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Abstract

In this thesis we use the gravitational lensing effect as a tool to tackle two rather different cos-
mological topics: the nature of the dark matter in galaxy halos, and the rotation of the uni-
verse. Firstly, we study the microlensing effect in the gravitational lens systems Q0957+561
and Q2237+0305. In these systems the light from the quasar shines directly through the lensing
galaxy. Due to the relative motion of the quasar, the lensing galaxy, and the observer compact
objects in the galaxy or galaxy halo cause brightness fluctuations of the light from the back-
ground quasar. We compare light curve data from a monitoring program of the double quasar
Q0957+561 at the 3.5m telescope at Apache Point Observatory from 1995 to 1998 (Colley,
Kundi¢ & Turner [34]) with numerical simulations to test whether the halo of the lensing galaxy
consists of massive compact objects (MACHOs). This test was first proposed by Gott [62].
We can exclude MACHO masses from 107% M, up to 10~% M, for quasar sizes of less than
3 x 10 hg01/2 cm if the MACHOs make up at least 50% of the dark halo. Secondly, we present
new light curve data for the gravitationally lensed quadruple quasar Q2237+0305 taken at the
3.5m telescope at Apache Point Observatory from June 1995 to January 1998. Although the
images were taken under variable, often poor seeing conditions and with coarse pixel sampling,
photometry is possible for the two brighter quasar images A and B with the help from HST ob-
servations. We find independent evidence for a brightness peak in image A of 0.4 to 0.5 mag
with a duration of at least 100 days, which indicates that microlensing has taken place in the
lensing galaxy. Finally, we use the weak gravitational lensing effect to put limits on a class
of Godel-type rotating cosmologies described by Korotky & Obukhov [100]. In weak lensing
studies the shapes of thousands of background galaxies are measured and averaged to reveal
coherent gravitational distortions of the galaxy shapes by foreground matter distributions, or by
the large-scale structure of space-time itself. We calculate the predicted shear as a function of
redshift in Godel-type rotating cosmologies and compare this to the upper limit on cosmic shear
mimit &~ 0.04 from weak lensing studies. We find that Godel-type models cannot have larger
rotations than w ~ Hy = 6.1 x 107! hgo year—! if this shear limit is valid for the whole sky.






Abstract

In dieser Arbeit benutze ich den Gravitationslinseneffekt als ein Werkzeug, um zwei recht un-
terschiedliche kosmologische Fragestellungen zu bearbeiten: die Natur der dunklen Materie in
Galaxienhalos und die Rotation des Universums. Zuerst untersuche ich den Mikrolinseneffekt
in den Gravitationlinsensystemen Q0957+561 und Q2237+0305. In diesen Systemen scheint
das Licht eines Quasars durch die Linsengalaxie hindurch. Aufgrund der Relativbewegung
zwischen Quasar, Linsengalaxie und Beobachter verursachen kompakte Objekte innerhalb der
Galaxie oder dem Galaxienhalo Helligkeitsfluktuationen des Hintergrundquasars. Ich verglei-
che die am 3.5m Teleskop des Apache Point Observatory zwischen 1995 und 1998 gewonnene
Lichtkurve des Doppelquasars Q0957+561 (Colley, Kundi¢ & Turner [34]) mit numerischen
Simulationen, um zu untersuchen, ob der Halo der Linsengalaxie aus massiven kompakten Ob-
jekten (MACHOs) besteht. Dieser Test wurde zuerst von Gott [62] vorgeschlagen. Ich kann
MACHO-Massen von 10~% M, bis zu 1072 M, ausschlieRen, sofern der Quasar kleiner ist als
3 x 10 hgg’? cm und MACHOs mehr als 50% des dunklen Halos ausmachen. Im zweiten
Teil der Arbeit stelle ich neue Beobachtungsdaten fiir den Vierfachquasar Q2237+0305 vor, die
am 3.5m Teleskop des Apache Point Observatory zwischen Juni 1995 und Januar 1998 gewon-
nen wurden. Obwohl die Daten bei veranderlichen, oft schlechten Seeing Bedingungen und
grober Pixelauflosung aufgenommen wurden, ist die Photometrie der beiden helleren Quasar-
bilder A und B mit Hilfe von HST-Beobachtungen maglich. Ich finde ein Helligkeitsmaximum
in Bild A mit einer Amplitude von 0.4 bis 0.5 mag und einer Dauer von wenigstens 100 Tagen.
Dies zeigt, daB in der Linsengalaxie der Mikrolinseneffekt stattgefunden hat. Im abschlieRen-
den Teil der Arbeit benutze ich dann den schwachen Gravitationslinseneffekt, um Grenzen fir
eine Klasse von rotierenden Kosmologien vom Godel-Typ zu ermitteln, die von Korotky &
Obukhov [100] beschrieben wurde. In Studien des schwachen Linseneffektes werden die Formen
von tausenden von Hintergrundgalaxien vermessen und gemittelt. Dabei werden kohdrente Ver-
zerrungen der Galaxienformen gemessen, die von Massenverteilungen im Vordergrund oder von
der groRraumigen Struktur der Raumzeit selbst verursacht werden. Ich berechne die vorherge-
sagte Scherung als Funktion der Rotverschiebung in rotierenden Kosmologien vom Gddel-Typ
und vergleiche diese mit der oberen Grenze fir die kosmische Scherung vimit ~ 0.04, die in
Studien des schwachen Linseneffektes gewonnen wurde. Dieser Vergleich zeigt, dall Modelle
vom Godel-Typ keine groReren Rotationen als w ~ Hy = 6.1 x 10! hgy year ! haben kdnnen,
wenn die Grenze fir die kosmische Scherung fuir den ganzen Himmel gilt.
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Chapter 1

Cosmology and dark matter

1.1 Introduction

Two rather different questions have lead to this thesis: 1. Are galaxy halos made up of massive,
compact objects? 2. Is the universe rotating? In fact, the questions are so different that it is
difficult to discuss them in a single breath. But it is remarkable that they can be tackled with the
same tool: gravitational lensing.

“Gravitational lensing” is a term that is used for the deflection of light by massive bodies and
the associated phenomena. Light deflection was first detected when the positions of stars near
the solar limb during a solar eclipse in 1919 where observed to have slightly shifted as compared
to their positions on the night sky. This measurement provided strong evidence in support of
Albert Einstein’s theory of general relativity. Even before more examples became known, the
gravitational lensing effect inspired theorists as to the potential it would have for astrophysics
and especially cosmology?. Since the first gravitational lens with multiple images was found in
1979 by Walsh, Carswell & Weymann [189], the subject has boomed enormously. Gravitational
lensing has become a versatile tool for cosmology and astrophysics in general.

This thesis aims at exploiting this potential in two respects: Firstly, in chapters 3 and 4 we will
analyze the light from distant quasars that passes through foreground galaxies. The quasar light
is used as a “scanning beam” to test whether any compact objects can be found in the galaxies by
their lensing, or magnifying, effect. Secondly, we use the shapes of distant galaxies as scanning
beams. Recent studies have shown that their shapes are preserved with only very little distortion
on the way to us. A curious class of cosmological models where the universe rotates around the
observer that are generalizations of a model that was first developed by Kurt Godel can be tested
by such a direct analysis of the distortion of light beams. This will be done in chapter 5.

Before we embark on the detailed studies outlined here, the remainder of this chapter will
be dedicated to introducing the standard cosmological models, with a short introduction of the
main players — dark matter and cosmological constant. In chapter 2 we describe the formalism
of gravitational lensing.

1This story can be read in the book by Schneider, Ehlers & Falco [170, pages 3-9].
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2 CHAPTER 1. COSMOLOGY AND DARK MATTER

1.2 The standard cosmological model?

The space-time of our universe is governed by the field equations of general relativity. If the
universe is homogeneous and isotropic it has to have a time-dependent but spatially uniform
curvature and the field equations dictate the dynamics.

In the standard cosmological model, the universe began about 15 billion years ago and it
has been expanding since. The curvature of the universe depends on the dimensionless density
parameter

0= p (1.1

Perit
that describes the density of the universe p in terms of a critical density
3H}
Perit =
817G

A universe with zero curvature has the critical density. In this expression, G is the gravitational
constant, and H, is the so-called Hubble constant. The Hubble constant is a measure for the
current expansion rate of the universe. Its inverse is proportional to the age t, of the universe

= 6.8 x 107 gem™® hg,. (1.2)

All distances in the universe scale with ¢/ Hy, where ¢ is the speed of light, so that the Hubble
constant is a measure for the size of the universe. In this thesis, all quantities will be given in
terms of a Hubble constant of 60 km s~ Mpc ~1, scaled with hgy = H,/60 kms='Mpc 1. This
value emerges from studies of the gravitational lens effect [105] (with an uncertainty of at least
10%), and is close to values derived from Hubble Space Telescope observations of Cepheids in
the Virgo galaxy cluster [119].

Positive curvature (2 > 1) corresponds to a closed universe that will eventually contract
again. Negative curvature (€2 < 1) corresponds to an open universe that will always expand. In
addition to the density in matter, €2,,,, a term called the cosmological constant 2, can be added to
the field equations so that 2 = Q,, + Q4. €4 corresponds to a vacuum-energy with the peculiar
equation of state p = —pc?, where p is the pressure, p the density and ¢ the speed of light. In
general, the matter and vacuum energy densities vary with time, but a flat universe with = 1
stays flat. In the following 2., and €, refer to the current values. Whenever we use definite
values for these quantities in this thesis, we use 2 = 1 and A = 0.

In the standard cosmological picture, the universe expanded from a hot and dense state where
most of the mass was contained in radiation in thermal equilibrium, with an equation of state p =
pc?/3. With the expansion, the universe cooled down. When the energy density in relativistic
particles dropped below the density of the rest masses of hydrogen and helium, the universe
became matter-dominated with an equation of state p < pc? (a universe with this equation
of state is sometimes referred as a “dust”-universe, although the actual matter content of the

2This section is a brief sketch of the basics of cosmology. It is indended to introduce the fundamental notions
and definitions, but not as a thorough introduction. For this purpose, see for example, Berry [15] or Peebles [134].
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universe, especially at the early epochs, is not dust). After the temperature of the expanding
universe had dropped to about 3000-4000 K, the free electrons were captured by atoms and
the universe became abruptly optically thin. The remnant photons from the hot early phase
continued to cool while the universe expanded. This radiation remnant of the hot early phase
of the universe was discovered as a microwave background radiation in the 60s [134, page 131]
with a temperature of 2.7 K. This radiation is now known as the cosmic microwave background
(CMB). It is isotropic to such a high degree that the COBE satellite only detected temperature
anisotropies of one part in 10° on a scale of ~ 10 degrees [179].

In recent analyses of the CMB anisotropy on scales of a degree and below, structures have
been detected that are interpreted as the results of acoustic oscillations in the photon-baryon
liquid in the early universe. Since the maximum size of these oscillations is constrained by
the sound speed in the medium times the age of the universe at the epoch of the decoupling of
radiation from matter (“sound horizon”) [77], it is possible to constrain €2 with these observations
to be definitely greater than 0.3, and not unlikely close to one [66, 80, 177, 184].

The cosmological constant acts as an accelerating or decelerating term in the field equations,
so that it has a stretching or compressing effect on large distances in the universe, as compared
to the 2, = 0 case. It seems that this effect has also recently been detected by two teams that
have used high-redshift supernovae and a sophisticated method [152] to determine the absolute
magnitude, and thus the distance, of these objects from the supernova light curves. These groups
find that their data are inconsistent with the case of no cosmological constant. They find a
relation between ., and 2, that predicts for 2 = 1 that the universe is accelerating with Q, ~
0.7 4+ 0.1 [56, 137] (1 o error bar).

However, so far the only evidence for 2, that seems to convince a large majority of the
community comes from the supernovae, so that a check is necessary. Limits from gravitational
lensing, for example, constrain €2, in a flat universe to be smaller than 0.66 [114, 97] (at 3
o). Bartelmann et al. [12] even concluded that €2, = 0 from the frequency of gravitationally
lensed arcs in galaxy clusters, although these constraints can be weakened if larger error bars are
assigned to the observed arc counts (Bartelmann 1998, priv. comm.).

Numerical simulations of structure formation exclude a universe with €2,,, = 1 and no cosmo-
logical constant: it was found, for example, that galaxy clusters would be much more abundant
than observed [151, page 18], the velocity dispersion of galaxies around the local group would
be factor of three too high [16], and we would expect many more wide-separation gravitational
lenses than observed [191]. Fan et al. [50] directly constrain €2, from the evolution of the abun-
dance of galaxy clusters and find Q,, = 0.3 + 0.1 (1 0).

1.3 Dark matter

From the last section, it seems that we have evidence that some 30 percent of the universe is
made up from matter. It is now natural to ask what kind of matter this is.

In the 30s, Zwicky [224] and Smith [178] measured the velocities of galaxies in the Coma and
Virgo clusters of galaxies. By estimating the mass necessary to gravitationally bind the galaxies
given their velocities, they found that about two orders of magnitude more mass was needed than
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Figure 1.1: Galaxy rotation curves. Rotation curves from the collection by Persic & Salucci [138]
are shown for the galaxies NGC 697 (long dashed), Holm 370 (dotted), 362-G11 (solid) and 540-
G16 (short dashed). The velocities have been determined at the positions of the data points using
the Ha line. We have connected the points for visualization. The curves are normalized to the
optical radius of the galaxies.

there was luminous mass in the galaxies. The missing mass is now known as “dark matter”.
Between 10 and 30 percent [25] of this matter, depending on the cluster at hand, was later found
to be hot plasma that is dense enough to be detected by its thermal X-ray Bremsstrahlung. The
total masses of the galaxy clusters determined under the assumption of hydrostatic equilibrium
and by measuring the temperature of the cluster gas from its X-ray spectrum [144] also indicated
that the clusters contain more mass than their galaxy and gas content [25]. The case for dark
matter has become rather solid with the discovery of giant arcs and weak distortions of back-
ground galaxies in several galaxy clusters, which betray the presence of the dark matter by its
gravitational lensing effect [115, 13].

A different kind of evidence for dark matter can be found in the rotation curves of galaxies. In
galaxy rotation curves the rotational velocity is measured as a function of the separation from the
galaxy centre. It was known since the 70s that rotation curves remain flat even beyond the visible
matter [155, 156]. As an example in Fig. 1.1 four rotation curves from Persic & Salucci [138] are
shown. The curves were obtained from spectra of the galaxies by measuring the wavelength of
the Ha-line as a function of the separation from the galaxy centre. The rotation curves indicate
that the mass in galaxies is more spread out than the light because rotation curves deduced from
the luminous matter would drop much quicker. We can illustrate this in the simplest case of
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a spherically symmetric mass distribution. The density p(r) as a function of the radius r can
be determined from the orbital velocity »(r) around the mass M(r) = v?r/G, where G is the
gravitational constant, enclosed in the sphere with radius 7:

1 0 v?
= —M =
plr) A7 r? Or (r) A7rGr?

For a constant velocity v, the density drops as 1/r2. The observed light in galaxies drops much
faster. An often used model for disks of spiral galaxies is an exponential profile [134, page 46].
As a solution for this puzzle, Ostriker et al. [129] and Einasto et al. [45] suggested that galaxies
are surrounded by large halos of dark matter that dominate the total mass of the galaxies.

Besides leading to rotation curves that look similar to the observed ones, dark galaxy halos
provide an explanation for another puzzle that emerged from numerical simulations of rotating
self-gravitating disks: In disks with a flat rotation curve where the random stellar motions are
small compared to the circular motion, a bar-like instability forms and reshapes the disk with a
much higher velocity dispersion in only a few rotations of the disk (for example [75], [17, pp.
372]). While this bar instability provided a beautiful explanation for the observed phenomenon
of bars in spiral galaxies, the same instability made it difficult to explain the bare existence of
many spiral galaxies because their random stellar motions are small. Ostriker & Peebles [128]
then found that it was possible to stabilize such a disk by adding surrounding halos of dark matter.

A large number of possible candidates for the dark matter has been put forward in recent
years, reviews are given, for example, by Bahcall [9] and Raffelt [142]). The candidates can
broadly be divided into “elementary particle” candidates (such as neutrinos, axions or weakly in-
teracting massive particles (WIMPs)) and “astrophysical” candidates (such as black holes, brown
dwarfs, “Jupiters”, comets). Not much progress has been made to date in identifying the elusive
dark matter despite major efforts in many directions. In fact, a new branch of physics established
itself — *“astro-particle physics” — that is dedicated to the solution of the dark matter problem.

In chapters 3 and 4 we will study two distant quasars that shine through a foreground galaxy
with a known high surface density of matter at the positions of the quasars. By analyzing the
long-term behaviour of the flux from the quasars, we will obtain limits on the masses of objects
in the galaxy halos since they would gravitationally magnify the light from the quasars. Firstly,
however, we introduce the necessary concepts of the gravitational lensing effect.

(1.4)



Chapter 2

Gravitational lensing

2.1 The deflection angle

A remarkable consequence of Einstein’s theory of general relativity is that light rays are deflected
by gravity. In 1915 Einstein [47] calculated the deflection angle & of a light ray with an impact
parameter R by a body with mass M from his field equations and obtained

AGM
2R

a = (2.1)
It had already been suspected before that light could be deflected by gravity, but under different
assumptions. It was known from the results of free fall experiments, the most influential being
the ones by Galileo Galilei [54], that all bodies fall at the same speed when released from rest.
In 1804 Soldner [180] treated a light ray as a particle and predicted that light would be deflected
by masses by half the value given by eq. (2.1). The Soldner angle was rederived by Einstein in
1911 [46] by realising that the pace of clocks depends on the position in a gravitational potential
and by deriving an effective refractive index for the space around masses from this.! The true
deflection angle is twice the Soldner angle because in general relativity space is also curved.

Einstein’s formula (2.1) for the deflection angle predicts that a light ray which tangentially
grazes the surface of the Sun is deflected by 1.7”. This result was confirmed in 1919 when the
apparent angular shift of stars close to the limb of the sun was measured during a total solar
eclipse [38]. This was immediately regarded as compelling evidence in support of general rela-
tivity and it was the first observed example of “gravitational lensing”. This deflection angle has
since been repeatedly confirmed with high-precision VLBI measurements in the radio regime,
see for example [154].

In Fig. 2.1, the light deflection due to lens galaxy between an observer and a light source
is illustrated. In the frame of the observer, the wavefront propagates slower in the gravitational
potential of the galaxy than outside. The central part lags behind, and the wavefronts on both

IWhich half of (2.1) did Einstein derive? Liebscher (1997, priv. comm.) brought to my attention that Einstein’s
calculation is mathematically identical to using the Hamilton-Jacobi formalism and Newton’s theory of gravitation.
One could say that using a new interpretation, Einstein rederived in 1911 “the same” half of (2.1) as Soldner.

6



2.1. THE DEFLECTION ANGLE 7

‘ Source
\J/ unperturbed wave front
wavefront is perturbed
\/\/ . .
® in lens potential
AN
3 Lens galaxy
1 > wavefronts have crossed,
three images can be observed
¥
Observer

Figure 2.1: Wavefront propagation in a galaxy potential.

sides of the galaxy may even cross if the potential well of the galaxy is massive enough. If the
observer is close enough to the optical axis defined by source and galaxy centre, three images
of the same source may be seen: two images from the wavefronts on either side, and a very
weak (highly demagnified) image in the middle coming from a wavefront that developed when
the other two parts of the wavefront crossed. Exactly on the optical axis, the source would even
appear as a so-called Einstein ring. The gravitational potential of the galaxy acts as a medium
with varying refractive index. The observer would see the three images at positions on the sky
that are shifted with respect to the original source position without a lens. The light deflection
from the straight path is given by Einstein’s formula (2.1). In observed lensing systems, the
galaxy is normally not circularly symmetric. In this case, five different wavefronts can arrive at
an observer close to the optical axis, of which four images are observed while the fifth is usually
too faint to be detected.
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Fischer et al. (1997)

Figure 2.2: The gravitational lens system Q0957+561 as observed with Hubble Space Telescope
in the 7-band. The two quasar images A and B are seen through the lensing galaxy. This picture
by Fischer et al. [52] was made available online by the CASTLES Survey [29].

2.2 Observations

2.2.1 Strong and weak lensing

The first gravitational lens Q0957+561 was discovered in 1979 by Walsh, Carswell & Wey-
mann [189] during a search for optical counterparts of quasar candidate radio sources (see
Fig. 2.2). In this lens, two images of a distant R ~ 17.0 quasar are observed 6.1"” apart around
an elliptical galaxy that is the central galaxy of a galaxy cluster. We will have a close look at this
system in chapter 3. Since 1979, a number of multiply imaged lens systems have been found; a
comprehensive collection of observational facts and theoretical models has been made available
online by Kochanek et al. as the CASTLES survey [29]. In their table, 48 certain and 6 insecure
cases of multiply imaged quasars or galaxies (which are even seen as a ring in cases of very
good alignment) are given. These lenses all have image separations of the order of arcseconds
and are thought to be caused by single galaxies or by galaxies with a perturbation from some
other galaxy or galaxy cluster. For most systems theoretical lens model are published or at least
available on the CASTLES web site.

For some time, it had not been possible to find the lens in some of the multiple imaged quasar
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systems (for example the clover leaf H1413+117). This led to speculations about the existence of
“dark galaxies” [88, 72] that are only seen by the effect of their mass. Owing mostly to infrared
imaging with NICMOS on the Hubble Space telescope, however, several of the missing lenses
have been found, such as in the case of the clover leaf [96] and 10 other lenses in the CLASS
lens sample [85]. Jackson et al. [85] find 10 lens galaxies out of 10 radio-selected gravitational
lenses and conclude that the “dark lens” hypothesis is probably ruled out unless the dark galaxies
are very massive with a sharp cut-off towards lower masses. Since some of the binary quasars
mentioned above are also not thought to be gravitational lenses anymore, it seems that dark
galaxies are probably not needed to explain multiply imaged systems.

In rich galaxy clusters multiple images with even larger image separations of ~ 30" of back-
ground galaxies have been observed. Some of the images are distorted by the cluster into giant
arcs and counter-arcs of up to some 15” length. Moreover, the background galaxies behind the
cluster are weakly distorted by the gravitational potential of the cluster. This was first detected in
1990 [183] and has become one of the most booming subjects of gravitational lensing. In many
galaxy clusters the gravitational lensing signal of the dark matter was detected, it has become
possible to map the dark matter distribution in galaxy clusters. Such studies provide an impor-
tant confirmation of mass determinations from velocity dispersion studies and X-ray analyses,
although the mass predictions do not always agree. The study of the weak distortions of back-
ground galaxies is known as “weak lensing”, although even the dark matter in the cores of galaxy
clusters with multiple images (the “strong lensing” regime) can be mapped. It has also been pos-
sible to detect the gravitational lensing effect of the large scale structure of the universe with this
effect around quasars [174], and even filaments between massive galaxy clusters [33]. The his-
tory and most recent advances in this field is well covered by the recent reviews by Mellier [115]
and Bartelmann & Schneider [13].

2.2.2 Microlensing

In another extreme, image splitting at the microarcsecond level from the lensing effect of stars or
other compact objects cannot be resolved by current telescopes yet. This so-called “microlens-
ing” can be observed as a flux variation of the background object because the lensing mass also
magnifies the background object. Two kinds of microlensing are known: (1) Microlensing of
stars by compact objects in our own galaxy, and (2) microlensing of background quasars by
compact objects in other galaxies.

About 300 high-amplification events due to microlensing of stars in the Galaxy and in the
Magellanic Clouds have now been recorded in extensive monitoring programs of several million
stars [2, 4, 8, 185]. The microlensing can be observed as a highly symmetric achromatic flux
variation of the background star due to the passing of a compact object near the line of sight
(see Fig. 3.1). In the direction of the Large Magellanic Clud (LMC) between 13 and 17 events
were obserserved, depending on the choice of detection criteria [5]. There are even candidates
for microlensing of stars in the Andromeda galaxy [40, 41, 7] (which is likely to have a factor of
10 higher optical depth than the LMC).

In this thesis, we are concerned with the second kind of microlensing. Curiously, it was the
first kind to be discovered (by four years): in 1989 Irwin et al. [81] announced the detection of
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a brightness variation of one of the four images of the quadruply imaged quasar Q2237+0305
(see Fig. 2.3). In this system, two lensing effects need to be considered separately: the quasar is
situated almost directly behind the centre of a spiral galaxy. During the Center for Astrophysics
(CfA) redshift survey, the quasar was discovered since its spectrum was superimposed on the
galaxy spectrum [78]. Due to this special geometry, the quasar is quadruply imaged by the
gravitational potential of the spiral galaxy, so that four images are observed. The microlensing
then takes place in the light paths of each individual quasar image.

Chang & Refsdal [31] had already predicted in 1979 that due to the high surface mass den-
sity in systems with multiple gravitationally lensed images, “star disturbances” in the light path
should cause strong brightness fluctuations due to the relative motion of observer, lensing galaxy
and quasar. The quasar image light paths essentially glide through the galaxy like scanning
beams. In such systems, the microlensing effect is caused the whole ensemble of compact ob-
jects near the light path. The effect is highly nonlinear, so that the effect of single objects is rather
small [195]. Continued monitoring has shown that the four images of quasar Q2237+0305 all
show strong, independent flux variations [39, 125]. More recent data by the OGLE group [209]
show that the four quasar images in this system “perform” what can be called “roller coaster”
(Wambsganss, July 1999) variations with amplitudes of more than a magnitude. Other cases of
microlensing in multiply imaged quasars have also been reported, for example, in the clover leaf
H1413+117 [150] and in the already mentioned double quasar Q0957+561 [157].

In chapters 3 and 4 the microlensing properties of the double quasar Q0957+561 and the
quadruple quasar Q2237+0305 will be studied using numerical microlensing simulations and
new observational data. The relevant literature will also be discussed in detail in these chapters.

2.3 Distances and redshifts in cosmology

In a gravitational lens system, the distances to the source and the gravitational lens play an
important role. In the standard cosmological model, distances are calculated by integrating over
the line element ds in the so called Robertson-Walker metric:

dr?
1 — kr?

mﬁq%ﬂ—R%w[ +H@W+gﬁwwﬂ. (2.2)
It is the metric of a space with spatially constant but time-dependent curvature K(t) = k/R(t)?,
where & is +1, 0 or —1 and R(t) is the curvature radius that scales the spatial part of the metric.
r, 6 and ¢ are the spherical coordinates, ¢ is the time and ¢ the speed of light. In chapter 5, we
discuss limits on a generalization of the £ = 0 Robertson-Walker metric, but in chapters 3 and 4
we only work with the Robertson-Walker metric.

If light is emitted it also expands with the universe, so that light with a wavelength A, from a
distant source that has been emitted at the time ¢, is redshifted by the expansion of the universe
and has the wavelength Ay when it is observed at the time ¢,. This is expressed by the redshift z:

1+z:ﬁ:R%X (2.3)
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Figure 2.3: The gravitational lens system Q2237+0305 observed with Hubble Space Telescope
in the V-band. In the centre of the spiral galaxy, four images of the same background quasar are
seen situated around the bright galaxy core. The separation of the images from the galaxy core
is ~ 0.9 arcsec. The image data were retrieved from the Hubble Space Telescope Archive and

were original proposed by Westphal [201].
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The redshift z can be used to denote the time of emission ¢, and is also often used as a measure of
the distance of the source. There are several ways one can calculate distances with the Robertson-
Walker metric. For the use in gravitational lensing, the relation between the separation of two
sources that subtends a specific angle and the distance of the objects needs to be equal to the
Euclidean formula:

separation = angle x distance. (2.4)

Distances for which this relation holds are called angular-diameter distances. The angular-
diameter distances will be given here and throughout this thesis only for a homogeneous Q2 = 1,
A = 0 universe, for more general universes they can be looked up or calculated with the relations
in [170, page 141] or [94]. In gravitational lensing the quantities that depend on the cosmol-
ogy are summed up in the normalization of the lensing masses (as shown in eq. (2.14)). The
angular-diameter distance of a source at a redshift of z is given as a solution of the Dyer-Roeder
equation ([44],[170, page 142]):

i(1—|—;z—\/1—|-z). (2.5)

(14 2)* Ho

The angular-diameter distance between two objects at redshifts z; and z3, z; < 2z, along the
same line of sight is given by:

Dy = 12{_2 (14 21) [R1 (22) Ro (21) — Ru (21) R (22)], (2.6)
where
Ry (2) = 1 j_ . and (2.7)
V1t z
Reld) = 2 @8)

so that in general D15, # D, — D;. The measured flux from a source in an expanding universe is
reduced compared to a static Euclidean space since in the expanding universe fewer photons with
less energy arrive at the detector in a given time. If the total flux of a source is to be calculated,
one has to use the corrected luminosity distance Dy, to calculate the area of the hypersphere the
luminosity of the source is passing through. Dy is equal to (1 + z)* times the angular-diameter
distance.
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Image.

Figure 2.4: Diagram of a gravitational lens system. Explanation of symbols is given in the text.
Reproduced with slight modifications from [120].

2.4 Single plane lensing?

2.4.1 Lensequation

The geometry of a typical gravitational lens system with a single lens is shown in Figure 2.4.
A light ray from the source is deflected by the gravitational lens at the distance D4 from the
observer by the angle &, so that it is observed at the angle #. Without the lens it would have been
observed at 3. In lensing situations like this, the extent of the lens in the direction of the optical
axis is usually much smaller than the distances between observer and lens D4, and between lens
and source Dg. It can be assumed that the lens is thin when compared with the whole light path.
The mass distribution of the lens can be replaced by the projected surface mass distribution on a
plane, called the lens plane. The gravitational effect of the lens can be calculated by integrating
over the surface elements d2¢ with the surface mass density X in the lens plane using Einstein’s
result from eq. (2.1) for the individual deflection angles. The deflection angle & at the position
E is thus given by the following generalization of (2.1) for an extended mass distribution:

(€) = t—(j / (E j_);?(g’> d*¢. (2.9)

2Many derivations in this section follow the lecture notes by Narayan & Bartelmann [120].
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For n point masses m; at positions EZ one has to use delta functions
> (&) = Zmz 0%(€ - €)), (2.10)

where 42 is the 2-dimensional delta-function. The plane parallel to the lens plane at the distance
D of the source from the observer is called the source plane. In general, the angles in Figure 2.4
are vectors since the deflection is not necessarily always radial. In the case of small angles it is

6D, = BD, + &.Dg;. (2.11)

The small-angle approximation is valid in the known cases of gravitational lensing, even in
galaxy clusters the deflection angles are only of the order of 30 arcsec. By introducing the
reduced deflection angle & that is seen by the observer

Dds =

G =& (2.12)

one obtains the lens equation:
B=6-a(6). (2.13)

This is the fundamental equation of gravitational lensing. It relates the source position 3 with the
image position 0 and the deflection angle &. It is nonlinear in general, so it may have multiple
image solutions 6 for a given source position 3 and deflection field a(o ) It also holds in curved
spacetimes as long as the distances Dy, D and Dy, are defined to be angular-diameter distances.

The lens equation can also be expressed by Fermat’s principle. If one defines the critical
surface density

2 Dy

Serit = 1 DuDi (2.14)
and the convergence

k= 3/Serit, (2.15)
one can write the deflection potential ¢ as

¥ (9) = %/n (5’) In|é — ¢ a2, (2.16)

Since VIn \0\ = gQ , it follows from the definitions of Fig. 2.4 and egs. (2.9) and (2.12) that
|G|

a = Vi (2.17)

The time-delay function can then be defined by

((8) = L 2R 2 (8- B) - v (6)], (2.18)
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where zq4 is the redshift of the lens [170, page 146]. This function describes the time-delay due
to the longer lightpath and the gravity field of the lens as compared to the unperturbed light
travel time. It follows from the lens equation (2.13) that ﬁt(é) = 0; the images lie at the
extrema of the time delay function [20, 171]. Also, since the angular-diameter distances for
known redshifts scale with the Hubble constant Hy, the measurement of a time-delay between
the images of a multiple image gravitational lens system determines the Hubble constant if one
has a theoretical model t(6) for the system [146]. Furthermore, since Aln |6] = 276%(6), it
follows from eq. (2.16) that

A = 2k. (2.19)

The deflection potential ) and deflection field & can be found by solving the 2-dimensional
Poisson equation (2.19).

2.4.2 Magnification

The local properties of the lens mapping (2.13) can be studied with the Jacobi matrix A »:

B

4_8[:3'_ aai(é) _ M-l
Aﬁ_ﬁ_(ézj— g ) =M (2.20)

The images are magnified by the ratio between the solid angles of the image and the source. Since
gravitational lensing preserves surface brightness due to Liouville’s theorem [170, page 116], the
image fluxes are magnified by this ratio; the magnification  is given by the determinant of the
magnification matrix M:

1

detAB.

Formally negative magnification means a mirror-inversion of the image with respect to the
source. The Jacobi matrix can be written as the sum of a convergence and a shear matrix.
Using the abbreviation v ;; = 0%/06;06; and eq. (2.19), the convergence can be written
K = %(w,n + 1 92). If one also defines the shear magnitude v and orientation ¢ by setting
vcos2¢p = 2(1h11 — ¥ ,22) and ysin 29 = 115 = 951 and using eq. (2.17) one obtains:

u=detM = (2.21)

o _(1-k& 0 _ cos2¢p  sin2¢p
A,B B ( 0 1-« ) U ( sin2p  —cos 2p ) | (2.22)
Using eq. (2.21), the magnification g at a position with convergence « and shear -y is given by
1
= 2.23
SR 22)

A circular source is elliptically distorted to an axis ratio (}f—V) by the shear, the major axis lying
along the direction of ¢, while the convergence changes the scale of both axes. Since x and ~
are derived from the same potential, it is possible (up to an integration constant) to determine
the surface mass density in galaxy clusters from the analysis of the deformations of background
galaxies behind galaxy clusters [90, 115, 13].
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2.4.3 The point mass lens

For a point mass M, the deflection angle is directed towards the mass, and one finds from
egs. (2.1), (2.12) and (2.13) that for the impact parameter R = 6 D4

Dy 4GM

B(0)=0-— D.D. @0 (2.24)
If B = 0 for a source directly on the optical axis, it is imaged as a ring with the radius
AGM Dy 12
bs = [7 Dst] ’ (225)

fx is called the Einstein radius. The lens equation for the point mass lens (2.24) can thus be

written § = 0 — % A point mass lens will always produce two images at the positions of the
solution of the quadratic eq.( 2.24)

0, = % (5 +./2 + 49%) (2.26)

with a separation /2 + 462 . The magnification u of the images is given by the ratio of the

surface elements ;1 = § 2

o\
pye = |1—[—= : (2.27)
0
Sources within the Einstein ring are strongly magnified, whereas for large /3, one image appears
highly demagnified near the source and the other appears undisturbed at § ~ 3.

The magpnification curve for a star that passes behind a point lens can be obtained by adding
up the two magnifications from eq. (2.27). If we introduce u = /6y for the impact parameter,
it follows®

04 1 2+ u?
= =4+ ——— 2.28
He (01 +62)(02 —02) 27 2u/u2+4 (2.28)
so that the total magnification is ([63] lists the complete derivation history of this well-known
relation)

_ 2+
B= i 'ui_u\/m'

The second magnification term p_ is subtracted since it is formally negative because the image
is mirror-inverted. In Figure 3.1, eq. (2.29) is illustrated by showing the total magnification of
a source that passes within 0.2 Einstein radii behind a point lens as a function of the separation
from the point of closest approach.

(2.29)

31t is helpful to use the relations 6% — 62 = B0, and 62 + 6% = +6../5% + 4.
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2.4.4 Compact objects in the light path

In chapters 3 and 4 we will study the light from a quasar that shines through a galaxy that
acts as a gravitational lens. The quasar light bundle is magnified and sheared, and additionally
“microlensed” by the stars or other compact objects in the galaxy. This situation is usually
modelled by using two components for the convergence in the galaxy:

K = Ky + Ke. (2.30)

k. denotes the convergence from compact objects, and . in smooth, continuous matter (to de-
scribe elementary particles, for example). By treating the effect of «, from the N compact objects
with masses M; exactly according to (2.1) and (2.12), we obtain from egs. (2.20) and (2.22) for
deviations in the source plane d3 from deviations d@ from centre of the quasar image (orienting
the shear without loss of generality horizontally) [131, 92]

= [(1—k,—n 0 ~ Dy 4G X M;(d6 — d6;)
dg = ( 0 1—I€c+7>d0+Dst = ; 6 (2.31)

This is the fundamental equation used in microlensing studies. By rescaling* ' = 6/6, and

= B/(6o(1 — rc)), with 6y = |/ 522 2%-, and defining the reduced shear

9= i ) (2.32)
1 — ke

the equation can be normalized so that constant factors vanish

ds —< 0 1+g>d0 + sign Ty ; Frrr e (2.33)

The masses of the compact objects m; are now given in units of solar masses M. It can be seen
that for overcritical k. = Ec > 1, the compact objects formally have a repulsive effect. In the
primed coordinate system, varlous combinations of v and k. form a family parametrized by the
reduced shear g.

2.4.5 Critical lines and caustics

It was shown in Sect. 2.4.1 that the gravitationally lensed images lie at the extrema of the time-
delay function (2.18). Moving the source in the source plane will change the positions of these
extrema and, hence, the image positions. In the unperturbed case far from a nonsingular lens with
no discontinuities, only one image is visible. In the case of point mass lenses, we have shown in
Sect. 2.4.3 that there are always two images, of which one is strongly demagnified for a source
far from the lens. In an ensemble of point masses there will also be one strongly demagnified
additional image close to each lens for a source far from the ensemble. When the source is

49, is the Einstein radius (2.25) of a star with an additional sheet of constant surface mass density .. In the
following, we will nevertheless use the definition (2.25) for the Einstein radius 8g unless otherwise noted.
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moved closer to the lens (or lens ensemble), a pair of images will be created at a saddle point of
the time delay function. This point may be located through the vanishing of the determinant of
the curvature matrix of the time-delay function [20].

The curvature matrix of the time-delay function ¢ ;; is, except for a constant factor, equal to
the Jacobi matrix A » defined in eq. (2.20), so that the so-called “critical line” where image pairs

are created can be found when the determinant of A » vanishes.

If the critical lines are mapped onto the source plane via the lens equation (2.13), one obtains
the so-called “caustics”. These lines hence separate zones of different image multiplicity of the
background source. Since detA ~ vanishes on the caustics, the magnification p (eq. 2.21) is

formally infinite on these lines. In practice, the magnification will just be very high because real
sources are sufficiently extended®.

An example for a critical line and caustic structure is given in Figure 2.5. The figure shows
the critical curve and caustics of two 1 M, lenses on the x-axis with a separation of 1.8 Einstein
radii (only here according to the definition of the Einstein radius with a constant sheet of matter
in Footnote 4 on page 4) with an additional sheet of smooth matter . and a (horizontal) shear ~.
The resulting reduced shear is g = - = —0.5 (this configuration was first described in [175]).

From this figure it can be taken how much more complex gravitational microlensing becomes
in the case of several compact objects lenses, an additional shear and possible smooth matter
term. Whereas in the case of a single lens a smooth magnification curve as shown in Fig. 3.1
results, we would expect several strong magnification jumps as the source crosses the different
caustics of the right panel of Fig. 2.5. This is another way of illustrating the highly nonlinear
character of microlensing. The plot was produced using the analytical formula from Witt [205,
page 65].

2.5 Lensing in inhomogeneous or anisotropic universes

The last section described the gravitational lens effect due to a single lens. If we wish to include
the effect of density inhomogeneities due to the large scale structure of the universe, we have to
use the equation of geodesic deviation for the transverse separation & between neighbouring rays
in a light bundle ([170, page 110],[13, page 118])

w=T& (2.34)

where 7 is the optical tidal matrix which describes the influence of the space-time curvature on
the light path. For the standard cosmology, 7 is proportional to the unity matrix, so there is no
shear effect. When a spatially varying potential due to density inhomogeneities is introduced, 7
becomes a more complicated, but still symmetric matrix.

The light deflection due to mass inhomogeneities can be found from the difference between E
in a universe with and without density inhomogeneities. In the approximation of small inhomo-
geneities (compared to the Hubble volume) with small Newtonian potentials ® < ¢2, and small

SEven for point sources the magnification is not infinite because the geometrical optics description fails near
critical curves. A wave optics description leads to a finite magnification [126],[170, page 217].
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Figure 2.5: Critical line (lens plane) and caustics (source plane) of a system of two point masses
with external shear v and an additional constant sheet of matter .. The point masses of 1 M,
are located at the marked points in the left panel at +0.9 and —0.9 Einstein radii on the x-
axis. The reduced shear is aligned horizontally with a magnitude ¢ = 1_7,% = —0.5. The
numbers in the right panel indicate image multiplicities in a few regions of the source plane, the
multiplicities in other regions are accordingly. The Einstein radius measure in this figure was

defined in Footnote 4 on page 17 and includes the effect of the constant sheet of matter.
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deflection angles, one obtains in a flat universe an integral over the transverse derivatives of the
Newtonian potential [13, page 122]

w !
&(B,w) =2 / duw’ (1 . 3) V. (w6, ), (2.35)

c” JOo w
where & (w 6, w) describes the Newtonian potential at the angular-distance w for a ray of the
light bundle that encloses an angle 6 with the central ray. In an open or closed universe, the
integral kernel (1 — %’) of (2.35) will be more complicated (the full relations are given in [13]).
The deflection of light rays can only be measured relative to another light ray because ab-
solute deflections cannot be observed. The distortion of the light bundle, however, is observ-
able (eqg. (2.20)). In space-times with more general metrics, eq. (2.34) still holds and can be
solved by inserting the corresponding 7 [176]. Relations for ‘T are given in chapter 5 (Sect. 5.7)
where (2.34) is solved to determine image distortions in a cosmological model with universal

rotation.



Chapter 3

Limitson MACHOs from microlensing in
the double quasar Q0957+561

3.1 Halo dark matter = MACHOQOs?

In this chapter, we study a particular candidate for dark matter: massive, compact objects that
could populate the halos of galaxies. Alluding to the dark matter candidate WIMP (“weakly
interacting massive particle”), Kim Griest [63] coined the acronym MACHO (*massive astro-
physical compact halo object”) for these objects, which we will frequently use here.

A direct test to prove or reject the possibility that the halo of the Milky Way consists of dark,
compact objects was proposed by Paczyhski [132] by making use of gravitational microlensing:
If the brightness of at least a million stars in the Large Magellanic Cloud (LMC) could be reg-
ularly measured, at any given time about one of them should be significantly magnified due to
a halo object passing in front of it and focussing the light rays to the observer. The light curve
of the affected background star should show a very characteristic and achromatic behaviour (see
Fig 3.1 and eq. (2.29)). Soon after Paczynski’s paper, various groups started big observational
programs to investigate this promising possibility. The first microlensing events were found in
1993 by Alcock et al. [4] and Aubourg et al. [8]. The most recent results from a sample of 13 to
17 events (depending on the criteria chosen for the classification as an microlensing event) indi-
cate that some 20% of the dark matter in the Milky Way halo may consist of such objects (Alcock
et al. [5]). The likely masses of the microlenses are very dependent on the model of the galaxy
halo, but generally of the order of a few tenth of a solar mass. This is higher than originally sug-
gested for the “prime candidate” brown dwarfs, but the uncertainty of this mass determination
is large. Moreover, Alcock et al. also consider that the events could also have been caused by
microlensing objects in the halo of the Large Magellanic Cloud (LMC). The events then would
not tell us anything about the galaxy halo. The latter interpretation was initiated by Sahu [159]
and Wu [210] and has recently been supported by the fact that in the one microlensing event
where the location of the microlens is known [3] it is not situated in the galaxy halo, but in the
SMC (Small Magellanic Cloud, which is also studied by the MACHO collaboration [4]). The
biggest difficulty of these programs is that the fraction of background stars that are significantly

21
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Figure 3.1: Magpnification (in magnitudes) of a star at a distance of 15 kpc that is lensed by a point
mass lens of 0.1 M, that passes in linear motion halfway to the star with an impact parameter
of 0.2 Einstein radii (0.05 mas). The x-axis is the distance from the point of closest approach in
Einstein radii 6 =~ 0.23 mas.

affected by microlensing, the so-called “optical depth” [188, 121], towards the LMC is less than
1075, so that millions of stars have to be continuously monitored to see this effect.

3.2 MACHO:s in other galaxies

Already in 1981, Gott [62] proposed to use gravitational lensing in a very different optical depth
regime to test whether halos of other galaxies are made of compact objects: the light bundles
from a multiply imaged quasar pass through a lensing galaxy and its dark halo on their way to
the observer. The distances involved here are about five orders of magnitude larger than in the
microlensing searches towards the LMC (Gigaparsec rather than some 55 kpc), and the optical
depths involved are six orders of magnitude higher, of order unity. These light bundles probe
the graininess of the galaxy halo: if the dark matter there consists of some kind of elementary
particles, the light bundles should be unaffected; if it is made of compact astrophysical objects,
the light bundles can probe it. The measured brightnesses of the quasar images should vary as a
function of time due to the changing relative positions between lens, source, and observer (Chang
& Refsdal [31]). The optical depth in these cases is high enough to basically cause fluctuations
of the measured flux of a quasar image all the time.

Since quasars are intrinsically variable as well, it is not trivial to decide whether an observed
variability is intrinsic or microlensing-induced [71, 36, 73]. With normal quasars, it had so far
only been possible to derive limits from quasar variability on the contribution of compact objects
to the density of the universe [172, 37].

In the case of a multiply imaged quasar, however, the intrinsic fluctuations should show up
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coherently in all images — with a certain time delay — whereas the microlensing changes occur
uncorrelated in the various images. Once well-sampled light curves of two (or more) quasar
images are obtained and the time delay At (due to the different light paths of different light
bundles) as well as the magnitude difference Am (due to the different magnifications of the
quasar images by the galaxy and cluster gravitational potential) are known, one can shift the
two light curves in time and magnitude by the appropriate amounts At and Am and subtract
them from each other. All remaining fluctuations in the “difference light curve” must be due to
microlensing. In particular, if the difference light curve is flat, this indicates that there was no
microlensing going on during the period of observation.

3.3 Limits from microlensing

3.3.1 Q2237+0305: The Einstein cross

As mentioned in Sect. 2.2.2, microlensing was first detected in the quadruple quasar Q2237+0305
(see Fig. 2.3) by Irwin et al. [81]. A single peak in the light curve of image A of less than 100
days duration and > 0.2 mag amplitude was observed in 1988. In this system, the predicted delay
between the images is of the order of hours [169], so that the variations should have shown up
in all quasar images at the same time, if the variability was intrinsic to the quasar. Wambsganss
et al. [194] as well as Webster et al. [198] found an upper limit on the size of the continuum
emission region of the quasar around 10%5 cm for lens masses around few tenths of a solar mass.

Webster et al. [198] also noted discrepancies in different theoretical models of the system of
a factor 2 between the surface mass densities x and shear ~y at the quasar images. They concluded
that this would inhibit strong conclusions on the microlensing objects. Rather, they proposed to
measure « and v from microlensing statistics of a longer light curve. Witt & Mao [207] noted
further that the microlensing properties depend on the direction of the shear with respect to the
motion of the quasar through the caustic pattern of compact objects in the lens galaxy. In 1996,
Lewis & Irwin [109] compared the Q2237+0305 light curve with numerical simulations and
found the masses of the compact microlensing objects to be in the range from 0.1M, up to 10.0
M.

Since 1989, many more microlensing variations were reported in this system. We present the
microlensing history of this system including new microlensing evidence from the Apache Point
Observatory Monitoring program in the years 1995-97 and a discussion of the recent results from
the OGLE group in chapter 4.

3.3.2 Q0957+561

The gravitationally lensed double quasar Q0957+561 has now been monitored for almost two
decades by many groups (see, for example, Schild & Thomson [162]). In this system, the time-
delay between the two quasar images is about 417 days, so that microlensing variations are harder
to spot than in Q2237+0305, where the time-delay is only several hours. In addition, there was
no agreement on the value of the time-delay of Q0957+561 for some 15 years.
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In the optical regime, the time-delay is now widely accepted [105, 127, 165]. Schild [163]
finds indications for microlensing in his ~ 15 years of optical data on the system which can be
produced by stars around a solar mass, in particular a strong drop in the difference light curve
of 0.4 mag in the early 80s. In their analysis of the larger data set, Pelt et al. [135] do not find
evidence for microlensing variations on short time scales. We will present an analysis which
is based on [168], but which includes data of full four years of observations at Apache Point
Observatory [34]. An additional improvement is a more realistic use of simulated microlensing
light curves (isolated data points rather than continuous sampling of the simulated curve).

Regarding the Q0957+561 time-delay estimates from radio data, there is a puzzling depen-
dence of the time-delay on the frequency [65]. The determined time-delay from about 18 years
of light curve data in the 6 cm wave band differs significantly from the optically determined time-
delay. The time-delay from their about 7.5 years of data in the 4 cm wave band is consistent with
the optical time-delay at about 2o. It is possible that this puzzle could be solved by an effect
that was noted by Yonehara [222]. He found that if the intrinsic fluctuations of an sufficiently
extended source happen uncorrelated at several spots on the quasar, the time-delay would depend
on the spot position because a single time-delay of a lens system is exactly valid only for a point
source. If the frequency of the emitted radiation ~ would correlate with the distance r from the
source centre, v ~ 1/r (or some power of r), this could cause a proportionality between the
time-delay and the frequency of the radiation. From his calculations, however, it seems that the
source would need to have a size of the order of kpc, and not pc, for this effect to be significant,
which seems almost a factor 1000 too large. In chapter 4, we will discuss in more detail pos-
sible implications of microlensing observations for the source. In this chapter, we will restrict
ourselves to the simple model of a Gaussian profile for the quasar brightness distribution.

3.4 Q0957+561: Mass models and time-delay

Q0957+561 (z = 1.41) is lensed by a galaxy at a redshift of z = 0.36 (see Figure 2.2), which
is the central galaxy of a cluster of galaxies. The galaxy cluster has also been detected in X-
rays [32] and in a weak lensing study [52]. In the radio regime, two jets are detected that come
from the quasar [60, 61]. In addition, several “features” like an arc, possibly consisting of two
elongated images of the same object, and small galaxies, two of which may also be multiple
images, were discovered with the Hubble Space Telescope around the quasar and provide more
constraints on the lensing model [14].

Such complex optical and radio structure places strong constraints on theoretical models for
the lens, so that complex models have been developed for this system (Falco et al. [49], Grogin
& Narayan [64], Barkana et al. [10], Chae [30]). For our study, we need values for the surface
mass density and the local shear at the positions of the quasar images from the models. We
use the model by Falco et al. [49] because it seems that there has not been sufficient change in
the models to warrant an update of the parameters relevant for microlensing (Falco 1999, priv.
comm.). A quantity that is often used to quantify the success of a model to fit the observables p;
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with their observational uncertainties o; is the so-called reduced x?:

5 1 Di,model — Pi,observed \ >
X =~ DOF Z ( o; ) ! 3.3
where DOF, the number of degrees of freedom, is defined as the number of constraints minus the
number of free parameters of the model (the bar denotes the division by DOF). All current lensing
models of Q0957+561 have x? > 5. Ideally, one would want a model with x2? ~ 1. In the case
of Q0957+561, however, the models still seem to have great difficulties, even after the reanalysis
of the Garrett et al. radio data [57] by Barkana et al. [10], to explain the details of the two radio
jets and the mapping between them [30, table 6]. Barkana et al. [10] note that this could either
be due to substructure in the lensing galaxy [113], or due to the effects of superluminal motions
in the jet (the images were analyzed using observations from the same day, possibly neglecting
positional uncertainties of 0.1 mas that could be introduced by the time-delay of ~ 417 days
between the light paths of the two images).
The convergence « (defined in eg. (2.15)) of the lensing galaxy in the Falco et al. [49] model
is represented by an approximation of the so-called King model [95]:

by Dys 02 . 12.
K(0) = _ Da a_;) 30.75 _ 75 (3.2)
Bt Ds ¢ |1/024+1.33462 /62 +0.335 62
Yerit €an be calculated from eq. (2.14):
Yerit = 0.55 hgo g/cm? = 2.6 x 10° Mg, /kpc?. (3.3)

The mass distribution (3.2) is circularly symmetric. Falco et al. fitted the velocity dispersion as
o, = 390 £ 4 km/s, and the core radius as 6. = 2.9 + 0.1 arcsec (see Fig. 3.2). In addition, their
model contained a point mass in the galaxy centre of 1.1 x 10! M, and an external shear com-
ponent from the surrounding galaxy cluster with a magnitude of 0.3040.01 with a position angle
of 63.3 £+ 0.6 degrees (measured from north through east). With the relations from Sect. 2.4.2,
the shear  at the image position (the tidal field due to the matter outside the beam) can also
be calculated from eq. (3.2). We adopt values for the convergence of x4 = 0.32 for image A
and kg = 1.17 for image B, for the local shear at the image positions we used v4 = 0.18 and
v = 0.83, respectively (Falco 1997, priv. comm.)?

In 1997, Kundic et al. [105] presented the results of two years of well sampled monitoring
observations of Q0957+561 with the Apache Point Observatory. With their g-band data, they
confirmed the value of At = 417 4 3 days for the time delay between the two lensed light paths
and a best value for the magnitude offset between the (time-corrected) quasar fluxes of

Amaypg := < mu(t) —mp(t+ At) > =0.118 mag. (3.4)

1Chae (2000, priv. comm.) obtains K4 = 0.56, kg = 1.17, y4 = 0.14 and yg = 0.5 with additional shear
contributions from the cluster of v/y = 0.09 and vz = 0.1 for his best fit model in [30]. This gives a feeling
for the accuracy that can be reached with current theoretical models. If the Chae model would be a more correct
representation of the mass distribution of the lens, we would overestimate x4 and underestimate yg. We have
experimented with Chae’s values and found, however, that this difference is not big enough to significantly influence
our results.
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Figure 3.2: Radial profile of the convergence of the circularly symmetric Falco et al. [49] model
for lensing galaxy in the Q0957+561 gravitational lens system. The two quasar images A and B
have separations of , = 5.2" and #g = 1.03" from the galaxy centre. The projected separations
are 26.4 hgg kpc for image A and 5.2 hgy kpc for image B.

Their value for the time-delay was also confirmed by other groups [127, 165] ([127] only partly)
with independent observations for these observing seasons?. With both the time delay established
and mass models being available for the lens, the double quasar Q0957+561 can hence be used
as a test for massive halo objects by comparison of the light curves of images A and B. We will
use a slightly different value than Kundic et al. [105] for the magnitude correction Am 45 (see
Sect. 3.5.1) which was found in the reanalysis of the Apache Point data by Colley, Turner &
Kundic [34], but it is still in agreement with the Kundic et al. value within the error bars.

We use Q0957+561 as a MACHO test tool by simulating the microlensing effect numerically
for MACHOs of different masses. We analyze the resulting microlensed light curves and show
how often microlensing-induced changes of certain amplitudes are to be expected for certain
MACHO masses. Finally, we compare our numerical simulations with the most recent four-year
data set from the Apache Point Monitoring program of Q0957+561 reported by Colley et al. [34],
which contains two more years of data than reported in Kundic et al. [105]. Using this data set,
we constrain the MACHO masses in the lensing galaxy and its dark halo.

3.5 Observations and simulations

We first briefly present the data set on the quasar Q0957+561 which we use. We then define the
relevant numbers and parameters and illustrate how the microlensing light curve depends on the

2The correct time-delay had already been measured before. In the data of Vanderriest et al. [187] of 1989, for
example, there was a similarly sharp magnitude change as the drop detected by APO in 1995. Then, however, there
were still two competing time-delays of 1.1 and 1.5 years.



3.5. OBSERVATIONS AND SIMULATIONS 27

MACHO masses and the quasar size. Finally, the numerical technique is described which we
employ to produce the microlensing light curves and to analyze them.

3.5.1 The Apache Point Observatory Q0957+561 light curve

In the upper panels of Fig. 3.3, the g-band light curves of quasar images A (red, between 1995 and
1997), and B (blue, between 1996 and 1998) are shown. In order to quantitatively estimate the
effects of microlensing on the light curves of Q0957+561 A and B, we determined the “difference
light curve” between the two quasar images by linearly interpolating the light curves. Only the
procedure to interpolate image B is described here, for image A it is analogous. First, the light
curve of image B is flux-corrected and time shifted

mp(t) = mz(t) = mp(t + At) + Amyp (3.5)

Am 4p is the magnitude correction. In the case of the Apache Point data, Colley et al. [34] give
0.125 mag in 1995 and 1997, but 0.158 mag in 1996. They explain that the different 1996 value is
probably due to the realluminization of the mirror at the end of 1996, so that it became sensitive
at the frequency of an emission line of the quasar [34]. m/y is then subtracted from the light
curve of image A:

Am(t) = ma(t) — mig(2). (3.6)

Am(t) is a measure for the deviation between the two light curves as a function of time. Since
the light curve had been sampled only for discrete points in time, we have to interpolate between
the two closest points of light curve B before and after the instant of time in which a point of
light curve A had been determined (or vice versa):

mip(t;) = ¢ mip(ti) + cx mp(t), (3.7)

where ¢; = (ty —t;)/(tx —t;) and ¢;+c, = 1and t; < t; < ti; t; indicates the time at which data
was taken for image A, and ¢;, ¢, are the closest times before and after ¢; for which data exists
for image B. The difference light curve is defined as:

Am(tj) = mA(tj) — m'B(t]) (38)

The measurement uncertainties o (¢;) were added quadratically for each combined pair of data
during interpolation and subtraction. The resulting difference light curves produced by interpo-
lating either image A or B are shown in the three bottom panels of Fig. 3.3. The two difference
light curves look rather similar.

We use 66 observations of image A and 81 observations of image B out of the 144 available
observations from December 1994 to June 1998 since we have to restrict ourselves to the 343
days of “overlap” between the image A light curve and the time-shifted image B light curve. For
simplicity, we will denote the three epochs of the difference light curve as the 1995, 1996 and
1997 epochs in the following. In detail, we have 160 data days coverage in 1995, 123 days in
1996 and 60 days in 1997.
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Figure 3.3: Light curve (upper panels) and difference light curve (lower panels) of the two images
A (red) and B (blue) of the double quasar Q0957+561 in the g-band. The Julian dates show the
days in 1995 (left panel), 1996 (middle panel) and 1997 (right panel) at which image A was
observed. The data points of image B were obtained between 1996 and 1998, but have been
shifted here in time by 417 days, and by 0.125 mag (1995,1997) and 0.158 mag (1996) in
magnitude. The difference light curves were produced by linearly interpolating either image A
(green points) or image B (orange points). To guide the eye, dashed lines are drawn at differences
of +0.025 mag and -0.025 mag. We have only included data points that were interpolated. The
light curve data were kindly made available to us by Ed Turner prior to publication. We only show
the light curve where there is “overlap” between the data points of image A and the shifted data
points of image B. The full Q0957+561 Apache Point Observatory light curve of both images
from 1995 to 1998 with detailed information about the observations will be published by Colley,
Turner & Kundic¢ [34].
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The time axis in Fig. 3.3 corresponds to the observing dates of image A. We detect no vari-
ation in the difference light curve with an amplitude greater than ~ 0.05 & 0.01 in all three
epochs.® There is also no systematic gradient apparent in the data, which would be the signature
of a long term microlensing event, produced, for example, by a relatively massive MACHO.

The small variance can be quantified. We determine a x? between the difference light curve
and a horizontal line (corresponding to the hypothesis: no detectable microlensing-induced
changes within the measurement uncertainties) defined by [140, pp. 660]:

9o 1 N AmZ(tj)
X = N_1jz::1 o2(t,) (3.9)

N is the number of data points of the difference light curve. This y2-value measures the goodness
of representing the data with Am = 0. We obtain x? = 1.8 or x? = 1.9, depending on which
of the image light curves was interpolated. Since ideally x? would be one, this is an indication
of the marginally significant deviations between the light curves of the two images, for example,
around the days 750, 800, 1106 or 1490. In the second x? value, the group of points around
day 1125 also counts to this, but is likely to be just an interpolation effect since the values for
images A and B agree rather well at the borders of the interpolation interval. The scatter of the
data point between days 800 and 850 could even suggest that the error bars are perhaps a bit
underestimated. In the first epoch of the Apache Point data [105], there is also a small peak seen
around day 750 [105, 168]. It was seen by Schild [164] as well with independent data taken at
a different observatory. This peak is also seen in the newly reduced Apache Point Observatory
data [34] discussed here. It might be argued that the even smaller error bars in Fig. 3.3 now reveal
a caustic crossing of the quasar. For such an event, a sudden jump in magnitude with following
depression period is expected.

If real, such variations could be interpreted as small-amplitude microlensing events that be-
tray the presence of compact objects with small masses in the light path. Such events would
be rather exciting and could provide valuable information on the masses of possible objects in
the halo of the lensing galaxy. By looking at the sequence of data points in Fig. 3.3, it is also
possible to imagine weak trends in the difference light curve. Since we cannot prove with these
data that any peaks or trends are real, we will argue that we do not detect any microlensing
changes Ampa.x — Ampyi, higher than 0.05 £ 0.01 mag in all three epochs. This way we in-
clude the possibility of such events, but we do not draw conclusions from them alone. In this
context it can be seen that simulated microlensing light curves need to be sampled at the points
where observational data are available because the observations migh miss the days with higher
magnifications.

3The amplitudes and the error bars are somewhat taken “by-eye”. For Gaussian fluctuations, one could use
the full width at half maximum (FWHM) of the distribution of Am(t;) as an amplitude. Then, the expression

ﬁ Z;V:l Am2(4) should be & 1, where o is the standard deviation of the distribution of Am(¢;) [140, pp. 660].

<72
The expression is equal to unity for a FWHM of 2.35 x o ~ 0.05 for all three epochs. This is the value we use. The
uncertainty of this amplitude is 0.01 mag, as determined by the error bars of the quasar photometry.
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3.5.2 Simulating microlensing light curves

The exact shape of a microlensed quasar light curve depends on
e the masses of the MACHOs
e the size of the optical continuum emitting region of the quasar
e the direction of the projected relative velocity vector between lens and source and
e the projected relative positions of the MACHOs.

We do not and cannot know the exact positions of individual MACHOSs in the lensing galaxy.
Hence we will not be able to predict or explain an individual microlensed quasar light curve
(as in the case of microlensing of stars in Magellanic Clouds). However, we can determine
and analyze microlensed light curves in a statistical sense. In particular, we investigate here the
distribution of total magnification variations.

We first determine the two-dimensional magnification variations due to microlensing at dif-
ferent positions in the source plane with Joachim Wambsganss’ [190] ray-shooting code; light
rays are followed backwards through an arrangement of MACHOSs randomly distributed in a
plane at the position of the lensing galaxy (see Fig. 2.4 on page 13 for a visualization of lens and
source planes), with convergence and shear as given by the lensing model by Falco et al. [49]
(see Sect. 3.4). The density of the deflected light rays in a plane at the position of the quasar
corresponds to the relative magnification at this position [190].

In our simulations, we always use MACHOs with identical masses. We do not use more
elaborate or realistic* mass distributions because they usually have a steep enough slope that
most of the mass is contained in objects near the lower cut-off. In simulations with Salpeter-like
mass functions [160], where the fraction dp of masses in a certain mass range dm is distributed
as

dp ~ m™23dm (3.10)

between 0.1 Mg and 1.0 Mg, Lewis & Irwin [109] have found that the results of microlensing
simulations are similar to those with all objects identical to the mean mass.

In our simulations we follow approximately 10'° light rays and collect them in the source
plane in an array of 2048 by 2048 pixels. This array is called “magnification pattern”. Parts of
such patterns are shown in Fig. 3.4 in the three panels on the left. The three patterns all have the
same physical side length (in lens and source plane), and contain roughly the same mass, but were
generated with three different masses of the compact objects. In all three magnification patterns
in Fig. 3.4 the quasar brightness profile was represented by a Gaussian with o = 3 x 103 cm.
The prominent features in the patterns are the caustics.

4In their PhD theses on microlensing, Wambsganss [190] and Witt [205] showed that no preferred, generally
accepted, “true” mass function had been determined then. In April 1998, Stanke (priv. comm.) also finds that there
is no single preferred mass function of stars. In the Trapezium cluster the mass function has a peak at 0.3Mg, but in
other regions it is uncertain whether the mass functions have such a peak [161]. It is possible that there is no single
mass function, but that it depends on the environment (Orion, Ophiuchus, Trapezium cluster, etc.).
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Figure 3.4: Magnification patterns and light curves for different MACHO masses. The three
microlensing light curves on the right are simulated by evaluating the magnifications along the
yellow tracks in the three magnification patterns on the left. The track length is chosen in such
a way that it corresponds to a 160 day light curve of Q0957+561, such as the one observed at
Apache Point Observatory in 1995, for an assumed transverse velocity of the quasar across the
magnification pattern of v; = 600 kms—!. The magnification patterns are colour-coded from
yellow (high magnification) to blue (demagnification) and have side lengths of 4 Einstein radii
(top), 40 Einstein radii (middle) and 400 Einstein radii (bottom), so that the (fixed) track length
corresponds to MACHO masses of 1072 M, (top), 1075 M, (middle) and 10~7 M, (bottom). The

quasar size (eq. (3.14)) is 3 x 102 hgg’/? cm.
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The short straight yellow lines in the magnification patterns in Fig. 3.4 correspond to paths
of the quasar through the quasar plane; we simulate microlensing light curves by evaluating
the magnification along linear tracks across the magnification patterns [92, 190] with a physical
length L, equal to the length the quasar traverses in the 865 day time span of the observed differ-
ence light curve shown in the bottom panels of Fig. 3.3. The light curves that result from the cuts
through the magnification patterns in Fig. 3.4 are shown in the three panels on the right. It can be
seen that the magnitude changes are strongest when the quasar comes close to or crosses caustic
lines. In order to mind the gaps between the difference light curve data points, we mimic the
observations more closely by only using points on the tracks across the magnification patterns
that correspond to days where we have points in our difference light curve (Fig. 3.3).

For the length L of the cuts we need an estimate for the effective transverse velocity v, of
the source across the magnification pattern. The effective transverse velocity v; is the sum of the
projected motions of the source v, the lensing galaxy v4 and the observer v, according to the
formula [92]

1 1 D, 1 Dy

Vs — — — 0
1—|—ZSS 1+ZdDdd+1—|—ZdDd obs

Vy =

= 041 Vg — 1.03 Uq + 0.62 Vobs (311)

where in the last line the values for Q0957+561 in the standard 2 = 1, A = 0 cosmological
model we use throughout this thesis (Sect. 2.3) were inserted. Following Witt & Mao [207], who
did this calculation for the quadruple quasar Q2237+0305, we can estimate v,,s and v4 (without
taking the transverse component) from local observations, but v will remain an unknown. For
the sun’s motion relative to the cosmic microwave background radiation they used the result
by Kogut et al. [98], who obtained 369.5 + 3.0 kms~! in the direction defined by the Galactic
coordinates [ = 264°4+0°3, b = 482440°5. The angle between the sun’s motion and Q0957+561
is 64.6°, so that we get ~ 330 kms™? for the transverse component of the sun’s motion relative to
the microwave background. The peculiar velocity of the lensing galaxy is much more uncertain,
typical values range from 100-400 kms ! (Witt & Mao quote Mould et al. [118], Tormen et
al. [181] and references therein). From these values, we obtain transverse velocities up to v; =
600 kms~1,

By assuming this projected quasar velocity relative to the magnification pattern the length L
that is traversed by the quasar in 865 days is given by

L =600kms™" x 865 days = 4.5 x 10'° cm. (3.12)

We have neglected any motion of the MACHOSs relative to each other. Since velocities of
stars in galaxies are in general smaller than galaxy velocities, this effect cannot dominate the
bulk velocities. It merely slightly increases the value of the effective transverse velocity of the
quasar [104, 192].

3.5.3 MACHO mass and quasar size

We analyzed magnification patterns for both quasar images. We considered three cases: all the
surface mass density is contained in MACHOSs, 50% is contained in MACHOs, or 25% is con-
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tained in MACHOs. For each of these mass fractions, magnification patterns of varying physical

side lengths of 16, 160 and 1600 Einstein radii were considered. In addition, we used three dif-

ferent realizations of the magnification patterns for each set of parameters in order to estimate

the statistics. In total, 54 different magnification patterns were produced for these calculations.
From eq. (2.25), the Einstein radius in the case of Q0957+561 is

M o, [M
rp = 4.8 x 1016,/M—® hee!? cm = 1.5 x 10 2,/M—® he!? pe (3.13)

From this expression, one can see that a single magnification pattern can be used to simulate
light curves for various MACHO masses because the physical length scales with the square
root of the mass of the MACHOs?®; the fixed length the quasar traverses in the source plane
translates into different numbers of pixels for different MACHO masses and pattern sizes. The
only limitation we have for the investigation of various microlensing masses is the dynamic range
of the magnification pattern, which in our case is an array of 2048 by 2048 pixels. To simulate
the duration of all three observing epochs, we used four different track lengths of 16, 50, 159
and 502 pixels, corresponding to the track length (3.12) for different MACHO masses, which
were then evaluated at the points corresponding to the data points in the difference light curve.
With these light curves, we were able to simulate three orders of magnitude of MACHO masses
with one pattern. With the three different side lengths, however, it was possible to investigate the
effects of MACHO masses M ranging from 10-7 M, up to 1M, (in steps of factor 10). Due to
the “overlap” we were able to check some masses on magnification patterns with different side
lengths and hence cross-check the results.

It follows from these considerations that the quasar traverses more (fewer) characteristic
lengths of the magnification pattern for smaller (larger) MACHO masses in each of the three
observations epochs we have data for. This implies that the light curve is more (less) variable
for smaller (larger) MACHO masses, so that one can derive limits on the MACHO masses from
the microlensing variability. This is illustrated for three different mass scales in Fig. 3.4; the
variability of the microlensing light curves increases strongly with decreasing MACHO mass.
Qualitatively one can take from the magnification patterns in Fig. 3.4 that the probability of
observing no microlensing variation during the 1995 epoch is practically zero for 10~7 M, MA-
CHOs (bottom panel) whereas for the 10~3 M, MACHOs (top panel) this is not unlikely. These
qualitative statements will be quantified in the next section.

The size of the optical continuum region of the quasar, which will be called “quasar size”
in the following, has an impact on the shape of a light curve. For extended objects the total
magnification can be calculated as a weighted mean of the magnifications at many points in
the source plane. In practice, the effect of the source size can be accounted for by convolving
the two-dimensional magnification pattern with an appropriate source profile. Sharp features

SAn easy way to understand this “scaling argument” without invoking the concept of an “Einstein radius” is
as follows: Consider a certain region in the source plane. Suppose that we know the surface mass density of the
MACHO:s in the lens plane. Let us raise the mass of all MACHOs by a factor ¢. If the surface mass density is
kept constant in the lens plane, this corresponds to blowing up the length scale of the distribution of MACHOs by
a factor /g. Since the deflection angle is proportional to the mass and inversely proportional to the distance to the
lens, the magnification pattern in the source plane is thus also blown up by the same factor of /3.
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in the magnification pattern — especially the line-like caustics — are thus smoothed out by the
brightness profile of the quasar. The magnitude changes during caustic crossings can be very
abrupt for small sources (< 0.01 Einstein radii), but become smooth for larger sources. The
amplitude (smaller for large sources) and the duration (longer for large sources) of variations in
a microlensing light curve hence depends on the source size [193]).

We adopted a circular Gaussian profile for the surface brightness profile i(6) of the quasar,
where the source size is defined by the Gaussian width oq:

92

i0) ~ e *a. (3.14)
Each of the 54 magnification patterns was convolved with this surface brightness profile with
source sizes ranging from o = 10 hgy/? cm up to o = 3 x 10° hgy/* cm (in steps of 1/10).
These quasar sizes are smaller than or of the order of one light day, which is the upper limit on the
quasar size that was obtained from the analysis of the microlensing variations of Q2237+0305 for
lens masses around a few tenths of a solar mass [194, 198, 207] (Sect. 3.3.1). The case for even
larger quasar sizes and smaller MACHO masses was examined by Refsdal & Stabell [147, 148]
and Haugan [67].

From eq. (3.13) it can also be taken that all our results for MACHO masses may be scaled
quadratically with vgey = v;/600 kms—! for various values v; of the transverse source velocity
because the scale of the magnification pattern is proportional to the square root of the MACHO
masses. Similarly, the source sizes scale linearly with vgg,.

3.5.4 Light curve logistics

For each set of the two parameters MACHO mass m and quasar size oq, and for each of the
two quasar images A and B, we analyzed 100000 randomly chosen linear tracks across the
magnification patterns at the points that correspond to the dates in the difference light curve in
Fig. 3.3 where we have observations. The same tracks were used for different source sizes.

We combine the tracks from both quasar images under the assumption that there is no corre-
lation between the variations in the images: for each quasar image and light curve we determined
the difference between the highest and the lowest point of the light curve Am . — Ampy, that
would have been observed given the sampling of the observations. We call this quantity the total
magnitude variation of the light curve. We then combine the probability distributions of the total
magnitude variations in each image statistically to yield a joint probability distribution of the
total magnitude variations in the observed difference light curve of Q0957+561.

For the simulated light curves, we can calculate for each observing epoch the probability p~.4
of observing a total variation greater than or equal to some value d for each analyzed parameter
pair of MACHO mass and quasar size. As an example, in Fig. 3.5 the integrated probability
distributions p- 4 for the 1995 epoch are shown for MACHOSs of mass 10! M, and 10~5M,. In
these plots, it is assumed that the quasar has a size of 2 x 104 hgol/Qcm and that the halo mass is
completely made up of MACHOSs. Three lines are shown per plot; the distributions for images A
and B alone, as well as the joint probability distribution

P>daB =1 — (1 = psaa)(l — psaB) (3.15)
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where at least one quasar image has a total variation greater than d. One can see that much
stronger microlensing variations are expected for small MACHO masses than for large masses
on these short time scales.

We approximate the probability to observe a total variation greater than d + Ad mag from the
average p-q Of the three probabilities p~4 A4, P>q, aNd psqinq. We write for three probabilities

D

I _ 1 _
DP>a = 3 szw Apsq = J 2 Z (Pz‘ - p>d)2' (3.16)
i=1 i=1
We obtain such a probability for each set of three epochs. Since we also have three different
realizations of each magnification pattern, we combine the three p. ,, to determine the statistical
uncertainties involved in the choice of the magnification pattern:

.1 & 1 &
b> = g Z D> m, Aps = g (Ap>,m)2- (3-17)
m=1 m=1

Finally, we find for the joint probability p,p that at least one quasar image has a total variation
greater than the d; in at least one epoch 4

Psap=1—(1—=psa) (1 —D>38), (3.18)

with an uncertainty

Apsan? = [Aps s (1 = psa)]” + [Apsa (1 —psn)]- (3.19)

In the following, p~. will simply refer only to the joint probability calculated in eq. (3.18). If
we apply the limit on the total magnitude variation d of the three observing epochs from Fig. 3.3
in Sect.3.5.1, p~. can be viewed as the confidence level at which we can exclude a particular
parameter pair as not consistent with the observations.

3.6 Results

The values for the exclusion probability p~. for various parameter pairs of MACHO mass m and
quasar size oq are given in Tables 3.1 (for an assumed halo fraction of the MACHOs of 100%),
3.2 (for a halo fraction of 50%), and 3.3 (for a halo fraction of 25%). The table entries for
parameter pairs that are ruled out at a confidence level of 99% and above are highlighted in grey.
The parts without entries are regions in the parameter space which we were not able to access
because they were beyond the dynamical range of our simulations.

The results from Table 3.1 are illustrated in Fig. 3.6. In this Figure the confidence levels
are represented by the height and the colour of the plotted bars. The numbers from this plot
and Tables 3.1, 3.2 and 3.3 show that MACHO masses in the region from 103 M., down to
10~° Mg, can be ruled out to make up a sizeable fraction of the halo mass in the lensing galaxy
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Table 3.1: Probabilities p-. (in percent) for measuring a total microlensing variation greater than
observed in the Apache Point Observatory difference light curve of Q0957+561 (Fig. 3.3). In
this table, it is assumed that MACHOs constitute 100% of the halo mass. The probabilities were
calculated using magnification patterns with three different side lengths (the three main columns
on the right) for several combinations of MACHO mass and quasar size (indicated in the two
columns on the left). No values are given where the parameters were beyond the dynamical
range of the simulations. The statistical uncertainties are given in brackets (0.0 is given where
the uncertainty was below the rounding precision). Probabilities above 99% are highlighted in
grey — the respective parameter pairs are ruled out by the observations at the 99% level. The
table is continued on page 37.

Macho  Quasar pattern side length
mass size (Einstein radii)
(M) (cm) 16 160 1600
1 104

3x 10 53.0(2.1)
10 57.6(2.1)
3 x 10  45.5(4.6)

10-1 10 85.2(2.4)
3x 10" 86.5(2.1)

1015 87.2(2.3)

3 x 10 72.5(5.9)

1072 104 99.9(0.1)
3x 10"  99.9(0.0)  99.9(0.1)
105 99.9(0.1)  99.8(0.1)
3x 10 817(6.1)  79.0(7.0)

103 10  100.0(0.0) 100.0(0.0)
3x 10" 100.0(0.0)  100.0(0.0)
10 100.0(0.0)  100.0(0.0)

3 x 105 55.9(10.6)
1074 104 100.0(0.0)
3 x 10 100.0(0.0)  100.0(0.0)
10 99.9(0.1)  99.9(0.0)

3 x 10% 0.5(0.5) 0.8(0.9)
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Figure 3.5: The probability p- 4 of observing a microlensing variation greater than d in the quasar
Q0957+561 in the epoch 1995 either in image A (dotted line), image B (dashed line) or in at least
one of the two images (solid line). In the panel on the left the MACHO mass is 0.1M, whereas
in the panel on the right it is 10~°M,,. In both panels the quasar size is 2 x 10'*cm and it is
assumed that the halo is completely made up of MACHOs.

Table 3.1: (continued from page 36)

Macho  Quasar pattern side length
mass size (Einstein radii)
(M) (cm) 16 160 1600
1075 101 100.0(0.0)  100.0(0.0)
3 x 10 100.0(0.0)  100.0(0.0)
10%° 71.2(9.4) 69.0(9.8)
3 x 10%° 0.0(0.0)
10-6 10 100.0(0.0)
3 x 10 100.0(0.0)
10%° 2.1(2.0)
3 x 10%° 0.0(0.0)
1077 10t 100.0(0.0)
3 x 10 71.9(11.8)
10%° 0.0(0.0)
3 x 10 0.6(0.7)
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Table 3.2: Same as Table 3.1 for the case where 50% of the halo mass is contained in MACHOs.

Macho  Quasar pattern side length
mass size (Einstein radii)
(M) (cm) 16 160 1600
1 104
3 x 10  36.3(3.1)
10%° 37.6(2.5)
3 x 10¥ 34.5(3.5)
10! 10" 76.7(4.4)
3 x 10" 74.9(3.7)
101° 75.6(3.7)
3 x 10*  65.2(6.3)
102 10 99.4(0.2)
3 x 10 99.5(0.2) 99.2(0.3)
101° 99.5(0.2) 99.3(0.3)
3 x 10 80.3(6.2) 77.6(7.1)
1073 101 100.0(0.0)  100.0(0.0)
3 x 10* 100.0(0.0) 100.0(0.0)
10%° 100.0(0.0)  99.9(0.0)
3 x 10 35.7(11.1)
1074 10 100.0(0.0)
3 x 10 100.0(0.0)  100.0(0.0)
10%° 99.5(0.3) 99.7(0.2)
3 x 101 0.0(0.0) 0.1(0.1)
10°° 10 100.0(0.0)  100.0(0.0)
3 x 10™ 100.0(0.0)  100.0(0.0)
10'° 37.2(11.3) 38.0(11.8)
3 x 10%° 0.0(0.0)
1076 10t 100.0(0.0)
3 x 10 99.5(0.4)
10%° 0.1(0.2)
3 x 10 0.0(0.0)
1077 104 100.0(0.0)
3 x 10 31.4(12.7)
10%° 0.0(0.0)
3 x 10%° 0.0(0.0)
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Table 3.3: Same as Table 3.1 for the case where 25% of the halo mass is contained in MACHOs.

Macho  Quasar pattern side length
mass size (Einstein radii)
(M) (cm) 16 160 1600
1 104
3 x 10 18.8(1.9)
10%° 19.8(1.9)
3 x 10 19.7(2.2)
10! 10" 52.8(5.1)
3 x 10"  52.9(5.0)
101° 54.1(4.9)
3 x 10*  49.0(6.3)
102 10 96.3(1.3)
3 x 10  96.5(1.2) 96.0(1.2)
101° 96.7(1.1) 96.3(1.1)
3 x 10*  70.0(7.7) 65.4(9.0)
1073 101 100.0(0.0)  100.0(0.0)
3 x 10* 100.0(0.0) 100.0(0.0)
10%° 99.9(0.1) 99.7(0.2)
3 x 10 16.0(7.8)
1074 10 100.0(0.0)
3 x 10 100.0(0.0)  100.0(0.0)
10'° 97.1(1.6)  98.1(1.1)
3 x 101 0.0(0.0) 0.0(0.0)
10°° 10 100.0(0.0)  100.0(0.0)
3 x 10™ 100.0(0.0)  100.0(0.0)
10° 14.5(6.2)  11.8(7.1)
3 x 10%° 0.0(0.0)
1076 10t 100.0(0.0)
3 x 10™ 94.0(3.9)
101° 0.0(0.0)
3 x 10%° 0.0(0.0)
1077 10t 100.0(0.0)
3 x 10 6.2(4.7)
10%° 0.0(0.0)
3 x 10 0.0(0.0)
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Figure 3.6: “Exclusion” probability (in percent) for certain MACHO masses. Three-dimensional
visualization of the probabilities p-. (in percent) measuring a total microlensing variation greater
than observed in the 1995-97 Apache Point Observatory difference light curve of Q0957+561
(Fig. 3.3) for a particular parameter pair of MACHO mass and quasar size. The probabilities are
indicated by the grey-shade of the bars (see the key), the relative scale is visualized by the bar
height. The parameters of the blank field were beyond the dynamical range of our simulations.
These probabilities are those from Table 3.1 for the largest available magnification pattern for
each parameter pair. It is assumed that MACHOs make up 100% of the halo mass.
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of Q0957+561 for quasar sizes smaller than 3.2 x 104 hg01/2 cm. For quasar sizes smaller than
101 hgg/* cm, we can even exclude MACHO masses down to 10~7 My, .

When looking at the uncertainties of the given probabilities in Tables 3.1, 3.2 and 3.3 we find
relatively good agreement between the results from the three independent realizations. Note that
the error bars are usually not smaller for the larger magnification patterns. This indicates that the
error bars are dominated by the uncertainty of 0.01 mag of the total magnitude variation, rather
than by the field to field variations.

3.7 Discussion and conclusion

In four years of observational data on the gravitationally lensed double quasar Q0957+561 by
Colley et al. [34] no microlensing variation of the quasar larger than 0.05 magnitudes was ob-
served. From microlensing simulations we find that this rules out a dominant population of
compact objects in the halo of the lensing galaxy from 10=2 M, down to 10~° M, for quasar
sizes below 3.2 x 10 hgol/Q cm. These limits hold for fractions of the halo mass contained in
compact objects down to 50%.

These results are consistent with the 5 year results from the MACHO microlensing search
towards the Magellanic clouds (Alcock et al. [5]). Probable masses of MACHOs in the Milky
Way that emerge from their study lie around a few tenths of a solar mass, which is consistent
with our results. In fact, such large masses are not yet probed by the observational data set we
used [34] because microlensing effects by objects with masses of a few tenths of a solar mass
are only becoming observable on time-scales of several years. In the 17 year Q0957+561 data
set used by Pelt et al. [135], a dip with an amplitude of about 0.3 mag was seen in the difference
light curve ma — mg, with a minimum at the end of 1982. It is very plausible that this dip
corresponds to a several year long microlensing event in image B [149]. Such events, however,
warrant a more detailed analysis than the total magnitude variation technique discussed in this
chapter. Possible avenues for such analyses will be discussed in the next chapter.

The limits on compact objects in the halo of the lensing galaxy of Q0957+561 improve with
time since the monitoring of Q0957+561 at the Apache Point Observatory (and also at other
observatories) is an ongoing project. The limits derived in this chapter, for example, became
more stringent by an order of magnitude when we used three epochs instead of only one epoch
because the Einstein radius scales with the square root of the MACHO masses.

In quasar microlensing, not only the mass of MACHOs, but also the size of the quasar enters
the calculations. With the current data, however, we cannot constrain the quasar size very much.
To do this, one would need to find characteristic events in the difference light curve of the two
quasar images. If the marginal variations detected in Fig. 3.3, the “trends” in the difference light
curve, or the reported “peak” in the difference light curve [105, 164] in Fig. 3.3 around day 750
were real, they could be valuable constraints for both the masses of MACHOs and the quasar
size. Low-magnitude variations with sudden changes of about 0.05mag in less than 10 days
would indicate small masses of the MACHOs of much less than a solar mass. Precise values,
however, depend on the assumptions about the halo fraction of these objects and the quasar size.



Chapter 4

| ndependent evidence for Microlensing in
Q2237+0305

4.1 Microlensing in Q2237+0305

It was shown in the last chapter that one needs long light curves of multiply imaged quasars in
order to get reliable results and good limits from the microlensing effect. In this chapter, we
present the reduction of a set of data that was obtained at the Apache Point Observatory between
June 1995 and January 1998, the same period during which the Q0957+561 data we discussed
in the last chapter were obtained.

The quadruple quasar Q2237+0305 was discovered during the Center for Astrophysics (CfA)
redshift survey, which was announced by Huchra et al. [78] in 1985. In high-resolution images
of the system, four quasar images are seen in a cruciform geometry around the core of a spiral
galaxy. Due to its geometry this system is known as the Einstein cross. In Fig. 2.3, an Hubble
Space Telescope (HST) V-band image of the lensing galaxy and the quasar is shown. In Fig. 4.1
a close-up of the central region with the 4 quasar images, denoted A, B, C and D, is shown.
The central brightness peak is the galaxy core. All quasar images have a separation of about
0.9 arcsec from the galaxy centre. The spiral galaxy has a redshift z = 0.0394. The quadruple
nature of the lens was actually recognized a bit later by Schneider et al. [169] and Yee [220]; at
first only one source [78], and later 3 images were known [182].

Very quickly after its discovery, it was realised that this system is an ideal case for microlens-
ing studies (for example Kayser & Refsdal [93]). And indeed, in 1989 the discovery of mi-
crolensing in this system was announced by Irwin et al. [81]. There are several reasons why this
galaxies is extremely well suited to microlensing studies: the surface mass density is high, so
that microlensing is to be expected, and the spiral galaxy is a factor of ten closer than the quasar,
which lets us probe the mass distribution at about half a kpc from the galaxy centre.

Moreover, microlensing variations should be happening more frequently since the projected
transverse velocity of the galaxy in the source plane should be large (> 1000 kms~! [207])
because the proximity of the galaxy implies a large leverage. As noted by Wes Colley (1999,
priv. comm.), one should notice, however, that this would not be true for a fixed scale in the

42
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Figure 4.1. The gravitational lens system Q2237+0305 observed with the Hubble Space Tele-
scope in the V-band. The separation of the quasar images from the galaxy centre is about 0.9
arcsec. This image is a close-up of the galaxy centre of Fig. 2.3 that was rotated.

galaxy Al since both the galaxy velocity and the scale Al are projected into the source plane
with the same factor. The microlensing variations will nevertheless be more frequent because,
due to the relative distances involved, the physical length of an Einstein radius

[4GM Dg.Dq w6 (M _ip
Ty = 02 Ds = 18 X 10 M—® hﬁo CIn, (41)

(with the definitions from eq. (2.25)) in the lens plane of Q2237+0305 is only about half as large
as in the case of Q0957+561 (rg = 3.4 x 10'6,/M /M, hgol/z cm), for example. The quasar
moves more rapidly through magnification patterns with a fixed side length in Einstein radii
in the case of Q2237+0305 than for lens galaxies at higher redshifts (with the same transverse
velocity).

The challenge with Q2237+0305 is to measure the brightness of the four images individually
with high accuracy. In observations with seeing above an arcsecond, it is very difficult to dis-
entangle the four quasar images, the galaxy core, and other features of the galaxy (such as the
bar-like structure that is situated across the galaxy centre [220, 167]). With the announcement of
the first microlensing event in 1989 by Irwin et al. [81], the record of semi-regular observations
of Q2237+0305 began. Corrigan et al. [39] published the “initial light curve”, that was later
augmented by other individual and systematical observations [136, 76]. Wambsganss [195] em-
phasized that without regular sampling, it would be difficult to extract useful information from
the microlensing observations. Moreover, the sample of early observations with good seeing is
rather heterogeneous regarding the filters chosen, so that the interpretation is made more difficult
since the filter differences have to be calibrated out.
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In 1996, @stensen et al. [125] presented five years of observations of the system from the
Nordic Optical Telescope (NOT). In all four images, variations had then been detected. Of the
particularly interesting “events” until 1997 we should mention the Irwin et al. peak in 1989 of
= 0.2 mag amplitude and less than 100 days duration, which according to Racine [141] may
be the first half of a double peak of which only the following slope down, but not the second
peak, was observed. Rather striking was the drop of about a magnitude in 1992 (with a large
uncertainty) within ~ 20 days found by Pen et al. [136] on the basis of observations made at
the Apache Point Observatory. Although it is not an “event”, we should also mention here that
Lewis et al. [109] found spectroscopic evidence for microlensing of the broad line region of the
quasar.

Recently, the OGLE team has presented a light curve [209] covering about 600 days in
1997 and 1998. The most recent light curve contains data from 1999 and can be looked at at
www.astro.princeton.edu/~ogle/ogle2/huchra.html. The OGLE light curve
is very well sampled and shows amazing brightness variations in all four quasar images with
high amplitudes of the order of a magnitude. Especially, image C showed a dramatic brightness
peak of about 1.2 magnitudes in 1999 that was resolved by the OGLE data in beautiful detail.
The interpretation of these data, however, is still in the beginning. The Melbourne/Princeton
group around Stuart Wyithe, Rachel Webster and Ed Turner, has recently started to analyze the
available 15 year brightness record of the Einstein cross from various points of view in a series of
papers [211, 212, 213, 214, 215, 216, 217, 218, 219]. Using a new microlensing code that gener-
alizes methods by Witt [206] and Lewis et al. [108] to large sources, they compared the observed
distribution of light curve derivatives with theoretical predictions and constrained the most likely
projected transverse velocity of the lensing galaxy to be less than 500 kms~!. This is a relatively
small value for this system, well below the lower estimate of 1000 kms=! by Witt & Mao [207]
quoted above. In the following papers, Wyithe et al. proceeded to analyze the observed light
curve record with special emphasis on the likely source size of the quasar, finding evidence for
a small size of the continuum emitting region of less than two percent of the Einstein radius of
the microlenses. For 0.3 M, stars, this corresponds to 1.1 x 10'° cm, which is about the same
limit that was obtained earlier by Wambsganss et al. [194] and Webster et al. [198] on the basis
of the Irwin et al. peak (Sect. 3.3.1). The most recent papers [218, 219] study the actual shape
of the OGLE light curves in comparison with microlensing models and actually predict a future
microlensing peak in image C. They also discuss a method to identify brightness variations in
observed light curves that promise to become high-magnification microlensing events.

4.2 Pushing the limits: Q2237+0305 at Apache Point Obser-
vatory

We describe here the analysis of data that were taken with the 3.5 m telescope at Apache Point
Observatory (APQO) from June 1995 to January 1998 as part of the Princeton-APO lens monitor-
ing program. We restrict ourselves to the r-band data. The corresponding CCD has a pixel size
of 0.6”, whereas the pixel size in the g-band is only 1”. In Table 4.1, the observation log is given.
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Figure 4.2: Image of the central 18.6 x 18.6 arcsec of the lensing galaxy 2237+0305 in the r-
band. The image was taken at APO on 20 November 1996 under 1.2” seeing. This figure is a
closeup of Fig. 4.3.

The images were taken under variable, often poor seeing conditions between 1.2 and several
arcseconds. We have neglected frames with seeing worse than 2.4" (4 pixels).! The distance
between two quasar images is only three pixels. In these frames, the four quasar images, the
galaxy core, and the remaining light from the galaxy are contained within only a dozen or so
pixels, which is fairly coarse compared to the number of sources in this area. In Fig 4.2, a plot is
shown of the centre of a frame obtained on 20 November 1996 under 1.2"” seeing. At face value,
nothing of the detailed quasar image and galaxy structure of Fig. 4.1 can be seen except for a
generic central light concentration.

Fortunately, we know the exact quasar image positions relative to the galaxy centre from HST
observation in the UV [22] with an accuracy of a few milli-arcseconds. Moreover, a detailed
model of the galaxy light distribution is available [166] that was obtained from the analysis of
HST images as well. With the help of these strong constraints, we are able to do photometry for
the two brighter quasar images A and B. First, we describe our reduction technique and fitting
procedure in Sect. 4.3. Then we present the light curve we obtain for images A and B in Sect. 4.4.

1The seeing values in Table 4.1 were determined with a different routine than the ones with which we rejected
the frames, so that in a couple of cases larger seeing values can occur. This was necessary because we needed
different software to detect the reference star pattern than to do the photometry. Also, the seeing values in this table
were determined from stacked frames. Small stacking errors can increase the seeing values slightly.
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Table 4.1: Observation log of the r-band observations of Q2237+0305 at Apache Point Ob-
servatory from 1995 to 1998. The table contains the date in yymmdd format, the Julian date
(-2449000), the total exposure time of all exposures in a given night, the seeing as determined
from reference star 3 in the stacked images of Scheme A, and the magnitude estimates for two
reduction schemes A and B (see Sect. 4.3) with 1o errors in brackets (first two digits after the
decimal point). The magnitudes are given with respect to the measured magnitude for image A
on 20 November 1996.

Scheme A Scheme B
total exposure

date Julian time per night seeing image A image B image A image B

date (seconds) (pixel) (mag) (mag) (mag) (mag)
950602 871 45 3.4 0.57(0.15) 0.66 (0.17) 0.34(-) 0.62(07)
950604 873 840 3.1 0.23(-) 0.48(04)
950606 875 300 3.6 0.42 (0.20) 0.80 (0.13)
950616 885 225 2.8 0.30 (0.10) 0.50 (0.10)
950620 889 195 35 0.37(0.12) 0.29(0.11) 0.25(06) 0.54 (08)
950622 891 310 3.3 0.32 (04) 0.63 (06)
950624 893 300 2.8 0.20 (0.14) 0.31(0.13) 0.19(05) 0.58 (04)
950625 894 150 3.2 0.33(0.16) 0.52(0.14)
950628 897 150 2.3 0.32 (0.13) 0.37(0.10)
950702 901 195 3.3 0.29 (0.15) 0.47(0.14) 0.20(09) 0.61 (13)
950704 903 420 2.9 0.32(0.10) 0.74(0.12) 0.08 (06) 0.93(13)
950710 909 390 2.8 0.19(0.13) 0.53(0.14)
950712 911 175 3.0 -0.08(0.12) 0.62(0.16)
950722 921 525 2.6 0.25(0.12) 0.68 (0.13)
950724 923 150 3.0 0.32 (07) 0.61(09)
950805 935 390 4.0 0.30(0.21) 0.72(0.17)
950819 949 60 3.3 0.28 (0.17) 0.45(0.14)
950821 951 255 3.5 0.19(0.17) 0.51(0.16)
950823 953 180 3.6 0.24 (0.15) 0.75(0.12)
950825 955 330 3.6 0.36 (0.16) 0.55(0.15) 0.18 (06) 0.77 (09)
950827 957 375 3.7 0.34 (0.19) 0.44 (0.16)
950911 972 270 2.6 0.24 (0.12) 0.54(0.13) 0.24(07) 0.63(09)
950923 984 270 3.2 0.07(0.12) 0.73(0.16) 0.03 (06) 0.89 (13)
950925 986 150 3.0 0.02 (0.10) 0.77 (0.16)
950929 990 510 3.0 0.16 (0.12) 0.53(0.14)
951001 992 570 2.9 0.25(0.13) 0.71(0.14) 0.27(07) 0.79 (10)
951003 994 540 3.2 0.17(0.12) 0.51(0.13) 0.18(05) 0.63(08)
951007 998 200 3.6 0.49 (12) 0.53(24)
951015 1006 300 2.9 0.08 (0.10) 0.67 (0.13)
951017 1008 120 2.6 0.13 (0.09) 0.88(0.14)
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Table 4.1: (continued from page 46)
Scheme A Scheme B
total exposure

date Julian time per night seeing image A image B image A image B

date (seconds) (pixel) (mag) (mag) (mag) (mag)
960717 1282 180 2.4 0.19 (0.10) 0.94 (0.12)
960719 1284 210 2.3 0.19(0.12) 0.66 (0.12)
960721 1286 270 2.2 0.23(0.08) 0.93(0.11)
960723 1288 210 2.3 0.00 (0.10) 0.79(0.12)
960728 1293 150 2.1 0.08 (0.10) 0.76 (0.10)
960804 1300 240 2.6 0.33(0.10) 0.71(0.12) 0.20(09) 0.82(14)
960806 1302 330 2.7  -0.03(0.09) 0.71(0.13)
960810 1306 270 2.3 0.19 (0.09) 0.80(0.11)
960812 1308 270 2.3 -0.01(0.09) 0.86(0.13)
960814 1310 360 3.0 -0.21(0.13) 0.64(0.16) -0.17 (05) 0.80(12)
960818 1314 270 23 -0.01(0.11) 0.72(0.13)
960903 1330 180 2.3 0.13(0.09) 0.66 (0.10)
960907 1334 90 25 -0.04(0.09) 0.75(0.13) -0.03(07) 0.96 (15)
960909 1336 90 3.0 -0.45(0.11) 1.04(0.20)
960915 1342 180 41 -0.23(0.19) 0.94(0.22) -0.32(08) 1.25(19)
960917 1344 180 3.1 -0.30(0.14) 0.72(0.18) -0.22(06) 0.92(14)
960921 1348 90 24  -0.14(0.10) 0.63(0.13)
960927 1354 270 3.1 -0.22(0.12) 0.82(0.16) -0.21(06) 0.98 (16)
960929 1356 120 3.3 -0.18(0.15) 0.85(0.20)
961003 1360 90 4.6 -0.20(0.20) 1.12(0.22) -0.33(06) 1.29(25)
961007 1364 180 3.8 -0.24(0.23) 0.89(0.21)
961011 1368 120 22 -0.01(0.09) 0.72(0.12)
961013 1370 285 2.2 0.14 (0.07) 0.84(0.10)
961018 1375 60 3.2 -0.14(0.14) 0.47(0.15)
961024 1381 780 3.1 -0.26 (04) 0.88(11)
961030 1387 120 3.3 -0.33(0.12) 0.81(0.20)
961101 1389 240 25 -0.14(0.08) 0.72(0.14)
961103 1391 120 39 -0.08(0.13) 1.04(0.21)
961107 1395 150 2.1 -0.02(0.07) 0.87(0.11)
961109 1397 90 2.2 0.14 (0.08) 0.97 (0.13)
961111 1399 90 2.2 -0.06 (0.07) 1.02(0.14)
961116 1404 360 2.5 -0.14 (08) 1.01 (18)
961120 1408 510 2.3 0.00 (0.07) 1.03(0.13)  0.00(-) 1.07(10)
961124 1412 210 2.8 0.17(0.10) 0.69(0.10) 0.12(10) 0.75(15)
961126 1414 630 29 -0.07(0.10) 0.93(0.15) 0.03(06) 0.93(11)
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Table 4.1: (continued from page 47)

Scheme A Scheme B
total exposure

date Julian time per night seeing image A image B image A image B

date (seconds) (pixel) (mag) (mag) (mag) (mag)
970715 1645 140 2.3 0.05(0.12) 0.80(0.15)
971003 1725 140 3.0 0.19 (06) 1.09 (14)
971018 1740 180 3.0 0.21(0.14) 0.86(0.16)
971026 1748 390 2.2 0.27(0.06) 1.23(0.10)
971030 1752 240 24  0.34(0.13) 0.74(0.13) 0.27(-) 0.80(08)
971101 1754 210 2.7 0.45(0.14) 0.55(0.12) 0.22(04) 1.00 (06)
971103 1756 270 29 0.24(0.15) 0.85(0.16) 0.27(05) 1.00 (09)
971105 1758 630 3.7 052(0.16) 0.88(0.14) 0.43(03) 0.98(03)
971107 1760 120 15 1.73(0.47) 4.78(1.22)
971121 1774 220 28 0.15(0.11) 0.96(0.16) 0.12(06) 1.12(10)
971125 1778 630 3.1 0.27(0.20) 0.74(0.18) 0.17 (05) 0.74 (04)
971129 1782 450 2.2 0.34(0.09) 0.88(0.12)
980101 1815 30 29 0.21(0.10) 0.85(0.14)
980111 1825 60 3.3 0.04(0.15) 0.64(0.14)

4.3 Data reduction pipeline

A total of 530 frames of Q2237+0305 were obtained at Apache Point Observatory in the r-filter
in 73 nights from 1995 to 1998 (27 in 1995, 33 in 1996, 11 in 1997 and 2 in early 1998). The
frames are processed with the following pipeline. We have pursued two reduction schemes (A
and B), which will be described separately where necessary. The whole reduction is automated
with scripts and can easily be repeated for parameter changes?. The scripts are either written
in awk or contain chains of IRAF 3 commands. The reduction pipeline is controlled by several
layers of scripts that (1) determine which frames are available, (2) feed this information to scripts
that produce reduction scripts, and (3) run IRAF, as well as some self-written procedures to do
the actual image reduction. The five steps of the data reduction pipeline are described in detail
here.

1. Four reference stars in the vicinity of the galaxy were chosen as reference points (see

2The input/output of FITS files and FITS keywords into the analysis program was possible thanks to Rainer
Kohler’s Hellware “f i t si 0” library of C-routines.

SIRAF is the Image Reduction and Analysis Facility, a general purpose software system for the reduction and
analysis of astronomical data. IRAF is written and supported by the IRAF programming group at the National Opti-
cal Astronomy Observatories (NOAQO) in Tucson, Arizona. NOAQ is operated by the Association of Universities for
Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation. Internet:
i raf.noao. edu
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Figure 4.3: Image of the environs of the lensing galaxy 2237+0305 in the r-band. The image
was taken at APO on 20 November 1996 under 1.2"” seeing. The four reference stars are marked
1 to 4. The four quasar images are situated in the core of the galaxy.

Fig. 4.3). Three of these are visible on every frame (stars 1, 3, 4), whereas the fourth (star
2), which is the brightest of the four, is visible on most frames.

Scheme A: The reference stars are automatically registered on each frame using a self-
written C-routine that searches for the exact position pattern of the three (four) stars in
each frame. The routine subtracts a four-star template with a default seeing of 1.8” (3
pixels) from the frames, defines a quality of fit value x? from the difference of the pixel
fluxes i between the template and the observations,

. . 2
X2 — N21_ - Z (ltemplate - lobserved) , (42)

all N 2pixels Lobserved

(assuming Poisson statistics o; ~ /3 for the pixel counts) and searches for the best fitting
solution with a minimum 2 by moving the star pattern through the whole frame.
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Scheme B: All frames were run through the IRAF task “fFindstar”. This routine searches
four statistically significant peaks with user-defined significance above the noise level. For
our purpose it was enough to just use the default settings since frames where the stars are
not clearly detected are also not suitable for quasar photometry. The program generates
a list of a number of such detections. We then wrote another script that calculates the
distances between all Findstar detections and selects our four targets by choosing pairs
that have distances closest to the correct values, which were measured from one frame
before. This procedure sometimes selects the wrong candidates if Findstar does not
detect all reference stars. In scheme B, we neglected frames where not all four stars were
visible or detected.

. Once the four reference stars are localized, the seeing is determined by fitting a circular

Gaussian brightness profile to the brightness profiles of the reference stars with the IRAF
task “Imexamine”. This leads to results that are often different by up to ten percent. We
use the seeing from the two brighter stars: in scheme A we use star 3, in scheme B we
always use star 2. We also measure the distance of stars 2, 3 and 4 from the centre of the
galaxy. These distances will be refined in step 5, but we need an approximate input to start
the quasar and galaxy fitting procedure in step 4.

The reference stars are used to calibrate the frames of different nights relative to each
other. We only selected frames where all four reference stars were observed. In Scheme
A, we used star 3 as a reference star, whereas in Scheme B we used star 2. In Fig. 4.4 the
magnitude difference between these two reference stars is depicted as a function of time.
The differences plotted in this figure scatter around a median difference of 1.63 mag, which
is indicated by the dashed line. The error bars are simply determined by Poisson statistics
from the flux counts. Except for a few notable outliers, the data are consistent with our
assumption that the two stars are not variable. If one or both of the reference stars were
variable, our photometry would still be accurate to less than 0.02 mag in 65% of the cases,
and 0.04 mag in 95% of the cases. The flux calibration relative to these stars is not only
important because of varying transmission and seeing of the atmosphere at Apache Point
Observatory, but also because the reflectivity of the mirror itself has changed substantially
over the two-year time-span (Ed Turner 2000, priv. comm.). In Fig. 4.5, the fluxes of the
two calibration stars are shown. The magnitudes are defined relative to a standard flux of
20000 received counts during 60 seconds exposure time. We will use this relative measure
also for the quasar photometry because we do not have absolute photometry of standard
stars. It can be seen in this figure that especially the realluminization of the mirror at the
end of 1996 (middle panel) has led to a significant increase of the mirror reflectivity in
1997 (right panel).

Scheme A: All frames from one night are coadded into a single image. The offsets between
different frames are calculated from the reference stars. The frames are then aligned using
the IRAF task “imalign”. In this process, all frames are bilinearly interpolated to the
positions of one reference frame.

Scheme B: The rotation of each frame with respect to the orientation of the frames from
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Figure 4.4: Magnitude difference m3 — mo between reference stars 3 and 2 in the 73 combined
frames from Scheme A. The Poisson errors of the star fluxes were added in quadrature. The
median magnitude difference 1.63 mag is shown with a dashed line.

September 23, 1995 is determined. This day was chosen because in the frames obtained on
this day north is almost exactly up (with an accuracy of about 6 arcminutes). The frames
observed on other days are sometimes rotated with respect to this day, probably due to
technical problems with the alignment of the detector at the telescope. Besides a few large
rotation values in about ten frames, we found that the frames have small rotations between
a few tenths of a degree up to three degrees. If not treated properly, this rotation introduces
an uncertainty in the photometry which we want to keep out in this scheme.

In scheme A we do not correct for the field rotations since we would also have to rotate
the frames in addition to the bilinear interpolation 1mal 1gn performs when it shifts the
frames to one reference position. This procedure is very prone to errors because we sample
a highly complicated structure (Fig. 4.1) with a rather coarse pixel sampling (0.6”) and a
seeing that is greater than an arcsec. This means we have to restrict ourselves to the frames
with the small relative field rotations with up to three degrees.

In the current version of scheme B, we also have excluded the frames with large field
rotations. We plan to extend the code so that current (from year 1998 and ongoing) Apache
Point observations can also be analyzed by the program, and we will analyze all rotation
angles then. In scheme B all frames are treated individually, and are not coadded.

3. The galaxy is modelled numerically using a model that was obtained by us [166] from
the analysis of an HST V-band image of the galaxy [200]. The model consists of a De
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Figure 4.5: Transmission at Apache Point Observatory 1995-1997 as determined from the 73
combined frames from Scheme A. The raw apparent brightnesses of reference stars 2 (filled
circles) and 3 (open circles) are depicted in the years 1995 (left panel), 1996 (middle panel), and
1997 (right panel). The fluxes are converted to magnitudes relative to a standard flux of 20 000
received counts during 60 seconds exposure time. It can be seen that at the end of 1996, the
transmission become much better when the mirror was realluminized. The brightness variations
are mostly seen in both stars, the difference is plotted in Fig. 4.4. The error bars are determined
from Poisson statistics and are smaller than the circles, which can be seen in the case of star 3
(open circles) where they are not overplotted by the point filling.
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Vaucouleurs [42] bulge and an exponential disk. The De Vaucouleurs brightness profile
b(r) (in magnitudes per pixel) is given by

1/4
b(r) = 2.5logio — 3.33 [( r ) - 1] , (4.3)

T'bulge

where 4, is the central intensity (in counts per pixel) and 7y = 4.1 £ 0.4 arcsec is the
half-light radius. Since the galaxy is inclined with respect to the line of sight, we use an
elliptical surface brightness distribution for the bulge with a constant axis ratio of 0.69
and a position angle, indicating the galaxy inclination axis, of 77° (measured from north
through east). The exponential disk brightness profile in magnitudes per pixel is given by

r

b(r) = 2.5logig — Aby — (4.4)

Tdisk

with rgiec = 11.3 £ 1.2 arcsec and Aby, = 1.0 £ 0.1 magarcsec=2. Due to the galaxy
inclination, the surface brightness distribution of the disk is seen with an axis ratio of 0.5.
Aby was determined in the HST I-band. Although the Apache Point data were taken in
the r-band, we only left the amplitude b, a free parameter and kept the Aby from the HST
image for simplicity. The decomposition of the galaxy brightness profile into different
components is not unique. It is, for example, also possible to use two exponential profiles,
which could in general even be a more preferable solution [6]. However, any well-fitting
description of the light distribution in the inner 3 arcseconds of the lensing galaxy will be
good enough for us because the differences are washed out by the coarse sampling of the
data, the seeing at Apache Point of more than an arcsecond, and noise.

In Fig.4.6 the central pixels of Fig. 4.2 are shown after the galaxy model has been sub-
tracted. The remaining quasar images A and B (marked in the figure) are seen shining
through the galaxy. Images C and D cannot be detected with any significance. Faintly,
remaining structure is seen around the quasar images that is due to the bar-like spiral arm
structure that extends into the galaxy centre [220, 166, 167] and was not included in the
galaxy surface brightness model.

4. The positions of the four quasar images relative to the galaxy centre are known to an
accuracy of 5mas from HST observations in the UV [22]. Given our seeing, we consider
the HST coordinates as “exact”. In the first fitting run, the galaxy position and amplitude,
as well as the four quasar images are now fitted with the nonlinear minimization routine
AMOEBA [140, page 408]. The quasar images are represented by four circular Gaussian
brightness profiles with a full width at half maximum as determined from the seeing of the
reference stars. The analytical galaxy model is also convolved with this Gaussian seeing
model. AMOEBA evaluates a quality of fit estimator at 8 “corners” in the parameter space
of galaxy position, galaxy amplitude, and quasar fluxes (as determined by the amplitudes
of the Gaussians), at the vertices of an N-simplex. Only the counts 7,,,4e In the central
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Figure 4.6: Image of the central 18.6 x 18.6 arcsec of the lensing galaxy 2237+0305 in the r-
band. The light from the galaxy has been subtracted in the inner square with 16 pixel, or 9.6
arcsec, side length. The image was taken at APO on 20 November 1996 under 1.2” seeing and
was shown unchanged in Fig. 4.2. The two point sources in the middle are the quasar images
A and B (as marked). Images C and D are not detected with any significance because their
amplitudes are not larger than the noise. This frame is rotated with respect to the HST image
shown in Fig. 4.1.
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9 x 9 pixel are then subtracted from the observed pixel counts igpserved, and a x2 value as
in eq. (4.2) is computed at the corners:

_ (imodel - iobserved)Q
== > : (4.5)

9x9inner pixels Lobserved

AMOEBA then continues to compute the x? values at the vertices of the simplex, and
determines from this where to move the simplex through expansion and subsequent con-
traction in the parameter space. This way, the simplex “wobbles” into the dips and valleys
of the x2-surface. AMOEBA also tests the depth of detected valleys and tries to find deeper
ones.

In order to constrain the parameter search to relevant parts of the parameter space, we
introduced additional constraints such that trespassings across certain limit values were
added quadratically to eq. (4.5). Such “parabolic walls” cause AMOEBA to proceed into
a different direction on its parameter space search. This way, we enforced the physical
constraints that all fluxes are positive, and that the fluxes of image C and D are smaller
than the fluxes of A and B. One of these assumptions seems to be wrong in 1998 and 1999
where image C has “overtaken” image B during a brightness peak beautifully resolved by
OGLE. However, our data record stops in 1997, and until then we did not notice even a
significant rise of either image C or D towards the fluxes of A or B. As will be reported
in Sect. 4.4, our flux estimates have also been quantitatively confirmed at a few points by
independent observations.

5. In step 4 we have already produced a light curve with flux estimates for all quasar images.
In this step we use the results determined in step 4 for all 73 nights (scheme A)/192 frames
(scheme B) and determine the median galaxy amplitude and the median distances of the
reference stars 2, 3, and 4 from the centre of the galaxy.

The fitting procedure is then repeated with a fixed value for the galaxy amplitude. The
galaxy position is also fixed by the distances to the three reference stars 2, 3, and 4. Thus,
only the four quasar fluxes are still free parameters. The distances of stars 2, 3, and 4 from
the galaxy centre are

19=95.09+0.19 arcsec,
r3=64.55+0.12 arcsec,
r4=81.59+0.12 arcsec
(1o error bars). The result of this process is a best-fit model with parameters and uncer-

tainties that can be estimated from the depth and steepness of the y2-surface dip [140, page
689].

Scheme A: We estimate additional uncertainties of the fluxes by varying the galaxy position
within the range allowed by the separations of galaxy centre and reference stars. This is
done by using 10 random positions for the galaxy allowed by the 1o-error bars of ry, r3
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and r, and by carrying through the whole analysis procedure. The error bars for Scheme
A given in Table 4.1 and Fig. 4.7 (upper panel) are determined with this method.

Scheme B: The median of all magnitude estimates for each quasar image is taken and used
for the final light curve. The observational error is determined from the sum of the squared
individual errors. In scheme B a number of frames had dropped out of the analysis at
various stages due to large seeing. Frames were also disregarded if the four reference stars
were not all detected at the right places, or if the transmission was too low so that the fitting
procedure for the quasar fluxes did not converge. After all this, a sample of 34 magnitude
estimates remains in Scheme B.

4.4 Results, interpretation and prospects

We obtain light curves for images A and B as shown in Fig. 4.7, and detailed in Table 4.1.
The fluxes of images C and D are not measurable with our data since the images are lost in
the noise. Both reduction schemes A and B yield a similar light curve. In this figure we give
the magnitudes with respect to the magnitude measurement of image A on 20 November 1996
because the absolute photometry between the two schemes is different by about 0.3 magnitudes.
This uncertainty is caused by the insecure contribution of the galaxy flux to the quasar fluxes. It
can be taken from this figure and Table 4.1 that the error bars are probably underestimated by the
x? technique [140, page 689] we employed, which assumed Gaussian statistics for the parameter
measurements.

Despite the large error bars of the order of ~ 0.15 mag for the individual data points in
Fig. 4.7, there is evidence for a significant brightness peak in image A in 1996 with an amplitude
of about 0.4 to 0.5 mag (relative to 1995) in the light curves, seen in both schemes. We already
noted in Sect. 3.3.1 that theoretical models predict time-delays of intrinsic fluctuations of the
quasar between images A and B of a few hours [169]. Since image B does not vary much, or
perhaps shows a slight decrease, the uncorrelated flux variation in image A can be interpreted as
microlensing in the lensing galaxy.

Since we had to carry out an involved data reduction process to do photometry on these data,
it would be good to have independent evidence for the magnitude rise of image A in 1996, and
perhaps some estimate of the brightnesses of the images in 1995 or 1997. Observations by Burud
et al. [24] at the Nordic Optical Telescope (NOT) on La Palma on 10/11 October 1995 (Julian
Date - 2449000 = 1001 / 1002) measured in the R-band a magnitude difference of images A and B
of ~0.19 mag. In 1996, both the NOT (web pages of the Oslo 1998 workshop on gravitational
lensing) and Maidanak Observatory in the Ukraine observed that image A had becomer much
brighter than the other images. At Maidanak Observatory, no quantitative measurement was
made because of technical problems (Shalyapin 1999, priv. comm.). In 1997 on day 1800 (Julian
Date - 2449000), the OGLE group finds m = 17.35 mag and myg = 17.83 mag, which amounts
to a magnitude difference of Am = 0.48 mag (with an error of 0.03 mag). Within the error bars
we thus have quantitative evidence for our measurements in 1995 and 1997. In 1996 we have
qualitative evidence for a brightness rise of image A.
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Figure 4.7: Light curve for images A (filled circles) and B (open circles) of Q2237+0305 from
June 1995 to January 1998 as determined using two different reductions Schemes A (top panel)
and B (bottom panel) that are described in Sect. 4.3. In the text, the epochs are referred to as 1995
(left), 1996 (middle), and 1997 (right). The magnitudes are given with respect to the measured
magnitude of image A on 20 November 1996.
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In agreement with the results from the OGLE group [209] (Sect. 3.3.1), we find that Q2237+
0305 shows large magnitude variations of several tenths of a magnitude on timescales of less
than hundred days. It is becoming evident that the microlensing variations in Q2237+0305 can
happen rather smoothly over time spans of several months to years. The Irwin et al. [81] event or
even Racine’s [141] interpretation of it seem to have been examples of short-duration variations.
The Pen et al. [136] drop perhaps was an example of a high-magnitude short-term process, but
with very low signal-to-noise at that time. All in all, it is fair to say that the observations of
Q2237+0305 have started over the last two years to resolve microlensing variations in great
detail, and they look very much like the variations that were predicted already in early 80s for
the microlensing effect.

It is possible to produce such variations in scenarios as described in the papers by Wambs-
ganss et al. [194], Webster et al. [198] or Witt & Mao [207] with some “normal” stellar popu-
lation (see footnote 4 on page 30) and an optical continuum region of the quasar that is smaller
than about a light day. However, in order to exclude certain regions of the space of possible
masses, one now needs to analyze the exact variation properties. Similar to our study in chap-
ter 3, Wyithe et al. [216] studied the microlensing variations seen in the recent OGLE data [209]
of Q2237+0305 and find that the data only exclude source sizes greater than 0.1 Einstein radii,
which is a factor of 10 less stringent than the light-day limit mentioned above. In order to make
progress, more involved statistical measures can be studied.

The total magnitude variation basically is the zeroth-order correlation function for Q2237+
0305. It is now possible to look at 1-point, 2-point, 3-point, and possible even higher-order
correlation functions of the difference light curves. Moreover, peak-finding algorithms such
as described in Witt & Mao [207] or Wyithe et al. [216] that automatically detect peaks and
quiescence periods in simulated light curves will be helpful to classify the variation properties of
the observed and the simulated microlensing light curves.

The other ingredient that is needed, of course, is the continuous monitoring. The OGLE light
curve started where the data discussed in this chapter stopped and thus shows the continuation
of the light curve. At Apache Point data are also still being taken. Several other observatories
(Maidanak Observatory, NOT) also monitor Q2237+0305.

The four quasar images in Q2237+0305 shine through the centre of a spiral galaxy, within
less than a kpc of the core. In this region it is clear that there are stars close to the light path.
The mass-to-light ratio within the circle of the four quasar images can be determined from mass
models of the system to be M/L; = 4 hgq in the I-band [166], as well as M /Lg = 5.3 hgo and
M/Lp = 7.4 hgy in the R- and B-bands [153]. Such mass-to-light ratios can be explained by
normal stellar populations without any additional dark matter (Simon White 1999, priv. comm.),
but the issue is not entirely solved since it can also be interpreted that the mass-to-light ratios do
still allow for baryonic dark matter in the galaxy centre (Trentham 2000, priv. comm.). Although
in Q0957+561 we did not find any 102 M, MACHOs (for the small quasar sizes) in chapter 3,
in Q2237+0305 they have not been excluded yet.

During a microlensing variation with an amplitude of 0.4 mag, part of the quasar is magnified
by a factor of 1.45. The microlensing effect offers the opportunity not only to learn about the
microlensing masses, but also about the size of the optical continuum emitting region and struc-
ture therein. Lewis et al. [110], for example, could show that a broad emission line of the quasar
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was changed by microlensing. In fact, a number of studies [1, 221, 223, 116] have shown that
microlensing events may be very sensitive to the details of quasar structure. There is a project
underway by Rachel Webster, Ed Turner and collaborators that aims at studying Q2237+0305
during a caustic crossing event in parallel with HST and NASA’s new Chandra X-ray observa-
tory launched last year. By combining ground-based photometry, HST UV or optical spectra and
photometric data, and Chandra X-ray data, it could be possible to limit the quasar structure in
great detail.

The current theory of quasars interprets the source of the quasar radiation as a very hot ac-
cretion disk that consists of matter in rotation around a supermassive black hole of some 108 M,
or more at the centre of a galaxy [145, 21]. X-ray radiation is thought to emerge from a smaller
region in the accretion disk than the optical continuum. The different regions will be magnified
differently, corresponding to their size. The specific microlensing properties of elliptical annular
regions have been studied by Fluke & Webster[53], so that possible microlensing effects from
such regions are already known in detail. We should add here that although Q2237+0305 is very
X-ray weak, Wambsganss et al. [196] detected it at 2.2 x 105 ergs—! in the ROSAT energy band
0.1-2.4 keV. It will thus be possible to study the quasar with Chandra.

Brightness peaks such the 1996 maximum of image A reported in this chapter or the beautiful
peak of image C in 1999 observed by OGLE [209], or perhaps even the Irwin et al. [81] event
or the Pen et al. drop [136], might have been caustic crossing events. For the much smaller X-
ray source, the light curve would have been much more peaked if indeed a caustic crossing was
observed. Photometry and spectroscopy of such events could reveal information about the quasar
itself that is otherwise inaccessible and would put limits on the structures in quasar accretion
disks and their relative sizes. This sounds especially promising in view of the fact that it is
currently not known what a quasar brightness profile really looks like.

Monitoring programs such as conducted by the OGLE group, the Apache Point Observa-
tory and also other observatories (for example, Maidanak, NOT), have to play key roles for
such studies because they will help to decide when the space telescopes should start observing.
The monitoring data have to be reduced “online”, so that developments in the source are rec-
ognized quickly. OGLE is already doing this, and we are about to apply the method described
in this chapter to the more recent and new Apache Point monitoring data as well. Since the
detector at APO has been improved, it should be possible to obtain much more accurate magni-
tude measurements for the quasar images with the newer data (see, for example, the images at
www.astro.princeton.edu/"elt/2237 _html).



Chapter 5

Limitson universal rotation from weak
gravitational lensing

In this chapter, we use a formalism that allows us to calculate the gravitational lensing effect of a
rotating universe on the distortion of faint background galaxies to show that current weak lensing
observations can put limits on a possible cosmic rotation.*

5.1 Birefringence of the polarization of radio sources

In April 1997 a number of papers appeared on the Los Alamos preprint server on the rotation
of the plane of polarization of the light from extragalactic sources in excess of Faraday rotation.
This effect is called “birefringence”. The debate was started up by a paper by Nodland & Ral-
ston [122] who claimed to have detected birefringence in the radiation from radio galaxies at
cosmological distances. In many respects the debate was reminiscent of an earlier debate that
was initiated in 1982 by a paper by Birch [18], so we will start with this paper. Birch claimed to
have detected a proportionality

A ~ cos 0 (5.1)

between the difference A of the major elongation axis and the direction of the average polariza-
tion of a sample of radio sources and the cosine of the angular separation 8 from the position of a
celestial pole that he determined. Similar claims were made by other researchers later, a complete
list is given in [100]. In their 1997 paper, Nodland & Ralston [122] used redshift information on
their sample and found relation of the form

1
A= A" cos , (5.2)

'Due to the mathematics of general relativity, it is necessary in this chapter to use tensors, related index con-
ventions, tensor analysis and parallel transport as described, for example, by Weinberg [199, chapter 4]. For the
full definitions of fundamental tensors of general relativity, such as the metric tensor, the Ricci tensor and the Weyl
tensor, the reader is also referred to this book [199]. For the study of this chapter, however, the line element or the
metric tensor are mainly needed. Other quantities are then explained in the context.
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where r is the comoving distance, and A = 13.2 = 1.0 - is the so-called birefringence scale.
Unfortunately, the poles of these two studies do not agree. In fact, an analysis by Obukhov [123]
finds A = 3.6 £ 1.6 ;- when fitting the relation (5.2) to Birch’s data?. The results by Birch and
by Nodland & Ralston were quickly questioned, however, by other researchers who found them
not to be statistically significant (for example [28], [48],[139]). We do not enter this discussion,
but rather try to tackle this problem with a different method.

While Nodland & Ralston tried to explain their finding with a modification of electrody-
namics, several authors (for example [103], [112], [124]) immediately proposed to explain the
effect with the rotation of the universe. This notion refers to homogeneous, but anisotropic cos-
mologies, where observers at any point see the universe rotating around them. This class of
cosmologies will be discussed in the next section. The earlier results by Birch [18, 19] had also
been interpreted by him as an indication of cosmic rotation, but he favored a scenario where the
whole universe is rotating with a single axis. In this scenario, Birch obtains a limit on the rotation
by considering the angular momentum transfer from the universe to the galaxies.

5.2 Cosmic rotation

In 1946 George Gamov [55] wrote a small note about the possibility of a rotating cosmos. He
wondered why galaxies are rotating and put forward the idea that this could be due to a general
rotation of the whole universe around some centre “located far beyond the reach of our tele-
scopes”. He even proposed to detect this effect by the equivalent of Oort’s effect in the radial
velocities of galaxies. In our galaxy, the Oort effect is used to prove that the sun is rotating around
the galactic centre by exploiting the effects of the differential rotation on the velocity of nearby
stars. Gamov’s idea is similar to a scenario that had been studied by Lanczos in 1924 [107], who
solved Einstein’s field equations for an infinite, rotating dust cylinder.

It seems like a quantum leap from these ideas to the Godel [58] solution from 1949 that rep-
resents a homogeneous, but rotating universe (with a cosmological constant A). In this solution,
matter rotates everywhere with a constant angular velocity relative to an observer in an inertial
system (a very good illustration is given by Hawking & Ellis [69, page 168]). Test particles and
light rays are deflected from a straight path and start to oscillate along rosetta tracks [106].

In Newtonian language, this rotation is described by the rotation matrix of a velocity field
v [101]

Wnr = Ylp,) (5.3)

where the comma denotes partial differentiation with respect to =7, and the brackets indicate that
only the antisymmetric part is used. The non-zero components of this matrix are the components
of the angular velocity

@ = %v X . (5.4)

2Birch did not find any correlation with redshift in his data.
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Each element of this vector appears twice in the rotation matrix, once positive and once negative
(for example [23]). We obtain the magnitude of the angular velocity by computing the expression

1 /1
W=z 2 Yln,r] Vin,r]s (5.5)

2
where the sum convention was employed. The expression (5.3) can be generalized for general
relativity by using the 4-velocity of an observer and covariant derivatives, see Misner et al. [117,
page 566] for a definition. We will only need the magnitude of the rotation here, which is given
by the contraction

/1
W = 5 wuywuu (56)

(1 and v now denote coordinates in space-time). In a homogeneous universe, every observer sees
the universe rotating around him. We will call the observer’s axis of rotation the “cosmic rotation
axis”, although this axis only has a meaning for this particular observer. Compared to eq. (5.5),
we leave out the factor of % since it was left out by the authors of the cosmological models tested
in this chapter. Whenever we talk about the angular velocity, however, this factor needs to be
kept in mind.

5.3 Limits on cosmic rotation

The Godel model was an important step in the study of general relativity because it showed that
homogeneous, rotating cosmologies exist in general relativity3. As a model of the universe, how-
ever, it has its flaws. Godel himself already showed that closed timelike curves exist at a certain
distance from the observer (beyond the light cone), so that the model violates a causal structure
of space-time and could be regarded as unphysical. It should be noted that in a philosophical
paper from 1949, Godel defends his model against the objection of “unphysicality” since al-
though timelike curves exist in the model, it is not possible to use them as time machines ([51,
page 199]). To be conservative, however, we limit our study to rotating cosmologies that have
no closed timelike curves. The Godel model also is a static model in the sense that it does not
contain cosmic expansion. This is a further strong flaw of the Godel model because, as out-
lined in Sect. 1.2, the hot early universe, the microwave background radiation and the cosmic
expansion are such important foundations of modern cosmolgy that they should be part of every
cosmological model.

Nevertheless, theorists took up the task to thoroughly analyze the Godel model (for example
[106]), and to find more general solutions that have no closed timelike curves and cosmic expan-
sion (for example [59], [130]). Starting in the late 60s, a new strong constraint on cosmic rotation
appeared when it was realised that the cosmic microwave background (CMB) radiation showed
only very little anisotropy [11, 35, 68]. If one assumes that the CMB radiation was emitted at the

3The Godel cosmos is a strong example against the belief that Mach’s principle has to result from the theory of
general relativity (for example [70], [130], [134, page 15], [143])
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time of last scattering when the universe became optically thin, these photons arrive at the detec-
tors from a well defined surface around us, so that the photon trajectories should be influenced
by any large scale anisotropy of the universe. The three basic contributions to the anisotropy of
the microwave background radiation were first described in 1969 by Hawking [68]:

(1,2) red- or blueshift of the CMB photons by the velocities of the matter flow at emission
and detection of the CMB photons (these contributions are zero in models with comoving
matter flow)

(3) anisotropic expansion of the universe (which is calculated as an integral over the whole
light path)

In such universes, cosmic rotation introduces velocity structure into a homogeneous surface of
photons coming from a narrow range of redshifts. The patterns range from hot spots over dipole
and spiral patterns to even more complicated structures (plots can be found in [11]).

5.4 Weak lensing and cosmic shear

In 1966, Kristian & Sachs [101] introduced an independent test for the anisotropy of the universe.
They found that in anisotropic models, distant objects appear distorted. They show that circular
objects at an angular diameter distance r are deformed into ellipses with an axis ratio p of major
and minor axis

p=1+Cr>+0(r?) (5.7)

where C is a function of the position on the sky and the Weyl tensor C,g+s.

In the 80s, it was realised that an inhomogeneous matter distribution of the universe would
magnify and distort background objects [197]. The term “weak lensing” was later introduced in
1992 [89] to refer to this distortion of the shapes of distant galaxies by the intervening matter.
The centre of interest at the beginning of the 90s was to use this effect to infer the mass that is
the source of the gravitational potential, especially to detect and map the dark matter distribution
in clusters of galaxies. So-called “weak lensing inversion” of distortion maps can be performed
using the pioneering Kaiser & Squires [90] inversion technique, or one of its many descendants,
that reconstructs the surface mass density from the shear that is measured from the distortion of
background sources.

In order to do this, however, one needs a clean estimate of the distortion of the galaxies.
For the purpose of illustration, consider background galaxies with perfectly elliptical isophotes
with an axis ratio of minor and major axis 0 < ¢ < 1 and a position angle 6 of the major
axis (measured counterclockwise from north, for example). Since there are two of such position
angles, the galaxy shape can be represented by a complex quantity e with [13]

€= 1—¢ e2if. (5.8)
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For a population of such galaxies with identical ¢, but random 6;, where i is the number of a
particular galaxy, the average of all ¢; is zero. Also, if the galaxies have ¢; according to some
distribution function, the average of all ¢; is zero.

The next step is to assume a varying gravitational potential between us and the distant galax-
ies. Due to this potential the galaxy shapes are distorted so that the average of the ¢; is shifted
away from the origin of the complex plane. The magnitude and direction of the shift are a mea-
sure of the cosmic shear. A detailed account on how an e can be defined for real galaxy shapes,
and how the average ¢ can then be turned into into shear measure as defined in eq. (2.22) is
explained in detail in the reviews by Mellier [115] and Bartelmann & Schneider [13].

For our purpose it is important to note that it is possible to obtain an estimate of the cosmic
shear by averaging the “shapes” of several (depending on the accuracy needed, of order thou-
sands) background galaxies in spite of the intrinsic galaxy shapes. We are only concerned with
the shear estimates here because they can be used to place limits on rotating Godel-type cos-
mologies. We thus do not delve any further into the technicalities of obtaining mass maps from
weak lensing inversion.

5.5 Lensing limits on cosmic shear

In the 1966 Kristian & Sachs paper [101], and in two following papers by Kristian in 1967 [102]
and Valdes et al. in 1983 [186], the lack of observed strong deformations of distant galaxies
was used to put limits on the factor C' in eq. (5.7). The latest limit [186] is 0.2 H2/c? = 8 x
10-3h2,Gpc 2, where c is the speed of light and hey = Hy/60 kms~! Mpc—1.% These papers do,
however, not give limits on cosmic vorticity derived from limits on C.

Rather, Valdes et al. show that eq. (5.7) can be motivated by considering the distortion acting
on a light bundle that is deflected by a spherical region of radius b, distance D and overdensity
Ap. At the impact parameter b, the whole bundle is deflected by an angle « = 4G M/bc?. In
addition, the light from a circular background object at the distance » > D will be distorted into
an ellipse. Using the angular separation of the bundle from the overdensity region as seen by the
observer ¢ = b/ D, the axis ratio p of major and minor axis in the weak distortion limit is given

by

_2_1+g_3~1+a_0‘+9—1+16 GApbD/c? (5.9)
PR T T T Ty e ' |

If the object is at the distance » = 2D, this becomes
p=1+Cr? (5.10)

for C = 47 G Aptp/c?. Using this relation and the null-distortion results from the statistical
analysis of the shapes of 44462 galaxies, Valdes et al. obtain limits on mass inhomogeneities
(Ap/p < 0.1 Q) and cosmic microwave background anisotropies (AT /T < 6 x 10~%).

4The Valdes et al. paper appeared shortly after Birch’s [18] Nature article. Although Birch’s article is listed in
the references, there does not seem to be a citation of it in the text.
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A few estimates of the cosmic shear can be found in the literature. Schneider et al. [174]
looked at the fields around four quasars and only in the case of PKS1508-05 detect a cosmic
shear signal of v &~ 0.03 (with an accuracy = 0.1) on a scale of about one arcminute from an
analysis of a 2 x 2 arcsec field around the quasar. Wilson, Kaiser & Luppino have looked at six
29" x 29’ fields as part of the UH8k Weak lensing survey [203, 204] and detect no cosmic shear,
with an upper limit of v < 0.009 in the 7-band and v < 0.017 in the V'-band at three . These
results were presented at the 1999 Boston gravitational lensing meeting, the Wilson et al. [204]
results are not published yet. Wilson [203] noted that in the analysis of her frames ~; is usually
larger than 5, which indicates systematic effects. It is uncertain whether this could change the
results significantly. We currently only have the average values given above at hand since their
final analysis does not seem finished yet.

For the purpose of this chapter, we will use ~;;; = 0.04 as an upper limit on the cosmic
shear. Although for the Schneider et al. [174] data, it is only the ~ 1o upper limit, this is
compatible with the other estimates and also far beyond what is compatible with the Wilson
et al. data. There is one caveat, however. We cannot be sure from these values that they are
representative of the whole sky. Kristian & Sachs [101] noted that the distortion effect depends
on the position on the sky, and we will show in the next sections that this is the case for the models
studied in this chapter as well. Nevertheless, since the cosmic shear was tested independently on
several spots on the sky, northern and southern hemisphere, we will make the assumption here
that there is no cosmic shear seen on the sky with v > 0.04. We keep in mind, however, that the
observations could have missed high-distortion spots.

A further ingredient that is needed is the redshift of the sources from these studies. If the uni-
verse had a uniform space density of galaxies, the number density of galaxies per square degree
would monotonically increase with redshift. However, observations always have a magnitude
limit, corresponding to the faintest sources that can be detected. This introduces a cut-off in the
number of high-redshift galaxies that can be detected so that the observed number density of
galaxies drops towards high redshift again. Observations are also carried out in specific filters,
so that the dominant part of the spectrum of the galaxy can be moved in or out of the used filter
range by the cosmological redshift. This introduces a further variation of the number density
as a function of redshift. Finally, galaxy evolution and the fact that galaxies form at some high
redshift further modify this picture.

The bottom line of this consideration is that background galaxies in observed images have a
number density that peaks at a certain redshift (Mellier [115] shows measured distributions of
background galaxies). Mean values that are often assumed in studies are z = 0.7 or z = 1, but
the values depend on the filter used and the magnitude limit. Results from high-redshift cluster
inversions [33] show that in deep exposures even at a redshift of z = 0.8 there are still enough
background galaxies to detect a weak lensing signal. The cosmic shear estimates mentioned
above were obtained with very deep images, so that we study mostly background sources at a
redshift of 1. In a few cases we illustrate the dependence of the distortion effect on redshift
(Fig. 5.2).

A shear value of v ~ 0.04 is at the limit of what the technique described in this chapter
is able to probe: in the standard cosmogical paradigm of structure formation most of the mass
of the universe is thought to be dark matter that is distributed in multiply connected filaments.
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In this picture, galaxy clusters are located at the connection points of the filaments. From both
analytical and numerical studies it is expected that the average shear of background sources due
to this matter distribution alone is at the two to five percent level [86, 87]. Schneider et al. [174]
noted that their detection compares well with these theoretical estimates. In this respect, the
Wilson et al. result is puzzlingly low.

5.6 Rotating universes without CMB anisotropy

The outcome of the studies by Hawking and others [68, 69, 11] discussed in Sect. 5.3 was
that the isotropy of the CMB radiation indicates a very low rate of rotation of the universe®.
The precise limits depend on the cosmology itself, the most complete list of limits is given by
Barrow et al. [11]. Birch [18], for example, found that w = 10 '3radyear—! or 1.5H, for
Hy = 60kms~t Mpc! (with w defined in eq. (5.6)) is allowed by the CMB observations. Start-
ing in the 80s, however, shortly after Birch’s paper, a new class of rotating cosmologies was
invented [82, 83, 84] that promises to evade this strong constraint.

The main results from these studies were compiled in a paper by Korotky & Obukhov in
1996 [100]. In essence the new class of metrics consists of generalized versions of Godel’s
metric [58] that share one important property with Godel’s original metric: the shear tensor
vanishes everywhere. The authors of this new class of metrics point out that the anisotropy
studied by Hawking and others is caused by the shear of the matter flow. We can illustrate
this quantity by again looking at the Newtonian analogue, the trace-free shear matrix o, , for a
velocity field v [101]

1
Onr = Vu,r) — g 5,77- V- v, (5.11)

which contains all derivatives of the velocity field®. The brackets indicate the symmetrization
(which removes rotation). The shear matrix is zero, if all “mixed” derivatives vanish and v, =
V92 = v33. The new metrics also have a comoving matter flow, so that all three contributions
identified by Hawking are zero, and the new metrics cannot be excluded by the CMB data.

We concentrate here on the so-called “Godel-type” metrics that are a special case of the rather
general class of metrics that is discussed in Korotky & Obukhov’s paper, and in several papers
referenced therein. The Godel-type metric is given in the following form:

ds* = 2 dt* — 2¢/oR(t)e™ dtdy — R*(t) (dz® + k ™ dy* + d2?), (5.12)

where t, z, y, z are cosmic time and local Cartesian coordinates. c is the speed of light. The
metric has several free parameters £ > 0, ¢ > 0 and m > 0 (k and o are dimensionless, m has
the dimension of length). The cosmic scale factor R(t) is determined by the field equations. The
original Godel metric would be recovered for k = —%, 0 = 1, m = 1/cto (Where ¢, is the age
of the universe defined in eq. (5.29)) and R(t) = const. We follow Korotky & Obukhov and
consider only models with £ > 0 in order to ensure that the space time is causal [100, 111].

5See also Hawking’s introductory note to Gddel’s work on rotating cosmologies [70].
5The general relativistic expression for the shear tensor can be found in [117, page 566].
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As we noted before, the angular velocity of the universe around observers at rest is described
by the scalar w as defined in eq. (5.6). For the metric (5.12), one obtains [133, 99]

cL}_mc o
2V k+o

, (5.13)

where c is again the speed of light. In principle, universal rotations is thus possible at substantial
rates: for m ~ Hy/c in the limit £ < o, the rotation is of the order of microarcseconds per year
and over a Hubble time, the universe may rotate by half a radian.

Korotky & Obukhov [100] present several observational consequences of such cosmological
models and conclude that they are still consistent with the observations. Since the Weyl tensor
is not zero for this class of metrics, it is to be expected from the Kristian-Sachs formula (5.7)
that image distortions of faint background galaxies should occur. It is the aim of this chapter to
continue the work of Kristian & Sachs [101, 102], as well as Valdes et al. [186], and apply it to
this class of metrics.

In the references [123, 99, 100, 124] it is noted that it is possible that the observations of
cosmological birefringence by Birch [18, 19] and later by Nodland & Ralston [122] are explained
by the Godel-type metrics. They find that universal rotation can indeed explain the rotation
of the galaxy shape with respect to the polarization vector found in the relation (5.2). Under
this assumption, the authors arrive at very large estimates for the magnitude of the universal
rotation. We already mentioned in Sect. 5.1 that from the Birch data Obukhov [123] obtained
a birefringence scale of A = 3.6 + 1.6 -, from which he deduced an angular velocity of w =
1.8 Hy. The Nodland & Ralston scale of A = 132+ 1.0 % Would even correspond to w =
6.8 Hy [124].

However, Panov & Sbytov [133] also calculated this problem for the Godel-type metric and
arrive at a different relation for the birefringence effect for the Godel-type metric: they obtain
a sin? @ dependance instead of the cos @ in egs. (5.1) and (5.2). We obtain results identical with
Panov & Shytov using the method by Seitz, Schneider & Ehlers [176]. Independently, Perlick
(1999, priv. comm.) also arrives at this conclusion. In this light, it seems that the published
rotation values cannot be compared with our approach. We will thus not test specific models,
but rather scan the parameter space of k£, o and m and determine shear values for background
sources to probe this parameter space with the distortion effect.

In order to calculate the distortion effect, however, we do not want to rely on the Kristian-
Sachs approximation “that the universe is described by a Riemannian space time with slowly
varying metric tensor” [101]. Rather, we will calculate the distortion of light rays for the Godel-
type metric by direct integration along the light path. This integration was carried out by Panov &
Sbytov [133] and Korotkii & Obukhov [99] (who arrived at a different conclusion as mentioned
in the last paragraph) in the Kristian-Sachs regime of low redshift or small angular frequency
w < Hy. We perform this integration numerically for arbitrary angular frequencies w and source
redshifts z. We obtain a net shear effect that can be used to obtain limits on these rotating
cosmologies by comparing the predicted shear with observed shear values from studies of the
weak gravitational lensing effect.
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5.7 Method

Our aim is to calculate the shear effect on a light bundle from a distant source on its way to the
observer in a cosmological model described by the metric (5.12). We do this using the optical
transport equations by Sachs [158] and the formalism developed by Seitz et al. [176].

The geodesic of a light ray z*(\) can be parametrized by the affine parameter A. The com-
ponents of a 4-vector are 2° = ct, 2 = z, 22 = y, 2* = 2. The wave vector’ £*(\) = & z%()\)
obeys kq k* = 0, and solves the geodesic equation k.5 #° = 0. In eq. (2.34) we already wrote
down the relation that governs the transport of the connection vector

£E=D6, (5.14)

where D is the angular-diameter distance and 6 the angular separation, between two near light
rays [13, 176]:
&g _ T E (5.15)
dx2 ' -
It is important that the light rays are closeby since the expression (5.14) is only valid for small

angles. (5.15) follows from the Sachs optical transport equations [158], as shown by Seitz et al.
T is the tidal matrix

T(\) = ( ﬁfﬁ(;)l"e F) %n(i;(i)Re FO ) , (5.16)
with

R(\) = —%Rm(x)éﬂ(x)m(,\) (5.17)
and

F(N) = 5 Caprac® WE ()" (E (). (5.18)

Rg, and C,p,4 are the Ricci and Weyl tensors, respectively. €*(\) = E{(A) + i E$()) is the
complex representation of orthonormal bases (E¢, F$) that lie in screens that are spanned by
the connection vectors between neighbouring rays Y®. The Y“ are adapted to an observer with
a 4-velocity U® at an event on the central light ray such that £,Y* = 0 and also U,Y*. The
asterisk denotes complex conjugation. Once we have chosen such basis vectors at an event,
and adapted to an observer with 4-velocity U, the basis vectors for all A can be obtained by
transporting them parallely along the light ray. This was done for a metric related to the Godel-
type metric for observers at rest by Panov & Shytov [133]. Panov & Sbytov show that distortions
of background sources are identical in these two matrics, so that we do not have to construct
basis vectors here.

"Following Seitz et al. [176] we write this wave vector with a hat.
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A solution for eq. (5.15) is
£(\) =D(\)b, (5.19)

where £ is determined from the initial separation 6, of the two light rays with the distortion
matrix D. For a light bundle composed of several such rays, Seitz et al. [176] insert (5.19)
in (5.15) and find that the distortion matrix D that acts on the light bundle at z*(\) can be found
by solving the Jacobi differential equation

d2
WD()‘) =T\ D). (5.20)
By solving this equation with the boundary conditions,
dD 10
20 =0, Fo = (4 1) 521

we can calculate the distortion effect of the universe on a light bundle propagating from the
observer at A = 0. The first boundary condition states that £(0) = 0. The second condition states
that at the observer angular-diameter distance and affine parameter distance are identical, or that

%g(to) = 0,.

5.8 Affine parameter-redshift relation

In their analytical study of the Gddel-type metric, Panov & Shytov [133] did not use the met-
ric (5.12), but transformed it into the stationary metric

d3® = 2 dr? — 2c/oe™ drdy — (do? + k e®™* dy”® + d2?). (5.22)

They show tﬁat the connection vectors gof a light bundle in this space are related to the connec-

tion vectors £ in the Godel-type metric by
1

\) = EN).

(A) RGO (A)

ey

(5.23)

We use the same angle 6, between neighbouring rays in both metrics, so that eq. (5.19) gives

D(N). (5.24)

We can recover the distortion matrix of the Godel-type metric by multiplying D with R(¢())).
In order to get an intuition for these metrics, it is instructive to study how sources appear
redshifted if they are situated at certain positions on a light path, as parametrized by the affine
parameter. In the metric (5.22), Panov & Sbytov parametrize light rays by a primed affine pa-
rameter )\'. If the light ray was parametrized by the parameter A in the Godel-type model, we
have
dX 1

ax RtV (5.25)
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where ¢(\) is the age of the universe in the Godel-type metric at the time when the light ray
reaches the point parametrized by A. The cosmological redshift z(\) as measured by an observer
with 4-velocity U“ at an event X is defined by (for example [176])

z(A) = —k*(\) Ua(N) — 1. (5.26)
For an observer at rest,
U*=(1,0,0,0), (5.27)
in the Godel-type model this is identical to the result for the Robertson-Walker metric,
Ry
=—-1 5.28
=L (5.28)

where Ry = R(to) is the cosmic scale factor at the present epoch (¢, is the age of the universe,
see eq. (5.29)). We choose R, = 1 for all our calculations [13]. The redshift depends on the
dynamical realization we choose for the universe. The Godel-type models have a cosmological
constant, and exotic cosmological “fluids” have been proposed for the “matter” content. Korotky
& Obukhov [100] describe a plethora of beautiful dynamical realizations for these models that
are known not only in Einstein’s general relativity theory, but also in other gravity theories. For
our calculations, we only need a parametrization for the scale factor R(¢) from these theories.
The dynamical evolution of the models we consider here can be described by

t b
R =Ro (1) . (5.29)
to
where t, is the age of the universe. The Hubble constant H is thus given by
R b
Hy == =—. (5.30)
R|_, o

Using (5.25), we proceed to write down the differential equation for the affine parameter as a
function of z:

dx  dN [dz\70 1 [dz\7
The latter derivative can be found with the help of egs. (5.28) and (5.29),

dz . dt 1.0 Ry . 1+, (RO)H%

—_— = = —— —_— = —— H e
DT N pRE M (R

The wave vector £ was computed by [133] and [99]. The second paper describes it in terms

of spherical coordinates, which we give here for the purpose of illustrating the quantities that

describe the geodesics:

~ Ro o
a = 211
k() R<+ —

(5.32)

1
sin f sin ®, — sin 6 cos P,
o R

Rf/_ﬁ sin @ sin @, % coS 9) . (5.33)
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f and ¢ (used later) are the usual spherical polar coordinates describing the direction of the
light ray at the observer. The cosmic rotation axis (of the observer) corresponds to # = 0.
These coordinates are not adapted to the rotational symmetry of the metric, however, so that
the expressions and solutions we derive depend on # and ¢. A suitable transformation for the
Godel metric that reveals the symmetry about the rotation axis was given by Gddel [58]. For the
Godel-type metric, this transformation needs to be generalized.

The function & satisfies the differential equation

/= +sinfsin
dp mc( kto ) (5.34)

1+ ki%gsinﬁsin@

dt R

Eqgs. (5.31) and (5.34) (the latter multiplied by k°) form a set of differential equations than can
be solved analytically up to linear order in z [133],

Vo cz/Hy
1+ /35, sinfsin¢

(5.35)

A’ depends both on 6 an ¢ (see [100]). In this coordinate system, the smallest values for \'(z) in
the plane perpendicular to the cosmic rotation axis, the so-called equatorial plane where § = 7,
are expected in the direction of ¢ = 7.

In order to obtain X’ for all z, it is possible to solve the equations numerically. The boundary
conditionsare \'(0) = 0and ®(0) = ¢. InFig. 5.1, we used Mathematica [208] to calculate \'(z)
for the Robertson-Walker model and several rotating Godel-type cosmological models. It can be
taken from this figure that light paths in rotating metrics can be longer than in the Robertson-
Walker universe. The parameter combination % drops in these curves from 0.91 (blue, red),
over 0.5 (green) and 0.09 (cyan) to 0 (magenta). It is interesting to note that it seems that in-
creasing this parameter leads to larger affine parameters for a given redshift. Since the universal
rotation value w is proportional to \/% it can be interpreted that it is possible to increase the
light paths to a given redshift by “spinning up” the universe. However, for low redshifts and
0,9 # 0, this is not true as can be seen from eq. (5.35). In this case, the corresponding graphs
would have crossed before z ~ 1.

5.9 Parameter space

Before we set foot on the terrain of abstract parameters of the Godel-type metrics, it is helpful
to understand what properties of a given model are governed by the three parameters &, o and
m that determine the Godel-type metrics. In eq. (5.13) we gave the expression for the parameter

w = T, /+7- that is a measure for the rotation of the universe around observers at rest. It can

be seen from this equation that there is no rotation if m or ¢ vanish.

Panov & Sbytov [133] give the components of the tidal matrix 7 (eq. (5.16)) (the tilde denotes
that we work here with the metric (5.22) rather than the Godel-type metric) for the metric (5.22)
for circular sources:

~ 2 2k (1 — cos® 0
R = ﬂ\COSH\ o+ 2k (1 = cos’6)
k+o

; (5.36)
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Figure 5.1. Affine parameter-redshift relation in a rotating universe. All rays propagate in the
equatorial plane, = 7, ¢ = 0. The models differ in the parameter tripels (k, o, m): (from top to
bottom) long dash-dotted curve (0.1, 1, 2), dotted curve (0.1, 1, 1), short dashed curve (1, 1, 1),
long dashed curve (1, 0.1, 1) and short dash-dotted curve (1, 0, 0). m is given in units of (cty) .
From top to bottom the parameter combination ;% drops from 0.91 (long dash-dotted,dotted),
over 0.5 (short dashed) and 0.09 (long dashed) to 0 (short dash-dotted). The short dash-dotted
curve corresponds to an 2, = 0 Robertson-Walker universe.
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and

2
F= km” sin? 0 =1 ™V w08 Y (5.37)
k+o
where the upper sign corresponds to |cos #| > 0 and the lower to |cos 8| < 0.

As can be seen from eq. (5.16), the distortion effect on a light bundle is zero when F = 0
since in this case 7 becomes proportional to the unit matrix. However, from eq. (5.37), we can
see that there can still be light bundle distortion even if o = 0. If £ = 0, however, this implies
a symmetric tidal matrix 7, so that there is no light bundle distortion although the universe is
rotating. As was mentioned before, however, in order to only look at causal space-times we only
consider models with £ > 0 [100].

In the expressions relevant for our study, namely (5.36), (5.37), (5.34) and &° in (5.33), & and
o always appear in company in the form of the ratios ;% and 1 — ;% = kf_—a so that they have
a combined effect. For a parameter search, it is thus sufficient to study the parameter space of m
and

f= : (5.38)

5.10 Model zoo and results

Now we solve eq. (5.20) for the distortion matrix D,

d2 2 YAVANENE: 2 AVAY: 2 TRV
D) =T DY) (5.39)

with the boundary conditions

B(0) =0, So(0) = ( Y ) , (5.40)

in order to estimate the distortion of sources at several redshifts for comparison with observa-
tions. The tilde denotes again that we work here with the metric (5.22) and have to transform
it later back to recover the distortion matrix D for the Godel-type metric (5.12). The solution
of (5.39) can done numerically in a straightforward manner using the differential equation solver
in Mathematica [208], so that we will not pursue analytical solutions of this problem.

Our aim is to illustrate how weak lensing can be used as a test of rotating cosmologies. We
will pick two directions in the equatorial plane where the largest distortion is expected according
to eq. (5.37). In Sect. 5.8, we found an additional dependence on the azimuthal angle ¢, such
that the smallest affine parameters \’ as a function of redshift were reached by light rays in the
direction ¢ = 7 for small z. We experimented with this value in the case of large z and found this
result still to hold at least for parameters m < 3. Since (5.36) and (5.37) do not depend on ¢, we
can find the lowest distortion in the equatorial plane in the direction ¢ = 7. In addition, we study
the directions ¢ = 0 and ¢ = %W, which give us somewhat higher distortions. These directions
give an impression of the magnitude of distortions in these cosmologies. The direction ¢ = %w
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has the highest distortion on the sky. Since our limits from the weak lensing studies (Sect. 5.5)
do not cover the whole sky, we cannot be sure that we really have a limit on this direction.

The distortion matrix D(A) (eq. (5.19)) describes the deformation of a light bundle as it passes
through the universe. We can take out the physical scale of the light bundle by normalizing D
with the determinant

VdetD = /DDy — Dy D, (5.41)

which is the angular diameter distance along the beam considered [176]. The shear v can be
obtained from D /v det D according to eq (2.22). Although we worked in the transformed met-
ric (5.22), the normalization with v/det D allows us to use

= (D D,
p_< o D4), 542)

to calculate the shear

_1 | (Bi-D) + (D + Dy)
773 DD, — DoDy

: (5.43)

As an example, we have plotted in Fig. 5.2 the shear +y as a function of the redshift z for the mod-
els from Fig. 5.1. We find that for small redshifts z the numerical results can be well represented
by the analytical relation

1
()

mz

7(2) (5.44)

For v < 1 we may calculate the axis ratio p = (1 + ) /(1 — ) (see eq. (2.22) and the following
paragraphs):

p(z) =1+ (5.45)

22 k mz\?2
9 k4o ( b ) )
The existence of a relation like this for an arbitrary space-time was shown by Kristian and
Sachs [101] (eq. (5.7)).
We calculate the shear values by converting the redshifts into affine parameters by the method
outlined in Sect. 5.8, and then using the solutions of eq. (5.20) to find the corresponding shear
values. Eq. (5.20) can also be rewritten as a differential equation in z,

¢*D <d2> D &% _ T(2)D(2). (5.46)

2 \av) T o

This can be implemented by inserting the derivatives according to egs. (5.31) and (5.32), and by
using the geodesic equation for d®¢/d\2. In our case, we wanted to have both \'(z) and D(z),
so that we perform the calculation in two steps. Mathematica allowed to save the \'(z) for our
model grids as tables and work with these in the next step, which made the procedure tractable.
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Figure 5.2: Shear ~y as a function of the redshift z for all models from Fig. 5.1: all rays propagate
in the equatorial plane, 6 = 7, ¢ = 0. The models differ in the parameter pairs (3%, m): long
dash-dotted curve (0.91, 2), dotted curve (0.91, 1), short dashed curve (%, 1), long dashed curve
(0.09, 1) and short dash-dotted curve (0, 0). m is given in units of (ct,) . The short dash-dotted
line corresponds to an 2, = 0 Robertson-Walker universe, and is everywhere zero. The long
dash-dotted model has such high distortions that it leaves the displayed range of - space already
at z ~ 0.65 and reaches v = 2.15 at z = 3. For two models (dotted and long dash-dotted) the

Kristian-Sachs [101] type analytical approximations y = 1/ (1 + 5 kto (L)2> are plotted as

V2 k mz
solid curves. The horitontal dashed line depicts the current limit on cosmic shear vy;mi; <= 0.04
as measured from background galaxies with redshifts z > 0.7.
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We have calculated observational limits by scanning the parameter space of f and m. This
is shown in Figs. 5.3 and 5.4. In these figures, we keep 6 = % fixed and determine shear values
~ for background sources at a redshift of z = 1. The shear values are greyscale coded into 6
regions, with dividing contours at v =0.04, 0.07, 0.1, 0.3 and 0.5. We now give some more
detailed comments on the figures:

e In Fig. 5.3 we scanned this parameter space for ¢ = 7 (upper panel), ¢ = 0 (lower left
panel) and ¢ = §7r (lower right panel), where all figures are calculated with the Robertson-
Walker type expansion parameter b = % Note that in the upper panel (¢ = %) the excluded
region is situated in the upper left corner of small f. In the lower panels for ¢ = 0 and
o= %w, it seems to be more the right region with high f that is excluded. We investigated
this and found that as the distortion effect is tuned up, the exclusion region develops into a
convex region that moves to lower m, becoming more stringent at higher f as ¢ approaches
¢ = 0. This is an unexpected answer to the prediction by Korotkii & Obukhov [99] that
the distortion effect would not be significant for models with £ < o. This was a natural
prediction since, for example, F()\’) in eq. (5.37) is proportional to HLU For certain m,
however, the effect is counteracted by a strong increase of A’ with redshift. The mechanism
becomes clear if we solve eq. (5.20) analytically: for = 7 R(X') is zero and F()') is
constant. It is found that D, — D, increases exponentially with A’! Note that this also
means that (') is analytically solvable for § = 7. With this we were able to cross-check
all our results both analytically and numerically.

e In Fig. 5.4 we kept ¢ = = and changed b from b = § (upper panel, identical to the upper
panel in Fig. 5.3) to b = = (lower left panel) and b = 1 (lower right panel). By comparing
these two panels with the upper panel, the effect of the parameter b can be seen: the
distortion becomes weaker and the limits get less stringent in a faster expanding universe.

N ||

The regions we can rule out in Figs. 5.3 and 5.4 from weak lensing observations are the regions
that are not black. We now restrict ourselved to the models in Fig. 5.3, where we derive limits of

m<09+21f (5.47)
for ¢ = % (upper panel), and
m < 0.8+0.7f (5.48)

for ¢ = 0 (lower left panel), where m is measured in units of (ct,)~'. The limits for ¢ = %w
(lower right panel) are

m < 0.8—0.7f (5.49)

For ¢ = %w, we could get even better limits on m for f > 0.9 since m = 0.1 is just the
lower boundary of the parameter space we scanned. However, we already mentioned that the
measured shear values from weak lensing studies are too sparsely sampled to be compared with
this direction since has the highest distortion on the sky. We included it here to illustrate the
distortion effect in this direction.
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Figure 5.3: Predicted shear values for background sources at a redshift of z = 1 in Godel-type
rotating universes. We have scanned 3030 models in the parameter space of 0 < f = ;2 <
0.97 and 0.1 < m < 3 and determined the expected shear . The direction of the light bundle
at the observer was described by the spherical coordinate § = 7 (equatorial plane). We also fix
the parameter b = % b characterizes the development of the scale factor with time, as defined in
eq. (5.29). We tested this parameter space for three angles ¢ = 7 (upper panel), ¢ = 0 (lower
left), and ¢ = gw (lower right). m is given in units of (ct,) . The shear values are colour coded
into six regions: the five contours correspond to values of v=0.04, 0.07, 0.1, 0.3 and 0.5. In some
cases not all contours are reached. Models with shear values v > 0.04 are ruled out, the black

region contains the allowed models.
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Figure 5.4: Same as Fig. 5.3, except this time we tested three values b and fixed ¢ = 7. In detail,
the models are b = 2 (upper panel), b = £ (lower left), and b = 1 (lower right). The upper panel
is identical to the upper panel in Fig. 5.3. m is given in units of (ct,) L.
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5.11 Conclusion

In this chapter, we have shown that weak lensing can put constraints on the Godel-type rotating
universes that otherwise seem untouched by current observations [100]. We have used the ob-
servational evidence from weak lensing studies that the cosmic shear of background galaxies is
less than yymis = 4 percent. The sampling of the sky is still very sparse. We note that we cannot
exclude the existence of high-distortion regions with v > ~ym;; On the sky that have so far not
been found.

For the Godel-type metric the cosmic rotation at the observer is given by w = %<, /22— We

obtain limits on the square root , /- and m from a detailed parameter study. Concentrating on
a Robertson-Walker type expansion

R(t) = Ry (i) . (5.50)
to
we calculated limits on the cosmic rotation for three directions in the “equatorial plane”. This is
the plane that is perpendicular to the cosmic rotation axis. In this plane, the distortion depends on
the azimuthal angle ¢ (we use the coordinate system and description of the geodesics by [99]).
We chose the azimuthal angles ¢ = 7, ¢ = 0and ¢ = %w.
Since 0 < \/% < 1, and by writing m in units of (cty) ™!, w can be estimated with the help

of eq. (5.30) as

3
w < 1 m Hy. (5.51)

From egs. (5.47), (5.48) and (5.49), we thus obtain for a Hubble constant of 60 kms ! Mpc !

Ww<23Hy=14x10"0yr! (5.52)
for¢ = 7,

w<11Hy=6.9x10 tyr! (5.53)
for ¢ = 0 and

w<0.6Hy=37x10""yr™* (5.54)

for ¢ = 3. In order to produce simple limits, we always assumed the least favourable value for
wr- here. Foragiven 2, an exact limit can be calculated from the linear relations in egs. (5.47),
(5.48) and (5.49).

Compared to the limits from the cosmic microwave background (Sect. 5.3), these limits are
orders of magnitude less stringent. However, unless we allow for very high cosmic shear values
in directions that have not been studied by weak lensing analyses so far, our results suggest that
cosmic rotation rates with w ~ H are ruled out. For a more rigorous argument, one could com-
bine several observations with their relative positions on the sphere, and determine the expected
shear values at all positions for many different orientations of the rotation axis with a Monte-
Carlo method. The resulting probability distribution could then be used to decisively probe the
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parameter space. Such a combined analysis should be done with a sample that was produced with
a uniform analysis technique, such as the six Wilson et al. [204] fields, since this would ensure
that all shear values are in fact comparable. For even better constraints, the fields should have a
special geometry, such as measurements on two poles, and at four points in the equatorial plane
corresponding to ¢ = 0, 3, = and %w. Since this is not possible to do with a single telescope,
one could relax the constraints and use only one pole and a pattern of four positions at § = %w,
or even arrange the pattern in a way that the observations can be done during one observing run.

There is no evidence for cosmic rotation from birefringence measurements that show the

dependence
A ~ 2% sin? 0. (5.55)

that Panov & Shytov [133] obtain for the rotation angle A between the major elongation axis
and the direction of the average polarization for sources at a redshift z with an angular distance
6 from the rotation axis § = 0. Birch (5.1) and Nodland & Ralston (5.2) find different relations
than (5.55). In particular, the high cosmic rotation values obtained by [123, 124] on the basis of
these data (see Sect. 5.6) were obtained with a different formalism and cannot be compared with
our values.

Our results show that weak lensing is a strong test for rotating cosmologies that rotate at
substantial rates w &~ Hy. The lensing signal from more slowly rotating cosmologies is disturbed,
however, by the lensing effect of the large-scale distribution of matter in the universe.



Chapter 6

Summary and Outlook

Gravitational lensing asa tool for cosmology

In the more than twenty years since the gravitational lens effect was first observationally discov-
ered it has become a versatile cosmological tool. Not only has the number of known gravitational
lens systems grown large enough to provide a diverse pool of lens laboratories. The published
data from large monitoring programs also now make it possible to perform long-term studies
of the temporal properties of individual lens systems. Moreover, the field of weak gravitational
lensing boomed in the 90s due to theoretical and observational advances, especially regarding
theoretical inversion techniques and wide-field imaging detectors, so that we now begin to ob-
serve the gravitational lens effect in almost every direction on the sky.

The power of gravitational lensing lies in the geometrical nature of the light deflection. Var-
ious cosmological parameters, such as the value of the Hubble constant H, or the value of the
cosmological constant €2, are accessible to lensing because they influence the geometry of the
universe, and thus the geometry of every gravitational lens. The large-scale matter distribution of
the universe itself betrays its presence by slightly distorting the images of background galaxies.

In chapters 3 and 4 of this thesis we use the geometry of the double quasar Q0957+561
(Fig. 2.2 on page 8) and the quadruple quasar Q2237+0305 (Fig. 2.3 on page 11) to search the
lensing galaxies for compact objects close to each light path to the quasars. Due to the relative
motion of observer, lens galaxy, and quasar, the compact objects in the lensing galaxy cause flux
variations of the background quasar by their microlensing effect on the quasar light bundle. The
multiple images then allow us to separate intrinsic fluctuations of the quasars from microlensing
fluctuations because intrinsic fluctuations of the quasar are seen in all images, with a certain
time-delay due to the difference in the light paths.

In chapter 5 we study the gravitational distortion effect on light bundles in a unique class of
cosmological models with universal rotation. These models cannot be ruled out by the isotropy
of the cosmic microwave background radiation, and have also currently not been ruled out by
other observations [100]. Contrary to the case of Robertson-Walker universes, light bundles are
distorted in these models, so that circular sources would appear as ellipses on the sky. With the
techniques developed to measure the weak gravitational lensing effect of galaxy clusters and the
large-scale structure of the universe, this light bundle distortion can be tested. The gravitational

81
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lensing effect proves to be a useful tool to place limits on the cosmic rotation in these models.
We now summarize our results and outline some lines of future research.

Limitson MACHOsfrom microlensing in Q0957+561

In chapter 3 we study the difference between the two images of the double quasar Q0957+561
over a three year period using data from the Apache Point Observatory [34] and obtain mass
limits on possible compact objects in the galaxy halo (MACHOSs) from the remaining variations.
Since the light paths of the two quasar images have a time-delay of At = 417 days [105], one of
the light curves was shifted by At to match the variations of the other quasar image. From the
difference between the two quasar light curves we derive exclusion limits for MACHO masses.
The effect of different MACHO masses on the microlensing variability is illustrated in Fig. 3.4
on page 31. In addition the exclusion limits depend on the size of the optical continuum emitting
region of the quasar. In Fig. 3.6 on page 40 our limits are compiled for a galaxy halo consisting
entirely of MACHOs. In short, we can exclude MACHO masses from 10=% M, up to 102 M,
for quasar sizes of less than 3 x 10'* cm if the MACHOs make up at least 50% of the dark halo.
These mass limits are consistent with the recently published result by Alcock et al. [5]. They find
that the most likely mass of MACHOs in the halo of our galaxy responsible for between 13 and
17 microlensing events of stars in the Large Magellanic Cloud is of the order of a few tenths of
a solar mass, if the objects are situated in the galaxy halo.

In the 17 year observational record of Q0957+561 used by Pelt et al. [135] no significant
microlensing variations were detected over the last ten years. In the first years of the observations
of Q0957+561, however, a brightness drop of about 0.3 mag was seen in the Pelt et al. [135]
difference light curve. The drop would be consistent with a brightness peak in the quasar image
B that is situated at a projected separation of 5.2 k¢4 kpc from the galaxy centre. Since the two
quasars are seen through the galaxy, we expect in fact to observe a microlensing signal from the
stars in the galaxy. The Pelt et al. event had its minimum at the end of 1982 and was sampled
rather sparsely. For such events, the analysis used in chapter 3 is not appropriate because the
peak height and peak duration will be important parameters. It would be exciting to study such
events with the high time resolution currently reached at Apache Point Observatory. In the lens
system discussed next, strong microlensing variations are already observed now with high time
resolution.

Microlensing in the quadruple quasar Q2237+0305

In chapter 4 we present independent evidence for microlensing in the quadruple quasar Q2237+
0305 using three years of Apache Point Observatory (APO) data. We present the reduction
of 73 nights of observations of this system. The reduction procedure is difficult because the
frames were obtained under seeing between 1.2 and 2.4 arcseconds with a detector pixel size of
0.6arcsec. The relative separations of the four gravitational images of the quasar are less than
2 arcsec, and they are situated in a cruciform geometry around the peaked core of the lensing
galaxy (Fig. 4.1 on page 4.1). Photometry of the two brighter quasar images is possible thanks
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to extremely precise astrometry from UV Hubble Space Telescope observations [22] of the four
images and the galaxy core.

We employ two different reduction schemes. The results are shown in Fig. 4.7 on page 57.
Both schemes yield similar light curves that are consistent within the error bars. In the data from
1996 (middle panel) a brightness peak of image A with an amplitude of 0.4 to 0.5 mag is seen.
Images C and D cannot be detected with any significance because the noise is too high.

This result fits well with the strong microlensing variations of more than a magnitude on time
scales of 700 days detected in Q2237+0305 by the OGLE team [209] who have monitored the
system since 1997. Their most recent data can be looked at at www . astro.princeton.edu/
~ogle/ogle2/huchra.html.

The APO and OGLE monitoring observations since 1995 clearly show that Q2237+0305 is a
prime target for measuring the mass function of microlenses in other galaxies by comparing the
observations with numerically simulated microlensing light curves such as presented in chapter 3
using the Wambsganss [190] code, or that can be calculated with the techniques by Witt [206],
Lewis et al. [108] or Wyithe & Webster [211]. It is also ideally suited to study the quasar during
high-magnification events using spectra and photometry in as many wavebands (radio, optical,
and X-ray regimes) as possible to put constraints on the structure of the optical continuum emit-
ting region of the quasar accretion disk.

Limits on universal rotation from weak gravitational lensing

In chapter 5 we study the deformation of light bundles in a class of metrics called Godel-type
metrics (for example [100]). These metrics are generalizations of a metric originally described
by Gddel [58]. The metrics describe a homogeneous universe in which the vorticity tensor at the
position of each observer is not zero, so that the observer perceives a rotating universe. Although
each individual observer has a cosmic rotation axis, no anisotropy is imprinted on the cosmic
microwave background radiation in these models. Contrary to the original Gddel model, the
Godel-type models do even not have closed timelike curves. They also have cosmic expansion.

Using the deformation tensor of light bundles calculated by Panov & Sbhytov [133] for these
models, we calculate the expected distortion (shear) of background sources as a function of
redshift with the formalism by Seitz, Schneider & Ehlers [176]. Shear detections as well as
limits on the shear of background galaxies are available in the literature of weak gravitational
lensing for several fields on the sky [174, 203]. From these studies, we find an upper limit
7imit = 0.04 on the cosmic shear. Since the shear measurements are only available for a few
fields on the sky, we cannot exclude high-shear regions due to a rotating universe everywhere on
the sky. If we assume that the current values are in fact upper limits on the cosmic shear, we find
for the value w of the cosmic rotation w < Hy.

Although the Godel-type models do not imprint any anisotropy on an ideal homogeneous
cosmic microwave background, we find that the models for some parameter choices predict sig-
nificant shear values for high redshifts. Since anisotropies at the 10~° level have been detected
in the cosmic background radiation [179], cosmic rotation will also have an effect on the ob-
served CMB anisotropies. The satellite missions MAP and Planck will map cosmic microwave
background anisotropies and will thus also be able to test Godel-type rotating cosmologies.
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