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Abstract

The recent discovery of an intricate and nontrivial interaction topology among the ele-
ments of a wide range of natural systems has altered the manner we understand complex-
ity. For example, the axonal fibres transmitting electrical information between cortical
regions form a network which is neither regular nor completely random. Their structure
seems to follow functional principles to balance between segregation (functional specialisa-
tion) and integration. Cortical regions are clustered into modules specialised in processing
different kinds of information, e.g. visual or auditory. However, in order to generate a
global perception of the real world, the brain needs to integrate the distinct types of
information. Where this integration happens, nobody knows. We have performed an
extensive and detailed graph theoretical analysis of the cortico-cortical organisation in
the brain of cats, trying to relate the individual and collective topological properties of
the cortical areas to their function. We conclude that the cortex possesses a very rich
communication structure, composed of a mixture of parallel and serial processing paths
capable of accommodating dynamical processes with a wide variety of time scales. The
communication paths between the sensory systems are not random, but largely mediated
by a small set of areas. Far from acting as mere transmitters of information, these central
areas are densely connected to each other, strongly indicating their functional role as
integrators of the multisensory information.

In the quest of uncovering the structure-function relationship of cortical networks,
the peculiarities of this network have led us to continuously reconsider the stablished
graph measures. For example, a normalised formalism to identify the “functional roles”
of vertices in networks with community structure is proposed. The tools developed for
this purpose open the door to novel community detection techniques which may also
characterise the overlap between modules. The concept of integration has been revis-
ited and adapted to the necessities of the network under study. Additionally, analytical
and numerical methods have been introduced to facilitate understanding of the compli-
cated statistical interrelations between the distinct network measures. These methods are
helpful to construct new significance tests which may help to discriminate the relevant
properties of real networks from side-effects of the evolutionary-growth processes.



vi




Zusammenfassung

Die jiingste Entdeckung einer komplexen und nicht-trivialen Interaktionstopologie zwis-
chen den Elementen einer groflen Anzahl natiirlicher Systeme hat die Art und Weise
verandert, wie wir Komplexitdt verstehen. So bilden zum Beispiel die Nervenfasern,
welche Informationen zwischen Regionen des Kortex iibermitteln, ein Netzwerk, das weder
vollkommen regelmaflig noch vollig zufallig ist. Die Struktur dieser Netzwerke scheint
Funktionsprinzipien zu folgen, die ein Gleichgewicht zwischen Segregation (funktionale
Spezialisierung) und Integration (Verarbeitung von Informationen) halten. Die Regio-
nen des Kortex sind in Module gegliedert, welche auf die Verarbeitung unterschiedlicher
Arten von Informationen, wie beispielsweise Visuelle oder Auditive, spezialisiert sind. Um
eine umfassende Vorstellung von der Realitat zu erzeugen, muss das Gehirn verschiedene
Informationsarten kombinieren (integrieren). Wo diese Integration jedoch geschieht, ist
noch ungeklart. In dieser Dissertation wurde eine weitreichende und detaillierte graphen-
theoretische Analyse der kortiko-kortikalen Organisation des Katzengehirns durchgefiihrt.
Dabei wurde der Versuch unternommen, individuelle sowie kollektive topologische Eigen-
schaften der Kortexareale zu ihrer Funktion in Beziehung zu setzen. Aus der Untersuchung
wird geschlussfolgert, dass der Kortex eine auflerst reichhaltige Kommunikationsstruktur
aufweist, die aus einer Mischung von parallelen und seriellen iibertragungsbahnen besteht,
die es ermoglichen dynamische Prozesse auf vielen verschiedenen Zeitskalen zu tragen. Die
Kommunikationsbahnen zwischen den sensorischen Systemen sind nicht zuféllig verteilt,
sondern verlaufen fast alle durch eine geringe Anzahl von Arealen. Diese zentralen Areale
agieren nicht allein als tibermittler von Informationen. Sie sind dicht untereinander ver-
bunden, was auf ihre Funktion als Integrator hinweist.

Bei der Analyse der Struktur-Funktions-Beziehungen kortikaler Netzwerke wurden
unter Berticksichtigung der Besonderheiten des untersuchten Netzwerkes die bisher ver-
wandten Graphenmafle iiberdacht und zum Teil tiberarbeitet. So wurde beispielsweise
ein normalisierter Formalismus vorgeschlagen, um die funktionalen Rollen der Knoten in
Netzwerken mit einer Community-Struktur zu identifizieren. Die fiir diesen Zweck en-
twickelten Werkzeuge ermoglichen neue Methoden zur Erkennung dieser Strukturen, die
moglicherweise auch die tiberlappung von Modulen beschreiben. Das Konzept der Integra-
tion wurde revidiert und den Bediirfnissen des untersuchten Netzwerkes angepasst. Aufler-
dem wurden analytische und numerische Methoden eingefiihrt, um das Verstandnis des
komplizierten statistischen Zusammenhangs zwischen den verschiedenen Netzwerkmaflen
zu erleichtern. Diese Methoden sind hilfreich fiir die Konstruktion neuer Signifikanztests,
die relevante Eigenschaften realer Netzwerke von Nebeneffekten ihrer evolutiondren Wach-
stumsprozesse unterscheiden konnen.
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Preface

The irruption of complex networks in the natural sciences has altered the manner we
understand complexity. Traditionally, a system has been classified as complex when it
comprised of many elements (degrees of freedom) which interact in a nonlinear fashion.
The recent discovery of an intricate and nontrivial interaction topology among the ele-
ments in a wide range of natural systems introduces a new dimension in the spectrum of
complexity.

Graph theory, as a branch of combinatorial mathematics, is a discipline with a long
tradition. Its origins go back to the 18" century when the swiss mathematician Leonhard
Euler introduced the very first theorem of graph theory in order to solve the problem
of “the 7 bridges of Konigsberg”, which consisted in finding a round trip that traversed
each of the bridges of the prussian city of Konigsberg exactly once. Graph theory has
typically dwelled with combinatorial problems such as the graph colouring problem, e.g.,
what is the minimum number of colours needed to paint a political map such that no
neighbouring country has the same colour. The analysis of random graphs has been
especially productive, giving rise to analytical formulae for the expectation values of
graph measures, easy to compare with real data for significance testing.

From the practical point of view, graph theory has largely benefited from several
applications, but it is worth giving a special mention to the social sciences. Acquaintance
networks such as friendships or professional collaboration have interested sociologists for
almost a century. Indeed, many of the nowadays popular graph measures such as the
clustering coefficient and the centralities, are direct inheritance from the social network
analysis [I147]. Furthermore, most of our current knowledge about significance testing
and random networks with a given degree distribution arises from the social network
analysis [69, [70, R, 123]. Despite its traditional roots, it was not until the decade of
the 1990s that applications of graph theory became popular and invaded almost every
field of the natural sciences. This outbreak was, no question, facilitated by the advances
in computer power, when systematic analysis of large networks from different disciplines
became possible and several common mechanisms and properties were discovered.

In autumn of 2004 I joined the group of Prof. Jiirgen Kurths with the intention of
applying the complete toolbox of graph theory to the cortico-cortical connectivity net-
work of the cat. Looking back in time, I could hardly imagine those days that this small
network would become the source of my work rather than its target. Because, if I have
to summarise the thesis you are about to read in few words, this is a story of a bidirec-
tional interaction and mutally feeding motivation. On the one hand, I believe that graph
theoretical tools did help gaining insights in the organisation of the mammalian cortex
and its functionality. On the other hand, the peculiarities of this network continuously

1
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challenged the existing literature, forcing me to reconsider established concepts and to
reformulate several measures. The majority of works published during the “early years” of
complex network research (1998 —2004), although extremely relevant, committed several
common “excesses”, sometimes due to analytical simplicity, often just by the inertia gen-
erated by previous works. First, the directionality of the connections present in most real
systems was often deliberately ignored and the networks would be symmetrised by adding
the necessary links. Second, the analysis typically restricted to few global statistics, for
example, the degree distribution. However, global averages and the degree distribution
provide only limited information of the rich internal structure of a network. And third,
due to analytical simplicity, the majority of network models presented focused in the
thermodynamical limit, say, large and sparsely connected networks.

The goal of my work was to study the different scales of organisation in the mammalian
cortex and try to relate the individual and collective topological characteristics of cortical
areas to their functionality. From the biological point of view, we might have uncovered the
structural organisation substrate (at the level of the cortex) which permits the integration
of the multisensory information towards a comprehensive and unified understanding of the
environment. Few cortical areas, which are spatially distant from each other, are found to
be hubs of the network. Furthermore, these hubs are found to be very densely connected
among them forming a spatially segregated cluster of areas where multisensory information
is integrated. Technically, we have contributed to the significance testing in real complex
networks by the introduction of analytical and numerical methods for the computation
of expectation values. We have focused in a null model of mazimally random networks
conditional on the degree distributions and the degree-degree correlations. Additionaly,
we have extended a framework to “predict” functional properties of individual nodes (and
subsets of nodes) from their topological properties. Therefore, necessary conditions for
the capacity of integration are introduced at both the structural and at the dynamical
levels.

The first two chapters are dedicated to introduce the formalism and basic concepts of
graph theory, and to briefly explain our contribution to the significance testing of network
measures. Our main results in these topics have been published in the papers I and II
in detail. Here, summarised explanations will be provided. The rest of the dissertation
comprises of unpublished material. Chapter 3 is dedicated to review the established
knowledge of large-scale brain connectivity prior to our work. The global classification
of cortical networks is also re-analysed towards a more comprehensive understanding of
their overall organisation. A detailed and extensive graph theoretical analysis of the
cortical network of the cat is presented in Chapter 4. The results of different centrality
measures are compared, and a novel formalism to characterise the functional roles of
vertices is introduced. While the details of the formalism are left for the Appendix A,
its application permits to uncover the hierarchical organisation of the cortical network
of the cat. The final chapter is dedicated to our tentative efforts to link the observed
structural organisation to its potential function. The concept of capacity of integration
is introduced in both topological and dynamical terms. The results of this preliminary
formulation of integration support the conclusions of Chapter 4, which have been derived
from topological observations and justified with neuroscientific facts. Finally, in Chapter 6
the main results of the thesis are summarised and extended in the context of our additional
observations published in papers III, IV and V.



CHAPTER 1:

Characterisation of Complex Networks

Complex dynamical systems are characterized by a large number of nonlinearly inter-
acting elements, giving rise to emergent properties that transcend the principle of linear
superposition. Classically, science has broken up nature into independent abstract pieces
(systems) susceptible of being separately studied, and seeked for holistic solutions by
“summing up” the understanding of individual fragments. Even for systems composed
of many elements, provided that linear interactions dominate, statistical methods allow
their description by means of macroscopic properties. But, what if a system cannot be
divided into independent subsystems? Or what if the overall behavior cannot be de-
scribed in terms of the individual behaviour of its components? Despite its tremendous
contribution to science, the principle of linear superposition fails to capture the emergent
collective behaviour of many real systems such as synchronisation phenomena [104], [133],
the spontaneous formation of human collectives [55] [56] 106], the spontaneous outbreak
of epidemies [I8], [132] and etc., including examples of nuclear physics, neural organisation
and information processing.

In the recent years, yet another ingredient causing the emergence of complex behaviour
in nature has received an exceptional attention: the intricate pattern of interactions among
the elements of a system. But, what makes networks so interesting? Recall that one of
the principal enigmas in biology, and the central issue of physiology, is the intrinsic rela-
tionship between the physical geometry of biological structures and their function. The
relationship between form and function transcends the borders of biology, it extends into
science as some philosophical obscure concept which, sometimes unconsciously, plays a
relevant role in our quest to understand nature. A network is an abstract manner of repre-
senting aspects of a system, so general and flexible that it can be applied to a broad range
of real systems. A network representation provides the system with a form (topology)
which can be mathematically tractable towards uncovering its functional organisation
and the underlying design principles. Indeed, as realised rather recently, many empiri-
cally derived complex networks, ranging from technological and sociological to biological
examples, share common topological features. The organising principles of empirical net-
works often reflect crucial system properties, such as robustness, redundancy, or other
functional interdependencies between network elements.

Often, the network arises from some trivial physical property. In a map, cities are
linked by roads; neurones connect to each other through axons and synapses; the internet
is formed by computers and servers connected by cables. Sometimes, networks are con-
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4 CHAPTER 1. Characterisation of Complex Networks

structed over more abstract interactions, for example the social relationships: friendship,
profesional collaboration, sexual contacts, etc.; in ecological food webs the species are
linked depending on their trophic relations in a given ecosystem; the World Wide Web is
composed by web pages linked by hyperlinks pointing from one web page to another. Yet,
more abstract concepts are also plausible for being translated into networks, e.g. protein
interaction networks where the proteins in a cell or an organism are assumed to be linked
if they participate in the same chemical reaction, or the folding states of a protein; differ-
ent states are considered to be linked if they are accessible by a direct transition without
the need to undergo through an intermediate state.

The reason the term compler was coined to name all these examples is that most real
systems have neither a regular nor a completely random topology, they survive in some
intermediary state, probably governed by underlying rules of self-organisation. The aim
of current complex network research is to uncover the relationship between function and
structure, however, there is no realistic manner to talk about function of a network in
a generic and global manner. We shall never forget that function is something inherent
to the system itself and, a network, simply is an abstract representation of that system.
The emerging structure of a system depends uniquely on the individual necessities of
that particular real system. For example, transportation networks such as the railroad,
the electrical power-grid and the blood-vessels of an animal are physical constructions
for supporting the transit of trains, electricity and blood. Their dominating function is
supporting effective internal flows. Very different is the aim of, say, social networks or the
World Wide Web.

In the following sections of this chapter, typical measures of graph characterization
are introduced, which form the elementary toolbox of the graph analysis. They have been
classified as local, mesoscopic and global, depending on the range of information necessary
to derive them.

1.1. Graph Representation and Local Measures

In the classical nomenclature of graph theory, a network is represented as a graph G =
(V, E) consisting of a set V' of Ny vertices and a set F of N edges. We distinguish
between undirected graphs, whose vertices are connected by edges without any directional
information and directed graphs (digraphs), whose edges, in this case named arcs, possess
directional information. Additionally, the edges might be associated with a scalar value
quantifying a possible interaction strength, a cost, or a flow capacity giving rise to weighted
graphs. Self-loops are edges connecting a node to itself.

Due to the multiple and interdisciplinary applications of graph theory, the nomencla-
ture has become confusing. To keep consistency with the already published papers I and
II, we will refer to the size of the network (number of vertices) as N and the number
of links as L. A network is mathematically represented by an adjacency matrix A, with
entries A;; = 1 when there is a link from vertex 7 to vertex j, and A;; = 0 otherwise.
For undirected networks, the adjacency matrix is symmetric A;; = Aj;, and for weighted
networks, the elements A;; are replaced by non-binary scalar values W;;. The adjacency
matrix can sometimes become computationaly inefficient, particularly in the case of sparse
networks, i.e. networks where the number of edges is much smaller than the number of
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possible links, L < N2. Alternatively, the network can be specified by a set of adjacency
lists, consisting of N lists enumerating the direct neighbours of each vertex.

The presence of directed links modifies the graph measures. For example, the maxi-
mum number of edges in a digraph is L., = N(N — 1) (if no self-loops are considered
the N diagonal entries are ignored) while a graph can have only up to %N (N — 1) edges.
The density of a network, p(G), is the fraction between its number of links L and the
maximum possible number of links, L,,.,,. In a graph, the degree of a vertex v is the
number of its first neighbours k(v) = Z;V:l A,j. In digraphs the number of connections
entering to, and leaving from v are not necessarily equal. The output degree is the num-
ber vertices leaving from v and is computed as the row sum of the adjacency matrix
ko(v) = Zjvzl A,;. The input degree is the number of links received by v and equals the

column sum k;(v) = E;VZI A;,. In the context of weighted graphs, the natural extension

of the degree is the vertex intensity, defined as S(v) = Z;VZI W,;, where W is the weighted
adjacency matrix.

1.1.1. Degree distribution

A first statistical information that can be computed from a network is its degree distri-
bution, i.e. the probability p(k) that a randomly chosen node has a given degree k. One
of the key discoveries that triggered a renewed interest in complex network theory was
that the distribution p(k) of many empirical networks approximately follows a power-law
p(k) ~ k=7 [05], where ~y is the degree exponent. The relevance of this discovery is twofold.
On the one hand, it largely contrasts the until then prevailing picture that real networks
undergo a purely random process of formation and, as a consequence, all nodes have a
similar degree. However, many empirical networks are largely inhomogeneous: while the
vast majority of vertices only possess a small number of neighbours, a small number of
vertices (the hubs) are highly connected. On the other hand, power-laws play a special
role in statistical physics where phase transitions between ordered and random states are
typically characterised by power-law distributions. At the transition point, the system
has self-similar (scale-free) properties, i.e. the system looks qualitatively the same at all
scales.

Though one of the most basic characteristics of network architecture, a statistically
stringent numerical estimation of the degree distribution is far from trivial [54]. In the
simplest case p(k) can be straightforwardly estimated from a (usually binned) histogram
of degrees. However, for many real networks with strongly inhomogeneous degree dis-
tributions, the simple histogram approach provides insufficient statistics at high degree
vertices and is a notorious source of misinterpretations [54]. More reliable in terms of
numerical estimation is the cumulative degree distribution, p.(k), defined as the probabil-
ity that a randomly chosen vertex has a degree larger than k. The distribution p.(k)
is a monotonously decreasing function of k£ and its estimation requires no binning. For
a power-law distribution p(k) ~ k=7, the cumulative degree distribution is of the form
pe(k) ~ k~0~1_ An exponential distribution p(k) ~ (=% corresponds to an invariant
cumulative distribution p,(k) ~ e(=*).

It should be noted that all empirical networks necessarily show deviations from a strict
mathematical scale-free degree distribution and the formula p ~ k™7 often only applies to
an intermediate region of the empirical degree distribution and has to be adjusted with an
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exponential cut-off at high degrees. Reality imposes many restrictions to the capacity of
networks to become fully scale-free even if self-organisation processes are the underlying
construction motors, as nicely stated in [70]:

...the examples of social networks with a good fit to a power-law must prob-
ably have an upper cut-off of the degree distribution if the network was ex-
tended to the whole population of the Earth: If the network of sexual contacts
(a year back in time) had a p(k) ~ k=35 as reported in ref. [85] then, assuming
N = 6.4 x 10° the most active person would have around N'/2°(year)™! ~ 23
new sexual contacts per day [28]. If the number of phone-calls per person and
day is distributed as p(k) ~ k2! as reported in ref. [2] the person calling most
would dial ~ 5 x 10° phone-calls a second, 24 hours a day (...) In the spirit of
keeping a model simple one does not need to make it realistic in every detail.

Although every system may have its particular restrictions, two general phenomena have
been proposed for the emergence of cut-offs [B]: the limited capacity of a vertex to make
connections and their aging [5], 82]. After some time the vertices stop playing an active
role and stop making new connections. For example, the actor-collaboration network is
constructed by linking any two actors who have ever co-worked in one film. As actors
retire at some time of their lives, they receive no more links but they are still part of the
network.

More intriguingly is the effect of the network size itself on the distribution. As shown
in the recent literature, the reported degree exponent of many empirical networks corre-
lates with network size and thus might not reflect the actual exponent of the underlying
networks [24], 37, [38]. Nevertheless, for most of the real problems, it is more important
to know that the degree distribution is highly inhomogeneous and broad (sometimes in-
formally referred as fat-tailed), as opposed to the question whether it fits a power-law in
a strict statistical sense or not.

1.1.2. Degree correlations and reciprocity in digraphs

Despite its statistical and historical importance, the degree distribution provides only little
information about the internal structure and organisation of the network. The analytical
toolbox of graph theory contains numerous measures which cover different scales of the
topology, from very local vertex measures to measures depending on the structure of the
whole network. Among them, there are several local correlation quantities.

When a network is composed of directed interactions, the input and the output degrees
of a vertex are not necessarily equal; moreover, the statistical distributions of the k; and
of k, may be different. This imposes very relevant consequences for the expectation of the
measured quantities and is the central issue of our papers I and II. A thorough discussion
is left for Chapter 2. For the moment, lets only mention that the 1-node degree correlation
between the input degree k; and the output degree k, of individual vertices is an indicator
for potential functionality. A vertex with k; > k, might be considered as some sort of
integrator which is accumulating information and putting it together, while another vertex
with k; < k, might be some sort of distributor, passing copies of the same information to
many other vertices. At this point it is necessary to pay attention to the reciprocal links,
i.e. alink v — ¢’ for which the counterpart v < v’ exists. Therefore, the complete degree
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characterisation consists of a degree vector k(v) = (k,(v), k;(v), k.(v)) where k, denotes
the reciprocal degree, or equivalently, k(v) = (k¥ (v), k™ (v), kr(v)), where kT = k, — k, and
k= = k; — k, are the excess degrees.

It is also interesting to look for correlations between the degrees of adjacent vertices.
The 2-node degree correlation is formally expressed by the joint probability P(k, k') that the
two vertices at the ends of a randomly chosen link have degrees k and &’ respectively. In the
case of digraphs, the 2-node degree correlations become splitted into different subclasses.
Often, a crude measure of the degree-degree correlations in terms of the probability p(k, k')
is not suitable because of poor statistics at the high degrees. Alternatively, the average
nearest-neighbour’s degree, (k,,(k)), has been proposed [102]. For each vertex v of degree
k' the average degree of its neighbours is computed, k,,, ,, and then the k,,, of all vertices
with same &’ is averaged. A network is called assortative if nodes of similar degree
preferentially connect to each other ({k,,(k)) is thus an increasing function of k), and
disassortative if high degree vertices preferentially connect to low degree vertices ({k,,(k))
is a decreasing function of k). As pointed out in [95], social networks tend to be assortative
while technological and biological networks are disassortative.

In papers I and II we have demonstrated that there exist a very close statistical
relationship between the 1-node, the 2-node degree correlations and the reciprocity. Our
work is a first step towards understanding the statistical inter-dependencies between graph
measures, which is still a poorly studied question but a key point for the identification of
the relevant properties governing the organisation principles of real networks. Chapter 2
is dedicated to review this problem and to summarise our related work.

1.2. Mesoscopic Graph Measures

While local graph measures include the properties of individual nodes and the relationship
with their neighbours, global properties take into account the structural features of the
whole network. However, there exists a large gap between the local and the global organ-
isation levels. These intermediate scales ranging from few nodes to large communities are
the most interesting and relevant features of the topology, but they are often difficult to
define and quantify.

1.2.1. Matching Index

The matching index estimates the topological similarity between two vertices by quantify-
ing the overlap of their neighbourhood spaces. The neighbourhood of a vertex v is defined
as the set of its direct neighbours, I'(v) = {j : A,; = 1}. Note that in graphs without
multiple links, the size of the neighbourhood, |T'(v)|, equals the degree of v. Thus, the
matching index of two vertices v and v is the number of common neighbours that they
have: MI(v,v") = |['(v)NT'(v)|. Defined in this manner M I(v,v") depends on the degrees
of v and v, so a normalisation is desired. By counting the total number of distinct vertices
to which v and v" connect, |I'(v) U (V)| = k(v) + k(v') — |I'(v) N T'(v')], the matching
index can be re-defined as:
|T'(v) N T'(')] Z i j=1 Avi Avj

MI{v,v') = @) UTW)] k(o) + k() — SN, A A, (1)

~—
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Figure 1.1: lllustration of clustering coefficient. (a) Clustering quantifies the
conditional probability of two vertices to be connected provided they share a com-
mon neighbour. (b) Local C(s) measure as used in directed networks: the fraction
of existing connections between neighbours of s to all the possible connections
between them.
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Now, MI(v,v") = 1 if all neighbours of v and v' are the same, I'(v) = T'(¢'), and
MI(v,v") = 0 if they have no common neighbours at all. In the case of digraphs the
matching may be computed taking into account only the output neighbours I'* (v), only
the input neighbours I'"(v) or both, depending on the kind of information we are in-
terested in. Additionally, pairwise matching index can be represented into a matrix for
further statistical analysis.

1.2.2. Clustering coefficient

There is a well known aspect of social behaviour, as stated in the following dictum: “The
friends of my friends, are also my friends.” Persons are more likely to become acquainted
when they have at least one common friend. People use to meet each other by attending
the same social events, which happens more likely if they have common friends. Thus,
the clustering coefficient, C, of a network is formally defined as the overall conditional
probability that any two vertices, chosen at random, to be connected provided they share
a common neighbour. Most of the real networks possess a large clustering, despite the
fact that they are often very sparsely connected.

Given a graph, the most popular way of measuring C' is by counting the number of
triangles within the network, N(v/),

(1.2)

where N (V) is the number of paths of length 2, i.e. the number of times that two distinct
vertices t and t’ have a common neighbour. The weight 3 is introduced only to account for
the fact that, within a single triangle, there exist 3 paths of length 2. In digraphs, however,
it is not clear how to define a triangle due to the directions of the links. Alternatively,
the local clustering coefficient, C'(v), is defined as the local density of links among the
neighbours of v. If v has out-degree k,, then there is a maximum of Ly, = ko (ko — 1)
directed links between its k, neighbours (self-loops are discarded). The actual number
of links between the out-neighbours of v, L(I'"(v)), can be computed in terms of the
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Figure 1.2: All 13 possible three-vertex motifs, according to [90, 120]. /nset: The
concept of motifs can be generalized to account for specific repeated subgraphs within
a complex network. Shown are possible motifs of the yeast transcription regulatory
network, with circles denoting regulators and rectangles denoting gene promoters, ac-
cording to [84].

adjacency matrix:

LT (v)) _ Zf\g Aui Ay (Aij + Aji)

= o (o — 1) (13)

Note that the local clustering coefficient can be alternatively computed for the in-neigh-
bourhood of v, or, for its complete neighbourhood by considering all neighbours of v
whether they are in- or out-neighbours, I'(v) = 't (v) UT " (v). In Chapter 4 we choose
the latter option to avoid problems of data limitations in the cortical networks. Then,
C' is calculated as the average of the local clustering of all the vertices. It is important
to stress that, as pointed out in [95], the average of the local clustering is not exactly a
measure of the conditional probability defined above because it tends to overestimate the
contribution of low-degree vertices due to smaller denominator.

1.2.3. Subgraphs and motifs

Providing a bridge between local, vertex-related, properties and global functional proper-
ties of networks, the basic idea behind motif analysis is that large complex networks may
be composed of small subgraphs [75 84, 90, 120]. In Figure|1.2|all the possible subgraphs
(motifs) of size 3 are depicted. Some motifs are considered to play a certain specific func-
tion, e.g. the subgraph number 4 clearly is a feedback-loop. In general, the concept of
motifs is not restricted to subgraphs with a fixed number of vertices. Rather, it allows to
look for any re-occuring patterns, including more complicated topological structures, such
as multi-input motifs, regulator chains, or dense overlapping regulons (DORs) [84], 120].
Motif analysis has received much attention under the belief that, from the specific motifs
present in a network one could “uncover” its functional building blocks. However, there
are several issues indicating that a careful interpretation is required. First, we might
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recall that function is a property inherent to the real system itself, not to its network rep-
resentation. Therefore, the functional role of the motifs needs to be properly interpreted
in terms of the functional purposes (if any) of the underlying real system, not in terms
of its graph representation. Second, after the work by Milo and collaborators [90], it is
typical to compare the motif counts in real networks to the counts in randomised networks
with the original degrees preserved. Although this is a very respectable null-model (see
further discussion in Chapter 2), interpretation pitfalls are still possible. For example,
in a comment [12] submitted to [90], the authors demonstrated that taking into account
the spatial restrictions of the neural system of the C. Elegans mnematode, the motifs
previously thought to be relevant became statistically insignificant.

1.2.4. Community and hierarchical structure

One of the most relevant organisation properties of networks (and one of its most challeng-
ing features to characterise) is the agglomeration of vertices into modules or communities
and their hierarchical interrelationships. There is no generally accepted definition of what
constitutes a module. As a working definition, modules are understood as subsets of ver-
tices which are densely connected among each other, but only sparsely connected to other
vertices outside the community. In these terms, the problem of community detection con-
sists in identifying the densely connected subgraphs, i.e. to find a partition such that the
number of internal links within the modules is maximised and the number of inter-module
links is minimised.

In the recent years a myriad of methods have been proposed based on local and global
topological properties (many of them have been compared in [31]), as well as based on
dynamical properties [8] 23]E]. The question now is, once a method has separated the
vertices into a partition of n modules, how good is that partition? how can the results
from different methods be compared? For that, Newman and Girvan proposed a cost
function, called the modularity [96], which evaluates how successful the maximisation /
minimisation process has been as compared to the expected result in a random network
with the same degree distribution. The modularity is formally defined as:

" | L, d,\
Q=2 ()

where L, is the number of links inside the module S, and d; is the sum of the degrees of
the vertices in S. Thus, the left term is the density of links of module s, and the right
term is the expected link density of S in the case of a random network of the same size
and degree distribution.

(1.4)

A key question related to the community structure is that, often, the modules overlap
each other [99] and transcend different scales of organisation. Recent advances suggest an
optimistic future in this direction [9, 48], [114]. Critical questions are still to be answered,
for example, there is still no common agreement on how to define a hierarchy. For the
moment, two classes of hierarchies are present in the literature. In the model proposed by

"However, a recent study [62, [63] demonstrates that standard ways of clustering data, for example,
based on k-means or hierarchical clustering, often outperform newer methods.
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Figure 1.3: Hierarchical structure of complex networks. (a) Centralised hierarchy.
(b) Hierarchies as agglomeration of modules. Figures reprinted with permission from

Arenas et al. [10].

Ravasz and coauthors [105] (Figure [1.3|(a)) modules are organised in a tree-like structure.
In a different approach by Arenas et al. (Figure (b)), a group of communities ag-
glomerate together to form larger communities, what is regarded as a higher order in the
hierarchy [§]. In this dissertation, we will present yet another class of hierarchy, observed
in the organisation of the mammalian brain, which might be regarded as a mixture of
both definitions. Besides, the novel graph theoretical tools proposed in the Appendix A
are useful to characterise and classify different types of hierarchies.

1.3. Global Graph Measures

In this section few graph measures are presented which make use of the global topology
of a network. Even if some of these measures are assigned to individual vertices, their
derivation requires taking into account the topology of the whole network. Towards
deducing funtional roles of vertices, some of these measures permit a first classification of
individual vertices in terms of their global importance.

1.3.1. Distance and closeness centrality

The topological distance, dg;, between two vertices s and t is the length of the shortest
path between them, i.e. the minimal number of edges crossed to travel from s to t. If
there is a direct link s — ¢, then dy = 1. If there is no shorter path than going from s to
some other node ¢’ and from here to ¢, then d; = 2, and so on. Note that, in digraphs,
the distance is usually not symmetric dy; # dis. The shortest path between two vertices
is usually not unique, often there are several alternative “parallel” shortest paths. This
path multiplicity is very relevant for the flow dynamics and information redundancy in
networks. When there exist no possible path from s to ¢ then dy = oo, so s and ¢t are
disconnected. Sometimes, a graph is broken into several sets of vertices, called connected
components, which are internally connected but no path exist between the sets.

The average or characteristic pathlength, [, is the average distance between all pairs of
vertices. Real networks, even if they can be very large, typically have a very short average
pathlength, what is known as the small-world property. As [ depends on both the size N
and the density of links, a network is said to be small-world when [ <log(N).

When weighted links are present, the concept of distance can be adapted. For example,
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within a network of train connections, the shortest path (distance) between two stations
can be defined according to the physical distance between them, or, by taking travel time
into account. Often, it happens that travelling between two cities following a longer path
is faster because of several factors, e.g. faster trains, less stops, etc. Indeed, web-based
travel organisers tend to provide search results which minimise time travel. Other search
options are usually offered, for example, a search based on cheaper connections, or based
on the minimum number of times that the traveller needs to change to a new train.

Once the distance between all pairs has been calculated, a classification of vertices
is possible in terms of their average distance to the rest of the network, known as the
closeness centrality:

1 N
i=1,17#v
Again, in directed networks closeness centrality is splitted into the output centrality mea-
suring how fast the network can be searched starting from v, and the input centrality
quantifying how fast can be v accessed.

1.3.2. Betweenness centrality

In order to characterise the influence of a vertex on the flow and the spread of informa-
tion through a network, the betweenness centrality, BC(v) [0, 49], measures the number
of shortest paths going through v. An exact quantification requires to find all possible
shortest paths in the network, what is often computationally impracticable and approx-
imative methods are required [14) 26]. There are different manners of normalising the
betweenness centrality. For example:

N
Zi,j;ﬁv 0ij(v)

N
Zi,j:l Tij

BC(v) = (1.6)

where o;j(v) are all shortest paths starting from 4, going through v and finishing in j.
The condition 7,7 # s avoids counting paths starting from or finishing into v. The
denominator, o;;, is the total number of shortest paths in the network.

Equivalently, the centrality of links can be characterised as the fraction of all shortest
paths going through a given link v — v’. Notice that BC' is only an approximate measure
of flow centrality because it assumes that all information travels uniquely through shortest
paths, which is not necessarily true.

Typically, both the vertex degree, the closeness and the betweenness centralities are
considered as the basic centrality measures. They are all useful to classify vertices in terms
of their relevance, but they provide different kind of information. First of all, k(v) is
based in local information while the C.(v) and BC(v) make use of global information to
classify the vertex. Second, although they tend to be correlated they are not necessarily
equivalent, e.g. a large degree is no warranty for large C.(v) or BC(v).
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1.4. Summary

The recent discovery of a complex pattern of interactions between the elements of many
real systems, has shifted the attention of scientists into the study of the relationship
between form and function. However, there is no unique observable that would completely
determine the structure of a network. The graph theoretical toolbox comprises of many
different measures, each providing information about specific details of the topological
organisation. Understanding the precise structure of one network is similar to building
a puzzle, whose pieces are the outcome of the different graph measures. In this chapter
the basic measures have been reviewed and summarised. All of them will be used in the
following chapters to characterise the connectional organisation of the mammalian brain.
According to the topological scale of information required to compute them, the graph
measures have been presented as local, mesoscopic, or global.
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CHAPTER 2:

Network Maodels, Null-models and Sig-
nificance Testing

The word ‘model’ is almost omnipresent in natural and social sciences, however, it is also a
major source of misunderstanding between theoretical and applied scientists. Back in my
times as an undergraduate student, a professor would tell us: “Physics is the art of mak-
g approzimations. The work of a theoretical physicist consists in trying to get rid of the
overwhelming complexity of nature by uncovering only the few, most relevant, parameters
and variables.” In the eyes of a theoretical scientist, a model is an abstract construction
(mathematical, computational, etc.) which aims to explain natural phenomena by captur-
ing the main principles behind them. The source of a model is not necessarily data, very
often qualitative observations are all to start withf] Such a model is considered valid only
if, appart from explaining known phenomena, it also has the power to make predictions
which can be corroborated later by experimental observations?}

On the contrary, an applied scientist needs to deal with data and find generalised
manners to fit it into some analytical model. For an experimentalist a model is typically
a mathematical formula which fits a set of data and predicts the outcome of similar
experiments in the future. Obviously, experimentalists also want to uncover the main
principles governing the natural phenoma, and in order to extract the most relevant
observables from the data statistical (or significance) testing is used.

No question, graph theory is a data analysis toolkit, and as such, the experimentalist
approach is necessary. This doesn’t mean that there is no benefit from the minimalistic
and intuitive approaches of the theoretical approach to modeling. Unfortunately, due
to the interdisciplinary nature of the field of complex networks, there is some confusion.
Sometimes null-models are treated as models, and models presented as null-models. In my
opinion, part of this problem arises from the fact that we still have a poor understanding
of the complicated statistical interdependencies between the different graph measures, so
understanding which are the true driving forces in the development, growth and evolution
of a given real network is difficult. Modelling in the theoretical sense still requires excessive
guessing, and there is a considerable danger of misinterpreting non-relevant variables as

!'We shall remind here that Newton and Einstein derived their gravitational models based mainly in
qualitative observations.

2Such is the case with Einstein’s theory of general relativity. From its equations tens of predictions were
derived which have been corroborated only a posteriori, as the technology for experimental observations
advanced and permitted to test the validity of those predictions.

15
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fundamental, and the other way around.

This chapter is dedicated to summarise our efforts to bring some order to this confusion
and to present the tools we have proposed to continue working in this direction. In
Sections and [2.2] a brief historical review of popular network models and null-models
is presented, and in Sections 2.3 and [2.4] our papers I and II are summarised.

2.1. Prototypical Graph Models

In order to understand and elucidate whether an estimated value corresponds to nontrivial
structure requires to consider basic prototype models of complex networks. None of the
models described below aims to mimic the detailed features of any real network. Rather
they represent minimal models, each invented to exhibit distinct generic features observed
in empirical networks.

2.1.1. Random Graphs

The random graph is probably the most studied network model ever. Introduced by
Solomonoff and Rapoport [124], it consists of an initially empty network of N unconnected
nodes, whose pairs of vertices receive an edge between them with probability p. Erdés
and Rényi later proposed an equivalent model where L edges are introduced one-by-one
at random [43]. In both models the probability of having a link between two randomly
chosen vertices equals the density of links: p = p = W{l)

The properties of a random graph largely depend on the parameter p. Its degree
distribution follows a binomial distribution, approximating a poissonian in the thermody-

namical limit (N — oo and p — 0),

P = () o S 2.)

meaning that most of the vertices have a very similar degree, fluctuating around the mean
degree z = (k) = L/N = p(N — 1)/2 (Figure [2.1)). Since the 1960s this model received
considerable s attention for several reasons. Its most prominent statistical characteristic is
a percolation phenomena, equivalent to continuous phase transitions studied in statistical
physics and thermodynamics. In Chapter 1, a network was formally defined as small-world
if its average pathlength is much smaller than the number of vertices: | < log(N). This
means that all vertices remain “close” to each other. For decades social networks were
known to be small-world, as popularised by a famous experiment of Milgram [89] [142]
based on spreading of letters among randomly chosen citizens in the United States. As
the random graph model obeys the small-world property (for p above the precolation
threshold) it was long time considered as a model for real networks.

2.1.2. The small-world model of Watts and Strogatz

For the major part of the 20" century, graph theory developed with little help of com-
puters and typically only small networks were analysed. The increase and accesibility to
computer power during the 1990s permitted a systematical analysis of real (and large)
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Figure 2.1: Comparison of random graph models.

networks for the first time. While the small-world property was confirmed as a universal
characteristic, two new general properties were discovered. One of them is a large clus-
tering coefficient, indicating that real systems are very cohesive due to local structure.
The random graph model correctly reproduces the small-world property, but it fails to
account for the clustering observed in real networks (usually by orders of magnitude), and
therefore, it cannot be considered as a model anymore. However, random graphs play a
crucial role as the most elementary null-model in network analysis.

In 1998, Watts and Strogatz proposed a model which simultaneously accounts for large
clustering and small average pathlength [I48]. Their model is a transition between regular
lattices and random graphs. In a regular lattice vertices are only connected to their spatial
neighbours (see Figure . Such local structure gives rise to a large clustering coefficient.
As all vertices have the same number of neighbours, the degree distribution is a Dirac-9:
p(k) = 1 when k = z, and p(k) = 0 otherwise. But, the spread of information is slow
because traveling between physically distant vertices requires to cross many connections.
By modifying a regular lattice and introducing shortcuts (by randomly rewiring the links),
the average pathlength decreases very rapidly. For small rewiring probabilities (pre, <
0.1) it conserves much of the clustering of the original lattice and, simultaneously, gains
a small pathlength. For large rewiring probabilities (p,e, — 1) the model is equivalent to
the random graph.
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2.1.3. Scale-free models

The second novel property discovered during the 1990s is that right-skewed degree dis-
tributions with a high-degree tail (decaying slower than exponential) are abundant in
real-world networks. But why should real networks possess such unexpected degree dis-
tributions? Scale-free (SF) distributions are typical of self-organised systems, explaining
the large attention that complex networks received by physicists afterwards. Two main
ingredients for the emergence of power-laws have been debated. Contrary to the classical
perspective, a real network is usually an object growing in time. Additionally, if the grow-
ing process is governed by some sort of preferential attachment mechanism, the vertices
with many neihgbours tend to accumulate more and more links as time goes by.

In 1965 de Solla Price presented a network model intended to describe the emergence
of power-law degree distributions of citation networks [32, B33]. A citation network is
described as a directed network, where a link s — ¢ means that the paper s cites the
paper t. The out-degree of a paper is the number of other papers it cites and thus, never
changes after publication. The in-degree, however, increases in time. As popular papers
(highly cited) become known to more scientists, they gain a larger probability of being
cited. De Solla Price modeled this preferential probability as proportional to its current
input degree, k;:

p(t) = ]5 )

23:1 kz(])

After many iterations, the model returns an in-degree distribution of p(k;)
where m is the output degree of a newly published paper (assuming that all papers
intoduce the same number of citations).

In 1999 Barabasi and Albert (BA) presented a simplified model [16] (for undirected
graphs) which could be regarded as a rediscovery of de Solla Price’s model. The BA model
exhibits a scale-free degree distribution p(k) ~ k™7 with exponent v = 3 (Figure [2.1).
These SF network models capture the small world property observed in real networks
(small average pathlength), as well as a “fat tail” degree distributions. However, stated
as they are, they lack of the assortivity (degree-degree correlation) observed in many real
networks, and more importantly, they generate networks of very small clustering coeffi-
cient. Nevertheless, they provide a possible mechanism to explain the evolution of real
networks and they have motivated a myriad of new, modified models which additionally
capture degree correlations [102], large clustering coefficient [71, [82] and the cut-offs in
the degree distribution of many empirical networks [5], 24].

(2.2)

~ k~_(2+1/m)

2.2. Statistical Testing of Network Properties

Graph theoretical measures help understand the topological organisation of networks.
Once the structure has become clear, the second goal is to construct adequate models.
For that, it is necessary to uncover the features which are characteristic to the underlying
system and the fundamental properties of its development. In this sense, the question is
not whether a graph measure takes a specific numerical value, but rather whether this
value distinguishes the network from others of similar characteristics. But how should
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such a deviation be detected or quantified? An answer to these questions lies in the
formulation of appropriate null-hypotheses. Let us illustrate this with an example.

Imagine we have to analyse a given real network G’ of size N’, L’ links and certain
degree distribution p’(k) which is fat-tailed. After measuring its clustering coefficient we
obtain Cr = 0.41. Clustering values lie between 0 and 1 and, in principle 0.41 is quite a
large value. Now, it is well known that C' depends on the density of links (indeed, C' =1
only in the case of a complete graph, a graph with p = 1). We should then ask whether
Co is expected, or otherwise, significant. Imagine now that the clustering coefficient of
random graphs of size N’ and L' links is (C),,,, = 0.12 £ 0.02. Compared to (C), .4
Ce = 0.41 is very large and it can be regarded as a characteristic feature of the real
system under study.

So far so good, but, G’ was assumed to have a fat-tailed degree distribution (as is typ-
ical of real networks). Random graphs, on the contrary, posses Poissonian distributions.
The question is now: being p(k) a basic statistical feature of graphs, and being p(k) of real
networks so distinct from that of random graphs, how meaningful is it to use the random
graph as a null-model? How meaningful is the value (C), ., = 0.12 as an expectation
value for G'?7 Definitely, the random graph is always a valid null-model, this is no ques-
tion. However, we would prefer to compare Cg to the expected value using a null-model
which, while preserving the same degree distribution as G’, it is mazimally random.

For practical applications, how are the expected values and the deviations calculated
out of a null-model? In the ideal case, analytical formulae are available as happens for
many expectations of the random graph model. Unfortunately, this is rarely the case with
more complicated null-models and the expectations have to be computed after numerical
experiments; an ensemble of random graphs is generated and the ensemble average of the
desired measure is computed.

2.2.1. Generation of random graph ensembles

There are different manners of generating an ensemble of random surrogate networks with
preserved degree distribution. The configuration model consist of constructing a network
with a previously specified degree distribution [20, OT, O7]. Starting from an empty set
of N vertices, each vertex is assigned a degree k(v) that can be visually regarded as free
stubs (Figure 2.2(a)). Subsequently, pairs of stubs are randomly chosen and connected.
The configuration model has several limitations and it is often difficult (if not impossible)
to generate networks without introducing self-loops or multiple links. In paper IT we have
extended the configuration model to include also prescribed degree correlations and a
mechanism to overcome this problem is proposed, see Section [2.4]

Alternatively, random networks with given degree sequence can be obtained by iter-
atively swapping randomly selected edges [69, [76], 8T, [107] as schematically depicted in
Figure 2.2[b). Given a real network, at each iteration two links are chosen at random
(s1 — t1) and (sy — t3), and rewired as (s; — t3) and (sy — t;) provided that the
respective new links do not already exist nor introduce self-loops. Repeating the process
“sufficient” times the resulting network conserves the initial degree distribution but any
other internal structure of the empirical network is destroyed. This is usually the method
of choice for significance testing of graph measures, basically, because it works without
the problems of the configuration model. However, this method is slower and there is no
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Figure 2.2: Generating random networks with preserved degree distribution. (a)
Schematic representation of the configuration model. Each vertex is assigned a fixed
number of ‘stubs’ (degree) which are then joined at random. (b) Link switching method.
Two edges are selected at random and switched, provided that the new edges do not
already exist neither become self-loops.

proof of how many iterations are sufficient to destroy the internal structure. In order to
establish a solid estimation, we have performed a series of numerical experiments.

Initial switches randomise the internal structure of the real network. There should be
a point in the process when the network is already maximally random so that subsequent
rewirings give rise to just another maximally random network, statistically equivalent
to the one before. An indirect manner to detect this critical point is to look at how
macroscopic observables evolve during the rewiring process. In the Figure [2.3] we show
the evolution of average pathlength and clustering coefficient of the cortico-cortical con-
nectivity network of the cat. Once the rewiring process has been successfully repeated
1 x L times (2 x L links have been rewired), the network reaches its maximally random
state and therefore both measures reach a stable value. Further iterations do not alter
them because the macroscopic statistical state of the network does not change. Exactly
the same behaviour has been observed for all the 14 real networks analysed in papers I
and II, and for all graph measures tested (average pathlength, clustering coefficient and
reciprocity). With these results, we numerically assure that rewiring a network 1 x L
times is the minimal number of iterations acceptable. For safety, we would suggest to
perform the rewiring at least 2 x L times.

Returning to the previous example, imagine now that the clustering coefficient from the
ensemble of randomised networks is measured and it gives (C),, = 0.39£0.05. Compared
to this value, C'er is not anymore significant. This implies that, compared to a complete
random process, the network has (at least) two properties which are significant (the degree
distribution and the clustering), but which are statistically related to each other. The
main problem now is that towards building a proper model, statistically speaking, we
cannot discern which of the two properties is a leading factor of the system, and which of
them is simply a by-product of the other. Did the system evolve to favour a certain degree
distribution and the observed clustering coefficient is a by-product of that process? or is
it the other way around? In general, this sort of questions are very difficult to answer
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Figure 2.3: Stability of the link switching method to generate random networks
with desired degree distribution. After L succesfull iterations have been completed (so
2 x L edges have been rewired) the network reaches its maximally random state, as
shown by macroscopic measures reaching a stable value. Further switches simply lead
to another random network, statistically equivalent to its parent.

because we still have a limited understanding of the statistical interdependence between
the different graph measures. Our paper I, summarised below, is an step in this direction,
aiming to understand the interrelation between the local graph measures (k-distribution,
k-correlations and reciprocity) and to create statistical tools useful for further work.

2.3. Summary of Paper |

The reciprocity r of a directed graph is classically defined as r = % [147] where L* is
the number of directed links s — t that also have a reciprocal (bidirectional) counterpart
s < t, and L is the total number of directed links. Statistically speaking, r is the
probability that, for a randomly chosen link s — ¢, the opposite link s < t also exists.
In the case of a random digraph, the probability of a link joining a pair of nodes equals
the density of links p. As p(s — t) and p(s < t) are independent of each other, it is a
well known result that 74,0 = p [62} 147, [153]. In a few words, r linearly depends on the
number of links L. However, we expect that the 1-node (1n) degree correlations should
affect r. Intuitively, a vertex with large input degree k; and large output degree k, has a
higher tendency to form reciprocal links than another vertex with any of k; or k, small.
Furthermore, as 7 involves the pairwise connectivity of vertices, the 2-node (2n) degree
correlations should also be relevant. For example, given the link s — ¢, the probability
that s < t exists should strongly depend on k;(s) and k,(¢). If s has input and output
degrees k = (k;, k,), and t has degrees g = (¢;,¢,), there exist 4 different subclasses of
2-node, 2-degree correlations (2n2d) as depicted in Figure 2.4, When all the four values
(ki, ko, i, qo) are correlated, then both the 1-node and the 2-node correlations are present.

In paper I we have studied the expected reciprocity (r) of networks with prescribed
degree sequences and arbitrary 2-node degree correlations. We consider the complex net-
works as members of the statistical ensemble with given node degree sequence and degree
correlations, and we calculate the expected reciprocity of such ensembles in the thermody-
namical limit. In order to analytically estimate (r) under different correlation structures,
we propose the following characterisation of the network correlations. Given a network
with N vertices and links L,

e N(k;, k,) = N(k) is the number of vertices having in-degree k; and out-degree k,,
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Figure 2.4: 2-node 2-degree correlations (2n2d) of neighbouring nodes in di-
rected networks. Links corresponding to correlated degrees are colored black.

e L(k — q) is the number of directed links pointing from nodes with degrees (k;, k)
to nodes with degrees (g;, q,)-

These properties are easy to extract from real networks and contain all the relevant
information about the degree correlations. We use frequencies of these properties as their
probabilities and calculate the expected number of reciprocal links (L"). Remind that
by definition, (r) is related to (L") by (r) = (L") /L.

Under the class of 1-node and 2-node degree correlations assumed here, a network is
considered as maximally random when any of the nodes with degrees k is equally likely
connected to any of the nodes with degrees q. If a network contains L(k — q) links of the
type k — g, this probability is, in the thermodynamical limit:

Lk — q)

plk = 9) = SN

(2.3)

The denominator N (k)N (q) is the number of all possible connections between nodes with
degrees k and nodes with degrees q.

Having established the statistical framework, we derive our most general result, the
expected reciprocity of a network conditional on its 1-node and its 2-node degree corre-
lations:

(2.4)

1 Lk—q)Lk+q) L Pk — q)P(k < q)
Mo = 72T Ny N =N PP ’

2" Nk N(g) (k) P(g)
where the node frequency P(k) = N(k)/N and the link frequencies P(k — q) = L(k —
q)/L are considered as the probabilities in the thermodynamical limit. When all four
degrees are independent, then 7,2, reduces to the previously known result for the special
case of uncorrelated random networks, r = L/N?, which equals the density of links.

2.3.1. Results and discussion

From the general result 71,,2,, formulae for the expected reciprocity in all the 10 combina-
tions of 1n and 2n2d correlations are derived. The results are applied to 14 different real
networks of various classes and we find that the 1n2n degree correlations alone “explain”
the observed reciprocity 7,., of many real networks. In others, while 7,5, accounts for
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Figure 2.5: Numerical corroboration of theoretical estimations of the expected
reciprocity. Experimentally measured reciprocities (vertical axes) and theoreti-
cal estimations (horizontal axes). (a) All 1-node and 2-node correlations con-
served. (b) 1-node correlations. All data points are averages of 100 realizations.
Food webs (x), C. Elegans (o), World-trade-web (¥), cortical networks (A) and
Wikipedias (x). Dashed lines are references of perfect coincidence.

a large part of r..q, the difference between expected and measured values suggests the
presence of further internal structure, e.g. community and hierarchical organisation might
be a good explanation for this differences.

Finally, in order to numerically corroborate our analytical results, we have invented
and presented novel algorithms to obtain mazimally random networks with desired spe-
cial classes of 2-node degree correlations preserved. The comparison of numerical and
theoretical results shows an excellent agreement in all cases (Figure shows only few
examples).

2.3.2. Practical applications

To illustrate the usefulness of our proposed statistical formulation, I now show how it
can reproduce a very well-known and established result. The modularity () is commonly
used to quantify the validity of a partition of a network into communities (see Chapter 1).
Given a graph (undirected) with N vertices and L edges, and a partition of its nodes into
n communities P = {57, S, ... S, }, the modularity for this partition is defined as:

n LS ds 2
QNewman = Zl [f - (ﬁ) ] 5 (25)

where dg is the total degree of the nodes in the community S. Clearly, @) is the differ-
ence between the number of links inside a community (L), and the expected number of
links that the same community should have in a random network with the same degree
distribution. Denoting the expected number of links as (L), we re-write:

Qzé{%_?

Now, the statistical framework in paper I can be used to analytically obtain (L,). In a
random network with degree distribution N(k), the probability (frequency) that one of

} . (2.6)
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the nodes with degrees k = (k;, k,) has a link pointing to one of the nodes with degrees
q = (¢,q) is:
_ koN(ko) %N(%)

L L

Taking only the degree distribution inside the community Ny(k), then (Ls(k — q)),, =

LPsk—q)=1L %%7 leading to the following expression for the modularity:

Pk — q)

Ls ko Qst(k>Ns<q)

Q= |7 - 2" - (2.7)
s=1 k,q

Considering the cat cortical network and the anatomical partition into four communities

(visual, auditory, somato-motor and frontolimbic systems), we obtain that:

QNewman = an = 0.2403.

The numerical match is perfect down to 8 decimals.

2.4. Summary of Paper Il

In paper I the statistical relationship between the local graph measures (degree, reciprocity
and k-correlations) has been studied. In order to numerically corroborate those analytical
results, a few novel randomisation and random network generators were invented. In
paper II, we have introduced a unified and universal framework for the generation of
random digraphs with desired degree correlation structure. This general algorithm is a
generation method, e.g. as the configuration model in Section [2.2.1] Starting from an
empty set of N vertices, L links are introduced one-by-one following certain restrictions.
As in the configuration model, a fixed input and output degrees k = (k;, k,) is assigned
to each vertex. Additionally, the 2-node correlations are specified in the form of the
quantities L(k — q). The L links are introduced in the following manner:

1) One vertex is chosen at random, s.

2) as s has been assigned degrees k', to conserve the correlations s can only project
into nodes with degrees g’ for which L(k’" — q’) > 0. Hence, a list containing only
the possible target vertices is created, tlist.

3) From tlist another node is chosen at random, ¢, and the link is introduced, s — t.

By properly updating the degrees of s and ¢, and the quantities L(k” — q’), the algorithm
finishes the random network in only L iterations.

Several optimisations are also included. On the one hand, we have found that real
networks contain large number of deterministic links, say, links which cannot be randomised
without modifying the correlation structure. On the other hand, our general algorithm
suffers from similar problems as the configuration model, it often gets trapped into states
in which the only possibility to advance is by introducing either a self-loop or a multiple
link. We have proposed and positively tested a mechanism (we name it as the force-and-
drop method) to overcome such blocked states.
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2.5. Summary and Discussion

One of the main goals of complex network research is to understand the relationship
between structure, function and dynamics [7, [15, 27, [57, 87, [94] 05 [113], 128, 157]. Per-
sonally, T think that we are still far away because we don’t properly understand the
statistical interdependence between the graph measures. Only to mention an example,
the synchronisability in networks of coupled oscillators has been reported to depend on
the degree homogeneity [93, 08, 155, [156], clustering coefficient [150], degree correla-
tions [34], betweenness centrality [27], degree distributions and so on [73]. Besides, some
of the reported results seem to contradict each other. As wisely pointed out by Atay
and collaborators [I3], many statistical network properties do not suffice to determine
synchronisability because the spectral properties of networks are simply not derivable
from them. In the light of this confusion, it seems that graph theory still lacks of a
solid foundation on which theories and models can be safely constructed. Only when the
complicated statistical interrelation between the graph measures is well understood, will
we be able to infer with certainty the causal relations governing the interplay between
structure, function and dynamics. The work presented in the papers I and II represents
a step in this direction.

For decades, this problem has been in the agenda of graph theory. Due to several
experimental limitations, sociologists have been interested in understanding the expected
graph measures conditional on different classes of degree distributions [147]. However, it
seems that the efforts have not been completely satisfactory. In 1991 the mathematician
T. A. B. Snijders made the following statement in his famous paper [123]:

The uniform distribution conditional on both the out- and the in-degrees,
defined in (1) and denoted U|{X;;},{X,} is a relevant null distribution in
many applications (...) We indicated in the introductory section that the
derivation of exact or approximative formulas for distributional properties of
statistics like M under this digraph distribution is very difficult and may be
considered impossible. The enumeration and simulation methods presented
below provide a method to carry out an exact test of M under U|{X;+}, {X4;}
that circumvents the need for exact (or approximative) formulas.

Following a classical nomenclature, Snijders refers to the number of dyads M as what
we call the number of reciprocal links L (exactly, L™ = 2M). At that time Snijders
considered it impossible to find formulae to estimate the expected number of dyads in
a network with fixed degree distribution (U|{X;+},{X4,}) and therefore he proposes a
numerical approach as the only solution. The analytical results that we have presented
in paper I largely overcome this problem to include also the effect of the 2-node degree
correlations. Precisely, the equation (6) of paper I, ry, = %%, is the “impossible”
result that Snijders mentions, and it arises just as a special reduction of the general result
T1n2n Which is conditional on all 1-node and 2-node degree correlations.

Some recent works have also tried to uncover the statistical interdependencies between
several graph measures. In [35, [72] the statistical interplay between 2-node degree corre-
lations and the clustering coefficient has been studied, but restricted to the special case
of undirected graphs. Very recently, the expected number of cycles (closed paths) of ar-
bitrary length [21] has also been computed conditional on the 1-node degree correlations.
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Further work in this direction is desirable and the analytical tools presented in paper I
can be extended to study other network measures such as the clustering coefficient and
motif profiles. Using modularity as an example, we have shown the flexibility of our for-
malism. When analytical studies become impracticable, the numerical methods proposed
in paper II open the door for a new generation of faster algorithms to create ensembles
of random networks conditional on degree correlations. No doubt, both theoretical and
experimental applications will significantly benefit from the advances in this direction.



CHAPTER 3:

Large-Scale Connectivity of the Mam-
malian Brain

...in an abiotic world, information plays no role; physical interactions just
happen, they are driven by energy exchange between the interacting parts and
do not require any operations of information processing (...) But for living
organisms, information is the very essence of their existence: to maintain a
long-term state of stable thermodynamic non-equilibrium with its surround-
ings, consistently increase its organisation and reproduce (...) This, com-
prises both biomolecular information processes controlling the metabolism,
growth, multiplication and differentiation of cells, and neural information
processes controlling animal behavior and intelligence.

Juan G. Roderer [110]

Life has managed to conquer the oceans and the surface of our planet, succeeding even
in remote and extreme environments to our surprise and joy. Yet, living organisms are
fragile entities which struggle to survive by continuously feeding their internal state of
non-equilibrium with energy. While the ability to consume and transform energy and
matter makes life possible, it is the capacity of collecting and processing information that
makes life stable. In an constantly changing environment, the “knowledge” of the internal
and the external states is a necessary condition for the control of a stable existence.
Unicellular organisms mainly rely in bio-molecular information. Proteins anchored
in the cell membrane “smell” the environment triggering internal cascades of chemical
reactions. New information and responses leading to a sucessful existence is stored as
genetic information in the course of evolution. For multicellular organisms, the simple
difussion of molecules is not always fast enough to evoke a response to sudden changes.
At early stages of the evolution the nervous system merely served as a “high speed” in-
formation transmission device. Environmental signals, transduced into electrical pulses,
may be conveyed into distant parts of the body and, for example, activate a muscle to
trigger an escape response. Such “action-reaction” paths are known as reflex arcs, and
take place at the lowest levels of information processing in the nervous system of any an-
imal species. These basic circuits evolved into neural networks capable of discriminating

27
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different signals and causing specialised responses. Finally, memory circuits emerged to
store relevant information for later use.

Composed of an estimated number of 10! neurones, the mammalian nervous system
(NS) is the responsible for collecting information, generating satisfactory interpretation
(perception) of the world and providing adaptive responses in a constantly changing en-
vironment. The five senses commonly attributed to the nervous system (sight, hearing,
smell, taste and touch), underestimate its real complexity. Just imagine, at the root of
every hair in our body there is a sensory neuron transducing the movements of the hair
into electrical signals. Muscles and joints are populated by proprioceptors, neurones sens-
ing the stretching of muscles and the position of body parts. The thermoreceptors located
inside the body and at the skin respond to temperature changes. A subclass of chemore-
ceptors fire electrical impulses when they detect high concentrations of carbon dioxide in
the blood, triggering an increase in the breath and heart rates. Even physical pain is often
the consequence of stimulation of specialised neurones which detect chemical, thermal or
mechanical events which have the potential to damage the body tissue [19] 80].

As responsible for the global coordination of the organism, the NS is in continuous
communication with all other organs, for example, the endocrine system. The finding
only few years ago of synaptic communication between lymphocytes of the immune sys-
tem and neurones [61), 86], 134, 140}, [141] is a beautiful evidence of something we all suspect
by common experience: that mind and health go hand-in-hand together. Towards a holis-
tic understanding of the brain and its function, we should not forget the fundamental role
of the neurochemistry and its interplay with the ongoing electrical activity. Good examples
are learning and synaptic depression processes. Electrical activity may cause permanent
chemical changes at the synapses, and reciprocally, drug intake can alter the electrical
activity, e.g. leading to a temporal loss of awareness under anaesthesia. Furthermore, the
neurochemistry plays a fundamental role as the intermediary between the genetic infor-
mation and the electrical activity, i.e. the ultimate interplay between the memory of the
species and the current experiences of the individual.

In this chapter a necessarily brief and incomplete review of the organisation and the
information processing in the nervous system is provided. Our goal is to motivate the
relevance of the topological /structural organisation of the nervous system before shifting
into a detailed analysis of its connectivity. For that, we will focus on the anatomical
connectivity between cortical areas in the brain of cats.

3.1. Processing of Information in the Mammalian Nervous
System

Despite the large number of neurones and their different forms, they only collect and
transmit two kinds of electrical signals: graded potentials and action potentials (spikes).
Hence, the capacity of the nervous system to simultaneously process different kinds of
information relies, to a large extent, on the circuitry where the stimulus is received and
processed, not only on the specific temporal code.
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3.1.1. Processing of sensory information

The sensory system, also known as the peripheral nervous system, is responsible for collect-
ing the sensory information and converting it into electrical signals. Far from being mere
transducers, sensory neurones play a fundamental role in the pre-processing and organisa-
tion of information, and their adequate functioning is fundamental for a proper perception
of the reality. We distinguish some general features:

Modality: every sensory cell is destined to collect and transduce one, and only one, kind
of sensory stimulus. Consequently, information from different modalites remains
separated for most of the processing path.

Location of the stimulus: the information from sensory cells located close to each
other in the body is transmitted together and projected into topologic maps in
the brain for processing.

Intensity: the strength of the stimulus is coded as the firing frequency of action poten-
tials.

Duration of the stimulus: Phasic receptors respond only to the sudden onset or termi-
nation of an stimulus. Tonic receptors are constantly active as long as the stimulus
is present.

Once the signals have been transduced, the information travels through the different
hierarchical levels of the NS. At every stage of the propagation, information is “filtered”
and the necessity for a special response is evaluated. Such is the case of scape reflexes,
‘hard-wired’ security mechanisms which are automatically activated in extreme situations,
when life or integrity are in danger. We all experience situations in which our body reacts
to a stimulus far before we become consciously aware of the danger. While reflexes
are necessary for survival, they are extremely simple and imprecise responses. More
intricated neural networks have evolved to analyse and discriminate types of input signals
and produce specific and refined responses. Every sensory signal, regardless whether it
causes a reflex response or not, propagates towards upper levels in the hierarchy of the
nervous system and every level leaves its “imprint” on it, including emotions [92].
Despite the fact that the separation of modally different information paths is a rele-
vant characteristic of organisation in the NS, at the highest levels this separation seems
to fade away [50, 146]. In order to achieve a coherent and unified perception of the
reality, sensory information needs to be integrated together at some point [I08] and at
some time [42, [45] 122]. For that, the paths of information need to converge somewhere.
Even monosensory perception, like vision or audition, has become so complex that sen-
sory information arriving at the cortex is first segregated and individual characteristics
are analysed separately. Visual information arriving into the primary visual cortex is
forwarded to different visual regions, each specialised in detecting different features, e.g.
orientation, movement direction and speed, distance, contrast, color, etc. But to create
a comprehensive visual perception, those elements of information need to be integrated
together [44], [112]. This process is also known as the binding problem [19, 80, 108, [122].
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3.1.2. Binding, integration and high level processing
So far, we may emphasise two mayor aspects of sensory perception:

Bottom-up information flow: Starting at the sensory neurones, the information flows
in an ascending manner towards higher processing levels, where neuronal networks
and their capacity of processing grow in complexity.

Modular organisation: Information paths for signals of the same modality traverse the
body together, separated from the other modalities. Even in the cortex, the regions
processing different aspects of the same modality are spatially located close to each
other.

The intimate relationship between the organisation architecture of the nervous system
and the steps of sensory processing has been extensively documented in the literature.
However, these organisational principles seem to fail to explain higher order processing
like cognition. While sensory perception is dominated by the characteristics of the input,
higher level cortical networks are not necessarily influenced by sensory input. Attention,
imagination and voluntary actions are the result of self-generated percepts influencing the
information processing in a top-down manner.

Up to date, there is nothing we could identify as the cortical region specialised in math-
ematical calculus or in socio-political opinions. Cognitive information seems to be repre-
sented over wide, overlapping and interactive neuronal networks in the cerebral cortex.
Even if we would regard consciousness as the result of a global integrative process of the
multisensory information to create a comprehensive perception of reality [108] 121, 135],
there is no evidence for a unique brain region performing such a task. In the words of
J. M. Fuster [50]:

... because only the sensory aspects of perception and memory can be mapped,
it is becoming increasingly evident that cognitive information transcends any
of the traditional subdvisions of the cortex by structural or functional cri-
teria (...) Thus, whereas the modular paradigm has been most helpful to
clarify the neural basis of sensations, it is inadequate to clarify the central
substrates of perception or memory. Simply extrapolating principles of modu-
lar representation to larger modules does not lead to the identification of those
substrates.

3.2. Topological Organisation of the Mammalian Cortex

In the previous section, the relevance of the connectional organisation of the nervous
system has been emphasised. Unfortunately, a detailed description of the neuronal con-
nectivity is still far from satisfactory and only some reliable data is known at the large
scale of few mammalian species. Three main scales of connectivity are distinguished:

3.2.1. Scales of connectivity

Microscopic connectivity: It is estimated that each neuron receives approximately 10%
synapses from other neurones, the majority of them being from local neighbours.
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Usually, each neuron makes contact to its closest neighbours by only one synapse or
none at all [25] [ITT]. Collection of detailed neuron to neuron connectivity is almost
impossible for several reasons and for the moment, only qualitative conclusions can

be derived.

Mesoscopic connectivity: In the cortex, the dynamics of neuron populations is more
relevant than the firing patterns of individual neurones, what is reflected by the
agglomeration of neurones at different scales. Assemblies of 80 — 100 neurones align
vertically across cortical layers II and IV, forming columns and microcolumns [22]
109, TTT]. Such modules are considered as the basic functional units in the cortex.

Macroscopic connectivity: In the cerebral cortex, extense regions can also be found
which differ from each other in cytoarchitecture and function. Originally defined and
listed by Brodmann at the beginning of the 20" century [25], the architecture and
function of cortical areas has been the subject of intensive investigation and debate:
1) their precise function and borders can differ from subject to subject, 2) cortical
neurones are typically involved in more than one functional circuit, and 3) high level
functions rely in vast territories of cortex that extend beyond the specialised and
localised areas [50].

Despite the lack of detailed information, some common qualitative features are observed
across scales. Neural connectivity is neither random nor fully regular and neurones pos-
sessing similar function tend to form assemblies. The best example of microscopic con-
nectivity is the nervous system of the mnematode Caenorhabditis Elegans which has been
reported to possess small-world| characteristics [148] and modular structure [11]. At the
intermediate scales, neurones of the cerebral cortex are aligned forming microcolumns,
which group together into columns [127, 129]. This kind of organisation remembers the
hierarchical topology discussed in Chapter 2 and illustrated in Figure [1.3(b), in which
groups of densely connected vertices interlink to form larger assemblies.

3.2.2. Modular and hierarchical organisation

At the level consisting of cortical areas connected by long-range fibers, small-world prop-
erties have also been found for the macaque and the cat [64, 125, [126]. For example,
clusters or streams of visual cortical areas have been identified that are segregated both
functionally [I143] and in terms of their inputs, outputs and mutual interconnections [I51].
To identify the clusters of cortical networks, a stochastic optimisation method applied to
the cortical networks [64] detected a small number of distinctive clusters in global cortical
networks of cat and macaque [65]. These clusters contain areas which are more frequently
linked with each other than with areas in the remainder of the network. Additionally, the
obtained clusters follow functional subdivisions, e.g. they contain predominantly visual
areas. Hierarchies of cortical areas can also be constructed based on the laminar origin
and termination patterns of interconnections [47, 68].

The ubiquitous feature of the segregation of cortical networks into multiple, intercon-
nected network clusters and their capacity to share multimodal information is the central

!By small-world architecture we mean that the networks have large clustering coeffient and their
vertices lie at a short topological distance from each other.
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issue of this dissertation. Many previous works have stressed the necessity of a balance
between segregation (specialisation) and integration (binding) in cortical processing. Us-
ing graph selection methods for computationally generated networks, the emergence of
connectivity patterns giving rise to small-world networks composed of interconnected clus-
ters have been found [128]. The algorithm favoured for graphs maximising a particular
measure of global complerity defined for the whole network?l In Chapter 5 we will further
discuss these topics from an information theoretical perspective.

3.3. Cortico-Cortical Connectivity of the Cat

Currently, several neural connectivity databases exist from which a network can be ex-
tracted. At the microscopic level, the nervous system of the mnematode Caenorhabditis
FElegans has been completely mapped [41], 149]. At the macroscopic level, cortico-cortical
connectivities have been obtained for three animal models: cat, macaque and rat (par-
tially). The invasive and toxic nature of the experimental techniques does not permit
a systematic description of the connectivity of the human cortex. Non-invasive imaging
techniques such as Diffusive Tensor Imaging (DTI) offer a future perspective for col-
lecting human anatomical data. In this dissertation, we concentrate uniquely on the
cortico-cortical connectivity of the cat brain for the following reasons:

a) Macroscopic analysis: Experimental neuroscience has been very succesful in describ-
ing the electro-chemical principles of neural excitation and the mechanisms of transduc-
tion of sensory information into electrical pulses. Techniques like in-vivo microelectrode
recording have permitted the investigation of more complex organisation and function
of the brain, e.g. recording the brain activity of animals while performing sensory or
behavioural tasks. But, if we want to understand cognitive functions and consciousness,
it is necessary to understand how information from different modalities and parts of the
brain are integrated.

b) Statistical reliability: Among the three available cortical connectivity datasets, the
one of the macaque monkey is the most interesting to analyse because there exists a rich
literature reporting task-dependent experiments in macaques. A comparison between the
experimental and the graph theoretical results should be highly desirable. Unfortunately,
this data is not yet complete enoughrf] while the connectivity data of the cat offers the
possibility of deriving detailed and statistically reliable graph theoretical results.

The database of the cortical connectivity of the cat was created by Jack W. Scan-
nell after a collation of an extensive literature reporting anatomical tract-tracing exper-
iments [I15, [I17]. It consists of a parcellation into 53 cortical areas and 826 fibers of
axons between them as summarised in Figure [3.1] The connections are weighted accord-
ing to the axonal density of the projections between areas. Scannell et al. classified the
connections originally reported as weak or sparse with 1 and, the connections originally

2This particular measure of complexity aims to capture the complex characteristic of networks (neither
randomly nor regularly connected) by analysing the dynamical dependence among the vertices at all scales
of organisation.

3The CoCoMac project [Il, [130] opens a promising possibility for the near future.



3.3. Cortico-Cortical Connectivity of the Cat 33

Visual Auditory Somato-motor Frontolimbic

<
=
o
\OOG\]O\LI!J-\MN.I_.
WNN - N - NDWaw
- PPN - e WWaWw - W
N Wa WO NWN - WW
W Nt - aND
Wawhw
Y\ pry
—_ s )
-
-

&

&

[
TRIRR )

4 Waa @ N NN
- N

n

-

N

(ST IR CRR PN}

W - NN - N
NN - W
N NN s
-
NN =
Y N1 V1V
N
-
-
(SIS

2211

-
AN
YN )
N
—_—
N
N
G

N

v
)
=]
= oW
SN CIEN ST CRES B
IO CREN 1%
=IO + = W)
NN - N = NN
PN - o s oA
PN S
JEFQEN GV] L PPN
N =ON - aa

EPp-22 11 112112221

U
&
]
st
_—
-
-
-

NN NN N
)
Nl - o o

[EFQEFQEFGEFQENGEN (V) \\ ]

WW - DOW - WWWW
—aa

[
&
7]
&
N -

= = 2 O - OO - WWW - W
-

=N - N WaNal) - WW - W
W NN ANW A - 0w W W
N - PONINONIN =

RO NN L2 L NN N
= = PO N - N - N - NNNNNY

NN —= - PPN NN
n

=N - PPNl - W - WWW
[\S] SR SO CHN SRR )

O - W - a - NN =

NN N NN

OMON - NDWa NN

NN = - W - D=

= - PO - NN

PN = IO bt N =

AN A -
PN WRON 2 WN - —

— N

_
N

SO EFGEGNINEIIN | UG i
n

[[SICSI SO

NN —

—_—
—_a
PN - NN W AN aMN -

_ N NN W A s s
n -

35 | vwnrw A awann)

36
pSb
Sb

-
-
= WWNN -« WN
- Al
[\SJERY RN ST

—ANNNNON - W
WN - N

N
—_ e COPONONNON AN - Nt - W - N

Y V7% QIO
_—— N

Y V] PO

S PONON

[Py Ry

Nt - s O
-

_——

[N VRN V] V)

ON - N

—_—
-
-

N RN RS

NN W NWa NN

N
Enr | @ MoOONWaaa
WNN - =

Hipp

-
-
-
w

5Bl
SSSAi
SSAo
PFCMil
PFCMd
PFCL
Ia

Ig

CGa
CGp

RS

Figure 3.1: Adjacency matrix of the cortico-cortical connectivity of the cat
comprising of 826 directed connections between 53 cortical areas. In the vertical
axis the names of the areas have been numbered to simplify the interpretation
of plots afterwards. More information about the cortical areas is summarised
in Appendix B. The connections are classified as weak (1, black), intermediate
(2, blue) and dense (3, red) according to the axonal densities in the projections
between two areas. For visualisation purpouses, the non-existing connections (0)
have been replaced by dots.

reported as strong or dense with 3. The connections reported as intermediate, as well as
those connections for which no strength information was available, were weighted with 2.

A common source of misinterpretation is the fact that the cases in which a connection
was explicitely reported as absent, and those connections which no experiment ever at-
tempted to detect, were treated equally and weighted with 0. It is expected that further
experiments may detect new connections which are still missing in the database. Being
aware of this and other limitations, we have established the following criteria for the
graph theoretical analysis of the network, in order to provide fair statistical results and
interpretations:

a) Communities: Using data mining techniques, the connectivity data of the cat has
been found to be organised into four communities [64] [1T5] [1T17], whose composition is
similar to the functional divisions: visual, auditory, somato-motor and frontolimbic (see
Figure . Current community detection methods based on the maximisation of the
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modularity function detect an optimal partition which is slightly different. However, we
believe that the result of more sensitive community detection methods is not necessary
because the known imperfections of the data. Therefore, the communities established in
the literature have been adopted as valid a working partition.

b) Reciprocal connections: The reciprocity coefficient of the network is r = 0.73,
meaning that most of the links have a reciprocal counterpart and only 27% of the con-
nections are unidirectional. Because of the missing links, it is difficult to evaluate the
reliability of the nonreciprocal links and to provide a functional interpretation. On the
other hand, there is an increasing evidence that all cortico-cortical connections are recip-
rocal [3, BI]. In the complex networks literature it is common to find directed networks
which have been symmetrised “by hand” for conveniencd’] We do not agree with this
kind of data manipulation. Instead, graph measures are flexible enough to find proper
compromises without a need for altering the data. For example, as the input and output
degrees of the cortical areas are correlated (not shown), the degree can be computed as
their average: k(v) = 0.5(k;(v) + ko(v)). Throughout the Chapter 4, additional criteria
are adopted for each of the graph measures.

c) Thalamo-cortical connections: The cortico-cortical connectivity is a subset of
a larger dataset comprising also the thalamic regions and the thalamo-cortical connec-
tions [I16]. Two special features of this extended data are: 1) all thalamo-cortical con-
nections are reciprocal, and 2) no connections exist between thalamic regions. Here, as
in many works [64] 83| TT5], 129], the thalamic areas and their projections have been om-
mited. However, the thalamus is typically considered the gate of sensory information to
the cortex and thus a brief justification follows. First, while the thalamic inputs are rele-
vant for understanding the function of primary sensory cortical areas, they have very little
influence on the cortex of association, where most of the cognitive functions happen [50].
Second, thalamic projections represent only a very small percentage of the inputs that a
cortical area receives. Even in the primary visual cortex, whose function mainly depends
on sensory input, only 5% of its terminal axons is of thalamic origin. Most of the other
inputs are of cortical origin [103].

3.4. Classification of Cortical Networks

The cortico-cortical networks of cat and macaque have been classified as small-world
networks due to their large clustering coefficient C' and their small average pathlength
[. On the other hand, robustness of cortical networks reveal similarity to scale-free (SF)
networks [79]. Damage profiles after intentional attack on the highest degree nodes,
or attack on randomly chosen areas, display similar robustness profiles to those of SF
networks. To bring some order into this apparently contradictory classification, ensembles
of 100 random networks of different classes have been generated for comparison. The
network models and the methods to generate them are described in Chapter 2:

1. Random graphs of size N = 53 and with L = 413 undirected links (the connectivity
of the cat contains 826 directed links).

4The symmetrisation is typically done by adding the necessary links. If A;; = 1 and A;; = 0, then
Aj; is set to one.
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‘ Cat cortex ‘ Random Graph ‘ Cat Rewired ‘ Watts-Strogatz ‘ Scale-free ‘
C 0.55 0.30 £0.01 0.396 £ 0.005 0.56 £ 0.01 0.37 +£0.01
l 1.83 1.673 £0.003 | 1.735 £ 0.004 1.77£0.02 1.686 £+ 0.004

Table 3.1: Comparison of average clustering and average shortest path between
the cat cortical network and equivalent random networks. ‘Rewired Cat' also
possess the same degree sequence. Each value is the average over 100 realizations.

2. Random rewired digraphs of same size N, number of links L and degree distribution
N(k) as the connectivity of the cat. The set was generated by application of typical
rewiring algorithms which conserve the input and the output degrees of every vertex.

3. Small-world networks after the model of Watts and Strogatz (W-S). Starting from
a regular ring-lattice of size N = 53, each vertex is connected to its 8 closest
neighbours and then links are rewired with probability p,., = 0.1. The resulting
networks have 424 undirected links.

4. Scale-free (SF) networks with exponent v = 1.5 have been generated following the
method in [53], which consists of a modification of the configuration model. Cer-
tainly, with only 53 nodes the obtained networks cannot achieve a SF distribution,
nevertheless, they display a broad distribution, see Figure |3.2]

The results are summarised in Table [3.1] and Figure 3.2l With respect to the small-
world characteristics, the cortico-cortical network of the cat clearly lies close to the W-S
networks, Figure [3.2fa). However, even if the global average C' and [ are very similar, the
W-S model cannot be considered as a plausible model to explain the cortical organisation
because: 1) W-S networks do not display community organisation, and more relevant 2)
the vertices of W-S networks have similar degree. On the contrary, the network of the
cat cortex possesses a very wide degree distribution, i.e. few areas connect up to 60%
of all other areas. As shown in Figure 3.2(b), the difference in the cumulative degree
distributions is prominent.

The cumulative degree distribution of SF graphs with N = 53 and L = 423 (solid
line of Figure [3.2(b)) closely follows the real distribution of the cat cortex, what explains
the similar attack tolerance behaviour [79]. But, as expected, the clustering coefficient
of SF networks is very small (Table [3.1). Hence, the random SF graph is not a suitable
model for cortical networks either. The W-S and SF random models are only minimal
models intended to capture certain global properties observed in real systems, and cortical
networks have a very rich internal organisation.

It has been previously stressed that the balance between segregation and integration
is a relevant feature of the nervous system. On the one hand, the modular structure of
the cortex, divided into few subsystems, provides the structural support for specialised
information processing. Similar to the W-S model, few connections between the commu-
nities permit that all information remains accessible everywhere. But, what about the
integration? are the shortcuts between communities enough for supporting the integrative
capacity of the brain? if so, why should the network possess such broad degree distribu-
tion? These are the main questions that we try to answer in the following chapters.



36 CHAPTER 3. Large-Scale Connectivity of the Mammalian Brain

a 2.0 — I 1 — 1.0 Lddind T T —
) @ Rewired b) A .'l‘ ® Cat
< 19 |V Scale-free | 0.8 A A--4 Random H
(o) I ' n — Scale-free
C - | \ ||
3 18} ¢ 4 X
e= * O 04 —
© 1.7F |
o AV 0.2} e -
A
Lo | ! ! | ] ol 11 N
02 03 04 05 0.6 5 10 15 20 25 30
Clustering Degree

Figure 3.2: Classification of the cat cortical network. Comparison to ensembles
of random null-models and generic models. (a) comparison of the small-world
characteristics, and (b) cumulative degree distributions. Cat cortex (e), random
graphs (A), rewired (#), scale-free (¥) and Watts-Strogatz networks (H).

3.5. Organisation of the Multisensory Connectivity

We finish this chapter with a rough analysis of the connectivity and a preliminary classi-
fication of the cortical areas in terms of their multimodal interactions. Next chapters will
deepen this classification using more sophisticated statistical tools. So far, two relevant
features of the organisation of the cat cortex have been stressed: its modular organisation
and the presence of largely connected areas. A simple visual inspection of the adjacency
matrix reveals a clue to understand the apparent contradiction of simultaneous similarity
to the W-S model and to the SF networks: the inter-community links are not randomly
distributed, but some cortical areas accumulate most of them. Internal links are defined
as connections between two areas in the same comunity, and external links as connections
between two areas in different communities. Out of the 826 axonal connections in the
dataset 470 of them (57%) are internal, and 356 are external (43%). This tight ratio of
internal to external links gives a rough idea of how fragile the community structure is and
of the multiplicity of communication paths between modalities.

\Y A SM FL

V 10583 0.098 0.109 0.201
A 1 0.098 081 0.018 0.204
SM | 0.199 0.089 0.742 0.241
FL | 0.237 0.276 0.237 0.648

Table 3.2: Inter-community connection densities. Diagonal elements represent
the internal density of links within the communities, and extradiagonal elements
are the fraction of existing links from one community to another (out of all possible
links between them). The frontolimbic system is the most connected to the others,
in accordance to its presumed functional role in association.
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In Table 3.2/ the connection densities within and between the communities is summarised.
Density is defined as the fraction of exisiting links to the number of all possible linksﬂ
The diagonal values of Table represent the internal densities of connections within
the systems being the auditory and the somato-motor systems the densest of all. The
extradiagonal values are the inter-community connection densities. Due to the directed
nature of the dataset, the inter-community densities are not symmetric. The most relevant
observation is that the frontolimbic system is the most connected to all other systems.
This feature is probably one of the largest obstacles for a clean partition into communities.
Nevertheless, from a functional point of view this is expected because of the important
role of the frontolimbic cortex for associations and high level processing. On the contrary,
the auditory system is the most independent of all, a fact which has been confirmed in

dynamical simulations [I54, 157, [I58].

®For internal connections pi,: (1) =

m and for the external connections from system I to system

J, thisis pese(I — J) = ]I(]i 7\,‘; , where Ny N is the number of all possible connections from areas in system

I to areas in J.
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| v T A [ sw ] L]
Supramodal Hub | 20a, 20b, 7 EPp 6m, 61 Ia, Ig, CGp
AES 35,36
Multimodal area | PLLS, PMLS | AI, AIl | SII, SIV, 4g, 5A1 | PFCMd, PFCL
AMLS, ALLS | P, Tem | 5Am, 5BIl, 5Bm CGa, RS
19, 21a, 21b SSSAi, SSSAo
Unimodal area 17, 18 AAF, VP 1, 2, 3a, 3b PFCMil, pSb, Sb
VLS, DLS Enr, Hipp

Table 3.3: Tentative classification of cortical areas according to their multimodal
connectivity. Supramodal hubs are cortical areas with many external connections
in all the four systems, and unimodal (specialised) areas are those linked almost
uniquely within their community. Other areas have several connections to one or
two external systems and have been classified as multimodal areas.

3.5.2. Multimodal and unimodal areas

Let us define the internal degree, £(v), as the number of neighbours that vertex v has
within its own community, and the external degree, k°“*(v), as the number of neighbours
of v in other communities. In order to derive a preliminary classification of cortical areas,
in Figure their multisensory connectivity is illustrated. An interesting observation
out of Figure (a) is that, within each system, few areas are largely connected to other
systems. This observation indicates that the multisensory communications between the
systems might be mediated by few areas. Except for the primary visual cortex (area
17) and Hippocampus in the FL cortex, all other cortical areas have connections to at
least one external system (Figure[3.3[(b)). Further details are summarised in the following:

Visual system: Visual areas 20a, 20b, 7 and AES alone make 60% of all the external
connections, all of them spanning their connections into the four systems. On the contrary,
the primary and secondary visual cortices, areas 17 and 18, together with VLS and DLS,
have almost no multimodal connections, indicating a purely specialised function in visual
processing. The rest of visual areas, while highly specialised, make several connetions to
other systems, mainly to the auditory hub, area EPp, and to different motor areas. These
latter links might indicate the connectivity substrate for the control of visual attention.
Auditory system: Only area EPp can be considered as a hub, while the rest of areas have
poor external connectivity, with the exception of some sparse links with the frontolimbic
system and the visual hub, area AES.

Somato-motor system: Areas 6m and 6] are the best candidates to be considered as
hubs. Areas 5Al, 5Bm and 5Bl also have many external connections but none of them
connects to the auditory system. A characteristic feature of the SM system is that most of
its areas make few multisensory connections to areas in the frontolimbic and in the visual
systems. All these areas span their links over three systems (see Figure [3.3|(b)). Only the
somatosensory areas 1, 2, 3a, 3b, have sparse external connectivity (see Figure [3.3|(a)).
Frontolimbic cortex: The associative nature of the frontolimbic cortex is captured by
its large number of multisensory hubs. Areas Ia, Ig, CGp, 35 and 36 have each over 17
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external connections spanning among all the systems. Only a small part of the prefrontal
cortex (PFCMil), the subicullum (Sb, pSb) and the entorhinal cortex (Enr) could be
classiffied as purely unimodal areas.

In the light of these observations, we propose a preliminary, tentative classification of
cortical areas into three categories as summarised in Table [3.3] Areas making uniquely
(or almost uniquely) internal connections to other areas in their community are classified
as unimodal. The areas which, belonging to one community, sparsely connect to areas in
one or two external communities are named multimodal. Finally, as supramodal hubs are
considered the areas with large degree, which also span their connections over the four
systems. In the following chapters more reliable classification schemes will be presented.
Even if this classification is based uniquely on the internal and external connectivities
of areas, it coincides with known biological features. Cortical areas involved in low level
(specialised) sensory processing typically exhibit additional internal organisation. Early
visual cortical areas have layered retinotopic maps such that information conveyed by
contiguous retinal neurones is processed by adjacent neurones in the cortex. Regions of
the somatosensory cortex are arranged into somatotopic maps of the body. Neurones of
the auditory cortex form tonotopic maps, i.e. they are ordered according to the frequency
to which they respond. This kind of internal organisation is not observed in cortical
areas involved in higher processes such as binding and association [50]. According to the
descriptions in [IT5], none of the areas classified above as multimodal hubs, have a mapped
internal organisation. On the contrary, primary and secondary visual cortices (areas 17
and 18), as well as areas 19, 20a, 20b and PS are known to be retinotopically organised,;
primary auditory cortex Al as well as AAF, P and VP have tonotopic maps; somatosensory
areas 1, 2 and 3b contain somatotopic maps of cells responsive to cutaneous estimulation
and SIV has an orderly topographic representation of the body surface. Most of these
areas have been classified as unimodal and few of them in the intermediate category.

3.6. Summary and Discussion

The mammalian nervous system (NS) is a complex system par excellence. Composed
of over 10'° neurones, it is the responsible for collecting and processing information,
and for providing adaptive responses which permit the organism to survive in an ever
changing environment. The sensory information is processed in a bottom-up manner.
Environmental information is transduced into electrical signals by the sensory neurones
and ascends through distinct hierarchies of increasing complexity.

In this chapter, the interest of understanding the large-scale connectivity of the NS has
been motivated. The main reason is the belief that, comprehension of the topological sub-
strate in which the processing of information happens, should uncover relevant aspects of
brain function. While sensory information of different modalities follows particular paths
of processing, the emergence of a general state of awareness requires that the multisensory
information converges in space and time [I08] 121], 135]. How and where this happens is
still a subject of debate. There is, however, increasing evidence that cognitive information
is represented over wide, overlapping, and interactive neuronal networks in the cerebral
cortex [50} 51, [146].

As a working database, the cortico-cortical connectivity network of the cat has been
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chosen because it is, up to date, the most complete of its kind. Therefore, it is the most
suitable for a detailed (and statistically reliable) graph theoretical analysis. Nevertheless,
the data contains several limitations and future experiments may reveal new connections
which are currently missing. In order to overcome these and other limitations, several
criteria for the analysis have been established. For example, even if there are strong
indications that all cortico-cortical connections might be reciprocal [3 51, the network
has not been symmetrised. It is common to find in the complex networks literature
that networks have been symmetrised for analytical or computational convenience. We
believe that the graph theoretical measures are flexible enough to find proper compromises
without the need to alter the data.

Finally, the basic characteristics of cortical networks have been revisited. Cortical
networks are organised into modules [64, 115, [116] which closely follow the functional
subsystems: visual, auditory, somato-motor and frontolimbic. Cortical networks have
also been classified as small-world, meaning that cortical areas are at a short topological
distance of each other, and that they are very cohesive due to internal organisation [64] 65,
129]. A recent study showed that the robustness properties of cortical networks are similar
to those of scale-free (SF) networks. To bring some light into this classification scheme,
a comparison to several random network models has been presented. Our conclusions
are that, while the cortical network of the cat has large clustering coefficient (probably
due to the modular organisation) it also has a broad degree distribution and contains
several hubs. The multisensory connectivity of the cortical areas has been analysed. We
find that every system (visual, auditory, etc.) contains at least one hub which might
be responsible for the multisensory communication between the systems. These reasults
have led us to a preliminary classification of cortical areas in terms of their multisensory
connectivity as: supramodal hubs and unimodal (sensory specialied) areas. Other areas lie
in an intermediate class between the two extremes, which has been named multimodal.



CHAPTER 4:

Detailed Graph Theoretical Analysis of
the Cat Cortex

By the date I joined the group of Jiirgen Kurths, the analysis of cortical networks had
mainly focused on their modular and hierarchical organisation [64, 115 [126] and on the
characterisation of a few average measures such as clustering coefficient (C') and aver-
age pathlength (I). As explained in the previous chapter, this characterisation led to a
classification of the cortical connectivities as small-world networks [127, [129]. In general,
complex networks possess a rich internal structure and average measures are not sufficient
to understand their structure. Therefore, I started working together with Changsong Zhou
and Lucia Zemanova with a clear goal in mind: to perform an extensive graph theoretical
analysis of cortical networks, aiming to relate the topological properties of individual areas
to their specific function.

In this chapter a detailed graph theoretical analysis of the cat cortex is presented in
order to go beyond average graph measures. First, the properties already presented in
Chapter 3, the degree distribution, the clustering coefficient and the distance will be re-
analysed in more detail. Then, cortical areas will be classified in terms of their centrality
properties and finally, a shift from invidual to collective behaviour is introduced.

In order to perform a significance test for the graph measures, an ensemble of 1000
surrogate networks has been created following the link switching method explained in
Chapter 2. All the resulting networks have the same size N, the same number of links
L and the same degree distribution, N(k;, k,), as the cortico-cortical network of the cat.
To assure that any further internal structure is destroyed, every randomised network is
the product of 10 x L iterations (see Chapter 2). In the following, we refer to this set
of randomised networks as the rewired ensemble, {G, }, and the original cortico-cortical
network of the cat is denoted as G.,;. The ensemble average results of applying graph
measures to the set of surrogate networks {G1,} are considered as the expected values.

4.1. Classification of the Cat Cortex Reuvisited

In the previous chapter, G.,; was shown to have a clustering coefficient significantly larger
than expected (as compared to random and rewired networks). Furthermore, C' and [ of
the cat cortex are very close to the values expected according to the model by Watts
and Strogatz (WS). However, its broad degree distribution is similar to that of scale-free

41
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Figure 4.1: (a) Degree-degree correlations computed as the average nearest-
neighbour's degree. Cat cortex (A) and ensemble average of {G1,} (grey line).
The expected k,, (k') is slightly disassortative as a consequence of the broad
degree distribution p(k’). (b) Dependence of the local clustering coefficient C'(v)
on the degree k(v). Cortical areas are displayed in terms of their anatomical
communities: V (black), A (red), SM (green) and FL (blue).

(SF) networks (although strictly speaking, with only 53 vertices it is unsuitable to name
it scale-free).

4.1.1. Degree-degree correlations

We first re-analyse the local properties. A network is called assortative when the vertices
of similar degree are connected together and disassortative if large degree vertices preferen-
tially connect to low degree vertices. As G, has only 53 vertices, a crude measure of the
degree-degree correlations in terms of the probability p(k|k’) of adjacent vertices is not
suitable. Alternatively, we compute the average nearest-neighbour’s degree, (k,,(k)) [102].
We remind that, in order to overcome the limitations of the data due to missing links,
the degree of an area is computed as the average between its input and output degrees:
k(v) = 3(ki(v) + k,(v)). Unless otherwise specified, this criterion will be used from now
on (see Section [3.3] for more details). In Figure [{.1]a) triangles represent the k,, (k) of
the cat cortex and the grey line in the background is the expected neighbour’s degree as
computed out of the rewired ensemble {G,,}. Clearly, the cat cortex is neither assortative
nor disassortative.

Due to the broad degree distribution, the rewired ensemble displays a slightly disas-
sortative behaviour. The only remarkable feature is that for low degrees (k < 10), &, (k')
of G4t is significantly below the expectation. The explanation lies in the modular organi-
sation of the network, i.e. cortical areas with small degree preferentially connect to other
areas in their community.

4.1.2. Clustering coefficient

The clustering coefficient C' is an average measure providing an indication of global co-
hesiveness in the network. A more detailed analysis shows that the local clustering of
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Figure 4.2: (a) Distance matrix D;; of the cortico-cortical network of the cat.
The network has a very small average pathlength of [ = 1.83. The most distant
cortical areas are separated by only 4 steps. (b) Path multiplicity matrix A;;
representing the number of “parallel” shortest paths (of length D;;) from area i
to area j. We find that, on average, there exist 5.2 “parallel” paths between every
pair of areas.

the areas C(v) is very inhomogeneoud ranging from 0.3 to 0.8. Furthermore, C(v) an-
ticorrelates with the degree of the areas (Figure [4.1(b)), which is a sign of hierarchical
and modular networks [82] [05]. Low degree areas typically connect to other areas within
their community so their neighbours usually “know” each other. On the contrary, the
hubs necessarily span their connections over different communities. Note that the largest
community consists of only 16 areas and the hubs have degree of up to k£ = 31. The
neighbours of a hub, which belong to different communities, are not usually connected
causing a low value for the C'(v) of the hub.

The expected local clustering, computed out of the rewired ensemble (grey line in
Figure [1.1(b)), displays also a slight anticorrelation with the degree. This effect does
not arise from degree-degree correlation (as Gy lacks it), but from the mathematical
characterisation of C'(v) itself (Chapter 1). Nevertheless, the local clustering of the low
degree areas is still significant while C'(v) of the hubs have the values expected from the
null-model.

4.1.3. Distance and path multiplicity

The cortico-cortical connectivity of the cat is characterised by a very short average path-
length: [ = 1.83. Taking a look at the pairwise distance matrix D (Figure [4.2{a)), one
finds that the network is dominated by direct connections (826) and by paths of length 2
(Table . Indeed, 87.4% of all the pairs are connected by paths of d;; = 1 or 2. The

L(T'(v))
R(k—1)

Our network is directed, and one could a priori compute C(v) considering only the output neighbours
I'"(v) or the input neighbours I'"(v). To overcome the data limitations due to missing connections, we
consider all neighbours of the cortical area, I'(v) = I'"(v) UT ™ (v), and the density of links among them.

1C(v) is computed as the density of links among the nearest neighbours of the vertex v, C(v) =
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| [d=1[d=2]d=3|d=4]
All connections | 826 1584 | 341 5
Internal 470 232 2 0
External 356 | 1352 | 339 5

Table 4.1: Distribution of the pairwise cortico-cortical distances. Out of the
distance matrix D (Figure|4.2(a)), the number of pairs at distance d = 1 — 4 are
counted. 87.4% of all pairs are separated by only one or two steps. The internal
connectivity within the communities is dominated by direct connections (d = 1)
between the cortical areas, and the external connectivity by paths of length d = 2,
meaning that most of the paths joining areas in different communities require an
intermediate vertex.

diameter of a network is defined as the longest distance between any two vertices, which
in this case is d;; = 4. Only five pairs (all starting from auditory area VP) have d;; = 4.
The internal connectivity within the clusters is dominated by direct connections (66.8%
of the cases), and the rest are at distance 2. The external connectivity is then clearly
dominated by paths of d;; = 2 (66.0% of the cases), and there are almost as many pairs
separated at a distance d;; = 3 and at d;; = 1.

These characteristics imply extraordinary functional implications to understand corti-
cal information processing. First, as all cortical areas are highly accessible to each other,
information can be shared easily regardless of the sensory origin of the information. Sec-
ond, as recently shown by Kaiser and Hilgetag [66, [77, [78], neural organisation might
favour short information processing paths rather than short physical connections. Instead,
the traditional belief is that the nervous system tends to minimise the wiring length be-
cause of the energetic benefits of propagating electrical impulses through shorter axons.
And third, it is a strong indication that direct connections are the most fundamental
processing paths in brain activity.

If we just mentioned that serial information processing might be reduced to a few
steps, the computational power of short paths cannot be underestimated. In general,
there is more than one path linking two vertices. Even if we assume that information
only flows through shortest paths, there is a considerable amount of path multiplicity
in G.u, what might foster rich and flexible computation capabilities. The number of
shortest paths between every pair of cortical areas has been counted and summarised into
the path multiplicity matrix, M (Figure [£.2(b)) for statistical analysis. The elements M;;
are the number of shortest paths (of length d;;) starting from area ¢ and finishing in area
j. There is a total of 14301 shortest paths including the 826 direct links. Due to its
combinatorial nature, the multiplicity of paths increases with the length of the path as
observed in Table [4.2] The average number of the shortest paths of pairs separated by a
given distance d is displayed in brackets. For example, even if there are only five pairs of
areas with distance d = 4 (Table , for every pair there is an average of 61.4 “parallel”
shortest paths. Another example of the relevance of path multiplicity is described later
in terms of the betweenness centrality of the areas.
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| | d=1] d=2 | d=3 | d=4 |
All connections | 826 (1) | 6648 (4.20) | 6520 (19.12) | 307 (61.4)
Internal | 470 (1) | 1384 (5.97) | 28 (14) —
External 356 (1) | 5264 (3.89) | 6492 (19.15) | 307 (61.4)

Table 4.2: Multiplicity of shortest paths. Out of the path multiplicity matrix
M (Figure [4.2(b)), the total number of shortest paths of length d = 1 to 4
is summarised. The values in parenthesis are the average number of shortest
paths per pair of vertices at the given distance which, for combinatorial reasons,
increases with d.

4.2. Centrality of Cortical Areas

The computation of pair-wise distances and the analysis of path multiplicity permits to
additionally classify the vertices in terms of their accessibility and relevance in information
transmission. The closeness centrality C.(v) is the average distance between v and the rest
of the vertices (see Chapter 1). Changes in central vertices (or information leaving from
them) propagate very fast and affect the entire network. Moreover, central nodes can also
rapidly sense global changes. The betweenness centrality BC(v) is the number of shortest
paths in which v takes part as an intermediate vertex, say, it quantifies the relevance of
v for the transmission of information in the network. This involves finding all shortest
paths of length [ > 3. A common criticism to BC(v) is the underlying assumption that all
information travels uniquely following shortest paths. The predomination of very short
paths uncovered in the previous section, suggests that this assumption is a reasonable
approximation for cortical networks.

4.2.1. Closeness centrality

The cortico-cortical network of the cat G4 is directed and, in principle, one could com-
pute both the input and output closeness. Following the data analysis criteria discussed
in Chapter 3, we define the closeness of a cortical area as the average between its input
and output closeness: C.(v) = 0.5(C"(v) + C2(v)). As it could be expected, highly
connected areas are more central, while areas with few connections have larger C.(v).
This is captured by the anticorrelation between C. and the degree, Figure [£.3|a). Fur-
thermore, C. of the cortical areas follows almost exactly the expected closeness centrality
as computed from the rewired ensemble {Gi,} (grey line in Figure [4.3(a)). There is only
some deviation observed for few, low k, areas. Again, this is caused by the modular
organisation of the network. The areas with the largest significant C.(v) are the visual
17, 18 and VLS; the auditory AAF and VP; and somato-motor areas 1 and 2. All of
them were classified as unimodal areas. Indeed, areas 17 and 18 are the primary and
secondary visual cortex, and areas 1 and 2 are the primary and secondary somatosensory
areas respectively. This observation manifests how the modular organisation keeps highly
specialised sensory (unimodal) areas slightly “isolated”.

In Figure [4.4]top), the cortical areas are ordered from the most central (left) to the
most peripheral (right). The centre of the network is dominated by frontolimbic (FL)
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Figure 4.3: Centrality measures of the cortical areas in the cat (o) and their
expected values in rewired networks (grey lines). (a) Closeness centrality. C.(v) of
the areas follows the expectation values very closely. (b) Betweenness centrality.
BC of the hubs is significantly larger than expected. Colours represent: Visual
areas (black), auditory (red), somato-motor (green) and frontolimbic (blue).

areas, precisely those classified as supramodal hubs (35, CGp, 36, Ia, Ig). Only the visual
area AES is infiltrated among them in third place. The FL areas are followed by the
visual hubs 7 and 20a, and by the auditory hub EPp. Finally, the somato-motor hubs
6m and 5Al come in 10" and 11*" position, followed by another SM area, 5Bm, although
there is a small shift in the value of C..

4.2.2. Betweenness centrality

The precise dependency of C. and BC' on the degree of the vertices can be very complicated
and is unknown yet. In the previous section, C. has been compared to the degree of the
areas but to represent BC(v) we find the comparison to k;(v) k,(v), the multiplication
between the input and the output degrees of v more suitable. The reason is that BC'(v)
is the number of shortest paths going through the vertex v and for each path entering v
there are k,(v) possible output paths. The grey line in Figure [£.3|(b) is the expected BC
as computed from the {Gy,} ensemble and grows linearly with kzkrgﬂ

While most of the cortical areas follow closely the betweenness expected from the null-
model, the ensemble {G1,}, the hubs deviate significantly from expectation, a feature not
observed before. Both for the local clustering (Figure [£.1(b)) and, to a lower extent, for
the closeness centrality (Figure [£.3|a)) the low degree vertices deviated from expectation
while the hubs did not. It has been argued that those deviations were caused by the
modular structure of the network. A consequence of this organisation is that the paths
between unimodal areas in different communities largely depend on using the supramodal
hubs as mediators, e.g. from primary visual cortex (area 17) to visual hub 20a, to auditory
hub EPp and finally to primary auditory cortex Al.

The classification of cortical areas in terms of BC' (Figure bottom) again shows a
domination of frontolimbic hubs followed by the visual, auditory and somato-motor hubs.

2We don’t claim that this is the ultimate dependence of BC on the degree, further work is still
required. However, in our case most of the shortest paths have length [ = 2 so BC'(v) x k;(v)k,(v) makes
a reasonable approximation. Note that the 826 direct links do not contribute to BC'.
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Figure 4.4: Classification of cortical areas from central to peripheral in terms
of: (top) closeness centrality and, (bottom) betweenness centrality. Colours repre-
sent: Visual areas (black), auditory (red), somato-motor (green) and frontolimbic
(blue).

In this case, however, the absolute differences in BC' between the central and non-central
areas are very pronounced, reflecting the different function between areas of the associa-
tion cortex and areas specialised in the early stages of sensory processing.

In summary, even if the precise order slightly differs depending on closeness or between-
ness (Figure , the centrality analysis largely confirms our preliminary classification of
cortical areas from Chapter 3. The centre of the network (low C, or large BC) is formed
by the areas classified as supramodal hubs. Those areas classified as multimodal have
medium values of centrality (and lie in the middle of both Figures [£.4top) and (bot-
tom)), and the periphery of the network (right-most areas in Figure , is composed of
the areas classified as unimodal.

4.3. Topological Roles of Cortical Areas

Typical community detection methods partition the vertices of a network into separated
modules, but except for trivial cases such a division is never clean. In reality vertices
have a probability to participate in more than one community and thus, the modules
overlap each other [99, 114]. Up to now, we have implicitely made use of this concept
by classifying the cortical areas as unimodal, multimodal and supramodal hubs as a sign
of their level of overlap. The connections have also been termed as internal when the
link happens between two areas of the same community, and external when areas of two
different communities are linkedﬂ In general terms, a vertex shall be named as peripheral

3Although an intuitive concept, the problem of overlap is a very difficult challenge. If defining a
community in mathematical terms is already controversial, dealing with the diffuse borders between
communities (the overlap) is even more difficult.
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Figure 4.5: lllustration of the topological positions that a vertex might occupy
within the modular division of a network.

when it preferentially connects to neighbours inside the community, connector when it
belongs to a community but also participates in some other community, and as kinnless
when the vertex similarly overlaps between all the communities and it cannot be assigned
to any of them with certainty. See Figure for illustrative examples.

In order to classify vertices after the topological position they occupy within the
community structure, Guimera and Amaral (GA) proposed a quantitative framework
consisting of two parameters. One evaluates the internal position of the vertex and the
other its external connectivity [58, 59]. Assume a network of size N and a partition into
n communities. Within a community S of size Ng, its vertices have internal degree x;.
The internal parameter, named as within-module degree of a vertex is then defined as the
z-score of its internal degree:

7= ——L (4.1)

where (k) = NLS jes i 1s the average internal degree within the community, and o its

standard deviation. When z; > 2.5 the node is classified as a hub of the networlf] The
external parameter, named as the participation coefficient, quantifies how distributed the
links of a node are among all the communities:

= kj@ s 2
Pi=1-) - (4.2)
s=1 i

where k; is the degree of the node and k; ; the number of links that ¢ makes with nodes
of community S. If i € S’ and has only internal links then, k; v = 1 and k;; = 0 for

4While the division of regions in terms of the participation index have been validated by a simulated
annealing analysis of real and artificial networks, the choice of z = 2.5 as a valid delimiter between hubs
and non-hubs is not justified in any of the references [58, 59} [60].
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Figure 4.6: (a) Two dimensional diagram of Guimera and Amaral to classify
the position of the nodes according to a partition into communities. The diagram
is the result of two parameters, one describing the internal position of the node
within its community, and a external parameter capturing the overlap of the node
with other communities. Different regions are defined to help in the interpretation
of results. (b) Application of the measures to G, and its anatomical partition into
four anatomical communities (V, A, SM and FL), gives rise to counter-intuitive
results.

any s # s, hence P, = 0. On the contrary, if the node has its links equally distributed
between all the communities, P, — 1. A Combination of z; and P; leads to a diagram of
the type shown in Figure [4.6[a). Additionally seven regions have been defined to simplify
the orientation and interpretation of the classification: R1, ultra-peripheral nodes; R2,
peripheral nodes; R3, non-hub connectors; R4, non-hub kinless nodes; R5, peripheral
hubs; R6, connector hubs; R7, kinless hubs. The illustrations in Figure have been
ordered similarly to the GA space for clarity.

4.3.1. Limitations of the GA framework

When applying GA’s method to different real networks, we observed some counterintu-
itive results. For example, the GA diagram for the cortical network of the cat (Geq) in
Figure [4.6{b) does not display any hub (R5, R6 and R7 are empty) even if we know that
it contains several. It does neither display kinless nodes (R4 and R7), while some areas
heavily connect to all the four communities. A close inspection of z; and P; revealed sev-
eral limitations of the formalism which seems correct in the thermodynamical limit (large
size and sparse connectivity), with many communities of similar size. But for networks
of limited size and inhomogeneous communities, a normalised formulation is required.
Conceptually speaking, it should be noted that a vertex which is a local hub within its
community, is not necessarily a global hub of the network. Neither is it in the opposite
case. To illustrate this point, we have compared the ‘within-module degree’ (z-local) to
the z—globa]E] of the cortical areas in GG.,;. The result shown in Figure (a) evidences the

5z-global is computed using the degree of i, k;, and the average degree of the network (k) = L/N.
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point here raised, otherwise, a linear relationship should be observed. Some cortical areas
play a central role within their community (z;-local is large) but are globaly irrelevant
(zi-global =~ 0).

While the original and general idea of GA remains valid, understanding of its limita-
tions led us to an extension of the formalism and its conceptual interpretation towards
a normalised framework in which networks of different characteristics can be compared
under universal criteria. A detailed argumentation and description of the proposed for-
mulation is explained in the Appendix A. We found it suitable to normalise the z-score
function of the degree in the following manner:

/ Zi Zj
Zi_zf_ ~— (4.3)
where N can be either the size of the network (if the z-global is being computed), or the size
of a community Ng (if the within-module degree is desired). With such a normalisation a
node has z; — 1 when it is the only hub of a very sparse network, z; ~ 0 when the node
has an average degree, and z, — —1 when ¢ has small degree in a very dense (sub)network.

The normalisation of the participation index is more elaborated since a new tool is
introduced. Given a partition into m modules, every vertex is assigned a participation
vector ?Z (of n dimensions) whose elements P;(s) represent the probability that i belongs
to the community S. We found suitable to define P(s) = ks, meaning that, out of all

N,
possible neighbours that ¢ could have in S, in reality ¢ has k; ;. To be more precise, if

i€ S then P(s') = (Nk,—_'l) In order to reduce the information of the vector into a single
scalar, the standard deviation of its n elements, o;, is computed and the participation index
is defined as:

g; n

P =1 p— 1 —

Note that, for the moment, we avoid providing further delimiters as the regions R1, R2,

etc. in GA’s diagram. This question requires further conceptual and technical considera-

tions which are to some extent debated in the Appendix A. Now that an alternative and

(hopefully) universal formalism has been introduced for the topological roles of vertices,
we return to the analysis of cat cortex.

oi, where o; = StdDev (E(s)) . (4.4)

4.3.2. Topological roles of cortical areas

From the result displayed in Figure (a), it is evident that in G,y local hubs are not
always global hubs, neither the other way around. Otherwise the plot would display a
linear relation. To mention only an example, in previous chapters the auditory area EPp
has been classified as a supramodal hub and, primary and secondary auditory areas Al and
AII as unimodal. When computing the (normalised) local z-scores we obtain the following
results: 2);; = 0.315, 2jy;; = 0.315 and 2p, = 0.070. Internally, Al and AII are the hubs
of the auditory system. Only after computing the global z-scores it can be realised that
EPp is a hub of the network: 2);; = —0.146, 2/;;; = —0.105 and 2p, = 0.153. Indeed, Al
and AIl obtain negative values meaning that globally, they are peripheral areas.

In the GA framework P, is plotted against z;. After proving that z-local and z-global
are not necessarily correlated, the question remains whether P; should be represented
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Figure 4.7: (a) lllustration using the G4 network that local hubs within the
communities are not necessarily hubs of the network. Neither the other way
around. Some cortical areas display large z-local, but z-global ~ 0. (b) Result for
G'ear Of the normalised classification diagram. Participation index of the cortical
areas is plotted against their global z-score. In the cat cortical network it happens
that only the areas with high degree overlap over the four systems, while low
degree areas preferentially make internal connections. Therefore the ascending
trend. Such a trend is not necessarily expected in other networks.

against z-local or z-global. In Figure z-global is shown because it follows the original
idea of Guimera and Amaral to classify vertices as hubs or non-hubs. First, a prominent
linear trend exists between z;-global and P;. It should be stressed, that such a linear trend
is a special characteristic of G, and its particular hierarchical organisation. In general,
the low degree kinless vertices (see Figures and would populate the lower /right
part of the plot, equivalently to the R4 region of the GA diagram. In the previous
sections the impact of the community structure on the outcome of graph measures has
been observed indirectly. Only the hubs, or only the peripheral (unimodal) areas would
deviate from the expectation. As an explanation, it was argued that low degree areas
preferentially connect to areas within their community, while the hubs largely overlap
between the communities. The linear relation between z;-global and P; is the evidence
of that organisation. Moreover, note that the hierarchical division as supramodal hubs
or unimodal is not perfect. The intermediate region is highly populated, indicating a
gradual hierarchical ordering of the areas. These observations are consistent with the
initial classification proposed in Chapter 3 as supramodal hubs, unimodal areas and, a
diffuse intermediate region between them.

In agreement with the centrality measures, the upper right corner of Figure (b)
is dominated by five frontolimbic areas {la, Ig, CGp, 35, 36} and the visual area AES.
Following them, visual areas 20a and 7, the auditory hub EPp and the somato-motor
area 6m could also be considered as supramodal hubs, however their P; and z/-global are
slightly lower, and maybe, they might be classified as connector hubs rather than kinless
hubs. In the opposite corner of the diagram, considering all areas with z/-global < —0.1



52 CHAPTER 4. Detailed Graph Theoretical Analysis of the Cat Cortex

and P; < 0.3 we find: {17, 18, VLS; AI, AAF, P, VP; 1; PFCMil, pSbh, Sb, Hipp}, being
visual primary cortex 17 and the Hippocampus the only areas with P, = 0. Most of these
areas were classified as unimodal, which is now confirmed. As a last remark, it might
be pointed out that the somato-motor areas mainly occupy the middle of the diagram.
Apart from 6m, no other SM area could be considered as a supramodal hub, and apart
from the primary somatosensory area 1, no other SM area is clearly unimodal. It seems
that SM cortex plays a general role as an intermediate hierarchy. We might speculate
that this seems reasonable according to its function because movement may arise either
as the consequence of (bottom-up) sensory input, e.g. a reflex response, or as the result
of a voluntary and planned action (top-down).

4.4. From Individual to Collective Organisation

The analysis perfomed so far has exposed various characteristics of the organisation of
cortical networks: 1) the short average pathlength between cortical areas (emphasising the
importance of direct connections), 2) the richness of parallel and serial information paths,
and 3) the topologically measurable separation between association cortex and sensory
cortex. supramodal hubs lie at the topological centre of the network while unimodal areas
are at the periphery.

Thanks to experimental techniques such as microelectrode recordings under controled
visual or auditory stimulation, a good knowledge has been achieved about the organisation
and information processing at the sensory cortex. The localisationist school, postulating
that every function happens at certain localised place in the brain, has been quite success-
ful at the level of the sensory cortex, where refined characteristics of the sensory stimuli
are recognised by highly specialised groups of neurones. The spatial location of those
neurones is, to a good approximation, the same for every individual. However, little is
known about the anatomical substrate permitting higher level, more complex, processing
such as cognitive processes and the emergence of consciousness. The localisationist per-
spective seems to fail at this higher level [50]. At least, no cortical area has been found
whose lession completely destroys consciousness.

The supramodal hubs found here seem to be serious candidates to perform such high
level integration because they all have very fast access to information of different modal-
ities. However, as previously pointed out, the closeness centrality of the hubs is not
distinct from the value expected out of randomised networks, while their BC' was signifi-
cantly larger than expected. At this point, we have to admit that the accessibility of those
hubs to global information is not a sufficient warranty to deduce that they really perform
relevant multisensory information processing, nor integration. With the current results
we can only affirm that the supramodal hubs are useful for the transmission of informa-
tion from one modality to another. Where does the integration and processing happen,
we cannot tell with certainty yet, because information transmission is not information
processing. Another relevant question to answer at this point is, even if we assume that
the supramodal hubs are responsible for the processing of multisensory information, why
are there so many of them? is each of the hubs specialised in one and only one sort of
multisensory processing independent of the other hubs? For the rest of this dissertation,
we will try to answer these questions by focusing on the characterisation of the hubs and
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Figure 4.8: Pairwise matching index (normalised) of G.,. The clustered or-
ganisation is unveiled by the topological similarity of the cortical areas.

their potential function.

4.4.1. Functional similarity: matching index

The matching index M1 (v,v") quantifies the pairwise similarity of areas in terms of their
common afferents (inputs) and efferents (outputs). Following one of the central assump-
tions of systems neuroscience, that the functional roles of brain regions are specified by
their inputs and outputs [101], we can safely refer to M1 as a measure of functional
similarity between cortical areas. Indeed, previous studies have successfully attempted a
community analysis of cortical networks by grouping together areas with high MI [67].

In Figure the M I matrix of G, is shown, where the four anatomical communities
are easily distinguished. In order to investigate whether the supramodal hubs are func-
tionally independent of each other, their average M [ has been computed. Considering the
set of supramodal hubs {20a, 20b, 7, AES, EPp, 6m, 61, Ta, Ig, CGp, 35, 36} we obtain an
average value of MI(hubs) = 0.5013. Compared to the averages of the anatomical com-
munities M (V) = 0.3916, MI(A) = 0.4713, MI(SM) = 0.5811 and MI(FL) = 0.3509,
the functional similarity between the hubs is large, only exceeded by MI(SM). This ob-
servation strongly indicates that the supramodal hubs are not functionally independent
of each other, discarding the localisationist perspective as a valid organisation principle at
the highest hierarchical levels of the cortex. Alternatively, it seems plausible to postulate
that the supramodal hubs form a functional community and therefore, highest level pro-
cessing and integration emerges as the functional cooperation between them. Certainly,
this is a very strong statement and requires further analysis for confirmation.

4.4.2. Layered organisation of the network: k-core decomposition

The k-core decomposition [36, [118] is a useful graph analysis tool for visualisation of
networks [4] because it “peels” the network into several layers. In the centre, only the
most densely connected subgroup remains. It works in the following iterative manner.
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Figure 4.9: k-core decomposition of the cortico-cortical network of the cat.
The SM areas dominate the core of the decomposition as a result of their dense
internal connectivity.

The outermost layer, the 1-shell, is composed of all the vertices with & = 1. They are
removed from the network and the degree of the remaining vertices, k'(v), is recomputed.
If there are vertices with k'(v) = 1, they are also removed from the network and placed
in the 1-shell. When no vertex has k' = 1, the same procedure is repeated for vertices
with degree 2, and so on. At the end, a completely connected core of vertices remains, all
having the same degree £’.

In Figure the k-core decomposition of the cat cortex is shown. There are several
observations to point out, but the most relevant is the dominance of the SM community
at the central core. This is not in accordance with the centres and the classification
obtained in the previous sections which were dominated by FL areas. A handicap of
the k-core decomposition is that it is extremely dependent on local connection densities
and therefore the results need to be considered with care. The decomposition cannot be
directly regarded as a fair description of the hierarchial structure. The SM community
is the densest of all the communities and therefore its dominance. Indeed, the largest
complete subgraphﬂ within the network consists of 8 areas, most of them somato-motor
{6m, 5Am, 5Al, 5Bm, SSSAi, SSAo}, together with visual area AES and frontolimbic
areas 35 and 36. The presence of this complete subgraph imposes difficulties for the
proper characterisation of the hubs because it biases several observables.

Nevertheless, all areas previously classified as supramodal hubs lie at the core. The
areas of V, A and FL are distributed over different shells, the Hippocampus being the
most external of all. The V and FL cortices display a stratified arrangement, while all the
auditory areas lie at the second most peripheral shell except for the auditory hub EPp,
which lies directly at the core. One last observation is that no cortical area has degree

6A complete graph is a graph in which all vertices are linked to all others.
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Figure 4.10: Rich club phenomenon in the cortico-cortical network of the cat.
(a) Original measure, and (b) Relative difference between the k-density in the cat
cortex and its expectation out of the {G,,} ensemble.

1 or 2, meaning that the network is very cohesive. Recently the structure of the 1-shell
has received much attention because its vertices form tree-like structures “hanging out”
of the connected core [145].

4.4.3. Rich-club phenomenon: a community for multisensory
integration?

There is yet a similar manner to investigate whether the hubs of a network are topologicaly
related, but without the interpretation problems of the k-core decomposition. The rich-
club phenomenon happens when the hubs of a network (the “rich” vertices) are densely
connected to each other forming a community. Considering only the vertices with degree
larger than &/, the k-density is defined as:

Lk/

~ Ne(Ny — 1)’ e

o(K)
where Ny is the number of vertices with k(v) > k' and Ly is the number of links between
them. ¢(k) is a monotonous increasing function of A} Only when k' approaches kyq,
a decrease might be observed due to finite size effects. Thus, a plain measure of ¢(k)
is not very informative because hubs have a higher intrinsic chance of being connected.
A comparison to random networks with the same degree distribution is necessary to
investigate whether the increase of ¢(k) with k is significant or not [159].

In Figure M(a) the rich-club phenomenon as computed out of G4 is presentedﬁ,
together with the ensemble average ¢y, (k) of {G1,}. The ratio between the measured ¢(k)
and its expected value ¢1,(k) is also shown in Figure £.10(b). The cat cortex displays
a significant rich-club phenomenon. The most relevant k-density occurs for k = 23,
comprising of a rich-club with of 11 cortical areas, precisely those areas with largest
closeness and betweenness centralities {20a, 7, AES; EPp; 6m, 5Al; Ia, Ig, CGp, 35, 36}.
This result corroborates that the supramodal hubs do form a tight community, instead of
operating independent of each other.

"Notice that ¢(0) = p(G), the density of the network. If the vertices with low degrees are removed,
the remaining network contains more links per vertex than the original.
8 Again, we have considered k(v) = 0.5(k;(v) + ko (v)).
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Figure 4.11: lllustration of the spatial location of the areas according to their
modality: V (yellow), A (red), SM (green) and FL (blue). The supramodal hubs,
coloured darker, form a topological community (densely connected to each other)
which is spatially delocalised. Figure adapted from [83].

4.5. Summary and Discussion

In this chapter an extensive graph theoretical analysis of the cortico-cortical network of
the cat has been presented, beyond the global and average measures previously studied.
From the technical point of view, we have shown that graph theoretical measures can be
applied in a flexible manner in order to overcome data limitations, instead of manipulat-
ing the data for analytical and computational convenience. Unfortunately, the latter is a
common practice in the complex network literature. For example, directed networks are
often artificially converted into non-directed ones.

It has been found that inter-area communication is dominated by very short paths;
87% of all areas are separated by a topological distance of only one (direct connections) or
two steps. This strongly indicates that the direct connections are the most fundamental
information processing paths in cortical communications (although this is not a proof
of it). Nevertheless, it has also been stressed that the computation power of short paths
should not be underestimated. We have detected a large number of “parallel” (alternative)
shortest paths in the cortical network of the cat, which represents the anatomical substrate
for rich and complex communication processes, i.e. a mixture of alternative and serial
information processing.

The modular organisation of the cortex into the V, A, SM and FL communities plays a
major role in the topology of the network, affecting all the graph measures applied. Low
degree areas are predominantly connected to areas in their own community, while the
hubs necessarily span their connections over more than one community. Notice that the
largest community consists of only 16 areas and the hubs have degree up to k = 31. As
a result, biases from expectation are observed in the outcome of graph measures, which
permits to topologically distinguish the specialised cortical areas from those involved in
higher level processes.

The evaluation of different graph measures leads to a consistent classification of the
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Figure 4.12: lllustrative representation of a novel hierarchical structure observed
in the cortico-cortical connectivity of the cat. Every community contains few
hubs which connect to the hubs of the other communities. Therefore, the highest
hierarchical level is formed by a densely interconnected overlap of the communities.
Such an overlap has the capacity of sharing and processing information of different
character.

cortical areas, which largely coincides with the preliminary (tentative) categorisation pro-
posed in Chapter 3 in terms of supramodal hubs, multimodal areas and unimodal areas.
Particularly interesting is that each of the functional communities V, A, SM and FL con-
tains at least one hub. Nevertheless, the set of hubs is dominated by FL areas, a fact that
can be expected from neuroscientific knowledge, since the frontolimbic cortex is related
to high order cognitive processes and association [50].

Moreover, we have found that the supramodal hubs are not topologically independent
of each other but they are very tightly connected forming a community on their own.
From the functional point of view, we now have a strong topological argument to envi-
sion large-scale processing and multisensory integration as the result of the collaborative
function of the supramodal hubs, in a similar manner in which the cooperative processing
of information by the visual areas gives rise to visual perception [44, [T08]. There is yet
a remarkable difference. While sensory areas of one modality lie physically close to each
other, the supramodal hubs are spatially separated but densely connected through the
long-range fibers via the white matter, and thus forming a spatially delocalised community.
Figure [4.11]is an illustration of the cat cortex where areas are coloured according to the
four anatomical subsystems: V (yellow), A (red), SM (green) and FL (blue). The regional
distribution of the functional modules is evident, apart from the multimodal area AES.
In contrast, the supramodal hubs, represented in darker colours, lie spatially separated
from each other.

Finally, we have to reconsider the established overall organisation of the cortical net-
work. A relevant question is that, if the hubs form such a densely connected subgroup,
why the community detection algorithms do not find it? Actually, ¢(k) > 0.8 for the
subset composed of all areas with k£ > 21, while the internal densities of the four com-
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munities are p(V') = 0.58, p(A) = 0.81, p(SM) = 0.74 and p(F'L) = 0.65. This does not
mean that the current partition into four communities is wrong. Community detection
algorithms do not simply favour the formation of densely connected subgroups. The cost
function used to evaluate the validity of a partition, the modularity function @, favours
subgroups which are internally denser than expected, as computed from random networks
with the same degree distribution (for example, the {G},} ensemble). Since hubs have a
high random chance of being connected, () will not favour to join them together.

Another limitation of typical community detection methods is that they look for par-
titions, while very often communities tend to overlap each other, i.e. one vertex might
participate in more than one community. From this point of view, the organisation char-
acteristics discussed in this chapter do extend the current accepted cortical organisation.
What we find is that the multisensory hubs form a community which is overlapping the
four anatomical communities, and therefore, the rich-club forms a higher hierarchical
level. In Chapter 1, two common manners of understanding a hierarchy have been de-
scribed. One, after Ravasz and Barabasi [105], is a tree-like fractal structure. At the
top of the hierarchy, there is a community whose central vertex receives connections from
the vertices at the top level and from the communities at lower hierarchies. Such cen-
tralised patterns of connections is repeated through the different levels (Figure [1.3{a)).
The second type of hierarchy, after Arenas et. al [§], considers a hierarchy as the agglom-
eration of communities, say, small communities join together and form larger communities
(Figure [1.3(b)).

The hierarchical organisation that we are describing here is none of these two, but it
might be regarded as a mixture of them. In the second type, the small communities are
randomly linked to each other, so that their union forms a larger community. In our case,
the intercommunity links are not random, but centralised. Every community contains
few hubs which connect to the hubs of the other communities. Therefore, the highest
hierarchical level is not formed by the union of the whole communities, but is composed
by the overlap of a small part of them. In Figure 4.12] a schematic representation of
this novel hierarchical organisation is presented. In such a configuration the hubs of each
community are not just passive transmitters of information, but form a tight community
which has the capacity of sharing the local infomation of different modalities.



CHAPTER 5:

Towards a Formalism to Measure Inte-
gration

The term information processing is a generic concept which covers different processes like
filtering, signal transformations, integration, memory allocation and retrieval, etc. For
example, functional magnetic resonance (fMRI) studies reveal patterns of brain activity
which permit to identify the brain regions related with certain cognitive task. Unfortu-
nately, it is very difficult to understand what is exactly an activated region doing. Is it
filtering a signal? Is it making copies of information and distributing it somewhere else?
Does the fMRI detect an activation only because that particluar region contains memories
which are being retrieved and passed to other regions for further processing?

This final chapter represents a preliminary effort to translate the relationship between
structure and function into more solid and consistent grounds. At least part of it, be-
cause only the concept of integration is investigated. The reason is to justify in a more
consistent manner the integrative function assigned in the previous chapters to the top
hierarchical level detected in the cortical network of the cat. After briefly reviewing fun-
damental notions of information theory, the concept of integration is presented in terms
of the capacity that a subset of areas have to integrate information. This concept is then
translated into measurable properties at the topological and the dynamical levels.

Entropy and Integration

Information theory has been very succesful determining problems of transmission of infor-
mation, encoding and channel capacity. At the root of this success lies the original idea of
Shannon to translate concepts of statistical physics to represent the nature of communica-
tion. The Shannon entropy is defined in the following manner. Consider a system A with
M possible states. That is, a measurement made on A will yield one of the possible values
ai, as, . ..ayr, with a probability p(a;). The average ammount of information gained from
a measurement that specifies one particular value a; is given by the entropy of the system
H(A) [119] 29]:
M
H(A) = — ZP(%‘) log p(a;). (5.1)
i=1
As stated by Faser and Swinney [46], the entropy H (A) could be interpreted as the quantity
of surprise one should feel upon reading the result of a measurement. The entropy vanishes

29
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when the system has only one accessible state, meaning that the value a is obtained with
certainty (there is no suprise). H(A) is maximum when all the states are equally likely,
pla;) = ﬁ for all ¢+ = 1,2,... M. As there are no preferred states, the ammount of
uncertainty (surprise) upon measurement is maximumE].

To quantify the statistical dependence between two systems A and B, their mutual
information is defined as [131]:

MI(A,B) = H(A) + H(B) — H(A, B), (5.2)

where H(A, B) is the joint entropy. By definition H(A, B) < H(A) + H(B), and the
equality is only fulfilled if A and B are statistically independent. In this case MI(A, B) =
0, and otherwise MI(A, B) > 0.

Unfortunately, the problem of integration has received little attention. In a series
of papers during the 1990s, Tononi and Sporns introduced a measure which aims to
characterise and quantify integration [137, [138] 139]. Given a system X composed of N
elements (subsystems), the integration of the system is defined as:

100) = Y Hiw) ~ H(Y) (5.3)

where H(z;) is the entropy of one element and H(X) the entropy of the system consid-
ered as a whole. Comparing to Equation , one realises that I(X) is an extension of
the mutual information to account for more than two systems. I(X) = 0 only if all the
elements x; € X are statistically independent of each other, and positive otherwise. In
other words, /(X) measures how much is the system X internally integrated and, in the
case of dynamical systems, it could be considered similar to the total amount of corre-
lation between the elements z;; only that 7(X) might capture nonlinear effects to which
correlation is insensitive.

Returning to the cortical network of the cat, this definition of integration is useful,
but only to a limited extent. Remind that the gross structural organisation described
in the previous chapter consists of a balance between segregation and integration. Each
community receives sensory information which is different in character, e.g. visual or
auditory, and performs a specialised processing of that input. A higher hierarchical level,
composed of the supramodal hubs, might be the responsible for putting that different
information together and produce a global, integrated, perception. Naively speaking, the
capacity of integration that we are looking for should be defined as something like: the
capacity of one or more nodes to receive information of different character and combine
it to obtain new useful information. Certainly, this involves crucial theoretical problems,
e.g. how to define what the character of information is, or what does it mean to combine
information.

YAs p(a;) = 1/M, then H,4z(A) = — Zf\il ﬁ log ﬁ = —log ﬁ Now, the entropy can be normalised

for comparison of different systems, H'(A) = Hf{f:‘(% € [0,1].
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5.1. Topological Capacity of Integration

Although fundamental aspects are still unclear, from the topological point of view the
capacity of a node (or a set of nodes) to integrate information should depend in few
measurable properties. We propose the following conditions:

1. Accessibility to the information: In order to perform integration, a node needs
access to the information that is being processed in the system. This capacity could
be quantified by centrality measures such as betweenness and closeness centralities.
In the presence of communities, the participation index might be also a possible
indicator.

2. Segregation of the system after selective damage: The removal of selected
nodes may cause a reduction in the capacity of the network to integrate informa-
tion. This can be studied by typical percolation and robustness analysis. If there is
modular organisation, the segregation may be captured by an increase in the mod-
ularity after intentional attack. If the intercommunity links are removed, then the
communication between the communities becomes more difficult.

3. Capacity of sharing information: If more than one node is considered, it is
necessary for them to be densely connected with each other, otherwise, even if
they all are central and receive information from everywhere, they cannot combine
information.

In the following, a practical implementation of these concepts is introduced in order to
corroborate (or negate) the integrative function of the rich-community of the cat cortical
network. In accordance to the data analysis criteria established, we pursue for a statistical
description rather than for deterministic results which might be biased by the limitations
of the data. Thereafter, all cortical areas with output degree k,(v) > 20 have been
considered as potential members of the integrator community: {20a, 7, AES; EPp; 6l,
6m, 5Am, 5Al, 5Bm, 5B, SSSAi, SSAo; PFCL, Ia, Ig, CGa, CGp, 35, 36}. Out of these
19 areas, all their possible combinations have been constructed with sizes ranging from
Ng =1 to Ng = 19. There is a total of 524,097 subsets and we refer to them as Sy ps.
The aim of the analysis is to detect those cortical areas which, grouped together, possess
a higher capacity of integration in topological terms.

5.1.1. Characterisation of Accessibility

Among the possible measures one could define to formulate accessibility, a modification
of the betweenness centrality has been chosen. In Chapter 1, the betweenness was defined

as:
N
Zi,j;év 0ij(v)
N
Zi,j:l Ti,j

where o, ;(v) is the number of shortes paths from i to j going through v and o ;, all the
shortest paths from 7 to j. Considering a subset of vertices S of size Ng, the accessibility

BC(v) =
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Figure 5.1: Accessibility measure A(.S) applied to the 524,097 combinations of
areas with k,(v) > 20. (a) The results displayed for combinations of a given size.
As expected, A(S) is an icreasing function of Ng, although for the combinations
of a given size, there might be large differences. In red, the maximal sets S’ for
which A(S") > 0.9 AYs_are shown. (b) Co-participation matrix representing the
fraction of maximal sets in which a pair of areas participate together.

is defined as the fraction of shortest paths between vertices i,j ¢ S, which go through at
least one of the vertices in S:

Zi,j¢s 0i;(5)
Zi,jgzs Tij

For all the 524,097 subsets S € Spups, the accessibility A(S) has been measured and
the results are displayed in Figure [p.1a). As it is expected, A(S) increases with the size
of S, i.e., the more vertices in S, the larger is the chance that paths go through at least
one of them. However, among the subsets of a fixed size, some achieve very large A(S)
while others obtain small values, e.g. for all the subsets of size Ng = 10, some absorb up
to 80% of the shortest paths between vertices i, 7 ¢ S, while other subsets are only used
in 20% of the paths. These large differences indicate that the proposed measure permits
to discriminate between accessible and non-accessible sets of nodes.

Let ANs be the largest accessibility achieved by combinations of size Ng. In order to
detect the cortical areas which are most accessible, only the combinations with A(S) >
0.9ANs are chosen (red crosses in Figure [5.1|(a)). The number of times that two areas
simultaneously take part in each of the maximal subsets has been counted and the results
summarised into a co-participation matrix of size 19 x 19, shown in Figure [5.1[(b). The
visual area AES, the auditory area EPp and the frontolimbic areas Ia, Ig, 35 and 36
participate together in over 80% of the maximal subsets. The visual area 7 joins them in
65% of the cases. The most frequent somato-motor area, area 61, is present in only 50%
of all the maximal subsets.

We shall admit that these results are somehow trivial, because the core of accessible
areas is composed precisely by those with largest betweenness centrality. Anyway, in
general, this might not be always the case. As explained in Chapter 4, the cortico-
cortical network of the cat is characterised by a very short average pathlength, 80% of
all pairwise communications are done either by direct links or paths of length 2. In this

A(S) = (5.4)
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Figure 5.2: Segregation of the network after simultaneous lesion of various
cortical areas. (a) Modularity of the lesioned networks, Gg = X — S, evaluated
on the four anatomical communities V, A, SM and FL. Removal of particular sets
increases the modularity as a consequence of the topological separation suffered
by the communities. (b) Average pathlength of the lesioned networks, Gs. Even
if the lesioned networks are smaller than the original X, the removal of particular
combinations leads to a relevant increase of the average pathlength. (c) Co-
participation of the cortical areas whose simulatneous lesion leads to both large

Q(Gs) and large I(Gs).

escenario shortest paths dominate and thus, the individual betweenness of the vertices is
very relevant. But in networks with longer paths, the collective accessibility should be
less dependent on the betweenness of individual vertices.

5.1.2. Robustness analysis after multiple lesions

For decades, the only manner of inferring the functional characteristics of particular brain
regions was through the phsycological study of patients with localised brain lesions. Nowa-
days, in-vivo microelectrode recordings and imaging techniques form the experimental
frontline for that quest. Using the cortico-cortical connectivity data of macaque and cat
previous works have paid attention to the effects of brain lesions. Young et al. [152] stud-
ied the changes in the activity of a simulated cortical networks after removal of individual
areas. Recently, robustness of cortical networks against random or selective attack has
been found to follow damage profiles similar to those of scale-free networks [79).

In another context, the robustness of metabolic networks has been studied in terms
of the modularity of the remaining network after selective removal of the hubs [74]. In
this manner, they could identify a set of currency metabolites whose removal increases
the modularity of the network, i.e., the specialised modules become segregated from each
other. In order to analyse the potential collective function of cortical hubs for integration,
we adopt here a slightly different robustness analysis, which is based on the simultaneous
damage of groups of areas rather than one-by-one attacks.

Referring to the original network of the cat as system G, when all areas in a subset
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S are simultaneously removed, two properties of the lesioned network Gg = Gy — S have
been measured to quantify the damage:

1) the modularity Q(Gg) of the lesioned network Gg, considering the four original
communities (what remains from the original communities), and

2) the average pathlength of the lesioned network I(Gg).

Note that in [74], the authors recomputed the communities after each attack was per-
formed. In our case, running a community detection algorithm for each of the 524,097
realisations would have been prohibitive, and therefore the modularity of Gs has been
computed on the basis of the four anatomical communities V, A, SM and FL, which loose
some areas due to the lesion. The results are shown in Figure 5.2 The red dots in Fig-
ure [5.2(a) correspond to the subsets whose lesion gives rise to the largest increases in [,
and in Figure (b), they correspond to the subsets whose lesion gives rise to maximal
increase in the modularity. This is only to show that if the lesion of S’ leads to a large
increase of modularity, then it also triggers a large increase of the average pathlength. The
opposite is also true hence, both measures are valid to quantify the segregation, although
not completely equivalent. There are yet some small diferences and to get rid of them,
we have considered only the subsets whose lesion simultaneously cause a large Q(Gyg)
and a large [(Gg). The co-participation matrix of cortical areas in those maximal subsets
displays again a core of areas participating together in more than 80% of the cases: {7,
AES; EPp; 5Al, 5Bl; Ia, Ig, CGp, 35, 36}. The surprise is now the presence of SM areas
within this core.

The third condition proposed to support the integrative function of a set of areas,
is that they must be densely interconnected between them. Otherwise, they could not
possibly share and combine the information that they receive. This condition has been
studied in Chapter 4 with the analysis of the rich-club property.

5.2. Dynamical Capacity of Integration

The final section of this dissertation is devoted to translate the concept of integration
capacity into a dynamical framework. The following shall be considered as an exploratory
effort rather than a finished work. The ideas proposed here will be most useful if they could
be formulated for application in time series analysis of networked dynamical systems, e.g.,
the signals out of electroencephalograms (EEG). The Equation provides a measure
to quantify integration in dynamical systems. For the exploratory purpouses of this
section, we consider an extremely simple dynamical model which has the benefit of being
analytically solvable. If the elements of a linear system are assumed to be driven by a
Gaussian noise &;, the system at the steady-state is described by z; = gzj Aﬁjxj + &,
where g is the coupling strength and Aﬁj the transpose of the adjacency matrixﬂ Written
in matrix form:

x=gA*x + €. (5.5)

2otherwise the dynamics of x; would be characterised by its own outputs, not by the inputs from other
elements.
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Similar approaches have already been used for cortical models [83 [152] in which the
variable x; is regarded as the activity level of the cortical area. Another possibility is to
interpret z; as a mean firing rate (MFR) of the neurones in the area [I7]. The entropy
of such a multivariate Gaussian system X can be analytically estimated from its covari-
ance matrix [100, 138]: H(X) = {log [(2me)V|COV (X)]], Where |COV| stands for the
determinant. The entropy of an individual Gaussian process is = log(27reuz) where v; is
the variance of z;, i.e., the i** diagonal element of the matrix C’OV( ). Replacing in
Equation , the integration of such a multivariate Gaussian system is given by:

[(X) = %Zlog@ﬂeyi) - %log [(2me)V |COV(X)]] (5.6)

Written in this form, I(X) seems to depend on the system size N. We find however
that the measure is properly normalised. By using logarithm algebra, the first term of
Equation (5.6 can be expanded as:

Z H(x;) = %log [H(??T@)Vi] =— 10g(27re log [H Vl] :

=1

The second term of Equation (5.6)) is trivially expanded into a sum and this allows the
annulation of the terms containing log(2me)”. Therefore the expresion for the integration
can be simplified:

N
[[,-, v

COV(X) (5.7

N
1 1 1
I(X) = 3 > log(vi) — 5 log |ICOV(X)| = 5 log
i=1

According to [100] [13§], the covariance matrix can be analytically computed by solving

the system such that:
1
X =
IR
Averaging over the states produced by successive values of &, the covariance matrix is

obtained: COV (X) = (x-x') = ((Q-&)- (¢ - Q")) = Q- Q" [100, 138].

There is still a technical problem which has been poorly addressed in [137, 138, [139):
the System has several poles depending on the coupling strength g. The first pole is given
by g1 = f where A4, is the largest eigenvalue of the adjacency matrix At. In prin-
ciple, the solutions of system ([5.5)) only have physical meaning for g < g;, otherwise the
stationarity condition does not hold. The weighted cortico-cortical network of the cat has
Amaz = 29.02732 and thus, it has a first pole at g, = 0.03445. To compare the dynamics
of different networks, from now on the normalised matrix A = ¢, At is considered. In this
manner, the system has its first pole for ¢ = 1 as displayed in Figure [5.3] regardless of
the precise adjacency matrix.

Finally, a proper coupling strength g needs to be chosen. For that, the analytically
estimated covariance matrices of the cat cortical network have been computed for different
couplings, see Figure The results are similar to the simulations presented in papers
IIT and IV by using a multilevel model, where each cortical area has been simulated by a
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Figure 5.3: Parametric study of the linear system using the cortical network
of the cat. (a) Integrability range. When the determinant |[1—gA| = 0 the system
has a pole. Negative values lead to non-physical solutions. (b) Entropy and (c)
Integration diverge around the poles.

subnetwork of 200 neurones. At low coupling regimes the dynamical correlation between
areas largely follows the underlying anatomical connectivity, and as the coupling is in-
creased, the V, SM and FL. communities melt together. Still, there are some differences.
For example, in the present case the auditory system dissapears in the strong coupling
regime (g 2 0.7). Nevertheless, this result indicates the validity of the simple linear sys-
tem for the exploratory purpouses of this section.

Once the dynamical framework has been established, we can now define segregation
and the capacity of integration in dynamical and information theoretical terms.
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Figure 5.4: Analytically estimated covariance matrices of the cat cortical net-
work. The adjacency matrix has been previously normalized by 1/, and the
noise level set to §; = 1.0. (a) g = 0.5, (b) g = 0.7 and (c) g = 0.9.
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Figure 5.5: Dynamical segregation of the communities V, A, SM and FL af-
ter simultaneous lesion of cortical areas. (a) The modular integration Ip,(Gs)
increases for some subsets respecting to Ip,(Geq) of the original system (dashed
line). Lesion of other subsets leads to a large independence of the communities
(red dots). (b) Co-participation matrix of the areas participating together in the
subsets marked by red dots in (a).

5.2.1. Dynamical segregation after multiple lesions

The measure of integration /(X)) is an extension of the mutual information for more
than two systems. Defined as it is, I(X) represents the extremal case in which all the
elements x; € X are considered individually. However, one could also define (X)) for
sets of elements and cover different scales of the organisation. Imagine a partition of the
vertices P = {51, 5> ...5,} such that X = S;US;U...US,, then we define the modular
integration as:

Ip(X) = 3 H(S;) = H(X). (5.8)

When n = N, then Ip(X) = I(X). The entropy of a subset S C X can be obtained
by first computing COV(X) of the system and then extracting from it the covariance
submatrix COV/(S) for the elements x; € S. Thus, H(S) = 1 log [(2me)Ns|COV(9)]].

In order to characterise the dynamical segregation, we measure the statistical depen-
dence between the anatomical communities, Py = {V, A, SM, FL}, by use of the modular
integration Ip,(X —.5) of the lesioned network Gg = Gy — S. If the removal of a subset
of areas S leads to a dynamical independence of the communities, then Ip,(Gg) = 0.
The results after lesioning all the 524,097 subsets S € Spups are shown in Figure[5.5] The
original network has a modular integration of Ip,(Geat) = 0.292. Even if all areas removed
have a large degree, the lesion of some subsets does increase the dynamical dependence
between the communities (Ip,(Gg) > 0.292), while the lesion of other subsets leads to
relevant dynamical separation of the communities, see Figure [5.5(a). Considering only
the subsets whose lesion leads to small values of Ip,(Ggs) (red dots in Figure a)), a
co-participation matrix has been constructed, Figure (b) A core of areas is observed
{7, AES; EPp; Ia, Ig, CGp, 35, 36} whose simultaneous lesion leads to a large dynamical
segregation of the communities.
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Figure 5.6: Functional capacity of integration of cortical areas under stimulation
of the primary sensory areas (visual area 17, auditory area Al and somato-sensory
areas 1, 2 and 3b). Stimulated areas are given a larger noise level &; = 10.0.
(a) Local integration I(S) (considering only subsets of areas). The differences in
I¢(S) permit the identification of subsets involved in the integration of multisen-
sory information. (b) Co-participation matrix of cortical areas within the subsets
leading to large 1¢(S) (red dots).

5.2.2. Integration capacity after sensory stimulation

The solution of the linear System when all §; are equal (see Figure might be
interpreted as the activity of the cortical areas in the resting-state, say, when a subject
is relaxed and performing no specific mental activity. All areas are driven by a Gaussian
noise of small intensity and by the input of their neighbours. In the beginning of the
chapter, the following has been stressed:

1) We aim to characterise the capacity of a group of areas to integrate the information
present in the system, and

2) integration might be described as the combination of information of different char-
acter.

To quantify the integration of a subset of areas S, a submatrix COV(S) can be extracted
from the COV (X) of the whole system. Then, the local integration I(.5) is calculated in
an equivalent manner than 7(X):

N,
Hj:sl vj

|COV(S)]

1(8) = 3" He)) ~ H(S) = 5 log

; . (5.9)
Z‘jES

Even if it is unclear how to define the character of information, in the case of cortical
networks there is an additional fact which helps to overcome this problem. Sensory
information of different modalities enters the cortex through specific regions called primary
sensory areas: primary visual cortex (area 17), primary auditory cortex (area AI) and
primary somato-sensory cortex (areas 1, 2 and 3bED. In order to quantify the capacity

3 According to reference [I15] the cortical areas identified as 1, 2 and 3b are subregions of the primary
sensory area, called by some authors as SI.
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of the specific areas to integrate the multisensory information entering the cortex, all
primary sensory areas {17, Al, 1, 2, and 3b} have been simultaneously excited and I(5)
has been computed for all S € Spus. The excited areas are assigned a larger noise level
&; = 10.0, while for the rest of areas {; = 1.0 as before. As the integration is now measured
in conditions of excitation, we refer to it as I¢(.59).

The results, depicted in Figure display similar characteristics to the previous ones
observed along this chapter, Figures [5.1] and [5.5l For a fixed size Ng, the local
integration of subsets in the excited system, I¢(.S), largely differs among the subsets.
For example, within the subsets of size Ng = 10, some of them achieve I¢(S) ~ 0.5
while others have only I¢(S) ~ 0.15. Initially, 19 cortical areas have been considered to
form the subsets S € Spups. The differences in 7¢(.S) permit to discriminate the cortical
areas involved in the integration of multisensory information from those which are not.
Considering only those subsets S” with local integration among the 10% of largest 1¢(S")
for each size, red dots in Figure (a), the co-participation matrix of the cortical areas has
been constructed, Figure (b) The elements of the co-participation matrix correspond
to the number of times (given in frequency) that two areas participate together in one of
the maximal subsets. As for previous measures, a core of cortical areas is found which
participate together in over 75% of all the subsets with 10% largest 1¢(S): {7, AES; EPp;
6m; Ia, Ig, CGp, 35, 36}. The next areas to join this core are the visual 21a and the
somato-motor 61, but they co-participate only in 50% of the occasions with those areas in
the core.

5.3. Summary and Discussion

In Chapters 3 and 4, the topological organisation of the cortico-cortical network of the
cat has been extensively analysed. The relation between the observed structure and its
potential function has been justified in the basis of intuition and neuroscientific facts. For
example, the observed organisation of cortical areas into modules, which are segregated
from each other, can be explained as a functional necessity to keep separated the cortical
regions specialised in processing the input of one sensory modality (visual, auditory, ...)
After finding that most of the pairwise communications are performed by direct connec-
tions or paths of length 2, the coincident inputs and outputs of two cortical areas can be
interpreted as a sign of their functional similarity.

The main result of Chapter 4 is the finding that most of the intra-modal communi-
cation is centralised, mediated by a set of hubs which are densely connected with each
other. While the centrality of the hubs is a sign of their accessibility to the information
in the system, it only warranties their role as transmitters of information between the
sensory systems. The additional observation that the hubs are densely interconnected,
strongly suggest that they might be the responsible for integrating the multisensory in-
formation in the brain, which is a necessary condition for the emergence of generalised
states of perception, e.g. consciousness [30], 108, 121], 135]. In order to construct a more
solid bridge between the observed structural organisation and its potential function, in
this chapter the concept of integration has been revisited. The capactiy of integration of
a group of areas has been expressed in terms of: 1) accessibility to the information of
different character, 2) the capacity to combine that information and, a weaker condition
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3) the inefficacy of the system to integrate information in the absense of key areas. An
effort has been done to translate these theoretical conditions into measurable quantities
both in topological and in dynamical terms.

From the topological point of view, the accessibility to information has been quantified
as a modification of the betweenness centrality to account for the collective behaviour of
more than one area. The segregation of the system after selective lesion of cortical areas
has been performed by the simultaneous attack on several areas instead of the typical
one-by-one removal of vertices. To quantify the effect of the lesions, the modularity and
the average pathlength of the remaining (lesioned) network have been measured. In order
to accomplish a statistical analysis, the 19 cortical areas with largest degree have been
considered as potential integrators, and all their possible combinations, a total of 524, 097
sets. The results permit to discriminate between the hubs whose collective behaviour
leads to large integration capacity from those which are not relevant for the integration
of multisensory information.

In order to study the capacity of integration in dynamical terms, a simple linear dy-
namical model has been adopted which has the benefit of being analytically solvable,
Equation . Cortical areas are driven only by Gaussian noise and the input from
their neighbours. Modifications of the integration measure I(X) introduced by Tononi
and Sporns [136, [138] have been applied. The dynamical separation between the systems
(V, A, SM and FL) after lesions of subsets of areas has been quantified by the modular
integration, a modification of I(X) to account for different scales within the system. Fi-
nally, the collective integration capacity of the hubs has been studied by stimulation of
the primary sensory areas. Sensory information enters the cortex through specific cortical
areas, visual primary cortex (area 17), primary auditory cortex (area AI) and primary
somatosensory areas (area 1, area 2 and area 3b). It has been observed that simultaneous
stimulation of the primary sensory areas in the model, leads to a large dynamical depen-
dence, local integration 1°(S), of some hubs but not of others. This collective response
to multisensory stimulation confirms the integrative function which has been assigned to
the supramodal hubs along chapters 3, 4 and 5 based uniquely on topological properties.

While the concepts and the tools defined in this chapter should still be considered
preliminary, the results show their potential use and validity. All the different measures,
topological and dynamical, have led to consistent and coincident results. In general,
we have been able to statistically discriminate the cortical areas which play a collective
role in the integration of multimodal information from those hubs which don’t. The
dynamical analysis of this chapter has been based in a very simple linear model for which
the proposed measures can be analytically calculated. In the future, it would be of interest
to define the measures for integration such that they can be applied to the time series
of multivariate systems, e.g. the output of electroencephalograms (EEG) or functional
magnetic resonance (fMRI). While these experimental techniques do largely contribute
to understand the neural basis of cognition and sensory perception, they present several
limitations. One of them is that the only dynamical information we obtain is the activation
of particular brain regions during a behavioural task or as the consequence of sensory
stimulation. Still, there is no manner to understand from the data what is each activated
brain region explicitly doing within the ongoing information processes.



CHAPTER 6:

Summary and Discussion

Traditionally, complex dynamical systems are characterised by a large number of nonlin-
early interacting elements. The recent discovery of an intricate and nontrivial interaction
topology among the elements in natural systems introduces a new dimension to the spec-
trum of complexity. A network representation provides the system with a form (topology)
which can be mathematically tractable towards uncovering its functional organisation and
the underlying design principles. The term complex is coined because most real systems
have neither a regular nor a completely random topology, they survive in some interme-
diate state, probably governed by rules of self-organisation.

The mammalian nervous system (NS) is a complex system par excellence. Composed
of over 10'° neurones, it is the responsible for collecting and processing information,
and providing adaptive responses which permit the organism to survive in a constantly
changing environment. Despite the large number of neurones and their different forms,
they only collect and transmit two kinds of electrical signals: graded potentials and
action potentials (spikes). Hence, the capacity of the nervous system to simultaneously
process different kinds of information relies, to a large extent, on the circuitry where the
stimulus is received and processed. Sensory neurones encode information into electrical
signals which propagate in a “bottom-up” manner through different processing stages of
increasing complexity. Information of the same modality (visual, auditory, etc.) traverses
the body together, and separated from the information paths of other modalities. Even
at the cerebral cortex, sensory information is segregated and processed in distinct regions
which are specialised in detecting specific features of the signal [19] 80]. Despite the fact
that the separation of modal information paths is a relevant characteristic of organisation
in the NS, at the highest levels this separation seems to fade away [50, 61} 146]. For
example, sensory-motor coordination or the emergence of a general state of awareness
(consciousness), require that different sensory information is integrated at some time [42]
45, [122], [144), and at some place [10§], i.e. the modal paths of information converge.
Even if consciousness might be regarded as the result of a global integrative process of
multisensory information to create a comprehensive perception of reality there is currently
no evidence for a unique brain region performing such a task. On the contrary, there is
increasing evidence that cognitive information might be represented over wide, overlapping
and interactive neuronal networks in the cerebral cortex [30} 50} [51]. Our work supports
this hypothesis by showing that within the cortex of cats, few cortical areas (the hubs)
form a spatially delocalised cluster in which multimodal processing paths converge.

In our quest to understand the relationship between the topological organisation of the
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mammalian cerebral cortex, the long-range connectivity network between cortical areas in
the brain of cats has been analysed by graph theoretical methods. The peculiarities of this
network have continuously challenged the existing literature on complex networks, forcing
us to reconsider established concepts and to reformulate several graph measures. This
dissertation is the result of a bidirectional interaction and mutually feeding motivation
between theoretical neuroscience and graph theory. In the following, a more detailed
summary of our results in both fields is given.

6.1. Contribution to Graph Theory and Complex Networks

From the technical point of view, we have shown that graph theoretical measures can be
applied in a flexible manner in order to overcome data limitations, instead of manipulat-
ing the data for analytical or computational convenience. Unfortunately, the latter is a
common practice in the complex network literature. For example, directed networks are
often artificially converted into non-directed ones.

6.1.1. On the structure-function relationship in complex networks

A major question of complex network research is to understand the relationship between
structure, function and dynamics [7, [15], 27, 57, 87, 94] 05, 113, 128, [157]. However, large
efforts are still required because of the intricate statistical interdependence between the
graph measures. To mention only an example, the synchronisability in networks of cou-
pled oscillators has been reported to depend on many different graph characteristics, the
degree homogeneity [93, O8] [155], 156], clustering coefficient [I50], degree correlations [34],
betweenness centrality [27], degree distributions and so on [73]. As pointed out by Atay
and collaborators [I3], many statistical network properties do not suffice to determine
synchronisability because the spectral properties of networks are simply not derivable
from them. In the light of this confusion, it seems that graph theory still lacks of a
solid foundation on which theories and models can be constructed safely. Only when the
complicated statistical interrelation between the graph measures is well understood, will
we be able to infer with certainty the causal relations governing the interplay between
structure, function and dynamics.

In our work, a step has been taken to bring some order to this confusion by analysing
the relationship between the local graph measures: degree distribution, degree-degree cor-
relations and reciprocity. More precisely, we have calculated the expected reciprocity (r)
of networks with prescribed degree sequences and degree-degree correlations in the ther-
modynamical limit. This general result has been simplified to account for the 10 different
classes of degree-degree correlations and degree distributions in directed networks. After
comparing the measured reciprocity .. to the expected reciprocity (r) in a set of 14 real
networks, we find that in many cases 7, and (r) are equal. Hence, in those networks,
the degree correlations alone “explains” the observed reciprocity. In other cases, while (r)
accounts for a large part of r,.,, deviations between them suggest the presence of further
internal structure, e.g. communities or higher order correlations. In order to numeri-
cally corroborate our analytical results, we have invented novel algorithms to generate
mazximally random networks with the desired degree distribution and degree correlations.
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Some recent works have also tried to uncover the statistical interdependencies between
graph measures. In [35] [72] the statistical interplay between degree correlations and the
clustering coefficient has been studied, but restricted to the special case of undirected
graphs. Very recently, the expected number of cycles (closed paths) of arbitrary length [21]
has also been computed conditional on the 1-node degree correlations. Further work in
this direction is desirable and the analytical tools presented in paper I can be extended to
study other network measures such as the clustering coefficient and motif profiles. When
analytical studies become impracticable, the numerical methods proposed in paper II
open the door for a new generation of faster algorithms to create ensembles of random
networks conditional on degree correlations. No doubt, both theoretical and experimental
applications will significantly benefit from the advances in this direction.

6.1.2. Topological roles of vertices in networks with communities

A relevant characteristic of many real networks is their mesoscopic organisation into mod-
ules, which often reflect groups of functionally specialised elements. In order to classify
individual vertices according to the topological position they occupy within the commu-
nity structure, Guimera and Amaral (GA) proposed a quantitative framework consisting
of two parameters. One evaluates the internal importance of the vertex within its com-
munity and the other its external relation to other communities [58, [59]. Vertices are
catalogued from peripheral vertices (make uniquely internal connections) to kinless hubs
(highly connected vertices which span their links equivalently among all the communities).
Practical applications of the GA framework to several empirical networks revealed
contradictory results, e.g. it would fail to capture the presence of hubs in some networks.
A critical revision uncovered several limitations of the GA framework, which seems to
be valid in the limit of sparsely connected, large networks with many communities, all
of similar size. From the conceptual point of view, we have shown that if a vertex is a
hub within its community, this is no warranty that it is also a global hub of the network.
Neither it is the opposite true. Here, the original idea of Guimera and Amaral has been
extended and a normalised framework has been proposed, useful to compare the results
from different networks under universal criteria. The key element of our proposal is the
definition of participation vectors which encode the probability of a vertex to belong to
each of the communities. Typical community detection methods partition the vertices of
a network into separated modules, but except for trivial cases such a division is never
clean. In reality, vertices have a probability to participate in more than one community
and thus, the modules overlap with each other [99, [114]. The probabilistic description
introduced by the participation vectors opens the door to novel techniques which are
capable of specifying both the communities and their overlap. Even if we restrict to con-
sidering communities defined as partitions, the ability of participations vectors to identify
misclassified nodes, should facilitate the development of intelligent community detection
methods which “understand” when the best possible partition has been achieved.
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6.2. Contribution to Theoretical Neuroscience

The ubiquitous relationship between the connectional architecture of the nervous system
and its function is the central issue of this dissertation and the origin of its results, either
technical and biological. Among the different scales of connectivity, we chose the network
formed by the cortical areas in the brain of cats and the long-range fibers between them
for a few reasons:

1) experimental neuroscience has been very successful at studying detailed mechanisms
of sensory processing. However, if we ever aim to understand the anatomical sub-
strate of the mind, we should study the brain as a macroscopic object which is
able to combine the sensory information from different modalities, together with
emotional responses and memories.

2) the cortico-cortical connectivity network of the cat is, up to date, the most complete
dataset of its kind and hence, the most suitable for a detailed graph theoretical
analysis with statistical warranties. In the future, when the connectivity of the
macaque monkey is completed, or when the human long-range connectivity can be
extracted via non-invasive techniques with reliability, it will be extremely interesting
to repeat the analysis here performed and compare the results to the data from
behavioural experiments.

6.2.1. Cortical organisation

The cortical networks of cat and macaque have been classified as small-world networks due
to their large clustering coefficient and their small average pathlength [64] [125] [126]. Ad-
ditionaly, robustness of cortical networks reveal similarity to scale-free (SF') networks [79)].
Using data mining techniques, the connectivity data of the cat has been found to be organ-
ised into four communities [64] [1T5] 117], whose composition coincides with the functional
divisions: visual, auditory, somatomotor and frontolimbic. The aim of our work was to go
beyond the global average measures, e.g. clustering coefficient and average pathlength,
and try to relate the individual topological properties of cortical areas to their function.
The graph theoretical analysis has led us to a classification of cortical areas into three
categories. Unimodal areas displaying almost uniquely local connections with areas in their
modality. Among them we find areas involved in highly specialised sensory functions, e.g.
the primary visual area or the primary auditory area. Other areas make some multisen-
sory connections to other communities and have been named multimodal. Within each of
the four communities, we found at least one cortical area which is densely connected to
all four systems. These areas are difficult to classify into only one of the modal systems
and therefore have been classified as supramodal hubs. These hubs have rapid access to
information from all the sensory systems, which makes them optimal candidates for being
responsible of the large-scale integration.

Restricting to the local connectivity of the areas and to their centrality, it can only be
affirmed with certainty that the supramodal hubs play a relevant role in the transmission
of information between the modal systems. Before assigning them an integrative capacity,
further observations are required. By use of structural and dynamical measures, we have
found that the supramodal hubs are not independent of each other. Topologically, the
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hubs form a densely interconnected cluster, which uncovers a hierarchical organisation in
which the highest level (the cluster of hubs) is formed by a centralised overlap of the four
communities V, A, SM and FL. The last chapter of this dissertation has been dedicated
to revisit the concept of integration of information. All the measures proposed to quantify
the capacity of integration, either topological and dynamical, support the integrative role
of the set of areas composed of the supramodal hubs. Very relevant is the observation
that, under the simultaneous stimulation of the of primary sensory areas (primary visual,
primary auditory and primary somatosensory areas) the set of supramodal hubs achieve
large dynamical dependence between them.

Taking all these observations into account, we now have strong arguments to envi-
sion large-scale processing and multisensory integration as the result of the collaborative
function of the supramodal hubs, in a similar manner in which the cooperative processing
of information by the visual areas gives rise to visual perception [44 T08]. There is a
remarkable difference yet. While sensory areas of one modality lie physically close to each
other, the supramodal hubs are spatially separated but densely connected through the
long-range fibers via the white matter; forming a spatially delocalised cluster.

Additional confirmation of the classification here proposed arises from dynamical sim-
ulations. In papers III and IV the cortico-cortical network of the cat has been simulated
by modelling each cortical with a subnetwork of 200 dynamical neurones (FitzHugh-
Nagumo). The dynamical behaviour of this network-of-networks shows that the areas
classified as unimodal form the dynamical cores of each modality (communities V, A, SM
and FL), and the areas classified as supramodal hubs act as “mediators” of the dynamical
communication between them.

6.2.2. On the nature of multisensory processing

The nature of cortical areas containing cells responsive to multimodal stimulation has
gained a lot of attention in the recent years [39, [108] 146]. Our work has focused in the
characterisation of integration and the role of the multisensory connections for that pur-
pose. However, the function of multisensory interactions seems to be far more complex as
emphasised by Allman and co-authors in a paper with the suggestive title “Do cross-modal
projections always result in multisensory integration?” [3]. While integration can be re-
garded as a bottom-up process, the top-down feedback of multimodal areas over unimodal
areas may be a relevant mechanism for the control of selective attention [40]. Indeed, it has
been observed that the effect of many multimodal connections is the subthreshold mod-
ulation (inhibition or facilitation) of the neuronal activity in other modalities [3], 40, [8§].
These cross-modal interferences may be regarded as the anatomical substrate permitting
the competition and regulation of the attentional focus between modalities.

Despite the large attention we paid to integration, the graph theoretical analysis can
also shed some light about the character of the multisensory connectivity. The hierarchical
separation between unimodal areas and supramodal hubs is not perfect. The presence of
a third (intermediate) category of multimodal areas is the consequence of the existence
of different kinds of cross-modal interactions. In our normalised framework to identify
the topological roles of the areas, a clear (ascending) linear trend has been observed,
indicating that the hierarchical ordering of the areas follows a gradual ordering rather
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than a clear-cut separation into two hierarchies. According to the results in Figure (b),
apart from area 6m, no other SM area could be considered as a supramodal hub. Apart
from area 1, no other SM area can be clearly classified as unimodal. It appears that
the somatosensory-motor cortex plays a general role as an intermediate hierarchy. Most
of its areas have some multimodal connections. In speculative terms, this seems very
reasonable considering the function of the motor cortex. Movement may arise either as
the consequence of (bottom-up) sensory input, e.g. a reflex response, or as the result of a
voluntary and planned action (top-down). A more detailed inspection, also reveals a large
number of direct connections between motor and visual areas (which are not supramodal
hubs), which might reveal the circuitry controlling eye movement and visual attention.

This gradual hierarchical ordering has additional consequences. In Chapter 4 we found
that the cortical network displays a very rich communication structure, composed of a
mixture of serial and “parallel” processing paths. In reference [8], a method to detect
communities has been proposed which is based on the detection of different dynamical
scales in the network. Every hierarchy or community has its preferred time-scale. In
order to “visualise” the presence of dynamical scales, the authors plotted the eigenvalues
of the Laplacian matrixﬂ in descending order of magnitude. Characteristic time scales
are revealed as plateaus in the plot, indicating the accumulation (or the degeneration)
of eigenvalues around specific values. When computed for the cortico-cortical network of
the cat, the ordered plot of the eigenvalues (not shown) displays no plateaus, meaning
that the network, even if it is composed of some communities and possessing a hierachical
organisation, lacks any characteristic time-scales. This is a direct consequence of the rich
structure of multimodal communication paths and the gradual hierarchical ordering of
the cortical areas.

IThe Laplacian matrix is calculated as: L = D — A, where A is the adjacency matrix and D is a
diagonal matrix whose elements are d;; = Z;V:O A;j. Hence, the row sums of L are zero. In order to
perform dynamical simulations and derive analytical results, the adjacency matrix is often replaced by
the Laplacian matrix which has the benefit that all its eigenvalues are positive, A; > 0. The case A\; =0
corresponds to the synchronised state. All the rest correspond to the orthogonal manifold.



APPENDIX A:

Universal Formulation of the Topological
Roles

Typical community detection methods partition the vertices of a network into separated
modules, but except for trivial cases such a division is never clean. In reality vertices have
a probability to participate in more than one community and thus, the modules overlap
with each other [99, 114]. In order to classify vertices after the topological position
they occupy within the community structure, Guimera and Amaral (GA) proposed a
quantitative framework consisting of two parameters. One evaluates the internal position
of the vertex and the other its external connectivity [58, [59]. Assume a network of size N
and a partition into n communities. Within a community S of size Ng, its vertices have
an internal degree ;. The internal parameter, named as within-module degree of a vertex
is defined as the z-score of its internal degree:

7= ———L (A1)

where (k) = NLS >_jes Ky is the average internal degree within the community, and o its
standard deviation. When z; > 2.5 the node is classified as a hub of the networl{!] The
external parameter, named as the participation coefficient, quantifies how distributed are
the links of a node among all the communities:

& ki,s ?
P=1 ; (?) (A.2)
where k; is the degree of the node and k; ; the number of links that ¢ makes with nodes
of community S. If i € §" and has only internal links then, k; v = 1 and k; ; = 0 for any
s # §', hence P; = 0. On the contrary, if the node has its links equally distributed between
all the communities, P, — 1. A Combination of z; and P; leads to a diagram of the type
in Figure[A.1|(a). Additionally seven regions have been defined to simplify the orientation
and interpretation of the classification: R1, ultra-peripheral nodes; R2, peripheral nodes;
R3, non-hub connectors; R4, non-hub kinless nodes; R5, peripheral hubs; R6, connector

hubs; R7, kinless hubs.

"'While the division of regions in terms of the participation index have been validated by a simulated
annealing analysis of real and artificial networks, the choice of z = 2.5 as a valid delimiter between hubs
and non-hubs is not justified in any of the references [58], 59} [60].

7
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Figure A.1: (a) Two dimensional diagram of Guimera and Amaral to classify
the position of the nodes according to a partition into communities. The diagram
is the results of two graph parameters, one describing the internal position of
the node within its community, and a external parameter capturing the overlap
of the node with other communities. Different regions are defined to help in
the interpretation of results. (b) Application of the measures to G..; and its
anatomical partition into four anatomical communities (V, A, SM and FL), gives
rise to counter-intuitive results.

Limitations of the GA framework

When applying GA’s method to different real networks, some counterintuitive results are
observed. For example, the GA diagram for the cortical network of the cat (Ggy) in
Figure [A.I(b) does not display any hub (R5, R6 and R7 are empty) even if we know
that it contains several. It does neither display kinless nodes (R4 and R7), while some
areas heavily connect to all the four communities. A close inspection of z; and P; revealed
several limitations of the formalism, which seems correct in the thermodynamical limit
(large size and sparse connectivity) with all communities of similar size. But for networks
of limited size and inhomogeneous communities, a normalised formulation is required.
Conceptually speaking, it should be noted that a vertex which is a local hub within its
community, is not necessarily a global hub of the network. Neither it is in the opposite
case. We list other limitations:

a) z-score depends on the density of links: Imagine two communities of the same
size Ny, one is sparsely connected and the other is dense. In the sparse community, the
average degree is small (k) < N, and it is therefore likely to find nodes with z; > 2.5. On
the contrary, in the dense community (k) is larger and thus it is less likely to find nodes
with z; > 2.5. Note that x; is bounded by N, —1. If the nodes of different communities are
to be classified after the same threshold, z = 2.5, then the z-score requires a normalisation.
b) Communities of different size: Inhomogeneous community sizes may lead to
critical differences and a normalized framework is desirable. z; depends also on the size
of the community (network) and again, a universal thershold z = 2.5 leads to an unfair
classification. On the other hand, the formulation of P; implicitely assumes that all
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communities are of the same size. We understand that the probability of a node to
connect to a community depends not only on its degree k; but also on the size of the
community N.

c) Small number of communities: The participation coefficient is defined as a quan-
tity ranging from 0 to 1. Unfortunately P, — 1 only if the number of communities is
infinite. A node which spans its links equivalently among all the n communities has
kis = % links per community. In this case its participation coefficient is:

2
" (ki \? s 1 1
p=1- M) =1 2] =1-p—=1--
() S (E) e
This means that, according to the current formulation of P;, finding nodes in the regions
R3, R4 and RT is statistically much more difficult, if not impossible. In our case, the
cat cortex is devided into n = 4 communities, and thus P/"* = 0.75. Notice that in

Figure (b) some cortical areas almost achieve P; = 0.75, meaning that they should be
classified as kinless nodes. However, they do not fall in the regions R4 or R7.

A.1. Normalisation of the Within-module Degree (z-score)

While the original and general idea of Guimera and Amaral remains valid, understanding
of its limitations has led us to an extension of the formalism and its conceptual interpre-
tation towards a universal framework.

A.1.1. Dependence of z; on size and density

Let us investigate the effect of the density in the outcome of the z;. Specially we want to
find the largest possible density of links for which a hub can achieve z; < 2.5. For that,
a series of numerical experiments have been performed. Consider a star graph of size N
whose central vertex (i = 1) is connected to the rest of vertices by one link. The central
node has degree ki = N — 1 and the rest have £ = 1 for all = 2,3... N. Notice that,
in the space of connected graphs (there is no isolated vertices) the central vertex of a star
graph has the largest possible z;. We term it as z7.

Starting from a star graph of size N, at each iteration N — 1 links are introduced at
random and z; is measured. By this process the dependence of z; on the density p has
been plotted for networks of different sizes, Figure[A.2|(a). There are two lessons from the
results:

1) The z; decays as the density of links grows, so there exist a critical density for which
it is impossible to find a node with z > 2.5.

2) z; does also depend on the size of the network, which strongly suggests that a proper
normalization is required.

For comparison with the cat cortex and its communities, the same process has been
repeated with star graphs of sizes N = 53,16 and 7. The results shown in Figure (b)
reveal the following conclusions:
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Figure A.2: z-score of the central node in star graphs. Starting from a star
graph of N nodes, at each iteration N — 1 links are introduced at random and
the z-score of the central node is measured.

1) In a star network of N = 53 (size of Gout) 21 < 2.5 only when the density of links
is larger than 2 0.9, what is extremely large. However, for the smaller networks,
N =16, z; > 2.5 only when p 2 0.6. The three equivalent communities in the cat
cortex (V, SM and FL) have internal densities of 0.58, 0.74 and 0.65 meaning that
it is impossible to find in those communities an area satisfying the condition to be
considered as a local hub.

2) For the network of size N = 7 (auditory cortex), in no case can the central node
have z; > 2.5, not even in the initial star configuration when k; = 6 and k; = 1
for + = 2,3...7. In this case it is obvious that the central node is a hub, but a
resolution limit of the z-score is reached.

Having uncovered the technical reasons for why the GA diagram displays no hubs in the
case of the G, network, we attempt a normalization of z; to overcome these limitations.

A.1.2. Proposed normalisation

In order to normalize z; so that all networks and communities of different sizes are com-
parable under universal criteria, we make the following proposal. As the central vertex
has the maximum z-score of connected graphs of size N, then z; should be normalised by
2f(N). The normalised within-module degree is then: z, = ﬁ For practical applica-
tions an analytical formula of 2} (V) is desired. Remind that the average degree is defined
as (k) = L/N where L is the number of links. In a star graph there are only L* = N — 1

links, thus (k*) = % and the standard deviation of its degree distribution ¢* can be
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Figure A.3: Comparison of z-global vs. z-local. (a) Original measure, (b)
normalised z-scores. The plots show that a local hub within a community is not
necessarily a hub of the network, and neither the other way around. Otherwise,
the areas would follow a linear relationship in the plot.

calculated as:
or = \/% S (ki — (k)2 = %ﬁ\/(kl — N+ N, (ki — (k) =
= (N Y (v (- ) =

= VT

With this result, the z-score of the central node of a star graph of size N is:

k) (N-D-M TN (V-1

i’ _ SVN -1
- o N-1J/(N—1p+1

And finally, the normalised within-module degree (z-score) is:

’ Zi z
2= = = —. A3
With such a normalization a node has z, — 1 when it is the only hub of a very sparse
network, 2z} ~ 0 when the node has a non-relevant degree, and z; — —1 when it has very

few connections in a highly connected networkﬂ.

In Figure (b) the z-global vs. z-local has been replotted. The z-global of each
node is normalized by /N — 1, while the local z-scores are normalized by the size of
the corresponding community /Ny — 1. The result is very similar to the one without
normalisation (Figure |A.3{(a)) because the communities V, SM and FL have very similar
size (Ns = 14 and N; = 16). However, the nodes of the auditory cortex (N; = 7)
significantly change their relative position in the diagram.

2This fact has been proven with “anti-star” networks, say, an almost complete graph where one of the
nodes has a unique link. In such a case its z ~ —v/N — 1.
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A.2. Alternative Approach to P;: Participation vectors

In the light of the limitations detected, our goal is twofold. First, P; should be defined in
the range [0, 1] independently of the number of communities n. Second, P; should take
on account the mhomogeneous size of communities.

The fraction = quantifies how well is the vertex i connected to the vertices in the
community S. However the random probability of 2 connecting to S does not only depend
on k;, but also in the size of the community. Just imagine two communities, S” and S”,
of distinct size Ny > Ny If the k; links are assigned at random, then obviously the links
fall in S’ with larger probability. Let us then define for each vertex a Participation Vector

7, say, a vector of n dimensions (number of communities) whose elements P;(s) represent
the probability that ¢ belongs to S. There is no unique manner of defining such a vector,
neither of reducing its information into a scalar value

A.2.1. Defining the participation vectors

A vertex can maximally connect to the N, vertices of S. If k; > Ny, then i necessarily
have neighours in more than one community. Consequently, let’s define the elements of

the participation vector as Pi(s) = ]X}S, meaning that, ¢ has k; s neighbours in S, out of
Y ki,s

all the Ny possible. To be more precise, if i € S, then P;(s') = T

the usefulness of the participation vectors by a few examples from cortical areas. The
elements P;(s) represent the probability that the area belongs to a given system: visual
(V), auditory (A), somato-motor (SM) and frontolimbic (FL):

Let’s illustrate

area ( V A SM  FL)
17 (0 0.0 00 00)
19 (0. 933 0.143 0.313 0.0 )
7 (0.667 0.143 0.563 0.571)
AES (0.667 0.429 0.813 0.429)
6m (0.438 0.143 0.733 0.714)
Ia (0.563 0.571 0.625 0.692)

Areas 17 and 19 clearly belong to the visual system. The primary visual cortex (area
17) makes no connections outside the visual cortex. Area 19 has some connections to
the auditory and somato-motor systems, although it is very densely connected within the
visual system (Pjo(V) = 0.933). In the case of visual area 7, while P;(V) is the largest
element, it is very closely followed by P;(SM) and P;(FL). This can be interpreted
as area 7 largely overlapping among the three systems and it would be interpreted as a
connector node or a connector hub. Yet a more remarkable example is the vector of the
fromtolimbic area la. While Pj,(F'L) is the largest element, Ia largely overlaps among all
the four cotical system and it would be very difficult to classify it any of the communities.
After this observation, la is a strong candidate to be classified as a kinless hub.

As an example of further potential uses of participation vectors, let’s pay attention
to cortical area AES, which has been placed in the visual system. However, the largest
element of its participation vector is Paps(SM), what indicates that, the community
detection method applied to the network has misclassified it.
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Defining vectors by the expected number of links

Another possibility to define the vectors ?Z is by computing the number of expected
links that ¢ may have in S. If the k; links are randomly distributed, then ¢ should have
(kis) = k;&s links in S. (Again, if i € S then the factor becomes N, — 1). Now, the
ki s
<ki,8> )

Although this definition of participation vectors might look more elegant, we must say
that both approaches are equivalent:

elements of the participation vector could be defined as P;(s) =

ki,s . kis o k'i,sN . Nki,s - Ep'f’rac

PP(s) = = = = = .
) = ey TRE T RN, RN, RO

Since kﬁ is a constant value for the vector, a normalization deletes any difference between

the two definitions.

A.2.2. From participation vectors to participation index

The absolute values in the participation vectors obviously depend on the degree of the
vertex, but for the purpouses of constructing a participation index, this is irrelevant.
For that, the interesting information is the relative differences between the n elements of
7, because by this difference it is possible to quantify how ‘closer’ is the vertex to one
community than to the others. Therefore, we propose to define the participation index
by computing the standard deviation of the elements of F;.
The vectors can be normalized by the total sum of their elements. In the case of a
perfect kinless vertex, its normalised participation vector is then ?1 =(1/n,1/n,...,1/n).
As all elements are equal, o; = a(ﬁi) = 0. In the opposite situation, if ¢ has all its

connections into one single community, its normalised participation vector is, e.g., ?, =

(1,0,0...,0). In this case the average value is also (P;) = 1/n and its standard deviation
is:
1 & 1 5 vn—1
() = | = ST(B(s) = (P))2 = —=1/(1 = (P))2+ (n—1)(P) =...= .
o) = | I R) ~ PP = (L= (B 4 (=) (B) .

Finally, to follow the same standards as in the GA framework (peripheral nodes have
P, — 0 and kinless nodes P; — 1), we define the Participation Index as:
g; n

N
O-maa:(n) n—1

pP=1-—

]

o o; = StdDev (?Z(s)) (A.4)

A.3. Summary and Discussion

In order to classify the topological roles that vertices play within a partition of the network
with modular structure, Guimera and Amaral (GA) proposed a method based on two
parameters, one quantifying the internal position of the node within its community and
another parameter evaluating its external connectivity [58, 59]. Here, the GA framework
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has been re-analysed and several limitations have been detected. While the formulation
is valid in the thermodynamical limit and for partitions of many communities of similar
size, for many real networks it provides contradictory results. A normalised formulation is
required in order to compare networks of different characteristics under universal criteria.
Understanding of those limitations permitted us to propose alternative and normalised
parameters.

The tools presented here, apart from extending the previous framework, have very
interesting potential uses. A generalised use of the z-local vs. z-global plots (Figure ,
might be very useful to understand and classify different types of hierarchies. Community
detection methods might largely benefit from the probabilistic characterisation encoded
in the participation vectors. On the one hand, they permit to characterise and quantify
the overlapping nature of communities. In a similar manner in which the modularity
function is useful to evaluate and compare of partitions provided by different methods,
participation vectors open the door to novel techiques which are capable of specifying both
the communities and their overlap. On the other hand, even if we restrict to communities
defined as partitions, the ability of participation vectors to detect misclassified nodes al-
lows for the development of intelligent community detection methods which “understand”
when the best possible partition has been achieved. Although it has not been presented,
preliminary tests were positive. Starting from approximate modules, a simple algorithm
would detect misclassified nodes, move them to another community and recover the best
known partition for various real networks.



APPENDIX B:

Table of Cortical Areas

In the following, the 53 cortical areas contained by the cortico-cortical network of the cat
are summarised, organised according to the common partition into the four communities
adopted in the literature [64, 115, [117]. The ordering (identity number) is the same as in
Figure [3.1] Additional notes extracted from [I15] have been included. For completeness
and to facilitate the reference, the adjacency matrix of the network is also replotted.

id |

Area

\ Notes

VISUAL CORTEX

1

0 O Ol = W

9
10
11
12
13
14
15
16

17
18
19
PLLS
PMLS
AMLS
ALLS
VLS
DLS
2la
21b
20a
20b
7
AES
PS

primary visual cortex
retinotopically organised
retinotopically organised

retinotopically organised.
retinotopically organised.
multisensory (V, A, SM), involved in oculomotor function.
multisensory (V, A, SM), involved in oculomotor function.
retinotopically organised.

AUDITORY CORTEX

17
18
19
20
21
22
23

Al
All
AAF
P
VP (ctx)
EPp
Tem

primary auditory field. Tonotopically organised.
secondary auditory field. Weak tonotopical organisation.
tonotopically organised.

tonotopically organised.

tonotopically organised.

visual and auditory association area.
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’ id \ Area \ Notes ‘
SOMATO-MOTOR CORTEX
24 3a somatotopically organised (response to deep stimuli).
25 3b somatotopically organised (response to cutaneous stimuli).
26 1 somatotopically organised (response to cutaneous stimuli).
27 2 somatotopically organised (response to cutaneous stimuli).
28 SIT has representations of some body regions.
29 SIV has an orderly representation of the body surface.
30 4g involved in motor function.
31 4 involved in motor function.
32 61 in the premotor cortex
33 6m in the premotor cortex
34| 5Am
35 5Al
36 | 5Bm | might be involved in visuomotor integration.
37 5Bl might be involved in visuomotor integration.
38 | SSSAi | polysensory responsivity.
39 | SSAo | polysensory responsivity.
FRONTOLIMBIC CORTEX
40 | PFCMil
41 | PFCMd
42 | PFCL
43 Ia responds to multimodal stimulation.
44 Ig responds to multimodal stimulation.
45 | CGa
46 CGp
47 RS Retrospenial cortex.
48 35 in the perirhinal cortex
49 36 in the perirhinal cortex
50 pSb Presubiculum, parasubiculum and postsubicular cortex.
o1 Sb Subiculum.
52 Enr Entorhinal cortex.
53 | Hipp | Hippocampus
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Adjacency matrix of the cortico-cortical connectivity of the cat

comprising of 826 directed connections between 53 cortical areas. The connec-

tions are classified as weak (1, black), intermediate (2, blue) and dense (3, red)

according to the axonal densities in the projections between two areas.
sualisation purpouses, the non-existing connections (0) have been replaced by

Figure B.1
dots.
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