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Abstract

Compound values are not universally supported in virtual machine (vm)-
based programming systems and languages. However, providing data struc-
tures with value characteristics can be beneficial. On one hand, programming
systems and languages can adequately represent physical quantities with com-
pound values and avoid inconsistencies, for example, in representation of
large numbers. On the other hand, just-in-time (j1T) compilers, which are
often found in vMs, can rely on the fact that compound values are immutable,
which is an important property in optimizing programs. Considering this,
compound values have an optimization potential that can be put to use by
implementing them in vMs in a way that is efficient in memory usage and exe-
cution time. Yet, optimized compound values in vMs face certain challenges:
to maintain consistency, it should not be observable by the program whether
compound values are represented in an optimized way by a vM; an optimiza-
tion should take into account, that the usage of compound values can exhibit
certain patterns at run-time; and that necessary value-incompatible properties
due to implementation restrictions should be reduced.

We propose a technique to detect and compress common patterns of com-
pound value usage at run-time to improve memory usage and execution speed.
Our approach identifies patterns of frequent compound value references and
introduces abbreviated forms for them. Thus, it is possible to store multi-
ple inter-referenced compound values in an inlined memory representation,
reducing the overhead of metadata and object references. We extend our ap-
proach by a notion of limited mutability, using cells that act as barriers for our
approach and provide a location for shared, mutable access with the possibility
of type specialization. We devise an extension to our approach that allows us
to express automatic unboxing of boxed primitive data types in terms of our
initial technique. We show that our approach is versatile enough to express
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another optimization technique that relies on values, such as Booleans, that
are unique throughout a programming system. Furthermore, we demonstrate
how to re-use learned usage patterns and optimizations across program runs,
thus reducing the performance impact of pattern recognition.

We show in a best-case prototype that the implementation of our approach
is feasible and can also be applied to general purpose programming systems,
namely implementations of the Racket language and Squeak/Smalltalk. In
several micro-benchmarks, we found that our approach can eftectively reduce
memory consumption and improve execution speed.
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Zusammenfassung

Zusammengesetzte Werte werden in vM-basierten Programmiersystemen und
-sprachen nicht durchgingig unterstiitzt. Die Bereitstellung von Datenstruk-
turen mit Wertemerkmalen kann jedoch von Vorteil sein. Einerseits konnen
Programmiersysteme und Sprachen physikalische Gréflen mit zusammenge-
setzten Werten, wie beispielsweise bei der Darstellung grofier Zahlen, adiquat
darstellen und Inkonsistenzen vermeiden. Andererseits konnen sich Just-in-
time-Compiler, die oft in vMs zu finden sind, darauf verlassen, dass zusam-
mengesetzte Werte unverinderlich sind, was eine wichtige Eigenschaft bei der
Programmoptimierung ist. In Anbetracht dessen haben zusammengesetzte
Werte ein Optimierungspotenzial, das genutzt werden kann, indem sie in vMs
so implementiert werden, dass sie effizient in Speichernutzung und Ausfiih-
rungszeit sind. Dariiber hinaus stehen optimierte zusammengesetzte Werte
in vms vor bestimmten Herausforderungen: Um die Konsistenz zu erhalten,
sollte das Programm nicht beobachten kénnen, ob zusammengesetzte Werte
durch eine vM in einer optimierten Weise dargestellt werden; eine Optimie-
rung sollte berticksichtigen, dass die Verwendung von zusammengesetzten
Werten bestimmte Muster zur Laufzeit aufweisen kann; und dass wertinkom-
patible Eigenschaften vermindert werden sollten, die nur aufgrund von Im-
plementierungsbeschrinkungen notwendig sind.

Wir schlagen eine Verfahrensweise vor, um gingige Muster der Verwendung
von zusammengesetzten Werten zur Laufzeit zu erkennen und zu komprimie-
ren, um die Speichernutzung und Ausfithrungsgeschwindigkeit zu verbessern.
Unser Ansatz identifiziert Muster hiufiger zusammengesetzter Wertreferen-
zen und fiihre fir sie abgekiirzte Formen ein. Dies ermdglicht es, mehrere mit-
einander verkniipfte zusammengesetzte Werte in einer eingebetteten Art und
Weise im Speicher darzustellen, wodurch der Verwaltungsaufwand, der sich
aus Metadaten und Objektreferenzen ergibt, reduziert wird. Wir erweitern
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unseren Ansatz um ein Konzept der eingeschrinkten Verinderbarkeit, indem
wir Zellen verwenden, die als Barrieren fiir unseren Ansatz dienen und einen
Platz fiir einen gemeinsamen, schreibenden Zugrift mit der Moglichkeit der
Typspezialisierung bieten. Wir entwickeln eine Erweiterung unseres Ansatzes,
die es uns ermdglicht, mithilfe unserer urspriinglichen Technik das automa-
tische Entpacken von primitiven geboxten Datentypen auszudriicken. Wir
zeigen, dass unser Ansatz vielseitig genug ist, um auch eine andere Optimie-
rungstechnik auszudriicken, die sich auf einzigartige Werte in einem Program-
miersystem, wie beispielsweise Booleans, sttitzt. Dartiber hinaus zeigen wir,
wie erlernte Nutzungsmuster und Optimierungen tiber Programmausfiihrun-
gen hinweg wiederverwendet werden kénnen, wodurch die Auswirkungen
der Mustererkennung auf die Leistung reduziert werden.

Wir zeigen in einem Best—Case—Prototyp, dass unser Ansatzes umsetzbar
ist und auch auf allgemeinere Programmiersysteme wie Racket und Squeak/
Smalltalk angewendet werden kann. In mehreren Mikro-Benchmarks haben
wir festgestellt, dass unser Ansatz den Speicherverbrauch effektiv reduzieren
und die Ausfithrungsgeschwindigkeit verbessern kann.
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1 A need for compound values

Not many virtual machine (vm)-based programming systems support com-
pound values, but doing so would be beneficial. The notion of values as “ab-
stractions, and hence atemporal, unchangeable, and non-instantiated” [70] —
and thus immutable, identity-less entities — carries over from mathematics
and is often contrasted with objects that “correspond to real world entities,
and hence exist in time, are changeable, have state, are instantiated, and can
be created, destroyed, and shared” [70]. Restricting the possibility to change
objects, that is, introducing immutability to a programming system, has been
shown to be beneficial in certain areas:

Immautability information is useful in many software engineering
tasks, including modeling |...], verification [...], compile- and run-
time optimizations |...|, program transformations such as refactor-
ing [...], test input generation [...), regression oracle creation |...],
invariant detection |...], specification mining |...], and program
comprebension |...]. [98]

Compound values as a concept in the above sense can already provide this
immutability. Further, the concept of object identity does not apply to com-
pound values.

Systems benefit from values  The idea of numbers being values in program-
ming languages is widely accepted and typically taken for granted. Numbers,
especially those that can fit into processor registers, exhibit the nature of val-
ues exactly. However, there are other abstractions outside of computing that
present as values, but which are not universally found as values in program-
ming languages. In most programming languages, other — even purely math-
ematical — numeric values, such as complex numbers or fractions, are rarely



# Python 3
>>>x =10 ** 100 + 1
>>>y =10 ** 100 + 1
>>> X isy

False

>>>3 =100 +1
>>>h =100 +1
>>>ais b

True

>>> X = 3+4)

>>>y = 3+l,j

>>> X sy

False

"Squeak 5.2"

Smalltalk garbageCollect.
x := Point allinstances.

{ x size. x asSet size }
"=> #(8298 3698)"

treated the same way register-fitting integers are. Rather, they have to be in-

stantiated, have temporal aspects, and are subject to questions of identity.

This is at least a source of confusion for developers, as exemplified

by a recurring series of questions on a relevant question-and-answer

website regarding such effects in Python [54, 61, 96] (see left). Also, it

opens up a broader range of questions regarding equality checks [79].

Moreover, other abstractions, that in fact are values, but exhibit

a degree of compositeness, are rarely found in general purpose pro-

gramming systems. These abstractions typically lack “valueness” al-

together, as they are commonly represented by allocated, lifetime-

bound, and mutable object of some sort. These include mathemati-

cal concepts that are not naturally or easily representable by integral

numbers — or machine words for that matter, such as points, com-

plex matrices, or matrix-represented tensors. Similarly, physical quan-

tities that comprise these values, such as impedance, acceleration, or

points in space, cannot be as easily represented as non-composite

quantities such as length, time, or mass. However, most execution

environments, VMs, or interpreters are not aware of the value-like nature of

these compound values. For example, in a pristine Squeak/Smalltalk 5.2 system,

there are about 8300 instances of the class Point, where around 3700 of which

contain unique coordinates (see left). While clearly being compound values,

the mere question of “how many points are there right now” shows that life-

time can be observed. Moreover, the fact that the points are by and large not

unique shows that identity can be observed, too. That means they a7¢ not

factually values, at least from a vM point of view. That being said, points in a

Squeak/Smalltalk system are values by convention: they are expected to never
be mutated or compared by identity.

Programming systems with predominantly functional character typically
comprise type systems that allow compound values to be expressed [70], for
example, algebraic data types in the ML family of languages [69, 73]. That
said, a more broad availability of compound values, particularly for vm-based
programming systems, can be beneficial to express certain programs more
clearly.



Just-in-time compilers benefit from values In systems that use VMs to exe-
cute programs, just-in-time (JIT) compilers are often used to achieve high per-
formance without the need to optimize or transform programs before their
execution. To do that, J1T compilers typically build upon profiling informa-
tion collected while a program is executed in a preceding stage to then apply
program optimization techniques. This includes both typical “compiler opti-
mizations” as also found in ahead-of-time (A0T) compilers as well as certain
optimizations that draw conclusions from run-time profiling data. In both
cases, however, J1T compilers often speculate on the state of certain things—
be it variables, call sites, or function arguments, to name a few — to zot do
what is done only seldom and quickly do what is done excessively often. Ac-
cordingly, things that are stable, as in they do not change or only change rarely,
act catalytically to the jrT compiler. That is why determining constant parts
of programs is a large part of many optimization techniques.

A large body of techniques to deduce factual constant-ness from nominal
variability has been evolving for as long as compilers have been optimizing pro-
grams [78]. To name a few representative optimizations, constant folding or
constant propagation [66] builds on the fact that some variable parts are actu-
ally assigned constants, for example, a variable initialized with a literal number.
Whenever such a variable is subsequently used in a program, a compiler can
replace the occurrence of the variable with its original, constant content. The
constant is propagated throughout the program. Similarly, escape analysis—
a special form of lifetime analysis [101] — builds on the lifetime of objects in
a broad sense. For variable parts in programs, it often has to be tracked how
many locations share the variable, because when such a part is actually changed,
all locations shall observe the change. In these (ubiquitous) cases, programs
typically allocate memory all such locations share and can observe change in.
However, when a variable is only possibly shared between locations, but a
compiler can infer that the variable does in fact not “outlive” a certain, limited
scope, an allocation for sharing can be avoided. Subsequently, the variable
is often found to be effectively constant. This, in turn, makes it possible to
employ constant folding, as above. For j1T compilers, this can be of particular
interest, as they can incorporate run-time data in their reasoning, and thus find
constants that AOT compilers cannot detect. Other techniques in the same
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vein include allocation removal [12], load-store forwarding, or even common
subexpression elimination [29], to name a few. Using these techniques, jIT
compilers allow programs with nominally variable parts to execute quickly
when these parts are actually constant.

However, if the source of operation, that is, the program already has sta-
tionary parts, this job is easier for the j1T compiler. Compound values are
especially suited here. In a way, they are a sweet spot of JIT compiler optimiza-
tion, because just like other constant data, they do not change, and just like
other compound data structures, can idiomatically express more than scalar
or numeric information. Contrary to other data structures, the constant-ness
of compound values is inherent, and there is no need to decide, whether or
not to make parts of or whole data structures immutable.

A more broad availability of compound values, particularly for program-
ming systems with JIT compilers, can be beneficial to improve the performance
characteristics of certain programs.

Compound values present room for potential optimizations in vM-based pro-
gramming systems. As more functional systems and their type systems show,
the properties that compound values exhibit can be employed to increase a
program’s or system’s efficiency. Therefore, assuming that mutability, identity,
and lifetime of values cannot easily be observed in a programming system, vms
are free to represent them as they please. This is already true for “small” num-
bers, floating point numbers, or small data structures in certain systems where,
for example, integers are represented as tagged pointers. Extending this to less
trivially structured values can allow vMs to apply a range of optimizations not
available when programs are able to observe any non-value characteristics of
compound values, such as speculations on the constant-ness of values during
constant propagation.



1.1 CHALLENGES

Adopting compound values for programming systems with vMs in a memory
and execution time efficient way faces certain challenges.

All vm-bases languages and systems provide a certain amount of standard
data structures to developers. Some of them are provided at the vm-level from
inside the vM, and others at the language-level azgp the vm. The reasons to
choose one level or the other are diverse and have an impact on how data struc-
tures can be perceived by developers. As an example, in Smalltalk systems, the
vM essentially only provides a notion of objects that can have a fixed number
of fields— which is the same for all objects of a class— and a variable number
fields — which can differ on a per-object basis— or both [s1]. That way, an
array structure can be used at the language level via an object with just vari-
able fields. However, all other data structures in Smalltalk, such as ordered
collections or dictionaries/maps, are provided at the language level and even-
tually implemented in terms of the fixed/variable-fields object of the vm. This
approach minimizes the interface between language and vM, which is valu-
able for modularity and modifications. However, when compound values are
to be provided in such an environment, optimizations that could be applied
to compound values can become noticeable to developers. While this can be
helpful to understand such an optimization, it might impede the understand-
ing of the uses of compound values. This means that, when optimizations
are applied to compound values, the language’s and developers’ view on these
should nonetheless reflect the program code as written in the first place.

CHALLENGE I Maintaining the original structure of compound values both in
the presence and absence of optimizations applied to them

The representation of data structures, and hence compound values, influences
their performance; also, the same data structure might be used for different
tasks or workloads. Assuming that a variety of workloads make use of the same
data structure at run-time, it is necessary to provide a way of dynamically ap-
plying possibly different optimizations to the same kind of data structure.
This is increasingly important the more general the programs are that run on

Challenges
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a vM, peaking in vMs or language implementations running stacked on top
of another vMm. For example, JRuby [81] —a Ruby implementation — and
Jython [62] — a Python implementation — both are implemented on top of
the Java Virtual Machine (jvm) and cannot predict statically how thezr data
structures are going to be used. Consequently, any data structure optimization
has no information on that, either. Language implementation frameworks
such as RPython [2] and Graal/Truffle [117] try to provide language imple-
menters with more means of communication with the underlying implemen-
tation. Ultimately, a definitive choice of what optimizations to apply should
incorporate the way data structures are actually used at run-time.

CHALLENGE 2 Anticipating the dynamic usage patterns of compound values
at run-time

The most predominant vM environments in use at the time of writing are
object-oriented systems or systems that at least support object-oriented pro-
gramming paradigms at the language-level, among them the jvm [85], the
NET Common Intermediate Language (c1vr) [38], but also the implementa-
tions of Ruby, Python, PHP, or Smalltalk, to name a few. Most of these sup-
port objects bearing the familiar identity—behavior—state triplet, and typically
all of these are observable by developers; state is typically mutable. However,
observable identity and mutable state are incompatible with compound values,
when taken strictly, but hard to get rid of. For example, there have been nu-
merous attempts to add immutability to systems such as the ones mentioned
above. An immutability-in-languages survey [28], found, that only few of the
surveyed languages or systems support the notion of immutability to an extent
that it would cancel out the incompatibility of mutable state with compound
values, which — in the survey’s language — require object & class-based, tran-
sitive, enforced immutability. Similarly challenging are the notions of identity
(objects do have them, compound values do not) or lifetime (objects can be
created or destroyed, compound values are). To facilitate compound values
in vms, the observability of these effects needs to be restricted for the enti-
ties representing compound values, which, in turn, requires compromises for
interaction with non-values.



CHALLENGE 3 Reducing the observability of effects in virtual machines that
are incompatible with compound values

These primary challenges form the environmental constraints in which com-
pound value optimizations in vMs are to be investigated in this work.

1.2 CONTRIBUTIONS Contribu-
tions
This work makes the following main contributions:

We propose an approach for finding patterns in compound value usage at run-
time and a data structure descriptor variant that incorporates these patterns.
We present a compressed layout for compound values that makes use of those
patterns to store compound values more efficiently.

We provide four extensions to our approach that can broaden its applicability
to other use cases.

We report on the performance of micro-benchmarks for a small prototype
language, a Racket implementation, and a Squeak implementation.

Parts of this work have already been published in earlier versions at other
venues, namely parts of chapter 3 have appeared in SAC/OOPS 2015 [89] and
Science of Computer Programming [88], in different versions. All artifacts
and measurement data are publicly available [86, 87, 90, 93].

1.3 OUTLINE

This work is structured as follows:

Chapter 2 provides background information on virtual machines, their jrT
compilers, and implementations, as well as data structures and compound
values in general.

Chapter 3 introduces our approach to compound value optimization in
vMs. For that, it proposes shapes as data structure descriptors, a technique for
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recognizing data structure usage patterns at run-time, and a compact repre-
sentation of compound values within a vM.

Chapter 4 offers four extensions to the initial approach. Cells provide a
way to include a restricted notion of mutability when using compound val-
ues. Shapes can be employed to more efficiently represent certain data types
while eliminating the need to manually introduce special representations for
them. With shapes, it is possible to avoid storing well-know constants, and
to effectively provide a general form of immutable boolean field elision. The
learned information from the usage pattern recognition can be represented in
a way that can accelerate the start up of vMs that use our approach.

Chapter 5 demonstrates that our approach is feasible with a best-case pro-
totype implementation. It presents a custom programming system that com-
pletely focuses on compound values and their optimization and lays out the
effects that the j1T compiler has on the language implementation.

Chapter 6 carries over the learnings from the prototype to existing general
purpose programming systems to qualitatively assess the real-world viability
of our approach. It shows the effort necessary to integrate our approach into
existing implementations.

Chapter 7 quantitatively evaluates the approach. In a benchmark setting,
the implementations provided are compared to their unoptimized variants
with respect to execution time and memory consumption when working on
compound values.

Chapter 8 lays out related work, including optimization approaches for
data structures similar to compound values, concepts of compound values in
certain systems, and relevant methods of performance optimizations.

Chapter 9 summarizes the findings and gives directions for future work.

SUMMARY

Compound values need more support in programming systems. We iden-
tified three challenges for their adoption. This work presents an optimized
compound value representation, four extensions, and qualitative and quan-
titative evaluation of the approach.



2. Values and data structures in virtual machines

Programming is object-oriented mathematics.
Mathematics is value-oriented programming.
(Bruce J. MacLennan)

This chapter provides fundamental concepts and background information
necessary to understand our approach. We explain our understanding of val-
ues and, specifically, compound values. Moreover, we provide background on
data structures and their implementation concerns that are relevant for our
work. Finally, vMs are a foundation for numerous programming system im-
plementations and often employ J1T compilers for fast execution of programs;
some of their properties can be beneficial for our approach.

2.1 VALUES

We subscribe to the notion of values as “abstractions, and hence atemporal,
unchangeable, and non-instantiated” [70] entities. This includes both simple
values like natural numbers and compound values like geometric points. We
provide a description of our understanding of these concepts. We provide
brief information on two special cases, as well.

2.1.1 Simple values
The notion of values in programming stems from mathematics. In their sim-

plest forms, when concerning simple arithmetics of integral numbers in a cer-
tain range, values in mathematics and programming are equivalent. Although
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programming languages have to cope with a mismatch between machine-
oriented representation and mathematics-oriented abstraction, in general, all
values that can be directly represented by numbers are well-supported.

Small and large integral numbers are typically presented either from a per-
spective of the machine, from the perspective of mathematics, or both. That
is, most programming languages provide integer daza types, in the first case
commonly as reflection of word sizes of a processor, in the second case, usu-
ally as an abstraction called arbitrary-precision integers. There is typically a
performance trade-off between them, and often both variants are found.

This scheme is typically also found for real numbers, however, as per Can-
tor, with greater obstacles, because machine representation is in most cases
confined to the size of processor registers, with sometimes mathematically
surprising results from arithmetic operations. Both floating-point and fixed-
point representations for real numbers already suffer from slight deviations
from the mathematical notion of values.

Enumeration types and truth values more closely reflect mathematical val-
ues, as they can typically be directly mapped to integers. Other counterparts to
mathematical values are less common in mainstream, non-applicative, general
purpose programming systems.

2.1.2 Compound values

“Values are used to model abstractions.” [70] However, besides simple abstrac-
tions like integers there are compound abstractions. That is, they consist of
not exactly one component. Examples for these from mathematics include
complex numbers with real and imaginary part, points with one component
per dimension, or fractions with numerator and denominator, but also matri-
ces, vectors, or sequences. Another example are units of measurements, which
add yet another component to compound values, as in physical quantities
like time. Nevertheless, from a mathematical point of view, compound values
are not different from simple values; they are still abstractions with the same
properties simple value have.

However, there is one aspect to compound values that can be important for
programming systems. There is no concept of identity among values as there
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is, for example, among objects in the object-oriented programming (o0oP)
sense; the question whether this 17 printed here is the same as this 17 one is not
meaningful. Both represent the abstraction over the integer seventeen. The
same holds for compound values and their components.

Further, the kind of abstraction itself plays a role in the relation between
two values. The complex number 3 + i4 has components that are equal to
the components of (3, 4), a point in two-dimensional space, and the rational
number 3 /4. However, these three entities do not represent the same abstrac-
tion. From an oop point of view, one could say that the “class” of two entities
has to match.

A compound value is a composition of other values. Thus, compound
values can form the components of other values, for example, matrices of
complex numbers or vectors of quaternions.

It is often possible to omit the kznd of abstraction for a value when work-
ing with scalar values; context and presentation usually provide enough in-
formation to discern, for example, real numbers from integers. The kind of
abstraction is, nevertheless, involved.

In addition to the kind of abstraction, certain compound values can be
grouped by their a7ty (or cardinality), that is, the number of components.
For example, there are geometric points in one-, two-, and three-dimensional
space with one, two, and three components, respectively. Likewise, vectors —
in the sense of members of 7z-dimensional vector spaces— have 7z components.

When working with concrete instances of compound value abstractions,
we will refer to the concrete components of such a compound value as its
constituents.

2.1.3 Niladic compound values

There can be compound values that have no components whatsoever, their
arity is zero. For example, given that members of vector spaces are indeed
values, the sole member of the zero-dimensional vector space certainly is a
value, too. However, since the space has no dimensions, its member vector has
no components.

II
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As a consequence, the only information such compound values can convey
is their “grouping”, that is, what kind of abstraction they represent.

The general usefulness of such compound values is probably limited, but
under certain circumstances, they can be used to convey the information of
singleton-like entities that are void of information beyond their existence, for
example, the abstract idea of an empty list or set, such as 7.

Since the applicability of such compound value is limited, there is no com-
mon name. Nevertheless, at least two variants exist, zu#/lary compound values
(from binary, unary, nullary), and niladic compound values (from dyadic,
monadic, niladic). We will use the latter variant here.

2.1.4 Simple values as special case of compound values

The idea that values convey information about the kind of abstraction they
represent can be extended further.

One point of view is that “simple” values, such as integers, are just unary/
monadic compound values, and the kind of abstraction they represent is “in-
teger”. Yet, since compound values compose, it is questionable what kznd of
abstractions the components of a unary integer compound value are.

Another point of view is that “simple” values can be understood as niladic
compound values. Each representative of the £nd of abstraction is then actu-
ally its own kénd of niladic compound value. For example, each integer can be
viewed as a compound value of the kind of itself with no components, such as
the niladic compound value “seventeen”. This view is actually supported in
parts of literature and at least one programming system, BETA. In agreement
with Hoare [57] BETA’s authors state, that “a value, like four, is an abstrac-
tion over all collections of four objects” [67]. Therefore, in this programming
system, each number is at the same level of abstraction as any class in that
system.

However, in most practical circumstances, it is not as helpful to elevate
each simple value to abstractions in their own right as it is to treat them as
non-composite leaves.
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2.2 DATA STRUCTURES

Data structures and their implementation are a key part of virtually all pro-
gramming systems. Data structures are entities to store and manage assort-
ments of data. For the purpose of this work, we differentiate homogeneous
structures and heterogeneous structures.

The way programming systems manage metadata varies, particularly in vms.
Since there is frequently the need to represent metadata differently than the
actual data, we briefly describe data structure descriptors as an abstraction of
data structure metadata management.

This description also serves as abridged, initial presentation of what data
structures look like in the programming systems used in later parts of this
work, namely Racket [45] and Squeak/Smalltalk [60].

Collections as homogeneous structures  Collections are assortments of homo-
geneous elements, such as arrays, vectors, or similar and often exist in indexed
and ordered variants. They typically do not form types. Individual collection
instances may differ in size.

Records as heterogeneous structures  Record data structures, or records, are
collections of named fields of heterogeneous values. Records may form a type,
instances of record types are typically of equal size— all in contrast to homoge-
neous data structures. Moreover records may have various additional features,
which may differ between programming languages.

2.2.1 Data structure descriptors

One of the key responsibilities of programming systems, and vMs in particular,
is to provide programs with data structures. This means that the system offers
a way to query for new instances of a given kind. For example, a Java program
might want to create a new Array, a Python program a new dict instance, or a
Ruby program any new object, to name a few popular variants. These core
functionalities are so ubiquitous that they are seldom mentioned outside of

3
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the responsibilities of memory management and, if applicable, the garbage
collector (Gc).

To properly manage data structures, every instance of a data structure usu-
ally has to provide some metadata besides the actual data it represents. This
can be metadata specific to the individual data structure instance, such as
Gc and lifetime information, or data that is the same for a group of similar
instances, such as the size of similar record structures or class information
for object instances. We will refer to the holders of such metadata for data
structures as data structure descriptors, descriptors for short.

There are some common patterns and constraints in implementing data
structure descriptors. Typically, the memory management or a GC need to
know the size of individual data structure instances. Also, to be able to access
the proper contents of a data structure instance, a descriptor has to provide
the abstract kind of the data structure as quickly as possible. Likewise, it is
often necessary to quickly determine what operations are available on a certain
data structure, in particular for oop. All this information usually needs to be
conveyed with as little overhead as possible, lest the metadata outweighs the
concrete data structure instance.

In class-based oov, classes often provide all necessary information about
size and lookup data. Hence, the implementation-level representation of a
class is often used as a descriptor for all of its instances. Depending on lan-
guage semantics, these descriptors can be hidden from the language level, can
available via reflection and reification as in Java, or are first class citizens of the
language itself as in Smalltalk. In fact, the language-level class objects are the
vM-level descriptors in many Smalltalk implementations [s1, 60, 74]. These
descriptors are suitable as long as the layout of object cannot change. However,
in prototypical languages or languages that allow objects to be extended arbi-
trarily, such descriptors often become a performance bottleneck. Accordingly,
these languages typically have different descriptors: Self groups its objects into
families which are described by a vm-level map [24]. The V8 implementation
of JavaScript/ECMAScript uses hidden classes [3] for a similar purpose, but
adapted for typical language usage patterns.
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2.2.2 Racket structures as records

We briefly introduce Racket’s records as an example for what form records can
take in a concrete language, since later parts of this work will make use this
feature. Racket [45] is a dynamically typed, multi-paradigm programming lan-
guage from the Scheme family [107]. It differs from Scheme in certain aspects,

such as immutable-by-default lists, support for design by

LisTING I: Racket structures may be
contract [77], and an advanced record data structure con-

. .. mutable and form hierarchies
cept called structures with features beyond the mere abil-

ity to store values in their fields. Racket structure types (struct person (name))

(define customer (person )
(struct employee person
Racket are smmutable by default, but can be explicitly de-  (position [office #:mutablel))

clared to be partly or fully mutable. Structure type proper- (define worker

X . L. (employee 'branch))
ties allow to store arbitrary data inside the structure type. (person? 0); -> #f

(
(person? customer) ; -> #t
(person? worker) ; -> #t
(employee? customer) ; -> #f
(

(

(

can form hierarchies, supporting inheritance. Structures in

Typically, properties are used for procedures that work on
astructure’s field values. Certain properties can be used to
make structure instances callable; these structures can then  (employee? worker) ; -> #t
set-employee-office! worker 'main)

act as procedures. We include a brief example of a Racket
employee-office worker) ; -> 'main

structure in listing 1, which includes examples of hierarchy,
and optional mutability among others. With a definition of a structure type
(lines 2 and 4), the name, parent structure type, and fields are determined, and
procedures to create (lines 3 and 10), query (lines 8 to 12), and maybe modify
(line 13) structures of that type.

2.2.3 Smalltalk objects as hybrid structures

Objects are at the heart of object-oriented languages and the choice of how
to represent them in memory is crucial for the performance of a language
implementation [s, 80, 110]. The standard way of representing objects involves
an indirection for references to other objects, for example by using direct
pointers or object tables. Typical best practices of object-oriented modeling
and design — such as delegation or the composite design pattern — have an
influence on performance when using such representations. Every additional
indirection between delegators and delegates or composites and their parts
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has the overhead of a new object. This includes memory consumption, but

also execution time to navigate the referenced objects.

LisTING 2: Smalltalk objects with
both homogeneous and heteroge-
neous parts

Object variableSubclass: #LEDStrip
instanceVariableNames:
LEDStrip class
leds: aNumber
* self new: aNumber withAll: Color black

__ LEDStrip
voltage: aNumber
voltage := aNumber.

at: aNumber r: red g: green b: blue
self
at: aNumber
put: (Color r: red g: green b: blue).

dim
[self isDark] whileFalse:
[self voltage: self voltage - 0.1.
self darkenLEDs].

darkenLEDs
1to: self size do:
[:i | | color |
color := (self at: i) darker.
self at: i put: color].

Smalltalk objects support single inheritance, provide a
string encapsulation of their state, and virtually fully con-
trol the set of operations they support. Objects in Smalltalk
have a special property. They can have heterogeneous parts
like records and at the same time homogeneous parts like ar-
rays. While objects are usually used in a heterogeneous way,
in particular when representing domain objects, collections
are also objects and accordingly used in a homogeneous way.
It is typical to compose both kinds of objects, but it is also
possible to have both kinds in just one object. In listing 2,
we show a small class for objects modeling an LED strip. Ini-
tialized with the number of LEDs, this number determines
the final size of the object. The voltage instance variable is
not part of the homogeneous object part. Both object parts
are equally simple to access, use, and modify, but still en-
capsulated in methods. That way, interesting use cases can

be supported.

2.3 VIRTUAL MACHINES

We use the term virtual machine (vM) to collectively refer
to managed runtime environments (MREs), VMs, and exe-
cution environments in general. Moreover, we distinguish
between a vM level and alanguage level. The former denotes

the implementation blocks and concepts used to provide a language imple-
mentation within a vM— this is sometimes called bost and the programming
language used to implement on that level the bost language. The latter level
denotes the concepts provided by a vM or vM-level program to application
developers — accordingly it is sometimes called guest and the programming
language or system provided by the vM guest language. Note that a guest
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language might not be a programming language as such but rather an agreed-
upon exchange format, such as bytecodes. Accordingly, in case of metacircular
vMs, host language and guest language are the same. Also, for the sake of sim-
plicity we subsume libraries, frameworks, or applications running on a vM —
that is, at language level — under programs.

2.3.1 Value objects

In the variety of data structures that typical vMs with support for oop provide,
values do not fit in easily:

Abstractions [and hence, compound values| are not physical ob-
Jects [...], so to deal with them they must be represented or encoded
into objects. [...] Once a value has been represented as an object it
acquires some of the attributes of objects. Clearly, whenever a value
is to be manipulated in a computer it must be represented as the
state of some physical object. [70]

Accordingly, object-oriented programming systems and languages that sup-
port compound values in any way typically provide an object-oriented view on
these values. Hence, without loss of generality, in those systems “compound
value” and “value object” can be used synonymously. Accordingly, the data
structure descriptor for such value objects is called “value class” in class-based
00P systems — complementing value types as given above.

2.3.2 Identity

One of the implications of supporting compound values in vMs is that the
already complex question of object identity [79] becomes complicated. Com-
pound values are abstractions, but when represented in programming systems
that have strict notions of identity, two values that represent the same abstrac-
tion might not be coalesced. This is less of a concern in languages with pre-
dominantly functional aspects, since the many operations on data structures
create new data structures as a result. Therefore, relying on the identity of
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data structures would not work. That said, the question whether two entities
represent the same “thing” can and should be answered differently depending
on whether the data structures at hand have object character or value charac-
ter, which is the way the EGAL operation works [7]. The two languages that
are used later in this work notably do 7ot provide EGAL-esque comparison
methods by default. Racked provides eq?, eqv?, and equal?, for identity, nu-
meric equality, and user-defined equivalence, respectively. Smalltalk provides
== and =, which are object identity and user-defined equality, respectively. For
both system, the identity-based comparison methods cannot be changed and
the user-defined comparison method often defaults to the identity one. This
can hamper the adoption of compound values in both systems.

Nota bene: The question of whether two things are “the same”is a complex one
not only in concrete programming systems or abstract mathematics, but also in
several fields of philosophy [33]. An important question, which is related to the
optimization approach, is, whether a thing remains the same when all of its
parts are successively exchanged for new ones. There is no definitive answer.

2.3.3 JIT compilers

J1T compilation has become a mainstream technique for, among other reasons,
accelerating the execution of programs at run-time. After its first application
to Lisp in the 1960s, many other language implementations have benefited
from jIT compilers — from APL, Fortran, or Smalltalk and Self [4] to more
recent languages such as Java [8s] or JavaScript [s9].

One approach to writing J1T compilers is using t7acing [8]. A tracing j1T
compiler records the steps an interpreter takes in common execution paths
such as hot loops. The obtained instruction sequence is commonly called a
trace. This trace can on itself be optimized or transformed to machine code and
used instead of the interpreter to execute the same part of that program [76] at
higher speed. Tracing produces specialized instruction sequences, for example,
for one path in if-then—else constructs; if execution takes a different branch
later, execution switches back to use the interpreter. Tracing J1T compilers have
been successfully used for optimizing native code [8] and also for efficiently
executing object-oriented programs [49].
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Meta-tracing [12] takes this approach one step further by observing the
execution of the interpreter instead of the execution of the application pro-
gram. Hence, a resulting trace is not specific to a particular application but the
underlying interpreter [15, 19]. Therefore, it is not necessary for a language im-
plementer to program an optimized language-specific 1T compiler but rather
to provide a straightforward language-specific interpreter in R Python, a sub-
set of Python that allows type inference. Hints to the meta-tracing JIT enable
fine-tuning of the resulting y1T compiler [14]. RPython’s tracing j1T compiler
also contains a very powerful escape analysis [13], which is an important build-
ing block for the optimization described in this paper. Meta-tracing has been
most prominently applied to Python with PyPy [99].

SUMMARY

We laid out our notion of values, compound values, and niladic compound
values. We described homogeneous and heterogeneous data structures, and
gave examples for both. Further we introduced the concept and concrete
variants of data structure descriptors. We gave a synopsis of vMs and poten-
tial issues when providing compound values in vms.
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3 Efficient compound values

Any problem in computer science can be solved with
another level of indirection (David J. Wheeler)
(Butler W. Lampson)

This chapter proposes a memory efficient data structure representation that is
especially suited for compound values. Employing a specialized data structure
descriptor, we present an approach to inline compound values within other
compound values that reference them, thus using less memory. We suggest
a simple technique to access the contents of inlined compound values and
explain its contribution to an accelerated execution in the presence of certain
JIT compilers.

The key idea of our optimization is to look for common patterns in the
object graph at run-time. If a frequently appearing pattern is identified, we
introduce an abbreviated, inlined form of this pattern. Newly created com-
pound values that exhibit this pattern use the abbreviated form to save mem-
ory. For this chapter, we assume vMs with object-oriented capabilities, and
without loss of generality use the terms “compound value” and “value object”
interchangeably (cf. section 2.1).

3.1 SHAPES AS DATA STRUCTURE DESCRIPTORS

When providing data structures in a vM for the language level, it is usually
necessary to keep track of certain information. Depending on language seman-
tics, this typically achieved by equipping concrete instances of a data structure
with a descriptor that provides abstract information, for example with class
pointers, hidden classes, or maps (cf. section 2.2.1). Similar concrete instances
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share a descriptor as they are the same in an abstract sense, such as in concrete

instances of a class which share that same class.
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We introduce the shape, an extended data structure descriptor
that groups structurally similar concrete values. Just like ordinary
descriptors, a shape describes the abstract content of a concrete
value, including field layout and possible behavior. For value classes,
shapes can wrap a traditional class pointer or vtable, and provide

additional information. This includes the 477ty of a compound

FIGURE 1: Illustration of a de- value — that is, the number of fields it has. Moreover, when a
fault shape for a binary Node compound value refers to other compound values, the shape con-
(left), and a shape for an opti- ~ tains information about the shapes of each referred-to constituent.
mized variant of sucha Node Thus, shapes can be structurally recursive and form a composite
(right). Excerpt from figure 3. (cf. figure 1). However, in the base case the shape has no information

beyond the mere existence of a field. This is similar to traditional
descriptors and called the default shape for that value class (for example, cf. left
of figure 1). The extended case is described below.

3.2 COMPOUND VALUE REPRESENTATION WITH SHAPES

A straightforward representation for a given object in memory is a chunk
of memory that stores a reference to the objects’s descriptor (for example,
its class) first, followed by references for each of its fields. We call the latter
the storage of the compound value. The contents of this storage respectively
refer to other compound values, forming its constituents. An example of this
straightforward representation can be seen in figure 2, which shows a linked
list and a tree structure.

However, when common patterns in the reference graph of compound
values exist, the shape allows to convey that information without indirections
and provide inlined variants of a compound value cluster. That is, instead of
storing references to a sub-object, the sub-object’s fields are inlined into the
referencing object’s fields. This saves the pointer from the outer object to the
inlined one, the overhead of maintaining a separate object and the reference to
the inlined object’s class. This inlining is done recursively, if possible. During
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FIGURE 2: Straightforward compound value representation for a linked list Compound
and a tree. Top: the language view; bottom: execution environment view with value repre-
storage and shape sentation

with shapes

the inlining process, we need to maintain certain meta-information to keep
track of which fields belong to which level of an inlined compound value and
in order to remember the classes of the inlined objects of the object. This
information is provided by a compound value’s shape: the shape references a
sub-object’s shape directly if that sub-object was inlined into its outer object.
If no inlining occurs, we still give the object the default shape, which also
conveys the absence of inlining.

It is important to not just arbitrarily inline objects but to do so only for
frequent combinations of outer classes and inner classes. Since the shape needs
memory too, introducing shapes that are solely used by a single object would
actually waste memory.

3.2.1 Shapes and inlining

Shapes can be nested; they consist of sub-shapes for each field in the storage
of a compound value. A special, flat shape denotes unaltered access to object
fields (direct access shape, in all figures) and termination of shape nesting. It
conveys no more information than that a field exists and may contain data.
Compound values with these shapes are treated as black boxes, for example
scalar data or unoptimized objects that are stored directly (cf. default shapes
above). This is depicted in the bottom part of figure 2; all three nodes in the list
share the same shape, which denotes that each node consists of two references
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with direct access shapes. Likewise, the nodes of the tree in that figure share a
shape just like the first one, but with three references.

As long as no optimization has taken place, a compound value refers to the
default shape of its value class that solely consist of direct access sub-shapes. The
shapes in figure 2 are the default shapes for their compound values. Initially,
all compound values use a default shape. To reach a state where more complex
shapes can be used, our approach depends on auxiliary data.

To guide the overall optimization process, we keep track of all shapes that
we encounter during object creation. That way, we create a histogram of all
shapes used in the fields of compound values. We explain this profiling data,
which we call the bistory, in section 3.2.2.

Based on the history profiles, we determine the fields in a compound value
where inlining referenced compound values could be worthwhile. We infer
new shapes for value objects with certain referenced compound values inlined,
and record a transition from the old to the new shape. We call this process
shape recognition and explain it in section 3.2.3.

We collect all results from the shape recognition in a table that we call the
transformation rules. We explain its structure briefly in section 3.2.4.

3.2.2 History

The history is a table that maintains count of how often certain sub-shapes
are found in the fields of new compound values. It is a histogram of all sub-
shapes and simple to maintain, because the immutability of compound values
makes modifications to this table only necessary during value object creation.
At this point, all constituents of the new compound value are available and we
can count the occurrences of sub-shapes a specific positions in the compound
value. For example, the history table in figure 3 shows that for the shape s,,
there were 17 observations of the shape s, as sub-shape in position 1, while
shape s, has been observed s times in that position.

The most important operation on the history table is updating the count
of a [shape x position x sub-shape]—entry, besides initializing it to 1 on the
first encounter. It is possible to remove a history entry after it had been used
for creating a transformation rule, if desired.
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FIGURE 3: Left: Shapes comprise a class reference, an arity, and a graph of sub-

shapes. Right: Transformation rules describe substitutions for shapes which

are consulted during the inlining process; bistory contains a histogram of all

sub-shapes encountered at a certain position in a certain shape collected during

all compound value creation. (Key in appendix A)
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3.2.3 Shape recognition

During the creation of a compound value we first update the shape history
table and then check the counters associated with the shapes of the object’s
fields. Whenever one of these counters exceeds a preset threshold, we create a
new shape that combines the compound value’s current shape with the sub-
shape that exceeded the threshold. In this new shape, we replace the dzrect
access sub-shape at the position where the threshold was reached with the sub-
shape found in the history entry. We then create a new transformation rule
that maps from the old shape, the position, and the sub-shape at that position
to the newly created shape.

Considering figure 3 as example, shape s, would be the result of turning the
history entry (s,, 1, 5,, 17) into the transformation rule (s,, 1,5,)—s,.

3.2.4 Transformation rules

We maintain the set of all transformation rules as a lookup table that is used
during compound value creation. This table is only ever updated during shape
recognition and typically, rules are never removed from it. However, it is usu-
ally much smaller than the history table. An example transformation rule table
is shown in the top right of figure 3. Conceptually, we consider both history
and transformation rules to be tables. However, depending on implementa-
tion circumstances, it may be advisable to merge them into one table or make
them part of a shape object.

3.3 COMPRESSIONS THROUGH INLINING

The information of what shapes occur often and which shape transformations
to use can be applied at run-time to create compound values in a compressed
representation. The process of creating such a compressed compound value is
outlined as follows. As running example, we will use the combination of the
primitive datum “1” with a linked list into a new linked list shown in figure 4,
using the shapes and transformation rules shown in figure 3.
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that merges the “1” with the “2” object and a different shape is created instead. inlining

First, it is only necessary to consider compression when creating new com-
pound values. Since they are immutable, there is no need to consider compres-
sion on mutation. Therefore, the inlining process starts with the following
two components:

. the value class of the object that is to be created, and
. the elements that should constitute said object’s new fields.

In the given example, the class is Node/2 and the new fields are “1” and
a Node/2 compound value (“Node/2[2, ...]”). As pointed out earlier, every
value class has an associated default shape equivalent to a straightforward
representation. In the case of the class Node/2, this default shape corresponds
to shape s, in figure 3.

With the default shape and fields, the inlining algorithm as specified in
algorithm 1 can now commence. In our example, the initial shape s provided
as input to the algorithm is the default shape s, and the fields /" are “1” and
“Node/2[2,...]".

We now iterate over the fields (line 3) and consider each new field f; sepa-
rately. For that, we look at the sub-shape s; of the new field f;and try to look up
a substitute shape s’ (line s). If we have no substitution, for example because
none has been recorded yet or the new field f; is primitive data, the shape is
not substituted and we continue with the next element. However, if we find a
substitute (line 6), we replace the compound value f; with a copy of its storage
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ALGORITHM I: Determining shape and fields of a compound value during its
creation. The final shape is determined based on the object’s initial shape, its
constituents’ sub-shapes, and the transformation rules. The fields are then
inlined based on the shapes resulting in each step until final shape and the
final constituents have settled.

Input: s : Shape, f : [ Value Object]
i<0
while 7 < |f| do
S; ﬁ{:bﬂpﬁ}
5"« transformations . ors
ifs' +5 o
[ [fo,...,z'—1/ﬁ{5mmgf}rﬁ+1,...,|ﬂ]
S5
// restart with new storage
i<0
else
i—7+1
end
end
return s,

in the new fields /" (line 7); the compound value f; is now znlined. The new
shape 5" becomes the new compound value’s shape s (line 8) and the inlining
process is restarted (line 10) with the new shape and fields. That way, other
transformation rules can be applied that take effect because of the new shape.
Once no further transitions are found, the compound value’s shape s and the
current fields /" are returned as the shape and storage of the new compound
value (line 1).

In our example, the following happens: while iterating over the new fields
> weencounter “1” as the first field £. Since this is a primitive datum, no new
shape can be found and no shape change happens. The next new field f; to
consider is “Node/2[2, ...]”. The sub-shape s; of this value object is s, and we
can now look up a transformation rule for (s,, 1, s,) and find a substitution

2.8



s', s, (line 5). Thus, we inline the storage of f; by copying it into the new
fields /" at position 1. The original compound value “Node/2[2, ...]” remains
untouched and can still be referenced from other objects. The fields of f
are now “17, “2”, and “Node/2[3, ...]”. Furthermore, we change the shape of
the new compound value to s, (line 8). At that point, we restart the inlining
process by resetting the counter (line 10). This means, we again encounter “1”
as first field £ and no substitution happens. Moreover, the second field f] is
now “2”, so no substitution happens either. We continue with the third field
f>, which is “Node/2[3, ...]”. The sub-shape of this compound value is s,, and
since s is s,, we can look up a transformation rule for (s,, 2, s,) in the table.
However, no such transformation rule exists and, hence, no further inlining
is possible. Since we visited all fields, the algorithm terminates and returns
the compound value’s new shape s, and its new fields [1, 2, Node/2[3, ...]]
(line 15).

During the inlining process, potentially short-lived objects might be created.
This can happen when the storage of a compound value is inlined into its
surrounding list of fields. Typically, a new list of correct lengths is created and
the old list will no longer be referenced. In subsequent inlining steps, this new
list itself may be short-lived. To retain simplicity in our approach, we refrained
from introducing sophisticated mechanisms to avoid the allocation but rather
rely on the capabilities of elaborate Gcs and j1T compilers. We expect those
allocations to happen in tight loops, but more importantly, in a very restricted
scope. Hence, J1T compilers that provide good escape analysis and allocation
removal should be able to completely remove all allocations during the inlining
process, for example meta-tracing JIT compilers [13].

This shape inlining technique has two main advantages. First and foremost,
inlined compound values take up less space than individual, inter-referenced
compound values. But even more, the shape of a compound value provides
structural information in a manner the meta-tracing J1T compiler can specu-
late on. This is crucial for optimizing field access in a compound value.
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3.4 FIELD ACCESS

While optimization of data structures takes place during construction, we
have to apply the reverse during “deconstruction”, that is when accessing a
compound value referenced by another. This is no longer trivial, as several
(formerly referenced) compound values may have been inlined into their ref-
erencing value objects. Therefore, we create new compound values whenever
a reference is navigated, essentially reconstructing a copy of the original com-
pound value. We use the information form the shape to identify the parts
of the compound value’s storage that comprise the compound value to be
reconstructed. The structural information allows a direct mapping from the
language view of the data structure to the actually stored elements. In figure s,
the structural information in the shape of the leftmost list implies that the
first element of the storage is equivalent to the head of the language level node
compound value and the remaining three storage elements are equivalent to
the tail of that value object, as recored in the shape. This explains the middle
and the rest list have been

«_»
I

view in that figure, where both the element
reconstructed. Likewise, in the right part, the element “2” and another rest
list have been reconstructed.

Every language-level access to a field of compound value with compressed
storage will result in the reconstruction of the inline compound value. How-
ever, this reconstruction is completely invisible to developers. For example,
whether it is accessing the tail of a node compound value or accessing the
third element of a ternary tree repeatedly, the operations at the language level
remain unchanged and are not influenced by the shape inlining status of the
compound values at the implementation level.

Related approaches optimize this step in a different way. For example, ob-
jectinlining [114] uses inlining information to modify accessors. That way, the
access to contents of inlined objects can be as simple as pointer arithmetic with
offsets. This is particularly useful with mutable objects. However, this needs
knowledge about all callers of methods and, depending on the case, identi-
fication of combined accessors. For example, the head(tail(...))-call in figure 5
would have to be altered to directly access the second field of the compound
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FIGURE 5: Referenced compound value reconstruction. Accessing the second Configura-
item 2 of the list / « Node/2[1, Node/2[2, Node/2[3, Node/2[4, L ]]]] by two tion
operations bead (tail(l)) results in two reconstructed rest lists to be created. parameters

value. We explicitly avoid this kind of “deep” accessors and defer optimization
of the access patterns to JIT compilers.

3.5 CONFIGURATION PARAMETERS

The following three parameters may influence the performance of recognition
and inlining.

Maximum object size Only compound values smaller than this size are con-
sidered for inlining. Setting this to zero disables optimization; setting it to a
very high number might result in very large inlined data structures at run-time,

which might be undesirable.

Maximum shapedepth ~ The number of recursive shape occurrences per com-
pound value is bounded by this parameter. Only objects with a shape structure
whose depths is smaller than this value are considered for inlining. Setting this
to a low value may not catch all optimizable object shapes; setting it to a very
high number may lead to an excessive number of shapes at run-time should
there be a lot of value objects with no fields at all.

Substitution threshold The threshold for transformation rule creation (as
in section 3.2.4), when set to a zero or a very low value can lead to excessive
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transformation rule creation for compound value combinations that are only
rarely used. A very high number might inhibit the creation of such rules at all
and practically disables our optimization.

3.6 BENEFITS

With the shape inlining approach, fewer compound values need to be cre-
ated for long-lived data structures, since the references to the now-inlined
compound values are elided. Combining this with compound value recon-
struction and shape recognition, increasingly more memory can be saved the
longer a program runs. The shapes will be tailored to fit the specific running
application. That said, there may be cases where no memory can be saved,
especially in programs that only work on primitive data, flat data structures,
or with a high amount of sharing between data structures.

This approach can effectively increase the spatial locality of data by placing
pieces of data close together when they might be accessed in temporal proxim-
ity. Furthermore, it improves spacial density, as data whose storage is dispersed
prior to the application of approach can now be laid out more compactly and
contiguously. This fits well with the needs and assumptions of processor ar-
chitectures and operating systems which, on the one hand, operate on the
granularity of cache lines and, on the other hand, pages of memory .

SUMMARY

Shapes are shared data structure descriptors for compound values. During
compound value creation, shapes of constituents are recorded and transfor-
mation rules inferred. These rules are consulted and compound values are
created with their constituents inlined into the referring compound value.
On access, original constituent compound values are reconstructed.
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4 Extended shape-based optimizations

Any problem in computer science can be solved with

another level of indirection (David J. Wheeler)
(Butler W. Lampson)

...except for the problem of too many levels of indirection.

The presented approach to optimize the representation of compound values
can already save memory and execution time, but certain use cases may warrant
modifications of our approach. This chapter presents four extensions to the
base approach: handling not completely immutable data in section 4.1, repre-
sent simple values in an optimized fashion in section 4.2, automatically omit
certain invariant values in section 4.3, and re-using cross-run optimization
profiles in section 4.4.

4.1 RESTRICTED MUTABILITY WITH CELLS

Compound values per se do not subscribe to the notion of mutability: How-
ever, using compound values as a means to represent not inherently value-
like data structures for performance reasons can be an interesting trade-off
(cf. Just-in-time compilers benefit from values), that makes it possible to think
of mutable constituents to a compound value.

A common technique that aids the implementation of lexical scoping stem-
ming from the Lisp/Scheme world, typically called ce// or handles, can provide

‘cf. chapter 1: “[V]alues are abstractions, and hence atemporal, unchangeable, and non-
instantiated” [70].
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a necessary indirection [102]. This basic concept has been widely applied, in
interpreters and compilers alike, as well as memory managers and garbage
collectors. Effectively, bindings from names to values and/or functions are
represented using a one-element memory location, and any location in the
program that refers to a name — such as a variable or a function — rather
point to that binding instead of the value/function directly. That way, when
changing data stored “behind” a name, it is not necessary to chase all locations
to enact the change but rather only affect the binding. These bindings also
have been called ce/ls [47], which is adopted here. The Racket language even
provides simple language-level cells under the name “box”.

A cell is a mere stand-in for the data it holds. All operations on a cell are
actually subjected to the data it holds. Most importantly, the data a cell holds
can be changed, while the cell appears to be immutable to the data structure
itis put into. This is a common one-level-of-indirection engineering technique
present in languages that support data structures with optionally mutable
fields. The typical trade-off is between an increase in complexity and execution
time when accessing the data behind the cell, and the expected gain of a fully
immutable data structure, as shown in chapter 3 and chapter 7.

When applied to our approach, cells take the place of the content they
refer to in the constituents of other compound values, as shown in figure 6.
There can be an arbitrary number of referrers to a cell and, indirectly, to an
object encapsulated by it. This reflects the possibly many vm-level instances
of compound values that could refer to the mutable object. Changes to the
content of a cell are hence visible to all referring compound values with no
need of chasing referrers to pin down necessary changes. However, cells are
never inlined into other compound values.

4.1.1 Changes to the base approach

Since the default inlining step of our compound values optimization is based
on the compositional nature of those values, it either expects a simple value or
another composite one, the latter of which can be itself subject to the inlining
step. This dichotomy no longer holds in the presence of cells, as they are, in fact
possibly compound but— with regards to inlining— treated in the same way
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FIGURE 6: Cells connect compound values with mutable objects.

as simple values and are 70t to be inlined even when their shape hits the recog-
nition threshold. Hence, it is necessary to introduce a special kind of shape
that reflects the never-to-be-inlined nature of cells. With such a CellShape, the
algorithm can be adapted to also allow for cells, either by changing the two-
way shape-switch to a three-way switch or by deferring the responsibility of
what happens upon inlining to the shape itself, that is, applying plain poly-
morphy. Refer to algorithm 2 for a possible adaption of algorithm 1 for cell
shapes.

Moreover, every access to a compound value’s constituents has to be aug-
mented by a check for eventual cells so that the cell’s actual content can be
accessed instead. That being said, the way access to inlined compound values
works suggests an implementation that can easily anticipate that. Access to
a compound value’s constituent can be patched through its sub-shape repre-
sentation and dispatching on that. The base cases, direct access and inlined
compound shape, remain unaltered, and additionally, a cell shape instructs
to reach into the compound value’s storage and 7z addition dereference one
more time.

4.1.2 Impact
Cells present a comparatively easy way to re-introduce mutability for com-
pound values in case there are strong arguments for it and few instances of

it. The changes to the base approach are limited and, depending on the way
implemented, can be handled in just one more case for merging and access,
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ALGORITHM 2: Adaption of shape and field determination to cells. There is no
lookup of transformation rules for cells, as they must inhibit inlining of their
possibly mutable content.

Input: 5 : Shape, f : [ Value Object]
i<0
while 7 < |f| do
S; ﬁ{:bﬂpﬁ}
ff ;= SCell
s« s//do not inline cells
else
5"« transformations . _ors
505,
end
ifs' +s
[ [ﬁ),...,l'—1/fz'{ffmgf}rﬁ+1,...,|ﬂ]
S5
// restart with new storage
7<0
else
i—7+1
end
end
returns,
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FIGURE 7: Typed cells connect compound values with mutable objects of
known type in an optimized way.

or merely one more vM-level class to defer merging and access to. If the latter
infrastructure is already present— say, shapes are represented by a class hierar-
chy — this should be doable in rather few lines of code. By allowing restricted
mutability, our approach can be used in more broad circumstances without a
substantial loss of performance, if used sparingly.

4.1.3 Typed mutable cells

The fact that cells and their content cannot ever be inlined into compound
values but are always shared between all referrers also means that a cell is actu-
ally the central point of information on its content. The cell “knows” what it
refers to, and if and when it changes. This makes it possible to speculate on
the content of a cell. In that regard, insights gained from, for example, storage
strategies [16, 91] can be applied.

For example, when a cell refers to a number of some kind, this knowledge
can be use to actually store the number zzside the cell, saving one indirection,
as in figure 7. Similar to the way storage strategies [16] work for larger objects
or arrays, this automatic unboxing can save memory and decrease execution
time. In principle, any type or property can be combined into the cell, be it
that the cell references an integer, a float, or a certain kind of special object.
Such a typed cell can alleviate the fact that a cell by itself inhibits information
of its content to be available to its referrers, that is, other compound values.
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FIGURE 8: Shaped cells connect compound values with other compound values
but inhibit optimization.

However, in a dynamic language, mutations to the cell’s content have to
take into account that the type of the object to be stored can be different from
that of the cell. In this case, transition methods just like with storage strategies
have to be in place, with virtually the same benefits and liabilities.

4.1.4 Shaped cells

In the special case that a cells content is, in fact, a compound value, it is possible
to specialize the cell to be aware of the content’s shape. This could be beneficial
in cases where making copies of rather large compound values is unwelcome
and, for performance reasons, the very instance of a compound value should
be shared between several other compound values. A shaped cell can save the
indirection of directing the query for the shape of the cell’s content to the
pointed-to compound value and rather return the resulting shape itself, as
depicted in figure 8.

In that case, the propagation of the shape could go even further, as to also
introduce an indirection in the shape of the compound value that references
a shaped cell. In this case, the parent’s shape would refer to a cell shape cell
that directly references the shaped cell in a manner that makes the parent
compound value’s shape mutable. However, as this will surely increase the
complexity of handling shapes during both inlining and reconstruction, this
approach is not considered further here.
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4.1.5 Limitations

With cells, it is theoretically possible to introduce cycles and recursion in a
compound value. This violates one of the basic assumption of values and
may lead to surprising effects. Therefore, cells with compound value contents
should be used rather sparingly.

If mutability is predominant, using cells might be ill-suited. Rather than
yielding performance benefits, the additional indirections introduced by an ex-
pectedly large number of cells will likely result in increased memory usage and
reduced execution speed. Self’s maps [24] and V8’s hidden classes [3] provide
better approaches to such usage characteristics.

Although there are no substantial changes necessary to the base approach,
it has to be noted that introducing cells into the shape-based inlining opti-
mization will inevitably increase its complexity, if only ever so slightly. Good
engineering practices have to be in place to handle that.

To profit from typed cells, it can be tempting to replicate optimizations
from, for example, storage strategy representation mechanisms or the shape-
based inlining itself. This can increase the complexity of a typed cells imple-
mentation substantially to the point that parallel optimization implementa-
tions can emerge. It is therefore advisable to use typed cells for only the most
frequent cases, such as unboxed numbers.

Lastly, the presence of cells can influence how compound values are em-
ployed by developers using a programming system with cells and compound
values. It might be less predictable in which cases optimization are applica-
ble and in which not, as it is not observable from the programming language
whether cells are present in certain compound values. Moreover, cells allow
to use mutable elements within originally immutable structures, which could
lead to an overuse of mutable elements. This in turn would render the whole
approach ineftective.
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4.2 SHAPE-GUIDED AUTOMATIC UNBOXING

A common way to implement the semantics of simple values in a program-
ming system is to represent them boxed. That is, to facilitate a uniform han-
dling of language-level objects, objects that represent for example numbers
are wrapped at the vM-level. This makes it possible to adjust the mapping
from language-level entities to vM-level ones while maintaining control over
its semantics. Simply put, by having a vM-level class Number, that wraps what
on the language-level is a 2, it is possible on the vM-level to decide how sub-
tleties like rounding issues, widening, or type coercion should take place. This
vM-level class is not visible to the language-level, but can partake uniformly in
interactions with other entities. For example, consider another vm-level class
Array that is the representation of a language-level list. It is now possible to
express questions such as equality, containment, or inter-reference uniformly,
given the interface of a Number object is compatible with that of an Array. More-
over, it is then unnecessary to provide specialized versions of Array to express
both containment of entities like numbers or references, as eftectively boxing
turns primitive values into references.

This comes at a cost, as every operation on numbers now needs a derefer-
ence, and all calculations possibly result in multiple allocations of such hulls
for numbers. There are different approaches to alleviate the inevitable per-
formance impact of boxed values. The jvM and Java, the language, provide
a primitive—object duality for certain values, especially numbers, and typed
collections. That way, boxed numbers can be mixed with other objects when
necessary, but primitive numbers can be used in specialized collections and
especially most calculations to control performance. Smalltalk-80 and other
dynamic languages “cheat” by representing values like numbers in a tagged
fashion, that makes it easy to identify them on the language level, intermix
and compare them with other objects, and maintain acceptable performance.
However, tagging requires to actually check for tagged object virtually every-
where in the vM implementation. Therefore some language implementations,
for example Python/CPython, rather represent numbers and similar prim-
itives in a boxed fashion, and maintain a cache of often-used boxed objects.
That way, at least the impact of frequent allocations it mitigated.
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In environments that maintain boxed values, a typical optimization on the
vM-level is to unbox these values wherever it is safe to do so. For example, if a
JIT can infer that the addition of three numbers will, in fact, always involve
only numbers, it might unbox all three values before carrying out the addition.
In a typical, unoptimized case, that would not happen and after the first ad-
dition, the primitive result would be boxed just to be unboxed again for the
second addition. Many such optimization exist, whether for individual opera-
tions, whole methods or instruction traces (for example, via escape analysis),
or collections (for example, with storage strategies).

In the light of these constraints, the shape-based compound value represen-
tation can be extended to guide automatic unboxing of primitive values into
suitable representations.

4.2.1 Changes to base approach

In the base approach, inlining the storage of a constituent into its referencing
compound value means that all storage elements become part of the referenc-
ing compound value’s storage. For automatic unboxing, a constituent that
represents a boxed primitive value has to be equipped with a unique shape per
primitive type. For example, all boxed integers have a special BoxedInteger shape
instead of a direct access shape, boxed floats a BoxedFloat shape and so on. Based
on these shapes, during the inlining process, the value of such boxed prim-
itive is selected for merging into the referencing compound value’s storage
instead of a storage. Or phrased differently: boxed primitive values are implic-
itly treated as unary compound values with a possibly type-specific storage.
Refer to algorithm 3 for a possible adaption of algorithm 1 for shape-guided
unboxing.

4.2.2 Impact
Conveying boxing information via shapes lifts vM-level storage containers
from having to introspect contents for optimization and potential unboxing.

This responsibility is delegated to the inlining process. We believe that equip-
ping shapes with information on primitive types in this way can also aid j1T
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ALGORITHM 3: Adaption of shape and field determination to automatic un-

boxing.
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Input: s : Shape, [ : [ Value Object]
<0

while 7 < |f| do

end

S; < ﬁ{:bape}
// dispatch on special direct-access shapes
Z:f‘ i = SBoxchntegcr
C «— ﬁ{zhtcgervﬂlm}
elsez'f Si = SBoxedFloat
c <—ﬁ{ﬂmtmlm}
elseif s, = ...

else
c @ﬁ{starage}

end

s' « transformations . ors

2,5

ifs' +s
/e ,[fo,...,z'—hfr z‘+1,...,|f|]
S5
// restart with new storage
7<0

else
i—7+1

end

return s,



compilers in applying more broad optimizations. Also, this technique serves a
similar purpose as poznter tagging, meaning that both shapes for boxed values
and tagging provide a way to support primitive and “non-primitive” objects
at the same time. However, the shapes are more versatile, as they inherently
allow more types to be conveyed than with tagging. Typically, pointer tagging
with integers do not support more that 8 types on contemporary 64 bit sys-
tems, and NaN-tagging is usually only useful if the language has floating point
numbers as its base numeric type, which is the case, for example, in Lua and
JavaScript.

However, shape-guided unboxing causes a complexity increase in the whole
inlining process. First, an individual unboxing step has to devised for each
supported boxed primitive type; in algorithm 3, we have only given two ex-
amples for simplicity, but the list could be much longer. Second, if the vm
implementation level does not support polymorphic storage to implement
language-level data structures, line 17 of algorithm 3 might be vastly more
complex to achieve. In the worst case, the vM level has to provide »™ storage
variants for a maximum length of 72 and 7 boxed types. If both are bounded
reasonably, however, this optimization can be worthwhile.

4.3 IMMUTABLE BOOLEAN FIELD ELISION VIA SHAPES

Previous research on record data structures [94] has shown that several pro-
gramming systems hold a notion of invariant values. For example, Scheme and
Racket boolean comparisons rely on the fact that every value that is zor the
value #f is considered true. This has as effect that the value #f is treated specially
in many places. Similarly, the nil object is special in Smalltalk. Both have in
common that they are unique in the system and typically well-known to the
vM level. This means, for example, that in Smalltalk programs, the identity of
nil is universally known and checking for its identity heavily optimized. While
this might seem contrary to the required properties of compound values, it is
however possible to use this fact to the advantage of the inlining process.

We extend our approach to represent invariant values in a certain, optimized
way by giving them a special shape. The fundamental idea is to not szore the

43

Immutable
boolean field
elision via

shapes



Extended
shape-based
optimiza-
tions

special value inside compound values but rather indicate its presence through
the shape of a compound value. As basis, we use our previous research on this
topic [94], which applied the concept to structures of Racket in the Pycket
implementation.

In Racket, the truth value #f is ubiquitous and often used as default value.
When #f is stored in immutable fields of data structures, these are often im-
mutable boolean fields (1BFs). We augmented the existing structure metadata
by an indicator whether a certain field is actually an 1B¥. Using this indicator,
itis possible to omit the #f from the fields of a new structure, which saves space.
(Please refer to appendix D for details of this work in context of Pycket.)

With minor modifications to the notion of shapes, certain aspects of the
immutable boolean field elision (1BFE) in Pycket can be intuitively expressed
with our approach.

4.3.1 Changes to base approach

For our approach, a specialized shape can act as an indicator in the sense
of immutable boolean field elision (1BFE)? That is, similar to unboxing, the
language-special value is equipped with a special shape. During the inlining
process, rather than inlining any storage or unboxing a value, nothing is stored
in the referencing compound value. Refer to algorithm 4 for a possible adap-
tion of algorithm 1 for shape-guided unboxing. Note that this variant requires
the learning step to be adapted, too. During recognition, it is now necessary
to create new shapes that replace a default direct access shape by a kind of
IBFEShape instead of a shape denoting a compound value. It is conceivable to
support more than exactly one language-special value, for example, to support
atrue as well as a false value. In that case, a more complex condition is necessary
in line 7 of algorithm 4 and the learning step has to cope for multiple different
1BFE shapes. Upon field access, which is also subjected to a compound value’s
shape, the special value is returned instead of accessing the storage, just as with
the IBFE approach.

*Since this approach supports special values beyond booleans, “immutable singleton field”
would be more apt. For consistency, we will stick with the name from our previous work.
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ALGORITHM 4: Adaption of shape and field determination to immutable

boolean field elision

Input: s : Shape, [ : [ Value Object]
7«0
while 7 < |f|do
S; f;{;/mpe}
s tmmj“ormatz’omj,l,’:i ors
ifs' +5
’:f Si = SBr
// elide immutable boolean freld
[ [fo,...,z'—lf z'+1,.4.,|f\]

else
f [ﬁ),...,z'—lrfz'{ffﬂmgf}rﬁ+1,...,y‘\]
end
s
// restart with new storage
7«0
else
i—i+1
end
end
return s, f
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4.3.2 Impact

This extension to the base approach is worthwhile whenever programming
systems or languages make extensive use of a very small number of special
values. We have shown that for #f in Racket [94], and nil in Smalltalk [o1]. In
such cases, the memory consumption can be drastically reduced. However,
similar to the unboxing approach, the complexity of the merging algorithm
as well as the number of shapes can increase manifold; in cases where many
language-special values have to be supported — for example, when consider-
ing characters —, the size and complexity of managing the metadata might
outweigh their gains.

4.4 STABILITY FOR SUSTAINABLE PERFORMANCE

The shape recognition approach shares a characteristic with typical optimizing
JiT compilers. They collect profiling data during un-optimized execution that
serve as reasoning base for creating optimized code. This is often called the
learning phase or warm-up.

4.4.1 Warm-up times

Collecting the profiling data takes time, especially because profiling happens
during un-optimized execution. This warm-up time is more severe in our
shape recognition approach, as new shapes and transformations between shapes
can only happen incrementally. For example, it is not easily possible to go from
an un-inlined compound value to a three-times inlined compound value in
one step in the first run; there are several transformations from an un-inlined
to a one-time inlined compound value necessary to actually create a two-times
inlined compound value in the first place. This is, however, intentional: to not
clutter the transformation table of a shape with too many transformations,
these transformations are only created after a certain number of shape obser-

vations, which is recorded in the shapes history (cf. figure 3). This threshold



(cf. section 3.5) has also to be reached for every subsequent shape observation
to create a new one that describes a more inlined compound value.

4.4.2 Cross-run profiling data

To minimize warm-up times, an offline? cache can be used for profiling data
and, moreover, the transition rules derived from them. These data are work-
load-specific and therefore typically only used for a single program run. How-
ever, the structure of the profiling data and transition rules as presented are
able to compensate that. If cached data from a previous execution is used for a
work-load that does not fit the cached data, the worst that could happen is that
no optimizations are applicable and the execution environment has to re-do
the learning phase and warm-up its profiling data. That is, the execution for
the unsuitable work-load would act as if no cached profiling data was present
whatsoever.

However, if the work-load fits that of a previous run close enough, the
profiling data and, more importantly, the transformation rules can be used
right away. This effect can be seen in figure 9: in figure 9a, where warm-up is
present, intermediate shapes and transitions can be observed (thin lines, low
number of observations), whereas in figure 9b, using cached data and rules,
the intermediates are gone. There are fewer intermediate shapes and fewer
branches, indicating a higher performance.

Re-using profiling and transformation data leads to increasingly stable per-
formance for similar work-loads, since more optimized data structures can be
used directly after start-up. Note that the recognition mechanism is not, in
fact, disabled when profiling and transformation data are re-used but rather is
invoked less often. When a work-load is executed that does not fit the cached
data, the recognition mechanism updates the profiling and transformation
data accordingly. These new learned data are stored together with the already
cached data at the end of the execution. That way, a comprehensive set of
optimization information can be collected over time.

3that is, persistent across program executions.
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Ccons..cons2{l, cons2{l, [}}

Lreverse.cons2{l, [}

Lr_acc.cons2{l, cons2{l, cons2{, I}}}.cons2{l, I}

Lr_acc.cons2{l, I}.cons2{l, cons2{Xcons2{l, [}}}

\ Lr_acc.cons2({l, cons2{l, cons{l, I}}}.cons2{l, cons2{l, cons{l, I}}} \ \ Lr_acc.cons2({l, cons2{l, [}}.cons2{l, cons2{l, cons2{, I}}} \

[t

Lr_acc.nil0{).cons2(l,

Lr_acc.cons2{l, cons2{l, [}}.cons2(l, I}

Cons..cons2{1, cons2(l, cons2(!, 1}

(a) With warm-up; no cached data

Notes on notation:

The stronger the arrow, the more observations. Observations of
shapes in value constructions are prefixed with a “C”", followed
by the name and the sub-shapes. Observations of shapes in
lambda applications are prefixed with a “L", followed by the
function name (if known) and the shapes of the arguments, sep-
arated by dots. Shapes are denoted as “nameN{sub-shape...}"
with N being the number of fields in a described compound
value, (here only “nil” with no fields and “cons” with two fields);
direct access shapes are denoted as “|".

Example: Lr_acc.nilo{}.cons2{l, I} -- function “r_acc” with a com-
pound value of shape “nil” (no field) and no sub-shapes in the
first argument and a compound value of shape “cons” (two
fields) with two direct-access shapes in the second argument.

Lreverse.cons2{. I}

[ Lr_acc.cons2, 13.cons2(l, cons2(l, cons2{, 13} |

B33
U

Ceons..cons2{l, cons2{l, cons2{l, 1)}
Lr_acc.nilog.cons2{, I}

(8) No warm-up; with cached data

FIGURE 9: Transitions between observed shapes during the execution of revers-
ing a 10 0oo element list. Fewer lines is better.
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4.4.3 Changes to base approach

Since the use of cross-run profile data is orthogonal to the shape inlining
approach, no change to the inlining approach itself is necessary. However,
the environment has to ensure that shapes are stored on disk during program
termination and properly loaded at program start up.

4.4.4 Impact

Reusing shapes and transition rules across program runs can reduce impact
on the learning process. Moreover, if desired, this can be extended to the point
that cross-run data is only collected once and then re-used multiple times.
At the same time, the learning part of our approach could be disabled and
the whole inlining process could rely solely on pre-recorded shapes and trans-
formations. This could improve performance predictability, as warm-up is
essentially eliminated.

However, the persistence and reconstruction steps can lead to a more com-
plex startup procedure and might require special handling of abnormal pro-
gram transformation, as it is unclear, whether the recorded data is in a valid
state.

4.5 DISCUSSION

While the approach in chapter 3 is viable on its own, the four extensions pre-
sented here can ease the integration with existing systems or enhance certain
aspects of the original approach.

The inclusion of cells to support mutable parts of compound values can be
a workable method integrate compound values with programming languages
that cannot work without mutable state in certain areas. Moreover, the pres-
ence of cells in the approach has no performance impact when they are not
used. Thus, if only a small fraction of all data structures can be expected to
need modification, the inclusion of cells can be valuable. However, the benefit
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of the advanced cell concepts, typed cells and shaped cells, depends more on
the languages’ semantics and the target implementations’ architecture.

Automatic unboxing is a key performance technique, which can also be
implemented using shapes. Particularly in systems that have a dichotomy be-
tween primitive and object-based data types, concepts that resemble values are
introduced to control boxing and unbox of data structures. However, this can
complicate the adoption of a shape-based approach as shown here. It is likely
that optimizations for unboxing already exist and these are likely to interfere
with the shape-based approach.

Languages and systems with a small number of special but ubiquitous val-
ues can benefit from 1BFE. If the approach from chapter 3 is employed, then
using the presented shape-based approach to represent such special values
can be helpful and implemented with little overhead. The key factor here is
whether the value is frequently used as the default value.

The shape-based inlining approach has an inherent warm-up phase to de-
termine transformation rules. However, when the expected execution time of
programs is very short, for example, in scripts, there might not be enough time
to create optimized compound values. In this case it might be desirable to re-
use optimization data from previous program execution. Likewise, when it is
crucial to have peak performance right from the start of a program, such cross-
run profiling and optimization data can be beneficial. Since this approach is
mostly orthogonal to the other parts of the shape-based optimization, this
extension to our approach is often straightforward to provide.

SUMMARY

The shape based inlining can be extended with limited mutability, automatic
unboxing, elision of few constant values, and cross-run optimization data.
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5 Compound values in action

The ship wherein Theseus and the youth of Athens returned from Crete had
thirty oars, and was preserved by the Athenians down even to the time of
Demetrius Phalereus, for they took away the old planks as they decayed, putting
in new and stronger timber in their places, insomuch that this ship became a
standing example among the philosophers, for the logical question of things
that grow; one side holding that the ship remained the same, and the other
contending that it was not the same. (Plutarch, “Theseus”)

This chapter presents an implementation of the approach set forth in the
preceding two chapters as feasibility prototype. The priorities of this imple-
mentation are to show

that the algorithms and data structures presented can be implemented,
that the implementation is achievable with comparatively low effort, and
that the postulated performance benefits can be shown to exist.

Therefore, the prototype comprises a new programming system with a focus
on these priorities. We make use of the R Python toolchain, as its meta-tracing
JIT compiler provides the necessary features expected by our algorithm.

§5.I BEST-CASE PROTOTYPE SYSTEM: THESEUS

The prototype, named Theseus [90], implements a minuscule programming
system with a simple execution model. It provides A-expressions with pattern
matching as the sole control structure. There is only one structured data type
available, compound values — designated as “constructors” after the ML-style
algebraic data types of the same name.
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A.

1. bata(_, b), ¢ — Other(c, b)
2. arg, _

(plus)

A. — C(1, 2.0, “hi”, ‘you’)

values in
action

— arg

The programming system uses a new language that provides these very
constructs. A program in this system can consist of

values (including A-expressions),
applications, and
definitions (or assignments/name-to-value-bindings).

Values in Theseus support a small number of scalar data types, namely num-
bers and strings. The structured data type s called “constructor” and explained
below. Behavior in Theseus is expressed as A-expressions. The more traditional
Church-style notation is not supported in favor to writing patterns for match-
ing in a readable way. Each A-expression in our system consists of a number
of (pattern — expression) pairs. Upon application, the argu-
ments are matched against a list of patterns in order of textual
occurrence. Once a pattern matches, variable names in that
pattern are bound to values from the arguments and the actual
expression associated is evaluated. Patterns can be specified in a
structured manner. When a A-expression is applied to construc-
tors, matching will be done on the structure of these construc-
tors. Hence, when a pattern contains constructors and (free) names within
such a pattern, these names can be bound to constituents of the arguments.
Apart from this, matching is done on a value-equivalence basis, as types per se
are not an exposed concept in our system. The pattern matching is inspired by
Prolog’s unification, but decidedly does not provide its two-way matching; it
does, however, include the “do-not-care” free variable for patterns (_). Besides
A-expressions, the language supports {())-enclosed primitives, which can be ap-
plied similarly, but instead of being backed by rules, patterns, and expressions,
their behavior is defined within the vm.

Constructors comprise a “tag” and constituents; the tag is used to name
a group of compound values belonging together and match against during
pattern matching. Constructor tags do not have to be declared, they merely
exist and can be observed during compound value construction and pattern
matching in A-expressions. This also means that there is no dedicated func-
tionality to access the constituents of a compound value, pattern matching
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is the sole way to do that. An example to emulate access via utility functions
(that is, A-expressions bound to names) can be found in listing 3.

Expressions at the top-level of a program are evaluated sequentially. There is
no way to express a sequence of expressions within a A-expression. To achieve
sequential execution, a kind-of continuation passing style must be employed,
with the “next” expression being passed as argument to an application. Values
can be referred to by variables, both top-level and pattern-bound ones; scoping
is lexical.

Application of A-expression to values is explicit, in contrast to most pop-
ular languages, denoted by u(...). The first argument to the w denotes the
A-expression to be evaluated, the rest is passed as arguments to
that A-expression. ey By 2)

Definitions are only allowed at the top-level of a program.
Assignable, local variables do not exist in favor of name-

name = ..
bindings that originate from pattern matching. References

Theseus

pu(A. x — Data(x), 17)

to globally defined names are evaluated eagerly, there is N0 ape := A. . name ..

dynamic lookup. This is possible since all data structures a. name

are immutable, following from compound value characteris-

tics. However, to support recursion, definitions binding a A- # comment

expression to a name are treated specially so that the name can

also be used within the expression itself. Similarly, forward-declarations of

such names is possible to support co-recursion. This is the sole instance of

names being able to change its meaning and not considered a defining feature

of the language. While it would be possible to omit this inelegant special case

with Curry’s Y combinator [30, page 178] or similar techniques, concerns for

practicability and readability — at least partially — lead to this shortcut.
Comments are provided in a way typically used in scripting languages; ev-

erything following a # character until the end of line is treated as non-existent.
The grammar for this language is given in appendix C.1. An example pro-

gram in Theseus with the well-known map function can be found in listing 4.
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LisTING 3: Example for cons cells provided with function-like A-expressions
cons, head, and tail.

# type Nil, Cons(,)

cons = A. A, B~ Cons(A, B)
head := A. Cons(A, B) » A
tail := A. Cons(A, B) » B

LISTING 4: Example program for Theseus that implements the “map” function,
which applies another function to all elements of a list.

# type Nil, Cons(,)
map := A.
1. fun, Nil() ~ Nil()
2. fun, Cons(A, B) ~ Cons(p(fun, A), p(map, fun, B))

5.2 PROTOTYPE IMPLEMENTATION

Theseus is implemented as an interpreter vm with a direct application of the
control, environment, and continuation (CEK)-machine [43]. We used the
RPython tool chain to incorporate its meta-tracing j1T compiler [12], hence,
the source language of our v is Python. Moreover, we make use of a facility
in the tool chain, a parser generator, to keep the implementation overhead
of syntax elements to a minimum. While Theseus is simple and probably
even easier to implement without a parser generator, early development stages
required constant changes to the grammar. This was best met with the RPy-
thon-integrated tool, as it could be used incrementally, without generating
code. The grammar in appendix C.1is the actual input to that generator, which
in turn creates callbacks for all tokens and rules (except when enclosed in angle

brackets).
s.2.1 Shape determination and inlining
The application of algorithm 1 to Theseus is a rather direct mapping with few

exceptions (cf. listing 5). However, since Theseus implements shapes as classes,
the transformation table and the history are actually properties of a shape, and

54



L1STING 5: Implementation of the merging and inlining algorithm in Theseus

class CompoundShape(Shape):
@jit.unroll_safe
def merge(self, storage):
current_storage = storage
index =0
shape = self
storage_len = shape.storage_width()
while index < storage_len:
child = current_storage[index]
subshape = child.shape()
new_shape = shape.get_transformation(index, subshape)
if new_shape is not shape:
child_storage = child.get_storage()
new_storage = _splice(current_storage, storage_len, index,
child_storage, subshape.storage_width())
current_storage = new_storage
shape = new_shape
storage_len = shape.storage_width()
# rewind over new storage
index = 0
else:
index += 1
return (shape, current_storage)

the determination and inlining algorithm is implemented as a method instead
of a function. Because of that the method is named “merge”: starting from a
tag’s default shape, and given a compound value’s constituents, sub-objects
are potentially merged into the running storage.

For integration with the framework, the method is decorated with the an-
notation @jit.unroll_safe, which tells the RPython jIT compiler to consider
this method for tracing regardless of the fact that it contains a loop (line 8).
The j1T compiler normally does not consider methods that contain loops to
avoid code explosion during loop unrolling. However, since the loop here is
bounded by object size, and objects are not expected to be arbitrarily large in
Theseus, unrolling and tracing is safe here.
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LISTING 6: Implementation of the shape integration and storage selection for
Theseus constructors.

class W_Constructor(W_Object):
_immutable_fields_ = [ ]
def __init__(self, shape):

self._shape = shape
def get_tag(self):

return self.shape()._tag
def get_children(self):

return self.shape().get_children(self)
def get_child(self, index):

return self.shape().get_child(self, index)
def get_number_of_children(self):

return self.shape().get_number_of_direct_children()
def shape(self):

return jit.promote(self._shape)
@staticmethod
def construct(shape, storage):

return W_Constructor.make(storage, shape)

5.2.2 Constructors

The compound values of Theseus, constructors, are implemented as essen-
tially data holders with a shape and a certain number of fields. However, to
assist RPython and the j1T compiler, we chose not to represent the storage
of a constructor as simple R Python list. While this would be very easy to im-
plement and manage, the characteristics of these lists within the RPython
framework are actually too dynamic and account for mutability, which is a
non-issue for compound values. Also, we expect constructors not to be very
large, wich is in line with experience from other languages that are in need
of storage optimization [16]. We hence represent constructors as instances of
vM-level classes, which are generated during the RPython process. We gener-
ate one class for each potential object size up to a certain number of fields—
currently 31, so that objects on x86_64 machines do not exceed the size of
256 B—and one class with an array as storage to represent larger objects. Ad-
ditionally, for very small constructors that comprise numbers, we generate a
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few extra classes so that the J1T compiler is made aware of the types of these
fields. Moreover, these classes implement automatic unboxing akin to the idea
presented in section 4.2, but not as generalized as given there.

Constructors defer all access to their shapes, which in turn are aware of
any inlining that has taken place, and then can meaningfully access the tag or
individual sub-objects of a constructor. That way, the constructor implemen-
tation is very simple yet extensible by the shape (cf. listing 6). This can make
future additions of shape-guided optimizations easy to implement.

Constructors use a certain integration with the j1T compiler. In line 14 of
listing 6, the shape of a structure is “promoted”. This special call instructs
the J1T compiler to promote [14, § 3.1] the given value. This ties the object
identity of this value to a certain trace. As long as the value stays the same,
the same trace keeps being recorded. It is a typical hint to give to a meta-
tracing JIT compiler in certain locations of a program, and certainly is useful
for our shapes. Using promote ensures that the J1T compiler can specialize its
traces for different shapes individually. A concrete shape inherently conveys
the information of what is inlined in a compound value. By promoting the
shape, the J1T compiler can use this information to optimize for the actual
presence or absence of inlined fields.

5.2.3 Implementation characteristics

The vM consists of roughly so Python classes and 240 methods which are dis-
tributed among only a handful of files. The implementation has been carefully
unit-tested during development to make sure that various complex substitu-
tions and compressions work correctly.

All in all, the implementation consists of ~10 000 source lines of code,
where ~1600 belong to unit tests. The grammar input to the parser generator
accounts for less than 100 lines— the generated parse, however, accounts for
70 % of all source lines of code in Theseus, that is ~5700. Since the generated
code can be omitted, the core of Theseus amounts to ~2600 lines of Python.
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5.3 INTERACTION WITH THE JIT COMPILER

The implementation, following the algorithm, provides the intended mem-
ory usage reduction. However, shape recognition, shape inlining, and recon-
structed reference access combined, do not yield a performance increase on
their own. In fact, implementing the approach straightforwardly can yield
significantly worse performance than not using the approach. This is due to
the constant checking of the transformation rules every time a new value ob-
ject is created. Additionally, reading inlined fields of compressed value objects
results in the allocation of intermediate data structures. This is of course not
the case in the naive representation. Hence, the presence of the j1T compiler
is necessary to begin with.

To improve performance, the JIT compiler needs to reduce the overhead
of these operations. The first step is to treat the transformation tables as con-
stant when a function is compiled. This allows the j1T compiler to compile
compound value creation down to a series of type checks for the types of the
referenced compound values. We instruct the j1T compiler to treat transfor-
mation tables as constant after filling it with enough information.

Second, we have to avoid the otherwise necessary reconstruction of refer-
enced compound values when it is being read from a compound value it has
been inlined into. For that, the observation that most of these intermediate
compound values are actually short-lived is crucial; most compound values
are created just to be either immediately discarded or consumed in another,
typically larger data structure. As a concrete example, typical linked list opera-
tions deconstruct the list they are working on. If we access the tail of a linked
list node that has an inlined component (as the transition from left to middle
in figure 5 on page 31), we need to reconstruct the tail. However, that tail it-
self is usually deconstructed soon into its components (as the transition from
middle to right in the same figure). This allows the tracing j1T compiler to
optimize the reading of fields that need reconstruction. Since the compound
values allocated when reconstructing a field are short-lived, the built-in escape
analysis and allocation removal [13] will fully remove their allocation and thus
remove the overhead of reconstruction.
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5.4 DISCUSSION

The data structures and algorithms described in chapter 3 are indeed feasible
to implement. As shown above, the implementation presented is— compared
with other vM implementations — rather small and self-contained. With less
than 3000 source lines of Python code, this artifact is arguably simple; the only
deviations from a most simplistic implementation are the actual inclusion of
the shape indirection and hence indirections for the creation of and the access
to constructors, as well as the storage selection, laid out above. As the last
of the stated priorities, we show existence of a performance benefit later in
chapter 7.

Reviewing the challenges introduced in section 1.1, our implementation
is designed to provide a uniform language view of compound values (chal-
lenge 1), regardless of the way which representation or inlining is chosen or
discovered. Faithfully applying the recognition steps yields dynamic adaption
of inlining for different usage patterns, which is hence again supported by de-
sign, (challenge 2). Since only compound values exist in Theseus, challenge 3
does not apply here.

Theseus provides a concise and simple example of the feasibility of our pro-
posed approach, and while with limited functionality compared with general
purpose language, it can well serve as a baseline for qualitative and quantitative
comparison.

SUMMARY

Theseus is a simple language implementation with compound values as its
sole data type. The transfer of the inlining algorithm from the approach to
Theseus was straightforward. The implementation is well-integrated with
the J1T compiler of the toolchain.

59

Discussion






6 Compound values in practice

For if; for example, that ship of Theseus, concerning the difference whereof
made by continual reparation in taking out the old planks and putting in
new, the sophisters of Athens were wont to dispute, were, after all the planks
were changed, the same numerical ship it was at the beginning; and if some
man had kept the old planks as they were taken out, and by putting them
afterwards together in the same order, had again made a ship of them, this,
with out doubt, had also been the same numerical ship with that which was at
the beginning; and so there would have been two ships numerically the same,
which is absurd. (Hobbes, Elements of Philosophy, Ch. 11, § 7)

In the previous chapter, we have shown that implementing our approach is
indeed feasible. This chapter sets out to apply our approach to existing general-
purpose language. By way of qualitative evaluation, we transfer the findings
from Theseus to two other implementations, that is, Pycket, an implemen-
tation of the Racket [45] language, and RSqueak, an implementation of the
Squeak/Smalltalk vm[60]. This is to answer the question whether a trade-off
between valueness and performance can be observed and if so, whether it is
acceptable.

6.1 CANDIDATE SYSTEMS

As first system, we chose Racket, a dynamically typed, multi-paradigm pro-
gramming language, because it already has a concept of immutable data struc-
tures. Racket supports immutable-by-default lists and an implementation of
design-by-contract [77]. As a member of the Scheme family of programming
languages, the well-known cons data structure is available, but in Racket, it is
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immutable. To emulate previous versions’ behavior or to be compatible with
other dialects, developers have to actively use a mutable version of cons cells
or use macros to emulate them. Similarly, the Racket-specific “structures” —
a heterogeneous record data type — is also immutable by default. Refer to
section 2.2.2 for a description of this data structure.

We chose the Pycket implementation of Racket for two reasons. First, Py-
cket is written using the RPython tool chain and hence transferring our learn-
ings should not suffer from architectural and language differences. Second,
Pycket’s interpreter is a direct application of the CEX machine, just as Theseus.
In fact, there has been a certain degree of influence from what was learned
in Pycket’s implementation on the development of Theseus. We expect that
these similarities help assessing the applicability of our approach to a general
purpose language.

The second system considered is Squeak/Smalltalk. Just like Theseus and
Racket, Smalltalk is dynamically typed, has a comparatively uncomplicated
execution model, and almost always runs on vMs. However, unlike the other
two, Smalltalk revolves around objects with identity and mutable state; im-
mutability is virtually absent. Moreover, the Smalltalk’s zmage concept pro-
vides a clearer distinction between responsibilities of the vm and the languages
running on it. For example, the language’s compiler and most of the common
data structures are not part of the vm but defined at the language level with
a small but clear interface. This makes Squeak/Smalltalk a good candidate to
assess the boundaries of how applicable our approach is.

Among several vM implementations of Squeak, we chose the RSqueak vm.
Since the RSqueak vM also uses the R Python toolchain, we expect alow effort
for the mere code integration. The architecture and j1T compiler integration
is however sufficiently different to pose a new challenge, when compared with
Pycket. Moreover, Squeak as a system in general and the RSqueak vm as soft-
ware have a notion of plug-ins. This makes it possible to assess in how far
our optimization can be used only optionally and disabled at the developers’
discretion, and what the impact of this is.
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6.2 STRUCTURES IN PYCKET

Pycket [10, 18] is a recent implementation of Racket using the RPython tool-
chain and its tracing J1T compiler. It already provides a wide range of Racket’s
functionality — such as continuations, contracts, classes, or dynamic bind-
ings, to name a few. On a standard set of benchmarks, Pycket can compete
with the reference Racket j1T compiler implementation performance-wise, in
certain areas even outperforming high-performance Aot Scheme compilers.

The structure types are of special interest because, if applied carefully, they
can be used like compound values. For that, a value-based comparison of
structures can be enabled explicitly — the default is identity-based compari-
son. Moreover, structures can form hierarchies and are immutable by default
with the option to make some or all fields mutable. Racket structures go be-
yond other structured heterogeneous data types; they support the notion of
structure type properties that can influence the way structures interact with
the system. For example, a special structure type property can make structure
instances callable, so they can act like a procedure.

One of the most used data structures in Racket are cons lists. Changing this
data structure to a proper compound value and applying our approach would
potentially and unknowingly affect parts of Racket out of our scope. Rather,
we chose to adapt Racket structures, which have less system-wide impact. As
a convenience, we provide a Racket library (cf. listing 7) that allows us to use
compound values in the form of structures while using standard Racket’s cos
interface as the surface syntax for a contained scope, such as, one application
or one benchmark. Cons cells in Racket are immutable anyway, and in most
applications are used without regard to their identity, therefore we can use
them in a way that non-value effects are typically not noticeable.

Another candidate data structure in Racket are vectors, which are fixed-
length array-like lists with index-based access. They exist in both mutable
and immutable variants. However, in the packages shipped with the standard
Racket distribution, only about one percent of the vector structures are im-
mutable vectors. This is one reason we first focus on cons lists. Another reason
is that vectors are slightly more involved when they are to be emulated using
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L1sTING 7: Emulation of the Racket cons interface by means of structures

#lang racket/base
(require (for-syntax racket/base) racket/performance-hint)
(require racket/provide)
(provide (filtered-out (lambda (name)
(and (regexp-match? name)
(regexp-replace name "")))
(all-defined-out)))
(define-values
(struct:cons #%pycket:cons #%pycket:pair? cons-ref #%ignored:cs!)
(make-struct-type 'cons #f 2 0 #f '() #f #f (0 1) #f 'cons))
(define #%pycket:car (make-struct-field-accessor cons-ref 0))
(define #%pycket:cdr (make-struct-field-accessor cons-ref 1))
(define (#%pycket:build-list n proc)
(define (mk-acc m proc 1)
(if (= 0 m)
L
(mk-acc (- m 1) (proc m) (#%pycket:cons proc ))))
(mk-acc n proc null))
(define (#%pycket:make-list n e)
(define (mk-acc me )
(if (= 0 m)
L
(mk-acc (- m 1) e (#%pycket:cons e 1))))
(mk-acc n e null))

structures. That being said, compound value vectors are a logical next step for
our approach.

6.2.1 Basic Adaptations

Our approach is present in a modified Pycket implementation [87]. The ex-
isting structure implementation [9s] already tries to optimize memory con-
sumption and execution time. It already deals with the distinction of smaller
and larger structure instances; for the former, objects with a known, small
number of fields are used, for the latter, separate storage objects are created.
Hence, an abstraction for field accesses already existed. We were able to take



the implementation of Theseus with little modification and use it as storage
for all structure kinds.

The merging algorithm implementation as given in listing 5 could be re-
used without any major modification. The modification to connect Racket
structures to our approach were similarly uncomplicated (cf. listing 8). Since
Pycket uses a similar technique to represent entities with storage of different
lengths, the expected interface of Pycket is very similar to that in Theseus
and could be mapped easily. Note that, as with Theseus, all access to actual
contents of a structure is “routed” through the shape to account for possibly
inlined other structures. Similarly to constructors in Theseus, we “promote”
the shape of a structure, but moreover, also promote the structure’s type for
similar reasons. The latter is also done in the unmodified version of Pycket.

Both shapes and structure types are data structure descriptors with mutu-
ally complementary information, thus, there is no need to retain both for each
structure instance. However, to ease the re-use from Theseus, we also intro-
duced a “tag” object that does little more than providing the default shape
for a group of compound values as well as the respective structure type. Thus,
access to the structure type from a structure instance now flows as “structure
— shape — tag — structure type”. However, since all these stay constant right
from the creation of a structure instance, this does not impact performance
in any noticeable way.

6.2.2 Mutability

While structures in Racket are immutable by default, developers can ask for
arbitrary fields of a structure to be mutable by specifying so in the structure
type definition. This means that our change to Pycket has to account for
mutability and apply our extended concept as outlined in section 4.1. In fact,
this change is less a change to Pycket than to our approach, as Pycket already
uses cells to abstract away the mutation of individual fields. The respective
low-level accessors in listing 9 show that, whenever a field is marked as mutable
within a structure type, it is assumed that the field is occupied by a cell. Both
read and write operations are then routed through the cell. Since these are low-
level operations, they do not do any error recovery in case a non-cell entity is
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L1sTING 8: Integration of the shape-based compound value optimization into
the standard Pycket structure implementation.

class W_Struct(W_RootStruct):
@staticmethod
def make(w_field_values, w_structtype):
tag = jit.promote(w_structtype._tag)
pre_shape = tag.default_shape
shape, w_storage = pre_shape.fusion(w_field_values)
return W_Struct.make_basic(w_storage, shape)
def __init__(self, shape):
assert isinstance(shape, CompoundShape)
self._shape = shape
def get_tag(self):
return self.shape()._tag

# shape api
def get_children(self):
return self.shape().get_children(self)
# pycket api
_get_full_list = get_children
# shape api
def get_child(self, index):
return self.shape().get_child(self, index)
# pycket api
_get_list = get_child
# shape api
def get_number_of_children(self):
return self.shape().get_number_of_direct_children()
# pycket api
_get_size_list = get_number_of_children

def shape(self):
return jit.promote(self._shape)
def struct_type(self):
tag = self.get_tag()
assert isinstance(tag, pycket.shape.StructTag)
return jit.promote(tag.struct_type())
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L1sTING 9: Cells for limited mutability in the shape-based variant of the Pycket
structure implementation.

class W_Struct(W_RootStruct):
def _ref(self, i):
w_res = self._get_list(i)
immutable = self.struct_type().is_immutable_field_index(i)
if not immutable:
assert isinstance(w._res, values.W_Cell)
w_res = w_res.get_val()
return w_res
def _set(self, k, val):
w_cell = self._get_list(k)
assert isinstance(w_cell, values.W_Cell)
w_cell.set_val(val)

found in a structures field. In fact, the setter does not even check whether the
field is actually mutable, since the construction of structure types in Racket
takes care that language-level mutators or setters are on/y available when their
respective field is mutable.

6.2.3 Findings

The implementation of shapes and compound values in Pycket benefited
from the architectural similarities with Theseus. Re-use of code and concepts
resulted in little interference between the existing Pycket architecture and our
additions. By and large, only few adaptions were necessary: we added the man-
agement logic for shapes and re-routed access to fields through them. All in
all, the changes amounted to less than sso lines of code added and a handful
of lines of codes removed. In addition, we transferred unit tests for shapes
and compound values from Theseus to ensure their continued functional-
ity and added more unit tests to verify that our optimization has indeed no
detrimental effect on the rest of Pycket.

Pycket already provides a well-done abstraction that hides representation
details of structures from the language level. It is not obvious to developers,
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L1sTING 10: Currentlogic for eq? in Pycket. As per current semantics of Racket,
structure equality is not value based.

def eqp_Llogic(a, b):

ifaisb:
return True

elif isinstance(a, values.W_Fixnum) and isinstance(b, values.W_Fixnum):
return a.value == b.value

elif isinstance(a, values.W_Flonum) and isinstance(b, values.W_Flonum):
return a.value == b.value

elif isinstance(a, values.W_Character) and isinstance(b, values.W_Character):
return a.value == b.value

return False

wether a structure is using a storage representation with each field correspond-
ing to a field in the vM-level class or rather an element in an array in the vm-
level class. The language view on the data structure is always maintained. The
integration of our approach made use of this abstraction, hence also maintain-
ing this view (cf. challenge 1). Since the core of our approach implementation
could be re-used in its entirety, the dynamic adaptation characteristics are the
same as for Theseus (cf. section 5.4 and challenge 2). However, the observabil-
ity of non-value characteristics (cf. challenge 3) for structures that are used
with our compound value optimization approach cannot be ruled out in its
entirety. This is because structure instances are compared by identity and are
not treated specially in this regard as for example numbers are (cf. listing 10). It
would be too surprising for developers to change this current logic in Pycket
only. However, marking structure types as #:transparent ensures value equal-
ity, yet not identity. If either eq? or equ? were EGAL [7] we could consider
challenge 3 met (see also section 2.3.2).

6.3 RSQUEAK VALUES

Squeak [60] is a programming system derived from Smalltalk-8o [s1]. Its cur-
rent reference vM, the OpenSmalltalk vm [75], is based on the original Squeak/
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Smalltalk vM [60] and applies additional optimization techniques to effi-
ciently execute Smalltalk code.

The RSqueak vM [17, 42] implementation of Squeak’s v is written using
the RPython toolchain to benefit from its meta-tracing j1T compiler. With
that, it can provide better performance than other Squeak vms, particularly
in long-running benchmarks, by employing advanced optimizations, such as
but not limited to storage strategies [91].

In the object model of the Squeak virtual machine, all objects belong to a
class, and that class determines the number of fixed fields (the same for all in-
stance of the class) plus the number of variable fields (can vary per instance); a//
frelds are always mutable. Few exceptions exist, such as objects with a variable
number of byte-wise accessible slots, or specially represented objects like num-
bers. This has the effect, that communication with regard to object storage
between the Squeak image and the vM typically only deals with field indices —
either via executing corresponding bytecodes or invoking primitive behavior.
All other tooling, such as providing instance variable names, is subject to the
Squeak image. Accordingly, a rich set of collection data structures is provided
by the image instead of the vm. Most of them are expressed in terms of Arrays,
which are objects with just variable fields.

6.3.1 Adaptations

Introducing compound values at the vM level simply by providing class types
with immutable fixed and/or variable fields could have drastic implications for
the tooling in the image. Compared to this, we use a quite simple approach in
Pycket, where exactly one kind of data structure is affected and only a small
amount of code is necessary to selectively use compound values.

Squeak has a notion of plug-ins that can provide optional functionality,
which can be invoked from the image. We use this approach to implement the
interface between vm and image for our compound values. Since RSqueak
has full control over how it represents objects form the language within the
VM, it is simple to use different representations for objects that belong to
the same class. Thus, for the same class, we can provide compound value
objects at the same time as “normal”, mutable objects . To aid this process, we
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LISTING I1: Integration of compound value objects as a RSqueak plug-in, gen-
eral parts.

class ValueMixin(object):
def is_value(self):
return True
def shape(self):
return jit.promote(in_storage_shape_instance())
class W_Value(W_Object):
_attrs_ =[]
objectmodel.import_from_mixin(ValueMixin)

def patch_w_object():
"""Add "W_Object.is_value™ which by default returns “False™."""
class __extend__(W_Object):
def is_value(self):
return False
def shape(self):
# this is not supported
raise FatalError

provide a class at the RPython level that can be used to mark classes used for
object representation as having value semantics (cf. listing 11). This is done by
subclassing the original class and “mixing in” our template. This mixing-in
is provided by the RPython toolchain; by and large, it amounts to copying
methods and class properties from the “trait” class to the new subclass. As
seen in the listing, we patch RSqueak’s default representation classes with
convenience methods to denote that these are not compound values. Similar
to Pycket, where we introduced a “tag” as indirection to access its structure
type, we now use such a tag to access a compound value object’s class, which
is acquired differently in the normal representation.

The default representation class we support is that for the typical object
with variable or fixed fields. The W_Pointersvalue can represent a compound
value, as seen in listing 12. Note that this is very similar to the integration of
compound values with Pycket structures (cf. listing 8), except for the RSqueak-
specific accessors and the need to provide a class. Contrary to Pycket, we have
not introduced a cell indirection for mutability.
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LISTING 12: Integration of the shape-based compound value optimization as a
RSqueak plug-in.

class W_PointersValue(W_Value):
@staticmethod
def make(objects_w, space, w_class):
s_class = w_class.as_class_get_shadow(space)
_tag = tag(s_class, len(objects_w))
(shape, storage) = _tag.default_shape.fusion(objects_w)
return W_PointersValue.make_basic(storage, space, shape)
def __init__(self, space, shape):
W_Value.__init__(self)
self._shape = shape
def shape(self):
return jit.promote(self._shape)
def get_tag(self):
return self.shape()._tag
# shape api
def get_children(self):
return self.shape().get_children(self)
# rsqueak api
def fetch_all(self, space):
return self.get_children()
# shape api
def get_child(self, index):
return self.shape().get_child(self, index)
# rsqueak api
def fetch(self, space, n0):
return self.get_child(n0)
# squeak api
def at0(self, space, index0):
# To test, at0 = in varsize part
# shape api
def get_number_of_children(self):
return self.shape().get_number_of_direct_children()
# rsqueak api
size = get_number_of_children
def getclass(self, space):
return self.get_tag().w_cls()
def class_shadow(self, space):
return self.get_tag().class_shadow()
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LisTING 13: RPython part of RSqueak primitives to integrate compound val-
ues.

@plugin.expose_primitive(unwrap_spec=[object])
def primitivelsValue(interp, s_frame, w_recv):
if w_recv.is_value():
return interp.space.w_true
return interp.space.w_false

@plugin.expose_primitive(unwrap_spec=[object, object])
def primitiveValueFrom(interp, s_frame, w_cls, w_obj):
space = interp.space
instance_kind = w_cls.as_class_get_shadow(space).get_instance_kind()
pointers_w = w_obj.fetch_all(space)
try:
vals_w = make_sure_all_value(pointers_w)
except NoValueError:
raise PrimitiveFailedError
return W_PointersValue.make(vals_w, space, w_cls)

@plugin.expose_primitive(unwrap_spec=None)
def primitiveValueFromArgs(interp, s_frame, argcount):
args_w = s_frame.pop_and_return_n(argcount)[:]
w_cls = s_frame.pop()
space = interp.space
instance_kind = w_cls.as_class_get_shadow(space).get_instance_kind()
try:
vals_w = make_sure_all_value(args_w)
except NoValueError:
raise PrimitiveFailedError
return W_PointersValue.make(vals_w, space, w_cls)

72



LISTING 14: Basic Smalltalk part of primitives to integrate compound values

Behavior
valueFrom: anObject
<primitive: module: >
self primitiveFailed

Object
isValue
<primitive: module: >
" false

asValue: aClass
" aClass valueFrom: self

valueCopy
~ self asValue: self class

To instantiate compound values or identify whether any given object is
actually a compound value, we provide primitive behavior, which can be in-
voked from the image. The three primitives presented in listing 13 provide
the value check (primitivelsvalue), making a copy with compound value repre-
sentation from an object (primitiveValueFrom), and creating a compound value
from a given class and a list of objects that should form the compound value’s
constituents (primitiveValueFromArgs). This provides a slim interface to the im-
age to access and create compound value objects. Since we integrate the value
representation with the way RSqueak already accesses objects, no further spe-
cialized primitives are necessary.

In our adaptation of Pycket, all Racket structures simply became com-
pound values. However, in RSqueak, obtaining compound values at the lan-
guage level can be done more selectively. For that, we equip every class with
the possibility to make compound value copies of its instances by invoking the
just specified primitives (first method of listing 14). Furthermore, we provide
the compound value check to every object as well as convenience methods to
make a compound value copy of itself (rest of listing 14). This is sufficient to
use compound values in RSqueak.

To more conveniently use compound values in RSqueak, we provide vari-
ants of the well-known vector and cons list data structures from the Lisp world.

73

RSqueak
values



Compound
values in
practice

LIsTING I5: A Squeak compound value vector

ArrayedCollection variableSubclass: #VVector
VVector class

new
<primitive: module: >
~ (self basicNew: 0) initialize

with: anObject
"Answer a new instance of me, containing only anObject."
<primitive: module: >
" Fallback for non-immutable "
" super with: anObject

valueFrom: aCollection
" Overridden to be co-usable in mutable form "
<primitive: module: >
aCollection class isVariable ifFalse: [* self primitiveFailed].
~ (self basicNew: aCollection size)
replaceFrom: 1 to: aCollection size with: aCollection

VVector
= otherCollection
"value semantics "
~ otherCollection class == self class
and: [otherCollection size == self size
and: [self size = 0
or: [self hasEqualElements: otherCollection]]]

Providing a direct equivalent of Squeak’s Array would not help, as these are
almost always used in a mutable way. Specifically, they have to be created with
“empty” contents at the v level and filled at the language level.

In listing 15 we provide a class for compound values with variable fields.
The three class-side methods new, with:, and valueFrom: can be used to instantiate
compound values with zero, one, or any number of constituents, respectively,
by invoking the appropriate primitives in the vm. Note that these methods
contain code beyond the primitive invocation. This is fallback code, which
is executed in case the primitive failed to execute in some way or when the
specified plug-in is absent. We use the fallback code to create normal objects
instead. That way, this code can be used regardless of whether our plug-in
for compound values is present in the vM. Moreover, this enables to use a
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Squeak image with compound values across different kind of vms, not just
our modified RSqueak vMm. We consider that an advantage [92].

The instance-side equality message = is given in a way that it respects value
equality and does not use the default object identity check. All other necessary
methods to use this Wector as a Smalltalk collection, such as at: for index-based
access, are already provided by its superclass ArrayedCollection and work without
modification; very few methods are needed beyond that. Mutating methods,
such as at:put: are overwritten to raise an error.

The wector shares with it’s non-value counterpart Array that it has index-
based access but cannot be changed in size. The most commonly used col-
lection in Squeak, orderedCollection, can however be resized by appending ele-
ments with the message, (a literal comma). This is achieved by maintaining
and possibly recreating an Array under the hood. To support this, we provide
a linked-list compound value collection that resembles cozs lists. Contrary to
the vector, the class vcons in listing 16 does not have variable fields but two
instances variables car and cdr. Since the Smalltalk-typical process of “create ob-
ject — set instance variables” cannot work with compound values, we provide
a constructor carcdr: that uses the vM primitive to create the compound value
from the given arguments. Note that, again, a fallback for non-value usage is
provided.

When cons lists are used in Lisp-family languages, they are terminated by
the empty list nil. We need such a terminator here, too, however, Squeak’s nil
does not fit, as it is neither a compound value but rather a singleton nor can it
act like a list. We provide a helper class vNil as in listing 17, that has no instance
variables nor variable fields and hence is a niladic value. The sole constructor
method nil creates these values, again with a non-value fallback. Since there
are no constituents for this value, the equality check = is simply a class check.
Finally, a vNil represents the empty list, so it reports this in isEmpty.

The Squeak collections work with a template method do: that the rest of
the interface relies on. For vcons, the method as given in listing 16 makes use
of a loop and an local variable that acts as an accumulator. While it would
have been possible to use a recursive style, Squeak does not provide a tail-call
optimization. In fact, most implementations of do: rely on an implicit loop
not unlike the one we used here.
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LIsTING 16: Cons lists with Squeak compound values

SequenceableCollection subclass: #VCons instanceVariableNames:
VCons class

car: anObject cdr: anotherObject
<primitive: module: >
" Fallback for non-immutable "
~ self basicNew

instVarNamed: put: anObject;
instvarNamed: put: anotherObject;
initialize

withAll: aCollection
| list |
list := VNil nil.
aCollection reverseDo: [:each | list := self car: each cdr: list].
" list

VCons

= other
~ other class = self class
and: [other car = self car
and: [other cdr = self cdr]]

isEmpty
" false

do: aBlock
| cons |
cons := self.
[cons isEmpty] whileFalse:
[cons isCons ifFalse: [* self error: 1.
aBlock value: cons car.
cons := cons cdr].

,aCons
self cdr isCons ifFalse: [* self error: 1.
" self class
car: self car
cdr: self cdr, aCons



LISTING I7: Squeak compound value cozs lists terminator

Object subclass: #VNil instanceVariableNames:

VNil class
nil
<primitive: module: >
" Fallback for non-immutable "
~ self basicNew initialize
VNil
= other
" value semantics "
~ other class == self class
iSEmpty
" true
LisTING 18: Collect with Squeak compound value cons list.
VCons
collect: aBlock
| cons acc |
cons := self.
acc := VNil nil.
[cons isEmpty] whileFalse:
[cons isCons ifFalse: [* self error: 1.
acc := self class car: (aBlock value: cons car) cdr: acc.
cons := cons cdr].
™ acc reversed
LISTING 19: Map with Squeak compound value cons list.
VCons
map: aBlock
self cdr isCons ifFalse: [* self error: 1.
"~ self class
car: (aBlock value: self car)
cdr: (self cdr map: aBlock)
VNil
map: aBlock
" self
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With these core objects and methods, we provide a convenience method to
turn any sequence-able collection into a cozs list in listing 16, withall:. Moreover,
the message , (comma) can be used to append to the list. This is more compli-
cated than with mutable objects as the last object in the link list cannot simply
be modified, but this was expected. Also, this method uses a recursive style to
be more readable than with about three loops necessary when not relying on
recursion.

6.3.2 Paradigm impact

The predominant and idiomatic way to use collections in Smalltalk is with
messages such as select: (find all matching), collect: (apply to each and store
result), or anySatisfy: (does any object match) to name a few. These are always
used with a block— that is, an anonymous function — which gets passed each
of the collection’s content objects to work with. Explicit enumeration, for ex-
ample by looping over an index, is unidiomatic and seldom. However, below
this interface, there are typically loops that in some way iterate over the collec-
tion, particularly when Arrays or similar structures are used for implementing
a collection. For collections that work like linked lists, this implies reference
walking. In the case of vcons with compound values, this is unavoidable. An
example for such a method, collect: can be found in listing 18. It is very close to
the method do: above with the exception of not throwing away the result of
the applied block.

This is in contrast with the functional style employed in Racket and, in
away, in Theseus. Given tail-call optimization and the ubiquity of cons lists,
most procedures or functions working on collections use a style of walking
these lists using recursion. It is entirely possible to express this in idiomatic
Smalltalk, too, as can be seen in listing 19, but is not very common given its
performance characteristics on the traditional Smalltalk vms.

RSqueak implements the stack frame model of Squeak in a way that tries
to at the same time benefit from RPython’s advanced stack handling with
virtualizables as well as maintaining the spaghetti or gc stack [26] semantics
of Smalltalk. This has the effect that the loop style is more efficient than the
tail-call style in RSqueak, as well. We ran several small ad hoc benchmarks that
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suggest that the impact of a tail-call style is less pronounced in RSqueak. We
will stick with the first variant given.

6.3.3 Values in Squeak

The functionality presented focuses on collections and provides compound
value variants for common fixed and variable length collections. These are,
however, arguably not compound values in the pure sense as specified earlier
in the work. There are a number of candidates in the default image or standard
library of Squeak that have value characteristics and could benefit from our
approach. First and foremost, certain numerical classes, including fractions,
large integers, and — depending on circumstances — floating point numbers,
could be represented as compound values with our optimization. Since none
of these up to now support identity based comparison for the common use
cases, there would be no need to take special care when implementing them
using identity-less compound values. Squeak also provides abstractions for ge-
ometric points and for matrices, which both could benefit from our approach
in the same way as numerical data or collections.

However, to assess whether our approach has an impact on the performance
characteristics of the presented systems, we have to restrict ourselves to con-
cepts common to all of them. Therefore, we have provided little more than
necessary for the benchmarks used later in this work. We consider a more user-
study—centered evaluation certainly necessary, provided that the results of the
benchmarks show a reasonable performance gain as a foundation.

6.3.4 Findings

The changes that where necessary to bring compound values to RSqueak
were slightly more elaborate compared with Pycket, due to the differences in
architecture. Of the 1500 lines of source code added to RSqueak’s code base,
~830 were reused from Theseus without changes. The changes amount to
about 6 % of the Python code within the code base. In all other regards our
findings match that of Pycket, including meeting of the first two challenges.
For challenge 3, we have not adapted the identity logic of RSqueak to take
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compound values into account yet. However, contrary to Pycket, where we
“hijacked” the structure data structure, compound values are a separate new
concept in RSqueak with its own rules, and as with certain numbers, we can
reasonably expect developers not to count on the identity of compound values.
Atemporality and non-instantiatedness are as limited as in Pycket but likewise
unlikely to be interfered with.

6.4 DISCUSSION

The effort necessary to provide the technical prerequisites for compound val-
ues in more general programming systems than Theseus within the RPython
ecosystem is rather low. We have summarized the differences between the three
systems with regard to the quality of certain aspects in table 1.

a Theamount of code changes necessary to bring our optimization to Pycket
was comparatively low. The similarities in architecture between Theseus and
Pycket helped in that. For RSqueak, the architectural differences required an
alternative approach of integration, which was not as low-effort as for Pycket,
but comparatively simple nonetheless.

b Pycket shows that integration with a more mature language is quite possi-
ble, especially when the architecture matches. Since both Theseus and Pycket
implement a CEX machine, proper tail recursion [27] comes for free, which
greatly helps with the nature of the compound value based cozs lists that we
uses in both systems. RSqueak shows that tail-call optimization is not a pre-
requisite for good compound values support. Even though the object model
of Squeak seems to contradict certain assumptions of compound values, it
is certainly possible to provide means for working with compound values
efficiently. Moreover, the non-tail-call style predominant in Smalltalk seems
not greatly influence the overall performance, as one could expect from the
recursive nature of compound value cons lists.

¢ The ubiquitous immutability of data structures is only partially mirrored
in Pycket, but using cells, this is rather simple to manage. Immutability is
generally a new concept in RSqueak; however, in the restricted areas where
we applied compound values, this was only a minor issue.
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TaBLE I: Qualitative differences of compound values in our three systems

Theseus  Pycket RSqueak
a  Ease of adaptation n/a e v
b Architecture fits compound values vV a4 v
¢ Anticipation of immutability vV v (V)
d  Ease of avoidance X v v

d In Theseus it is by design not possible to have data structures without

Discussion

value semantics. This is naturally not the case for the other two systems. For

Pycket, to avoid using our compound values, using structures must be avoided

altogether. This means that in certain circumstances where our optimization

is undesirable, it might be necessary to change code or even change Racket

internals. For RSqueak, using its plug-in architecture and fallback mechanism

means that it is possible to selectively avoid or disable the use of our compound

value optimization, without any changes to source code.

Our extensions to Pycket and RSqueak are the first applications of our

approach to general purpose programming systems and show that it is feasi-

ble to be implemented in these settings. They show little interference with
the pre-existing systems and will be used in comparison with Theseus in the

quantitative evaluation.

SUMMARY

The findings from Theseus apply to other systems, as well. Due to matching
architectures, core techniques could be reused directly for Pycket. Architec-
tural differences hindered the adaptation for RSqueak only slightly, but its
plug-in system helped the implementation.
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7 Value optimization quantified

This chapter quantitatively assesses the performance of the implementations
of our approach. We assess whether the shape recognition approach is prefer-
able to manual transformation rules, determine what default parameters the
recognition approaches should use, measure execution time and memory con-
sumption in micro-benchmarks, and compare these measurements to other
related programming systems. We begin by characterizing the benchmarking
environment and methodologies.

7.1 BENCHMARK SETUP

To characterize the environment in which our performance evaluation takes
place, we provide information on the hardware used to perform measure-
ments, the software used support the measurements, and which programming
system implementations are included in the performance evaluation. We out-
line our benchmarking measurements and give concrete values for parameters
that influence the performance of our approach. We give a comprehensive
characterization of the setup, including hardware, software, and compared
implementation in appendix B.1.

7.1.1 Hardware
The processor used was an Intel Xeon Gold 6148 (Skylake) at 2.4 GHz with
27.5 MB L3-cache; 1.48 TB of RAM were available. The system had four pro-

cessors with 20 cores each, that is 8o in total, and 160 native threads through

hyperthreading.
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7.1.2. Software

We used a 64 bit Ubuntu 16.04 LTS (Xenial Xerus) as operating system. To
carry out the benchmarks we used the ReBench framework [71]. When isolat-
ing execution to one core we used Linux cgroups. All benchmarks were run
from a RAM disk. Swap-space was completely disabled.

The compared implementations will be given for each evaluation part indi-
vidually. Details on versions and settings can be found in appendix B.1.3. Our
benchmarking code and infrastructure are publicly available [86].

7.2 SHAPE RECOGNITION ASSESSMENT

To assess whether our recognition approach is preferable to manually spec-
ifying shape transformation rules, we compare the execution times of both
approaches. We intend to show that the overhead of our recognition approach
is eventually set oft against the optimization limit of the manual approach.

7.2.1 Methodology

Even in its early stages, the prototype did not support any kind of loops, but
already included tail-call elimination [27]. Therefore, we ran several list opera-
tions on increasingly longer, large lists on the early prototype. That way, we
could obtain a similar effect to running a benchmark for multiple iterations:
after a certain list length, the shape recognition has found enough or more
transformation rules to be as effective or better than the manual approach.
The list length has hence been used as an iteration equivalent.

We ran four operations (reverse, append, map, filter) in three configura-
tions: no optimization (Noze); optimization using our approach but only
using ahead-of-time, manually specified transformation rules without using
shape recognition (/n/ining only); and optimization with transformation rules
derived using shape recognition (Recognition).
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None: no optimization. [nlining only: optimization with ahead-of-time, man-

ually specified transformation rules; no shape recognition. Recognition: opti-

mization with transformation rules derived using shape recognition.
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7.2.2. Results

We provide the execution time results for reversing a long list in figure 10. In
this case, we found that

both optimized versions are always faster than the unoptimized one,
initially, the version with manually specified transformation rules is faster than
the version with shape recognition, but

* for most data points, the version with shape recognition and transformation

rule inference is as least as fast as the version with manually specified transfor-
mation rules.

The results for other list operations (appending, mapping, filtering) were very
similar and have therefore been omitted.

These findings validate the shape recognition approach, in the context of
optimization, as preferable to specifying transformation rules manually. Ac-
cordingly, the possibility to manually specify transformation rules has been
omitted from Theseus.

7.3 DERIVATION OF OPTIMIZATION CONFIGURATION

The shape recognition and inlining approach is parametrized by three config-
uration values as described in section 3.5. These influence the measurements
of our implementations. In this section, we show how we derived the default
values used in the benchmarks described further in this chapter.

7.3.1 Substitution threshold

The purpose of the substitution threshold parameter is to delay the creation of
transformation rules to a user-specified point in the execution. This is useful
in case overspecialization is foreseeable. Moreover, developers may want to
exclude certain compound values from optimization as they are known to
occur a handful of times during execution but not so often as to warrant
optimization. The latter is actually the case for Theseus in our benchmarks.
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All data structures in Theseus are compound values and by default subject
to our optimization approach. However, we use some of these data structures
in a supporting manner, for example, to process command line arguments
or timing results, to name a few. To avoid influencing the measurements by
optimizing these data structures, we need a substitution threshold that is high
enough for the supporting structures to not be reached by accident. We there-
fore chose the value 17, as next prime after the power-of-two 16. As laid out
later, the data structures subject to benchmarking are several orders of magni-
tude larger, so this threshold will hardly influence our benchmarks.

SUBSTITUTION THRESHOLD We use a threshold of 17 shape occurrences.
7.3.2 Maximum object size and maximum shape depths

The maximum object size and maximum shape depth are parameters that
interact with size and structure of compound values. The object size param-
eter guards against size explosion of optimized compound values, while the
shape depth parameter guards against size explosion of derived shapes. On
the one hand, this means low values can inhibit potential optimizations and
impede making full use of resources. This can lead to worse-than-expected
performance in terms of execution time and memory consumption. On the
other hand, high values can result in over-optimization, that is compound
values that take up a lot of memory and/or a high number of derived shapes.
This, again, can lead to worse-than-expected performance in terms of execu-
tion time and memory consumption. It is hence crucial to find values for these
parameters that avoid both bad-performance scenarios. We explain the process
of deriving these parameters in the following.

Methodology  To determine potential parameter values, we used a brute-force
approach. We ran the five micro-benchmarks that we intended to benchmark
thoroughly in a different setting (cf. section 7.4.2 below).

We first determined the possible search space for the two parameters through
short experiments with selected values of different size and magnitude. We use
a search space with values between 2 and 23 for both parameters. Much higher
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values indeed resulted in excessive execution time. The value o would have dis-
abled our optimization and the value 1 would have favoured one variant of the
benchmarks over the other. To rule out that one set of parameters works very
well on one optimized implementation but not the others, we decided to use
all three optimized implementations in the derivation process. In summary,
we ran § benchmarks in 2 variants (numeric elements and niladic elements,
see below) on 3 implementations with 22 values for the object size parameter

Value and 22 values for the shape depths parameter, totaling in 14 520 benchmark
optimization executions.
quantified Contrary to the main benchmark, we are not interested in definitive results

here but rather a range of plausible values. The outcome of the following ex-
periment is to ensure selection of default parameter values that do not result in
undesirable performance characteristics for any of the three implementations.
Therefore, we ran these benchmark executions in parallel, despite the possi-
bility that they might slightly influence each other. For each execution, we
measured execution time (cp#) and memory consumption (resident set size).

Analysis  We first assessed whether a global optimum exists for our param-
eters. That is, is there a value for each parameter, that results in the shortest
execution time and the lowest memory consumption for all combinations
of benchmarks, variants, and implementations? We found that there is no
such global optimum. Therefore, we opted to proceed with a process to elim-
inate unfavorable parameter values (refer to appendix B.2 for all intermediate
steps):

. For each benchmark, variant, and implementation, and for each measurement

—

criterion (execution time, memory consumption):

[NORMALIZATION PROCESS]

a) Eliminate all parameter values that resulted in an excessive measurement,
that is five times larger than the minimum for this set.

b) Normalize the measurements for the remaining values to a [0; 1] range.
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2. For each variant and measurement criterion:

a) Sum the normalized measurement values across all bench-
marks and implementations.

b) Apply the NORMALIZATION PROCESS to the accumu-
lated values.

3. For both variants:

a) Sum the normalized measurement values across both
measurement criterions.
b) Normalize the result to a [0; 1] range.

4. Multiply the normalized values of the normalized numeric
elements variant by three and add the values from the nor-
malized niladic elements variant. That way, we give a lower
precedence to the niladic elements case, because we expect
it to be far less valuable in real-world applications.

5. Normalize the result to a [0; 1] range.

The result is a matrix that contains a value between o and 1 ] .
for every parameter value combination that was never re- | . _
sponsible for an excessive measurement (five times larger . P
than the minimum). Within these values, we identified the
- °
parameter values responsible for the 2 % lowest values.
Results  The analysis resulted in the following (shape 27
depth, object size) pairs for the best 2 % (cf. figure 11): > 6.7 8 910
9,5):(9,7); (9,8); (9,10); FIGURE 1: Results of elimination

process. Red dots indicate best 2%

(10, 4); (10, 5); (10, 6); (10; 8). e .
within normalized measurements

From these, we chose the last pair. for given parameter values.
+/Lighter is better. Parameters:

MAXIMUM OBJECT SIZE We use a size of 8 fields. x-axis: maximum shape depths;

MaximuM sHAPE DEPTH We use a depth of 10 shapes. y-axis: maximum storage width.
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Implementation
F& Theseus

Theseus (not optimized)

@] Pycket (optimized)
Bl Pycket (original)

RSqueak (optimized)

[E] RSqueak (original)

7.4 COMPARATIVE MICRO-BENCHMARKS

We report the performance of five micro-benchmarks with their execution
time and peak memory consumption to assess the quantitative improvements
of our approach.

7.4.1 Compared implementations

For the comparative micro-benchmarks, we included all implementa-
tions where we applied our optimization (Theseus [&, Pycket (opti-
mized) [€], and RSqueak (optimized) [E]). Furthermore, to quantify the
potential improvements of our approach, we included the original ver-
sions for Pycket (original) ] and RSqueak (original) [E], and a version of
Theseus (not optimized) B with our optimization disabled. This results
in the set of six systems listed to the left.

Non-regression  Our optimization should not influence anything except com-
pound values. Since Theseus’ sole data structure is compound values, a re-
gression cannot occur. However, to ensure that there is no influence of our
approach to Pycket and RSqueak besides compound values, we ran system-
typical benchmarks for each of them.

For Pycket (optimized), we ran the shootout benchmarks described in the
original paper on Pycket [10]. These benchmarks hardly make use of struc-
tures. On average, the execution time for these benchmarks deviates less than
6 % from the original implementation. This low deviation shows that our
approach has very little overhead when structs are not used.

For RSqueak (optimized), we ran the tiny benchmarks [60, “Performance
and Optimization”] and found no statistically relevant deviation, as expected.

7.4.2. Benchmarks
The benchmarks chosen are append, filter, map, and reverse on very long linked

lists and the creation and complete prefix traversal of a binary tree— inspired
by the seminal GCBench [40]. The benchmarks exist in two variants, each
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operating on collection data structures containing either numeric elements or
niladic elements (cf. section 2.1.3). As we expect different optimization char-
acteristics for each variant, we include both — affixed with either , or .

The append and reverse benchmarks are straightforward, appending one
long linked list of binary compound values to another and reversing such
a list, respectively. The filter and map benchmarks use decidedly minuscule
auxiliary functions to select from or transform a long linked list of binary
compound values, respectively. Because we are interested in the performance
of the “outer” function, not the auxiliary one, we ensure that their functional-
ity is as small as possible. Lastly, the tree benchmark does not operate on binary
compound values organized as linked list but rather a binary tree of ternary
compound values (left, content, right), that is traversed in a certain fashion.
This is a step to asses not only cons style data structures. The benchmarks
are written in a style aiming to best suite both the idiomatic style and perfor-
mance characteristics of each implementation. For Pycket/Racket, this means
a predominantly tail-recursive style, for RSqueak/Squeak, this means object
recursion where possible, and loops. Theseus has no established idiomatic
style, but its architecture is close to Pycket’s and loops are not available at all,
so it uses a predominantly tail-recursive style.

The relevant source code for all ten benchmarks — excluding measurement
infrastructure — can be found in appendix C.3

7.4.3 Methodology

Every benchmark was run ten times uninterruptedly at highest priority, in a
new process, and isolated to exactly one core.

The execution time (cpu time) was measured 7n-system and, hence, does not
include start-up; however, warm-up was not separated, so JIT compiler execu-
tion time is included in the numbers, especially so since we cannot reasonably
expect warm-up to settle in all cases [9]. We arranged, however, for the large
lists to be created before measuring the execution time of the benchmark. The
maximal memory consumption (resident set size) was measured out-of-system
and may hence include set-up costs. We report the arithmetic mean of the ten
runs together with the 95 % confidence interval.

91

Comparative
micro-
benchmarks



Value
optimization

quantified

Moreover, we report relative execution time and relative memory consump-
tion, comparing the implementations using our optimization to the respective
unoptimized one. In this case, we give bootstrapped [32] confidence intervals
showing the 95 % confidence level, suggested as one variant for showing eftect
sizes rigorously [63, 64].

The length of the data structures for each benchmark was chosen so that the
execution time of the #noptimized implementations takes more than 2 seconds
but less than a minute.

7.4.4 Performance Results

Our approach leads to a reduction in execution time and memory consump-
tion. We provide absolute measurements for both of these metrics as well as
relative results that show the scale of reduction.

Absolute measurements In the top part of figure 12, the execution time of
all benchmarks is reported# In the unoptimized case (right part of every pair),
RSqueak (original) is always slower that the other two implementations, at
times more than an order of magnitude, while Theseus (not optimized) and
Pycket (original) usually perform comparably — this can be attributed to their
architectural similarities. However, in most cases, we see a partially substantial
decrease of execution time for the optimized implementations (left part of
every pair), with 90 % of the measurements in the range of 0.1 to 6 seconds.
The 95 % confidence intervals are comparatively small, indicating a high rep-
resentativeness of our measurements for these benchmarks.

For memory consumption (bottom part of figure 12), the unoptimized
benchmark executions range from 1.4 to 12.2 GB for all but the tree bench-
marks, where the range is 0.8 to 1.3 GB. As with execution time, the measure-
ments for Theseus (not optimized) and Pycket (original) are more similar to
each other than to RSqueak (original). Nevertheless, in all cases we see a re-
duced memory consumption in the optimized implementations, with 90 %

#The lighter shaded part of each execution time bar is time spent during garbage collection,
included purely for informative purposes; details can be found in appendix B.3

92



Execution time (s)

N

-

SO | 0] el O@DE O.DH O@DE O.DH O@DE O@DE !I

DIO| & 0|5 <1 <D O |© D) IO D10 & ICI
reverseg reverse, append; append, mape map, filterg filter, treeg tree,

Memory consumption (GB)

0.75
0.5
0.251

PPN ANEEN SR NN S alalals o BlA L 6| o s alolalnlmElAN S oS! alolalmlm! AsSlaBlnElAL S ol

reverseg reverse, appendg append, mape map, filterg filter, treee tree,

FIGURE 12: Benchmarking results. Bars show the arithmetic mean of ten runs
for execution time (top) and memory consumption (bottom). We include 95 %
confidence intervals. Lower is better. Raw numbers in table 10 and table 1.
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FIGURE 13: Relative benchmarking results. Bars show relative execution time
(top) and memory consumption (bottom) between each optimized and non-
optimized implementation. We include the geometric mean of all benchmarks
to the right, as well as bootstrapped 95 % confidence intervals. Lower is better.
Raw numbers in table 13 and table 14.
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of the measurements in the range from 0.02 to 2.1 GB. In this case, the 95%
confidence intervals are minuscule, indicating a very high representativeness
of our measurements for these benchmarks.

Relative results  In figure 13, we give relative results of our benchmarks. That
is, we give the optimized implementations’ fraction of execution time/memory
consumption of the unoptimized implementations.

For execution time (top part of figure 13), we find a single case where one of
our optimized implementations is demonstrably slower, and one case where
a difference cannot be shown (but see section 7.6). In all other cases, we find
often substantial speed-ups. For two thirds of the cases, these range from %
to 39 times faster. The bootstrapped confidence intervals allow us to trust
these numbers to be representative for our benchmarks. For convenience,
we include a geometric mean (cf. right of figure 13) of all relative runtimes,
indicating a speed-up of about a factor of 2.7 for Theseus, 2 times for Pycket
(optimized), and 8 times for RSqueak (optimized).

For memory consumption (bottom part of figure 13), we find no case where
the optimized implementation consumes more memory than the unopti-
mized one. The memory saving is at least 8 %, and for 80 % of the measure-
ments between 33 % and 97 % of the memory consumption can be saved.
Again, the bootstrapped confidence intervals allow us to trust these numbers
to be representative for our benchmarks. The geometric mean of all relative
memory consumption indicate around 6o % saving for Pycket (optimized)
and RSqueak (optimized), and more than 70 % for Theseus.

Analysis One key reason for our implementations’ performance is the in-
teraction between escape analysis and compressed storage. The benchmarks
exhibit a certain usage pattern. In particular, the access to a list element is typi-
cally followed by inserting this elementinto a new list, with possibly processing
it. The tracing 1T compiler and its escape analysis can infer that no reconstruc-
tion of the actual compound value is necessary and, furthermore, that a certain
number of such operations occur consecutively. Operations can thus happen
in blocks. For example, for a list that is inlined 7 levels deep, reverse can oper-
ate in chunks of 7 items. Given the chosen value of the maximum object size
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LISTING 20: reverse in Theseus. Tail-recursive implementation with accumula-
tor and auxiliary function.

reverse$aux = A.
1. acc, Nil() - acc
2. acc, Cons(h, t) — u(reverse$aux, Cons(h, acc), t)

reverse := A. 1 ~ p(reverse$aux, Nil(), 1)

parameter — 8 fields, exclusive — we expect the inlining to result in chunks
of 7 consecutive list elements and one next-chunk reference. This means that
(a) six shape references and six next-element references can be saved per chunk,
that is more than 50 %, and (b) the list operations can work on these chunks
consecutively, comparable to what list unrolling [104] achieves. Moreover, the
tracing JIT compiler can make assumptions about what stays constant within
such a chunk. Thus it can remove almost all type checks, reduce the number
of allocations to a minimum, has to follow fewer references, and reduce the
overall number of operations the tracing J1T compiler processes by up to 6o %.

The comparative micro-benchmarks show that our approach can lead to sig-
nificant performance improvements in execution time and memory consump-
tion. Performance deteriorations are rare.

7.5 DISCUSSION OF reverse AS REPRESENTATIVE EXAMPLE

Since the micro-benchmarks are rather uniform, we take one representative
example from the benchmarks and show in detail how the effects of our op-
timization approach can be observed in our implementations. The reverse
benchmark is the shortest in code and execution time and will serve as exam-
ple here. The reverse benchmark is simple. Given a singly-linked list, it returns
the list in backwards order. The implementation used for Theseus and Pyck-
et/Racket reflects the well-known, tail-recursive variant and can be found in
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LISTING 21: reverse in Racket. Tail-recursive implementation with accumulator
and auxiliary function.

(define (reverse 1)
(define (loop a lst)
(if (null? Lst)
a
(loop (cons (car Ist) a) (cdr Ist))))
(loop null 1)

listing 20 for Theseus (cf. chapter 5) and in listing 21 for the Racket equivalent.
Note that while the Racket code is presented here in the way it would be writ-
ten idiomatically, using the library from listing 7, we can replace the standard
Racket list operations with the optimized ones. The RSqueak/Squeak imple-
mentation (listing 22) is similarly typical for the language, using a loop with a
temporary variable that accumulates the reverse list. Tail-recursion is not em-
ployed. While Smalltalk’s notion of stack frames is not dissimilar to that of the
Lisp family and, similarly, is not bound to a stack limit, tail-recursion is absent
in virtually all Smalltalk vms. Thus, while a close equivalent of the Theseus
and Racket variant of the benchmarks is expressible in Squeak it would be
neither idiomatic nor particularly fast. However, the loop found in the source
is commonly encapsulated in the method #do:, which was essentially inlined
here manually to provide a more self-contained benchmark.

For this discussion, we used a list with 200 000 000 elements and recorded
the operations of reverse.

RPython jT codes  We re-use a functionality that all R Python-written vms
provide, namely an online tracer that makes it possible to profile the R Py-
thon JIT compiler and examine its effects. The format of these “traces” is now
introduced very briefly. The RPython jIT compiler represents its traces in an
static single assignment (ssa) form. Some of its basic operations relevant here
are memory operations, arithmetic operators, control flow operations, meta
operations, and debug operations.
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LISTING 22: reverse in Squeak. Loop implementation with accumulator.

VCons
reversed
| list cons |
list := VNil nil.
cons := self.
[cons isEmpty] whileFalse:
[cons isCons ifFalse: [* self error: 1.
list := self class car: cons car cdr: list.
cons := cons cdr].
" list

MEMORY OPERATIONS Allocations (new_with_vtable, new_array), loads (for
example getfield_gc_r), and stores (for example setfield_gc) are the relevant
operations here.

ARITHMETIC OPERATIONS Only few operations are relevant to the traces
here, such as subtraction (int_sub) or comparison (int_eq), to name a few.

CONTROL OPERATIONS There are mostly unconditional jumps (jump) and
their targets (label), sometimes calls (call). As intended by tracing, branching
is virtually absent in these traces.

META OPERATIONS In the absence of branching, guards are assertions that
the state of certain values in the trace stays constant. For example, the op-
eration guard_class(value, class) asserts that the value is an instance of the
named class, and if not, execution control is transferred from the trace to
the language interpreter, possibly with a rollback of the state.

The force_token operation is similar. It produces a tiny object used to man-
age so-called virtualizables of a stack frame, which facilitate an efficient
mapping of stack frames directly to processor registers.

We exclude guard_not_invalidated from this category. It does not result in any
operations being emitted and has virtually no effect in a loop. The guard
serves as a placeholder so that— in the event that certain global assumptions
do not hold any longer — a jump back into the interpreter can be patched
into the trace. This is destructive and the trace is no longer usable after such
a patch. We therefore can treat this specific guard as being absent during
our analysis.
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DEBUG OPERATIONS The debug_merge_point operation is special; it solely
serves as an aid for the developer to identify which language-level operation
happened when the surrounding operations were recorded by the tracer.
They do zot manifest themselves in machine code or execution at all. The
same is true for the operations enter_portal_frame and leave_portal_frame,
which helps profilers in locating the source stack frame of certain other
operations but— again — do not appear in the final machine code. For that
reason, these operations have been omitted from the trace.

Control, arithmetic, and debug operations, and guard_not_invalidated will be
subsumed under “other” in the remainder of this chapter.

The granularity of the trace outputs is per loop. For each loop, a trace can
show several operations before the actual loop, which ranges from a label to
a jump. These initial operations are actually the first iteration of the loop,
which has been moved outside in an optimization called “loop peeling”. We
will focus on the actual loops and omit the initial iteration.

The following cases are discussed:

. Theseus, operating on a list of numeric elements.
. Theseus, operating on a list of niladic elements.

. Pycket, operating on a list of numeric elements.

. Pycket, operating on a list of niladic elements.

. RSqueak, operating on a list of numeric elements.
. RSqueak, operating on a list of niladic elements.

The distinction between numeric elements and niladic elements as list con-
tents is important to properly discuss the scope of our optimization. In our
context, numeric elements are always represented using primitives of the vMm.
We therefore view them as natural optimization barrier, that is, these elements
themselves are never subject to our optimization, but only the data structures
that contain them. On the contrary, due to how shapes work, niladic elements

99

Discussion of
reverse as rep-
resentative
example



LISTING 23: Trace for reverse in Theseus (not optimized) B, numeric elements.
Loop without peeled iteration. Debug operations are omitted.
+460: label(p6, p3, p13, pl4, p1, descr=TargetToken(4401759200))
+493: p19 = getfield_gc_r(p14, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_0 16 pure>)
+497: p20 = getfield_gc_r(p14, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_1 24 pure>)
+501: guard_nonnull_class(p19, ConstClass(W_Integer), descr=<Guard0x1065e05c0>)
+519: guard_nonnull_class(p20, 4392412976, descr=<Guard0x1065e0560>)
+538: p23 = getfield_gc_r(p20, descr=<FieldP lamb.model.W_Constructor.inst__shape 8 pure>)
+549: guard_value(p23, ConstPtr(ptr24), descr=<Guard0x1065e20b0>)
+558: p25 = new_with_vtable(descr=<SizeDescr 32>)
+595: setfield_gc(p25, ConstPtr(ptr26), descr=<FieldP lamb.model.W_Constructor.inst__shape 8 pure>)
+599: setfield_gc(p25, p6, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_0 16 pure>)
+603: setfield_gc(p25, p3, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_1 24 pure>)
+607: jump(p13, p25, p19, p20, p1, descr=TargetToken(4401759200))

are subject to our approach and can be optimized away and only present via
shape information. From the point of view of optimizability, the variants thus
serve as opposing ends of the spectrum of data that can constitute a compound
value in our system.

7.5.1 Theseus and numeric elements list

For the first two traces, we explain their workings in detail. The other cases,
while with distinct parts, share enough structure that only the differences need
mention.

Unoptimized trace  We first present the “unoptimized” trace, that is, we dis-
abled all means that make the recognition of shapes and the inlining happen.
That way, the shapes are mere data structure descriptors and all vm-level stor-
age elements directly match their language-level counterparts.

The main loop (listing 23) hast 19 operations, but 7 of these are debug
operations. This leaves 12 operations to consider. These operations represent
the effect of reverse$aux (cf. listing 20), and there the second case. This is a
recursive case, so it is safe to assume that the variable configuration always has
a constructor with a two-field storage in p14 (the tail), the current element
in p6, and the accumulator list in p3, the element of the next iteration in p13.
Right after the entry label, p14 is deconstructed in its two constituents, p19 for
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label(p6, p3, p13, p14, ...)
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jump(p13, p25, p19, p20, ...)
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label(p6, p3, p13, pl4, ...)

FIGURE 14: Unoptimized trace for the prototype. Variable configuration flow
(+) and allocations (bold frame) show that one element is processed per iter-
ation.

the head and p20 for the tail. The following guards ensure that the element is
a language-level integer (cf. line 4) and the tail has a known class, namely the
same as p14 (cf. line 5). Then the shape of the tail is accessed and checked to
be the expected one. Note that this is a value guard, that is, the j1T compiler
expects a certain object to be found, not just that it is of a certain (vM-level)
class. This means that the J1T compiler is aware that closely related compound
values share the same shape and that the j1T compiler does indeed speculate
on that. Finally, the allocation of the new constructor happens (p25), it is filled
with its shape and p6 as element and p3 as tail. Note that these two references
were not obtained in the current loop iteration but in the previous one or the
peeled loop on the first iteration. The loop closes with a jump to the loop
label in line 12, and the variable configuration now consists of the previous
next-iteration element p3, the new accumulator p25, the new next-iteration
element p19 and the new tail p20 — both obtained from p14. This flow of data
is visualized in figure 14. An individual element flows from p14’s first element
in two iterations via p19 — p13 — pé6 into the storage of a new value p25.
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LISTING 24: Trace for reverse in Theseus [&, numeric elements. Loop without
peeled iteration. Debug operations are omitted.

+1098: label(p35, p24, p23, p22, p21, p20, p19, p6, p13, pl4, p36, P37, P38, p39, p40, p4l, p42, p43, p1, descr=TargetToken(6697599888))
+1117: guard_class(p35, ConstClass(W_Integer), descr=<Guard0x10841e800>)

+1129: guard_class(p38, ConstClass(W_Integer), descr=<Guard0x18f362608>)

+1142: guard_class(p39, ConstClass(W_Integer), descr=<Guard0x18f3625c0>)

+1154: guard_class(p40, ConstClass(W_Integer), descr=<Guard0x18f362578>)

+1167: guard_class(p41, ConstClass(W_Integer), descr=<Guard0x18f362530>)

+1180: guard_class(p42, ConstClass(W_Integer), descr=<Guard0x18f3624e8>)

+1194: guard_nonnull_class(p37, ConstClass(W_Integer), descr=<Guard0x10841e860>)

+1212: p62 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_0 16 pure>)
+1216: p63 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_1 24 pure>)
+1220: p64 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_2 32 pure>)
+1231: p65 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_3 40 pure>)
+1242: p66 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_& 48 pure>)
+1253: p67 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_5 56 pure>)
+1264: p68 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_6 64 pure>)
+1275: p69 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_7 72 pure>)
+1286: p70 = getfield_gc_r(p43, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_8 80 pure>)
+1297: guard_class(p63, ConstClass(W_Integer), descr=<Guard0x18f3624a0>)

+1309: guard_class(p64, ConstClass(W_Integer), descr=<Guard0x18f362458>)

+1321: guard_class(p65, ConstClass(W_Integer), descr=<Guard0x18f362410>)

+1333: guard_class(p66, ConstClass(W_Integer), descr=<Guard0x18f3623c8>)

+1346: guard_class(p67, ConstClass(W_Integer), descr=<Guard0x18f362380>)

+1358: guard_class(p68, ConstClass(W_Integer), descr=<Guard0x18f362338>)

+1371: guard_class(p69, ConstClass(W_Integer), descr=<Guard0x18f3622f0>)

+1384: guard_class(p70, 4423682536, descr=<Guard0x18f3622a8>)

+1398: p79 = getfield_gc_r(p70, descr=<FieldP theseus.model.W_Constructor.inst__shape 8 pure>)

+1424: guard_value(p79, ConstPtr(ptr80), descr=<Guard0x18f362260>)

+1433: guard_nonnull_class(p62, ConstClass(W_Integer), descr=<Guard0x10841e7a0>)

+1451: p82 = new_with_vtable(descr=<SizeDescr 88>)

+1488: setfield_gc(p82, ConstPtr(ptr83), descr=<FieldP theseus.model.W_Constructor.inst__shape 8 pure>)

+1492: setfield_gc(p82, p24, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_0 16 pure>)
+1496: setfield_gc(p82, p23, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_1 24 pure>)
+1500: setfield_gc(p82, p22, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_2 32 pure>)
+1504: setfield_gc(p82, p21, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_3 40 pure>)
+1515: setfield_gc(p82, p20, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_4 48 pure>)
+1526: setfield_gc(p82, p19, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_5 56 pure>)
+1537: setfield_gc(p82, p6, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_6 64 pure>)
+1548: setfield_gc(p82, p13, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_7 72 pure>)
+1559: setfield_gc(p82, p14, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize9.inst___storage_8 80 pure>)
+1570: jump(p62, p42, p41, p40, p39, p38, p37, p36, p35, P82, p63, pb4, p65, p66, p67, p68, p69, p70, p1, descr=TargetToken(6697599888))

Per iteration, there is one allocation and three stores into the newly allo-
cated storage. Three accesses/loads obtain the next iterations’ elements and a
shape to assert its identity. The left part of table 2 summarizes these numbers.
We exclude debug and meta operations, because their effective machine code is
empty or very lightweight. In this specific loop arithmetic operations and con-
trol operations have only very little impact. The memory operations dominate.
Combined with the iteration count, about 2 billion relevant operations are
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label(p35, p24, p23, p22, p21, p20, p19, p6, p13, p14, p36, p37, p38, P39, p40, p41, p42, p43, )
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jump(p62, p42, p41, p40, p39, p38, p37, p36, p35, P82, P63, pb4, P65, P66, P67, P68, p69, p7o0, ..
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label(p35, p24, p23, p22, p21, p20, p19, p6, p13, p14, p36, p37, p38, p39, p40, p41, p42, p43, ..

FIGURE 15: Optimized trace for Theseus. Variable configuration flow (—) and
allocations (bold frame) show that 8 elements are processed per iteration.

executed for the whole loop, which matches our expectations. This amount
forms the baseline to compare the other traces against.

Optimized trace  The second trace was obtained by running Theseus with

the parameters found in section 7.3. We expect to see inlining happen and
vM-level storage to be larger than the language-level counterparts.
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The main loop of the second trace (listing 24) comprises 89 operations,
49 of which are debug information, which leaves 40 operations to consider
(see figure 15 for a graphical depiction). While the data processed and the pro-
gram traced are the same as in the unoptimized trace, however, the loop-local
variable configuration is considerably larger. We still have the “tail” in the
second-to last position (p43) in the label description, but all other positions
before that are actually elements obtained through inlining. Accordingly, after
asserting that the last iterations’ contents are of the expected class (lines 2 to 8),
the contents of the tail are extracted into p62 through p70 (lines 9 to 17) and
it is checked that seven elements are boxed integers, as expected (the eights is
checked in the next iteration). Then, the new tail in p70 is checked for its class
and, as in the unoptimized trace, its shape is extracted and checked (lines 25
to 27). Similar to the unoptimized trace, a new compound value is created and
filled with the shape, yet, its storage is filled 2% reverse order with the contents
of the last iteration (lines 29 to 39). We see a similar flow in the variables — for
example, p63 — p36 — pé into the storage of a new value p82— but now for
eight elements instead of just one. This means that the actual reversal happens
neither during the loads from the object at hand (p43) nor during the creation
and filling of the new object (p82). Rather, as shown by the thicker arrows
in figure 15, during the passthrough of the variables containing last iterations’
read object contents (p35, and p36 through p42) to the next iterations’ written
object contents (p24 through p19, p6, p13, and p14), the order of the variables
changes from increasing in the label to decreasing in the jump. Thus, the trac-
ing J1T compiler has practically created a pipeline. Contents that are read in
one iteration are reversed in the next iteration and stored in the next but one
iteration.

All in all, there are one allocation and ten stores into the newly allocated
storage per iteration. Likewise ten accesses or loads happen to obtain the next
iterations’ elements as well as one other shape. The right part of table 2 sum-
marizes these numbers. The memory operations still dominate, but less so.
About one billion relevant operations in total are executed.

Trace relation ~ Comparing the two traces table 2 reveals that, while the num-
ber of operations per loop iteration has increased in nearly all categories, the
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TABLE 2: Operation counts and relation for optimized and unoptimized re-
verse in Theseus, numeric elements. Reduction factors are for run total.

Listing 23 Listing 24 Reduction Factor
Loop iterations 199998 931 24998 901 8.00
perloop  once run total perloop  once run total
Allocations 1 o 199998 931 1 o 24998 901 8.00
Stores 3 o 599 996793 10 o 249989010 2.40
Loads 3 8 599 996 801 10 26 249989036 2.40
Meta 3 9 599 996 802 17 29 424981 346 1.41
Other 9 8 1799990387 ST 5I 1299942 852 1.39
Operations 19 25 3799979 714 89 106 2224 902295 171
— Other 10 17 1999989 327 38 55 949958 293 2.11

total number of loop operations has fallen drastically, by a factor of 8. Even
more so, the number of allocations per iteration remained the same, with
the overall effect that total allocations also are 8 times fewer. For the oper-
ation categories where the numbers increased, that is actually set off by the
lower iteration count, with reductions from 1.39 to 2.4. Overall, we see around
half the operations in the optimized traces. However, the number of memory
operations has been reduced much more, and since these disproportionally
contribute to execution time and memory consumption, we see speed ups and
memory savings much higher than a factor two. The inlining of up to seven
elements is nicely visible in the trace and the iteration count.

Warm-up  The first trace executes one application of reverse to the head
of the list. Therefore, the 199 998 931 loop iterations plus one peeled were all
spent on one element of the list each. After the first 1068 elements, the j1T
compiler apparently reached a steady state.

The second trace is inlined, and we see 10 stores. The first s for the shape and
the last for the reference to the next chunk of the list. This leaves 8 elements to
store in the trace, which means that (24 998 9or1 + 1) - 8 elements were processed
using the second trace. This leaves 8784 elements processed before using this
trace, showing that the warm-up phase increased eightfold.
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LISTING 25: Trace for reverse in Pycket (original) [, numeric elements. Loop
without peeled iteration. Debug operations are omitted.
+624: label(p10, p19, p24, p26, p1, p14, p8, p21, descr=TargetToken(4585693296))
+669: p28 = getfield_gc_r(p19, descr=<FieldP pycket.values_struct.W_Struct.inst__type 8 pure>)
+680: guard_value(p28, ConstPtr(ptr29), descr=<Guard0x1114ae0e0>)
+689: p30 = getfield_gc_r(p19, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_1 24 pure>)
+693: guard_class(p30, 4540421576, descr=<Guard0x111569730>)
+705: p32 = getfield_gc_r(p19, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_0 16 pure>)
+709: guard_class(p32, 4540600168, descr=<Guard0x1115696e8>)
+722: guard_not_invalidated(descr=<Guard0x111569610>)
+722: p34 = new_with_vtable(descr=<SizeDescr 32>)
+759: setfield_gc(p34, ConstPtr(ptr3s), descr=<FieldP pycket.values_struct.W_Struct.inst__type 8 pure>)
+763: setfield_gc(p34, p26, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_1 24 pure>)
+767: setfield_gc(p34, p24, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_0 16 pure>)
+771: jump(p10, p30, p32, p34, p1, pl4, p8, p21, descr=TargetToken(4585693296))

7.s.2 Pycket and numeric elements list

The main loop of reverse in Pycket (original) is very similar to that of Theseus
(not optimized). The differences in the trace (listing 25) are one additional
guard_not_invalidated and the order of certain guards and loads. The one addi-
tional guard results in no machine code and is negligible. Therefore, we can
treat these loops as identical, especially with respect to memory operations.
This can also be seen in the left part of table 3. However, the number of loop
iterations is higher for Pycket, which indicates less warm-up; only 133 elements
are not processed by the loop.

Regarding the trace (listing 26) of Pycket (optimized), we can conclude that
it is virtually the same as that of Theseus. Indeed, if the lightweight guards
are removed, the traces are identical. The numbers of operations per loop as
in table 3 are also very similar. We see that (24 999 810 + 1) - 8 elements are
processed by the loop, leaving 1512 elements to be processed during warm-up,
which is also considerably less than for Theseus. However, compared with the
unoptimized variant, warm-up has increased more than tenfold.

The architectural similarities between Theseus and Pycket seem to alleviate
the differences in complexity. For this benchmark, the approach as applied to
Theseus is equivalent to the approach as applied to Pycket.
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LISTING 26: Trace for reverse in Pycket (optimized) [, numeric elements. Loop
without peeled iteration. Debug operations are omitted.

+1434: label(p7, p55, p56, pS7, p58, p59, p60, p61, p62, p54, p34, p33, p32, p31, p30, p29, p28, p48, p49, pl, p17, p22, p15, descr=TargetToken(4530350464))
+1453: guard_class(p56, 4484119496, descr=<Guard0x10e0483e0>)

+1465: guard_class(p57, 4484119496, descr=<Guard0x10e07dbb0>)

+1478: guard_class(p58, 4484119496, descr=<Guard0x10e07db68>)

+1490: guard_class(p59, 4484119496, descr=<Guard0x10e07db20>)

+1504: guard_class(p60, 4484119496, descr=<Guard0x10e07dad8>)

+1518: guard_class(p61, 4484119496, descr=<Guard0x10e07da90>)

+1531: guard_class(p55, 4484119496, descr=<Guard0x10e07da48>)

+1543: guard_not_invalidated(descr=<Guard0x10e07da00>)

+1543: guard_class(p54, 4484119496, descr=<Guard0x10e07d9b8>)

+1555: p82 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_0 16 pure>)
+1559: p83 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_1 24 pure>)
+1563: p84 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_2 32 pure>)
+1574: p85 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_3 40 pure>)
+1585: p86 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_4 48 pure>)
+1596: p87 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_5 56 pure>)
+1607: p88 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_6 64 pure>)
+1618: p89 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_7 72 pure>)
+1629: p90 = getfield_gc_r(p62, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_8 80 pure>)
+1640: guard_class(p83, 4484119496, descr=<Guard0x10e07de80>)

+1653: guard_class(p84, 4484119496, descr=<Guard0x10e07de38>)

+1665: guard_class(p85, 4484119496, descr=<Guard0x10e07ddf0>)

+1677: guard_class(p86, 4484119496, descr=<Guard0x10e07dda8>)

+1689: guard_class(p87, 4484119496, descr=<Guard0x10e07dd60>)

+1702: guard_class(p88, 4484119496, descr=<Guard0x10e07dd18>)

+1714: guard_class(p89, 4484119496, descr=<Guard0x10e07dcd0>)

+1728: guard_class(p90, 4484103704, descr=<Guard0x10e07dc88>)

+1742: p99 = getfield_gc_r(p90, descr=<FieldP pycket.values_struct. W_Struct.inst__shape 8 pure>)

+1767: guard_value(p99, ConstPtr(ptr100), descr=<Guard0x10e07dc40>)

+1776: guard_class(p82, 4484119496, descr=<Guard0x10e07dbf8>)

+1788: p102 = new_with_vtable(descr=<SizeDescr 88>)

+1835: setfield_gc(p102, ConstPtr(ptr103), descr=<FieldP pycket.values_struct.W_Struct.inst__shape 8 pure>)
+1839: setfield_gc(p102, p34, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_0 16 pure>)
+1843: setfield_gc(p102, p33, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_1 24 pure>)
+1847: setfield_gc(p102, p32, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_2 32 pure>)
+1858: setfield_gc(p102, p31, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_3 40 pure>)
+1869: setfield_gc(p102, p30, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_& 48 pure>)
+1880: setfield_gc(p102, p29, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_5 56 pure>)
+1891: setfield_gc(p102, p28, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_6 64 pure>)
+1902: setfield_gc(p102, p48, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_7 72 pure>)
+1913: setfield_gc(p102, p49, descr=<FieldP rpython.tool.pairtype.W_StructSize9.inst___storage_8 80 pure>)
+1924: jump(p7, p83, p84, p8S, p8e, p87, p8s, p89, p9o, p82, p6l, p60, p59, ps8, p57, P56, PS5, PS4, p102, pl, p17, p22, p15, descr=TargetToken(4530350464))
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TABLE 3: Operation counts and relation for optimized and unoptimized reverse
in Pycket, numeric elements. Reduction factors are for run total.

Listing 25 Listing 26 Factor
Loop iterations 199 999 866 24999 810 8.00
perloop  once run total perloop  once run total
Allocations 1 o 199 999 866 1 o 24999 810 8.00
Stores 3 o 599 999 598 10 o 249998 100 2.40
Loads 3 12 599999 610 10 34 249998 134 2.40
Meta 3 13 599999 611 18 37 449996617 1.33
Other 11 11 2199998 537 6o 6o 1 499 988 660 1.47
Operations 21 35 4199997 221 99 131 2474981 321 1.70
— Other 10 23 1999998 683 39 71 974992 661 2.06

7.5.3 RSqueak and numeric elements list

The trace of the main loop for RSqueak (original) is different than the two
other unoptimized traces (cf. listing 277). First, it is much longer, and second,
it contains more diverse operations. This is mainly due to the different exe-
cution model of Squeak on the one hand and the implementation approach
taken by RSqueak on the other hand. Stack frames are modeled much more
directly, partly as their content has to be accessible for developers via reflection.
Using a RPython technique called virtualizables, these stack frame contents
are mapped directly to processors wherever possible, which is reflected by
force_token operations and certain operations relating to “portal frames” —
these have however been omitted from listing 27 as they are essential debug
operations.

Moreover, RSqueak uses a specific approach to represent its objects called
storage strategies, which focuses on specializing mutable object contents to
homogeneous arrays [91]. The effect is that an additional array is necessary
for a common RSqueak object. This is reflected in the trace by the fact that
we see three allocations. One for the actual binary compound value (line 23),
one for its contents array (line 24), and one for the integer (i61) that is part
of the compound value (line 25). The latter is necessary, as the j1T compiler
tried to reduce boxing and unpacked this integer in the previous iteration:
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TABLE 4: Operation counts and relation for optimized and unoptimized re-
verse in RSqueak, numeric elements. Reduction factors are for run total.

Listing 27 Listing 28 Factor
Loop iterations 199991 649 24991 583 8.00
perloop  once run total perloop  once run total
Allocations 3 o 599 974 947 1 o 24991583  24.01
Stores 7 1 4199824630 18 8 449 848 502 9.34
Loads 6 36 3599849718 10 6o 249915890  14.40
Meta 12 21 7199699 385 18 47 449 848 541 16.00
Other 45 50 26998 872 665 156 157 3 898 687 105 6.93
Operations 73 108 43798 171239 203 272 5073291 621 8.63
— Other 28 50 16799298 574 47 115 1174604516 14.30

p8s is our compound value, its storage array p100 is extracted in line 5 and
following, from where the integer 1104 is extracted in line 8. This is passed via
jump and label to the next iteration, where it is boxed again. Additionally, a
call in line 20, which is practically a bounds check, complicates this trace, as
leaving and returning to a trace can impede execution time.

An architectural peculiarity of RSqueak is that the actually interactive and
user-oriented system design requires means for interrupts. The original Squeak
vM and its descendants check possible interrupt sources by polling after the
execution of certain bytecodes, which is undesirable in the architecture of
RSqueak. The vMm therefore maintains an interrupt check counter, which is
checked and decremented after execution said bytecodes. Only when this
counter hits zero, interrupt sources are polled, and the counter is re-primed,
commonly to 10 00o. We can see this check in lines 19 to 22.

The boxing and checking results in more memory operations than com-
pared with Theseus and Pycket, as can be seen in the left of table 4. The
number of loads for the first peeled operation is notably high, as the first thing
that is done when entering the whole trace is mapping the content of the
heap-allocated stack frame object to local variables — and ultimately proces-
sor registers. The number of debug operations is also higher. All in all, the
RSqueak version takes about eight times the operations Theseus takes.
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LISTING 27: Trace for reverse in RSqueak (original) [E5], numeric elements. Loop
without peeled iteration. Debug operations are omitted.

+1104: label(p0, p2, p3, p4, i7, p8, p9, i61, p12, p88, p22, p24, p26, p28, p30, p32, p34, p36, p38, p40, p42, 193, descr=TargetToken(5123964960))
+1133: guard_not_invalidated(descr=<Guard0x12e972ec0>)

+1133: p98 = getfield_gc_r(p88, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)

+1144: guard_value(p98, ConstPtr(ptr99), descr=<Guard0x12e972f20>)

+1153: p100 = getfield_gc_r(p88, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst__storage 16>)

+1157: p102 = getarrayitem_gc_r(p100, 0, descr=<ArrayP 8>)

+1161: guard_nonnull_class(p102, 4562587528, descr=<Guard0x12€973040>)

+1179: 1104 = getfield_gc_i(p102, descr=<FieldS rsqueakvm.model.numeric.W_Smallinteger.inst_value 8 pure>)

+1183: p105 = force_token()

+1186: p108 = force_token()

+1186: 1112 = int_ne(i104, 9223372036854775807)

+1199: guard_true(i112, descr=<Guard0x12e1922f0>)

+1205: p114 = force_token()

+1215: 1119 = call_i(ConstClass(ll_fixed_length__arrayPtr), ConstPtr(ptr118), descr=<Calli 8 r EF=2>)

+1256: 1121 = int_ge(0, i119)

+1260: guard_false(i121, descr=<Guard0x12e9730a0>)

+1266: p125 = getarrayitem_gc_r(p100, 1, descr=<ArrayP 8>)

+1270: guard_nonnull_class(p125, ConstClass(W_PointersObject), descr=<Guard0x12e973100>)

+1288: 1128 = int_sub(i93, 1)

+1299: setfield_gc(ConstPtr(ptr129), i128, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1303: 1131 = int_le(i128, 0)

+1307: guard_false(i131, descr=<Guard0x12€973160>)

+1313: p132 = new_with_vtable(descr=<SizeDescr 32>)

+1350: p134 = new_array_clear(2, descr=<ArrayP 8>)

+1369: p135 = new_with_vtable(descr=<SizeDescr 16>)

+1380: setfield_gc(p135, i61, descr=<FieldS rsqueakvm.model.numeric.W_Smallinteger.inst_value 8 pure>)

+1384: setarrayitem_gc(p134, 0, p135, descr=<ArrayP 8>)

+1388: setarrayitem_gc(p134, 1, p12, descr=<ArrayP 8>)

+1399: setfield_gc(p132, ConstPtr(ptr138), descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)
+1411: p139 = getfield_gc_r(p3, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)

+1415: setfield_gc(p132, p134, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst__storage 16>)

+1419: setfield_gc(p132, 0, descr=<FieldS rsqueakvm.model.base.W_AbstractObjectWithldentityHash.inst_hash 8>)

+1427: guard_value(p139, ConstPtr(ptr56), descr=<Guard0x12e1a2080>)

+1443: p141 = getfield_gc_r(ConstPtr(ptr53), descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)
+1454: guard_value(p141, ConstPtr(ptr55), descr=<Guard0x12e1a20e0>)

+1470: p142 = getfield_gc_r(ConstPtr(ptr63), descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)
+1481: guard_value(p142, ConstPtr(ptr65), descr=<Guard0x12e1a2140>)

+1490: jump(p0, p2, p3, p4, i7, p8, p9, i104, p132, p125, p22, p24, p26, p28, p30, p32, p34, p36, P38, p40, p42, 1128, descr=TargetToken(5123964960))

The higher complexity of RSqueak also results in longer warm-up. About
8350 elements of the list are not processes within the given loop.

The trace of RSqueak (optimized) is seemingly complex (listing 28). How-
ever, the inlining and block-by-block operation is nicely visible. Lines 28 to 47
extract and check the content of an seven times inlined compound value and
lines 52 to 62 creates and fills a new compound value in reverse order. Re-
viewing the variable configuration of the label and jump shows that the same
pipelining happens as with Theseus. The different representation of com-
pound values also pays of. All array operations have been removed and the
unboxing-boxing roundtrip also disappeared, leaving the trace much more
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LisTING 28: Trace for reverse in RSqueak (optimized) [E], numeric elements.
Loop without peeled iteration. Debug operations are omitted.

+2048: label(pO, p2, p3, p4, i7, p8, p9, p142, p93, p92, p91, p90, p89, p88, p55, P82, P83, pl44, p145, p146, p147, p148, p149, p150, p151, p22, p24, p26, p28, p30, p32, p34, P36, p38,
p40, p42, p69, 163, descr=TargetToken(6017035024))

+2109: guard_not_invalidated(descr=<Guard0x166a48da0>)

+2109: 1168 = int_sub(i163, 1)

+2134: 1173 = int_sub(i168, 1)

+2138: setfield_gc(ConstPtr(ptri74), i173, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)

+2142: 1176 = int_le(i173, 0)

+2146: guard_false(i176, descr=<Guard0x166a48c20>)

+2152: 1178 = int_sub(i173, 1)

+2156: setfield_gc(ConstPtr(ptr179), 1178, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)

+2160: 1181 = int_le(i178, 0)

+2164: guard_false(i181, descr=<Guard0x166a48b60>)

+2170: 1183 = int_sub(i178, 1)

+2174: setfield_gc(ConstPtr(ptr184), 1183, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)

+2178: 1186 = int_le(i183, 0)

+2182: guard_false(i186, descr=<Guard0x166a48e00>)

+2188: 1188 = int_sub(i183, 1)

+2192: setfield_gc(ConstPtr(ptr189), i188, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)

+2196: 1191 = int_le(i188, 0)

+2200: guard_false(i191, descr=<Guard0x166a48ec0>)

+2206: 1193 = int_sub(i188, 1)

+2210: setfield_gc(ConstPtr(ptr194), i193, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)

+2214: 1196 = int_le(i193, 0)

+2218: guard_false(i196, descr=<Guard0x166a48f20>)

+2224: 1198 = int_sub(i193, 1)

+2228: setfield_gc(ConstPtr(ptr199), 1198, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)

+2232: 1201 = int_le(i198, 0)

+2236: guard_false(i201, descr=<Guard0x166a48f80>)

+2242: p202 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_0 16 pure>)

+2246: guard_nonnull_class(p202, 4544843936, descr=<Guard0Ox166a48fe0>)

+2266: p204 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_1 24 pure>)

+2270: p205 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_2 32 pure>)

+2274: p206 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_3 40 pure>)

+2278: p207 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_4 48 pure>)

+2282: p208 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_5 56 pure>)

+2286: p209 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_6 64 pure>)

+2290: p210 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_7 72 pure>)

+2294: p211 = getfield_gc_r(p151, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_8 80 pure>)

+2305: guard_class(p204, 4544843936, descr=<Guard0x166a4eec0>)

+2317: guard_class(p205, 4544843936, descr=<Guard0x166a4ef08>)

+2331: guard_class(p206, 4544843936, descr=<Guard0x166a4ef50>)

+2343: guard_class(p207, 4544843936, descr=<Guard0x166a4ef98>)

+2356: guard_class(p208, 45 936, descr fe0>)

+2369: guard_class(p209, 4544843936, descr=<Guard0x166a4f028>)

+2382: guard_class(p210, 4544843936, descr=<Guard0x166a4f070>)

+2395: guard_class(p211, 4544836568, descr=<Guard0x166a4f0b8>)

+2409: p220 = getfield_gc_r(p211, descr=<FieldP rsqueakvm.plugins.value.pointers.W_PointersValue.inst__shape 8 pure>)

+2434: guard_value(p220, ConstPtr(ptr221), descr=<Guard0x166a4f100>)

+2443: 1223 = int_sub(i198, 1)

+2447: setfield_gc(ConstPtr(ptr224), 1223, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)

+2451: 1226 = int_le(i223, 0)

+2455: guard_false(i226, descr=<Guard0x166a49040>)

+2461: p227 = new_with_vtable(descr=<SizeDescr 88>)

+2508: setfield_gc(p227, ConstPtr(ptr228), descr=<FieldP rsqueakvm.plugins.value.pointers.W_PointersValue.inst__shape 8 pure>)

+2512: setfield_gc(p227, p93, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_0 16 pure>)

+2516: setfield_gc(p227, p92, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_1 24 pure>)

+2527: setfield_gc(p227, p91, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_2 32 pure>)

+2538: setfield_gc(p227, p90, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_3 40 pure>)

+2549: setfield_gc(p227, p89, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_4 48 pure>)

+2560: setfield_gc(p227, p88, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_5 56 pure>)

+2571: setfield_gc(p227, p55, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_6 64 pure>)

+2582: setfield_gc(p227, p82, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_7 72 pure>)

+2593: setfield_gc(p227, p83, descr=<FieldP rpython.tool.pairtype.W_PointersValueSize9.inst___raw_storage_8 80 pure>)

+2604: jump(po0, p2, p3, P4, i7, p8, p9, p202, p150, 149, p148, p147, P146, 145, P14k, p142, p227, p204, p205, p206, p207, p208, p209, p210, p211, P22, P24, P26, P28, p30, p32, P34
, P36, P38, p40, p42, p69, 1223, descr=TargetToken(6017035024))
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TABLE 5: Operation counts and relation for optimized and unoptimized reverse
in Theseus, niladic elements. Reduction factors are for run total.

Listing 29 Listing 30 Reduction Factor
Loop iterations 199 998 956 22221 114 9.00
perloop  once run total perloop  once run total
Allocations 1 o 199998 956 1 o 22221114 9.00
Stores 3 o 599 996 868 2 o 44442228  13.50
Loads 4 10 799995 834 2, 12 44 442240  18.00
Meta 4 I1 799 995 835 2 13 44 442 241 18.00
Other 9 8 1799990612 57 56 1266603 554 1.42
Operations 21 29 4199978 105 64 81 1422151377 2.95
— Other 12 21 2399987493 7 25 155547823  15.43

similar to the optimized traces of Theseus and Pycket. Owing to the archi-
tecture, we see multiple interrupt check patterns just like the one found in
the unoptimized trace; six at the beginning of the loop and one in between
content extraction and object creation. Since this check counter decrement
is very regular and it is unlikely that the null-check branch is taken, current
processors will very likely coalesce these operations. The overall number of
relevant operations (cf. table 4, to the right) is in the same range as for The-
seus and Pycket. However, with (24 991583 + 1) - 8 elements processed by the
loop, the remaining 67 326 elements show a long warm-up. Compared with
the non-optimized version, the warm-up increased eightfold, which is again
similar to the other implementations.

The shape-based optimization seems to have aligned the execution for all
three implementations; when their traces looked different in the unoptimized
variant, they were much more similar in the optimized variant.

7.5.4 Theseus and niladic elements list
Turing to the niladic elements variants, we see that for Theseus (not opti-
mized) the trace listing 29 is virtually identical to listing 23, except that the

contents of the processed compound value are not checked to be an integer,
but rather a compound value with a certain shape (lines 3, 7 and 8). As a result,
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there is one more load and one more guard, but the essence is the same, as
can also be seen in the left part of table 5. However, the optimized trace in
listing 30 is much shorter and completely dissimilar to listing 23. Compared
with the unoptimized version, there are quite a few loads and stores less; the
allocated object seems to only have one field beyond its shape. As seen in
line 6, the allocation new_with_vtable(descr=<SizeDescr 24>) requests space for
three 64 bit-sized elements, which accounts for the RPython-specific vtable,
the shape and one field. Nevertheless, the iteration count, as seen in the right
part of table s, is even lower than in the optimized version of the numeric
elements variant. Together with the low amount of memory operations, we
see an overall reduction of relevant operations by a factor of 1s.

The inlining is not as visible, although present. Since a niladic value is eli-
gible for inlining, the shape recognition algorithm will introduce new shapes
when encountering many of those values. However, there is nothing to inline,
as their storage is essentially empty. The “splicing” algorithm used will not
allocate any memory for empty lists that are to be incorporated into a new
storage. That way, an inlined niladic value is only observable in the structure
of a shape. In our case, this means that the inlining has happened but ended
up with a nine-times inlined shape and no storage for these. The store into the
storage we see in line 8 is the reference to the next, equally inlined compound
value in the list. Accordingly, the number of iterations is 9 times lower, which
nicely corresponds to the (exclusive) maximum shape depth limit of 1o shapes
deep.

Considering the iteration counts in table s, the unoptimized version had
comparatively short warm-up, only 1043 elements were not processed by the
loop. On the other hand, the optimized version’sloop processed (22 221114 +1)
- 9 elements, leaving 9965 elements. This amounts to a nearly tenfold increase
in warm-up.

7.5.5 Pycket and niladic elements list
Regarding Pycket (original) with niladic elements, there is no difference be-

tween listing 31 and the numeric elements variant in listing 25, save for the
order of one operation. Likewise, the numbers in the left part of table 6 are
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LISTING 29: Trace for reverse in Theseus (not optimized) [, niladic elements.
Loop without peeled iteration. Debug operations are omitted.

+526: label(p6, p3, p15, p16, p1, descr=TargetToken(4551549680))

+557: p23 = getfield_gc_r(p16, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_0 16 pure>)
+561: p24 = getfield_gc_r(p16, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_1 24 pure>)
+565: guard_nonnull_class(p23, 4545613824, descr=<Guard0x10f4ba3e0>)

+584: p26 = getfield_gc_r(p23, descr=<FieldP lamb.model.W_Constructor.inst__shape 8 pure>)

+588: guard_nonnull_class(p24, 4545607472, descr=<Guard0x10f4ba440>)

+607: p28 = getfield_gc_r(p24, descr=<FieldP lamb.model.W_Constructor.inst__shape 8 pure>)

+618: guard_value(p26, ConstPtr(ptr29), descr=<Guard0x10f4bc260>)

+634: guard_value(p28, ConstPtr(ptr30), descr=<Guard0x10f4bc2a8>)

+643: p31 = new_with_vtable(descr=<SizeDescr 32>)

+680: setfield_gc(p31, ConstPtr(ptr32), descr=<FieldP lamb.model.W_Constructor.inst__shape 8 pure>)

+684: setfield_gc(p31, p6, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_0 16 pure>)
+688: setfield_gc(p31, p3, descr=<FieldP rpython.tool.pairtype.W_ConstructorSize2.inst___storage_1 24 pure>)
+692: jump(p15, p31, p23, p24, p1, descr=TargetToken(4551549680))

LISTING 30: Trace for reverse in Theseus [&], niladic elements. Loop without
peeled iteration. Debug operations are omitted.

+573: label(p15, p23, p1, descr=TargetToken(4372137328))

+589: p27 = getfield_gc_r(p23, descr=<FieldP rpython.tool.pairtype.W_ConstructorSizel.inst___storage_0 16 pure>)
+593: guard_class(p27, 4362515880, descr=<Guard0x1049ba2c0>)

+605: p29 = getfield_gc_r(p27, descr=<FieldP theseus.model.W_Constructor.inst__shape 8 pure>)

+616: guard_value(p29, ConstPtr(ptr30), descr=<Guard0x1049b2020>)

+625: p31 = new_with_vtable(descr=<SizeDescr 24>)

+662: setfield_gc(p31, ConstPtr(ptr32), descr=<FieldP theseus.model.W_Constructor.inst__shape 8 pure>)

+666: setfield_gc(p31, p15, descr=<FieldP rpython.tool.pairtype.W_ConstructorSizel.inst___storage_0 16 pure>)
+670: jump(p31, p27, p1, descr=TargetToken(4372137328))

TaBLE 6: Operation counts and relation for optimized and unoptimized re-
verse in Pycket, niladic elements. Reduction factors are for run total.

Listing 31 Listing 32 Reduction Factor
Loop iterations 199998 956 22222023 9.00
perloop  once run total perloop  once run total
Allocations 1 o 199 999 866 1 o 22222023 9.00
Stores 3 o 599 999 598 ? o 44444046 13.50
Loads 3 10 599 999 608 2 18 44 444064  13.50
Meta 3 13 599999 611 2 21 44 444 067 13.50
Other I1 12 2199998 538 67 67 1 488 875 608 1.48
Operations 21 35 4199 997 221 74 106 1 644 429 808 2.55
— Other 10 23 1999998 683 7 39 155 554200 12.86
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LISTING 31: Trace for reverse in Pycket (original) [, niladic elements. Loop
without peeled iteration. Debug operations are omitted.

+595: label(p18, p12, p14, p16, p1, p8, p20, descr=TargetToken(4606214256))

+637: guard_not_invalidated(descr=<Guard0x11252c140>)

+637: p26 = getfield_gc_r(p12, descr=<FieldP pycket.values_struct.W_Struct.inst__type 8 pure>)

+648: guard_value(p26, ConstPtr(ptr27), descr=<Guard0x1129256a0>)

+657: p28 = getfield_gc_r(p12, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_1 24 pure>)
+661: guard_class(p28, 4561331656, descr=<Guard0x112925658>)

+673: p30 = getfield_gc_r(p12, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_0 16 pure>)
+677: guard_class(p30, 4561510248, descr=<Guard0x112925610>)

+689: p32 = new_with_vtable(descr=<SizeDescr 32>)

+726: setfield_gc(p32, ConstPtr(ptr33), descr=<FieldP pycket.values_struct.W_Struct.inst__type 8 pure>)
+730: setfield_gc(p32, p16, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_1 24 pure>)
+734: setfield_gc(p32, p14, descr=<FieldP rpython.tool.pairtype.W_StructSize2.inst__storage_0 16 pure>)
+738: jump(p18, p28, p30, p32, p1, p8, p20, descr=TargetToken(4606214256))

LISTING 32: Trace for reverse in Pycket (optimized) [E], niladic elements. Loop
without peeled iteration. Debug operations are omitted.

+824: label(p7, p38, p34, p1, p17, p15, p22, descr=TargetToken(4426204288))

+877: guard_not_invalidated(descr=<Guard0x10775a020>)

+877: p42 = getfield_gc_r(p38, descr=<FieldP rpython.tool.pairtype.W_StructSizel.inst___storage_0 16 pure>)
+881: guard_class(p42, 4380496024, descr=<Guard0x107dc01d0>)

+893: p44 = getfield_gc_r(p42, descr=<FieldP pycket.values_struct.W_Struct.inst__shape 8 pure>)

+904: guard_value(p44, ConstPtr(ptr45), descr=<Guard0x107dc00f8>)

+913: p46 = new_with_vtable(descr=<SizeDescr 24>)

+950: setfield_gc(p46, ConstPtr(ptr47), descr=<FieldP pycket.values_struct.W_Struct.inst__shape 8 pure>)
+954: setfield_gc(p46, p34, descr=<FieldP rpython.tool.pairtype.W_StructSizel.inst___storage_0 16 pure>)
+958: jump(p7, p42, p46, p1, p17, p15, p22, descr=TargetToken(4426204288))

virtually identical to those from the numeric elements variant. The similarity
to the respective Theseus trace remain. Warm-up is the same.

For Pycket (optimized), the trace listing 32 is, again, very dissimilar to its
numeric elements counterpart but matches nicely the Theseus variant in list-
ing 30 with but one more operation, which is also reflected in the very similar
numbers in the right part of table 6. Inlining “into” the shape has happened
here, too.

The warm-up has slightly increased to about thirteen times. Considering
the iteration counts in table 6, only 133 elements were not processed by the
unoptimized versions’ loop, whereas, the optimized version’s one left about
1784 elements. This is but slightly more that for the numeric elements variant.
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TABLE 7: Operation counts and relation for optimized and unoptimized re-
verse in RSqueak, niladic elements. Reduction factors are for run total.

Listing 33 Listing 34 Reduction Factor
Loop iterations 199991 683 22213 825 9.00
perloop  once run total perloop  once run total
Allocations 2 o 399983 366 1 o 22213825  18.01
Stores 6 1 1199950099 11 9 244352084 4.91
Loads 7 35 1399941816 2 44 44427694 3151
Meta I1 19 2199908 532 I1 32 244352 107 9.00
Other 48 47 9599 600831 175 176 3887419551 2.47
Operations 74 102 14799 384 644 200 261 4442765 261 3.33
— Other 26 55 5199783813 25 85 555345 710 9.36

7.5.6 RSqueak and niladic elements list

In the trace for RSqueak (original) with niladic elements, a deviation between
listing 33 and the numeric elements variant listing 27 can be found, in that the
former variant does not have to box and unbox the current element, but can
rather reuse the niladic value. This is supported by the numbers to the left in
table 7. Interrupt check counter and frame accounting remain the same.

The trace for RSqueak (optimized) in listing 34 shows similarities to the
unoptimized counterpart, but with important changes. First, like for Theseus
and Pycket, we see the allocation of a one-filed object in line 43. Second, the
pattern for the interrupt check counter decrement now happens nine times,
and at different points in the trace. However, leaving the interrupt check aside,
the trace is very similar to the optimized ones from the other implementations.
This again repeats the alignment of how the traces look that can be observed
in the numeric elements variant. The nine times smaller iteration count, to-
gether with the significantly reduced number of allocations and loads, shows
a reduction of almost one order of magnitude in the total number of relevant
operations executed. This can be seen to the right in table 7.

The iteration counts in table 7 shows that 8316 elements were not processed
by the unoptimized versions’ loop. In the optimized variant, 75 566 accounted
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TaBLE 8: Reduction factors for operations across optimizations and imple-
mentations; increase factor for warm-up

numeric elements niladic elements

Theseus  Pycket RSqueak  Theseus Pycket RSqueak
table2  tables table 4 tables  table 6 table 7

Iterations 8.00 8.00 8.00 9.00 9.00 9.00
Allocations 8.00 8.00 24.01 9.00 9.00 18.01
Stores 2.40 2.40 9.34 13.50 13.50 4.91
Loads 2.40 2.40 14.40 18.00 13.50 31.51
All relevant 2.11 2.06 14.30 15.43 12.86 9.36

Increase factor for warm-up

Theseus  Pycket RSqueak  Theseus Pycket RSqueak

Warm-up 8.23 11.37 8.06 9.55 13.41 9.09

for warm-up, the highest number in this analysis, but compared with the
unoptimized version, the warm-up has been reduced to about nine times.

7.s.7 Findings

The detailed look at the twelve traces has revealed that the inlining process
works as expected. For numeric elements, we generally see a reduction in loop
iterations proportional to the size increase of the objects allocated within the
loop. Since overhead for objects and next-pointers is avoided, the overall num-
ber of executed, relevant operations decreased in all cases. In table 8, for each
category of operations, the overall reduction factors between unoptimized
and optimized versions is summarized. That is, for any 7 in the table, the opti-
mized version executes 7 times Jess operations compared to the unoptimized
version. The factors for the iteration count match nicely the algorithm’s pa-
rameters. The maximum object size of 8 is reflected directly, as the number
of processed elements per iteration rose from 1 to 8. Likewise, the maximum
shape depth is also reflected. Since for the niladic elements variant, the element
has a shape itself that has to be considered for the overall shape depth during
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LISTING 33: Trace for reverse in RSqueak (original) [, niladic elements. Loop
without peeled iteration. Debug operations are omitted.

+994: label(p0, p2, p3, p4, i7, p8, p9, p59, p12, p80, p22, p24, p26, p28, p30, p32, p34, p36, p38, p40, p42, i85, descr=TargetToken(5059610608))
+1021: guard_not_invalidated(descr=<Guard0x12a4e1040>)

+1021: p89 = getfield_gc_r(p80, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)

+1032: guard_value(p89, ConstPtr(ptro0), descr=<Guard0x12a4e10a0>)

+1041: p91 = getfield_gc_r(p80, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst__storage 16>)

+1045: p93 = getarrayitem_gc_r(p91, 0, descr=<ArrayP 8>)

+1049: guard_nonnull_class(p93, ConstClass(W_PointersObject), descr=<Guard0x12a4€e1100>)

+1068: p95 = force_token()

+1068: p98 = force_token()

+1075: 1102 = instance_ptr_eq(p93, ConstPtr(ptr101))

+1078: guard_false(i102, descr=<Guard0x12a48e578>)

+1084: p104 = force_token()

+1084: p110 = getarrayitem_gc_r(p91, 1, descr=<ArrayP 8>)

+1088: guard_nonnull_class(p110, ConstClass(W_PointersObject), descr=<Guard0x12a4e1160>)

+1107: 1113 = int_sub(i85, 1)

+1118: setfield_gc(ConstPtr(ptr114), i113, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1122: 1116 = int_le(i113, 0)

+1126: guard_false(i116, descr=<Guard0x12a49e080>)

+1132: p117 = new_with_vtable(descr=<SizeDescr 32>)

+1172: p119 = new_array_clear(2, descr=<ArrayP 8>)

+1191: setarrayitem_gc(p119, 0, p59, descr=<ArrayP 8>)

+1195: setarrayitem_gc(p119, 1, p12, descr=<ArrayP 8>)

+1199: setfield_gc(p117, ConstPtr(ptr122), descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)
+1211: p123 = getfield_gc_r(p3, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)

+1215: setfield_gc(p117, p119, descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst__storage 16>)

+1219: setfield_gc(p117, 0, descr=<FieldS rsqueakvm.model.base.W_AbstractObjectWithldentityHash.inst_hash 8>)

+1227: guard_value(p123, ConstPtr(ptr56), descr=<Guard0x12a49e0e0>)

+1243: p126 = getfield_gc_r(ConstPtr(ptr53), descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)
+1254: guard_value(p126, ConstPtr(ptr55), descr=<Guard0x12a49e140>)

+1270: p127 = getfield_gc_r(ConstPtr(ptr62), descr=<FieldP rsqueakvm.model.pointers.W_PointersObject.inst_strategy 24>)
+1281: guard_value(p127, ConstPtr(ptr64), descr=<Guard0x12a49e1a0>)

+1290: jump(po0, P2, p3, p4, i7, p8, p9, p93, p117, p110, p22, p24, p26, P28, P30, P32, p34, P36, P38, P40, p42, 1113, descr=TargetToken(5059610608))

inlining, we can inline at most to a depth of 9, which is reflected in all niladic
elements variants. The reduction factors range from 2.06 to 24.01.

The warm-up for the optimized version is always higher, as can be seen in
the bottom part table 8, ranging from 8.06 to 13.41 time higher. The reduced
number of allocations and the omission of object overhead and next-references
in the optimized versions can explain the reduction in memory usage. The
reduced number of actually executed operations in the optimized versions can
explain the reduction in execution time.

Eventually, the traces for all optimized versions seem to align for all imple-
mentations where the traces for the unoptimized versions align only between
Theseus and Pycket. Save for trace components specific to the language or
architecture, all traces showed the inlining predicted. We can conclude that
our approach is applicable beyond just our prototype Theseus.
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LISTING 34: Trace for reverse in RSqueak (optimized) [E], niladic elements.
Loop without peeled iteration. Debug operations are omitted.

+1526: label(p0, p2, p3, p4, i7, p8, p9, p81, p106, p22, p24, p26, p28, p30, p32, p34, P36, p38, p40, p42, p68, 136, descr=TargetToken(4899243536))
+1565: guard_not_invalidated(descr=<Guard0x11a9075e0>)

+1565: 141 = int_sub(i136, 1)

+1576: setfield_gc(ConstPtr(ptr142), i141, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1580: i144 = int_le(i141, 0)

+1584: guard_false(i144, descr=<Guard0x11a907520>)

+1590: 1146 = int_sub(i141, 1)

+1594: setfield_gc(ConstPtr(ptr147), 1146, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1598: 1149 = int_le(i146, 0)

+1602: guard_false(i149, descr=<Guard0x11a9073a0>)

+1608: 1151 = int_sub(i146, 1)

+1612: setfield_gc(ConstPtr(ptr152), 151, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1616: 1154 = int_le(i157, 0)

+1620: guard_false(i154, descr=<Guard0x11a907340>)

+1626: p155 = getfield_gc_r(p106, descr=<FieldP rpython.tool.pairtype.W_PointersValueSizel.inst___raw_storage_0 16 pure>)
+1631: guard_class(p155, 4368275792, descr=<Guard0x11ad233d0>)

+1643: p157 = getfield_gc_r(p155, descr=<FieldP rsqueakvm.plugins.value.pointers.W_PointersValue.inst__shape 8 pure>)
+1654: guard_value(p157, ConstPtr(ptr158), descr=<Guard0x11ad23388>)

+1663: 1160 = int_sub(i151, 1)

+1667: setfield_gc(ConstPtr(ptr161), 1160, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1671: 1163 = int_le(i160, 0)

+1675: guard_false(i163, descr=<Guard0x11a907280>)

+1681: 1165 = int_sub(i160, 1)

+1685: setfield_gc(ConstPtr(ptr166), 1165, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1689: 1168 = int_le(i165, 0)

+1693: guard_false(i168, descr=<Guard0x11a9071c0>)

+1699: 1170 = int_sub(i165, 1)

+1703: setfield_gc(ConstPtr(ptr171), 1170, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1707: 1173 = int_le(i170, 0)

+1711: guard_false(i173, descr=<Guard0x11a907100>)

+1717: 1175 = int_sub(i170, 1)

+1721: setfield_gc(ConstPtr(ptr176), i175, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1725: 1178 = int_le(i175, 0)

+1729: guard_false(i178, descr=<Guard0x11a907040>)

+1735: 1180 = int_sub(i175, 1)

+1739: setfield_gc(ConstPtr(ptr181), 1180, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1743: 1183 = int_le(i180, 0)

+1747: guard_false(i183, descr=<Guard0x11a906f80>)

+1753: 1185 = int_sub(i180, 1)

+1757: setfield_gc(ConstPtr(ptr186), i185, descr=<FieldS rsqueakvm.interpreter.Interpreter.inst_interrupt_check_counter 24>)
+1761: 1188 = int_le(i185, 0)

+1765: guard_false(i188, descr=<Guard0x11a906ec0>)

+1771: p189 = new_with_vtable(descr=<SizeDescr 24>)

+1808: setfield_gc(p189, ConstPtr(ptr190), descr=<FieldP rsqueakvm.plugins.value.pointers.W_PointersValue.inst__shape 8 pure>)
+1812: setfield_gc(p189, p81, descr=<FieldP rpython.tool.pairtype.W_PointersValueSizel.inst___raw_storage_0 16 pure>)
+1816: jump(p0, p2, p3, p4, i7, p8, p9, p189, p155, p22, p24, p26, p28, p30, p32, P34, p36, P38, p40, p42, p68, i185, descr=TargetToken(4899243536))

7.6 LIMITATIONS

We are aware that this quantitative evaluation is limited. As pointed out earlier,
the benchmark set used is not representative for real-world applications. Nev-
ertheless, assuming basic meaningfulness of the measurements, the desired
effect could be shown. Moreover, while the measurements include warm-up
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in the sense that we did not do separate executions before starting measure-
ments, we nevertheless separated the preparation of the rather long lists from
the operations on them. This might have had an impact on the j1T compiler.

There are deviations in style and architecture for the benchmarks between
Squeak and the other two systems. We explained our rationale to that earlier,
however, it might still be a source of inaccuracies. For example, the filter bench-
mark for Theseus and Racket uses a tail-call-modulo-cons architecture to
build up the result list. In the loop-style of Squeak, it is not possible to express
this efficiently without also introducing means similar to tail-call-elimination.
Therefore, the algorithm here builds up the resulting list in reverse and even-
tually restores order via reverse. A similar approach was taken for append. This
might have influenced the results as shown in figures 12 and 13.

While care was taken to shield the benchmark execution from environmen-
tal influence as far as possible, it cannot be ruled out that certain influences
remained. The hardware-governed speed control of the processor, the granu-
larity of the clock used, and operating system kernel context switches, to name
a few, are potential sources of noise that we could not mitigate.

During the statistical processing of the benchmark results — particularly
with regards to bootstrapped confidence intervals— we had to make assump-
tions about the underlying distribution of the time and memory measure-
ments. Since our sample per measurement was too small to verify a certain
distribution, we used Student’s t-distribution. A larger sample size certainly
can help to identify the true distribution; however, the confidence intervals for
all measurements where rather narrow. Therefore, a higher confidence in the
kind of distribution would not necessarily improve our results with respect
to how close they reflect reality.

SUMMARY

In five micro-benchmarks across two variants, there is always reduction in
memory consumption, often significantly, and almost always reduction in
execution time, sometimes very significantly.
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8 Related work

Data structure optimization is well documented in literature and industry. We
want to put our approach to compound value optimization into this context.

8.1 RELATED CONCEPTS

The concept of compound values is related to other notions of data structures.
In particular, persistent data structures and algebraic data structures have key el-
ements in common with compound values. Moreover, our inlining approach
is related to object inlining and cdr-coding.

8.1.1 Persistent data structures

When a data structure cannot be modified zn-place, but rather new “versions”
of a data structure must be created to result in modification, these data struc-
tures can be called persistent [3s]. This is to be contrasted with ephemeral data
structures, that can change in-place. Several sub-types of persistent data struc-
tures exist, relating to the capability of making new versions of any previous
version or not. Literature typically calls for “support|] [to] access [...| multiple
versions” [35]. Some variants, such as the “fat node” [35] approach, explicitly
record all modification locally and hence provide a way to recover previous
version; others employ “path copying” to clone and modify all affected struc-
tures — this entails updating all incoming references. Most research in that
area is however concerned with turning ephemeral data structures into persis-
tent ones, preferably automatically.

Looking from the perspective of compound values, we essentially provide
persistent data structures, as long as object identity is not concerned. That is,
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updating data structures always results in new versions. Previous versions of
data structures are implicitly retained, but not necessarily in the same place
in memory or under the same object id, should the respective programming
system have this concept.

Clojure  Clojure [ss] is a Lisp-family programming language that strongly ad-
vocates the use of persistent data structures, mainly for reasons of functional
purity and simplicity of sharing in multithreaded settings. The reference imple-
mentation runs on top of regular yvms. Clojure supports lists, vectors, maps,
sets, and other collections in a persistent fashion. Ephemeral data structures
are called transient and are available as counterpart to most persistent data
structures, but are discouraged to use except for very few use cases.

The creators of Clojure regard the value-nature of their persistent data struc-
tures as one of their important features [56]. That is to say, a sharp distinction
between persistent data structures and compound values is not always drawn.
In that regard, compound values as presented and optimized herein can be
used quite similarly to Clojure’s persistent data structures.

As of writing, the reference implementation of Clojure’s persistent data
structures do not optimize layout, storage, or access in any special way, leaving
potential optimizations to the underlying jvM (see also section 8.7 below).

8.1.2 Algebraic data types

From a data structure optimization point of view, compound values are sim-
ilar to algebraic data types as found in languages in the ML family [31, 73].
Hence, optimizations done to this category of data structures are relevant to
compound values, too [68, 69].

8.1.3 Object inlining
Wimmer has proposed object inlining [114] as a general data structure opti-
mization for structured objects in Java. This approach shares many similarities

with ours: it also inlines objects into their referring objects, saving space and
pointer indirections. It has a number of advantages over our approach: the
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approach guarantees to never need more memory than without the optimiza-
tion. Also, it does not need any complex run-time support, since it relies on
a static, global analysis to identify classes for which the inlining is possible.
However, for that reason, it cannot be applied so easily to dynamic languages
and in situations where reflection or class loading is used. Additionally, the in-
lining decision is done per class, while in our approach several different shapes
and thus inlining patterns can be created for a value class.

8.1.4 Cdr coding

Cdr coding [113, § 5.4] is an optimization for cons lists provided in hardware.
It can be applied to both mutable and immutable structures. Cons lists that
are created with a certain interface are not completely stored as linked lists,
but compressed like arrays. The intermediate references are omitted and all
relevant list operations, in particular the ones that mutate a list, take special
care to utilize this optimized storage. Specifically, the rplacd function, which
can be used to alter the zext pointer in a linked list, checks whether the opti-
mized storage can be retained or whether actual cons cells have to be allocated
an connected to the list.

When our approach is applied to cons cells, the effective memory layout will
match that of cdr coding. Nevertheless, cdr coding is limited to cozs lists and
also does not work on arbitrary cons cells, such as improper lists. It is, however,
the only hardware-supported optimization of this kind known to us.

One language-level implementation of compound values (named complex
values) [103] in Squeak/Smalltalk is similar to our image-side Smalltalk code
for RSqueak. However, the complex values project cannot rely on support
by the vm and hence provides all means necessary by code generation and
tooling. Due to the way the vM works, immutability cannot be guaranteed
and identity-based comparison cannot be completely avoided.
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8.2 LANGUAGE-LEVEL OPTIMIZATION

Improving data structures to gain execution speed has been proposed for op-
erations on linked lists in functional languages, for example by unrolling [104].
Typically, those optimizations are restricted to linked lists of cozns cells.

One of the key effects in our optimization is avoiding to allocate intermedi-
ate data structures. In that respect, hash consing [41, 44, 52, as used in func-
tional languages for a long time, is related to this work. However, hash consing
typically works at the language level using libraries, coding conventions, or
source-to-source transformations. It is not adaptable at run-time.

Deforestation [50, 108, 112] has the aim to eliminate intermediate data struc-
tures and is in this respect related to our approach. However, deforestation
deliberately works through program transformation and does not incorpo-
rate dynamic usage information. It is typically only available to statically typed
functional languages, such as ML.

8.3 JUST-IN-TIME COMPILERS

Compiling to native code at run-time, that is jIT compilation, is a preva-
lent and extensively studied technique, found in several different, but chiefly
object-oriented, dynamically-typed languages [4]. Prominent examples in-
clude the Smalltalk-80 bytecode to native code compiler by Deutsch and
Schiffman [34], and the optimizing JIT compiler of Self, with type special-
ization and speculative inlining [24]. These concepts were later used in the
HotSpot j1T compiler [85] for Java.

The prevalence of web browsers has made j1T compilation an important
topic for JavaScript implementations, for example the int V8 JavaScript im-
plementation [59]. The map transitions for hidden classes used in V8 [3] and
inspired by Self [24], are in principle similar to our notion of transformation
rules. As well as objects in V8 start with a default hidden class and follow map
transitions to their most optimal hidden class, the transformation rules in our
approach change the shape of a compound value from its default shape to its
most optimized one during the compound value’s creation.
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An important difference between the hidden classes of V8 to the shapes of
our approach is that V8 needs to deal with the objects being mutated after
their construction. Indeed, while the hidden classes of V8 (and similarly of
Higgs [25]) can encode the type of the fields of the objects, they do that only
for primitive values like int, float etc. They cannot recursively express that
a field is itself an object with a specific hidden class, which is what we do
with shapes in the current paper. The reason this is impossible (or at least
significantly harder) in the JavaScript setting is the fact that the inner object
can be mutated later, which might cause its hidden class to change.

Tracing J1T compilers as introduced by Mitchell [76] have seen implemen-
tations for Java [49], JavaScript [48], or Lua;j to name a few. In the context
of a JavaScript implementation, the SPUR project [11] provided a tracing j1T
compiler for Microsoft’s Common Intermediate Language (c1r). Tracing
an znterpreter that runs a program instead of tracing the program itself it
the core idea of meta-tracing J1T compilers, pioneered in the DynamoRIO
project [106]. PyPy [15, 99] is a meta-circular Python implementation that uses
ameta-tracing JIT compiler. Provided through the R Python tool chain, other
language implementations can benefit from a meta-tracing, Haskell [109],
PHP? or R7The meta-tracing JIT used in this work is provided by R Python,
as well.

84 DATA STRUCTURE IMPLEMENTATION

Many systems, particularly dynamically typed systems, have a need to distin-
guish language-level structured data, such as objects, from primitive data, such
as integers. A common approach to represent such a distinction is tagging,
that is, using a bit in a machine word to distinguish numbers from objects/
handles/pointers/etc., which would otherwise be potentially identical. This
technique can also be applied to structured data, for example cons cells and

Shttp://luajit.org (last accessed March 17, 2021).
®http://hippyvm.baroquesoftware.com/ (last accessed March 17, 2021).
7https:/ / bitbucket.org/roy_andrew/rapydo (last accessed March 17, 2021).
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has often been applied for Lisp, both in interpreters and Lisp machines [46].
Since then, tagging has been applied in numerous environments, including
but not limited to Smalltalk [s1], or even OCaml [69]. Gudeman gives a com-
prehensive overview of the common alternatives [s3]. It is still applicable today,
despite more recent variants for newer processor architectures. Some proces-
sor architectures besides the Lisp machines, such as SPARC, support tagged
representations directly. That is, dedicated instructions exist for arithmetics
with integers that are represented with a tag in the least significant bit. Yet,
this is typically limited to arithmetics of integers alone.

Late Data Layout is a lightweight annotations mechanism [111] to elimi-
nate limitations of coercions between internal data representations. Boxing
and unboxing operations are not inserted eagerly by a compiler but only at
execution time, with checks that ensure the consistency of the data represen-
tation. The checks are based on multi-phase ¢ype-driven data representation
transformations and local type inference. Hence, unnecessary transformation
operations can be omitted and data-type representations are added optimally.

The Object Storage Model [115] of Truffle [116] creates every object as an
instance of a storage class, which works as a container for the instance data.
This class references a shape that describes the object’s data format and be-
havior. Shapes and all their accessible data are immutable, but the reference
to a shape from the storage class themselves can vary over time. Thus, any
change of the object’s shape results in a new shape. The proposed approach is
suitable for sufficiently efficient compilation with further optimizations, such
as polymorphic inline caches (p1cs) for efficient object’s property lookup.

A more specialized approach to increase performance of data structures
in vMs is storage strategies [16, 91] for collections of homogeneously typed
elements. If possible, they are stored unboxed and their type is stored separately
and only once with a special object called st7ategy. For example, appending an
integer to an empty collection enables the 7nteger strategy for this collection
and this integer and all subsequent integers will be saved unboxed. However,
appending anything other than an integer, such as a string, causes a transition
to a generic strategy, because the collection is now heterogeneous. It is assumed
that such transformations are unlikely, which is shown by the authors. A
similar approach is used for structures with mutable cells in this work. Every

126



cell has its strategy and its values are saved unboxed when not using a generic
strategy.

While pointer tagging and strategies reduce memory consumption by un-
boxing values, it is also possible to reduce the size of the structure itself, when
a substantial amount of structures is allocated. Structure vectors group struc-
tures of the same type, allowing to store the header and the type descriptor
only once [23]. This optimization is most beneficial when large amounts of
structures are used, achieving a speed-up of up to 15 %. Yet, while allocation
becomes faster, field access and especially type descriptor access become up to
three to four times slower [23]. However, the allocation of a large number of
structures is not very common in Racket. [94]

An effective run-time representation exists for R°RS Scheme records [65]
where each record has an associated run-time representation, record-type de-
scriptor (RTD), determining its memory layout. When an RTD is created, the
compiler calculates record sizes and field offsets for this record type similar to
the way presented here. They have flat representation with inlined fields, quite
similar to structures in Pycket. A special interface allows to store raw integers,
untagged floating point numbers, and raw machine pointers, in addition to
ordinary Scheme data types.

The representation of structures in Racket’s implementation is related to
our work, too. However, we deliberately chose to not investigate the imple-
mentation but rather base our approach solely on the extensive documenta-
tion and the static and dynamic analyses. A comparison of our implementa-
tion to Racket’s is part of future work.

8.5 VALUES IN SYSTEMS AND LANGUAGES
There have been several attempts at providing compound values in program-

ming systems, languages, and architectures. We present a few of them and how
they relate to our approach.
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8.5.1 CORBA/OMG Object-by-Value

The CORBA extension “Object by Value” [82] provides a notion of com-
pound values for the CORBA architecture. The main benefit for the CORBA
system is that with this idea of values, there is no need to track references,
which can be a major concern in CORBA implementations, especially with
respect to deployment boundaries. CORBA values are in fact always “local”,
and, on the occasion of crossing system boundaries, always copied in its en-
tirety; the value exists as independent entity on either side of the system bound-
ary . In fact, this copy semantics (“copy-on-pass”) is a main driving force for
this extension and “provide semantics that bridge between CORBA structs
and CORBA interfaces” [82, § 5.1]. In that regard, CORBA values are dif-
ferent from compound values as used here, as they allow cyclic relationships.
Therefore, the optimizations presented here are not applicable to CORBA
values.

8.5.2 Newspeak Values

Newspeak [21] specifies values as “deeply immutable”. Also, “[a compound
value is] globally unique, in the sense that no other object is equal to it.” [20].
Newspeak’s requirements for values essentially include flat values, value-based
equality, and recursive immutability, hence specifying compound values as
used in this work. However, the specification makes concessions for mirror
access to compound values. That is, reflective capabilities of the language and
execution environment might be able to alter the contents of compound val-
ues, given they are located within the same address space (and not, for example,
copied across system boundaries). In that regard, immutability of compound
values in Newspeak is limited.

At the time of writing, the specification also acknowledges that the refer-
ence implementation of Newspeak does not support values per se: “At the
moment, Newspeak still relies on Squeak Smalltalk for some of its libraries.
There is no class Value yet.” [20, § 3.1.1] That being said, the SOMns [72] imple-
mentation of the Newspeak specification explicitly includes values, but makes
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no attempt to optimize values beyond communicating to the underlying yjvm
that a compound value’s constituents are constant.

8.5.3 BETA value types

The BETA system [67] provided a rich set of abstractions for different use
cases. With direct influences from SIMULA and DELTA, value types can be
explicitly denoted alongside classes and record types, to name a few. In that,
these abstraction mechanisms are distinct and the resulting “realizations” (that
is, values, objects, record, and so on) cannot cross-reference freely: “A variable
in BETA either holds a value or a reference to an object.” [67] That being
said, values are characterized as subpatterns and not instances, arguing that
“a value, like four, is an abstraction over all collections of four objects” [67].
This differs from the way even flat values are conceptualized in most other
languages, where, for example in Smalltalk, the number four would be a mere
instance of a class, value or not. It is not obvious from literature whether
BETA’s values where specially represented or optimized.

8.5.4 Fortress compound values and traits

The Fortress language [105] distinguishes between referenced objects and val-
ues, calling the latter similar to primitives in other languages. In fact, data
types such as Float are expressed in terms of compound values. The penulti-
mate specification [1] gives detailed information on how values in Fortress are
to work. Values in Fortress can be compound and are immutable. Although a
settable annotation for a value’s constituents can be given, it is made explicit
that such a “setter” is merely convenience and “an abbreviation for construct-
ing a new compound value with a different value for one field” [1, § 10.3].
The rules for object equivalence [1, § 10.4] make it clear that comparisons for
values are based on their respective constituents. Due to the nature of how
abstractions are provided in Fortress, the modifier “value” can also apply to
traits [36], which comprise behavior for objects to extend on. A respective
object will automatically be a value if it extends upon a value trait.
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The last available version of Fortress relies on the JvM for execution and
hence cannot rely on value support from the underlying vm. It is not known
whether the language-level compound values where represented in an specially
optimized fashion.

8.6 NON-VALUES IN SYSTEMS AND LANGUAGES

Some systems and languages use the term “value” to refer to data structures in
a way that is influenced by the call-by-value/call-by-reference evaluation strate-
gies. In these environments, “value” typically means that memory contents
are copied when used as parameters or in assignments. Immutability, whether
transitive or not, and identity in these systems are typically not required to be
compatible with our notion of compound values.

8.6.1 C#and cIL value types

The C# language inherits its notion of values from a C/C++ point of view.
There, values are merely a denotation of copy-on-assignment—semantics: “As-
signment to a variable of a value type creates a copy of the value being as-
signed.” [37, emphasis in original] Since this includes C# structs, composites
that are called “value” exists, but there is no statement regarding immutability,
atemporality, or similar indications that would make it possible to say values
of C# are compound values in the sense used here. This matches the notion
of value types as found in the cir [38, § 1.8.2.1].

8.6.2 Scala value classes

Scala [83] provides a notion of value classes, that is said to be “similar to value
types in NET” [84]. However, these value classes are explicitly only unary and
primarily intended as a kind of object-oriented shell around primitive types
better fitting Scala’s type system. They are thus more wrappers to facilitate
inlining than values in the sense used here. Further, there is no communication
to the underlying vm — typically the yjvm — that there are values present.
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8.7 JAVA AND THE JVM

Neither the language Java nor its most predominantly used vM support com-
pound values at the time of writing. That being said, support for compound
values has been along-standing research topic for Java and derivative languages.
For the precise reason of more fine-grained performance control, Kava [6] and
project Valhalla’s JEP 169 [100] propose variants for compound value support
for both the language and the vM. The latter of which would also benefit
non-Java languages on the yvM, for example, Scala, Clojure, or SOMns.

Kava Building on the Jikes [5] and Jalapefio [22] vMs, Kava went very far in
its application of compound values. All primitive types available though the
vM in Kava are expressed in terms of compound values, deferring the actual
representation of these to the vM. This work is in line with this research and —
to a certain degree — are an instance of the optimizations on the vm-level that
are necessary to run Kava-esque programs with good performance.

Kava makes a compelling case for reifying “primitive” data types of the
underlying vM as compound values:

In Kava, int is part of the package kava.lang.primitive, and is de-
fined as a value object containing an array of 32 enumerations
objects of type bit, which can have the value zero or one. There is
nothing the programmer can do to observe that int is not a fully
general object. Yet it can be implemented as a 32-bit register value.

[6,§1]

Using shapes to represent ints, however, would not yield the same, optimized
representation as in Kava. Rather, our optimization would elide zero and one
values into the shape structure, as they are niladic compound values. This
would eventually result in one unique shape for every actually used int. Arith-
metic on numbers represented in this way is expensive. Thus we do not sup-
port Kava’s notion of primitive values.

Project Valballa  Value objects in Valhalla [100] explore the benefits of com-
pound values in the context of both Java the language and the vm. One core
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focus is to provide a notion of value objects aimed for performance and inte-
grated with the Java compiler. Value classes (or 7zline classes, for that matter)
exist primarily to be inlined into their surrounding data structures at compile
time. This may imply compile-time program transformation to ensure effec-
tive data access works, analogous to object inlining (cf. section 8.1.3), but in
contrast to its automatic nature, value classes require developers to deliber-
ately chose which classes to inline. Value classes of this kind are required to be
“final”, in Java terminology, that is they must not be subclassed; a restriction
that is not found in most other compound value concepts. Although intent
and effect are different, the general technique is related to hash consing and
deforestation (cf. section 8.2).

SUMMARY

The optimization approach builds on well-known related ideas in data struc-
ture representation, hardware optimization, and jIT compiler compilers.
There are diverse notions of what compound values are amongst different
systems.
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9 Conclusion

This chapter gives future directions to built upon and summarizes our ap-
proach and our findings in applying it to three vM implementations.

9.1 FUTURE WORK

While our prototypes give promising results on micro-benchmarks, they al-
low only limited reasoning about more general programs. The applicability
of our approach to more general, particularly oop languages and programs
for real-world problems remains to be assessed. This includes broadening the
benchmarks as well as applying the presented approach to other languages and
their notions of data structures and compound values. For example, Racket
supports more data types that may be subject to our approach, such as (im-
mutable) vectors and cons cells themselves. Likewise, there are more data struc-
tures in Squeak that can benefit from our approach; in that case, the effects
that potential interactions between objects and compound values have for
developers warrant further investigation.

9.2 SUMMARY

While compound values are not wide-spread in vM-based programming sys-
tems and languages, existing systems that provide compound values show that
their adoption can be desirable for several reasons. The efficient representation
of compound values in vMs presented here adds to these reasons.

The introduction of shared shapes to describe the contents of compound
values recursively and the representation of frequent compound values using
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a compressed storage layout are fundamental to our approach. Both concepts
contribute to a reduction in management overhead for compound values in
VMs.

The approach is capable of being extended beyond the initial optimization
of compound values. In that regard, using the cell indirection in the Pycket im-
plementation has proven worthwhile to support mutability. Further, a more
general look at the optimization approach allows expressing other existing
data structure optimizations in terms of a shape-guided optimization. Shape-
guided unboxing provides a more general way of incorporating flat values into
the whole optimization process. The introduced extension can facilitate the
integration of our approach with existing vMs and provide adjustments for
specific situations.

Our approach to optimizing compound values in vMs provides very good
results both for execution time and memory consumption for a small proto-
type implementation on selected micro-benchmarks. Applied to more general
systems, it still shows significant performance improvements when compound
values are used. There is no virtually performance degradation when com-
pound values are not used. With only two instance with no improvements in
execution time, execution was in many cases more than twice as fast as without
our optimization. Our approach saved memory in all cases and, on average, we
see less than half the memory consumption of the original implementations.

The shape-based optimization of compound values in vms shows good per-
formance characteristics and can provide a useful tool to support efficient
compound values in a broader range of programming systems.
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Appendix B
Comprehensive benchmark results

For the sake of completeness, this chapter provides a detailed description of
the benchmarking environment, the process of determining the algorithm’s
default parameters, and the comprehensive measurement results.

B.I ENVIRONMENT

We provide information on the hardware of the host computer used for bench-
marking, as well as the software used. This include system software, bench-
marking software and the software that was subject to benchmarking. Note
that the benchmarks themselves can be found in appendix C.3 in brief and
online [86] in detail.

B.i.r Host

All benchmarks were run on a HP DLs6o Gen 10 machine. It is equipped
with 4x Intel Xeon Gold 6148 (Skylake) crus, with 20 cores each, totalling
at 8o cores. Hyperthreading was active, resulting in a maximum of 160 native
threads. The default core frequency is 2.40 GHz with a turbo boost frequency
of 3.70 GHz, governed in hardware by Intel PStates. The cache organization
is presented in table 9. The machine has 24 x 64 GB of DDR 4 load-reduced
multi-bit—-ECC RAM bars, totaling in 1.48 TB of usable memory.

Due to local circumstances it was not possible to completely deactivate
hyperthreading. We tried to manually mitigate the Intel PState governor by
instructing it to use the baseline frequency as turbo frequency.
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TaBLE 9: Cache organization of the host machine

Level Amount

L: 1.25 MiB
20 X 32 KiB  8-way set associative

20 x 32 KiB  8-way set associative; write-back
L2 20 X 1 MiB  16-way set associative; write-back
L3 20 X 1.375 MiB  11-way set associative; write-back

B.r.2 System software

We used Ubuntu 16.04 LTS (Xenial Xerus) as operating system. The Linux
kernel used identifies itself as “x86_64 Linux 4.4.0 (unmodified 4.4.0-148-
generic)”.

To facilitate reliable measurements, we isolated the actual benchmarks to
exactly one core by means of Linux cgroups. Note that this was not done for
the parameter determination, to the contrary, as many as 8o to 100 exploration
benchmarks were executed in parallel.

Allbenchmarks were run from a R AM-disk so as to minimize input/output-
influence. Swap-space was completely disables, given the amount of usable
memory.

We used the ReBench benchmarking framework as of version 1.0RCa2 [71]
to carry out the benchmarks.

B.r.3 Implementations

For the comprehensive results, we include several other implementations be-
yond those in section 7.4.1 for illustration. These additional implementations
are related by the used j1T compiler (PyPy), the availability of algebraic data
structures (ML family), or language equivalence (CPython, Racket, Squeak).

Most vMs can be tuned using command line flags or environment variables.
For reference, we provide the tunables that were used during benchmarking.
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PyPy/R Python-based ~ Several implementations make use of the RPython
toolchain, including PyPy itself. We used version 7.1.r of PyPy and the RPy-
thon toolchain. We tuned the garbage collector — for all R Python-based vms —
to benefit from the available memory as follows:

export PYPY_GC_MIN=1GB
export PYPY_GC_GROWTH=2.5

Thesens  The version uses for benchmarking is
co7e4830b05d6fd261384303d2bodfe8b763c6bb

and tagged as 2019 [90]. The unoptimized variant was obtained by setting the

algorithm parameters maximum object size to o and substitution threshold

t0 99 999 999. Theseus is RPython-based, the tunables above apply.

Environ-
ment

Pycket  The optimized version used for benchmarking is
cuLae8a26e9cses4fbec2272a6b805a0b5673foob

and tagged as 2019 [87]. The baseline version is
981faesa828f42d641c8co484ed4bdd7d7348660

of the master branch?® Pycket is RPython-based, the tunables above

apply.

RSqueak  The optimized version used for benchmarking is
bs64ba8d2f9a743c750ffb63923aach10ciaes72

and tagged as 2019 [93]. The baseline version is
7d9b6649efeb1d1fffof2ecf,084d3dd18082022

of the master branch? RSqueak is RPython-based, the tunables

above apply.

Racket  For benchmarking we used version 7.3 of Racket [45]°
We did not change any tunables.

8https:/ /github.com/pycket/pycket/tree/master (last accessed March 17, 2021).
*https:/ /github.com/hpi-swa/RSqueak/tree/master (last accessed March 17, 2021).
https:/ /racket-lang.org/ (last accessed March 17, 2021).

Implementation

& Theseus
B3 Theseus (not optimized)
8] Pycket (optimized)
B Pycket (original)
E1 Racket

RSqueak (optimized)
[El RSqueak (original)
= Squeak

PyPy

Python
A MmLton

OCaml

SML/N)
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Squeak We used the OpenSmalltalk vM as of version 201810190412 and the
default Squeak 5.2 image, obtained as a bundle!" Note that we slightly adapted
the benchmarking code to completely circumvent the primitives that create
compound values. While not strictly necessary, this gives a slight advantage to
Squeak over our implementation.

We used the following tunables (defaults in braces, our values after the name):

* minBackwardjumpCountForCompile (40) — 8

* desiredCogCodeSize (1.4 MB) — 5.6 MB Note: chosen to be <Lz cache
* desiredNumStackPages (50) — 200

* desiredEdenBytes (4/7 of heap) — 32 MB

* useMmap (1GB) — 30 GB

We also disabled all unnecessary input/output mechanisms, resulting in the
following command line flags:

-noevents -nohandlers -nodisplay -nosound -mmap 30720m -stackpages 200
-cogminjumps 8 -codesize 5600k -eden 32m

Python  We used the stock CPython 2.7.15+ of Ubuntu 16.04.6.
MLton We used the stock MLton 20100608 of Ubuntu 16.04.6.

OCaml We used the stock OCaml 4.02.3 of Ubuntu 16.04.6. We used the
following command line flags for compilation:

-unsafe -noassert -nodynlink

SMIL/NJ We used the stock Standard ML of New Jersey vrzo.78 of Ubuntu
16.04.6.

"https:/ /files.squeak.org/5.2/Squeak5.2-18231-64bit/Squeak5.2-18231-64bit-201810190412-Linux.zip
(last accessed March 17, 2021).
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B.2 PARAMETER DETERMINATION

We give all results for our parameter determination. In the following, we show
execution time and memory usage for running all benchmarks on all three
optimized implementations. We manually aborted runs that took over 3 to
10 min.

The accumulation results (appendices B.2 to B.2) add up normalized (range
o to 1) results of the respective benchmark and measurement criterion (exe-
cution time or memory consumption), for each variant (niladic elements,
numeric elements), and give the respective accumulative range. These four are
again accumulated, for niladic elements and numeric elements (appendix B.2).
Finally, these two results are accumulated into the final result (figure 49),
however, the results of the numeric-elements—based benchmarks are favored
3 : 1 over niladic-elements—based benchmarks, because we think that niladic-
element-based programs should be rarer in actual applications.

Notation  For the following figures, the parameters are presented as follows:

maximum shape depths on x-axis,
maximum storage width on y-axis.

Red dots indicate the best 2 % within the measurement table.
Grey areas indicate runs that were aborted or outside the desired range (five
times above the minimum).
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FIGURE 16: Parameter explo-
ration for reverse on Theseus [&,
numeric  elements  variant.
Top: execution time; bottom:
memory consumption. Colors
and numbers indicate measured
values.
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FIGURE 19: Parameter explo-
ration for reverse on Theseus [&,
niladic elements variant. Top:
execution time; bottom: mem-
ory consumption. Colors and
numbers indicate measured

values.
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FIGURE 20: Parameter explo-
ration for reverse on Pycket (op-
timized) [&], niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 2I: Parameter explo-
ration for reverse on RSqueak
(optimized) [E], niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 22: Parameter explo-
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ration for append on Theseus [&,
numeric elements variant. Top:
execution time; bottom: mem-
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FIGURE 23: Parameter explo-
ration for append on Pycket (op-
timized) [&], numeric elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 25: Parameter explo-
ration for append on Theseus [&,
niladic elements variant. Top:
execution time; bottom: mem-
ory consumption. Colors and
numbers indicate measured
values.
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FIGURE 26: Parameter explo-
ration for append on Pycket (op-
timized) [&], niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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=" ration for append on RSqueak
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FIGURE 28: Parameter explo-
ration for map on Theseus [&,
numeric elements variant. Top:
execution time; bottom: mem-
ory consumption. Colors and
numbers indicate measured val-
ues.
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FIGURE 29: Parameter explo-
ration for map on Pycket (op-
timized) [&], numeric elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 30: Parameter explo-
ration for map on RSqueak (op-
timized) [El, numeric elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 31 Parameter explo-

Til .
2 ration for map on Theseus [&,
niladic elements variant. Top:
7s . .
execution time; bottom: mem-
ory consumption. Colors and
numbers indicate measured
values.
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FIGURE 32: Parameter explo-
ration for map on Pycket (op-
timized) [E], niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 33: Parameter explo-
ration for map on RSqueak
(optimized) [E], niladic elements

9250 2.9 15812109 . . .
2:2441812.70 fIK48}3.04 2.94 B1581119018¥89)2:09 variant. TOPZ execution time;
274126 2.6741%4513.04 k1676618 98¥8512!07,

Time

bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 34: Parameter explo-
ration for filter on Theseus [&,
numeric elements variant. Top:
execution time; bottom: mem-
ory consumption. Colors and
numbers indicate measured val-
ues.
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FIGURE 35: Parameter explo-
ration for filter on Pycket
ss (optimized) [E], numeric ele-

ments variant. Top: execution
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FIGURE 36: Parameter explo-
ration for filter on RSqueak (op-
timized) [El, numeric elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 37: Parameter explo-
ration for filter on Theseus [&,
niladic elements variant. Top:
execution time; bottom: mem-
ory consumption. Colors and

2 309

) 297 2

numbers indicate measured val-
ues.
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FIGURE 39: Parameter explo-
ration for filter on RSqueak (op-
timized) [E], niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.



FIGURE 40: Parameter explo-
ration for tree on Theseus [&,
numeric elements variant. Top:
execution time; bottom: mem-
ory consumption. Colors and
numbers indicate measured val-
ues.
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FIGURE 4I: Parameter explo-

Til .
g°  ration for tree on Pycket
(optimized) [, numeric ele-
ments variant. Top: execution
time; bottom: memory con-
**  sumption. Colors and numbers
indicate measured values.
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FIGURE 42: Parameter explo-
ration for tree on RSqueak (op-
timized) [El, numeric elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 43: Parameter explo-
ration for tree on Theseus [&3, ni-
ladic elements variant. Top: ex-
ecution time; bottom: memory

Time

consumption. Colors and num-
bers indicate measured values.
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FIGURE 44: Parameter explo-
ration for tree on Pycket (op-
timized) [E], niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate
measured values.
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FIGURE 45: Parameter explo-
g~ ration for tree on RSqueak (op-
timized) [El, niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors and numbers indicate

measured values.
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FIGURE 46: Accumulated
parameter exploration over
all  benchmarks, numeric
elements variant. Top: execu-
tion time; bottom: memory
consumption. Colors indicate
accumulated rank  within
original benchmark.
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FIGURE 47: Accumulated
parameter exploration over all
benchmarks, niladic elements
variant. Top: execution time;
bottom: memory consumption.
Colors  indicate  accumu-
lated rank within original
benchmark.
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FIGURE 48: Accumulated
parameter exploration over all
benchmarks. Top: numeric
elements; bottom: niladic
elements. Colors indicate accu-
mulated rank within original
variant.
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FIGURE 49: Accumulated parameter exploration over all benchmarks, over-
all result. Accumulation favors results of numeric elements over niladic ele-
ments 3 : 1. Colors indicate accumulated rank within original benchmark.

(cf. page 143)
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FIGURE 50: GC share results. Each bar shows the relative share of garbage col-
lector (Gc) time compared with the complete execution time. We include
bootstrapped [32] confidence intervals showing the 95 % confidence level.

B.3 DETAILED RESULTS

In table 10 and table 11 we provide measurements of execution time and mem-
ory consumption of all implementations and benchmarks, respectively. We
provide relative variants for optimized/not-optimized implementation pairs
in table 13 and table 14, respectively.

Additionally, table 12 gives absolute garbage collection times for all mea-
sured implementations that support this metric, and table 15 gives the share
of garbage collection for these implementations; figure so contains this infor-
mation in graphical form for the optimized/not-optimized implementation
pairs. This metric is informational; we have not drawn conclusions from the
respective numbers.

Moreover, the absolute measurements for execution time, memory con-
sumption, and garbage collection time (if applicable) are given in graphical
form in figures s1 to 6o.
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TABLE 11: Absolute memory consumption for all benchmarks in megabytes as averages of ten runs. We include

the 95 % confidence interval of the measurements. Measurements for all implementations. Smaller numbers are

better.
reverse append map filter tree

niladic  numeric  niladic numeric niladic numeric niladic numeric niladic  numeric
‘ﬂvmmncma 119.1t0.0 445.4t00 1110.0t00 1449.2t00 104I.I1tco 1063.5t00 1154.4t00  807.9tc0  29.8t00 72I.4%0.0
Theseus (not ovﬁBmN&vm“ 1863.7t0.0 1557.7t0.0 3408.0t00 2795.9%o.1 2794.9t00 2169.0f00 2294.3t00 1937.2t00 1103.7t00 1073.7%0.0
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mv\n_ﬁmloa%:m_vﬂ 1578.4t00 1425.4t00 3425.6f01  3272.6tc0 2494.0to1 2354.5f00 2152.4%fox 1960.7tco 812.9t1.s 1020.2%0.8
WmnWQE 1604.7+0.7 1604.1t0.5 2830.7t07 3308.0%2.6 2229.7+2.7 2504.0t2.8 2538.1%1.s 2554.I%s5.5 306.9t0.6 281.310.6
RSqueak (optimized) 831.4%02 1629.4t00 831.2t02 8830.3t00 83I.5%02 9816.5fto1 9I3.I1to2 10289.3f00 730.5foo I1135.5%02
HﬁmngonamSm_vE 4062.3%0.1 4988.2t0.1 §052.4t0.1 10990.8t0.1 §298.7+0.2 10940.0t0.2 §028.3to.r I2 1§7.0%o.s 1228.0tr.1 I301.3to.5
m@cmmwm I521.2400 I52I.2%00 1938.7t00 4940.6t00 1969.2t00 $§007.5t00 1862.It00 $935.2t00 4I13.4t00 414.0%0.0
PyPy 3474.0t02 3474.2%02 4562.0t02 4562.0t0.2 3477.7t02  3477.8%o2 2933.0to2  2933.0%to. 1170.0%03 II70.I1t03
Python 4 37277401 3727.6t00 3727.6to0 3727.6to1 2487.6too 2487.6t00 2332.6tco 2332.6to1  §92.0t00 §92.0to0
ZFSDE 824.9t00 824.9%t00 1329.7tc0 1329.7t00 1672.6tc0 1672.6t00 1310.5tc0 I1310.5t00 388.9t0c0 388.910.0
OCaml 826.5t00 826.5t00 1772.9%t00 1772.9%t00 1599.0tc0 1599.0t0.0 1248.0to0 1248.0tc0 149.6t00 149.610.0
SML/N] 319.It00 319.0to0 926.Ito.0 926.1t00 770.3t00  770.3tc0 486.3tco  486.4t00 127.6tc0 127.6%c0
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TABLE 13: Relative execution time for all benchmarks. Execution times of gp-
timized implementations are normalized to respective not optimized imple-
mentations. We include the bootstrapped [32] 95 % confidence interval. We
include the geometric mean of all relative execution times per implementation.
Smaller numbers are better.

Theseusa Pycket (optimized) (€] RSqueak (optimized)

reverseg 0.042 fgggg 0.041 fg:gg} 0.027 t8;888
reverse, 0.131 i8;88} 0.381 i8;88§ 0.048 i8;888
appendg o.402 :00¢ 0825 0010 0.026 X000
append, 1.092 fgjgiz 0.831 fg:ggi 0.856 t8;88§
mapg 0.546 Fo002 0379 L0000 0.055 *0:000
map,, o552 Xo0; 0.970 Fo08 0.945 L0005
filcerg 0.684 Too1r 0396 T2 0.073 *0:000
filter, 0.395 fg:gg% 0.926 t8;88§ 1.001 t8;88§
treeg 0.327 fggg% 0.848 t8882 0.075 1’8888
tree, 0.568 fg:ggg 0.886 fg:ggg 0.103 fg:ggg
geometric mean ©0.360 0.505 0.124

TABLE 14: Relative memory consumption for all benchmarks. Memory con-
sumption of optimized implementations is normalized to respective zot opti-
mized implementations. We include the bootstrapped [32] 95 % confidence
interval. We include the geometric mean of all relative execution times per
implementation. Smaller numbers are better.

TheseusE Pycket (optimized) (€] RSqueak (optimized)

reverseg 0.064 *0:000 0091 0:000 0.205 Z0:000
+0.000 +0.000 +0.000
reverse, 0.286 —0.000 0.542 —0.000 0.327 0000
appendg 0326 *:000 0483 0000 0.165 0’000
append, 0.518 f§:§§§ 0.651 f§:§§§ 0.803 f§j§§§
+0. +0. +0.
mp 0w iygowt i o1y
+0. +0- +0-
map, 0.490 ¢l000 ©-840 0000 0.897 25000
filterg 0.503 ig:ggg 0.420 ig:ggg 0.182 i8;88°
+0.000 +0.000 +0.000
filter, 0.417 —0000 0.922 —0000 0.846 0000
treeg 0.027 fgjééé 0.081 t§:(8é§ 0.595 féjééé
+0. +0. +0.
tree, 0.672 “g000 ©:653 ~0.000 0.873 Z0.000
geometric mean 0.271 0.403 0.398
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Execution time (s)

reverse,

Memory consumption (GB)

reverse,

FIGURE s51: Results for benchmark reverse, numeric elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.



Memory consumption (GB)

Execution time (s)

reverseg

reverseg

FIGURE 52: Results for benchmark reverse, niladic elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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FIGURE 53: Results for benchmark append, numeric elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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35+
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Execution time (s)

appendg

Memory consumption (GB)

appendg

FIGURE 54: Results for benchmark append, niladic elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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17.54
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Memory consumption (GB)
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FIGURE 55: Results for benchmark map, numeric elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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FIGURE 56: Results for benchmark map, niladic elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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Execution time (s)

Memory consumption (GB)

filter,

filter,

FIGURE 57: Results for benchmark filter, numeric elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory

consumption (bottom). Lower is better.
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FIGURE §8: Results for benchmark filter, niladic elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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Execution time (s)

Memory consumption (GB)

tree,

FIGURE 59: Results for benchmark tree, numeric elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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Execution time (s)

Memory consumption (GB)

treeg

FIGURE 60: Results for benchmark tree, niladic elements variant. Each bar
shows the arithmetic mean of ten runs for execution time (top) and memory
consumption (bottom). Lower is better.
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TABLE I5: Share of execution time spent in garbage collection for all bench-
marks. Execution time of garbage collection is given as fraction of overall
execution. We include the bootstrapped [32] 95 % confidence interval. Note
that not all implementations provide this measurement. Smaller numbers are
neither better nor worse. Implementations are abbreviated using the icons
used throughout this work (cf. page 141).

+0.004 +0.014 0.816 +0.016 +0.011 +0.004 +0.001

reverseg  0.718 Zplo04 ©-999 0 014 —0.017 ©-941 _o.011 ©-I52 _0.004 ©-214 _0.001
reverse, ©0.778 20003 0.938 L0007 0.869 X017 0.930 X005 0479 0i00s 0253 L0000
appendg 0.848 L0101 0.936 10013 0.907 L0007 0.917 X012 o104 X000 0322 Foe)
append, 0.898 T001§ 0.835 0002 0.893 F0:005 0.904 F002 0.562 Ty 0.499 o001
mapg 0664 Zo0e 0877 Fotns 0833 F003; o.orr X000E 0.003 000 0330 Loroo
map,  0.656 L0007 0.925 Iytni 0.909 000 0.885 Fodii o590 0001 0.504 Fordon
filtery  0.691 Z0:051 0.838 X011 0853 Lol o910 X000y 0059 Lohoo 0217 Fodos
filter,  0.706 To0¢ 0.917 L0003 0.909 L0002 0.891 L0007 0.573 Lo0r 0.539 L0000
treeg 0.006 i3388 0.736 i888§ 0.012 t8888 0.536 t888§ 0.021 t8888 0.173 t8;88}
tree,  0.240 1000, 0.661 0006 0385 L0003 o.575 Xo00s 0320 Linor 0183 Xyt
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Appendix C

Source code listings

C.I GRAMMAR FOR THE LANGUAGE OF THESEUS

# Tokens
NEWLINE: "[\n\rl";

LAMBDA: "A.";
ULAMBDA: "A.";
MU: "u";
MAPSTO: "~";

RIGHTWARDS_DOUBLE_ARROW: "=";
DEFINEDAS: ":=";
LEFT_PARENTHESIS: "\(";
RIGHT_PARENTHESIS: "\)";
LEFT_DOUBLE_ANGLE: "{";
RIGHT_DOUBLE_ANGLE: ")";
INTEGER: "[-+]2[0-9]+";
FLOAT: "[-+]?[0-9]%\.[0-9]+";
QSTRING: "‘[""1x"";

QQSTRING: "“[""]x"";

NAME: "[70-9, \C\D() \n\r\t\FAILY, \NODE) \n\r\t\f#l";
IGNORE: "[ \f\tl=[#["\n]+";

# Productions

ship : [NEWLINE]* >toplevel_expressions<? [EOF]

toplevel_expressions : toplevel_expression ([NEWLINE]+

toplevel_expression : <definition>

>toplevel_expressions< )* [NEWLINE]«
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| <expression>

H

expression : <constructor>

| <application>
| <lambda>
Source code | <variables
listings | <primitives
| <primary>

primary : <INTEGER>
| <FLOAT>
| <QSTRING> | <QQSTRING>

variable : NAME

definition : <lambda_definition>
| <lambda_forward>
| <value_definition>

H

lambda_definition : NAME [DEFINEDAS] lambda
i
lambda_forward : NAME [DEFINEDAS] [ULAMBDA]
i

value_definition : NAME [DEFINEDAS] expression

constructor : NAME constructor_args
i
constructor_args : [LEFT_PARENTHESIS] >arglist< [RIGHT_PARENTHESIS]

| [LEFT_PARENTHESIS] [RIGHT_PARENTHESIS]

arglist : expression ([","] [NEWLINE]? expression)=*

application : [MU] [LEFT_PARENTHESIS] [NEWLINE]? expression application_args [RIGHT_PARENTHESIS]
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| [MU] [LEFT_PARENTHESIS] [NEWLINE]? expression [RIGHT_PARENTHESIS]

i

application_args : ([","] [NEWLINE]? expression )+

lambda : [LAMBDA] [NEWLINE]? >lambda_content<; Grammar
for the

lambda_content : >rules< lﬂngﬂﬂgeqf‘
Theseus

| rule

i

rules : [INTEGER] ["."] rule ([NEWLINE]+ >rules<)?

rule : patterns? [MAPSTO] >body<

body : continuation
| expression

i

continuation : expression [RIGHTWARDS_DOUBLE_ARROW] [NEWLINE]? lambda_content

patterns : pattern ([","] [NEWLINE]? pattern)x

pattern : <constructor_pattern>
| <variable_pattern>

| <primary_pattern>

variable_pattern : >variable<

primary_pattern : primary

constructor_pattern : NAME constructor_pattern_args
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constructor_pattern_args : [LEFT_PARENTHESIS] >pattern_arglist< [RIGHT_PARENTHESIS]
| [LEFT_PARENTHESIS] [RIGHT_PARENTHESIS]

i
pattern_arglist : pattern ([","] [NEWLINE]? pattern)=

Source code

llStl?{gK primitive : [LEFT_DOUBLE_ANGLE] NAME [RIGHT_DOUBLE_ANGLE]

# EOF

C.2 FULL EXAMPLE OF A THESEUS PROGRAM
#1/usr/bin/env theseus

p = {(print_result_string)
clock = {{clock))
gctime := {(gctime))

# type Nil, Cons(,)

cons i= A. A, B~ Cons(A, B)
head := A. Cons(A, B) » A
tail := A. Cons(A, B) —» B

make_list$aux = A.
1. acc, 0 = acc
2. acc, n ~ p(make_list$aux,
u(cons, E(), acc),
p({minus_int), n, 1))
make_list := A. n — p(make_list$aux, Nil(), n)

time$cont6 = A. res, _ - res
time$cont5 := A. res, diff, gcdiff ~ u(time$conts6,
res,
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ulp, diff, diff, gcdiff))
time$cont4 = A. res, gcl, t1, t2, gc2 ~ p(time$cont5,

res,

p({minus_float)), t2, t1),

p({minus_float), gc2, gcl))

time$cont3 := A. res, gcl, tl, t2 ~ p(time$conts,

res,

gcl, t1, t2, p(getime)) Source code
time$cont2 = A. res, gcl, ti ~ u(time$cont3, res, gcl, t1, p(clock)) @ftbg
time$contl := A. fun, arg, gcl, ti ~ u(time$cont2, p(fun, arg), gcl, t1) benchmarks
time$cont® := A. fun, arg, gcl ~ u(time$cont1, fun, arg, gcl, up(clock))
time = A. fun, arg ~ u(time$cont®, fun, arg, up(gctime))

reverse$aux = A.
1. acc, Nil() ~ acc
2. acc, Cons(h, t) ~ u(reverse$aux, Cons(h, acc), t)

reverse := A. 1 —» u(reverse$aux, Nil(), 1)

num := p(A.

1. nil() — 20000000

2. cons(h, _) ~ p({strtol)), h), arguments)
1 := p(make_list, num)

pu(time, theseus_reverse, 1)

C.3 SOURCE CODE OF THE BENCHMARKS

For the comparative micro-benchmarks, we provide the essential part for every
benchmark in each of the three compared implementations. We do not give
individual listings for the two variants (list containing numeric elements, list
containing niladic elements) as they do not change the code under benchmark
but rather data processed. We do however provide basic information about
how we achieved both variants.
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C.3.1 Reverse

Theseus

reverse$aux = A.
1. acc, Nil() — acc
2. acc, Cons(h, t) = up(reverse$aux, Cons(h, acc), t)

reverse = A. 1 ~ p(reverse$aux, Nil(), 1)

Source code
listings
Pycket/Racket
(letrec
([head car]
[tail cdr]

[racket-reverse (lambda (1)
(letrec ((aux (lambda (list acc)
(if (null? list)
acc
(aux (tail list) (cons (head list) acc))))))
(aux L'OMD)

RSqueak/Squeak

VCons

reversed

| list cons |

list := VNil nil.

cons := self.

[cons isEmpty] whileFalse:
[cons isCons ifFalse: [* self error: I
list := self class car: cons car cdr: list.
cons := cons cdr].

~ list
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C.3.2 Append

Theseus
append := A.
1. NilO), B = Source code
2. Cons(h, t), B — Cons(h, u(append, t, B)) qftbg
benchmarks

Pycket/Racket
(letrec

([head car]

[tail cdr]

[racket-append (lambda (a b)

(if (null? a)
b
(cons (head a) (racket-append (tail a) b))))])
)
RSqueak/Squeak
VCons

, aCons

| cons acc |

cons := self reversed. "reverse list to cons on aCons"

acc := aCons.

[cons isEmpty] whileFalse:

[cons isCons ifFalse: [* self error: 1.

acc := self class car: cons car cdr: acc.
cons := cons cdr].
~acc

C.3.3 Map

Theseus
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map = A.
1. fun, Nil() ~ Nil()
2. fun, Cons(A, B) ~ Cons(u(fun, A), p(map, fun, B))

SMZ@Z%? Pycket/Racket
(letrec
([head car]
[tail cdr]

[racket-map (lambda (f 1)
(if (nullz 1)
0]
(cons (f (head 1)) (racket-map f (tail 1)))))])

RSqueak/Squeak

VCons

collect: aBlock

| cons acc |

cons := self.

acc := VNil nil.

[cons isEmpty] whileFalse:
[cons isCons ifFalse: [* self error: I
acc := self class car: (aBlock value: cons car) cdr: acc.
cons := cons cdr].

~ acc reversed

C.3.4 Filter

Theseus

f = A,
1. _, Nil(), ~ Nil()
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2. pred, Cons(h,t), True() =~ Cons(h, p(f, pred, t, Nil()))

3. pred, Cons(h,t), False() - p(f, pred, t, Nil())

4. pred, Cons(h,t), _ ~ u(f, pred, Cons(h, t), p(pred, h))
filter = A. pred, lst — u(f, pred, lst, Nil())

Pycket/Racket

(letrec
([head car]
[tail cdr]
[racket-filter (lambda (p L)
(cond [(null2 1) '()]
[(p (head 1)) (cons (head L) (racket-filter p (tail [)))]
[else (racket-filter p (tail 1))]))]

RSqueak/Squeak

VCons

select: aBlock

| cons acc |

cons := self.

acc := VNil nil.

[cons isEmpty] whileFalse: [
cons isCons ifFalse: [* self error: 1.
(aBlock value: cons car)

ifTrue: [acc := self class car: cons car cdr: acc].

cons := cons cdr].

~ acc reversed

C.3.5 Tree

Theseus
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kMinTreeDepth := 3

MakeTree := A.
1. 0 ~ Leaf(E())
2. iDepth ~ Node(p(MakeTree, u(-, iDepth, 1)),
Source code O,
ll_fflﬂg,f p(MakeTree, p(-, iDepth, 1)))

iter$0 := A.
1. ., -y v 20 2 O = nil()
2. i, niter, d, _, _, _~ p(iter$o, u(+, 1, i), niter, d,

p(MakeTree, d), p(MakeTree, d),
u(-, niter, i))

iter :== A. i, niter, d - p(iter$e, i, niter, d, nil(), nil(), niter)

niter := A. max_depth, d =~ p(<<, 1, u(-, max_depth, d))

loop_depths$0 := A.
o _p —p -0 _, 6~ nil()
2. d, max_depth, nil(), _, _ = p(loop_depths$0,
d, max_depth, p(niter, max_depth, d),
nil(), nil())
3. d, max_depth, numIter, _, _ ~ p(loop_depths$e,
u(+, 1, d), max_depth, p(niter, max_depth, d),

p(iter, 1, numIter, d), u(-, max_depth, d))

loop_depths := A. d, max_depth — p(loop_depths$0, d, max_depth, nil(), nil(), nil())

check$0 := A.
1. Leaf(X), nil() » E()
2. Node(l, X, r), nil() ~ u(check$0, p(check$e, 1, nil()), r)
3. _, r — p(check$o, r, nil())

check = A. X = p(check$o, X, nil())

tree$cont3 := A. _, longlived ~ p(check, longlived)
tree$cont2 := A. max_depth, longlived ~ p(tree$cont3,
u(loop_depths, kMinTreeDepth, max_depth), longlived)

tree$contl := A. max_depth, _ — p(tree$cont2, max_depth, p(MakeTree, max_depth))
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tree$cont® = A. stretch, max_depth — p(tree$contl, max_depth, p(MakeTree, stretch))

tree := A. num —~ p(tree$cont®, u(+, 1, num), num)

Pycket/Racket

(define (make item d)
(if(=d 0)
(leaf item)
(let ((d2 (- d 1))
(node (make item d2) item (make item d2)))))

(define (check t)
(if (leaf? t)
e
(begin
(check (node-left t))
(check (node-right t)))))

(define min-depth 3)

(letrec
([racket-tree
(lambda (num)
(letrec ((max-depth num)
(stretch-depth (+ max-depth 1))
(_ (make e stretch-depth))
(long-lived-tree (make e max-depth))
(depth-loop (lambda (d)

(letrec ([iterations (expt 2 (- max-depth d))]

[iter (lambda (i)

(when (<= i iterations)

(begin

(make e d)
(make e d)

(iter (+ 1))

(iter 1)
(when (< d max-depth)
(depth-loop (+ 1d)))))))
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(depth-loop min-depth)
(check long-lived-tree)))])

RSqueak/Squeak

Source code
listings Object subclass: #VNode

instanceVariableNames:

______VNode class

treeWithMin: aNumber max: anotherNumber element: item

| maxDepth stretchDepth ignore longLived minDepth |
minDepth := aNumber.

maxDepth := anotherNumber.

stretchDepth := anotherNumber + 1.

ignore := self make: item through: stretchDepth.
longLived := self make: item through: maxDepth.

minDepth to: maxDepth do:
[:d | literations|
iterations := 2 raisedTo: (maxDepth - d).
iterations timesRepeat:
[ | ignorelignore2 |
ignore1 := self make: item through: d.
ignore2 := self make: item through: d]].
“ longLived check

make: anObject through: aNumber

~aNumber <=0
ifTrue: [VLeaf val: anObject]
ifFalse:
[ | down |
down := aNumber - 1.
self
left: (self make: anObject through: down)
val: anObject
right: (self make: anObject through: down)]
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Object subclass: #VLeaf
instanceVariableNames:
VNode
check

self left check.
~ self right check.

VLeaf
check
" self val

C.3.6 Variants

Theseus  For reverse and append, the list-preparing function contains in the
numeric elements variant p(cons, 17, acc), and in the niladic elements variant
u(cons, E(), acc).

For filter, it additionally contains the filter predicate; for numeric elements:

flt == A.
1. 17 » True()
2. _ =~ False()

and for niladic elements:

flt == A.
1. E() ~ True()
2. _ +~ False()

Similarly, the mapped function in map; for numeric elements:
swap = A.

1. 17 - 36
2. 36 » 17
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Source code
listings

and for niladic elements:

swap = A.
1. EQO) = FO
2. F() = EQ)

The tree benchmark above is given in the niladic elements variant. For the
numeric elements variant, replace E() with 17.

Pycket/Racket  For the list-based benchmark, in the numeric elements vari-
ant, the following definitions are used:

(letrec
(le 17]
[f 36]
; filtering function for filter
[flt (lambda (x) (= x e))]
; function mapped over in map
[swap (lambda (x) (if (= x e) f e))])

)

and for the niladic elements variant:

(struct E () #:transparent)
(struct F () #:transparent)

(letrec
(le (B)]
[f (F)]
; filtering function for filter
[flt E?]; <=> (lambda (x) (E? X))
; function mapped over in map
[swap (lambda (x) (if (E? x) f e))])

)

For the tree benchmark with numeric elements, the following definitions are
used:
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(struct node (left val right))
(struct leaf (val))

(define e 17)

and with niladic elements:

(struct node (left val right) #:transparent)
(struct leaf (val) #:transparent)

(struct E () #:transparent)
(define e (E))

RSqueak/Squeak  For the list-based benchmark, in the numeric elements
variant, the following definitions are used:

and for the niladic elements variant:

e := VVector new.
f:= VNIl nil.

Common to both variants, these objects are uses for generating the lists and
the filtering/mapping functions.

[st1 := VCons withAll: (Array new: self withAll: e).

" for map/filter "

[st2 := VCons withAll: (VCons alternatingArrayOfSize: self with: e andAlternate: f).
flt := [:element | element = e].

swap := [:element | element = e ifTrue: [f] ifFalse: [e]].

Note that = is used for comparison, which, in the numeric elements case, maps
to ==, that is, identity; but in the niladic elements case, uses our custom imple-
mentation that respects the semantics of values:

VVector
= otherCollection

209

Source code
of the

benchmarks



"value semantics "
“ otherCollection class == self class
and: [otherCollection size == self size
and: [self size = 0
or: [self hasEqualElements: otherCollection]]]

VNil
= other
Source code
listings " value semantics "

* other class == self class
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Appendix D
Immutable Boolean Field Elision
Extract

The following is an excerpt from “Record Data Structures in Racket: Usage
Analysis and Optimization” as appeared in 4 CM SIGAPP Applied Computing
Review, December 2016, Vol. 16, No. 4 [94], that introduces the concept of
immutable boolean field elision as used in the Racket-implementation Pycket.

I INTRODUCTION

For programming language implementations, performance is often key and,
among other aspects, built-in data structures contribute to the overall perfor-
mance of alanguage implementation. The lack of optimization of built-in data
structures may result in poor performance and increased memory consump-
tion of dynamic languages [2, 18]. In the context of modern vm development
frameworks, such as RPython, some data structures, such as collections [s],
are already in the focus of research.

Record data structures or records are one of the advanced common built-in
data structures, which are not deeply investigated in the sense of optimizations
for modern vMs. Basically, records aggregate heterogeneously typed, named
fields, possibly with a definition in a record type. In some languages, such as
Racket, records may not only be used to store the data, but have additional
features. Racket is a dynamic multi-paradigm Scheme-family programming
language with powerful built-in record data structures, where records can
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behave like objects of a class or even like a function. Records also often pro-
vide identity, encapsulation, abstraction, and maybe behavior, thus providing
key ingredients for object orientation. In fact, records can be used to imple-
ment object-oriented features, such as the class-based object orientation in
Racket [13].

Asimple, straight-forward implementation of records for dynamically typed
languages implies a big overhead because of the semantics complexity. It is
more important for the implementation to be simple than the interface. Thus,
many languages prefer the “worse-is-better” approach [14], whereby the sim-
plicity and efhiciency of implementation are more important than the straight-
forward following the semantics and perfect correctness. Our analysis shows
that, at least for the Racket language, records have a noticeable optimization
potential. In this work, we consider an efficient implementation of records for
dynamic languages and for Racket in particular. We focus on the RPython-
based implementation named Pycket.

In this work, we make the following contributions:

We analyse and evaluate the usage of record data structures in Racket applica-
tions (section 3).

We identify applicable optimization techniques for the efficient implemen-
tation of record data structures (section 4). In particular, we propose a novel
optimization technique for static immutable boolean fields in record data struc-
tures (section 4.3).

We implement Racket’s record data structures with optimizations and evalu-
ate performance results (section 5 and 6).

2 BACKGROUND

[omitted from excerpt]
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FIGURE A: Distribution of number of structure fields in the Racket standard
library.

3 STRUCTURE USAGE IN RACKET

Racket structures are a powerful data structure with broad applicability. They
are widely used in Racket packages' and projects on GitHub? Structures are
essential for the Racket contracts implementation. In this section, we inves-
tigate how structures are actually used in different Racket applications. We
perform a static and dynamic analysis of existing applications to identify the
typical size of structures, types used within structures and the frequency of
mutation.

We choose five Racket applications from different domains including de-
velopment tools, text analysis, mathematics, and games. I Write Like* — one
of the biggest Racket applications — is a web appication that analyses the
style of a given text by comparing with styles of many famous writers. This

"http:/ / pkgs.racket-lang.org (visited 2015-12-05)
*https:/ /github.com/search?q=language%3Aracket (v. 2015-12-05)
3https://github.com/coding-robots/iwl (visited 2015-12-05)
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TABLE A: Results of the static analysis of Racket standard library source code

files.

Structure Type 1765 100 %

With super-types 563  31.9%
With mutable fields 148 8.4%
Transparent 659 373%
Prefabs 146  8.2%

application represents a heavy text analysis application. The markdown parser
application* is a simple parser for markdown formatted text that is used in
many other Racket projects as a library. Racker CAS® is a simple computer
algebra system for Racket with a good built-in test set. 2048 ¢ js a Racket im-
plementation of a famous puzzle-game with numbers. Finally, DrRacket is
a feature-rich Racket integrated development environment (1pE), which is
widely used by Racket-programmers.

3.1 Static Analysis

We perform a static source code analysis of the Racket v6.2.0.4 standard library
comprising 4 812 Racket source code files. We track the number of immutable
and mutable fields and super types per structure.

3..1 Results

Of all the source files, 11.6 % contain all 1765 structure type definitions
(cf. table A), 31.9 % with super-types. Structures have 2.3 4 2.6 fields on av-
erage, with a median of 2. The largest structure from the Racket library has
37 fields. 91.6 % of all structure types are immutable. Structures with mutable
fields tend to be larger (maximum: 37, mean: 4.55 4 4.56) than all-immutable

*https:/ /github.com/greghendershott/markdown (visited 2015-12-05)
Shttps:/ /github.com/soegaard/racket-cas (visited 2015-12-05)
®https:/ /github.com/danprager/racket-2048 (visited 2015-12-05)
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structures (maximum: 18, mean: 2.10 + 2.17). The distribution is shown in
figure A.

The statically determined number of structure types in the applications
analyzed is comparatively small; together, they define 22 structure types with
atmost s fields (average 1.64 + 1.26, median 1), all immutable. We refrain from
plotting the distribution.

3.2 Dynamic Analysis

We instrumented the structure implementation in Racket to track the cre-
ation process of structure types, structure instances, the amount and types of
structure field values, and the frequency of mutate operations. Our analysis
reports the total usage of structures including the Racket core.

3.2.1 Results

Refining the static analysis, about 85 % of all fields used are immutable, with
DrRacket being an outlier with about 61% of immutable fields. Structure
instances have 1.62 fields on average with a median of 1. The number of in-
stances of each structure type depends heavily on the specific application,
ranging from 200 to 1500 in our tests. The number of mutations varies even
more.

Although structures in Racket are typically used monomorphic, i.e. the
data type of values stored in a field does not change, some instances’ fields are
used with values of more than one data type (non-monomorphic). The amount
of structures containing at least one non-monomorphic field is between s %
and 15 %.

The distribution of field types is homogeneous as illustrated in figure B.
The most common data type used in structure field type is boolean. Up to
70 % of booleans have the value #f (false), which is used in up to 88 % as a
placeholder default value for other data types, such as procedure. Procedures
are also used widely, to the extent that some structures only contain exactly one
procedure — such procedure-containers are often used as super-types for other
structures. Strings, mutable and immutable, pose the most user-faced data

type in field types while symbols and the syntax type (used by the Racket macro
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FIGURE B: Most frequent field types (left) and most frequent combinations

of field types (right) in Racket applications

system) are more system-faced, or even meta-level types used in structures.
Non-scalar field types, such as pairs and lists, and other structures are common
as field types, too. Other types have a collective share of about 10 %.

Despite our initial assumption, zntegers are not very common, except for the
2048 game that heavily uses 7nzegers and floats. Other applications use numbers
significantly less frequently. To show this, we separated 2048 in figure B.

We found only few common data type collocation patterns in structures,
despite the homogeneous field type distribution. Such patterns include the
use of integer, integer-structures in 2048 for coordinates, the most prevalent
collocation in this application. This is, nevertheless, uncommon for other
applications. Thus, combinations of stored together field types in structures
are mostly application specific. No patterns can be derived in the general case
as less than 30 % of all structures exhibit significant similarity. The right part
of figure B shows this in more detail.

3.3 Discussion of Analysis Results
We found that Racket structures are relatively small and contain between

one or two fields on average. Furthermore, about 85 % of structure fields are
immutable. Initially unexpected, booleans are the most common data type in
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structures. We found that #f (Racket’s false value) is used a placeholder default
value and that the corresponding filled value is often a procedure.

4 OPTIMIZING RECORDS

Based on the analysis in section 3, we propose fitting optimizations to use to

improve performance when compared with a simple, straight-forward direct- Optimizing
mapping approach. We think that this catalogue of optimizations can be Records
worthwhile beyond Racket, given the usage of record data structures is not

completely dissimilar. In particular, we suggest applying four standard op-

timizations and propose a new one, immutable boolean field elision (1BFE).

[omitted from excerpt]

4.1 Direct Mapping Approach
[omitted from excerpt]

4.2 General Optimizations
[omitted from excerpt]

4.2.1 Flat Structure

[omitted from excerpt]

4.2.2 Inlining

[omitted from excerpt]

4.3 Immutable Boolean Field Elision

Booleans are the most frequent field type in Racket structures. However, up
to 70 % of boolean fields have the value #f. Knowing that most (up to 85 %)

fields are actually immutable, a high number of fields in Racket structures
hence consist of immutable boolean fields (1B¥s).
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FIGURE C: employee structure with an I1BF indicator denoting the elision of

field 2

It seems feasible to actually 7oz store this infomation as a field value per se.
Instead of storing both positions and values of the boolean fields, we use an
indicator to denote all positions of 1BFs within a structure, effectively eliding
the immutable #f values; we call this immutable boolean field elision (IBFE).
This indicator might be implementation specific; but in the same way struc-
tures that contain mutable fields or unboxed fields must be commuticated to
the runtime, 1BFs can be communicated similarly, be it tagging, header bits,
or class-based indication as in figure C, to name a few. It is crucial that all
possible combinations of 1BFs for an arbitrary record instance are present as
indicators at structure allocation time. For example a record class with three
fields, all immutable, that gets instantiated with an #f value on position two
could use an implementation class that treats position two specially by not
providing storage for it (cf. figure C). That implementation class would act as
1BF indicator. Note that the #t value is not treated specially by 1BFE, as are #f
values in mutable fields. These are stored as if IBFE was not present at all.

The booleans optimization saves memory by reusing immutable fa/se values.
Assuming that structures have an average size of 2.3 fields, 26 % of all fields
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are booleans and 70 % of booleans are false, and also that 85 % of fields are
immutable in Racket, for 7 structure objects, this saves

n-2.3-0.26-0.7 - 0.85 — sizeOfSpecialized Classes = 0.36n  (4)

words in Racket on average, where sizeOfSpecialized Classes indicates the re-
quired memory for pre-defined structure classes with fa/se fields. Although
this optimization may have less positive impact on memory consumption on
average, it does not add memory overhead for records in the worst case as un-
boxing with feld types would. For extreme case, where every record has one
immutable field with a value fa/se, the saving would be approximately 7.

Using 1BFE, memory for immutable #f values can be saved at the expense
of providing a large enough number of 1BF indicators, which poses a trade-
off. Applications with only few 1BFs and large structures would be hit by the
overhead of maintaining 1BF indicators; however, our analysis shows that these
cases are rare in Racket applications.

S STRUCTURES IN PYCKET

We implemented the presented optimizations in Pycket, a Racket implemen-
tation using the RPython toolchain and its meta-tracing JjIT compiler.

5.1 RPython and Pycket
[omitted from excerpt]
5.2 Optimization Steps

[omitted from excerpt]
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5.3 Eliding Immutable Boolean Fields

To benefit from immutable boolean fields, we suggested immutable boolean
field elision (I1BFE) in section 4.3. We chose to use the structure implemen-
tation class to represent the 1BF indicators. As RPython does not support
creation of RPython-level classes at run-time, all necessary indicators have to
be generated in advance, before translation. However, a very high number
of 1BF classes can severely slow down allocation and possibly start-up time.
Therefore, we assume an upper limit to the number of fields we consider
for 1BFE. The amount of indicators that are necessary for a given limit / is

(i) +( é) + -+ (j) In Pycket, we chose s as the default limit, resulting in
21 pre-defined 1BF indicator classes. This seems sufficient, given the average
size of Racket structures but not overly restrictive, as it covers over 90 % of
the structure type encountered in the Racket standard library (cf. section 3).
Nevertheless, all 1BF indicator classes are subjected to the inlining described
above, so that each 1BF indicator is actually represented by 12 classes for the
field inlining.

Hence, when instantiating a structure, Pycket has 252 structure classes to
chose from. The operation that maps from all 1BF positions to the matching
structure class benefits from a lexicographical order of all structure classes;
the combination of #f positions determines the position of a structure class
uniquely. During instantiation, all positions of immutable fields about to be
initialized with #f are shifted to account for their elision. This can also help the
inlining optimization, as larger structures with many 1BFs now can potentially
use an inlined representation instead of a split one.

Accessing an 1BF is cheap; with 1BFE we make sure that all accesses to those
fields are in constant time.

5.4 A Note on Unboxing

[omitted from excerpt]
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FIGURE D: Benchmark results with execution times (left) and memory con-
sumption (right) normalized to Racket. Lower is better.

5.5 Implementation Summary

Overall, the whole structures implementation in Pycket includes 15 implemen-
tation classes, about 30 structure primitives, and about so general primitives,
totalling in about 2000 lines of RPython code.

6 EVALUATION

Pycket is not yet a feature-complete Racket implementation and due to pend-
ing (non-structure related) features, the existing Racket structure benchmarks
do not run yet. We therefore use a set of micro-benchmarks” instead. We pro-
vide an evaluation and execution time and memory consumption based on

these benchmarks.

SETur All benchmarks were run on an Intel Core is (Haswell) at 1.3 GHz
with 3 MB cache and 8 GB of R AM under OS X 10.10.2. All micro-benchmarks

7https:/ /github.com/vkirilichev/pycket-structs-benchmarks (visited 2015-12-05)
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are single-threaded. RPython at revision aroc97822d2a was used for trans-
lating Pycket. Racket v6.2.0.4 and and Pycket at revision 3do229f were used
for benchmarking.

MEeTHODOLOGY Every micro-benchmark was run five times uninterrupted.
The execution time was measured zz-system and, hence, it does not include
start-up time. However, it does include warm-up time and the time needed
for j1T compilation. We show the execution times of all runs relative to
Racket with bootstrapped [10] confidence intervals for a 95 % confidence
level. The memory consumption was measured as maximum resident set
size and is given relative to Racket; the confidence intervals were negligibly
small and have been omitted.

6.1 Micro-benchmarks

The micro-benchmark set consists of of ten tests. Besides examining basic
operations, such as structure creation, call of the predicate procedure and
accessing and mutating structure fields, we include two slightly more realistic
use-cases.

6.1.1 Basic Operations

We used the following benchmarks for the basic operations: create creates sim-
ple structures representing two-dimensional coordinates with integer values;
create/super re-uses the create benchmarks, but adds a third dimension using
structure type inheritance; create™ is the same a create, but with an 1BF as first
field; create/super™ is the same as create/super, but with an 1BF as first field; pred-
icate checks the type of given structures including the whole type hierarchy;
access performs accesses to various immutable fields of structures; and mutate
changes every value of a structure and reads the stored value afterwards on
each loop iteration. Each benchmark essentially contains a loop with few basic
operations and collects the result in a variable to avoid elimination.

6.1.2 Binary Tree

In the binary tree benchmark, the base structure type represents a leaf, which
has only a value. A node is a subtype of the leaf referencing two other nodes.
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This benchmark tests several operation with structures of multiple types si-
multaneously. We use two versions of this micro-benchmark, where values of
leaves are integers (binarytree) and booleans (binarytree*), respectively.

6.1.3 Parser

The parser benchmark is a Brainfuck® interpreter. It creates one instance of a
structure referencing a list and a data pointer. The operations on the structure
include mutations of the data pointer and accessing list elements, and hence,
the parser benchmark tests the structure’s accessor and mutator, but not the
constructor. The benchmark’s interpreter executes a simple program that
generates a Sierpinsky triangle several times.

6.2 Optimization Impact and Results

We report the impact of all optimizations on execution time and memory con-
sumption. The final performance results of optimized Pycket are shown in
figure D. Note that we accumulate optimization, as they form dependencies.
Hence, for example, inlining includes flat structures. By way of example, we
show the validity of the predicted memory saving, using the create, create/-
super, and binarytree benchmarks. For 1BFE, we however use their boolean
counterparts create”, create/super™, and binarytree®.

[omitted from excerpt]

6.2.3 Immutable Boolean Field Elision
All benchmarks with 1BFs — that is create®, create/super™ and binarytree* —
achieve a speed-up and reduced memory consumption. In these particular
benchmarks, the execution time becomes about 30 % faster. Memory savings
range from 25 to 40 %. At the same time, all other benchmarks are virtually
untouched, showing next to no disadvantages of employing IBFE.

(“+ Booleans opt.”)

$Brainfuck is an esoteric programming language that models a Turing machine with eight
operations on an array.

223

Evaluation



Immutable

Boolean
Field Elision

The actual memory saving, according to Equation 4, should be -2.3-0.26-
0.7-0.85 —sizeOfSpecialized Classes = 0.35n words, for z structure instances.
However, the benchmarks deviate from the average numbers in the sense that
the use of 1BFs is well known and the three boolean-related benchmarks yield
different but expected results, Also Pycket’s automatic unboxing of small
structure applies (cf. section 5.4) . The size of the specialized classes turned
out to be insignificantly low.

create®  Structures have one IBF per (two-field) instance, always being fa/se,
all fields immutable, yielding 7 - 2 - 1o n. Considering Pycket’s automatic

unboxing, create™ makes use of Racket’s a fixnum for the second structure field.
Hence, compared with the cells optimization level, additional two words per

.11 1 .
structure are saved, yielding 7 - (242 =) = 3x. Having 15 000 000 structure

instances for create*, we should save
37 = 3- 15000000 - 64 bit ~ 343.3 MB.

The measured result 344.6 MB differs only slightly.

create/super*  Structures have two IBF per (three-field) instance, always being
false, all fields immutable, yielding 7 - 3 - % = 2n. However, the third field

being a Racket fzxnum, and the number of actual fields dropping from three
to one due to IBFE, Pycket’s unboxing applies, and additional two words will

be saved per structure instance, eventually yielding 7 - (2 + 3 - 2y = 4n.

Having 30 000 000 structure instances create/super*, we should save
4n = 430000000 - 64 bit ~ 915.5 MB.
The measured result 881.8 MB deviates less than 4 %.

binarytree*  Structures have one IBF with a false per instance, yielding 7.
With a tree depth of 22, we should save

n = 223 . 64 bit = 64 MB

witch matches the measured result exactly.
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6.3 Limitations

We only evaluated the efficiency of structures in Pycket on self-written bench-
marks. Although they are well suited to test performance of basic operations
with structures, real-world applications may show different behavior as part
of future work. Once feasible, more elaborate benchmarks will be used.

JIT warm-up time has an impact on execution time. We use our bench-
marks with a sufficient warm-up time, which is not guaranteed to be always
reachable in real-world applications. Also, warm-up time may differ between
benchmarks. In order to illustrate the importance of the sufficient warm-up
time in micro-benchmarks, we ran the create/super micro-benchmark with
different numbers of iterations. The results of this benchmark are presented
in figure E. Pycket shows pure performance results with a small number of
iterations, but starting with some sufficient number (about 30 millions in this
particular micro-benchmark), Pycket is continuously faster. The slowness of
Pycket at the beginning arise from the j1T warm-up. Therefore, we use difter-
ent, sufficiently large numbers of iterations in every benchmark to show the
well-established performance.

Finally, we are unable to influence internal CPU optimizations, such as
enabling a boost-mode. However, such optimizations should work same for
both Racket and Pycket running single threaded.

7 RELATED WORK

[omitted from excerpt]

8 CONCLUSION AND FUTURE WORK
We presented an analysis of record structure usage in Racket and proposed

optimizations that are fit for an efficient implementation. We considered three
common approaches and devised a novel optimization for immutable boolean
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FIGURE E: Execution times (in log(ms)) of create/super micro-benchmarks for
Racket and Pycket with different number of iterations illustrate the influence
of JIT warm-up. Lower is better.

fields. We applied these approaches to Pycket, a tracing-JIT-based implemen-
tation of Racket, and achieve a significant speed-up compared to Racket in
provided micro-benchmarks with a sufficient warm-up time. We evaluated
the impact of our optimizations with a set of micro-benchmarks.

Our results suggest further investigation of #nboxing values, as homogenised
fields in structures make up about 85 % in Racket on average. Adaptive opti-
mizations [19] show promising initial results and may be applied to records in
the future. Finally, once Pycket’s feature coverage is sufficient, we will run a
broader range of benchmarks.

[omitted from excerpt]
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