
Towards Scalable & Secure
Virtual Laboratory for

Cybersecurity e-Learning

Dissertation

zur Erlangung des akademischen Grades
des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
am Fachgebiet Internet-Technologien und -Systeme

des Hasso-Plattner-Instituts

eingereicht an der
Hasso-Plattner-Institut, Digital Engineering Fakultät

der Universität Potsdam

vorgelegt von M.Sc.

Johannes Harungguan Sianipar

Potsdam, June 2019



This work is licensed under a Creative Commons License: 
Attribution 4.0 International. 
This does not apply to quoted content from other authors. 
To view a copy of this license visit 
https://creativecommons.org/licenses/by/4.0/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dissertation Reviewers: 
Prof. Dr. Christoph Meinel, Hasso-Plattner-Institut, 
Prof. Dr. Benhard Sitohang, Institut Teknologi Bandung, 
Prof. Dr. Matthew Adigun, University of Zululand 
 
Examination Committee: 
Prof. Dr. Andreas Polze, (Chairman) 
Prof. Dr. Felix Naumann, 
Prof. Dr. Robert Hirschfeld 
 
 
 
Published online on the 
Publication Server of the University of Potsdam: 
https://doi.org/10.25932/publishup-50279 
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-502793 



To my parents, my wife Silvia and my son Nathan





Declaration

I herewith declare that I have produced this thesis without the prohib-
ited assistance of third parties and without making use of aids other
than those specified. Notions taken over directly or indirectly from
other sources have been identified as such. All data and findings in
the work have not been falsified or embellished. This thesis has not
previously been presented in identical or similar form to any other
German or foreign examination board.

The thesis work was conducted from March 2013 to May 2019 under
the supervision of Prof. Dr. Christoph Meinel.

Johannes Harungguan Sianipar
Potsdam, Germany



Abstract

Distance Education or e-Learning platform should be able to provide a virtual lab-

oratory to let the participants have hands-on exercise experiences in practicing

their skill remotely. Especially in Cybersecurity e-Learning where the partici-

pants need to be able to attack or defend the IT System. To have a hands-on

exercise, the virtual laboratory environment must be similar to the real opera-

tional environment, where an attack or a victim is represented by a node in a

virtual laboratory environment. A node is usually represented by a Virtual Ma-

chine (VM). Scalability has become a primary issue in the virtual laboratory for

cybersecurity e-Learning because a VM needs a significant and fix allocation of

resources. Available resources limit the number of simultaneous users. Scalability

can be increased by increasing the efficiency of using available resources and by

providing more resources. Increasing scalability means increasing the number of

simultaneous users.

In this thesis, we propose two approaches to increase the efficiency of using

the available resources. The first approach in increasing efficiency is by replacing

virtual machines (VMs) with containers whenever it is possible. The second

approach is sharing the load with the user-on-premise machine, where the user-

on-premise machine represents one of the nodes in a virtual laboratory scenario.

We also propose two approaches in providing more resources. One way to provide

more resources is by using public cloud services. Another way to provide more

resources is by gathering resources from the crowd, which is referred to as Crowd-

resourcing Virtual Laboratory (CRVL).

In CRVL, the crowd can contribute their unused resources in the form of a VM,

a bare metal system, an account in a public cloud, a private cloud and an isolated

group of VMs, but in this thesis, we focus on a VM. The contributor must give

the credential of the VM admin or root user to the CRVL system. We propose

an architecture and methods to integrate or dis-integrate VMs from the CRVL

system automatically. A Team placement algorithm must also be investigated

to optimize the usage of resources and at the same time giving the best service

to the user. Because the CRVL system does not manage the contributor host

machine, the CRVL system must be able to make sure that the VM integration

vi



will not harm their system and that the training material will be stored securely

in the contributor sides, so that no one is able to take the training material away

without permission. We are investigating ways to handle this kind of threats.

We propose three approaches to strengthen the VM from a malicious host

admin. To verify the integrity of a VM before integration to the CRVL system,

we propose a remote verification method without using any additional hardware

such as the Trusted Platform Module chip. As the owner of the host machine,

the host admins could have access to the VM’s data via Random Access Memory

(RAM) by doing live memory dumping, Spectre and Meltdown attacks. To make

it harder for the malicious host admin in getting the sensitive data from RAM,

we propose a method that continually moves sensitive data in RAM. We also

propose a method to monitor the host machine by installing an agent on it. The

agent monitors the hypervisor configurations and the host admin activities.

To evaluate our approaches, we conduct extensive experiments with different

settings. The use case in our approach is Tele-Lab, a Virtual Laboratory platform

for Cyber Security e-Learning. We use this platform as a basis for designing and

developing our approaches. The results show that our approaches are practical

and provides enhanced security.

vii



Zusammenfassung

Die Fernunterrichts- oder E-Learning-Plattform sollte ein virtuelles Labor bieten,

in dem die Teilnehmer praktische Übungserfahrungen sammeln können, um ihre

Fähigkeiten aus der Ferne zu üben. Insbesondere im Bereich Cybersicherheit

E-Learning, wo die Teilnehmer in der Lage sein müssen, das IT-System anzu-

greifen oder zu verteidigen. Um eine praktische Übung durchzuführen, muss die

virtuelle Laborumgebung der realen Betriebsumgebung ähnlich sein, in der ein

Angriff oder ein Opfer durch einen Knoten in einer virtuellen Laborumgebung

repräsentiert wird. Ein Knoten wird normalerweise durch eine virtuelle Maschine

(VM) repräsentiert. Die Skalierbarkeit ist zu einem Hauptproblem des virtuellen

Labors für E-Learning im Bereich Cybersicherheit geworden, da für eine VM eine

erhebliche und feste Zuweisung von Ressourcen erforderlich ist. Die Verfügbare

Ressourcen begrenzen die Anzahl der gleichzeitigen Benutzer. Die Skalierbarkeit

kann erhöht werden, indem die verfügbaren Ressourcen effizienter genutzt und

mehr Ressourcen bereitgestellt werden. Die Erhöhung der Skalierbarkeit bedeutet

die Erhöhung der Anzahl gleichzeitiger Benutzer.

In dieser Arbeit schlagen wir zwei Ansätze vor, um die Effizienz der Nutzung

der verfügbaren Ressourcen zu erhöhen. Der erste Ansatz zur Erhöhung der

Effizienz besteht darin, virtuelle Maschinen (VMs) durch Container zu ersetzen,

wann immer dies möglich ist. Der zweite Ansatz besteht darin, die Last auf

den Benutzer vor-ort-maschine zu verteilen, wobei der Benutzer vor-ort-maschine

einen der Knoten in einem virtuellen Laborszenario repräsentiert. Wir schlagen

auch zwei Ansätze vor, um mehr Ressourcen bereitzustellen. Eine Möglichkeit,

mehr Ressourcen bereitzustellen, ist die Nutzung von Public Cloud Services. Eine

andere Möglichkeit, mehr Ressourcen bereitzustellen, besteht darin, Ressourcen

aus der Menge zu sammeln, die als Crowd-Resourcing Virtual Laboratory (CRVL)

bezeichnet wird.

In CRVL, kann die Menge ihre ungenutzten Ressourcen in Form einer VM,

eines Bare-Metal-Systems, eines Accounts in einer Public Cloud, einer Private

Cloud und einer isolierten Gruppe von VMs einbringen, aber in dieser Arbeit

konzentrieren wir uns auf eine VM. Der Mitwirkende muss dem CRVL-System den

Berechtigungsnachweis des VM-Administrators oder des Root-Benutzers geben.

viii



Wir schlagen eine Architektur und Methoden vor, um VMs automatisch in das

CRVL-System zu integrieren oder daraus zu entfernen. Ein Team-Placement-

Algorithmus muss ebenfalls untersucht werden, um die Ressourcennutzung zu

optimieren und gleichzeitig den besten Service für den Benutzer zu bieten. Da

das CRVL-System den Beitragsgeber-Hostcomputer nicht verwaltet, muss das

CRVL-System in der Lage sein, sicherzustellen, dass die VM-Integration ihr Sys-

tem nicht beeinträchtigt und das Schulungsmaterial sicher auf den Beitragsge-

berseiten aufbewahrt wird, damit niemand das Trainingsmaterial ohne Erlaubnis

wegnehmen kann. Wir untersuchen Möglichkeiten, um mit dieser Art von Bedro-

hungen umzugehen.

Wir schlagen drei Ansätze vor, um die VM von einem bösartigen Host Ad-

ministrator zu stärken. Um die Integrität einer VM vor der Integration in das

CRVL-System zu überprüfen, schlagen wir eine Remote-Verifikationsmethode

ohne zusätzliche Hardware wie den Trusted Platform Module-Chip vor. Als Be-

sitzer des Host-Rechners können die Host-Administratoren über Random Access

Memory (RAM) auf die Daten der VM zugreifen, indem sie Live Memory Dump-

ing, Spectre- und Meltdown-Angriffe durchführen. Um es dem bösartigen Host-

Administrator zu erschweren, die sensiblen Daten aus dem RAM zu erhalten,

schlagen wir eine Methode vor, die kontinuierlich sensible Daten im RAM be-

wegt. Wir schlagen auch eine Methode zur Überwachung des Host-Rechners vor,

indem ein Agent darauf installiert wird. Der Agent überwacht die Hypervisor-

Konfigurationen und die Aktivitäten des Hostadministrators.

Um unsere Ansätze zu bewerten, führen wir umfangreiche Experimente mit

unterschiedlichen Einstellungen durch. Der Anwendungsfall in unserem Ansatz

ist Tele-Lab, eine virtuelle Laborplattform für Cybersicherheit E-Learning. Wir

nutzen diese Plattform als Grundlage für die Gestaltung und Entwicklung unserer

Ansätze. Die Ergebnisse zeigen, dass unsere Ansätze praktisch sind und mehr

Sicherheit bieten.

ix



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my Ph.D.

supervisor, Prof. Dr. Christoph Meinel, for his wisdom, patience, and continues

support. I sincerely thank him for providing the opportunity and financial sup-

port for me to pursue my PhD in Germany. The thanks are extended to Christian

Willems for sharing research ideas in Tele-Lab, for being the co-authors of my

papers, and for involving me in teaching the ”Linux for the masses” course.

I would like to thank Prof. Andreas Polze for willing to become my second

supervisor. I would also like to thank the following HPI staff: Michaela Schmitz,

Daniela Roick and Sabine Wagner, especially Michaela for helping me in providing

many supporting documents of Visa Extensions and thesis submission. I want

to thank Dr Nemeth Sharon for helping me in improving my English and in

proofreading one of my papers. I also want to thank Matthias Bauer for allocating

a time slot in our research seminar whenever I need it.

My colleagues and co-authors, Dr Eyad Saleh and Muhammad Ihsan Suk-

mana, thank you for supporting me in writing the papers. I want to acknowledge

Nuhad Shaabani for the discussion on a research topic and for encouraging me to

submit the paper. My friends and office mates Ihsan and Kennedy, it was a nice

time that we spent together. I am thankful for every conversation and discussion

that we had. I want to thank the rest of my colleagues in HPI, especially Xi-

aoyin, Nuhad, Aragats, Harry, Haojin, Mina, Tatiana, for the chat and the time

we spent together mostly during lunch.

My gratitude to Prof. Benhard Sitohang and Prof. Matthew Adigun, for

willing to become my thesis reviewers. I am grateful to Del Institute of Technology

and Del Foundation for their support, especially Bapak Luhut Binsar Pandjaitan

for understanding, motivation and his support to my family.

Last but not least, I would like to express deepest gratitude to my lovely

mom Pasti Pardede and my sincere wife Silvia for their continuous support and

encouragement during my PhD journey.

x



Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and Publications . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Tele-Lab: Virtual Laboratory for IT Security e-Learning 9

2.1 Tele-Lab Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Tele-Lab Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Tele-Lab Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Efficiency to Increase Scalability 17

3.1 Container Based Virtual Laboratory . . . . . . . . . . . . . . . . 17

3.1.1 Architecture and Organization . . . . . . . . . . . . . . . . 18

3.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Load Sharing with User on Premise Machine . . . . . . . . . . . . 27

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



CONTENTS

4 Cybersecurity Virtual Laboratory in Public Cloud 37

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Crowd-Resourcing Virtual Laboratory 45

5.1 Crowd Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 CRVL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Team Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.3 Team Placement Algorithm . . . . . . . . . . . . . . . . . 54

5.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Virtual Machine Integration in CRVL . . . . . . . . . . . . . . . . 64

5.4.1 VM Integration Mechanism . . . . . . . . . . . . . . . . . 65

5.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Live Migration & Fault Recovery in CRVL . . . . . . . . . . . . . 68

5.5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5.2 Live Migration . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.3 Fault Recovery . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Secure Virtual Machine on Untrusted Host Machine 83

6.1 Virtual Machine Integrity Verification . . . . . . . . . . . . . . . . 84

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.2.1 OS Finger Printing . . . . . . . . . . . . . . . . . 86

6.1.2.2 Virtual Machine Introspection . . . . . . . . . . . 87

6.1.2.3 Virtual Machine Integrity . . . . . . . . . . . . . 88

6.1.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.4 Verification Method . . . . . . . . . . . . . . . . . . . . . . 91

xii



CONTENTS

6.1.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Moving Sensitive Data . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2.1 Memory Dumping . . . . . . . . . . . . . . . . . 102

6.2.2.2 Spectre and Meltdown . . . . . . . . . . . . . . . 103

6.2.2.3 Moving Target Defense . . . . . . . . . . . . . . . 105

6.2.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.4 Moving Sensitive Data in RAM . . . . . . . . . . . . . . . 106

6.2.4.1 Moving Sensitive Data Against Live Memory Dump-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.4.2 Moving Sensitive Data Against Spectre and Melt-

down . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.5.1 Live Memory Dumping . . . . . . . . . . . . . . . 113

6.2.5.2 Spectre & Meltdown . . . . . . . . . . . . . . . . 116

6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure . . . . . . . 119

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.4 Architecture and Implementation . . . . . . . . . . . . . . 125

6.3.4.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.4.2 Integrity Verification . . . . . . . . . . . . . . . . 129

6.3.4.3 Implementation . . . . . . . . . . . . . . . . . . . 131

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 135

References 139

Acronyms 155

xiii



CONTENTS

xiv



List of Figures

1.1 Research Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Tele-Lab Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Private Cloud Tele-Lab Architecture . . . . . . . . . . . . . . . . 14

3.1 Container Based Virtual Laboratory Architecture . . . . . . . . . 19

3.2 Starting and Stopping a Team . . . . . . . . . . . . . . . . . . . . 23

3.3 MITM Attack Topology . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Number of Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Replacing an Attacker VM with User on Premise Machine . . . . 28

3.6 User on-Premise Machine Connection to the Virtual Laboratory . 30

3.7 Software Architecture on a VM . . . . . . . . . . . . . . . . . . . 31

3.8 Signature Creation and Verification . . . . . . . . . . . . . . . . . 31

3.9 Signed URL Sequential Diagram . . . . . . . . . . . . . . . . . . . 32

4.1 Virtual Laboratory Architecture in Public Cloud . . . . . . . . . . 41

5.1 CRVL General Architecture . . . . . . . . . . . . . . . . . . . . . 48

5.2 Crowd-Resources Architecture . . . . . . . . . . . . . . . . . . . . 50

5.3 Hierarchical Zones . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 VM Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 VM in Public Cloud . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Teams in other Region . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Teams in other Countries . . . . . . . . . . . . . . . . . . . . . . . 62

5.8 Rejected Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 Tag Number per VM . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



LIST OF FIGURES

5.10 Integration Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.11 Integrity Verification Sequential Diagram. . . . . . . . . . . . . . 67

5.12 Team of Containers . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.13 Live Migration Scheme . . . . . . . . . . . . . . . . . . . . . . . . 73

5.14 Live Migration Sequential Diagram. . . . . . . . . . . . . . . . . . 75

5.15 Fault Recovery Sequential Diagram. . . . . . . . . . . . . . . . . . 76

5.16 Fault Recovery & Team Creation Time. . . . . . . . . . . . . . . . 78

6.1 VMIV Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Linux Boot Process. . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Integrity Verification Sequence. . . . . . . . . . . . . . . . . . . . 94

6.4 Experiment Architecture. . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Movement in Physical Memory. . . . . . . . . . . . . . . . . . . . 107

6.6 Movement Against Spectre. . . . . . . . . . . . . . . . . . . . . . 112

6.7 10000 Loops Execution Time. . . . . . . . . . . . . . . . . . . . . 115

6.8 10000 Loops Movements Number. . . . . . . . . . . . . . . . . . . 115

6.9 Spectre Execution Time. . . . . . . . . . . . . . . . . . . . . . . . 118

6.10 Spectre Movements Number. . . . . . . . . . . . . . . . . . . . . . 118

6.11 Spectre Correct Characters. . . . . . . . . . . . . . . . . . . . . . 118

6.12 Xen Cloud Platform Host. . . . . . . . . . . . . . . . . . . . . . . 123

6.13 ABTiCI Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.14 Agent Integrity Verification. . . . . . . . . . . . . . . . . . . . . . 130

6.15 ABTiCI Message Flows. . . . . . . . . . . . . . . . . . . . . . . . 131

xvi



List of Tables

6.1 Spectre & Meltdown Experiment Results . . . . . . . . . . . . . . 117

xvii



LIST OF TABLES

xviii



Chapter 1

Introduction

The need for Cybersecurity professionals is still very high [10][23][87][88]. Cyber-

security Ventures predicts that there will be 3.5 million unfilled cyber security

positions by 2021 [24]. In October 2018, (ISC)2 report said that the cyberse-

curity workforce supply and demand gap is more than 2.9 million [47]. At the

same time, there were a lot of cyber attacks and data breaches have been re-

ported [23][50][113][133]. According to Cisco1, Asia-Pacific companies receive 6

cyber threats every minute [17]. Cybersecurity Ventures predicts that cybercrime

damages will cost the world around $6 trillion annually by 2021 [23]. To fill the

gap, the current and the future generations of Cybersecurity professionals must

be trained through a learning platform that could be accessible and affordable by

a large number of users.

Online Education or e-learning comes with a lot of number of ways to teach

and learn outside of traditional classrooms, by providing access to the learning

material from anywhere and anytime via Internet connection. It can include

text, audio, video, animations, virtual laboratory environments and live chats

with professors. Using e-Learning platform, students could interact with profes-

sors regardless their geolocation. This is one benefit that we can get from the

rapid development of computer science and communication technology. Some re-

searches have been done to find the best learning method to support the students

or learners in online Education or e-Learning [106][100]. E-Learning in Computer

1https://www.cisco.com/

1



1. INTRODUCTION

science is the most rapid developed, where the learners could also have hands-

on exercises to implement or practice their knowledge. Some researches have

been done to use the technology to provide more features for e-Learning, such as

providing computer laboratory for an e-Learning user to learn programming or

computer networking.

Massive Open Online Courses (MOOCs) is a form of Online Education which

usually delivered in lecture form to online ”classrooms” with an unlimited num-

ber of participants. The term ”MOOC” was first mention in 2008 [65] and it

has grown incredibly fast, especially in 2012 [79]. By now, there are a lot of uni-

versities and educational institutions participate in the wave of MOOCs, which

attract millions of learner into using MOOC platforms, regardless their ages, na-

tionalities and educational backgrounds. MOOC platform should also be able

to provide virtual laboratory environment for the participants to practice their

knowledge and skills.

Hands-on exercises are essential in cybersecurity learning and training. Know-

ing is not enough, the participants need to be able to practice the knowledge in

a real environment to have adequate skills in cybersecurity. The exercises are

usually in various forms of course laboratory, but they could also in the types of

treasure hunt or capture the flag competition. The laboratory settings of those

exercises could be simple consists of a VM or very complex consists of multi-

ple server systems. Hands-on exercise scenarios need many resources to provide

a virtual laboratory environment to thousands of learners. This dissertation is

focused on increasing the scalability of a Virtual Laboratory for cybersecurity

e-Learning to be able to serve a large number of users as in the MOOC platform.

Increasing the scalability should not reduce the security of data confidentiality.

1.1 Research Background

Hasso Plattner Institute (HPI) had an e-Learning platform called Tele-Lab. It is a

platform for learning IT Security (Cybersecurity) subjects. In a learning system,

especially in cybersecurity subjects, students should be able to do practical hands-

on exercises. Tele-Lab tried to fill the gap between e-Learning and practical

education in cybersecurity, by providing Virtual Laboratory Environment. In

2



1.2 Research Questions

cybersecurity exercises, each student needs at least one machine to be able to

implement an exercise scenario and check the result. More machines are needed

for more complex scenarios such as attack and defense scenario, which requires

at least one machine as a victim and the other as an attacker.

Telelab provides a virtual laboratory environment using a private cloud plat-

form called OpenNebula [70]. Each machine (victim or attacker) in practical

hands-on exercise is represented by a virtual machine (VM). A VM needs a fixed

allocation of resources such as memory, processor (virtual CPU) and hard disk.

For example, to deliver a Man in the middle attack exercise scenario for a par-

ticipant, it needs 3 VMs where one VM as an attacker, and two VMs as the

victims [126]. For 100 students, they must be provided with 300 VMs. Suppose

one VM needs memory around 512 MB, then 300 VMs need 150 GB memory.

To serve this number of simultaneous participants in a private cloud, we need to

provide a high specification computer hardware or many computers with the low

specification. To serve more participants, the virtual laboratory must be able to

scale out. The number of participants is limited by the available resources for

virtual laboratory. To be able to use Telelab as a MOOC platform that could

serve thousands of users, we need to increase the scalability of Telelab.

1.2 Research Questions

Based on the aforementioned research background, the main question of this the-

sis is ”How To Increase the scalability of Virtual laboratory for Cybersecurity

e-Learning such as Telelab?”. In answering the research question, a part of the

virtual laboratory could be running on an untrustworthy environment which cre-

ates a security problem. We investigate a set of questions that construct this

dissertation storyline. The questions are:

1. How to increase the scalability by increasing efficiency in using the available

resources?

2. How to increase the scalability by providing more resources?

3. How to secure the data confidentiality when the VM is running on untrust-

worthy host machine?

3



1. INTRODUCTION

Towards Scalable & Secure Virtual Laboratory for 
Cybersecurity e-Learning

Efficiency
More 

Resources

Load sharing with 
the user-on-

premise machine

Public Cloud Crowd-ResourcingVIrtualization

Architecture
Replacing VM 
with a user on 

premise machine

Team 
Placement 
Algorithm

Integration & 
dis-

Integration

Securing VM 
from untrusty 

contributor

Container if you 
can, VM if you 

must

Private Cloud

Figure 1.1: Research Structure

In answering the research questions, we follow a research structure shown in

Fig. 1.1. To increase the efficiency, we propose to replace VMs with containers

whenever it is possible and to replace an attacker VM with a user on-premise

machine. To provide more resources, we propose to use public cloud services

and Crowd-Resourcing. In crowd-resourcing, the resources are gathered from

the crowd (people) which contribute their VMs to the virtual laboratory system.

Since the VMs could be anywhere around the world, we propose an architecture,

team placement algorithm, integration and dis-integration approaches. We also

propose several approaches to strengthen the VMs, since a VM could be running

on a un-trustworthy host machine in Crowd-Resourcing virtual laboratory. We

use Tele-Lab [70] platform as our study case, but our solutions could also be used

to solve the same problem on other platforms.

1.3 Contributions and Publications

The purpose of the approaches developed in this thesis is about how to increase

the capability of the Virtual Laboratory system to be able to serve a large num-

ber of users to become a part of MOOC platform for Cybersecurity e-Learning.

In answering the research questions, we come up with some contributions and

4



1.3 Contributions and Publications

publications. We proposed two approaches as our contributions, to answer the

first question of increasing the Virtual Laboratory scalability by utilizing the re-

sources more efficient. The first approach is to replace Virtual Machine (VM)

with Container because Container needs much fewer resources compare to VM.

This approach is published in the following paper:

• Sianipar, J., Willems, C., Meinel, C.: A container-based virtual laboratory

for internet security e-learning. In International Journal of Learning and

Teaching. IJLT, vol. 2, no. 2, pp. 121–128. (2016)

The second approach in answering the first research question is by distributing

the load to the user on-premise machine. In some exercise scenarios in cybersecu-

rity e-learning, the attacker needs only a web browser to attack the victim. The

web browser needs to be running on a VM. Instead of providing a VM for the

user, we propose to use the user on-premise machine to run the web browser as

the user is the attacker. Because the virtual laboratory is isolated, we need to

provide a secure way for the user to attack the victim inside the virtual laboratory

from the user on-premise machine. We use signed URL in our approach, which

is published in:

• Sianipar, J., Willems, C., Meinel, C.: Signed URL for an Isolated Web

Server in a Virtual Laboratory. In Proceedings of the 2017 9th International

Conference on Education Technology and Computers, pages 218-222. ACM.

(2017)

To answer the second question of providing more resources to increase scalabil-

ity, we propose to use cloud computing (public or private) and crowd-resourcing.

Cloud computing services need an extra budget, while crowd-resourcing does not

need an extra budget because the resources are coming from the contributor that

voluntarily shared their VMs. There should be some ways to encourage the crowd

to contribute. We are more focus on crowd-resourcing, which gathers resources

from the people (crowd) because there is still a lack of research in this area. The

people as the contributors can contribute resources in the form of a VM. The

VM needs to be automatically integrated into the Virtual Laboratory system. To

manage the Crowd-Resourcing Virtual Laboratory (CRVL), we propose a CRVL

5



1. INTRODUCTION

architecture, team placement algorithm, integration mechanism, and fault recov-

ery mechanism. Publications about CRVL are listed here:

• Sianipar, J., Willems, C., Meinel, C.: Crowdresourcing Virtual Laboratory

Architecture On Hybrid Cloud. In INTED2016 Proceedings, 10th Inter-

national Technology, Education and Development Conference, pages 2940-

2949. IATED. (2016)

• Sianipar, J., Willems, C., Meinel, C.: Team Placement in Crowd-Resourcing

Virtual Laboratory for IT Security e-Learning. In Proceedings of the 2017

International Conference on Cloud and Big Data Computing, pages 60-66.

ACM. (2017)

• Sianipar, J., Willems, C., Meinel, C.: Virtual Machine Integration & Fault

Recovery in Crowd-Resourcing Virtual Laboratory. Accepted at the 7th

International Conference on Computer and Communications Management

(ICCCM 2019)

In the CRVL system, everybody (including a bad guy) could become a con-

tributor. The VM could be running on an untrustworthy host machine. To secure

the data confidentiality when the VM is running on the untrustworthy host ma-

chine, we propose three approaches as our contributions, i.e. Virtual Machine

Integrity Verification, Moving Sensitive Data against live memory dumping, and

Agent-based monitoring architecture. These contributions are published in:

• Sianipar, J., Saleh, E., Meinel, C.: Construction of Agent-Based Trust in

Cloud Infrastructure. In Proceedings of the 2014 IEEE/ACM 7th Interna-

tional Conference on Utility and Cloud Computing, pages 941-946. IEEE

Computer Society. (2014)

• Sianipar, J., Willems, C., Meinel, C.: Virtual Machine Integrity Verification

in Crowd-Resourcing Virtual Laboratory. In 2018 IEEE 11th Conference

on Service-Oriented Computing and Applications (SOCA), pages 169-176.

ACM. (2018)

6



1.4 Thesis Organization

• Sianipar, J., Sukmana, M., Meinel, C.:Moving Sensitive Data Against Live

Memory Dumping, Spectre and Meltdown Attacks. 2018 26th International

Conference on Systems Engineering (ICSEng). IEEE. (2018)

There are two other publications during the period of Ph.D. study which not

being used in this thesis, i.e.:

• Sianipar, J., Meinel, C.: A verification mechanism for cloud brokerage sys-

tem. In Proceedings of 2015 Second International Conference on Computer

Science, Computer Engineering, and Social Media (CSCESM), pages 143-

148. IEEE. (2015)

• Saleh, E., Sianipar, J., Meinel, C.: SecPlace: A Security-Aware Placement

Model for Multi-tenant SaaS Environments. In Proceedings of IEEE 11th

Intl Conf on Autonomic and Trusted Computing. IEEE ACT. (2014)

1.4 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we introduce a Vir-

tual Laboratory for IT Security e-Learning platform called Tele-Lab. It is at the

beginning state before the research to increase the scalability was started. The

architecture will be described in this chapter along with the virtualization, iso-

lation, middleware and remote access. We summarize this chapter by explaining

the Tele-Lab weaknesses.

Chapter 3 consists of the ways to increase the scalability by efficiency. The

available resources must be used efficiently to be able to serve users as much as

possible. Efficiency could be reached by replacing VM with a container. The

architecture and the evaluation of the container based virtual laboratory are

described in a section of this chapter. Another way to increase resources efficiency

is to utilize the user on-premise machine. We describe the scenario where the user

on-premise machine could be used as the attacker machine of the exercise scenario.

The architecture that keeps the exercise environment isolated is explained in this

chapter.

7



1. INTRODUCTION

Chapter 4 provides a panorama about some works on using the public cloud

as a virtual laboratory for IT subjects especially IT Security. The architecture

and the middleware are explained in this chapter.

Chapter 5 focuses on Crowd-Resourcing Virtual Laboratory (CRVL). This

chapter describes the architecture of CRVL which combines the private cloud.

public cloud and resources from the crowd to create virtual laboratory environ-

ment. Most of the web-based learning materials are on the private cloud, but

the virtual laboratory environment could be on private cloud, public cloud and

contributor’s resources. Since there are alternatives to run a virtual laboratory

exercise, in this chapter we describes a team placement algorithm that could se-

lect the best VM based on the geo-location and the load of the VMs. This chapter

also explains the mechanism of the VM integration in CRVL which include the

VM integrity verification. Since a contributor’s VM is not reliable, we describe

the VM fault recovery in this chapter.

Chapter 6 presents several ways to increase the security of data confidentiality

in Crowd-Resourcing Virtual Laboratory. Because the contributor’s host machine

could be malicious, the VM must be verified and secured before being integrated

into CRVL. In this chapter, we describe three mechanisms that could be used

to increase the data confidentiality of a VM. The first mechanism is to remotely

verify the integrity of a running VM on the contributor’s host machine. The

second mechanism is about securing sensitive data from live memory dumping,

Spectre and Meltdown. The third mechanism is on how to monitor the host

machine by placing an agent inside the host machine.

In Chapter 7, we summarize the main contributions of our work and outline

some future research directions. At the end of this thesis, appendices, references,

acronyms and acknowledgment can be found.

8



Chapter 2

Tele-Lab: Virtual Laboratory for

IT Security e-Learning

In this chapter, we introduce the Tele-Lab as the base of research in this the-

sis. Our approaches in the next chapters are designed, implemented and tested

based on Tele-Lab. Section 2.1 describes the overview of Tele-Lab. The Tele-

Lab evolution or development history is described in section 2.2, starting from

using a standalone system until a private cloud system. The architecture and

the implementation of Tele-Lab using the private cloud is presented in section

2.3. A summary closes this chapter in section 2.4. In this thesis, IT Security

and Cybersecurity are used interchangeably to represent the same meaning, but

in this chapter, we use IT Security because Tele-Lab is using IT security term to

represent security in information technology (IT) field.

2.1 Tele-Lab Overview

Tele-Lab is an Online Education or an e-Learning platform to learn and prac-

tice IT security subjects. It consists of a web-based tutoring system to learn the

concept and get the knowledge in the form of text or multimedia. The learning

units covered by Tele-Lab include various aspects of cryptography and network

security such as encryption, authentication and firewall [126]. Tele-Lab also con-

sists of a training environment to practice and to gain hands-on experiences in a

virtual laboratory environment built on VMs. The VM is representing a victim

9



2. TELE-LAB: VIRTUAL LABORATORY FOR IT SECURITY
E-LEARNING

or an attacker node in an exercise scenario. The VM is running on a private

cloud (OpenNebula) platform [70] where the attacker VM is accessible and can

be operated via remote desktop. On the private cloud platform, the VM could be

reverted to the original state after each usage [70]. The VM needs to be reverted

to the original (fresh) state to be used by other students. The student needs a

web browser to access the learning material and virtual training in the Tele-Lab

system. Figure 2.1. shows the new user interface of Tele-Lab while having an

SSH connection to one of the nodes in exercise scenario.

Figure 2.1: Tele-Lab Interface

The Tele-Lab platform could dynamically assign more than one VM to a single

10



2.2 Tele-Lab Evolution

user at the same time. Usually, one student needs at least two VMs, one as the

victim and the other as the attacker. A virtual local area network (VLAN) is

used to connect and isolate those machines. The combination of those machines

and VLAN is known as Team [124][12]. So, a team is a combination of VMs,

VLAN, and others that are configured based on an exercise scenario. Within the

VLAN, the student as an attacker could perform basic network attacks such as

interacting with a victim (e.g. Port scanning). A victim could be a server or a

client running all needed services and applications. It could have several scripts

that simulate user behaviour. IPTables is used to filter the traffics to and from

the VLAN.

2.2 Tele-Lab Evolution

Tele-Lab was started as a tutoring system for IT security education to support

the teaching and training process in a laboratory[43]. It was a standalone sys-

tem where its tutoring system, exercises, and user’s working environment were

installed and integrated on a single Linux machine. There were two problems

of this standalone version. The first was that user errors could easily corrupt

the computer machine during exercises. In the event of failure, the exercises are

interrupted and terminated, therefore the entire system must be restored using

a backup partition. The second problem was that after each usage, the system

cannot be easily restored to the original (fresh) state. To get the fresh state, the

system needs to undo all the previous user activities on the system.

To handle the problems of the earlier version and provide mobility, Tele-Lab

was developed on CD/DVD[41]. All the learning materials and the linux system

were embedded on a Knoppix CD/DVD [55]. It is a bootable live CD/DVD which

runs a Linux operating system (OS) on a computer without an OS installation on

the hard-disk. This way, it is easy to recover from errors or to get the fresh state by

only rebooting the system. It is also portable because the students can bring the

live CD/DVD with themselves and easily use it on a general computer machine

at home or any place they want, as long as the computer has the minimum

hardware requirements of the Linux operating system. The weakness of this

version is that the live CDs/DVDs need large size of disk space for the operating

11



2. TELE-LAB: VIRTUAL LABORATORY FOR IT SECURITY
E-LEARNING

system, that makes the space for learning materials and exercises are limited. The

live CDs/DVDs is also a standalone system which can be used only by a local

user. The tutor needs to visit each computer to check for the user activities or

exercise’s results on these Tele-Lab versions. Another weakness is that to update

the learning materials, the CD/DVD needs to be replaced with the new one.

Placing the Tele-Lab system on a server accessible from the computer network

(Internet) could mitigate the weaknesses of the standalone versions. The Tele-Lab

server[42][40] is the first e-Learning version of Tele-Lab systems. It transforms the

Tele-Lab system from a desktop-based to a web-based system and from standalone

to client-server that makes the resources accessible for remote users. The Tele-Lab

server could separate the user’s working environments from the tutoring system

and exercises. The user’s working environments are build from VMs created on

a host and connected to a network. These VMs and the network can be cloned

and running on other hosts. Users could be given privilege rights on the VM to

complete security tasks. If a VM was crashed, it could be quickly restored and

will not damage the other parts of the Tele-Lab server. Using VMs, a laboratory

environment can be economically and conveniently virtualized by software, which

is also remotely accessible on the Internet.

Some works had been done to improve the content and the system of the Tele-

Lab Server. Cordel et al. added wireless network security learning unit in the

Tele-Lab content[19]. Willems et al. in [125], enhanced the Tele-Lab architecture

by adding the NX server for proxying the remote desktop connection from the

user to each VM. They also added other features such as a virtual machine pool

to accelerate the provisioning time[125]. Willems et al. in [123], described several

ways to secure the Tele-Lab from several kinds of attack. Willems et al. in

[124], introduced a distributed virtual laboratory architecture to be able to share

resources. The architecture uses a VPN to connect two Tele-Lab servers. The

architecture was implemented to connect two independent instances of Tele-Lab

in Germany and Lithuania.

The latest version of Tele-Lab that being used as the base of research in this

thesis was introduced by Moritz et al. in [70]. They use OpenNebula private

cloud to make Tele-Lab’s virtual laboratory environment more scalable with a

desire to have IT Security virtual laboratory for MOOCs. Tele-Lab consists of

12



2.3 Tele-Lab Architecture

a frontend and a backend application. The backend application communicates

with the OpenNebula via middleware. VMs and virtual networks are provided

by OpenNebula. Details about private cloud Tele-Lab is described in the next

section.

2.3 Tele-Lab Architecture

The Tele-Lab architecture consists of a frontend web based application, a back-

end service, and a VM pool. The frontend application is for tutoring contents

(Learning Units) with user and administrator interface. The user interface is for

participants (students) to work with the learning units and to access the virtual

laboratory. The administrator interface is for administrator to provide content of

learning units, create the training scenarios, prepare the VMs, and monitor the

system in general. This frontend application was developed on Grails framework

which communicates with the back-end service using a XML-RPC client. The

Tele-Lab architecture taken from [70] is shown in figure 2.2.

The Tele-Lab Backend service is a middleware to manage the communication

between frontend and the cloud controller. The service could start, suspend

and stop VMs on OpenNebula. It was developed in ruby and it uses the Ruby

OpenNebula Cloud API to communicate with the OpenNebula. This API allows

external applications to work with OpenNebula’s datatypes, e.g. VM images,

virtual networks, and virtual machines. Tele-Lab service implements a XML-

RPC server for platform independent access.

OpenNebula is one of open source private cloud frameworks. It has a Host

Controller installed on each host machine to manage the VMs running on the

physical host. The Host Controller communicates with the hypervisor and with

a central cloud component called Cloud Controller to receive or send informa-

tion. The Cloud Controller collects the host information from each host, and

uses the information to determine on which physical host a new VM should be

deployed. It is also responsible for virtual network management using virtual

network devices such as virtual switching, to connect VMs. To manage VMs, the

Host Controller and Cloud Controller use the libvirt library to be independent

13



2. TELE-LAB: VIRTUAL LABORATORY FOR IT SECURITY
E-LEARNING

Main Blade

OpenNebula Host

Browser

R

TeleLab Frontend

(Grails)

User Frontend

Admin Frontend

MySQL DB

TeleLab Backend

(Ruby)

R

OpenNebula

HostController

DataStore

Qcow

R

NoVNC Server
QEMU/KVMlibvirt

R

Additional Blade

OpenNebula Host

QEMU/KVMlibvirt

Trainee,
Trainer

R

Figure 2.2: Private Cloud Tele-Lab Architecture

of particular hypervisors such as QEMU-KVM1. Libvirt is a toolkit to manage

virtualization platforms2.

In cloud computing, a VM disk image is needed to run a VM. A VM disk

image is a template for creating new VM instances. All the various VM disk

images are stored in a central repository called Datastorage, which is a network

directory shared using distributed file system such as Network File System (NFS).

In OpenNebula 3, the disk image could be stored in the QCOW2 4 image format to

let multiple VMs using the same image concurrently without copying the image.

QCOW2 image format enables a faster creation of similar VMs without the need

to create a lot of virtual disk images. When a new VM instance is started,

QCOW2 creates a new delta file with differences to the original image without

1https://wiki.archlinux.org/index.php/KVM
2https://libvirt.org/
3https://opennebula.org/
4https://people.gnome.org/ markmc/qcow-image-format.html

14



2.4 Chapter Summary

cloning the image. All common data are provided by the original image which

is in a read-only mode. This way, multiple VMs could be started simultaneously

without the drawback of copying the original image.

Tele-Lab uses noVNC 1 for remote desktop connection between a user (trainee)

and the VMs that should be used by the trainee to do the hands-on exercises.

noVNC server is installed on the physical host to provide a remote desktop con-

nection between a user and the VM. noVNC server uses QEMU framebuffer

device to get a remote desktop connection to the VMs. On the user side, an

HTML5 browser is needed to get a remote desktop connection to one of the VM

in the OpenNebula private cloud. No additional software or plugins is required.

HTML5 has canvas element and WebSocket features which enable the remote

desktop connection to noVNC server in the private cloud.

As shown in figure 2.2, Tele-Lab uses MySQL Database to store not only

the frontend information (i.e. user data and learning unit content), but also the

backend information such as pools and teams.

2.4 Chapter Summary

In this chapter, we describe Tele-Lab, a virtual laboratory for Cyber security

e-Learning which uses a VM to represent a node (host) in an exercise scenario.

Tele-Lab uses OpenNebula private cloud to create a Team for a user to do hands-

on exercises. A Team consists of VMs and virtual networks. Tele-Lab uses VLAN

and iptables to isolate a Team in the private cloud. Tele-Lab uses QCOW2 image

format to let multiple VMs use the same image concurrently. The user could use

any modern browser to get a remote desktop connection to the VMs without any

additional software. noVNC is used for the remote desktop connection.

A VM needs a fix allocation of resources such as memory, vCPU (virtual CPU)

and disk space. The available number of resources limits the number of VMs that

could be running simultaneously on the private cloud. The number of resources

could not be easily increased. Thus, the number of users that could be served

concurrently is also limited. This is one of the weaknesses of the Tele-Lab that

must be addressed to be able to serve a large number of users or to function as

1https://novnc.com/info.html

15



2. TELE-LAB: VIRTUAL LABORATORY FOR IT SECURITY
E-LEARNING

a MOOCs platform. Tele-Lab needs to be able to rapidly scale-out and scale-in

on demand.

16



Chapter 3

Efficiency to Increase Scalability

In this thesis, we are trying to increase the ability of the virtual laboratory sys-

tem to scale out to serve a large number of simultaneous users as in a MOOCs

platform. Scalability could be increased without providing more resources by

increasing the efficiency of the virtual laboratory system, such as by replacing a

high resource usage software component with the lower resource usage software

component. Virtual Machine (VM) is a high resource usage software component

that makes a cybersecurity virtual laboratory uses many resources. In many

cases, VMs could be replaced with containers. Efficiency could also be increased

by sharing the load to the user on-premise machine, where a node in the exer-

cise scenario is represented by the user on-premise machine. In this chapter, we

present two approaches to increase the scalability of cybersecurity virtual labo-

ratory (Tele-Lab) by doing efficiency in using the available resources.

3.1 Container Based Virtual Laboratory

Existing technologies enable us to choose the one that uses the lowest resources

but still able to function properly. For example, in the Tele-Lab, a virtual machine

is used to represent a host in an exercise scenario. In virtualization technology,

besides Virtual Machine, Container is another way to represent a host/node in

the context of the training environment. In some cases where the desktop envi-

ronment is not needed, the VM could be replaced with a container (docker). A

container does not need resources as much as a VM, because containers are run-

17



3. EFFICIENCY TO INCREASE SCALABILITY

ning above the same kernel (Operating System), and Containers could only run

a text-based application. Running container instance does not install a new op-

erating system, because it uses the same OS as the host. The container does not

need a preliminary fixed allocation of resources. It uses namespaces and cgroup

to isolate one container from the others and from the host[1]. It is usually used

to run services in an isolated environment.

Containers can communicate with each other and act according to the prac-

tical exercise scenario. Network tools that are needed in the practical exercise

scenario can be installed as needed in each container. A container uses resources

just like an application in an operating system. This means that we can have

containers as much as the available memory in a host. We can run containers

as much as we can as long as the PID (Process Identifier) and resources are

available. The number of containers that can be run on a host depends on how

much memory is needed for an application inside the container. Besides taking

much fewer resources compared to VM, container provision time is much smaller

than VM provision time. Felter et al.[30], Seo et al. [98] and Sharma et al.[99]

elaborate the performance of a container compares to a VM. In this section, we

present the architecture of the container based virtual laboratory.

3.1.1 Architecture and Organization

Moving from a VM based virtual laboratory to a container-based virtual labora-

tory changes several parts of the Tele-Lab system. Replacing VMs with containers

needs to create a new architecture, which is a re-factored enhancement to the in-

frastructure presented in figure 2.2. Basically, the architecture is almost the same

as the private cloud Tele-Lab, except that it uses containers instead of VMs to

represent a node in the virtual laboratory scenario. A host of containers is a VM

in a private/public Cloud. Additional host (VM) can be provided in the same

cloud provider to serve larger participants. Figure 3.1 shows the architecture of

Tele-Lab using containers which we call it as Container-Based Virtual Laboratory

Architecture.

The Tele-Lab backend needs to be modified to add containers to the architec-

ture. In the new architecture, a node in a virtual training environment could be

represented by a VM or Container, depends on the scenario requirement. When a

18



3.1 Container Based Virtual Laboratory

Public / Private Cloud

Main VM

Browser

R

DataBase

TeleLab 

Backend

(Ruby or 

Shell 

Script)

R R

GateOne / 

NoVNC Server

R

Additional VM

Docker Container

LibsBins

Trainee,
Trainer

R

TeleLab 

Frontend

(Grails)

User 

Frontend

Admin 

Frontend

Docker 

Daemon

R

Docker Container

LibrariesBinaries

Docker 

Daemon

namespaces

cgroups

UFS

Docker Client

Repository

(Images)

Dockerfile

Docker 

Client

Applications

Apps

R

Figure 3.1: Container Based Virtual Laboratory Architecture

scenario requires a Windows or a Linux desktop, a node needs to be represented

by a VM. When a scenario does not require a desktop or a GUI application,

a node could be represented by a container. In this section, we focus on the

container side of the virtual laboratory architecture.

In the container-based virtual laboratory (CBVL), containers are running on

a VM to isolate the containers from other containers on other VMs. This way, if a

user of a container crashed the host VM, it does not affect the other containers on

other VMs. The VM, as the host machine, should not be the main VM where the

Tele-Lab application is running. It should be another VM in the cloud. The Tele-

Lab Backend still needs to be able to manage VMs in the private cloud platform

(OpenNebula) by implementing an XML-RPC server for platform-independent

access. It also needs to be able to manage containers using API1 or shell scripts on

1https://docs.docker.com/engine/api/v1.30/

19



3. EFFICIENCY TO INCREASE SCALABILITY

the container platform (docker). It receives requests from the Tele-Lab Frontend

to create a Team for a Trainee (student). A Team consists of containers and

virtual networks that are configured based on a training scenario. In this thesis,

we use shell scripts to manage docker containers.

A Team must be isolated from other networks using VLAN on a Virtual

Switch. Each container is provided with several tools which are needed to do

the training. Docker is used as a platform to run containers. The Tele-Lab

Backend creates a Team by executing shell commands on the host (VM) where

Docker Client installed and running. It uses an SSH connection to execute shell

commands on a remote host (VM). The shell commands for creating the Team is

listed in a shell script. Which scripts to run is depending on the exercise scenario

of a learning unit. This information is provided in the database.

Basically, the script consists of docker commands to create containers based

on specific images. The images are already built and ready to be used. The

script also consists of openVswicth command to create a virtual network for the

containers, specify an IP address for each container, and to configure VLAN for

the Team isolation. The script has IPTables commands to filter traffic to and from

VLAN of the Team. The script also has IPTables command for network address

translation (NAT) between VM (host) IP and port address and the container IP

and port address. Listing 3.1. shows an example of a shell script.

Docker needs a container image to start a container instance. Docker builds

images automatically by reading the instructions from a Dockerfile. A Docker-

file is a text document that contains all the commands that would be executed

to build a Docker image. By calling docker build command from a terminal,

Docker builds an image step by step, executing the instructions successively[2].

Dockerfile is created by the Trainer or Admin for each container image, based

on the container roles in the Team. Trainer or Admin builds container image by

executing a shell command on Docker Client, via TeleLab Backend. The image

could be stored locally or on a remote repository.

A container can be run with specific capabilities or even as a privileged con-

tainer. Capabilities of a container can be specified as needed[1]. Docker Daemon

runs and manages a container. Each container is separated by using namespaces,

cgroups and UFS[1]. Docker container consists of binaries and libraries that can

20



3.1 Container Based Virtual Laboratory

Listing 3.1: Shell Script Example.

1 #!/bin/bash

2 #Shell command arguments:

3 #Number of scenario instances = $0

4 #bridge number = $1

5 #port number = $2

6

7 sudo ovs−vsctl add−br $1

8 for (( i=1; i<=$0; i++))

9 port = $2 + 1

10 do

11 j=0

12 for (( s=1; s<=2;s++))

13 do

14 let j=j+1

15 if [ ”${j}” −eq 1 ]

16 then

17 c[$j]=$(sudo docker run −−privileged=true −d −n=false −t −i mitm /bin/bash)

18 else

19 c[$j]=$(sudo docker run −d −n=false −t −i ftp client /bin/bash)

20 fi

21 sudo ./ovs.sh $br num ${c[$j]} 172.21.$i.$s/24 172.21.$i.255 172.21.$i.254 $i

22 done

23 sudo ovs−vsctl add−port $br num ”vlan$i” −− set interface ”vlan$i” type=internal

24 sudo ovs−vsctl set port ”vlan$i” tag=$i

25 sudo ifconfig vlan$i 172.21.$i.254/24 netmask 255.255.255.0 broadcast 172.21.$i.255

26 sudo iptables −t nat −A POSTROUTING −s ”172.21.$i.0/24” −o eth0 −j MASQUERADE

27 sudo iptables −I FORWARD 1 −i eth0 −d 192.168.56.33/32 −j ACCEPT

28 sudo iptables −t nat −A PREROUTING −i eth0 −p tcp −−dport $port −j DNAT

29 −−to−destination 172.21.$i.1:22

30 done

be used to run an application. The Docker client is the primary user interface to

Docker. It accepts commands from the user and communicates back and forth

with a Docker daemon[1].

When the needed containers were ready to be used, the CBVL opens a

GateOne page which provides an SSH connection to the attacker node in the

exercise scenario. To be able to access the container of an exercise node, every

21



3. EFFICIENCY TO INCREASE SCALABILITY

attacker container is provided with an SSH server. A participant could access

the virtual host using GateOne and SSH connection to the container. GateOne

is text-based remote access. If a desktop based is needed, then the CBVL will

show a noVNC connection to the participant. In the context of man in the mid-

dle (MITM) attack and Firewall learning unit, text-based remote access is used.

A small part of Tele-Lab frontend must be modified to be able to display the

GateOne 1 interface on the user browser. Through the GateOne interface, users

could have an SSH connection to interact with one of the containers in the virtual

training environment. Virtual Training Environment is the place where Teams

are created and running.

A Team is created on the fly per user request, and it will be shut down when

the user leaves or ends the remote access session. Figure 3.2 shows the message

flows in the process of creating a Team. A user clicks a link on a browser to

start a Tele-Lab hands-on exercise for a Learning Unit. The Tele-Lab Front End

accepts the request. It verifies the request, and if the request is valid, the request

will be sent to the Tele-Lab Backend. Tele-Lab Backend checks on the database,

whether the images for the requested learning unit has been made or not. If the

images are not available, the Tele-Lab backend will choose and run the specific

Dockerfile to create images for this specific learning unit. After the images are

ready, Tele-Lab backend will execute a script on the Docker Client to create a

container with specific capabilities. Configuration setting such as capabilities,

Dockerfile, for every learning unit is stored in the database.

Commands or script in Docker Client is sent to Docker Daemon to be executed.

Docker Daemon could be in the same VM with Docker Client or in another VM

in another Public/Private Cloud. Docker Daemon creates containers based on

the script. For example, in the MITM Attack exercise scenario, Docker Daemon

creates two containers using script. One container has a role as a victim, which

periodically sends credential to an FTP server. The other container is the attacker

container where a participant has access to it, and from this container, an attacker

can run an attack using tools that have been provided in it. The attacker tries

to get the victim’s credential and use the credential to access the server and get

a specific file from the server to prove that he has successfully made the attack.

1http://liftoff.github.io/GateOne/

22



3.1 Container Based Virtual Laboratory

Browser DockerBack End

startTrainingEnv()

Front End

Cloud InfrastructureStudents

startTrainingEnvn()

buildImages()

done

runContainers()

done

Done (IP & Port 
address)

GateOne Interface()

runScripts()

stopTrainingEnv()

stopTrainingEnvn()

done

stopContainers()

releaseNework()

Done

Done

Figure 3.2: Starting and Stopping a Team

After the container was created, run and ready to be used, the CBVL pro-

vides remote access to the participant. Remote access is using GateOne to have an

SSH connection to the container. CBVL gives a link to the user, whereby clicking

this link, the system directs the user to the GateOne with ssh connection to the

attacker container where the user can start an exercise. An Example of the link to

GateOne SSH connection is https://192.168.56.205/?ssh=ssh://johannes@localhost.

The allocated container instances will be stopped when the user no longer

needs it (when the user logs out, or exit from GateOne). When the user logs

out from the container instances, the system will stop all the instances related to

the user exercise. This way, the allocated memory and CPU for these container

instances will be released and ready to be used by others.

23



3. EFFICIENCY TO INCREASE SCALABILITY

3.1.2 Evaluation

We did several experiments to evaluate the container based virtual laboratory.

The objectives of our experiments are (1) to prove that the Docker container

can be used as a virtual host in a virtual laboratory (Tele-Lab), (2) to find out

whether it can increase the scalability or not. We use MITM attack and Firewall

learning unit in our experiment, to represent learning units in Tele-Lab. In our

experiments, we did not test it using real-life user access. We generated the traffic

and ran the tools using scripts and cron job. We do not need to implement all

Tele-Lab system, but only the part where containers are used to replace VMs.

For the objective number one, we installed and configured Ettercap for the

MITM attack learning unit and IPTables for a firewall learning unit on a docker

container. These tools can be run well in the docker container. The MITM attack

network topology is shown in figure 3.3. In the CBVL, the nodes (Alice, FTP

Server, and Attacker) are represented by containers and the switch is represented

by a virtual switch. For objective number two, we run the Team as many as

possible on the certain host to find out how many students can simultaneously

do the exercise. We create a script and use the cron job to simulate real user

activities in doing the exercise.

Attacker

MITM MITM

Switch
Bob’s FTP Server

Origin

Alice

Figure 3.3: MITM Attack Topology

We delivered our experiment on a VM. This VM was running in a Virtual Box

hypervisor with resource allocation of 1.5 GBytes memory, 25 GBytes storage

and 1 CPU. We use htop to monitor resource consumption. As we can see in

24



3.1 Container Based Virtual Laboratory

figure 3.3, there are 3 nodes involved in the MITM attack exercise scenario. In

our experiment, we use only one FTP server (Bob) for every Team. For Alice

container, we create a Dockerfile (Listing 3.2) to create a Docker image that has

an FTP client inside. Using crontab script, Alice periodically (every 5 minutes)

sends credentials to Bob. For the attacker container, we create a Docker image

(Listing 3.3) that has an Ettercap and SSH server installed and configured. The

Ettercap commands are executed using the cron job right after the container is

started. The Ettercap command is stored in a shell script where we add a random

sleep time to execute the command randomly.

Listing 3.2: Dockerfile for Victim Container.

1 FROM ubuntu:12.04

2 RUN apt−get update && apt−get install ftp −y

3 RUN apt−get install cron −y

4 ADD ftp login /var/local/ftp login

5 ADD crons.conf /var/local/crons.conf

6 RUN crontab /var/local/crons.conf

7 ADD startup.sh /var/local/startup.sh

8 CMD [”/bin/bash”, ”/var/local/startup.sh”]

Listing 3.3: Dockerfile for Attacker Container.

1 FROM ubuntu:14.04.2

2 RUN apt−get update && apt−get install ettercap−text−only −y

3 RUN apt−get install cron −y

4 ADD ettercap start /var/local/ettercap start

5 ADD crons.conf /var/local/crons.conf

6 RUN crontab /var/local/crons.conf

7 ADD startup.sh /var/local/startup.sh

8 CMD [”/var/local/startup.sh”]

To create a MITM attack Team for a student, only Alice and attacker contain-

ers that need to be created. We started the experiment by creating 20 Teams for

20 students, and gradually increased by 20 if the performance was still good. The

performance is measured by accessing one of the attacker containers and enter

attacking shell commands manually and get the response time. More containers

25



3. EFFICIENCY TO INCREASE SCALABILITY

mean higher response time, but as long as the user still feels comfortable and

the containers are not crashed, we tried to add more Teams. The performance is

still good if there was no error shown up from the system, and we could do the

exercise comfortably.

Until 100 Teams for 100 students, the performance was still subjectively ac-

ceptable. However, for 120 Teams, the performance is not acceptable. The Linux

system showed several errors of killing processes because of “out of memory”.

Htop showed that the CPU and memory were overloaded. In this condition, we

cannot create a new training environment. From this result, we concluded that for

the VM of 1.5 GBytes memory, 100 students could be served to do MITM attack

exercise. Even though it is subjectively acceptable to run 100 Teams, we suggest

to run only 50 Teams (100 containers) on a VM with 1.5 GB memory, to make

sure the performance is acceptable. If we used VMs instead of containers, the

available resource is enough for 1 Team only. So, running 50 Teams on the same

resources is already improved the efficiency of the resources usage significantly.

For Firewall learning unit, we only need two containers for a Team. For the

firewall container, we create a Docker image that has IPTables, an SSH server,

and an FTP server. IPTables has already configured to allow only SSH connec-

tion. For the other container, we create a Docker image that has an ssh client,

an FTP client and a Telnet client. These clients are used to test the IPTables

configuration. We start the experiment in the same way as in the MITM at-

tack. Until 200 Teams, the performance was still subjectively acceptable without

any errors. We stop the experiment because we thought it was enough for the

experiment objectives. We suggest to run only 100 Teams on a VM with 1.5

B memory, to ensure that the performance is still good. Figure 3.4 shows the

number of teams could be run when using VM and Containers in MITM attack

and Firewall scenarios.

From these experiments, we can see that the memory requirement to run a

Team plays the main role in the number of Teams that can be run on a virtual

training environment. Ettercap needs much more memory compares to IPTables.

That is why we could run 200 IPTables Teams, while we could only run 100 Et-

tercap Teams on the same training environment. To design and allocate resources

26



3.2 Load Sharing with User on Premise Machine

Figure 3.4: Number of Teams

for all Learning Units in Tele-lab, we need to find out the number of Teams that

can be run for each Learning unit exercise in the same host.

In the exercise using Ettercap, the CPU is always used 100%, even when there

were only 20 training environments. This condition did not generate an error, and

the training environments were still working well. The 25 GByte storage capacity

was also not an issue in the experiments. The same host can only be used for

one Team (one student) if we used VM as a node in the training environment.

So, from these experimental results, we can see that containers can be used to

replace VMs and can significantly increase the scalability.

Container has some drawbacks in the context of security that the container is

more prone to attacks. For example fork bomb could be executed by a user inside

the container to shutdown services on the VM. This attack is a DOS attack that

could be overcome by limiting the number of processes that could be executed

by a user in container and the host machine.

3.2 Load Sharing with User on Premise Machine

As mentioned above, scalability could be increased by reducing the usage of

the resources by distributing the load to the user on-premise machine. In the

Tele-Lab, all the nodes (VMs) for an exercise scenario is placed in the virtual

laboratory server, even though it is used only to run an Internet browser to attack

a victim. This kind of nodes could be replaced with the user on-premise machine,

27



3. EFFICIENCY TO INCREASE SCALABILITY

while still keeping the rest of the virtual training environment isolated. As shown

in figure 3.5, the user on-premise machine replaces an attacking machine (VM

attacker) which using a web browser to do the attack. This attacking machine

was a VM because a desktop VM is needed to run a graphical user interface

(GUI) application such as browsers. In this research, we focus on a web-based

application attack that uses an Internet browser as a tool to attack the victim.

We propose an approach that can provide secure access to the web server inside

an isolated virtual laboratory, using a signed uniform resource locator (URL) and

a reverse proxy. We develop a reverse proxy that able to verify a signed URL, run

a shell script and forward the web request to the designated isolated web server.

VM
Attacker

Container
VictimMain Virtual 

Laboratory

Contributor 
Network

VM

Team

Browser

User

Attacker

Figure 3.5: Replacing an Attacker VM with User on Premise Machine

3.2.1 Related Work

To replace a node of a Team with user on-premise machine, Signed URL and

reverse proxy are used to keep the Team isolated. In this subsection, we describe

several related works about Signed URL and reverse proxy. Signed URL is a

query string authentication that has been used by most cloud storage providers,

as part of access control mechanism. It is referred to as temporary URL in

OpenStack[78], Signed URL in Google Cloud Storage[32], preSigned URL in Ama-

zon Web Services[7], and SAS in Microsoft Azure[66].

28



3.2 Load Sharing with User on Premise Machine

Graupner et al.[33] proposed to use signed URL in multi-cloud providers ar-

chitecture. They propose a multi-cloud access control broker scheme suitable for

an enterprise use-case. They use Signed URL to share permissions to access a

Cloud Storage in multi-cloud service providers. Another use case of a signed

URL is proposed by Saleh et al.[92]. They propose SignedQuery, a mechanism

designed to enhance the security isolation between tenants in a SaaS environ-

ment. SignedQuery uses a signature to sign a tenant’s request to prevent any

tenant from accessing other tenants’ data. Using the signature, the server can

recognize the requesting tenant and ensure that the data to be accessed belongs

to this tenant.

A reverse proxy is a type of proxy server that retrieves resources on behalf of a

client from one or more servers. These resources are then returned to the client as

if they originated from the Web server itself. Typical usage of a reverse proxy is

to provide Internet users access to a server that is behind a firewall[9]. A reverse

proxy can be used as an application firewall against some threats. Wurzinger et

al.[127] propose an approach to mitigate cross-site scripting (XSS) attack using a

reverse proxy. Lin et al.[61] propose a detection method based on reverse proxy

servers to detect the flooding attacks. Valeur et al.[121] propose an approach that

composes a web-based anomaly detection system with a reverse proxy to cope

with a vulnerable code being deployed and made available to the whole Internet.

3.2.2 Architecture

We aim to replace an attacker VM with a user on-premise machine, while still

keeping the virtual laboratory environment isolated. As an attacking machine,

a user on-premise machine must be able to attack a victim inside the isolated

virtual laboratory environment. In this case, the victim is a web server. To keep

the web server isolated, a reverse proxy is used as an intermediary between an

attacking machine and the web server. The web server could be installed on a

VM or a container inside a VM. The VM could be running on a different location

than the Tele-Lab server, such as on another private cloud or a public cloud. The

reverse Proxy is installed on the VM where a Team is created. This way, a user

on-premise machine could have a direct connection to a Team. It does not have

29



3. EFFICIENCY TO INCREASE SCALABILITY

to go through the main virtual laboratory server to get connected to a Team.

Figure 3.6 shows the connection scheme.

Browser

 

Network#3
VM
#n

Trainee

Network#2
VM
#2

Network#1VM
#1

Direct Connection

Virtual Laboratory 
Server

Indirect Connection

Figure 3.6: User on-Premise Machine Connection to the Virtual Laboratory

We use Signed URL to have a direct connection between user on-premise

machine and the Team inside the virtual training environment. Signed URL is

created by the virtual laboratory system, used by the user to access the web

server, and verified by the reverse proxy server. Figure 3.7 shows the software

architecture inside the VM of a virtual training environment. In this case, the

web server is installed on a container. The reverse proxy and the containers are

running on the same VM. Beside a reverse proxy, a signed URL and a Team

creation function, the VM also has a Gateone service. The Gateone is used as an

SSH gateway to containers inside the VM.

Signed URL is created by concatenating selected elements (URL path) of

the HTTP request to form a string, and use a secret key to create the HMAC

(Hash-based message authentication code) of that string. The virtual laboratory

system generates the secret key and sends it to a particular VM. This HMAC is

the signature used to authenticate the request. It is added to the HTTP request

as a parameter of the header section.

The signed URL is sent to the user on-premise machine. The user uses the

signed URL to get access to an isolated web server inside a VM. The reverse

proxy receives the signed URL and verifies the signature. As shown in figure 3.8,

the reverse proxy regenerates the signature using the URL path and the secret

30



3.2 Load Sharing with User on Premise Machine

VM

Browser

R

GateOne

R

Trainee,
Trainer

Reverse 

Proxy

Signed 

URL

Team 

Creator

Docker

Container#1

Container#2

Container#n

RR

Figure 3.7: Software Architecture on a VM

key. If the signature that was generated in the VM was the same as the one

received from the user, the request is valid. If the signatures were not the same,

the request was not valid and will be rejected.

Reverse Proxy
Virtual Laboratory Server

HTTP Request

HMAC 

String-to-sign 

(URL Path)

S
e
c
re

t 
K

e
y

S
ig

n
a
tu

re

S
ig

n
a
tu

re

?

HTTP Request

HMAC 

String-to-sign 

(URL Path)

S
e
c
re

t 
K

e
y

Signature

H
T

T
P

 R
e

q
u
e

st

S
ig

n
a
tu

re Client

(Trainee)

Figure 3.8: Signature Creation and Verification

In Tele-Lab a user needs to login to be able to use the services. After the user

login, the user can access a learning unit and request for a practical hands-on

exercise. The Virtual Laboratory system needs to create a Team for a practical

hands-on exercise. It selects the best VM to run a Team for the user. After select-

ing the best VM, the virtual laboratory system creates a signed URL. The signed

URL contains information about user ID, a learning unit ID, timestamp, and

signature. For example: http://192.168.56.205:8080/?userid=10&lu=5&time=

31



3. EFFICIENCY TO INCREASE SCALABILITY

90&signature=edf064dbe83e201baf4b550d2e2d9975d163c2c0. This signed URL

is sent to the user. The sequential diagram of this access flow is shown in figure

3.9.

signedURLAccess()

User Reverse Proxy on a VMVirtual_Lab

reqVilab()

Forwarded_webPage

signedURL

containerID

createTeam()

signatureVerification()

redirectURL

redirectURLAccess()

WebApp on a Container

getPage()

webPage

DockerContainer

Figure 3.9: Signed URL Sequential Diagram

The user uses the signed URL to request for a Team inside the VM. The

reverse proxy on the VM serves the user request if the user was already authenti-

cated and the request was allowed by the virtual laboratory system. The reverse

proxy verifies whether the request is valid by checking whether the main virtual

laboratory system signs the request or not. If the signed URL is valid, the reverse

proxy starts to create the Team as requested by running a script. The reverse

proxy gets the container ID and creates a new URL to access the web server

inside the container. This new URL is sent to the client, to be used by the client

to access the web server. The reverse proxy forwards the user request to the

appropriate web server. The URL can only be used in a specific time range.

32



3.2 Load Sharing with User on Premise Machine

3.2.3 Implementation

Signed URL is created in the virtual laboratory system, which is in the Front-

end, and it is verified in the contributing VM. The implementation is based

on the existing Tele-Lab implementation, where the front-end is using Grails,

and the back-end is using python and ruby. The signed URL function in the

virtual laboratory system is built using groovy because the front end of the virtual

laboratory application is using Grails. The front-end creates the Signed URL

and send it to the user. The Signed URL consists of user id, learning unit ID,

timestamp and signature. The user uses the Signed URL to request for a Team

and to get access to the isolated web server, which is part of the Team.

The reverse proxy in a VM receives the request from the user. The reverse

proxy server is built using Node.js. We add a function to verify the Signed URL.

This function is written using JavaScript. If the Signed URL was not valid, the

request is rejected. If the Signed URL was valid, the Team Creator function

is called. The Team Creator function is built using a shell script to create a

Docker container and an isolated network. The container consists of a web server

and an SSH server. After the container is running, the reverse proxy application

automatically notices the new container existence, and add the container to the

list of signatures and the forwarded URLs. The reverse proxy application creates

a new URL to access the new web server. This URL is sent to the user, and it

is valid only for three hours. After three hours, the container will be shut down,

and the URL will be removed from the list. Behind the scenes, the VM sends

reports to the main application about the number of running containers, the list

of active users, the log of users activities, etc.

3.2.4 Discussion

Replacing an attacking machine with the user on-premise machine means reducing

the resources used on the virtual laboratory system. The amount of the resources

that had been reduced is as big as some resources that are needed to run a VM.

A Desktop VM usually needs at least 512 MB memory, 20 GB hard disk and one

virtual CPU. Besides reducing the number of memory, hard disk and CPU, it also

reduces the number of bandwidth usage. When an attacking machine is a VM

33



3. EFFICIENCY TO INCREASE SCALABILITY

inside the virtual laboratory environment, the user accesses the VM using noVNC

connection which transfers a VM desktop to a user’s browser. This connection

needs more bandwidth than the HTTP connection via a reverse proxy because

besides forwarding the web page content from a web server, it also needs to send

the desktop to the user.

Signed URL is used to keep the web server isolated. The signed URL should

be known only to the requesting user. In our approach, we did not verify the ID

of the sender of the signed URL, because we assume that the user will not share

the signed URL to another user. Although the signed URL can be used multiple

times within time range, a user can only have one connection to a VM. If a signed

URL is being used by a user, the system rejects another request using the same

signed URL. If the signed URL was valid, the reverse proxy creates a Team and

gets the URL of a web server which is part of the team. This URL is sent to the

user and could be shared with another user. The other user can use this URL to

access the web server. Again, we assume that the user does not want to share

the URL to another user, because there is no need to do that.

If there is a need to be able to stop another user in using the same URL, we

can use cookie-based authentication. The next connection must be able to show

the same cookie to get connected to the web server. However, the valid user can

also share his cookies to another user to let another user get connected to the

web server. As long as the valid user is willing to share his cookies or token to

another user, another user can get access to the web server. We could solve this

problem by using a javascript function to get the IP Address of the user machine

and by using browser fingerprinting.

3.3 Chapter Summary

In this chapter, two different approaches are proposed to increase Tele-Lab scal-

ability by increasing the efficiency of using the resources, i.e. by replacing VMs

with containers and by replacing Attacker VM with user on-premise machine. At

section 3.1, the first approach is elaborated. It shows that the container could

be used to replace VM as a host in Tele-Lab. It is also shown that scalability

can be increased. The container-based Tele-Lab system has been successfully

34



3.3 Chapter Summary

implemented. The future work on this topic will be the extensive evaluation of

the container-based Tele-Lab system with real-life user access, to measure the

right number of containers on a VM, which is still acceptable by the users. Users

satisfaction against the text-based tools should also be measured.

Another future work would be related to the security of the system because

we have to use the privileged container. We need to analyze deeply the risk of

using a privileged container for a node in a Team and find the best way to secure

it. There is a possibility that the user on the privileged container can tamper

the host. Providing agent on the host can detect when the privileged container is

tampering the host. The agent must monitor every access or any strange activities

from the containers to the host. This agent informs the sysadmin whenever it

detected an attempt to attack. It can also be used as a measurement of the

security of the cloud provider.

At section 3.2, the second approach is described. The paper at hand proposes

an approach to increase the scalability of a virtual laboratory for cybersecurity

e-Learning, by replacing an attacking machine (a VM in the virtual laboratory

environment) with a user on-premise machine. In this research, we focus on an

attacking machine that uses an Internet Browser as an attacking tool. This way,

the scalability is increased by decreasing the usage of resources. In our approach,

a reverse proxy is used as an intermediary between user on-premise machine and

the isolated web server. Signed URL is used to validate the user request to a

VM where a Team is created. The request is signed by the virtual laboratory

system and verified by the reverse proxy on the VM. This scheme is successfully

implemented.

For the future work, we are going to investigate on how to replace an attacking

machine that uses other desktop application tool to attack the victim. We think

that distributing some parts of the load to the client site is a good idea to increase

the scalability. We cannot move all things to the client, because of some reasons

such as the virtual laboratory system still needs to monitor the learning process.

35



3. EFFICIENCY TO INCREASE SCALABILITY

36



Chapter 4

Cybersecurity Virtual

Laboratory in Public Cloud

A flexible and economical way to provide more resources is using public cloud,

where resources can be provided dynamically as needed without downtime. This

also applies to Virtual Laboratory (Tele-Lab) where its scalability and flexibility

could be increased by using a public cloud provider to get more resources when-

ever the customer needs it. Of course, this is not without limitation, as for the

customer, the most influencing parameter that limits the use of resources is the

ability to pay for the cost.

The public cloud virtual laboratory architecture is relatively similar to the

private cloud Tele-Lab, where there is a middleware using API to manage VMs

on the public cloud provider. The middleware is at the backend part of the

Tele-Lab application. The public cloud could be used to run a Team consists of

VMs or Containers. The containers team runs on a VM. For the VMs team, the

isolation must be configured by implementing Virtual Private Cloud (VPC), and

the public cloud provider must be informed to get permission to execute hacking

tool software. In this thesis, we focus on the containers team running on a VM

in a public cloud.

In using a public cloud to get more resources for a virtual laboratory, we pro-

pose only the architecture (section 4.2) which is part of crowd-resourcing virtual

laboratory (CRVL) where the resources could be taken from a private cloud, a

public cloud and the crowd. In section 4.1 (related work), we describe some vir-

37



4. CYBERSECURITY VIRTUAL LABORATORY IN PUBLIC CLOUD

tual laboratories running on a public cloud. In section 4.3, we also describe some

Application Program Interfaces (APIs) that could be used to communicate with

a public cloud such as Amazon EC2 and Google Cloud.

4.1 Related Work

Cybersecurity or IT security training platform could be built on physical hardware

such as the cybersecurity platform used by collegiate cyber defense competition

or CCDC [120]. It is expensive and low scalability. Virtualization technologies

offer a lower cost and higher scalability for the cybersecurity training environment.

Virtual machine (VM) based cybersecurity training environments become popular

such as Tele-Lab [70], SEED Labs [28], V-NetLab [109], Platoon [60], Peng Li et

al. [58], John Hill et al. [38] and ISERink [48]. These systems have accelerated

the spread of cybersecurity training usage, because of their significantly reduced

costs for setting up the environment and creating scenarios. However, they could

not serve a large number of users, because the training environment deployment

is limited to the number of available resources while a VM needs a fix allocation

of resources.

The rapid development of cloud computing brings cybersecurity trainings into

clouds, because the cloud offers unlimited resources, pay per use and elasticity.

Some cloud-based cybersecurity training platforms and systems have been devel-

oped such as Virtual Cyber Security Lab on Clouds [117], Cloudwhip [8], V-Lab

[129], and EZSetup [59]. These systems are able to serve a large number of users

as long as the resources could be provided by the public cloud provider.

Virtual Cyber Security Lab on Clouds [117] works closely with Amazon UK

and takes advantage of Amazon’s world-leading cloud infrastructure, Amazon

Web Services, and security solutions. They design a Cloud-based Cyber Security

lab built on Amazon Clouds to customize, configure, monitor and manage vir-

tual resources in a simulated Cyber Security lab environment. Another training

platform running on Amazon Web Services is Cloudwhip [8]. Cloudwhip puts

the virtual laboratory in public cloud (Amazon) to make the virtual laboratory

more scalable and to remove downtime during scaling hardware resources. It

is developed to be accessible to even those people new to IaaS. It uses Virtual

38



4.2 Architecture

Private Cloud (VPC) [5] to isolate the training environments. They claim that

they have successfully implemented various network security training in the cloud

and the results suggest that cybersecurity training in cloud computing does not

only saves costs, but also relieves the educational institutions of the burden of

handling and maintaining complex IT Infrastructure.

V-Lab [129] is a cloud-based virtual laboratory education platform that pro-

vides a training environment for hands-on experiments using virtualization tech-

nologies (such as Xen or KVM Cloud Platform) and OpenFlow switches. The

students can access and remotely control the virtual machines (VMs) through

OpenVPN connection, to perform the experimental tasks. The V-Lab platform

uses an interactive Web GUI for resource management. V-Lab provides a pro-

gressive learning path with a series of experiments for network security education.

A Web application called EZSetup [59] is able to create a variety of cus-

tom cybersecurity practices (e.g., labs and competition scenarios) in one or more

computing clouds (e.g., OpenStack and Amazon AWS). It does not depend on a

specific type of cloud platform or technology. It can interact with many cloud

platforms and create many virtual environments for security practices simultane-

ously. At the backend side, EZSetup uses a cloud API to instantiate the training

scenario in one particular cloud. It has several APIs to interact with several cloud

providers. At the frontend side, EZSetup provides a Web user interface that sep-

arate training designer from training participants. Using the EZSetup frontend,

namely admin panel, the training designers can visually create a training scenario

to hide the complexity in creating training environments.

Some Cybersecurity training platforms are not transparent whether they are

using public cloud services on their backend such as the training system at the

Center for Systems Security and Information Assurance (CSSIA) [22], NICE Chal-

lenge Project [75], Cyber Security Training Using NETLAB+ [76], Cybrary Vir-

tual Security Labs [25], Virtual Hacking Labs [122], Hera Lab [29].

4.2 Architecture

In a Virtual Laboratory system, the amount of needed resources can be different

from time to time. The additional resources must be provided in a short time so

39



4. CYBERSECURITY VIRTUAL LABORATORY IN PUBLIC CLOUD

that the users do not need to wait for a long time. Public cloud offers the flexibility

to add or reduce resources rapidly based on the user’s needs. Based on Tele-Lab

architecture, we propose a Virtual Laboratory Hybrid Cloud architecture that is

running on a private cloud and public cloud. A public cloud is used to provide

more resources to run training environments for users. A private cloud is used for

the main application and also to provide training environments when the resources

are still available. We prefer to put the main application in a private cloud to

reduce the cost while we already have a private cloud system. As described in

[70], Tele-Lab uses OpenNebula for the private cloud platform.

Public cloud has a host controller to manage, start and stop VMs in the cloud.

It also has a datastore to store VM images. As we can see in figure 4.1, a public

cloud is used as a training environment in the Hybrid cloud virtual laboratory.

A training environment has a pool of VMs or containers that can be used to

create Teams. In a public cloud, a Team that consists of several VMs can be

isolated using a Virtual Private Cloud (VPC) [5], and Firewall. For a team

consists of containers in one VM, the Team can be isolated using VLAN that can

be configured on a virtual switch. A Firewall and network address translation

(NAT) are used to isolate the Team from the Internet but still accessible by the

training participants.

A public cloud provider has a rule or policy regarding the usage of their

resources. Cyber Security training activities such as sniffing using Wireshark

or port scanning using NMAP could be considered as malicious activities. The

cloud provider must be informed about the cybersecurity training activities, and

they need to approve it. Another policy that must be handled is sharing the root

access to the training participants. Some cloud providers do not let the customer

share their root credentials to other people, while some training exercises need

root access on the VM.

At the private cloud site, the Tele-Lab Backend must be able to communicate

with the host controller in the Public Cloud to create the Team as needed by

the training scenario. Most public clouds provide an API or a CLI for a client

application to communicate with a Host Controller. To be able to use the API or

the CLI, the Tele-Lab Backend must have a middleware as the client application

to manage, start or stop VM instances in a public cloud. Every training scenario

40



4.2 Architecture

Public Cloud

Private Cloud

Main VM

Browser

DataBase

Tele-Lab 

Backend

(Ruby)

R

GateOne / 

NoVNC Server

R

Trainee,
Trainer

R

Tele-Lab 

Frontend

(Grails)

User 

Frontend

Admin 

Frontend

API

CLI

Docker 

Client

Tele-Lab

Training-Environment

VM

Docker

VPC

HostController

DataStore

Figure 4.1: Virtual Laboratory Architecture in Public Cloud

has a script in Tele-Lab Backend for creating a Team. To create a Team that

consists of containers, the Tele-Lab Backend must be able to communicate with

a Docker Daemond inside a VM. The Tele-Lab Backend can use docker API or

docker CLI client in the middleware to manage container instances in the VM to

create a Team. The Tele-Lab backend can also use SSH connection and run a

shell script to create a Team from containers in a VM. It also can use a messaging

protocol such as XML-RPC, but the XML-RPC server must be installed on the

VM.

After the Team is ready, the user (trainee) accesses the Team using SSH via

GateOne or remote desktop using NoVNC server. To increase the performance,

GateOne or NoVNC server can be installed on the public cloud site, so that the

user can directly access the Team in the public cloud. To get updates about

the situation in the public cloud, the Tele-Lab system in the private cloud must

execute functions periodically and also trigger by an expired time of a Team.

All information about the usage of resources and the capacity of resources

are stored in a DataBase in the private cloud. Another part of the Tele-Lab at

the private cloud remains the same as in the existing Tele-Lab in the private

cloud. On the trainee site, the browser is also the same that it has the HTML5

41



4. CYBERSECURITY VIRTUAL LABORATORY IN PUBLIC CLOUD

capabilities.

4.3 Middleware

The main part that enables an automatic interaction between virtual laboratory

application and a cloud provider is cloud API. Each cloud provider has its specific

API that could be used by the customer/user to manage their resources or services

in the cloud. An application such as Tele-Lab needs a middleware developed using

Cloud API to start and stop VMs in the cloud provider. The middleware needs to

be able to classify which API to be used when interacting with a cloud provider.

In this section, we describe some cloud APIs and library that could be used to

manage resources in cloud providers.

The middleware mainly manages VM Instances, network and firewall configu-

ration to make the virtual training environment isolated but still accessible by the

training participants. It has three modules, i.e. a command parser, configuration

setup, and executor. The command parser module adjusts the commands to use

the specific Cloud API of the selected cloud provider. The configuration setup

module configures VM instances using configuration management tools such as

Saltstack1 and Ansible2. It also configures the networking, network isolation,

network address translation (NAT) and firewall. The executor module executes

the commands and the configurations on the public cloud provider. This module

communicates intensively with the cloud provider to build the virtual training

environment and to get feedback from the cloud provider. It is also responsible

for shutting down a virtual training environment.

The cloud APIs are mostly REST-based APIs, and they are specific to each

cloud provider. The cloud API needs an access key to execute commands on the

public cloud provider. This key could be created on the public cloud provider

web interface. Amazon elastic compute cloud (EC2) has an API for almost each

programming language such as Java, C++, and Python. Amazon bundles the API

in a software development kits (SDK) for each programming language [6]. Other

public cloud providers such as Google and Azure also have a similar SDK which

1https://www.saltstack.com/
2https://www.ansible.com/

42



4.4 Chapter Summary

includes libraries to provide basic functions such as signing requests and retrying

requests, to make it easier to get started.

There are some cross-platform cloud APIs. Petcu et al. [83] propose a

cross-platform cloud API that was part of mOSAIC project1. Petcu et al. also

published a paper called ”Experiences in building a mOSAIC of clouds” which

presents an integrated overview of the mOSAIC approach and the development

of applications using services from multi-cloud providers [84]. Some libraries

are available that could be used for multi-cloud providers such as Libcloud2 for

python and Jcloud3 for java. These libraries provides cloud API for AWS4, Google

Cloud5, Azure6, Openstakc7, etc. The middleware could be built using these li-

braries.

4.4 Chapter Summary

In this chapter, we describe the use of a public cloud to provide more resources for

Cybersecurity virtual laboratory. We propose an architecture that similar to the

virtual laboratory on private cloud [70] where the public cloud is only used to run

virtual training environments. The public cloud provides VMs and networking

to build a virtual training environment. A middleware is built using cloud APIs

to have automatic interactions between the virtual laboratory application and

the public cloud providers. The challenges in using public cloud service to run a

cybersecurity training are the isolation of the virtual training environment, port

forwarding to let the user access the VM, policy of giving root access to training

participants, and the permission to run hacking tools in the public cloud. These

challenges could be handled using containers to represent a node in a training

scenario. The containers are running on a VM.

1http://www.mosaic-cloud.eu/
2https://libcloud.apache.org/
3https://jclouds.apache.org/
4https://aws.amazon.com/
5https://cloud.google.com/
6https://azure.microsoft.com/
7https://www.openstack.org/

43



4. CYBERSECURITY VIRTUAL LABORATORY IN PUBLIC CLOUD

44



Chapter 5

Crowd-Resourcing Virtual

Laboratory

Crowdsourcing method is used to provide a large number of resources by collecting

resources from the crowd and integrate the resources into the Virtual Laboratory

system. This method is a crowdsourcing of simple tasks or an integrative form

of Crowdsourcing. Contributions are voluntary, and incentives may include self-

benefit from the system by having priority to use the resources or satisfaction of

contributing to a public good[94].

Similar to the peer-to-peer (P2P) cloud [108], to increase scalability, Tele-Lab

could gather more resources from the people or the crowd without additional

cost (budget). The crowd as contributors share their resources in the form of a

virtual machine (VM) that can be used to run virtual laboratory activities. In this

chapter, we present a Crowd-Resourcing Virtual Laboratory (CRVL) system that

could automatically integrate the VM that was shared by a contributor to be used

for Virtual Laboratory exercises. Section 5.1 describes the CRVL architecture,

which is designed based on Tele-Lab architecture. Section 5.2 introduces a Team

Placement Algorithm to select the best VM to run a Team for a particular user.

Section 5.3 elaborates the processes of VM integration into the CRVL. Section 5.4

describes the VM fault recovery to recover the Teams on other VMs and divert

the VM users to other VMs. Section 5.5 summarizes this chapter.

A crowd-resourcing virtual laboratory obtains some of the resources from the

crowd. The virtual laboratory is for IT Security e-Learning, where a trainee needs

45



5. CROWD-RESOURCING VIRTUAL LABORATORY

an isolated laboratory environment to do the practical exercises. The isolated

laboratory environment (called as a Team) consists of virtual machines (VMs)

or containers and virtual network devices. The crowd contributes their resources

such as virtual machines or physical machines, to the virtual laboratory. The

virtual laboratory automatically occupies the contributed resources and uses them

to create a Team. The team that consists of containers is running in a VM. Since

there could be a lot of VMs available, the system needs to select the best VM to

run a Team.

5.1 Crowd Contribution

A person or a company can contribute resources in the form of a VM, a bare

metal system, an account in a public cloud, a private cloud and an isolated VM

Team. An account in the public cloud represents a resource in a public cloud.

Using the account, the virtual laboratory (Tele-Lab) system can use and manage

the resource, based on the training scenarios, similar to the Tele-Lab public cloud.

In this thesis, we focus on a VM as a crowd-resource.

The Contributor should prepare the resources by installing all the software

needed to become one of the Tele-Lab training environments in the Tele-Lab sys-

tem. The Contributor must download an operating system (OS) image provided

by the Tele-Lab system, to be used to run a VM or a physical machine. The

OS image has been prepared with the needed software applications as well as an

application (agent) to get integrated with the Tele-Lab system. This agent is

used to verify the resource and to monitor user activities on the resources. The

Contributor also needs to define the resource specification such as the amount of

memory, the number of CPUs, the hard disk capacities, and bandwidth. Later,

we need to define the minimum specification of the hardware resources that can

be integrated into the Tele-Lab system.

If the resource is an account in a public cloud or a private cloud, Tele-Lab

system executes a verification function using API or CLI to verify the resource

whether the resource is qualified to be a training environment. The verification

result will be sent to the Tele-Lab primary system so that it can do some actions

46



5.2 CRVL Architecture

accordingly. In case of an isolated VMs Team, the isolation is the responsibility

of the contributor.

The contributor resources can be shared based on a time range. Outside of

this time range, the resource is released from the Tele-Lab system. This way, a

person or a company that has an idle resource at the specified time, can share

their resources and contribute to the Tele-Lab system.

The contributor shares a root account credential of the resources by sending

it to the Tele-Lab system. Using the root account, the Tele-Lab system has full

control of the resource and able to create and manage a training environment

in the resource. To be able to control the system without intervention, the root

credential is changed by the system while the resource is being occupied. The

contributor gets the new credential when the system releases the resource. The

system should map the contributor to its resources. This way, the contributor

can have a priority to use their resources.

In creating a Team, combining several VMs from different location of a con-

tributor cannot be done, because Routers and firewall devices do not forward

broadcast. It is also hard to isolate the training environment from the Internet

because the interconnection between VMs is through the Internet. The Con-

tribution of one VM can be used only with containers and Linux based. For

Contribution with Windows-based OS needs more than one VM at the same iso-

lated Network. VPN can interconnect VMs from a different location, but it is

hard to configure, and it consumes a lot of bandwidth.

5.2 CRVL Architecture

The crowd as contributors share their resources in the form of a VM. The VM is

used to run a virtual training environment where containers are used to represent

nodes in virtual laboratory scenarios. We enhanced the container based virtual

laboratory architecture (Figure 3.1) by adding crowd-resources as another plat-

form to get more VMs. As the container-based virtual laboratory is based on

Tele-Lab, CRVL uses private cloud platform to run the main applications such as

frontend and backend on a host or a VM. CRVL could also use VMs running on

47



5. CROWD-RESOURCING VIRTUAL LABORATORY

a public cloud platform to run a virtual training environment. Figure 5.1 shows

the general architecture of Tele-Lab.

Private Cloud

Private Cloud

Main VM

Browser

R

DataBase

Tele-Lab 

Backend

(Ruby & 

Python)

R

GateOne / 

NoVNC Server

R

Trainee,
Trainer

R

Tele-Lab 

Frontend

(Grails)

User 

Frontend

Admin 

Frontend

Virtual Training 

Environment #1

Public Cloud

Virtual Training 

Environment #2

Crowd Resources

Virtual Training 

Environment #3

R

R

R

Figure 5.1: CRVL General Architecture

The CRVL Architecture is based on the Tele-Lab architecture on a private

cloud platform. We add some functions in Tele-Lab middleware to communicate

and occupy the public cloud and the crowd resources. The middleware is in the

Tele-Lab Backend. It is built using an Application Programming Interface (API)

or a Command Line Interface (CLI) that was provided by the public cloud or

the resources platform. The frontend application is the same as the one in the

container-based virtual laboratory. In the CRVL architecture, there are three

types of virtual training environment.

Virtual Training Environment (VTE)#1 is in the private cloud where the

main application is running. It could be used to create a Team consists of VMs

and containers. This private cloud belongs to the owner of the virtual laboratory

system. VTE#2 is located in a public cloud. It could also be used to run a Team

based on VMs, but we need to have permission from the cloud provider to run

attacking tools on the VM. The VMs need to be isolated from other tenant’s VMs

by using a virtual private cloud (VPC) on the public cloud. The owner of the

system has an account in the public cloud and uses the public cloud resources

to run the training environment. VTE#3 is located in Crowd-Resources. It

48



5.2 CRVL Architecture

could only be used to run Teams based on containers. The Crowd resources are

resources that are owned by the people (crowd). These resources are shared to

be used by the Virtual Laboratory system for a specified time frame.

All types of contributed resources (Crowd-Resources) must be able to be in-

tegrated into the main system of the Virtual Laboratory. The Crowd-resources is

used only as a training environment. In this architecture, the Tele-Lab Backend

must be able to communicate with all the supported types of resources. Besides

the ability to create a Team in the training environment of the private and the

public cloud, the new Virtual laboratory system must also be able to create a

Team in a VM and a bare Metal system. The new system must also be able to

use a VM Team that was created by a contributor.

As mention above, the resources from a contributor could be in the form of

a physical machine, an account in a public cloud, a private cloud, and a VM.

The architecture of each resource form could be different. Figure 5.2 shows the

common architecture of crowd-resources. It has a platform controller running on

the private cloud next to the Tele-Lab Backend to communicate with the platform

running a VM. Mainly the platform controller is a collection of APIs of public

clouds, private clouds or Container platform. The crowd-resources have data

storage to store information about the resources such as the location, memory,

CPU. In a public cloud, the training environment could have a virtual private

cloud (VPC) to isolate a group of VMs when the VTE uses VMs as nodes in the

training scenario.

When the containers were used as a node in the training scenario, the contain-

ers are running inside a VM. The VM could have Docker Daemon, Dockerfile,

Docker images if Docker is used to run containers. The VM could also have

an agent for the software configuration or VM monitoring. The VM could have

GateOne when the VM is running on a different location than the main virtual

laboratory application, such as on contributor’s network or a public cloud. The

GateOne is installed on the VM to have a direct connection between trainee and

a container in the VM as shown in figure 3.5.

In this chapter, we focus on a Team consists of containers and virtual network

switches run on a VM. When someone wants to contribute in the form of a VM,

he has to download a certain VM image from the virtual laboratory repository

49



5. CROWD-RESOURCING VIRTUAL LABORATORY

Crowd-Resources

Private Cloud

Main VM

Browser

DataBase

Tele-Lab 

Backend

(Ruby)

R

GateOne / 

NoVNC Server

R

R

Tele-Lab 

Frontend

(Grails)

User 

Frontend

Admin 

Frontend

API

CLI

Docker 

Client

Tele-Lab

Training-Environment

VPC

PlatformController

DataStore

VM

Agent

DockerDaemon

DockerFile

Images

GateOne

Trainee,
Trainer

Figure 5.2: Crowd-Resources Architecture

and run a virtual machine based on that image on his host system. He also needs

to submit a root privileged user account and the VM IP address to the virtual

laboratory system. Using this root privilege user account, the virtual laboratory

system occupies the VM. The virtual laboratory system creates a Team in the

VM when a trainee needs to do the practical exercises. The trainee gets console

access to one of the containers in a Team to do his tasks. The console access is

given using Gateone interface, an HTML5-powered terminal emulator and SSH

client. Gateone was installed on each VM.

5.3 Team Placement

In this section, we focus on a Team which consists of containers running on a VM.

Since there are more than one VM available on the CRVL, we need to provide

an algorithm to select the best VM based on a requesting user location and a

load of VMs. We present CTPlace, an algorithm for Team Placement in a crowd-

50



5.3 Team Placement

resourcing virtual laboratory. CTPlace groups the VMs into hierarchical tree

clusters based on the Geo-location of the VMs. CTPlace has two steps in Team

placement. First, it selects the nearest cluster to the trainee location to get the

highest throughput. Second, it selects a VM inside the selected cluster. To select

a VM inside a public cloud cluster, it uses Most-Full-First (MFF) algorithm to

reduce service cost by reducing the number of running VMs. To select a VM inside

a private cloud or within contributed resources, it uses Least-Full-first (LFF) and

Tag-Pack to balance the load and try to place the same type of Teams on the

same VM. We compare the CTPlace with three other placement algorithms in a

simulated environment, to evaluate the performance of the CTPlace.

5.3.1 Motivation

A Team can consist of containers and virtual switches. Although a container

uses much fewer resources than a VM, it still consumes some of the resources.

The number of available resources limits the number of containers that could be

running on a virtual laboratory. When the limit is achieved, we need to find a way

to increase the number of resources. Crowd-resourcing is one way to increase the

number of resources where a person or a company can contribute by integrating

their un-used resources to the Virtual Laboratory system[103].

In the crowd-resourcing virtual laboratory (CRVL), a Team that consists of

containers is running on a VM. In case there are a lot of VMs available, the

system needs to select the best VM to place the Team. The Research problem of

this section is on how to place a Team in a CRVL in order to keep the cost as low

as possible and to maintain the performance. A placement function is needed to

decide which VM to run a Team automatically.

We introduce CTPlace, an approach for team placement in a crowd-resourcing

virtual laboratory. CTPlace groups the VMs into hierarchical tree clusters, based

on the Geo-location of the VMs. Geo-location of a VM is obtained from the

information of the VM IP address. From the IP address, we can get the location

of the VM such as the city, province, country, region, ASN (autonomous system

number), the latitude and longitude. Using this information, CTPlace can group

the VMs into the same city, or country. In the Team placement process, CTPlace

selects the nearest cluster to the trainee by checking the Geo-location of the

51



5. CROWD-RESOURCING VIRTUAL LABORATORY

trainee’s IP address and find the nearest cluster to the trainee. After selecting

the best cluster, CTPlace selects the best VM inside the selected cluster. The

best VM criteria are different between the platform where the VM is running.

CTPlace uses Most-Full-First (MFF) algorithm in a Public Cloud, and it uses

Least-Full-First (LFF) and Tag-Pack algorithm in a private cloud and contributed

resources. We compare the CTPlace with three other placement algorithms in a

simulated environment.

5.3.2 Related Work

Placement algorithm has been used intensively in a cloud computing environ-

ment, to optimize the usage of physical resources in order to continue balancing

between performance and operational cost. There is much work on VM place-

ment algorithms in cloud data centres to reduce power consumption, maximize

resource utilization and avoid traffic congestion.

Usmani et al. have done a survey of Virtual Machines placement Techniques

in a cloud computing environment which focus on improving energy efficiency.

They concluded that every placement technique has some specific target, migra-

tion technique, prominent resources and important parameters. They also sug-

gest that there should be an approach to minimize the trade-off between energy

consumption and good performance [119]. Z.A. Mann has also done a survey in

Virtual Machines placement in cloud data centres, which focus on problem formu-

lation and optimization algorithm. Similar to Usmani, Z.A. Mann also concluded

that there are significant differences among virtual placement approaches, espe-

cially in the problem formulations [64]. Challita et.al. [16] studied virtual machine

placement optimization in data centers. They classify the dynamic VM placement

optimization solutions into four main approaches: Constraint Programming, Bin

Packing, Stochastic Integer Programming, and Genetic Algorithm. They claimed

that their study provided a better comprehension of the existing VM placement

algorithms that deal with power cost and handle traffic in data centres.

Mills et al. [68] compare several bin-packing-style heuristics to find the best

node to run a VM. They group the nodes into clusters. To place a VM in a

cloud data centre, the algorithm needs to find the best cluster and the best node

within the selected cluster. They concluded that the selection of the criterion for

52



5.3 Team Placement

choosing a cluster could lead to a huge difference in provider revenue. Tordsson

et al. [112] propose a cloud brokering mechanism for optimized placement of VM

across multi-providers. The cloud broker places a VM based on the user require-

ment. They concluded that multi-cloud deployment provides better performance

and lower cost compared to a single cloud only.

Container placement is similar to VM placement. Container Placement in

docker swarm uses three approaches, i.e. spread for load balancing, bin packing

to reduce costs, and random. Peinl et al. [80] reports a survey result and propose

their solution regarding Docker cluster management in the cloud where one of

the functions is container placement within multiple hosts.

Beside VM and container placement, there are also service placement and data

placement with different objectives. Eyad et al. [91] propose a secure placement

algorithm to place a tenant (data) in a SaaS environment. Selimi et al. [97]

propose a service placement approach that aware of bandwidth in community

network clouds. They group the nodes based on their Geo-location using the

k-means algorithm and select the head of the cluster based on the bandwidth to

each node. The service is placed at the head of the cluster. Unuvar et al. [118]

propose a hybrid cloud placement algorithm to automatically decide whether an

application should be deployed on-premise, in a public cloud, or across private

and public clouds.

Google has kubernetes1 to manage containers inside their cloud system. Ku-

bernetes is an open-source system for automating deployment, scaling, and man-

agement of containerized applications. Kubernetes container placement based on

current load of the host, collocation constraints, and availability constraints. It

balances the load by spreading the pods across nodes. A pod is a group of one or

more containers. Besides balancing the load, Kubernetes can also be configured

to place a specific type of pod on a specific type of node. Docker Swarm2 has

clustering and placement tools for Docker containers. It uses spread strategies to

determine which nodes, each container should run. Spread is used to distribute

tasks evenly, over the values of the data centre node label. It balances containers

across the nodes in a cluster, based on the nodes’ available CPU and RAM.

1https://kubernetes.io/
2https://docs.docker.com

53



5. CROWD-RESOURCING VIRTUAL LABORATORY

The placement algorithm might also be needed in a social cloud such as Sub-

utai1 and Mastodon2. In Mastodon, a user selects a server based on his interest.

Subutai is a P2P cloud, as far as we know, there is no publication regarding the

placement in Subutai.

Those placement algorithms could not be applied on CRVL, because CRVL has

a unique architecture consist of private cloud, public cloud and crowd-resourcing

platforms. Especially in the crowd-resourcing platform, the VMs and the users

could be anywhere around the world. Geo-location must be used to pair a user

(participant) to a VM. Our proposed algorithm combines several placement al-

gorithms to tailor with the platforms and to get the best VM for a participant

based on Geo-location and the load of the available VMs.

5.3.3 Team Placement Algorithm

Trainees and the contributors could come from all over the world. To cover the

user and contributor from all over the world, we divide the world into hierarchical

tree zones. Starting from the world as the root (zero levels), goes to the region as

the first level. The region is divided into sub-regions such as Southeast Asia. The

sub-region is divided into countries, and the country is divided into provinces, a

province is divided into cities. Each region should have its Virtual laboratory

server. Figure 5.3 shows the hierarchical tree zones.

In the virtual laboratory architecture, the primary virtual laboratory server

is placed on a private cloud. Every region has a mirror of the virtual laboratory

server to serve users in the same region. These mirror servers are located on

public clouds. These servers are called region servers or secondary servers. A

Team can be run on the VMs inside a private cloud, a public cloud or inside

a contributor virtualization system. To let the users have access to the Team,

Gateone is used as an SSH Gateway to one of the containers in the Team. This

gateway will be installed in every contributed VM to shorten the route. This way,

the user’s browser has a direct connection to the Gateone server via a javascript

function. User activity on the gateway server must be logged and sent to the

Tele-lab server for monitoring and controlling functions.

1https://subut.ai
2https://mastodon.social

54



5.3 Team Placement

World

Region#1

SubRegion#1

Country#1

Province#1

City#1

Region#2 Region#n

SubRegion#2 ... ... ... SubRegion#n

Country#2 Country#3 ...

Province#2 Province#3

City#2 City#3 ...

...

Country#n

Province#n

City#n

Figure 5.3: Hierarchical Zones

Team placement is a process of selecting the best VM to place a Team. The

placement will be done online within short timescales. An online algorithm pro-

cesses its input piece by piece in serial fashion, in order that the input is fed to

the algorithm without having all the entire input available from the start. There

will be no live migration because the lifetime of a Team is only around one to two

hours or even shorter. The objectives of team placement are cost efficiency and

performance. The load and throughput define the performance. To get higher

throughput, a user should be connected to the nearest VM. To manage the load

within an acceptable performance, we limit the load of each VM to 80%. A Team

could have a different type of load, and it could be a high CPU load, high RAM

load or high traffic load.

While the crowd-resourcing virtual laboratory consists of three platforms, i.e.

private cloud, public cloud and crowd-resources, the objectives of team placement

could be different on each platform. The cost efficiency will be more considered

when selecting the best VM inside a public cloud because running more VMs

means more payment. Public cloud is a pay per use service where a user needs

to pay the cost of renting cloud resources and the cost of communication to the

outside of a public cloud provider. In a private cloud, the cost of resource usage

55



5. CROWD-RESOURCING VIRTUAL LABORATORY

is already paid up front. In a crowd resource platform, the cost is paid by the

contributor. In these both platforms, the concern is more to the performance.

Contributor resources could be anywhere around the world. To narrow the

search of the best VM, we cluster the VMs based on their geographical location.

From the IP address, we can obtain the Geo-location such as the country and

the city of a VM. This Geo-location information is used to create the same hi-

erarchical zones as figure 5.3. We assume that the throughput and delay of the

communication inside the same geographical location are better than between

different geographical location. For example, the throughput within a country

should be higher compared to the throughput between countries. We are propos-

ing a Team Placement approach that aware of the Geo-location clusters to be

able to get a VM as close as possible to the user (trainee) so that the throughput

is higher and the delay is lower. This team placement is called as CTPlace.

CTPlace consists of two steps. First is to search for the smallest and the

nearest cluster to the user. Second is to search for the best VM in the selected

cluster. CTPlace starts by getting information on a user IP address, to get the

Geo-location and the ASN (Autonomous System Number) of the user. In the In-

ternet routing system, an autonomous system (AS) is a collection of the connected

IP networks under the control of an administrative entity. This administrative

entity defines and manages routing between networks in the autonomous system,

which is identified by a number called ASN. The ASN is used in exterior routing

protocols such as BGP (Border Gateway Protocol) or EGP (Exterior Gateway

Protocol). The throughput between computer inside an autonomous system is

usually higher than the throughput to the outside of an autonomous system be-

cause the connection inside an autonomous system is an Intranet or a Local Area

Network connection.

If a user was in the same ASN as some VMs, CTPlace allocates one of these

VMs to place the Team for the user. When there was more than one VM within

the same AS, CTPlace searches the VM that has the nearest (if not the same)

geo-location to the user, starting from the country to the city. If there was no

VM in the same country as the user, CTPlace uses Tag-Pack and Least-full-first

to select the best VM inside the AS.).

56



5.3 Team Placement

Algorithm 1 Team Placement algorithm

1: Input: UserIPAddress, TeamType, Infrastructure.

2: Output: selected VM

3: Initialization: isP laced← False

4: userLocation← ipInfo(UserIPAddress)

5: for each region in regionList do

6: #Search for the same country with the user

7: for each country in region.countryList do

8: if country.id = UserIPAddress.country then

9: if country.checkLoad(Team) is True then

10: #Search the smallest cluster until the city

11: selectCluster(country)

12: #Select the best VM in the selected Cluster

13: select Tag LFF VM(selectedCluster)

14: isP laced← True

15: end if

16: end if

17: end for

18: end for

19: if isPlaced = False then

20: #search for a VM in neighboring countries

21: selectCluster(user region)

22: vm = selectVM(selected cluster)

23: if vm is not None then

24: isP laced← True

25: else

26: selectCluster(other regions)

27: vm = selectVM(selected cluster)

28: if vm is not None then

29: isP laced← True

30: end if

31: end if

32: end if

33: if isPlaced = False then

34: rejectUser()

35: end if

57



5. CROWD-RESOURCING VIRTUAL LABORATORY

If there was no VM in the same AS as the user, the search for a VM is started

from the country because it is the highest cluster level that can be taken from

an IP Address information. If there were some VMs in the same country as the

user, then CTPlace searches for the same province. If there was more than one

VMs in a province, CTPlace searches for the same city. Algorithm 1 shows the

simplified algorithm of CTPlace where no VM in the same ASN as the user.

If there were no VMs in the same country, CTPlace searches for a VM in

the nearest neighbours. If there was more than one neighbour has available

VMs, CTPlace selects the neighbour that has a VM with the highest throughput.

Throughput is measured using Iperf between a VM and a region server. If there

was no VM available on the nearest neighbours, CTPlace continues searching for

an available VM in any country in the sub-region. If there was no VM available

in all countries in the region, CTPlace searches for a VM in a private cloud. If

there was no private cloud in the region, CTPlace searches for a VM in a public

cloud. Every region should have a public cloud. If there was no VM available in

the public cloud, it continues searching until all the regions are searched. If there

was no VM available, the request for a Team is rejected.

After CTPlace selected the best cluster, it selects the best VM inside the

cluster. CTPlace uses the tag-pack and least-full-first algorithm to select a VM

within a contributed resources cluster and within a private cloud cluster. The

Tag-Pack is used to place the same Team type on a VM. When all the VMs have

already been marked with a Team type, CTPlace uses a least-full-first algorithm

to select a VM and place a new type of Team in the VM. In our approach, a

VM could be marked with more than one type. We use least-full-first algorithm

to balance the load to all of VMs in a private cloud and crowd-resources cluster.

When all the VMs in the selected cluster is empty, CTPlace will select the one

with the highest throughput to the region server.

CTPlace uses Most-Full-First(MFF) algorithm to select the best VM inside a

public cloud. Using this algorithm, we can reduce the number of running VMs in

the public cloud to save cost. MFF selects the best VM by searching for a VM

with the highest load but still has the capacity to handle the Team Load.

Placing the same learning unit Teams in a VM has some benefits, such as the

same VM configuration for the same learning unit, no need to download the same

58



5.3 Team Placement

files to a different VM, and isolate security vulnerability in a VM. If a user was

able to use the vulnerability and get access to the VM, he could only get access to

the same VM not on the other VMs. However, in a situation where the resources

are limited, we do not have other choices except to put some different learning

unit Teams on the same VM. To put the same learning unit teams on the same

VM, we use Tag-Pack algorithm.

5.3.4 Evaluation

In order to evaluate our approach, we conducted several experiments with dif-

ferent conditions and compared the results with other placement approaches, i.e.

Most-Full-First(MFF), Least-Full-First(LFF), and Random. We implement these

four algorithms in Python language. We simulate the virtual laboratory infras-

tructure and the user requests as closely as possible to the real environment.

In our simulation, we create a virtual laboratory infrastructure that consists

of 5 regions, ten countries per region where only five countries have contributed

VMs, one public cloud per region, and one private cloud. Each country has 4

VMs, each public cloud has 5 VMs, and a private cloud has 10 VMs. To simplify

the experiment and the comparison, we exclude sub-region, province and city

from the virtual laboratory infrastructure simulation. These exclusions will not

affect the result of experimentation and comparison.

The capacity of each VM is randomized between 40 to 60 loads. We assume

that one VM might have a memory between 1.5 GB and 3 GB. The maximum

capacity of a VM is defined by the hardware resources available on the VM such as

RAM, CPU, and Hard disk. The higher the resources, the higher the maximum

capacity. Based on our experience, 40 Teams could be run on a VM with 1.5

GB memory and 1 CPU. The team was for a MITM attack learning unit where

Ettercap was installed and running on one of the containers. When all Teams

were running, the CPU load was 100%, and the thread was around 300. Even

though the load was so high, the user can be still able to run the exercise on one

of the containers. The performance started to drop significantly when the VM

started to use the disk cache (swap).

The type of user request is randomized according to the team type. There

are three types of teams with the load between 1 to 3. The country of a user is

59



5. CROWD-RESOURCING VIRTUAL LABORATORY

also generated randomly. In our experiments, we tested the placement approach

against different number of users (different number of loads), to check the place-

ment result in the light, medium and heavy conditions. Light condition is where

the load is much below the capacity of the whole infrastructure. Medium condi-

tion is where the load is closed to the capacity, and the heavy condition is where

the load is much above the capacity. In this experiment the light condition is

3000 users, the medium condition is 3500 users, and the heavy condition is 4000

users.

Our approach uses Geo-location to select a VM that geographically the nearest

to the user, while other approaches do not use Geo-location. MFF selects the

fullest and the smallest cluster available and then selects the most full VM from

the selected cluster. LFF selects the least full and the smallest cluster available,

and then select the least full VM from the selected cluster. Random selects the

cluster and the VM randomly.

An experiment was executed by generating a virtual laboratory infrastructure

and a number of user requests. After that, all the placement approaches were

used to place the same user requests (Teams) on the same virtual laboratory

infrastructure. We executed three experiments for each number of user requests

and calculated the average of the result. We collect some data from the result of

each placement approach, such as the total number of VMs that has been used,

the total number of VMs running on public clouds, the number of team types on

a VM, the number of teams that being placed on another country or region, and

the number of users that has been rejected. Figure 5.4 to 5.9 show the results.

From the data that has been collected, we compare the cost and the perfor-

mance of the placement approaches. To compare the cost efficiency, we use the

data of the total number of VMs that has been used and the number of VMs on

the public clouds. More VMs means more cost. This cost could be the cost of

using services or the cost of electricity and bandwidth usage.

Figure 5.4 shows the total number of VMs that has been used by each place-

ment algorithm to place such number of Teams. MFF uses the lowest number of

VMs because MFF places a Team into a new empty VM, only when all the VMs

in use have already been full. In our virtual laboratory architecture, the private

cloud has already been paid up front, and the contributor pays for the crowd

60



5.3 Team Placement

Figure 5.4: VM Number

Figure 5.5: VM in Public Cloud

resources platform. We can focus on the public cloud when we want to calculate

the cost. Figure 5.5 shows the total number of VMs in the public cloud. CTPlace

uses the lowest number of VMs in the public cloud. In this context, CTPlace can

give a better cost-efficiency (lower cost) compare to another placement approach.

61



5. CROWD-RESOURCING VIRTUAL LABORATORY

Figure 5.6: Teams in other Region

Figure 5.7: Teams in other Countries

To compare the performance, we need to look at the load and the throughput.

In our scenario, the VM load should not be more than 80% of the maximum

VM capacity. For example, a VM has a maximum capacity to serve 50 Teams,

and the system will allocate only 40 Teams to this VM. So, no matter which

62



5.3 Team Placement

Figure 5.8: Rejected Users

Figure 5.9: Tag Number per VM

placement algorithm was used, the load is still acceptable, because a VM will not

be overloaded.

In our approach, we were trying to place a Team within the same Geo-location

as the VM or as close as possible to the VM. From the experiment, we have

63



5. CROWD-RESOURCING VIRTUAL LABORATORY

collected some data about the number of Teams that had been placed on VMs in

different Geo-location than the team location. Figure 5.6 shows the number of

Teams that had been placed in a different region. Figure 5.7 shows the number

of Teams that had been placed in different countries. From these two figures,

we can see that CTPlace can give the lowest number of Teams that had been

placed in a different Geo-location. That means CTPlace has given the highest

throughput compared to the other three placement algorithms.

The number of rejected users can also be used to measure the placement

algorithm’s performance, because the system needs to be able to serve user as

much as possible. In figure 5.8, we can see that there are no rejected users when

the load is much below the capacity. When the load is much higher than the

capacity, all the placement algorithms have rejected almost the same number of

users. The LFF has rejected a smaller number of users compared to the others

because the LFF can place the Teams in a more balancing way so that the teams

can be placed in the better combination.

As explained in section IV, there are some benefits in placing the same team

types on the same VM. The variety of the team inside a VM can also be used

to show the performance of the placement algorithm. The lowest the variety the

better the performance. From figure 5.9, we can see that CTPlace has given the

lowest number of team types in a VM because CTPlace implements TagPack in

the placement process.

Overall, CTPlace can give a better cost efficiency and a better performance,

because it uses a specific placement approach on a specific platform, based on the

objective of the placement.

5.4 Virtual Machine Integration in CRVL

In the CRVL system, the crowd could contribute by sharing their resources in

the form of a Virtual Machine (VM), a physical machine, an account in a public

cloud, and a private cloud. In this section, we focus on the automatic integra-

tion of a VM into the CRVL system. Integrated means the VM is occupied and

monitored to be used as a computing machine to run a virtual laboratory en-

vironment for some users. Some integration processes need to be done to make

64



5.4 Virtual Machine Integration in CRVL

sure the integration is running smoothly, and the VM could be securely used to

run the virtual laboratory. We propose a mechanism of Integrating a VM into

a crowd-resourcing virtual laboratory. It starts with verifying the VM integrity,

followed by configuring the VM until the VM is ready to be used to run a Virtual

Laboratory exercise. We use WebSocket for communication between VM and the

Virtual Laboratory Server, to be able to monitor the VM Integrity. To evaluate

the integration mechanism, we evaluate the performance by measuring the time

needed to integrate a VM.

5.4.1 VM Integration Mechanism

The integration process consists of three phases, i.e. registration, verification,

and configuration. In the registration phase, the contributor must manually fill

a form in the CRVL registration web page to register the VM. The contributor

needs to enter the hardware specification, the host OS, the public IP and Port

address of the VM. This way the VM could be accessed by CRVL participants

from the public network (Internet) to be able to do hands-on exercises on the

VM. The contributor needs to make sure that the firewall and the host of the

VM are configured to allow access and forward traffic from the Internet to the

VM via specific ports.

After the registration phase is finished, the contributor could download the

VM image, configured the host machine and starts a VM using the downloaded

VM image. When the VM is up and running, the VMIV Hub initiate the ver-

ification and the configuration processes. The VMIV Hub is a service or agent

within the VM that is responsible for all the Integration and the fault recov-

ery processes. After the verification process was finished, a VM is connected to

the CRVL system via a WebSocket connection. The VMIV Hub sends a report

about the services in the VM to the CRVL controller. If it is needed to do more

configuration or installation, the CRVL controller could give commands to the

VMIV Hub via the open WebSocket. The CRVL controller tests the participant’s

connection to the VM. If the connection was failed, the CRVL controller informs

the VM contributor to fix it.

The verification and configuration phases are executed automatically by the

CRVL controller and the VMIV Hub. Before a VM is integrated into the CRVL

65



5. CROWD-RESOURCING VIRTUAL LABORATORY

system, the integrity of the VM must be verified remotely by the CRVL Con-

troller. Figure 5.10 shows the VM integration scheme, where a VM in a contrib-

utor network is trying to be integrated into the CRVL system. We proposed a

VM integrity verification mechanism without using any specific hardware such

as the Trusted Platform Module (TPM) in section 6.1. The integrity verification

mechanism is a big part of the VM integration mechanism. This VM integrity

verification uses kexec1 to reboot the VM to a well-verified kernel. In the reboot

process, before the init process of the userspace, the kernel loads a module that

has a function to get the hash checksum of all the system files. The integrity veri-

fication sequential diagram is shown in figure 5.11. After the verification process,

the VM is connected to the CRVL controller via WebSocket. The opened Web-

Socket connection is used to monitor the VM. If the WebSocket was disconnected

and the session ID was changed, the disconnected VM must be re-verified.

CRVL

Contributor 
Network

VM

Controller

Figure 5.10: Integration Scheme

As shown in figure 5.11, the VMIV Hub initiates the integrity verification

process. After the verification process, the VMIV Hub and the controller can

communicate via the already opened WebSocket connection. The VM is config-

ured as needed to be ready to run virtual laboratory instances. The VM should

have docker, GateOne2, Open vSwitch3 and other supporting applications, in-

stalled and running. Any additional software installation and configuration could

1http://man7.org/Linux/man-pages/man8/kexec.8.html
2http://liftoff.github.io/GateOne/
3https://www.openvswitch.org/

66



5.4 Virtual Machine Integration in CRVL

Integration Service (IS)

Integrity_init(vmid)

integrityFile + sessionid

Integrated/
websocketConnected

Contributor VM CRVL Controller

extract(integrityFile)
kexecInstall()
reboot()

Websocket(HashCode 
+ SecretCode +

Sessionid)

verify(HashCode) 
verify(SecretCode) 
verify(expirytime)

VMIV Hub

verify(vmid)
Selects(integrityFile)

get (Secret Code)
hashsum (Files)

Figure 5.11: Integrity Verification Sequential Diagram.

be done via the opened WebSocket. Using the WebSocket connection, the CRVL

Controller could send commands to the VM without any additional open port

on the VM. The VM could be placed behind a firewall and only has a limited

number of open ports.

5.4.2 Evaluation

The biggest part of the integration process is the verification of the VM Integrity

which we described in section 6.1. The Integrated state is the state where the

VM is connected to the CRVL controller using WebSocket. The experiment of

the Integration approach is shown in sub-section 6.1.5, where the integration time

was measured starting from the VMIV hub request for the kernel image from the

CRVL controller until the WebSocket connection is built. The experiment was

delivered in a Local Area Network (LAN) where the CRVL controller is a VM on

OpenNebula and the contributor VM is running on VirtualBox. The Integration

time was 1 minute 34 seconds. The time needed for the VM Integration could be

67



5. CROWD-RESOURCING VIRTUAL LABORATORY

different on other places refer to speed or bandwidth different at each VM side

and computation capability of the host machine.

5.5 Live Migration & Fault Recovery in CRVL

A VM shared by a contributor could be disintegrated from the CRVL system

normally per schedule or suddenly without notice. When the VM is disintegrated,

the CRVL system should be able to immediately provide other VMs to run Teams

(containers) for the users to continue working on the virtual laboratory exercises.

For the normally disintegrated VM, the CRVL system has time to prepare for

the dis-integration to make the downtime as small as possible for the users of

the dis-integrating VM. We propose a live migration mechanism to handle the

normally dis-integrated VM. For the suddenly dis-integrated VM, we propose a

fault recovery mechanism to divert users to other VMs.

These two mechanisms are quite similar, where the VM is recovered by restor-

ing the latest states of the running Teams on the disintegrating VM to other

VMs. The participants should be able to continue working on the exercises with-

out starting from the beginning. The big difference between the two mechanisms

is that the fault recovery mechanism might not recover the team (container) to

the latest state before the VM down. The other difference is that on the live mi-

gration mechanism, the users will be noticed when the VM is going to be down.

Both of mechanisms use SSHFS1 to mount a remote file system on a file server to

store the data of a VM, to make the user data (user logs and modified configura-

tion files) available in the network even when the VM is down. Our experiments

showed that our approaches could work appropriately, and the time for Team

Recovery is similar to the time for Team Creation.

5.5.1 Related Work

The goal of fault recovery is to minimize the downtime of the system during fail-

ures. Bala and Chana [11] listed some fault recovery or fault tolerance techniques

for cloud computing. They divide the techniques into Reactive and Proactive

techniques. Reactive techniques wait for the fault and try to recover as soon as

1https://help.ubuntu.com/community/SSHFS

68



5.5 Live Migration & Fault Recovery in CRVL

possible. Proactive techniques try to detect and avoid fault before it happens.

These techniques are used to recover from a crashed application, a failed node

or host machine. Some techniques are relevant to our problems, such as Repli-

cation, Checkpointing and Restart, and Job Migration. These techniques are

reactive techniques where they try to prepare for the fault, so when the fault is

happening, the system could recover the fault using the provided techniques.

Replication means to create and run task replicas on a secondary node as

a backup. When the primary node was crashed, the backup node takes over

the critical functionality for the system[114]. This technique is implemented in

HAProxy1. Checkpointing and Restart preserve the state of a task or an applica-

tion by checkpointing the state periodically to be able to rollback to the current

state when the task is failed[11]. Job Migration is a technique that migrates a

task to another resource when the task is failing in the original resource[11]. This

technique could be implemented using the HA proxy.

Jhawar et al. proposed a fault tolerance management in cloud computing

where the application users and developers do not become aware of the implemen-

tation details of the fault tolerance technique [49]. The fault tolerance technique

is implemented in a different layer than the application layer, as independent

modules where each module can transparently working on users’ applications.

They design a framework that offers fault tolerance as a service from a third

party on the existing cloud infrastructure.

Live migration is a method to migrate a VM or a Container to another host

with near zero downtime to the live services running on the VM or Container.

Live migration can be used to create a secondary VM or Container on another

host while the primary VM or Container is still running normally. The primary

and secondary instance could be running together to provide a load balancing

system. The secondary instance could also be used as the backup of the primary

VM or Container. In cloud computing, live migration of a VM or a Container

could also be done. Live migration is also used to backed-up the computing node

state, also helps with server maintenance scenario, server consolidation and high

availability within hardware zones and data centres.

1http://www.haproxy.org/

69



5. CROWD-RESOURCING VIRTUAL LABORATORY

There are two major approaches in doing VM live migration from one host

to another host[52]. The first approach is Post-Copy[18][82], which suspends

the migrating VM at the source, copies or transfers minimal processor state and

essential kernel data structures to the target node, resumes the virtual machine,

starts the VM on the target node and begins fetching memory pages on demand

over the network from the source. This approach could reduce the downtime, but

it produces a much longer total migration time.

The second approach is Pre-Copy [3][39], which copies all the memory pages

from the source node to the target node, without ever stopping the VM being

migrated. After copying process, some memory pages could be changed during

the memory copy process, because the migrating VM is still running. These

memory pages are called dirty pages, that need to be transferred to the target

node until the dirtying rate is less than the transferring rate. The migrating VM

is stopped, and the remaining dirty pages are sent to the target node, and the

VM in the target node is resumed.

These approaches have weaknesses that need to be improved. The perfor-

mance after migration of the Post-Copy approach could be very low and set of

pages could be fault [18][82]. The Pre-Copy approach is not suitable for copying

some set of memory pages that are updated very frequently [39][3]. The live mi-

gration approaches have several challenges, such as Low Bandwidth over WAN,

Network Fault, Memory intensive applications, and Memory state between clus-

ters in the cloud [107]. These approaches (techniques) need some access into

the host machine, which could not be done in CRVL system because the host

is managed by the contributor and it is not shared with the Virtual Laboratory

system.

Live migration could be used for backing up the VM for fault recovery. Nad-

gowda et al. proposed a cloud disaster recovery based on Image-Instance mapping

which deduplicates changes across VMs and needs to replicate only the unique

changes [73]. For Containers, there are several techniques to do live migration.

Mirkin et al. proposed a live migration technique for a Container using the check-

pointing and restart features which are implemented in OpenVZ1 [69]. These

features are implemented as a loadable kernel module. The technique enables the

1https://openvz.org/

70



5.5 Live Migration & Fault Recovery in CRVL

user to checkpoint the state of a running Container and restarts it somewhere

else. Live migration is also useful for fault tolerance management [69].

Nadgowda et al. proposed voyager, just-in-time live Container migration ser-

vice which was designed following the Open Container Initiative (OCI)1 [74].

Voyager performs live Container migration with minimal downtime, by bind-

ing union mount file systems with CRIU-based memory migration. Using union

mount file systems, Voyager creates data federation across the source node and

the target node. CRIU2(Checkpoint/Restore In Userspace) is a software tool that

could freeze a running application and checkpoint it as a collection of files on disk.

Voyager can resume Container instantly on the target node while performing disk

state transfer via lazy replication. Docker is also using CRIU into their system to

create docker checkpoint [20]. At the moment, Docker checkpoint command can

only be used for experimental, by editing the daemon.json and set experimental

to true [27].

Storing backup files on a network union file system makes the files available

anywhere in the network. However, backup files of memory (RAM) content could

be very big, which could consume the memory, the bandwidth, the hard drive

capacity and the CPU while the backup process is running. In, this section, we

try to backup Teams states by backing-up the user command history and the

modified files, which could be used to generate the latest Team states on another

VM.

5.5.2 Live Migration

In CRVL, a user or a participant has a remote connection to one of the stations

in the virtual laboratory environment. This station could be a Container or

a VM, and the remote connection could be using SSH via Gateone or using a

remote desktop connection. For a Container station, the participants could do

their laboratory exercises by entering shell commands to configure or execute

an attacking scenario. These commands are saved in the shell history of Linux

system, and the Gateone user commands log. The history and the log could be

1https://www.openContainers.org/
2https://criu.org/

71



5. CROWD-RESOURCING VIRTUAL LABORATORY

saved periodically to the backup server as the checkpoint to be able to roll back

to the latest state when recovering from a failure VM.

Container
Victim

Container
Attacker

CRVL

Contributor 
Network

VM

Team

Browser

User

Figure 5.12: Team of Containers

When a contributor registers a VM to the CRVL system, the contributor needs

to enter the access time of the VM on the registration page. This way when a VM

is going down on schedule, the migration process could be executed to move the

Teams to a new VM and redirect the participants to the new VM IP address. As

shown in figure 5.12, a Team consists of Containers which are used to represent

hosts (attacker or victim machine) in the exercise scenario. In the CRVL context,

the live migration is executed for the participants (users) to continue working on

the hands-on-exercise with nearly zero downtime. The participants do not need

to start over the exercise from the beginning, but they can continue the exercise

from the latest state of their activities at the old VM. In this case, the data that

need to be moved from the migrating VM to the target VM are the modified files

and the commands history of the Containers that being used by the users to do

the exercises. Figure 5.13 shows the live migration scheme, where VM#1 is the

migrating VM, VM#2 is the target VM.

VM live migration will be executed when the VM is shutting down normally

on schedule. The Containers (Teams) being used by the users must be moved to

other VMs before the shutting down schedule. The user should move to another

VM before the original VM is shutting down. If the time needed to do one exercise

is 45 minutes, the CRVL system stops creating a new Team in the VM starting

at 45 minutes before the shutting down schedule. During these 45 minutes, the

72



5.5 Live Migration & Fault Recovery in CRVL

CRVL

Contributor 
Network#2

VM
#2

File Server 
/ Storage

Contributor 
Network#1

VM
#1

Browser

User

Figure 5.13: Live Migration Scheme

existing Team in the VM should be moved to another VM. In five minutes before

the shutting down schedule, if some users are still accessing some teams running

on the VM, the users will be warned that they need to go to another prepared

VM to continue the exercise session. At the shutting down schedule, other VMs

already have the latest state of the Containers from the shutting down VM and

ready to serve the users.

Two approaches could be used to migrate the Containers to other VMs. The

first approach is using ”docker checkpoint and restore” to migrate the Team by

copying the memory data, the disk data and CPU states to the target node. This

approach could spend many resources especially the bandwidth usage because

depending on the size of memory being used, each checkpoint could have a large

file that needs to be transferred to the target node. For example, a MySQL

Container checkpoint could create 117MB page map dump[74]. Docker checkpoint

is saving the data from the memory and hard disk to a file. Docker checkpoint

could not save only the different state of memory or hard disk. Docker checkpoint

is using CRIU to freeze and dump a Container to a file, but CRIU could not freeze

several applications running such as ettercap1 and nmap2.

The second approach is based on the participant activities in the Container.

The participant activities are recorded and restore in the new Container. The

1https://www.ettercap-project.org/
2https://nmap.org/

73



5. CROWD-RESOURCING VIRTUAL LABORATORY

participant shell commands history and modified files are needed to restore a

Container on a new host. This way, we could save and transferred only the

different state of the participant activities. By copying modified files and run the

same shell commands on the new Container, we could restore the latest state of

the user activities on it. This second approach could not recover the memory

state of the Container, while the first approach could. We propose to use this

second approach because, in the CRVL system, the participant does not need the

same memory states to continue working on the hands-on exercises.

In the CRVL system, the Teams from a migrating VM could be migrated not

only to one VM but to several VMs. The placement algorithm[102] is used to de-

cide the migration destination of a Team based on the location of the participant

that is using the Team. The Team consists of Containers and virtual network.

The participant data that needs to be migrated is on the Container that was

used by the participant to do the exercise. To get the data from Containers to

the VM, docker Volumes could be used. Volumes create a directory in the VM

that is shared to be used as a directory in the Containers. Containers could store

persistent data to this shared directory to be able to use the same data when the

Container is restarted.

To automatically transfer the Container’s data to other VMs, we use a shared

directory on a file server mounted as a network directory (remote file system) on

the VM. The modified files and commands history could be stored in this network

directory. When the Container is moved to another VM, the new Container in

the new VM could mount the same network directory to get the latest state of the

old Container. The network directory could be created using NFS1 or SSHFS.

Figure 5.14 shows the live migration sequential diagram, where the Directory in

the CreateTeam function is the network directory.

5.5.3 Fault Recovery

VM Fault recovery is needed when a VM is suddenly shut down without notice

and out of schedule. The CRVL system assumed that the VM is down when the

WebSocket to the CRVL controller is disconnected. The CRVL system needs to

1https://help.ubuntu.com/lts/serverguide/network-file-system.html.en

74



5.5 Live Migration & Fault Recovery in CRVL

VMIV Hub

TeamPlacement()

gateoneToContainer

Vlab(signedURL)

CRVL Controller Target VMs

containerID

LiveMigration

continueExercise()

Browser

User Machine

CreateTeam(Directory)

RedirectVM(signedURL)

OK

Result

Finish()

Closed

latestActivities()

Done

signedURL()

Figure 5.14: Live Migration Sequential Diagram.

do the Fault recovery process and inform the participants/users to get connected

to another VM. In the CRVL system, the contributors able to disconnect the VM

at any time. The VM could also be down because of technical problems such

as host hardware problem or Internet connection problem. Similar to the live

migration, in the VM Fault Recovery, we try to recover the Teams (containers)

which was running on the fault VM, by re-creating the nearly the same team on

another VM.

To be able to recover the Containers at the closest state to the latest state

of the Containers, the Containers must be backed up periodically by the system.

The data that needs to be backed up are modified files and shell command history.

Similar to the live migration, VM fault recovery needs to create nearly the same

Containers with the latest state of user activities on other VMs, and redirect

users to these assigned VMs. At live migration, we could get the latest state of

the Container just in time before the shutdown schedule, but at the VM fault

recovery, the latest state is based on the latest backup before the downtime. The

smaller the periodic backup time, the closer to the latest state. The smaller the

75



5. CROWD-RESOURCING VIRTUAL LABORATORY

periodic time means more frequent, and this means more traffic to the backup

server.

Fault recovery approach is similar to the live migration approach. The dif-

ference is that there will be no notification before a VM is down. We use figure

5.13 to show the scheme of the Fault Recovery approach, figure 5.15 to show the

sequential diagram of the Fault Recovery approach. We create backup files by

recording the user activities on the Container. We use the network directory to

store the shell commands history and modified files to be able to get the latest

up-to-date user activities.

VMIV Hub

TeamPlacement()

gateoneToContainer

Vlab(signedURL)

CRVL Controller Target VMs

containerID

Fault Recovery

continueExercise()

Browser

User Machine

CreateTeam(Directory)

RedirectVM(signedURL)

OK

Result

Finish()

Closed

signedURL()

Figure 5.15: Fault Recovery Sequential Diagram.

When a VM is suddenly shut down, the CRVL controller will be notified

because the WebSocket connection will also be down. CRVL controller executes

the Team Placement algorithm for each user of the down VM to allocate them

to other VMs. A user (participant) might get a different VM from another user.

The CRVL controller sends a command to create a Team on the selected VM. The

selected VM creates the Team and sends a Container ID to the CRVL controller.

The CRVL controller creates a signedURL [101] and sends it to the user to redirect

76



5.5 Live Migration & Fault Recovery in CRVL

the user to the selected VM. The user uses the signed URL to access the Container

to continue the hands-on-exercise.

5.5.4 Evaluation

Every pre-built VM image should have all the needed application installed, such as

an Integration Application (VMIV Hub), Gateone, Node.js, docker, Open vSwitch

and iptables. The VMIV Hub needs to communicate with the CRVL controller for

Live migration and Fault Recovery. We conducted several experiments to evaluate

the functionality and performance of our approaches. Because Live Migration is

similar to Fault Recovery, the experiment on Fault Recovery is also representing

the Live Migration.

We implement the scheme in figure 5.13 to run a Fault Recovery experiment

in a LAN where the File Server and the CRVL controller is a VM in OpenNebula

private cloud. The fault (VM#1) and the target (VM#2) VMs are running on

a VirtualBox in a workstation machine with Intel Core processor i5-4690 CPU

@3.50 GHz and 8 GB of RAM. Each VM has 512 MB of RAM, one vCPU and

80 GB hard drive. The VM#1 was down when the user was in the middle of

an exercise where some commands had already been entered and a file had been

modified. In this experiment, there was only one target VM. We use SSHFS to

mount a network directory on the file/storage server. We simulate 100 VMs on

the crowd-resourcing platform. The maximum number of teams per VM is 40

Teams. There is a NAT to get into the VM which is provided using iptables.

We evaluate our approach by measuring the fault recovery time of a different

number of users/teams e.i. 1, 5, 10, 20, 30 and 40. One user has one team.

For each number of users, we measured the recovery time for ten times and

calculated the average of the measurement results. The experiment results of

average recovery time for a different number of teams is shown in figure 5.16.

The duration of fault recovery is measured starting from a disconnected VM

until all the Teams for the users are created. The user needs to respond by

clicking the new signed URL to get connected to the Team in the new VM. From

the results in figure 5.16, we can see that the recovery time for one user is quite

small compared to more than one user. The recovery time for more than one user

is near to the multiplication of the number of users with the time for one user,

77



5. CROWD-RESOURCING VIRTUAL LABORATORY

Figure 5.16: Fault Recovery & Team Creation Time.

because there was only one VM to recover the fault VM. All the recovered teams

were created in one VM. The recovery time is representing the maximum time a

user needs to wait before the Team is ready. If the Teams could be distributed

to more than one VM, the recovery time for more than one user could be faster.

For example, if there were 4 VMs as the target VMs to recover the fault VM, the

recovery time for 40 teams is equal to the recovery time for ten teams, because

each VM only needs to create ten teams at the same time. The number of VMs

depends on the team placement algorithm [102] which is based on the geographical

location and the VM Load.

The recovery time for 40 teams is around 79.80 seconds, which is still accept-

able for a user to wait to get the latest state available, compare to starting over

from the beginning. If we could distribute the teams to ten VMs, the recovery

time would be around 7.98 seconds. As we can see from figure 5.15, there are sev-

eral functions to recover the fault VM. Based on our experiment the function that

took the longest time is CreateTeam() function that could take more than 1 sec-

ond to create one team. This function starts containers, configure OpenvSwitch

and iptables, and mount the network directory.

Besides the team recovery time, figure 5.16 shows the Team creation time

which is the time needed to create a Team per user request. As we can see, they

are not much different, because the difference is only on the shell commands that

78



5.5 Live Migration & Fault Recovery in CRVL

must be executed during fault recovery. Shell commands history is representing

the user activities on the shell. Shell commands execution time could be very

small in milliseconds. In this experiment, the shell commands are only about

configuration and modification of files. There is no installation, and the user had

not executed the command to run the attacking exercise.

The overhead of our approach is mostly on the traffic from the VM to the file

server, because of the network directory. Another overhead is that we need to

provide a file server on the CRVL system, but it could be provided at the same

machine as the CRVL controller.

5.5.5 Discussion

The widely used strategy to provide a fault recovery system is based on the notion

of redundancy[49]. The redundancy system provides a back-up for the primary

running system. The back-up system could be running together with the primary

system as a load balancing system, and it could also be available only when the

primary system is crashed. To provide redundancy, the primary system compo-

nents are duplicated using additional software, hardware, and network resources.

Our approach is using network directory (remote file system) to store the

modified files, and the shell commands history, which is used to generate a new

Container (Team) on the target VM with the latest state of the old Container.

This way, the duplicated components are only the modified files and the shell

command history. Other fault recovery approaches create duplicate VM that

must be done from the VM Host such as VM snapshot and images instance

mapping [73]. Besides these approaches create large files, they are not applicable

in the CRVL system, because the CRVL system does not have access to the VM

host. Docker checkpoint and restore could be used to duplicate the Container,

but it needs more resources because it duplicates the disk files, memory, and

CPU.

It is easier to move or distribute the modified files among other VMs using

the network directory. We could run Teams in different VMs to recover the failed

Teams on the failed VM. The placement algorithm could be used to decide where

to run each Team to be able to find the best place to run the Team. Network

directory is depending on the network connection quality. When the network

79



5. CROWD-RESOURCING VIRTUAL LABORATORY

connection is not reliable, the network directory could be lost, and the latest

state of Containers could not be reached.

Our Live migration and fault recovery approach could also be implemented in

other similar use cases such as microservices on Containers or Containers on P2P

cloud when the memory states (data) do not need to be copied to the target VM.

If the memory states need to be recovered, we need to do more research to find a

way to copy the memory states to the network directory and to restore the states

on another VM. It should be only the small part of memory data that need to be

copied to the target VM, to be able to save disk space and bandwidth.

5.6 Chapter Summary

Scalability can be increased by providing more resources from the crowd. The

crowd could contribute their spare resources in the form of VMs. In this chapter,

we propose several approaches about the architecture, the Team placement, the

VM Integration, the VM live migration, and the VM fault recovery. We pro-

pose an architecture based on the private cloud Tele-Lab architecture. In our

architecture, a Team consists of containers and running on a VM.

This chapter describes our approaches to automatically integrate a VM and

recover from a fault VM in CRVL system. The VM integrity verification is

described in section 6.1 as a part of the Integration approach. The Fault Recovery

approach is using the network directory to store the Container’s shell commands

history and modified files. When a VM is failed, the data on the network directory

is still accessible via the network. This way the Container could be recovered by

creating a new Container using the same network directory on another VM. The

same shell commands are executed on the new Container to get the latest state

of the user activities.

We do not need to back up the Container memory, because the Container is

used for user’s exercises, not to run an online service. For future work, the same

fault recovery approach should be evaluated to back up the critical data stored

in memory. The critical data should be enough to recover the latest state of the

Container. The possibility of using services logs to recover the service should be

investigated. This way, we could use our method on an online service.

80



5.6 Chapter Summary

The duration time of a VM fault recovery is depending on the number of

target VMs that could be used to run the Teams that was running on the fault

VM. When the throughput to each VM is the same, the more the number of

target VMs, the smaller the time to recover.

In CRVL, everybody including a bad guy can contribute his spare resources

into the system. The bad guys as a host admin have physical access to the

resources. They could do some attacks on confidentiality such as tampering with

the OS image and the data in the RAM. On the next chapter, we proposed three

approaches to strengthen the VM from some attacks.

81



5. CROWD-RESOURCING VIRTUAL LABORATORY

82



Chapter 6

Secure Virtual Machine on

Untrusted Host Machine

Crowd-Resourcing Virtual Laboratory (CRVL) gather resources from the crowd

mostly in the form of Virtual Machine (VM). Everyone that has spare resources

could share their resources to contribute to the CRVL system. Everyone means

including the bad guy. The host of the VM could be compromised, and the host

admin could be malicious. The malicious admin could apply an insider attack

to get the sensitive data from the VM where a team is running. This is the

problem of privacy and confidentiality. We need to secure the VM to enhance

the confidentiality of the sensitive data inside the VM. The sensitive data could

be user credentials, Intellectual Property such as a virtual laboratory or learning

materials.

In this chapter, we describe three methods to increase the data confidentiality

in a VM running on Untrusted Host Machine. The first method is to remotely

verify the integrity of the Virtual Machine without using any specific hardware

such as the Trusted Platform Module (TPM) chip. The second method is mov-

ing sensitive data against live memory dumping, Spectre and Meltdown. The

sensitive data is always moving from one memory location to another memory

location. The third method is to monitor all the activities on the host of the

VM using a monitoring agent on the host. The agent sends the monitoring result

to an independent third party, which is trustworthy by the host owner and the

CRVL system. These three methods could also be used in a public cloud. The

83



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

threat models are also described in this chapter.

6.1 Virtual Machine Integrity Verification

In cloud computing, users can use their operating system (OS) image to run a

virtual machine (VM) on a remote host. The virtual machine OS is started by

the user using some interfaces provided by a cloud provider in a public or private

cloud. In peer to peer cloud, the VM is started by the host admin. After the

VM is running, the user could get remote access to the VM to install, configure,

and run services. For the security reasons, the user needs to verify the integrity

of the running VM, because a malicious host admin could modify the image or

even replace the image with a similar image, to be able to get sensitive data

from the VM. We propose an approach to verify the integrity of a running VM

on a remote host, without using any specific hardware such as Trusted Platform

Module (TPM). Our approach is implemented on a Linux platform where the

kernel files (vmlinuz and initrd) could be replaced with new files, while the VM is

running. kexec is used to reboot the VM with the new kernel files. The new kernel

has secret codes that will be used to verify whether the VM was started using

the new kernel files. The new kernel is used to further measuring the integrity of

the running VM.

6.1.1 Motivation

CRVL is used to increase the number of resources where a person or a company

can contribute, by sharing their unused resources to be integrated into the Virtual

Laboratory system. In CRVL system, a virtual machine (VM) could be running

on an untrusted contributor’s host machine. This scheme is similar to peer-

to-peer (P2P) cloud or social cloud, where everyone with some spare resources

could become a contributor. As the owner of the host machine, the contributor

can do some malicious activities to get confidential data from a running VM. The

malicious host admin could inject a malicious program into the OS image that will

be executed whenever the OS is started. This problem is also applicable in the

public cloud, where a VM is running on a provider host machine. A public cloud

provider is bound by law and an agreement that they will keep the customers’

84



6.1 Virtual Machine Integrity Verification

data private and secured. The cloud admin is not allowed to see or copy the

customers’ data. Some people still do not trust the provider that they do not

want to put their confidential data in the cloud.

The OS image could be provided by a cloud provider in a public cloud or by a

host admin in a P2P cloud. The OS image could also be provided by a user. The

user could create an OS Image based on the user’s needs and uploads the image

to the remote host. In CRVL, the OS image is a pre-built (pre-installed) image.

After being uploaded, the user could start a VM base on the OS Image, using

an interface provided by the public cloud provider. In the P2P cloud, the VM

is usually started by the host admin. The host admin in a public cloud or P2P

cloud is able to modify the OS image that has been uploaded. When a user sends

a request to start a VM based on the OS Image, the host admin could manage

to start the VM from another image or a modified image.

The objective of this research is to find a solution in verifying the integrity of

a running VM before it is integrated into the system of the CRVL or P2P cloud.

The integrity of the files on the hard drive does not guarantee the integrity of

running services, because the running services could be started from some hidden

files or some files that were removed after the service is running. Some methods

might be able to verify the integrity of a running VM, such as remote attesta-

tion, operating system fingerprinting, VM introspection, and memory based VM

integrity verification. These existing methods are not suitable for mitigating the

problem of verifying the integrity of a running VM in a Crowd-Resourcing Virtual

Laboratory, because the VM might not have particular hardware or the user does

not have access to the host machine.

We propose a new method that uses kexec1 to reboot the VM from known good

kernel files (vmlinuz and initrd). These files are sent to the running VM as part

of the integration process in the CRVL system, where the integrity of the running

VM needs to be verified. These files have secret codes that will be extracted into

the kernel when they are used to boot the kernel. The secret codes have an expiry

time. kexec is installed just before it is needed to reboot the VM. We assumed

that the kexec has not been compromised. After the VM was rebooted, the kernel

is considered as trustable to verify the integrity of the system files in the VM.

1http://man7.org/Linux/man-pages/man8/kexec.8.html

85



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

In the boot process, before the init process of the userspace, the kernel loads a

module that has a function to get the hash checksum of all the system files. The

secret codes and the hash checksum are sent to the VLab (CRVL) server. The

VLabServer verifies the values and the expiry time of the secret codes and the

hash checksum. If they are not valid, the server will reject the VM from being

integrated into the CRVL system.

Our proposed integrity verifying mechanism was working well in our exper-

iment. We run four experiment scenarios to verify the functionality of our ap-

proach. It has prevented the kernel from loading the malicious program and

rejected a modified VM. We measured the performance by measuring the time

as the overhead, and the result is still acceptable as our approach is a part of the

VM provisioning time. Our experiment used Linux as the operating system of

the VM because the Crowd-Resourcing Virtual Laboratory is using Linux VM to

run containers. Our approach is designed based on Linux systems.

6.1.2 Related Work

6.1.2.1 OS Finger Printing

Operating system (OS) fingerprinting is the process of identifying which operating

system is running on a particular device. The device could be a remote machine

or a local virtual machine in a cloud computing infrastructure. For the remote

machine, the identification process is done by analyzing some parameters such

as flags in the packet header and data in the packets, and a device sends to the

network. There are two types of remote machine OS fingerprinting, i.e. passive

and active fingerprinting. Passive fingerprinting identifies the OS by sniffing

and analyze the packet sends to the network, and active fingerprinting actively

send some requests to the remote device and analyze the responses. Nmap1 and

Xprobe22 can be used to do active OS fingerprinting. This kind of tools suffers

some problems, where they could be failing because of the remote machine disable

network services by closing all the TCP/UDP ports and drops all ICMP packets.

1https://nmap.org/
2https://Linux.die.net/man/1/xprobe2

86



6.1 Virtual Machine Integrity Verification

In a cloud computing infrastructure, the cloud admin needs to find out the

kernel version of each running VM automatically, to secure the cloud infrastruc-

ture. The cloud admin needs to know the exact kernel version and updates to

be able to configure the security parameters. Beside for security purpose, pre-

cise fingerprinting of an operating system is also needed for VM management

applications in the cloud, such as VM introspection, kernel update, kernel dump

analysis, and memory forensics. Some works have already been done to identify

a kernel version trough memory dump, CPU Registers, and kernel images.

Lin et al.[62] propose SigGraph, which relies on identifying kernel data struc-

tures in memory to identify the kernel version, since the data structure varies

across operating systems. SigGraph is a framework that systematically generates

signatures for data structures in an OS kernel. SigGraph-based signatures can be

used for brute force scanning to find out whether an instance of the corresponding

data structure exists in the memory. Gu et al.[34] propose OS-Sommelier, which

analyses physical memory dump file for kernel version identification. It searches

the entire memory snapshot to identify the cluster, which contains core-kernel

code. It generates the signatures, which are the cryptographic hash of the kernel

pages. The signatures will be compared with the known signatures to identify

the kernel version. Roussev et al.[86] propose a kernel fingerprinting, which uses

the content of the kernel images on disk to build the signatures. They claim that

their approach can distinguish among incremental kernel version updates. Ker-

nel identification is delivered by looking for the presence of known kernel content

in a RAM snapshot. They use a matching tool called sdhash, to extract kernel

fingerprints.

This OS fingerprinting method could get the OS version of a running VM, but

it could not solve the problem of integrity since it does not verify the integrity of

the system files.

6.1.2.2 Virtual Machine Introspection

Virtual Machine (VM) Introspection is a technique for monitoring and analyz-

ing the running state of a VM, from the hypervisor perspective. Garfinkel and

Rosenblum[31] introduced this term in 2003, by proposing an intruder detection

system (IDS) run on a host but pulled the IDS outside of the host. They used

87



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

Virtual Machine Monitoring to isolate the IDS from the monitored host. The VM

Introspection has been used for various purposes such as digital forensics, anti-

Malware, VM sizing, and migration. Suneja et al.[110] explored the existing VM

Introspection techniques and created a taxonomy based on the VM Introspection

operational principles. Using the taxonomy, they explored the trade-offs of the

VM Introspection techniques qualitatively and quantitatively.

VM Introspection cannot be used to solve the problem of integrity in the

CRVL system because it has to be done from the host while the remote VM user

does not have access to the host.

6.1.2.3 Virtual Machine Integrity

VM integrity (VMI) is monitored and analyzed remotely at the verifier side. The

VMI verification is conducted by doing remote attestation or Remote Integrity

verification. Virtual machine integrity has become a popular topic in cloud trust.

Some works have already been done in verifying the integrity of a VM. Yu et

al.[131] implemented TCG (Trusted Computing Group) remote attestation under

the assumption that the TPM (Trusted Platform Module) and hypervisor are

secure and the privileged domain0 may be malicious. Perez et al.[81] proposed

virtualized TPM that enables trusted computing for an unlimited number of

virtual machines on a single hardware platform. This virtualized TPM needs a

TPM chip on the hardware platform.

Intel developed Software Guard Extensions that create hardware-assisted trusted

execution environment. It creates CPU-hardened “enclaves” or protected areas

of execution in memory for the application that run sensitive code and data with

the enclave data is written to disk encrypted and checked for integrity [45]. Us-

ing this Intel technology, software vendors are facing a problem of generating or

obtaining the secrets in the first place. Malware could be listening to the I/O of

the client machine. To mitigate this problem, Intel SGX has an advanced Re-

mote Attestation feature, where the client must confirm its identity, verifies its

integrity, and proves that it is using Intel SGX [46][51]. Intel seems to be able to

solve the problem of VM integrity, but Swami [111] claimed that the Intel SGX

Remote Attestation is not sufficient. He found some problems in the protocol

88



6.1 Virtual Machine Integrity Verification

design that sub-computation of the protocol can be simulated outside of the en-

clave. Schwarz et al.[95] performed a cache side-channel attack on a collocated

SGX enclave and can extract the RSA private key from other enclaves.

The existing VM integrity verification approaches using specific hardware such

as TPM and SGX, are not suitable to verify the VM integrity in the Crowd-

Resourcing Virtual laboratory, because the contributor might not have the needed

hardware. We are proposing a new approach that does not use any specific

hardware. Our approach does not verify the integrity of the BIOS, and we use

kexec as the root of trust to reboot the VM using the fresh downloaded Linux

kernel files such as initrd and vmlinuz.

6.1.3 Threat Model

In Crowd-Resourcing Virtual Laboratory (CRVL), a VM is started with a pre-

built image that was ready to be used for a particular scenario. The VM could be

running on an untrusted host machine, where the host admin could be malicious.

A host admin has full access and control of all the resources in the host. Once a

guest VM is already running, the host admin could not get into the VM without

a proper user account. The malicious host admin could access the VM’s files that

are stored on the hard drive and dump the VM memory to get sensitive data out of

it. The malicious host admin could also modify the image of the VM to add users,

create a backdoor, etc. When a VM is started using the modified image, the host

admin could get access to the VM using the added user or the backdoor. In this

paper, we focus on solving the problem of verifying the integrity of a running VM

on a remote host in the CRVL, that could be run from a compromised pre-built

image.

Running a VM with a particular pre-built image on an untrusted host machine

could have some threats regarding the privacy and confidentiality of the data

inside the VM. Confidential information such as a user’s credentials, confidential

documents, and intellectual property, must be kept safe from being exposed to

unauthorized parties. The VM should be run from a pre-built image that has

already been proven to be secure. This image could be created by a user and

uploaded to the remote host machine. When a user wants to run a VM using

the image, the host admin can interfere with running another similar image that

89



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

perhaps has vulnerabilities. The malicious host admin can add a line of code

in a script to run another (unknown) image instead of the one that requested

by the user. This unknown image could have the same users and services that

was copied from the real image. This image could have some vulnerabilities or

backdoors that could lead to some attacks.

Another threat is that the malicious host admin could modify the pre-built

image1 and add a rootkit or a backdoor to get confidential data when the VM is

running based on the modified image. The malicious host admin could modify

some services inside the running VM, by embedding a script inside a service

starter in the image, which will be run at the startup or after the VM is running

using crontab. After the modified services are running, the malicious host admin

could remove all the modified files and restore the original files while the modified

service is still running. This way, verifying the integrity of the files does not

mean verifying the integrity of the running services. Tools such as AIDE2 and

Tripwire3 could not be used to detect the malicious or modified services, because

the modification is done offline, the modified services are started before the tools

are started, and the modified files are replaced with the original files after the

modified services are running. The user could try to verify the integrity of the

running services by monitoring their behaviour, but the malicious host admin

could design some services which are hidden from the user. The user could also

try to memory dump the services (processes) one by one, and analyze the dump

files to measure the integrity. However, this is not easy to be done as the dump

file of a process is always changing.

To be able to modify the pre-built image undetectable, the malicious host

admin should do the modification, execute the modification, and remove the

traces before the integrity verification tools could be executed. This could be

done during the bootup process before the init program is called. The malicious

host admin will try to embed the malicious code as soon as possible after all the

functions needed has been ready to be used. This means that the malicious code

will be embedded in the kernel space. The kernel is loaded from a compressed

1https://docs.openstack.org/image-guide/modify-images.html
2http://aide.sourceforge.net/
3https://www.tripwire.com/

90



6.1 Virtual Machine Integrity Verification

kernel image file (vmlinuz) and an initrd.img file. The malicious host admin could

modify these files and save the modified version with new names, and use these

new files to run the VM by modifying the grub.cfg to boot from the modified files.

After the kernel is loaded, the grub.cfg will be restored to the original version,

and the modified files will be removed.

6.1.4 Verification Method

An integrity measurement architecture (IMA) is using TPM as the root of trust

to store artefacts of a platform authentication. Using the TPM as the root of

trust, the system could verify the integrity of all the system files before execution

during the boot processes. Our approach does not use any specific hardware such

as TPM as the root of trust, because the contributor might not have it and might

not allow it to be used by the user of the shared VM. We propose an approach

that could verify the integrity of a running VM without TPM, by copying several

new kernel files into the running VM and reboot the VM using the new kernel

files. The new running kernel is used as the root of trust. The kernel files have

secret codes that will be extracted and stored in memory or log messages when

the new kernel is running. These secret codes are used to verify whether the VM

was started using the new kernel files.

Our approach works on a Linux environment because the Linux kernel files

(vmlinuz and initramfs) could be replaced by new kernel files, on a running Linux

OS. The VM is started using a pre-built OS image123, to be able to have the

same files and configurations as the one in the VLab server. This way the hash

checksum (hashsum) could be used to verify the integrity of the VM.

Figure 6.1 shows the general architecture of the VM integrity verification

(VMIV). On the server side (Vlab Server), there is an Integration service to

verify the running VM who wants to be integrated into the Crowd-Resourcing

Virtual Laboratory. This integration service communicates with VMIV hub on

the running VM. VMIV hub executes the sequence of the Integration process,

1https://docs.openstack.org/image-guide/create-images-manually.html
2http://www.theLinuxdaily.com/2010/02/how-to-setup-a-pre-built-Virtualbox-guest-image-

tutorialguide/
3https://wiki.ubuntu.com/Kernel/BuildYourOwnKernel

91



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

Vlab Server

Contributor Host Machine 

Running VM

VMIV 

Hub

Kernel

Integration Service

Hashsum 

Module

Prebuilt VM Image

AIDE

Kexec, 

vmlinuz, 

initramfs

Figure 6.1: VMIV Architecture.

including the integrity verification process. VMIV hub uses kexec to reboot the

VM and collects data from Integrity Verification (Hashsum) Module and AIDE as

the monitoring tool. AIDE is pre-installed on the pre-built image. The pre-built

image was downloaded from the Vlab Server.

Our model consists of two major components: enforcing and verifying. The

enforcing is to create a clean base system that we use as a root of trust. The

verifying is to verify whether the running VM has been tampered and whether

some modifications had been made without known by the user of the running VM.

As a part of enforcing, the kernel must be configured to only load modules that

have valid signatures, to prevent an unauthorized module from being inserted

into the kernel.

To create a clean kernel environment, some integrity files (vmlinuz, initramfs,

hashsum module and other files) are copied to the running VM from the virtual

laboratory (Vlab) server. These files have an expiry time (120 seconds) that

within the expiry time, the files must be used to run a VM and the secret codes

of the files must be sent to the Vlab server. The expiry time is used to limit the

amount of time that an attacker has, in modifying the integrity files. vmlinuz,

initramfs and hashsum module have secret codes that are different between each

other. A secret code is inserted into vmlinuz via one of the Linux kernel source

code files, e.g. main.c. A secret code in initramfs could be generated and inserted

on the fly. A secret code in hashsum module is inserted via the source code file.

92



6.1 Virtual Machine Integrity Verification

Some number of vmlinuz, initramfs, hashsum modules are provided and ready

to be used on the Vlab server. The combination of vmlinuz, initramfs, and

hashsum module are selected randomly to prevent replay attacks where a rogue

contributor sends the already used secret codes to the Vlab Server. The secret

codes of vmlinuz and initramfs will be extracted and stored in the memory or a

log message (dmesg) if the kernel files are used to run a VM. The secret code of

hashsum module will be used as a nonce in the hashsum function, to prevent the

use of a fake (modified) hashsum module, because a fake hashsum module has a

different nonce.

The running VM is rebooted using kexec that could reboot the VM into

another kernel from the currently running kernel without performing hardware

initialization that should be done by the BIOS (Basic Input/Output System).

kexec is installed just before the VM is rebooted. We assumed that the kexec

is not compromised. kexec uses kernel as a boot loader, and it does not use a

conventional boot loader such as Grub or LILO. Figure 6.2 shows the Linux boot

process and rebooting process using kexec. After the VM was rebooted, the secret

codes of the vmlinuz and initramfs are stored in the memory. The secret codes

will be sent to the Vlab server together with the hashsum code.

BIOS

Boot Loader

Kernel

Init
User Space

Kexec
Reboot

New Kernel
(Root of Trust)

Integrity 
Verification 
(Hashsum) 

Module

Figure 6.2: Linux Boot Process.

After the new kernel has been loaded, the integrity verification (Hash check-

sum) module is loaded. This verification function summarizes the hash values of

all the system files using a hashsum function such as md5sum or sha1sum. The

93



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

hashsum module should be loaded right after the root file system is mounted and

before the init process of userspace, to be able to verify the integrity of all system

files before being executed.

The hashsum module is built using static libraries to stop the module from

using a compromised library, and it is downloaded at the same time as the new

kernel files. The hashsum result (HashCode) together with the secret codes are

sent to the Vlab Integration service to be verified by comparing the HashCode

and the secret codes with the ones stored in the server. If the HashCodes and

the secret codes were the same, and the kernel files were not expired, the VM is

allowed to be integrated as one of the resources of the virtual laboratory system.

After the VM is integrated into the CRVL, AIDE is used to monitor all the files

in the VM. The AIDE check is executed periodically, and the result is sent to the

Vlab server.

Integration Service (IS)

integrity_init(vmid)

integrityFile + sessionid

verificationResult

Contributor Vlab Server

extract(integrityFile)
kexecInstall()
reboot()

hashCode + 
secretCodes +

sessionid

verify(hashCode) 
verify(secretCodes) 
verify(expiryTime)

VMIV Hub

verify(vmid)
selects(integrityFile)

hashsum (Files)
get (secretCodes)

Figure 6.3: Integrity Verification Sequence.

Figure 6.3 shows the sequence of enforcing and verifying the integrity of a

running VM. The running VM sends a message to initiate the integrity verification

process, which consists of the VM Identifier (vmid). The Integration Service (IS)

on the Vlab server verifies the vmid. If the vmid was valid, the IS randomly selects

an Integrity file (integrityFile) that has never been sent to the contributor running

VM and sends it to the contributor (VMIV Hub) together with a sessionid. The

integrityFile is a compressed file consists of vmlinuz, initrd, hashsum module,

94



6.1 Virtual Machine Integrity Verification

and some files needed to load the hashsum module during boot up. A sessionid

is used to maintain the verification process after reboot. The VMIV hub receives

and extracts the integrityFile, installs kexec, and uses kexec to reboot the VM

using the new kernel files.

During boot time, a hash code (hashCode) is generated by the hashsum func-

tion. The hashsum function is executed by loading a module into the kernel.

The hashCode together with the secret codes (secretCodes) from the kernel are

sent to the IS, which verifies the secretCodes, the hashCode and the expiration

status (expiryTime) of the kernel files. The IS calculates the time between the

sending of the kernel files (integrityFile) to the contributor and the receiving of

the secretCodes, to verify whether the kernel is already expired. The hashCode

and the secretCodes are compared with the one stored in the database. If the

hashCode and the secretCodes are the same and the kernel is not expired, the VM

integrity is valid and allowed to be used. The communication between a Contrib-

utor (VMIV Hub) and the Vlab server (IS) is encrypted, but to make it simple,

we do not show it in the Integrity verification sequence. We use WebSocket Se-

cure (WSS) for the communication between the VM and the Vlab server. If the

WebSocket was disconnected, the disconnected VM has to start the verification

process from the beginning.

6.1.5 Evaluation

We conducted several experiments to evaluate the functionality and performance

of our approach. Figure 6.4 shows the architecture of the experiment. VM#1 is

the verifier which will verify the integrity of the shared VM on the workstation.

VM#1 is running on an OpenNebula in the Tele-Lab server, and the shared VM

is running on a VirtualBox in a workstation machine with Intel Core processor

i5-4690 CPU @3.50 GHz and 8 GB of RAM. The shared VM has 2 GB of RAM,

one vCPU and 80 GB hard drive. The shared VM is started using a modified

pre-installed OS image.

The pre-installed OS image is created using Linux Ubuntu 18.04 Bionic Beaver

as the base image. The HashCode of the files inside the image is stored in a

VM#1. Hash sum module (hashsum.ko), ”/etc/modules”, ”/lib/modules/4.15.18-

custom/modules.dep” and ”/lib/modules/4.15.18-custom/modules.dep.bin” and

95



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

OpenNebula

Tele-Lab 
Server

VM#1
Verifier

Workstation
/Contributor

VirtualBox

Shared
VM

Figure 6.4: Experiment Architecture.

all the files in ”/boot” folder, are compressed into one file and uploaded to the

VM#1. Hashsum.ko is the module that will be loaded during boot time to hash

sum the system files in the VM. The system files are the files that stored in these

folders: ”/bin”, ”/boot”, ”/etc”, ”/lib”, ”/sbin”, ”/usr/bin”, ”/usr/sbin”, and

”/usr/lib”. The pre-installed image is copied to the workstation to run a VM

using VirtualBox. The pre-installed image is modified by running a VM using

the pre-installed image, modify several files inside the running VM, and create

a modified pre-installed image from the already modified Virtual Machine. The

modified pre-installed image is used to run a VM which is going to be verified

by the VM#1. After the shared VM is running, we implement our approach to

verify the Integrity of the running VM.

To evaluate the functionality of our approach, we modified or added some files

on the image, run a VM using the image and verify the integrity of the running

VM using our approach. We conducted four experiment scenarios, where the

modified files are different. In the first experiment, we add a rootkit module

called nurupo1 into initramfs, by modifying ”/etc/initramfs-tools/modules” file

and store the rootkit.ko file into ”/lib/modules/4.15.18-custom/kernel/drivers”

folder. Linux command ”update-initramfs -u” is executed to activate the new

configuration, and the VM needs to be restarted. The VM is restarted, but

the rootkit module could not be loaded because it did not pass the signature

verification.

The second experiment is conducted by manually adding a nurupo rootkit

module into ”/etc/modules” and add the rootkit.ko file to the ”/lib/modules/4.15.18-

custom/kernel/drivers” folder. Linux command ”depmod” needs to be executed

1https://github.com/nurupo/rootkit

96



6.1 Virtual Machine Integrity Verification

to find all the dependencies of the module. The VM is restarted, but the rootkit

module could not be loaded because it did not pass the signature verification.

Loading the rootkit module into the kernel after boot process was also failed

because of the unverified module.

In the third experiment, we add a simple backdoor1 into the image that will

be executed at boot time. The backdoor could be running, and the shell is shown

in the attacker machine. We implement our approach to the running VM, and

the hashsum of the running VM was not the same with the one stored in the

server, which means the Integrity Verification of the running VM is failed. The

fourth experiment is conducted by manually modifying a library of the image.

After the VM is run using the modified image, our approach could find out that

the Integrity of the running VM was false and the integrity verification was failed.

To evaluate the performance of our approach, we measure the overheads

needed to implement our approach. We measure the needed time and mem-

ory space in implementing our approach on the VM side only. The time overhead

can be obtained by measuring the download time of kernel files (t d), the time

of rebooting and hashing the system files(t rh), the communication time between

the VM and the server(t c) including the verification time on the Vlab server.

We could not separate the measuring time of reboot and hashing, because the

module of hashing is loaded during reboot. Using kexec, the average of rebooting

and hashing time is 1 minute 28 seconds. Without the hash module, the reboot-

ing time is 29 seconds. The download time of kernel files is 2 seconds, where the

size of the compressed file is 113 MB. The communication and verification time

is 4 seconds. Total additional time in implementing our approach is 1 minute

34 seconds. This additional time is not significant and can be accepted for VM

provisioning in the CRVL or P2P cloud.

The memory (RAM) space overhead is measured by calculating the amount

of memory is being used by additional process or module that resident in mem-

ory. The Hashsum module and VMIV hub are resident in the memory. In this

experiment, the hashsum module called a shell script to get the HashCode of the

system files. The memory space used by the hashsum module is 16.3 KB. The

VMIV hub is a part of VM Integration service in the CRVL which was built using

1https://github.com/buckyroberts/Turtle

97



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

python. The size of the VMIV hub is 19.1 KB. This memory space overhead is

quite small that it would not affect the performance.

The root of trust in our approach is in the fresh installation of kexec, which

is used to reboot the VM using the known good kernel files downloaded from

the server. Our approach does not verify the integrity of bootloader and BIOS.

The BIOS and the bootloader could be infected by a malicious program such as

keylogger and rootkit. Our approach could not detect these malicious programs

while they do not change any system files in the hard drive. Brossard[14] created

a hardware backdoor (Rakshasa) proof-of-concept that replaces the BIOS and

compromises the OS at boot time by patching the kernel on the fly without any

traces on the hard drive. By rebooting the OS using kexec and new kernel files,

the compromised OS could be replaced with a clean OS, because kexec does

not use the BIOS and the boot loader to reboot the OS. We assumed that a

malicious program does not compromise the fresh kexec, but in reality, there

is still a possibility that the kexec is compromised right after the installation.

To enhance our approach, an anti-virus or anti-rootkit such as chkrootkit could

be used to detect any malicious program from memory (RAM) before kexec is

installed.

There are several Master Boot Record (MBR) or boot loader rootkits (bootk-

its) such as stoned[54] for windows and kitgen1 for Linux. The stoned bootkit

needs to install a driver or a malware on the OS that will change the hashsum of

the system files in the hard drive. The kitgen is designed to infect the initrd file,

which will also change the hashsum of the system files and using our approach,

the infected initrd file will be overwritten by a clean initrd from the Vlab server.

Our approach could detect these bootkits because they modify the system files.

We are not aware of another type of bootkit, but as long as the bootkit modifies

something on the system files, we are sure that our approach is able to verify VM

integrity and will reject the VM from being used in the virtual laboratory. To

enhance our approach against bootkit, we could also verify the integrity of the

MBR by doing hashsum to the MBR. The Linux command to hashsum the MBR

is shown in Listing 6.1.

1https://github.com/chesteroni/kitgen/

98



6.1 Virtual Machine Integrity Verification

1 dd if=/dev/sda bs=1024 count=1 | hexdump −C | sha1sum

Listing 6.1: Hashsum MBR Command

The secret code in the kernel files and the expiry time of the kernel files could

guarantee that the running kernel is started using the good known kernel files.

With enough time, the attacker could extract the secret code from the kernel

files, but it will much longer than the expiry time. The attacker could use this

secret code for the next verification. The secret codes of the next kernel files

should be different every time the verification is being processed. There must be

many kernel files with different secret codes stored in the server. The verification

application must randomly select which one to be sent to a VM. The secret codes

should not be the same as the previous ten secret codes that were sent to the

same VM. The secret codes could be obfuscated to make it harder to be extracted

from the kernel files.

A module must pass the signature verification to be able to be loaded into

the OS. The public key to verify the signature is stored in a keyring in a file.

The attacker could try to add a public key to the keyring to be able to load

a new module, but the additional public key must be signed by the key that

already in the keyring. To make it more secure, the OS must be compiled with a

configuration that does not allow to add an extra public key.

A critical point in our approach is that the hashsum module must be loaded

right after the root file system is mounted and before the init process of userspace.

This is to make sure that all the processes or services are started from files that

are already calculated in the hashsum function. An attacker could modify the OS

image, to load the hashsum module after running the malicious program on the

userspace and restore all the files to the original version. This way, the malicious

program could not be detected. However, to do this, the attacker needs Linux

commands, e.g. insmod and modprobe. These commands need privilege access

using sudo. We could prevent the user account from using these commands by

editing the sudoers file. If the attacker modifies the sudoers file to be able to load

the hashsum module, the hashsum result will not be matched with the one in the

Vlab server, because the sudoers file has been changed.

99



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

Encryption could also be used to verify the integrity of a running VM by

preventing it from being modified by an attacker. To run the VM, the image

needs to be decrypted, and the user needs to enter the secret key when the VM

is booting up. For a VM on a remote host machine, the encryption key must be

entered by the host admin, because the Vlab admin does not have access to the

VM console while booting. In another case where the Vlab admin can have a

console during boot, the malicious host admin can still use the Evil Maid Attack

[89] to put a keylogger on MBR of an encrypted hard disk to get the password or

encryption key. He can modify the VM image and hook up an evil maid program

into the encryption software bootloader in the MBR.

6.2 Moving Sensitive Data

The emergence of cloud computing allows users to easily host their Virtual Ma-

chines with no up-front investment and the guarantee of always available anytime

anywhere. However, with the Virtual Machine (VM) is hosted outside of the user’s

premise, the user loses the physical control of the VM as it could be running on

untrusted host machines in the cloud. Malicious host administrator could launch

live memory dumping, Spectre, or Meltdown attacks in order to extract sensi-

tive information from the VM’s memory, e.g. passwords or cryptographic keys

of applications running in the VM. In this paper, inspired by the moving target

defense (MTD) scheme, we propose a novel approach to increase the security of

application’s sensitive data in the VM by continuously moving the sensitive data

among several memory allocations (blocks) in Random Access Memory (RAM).

A movement function is added into the application source code in order for the

function to be running concurrently with the application’s main function. Our

approach could reduce the possibility of VM’s sensitive data in the memory to

be leaked into a memory dump file by 25% and secure the sensitive data from

Spectre and Meltdown attacks. Our approach’s overhead depends on the number

and the size of the sensitive data.

100



6.2 Moving Sensitive Data

6.2.1 Motivation

Cloud computing offers Infrastructure-as-a-Service (IaaS) service model where

users could host their Virtual Machines (VMs) with a pay-as-you-go pricing

model, a rapid resources allocation and de-allocation on demand, and the ubiq-

uitous availability[132]. However, VM hosting in the cloud could have several

security and privacy challenges that potentially threaten confidential information

stored in the VM. Multi-tenancy in the cloud could poses side channel attack

as multiple VMs are sharing physical resources [26]. Guest VM could also be

running on an untrusted host machine where a malicious cloud administrator

could extract confidential information from the VM. Since a guest VM could not

be accessed directly by the malicious administrator, e.g. SSH login, they could

execute unauthorized memory dumping attack to generate a memory dump file

from the volatile memory (RAM) of a VM [85]. Sensitive data, e.g. password,

cryptographic keys, or personal information, currently processed in the VM could

be extracted from the VM’s memory dump file. The VM could also be suscepti-

ble to Spectre [56] and Meltdown [63] attacks that could leak sensitive data from

guest VMs.

We propose a novel solution that reduces the possibility of VM’s sensitive

data to be captured in a memory dump file and increases the security of sensitive

data in the VM’s memory from Spectre and Meltdown attacks. Following moving

target defense (MTD) concept [96], our approach increases complexity and cost

of attack for attackers trying to access VM’s sensitive data. It moves the sensitive

data of application running in the VM across the application’s memory allocations

(blocks) in RAM. Our approach works on the application level where a function

needs to be added into the application source code to move the sensitive data.

The movement function runs concurrently with the application’s main function.

We implement our approach into encryption-decryption proof-of-concept ap-

plication as we evaluate it against live memory dumping attack where it could

reduce the probability of the keys to be captured in the memory dump file by 25%.

We also evaluate our approach against Spectre and Meltdown attacks by extend-

ing Spectre’s and Meltdown’s proof of concept (PoC) application with the result

shows that our approach could reduce the sensitive data leakage from memory.

101



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

6.2.2 Related Work

6.2.2.1 Memory Dumping

Memory dumping process, also known as memory acquisition, is one of the tech-

niques used in digital forensics that helps to show the latest state of the data,

application, and system from the machine’s memory [4]. It copies the content of

volatile physical memory (RAM) from the beginning of memory address, which

is the lowest address, until the end or particular part of the memory at certain

memory state. After it finishes copying the content of RAM, it writes the content

into a hard disk as a memory dump file. It is also possible to get VM’s memory

from a virtualization system or hypervisor. With the hypervisor is responsible

for allocating memory to various VMs, it is possible to acquire VM’s memory

without any modification to the software or virtual hardware of the VM itself

[37].

By gaining memory dump file from VM, a malicious user could extract sen-

sitive information contained in it, such as cryptographic keys, passwords, and

the user’s sensitive data [85][4]. Several tools or commands can be used to help

extract information from memory dump file, such as rsakeyfind1 to find RSA key

and strings command to find cleartext password.

There are memory dumping countermeasures designed with different purposes

such as to prevent memory acquisition from happening, to mitigate reverse engi-

neering, or to prevent sensitive data from being analyzed based on memory dump

file. Milković [67] developed a memory anti-forensic toolkit called Dementia that

is able to hide information inside the memory dump file during memory acquisi-

tion on Windows operating system (OS). Guard pages [115] is one of the methods

to avoid unencrypted data to be acquired from memory in Windows OS. It offers

on-demand decryption/decompression system for packer and protector by mark-

ing all memory pages not immediately needed during loading executable in the

memory’s run-time as guard pages. This kind of methods could not protect the

sensitive data if memory dumping is executed from outside of the VM.

Other methods stores important information outside of RAM to avoid a cold-

boot attack. Simmons [105] proposed disk encryption software called Loop-

1http://manpages.ubuntu.com/manpages/xenial/man1/rsakeyfind.1.html

102



6.2 Moving Sensitive Data

Amnesia. It permanently stores randomly generated encryption key inside CPU’s

model-specific register that ensures no key is ever leaked to RAM. Therefore mem-

ory dump file does not contain the key. Mueller et al.[72] proposed TRESOR, a

Linux kernel patch for x86 architecture that implements a method, that stores

key in CPU’s debug registers and runs the AES algorithm on the microproces-

sor to avoid RAM usage for its encryption and decryption. Mueller et al.[71]

integrated AES with Linux kernel to run entirely on microprocessor by using

Streaming SIMD Extensions (SSE), which is available in a modern processor, to

ensure no information about the key is leaked to RAM. These methods are a

hardware-based hiding technique using cache or register to avoid storing the data

in the RAM. These techniques are not practical in real-life especially in the cloud

computing environment, since the registers’ size are quite small to store all the

sensitive data of the guest VM, and they require some changes within OS and

the virtualization software.

Other countermeasures propose the solution through computer’s hardware.

AMD developed memory encryption techniques called Secure Memory Encryp-

tion (SME) and Secure Encrypted Virtualization (SEV) [53]. SME uses high-

performance AES engine for each controller that encrypts data when it is written

to DRAM and decrypts it when it is read from DRAM. SEV enforces code execu-

tion to run at different isolated levels with each has no access to the resources of

the other through cryptographic isolation. Intel developed Software Guard Ex-

tensions (SGX) that create a hardware-assisted trusted execution environment. It

creates CPU-hardened ”enclaves” or protected areas of execution in memory for

the application that run sensitive code and data with the enclave data is written

to disk encrypted and checked for integrity [45].

Our approach is different from those existing countermeasures since our ap-

proach does not need any additional specific hardware. It is working on an appli-

cation level and able to work even if memory dumping was executed from outside

of the VM.

6.2.2.2 Spectre and Meltdown

Spectre [56] and Meltdown [63] extract sensitive data from a restricted area of

the volatile memory (RAM) that belong to other running programs. They ex-

103



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

ploit critical vulnerabilities in modern processors which have several optimization

features, i.e. branch prediction, speculative and out-of-order execution. By ma-

nipulating these optimization features, Spectre and Meltdown can extract data

from restricted memory area to the cache. The data in the cache could be read

using a microarchitectural covert channel (e.g., Flush+Reload[130]) to the out-

side world. Spectre exploits branch prediction and speculative execution, while

Meltdown exploits out-of-order execution.

Some works create patches on the kernel level to stop the vulnerability from

being utilized by the attacker. Meltdown patch called KAISER1 isolates the

kernel addresses from the user space process by adding a ”shadow” page table

contains a copy of all user-space mappings without kernel-space addresses. Some

kernel-space address can still be read from user-space and leaves a residual at-

tack surface for Meltdown. Google developed Retpoline [116] to mitigate Spectre

in exploiting indirect branch prediction to execute ”Branch Target injection”.

Retpoline is a software construct made of return operations that allows indirect

branches to be isolated from speculative execution and ensures that any specu-

lative execution will bounce endlessly. Intel developed IBRS2 (Indirect Branch

Restricted Speculation) to mitigate the branch prediction by restricting the spec-

ulation of indirect branches. It stops near returns and indirect jumps/calls from

allowing their predicted target address to be controlled by code that is executed

in a less privileged prediction mode. These patches are working on the kernel

level, while our approach is working on the application level. These patches are

not practical against a malicious host admin since these patches need to be im-

plemented on the host machine. The malicious host admin will not implement

the patches.

The way Spectre and Meltdown copy the sensitive data from the memory to

the outside world is different from live memory dumping. Spectre and Meltdown

copy the sensitive data only a small amount of data at one time, e.g. character by

character. Live memory dumping can copy data from the memory to hard drive,

page by page (4kB). This means live memory dumping can copy one whole sensi-

tive data to the hard drive at once, while the Spectre and Meltdown have to copy

1https://lwn.net/Articles/738975/
2https://lwn.net/Articles/743019/

104



6.2 Moving Sensitive Data

the sensitive data character by character. This different way of copying sensitive

data from memory to the outside world affects the result of implementing our

approach against these attacks. The difference could be seen in the experiment

section.

6.2.2.3 Moving Target Defense

According to [96], MTD is the concept of controlling change across multiple sys-

tem dimensions in order to increase uncertainty and apparent complexity for

attackers, reduce their window of opportunity and increase the costs of their

probing and attack efforts. There are a lot of MTD techniques have been devel-

oped to make the system more defensible against various attacks. Cheng Lei et

al.[57] have done a survey on MTD techniques. They analyzed the MTD con-

cept and explain the MTD design principles and system architecture. Jun Xu et

al.[128] compares different MTD techniques. They propose a three-layer model

to evaluate and compare the effectiveness of different MTD techniques. One of

MTD techniques that has been well known and widely deployed is Address Space

Layout Randomization (ALSR). It has been used in the operating system to ran-

domize the location of system executable in the memory in order to tackle the

buffer-overflow attacks.

Our approach is a novel technique in the MTD field since it is different from

the existing MTD techniques. Our approach reduces the attacker’s window of op-

portunity and increases attack efforts by moving the sensitive data across memory

blocks in RAM.

6.2.3 Threat Model

Our main objective is to secure the sensitive data in the volatile memory of a

remote VM, which is running on a shared host machine in cloud computing, such

as public cloud, peer to peer (P2P) cloud, or social cloud. Our approach focuses

on mitigating these three threat models that could be committed to extracting

the sensitive data from the VM’s memory:

1. Live memory dumping: Using a live memory dumping tool, the malicious

host admin is able to copy the contents of the VM memory to a file on a

105



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

hard drive, without freezing or pausing the VM. After the memory is

dumped to a file, the malicious host admin then could search for sensitive

data, such as a secret key or a password. Using the password or the secret

key, the malicious host admin could get into the VM to access the data

available in the VM.

2. Spectre: Using Spectre variant two vulnerability, a user from a guest VM

could extract sensitive data out of another guest VM memory content on the

same host machine1. A user creates an application that exploits the Spectre

vulnerability and runs the application on a guest VM. The application can

influence the victim process to execute a gadget in the victim address space

by training the Branch Target Buffer (BTB) to mispredict a branch from

an indirect branch instruction to the address of the gadget. This gadget

then could put the sensitive data in the cache [56]. After the sensitive data

is stored in the cache, the application could get the sensitive data out using

the covert channel method.

3. Meltdown: This attack could be delivered by the host admin and the

container users. As a container user, the attacker could create an application

that exploits Meltdown vulnerability on the container to get data out of the

kernel memory and other containers in the same kernel [63]. Meltdown could

also be used by the malicious host admin to get the data from guest VMs.

In this thesis, we are using the scenario where the sensitive data used by

the application in the VM is stored encrypted in hard drive. We assume that

attacker can steal the sensitive data only from memory using these three attacks

mentioned above since the sensitive data is stored unencrypted in the memory

(RAM).

6.2.4 Moving Sensitive Data in RAM

The sensitive data in the memory is prone to live memory dumping, Spectre and

Meltdown attacks. We propose a method to mitigate these attacks by continu-

ously moving the sensitive data among memory blocks of a program in Random

1https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-need.html

106



6.2 Moving Sensitive Data

Access Memory (RAM), as the memory is read from lower memory address to

higher memory address during these attacks. A memory block is a group of one

or more contiguous chars (bytes) of a memory. In the C programming language,

the memory block is created using the malloc function.

Moving sensitive data among memory blocks means copying the sensitive data

from one memory block to another memory block while removing it from the

previous memory block. Removing sensitive data does not mean deallocating its

memory allocation, but filling the memory block with random synthetic data,

to ensure no sensitive data leaves the trace in memory during the process and

to create a fake sensitive data. The memory blocks are created only once and

will never be deallocated until the sensitive data is removed from the memory.

A pointer is created to always point out to the current block of the sensitive

data. This way the main application function can access the sensitive data via

the pointer.

The sensitive data are moving in a loop across memory blocks as can be seen in

Figure 6.5, where there are five memory blocks (A, B, C, D, E) for the movement

of the sensitive data. From the application perspective, the memory blocks are

consecutive and contiguous, because the application sees the virtual memory.

The virtual memory is mapped to the physical memory by the operating system

(OS). In the physical memory, the memory blocks are allocated randomly that

their location might not be consecutive and contiguous.

= Block of memory

0 1 2

A B C D E

R2=d2/t2

R=Transfer rate
d= data
t= time

Movement Locations

AB C DE

Physical Memory

R1=d1/t1

n-1 n

Figure 6.5: Movement in Physical Memory.

107



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

In Figure 6.5, the movement locations are from the virtual memory perspec-

tive, where the sensitive data is moved forward from one memory block to another

memory block sequentially from lowest to highest address (A→B→C→D→E) to

finish one loop of movement, and back to the lowest address to start another

loop. In the physical memory, the memory blocks are not located sequentially,

thus to finish one loop of the sensitive data movement, the sensitive data move

forwards and backwards randomly according to the location of the next memory

block. Live memory dumping, Spectre and Meltdown are moving forward from

low address to high address in physical memory (RAM).

The sensitive data is moved by a function called movement function. This

movement function is added into an application source code to be able to move

the application’s sensitive data. The movement function is called using the thread

by the main function that is using the sensitive data to run both of the functions

concurrently. The application that is using the sensitive data uses a pointer to a

current variable that stores the sensitive data.

The algorithm of the application that moves the sensitive data in the memory

can be seen in Algorithm 2. In this algorithm, we use a decryption process as an

example of the main function (procedure). Inputs of the algorithm are SecretKey

(sensitive data) and EncryptedText. The output is cleartext, and the number

of memory blocks (arrayKey) for movement is 3. A volatile global variable is

used as a pointer to the secret key as the sensitive data. A movement function

runs concurrently with the main function using thread. A thread lock (mutex)

is added to synchronize the access to the SecretKey. The movement function

continually moves the secret key among memory blocks while still keeping the

global variable pointing to the current block of the secret key.

108



6.2 Moving Sensitive Data

Algorithm 2 Movement Algorithm

1: Input: SecretKey, EncryptedText.

2: Output: ClearText

3: Initialization: globalKeyPointer ← NULL, x← False

4: procedure Movement

5: #Allocate several memory allocations (array)

6: arrayKey[3]← malloc()

7: i← 0

8: while x is False do

9: #random key (fake) to override secret key in memory allocations

10: randomKey ← generateRandomKey()

11: #moving SecretKey within memory allocations (array)

12: copy (arrayKey[i], globalKeyPointer)

13: oldGlobalKey ← globalKeyPointer

14: globalKeyPointer ← arrayKey[i]

15: copy (oldGlobalKey, randomKey)

16: i++

17: if (i == arrayKey.length) then i← 0

18: nanosleep()

19: end while

20: end procedure

21: procedure main

22: #SecretKey, a pointer to the memory location of a secret Key

23: SecretKey ← getSecretKey()

24: globalKeyPointer ← SecretKey

25: EncryptedText← getEncText()

26: createThreadMutex(MOVEMENT)

27: for as long as it is needed do

28: #Decrypt the EncryptedText

29: decrypt(EncryptedText, globalKeyPointer)

30: nanosleep()

31: end for

32: #stop movement function

33: x← True

34: exitThread()

35: end procedure

109



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

Our approach could be implemented in any application where the sensitive

data could be moved across memory allocations. For example, the ssl module

(mod ssl.c) of Apache web server could be modified by adding a private key

moving function to it. In the client site application, the browser could be modified

to implement our approach to secure user credentials. There is a trade-off of

our proposal as it needs more memory and more CPU works for the movement

function. The time complexity of the movement algorithm is O(n) where n is the

number of movement function executions which depends on the thread scheduler

and the time of the sensitive data is being stored in the memory. The space

complexity of the movement algorithm is O(1) because the number of memory

allocations and the size of the sensitive data (secret key) are fixed during the

execution of the movement function. When the size of sensitive data is not fixed,

the space complexity is O(n), where n is the size of sensitive data. The overheads

are measured in experiments.

6.2.4.1 Moving Sensitive Data Against Live Memory Dumping

When a memory dumping tool copies the data from main memory to a hard

drive, it will go sequentially page by page from the first memory location until

the last memory location. Usually, the amount of a memory page is 4 kB. The

transfer speed R1 from the main memory to hard drive is based on the memory

speed, front side bus (FSB) speed, the hard drive buffer, etc. While the memory

dumping tool copies data from memory to a hard drive, the sensitive data is also

moving among certain memory blocks with the speed R2 based on the RAM’s

frequency specification. The transfer speed is in MB/s. R1 is much smaller than

R2. As shown in Figure 6.5, the sensitive data are moving in a loop from memory

block A to block E then back to block A and so on, until it is removed from the

memory.

Virtual memory is created by an OS to expand the main memory capacity

by combining the physical memory (RAM) and secondary storage (hard drive).

The memory blocks for the sensitive data in the virtual memory are consecutive.

In the physical memory, those memory blocks are not consecutive, as they are

randomly distributed among the available memory for the application (memory

heap). Figure 6.5 shows the flow of moving sensitive data in physical memory. In

110



6.2 Moving Sensitive Data

this figure, the memory blocks A to E for the sensitive data are not consecutive.

Although sensitive data are moving sequentially from memory block A to E in the

virtual memory, the memory block of A to E are random in the physical memory;

therefore the movement is not consecutive. The memory dumping tool captures

the sensitive data if the sensitive data exists in the memory block being dumped

to the hard drive. Because the memory blocks are allocated randomly and not

consecutive in the physical RAM, the probability of the sensitive data is in the

same memory block as the memory dumping tool is 50%.

The success of memory dumping process is measured by capturing sensitive

data no matter where its location is or how many times it is captured in multiple

locations (blocks) as it is only counted as one time. Captured means the sensitive

data is contained in the memory dump file. Because captured sensitive data is

counted only once, from the result point of view, there are only two memory

allocations available: the location of captured sensitive data and non-captured

memory location. The probability of the sensitive data being caught by the

memory dumping tool is 75%, which is the same probability of getting at least

one head when tossing two coins at the same time.

6.2.4.2 Moving Sensitive Data Against Spectre and Meltdown

Because Spectre and Meltdown extract the sensitive data out of the memory char-

acter by character, they could be mitigated by moving the sensitive data within

memory blocks. Suppose they could get one character at the first address when

they try to get data from the second address, they will get a random character as

the content of the memory has been changed with the fake data and the sensitive

data has already been moved to another memory allocation. Figure 6.6 shows the

example of moving sensitive data against Spectre. In this example, we assume

that the speed of moving sensitive data is the same as the speed of the Spectre

getting the data from memory and the sensitive data in the restricted memory

area is ”CroviLab”. The moving process and the Spectre process are executed

alternately by the process scheduler. Because the sensitive data is moved within

3 memory locations, the data extracted by Spectre is ”Cgdvewah” therefore the

adversary is getting a wrong result.

111



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

Figure 6.6: Movement Against Spectre.

Meltdown can dump kernel and physical memory with up to 503 kB/s[63].

This speed is much smaller than the speed of copying data within a different

location in memory, which is up to 3.2 GB/s for DDR2 with 400 MHz FSB.

Our proposal allows sensitive data to not stay at one memory location while

the attacking process is extracting data from restricted memory. Another fac-

tor that influences the moving of sensitive data against the attacker process is

Process Scheduler. In a multi-tasking environment, such as Linux, the process

scheduler manages all processes and fairly determines which process is running.

The process with sensitive data movement function and the attacker process are

running together concurrently. This way we can be sure that the sensitive data

always move to another memory location after the attacker process extracted one

character from the restricted memory area.

6.2.5 Evaluation

In this Section, we evaluate our approach against live memory dumping, Spectre,

and Meltdown attacks by developing proof-of-concept suitable to mitigate each

attack. Our approach is working only on a programming language that supports

mutable variable where the content of the variable memory location could be

replaced with a new value, e.g. C, Ruby, and PHP.

112



6.2 Moving Sensitive Data

6.2.5.1 Live Memory Dumping

In the live memory dumping experiment, we implemented our proposal into proof-

of-concept application for encrypting and decrypting a message1 that is developed

in C language and running in the VM. It includes the secret key moving function

and thread creation to make a moving function to be parallel with the encryp-

tion/decryption function. The goal of this experiment is to capture secret key

used for encryption and decryption from a memory dump file of running VM.

LiMe memory dumping tool2 is installed and running on the host machine

while our application is running on a VM. The host machine is Linux Kubuntu

17.10 32 Bit with Intel Pentium CPU 2.27 GHz and 3 GB RAM. VirtualBox

hypervisor is used to run Linux Ubuntu 14.04 VM with one vCPU and 512 MB

base memory without swap space. The Linux Kubuntu host machine and the

Linux Ubuntu VM are using the default configuration. We created two bash

scripts to run the experiment automatically: one script in the VM starts the

application after startup and another script on the host machine starts the VM,

runs memory dumping process, and reboots the host machine since the host

machine needs to be restarted to clear the memory from old data after each trial.

It takes about 15 minutes to run a trial in a real live environment.

When the application is running, the encryption and decryption functions are

looped long enough until the memory dumping tool has finished dumping all the

content of memory (RAM) to a hard drive. This creates the condition of the

secret key to be used and available in the memory while the dumping tool is

running. Inside the application, we added a function that moves the secret key

within three memory allocations. The size of memory allocation is 4096 bytes,

which is the size of a memory page because the memory dumping tool copies the

data to hard drive page by page. The secret key is in the string format to make

it easy to be extracted from the memory dump file using strings command. In

reality, cryptographic key finder, such as aeskeyfind, could be used to search for

a cryptographic key in a memory dump file.

In this experiment, we used three memory allocations (array) to store the se-

cret key. The experiment did not record the memory location of the captured as it

1https://gist.github.com/int64Ago/bc816bd950b179e04955
2https://github.com/504ensicsLabs/LiME

113



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

only records whether one secret key is captured. When the memory dumping tool

captured the secret key, it is counted as one captured, no matter how many times

the secret key has been captured during one period/trial of an experiment. If the

secret key is captured in a memory location, the other locations are considered to

be not captured and could be counted as another location thus making it becomes

two possible locations of the secret key. Therefore there are 4 possible results of

each trial: [0,0], [0,1], [1,0], and [1,1], where captured secret key is represented by

1 and not captured secret key is represented by 0. The experiment runs for 56

trials with the result 41 times the secret key was captured and 15 times was not

captured. The success rate of the captured secret key is 73.2%. Increasing the

number of memory allocations does not affect the result of our experiment.

We also measured the performances of our approach within different loads

of memory by the running time of the application and the movement count of

the sensitive data. In this experiment, the sensitive data is a 32 bytes AES

secret key and the size of the text to be encrypted is 1024 bytes. The encryption

and decryption functions are looped 10000 times. We use stress-ng1 test tool to

generate different memory loads from 30% until 90%. Figure 6.7 and 6.8 show the

result of the running time and movement count measurement of different memory

loads. The running time and the movement count are increased following memory

load increase because when the stress tool is executed, the CPU needs to serve

more processes simultaneously; therefore it takes more time to execute a function.

Because moving function is lighter than the encryption/decryption function, the

moving function is executed more often. The running time difference of 30% and

90% memory load is 21 milliseconds, and the movement count difference is 7.

These values are really small, so we could assume that the performance of our

approach is stable as long as there are still some memory spaces available used

for moving the sensitive data.

Moving function has created overhead of the memory and the CPU usage.

The overhead can be measured by calculating memory space and time param-

eters. Memory space overhead is measured by calculating the size difference of

additional memory because of the moving function. Time overhead is measured

1https://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/

114



6.2 Moving Sensitive Data

Figure 6.7: 10000 Loops Execution Time.

Figure 6.8: 10000 Loops Movements Number.

by calculating the additional times needed because of the additional moving func-

tion. Based on the previous experiment, the overhead memory space is 6.68%

(954 bytes) since the file size without moving function is 13330 bytes and the file

size with the moving function is 14284 bytes. The overhead time is 0.02% (13

milliseconds) where the running time without moving function is 54.538 seconds

and the running time with moving function is 54.668 seconds.

From the experiment results, we can conclude that our approach works well

in a high load memory (90%) and high load CPU (100%) where there are no

significant differences on the execution (running) time and the number of move-

ments. The overheads of our approach are really small that would not affect the

performance. Adding memory allocations would not affect the result. In this

experiment the size of sensitive data is small.

115



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

6.2.5.2 Spectre & Meltdown

In this experiment, we modified PoC source code of Spectre1 and Meltdown2 by

adding a function that moves the secret value continually among three memory

allocations following Algorithm 2. The modified versions could be downloaded

from our repository3. The function is then running concurrently with the Spectre

or Meltdown function in main function thread. We stored the secret value in an

array and created a pointer to the array. In the moving function, we created a

list of arrays to store the secret value. When the secret value is moved to another

array, the pointer is changed to point the new place of the secret value. The old

array should be filled with some random characters representing fake sensitive

data, but in this experiment, we used the character ”b” to see the difference

easily. In this experiment, the number of memory allocations for movement is 3.

We run the experiment several times with the result is shown in Table 6.1. The

first row is the result of running Spectre/Meltdown PoC without modification, the

second row is the result of running a modified version of Spectre PoC which has a

movement function inside, and the third row is the result of a modified Meltdown

PoC. Spectre PoC generates a ”?” when it cannot resolve which character is in a

memory location, while Meltdown PoC does not generate anything when it cannot

resolve the character of a memory location. That is why the result of Meltdown

is shorter than the original data. Spectre could capture 8 characters correctly

and Meltdown could capture 9 characters correctly. The captured characters will

be meaningless, especially if ”b” is replaced by a random character. We can

reduce the number of correctly captured characters by increasing the memory

allocations because more memory allocations mean more places to move, which

means Spectre or Meltdown will capture more fake characters.

Because the behaviour of Spectre against moving sensitive data is similar

to Meltdown, we only measure the performance of modified Spectre PoC. To

measure the performance, we have tested our approach in four kinds of memory

loads: 30%, 50%, 70% and 90%, where the CPU load was always 100%. We use

stress-ng test tool to generate the load of memory. Performances are measured by

1https://github.com/crozone/SpectrePoC
2https://github.com/iaik/meltdown
3https://github.com/nfs2018/MemoryDumping

116



6.2 Moving Sensitive Data

Table 6.1: Spectre & Meltdown Experiment Results

Type Results

Original The Magic Words are Squeamish Ossifrage.

Spectre Tbbbbabibb????bb?rbbbqbbbbis?bbbb?[b?gbb

Meltdown Tbbbabbbobbbab bbubbbbbsbibbbb.

the execution time of the application and the movements number of the sensitive

data. We run the modified Spectre PoC for 10 times for each memory load to

measure the times and the movements number and calculate the average result.

The results of the experiment are shown in Figure 6.9, 6.10 and 6.11. Figure

6.9 shows the running time of several different memory loads where the higher

the memory load is, the higher the running time. When stress tool creates more

memory loads, it also creates more CPU loads. Thus it takes more time to run the

application, although the difference between memory load 50% and 90% is not

significant. The running time difference between memory load 90% and 30% is

1.555 seconds, which is really small to be considered for affecting the performance.

Figure 6.10 shows the movement number of sensitive data within memory

allocations. The higher the memory load is, the higher the movement number

will be since it takes more time to execute the main function thread on a heavier

load memory. The moving number function was executed more frequently because

it is lighter than the Spectre function. For 40 characters of sensitive data, the

movement number is between 316 and 409 times because the thread system is

executing lighter function more frequently. Figure 6.11 shows that the higher the

memory load is, the lesser the captured characters will be because the moving

function was executed more frequently.

From the experiment results, we can conclude that our approach could protect

sensitive data against Spectre and Meltdown attacks. Our approach also works

very well in different kind of memory load because the memory load does not

significantly affect the execution time and the number of the correct data being

captured.

117



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

Figure 6.9: Spectre Execution Time.

Figure 6.10: Spectre Movements Number.

Figure 6.11: Spectre Correct Characters.

118



6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

ABTiCI was not specifically designed for CRVL, but it could also be used on

CRVL. It was designed to increase the customer trust on the public cloud provider.

In CRVL, a VM could be running on many platforms such as a private cloud,

a public cloud, and a hypervisor of a contributor’s computer machine. These

platforms have a similar virtualization concept, where a VM is running on a host

machine and the host machine is managed by a host admin. ABTiCI could be

used to monitor these platforms remotely, but in this section, we use public cloud

platform as a use-case. This approach could be used if the host machine has a

TPM chip and the host admin gives permit to install software agent on the host

machine.

By design, the cloud system does not allow a cloud administrator to access

the customer data in a VM without customer’s permission. However, a cloud

administrator is able to modify the software/hardware configuration in a way

that allows unauthorized access to customer data. This is because the cloud

administrator has full control of the cloud infrastructure. He is a superuser in the

cloud system and has physical access to the cloud infrastructure. ABTiCI system

detects unauthorized access by verifying and monitoring the Integrity of cloud

infrastructure security relevant parts. ABTiCI performs integrity verification at

boot-time and run-time. ABTiCI uses trusted boot with TPM (Trusted Platform

Module) to perform integrity verification at boot-time. ABTiCI also monitors

access to security-relevant parts, such as hardware and software configuration, to

be able to detect any changes at run-time. ABTiCI uses agents to do integrity

verification and to communicate between entities in the cloud infrastructure.

6.3.1 Motivation

The pay-per-use payment model in cloud computing provides advantages from

an economic and the scalability point of view. The customer does not need to

invest in a high-cost infrastructure and only needs to pay for what has been used,

and additional computing resources can be allocated on-demand. Two of the

significant issues in slowing down the speed of cloud computing adoption are data

confidentiality and integrity. These issues prevent some potential customers from

119



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

moving their services and data to the cloud. They need to keep the confidentiality

of their data even from the cloud provider. They cannot trust the cloud provider

without any evidence. They want to know whenever there is unauthorized access

to their data by anyone including the cloud administrator.

Encryption is usually used to protect data and provide security guarantees.

However, in cloud computing, encryption might not guarantee data protection

from compromised or dishonest infrastructure providers. Such providers have full

control of the cloud infrastructure. They can configure and modify the cloud

infrastructure to allow unrestricted access to the data without being known by

the customer. They can load a malicious hypervisor module, install malicious

hardware, perform a side channel attack, modify system software to get access

to the customer’s data. Rocha and Correia show how a cloud administrator can

obtain a private key using a memory snapshot [85].

To be able to access customer’s data in the customer’s VM, compromised or

dishonest cloud infrastructure providers need to modify the hardware or soft-

ware configuration. For example, to obtain a private key, a cloud administrator

needs to enable memory dumping in the hypervisor. As the cloud infrastructure

provider has full control of the hardware and software, it is not possible to prevent

the cloud provider from modifying them. However, there is a possibility to detect

whenever the hardware or software configuration has been changed. In this case,

in order for the customer to detect unauthorized access, it is necessary to detect

whenever the hardware or software configuration is being changed. This can be

done by monitoring the relevant parts of the infrastructure provider and verify-

ing their integrity. By letting the customer monitors part of the infrastructure

provider, the cloud becomes more transparent to the customer.

The research problem of this section focuses on how to monitor the security

relevant parts of the cloud infrastructure and how to verify their integrity in order

to detect unauthorized access that could be gained due to a compromised system

or a dishonest cloud infrastructure provider.

6.3.2 Related Work

Huang and Nicol[44] propose a trust mechanism based on evidence, attribute cer-

tification, and validation, and conclude by suggesting a framework for integrating

120



6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

various trust mechanisms to reveal a chain of trust in the cloud. Bouchenak et al.

[13] raise the problem of verifying cloud services and survey the existing work in

this area. Furthermore, they identify gaps in existing technology in terms of the

verification tools provided to the user. The authors discuss the challenges and

direction to bridge these gaps. Butt et al. [15] propose a solution that modifies

the hypervisor to allow an administration domain (Dom0) for every customer, to

enable security and privacy in relation to provider administration domain. This

way, it will be possible to have flexible control over clients’ VMs. CSA (Cloud Se-

curity Alliance) [21] proposes CTP (Cloud Trust Protocol) and STAR (Security,

Trust and Assurance Registry) to improve trust in the cloud and ICT market by

offering transparency and assurance. These proposals show that the challenges

to provide Trusted Cloud with evidence to verify, is still an ongoing and exciting

research area.

Sim KM [104] introduces an agent-based paradigm for constructing software

tools and testbeds for cloud resource management. He is concerned with the

design and development of software agents for bolstering cloud service discovery,

service negotiation, and service composition. However, he does not discuss the

issue of privacy and security in relation to the cloud provider. Hada et al. [35]

propose a trust model for cloud architecture which uses mobile agents as security

agents. These exclusive mobile agents obtain useful information from the virtual

machine which the user and service provider can utilize to keep track of privacy of

their data and virtual machines. This approach uses mobile agents that can alert

the cloud provider of the problem if the client installs a malicious code which

results in the agent replicating itself in the cloud.

Santos et al. [93] propose a Trusted Cloud Computing Platform (TCCP) to

provide a closed box execution environment for DomUs (guest VMs) in the cloud.

It adds a new entity to certify all the nodes (physical hosts). This entity called

TC (Trusted Coordinator). Every node must be certified by TC to get involved

in the cloud. When a customer wants to start their VM in one node, the node

must ask TC to decrypt the session key that was sent by the customer. The

session key is encrypted using the TC public key. The node needs the session key

to communicate with the customer.

121



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

[77][36][90] propose an approach to answer the problem stated in this paper

using trusted computing technology with TPM (Trusted Platform Module). Here,

the integrity of security relevant parts is verified at the boot-time of every physical

machine in the cloud. [77] adds the function of integrity verification at run-time.

These approaches use TPM to produce the key, hash and store the result. These

approaches cannot verify the integrity of the security-relevant parts of a physical

machine (Dom0) in an infrastructure provider when the verification software is

not installed. A cloud infrastructure provider can have thousands of physical ma-

chines. The Certifier cannot verify whether in the Dom0 the verification software

is already installed. If the verification software is not installed in the Dom0, the

compromised or dishonest cloud provider can change the software/hardware con-

figuration without the knowledge of the customer/certifier. This means that the

cloud provider could place certain customer VMs in the Dom0 without verifica-

tion software being used. This could be performed for the first time when the VM

is started or later when migrating the VM to a new Dom0. Migrating could be

done any time without being noticed by the customer/certifier, especially during

load balancing or failover system and when restoring backup data.

6.3.3 Threat Model

Some potential customers with strict data protection policies do not want to let

any unauthorized party (including a cloud provider) access their data. In the

cloud system, customers have very limited access to the infrastructure provider.

They do not know where their data is stored, and they do not know how the

cloud infrastructure is managed. Even though the cloud infrastructure can claim

confidentiality and integrity, customers need to be able to verify the claim of the

cloud provider. Customers need to be sure that any unauthorized party does not

have accessed to their data.

Cloud infrastructure providers have full access to every resource (memory,

CPU, hard disk, etc.) in their cloud, but by design, they cannot access the

VM directly without receiving authorization from the VM owner. While the

VM cannot be accessed directly by the cloud infrastructure provider, it still has

access to the resources being used by the VMs. This is because every VM needs

resources that are provided by the cloud infrastructure provider. According to

122



6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

[77], as the owner of the resources, a cloud infrastructure provider can carry out

various attacks to access the customers’ data. These attacks can (1) access data

directly in the physical hosts, (2) exploit vulnerabilities in the cloud customers’

VMs, (3) access data directly in the storage, (4) capture data using network

sniffers, (5) use back up images to retrieve data. To protect the cloud customer

from the attacks, encryption is usually used. However, even though encryption

is used to secure data in the cloud, the compromised or dishonest cloud provider

can still access the data by configuring or modifying cloud infrastructure without

the customer’s knowledge. Our research is focused on securing the customer data

from an attack that involves accessing data directly in the physical host.

VMn

Hypervisor

Platform Management

Control Domain 
(dom 0)

Drivers

Guest OS,
Customer’s 

Software

VM0 (domU_1)

I/0 CPU Memory

Host HW

VM1

Kernel

Figure 6.12: Xen Cloud Platform Host.

To describe the problem clearly, Xen Cloud Platform (XCP) is used as the

basis. Figure 6.12 shows the architecture of XCP in a physical host and also

shows the communication between Dom0 (Domain Zero), DomUs (Domain Un-

privileged) and the Hypervisor in XCP. DomU (VMn) is an unprivileged domain

(virtual environment) for the customer to be used as needed. DomUs can only

access its own resources, like the CPU, and its memory area, and does not have

direct access to other hardware devices. The Dom0 is a control domain with

special privileges for hardware access. The Dom0 is used for the mapping and

management of the Virtual Disk, network interfaces, and other device drivers

123



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

required for hardware access by DomUs. The Dom0 provides system files includ-

ing the hypervisor, the kernel, the kernel module, the drivers (virtual disk and

network) and the Xen management tools.

Xen Hypervisor is a computer software that creates and runs virtual ma-

chines. Xen Hypervisor manages access to the physical host’s resources, Dom0,

and DomUs. Xen Hypervisor doesn’t allow a VM to access or modify data in the

memory of other VM. It manages the communication between DomUs and the

hardware devices, such as memory, CPU, and disk drives. The administrators of

the infrastructure providers have full access to Dom0 and Hypervisor. From this

architecture, we can see that administrators can configure and modify Dom0 and

hypervisor to get access to the customer’s data without the customer’s knowledge.

The cloud administrator has physical access to the host. By having full access

on the software and physical access to the host, a cloud administrator is able to

install malicious hardware, perform a side channel attack, or modify the system

software running on Dom0 or DomUs. He is able to reset the machine and boot

with a modified hypervisor or operating system to get access to the customer’

data [77]. Cloud administrator can get the customer’s data and encryption keys

from the memory by using memory snapshot [85]. Another way to have access

to the memory is to use DMA (Direct Memory Access). DMA allows access or

modifications to the memory without hypervisor control. Cloud administrator

can create DMA by inserting a new hardware device or by misusing already

available components [77]. It is also possible to create DMA by modifications

of the respective drivers [77]. Beside through memory, cloud administrator can

modify the disk utilities and configurations to create a duplicate of the data stored

by the customer’ VMs. He can also modify the network utilities or configurations

to redirect all network traffic to a file.

To be able to execute these kind of attacks, most of the time, the cloud admin-

istrator needs to modify the hardware or software configuration. For example,

to be able to do the memory snapshot, cloud administrator needs to modify the

hypervisor to enable the memory dumping function. To be able to create DMA,

cloud administrator needs to insert new hardware or modify the driver. In this

paper, we focus on attacks targeting modifications of the hardware and software

124



6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

that allow access or modification to customer’s data. We also limit the problem

in scope to unauthorized access to data in customer Virtual Machines.

We assume that the cloud system implements encryption to secure the cus-

tomer’s data. In this case, the cloud provider can access the data and encryption

key from the memory. We can also assume that whenever the VM is off, the key

is not stored in a clear text and a password is required to gain access to it. So,

the possibility to gain access to the data and encryption key is via memory. This

is because whenever the data is accessed or processed, it is simultaneously stored

in the memory in clear text. Both the encryption key and the password are also

stored as clear text in the memory.

Neisse et al. [77] propose a bonafides system to solve the problem by doing

remote attestation of the integrity of the cloud’s infrastructure’s integrity. How-

ever, this system is not capable of finding out whether the bonafides system is

already installed and running in the Dom0 of every DomUs. Therefore, the com-

promised or dishonest cloud infrastructure provider can put certain DomUs in

the physical machines where the bonafides has not been installed. They can do

this the first time the VM is created, or when doing recovery from back up, or at

the migration to another physical machine.

6.3.4 Architecture and Implementation

In the spirit of providing more transparency and allowing the customer to verify

the claim that has been stated by the cloud infrastructure provider, we propose

the use of an agent as a mediator between customer and cloud provider. Both

sides need to be able to trust this agent. The agent monitors the security-relevant

parts of cloud infrastructure and sends reports to the base station. The cloud in-

frastructure provider knows the capability of the agent exactly. It also recognizes

the source code of the agent program to verify whether the agent program is safe

and secure for the cloud provider operation. While this agent system cannot stop

unauthorized access, it can detect and send reports to the customer. To be able

to detect correctly, the integrity of the agent must be maintained on time.

Our first goal is to verify the integrity of the hardware/software configuration

remotely. Second goal is to find out whether the Dom0 of physical machines

where the VMs are hosted, has an installed verification software. In this case, we

125



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

need to verify if there is an agent installed in Dom0. We use the agent to monitor

and to verify during the run-time, and we implement a trusted boot using TPM

to verify the integrity at the boot-time. We are proposing ABTiCI (Agent-Based

Trust in Cloud Infrastructure) system as the answer to the problem.

ABTiCI system is designed to verify integrity at the boot-time and also at the

run-time. Verifying the integrity at the boot-time was proposed by [77][36][90],

where trusted boot is done using TPM. TPM stores the hash values of the hard-

ware and software configurations in Platform Configuration Registers or PCRs.

These values are also sent and stored in a database of a remote machine called

Cloud Certifier. The system can verify the integrity of the host machine by

comparing the hash result with the one stored in the database. Because the sys-

tem configuration can still be changed after the boot-time, verifying the system

integrity at run-time is still necessary. We focus on verifying the integrity at

run-time. Figure 6.13 shows the architecture of ABTiCI.

Cloud Certifier

DomUs Agent

Base Station
Cloud 

Customer

Data Report

Dom0 Agent

Hypervisor

Boot Loader

BIOS

Hardware TPM

Dom0

Infrastructure Provider

MainDomU 
Agent

Figure 6.13: ABTiCI Architecture.

To verify the integrity at run-time, ABTiCI uses inotify1 to monitor the rel-

evant files and an agent to communicate with another agent. The monitoring

location is in Dom0 where the compromised or dishonest cloud provider could

change the hardware/software configuration to get access to the customer data.

We focus on monitoring these security relevant files: hypervisor, kernel module,

network driver, I/O driver, etc. Inotify is a Linux kernel subsystem used to

monitor files. Whenever the file is changed, inotify informs the Dom0 Agent.

1http://man7.org/linux/man-pages/man7/inotify.7.html

126



6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

The Dom0 Agent is started by MainDomU Agent by executing SSH Con-

nection to the Dom0 OS, to verify the agent binary file and execute the agent

program. The MainDomU Agent executes the ”ps aux” command and send the

output to MainDomU and store it in the database and also send the output to

the base station. The MainDomU Agent and the base station know the PID

(Process Identifier) and the time when the Dom0 agent program is started.

Via the same SSH connection, the MainDomU Agent executes the ”xe vm-

vif-list” command on the Dom0 to get the list of VM MAC addresses that was

hosted in the same physical machine. The result is stored in the database and

also be sent to the base station. The MainDomU Agent gets the MAC Address

information from every DomUs and sends it to the base station. This way the

MainDomU agent and the base station can construct a map of Dom0 and DomUs

based on their MAC Address.

Randomly, the MainDomU Agent sets up the SSH connection and verify

whether the running agent is being tampered with or not by checking the PID

and the time when the agent was started. If verification failed, the cloud provider

must give an explanation and proof. The failed event is recorded in the log for

future analysis. Whenever the Dom0 Agent was executed, it takes the integrity

information in TPM and sends it to the MainDomU Agent.

6.3.4.1 Roles

As shown in Figure 6.13, ABTiCI system has five different roles: Cloud Customer,

Cloud Certifier, Dom0 Agent, MainDomU Agent, and DomU Agents. The Cloud

Customer can be a cloud service provider or a service consumer. It can access the

data report in the Cloud Certifier to see the status of it’s VM. The report could

be in a dashboard form to make it easy to understand. The reporting system can

be arranged as needed.

Cloud Certifier. The Cloud Certifier has a role in inspecting the infrastruc-

ture provider. It determines whether the infrastructure provider is a trustworthy

provider or not. As shown in figure 6.13, Cloud Certifier has a base station with

the function of starting ABTiCI by sending a message to the MainDomU Agent

to start the Dom0 Agent. A base station has an agent that communicates with

the MainDomU Agent to send a command to start ABTiCI or to receive data

127



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

reports from the MainDomU Agent. In the base station, there is an application

that analyzes the data reports and creates a dashboard view for every customer.

The dashboard view, informs the customer when the security relevant parts of

the cloud infrastructure provider change. Furthermore, it informs the customers

about the location of their VMs in the cloud by mapping the DomUs to the

Dom0 using MAC Addresses. There is only one Cloud Certifier in the ABTiCI

architecture.

Dom0 Agent. Dom0 is an administrative domain where the cloud infras-

tructure provider manages the resources in a physical host that will be outsourced

by the VMs. The Dom0 operating system is the first operating system installed

in a physical host. Dom0 Agent is an agent in a Dom0 that monitors the relevant

parts of a physical host in a cloud infrastructure provider and sends the report to

the MainDomU Agent. The Dom0 Agent monitors the relevant parts of the phys-

ical host in order to detect unauthorized access by a compromised or dishonest

cloud provider. The Dom0 Agent uses hash and digital signature in TPM to hash

and sign a message that is sent to the MainDomU Agent. Dom0 Agents also send

the list of MAC addresses of DomUs to the MainDomU Agent. Every physical

host has one Dom0 Agent. The Dom0 Agent uses inotify to monitor several files

and uses trusted computing technology with TPM to detect the integrity of the

hypervisor, kernel and kernel module at boot-time.

MainDomU Agent. MainDomU Agent is an agent in one of the VMs of

a physical host in the cloud infrastructure. This VM is controlled by the Cloud

Certifier to monitor the cloud infrastructure provider. MainDomU Agent plays a

central role in communicating with another agent in the cloud infrastructure to

perform the verification and monitoring function. MainDomU Agent verifies the

agent program in Dom0 and starts the Dom0 Agent through the SSH connection.

MainDomU Agent is responsible for polling the MAC address of every DomUs.

MainDomU Agent polls the MAC Addresses of the Dom0 and also receives data

reports from Dom0 Agent and sends data reports to the base station. There is

only one MainDomU Agent for the whole cloud infrastructure.

DomUs Agent. DomUs Agent is an agent in every DomU except the one in

the MainDomU. DomUs Agent is responsible for sending its own MAC Address

to the Main DomU Agent. There is one agent in every DomU.

128



6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

6.3.4.2 Integrity Verification

The integrity verification is performed on security relevant parts and on the agent

itself to detect the possibility of unauthorized access.

Agent Integrity Verification. The agent is verified before it is started and

randomly at certain time intervals after the agent was started. Figure 6.14 shows

the agent verification process. As shown in the figure, the MainDomU Agent

uses SSH to connect to Dom0 and to run the verification commands to verify

the agent. MainDomU Agent should log-in with enough access rights to do the

verification process. To verify agent integrity, the Main DomU Agent hashes the

agent binary and a nonce and compares the result with the result of the hash of

the same file and nonce. The original binary agent is stored in the base station

and the MainDomU Agent. If the result is the same, the agent binary file is

authentic. MainDomU Agent executes the agent binary file and executes the ps

command to get the PID, starting time, and file location. MainDomU Agent

also executes the ”xe vm-vif-list” command, to get the list of MAC address of all

VMs in that physical host. MainDomU Agent will also get the current content

of PCRs to verify the integrity of the security-relevant parts. In the end, the

MainDomU Agent closes the SSH connection. The same verification will then be

done randomly, to maintain the integrity of the agent.

Security-Relevant Parts Integrity. Verification of the security-relevant

parts is delivered at the boot-time and the run-time. The security relevant parts

are hypervisor, kernel, kernel module, system libraries, I/O driver, etc. Integrity

Verification at the boot-time is done by using a TPM chip to deliver trusted boot.

This is carried out by using the hash function in TPM to hash the relevant parts

and put the hash result in the TPM (PCRs). After the Dom0 Agent was started,

the agent gets the hash values of PCRs from the TPM and sends them to the

MainDomU Agent. The MainDomU Agent forward it to the base station/certifier.

The base station compares the hash values to the one stored in its database. If

the result is the same, it is confirmed that the file has not been changed. If the

file has been changed the new content is saved in the database, and the certifier

asks the cloud provider an explanation of the reasons behind the changes.

129



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

Dom0

2. Verify Integrity()

3. Execute Agent()

MainDomU Agent

1. openSSH()

6. getPCR()

4. Ps aux ()

5. xe vm-vif-list()

7. Close SSH ()

Figure 6.14: Agent Integrity Verification.

Verification at the run-time is delivered using an agent. Dom0 Agent uses

inotify to monitor the security-relevant parts of cloud infrastructure. Whenever

the files have been changed, inotify let the agent know. As shown in figure

6.15, after being informed by inotify about the change, the Dom0 Agent informs

the MainDomU Agent that one of the files has been changed. The MainDomU

Agent asks the Dom0 Agent to send the changed file name and the time of change

(changelog). The MainDomU Agent sends a report to the base station, and again

the certifier asks the cloud infrastructure provider to explain the reason for the

change. The changelog will also be stored in the database.

Figure 6.15 shows the whole ABTiCI message flows. Whenever a physical

host in the cloud infrastructure is turned ON and joins the cloud cluster, the

MainDomU Agent informs the base station. To let the MainDomU Agent knows

whenever a new physical host has joined the cloud pool, the Dom0 Agent tells

the MainDomU Agent. The Dom0 Agent checks the list of hosts periodically.

The time range of the periodical check will be decided later, but it depends on

the possibility that the new host will be installed in the amount of time.

The message continues to flow when the MainDomU Agent starts the agent

130



6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure

Base Station Dom0 DomUs AgentDom0 Agent

verifyStartDom0Agent()

List of MAC Address

getListofMACAddress ()

MainDomU Agent

Physical Host is on

dataReport

OK (Agent PID, file loc, time)

fileChangeEvent()

MAC Address

getMACAddress()

changeLog(time, file name,etc) 

getPeriodicDataReport()

getChangeLog()

OK

startDom0Agent()

Cloud InfrastructureCertifier

Figure 6.15: ABTiCI Message Flows.

in Dom0 at the new physical host by performing the integrity verification be-

forehand. After the Dom0 Agent was started, the MainDomU Agent stores the

PID, file location and starting time in the database and also sends it to the base

station. In order to map the DomUs to the Dom0, the MainDomU Agent gets

the list of VM MAC addresses from Dom0 and receives the MAC address from

DomUs.

6.3.4.3 Implementation

ABTiCI depends on other software or libraries that must be pre-installed before it

can be started. An agent communication platform must be installed for all roles

except the customers. In this research, we used JADE as the communication

platform for the agents. JADE must be installed in every host where the agent

131



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

exists. Agent programs for Dom0, DomUs and MainDomU must also be installed

before the ABTiCI system is started. All other software or applications like a

hypervisor, SSH, and inotify must also be installed. Especially for the Dom0

Agent program, the cloud infrastructure provider should study the source code

and verify whether the agent program is secured for its cloud system.

Most of the software or libraries that are used in this research are already

available on the Internet. We need to create an agent program with specific

functions as has previously been described above.

6.4 Chapter Summary

In this chapter, we describe three approaches to strengthen the VM from a mali-

cious host admin attacking the data confidentiality. The first approach is to verify

the Integrity of a VM that is running on an untrustworthy host machine before it

is being integrated into the Crowd-Resourcing Virtual Laboratory (CRVL). This

is to prevent a compromised VM from being integrated into the virtual labora-

tory. New kernel files are used to create an authentic kernel as a root of trust in

measuring the integrity of the VM. kexec is used to reboot the VM into the new

kernel. The new kernel is used as the root of trust in measuring the integrity of

system files in Linux.

This approach is using module signature verification to prevent the malicious

module from being injected to the kernel, and by using the hash checksum of

system files, the approach could detect a compromised VM. We assumed that

the kexec is not compromised, because it is installed just before it is executed.

The existence of Secret Code in the kernel files, forces the usage of the authentic

kernel files at reboot, to be able to be integrated into the virtual laboratory

system. Even though it is difficult to do, the attacker might still be able to patch

the authentic kernel on the fly, but more researches need to be done to support

this statement. In the future, we need to find a way to make sure that a malicious

program is not infecting the kexec.

The second approach is to secure sensitive data of a running application in a

VM from live memory dumping, Spectre, and Meltdown attacks by moving the

sensitive data within several memory locations. We prove that our approach could

132



6.4 Chapter Summary

reduce the probability of sensitive data leakage by 25% for live memory dumping

attack and able to protect sensitive data from Spectre and Meltdown attacks.

Our approach could also perform well in heavy memory load. For the future

work, our approach could be combined with anti-memory dumping techniques or

obfuscation techniques to better secure sensitive data from memory acquisition

attack. An idea of splitting sensitive data into small pieces (blocks) and put

them in the non-consecutive area should also be investigated to strengthen our

approach.

The third approach is to verify and monitor the security-relevant parts of

cloud infrastructure using software agents to detect unauthorized access by a

malicious host admin of the cloud infrastructure providers. The agents are used

as a mediator between cloud infrastructure provider and cloud certifier, to provide

a more transparent cloud. This approach is called ABTiCI (Agent-Based Trust

in Cloud Infrastructure). In the ABTiCI System, the agents get the data report

from every Dom0 and DomUs and send the report to the base station. The base

station calculates the data and verifies the Integrity of the security-relevant parts.

ABTiCI is using SSH connection between MainDomU and Dom0. This con-

nection is established only when needed. ABTiCI could be improved by always

connecting the MainDomU to Dom0 via SSH connection, to intensively monitor

the security-relevant parts of Dom0. ABTiCI is not easy to implement because it

needs access to the host machine (Dom0) to install and run the software agent.

The host admin needs to give access to the ABTiCI system, but in most cases,

the host admin is not willing to give access for a lot of reasons.

133



6. SECURE VIRTUAL MACHINE ON UNTRUSTED HOST MACHINE

134



Chapter 7

Conclusion

IT security (Cyber Security) e-Learning platform needs to provide a virtual lab-

oratory for hands-on exercises in attacking and defending the IT system. The

attacker or victim nodes are represented by Virtual Machines (VMs) in an isolated

environment. Since VM needs a large and fixed allocation of resources, scalabil-

ity has become a problem where the number of users is limited by the available

resources. The scalability could be increased by increasing efficiency and by pro-

viding more resources. In this thesis, several technical solutions are proposed to

improve scalability. We also propose several approaches to strengthen the VM

from malicious host admin, because one approach in providing more resources is

by gathering resources from the crowd in the form of a VM.

One approach to increase the scalability is increasing the usage efficiency of

the available resources by replacing Virtual Machines with Containers whenever

it is compatible to the exercise scenario. The architecture is built based on Tele-

Lab architecture by adding Containers platform (Docker) to the existing Tele-Lab

architecture. Another approach in increasing the efficiency is by sharing the load

with the user on-premise machine. For example, a VM that was used to run an

Internet browser to attack a web application is replaced with the user on-premise

machine.

An approach to providing more resources is using public cloud services, but it

is limited to the available budget. The architecture of IT Security virtual labora-

tory on public cloud is similar to the Tele-Lab on Private Cloud. The difference

is on the middleware because they use different API to start up or shut down

135



7. CONCLUSION

a VM. Another approach to providing more resources is by gathering resources

from the crowd. The resources could be in the form of a VM, a bare metal system,

an account in the public cloud, a private cloud, and an isolated group of VMs,

but in this thesis, we focus on a VM. The crowd as contributors shared their

VMs by giving the credential of the VM admins to the crowd-resourcing virtual

laboratory (CRVL) system.

In this thesis, we propose a CRVL architecture to manage and monitor the

VMs from the crowd. We also propose methods to Integrate VMs to CRVL

system automatically. Live Migration and Fault Recovery are also proposed to

dis-Integrate a VM and redirect users to other VMs automatically. Since VMs and

Users could be spread around the world, we propose a Team Placement algorithm

to select a VM to run a virtual laboratory for a particular user. The algorithm

is based on Users and VMs geo-location and the VM loads. These approaches

could function and perform well in our implementation.

In the CRVL system, everyone including a bad guy could contribute a VM into

the CRVL system. As the host admin of a VM, the bad guy could get sensitive

data out of the VM by using several attacks such as live memory dumping, Spec-

tre, Meltdown, and by tampering with the OS Image. We propose an approach

to strengthen the VM from the live memory dumping, Spectre and Meltdown

attacks, by continually moving the sensitive data in RAM. We also propose an

approach to verify the integrity of the VM to find out whether the OS Image

and the running VM have already tampered or not. Using an agent to monitor

the host machine of a running VM is also proposed in this thesis. We implement

these approaches to evaluate their functions and performances.

In the future, it is necessary to further research on the CRVL system to

improve the scalability and the security. To increase the efficiency, we need to

investigate running a desktop on a container and share more resources on user

on-premise machine. To enhance security, we need to improve our approach to

be able to mitigate the live memory dumping, and we need to find an approach

to mitigate static memory dumping.

The proposed approaches in this thesis are our contributions to answer the

research questions regarding increasing the scalability of cybersecurity virtual

laboratory. Our approaches are novel, unique and could be used to solve the

136



same problem on other platforms. Based on the experiment results, we can see

that our solutions could answer the research questions.

137



7. CONCLUSION

138



References

[1] Docker overview. https://docs.docker.com/engine/docker-overview/, accessed

on 2019-04-05. 18, 20, 21

[2] Dockerfile reference. https://docs.docker.com/engine/reference/builder/, ac-

cessed on 2019-04-05. 20

[3] Akoush, S., Sohan, R., Rice, A., Moore, A. W., and Hopper, A. (2010).

Predicting the performance of virtual machine migration. In 18th IEEE/ACM

International Symposium on Modelling, Analysis & Simulation of Computer

and Telecommunication Systems (MASCOTS 2010), pages 37–46. IEEE. 70

[4] Amari, K. (2009). Techniques and tools for recovering and an-

alyzing data from volatile memory. https://www.sans.org/reading-

room/whitepapers/forensics/techniques-tools-recovering-analyzing-data-

volatile-memory-33049. Accessed on 23 April 2019. 102

[5] Amazon (2019a). Amazon virtual private cloud.

https://aws.amazon.com/vpc/. Accessed on 24 April 2019. 39, 40

[6] Amazon (2019b). Making api requests.

https://docs.aws.amazon.com/AWSEC2/latest/ APIReference/making-

api-requests.html. Accessed on 25 April 2019. 42

[7] Amazon (2019c). Share an object with others.

https://docs.aws.amazon.com/AmazonS3/latest/dev/ ShareObjectPre-

SignedURL.html, Accessed on 2019-04-08. 28

139



REFERENCES

[8] Amorin, K., Shekar, N. H., and AlAufi, L. (2014). Cloudwhip: A tool for pro-

visioning cyber security labs in the amazon cloud. In Proceedings of the Inter-

national Conference on Security and Management (SAM), page 1. The Steering

Committee of The World Congress in Computer Science, Computer . . . . 38

[9] Apache (2019). Reverse proxy guide. https://httpd.apache.org/docs/2.4/howto/

reverse proxy.html, accessed on 23 April 2019. 29

[10] ATMC Social (2019). Cybersecurity: one million job openings and count-

ing. https://www.latrobe.edu.au/nest/cybersecurity-one-million-job-openings-

and-counting/. Accessed on 26 April 2019. 1

[11] Bala, A. and Chana, I. (2012). Fault tolerance-challenges, techniques and im-

plementation in cloud computing. International Journal of Computer Science

Issues (IJCSI), 9(1):288. 68, 69

[12] Border, C. (2007). The development and deployment of a multi-user, remote

access virtualization system for networking, security, and system administra-

tion classes. In ACM SIGCSE Bulletin, volume 39, pages 576–580. ACM. 11

[13] Bouchenak, S., Chockler, G., Chockler, H., Gheorghe, G., Santos, N., and

Shraer, A. (2013). Verifying cloud services: present and future. ACM SIGOPS

operating systems review, 47(2):6–19. 121

[14] Brossard, J. and Demetrescu, F. (2012). Hardware backdooring is practical.

BlackHat, Las Vegas, USA. 98

[15] Butt, S., Lagar-Cavilla, H. A., Srivastava, A., and Ganapathy, V. (2012).

Self-service cloud computing. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 253–264. ACM. 121

[16] Challita, S., Paraiso, F., and Merle, P. (2017). A study of virtual machine

placement optimization in data centers. In 7th International Conference on

Cloud Computing and Services Science (CLOSER), pages 343–350. 52

[17] Cisco (2019). Threats are rising. https://www.cisco.com/c/m/en au/products/security/

offers/cybersecurity-reports.html. Accessed on 26 April 2019. 1

140



REFERENCES

[18] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt,

I., and Warfield, A. (2005). Live migration of virtual machines. In Proceed-

ings of the 2nd Conference on Symposium on Networked Systems Design &

Implementation-Volume 2, pages 273–286. USENIX Association. 70

[19] Cordel, D., Meinel, C., Repp, S., and Willems, C. (2008). Explorative learn-

ing of wireless network security with tele-lab it-security. In International Con-

ference on Hybrid Learning and Education, pages 213–224. Springer. 12

[20] CRIU (2019). Docker. https://criu.org/Docker. Accessed on 24 April 2019.

71

[21] CSA (2019). Csa star (security , trust and assurance registry) program.

https://cloudsecurityalliance.org/star/. Accessed on 15 April 2019. 121

[22] CSSIA (2019). National center for systems security and information assur-

ance. http://www.cssia.org/. Accessed on 24 April 2019. 39

[23] Cybersecurity Ventures (2019a). 2019 cybersecurity al-

manac: 100 facts, figures, predictions and statistics.

https://cybersecurityventures.com/cybersecurity-almanac-2019/. Accessed on

26 April 2019. 1

[24] Cybersecurity Ventures (2019b). Cybersecurity jobs report 2018-2021.

https://cybersecurityventures.com/jobs/. Accessed on 26 April 2019. 1

[25] Cybrary (2019). Cybrary virtual security labs. https://www.cybrary.it/.

Accessed on 24 April 2019. 39

[26] Dillon, T., Wu, C., and Chang, E. (2010). Cloud computing: issues and chal-

lenges. In 2010 24th IEEE international conference on advanced information

networking and applications, pages 27–33. Ieee. 101

[27] docker (2019). Docker checkpoint. https://docs.docker.com/engine/reference/

commandline/checkpoint/. Accessed on 24 April 2019. 71

[28] Du, W. and Wang, R. (2008). Seed: A suite of instructional laboratories for

computer security education. Journal on Educational Resources in Computing

(JERIC), 8(1):3. 38

141



REFERENCES

[29] Elearnsecurity (2019). Hera lab. https://www.elearnsecurity.com/virtual-

labs/hera/. Accessed on 24 April 2019. 39

[30] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015). An updated

performance comparison of virtual machines and linux containers. In 2015

IEEE international symposium on performance analysis of systems and soft-

ware (ISPASS), pages 171–172. IEEE. 18

[31] Garfinkel, T., Rosenblum, M., et al. (2003). A virtual machine introspection

based architecture for intrusion detection. In Ndss, volume 3, pages 191–206.

87

[32] Google (2019). V4 signing process with your own program.

https://cloud.google.com/storage/docs/access-control/signing-urls-manually,

Accessed on 2019-04-23. 28

[33] Graupner, H., Torkura, K., Berger, P., Meinel, C., and Schnjakin, M. (2015).

Secure access control for multi-cloud resources. In 2015 IEEE 40th Local

Computer Networks Conference Workshops (LCN Workshops), pages 722–729.

IEEE. 29

[34] Gu, Y., Fu, Y., Prakash, A., Lin, Z., and Yin, H. (2012). Os-sommelier:

memory-only operating system fingerprinting in the cloud. In Proceedings of

the Third ACM Symposium on Cloud Computing. 87

[35] Hada, P. S., Singh, R., and Manmohan, M. (2011). Security agents: A

mobile agent based trust model for cloud computing. International Journal of

Computer Applications, 36(12):12–15. 121

[36] Haldar, V., Chandra, D., and Franz, M. (2004). Semantic remote attestation:

a virtual machine directed approach to trusted computing. In USENIX Virtual

Machine Research and Technology Symposium, volume 2004. 122, 126

[37] Hay, B., Bishop, M., and Nance, K. (2009). Live analysis: Progress and

challenges. IEEE Security & Privacy, 7(2). 102

142



REFERENCES

[38] Hill, J., Carver Jr, C. A., Humphries, J. W., and Pooch, U. W. (2001).

Using an isolated network laboratory to teach advanced networks and security.

In ACM SIGCSE Bulletin, volume 33, pages 36–40. ACM. 38

[39] Hu, B., Lei, Z., Lei, Y., Xu, D., and Li, J. (2011). A time-series based

precopy approach for live migration of virtual machines. In 2011 IEEE 17th

International Conference on Parallel and Distributed Systems, pages 947–952.

IEEE. 70

[40] Hu, J., Cordel, D., and Meinel, C. (2005). Virtual machine management

for tele-lab ı̈t-securitys̈erver. In 10th IEEE Symposium on Computers and

Communications (ISCC0́5), pages 448–453. IEEE. 12

[41] Hu, J. and Meinel, C. (2004). Tele-lab “it-security” on cd: portable, reliable

and safe it security training. Computers & Security, 23(4):282–289. 11

[42] Hu, J., Meinel, C., and Schmitt, M. (2004). Tele-lab it security: an architec-

ture for interactive lessons for security education. In ACM SIGCSE Bulletin,

volume 36, pages 412–416. ACM. 12

[43] Hu, J., Schmitt, M., Willems, C., and Meinel, C. (2003). A tutoring system

for it security. In Security education and critical infrastructures, pages 51–60.

Springer. 11

[44] Huang, J. and Nicol, D. M. (2013). Trust mechanisms for cloud computing.

Journal of Cloud Computing: Advances, Systems and Applications, 2(1):9. 120

[45] Intel Corporation (2019a). Intel software guard extensions (intel sgx).

https://software.intel.com/en-us/sgx/details. Accessed on 23 April 2019. 88,

103

[46] Intel Corporation (2019b). Intel R© software guard extensions remote attes-

tation end-to-end example. https://software.intel.com/en-us/articles/intel-

software-guard-extensions-remote-attestation-end-to-end-example. Accessed

on 23 April 2019. 88

143



REFERENCES

[47] (ISC)2 (2019). (isc)2 report finds cybersecurity workforce gap has

increased to more than 2.9 million globally. https://www.isc2.org/News-and-

Events/Press-Room/Posts/2018/10/17/ISC2-Report-Finds-Cybersecurity-

Workforce-Gap-Has-Increased-to-More-Than-2-9-Million-Globally. Accessed

on 26 April 2019. 1

[48] ISU (2019). Iserink. http://www.iserink.org/. Accessed on 24 April 2019. 38

[49] Jhawar, R., Piuri, V., and Santambrogio, M. (2013). Fault tolerance manage-

ment in cloud computing: A system-level perspective. IEEE Systems Journal,

7(2):288–297. 69, 79

[50] Jim Finkle, D. V. (2019). Database of 191 million u.s. voters exposed on

internet: researcher. https://www.reuters.com/article/us-usa-voters-breach-

idUSKBN0UB1E020151229. Accessed on 26 April 2019. 1

[51] Johnson, S., Scarlata, V., Rozas, C., Brickell, E., and Mckeen, F. (2016).

Intel R© software guard extensions: Epid provisioning and attestation services.

White Paper, 1:1–10. 88

[52] Kapil, D., Pilli, E. S., and Joshi, R. C. (2013). Live virtual machine migration

techniques: Survey and research challenges. In 2013 3rd IEEE International

Advance Computing Conference (IACC), pages 963–969. IEEE. 70

[53] Kaplan, D., Powell, J., and Woller, T. (2019). Amd

memory encryption. http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2013/12/AMD Memory Encryption Whitepaper v7-

Public.pdf. Accessed on 223 April 2019. 103

[54] Kleissner, P. (2009). Stoned bootkit. Black Hat USA, pages 5–7. 98

[55] Knopper, K. (2000). Building a self-contained autoconfiguring linux system

on an iso9660 file system. In Annual Linux Showcase & Conference. 11

[56] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Man-

gard, S., Prescher, T., Schwarz, M., and Yarom, Y. (2018). Spectre attacks:

Exploiting speculative execution. ArXiv e-prints. 101, 103, 106

144



REFERENCES

[57] Lei, C., Zhang, H.-Q., Tan, J.-L., Zhang, Y.-C., and Liu, X.-H. (2018).

Moving target defense techniques: A survey. Security and Communication

Networks, 2018. 105

[58] Li, P. and Mohammed, T. (2008). Integration of virtualization technology

into network security laboratory. In 2008 38th Annual Frontiers in Education

Conference, pages S2A–7. IEEE. 38

[59] Li, Y., Nguyen, D., and Xie, M. (2017). Ezsetup: A novel tool for cyber-

security practices utilizing cloud resources. In Proceedings of the 18th Annual

Conference on Information Technology Education, pages 53–58. ACM. 38, 39

[60] Li, Y. and Xie, M. (2016). Platoon: A virtual platform for team-oriented

cybersecurity training and exercises. In Proceedings of the 17th Annual Con-

ference on Information Technology Education, pages 20–25. ACM. 38

[61] Lin, C.-H., Liu, J.-C., and Lien, C.-C. (2008). Detection method based

on reverse proxy against web flooding attacks. In 2008 Eighth International

Conference on Intelligent Systems Design and Applications, volume 3, pages

281–284. IEEE. 29

[62] Lin, Z., Rhee, J., Zhang, X., Xu, D., and Jiang, X. (2011). Siggraph: Brute

force scanning of kernel data structure instances using graph-based signatures.

In Ndss. 87

[63] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S.,

Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. (2018). Meltdown.

ArXiv e-prints. 101, 103, 106, 112

[64] Mann, Z. Á. (2015). Allocation of virtual machines in cloud data centers—a

survey of problem models and optimization algorithms. Acm Computing Sur-

veys (CSUR), 48(1):11. 52

[65] McAuley, A., Stewart, B., Siemens, G., and Cormier,

D. (2010). The mooc model for digital practice.

http://www.academia.edu/download/43171388/MOOC Final.pdf. Accessed

on 23 April 2019. 2

145



REFERENCES

[66] Microsoft (2019). Using shared access signatures (sas).

https://docs.microsoft.com/en-us/azure/storage/common/storage-dotnet-

shared-access-signature-part-1, Accessed on 2019-04-23. 28

[67] Milković, L. (2012). Defeating windows mem-

ory forensics. https://storage.googleapis.com/google-

code-archive-downloads/v2/code.google.com/dementia-

forensics/Defeating%20Windows%20memory%20forensics.pdf. Accessed

on 24 April 2019. 102

[68] Mills, K., Filliben, J., and Dabrowski, C. (2011). Comparing vm-placement

algorithms for on-demand clouds. In 2011 IEEE Third International Confer-

ence on Cloud Computing Technology and Science, pages 91–98. IEEE. 52

[69] Mirkin, A., Kuznetsov, A., and Kolyshkin, K. (2008). Containers check-

pointing and live migration. In Proceedings of the Linux Symposium, volume 2,

pages 85–90. 70, 71

[70] Moritz, D., Willems, C., Goderbauer, M., Moeller, P., and Meinel, C. (2013).

Enhancing a virtual security lab with a private cloud framework. In Proceedings

of 2013 IEEE International Conference on Teaching, Assessment and Learning

for Engineering (TALE), pages 314–320. IEEE. 3, 4, 10, 12, 13, 38, 40, 43

[71] Müller, T., Dewald, A., and Freiling, F. C. (2010). Aesse: a cold-boot resis-

tant implementation of aes. In Proceedings of the Third European Workshop

on System Security, pages 42–47. ACM. 103

[72] Müller, T., Freiling, F. C., and Dewald, A. (2011). Tresor runs encryption

securely outside ram. In USENIX Security Symposium, volume 17. 103

[73] Nadgowda, S., Jayachandran, P., and Verma, A. (2013). 12map: Cloud dis-

aster recovery based on image-instance mapping. In ACM/IFIP/USENIX In-

ternational Conference on Distributed Systems Platforms and Open Distributed

Processing, pages 204–225. Springer. 70, 79

[74] Nadgowda, S., Suneja, S., Bila, N., and Isci, C. (2017). Voyager: Complete

container state migration. In 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), pages 2137–2142. IEEE. 71, 73

146



REFERENCES

[75] National Initiative For Cybersecuriy Education (2019). Nice challenge

project. https://nice-challenge.com/. Accessed on 24 April 2019. 39

[76] NDG (2019). Cyber security training using netlab+.

https://www.netdevgroup.com/content/cybersecurity/. Accessed on 24

April 2019. 39

[77] Neisse, R., Holling, D., and Pretschner, A. (2011). Implementing trust

in cloud infrastructures. In Proceedings of the 2011 11th IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing, pages 524–533.

IEEE Computer Society. 122, 123, 124, 125, 126

[78] Openstack (2019). Temporary url. https://docs.openstack.org/juno/config-

reference/content/object-storage-tempurl.html, Accessed on 2019-04-08. 28

[79] Pappano, L. (2012). The year of the mooc. The New York Times, 2(12):2012.

2

[80] Peinl, R., Holzschuher, F., and Pfitzer, F. (2016). Docker cluster manage-

ment for the cloud-survey results and own solution. Journal of Grid Computing,

14(2):265–282. 53

[81] Perez, R., Sailer, R., van Doorn, L., et al. (2006). vtpm: virtualizing the

trusted platform module. In Proc. 15th Conf. on USENIX Security Symposium,

pages 305–320. 88

[82] Perez-Botero, D. (2011). A brief tutorial on live virtual machine migration

from a security perspective. University of Princeton, USA, page 8. 70

[83] Petcu, D., Craciun, C., and Rak, M. (2011). Towards a cross platform cloud

api. In 1st International Conference on Cloud Computing and Services Science,

pages 166–169. 43

[84] Petcu, D., Di Martino, B., Venticinque, S., Rak, M., Máhr, T., Lopez, G. E.,

Brito, F., Cossu, R., Stopar, M., Šperka, S., et al. (2013). Experiences in

building a mosaic of clouds. Journal of Cloud Computing: Advances, Systems

and Applications, 2(1):12. 43

147



REFERENCES

[85] Rocha, F. and Correia, M. (2011). Lucy in the sky without diamonds:

Stealing confidential data in the cloud. In 2011 IEEE/IFIP 41st International

Conference on Dependable Systems and Networks Workshops (DSN-W), pages

129–134. IEEE. 101, 102, 120, 124

[86] Roussev, V., Ahmed, I., and Sires, T. (2014). Image-based kernel finger-

printing. Digital Investigation, 11:S13–S21. 87

[87] Roussey, B. (2019). The 8 most in-demand cybersecurity skills for 2019.

http://techgenix.com/in-demand-cybersecurity-skills/. Accessed on 26 April

2019. 1

[88] Rubens, P. (2019). 2019 it security employment outlook: The hottest

skills and markets. https://www.esecurityplanet.com/network-security/2019-

it-security-employment-outlook.html. Accessed on 26 April 2019. 1

[89] Rutkowska, J. (2009). Evil maid goes after truecrypt!

https://theinvisiblethings.blogspot.de/2009/10/evil-maid-goes-after-

truecrypt.html. Accessed on 23 April 2019. 100

[90] Sadeghi, A.-R., Stüble, C., and Winandy, M. (2008). Property-based tpm

virtualization. In International Conference on Information Security, pages 1–

16. Springer. 122, 126

[91] Saleh, E., Sianipar, J., Takouna, I., and Meinel, C. (2014). Secplace: A

security-aware placement model for multi-tenant saas environments. In 2014

IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE

11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl

Conf on Scalable Computing and Communications and Its Associated Work-

shops, pages 596–602. IEEE. 53

[92] Saleh, E., Takouna, I., and Meinel, C. (2013). Signedquery: Protecting users

data in multi-tenant saas environments. In 2013 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), pages

213–218. IEEE. 29

148



REFERENCES

[93] Santos, N., Gummadi, K. P., and Rodrigues, R. (2009). Towards trusted

cloud computing. HotCloud, 9(9):3. 121

[94] Schenk, E. and Guittard, C. (2011). Towards a characterization of crowd-

sourcing practices. Journal of Innovation Economics Management, (1):93–107.

45

[95] Schwarz, M., Weiser, S., Gruss, D., Maurice, C., and Mangard, S. (2017).

Malware guard extension: Using sgx to conceal cache attacks. In Interna-

tional Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 3–24. Springer. 89

[96] Security, H. (2019). Moving target defense. https://www.dhs.gov/science-

and-technology/csd-mtd. Accessed on 23 April 2019. 101, 105

[97] Selimi, M., Cerdà-Alabern, L., Wang, L., Sathiaseelan, A., Veiga, L., and

Freitag, F. (2016). Bandwidth-aware service placement in community network

micro-clouds. In 2016 IEEE 41st Conference on Local Computer Networks

(LCN), pages 220–223. IEEE. 53

[98] Seo, K.-T., Hwang, H.-S., Moon, I.-Y., Kwon, O.-Y., and Kim, B.-J. (2014).

Performance comparison analysis of linux container and virtual machine for

building cloud. Advanced Science and Technology Letters, 66(105-111):2. 18

[99] Sharma, P., Chaufournier, L., Shenoy, P., and Tay, Y. (2016). Containers

and virtual machines at scale: A comparative study. In Proceedings of the 17th

International Middleware Conference, page 1. ACM. 18

[100] Sherry, L. (1995). Issues in distance learning. International journal of

educational telecommunications, 1(4):337–365. 1

[101] Sianipar, J., Willems, C., and Meinel, C. (2017a). Signed url for an isolated

web server in a virtual laboratory. In Proceedings of the 2017 9th International

Conference on Education Technology and Computers, pages 218–222. ACM. 76

[102] Sianipar, J., Willems, C., and Meinel, C. (2017b). Team placement in

crowd-resourcing virtual laboratory for it security e-learning. In Proceedings of

149



REFERENCES

the 2017 International Conference on Cloud and Big Data Computing, pages

60–66. ACM. 74, 78

[103] Sianipar, J. H., Willems, C., and Meinel, C. (2016). Crowdresourcing virtual

laboratory architecture on hybrid cloud. In INTED2016 Proceedings, 10th In-

ternational Technology, Education and Development Conference, pages 2940–

2949. IATED. 51

[104] Sim, K. M. (2012). Agent-based cloud computing. IEEE Transactions on

services computing, 5(4):564–577. 121

[105] Simmons, P. (2011). Security through amnesia: a software-based solution

to the cold boot attack on disk encryption. In Proceedings of the 27th Annual

Computer Security Applications Conference, pages 73–82. ACM. 102

[106] Simpson, O. (2013). Supporting students in online open and distance learn-

ing. Routledge. 1

[107] Singh, G. and Gupta, P. (2016). A review on migration techniques and

challenges in live virtual machine migration. In 2016 5th International Confer-

ence on Reliability, Infocom Technologies and Optimization (Trends and Future

Directions)(ICRITO), pages 542–546. IEEE. 70

[108] Subutai (2019). Peer-to-peer (p2p) cloud computing.

https://subutai.io/p2p-cloud.html. Accessed on 2019-04-23. 45

[109] Sun, W., Katta, V., Krishna, K., and Sekar, R. (2008). V-netlab: An ap-

proach for realizing logically isolated networks for security experiments. CSET,

8:1–6. 38

[110] Suneja, S., Isci, C., de Lara, E., and Bala, V. (2015). Exploring vm intro-

spection: Techniques and trade-offs. In Acm Sigplan Notices, volume 50, pages

133–146. ACM. 88

[111] Swami, Y. (2017). Intel sgx remote attestation is not sufficient. IACR. 88

150



REFERENCES

[112] Tordsson, J., Montero, R. S., Moreno-Vozmediano, R., and Llorente,

I. M. (2012). Cloud brokering mechanisms for optimized placement of vir-

tual machines across multiple providers. Future generation computer systems,

28(2):358–367. 53

[113] Trautman, L. J. and Ormerod, P. C. (2016). Corporate directors’ and

officers’ cybersecurity standard of care: The yahoo data breach. Am. UL Rev.,

66:1231. 1

[114] Treaster, M. (2005). A survey of fault-tolerance and fault-recovery tech-

niques in parallel systems. arXiv preprint cs/0501002. 69

[115] Tully, J. (2008). An anti-reverse engineering guide.

https://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-

Guide. Accessed on 23 April 2019. 102

[116] Turner, P., Engineer, S. S., and Infrastructure, T. (2018). Retpoline: a

software construct for preventing branch-target-injection. 104

[117] University of West London (2019). Virtual cyber security lab

on clouds. https://www.uwl.ac.uk/academic-schools/computing/doctoral-

research/virtual-cyber-security-lab-clouds. Accessed on 24 April 2019. 38

[118] Unuvar, M., Steinder, M., and Tantawi, A. N. (2014). Hybrid cloud place-

ment algorithm. In 2014 IEEE 22nd International Symposium on Modelling,

Analysis & Simulation of Computer and Telecommunication Systems, pages

197–206. IEEE. 53

[119] Usmani, Z. and Singh, S. (2016). A survey of virtual machine placement

techniques in a cloud data center. Procedia Computer Science, 78:491–498. 52

[120] UTSA (2019). http://www.nationalccdc.org/. Accessed on 24 April 2019.

38

[121] Valeur, F., Vigna, G., Kruegel, C., and Kirda, E. (2006). An anomaly-

driven reverse proxy for web applications. In Proceedings of the 2006 ACM

symposium on Applied computing, pages 361–368. ACM. 29

151



REFERENCES

[122] Virtual Hacking Labs (2019). Virtual hacking labs.

https://www.virtualhackinglabs.com/. Accessed on 24 April 2019. 39

[123] Willems, C., Dawoud, W., Klingbeil, T., and Meinel, C. (2009). Security in

tele-lab—protecting an online virtual lab for security training. In 2009 Interna-

tional Conference for Internet Technology and Secured Transactions,(ICITST),

pages 1–7. IEEE. 12

[124] Willems, C., Klingbeil, T., Radvilavicius, L., Cenys, A., and Meinel, C.

(2011). A distributed virtual laboratory architecture for cybersecurity train-

ing. In 2011 International Conference for Internet Technology and Secured

Transactions, pages 408–415. IEEE. 11, 12

[125] Willems, C. and Meinel, C. (2008). Tele-lab it-security: an architecture for

an online virtual it security lab. International Journal of Online Engineering

(iJOE), 4(2):31–37. 12

[126] Willems, C. and Meinel, C. (2011). Practical network security teaching in

an online virtual laboratory. In Proceedings of the International Conference

on Security and Management (SAM), page 1. The Steering Committee of The

World Congress in Computer Science, Computer . . . . 3, 9

[127] Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., and Kruegel, C. (2009).

Swap: Mitigating xss attacks using a reverse proxy. In Proceedings of the 2009

ICSE Workshop on Software Engineering for Secure Systems, pages 33–39.

IEEE Computer Society. 29

[128] Xu, J., Guo, P., Zhao, M., Erbacher, R. F., Zhu, M., and Liu, P. (2014a).

Comparing different moving target defense techniques. In Proceedings of the

First ACM Workshop on Moving Target Defense, pages 97–107. ACM. 105

[129] Xu, L., Huang, D., and Tsai, W.-T. (2014b). Cloud-based virtual laboratory

for network security education. IEEE Transactions on Education, 57(3):145–

150. 38, 39

[130] Yarom, Y. and Falkner, K. (2014). Flush+ reload: A high resolution, low

noise, l3 cache side-channel attack. In USENIX Security Symposium, pages

719–732. 104

152



REFERENCES

[131] Yu, A., Qin, Y., and Wang, D. (2011). Obtaining the integrity of your

virtual machine in the cloud. In 2011 IEEE Third International Conference on

Cloud Computing Technology and Science, pages 213–222. IEEE. 88

[132] Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-

the-art and research challenges. Journal of internet services and applications,

1(1):7–18. 101

[133] Zhong, R. (2018). Quora, the q. and a. site, says data breach affected 100

million users. https://www.nytimes.com/2018/12/04/technology/quora-hack-

data-breach.html, accessed on 29 June 2019. 1

153



REFERENCES

154



Acronyms

AIDE Advance Intrusion Detection Envi-

ronment

API Application Programming Interface

AS Autonomous System

ASN Autonomous System Number

BIOS Basic Input/Output System

CBVL Container-Based Virtual Laboratory

CLI Command Line Interface

CPU Central Processing Unit

CRVL Crowd-Resourcing Virtual Labora-

tory

CTPlace An algorithm for Team Placement

in a crowd-resourcing virtual labora-

tory

Docker A container technology for Linux

that allows a developer to package up

an application with all of the parts it

needs

FSB Front Side Bus

GateOne An HTML5-powered terminal emula-

tor and SSH client

GUI Graphic User Interface

HPI Hasso Plattner Institute

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intruder Detection System

IP Internet Protocol

Iptables A user-space utility program to con-

figure the tables provided by the

Linux kernel firewall and the chains

and rules it stores.

JADE Java Agent Development Environ-

ment

kexec a system call to load and boot into

another kernel from the currently

running kernel

LAN Local Area Network

LFF Least-Full-first

MBR Master Boot Record

MFF Most-Full-First

MITM Man In The Middle

NAT Network Address Translation

Nmap Network Mapper, a free and open-

source network scanner

Node.js An open-source, cross-platform

JavaScript run-time environment

that executes JavaScript code out-

side of a browser

Open vSwitch An open-source implementa-

tion of a distributed virtual multi-

layer switch

OpenNebula A cloud computing platform for

managing heterogeneous distributed

data center infrastructures

OS Operation System

P2P Peer-to-peer

PoC Proof of Concept

RAM Random Access Memory

SGX Software Guard Extensions

SSH Secure Shell

TCP Transmission Control Protocol

155



ACRONYMS

Team An isolated laboratory environment

consists of VMs or Containers and

virtual switch that was configured

and built for a participant to prac-

tice a specific cybersecurity training

scenario.

Tele-Lab Virtual Laboratory for IT Security e-

Learning platform

TPM Trusted Platform Module

UDP User Datagram Protocol

vCPU virtual Central Processing Unit

VirtualBox A free and open-source hosted hy-

pervisor for x86 virtualization, devel-

oped by Oracle Corporation

VM Virtual Machine

VPC Virtual Private Cloud

VPN Virtual Private Network

VTE Virtual Training Environment

Websocket A communications protocol, pro-

viding full-duplex communication

channels over a single TCP connec-

tion.

XML-RPC Extensible Markup Language Re-

mote Procedure Call

Xprobe2 A remote active OS fingerprinting

tool

156


	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Background
	1.2 Research Questions
	1.3 Contributions and Publications
	1.4 Thesis Organization

	2 Tele-Lab: Virtual Laboratory for IT Security e-Learning
	2.1 Tele-Lab Overview
	2.2 Tele-Lab Evolution
	2.3 Tele-Lab Architecture
	2.4 Chapter Summary

	3 Efficiency to Increase Scalability
	3.1 Container Based Virtual Laboratory
	3.1.1 Architecture and Organization
	3.1.2 Evaluation

	3.2 Load Sharing with User on Premise Machine
	3.2.1 Related Work
	3.2.2 Architecture
	3.2.3 Implementation
	3.2.4 Discussion

	3.3 Chapter Summary

	4 Cybersecurity Virtual Laboratory in Public Cloud
	4.1 Related Work
	4.2 Architecture
	4.3 Middleware
	4.4 Chapter Summary

	5 Crowd-Resourcing Virtual Laboratory
	5.1 Crowd Contribution
	5.2 CRVL Architecture
	5.3 Team Placement
	5.3.1 Motivation
	5.3.2 Related Work
	5.3.3 Team Placement Algorithm
	5.3.4 Evaluation

	5.4 Virtual Machine Integration in CRVL
	5.4.1 VM Integration Mechanism
	5.4.2 Evaluation

	5.5 Live Migration & Fault Recovery in CRVL
	5.5.1 Related Work
	5.5.2 Live Migration
	5.5.3 Fault Recovery
	5.5.4 Evaluation
	5.5.5 Discussion

	5.6 Chapter Summary

	6 Secure Virtual Machine on Untrusted Host Machine
	6.1 Virtual Machine Integrity Verification
	6.1.1 Motivation
	6.1.2 Related Work
	6.1.2.1 OS Finger Printing
	6.1.2.2 Virtual Machine Introspection
	6.1.2.3 Virtual Machine Integrity

	6.1.3 Threat Model
	6.1.4 Verification Method
	6.1.5 Evaluation

	6.2 Moving Sensitive Data
	6.2.1 Motivation
	6.2.2 Related Work
	6.2.2.1 Memory Dumping
	6.2.2.2 Spectre and Meltdown
	6.2.2.3 Moving Target Defense

	6.2.3 Threat Model
	6.2.4 Moving Sensitive Data in RAM
	6.2.4.1 Moving Sensitive Data Against Live Memory Dumping
	6.2.4.2 Moving Sensitive Data Against Spectre and Meltdown

	6.2.5 Evaluation
	6.2.5.1 Live Memory Dumping
	6.2.5.2 Spectre & Meltdown


	6.3 ABTiCI - Agent Based Trust in Cloud Infrastructure
	6.3.1 Motivation
	6.3.2 Related Work
	6.3.3 Threat Model
	6.3.4 Architecture and Implementation
	6.3.4.1 Roles
	6.3.4.2 Integrity Verification
	6.3.4.3 Implementation


	6.4 Chapter Summary

	7 Conclusion
	References
	Acronyms



