.2)
The distance window is calculated as:
dR(M,) = exp (1.77 ++/0.037 + 1.02Mw> . 4.3)

For a given main shock all smaller magnitude events within d R, occurring within
the fore- or aftershock time windows, are considered dependent events and re-
moved. Applying this approach to the dataset marks two foreshocks and no af-
tershocks. Table 4.1 shows these foreshocks, as wells as the corresponding main
shocks.

Table 4.1: Foreshocks and corresponding main shocks along the DSFZ, M,, > 6.

year month day latitude Ilongitude Mw kind of event
362 5 24 31.3 35.6 6.4 foreshock
363 5 19 31.5 35.5 7.2 main shock
1759 10 30 33.1 35.6 6.5 foreshock
1759 11 25 33.7 36.2 7.3 main shock

4.1.2 A new method of earthquake catalog completeness check

The aim of checking the completeness of a catalog is to find out, since what time
all events in a given magnitude class (e.g. M,, > 6) are included in the cata-
log. The commonly used approaches to check the completeness of catalogs are a
method by Stepp (1972), as well as the visual method?. Both methods assume that
the earthquake inter-event times follow a Poisson distribution. This assumption is
not true if the earthquake occurrence rate is time-dependent. Another method of
completeness check, introduced by Rotondi & Garavaglia (2002), has been ap-
plied based on a change point process. This method also assumes that the earth-
quake inter-event times follow a Poisson process and is therefore not suitable for

2The visual method is based on monitoring the trend of the cumulative number of earthquakes
for different magnitude classes. The completeness starts at a point where the trend has a fixed
slope until the end of the catalog.
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cases with time-dependent earthquake occurrence rates. Furthermore, although
this method may statistically seem more reliable, it is neither simple to apply nor
applicable for those cases in which there is no plain change of slope between com-
plete and incomplete datasets.

In this thesis, a new method for investigating data completeness has been de-
veloped and applied to the DSFZ catalog. In this method, a deviation criterion is
considered to compare the compatibility of the earthquake inter-event times in dif-
ferent time spans. The complete data start, where the deviation criterion remains
stable and does not significantly change with time. Since no prior distribution has
been considered for the earthquake inter-event times in this new method, the only
parameter to be monitored is the standard deviation of the earthquake inter-event
times for earthquakes above a magnitude threshold (here M,, > 6). Therefore, it
is also applicable for the case with time-dependent earthquake occurrence rates.
Consider the set of different time spans as:

O ={Tfi=2,....n} (4.4)

where T; =T — {t,_;|j =0,...,n —i} (i =2,...,n), T is the set of all earth-
quake inter-event times and ¢; is the i-th ranked inter-event time based on occur-
rence times. Now define

— 2\ 1/2
SO 5
. el i €l; .
SD(i) NT) =1 , E_N(E)7 i=2,...,n 4.5)

as the unbiased estimation of the standard deviation of the set T}, where N (T;) is
the number of inter-event times in the set 7T;.

In the next step, the difference between two successive standard deviations will be
calculated as

DSD(i) = SD(i + 1) — SD(i), i=2,...,n. (4.6)

Finally, the D.S Ds will be monitored against occurrence times. The completeness
of the catalog can then be defined, when the DS Ds begin to show a uniform trend.
Based on this method, the completeness of the DSFZ catalog has been estimated.
Table 4.2 shows completeness times for different magnitude classes in the DSFZ
catalog. “Completeness time” in table 4.2 represents since what time (year) the
data is complete. It should be mentioned that the “number of events” in this ta-
ble refers to the number of events in the main catalog of the DSFZ. According
to the completeness times and number of earthquakes in each class in table 4.2,
earthquakes with M, > 6 have been considered as large earthquakes in the DSFZ
catalog.
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Table 4.2: Completeness for different magnitude classes in the DSFZ catalog.

magnitude class completeness time number of events in complete part

M, >5.0 1850 26
M, > 5.5 1500 29
M, > 6.0 300 78
M, > 6.5 150 49
M, >17.0 0 25

4.1.3 Final dataset

According to the aim of this thesis, the long-term behavior of the seismicity of
large earthquakes will be analyzed in order to investigate whether this behavior is
time-dependent or not. Therefore, the dataset considered in this thesis should be
as long as possible and should contain sufficient number of events. This dataset
can be achieved considering the dataset of earthquakes with M,, > 6 which can
be considered complete since 300 AD. The final dataset of this thesis includes 50
earthquakes with M,, > 6 (table 4.3) since 300 AD, where the northern zone and
the central zone contain 31 and 17 earthquakes, respectively (tables 4.4-4.5). The
dataset is declustered. The southern zone contains only two earthquakes, which
are not enough for a rational statistical analysis. Therefore, the statistical approach
has been applied to the northern and the central subzones.

The first column in tables 4.3-4.5, “year”, shows the occurrence year of earth-
quakes in the dataset. The second and third columns, “latitude” and longitude”,
present the coordinates of the earthquake epicenter. The fourth column, ”M,,”,
presents the moment magnitude of the corresponding earthquake. The moment
magnitude (denoted as M,,), defined by Hanks and Kanamori (1979), is based
on the seismic moment of the earthquake, which is equal to the rigidity of the
Earth multiplied by the average co-seismic slip on the fault and the size of the
rupture area®. M, is the preferred measure of earthquake sizes in the seismologi-
cal community concerning to PSHA. It is a physically based measure and is used
in most modern ground motion prediction equations. Consequently, the catalog
of the DSFZ is prepared, following the concept of harmonized M, (Griinthal &
Wahlstrom, 2003; Griinthal et al., 2009a).

The fifth column, “inter-event time”, represents the time difference between every
two successive earthquakes in the dataset. The sixth column, “rupture length”,
gives the estimated subsurface rupture length of earthquakes in the dataset, calcu-

3»Glossary of Terms on Earthquake Maps”. USGS. http:// earthquake.usgs.gov/ eqcenter/ glos-
sary.php . Retrieved 2009-03-21.
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Table 4.3: Earthquake dataset of the DSFZ with M, > 6.

year latitude longitude Mw inter-event surface rupture
time (yr) length (km)

341 36.2 36.1 6.1 - 15.2
363 31.5 355 7.2 22.4 75.1
457 36.1 36.1 6.3 94.3 214
494 35.8 36.3 6.5 36.3 26.9
500 36.2 36.1 7.0 6.0 59.7
526 36.2 36.1 6.7 26.4 37.8
528 36.2 36.1 6.8 2.5 42.4
551 33.9 35.9 7.1 22.6 67.0
565 36.0 36.2 6.1 13.5 15.2
588 36.2 36.2 6.5 23.8 29.3
634 32.0 35.5 6.7 45.2 40.0
658 325 355 6.4 24.5 24.0
713 36.0 36.0 6.7 54.8 37.8
749 322 35.5 7.2 35.8 75.1
756 32.0 35.5 6.1 7.1 15.6
835 36.0 36.0 6.0 78.8 13.5
8477 34.4 36.3 7.3 12.9 84.1
854 325 353 6.5 6.1 123.7
860 35.7 36.4 7.2 6.0 47.5
972 36.1 36.1 6.0 112.0 13.5
972 31.0 35.5 6.5 0.0 26.9
1033 325 35.5 6.5 61.9 26.9
1047 31.0 355 6.5 13.1 26.9
1060  32.2 35.5 6.1 13.0 15.6
1063 344 36.3 6.8 3.6 42.4
1068  29.6 35.0 7.0 4.6 59.7
1068  32.6 35.3 7.0 0.2 59.7
1091  36.1 36.1 6.5 23.3 29.3
1150 318 35.5 6.5 583 29.3
1157 353 36.4 7.0 7.6 59.7
1170  34.7 36.4 7.1 12.9 67.0
1202 339 35.9 7.0 31.9 59.7
1212 30.0 35.0 6.9 9.9 47.5
1259 325 355 6.5 46.9 26.9
1269  37.0 36.6 7.0 10.1 59.7
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Table 4.3: Continued.

year latitude longitude Mw inter-event rupture length

time (yr) (km)
1287  33.0 35.5 6.5 18.0 26.9
1404  35.7 36.2 7.2 116.9 75.1
1407  35.7 36.3 6.9 3.2 47.5
1408  35.8 36.1 7.2 1.7 75.1
1458  31.0 35.5 6.9 49.9 53.3
1656 349 36.2 6.7 197.2 37.8
1726  36.3 36.6 6.1 70.2 17.0
1738  36.7 36.5 6.2 12.4 19.1
1759  33.7 36.2 7.3 21.2 84.1
1796  35.3 36.2 6.7 36.4 37.8
1802  34.0 36.2 6.1 5.7 15.2
1834  31.3 35.6 6.1 324 17.0
1837 333 35.5 6.9 2.6 47.5
1872 364 36.5 6.9 353 47.5
1927  32.0 354 6.1 55.3 15.2

lated through
log(RLD) = a + bM,, 4.7

where RLD is the subsurface rupture length (km), a = —2.57 and b = 0.62 are
parameters, and M, is the moment magnitude (Wells & Coppersmith 1994).

4.1.4 Some characteristics of the dataset

A simple test for spatial clustering of earthquakes is to plot epicenter latitudes
against occurrence times (figures 4.4a & 4.4b), which shows no significant regu-
larity for the dataset at hand. A very simple correlation test, i.e. a linear regres-
sion test, also indicates no significant correlation between earthquake locations
(i.e. latitudes) and earthquake occurrence times in the entire DSFZ, or in the cen-
tral and northern parts of the DSFZ separately. The mean value of the earthquake
inter-event times and their standard deviation are shown in table 4.6 for different
parts of the DSFZ. According to table 4.6, the ratio of the standard deviation to
the mean value for each region is greater than one. This topic will be discussed in
the next section in this chapter.
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Table 4.4: Earthquake dataset of the northern part of the DSFZ with M, > 6.

year latitude longitude Mw inter-event surface rupture
time (yr) length (km)

341 36.2 36.1 6.1 - 15.2
457 36.1 36.1 6.3 116.7 214
494 35.8 36.3 6.5 36.3 26.9
500 36.2 36.1 7.0 6.0 59.7
526 36.2 36.1 6.7 26.4 37.8
528 36.2 36.1 6.8 2.5 42.4
551 33.9 35.9 7.1 22.6 67.0
565 36.0 36.2 6.1 13.5 15.2
588 36.2 36.2 6.5 23.8 29.3
713 36.0 36.0 6.7 124.4 37.8
835 36.0 36.0 6.0 121.8 13.5
847 344 36.3 7.3 12.9 84.1
860 35.7 36.4 7.2 12.1 47.5
972 36.1 36.1 6.0 112.0 13.5
1063 344 36.3 6.8 91.6 42.4
1091  36.1 36.1 6.5 28.1 29.3
1157 353 36.4 7.0 65.9 59.7
1170 34.7 36.4 7.1 12.9 67.0
1202 339 35.9 7.0 31.9 59.7
1269  37.0 36.6 7.0 66.9 59.7
1404 35.7 36.2 7.2 134.8 75.1
1407  35.7 36.3 6.9 3.2 47.5
1408  35.8 36.1 7.2 1.7 75.1
1656 349 36.2 6.7 247.1 37.8
1726  36.3 36.6 6.1 70.2 17.0
1738  36.7 36.5 6.2 12.4 19.1
1759  33.7 36.2 7.3 21.2 84.1
1796 353 36.2 6.7 36.4 37.8
1802  34.0 36.2 6.1 5.7 15.2
1837 333 35.5 6.9 35.0 47.5
1872 364 36.5 6.9 353 47.5
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Table 4.5: Earthquake dataset of the central part of the DSFZ with M,, > 6.

year latitude longitude Mw inter-event surface rupture
time (yr) length (km)

363 31.5 355 7.2 - 75.1
634 32.0 355 6.7 270.6 40.0
658 325 355 6.4 24.5 24.0
749 32.2 35.5 7.2 90.6 75.1
756 32.0 35.5 6.1 7.1 15.6
854 325 353 6.5 97.8 123.7
972 31.0 355 6.5 118.0 26.9
1033 325 355 6.5 61.9 26.9
1047  31.0 35.5 6.5 13.1 26.9
1060  32.2 35.5 6.1 13.0 15.6
1068  32.6 353 7.0 8.4 59.7
1150 318 35.5 6.5 81.6 29.3
1259 325 355 6.5 109.2 26.9
1287  33.0 35.5 6.5 28.0 26.9
1458  31.0 35.5 6.9 171.6 53.3
1834 313 35.6 6.1 375.5 17.0
1927  32.0 354 6.1 93.1 15.2

4.2 Temporal cluster behavior in the DSFZ

The aperiodicities* of earthquake inter-event times in the DSFZ and its corre-
sponding subzones; i.e. the northern and the central part, are larger than one. This
indicates a clustering behavior of the earthquake occurrence rate of main shocks
in the DSFZ> (see Mucciarelli 2007). The clustering behavior indicates that the
earthquake occurrence may change in time.

Another indication to a clustering behavior appears when considering the Benioff
curve. The Benioff curve shows how the cumulative seismic moment release, cu-
mulative M, increases with time. Following Hanks and Kanamori (1979), the
seismic moment release due to an earthquake can be calculated, as:

3(Myw+6.033)
2

My =10 (4.8)

4The aperiodicity is a parameter, which represents the ratio of the standard deviation to the
mean value of a given dataset.

SThis type of clustering should not be confused with the clustering in terms of main shocks,
foreshocks and aftershocks. Neglecting fore- and aftershocks, this type of clustering is due to only
main shocks. One can consider it as long-term clustering.
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Table 4.6: Mean value and standard deviation of inter-event times in the DSFZ.

region mean value of standard deviation of
inter-event times (yr) inter-event times (yr)
entire DSFZ 32 37
central part of the DSFZ 98 102
northern part of the DSFZ 51 56

Figure 4.5 shows the Benioff curve for the northern part of the DSFZ. According
to figure 4.5, two different processes for cumulative My; i.e. cumulative energy
release as a measure of seismic activity, can be identified. The first process takes
place, when cumulative M, dramatically increases within a relatively short period.
This period can be called an “active period”. When the cumulative M, exceeds a
certain higher “level of seismic moment release”, the second process begins. The
second process occupies a relatively longer period where the amount of seismic
moment release increases relatively slowly. This period can be called an “inactive
period”. As soon as the second process exceeds a “time threshold”, the first pro-
cess will be activated again. It seems, from figure 4.5, that the current situation
in the DSFZ (at least in the northern part) is more compatible with the second
process; i.e. the area is currently experiencing an inactive period.

65



Latitude
36

30

Latitude
36

30

34

32

-1

500 1000 1500

2000

34

32

oO———o ¢

Time (year)
o-o \/o’o\o

N ]
| Y N

500 1000 1500

Time (year)

Figure 4.4: Latitude of the earthquake epicenters vs.
earthquake occurrence times. Top: For the entire DSFZ.
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Figure 4.5: Benioff curve for the northern part of the
DSFZ. The cumulative seismic moment release shows
“active” and “inactive” periods.
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Chapter 5

Analysis of earthquake occurrence
rates in the DSFZ

In this chapter the approach discussed in chapter 3 will be applied to the data;
i.e. the earthquake inter-event times, extracted in chapter 4. The method has been
applied for two cases, namely the central and the northern part of the DSFZ. For
each case the output will be discussed separately.

5.1 [Earthquake occurrence rate in the central part
of the DSFZ

According to the approach of chapter 3, the first step is to test the multimodality
of the earthquake inter-event times. In order to test the multimodality, a bootstrap
method has been applied. The output of the test indicates no bimodality of the
inter-event times for the central part of the DSFZ (see figure 5.1). Considering

06

Figure 5.1: Results in terms of
06 the achieved significance level
oae (ASL) of the multimodality test
20| ' with 1000 bootstrap resamplings
for the central part of the DSFZ.
The inter-event times reveal no
specific bimodality.

0.63

S’ Unimodal  Bimodal  Trimodal

figure 5.1, the earthquake occurrence rate could be also considered trimodal for
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the central part of the DSFZ, based on its ASL. However the number of model
parameters required for a trimodal distribution is eight (two proportion parame-
ters plus 3*2 modal parameters, two parameters for each modal). The size of the
earthquake inter-event times dataset is 16 for the central part of the DSFZ (17
earthquakes in total), which is not sufficient to make a significant parameter esti-
mation for the trimodal distribution. Since the ASL of the unimodality in figure
5.1 is larger than the ASL of the trimodality, the earthquake occurrence rate in the
central part of the DSFZ will be considered as unimodal.

Following the modified weighted MLE method discussed in chapter 3, the pa-
rameters of the candidate distributions have been estimated. The five candidate
distributions are: Weibull, Gamma, Lognormal and BPT as time-dependent dis-
tributions against the exponential (based on the Poisson process) as the time-
independent distribution. The weight function parameters (in equation 3.40) are
considered as &« = 1, p = 6 and K = 1 (figure 5.2). These parameter values

20

Figure 5.2: The weight function
with parameters; o = 1, p = 6
and K = 1.

Weight function
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form a weight function, which is strongly discriminative between two time spans,
before 500 AD and after 1200 AD. In between these two time spans, the weight
function is strictly increasing. This form of the weight function is in agreement
with the reliability of the earthquake data in the catalog'.

Table 5.1 presents the estimation results for the five candidate distributions. In
order to select the best model, the values of the BIC (Bayesian information cri-
terion) as well as the KS-test (Kolmogorov-Smirnov test) p-value have been es-
timated. Based on these two criteria, the Weibull distribution, which is the best
time-dependent model, is not significantly better than the exponential distribution,
which is the time-independent model. Therefore, the annual earthquake occur-
rence rate for the central part of the DSFZ can be considered as time-independent.
Figure 5.3 shows the cdfs of the five different distributions comparing with the

'The earthquake data in the main catalog are more reliable for the recent time; i.e. after 1000
AD.

69



Table 5.1: Estimated unimodal distributions for the central part of the DSFZ.

Distribution Parameters ML BIC KS-test
scale  shape

Exponential 102.88 - -89.4 181.7  0.92
Weibull 8532 088 -89.8 1853 0.97
Gamma 98.88 1.04 -894 1845 0.92
Lognormal 4.09 1.19 -89.8 1852 092
BPT 97.76 3851 -90.1 185.8 0.56

empirical distribution (see equation 3.53) of the inter-event times in the central
part of the DSFZ. According to the estimated exponential distribution, the annual
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Figure 5.3: Comparison between different distribution
functions and the empirical distribution function of earth-
quake inter-event times for the central part of the DSFZ.

earthquake occurrence rate for M, > 6 is A=1 /102.88 = 0.00972 in the central
part of the DSFZ. This rate results in a mean recurrence time of 1/\ = 102.88
years. Following the bootstrap confidence method discussed in chapter 3, the con-
fidence interval of the estimated parameter A has been calculated (equations 3.54
and 3.55). Suppose the distribution of & as Hpoor (a nonparametric bootstrap
estimator of Ggpoor). Then equation 3.55 will change to:

(0%

Co = |00 = GuHbor (1 %) 0, — G Hpb o (5)] . (5.1)

Using 1000 bootstrap iterations to estimate Hg(l)OT(.), plus 1000 bootstrap itera-
tions to estimate ¢, in each iteration (altogether 1000 * 1000 = 1,000,000 boot-
strap iterations), the confidence interval for a 80% significance level has been
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calculated as: C,,(A) = [0.00600, 0.01298] and C,,(1/\) = [77.04,166.67]. The
confidence interval for a 95% level of significance is: C,.(\) = [0.00388,0.01612]
and C,,(1/)) = [62.03,257.73].

The conditional exceedance probability, i.e. the conditional probability of an
earthquake occurrence within time ¢ , given the censored time ¢, (t > t.), is
calculated as:

Prit,<T<t} F(t)—F(t)

Pr{T <t|T >t} = _
T stIT 2zt = —p sy 1- F(t.)

5.2)

where T is the random variable of the earthquake inter-event times, Pr(.) is the
corresponding probability function, and F(.) is the cdf regarding to 7'. Here, the
random variable 7" is exponentially distributed. Therefore,

F(t) — F(t.) (-
PriT <t|T>t}=—"——2=1—c N =Ft—1). (53
HT<HT >0} = 50 : (t=t). 63
The censored time ¢, in this area is ~ 81 years, since the last earthquake occurred
in 1927. By plugging t. = 81 into equation 5.3, the conditional exceedance
probability of M,, > 6 earthquakes in the central part of the DSFZ within the next
30 years; i.e. t — t. = 30, is calculated as

PriT <t|T >t} =Pr{T <30+1t,|T >t} = F(30) ~ 025 (5.4)

Equation 5.4 explains that the conditional probability of an earthquake occurrence
does not depend on the censored time ¢., but just the time span between ¢ and ¢.. .
This shows the time-independency of the exponential distribution.

5.2 Earthquake occurrence rate in the northern part
of the DSFZ

The dataset used in the northern part of the DSFZ (33.2° < latitude < 37°) in-
cludes 31 historical earthquakes (30 earthquake inter-event times) with M, > 6.

5.2.1 The northern part of the DSFZ - a special case

According to the dataset, the last M,, > 6 earthquake in this area occurred in
1872. Therefore, the time since the last earthquake (i.e. the censored time) is ~
137 years. The average earthquake inter-event time in this area is ~ 51 years,
which is much smaller than 137 years. Another fact is that more than 96% of the
observed inter-event times in this area are shorter than the censored time.
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Furthermore, the earthquake inter-event times in the northern part of the DSFZ
reveal a clustering property. The inter-event time dataset can be divided into two
different parts, one with inter-event times < 37 years, another with inter-event
times > 65 years (figure 5.4). This clustering property is also an indication of mul-
timodality of the earthquake inter-event times in the northern part of the DSFZ.
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Figure 5.4: A schematic clustering behavior of the inter-
event times in the northern part of the DSFZ. The crosses
present the empirical distribution function, red crosses
show the first cluster, and blue crosses demonstrate the
second cluster. The red vertical line shows the censored
time and its situation comparing with inter-event times.

These two facts together make the case of the northern part of the DSFZ special.
It may be considered “a case with an overdue earthquake’.

5.2.2 Multimodality of inter-event times

The first step of the estimation process is to check if the distribution of the earth-
quake inter-event times in this area is multimodal. Here again, the bootstrap
method has been applied to test the multimodality of the distribution of earth-
quake inter-event times. The results of the test indicate no significant difference
between unimodality and bimodality (figure 5.5). Since the multimodality test
cannot significantly distinguish between unimodality and bimodality, the distribu-
tion of the earthquake inter-event times will be estimated under both assumptions;
i.e. unimodality and bimodality.

5.2.3 Unimodal distributions

As is shown in table 5.2, based on the BIC and the KS-test p-value, the best uni-
modal distribution for the northern part of the DSFZ is the Lognormal distribution.
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Figure 5.5: The results of
0.79 the achieved significance level
0.71 (ASL) of the multimodality test
with 1000 bootstrap resamplings
for the northern part of the
DSFZ. The test does not signif-
icantly show, whether unimodal-
. ity or bimodality is a better
©  Unimodal ~ Bimodal  Trimodal model.
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Figure 5.6 demonstrates the cdf of different unimodal distributions against the em-
pirical distribution function (extracted from the earthquake inter-event times in the
northern part of the DSFZ).

Table 5.2: Estimated unimodal distributions for the northern part of the DSFZ.

Distribution ~ Parameters ML BIC  KS-test
scale shape

Exponential 58.44 - -151.1 305.6 0.44

Weibull 4546 093 -151.5 3100 094

Gamma 6546 090 -150.9 308.7 0.58

Lognormal 343 130 -151.2 3094 0.99

BPT 51.04 1573 -153.7 3143 037

5.2.4 Bimodal (mixed) distributions

Three bimodal distributions have been tested for the earthquake inter-event time
dataset for the northern part of the DSFZ. The first model is a mixed Lognormal-
Weibull distribution with the pdf:

0 o) ()
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Figure 5.6: Comparison between different unimodal dis-
tribution functions and the empirical distribution function
of earthquake inter-event times for the northern part of the
DSFZ.

where p € [0, 1] is the proportion parameter.
The second model is a BPT-Weibull distribution with the pdf:

e = p [\/% exp (—%)]
o[ Q)] e

and the third model is a Weibull-Weibull distribution with the pdf:
B ¢ p1—1 t B1
0 = s [(— 7 e (L
n n m
B2—1 B2
t t
(- p) [(@) (_) exp (— (—) )] L 120.(5)
T2 T2 T2

The three basic unimodal distributions used as basis for these three mixed distri-
butions are the Weibull, BPT and Lognormal distributions. The reasons to choose
these three mixed distributions are:

o the Lognormal and Weibull unimodal distributions fit the data well.
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e the BPT distribution has a physical basis (Matthews et al., 2002).

e the statistical hazard functions of these three distributions are compatible
with the behavior of the first cluster of the desired mixed distribution (the
hazard function increases fast shortly after an event occurrence, seeks a
maximum, then decreases).

e the hazard function of the Weibull distribution is compatible with the second
part of the desired mixed distribution, as it can be constructed to increase
with time.

Following the methods of EM described in chapter 3, the parameters of the three
mixed distributions have been estimated. The parameters of the weight function
are considered again as: &« = 1, p = 6 and K = 1. The results are shown in table
5.3. In table 5.3, BW, LW and WW denote the BPT-Weibull, the Lognormal-
Weibull, and the Weibull-Weibull mixed distributions, respectively. Figure 5.7
shows a comparison between the empirical distribution function and the bimodal
distribution functions. According to table 5.3, the best bimodal distribution, based
on the BIC and KS-test p-value, is the mixed Weibull-Weibull distribution.

Table 5.3: Estimated bimodal distributions for the northern part of the DSFZ.

Distri- Parameters ML BIC  KS-test
bution p scalel shapel scale2 shape?2

BW 0.51 17.18 1428 11252 150 -151.3 3163  0.88
LW 0.29 252 1.14 72.03 1.06 -1504 3145  0.87
WW 028 1744 1.33 73.63 1.06 -150.4 3144  0.97

5.2.5 Selection of the best model

Considering tables 5.2 and 5.3, two distributions have been selected as candidate
models in the northern part of the DSFZ:

e the mixed Weibull-Weibull distribution, which is the best bimodal distribu-
tion considering the BIC and KS-test p-value,

e the unimodal Lognormal distribution, because it is the best unimodal distri-
bution, considering the BIC and the KS-test p-value.

These models are compared, focusing only on the longer inter-event times, i.e.
inter-event times > 60 years, in figure 5.8. It seems that the mixed Weibull-
Weibull distribution can fit this part of inter-event times better than the unimodal
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Figure 5.7: Comparison between different bimodal distri-
bution functions and the empirical distribution function

of earthquake inter-event times for the northern part of
the DSFZ. WW = mixed Weibull-Weibull, BW = mixed
BPT-Weibull, LW = mixed Lognormal-Weibull.

Lognormal distribution.

The sum of squared errors (SSE = Y [estimate — observed)?) has been calcu-
lated for the two candidate distributions against the empirical distribution for the
inter-event times > 60 years (table 5.4). Following table 5.4, although both distri-

Table 5.4: The sum of squared errors for the candidate distributions.

Distribution = ML BIC KS-test SSE;~g0
Mixed WW -1504 3144 097 0.007
Lognormal -151.2 3094  0.99 0.013

butions perform well in likelihood and KS-test, the smaller S'S E;~ 4, obtained for
the mixed Weibull-Weibull distribution confirms that the best fit for the inter-event
times > 60 years is the mixed Weibull-Weibull distribution.

This statement plays an important role in the process of the best model selec-
tion, as the time since the last M,, > 6 earthquake (i.e. censored time) is much
larger than the average earthquake inter-event time, as has already been discussed.
Another important argument to select the mixed Weibull-Weibull distribution for
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Figure 5.8: Comparison between distribution functions
of mixed Weibull-Weibull and unimodal Lognormal dis-
tributions and the empirical distribution function of earth-
quake inter-event times for the northern part of the DSFZ.
Results for longer inter-event times.

the earthquake inter-event times in the northern part of the DSFZ appears, con-
sidering the trends of the corresponding statistical hazard functions (figure 5.9).
Considering figure 5.9, the hazard function of the mixed Weibull-Weibull distri-
bution increases immediately after an earthquake occurrence to a maximum value
(~ 0.024), then decreases to a minimum value (~ 0.015) and after that increases
very slowly with time. In contrast, the hazard function of the unimodal Lognor-
mal distribution increases after an earthquake occurrence to a maximum value (~
0.026), then decays with the time. Among these two completely different trends,
an increasing (the mixed Weibull-Weibull) and a decreasing (the unimodal Log-
normal) hazard function for the long-term, the increasing hazard function for the
long-term is in agreement with the long-term stress increase. Therefore, the mixed
Weibull-Weibull distribution is selected to model the inter-event times of M,, > 6
earthquakes in the northern part of the DSFZ.
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Figure 5.9: The trends of hazard functions of mixed
Weibull-Weibull and unimodal Lognormal distributions
after the last earthquake in 1872.

The statistical hazard function according to the mixed Weibull-Weibull dis-
tribution

The selected mixed Weibull-Weibull is a time-dependent distribution. This distri-
bution also describes how the earthquake inter-event times in the northern part of
the DSFZ can be divided into two clusters. The first cluster begins shortly after an
earthquake occurrence and lasts about 80 years, and the second one begins about
80 years after an earthquake occurrence and lasts until the next earthquake occur-
rence. It should be mentioned that the general shape of this hazard function does
not change by changing the parameters of the weight function (see figure 5.10).
The hazard function (statistical) of the mixed Weibull-Weibull distribution is also
time-dependent. Equations 5.8 and 5.9 explain the hazard function of this distri-
bution:

(5.8)



0.03

0.02

Hazard function

0.01

0.00

1872 1912 2032 2072

19‘52_|_ime (year)1992
Figure 5.10: Various hazard functions corresponding to
mixed Weibull-Weibull distributions, calculated based on
different weight function parameters, within 200 years af-
ter the last earthquake in 1872. The red curve is based on
the weight function parameters considered in this thesis.
The green curve is based on no weights. Changing the
weight function parameters does not affect the general
shape of the hazard function.

with

o @)@ (L) e

F(t) = f(z)dx (5.10)
0
where (p, 1, 51,12, B2) =~ (0.28,17.44,1.33,73.63,1.06) is the vector of the es-
timated parameters. Figure 5.11 represents the shape of the hazard function for
different time spans after the last M/, > 6 earthquake in 1872 in this area.
According to figure 5.11, the hazard increases immediately after an earthquake oc-
currence. After about ten years, it reaches the maximum value of ~ 0.024. Then

and,
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Figure 5.11: The trend of the hazard function of mixed
Weibull-Weibull distribution after the last earthquake in
1872. Top: The first 80 years between 1872 and 1952.
Bottom: Between 1952 and 2152.
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Figure 5.12: Conditional (red) and unconditional (blue)
exceedance probabilities for the northern part of the
DSFZ.

the hazard decreases within the next 70 years and reaches the minimum value
of ~ 0.0145. At this point, it starts again to increase very slowly and reaches
the amount of ~ 0.0149 in 2009. Starting from now, the hazard function remains
almost constant at about 0.015 (~ 0.0154 in 2100 and ~ 0.0157 in 2200). This be-
havior of the hazard function confirms the long-term cluster-property of the large
earthquakes inter-event times in the northern part of the DSFZ.

Conditional exceedance probability

According to equation 5.2, the conditional exceedance probability within time ¢

in the northern part of the DSFZ can be calculated as:

F(t) = F(t)
1 —

PriT<t|T>t}= (5.11)

where the function F'(.) is the same cdf as in equation 5.10.

By plugging t. = 137 into equation 5.11, the conditional exceedance probability
has been calculated for the north part of the DSFZ. Figure 5.12 presents the con-
ditional and unconditional exceedance probability. The conditional exceedance
probability within the next 30 years is ~ 0.36 in the northern part of the DSFZ.
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5.2.6 Application of mixed Weibull-Weibull and Lognormal dis-
tributions in probabilistic seismic hazard assessments

The time-dependent occurrence rates corresponding to the mixed Weibull-Weibull;
i.e. the selected model for the northern part of the DSFZ, and the Lognormal dis-
tributions, have been applied to a PSHA for the DSFZ and neighboring areas.
The PSHA based on the Lognormal distribution is considered only in order to
be compared with the PSHA based on the mixed Weibull-Weibull distribution.
The details of the hazard calculation and the comparison with the classical time-
independent approach are presented by Griinthal et al. (2009¢). The hazard maps
are calculated for 10% exceedance probability in 50 years. The results for the
northern part of the DSFZ are shown and discussed here for different time periods
within 1872 - 2100, since this part of the DSFZ requires a time-dependent ap-
proach. The qualitative differences discussed in this chapter for the two statistical
distributions are confirmed in the hazard maps.

The obtained mean hazard maps are presented in Appendix B. The hazard maps
are calculated for five different years; 1873, 1875, 1883, 2009 and 2100 after
the last large earthquake in 1872 in the considered source zone (see Appendix B,
figure B.1). The time-dependent portion of the hazard maps have been prepared
considering earthquakes with magnitude M,, > 6. In Appendix B, the presented
hazard maps are shown based on the mixed Weibull-Weibull distribution, the uni-
modal Lognormal distribution, and the classical time-independent model; i.e. ex-
ponential distribution based on the Poisson process. The hazard maps based on
the exponential distribution do not change with time. More details about the ap-
plied PSHA approach can be found in the scientific technical report by Griinthal
et al. 2009c.

The hazard maps for the northern part of the DSFZ in the year 1873 (one year
after the last large earthquake) show that the seismic hazard based on the mixed
Weibull-Weibull distribution is larger than the seismic hazard calculated by the
Lognormal model and the exponential (time-independent under Poisson process)
distribution. In the year 1875, the seismic hazard based on the mixed Weibull-
Weibull distribution is between the seismic hazard based on the Lognormal and
based on the exponential distribution. In the year 1883 (about 11 years after the
last large event), the seismic hazard based on the mixed Weibull-Weibull is much
larger than the seismic hazard based on the exponential distribution, but still less
than the seismic hazard based on the Lognormal distribution. In the year 2009
(current time, about 137 years after the last large earthquake), the seismic hazard
based on the mixed Weibull-Weibull distribution is slightly less than the seismic
hazard based on the exponential distribution, while the seismic hazard based on
the Lognormal distribution is much lower. In the year 2100, the seismic hazard
based on the mixed Weibull-Weibull is almost equal to the seismic hazard based
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on the exponential distribution; whereas the seismic hazard based on the Lognor-
mal distribution is extremely low. Finally, it can be concluded that hazard maps
for the northern part of the DSFZ show considerable differences in seismic hazard
calculated based on the two time-dependent distributions; i.e. the mixed Weibull-
Weibull and the Lognormal distribution, and the classical time-independent distri-
bution; i.e. the exponential distribution, within the first cluster; i.e. 80 years after
an earthquake occurrence. However, the seismic hazard calculated based on the
mixed Weibull-Weibull and the exponential distribution are only slightly different
during the second cluster; i.e. more than 80 years after an earthquake, where the
seismic hazard calculated based on the Lognormal distribution continuously de-
creases with time.

It should be noticed that the time-dependent seismic hazard depends strongly on
the applied time-dependent statistical model (distribution). The time-dependent
approach developed in this thesis can be applied to every fault zone or seismic
region. However, the choice of the best statistical distribution of the earthquake
inter-event times can change from region to region. In other words, there is still
no universal statistical distribution to model the earthquake inter-event times for
large earthquakes in every fault zone or seismic region. This problem is caused
by the lack of knowledge about the earthquake recurrence processes. The modi-
fied weighted maximum likelihood estimation method developed in this thesis is
considered to use as much information as possible. However, the problem of the
quantification of epistemic uncertainties (Mc Guire 2004) coupled to the earth-
quake information remains open. The epistemic uncertainties include the two
cases of uncertainties mentioned above; i.e. the lack of knowledge about earth-
quake recurrence processes as well as the lack of earthquake information for large
earthquakes.
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Chapter 6

Summary and conclusions

6.1 Summary

In this thesis, the behavior of the occurrence rates of large earthquakes in the
DSFZ has been analyzed using the historical earthquake catalog. The main chal-
lenge has been to investigate whether the occurrence rate of large earthquakes in
this area is time-dependent and how. Therefore, a set of historical M,, > 6 earth-
quakes has been considered as the main dataset of large earthquakes in the DSFZ.
The study area contains the earthquakes within an average width of about 40 km
along the DSFZ within 29.5° < latitude < 37°. The completeness of this dataset
has been determined to begin at 300 AD.

The dataset has been divided into three subareas including the southern, the cen-
tral and the northern zones. The earthquake behavior has been studied for the
central and the northern parts of the DSFZ, but not the southern part. Since only
two large earthquakes have occurred here since 300 AD, which are not sufficient
for a reliable statistical analysis. In order to apply the time-to-failure modeling
concept to analyze the occurrence rate of earthquakes, the earthquake inter-event
times have been calculated for the central and northern parts. Then the problem is
reduced to estimate the best fit of the earthquake inter-event times in both areas.
A statistical approach has been developed and applied to fit the inter-event times.
The approach has been developed based on the assumption that earthquake inter-
event times are i.i.d (independently identically distributed). This assumption leads
to a renewal process assumption for the inter-event times.

In the next step, five candidate models have been selected: exponential, Weibull,
Gamma, Lognormal, and inverse Gaussian (BPT) distributions. Here, the time-
dependency describes whether the hazard function corresponding to a specific
distribution is a function of time (time-dependent) or not (time-independent).

A multimodality test has been applied to each inter-event time dataset; i.e. the
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central and northern part of DSFZ, to check whether the inter-event times are uni-
modally or multimodally distributed. The five distributions have been directly
used for the case of unimodal distributions, while the four time-dependent distri-
butions have been considered as basic models involved in the structure of multi-
modal distributions, where multimodality is applicable.

A modified maximum likelihood method has been developed to estimate the pa-
rameters of the different distributions. Two important terms have been added to
the classic method of MLE:

e The censored time

Not only the inter-event times but also the censored time (i.e. the time
since the last event) have been considered in this method. In general, the
censored time is important in time-to-failure modeling, since it includes the
most recent information related to the current situation of a given time-to-
failure process. In the case of earthquake inter-event time modeling, where
the lack of reliable information is a common problem, the censored time is
of major importance.

e Weighting information
Two reasons lead to the use of a weighted MLE. The first is the intrinsic
uncertainty of historical earthquake data. Uncertainties in the earthquake
parameters, especially for the older events, are neither recognizable, nor
calculable. The second reason is the fact that earthquake rates can change
with time'. Therefore, the estimation process requires larger weights for
earthquakes occurring in the recent time.

The best distribution has been selected according to two criteria, a BIC and a
KS-test p-value. Finally, the confidence intervals have been calculated by a boot-
strap confidence interval method for each parameter corresponding to the selected
models.

Results for the centeral part of DSFZ

The distribution of the earthquake inter-event times in the central part of the DSFZ
is considered as unimodal. The selected model in this area is a unimodal exponen-
tial distribution (Poissonian process). The hazard function corresponding to this
distribution is time-independent.

Results for the northern part of the DSFZ

The distribution of the earthquake inter-event times in the northern part of the
DSFZ is considered as bimodal. The selected model in this area is a bimodal

I'This is obvious, at least in the case of this thesis, in the northern part of the DSFZ.

85



Weibull-Weibull mixed distribution. The hazard function corresponding to this
distribution is time-dependent.

6.2 Conclusions

Efficiency of the approach

The previous approaches for long-term time-dependent modeling of earthquake
occurrence rates (adapted for main shocks) are not sufficient. They consider ei-
ther very simple unimodal statistical distributions or nonparametric methods. The
first case; i.e. unimodal statistical distributions, cannot fit the data in the case
of clustered data. The second group; i.e. nonparametric methods, is more data
oriented and needs more reliable data, which are, often, very scarce in the case
of large earthquakes. Many of these approaches do not use significant statistical
methods for parameter estimation and model selections. Hence, a significant ap-
proach to analyze the earthquake occurrence rate is still missing.

In this thesis, a statistical approach has been developed in order to analyze the
earthquake occurrence rate for large earthquakes. This approach has been shown
to model the data efficiently. This approach

e uses all available temporal information of large historical earthquakes by
considering both inter-event times and censoring time.

e uses a new method to determine completeness times for a set of large earth-
quakes.

e produces more reliable results, since it considers a weighting system where
more reliable data are assigned higher level of importance in the estimation
process.

e investigates whether the occurrence rates of large earthquakes are signifi-
cantly time-dependent or if a time-independent model is sufficient.

e checks if the data are multimodally distributed; i.e. temporally clustered in
the long-term, or unimodally distributed; i.e. no long-term temporal clus-
tering in the data.

e considers various forms of distributions, respectively hazard functions, which
makes it more flexible to fit the entire dataset. All these distributions have
been commonly used in other scientific research areas.

e uses significant statistical methods (a modified MLE and an EM) to estimate
the model parameters.
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e selects the best model using two methods, a Bayesian Information Criterion
which selects the best model considering the average, and a Kolmogorov-
Smirnov goodness-of-fit test (a modified case in this thesis) selects the best
model which selects the best model considering the details.

e can significantly fit different clusters of the data, in the case of clustering
data.

Central part of the DSFZ

The earthquake inter-event times in the central part of the DSFZ show no cluster-
ing property. The bootstrap multimodality test confirms this statement.

The earthquake occurrence rate in this area is assumed to be time-independent,
since the time-dependent models are not significantly better than the time-independent
model (exponential distribution under a Poissonian process). Although the most
significant time-dependent model (the Weibull distribution in this case) is slightly
better, taking into account the KS-test (with p-value 0.97 against 0.92 for the expo-
nential distribution), the time-independent model is chosen since it is more simple
and has only one parameter (against two parameters for the Weibull distribution).
The following can be concluded from the results of the approach in this area:

e There is no significant difference between time-dependent and time-independent
models, neither in KS-test nor in BIC.

e The earthquake occurrence rate can be considered as time-independent in
the central part of DSFZ.

Northern part of the DSFZ

In the northern part of the DSFZ, the inter-event times show a clustering property.
The bootstrap multimodality test does not reject the clustering property in this
area. On the other hand, the results of applying the approach to the inter-event
times in this area show a very explicit time-dependency for the earthquake occur-
rence rate. Therefore, both multimodal and unimodal models have been applied to
the dataset. A mixed Weibull-Weibull model has been selected as the best model
in this area. This model produces a very high KS-test p-value (more than 0.97)
and its BIC is relative low. Its statistical hazard function increases in the long-
term. Therefore, the model is in agreement with the long-term stress increase.

The hazard function corresponding to the mixed Weibull-Weibull distribution re-
veals two clusters for the earthquake occurrence rate within the time after an earth-
quake occurrence. The first cluster begins immediately after an earthquake occur-
rence and is explicitly time-dependent. This cluster lasts about 80 years. The sec-
ond cluster begins 80 years after an earthquake occurrence and lasts until the next
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earthquake occurs. The hazard function corresponding to this cluster increases
very slowly with time, such that it can be considered as a time-independent expo-
nential distribution with rate A ~ 0.015.

The following can be concluded for this area:

e The earthquake occurrence rate is significantly time-dependent.

e The mixed Weibull-Weibull distribution explains the data better than other
candidate distributions, because the two different components of the model
can fit the two different clusters of the inter-event times better than unimodal
models.

e The rate of earthquake occurrence is considerably lower immediately after
an earthquake, increases strongly during the following ten years and reaches
its maximum of about 0.024, then decreases over the next 70 years to its
minimum of about 0.0145.

e More than 80 years after an earthquake, the earthquake occurrence rate in-
creases extremely slowly, such as it can be considered as an almost constant
rate about 0.015.

e The classical Poissonian method (time-independent) is not sufficient to ex-
plain the earthquake inter-event times shortly after an earthquake (up to 80
years). However, for longer time spans, especially for an overdue earth-
quake, it would be sufficient.

e The hazard maps for the northern part of the DSFZ show considerable dif-
ferences between the time-dependent and the classical (time-independent)
seismic hazard within the first cluster; i.e. 80 years after an earthquake oc-
currence. However, the time-dependent and the classical (time-independent)
seismic hazard are only slightly different during the second cluster; i.e.
more than 80 years after an earthquake.

Future studies

The time-dependent seismic hazard depends strongly on the applied time-dependent
statistical model (distribution). In this thesis, a time-dependent approach has been
developed. This approach can be applied to every seismic region in the world.
However, the obtained results; i.e. the selected distributions, will change in dif-
ferent seismic zones depending on the earthquake datasets connected to these re-
gions. Up to now no universal statistical distribution exists that can model the
earthquake inter-event times for large earthquakes in every fault zone or seismic
region. Whereas it is not known if such a model exists, it is a fact that the problem
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of lack of knowledge about the earthquake recurrence processes is still unsolved.
A modified weighted maximum likelihood estimation method has been developed
in this thesis. Although this method helps to consider more information about
earthquake inter-event times, the problem of the quantification of epistemic un-
certainties coupled to the earthquake information remains open. The epistemic
uncertainties include the two cases of uncertainties mentioned above; i.e. the lack
of knowledge about earthquake recurrence processes as well as the lack of infor-
mation about inter-event times for large earthquakes. These two problems can be
considered as subjects of future studies in the DSFZ and other seismic regions.
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Appendix A

The modified weighted log-likelihood function and its first and second partial
derivatives for:

1 - the exponential distribution
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where S(.) is the survivor function of the BPT distribution, Sy, S,,, Sxx, S, and

Sy are the first and second derivatives of S over A and p, with:
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where S(.) is the survivor function of the Lognormal distribution, S,, S,, Sy,
Syu and S, are the first and second derivatives of S over o and yi, with:
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Appendix B

Time-dependent and time-independent hazard maps for the northern part of the
DSFZ as discussed in section 5.2.6. For more details, see Griinthal et al. 2009c.
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Figure B.1: Top: Hazard maps for the northern part of the DSFZ in the year 1873
for 10% exceedance probability in 50 years considering occurrence rates of large
events obtained by the mixed Weibull-Weibull, the unimodal Lognormal, and the
exponential distribution (classical time-independent model under the Poisson pro-
cess). The red polygon shows the boundary of the source zone. For more details,
see Griinthal et al. 2009¢c. Bottom: Statistical hazard functions (occurrence rates)
for the mixed Weibull-Weibull, the unimodal Lognormal, and the exponential dis-
tribution within 1872 - 1884.
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Figure B.2: Top: Hazard maps for the northern part of the DSFZ in the year 1875

for 10% exceedance probability in 50 years considering occurrence rates of large
events obtained by the mixed Weibull-Weibull, the unimodal Lognormal, and the
exponential distribution (classical time-independent model under the Poisson pro-
cess). For more details, see Griinthal et al. 2009c. Bottom: Statistical hazard
functions (occurrence rates) for the mixed Weibull-Weibull, the unimodal Log-
normal, and the exponential distribution within 1872 - 1884.
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Figure B.3: Top: Hazard maps for the northern part of the DSFZ in the year 1883

for 10% exceedance probability in 50 years considering occurrence rates of large
events obtained by the mixed Weibull-Weibull, the unimodal Lognormal, and the
exponential distribution (classical time-independent model under the Poisson pro-
cess). For more details, see Griinthal et al. 2009c. Bottom: Statistical hazard
functions (occurrence rates) for the mixed Weibull-Weibull, the unimodal Log-
normal, and the exponential distribution within 1872 - 1884.
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Figure B.4: Top: Hazard maps for the northern part of the DSFZ in the year 2009

for 10% exceedance probability in 50 years considering occurrence rates of large
events obtained by the mixed Weibull-Weibull, the unimodal Lognormal, and the
exponential distribution (classical time-independent model under the Poisson pro-
cess). For more details, see Griinthal et al. 2009c. Bottom: Statistical hazard
functions (occurrence rates) for the mixed Weibull-Weibull, the unimodal Log-
normal, and the exponential distribution within 2009 - 2100.
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Figure B.5: Top: Hazard maps for the northern part of the DSFZ in the year 2100

for 10% exceedance probability in 50 years considering occurrence rates of large
events obtained by the mixed Weibull-Weibull, the unimodal Lognormal, and the
exponential distribution (classical time-independent model under the Poisson pro-
cess). For more details, see Griinthal et al. 2009c. Bottom: Statistical hazard
functions (occurrence rates) for the mixed Weibull-Weibull, the unimodal Log-
normal, and the exponential distribution within 2009 - 2100.
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