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ABSTRACT

As society paves its way towards device miniaturization and precision medicine,
micro-scale actuation and guided transport become increasingly prominent research
fields, with high potential impact in both technological and clinical contexts. In
order to accomplish directed motion of micron-sized objects, as biosensors and drug-
releasing microparticles, towards specific target sites, a promising strategy is the use of
living cells as smart biochemically-powered carriers, building the so-called bio-hybrid
systems. Inspired by leukocytes, native cells of living organisms efficiently migrating
to critical targets as tumor tissue, an emerging concept is to exploit the amoeboid
crawling motility of such cells as mean of transport for drug delivery applications.

In the research work described in this thesis, I synergistically applied experimental,
computational and theoretical modeling approaches to investigate the behaviour and
transport mechanism of a novel kind of bio-hybrid system for active transport at
the micro-scale, referred to as cellular truck. This system consists of an amoeboid
crawling cell, the carrier, attached to a microparticle, the cargo, which may ideally be
drug-loaded for specific therapeutic treatments.

For the purposes of experimental investigation, I employed the amoeba Dictyostelium
discoideum as crawling cellular carrier, being a renowned model organism for leukocyte
migration and, in general, for eukaryotic cell motility. The performed experiments
revealed a complex recurrent cell-cargo relative motion, together with an intermittent
motility of the cellular truck as a whole. The evidence suggests the presence of
cargoes on amoeboid cells to act as mechanical stimulus leading cell polarization, thus
promoting cell motility and giving rise to the observed intermittent dynamics of the
truck. Particularly, bursts in cytoskeletal polarity along the cell-cargo axis have been
found to occur in time with a rate dependent on cargo geometrical features, as particle
diameter. Overall, the collected experimental evidence pointed out a pivotal role of
cell-cargo interactions in the emergent cellular truck motion dynamics. Especially,
they can determine the transport capabilities of amoeboid cells, as the cargo size
significantly impacts the cytoskeletal activity and repolarization dynamics along the
cell-cargo axis, the latter responsible for truck displacement and reorientation.

Furthermore, I developed a modeling framework, built upon the experimental evi-
dence on cellular truck behaviour, that connects the relative dynamics and interactions
arising at the truck scale with the actual particle transport dynamics. In fact, numerical
simulations of the proposed model successfully reproduced the phenomenology of the
cell-cargo system, while enabling the prediction of the transport properties of cellular
trucks over larger spatial and temporal scales. The theoretical analysis provided a
deeper understanding of the role of cell-cargo interaction on mass transport, unveiling
in particular how the long-time transport efficiency is governed by the interplay
between the persistence time of cell polarity and time scales of the relative dynamics
stemming from cell-cargo interaction. Interestingly, the model predicts the existence
of an optimal cargo size, enhancing the diffusivity of cellular trucks; this is in line
with previous independent experimental data, which appeared rather counterintuitive
and had no explanation prior to this study.



In conclusion, my research work shed light on the importance of cargo-carrier
interactions in the context of crawling cell-mediated particle transport, and provides a
prototypical, multifaceted framework for the analysis and modelling of such complex
bio-hybrid systems and their perspective optimization.

ZUSAMMENFASSUNG

Im Zuge der fortschreitenden gesellschaftlichen Entwicklung hin zur Miniaturisierung
und Prazisionsmedizin, gewinnen Fragen zu Antrieb und zielgerichtetem Transport
auf der Mikrometerskala zunehmend an Bedeutung, nicht zuletzt wegen ihres kaum
zu unterschitzendem Potentials fiir Medizin und Technik.

Eine vielversprechende Strategie, um den zielgerichteten Transport von Objekten
auf der Mikrometerskala, wie zum Beispiel Biosensoren oder mit Medikamenten
beladene Mikropartikel, zu bewerkstelligen, ist die Verwendung von lebenden Zellen
als intelligenten, biochemisch angetriebenen Transportern. Zellen und Mikroobjekte
bilden dabei gemeinsam sogenannte Bio-Hybridsysteme.

Inspiriert von Leukozyten - nativen Zellen lebender Organismen, welche sich effizient
zu kritischen Zielen, wie Tumorgewebe, bewegen - besteht ein neues Konzept darin,
die amoboide Fortbewegung solcher Zellen fiir den Medikamententransport zu nutzen.

Im Rahmen dieser Doktorarbeit kamen experimentelle, numerische und theoretische
Modellierungsansidtze zum Einsatz, um die Eigenschaften und Transportmechanis-
men eines neuen Bio-Hybridsystems fiir den aktiven Transport von Objekten auf
der Mikrometerskala zu untersuchen. Dieses Bio-Hybridsystem wird im Folgenden
als Zelltransporter bezeichnet. Ein Zelltransporter besteht aus einer sich amoboid
fortbewegenden Zelle, dem Transporter, und einem Mikropartikel, der Fracht, welche
idealerweise mit Medikamenten fiir therapeutische Zwecke beladen sein kann.

Fiir die experimentellen Untersuchungen wurde die Amobe Dictyostelium discoi-

deum als Transporter verwendet. Sie ist ein bekannter Modellorganismus fiir die
Leukozytenmigration und fiir die Motilitdt eukaryotischer Zellen im Allgemeinem.
Die durchgefiihrten Experimente zeigten eine komplexe, periodische Zell-Fracht-
Relativbewegung, zusammen mit einer intermittierenden Motilitdt des gesamten
Zelltransporters.
Die experimentellen Beobachtungen weisen darauf hin, dass die Anwesenheit der
Fracht als mechanischer Stimulus auf die amoboide Zelle wirkt und zur Zellpo-
larisation fithrt, was wiederum die Zellmotilitit fordert und die intermittierende
Dynamik des Zelltransportes begriindet. So wurde festgestellt, dass das Auftreten
der Polarisation des Zytoskeletts entlang der Zell-Fracht-Achse von den geometri-
schen Merkmalen der Fracht, wie zum Beispiel des Partikeldurchmessers, abhangt.
Insgesamt wiesen die gesammelten experimentellen Daten auf eine zentrale Rolle
der Zell-Fracht-Wechselwirkungen in der Bewegungsdynamik von Zelltransportern
hin. Insbesondere kann die Zell-Fracht-Wechselwirkung die Transportfahigkeiten von
amoboiden Zellen erheblich beeinflussen, da die GrofSe der Fracht die Aktivitit des
Zytoskeletts und die Repolarisationsdynamik entlang der Zell-Fracht-Achse model-
liert, wobei letzteres fiir die Verlagerung und Neuorientierung des Zelltransportes
verantwortlich ist.
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Dartiber hinaus wurde eine Modellierung entwickelt, welche auf den experimentel-
len Erkenntnissen zum Verhalten der Zelltransporter aufbaut und die relative Dynamik
auf Zelltranporterebene, mit der tatsachlichen Partikeltransportdynamik verbindet.
Tatsdchlich reproduzierten numerische Simulationen des vorgeschlagenen Modells
erfolgreich die Phanomenologie des Zell-Fracht-Systems und ermoglichten gleichzeitig
die Vorhersage der Transporteigenschaften von Zelltransportern tiber grofsere raum-
liche und zeitliche Skalen. Des Weiteren liefert die theoretische Analyse ein tieferes
Verstandnis der Rolle der Zell-Fracht-Wechselwirkung beim Massentransport und
zeigte insbesondere, wie die Langzeittransporteffizienz durch das Zusammenspiel von
Persistenzzeit der Zellpolaritdt und den Zeitskalen der relativen Dynamik, welche sich
aus der Zell-Fracht-Interaktion ergeben, bestimmt wird. Interessanterweise sagt das
Modell die Existenz einer optimalen Frachtgrofie voraus, wodurch die Diffusivitit von
Zelltransportern maximiert wird. Dies steht im Einklang mit friiheren, unabhéngigen
experimentellen Daten, fiir die es vor dieser Studie keine Erklarung gab.

Zusammenfassend ldsst sich sagen, dass die vorliegende Forschungsarbeit Licht auf
die Bedeutung von Transporter-Fracht-Wechselwirkungen, beim Partikeltransports
mittels amoboider Zellen, wirft und eine breite Grundlage fiir die Analyse und
Modellierung komplexer Bio-Hybridsysteme und deren perspektivische Optimierung
schafft.
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The most beautiful experience we can have
is the mysterious.

It is the fundamental emotion that stands
at the cradle of true art and true science.

— Albert Einstein, The World as I see it (1931)
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Figure 8.3

The illustration on the left depicts the spatial configuration
of the proposed force measurement experiment, based on the
use of an Atomic Force Microscope (AFM). The cell (in green)
is put in contact with the particle, the latter fixed onto a can-
tilever controlled by an AFM: such instrument can work both as
actuator (brings the cargo to the cell, and can impose forces/dis-
placements) and as sensing device (can keep the cargo in a fix
position by feedback loop control, while recording the reaction
forces exerted). The panels on the right are pictures of an AFM
cantilever functionalized with a 45 pm diameter particle, that I
realized as test of feasibility at Max Planck Institute of Colloids
and Interfaces, hosted by the Mechano(bio)chemistry group
(Dr. Kerstin Blank), upon suggestion of Prof. Dr. Reinhard
Lipowsky. The cantilever has been imaged by reflected white
light through a stereo microscope, while lying upside-down
clamped to a support. Of the three visible cantilevers, the
central is the only functionalized, being 350 + 5 pm long and
35+ 3pum wide, 2+ 0.5um thick. The lower panel is a higher
magnified side view, with close-up on the particle. 92
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ACTIVE TRANSPORT AT THE MICRO-SCALE

1.1 A RISING NEED FOR GUIDED MICRO-SCALE TRANSPORT

As we witness significant growth in the world human population and concurrent
increase in life expectancy [169], outcomes of the better life quality and medical
assistance modern society can provide, the limited regenerative and homeostatic
capabilities of our bodies are put into the foreground. Consequently, the urge to
effectively treat pathological tissue conditions as severe traumas, rheumatic and
neurodegenerative disorders, and neoplastic diseases (e.g. malignant tumors), is
becoming increasingly prominent, with profound impact on our lives, health systems
and economies [24, 94, 137, 175].

Conventional pharmacological treatments consist in temporally localized adminis-
trations of the therapeutic, the latter free to spread over several districts and tissues of
the body (particularly, but not exclusively, in case of systemic administration), reach-
ing only in part the target site. This may be cause of severe side effects, as the drug
accumulates in, and interacts with, cells and tissues distinct from the ones it has been
designed for [15, 155, 159]. Moreover, to balance out the only partial delivery to target
site, higher drug dosages may be used, further aggravating the systemic side effects.
A well known example of systemic drug toxicity is represented by the disruptive,
potentially lethal, systemic effects of chemotherapeutic drugs, administered as cancer
treatment [81, 97, 101].

The groundbreaking, fast-pacing, progresses of the last decades in the field of
materials science, particularly polymer science, nano and microtechnology and bioma-
terials, have enabled the development of innovative strategies for drug delivery, which
drew much focus from the scientific community and led to a massive, ever increasing
amount of research on advanced drug delivery systems [66, 67, 85, 86, 135, 158, 159].

In fact, new “smart” materials and devices are being developed, able to release a
therapeutic with a dynamic, programmable and stimuli-responsive kinetics, for longer
time and with specific affinity to the target site, paving the way towards safer and
more effective therapies [66, 85, 118, 127, 135]. Among others, much enthusiasm is
currently devoted to polymers, often of biological origin, engineered to modulate
their degradation and/or interaction with drug molecules according to environmental
parameters, such as pH, temperature, presence of specific enzymes [49, 79, 85, 127,
138, 174]. In addition, micro and nanoparticle-based administration of genetic material,
as plasmid DNA or mRNA, has proven its therapeutic potential, already reaching
clinical settings in numerous cases [19, 96, 115]; an example, particularly relevant for
society at this current date, is the SARS-CoV-2 (COVID-19) nanoparticle-based vaccine
developed by BloNTEcH (Mainz, Germany), currently undergoing clinical trials [104].

New frontiers in materials science and micro/nanotechnology are not just reshaping
drug delivery, but the biomedical ecosystem as a whole; particularly, we are witnessing
a variety of new diagnostic tools, from cancer-labeling nanoparticle to microscopic
biosensors for bio-analytic measurements [32, 117, 145, 149, 163]. Some of the most
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advanced nanoelectronics-based sensors are even capable of processing and storing
the collected information, all on micron-sized particles potentially able to reach narrow
districts as within human tissues [80].

As society leans towards devices miniaturization and precision medicine, however,
the manipulation, transport and control capabilities at the micro-scale gradually
become major limiting factors in the development and use of such new technologies.

Indeed, when it comes to nanoparticle-based delivery of drugs and genetic material,
relying only on their passive diffusion and advective transport through blood and
interstitial fluids (i. e. blood circulation and extravasation) has been proven poorly
effective for several applications: administered drug-delivering particles tend to accu-
mulate in numerous tissues and organs, particularly liver, spleen and lungs, which
may not be the intended targets; as a consequence, delivery of the therapeutic agent
to the target site occurs only to a limited extent, in amounts as low as 5% [15].
Functionalization of the nanoparticles to provide specific target affinity (e. g. specific
ligand-receptor interactions), albeit it promotes targeted delivery, has been shown to
be often insufficient to grant increased accumulation of the nanoparticles in target
sites as tumours [77, 100, 123]: such specific interactions tend to be short-ranged
(< 0.5nm) [15], and most nanoparticles would still accumulate in other body districts
before casually encountering their target.

As we consider bigger systems, as microparticles and other microscopic devices,
their targeted delivery gets even more challenging. Such objects, crossing the edges of
the colloidal scale, may not exhibit significant diffusive transport and may be prone
to sedimentation, which could limit their access into tissues [7], restricting their use
to high-flow environments, airways and digestive tract, or to delivery routes as local
injection/surgical insertion (routes that assume specific knowledge on e. g. tumour
cells location and physical access to it).

In an effort to address such issues, the novel, highly multidisciplinary research
fields of micro-scale actuation and guided transport are quickly gaining momentum,
thanks to the many technological challenges yet to be overcome and their potential
impact on paramount applications [148].

1.2 TOWARDS A bio-hybrid SOLUTION

The targeted delivery of micron-sized objects, from drug-releasing microparticles
to nanoelectronics-based biosensors, could ideally make use of self-propulsion to
perform active locomotion, thereby enabling effective transport.

According to such concept of active guided transport, the therapeutic particle/device,
representing the cargo, would rely on an out-of-equilibrium propelling entity, or carrier,
which exploits some kind of energy source to produce displacement. In order to
accomplish autonomous steered motion, an ideal propelling system would need to be
“smart”, i. e. performing a closed-loop locomotion which allows micron-sized cargoes
to be displaced toward a specific site, through complex and crowded environments
such as human tissues [148].

In the last years, a diverse multitude of systems has been proposed and tested
for the execution of micro-scale active transport, broadly classified into synthetic
micro-propellers, bio-inspired micro-bots and bio-hybrid systems [147].
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Figure 1.1: Visionary design of a biomedical micro-bot, made up by several functional elements
for diagnostics and therapy, a targeting unit based on antibodies and a bio-inspired
autonomous propelling unit. From [148].

Synthetic micro-propellers usually rely on an asymmetric surface chemistry, reactive
to chemicals in the surrounding fluids, to generate thrust (e.g. [151]), or alternatively
on a magnetic body to exert pull as they interact with external magnetic fields (e. g.
[82]): they can be attached to the diagnostic/therapeutic microscopic device, thus
acting exclusively as carrier, or constitute themselves the biomedical device if properly
functionalized (e. g. fabricating them with drug releasing materials [30]).

Bio-inspired micro-bots represent, so to say, an evolution of synthetic propellers:
their design being optimised using motile living cells as inspiration, they usually
consist of synthetic micro-swimmers of elaborated shape, in an effort to improve carrier
motility; they are typically powered and controlled by external magnetic fields [113,
120].

Despite much progress in the design of microscopic synthetic propellers and bio-
inspired robots, several well-documented technological challenges are still unad-
dressed, greatly limiting their effective use in a biomedical context. In fact, being
relatively primitive carrier designs, these systems are currently unable to achieve au-
tonomously steered locomotion through the body, and their guidance, when possible,
usually requires sophisticated and bulky external units for magnetic driving; moreover,
their energy efficiency is relatively low, especially when compared to biological motile
entities (orders of magnitude more efficient), and even finding a harmless and reliable
energy source may be challenging [1, 28, 71, 130, 146, 148, 164]. Last but not least, the
often overlooked interaction with the immune system may severely constrain their
design and efficiency [173].

5



ACTIVE TRANSPORT AT THE MICRO-SCALE

With a shift of paradigm, bio-hybrid systems make use of autonomous micro-actuation
solutions already provided by Nature, rather than striving to, so to say, “reinvent the
wheel”: by employing motile living cells as carrier/actuation elements, a cell’s intrinsic
sensing mechanisms can be exploited to achieve autonomous guided transport. In fact,
such biological entities are endowed with a built-in closed-loop locomotion machinery,
assembled from highly efficient molecular motors into multiscale ensembles with
integrated control systems, responsive to local environmental stimuli and self-powered
by a metabolism feeding on physiologically available nutrients [3, 28, 130, 148].
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Figure 1.2: Some design concepts for micro-scale actuation and active transport. From [148].

The effective and robust self-guiding of motile cells is, indeed, what makes several
paramount and highly complex physiological processes possible, among others the
morphogenesis of multicellular organisms (e. g. animal embryogenesis), wound heal-
ing, and the fast migration of leukocytes towards a site of inflammation/infection;
further, it governs the progression of some pathological conditions (e. g. tumor metas-
tatization), and the survival of microorganisms as bacteria searching for nutrient-rich
environments [56, 76, 131, 136]. Motile cells direct themselves towards a target by
means of a variety of mechanisms, usually relying on sensing external gradients of
specific chemicals, e.g. cytokines, eventually released by target cells/tissue; these
signaling molecules can then act as attractant and lead the way to the site of inter-
est, in a robust migratory process named chemotaxis [13, 41, 56] (or aerotaxis, when
the attractant is molecular oxygen [70]). In addition, some prokaryotes can further
orient according to the local magnetic field, as for magnetotaxis, thanks to intracellular
biomineral ferromagnetic structures [16].

The exploitation of these very same strategies of directed migration is in fact a major
focus of bio-hybrid systems research, particularly when it comes to targeted delivery,
as documented by the numerous papers and reviews addressing the topic [3, 27, 31,
50, 52, 69, 172].

Among others, much attention is being devoted to the development of bio-hybrids
based on swimming cells, such as bacteria chemotactically navigating and /or mag-
netically steered to target sites [27, 177], or eukaryotic alternatives as sperm cells [31,
171]. Such studies have made use of a diverse range of strategies for the assembly
of the bio-hybrid system, where the cargo is either fixed onto the exterior of the cell
(covalent or non-covalent bonding, physical entrapment) or internalized in the cell
body (see Figure 1.3).
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Crawling cells as neutrophils, monocytes/macrophages or other immune cells have
also been investigated, as they are native (thus non immunogenic and optimized for
migration through our tissues) and chemotactically recruited to critical targets as
tumor tissue [34, 64, 143, 172]. Here, fabrication of the bio-hybrid system has mostly
been based on internalization, making use of the phagocytic response of these cells as
they interact with therapeutic nano/microparticles.

Upon successful targeting, a bio-hybrid unit may exploit distinct local microenvi-
ronmental conditions, intrinsically associated to certain diseases or artificially induced,
as a trigger to selectively release the loaded cargo/therapeutic molecules. Stimuli-
responsive materials and/or cell-cargo linkings have in fact been adopted for such
purpose, providing release mechanisms based, among others, on local pH, temperature
or chemical reactions [34, 116, 152, 154, 166].
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Figure 1.3: Examples of the four main strategies used for the assembly of the cell-cargo
couple, constituting a bio-hybrid system: (a) noncovalent interactions, (b) covalent
interactions, (c) physical entrapment, and (d) internalization. From [3].

Despite their proven transport capabilities and potential applications for minimally
invasive therapies, the medical use of bio-hybrid systems still holds at an early stage
of development, hampered largely by complications inherent to immunogenicity and
overall safety of this new technology. As a matter of fact, most of the microorganisms
adopted in current bio-hybrid solutions would trigger host immune responses, com-
promising delivery effectiveness, and may even represent a direct threat themselves, if
able to proliferate and carry out pathogenic activity [3, 48, 156].

The already mentioned use of endogenous cells, as leukocytes, is consequently
getting increasing attention, being biocompatible, non-immunogenic, and potentially
the most effective in terms of targeted delivery. However, existing leukocyte-based
bio-hybrids normally rely on internalization of the therapeutic cargo, which raises
concerns on the impact of internalized molecules/particles on viability, behaviour,
and genetic material of the cells [3]. Moreover, internalized drugs may undergo signif-
icant degradation within the cell body, and show reduced release rate[43]; efficient
and localized cargo release may require intentional induction of cell death (e. g. via
externally induced hyperthermia), not quite a desired fate for in-vivo leukocytes [34].
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To date mostly unexplored [108], bio-hybrid systems harnessing crawling native cells
like leukocytes, without internalization, represent a promising solution to achieve safe
and effective cargo transport, with more flexibility in terms of delivery mechanisms.
Such idea, being foundational for the content of this Doctoral Thesis, is discussed in
the next section.

1.3 CRAWLING CELLS AS CARRIER ENTITY

As mentioned in the previous section, an emerging trend in fields such as targeted
delivery and medical micro-robotics is the use of leukocytes as smart carriers of
micro/nano-cargoes, creating a functional and autonomous bio-hybrid entity from
native cells of the organism (which may be named immunobot, a term of recent
introduction [173]). This fact may not seem very surprising, as leukocytes are well
known for their meritorious migrational capabilities, granting them access through
dense extracellular matrices and across a multitude of biological and physical barriers,
deep into most, if not all, tissues of the body: here stems their unique potential as
delivery agent into hard-to-access districts for numerous pathologies [11, 54, 56, 105].

A leukocyte’s ability to migrate, and in turn the potential performances of a
leukocyte-based bio-hybrid, are tightly bound to the specific biophysics governing
the motion of such cell type. Considered by many the most effective type of cell
migration [56], the motility mechanism adopted (among many other mammalian cells)
by leukocytes goes under the name of amoeboid motion.

THE AMOEBOID MOTION

Cell crawling refers to the locomotion mechanisms adhering motile cells rely on, in
order to displace themselves with respect to the substrate they interact, and ultimately
migrate [9, 18]. It is therefore performed by most eukaryotic cells, and plays a central
role in several physiological and pathological processes [162]. Given its importance,
the crawling motility of cells had received much attention in the last decades, from
biologist and biochemists to physicists, mathematicians and engineers alike, resulting
in a substantial and multidisciplinary amount of research of both experimental and
theoretical/computational nature. Several recent textbooks, reviews and research
articles cover the topic from different standpoints, describing its biochemistry and
biophysics and addressing the still numerous open questions (e.g. [9, 12, 18, 139]).

Among other identified cell crawling modes, the amoeboid motion is a fairly
widespread crawling mechanism, adopted by a number of mammalian cell types
as leukocytes, many stem cell lines, allegedly some tumour cells, and (as the name
suggests) microorganisms belonging to the genus Amoeba [56, 89, 112]. Compared
to the other crawling modes, as mesenchymal or keratocyte-like crawlings, amoe-
boid crawling stands out for its speed (reaching between 10 and 30 ummin~', in
contrast with ~ Tpmmin~! for mesenchymal mode), the lack of strong adhesive
interactions with surrounding tissue (it relies on non-specific, weak interactions with
the substrate), and the ability to move through tissues while preserving their integrity
(rather than degrading it by proteolytic activity). In fact, this fast low-affinity crawling,
featuring major dynamical changes in cell shape, enables versatile and efficient inter-
stitial migration, even across biophysical barriers as during the process of diapedesis
(extravasation). [56, 157, 168]
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Despite the reported diversity in cell crawling modes, they all share the same
underlying concept of Actin-based cell propulsion. First identified in the late 7os [2],
the Actin-driven motility manifested by eukaryotic cells relies on cyclic cell shape
changes, where membrane protrusions (commonly referred to as pseudopodia) extend
from the cell body to adhere further, thus defining a leading edge which pulls the cell
forward (Figure 1.4).

A globular protein called Actin, a main component of the cell cytoskeleton, plays
a fundamental role in this process: Actin molecules dispersed within the cytosol
can actively assemble into a filamentous structure called F-Actin (filamentous Actin),
where they act as monomeric units; the concurrent polymerization of several Actin
filaments, activated by energy-rich ATP molecules, nucleating at the cell’s leading edge
forms rigid bundles of F-Actin, which are in fact responsible for protrusion growth
as they push the membrane outwards. Taken alone, the growth of F-Actin bundles
at the cell front would only produce relative motion between cell membrane and
Actin superstructures, since such internal forces would not perturb the momentum of
the whole cell'. Net displacement happens as these Actin structures are physically
connected to the rest of the cytoskeleton, which in turn anchors to the substrate by
means of transmembrane proteins; the latter adhere and transmit forces onto the
substrate, thus granting the cell center of mass to move with respect to it. [18, 68, 124]
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Figure 1.4: Schematic representation of Actin-based cell propulsion, from [3]. At the cell’s lead-
ing edge, cytosolic Actin polymerizes into helical-shaped polar filaments (F-Actin),
where Actin monomers actively assemble at one hand while spontaneously disas-
sembling at the other; different auxiliary proteins regulate both dynamics, allowing
the cell to control filament size. Bundles of several cross-linked F-Actin filaments
actively push the membrane outwards as they grow, forming cell protrusions that
will adhere and pull the cell body forward.

In its entirety, the cell cytoskeleton represents a very complex molecular machinery,
an ever-restructuring active biopolymer network, maintained in a tightly regulated
out-of equilibrium state. It consists of a complex assembly of three main structural
components, the cytoskeletal filaments Actin, Microtubules, and intermediate fila-
ments, interacting with each other and with several auxiliary proteins and molecular
motors, e. g. Myosin proteins. The resulting active network is highly structured and
dynamic, responding to external and internal stimuli by means of complex and

1 Being in overdamped regime, reciprocal deformations of a body (as extensions and retractions) cannot
produce any displacement of its center of mass.
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not fully understood pathways of biochemical reactions; once triggered, cytoskeletal
restructuring resolves on the time scale of minutes. [6, 68, 139]
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Figure 1.5: Schematic representation of Actin filaments distribution within the cell, and their
interaction with several different Myosin proteins and F-Actin crossinking proteins.
From [6].

Cell crawling ultimately manifests as a 3-step cyclic process, markedly defined in the
case of amoeboid crawling: Actin-driven protruding of the cell towards the direction of
motion; adhesion of the newly formed protrusions onto the substrate; retraction of the
rear part of the cell body, which loses adhesion and is consequently pulled forward [9].

Upon protrusion maturation and adhering, a contractile force is created at the cell
rear as Actin filaments within the whole cytoskeleton interact with motor proteins,
particularly Myosin II. In fact, by means of a three-step ATP-powered process (Myosin
binding, power stroke, and unbinding from Actin filaments [4]), Myosin proteins
exert force to pull/slide Actin filaments relatively to each other. Actin filaments, other
than protruding bundles, build up several different superstructures within the cell,
particularly the Actin cortex (a contractile actin structure at the boarder to the plasma
membrane), Actin foci (dense regions of Actin cortex at substrate-adhering sites), and
extended cytosolic bundles (e. g. stress fibers) connecting distal sites of adhesion and
other Actin structures to allow force transmission [68, 161]; as Myosin motors contract
such cytoskeletal networks, rear-most adhesions disrupt and the cell body is pulled
towards the remaining adhesions, i. e. in the direction of migration [9, 75, 129].

As a consequence, during the cyclic process of cell crawling the cell shows a
polarized configuration of its cytoskeleton, with a leading edge (where protrusions
are formed) rich of newly polymerized Actin structures, and a rear rich in acto-
myosin complexes (which pull the cell body) [129]. For this propulsion mechanism
to be carried out, the cell must periodically change its shape, overcoming the cortical
tension (generated by the interaction of Actin cortex and Myosin proteins) by means
of its cytoskeletal machinery [6].
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In the absence of external stimuli, protrusion formation arises at random, hence
cell migration manifests as an unbiased random motion. This, for example, allows
cells to probe the surroundings, sensing and integrating signaling inputs that may
be scattered within the extracellular environment, as during the scanning of cellular
networks and tissue antigens, or the search for pathogens within the body [55, 56].
Conversely, external stimuli as chemoattractant gradients can break cytoskeletal
symmetry in a consistent manner, favouring protrusion formation/survival towards a
certain direction thus biasing a cell’s random walk [10, 51, 129].

A considerable amount of mathematical modelling, experimental and theoretical
analysis has been performed in the last few decades, in an effort to achieve a better un-
derstanding of the random motion performed by crawling cells in different conditions

(e.g. [5,8, 12, 26, 33, 90, 102, 140]).
FROM EARLY STUDIES TO THE SCOPE OF MY WORK

As discussed previously (Section 1.2), the use of crawling cells like leukocytes
as carrier entity is a relatively new concept, typically limited by a paradigm of
internalization of the therapeutic cargo as bio-hybrid fabrication technique: though
with some promising results, research pointed out unwanted side-effects associated
with particle and drug internalization.

In order to address such matter and possibly harness the full potential of immune
cell-based bio-hybrids, a USA-based team of researchers led by Prof. Dr. Samir Mi-
tragotri and Prof. Dr. Michael F. Rubner first proposed, in a publication from 2011, a
paradigm shift where phagocytosis-resistant drug-releasing microparticles are carried
like “backpacks” by leukocytes, without internalization [43]. Here, the cargo is fixed
onto the exterior of a macrophage by means of non-covalent interaction, and the
bio-hybrid system self-assembles spontaneously as these leukocytes establish contact
with such particles.

Prof. Mitragotri and collaborators went further, publishing in 2014 a study on the
in vitro and in vivo transport of such drug-releasing backpacks, using monocytes as
carriers to target sites of tissue inflammation [11]. The team of scientists proved here
the ability of this kind of bio-hybrid system to penetrate tissues, crossing barriers as
endothelial cell layers, while retaining their cargo and preserving key cellular functions
as the ability to differentiate into macrophages at a site of inflammation. Moreover,
they reported targeted transport and selective delivery of the cargo to inflamed tissue
in mice, for two distinct inflammation models (skin and lungs).

Despite such promising results, the research on amoeboid-moving cells carrying
therapeutic microparticles onto their external surface is rather recent. To the best of my
knowledge, the mentioned authors are the only ones, other than the research group I
belong, to ever publish on this concept; their application-oriented studies give credit
to this transport strategy, yet provide little knowledge on the underlying mechanisms
governing it and no physical characterization of the motile behaviour and dynamics.

In the Biological Physics research group at the University of Potsdam, led by Prof.
Dr. Carsten Beta, we investigate this innovative approach of active transport at the
micro-scale from a physical perspective, relying on quantitative approaches as analysis
and modelling of trajectories, micro-manipulation and force measurements. For this
purpose, we employ the amoeba Dictyostelium discoideum as model of cellular carrier,

11
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being a renowned model organism for leukocyte migration and, in general, for eukary-
otic cell motility [13, 54]. As a matter of fact, this easy-to-handle unicellular organism
shares with leukocytes the motility strategy of amoeboid crawling, and manifests a
remarkably similar chemotactic behaviour. For Dictyostelium discoideum cells, the latter
triggers in a condition of starvation, guiding them towards each other in order to form
multicellular aggregates; following aggregation, a morphogenetic process (referred
to as development) causes cells to differentiate and ultimately produce the so-called
fruiting body, which releases Dictyostelium discoideum spores possibly spreading in
more favorable nutrient-rich environments [167]. This innate chemotactic response
can be exploited to purposely guide their otherwise unbiased vegetative migration,
so to simulate leukocyte chemotaxis in various conditions of interest: once properly
starved, Dictyostelium discoideum cells become responsive to their chemoattractant, the
cyclic nucleotide cAMP, and follow any external gradient of it; one can then drive
their migration towards a specific location by means of an external controlled release
of cAMP on-site, or simply direct them along a cAMP gradient established with
microfluidic tools [108].

The first studies conducted by Prof. Beta and his team, prior to my doctoral work,
culminated in the publication of a research article, reporting novel experimental evi-
dence on amoeboid crawling cells achieving various tasks of micro-cargo transport and
manipulation [108]. Particularly, Dictyostelium discoideum cells spontaneously carried
micron-sized objects along, as they got in contact with them while freely crawling
(Figure 1.6A-B); in presence of a chemoattractant gradient, such cells established a
net flow of microparticles along its direction, and a localized chemoattractant source
successfully led to accumulation of cargoes at its location, even through constraining
geometries (Figure 1.6D-E).

Multicellular transport, emerging as several cells interact with the same cargo,
proved to be a robust transport strategy especially suited for bigger objects: moving
aggregates of starved cells (spontaneously forming as part of the development process)
were able to transport cargoes in a directed fashion (Figure 1.6C), cooperatively
moving objects up to more than one order of magnitude bigger than individual
cells; when collected towards a localized cAMP source, objects initially scattered
over the substrate clustered together, with the tendency, to some extent, of aligning
side by side. This latter fact suggested cell-driven self-assembly of microstructures as
possibly achievable task, a rather advanced application which still needs to be further
investigated. More research is currently being performed on multicellular transport
by my colleagues, together with studies on amoeboid-mediated cargo transport in in
vivo-like experimental conditions, as chemotactic cargo transport through tissue-like
hydrogel media like collagen and gelatin.

Such growing amount of experimental evidence on amoeboid transport made
increasingly manifest the complexity of this process, and pointed out a lack of under-
standing of the underlying mechanisms leading to the observed dynamics of cargo
transport. In an effort to shed some more light on this bio-hybrid transport, Dr. Oliver
Nagel performed force measurements and quantitative analysis on trajectories as
part of his doctoral thesis [107], focusing on the cell-cargo couple i. e. the simplest,
minimal unit of amoeboid transport. Surprisingly, by comparing the unbiased (not
chemotactic) motion of unloaded Dictyostelium discoideum cells with cargo-loaded ones
(the actual bio-hybrids), Dr. Nagel found out a generally faster spreading of the latter,
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100 um J] 04:38

Figure 1.6: A-B In blue, Dictyostelium discoideum cell trajectory prior to contact with the cargo
(polystyrene microparticle, 20 pym in diameter); in red, trajectory of the cargo as it
gets carried along by the cell upon spontaneous adhesion. From [108]. C This frame,
acquired by fluorescence microscopy, shows an appealing example of multicellular
chemotactic transport. In such unpublished experiment, performed by my col-
league Setareh Sharifi, starved Dictyostelium discoideum cells (fluorescent, shown in
green) migrate through an 1BIDI p-Slide chamotaxis chamber following a gradient
of chemoattractant (10 pmoll~' cAMP), while forming multicellular aggregates as
part of the development process; as they encounter a cargo (polystyrene micropar-
ticle, 46 pm in diameter), these motile aggregates adhere and pull it forward, thus
performing chemotactic directed transport (from left to right, in around 1h). D-E
This other example of amoeboid chemotactic cargo transport shows the directional
transport of 4.5 pm polystyrene particles into the narrow side channel of a microflu-
idic chamber, where cAMP is released by photouncaging of BCMCM-caged cAMP
(source localized at the bright spot in the channel). Time in h:min. From [108].

as the presence of the cargo would somehow affect positively the migrational abilities
of the cell (Figure 1.7a-b). In addition, by comparing amoeboid bio-hybrids loaded
with particles of different sizes, he reported a rather counterintuitive non-monotonic
dependence on cargo size for the bio-hybrid estimated diffusivity (Figure 1.7c).
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Figure 1.7: (a) Cumulative plot of 27 trajectories of unloaded cell (in red) and 27 trajectories
of amoeboid-carried cargoes (in blue, 45um polystyrene particles), all starting
from the origin and with time duration of 20 min. Kindly provided by Dr. Nagel.
(b) Comparison between the spreading dynamics of cell-cargo systems (blue)
and the one of unloaded cells (red) using the ensemble-averaged Mean Square
Displacement (MSD) (|Ar|?) as metrics. MSD data kindly provided by Dr. Nagel.
(c) Estimates of diffusivities D for amoeboid bio-hybrids loaded with particles of
various sizes, obtained from linear fitting (|Ar(t)|?) ~ 4Dt of MSD curves. Bars
refer to standard deviation of the fitting parameter D; translucent red horizontal
band refers to estimate of diffusivity for unloaded cells. The MSD curves used for
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this estimates have been kindly provided by Dr. Nagel.

Overall, his work highlighted once more the intriguing yet puzzling behaviour
of this novel kind of bio-hybrid system, raising more open questions even at the
foundational level of unbiased single-celled transport.

The purpose of my doctoral research has been so to unveil the fundamental mechanisms
governing the random motion of an amoeboid bio-hybrid system, and build a physical

particle diameter d [pm]

model able to describe its complex behaviour and transport capabilities.




THE “LANGUAGE” OF STOCHASTIC MOTION

This Chapter is intended to be an essential introduction to the mathematical description
and theoretical study of random motion: it is aimed at providing the reader with a
handful of physical and mathematical concepts and theoretical tools, believed to be
necessary for a full understanding of the results discussed in this thesis (especially
Chapters 6 and 7, and Appendix B). For a more exhaustive treatise, a curious reader
can refer to several excellent textbooks and review articles, for example [99, 133, 134]
which have been inspirational for the writing of this Chapter.

2.1 NEWTON LAWS FOR DRUNKEN: LANGEVIN EQUATIONS

The intrinsically unpredictable nature of random motion impedes the scientist from
describe such type of processes using deterministic laws of motion. To address such
issues, French physicist Paul Langevin (1872 - 1946) conceived the idea of accounting
for such erratic component of motion, by introducing additional forces of stochastic
nature into much-familiar equations of Newtonian mechanics, giving birth to the
so-called Langevin equations.

For example, one may describe the motion of a small" entity, such as a molecule or
a colloidal particle or even a microorganism, through a fluid medium, by means of a
second-order stochastic differential equation of the type:

2 .

% - —%% - %vum n %iﬁ(t) (2.1)
(n Stokes friction coefficient, m particle mass) which consists of a dissipative Newto-
nian dynamics (frjction term —% ‘é—f ) where VU(T) accounts for external (conservative)
force fields, and R(t) represents a random force, here assumed homogeneous in space,
acting as a noise perturbing the particle trajectory. This random force will then be
generated by a proper stochastic process, designed to describe a certain unpredictable
behaviour of the system of interest.

Clearly eqn. (2.1) is a linear differential equation, as all Langevin equations involved
in this thesis. Nonetheless, for the sake of completeness, it should be mentioned that
this may not always be the case, as for more complex phenomena where one must
include non-linear effects for dissipative and/or random forces. In a more general
case, a Langevin equation would then assume a form of the type:

d*F 17 ordF L mdr
=l T (Get) - vum R ()
with F and R respectively friction and random forces with potentially non-linear
dependence from the particle velocity ﬁ—f .
As happens often in the microscopic and colloidal world, objects move in over-

7« n%, thus inertial effects (the

Ly : n u ”
damped conditions, i.e. & “large” = mgz

1 but not too small, so to rightfully neglect its quantum nature.
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acceleration term ‘(%f) may be neglected, meaning that the forces acting on such
objects get balanced (or, in other words, the energy objects receive gets dissipated) by
the dissipative forces (friction term) in a very short time. Consequently, it is not uncom-
mon to find first-order Langevin equations, namely first-order stochastic differential
equations for the description of a particle’s position time evolution®.

A CASE STUDY: BROWNIAN MOTION

As didactic example of Langevin dynamics, let’s consider a particle with mass little
enough so that velocity perturbations, due to thermal fluctuations, are significant in
determining the actual motion of it. The thermal agitation manifested by such entity
goes under the name of Brownian motion, the quintessential random motion.

For the sake of simplicity, let’s consider its Langevin dynamics in the absence of
external force fields and, for the moment, along just one of the spatial dimensions.
From eqn. (2.1) we get (% =Vy):

dvy
dt

= —vYvy+ niliR(t) (2.2)

where y ! = 7y is dimensionally a time. In order to account for the empirical evidence
on thermal agitation, we may idealize R(t) as a white noise, or Wiener process [46], i.e.
a stochastic process d-correlated in time and with zero mean:

(R(t) R(t+AL) = (RF) 8(AL),  (R(t)) =0

with 5(t) being the Dirac delta’.
Time integration of eqn. (2.2) leads to the following solution for the particle’s
velocity:
t R(1)

v (t) = v (0)e Yt + L e Y(t=1) Tdf (2.3)

which in turn gives the following formula for the velocity time-correlation ((R(t)) = 0):
(Vi (1) Vi (t+ AL)) = v2(0) e Y(2tFAY)

t t+At
n <J e—v(t—n)wdh J e—v(t+At—tz)@dt2>
0 m 0 m

2(0) e~ Y(2t+AY)

:\)X

] t pt+At
+2J J e Y2UHAL L) (R R(t,)) dty dis
m= Jo Jo

Given the aforementioned o6-correlation in time of R, the latter integral returns:

t pt+At
J J eiY(ZtJrAt*t]*tZ) <R2> d(ty —ty) dty dty
0JO

min(t,t+At) <R2>
:<R2>J e V(2tHAL2t) gy - [efy\AtI_efy(thLAt)}

0

This will be the case for the Langevin equations proposed in Results Chapters 6 and 7, for the description
of the amoeboid bio-hybrid system.

5(t) def lime ¢ Ie (t), with I unit pulse in the interval (—e, €).
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where the first integration made use of the Mean Value theorem*. Therefore, one gets
the following velocity time-correlation function:

_ R 1 _
a4+ 80 = E(0) e Y280 o ) [yt evzuad] oy
that in the long time limit (t > y~') becomes a simple exponential decay, independent
from the initial condition vy (0):

t> vy = (e (t)ve(t+AL)) ~ @ e YAt (2.5)
2m2y

By setting At = 0, this last result allows to determine the (steady-state) mean square
velocity of the particle:
2
2, _ (R7)

Vv2) — 2.6
which results to be strictly dependent, with a simple proportionality, to the mean
square of the random force.

Let us now assume the system to be thermalized, i. e. in thermodynamic equilibrium
with the environment. By virtue of the Equipartition theorem>, it must be:

_ kgT
N m

(vi)
Consequently, eqn. (2.6) implies that:
<IRZ> =2mykgT = 2nkgT (2.7)

which is a simple form of the more general Fluctuation-Dissipation theorem, connecting
the intensity of the random forces (fluctuations) with the dissipation coefficients (in
this case 7).

At this point, knowing the velocity time-correlation function, one can finally get
information on the dynamics of particle displacement, by integrating in time once
more. In fact, being by definition x(t) —x(0) = fg dtvx(T), one may write:

((x(t) —x(0))%) = <Jt Vi (t1)dty J: Vx(tz)dtz> = Jt Jt (vx(t1) vx(t2)) dtydta

0 0J0

In general, for the scalar product between the Dirac delta § and any function f one gets [ §(t) f(t) dt =
lime o [)g Te(t) f(t) dt = lime_y0 [, 21—€ f(t) dt = f(0), where the last step is a direct consequence of
the Mean Value theorem. This result goes under the name of Sampling theorem since 6 acts on f as a
sampling tool, returning the value of it in a specific point.

In (classical) statistical physics, the Equipartition theorem states that for a system in thermal equilibrium,
all momenta p; and all coordinates q; contributing to its hamiltonian J# with additive quadratic terms,
“store” each on average an equal amount of energy, corresponding to %kB T. The demonstration is rather
straightforward. In fact, if we consider for example any momentum p; with an energy contribution
a(qi, Pixj) pjz, we can calculate the average value of the latter by weighing the associated microstates
_ Japje 8D Tdqidp: o
T Je 70D Tdqidps
factorizing the Boltzmann terms of both numerator and denominator, and integrating first in p;, one
easily gets to the relation <(1'pj2) = kgT, as expected. The same reasoning can the be extended to any
other coordinate or momentum (as long as it enters quadratically in /7).

using the canonical distribution (valid if thermal equilibrium): (apjz)
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Now, using eqn. (2.4) and noticing that:

t pt —vt\ 2
J J e_y(tﬁLtZ)dt]dtz: (1_6 i )
0Jo Y

t pt t t 2 1— —vyt
J J e Yt—tlatdt, =2 J dty J e Y=gy, = = <t— e)
0Jo 0 0 Y Y

one finally obtains:

2 _ =Yt 2 2 _ oYt
(ixtt) = xt0)) = (vi0) - oL ) =S 20 4 B (122 T

Ultimately, one can make use of eqn. (2.7) and, by defining the diffusion constant D as
(Einstein relation):

ar ke T kpT

D p
noomy

(2.8)

the particle’s mean square displacement dynamics, for one dimension, assumes the form:

(1—e YH)2 + 2Dt — 9(1 —e Y (2.9)

(x(t) = x(0))2) = (Vi(o) D) =

Yy

In isotropic conditions, the three Langevin equations describing the particle dynam-
ics along the three spatial dimensions are to be identical, which implies analogous
solutions. Further, the Cartesian description of space (based on an orthogonal basis
of such Euclidean space) translates into (v (t)) = (vZ(t) —|—va (t) +Vv2(1)) = (V2(1)) +
(vi (1) + (vZ(1)) and (F2(t)) = ((t) +y2(t) +22(t)) = (x*(t) + (Y2(1)) + (2% (1)),
namely, the independence of the different components for both position and momen-
tum of the particle. Hence, for an isotropic three-dimensional Brownian motion one

gets:

v:(0) _nD
v? Y

)(1 —e YH2 4 Dt — 2:/@(1 —e 'Y (2.10)

(F(6) = 7(0))2) — (

where n = 3 is the dimensionality of the space, and v*(0) = vZ(0) + vﬁ (0) +v2(0).

A fundamental result is drawn by looking at the limiting behaviours for the mean
square displacement:

t>y ! = ((Ft) = 7(0))?) ~ 2nDt + const.

As it can be appreciated, in the long time regime (t > vy~ ') the mean square dis-
placement grows linear in time, with rate dictated by the diffusion coefficient D:
this spreading dynamics is what it’s called diffusive dynamics, or simply Diffusion.
Differently, for short times the particle exhibits a ballistic dynamics®, quickly dying out
as the time approaches y~': in the short-time regime the particle is still reminiscent
of its ballistic start (see eq. (2.3)); however, in a time comparable to Y~ ', the initial

For an object performing ballistic motion, i. e. moving with constant speed vV, the mean square displace-
ment grows quadratically with time: ((¥(t) — ?(O))2> =212,
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momentum of the particle gets randomized by effect of the random forces, leading to
the long-time diffusive regime.

The process of randomization of the momentum of a random-moving object, or in
other words, the loss of memory on its ballistic start, goes under the name of relaxation.
The time scale over which it takes place is called relaxation time; in this specific

case, it identifies with the time y~! = - namely the Brownian (or hydrodynamic)

relaxation time. Lastly it should be noticed, from eq. (2.5), that Yy~ is also the rate
of the exponential decay for the long-time velocity time-correlation function, which
highlights the Markovian nature of the Brownian motion.

2.2 DETERMINISTIC DESCRIPTION OF MASS TRANSPORT: FOKKER-PLANCK EQUATIONS

In the previous Section it has been shown that the integration of a Langevin equation, a
stochastic differential equation describing a certain random motion, leads to a solution
for the dynamics of average velocities and displacements. As shown for the case of
Brownian motion, solutions of such equations can describe the whole dynamics of a
random-moving entity, with a short-time regime, reminiscent of the initial conditions,
evolving into a long-time regime in a time ~ vl

Yet, when the time scales of interest are larger than y~', a solution just for the
long-time dynamics is all that is needed. In this case, one may tackle the problem of
random motion with a generally easier approach, by solving a deterministic differential
equation for the probability density function p(7, t) of the particle position (distribution
function), built as an equation of mass conservation, which goes under the name of
Fokker-Planck equation.

1

Let’s consider eqn. (2.1), again along one spatial dimension. As the particle is a
—1

microscopic entity, observed for t >y~ ', one may neglect the inertial term m‘cilif <
n%f , which leads to an overdamped (first-order) Langevin equation:

~1dUR)

X = + V2DE(t) (2.11)
dx
where &(t) = Rgl) is the normalized random force, i.e. a stochastic process with

unitary variance, and the force standard deviation y/(R?) has been written in the
form 1nv/2D in analogy with its expression for a Brownian process (eqn. (2.7), using
eqn. (2.8)).

From eqn. (2.11), one gets the following equation for the local probability flow
j(x,t) dt:

-1 dU(X)

j(x,t) dt = p(x, t) vx(x,t) dt = —p(x, t)n dt+j+(x,t) dt (2.12)

where j.(x, t) represents the rate of probability flow caused by the stochastic process
V2DE(t).

In order to determine the latter, let’'s momentarily discretize the space-time into the
intervals Ax and At. One may look at the physical dimensions of the noise power, i. e.
its variance 2D, to define such units of time and space, so to have:

(Ax)?

=2D
At
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In this way, heuristically, the noise would causes all the probability P(x,t) ~ p(x,t)Ax,
present in (x,x + Ax) at time t, to flow into neighbouring space intervals in a time At:
as a matter of fact, according to what obtained in the previous Section, a diffusing
particle would spread through a distance Ax in a time ~ At = (égz. Consequently,
the probability flow j.(x, t) At between two neighbouring space intervals in a time At

will result to be:

jr(x,t) At =~ 1p(x — Ax, t)Ax — (1 —1) p(x, t)Ax

where | € [0,1] is a parameter describing the asymmetry of the random force. It
follows then:

Ax

A (Lp(x —Ax,t) — (1= p(x,t)) = Q(lp(x—Ax,t) — (1= p(x,1))

j t) ~
J'r(x/ ) Ax

Assuming now a random force with no bias (i. e. zero mean, as for Brownian noise),
it will be 1 = 1/2, and going back to the continuous representation of space-time
(Ax — dx, At — dt) one ends up with the following constitutive law for the noise-
driven flow rate j.(x,t) (Fick’s law):

0p(x,t)

.T‘ /t =-D
jr(x, 1) ™

(2.13)

Finally, using eqn. (2.13) into eqn. (2.12), one can write down the the local probability
flow:

jx, t)dt = —(p(x,t)n1 d U(x) I @a p(m)) dt

dx 0x

leading to the following Fokker-Planck equation:

2600 A D 1y, U0 2001 -

Analogous solution for all spatial dimensions leads to the following vectorial Fokker-
Planck equation:

dp(T,t)
ot

=V(n p(¥ t)VU(F) + DVp(F, 1)) (2.15)

where D and 1 are scalar for isotropic conditions.

As an example, we can now use the Fokker-Planck equation (2.14) to solve the prob-
lem of the long-time spreading dynamics of a Brownian particle, in an easier way than
what done in the previous Section. For the simple Brownian dynamics of eqn. (2.2),
where no external field is taken into account, the Fokker-Planck equation (2.14) is
reduced to:

9p(x,t) _ 5 0%p(x 1)

m 2 (2.16)

known as diffusion equation.
To solve eqn. (2.16), one can take advantage of the Fourier transform to rewrite such
partial differential equation into an ordinary differential equation. In fact, derivation of
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any function f with respect to a given variable x corresponds to a simple multiplication
within the respective Fourier domain (variable k)”:

© df(x,... ; °° ;
J Ao -s) oo gy g J f(x,...) e % dx
o dx o
Thus, by Fourier transforming in space both members of eqn. (2.16), one gets:
a ﬁ(k/ t) 2 ~
—— =—-Dk“p(k,t
m p(k, t)

where the tilde denotes the Fourier transform. Integration in time leads to:
plk,t) = po(k,0) et

with fg(k, 0) initial condition for the Fourier transform of the distribution p. The initial
position of the particle can be idealized as a $-distributed probability; this implies
that po must actually be k-independent too®, hence acting only as a normalization
constant.

At this point, one can go back to the x-space by antitransforming with respect to k:

Po [T ikx_Dr2t
o) =P [ . dk
plx, 1) = T2 J_Oo

The exponential can be rewritten in the form of a Gaussian, by noticing that:

ix 2 x2 x2
2V Dt) 4Dt 4Dt

with w(k) = vDtk — 2\}%' Thus, being the integral of a Gaussian [~ e dx =
V/Z 9, one gets:

—Dk*t +ikx = — (\/Dtk —

aDt — = e 4Dt

Po
x,t) = ——e e =
p( ) vV 27'[ —00 V @t \Y4 2@'[',

and the requirement 1 = fiooo =p(x,0)dx = [ iooo = p(x, t)dx Vt sets the normalization
constant pg = \/%
In conclusion, we end up with the following solution of the Fokker-Planck equation

for Diffusion:

_x2 Joo w2 dw Po _x2

1 X2

p(x,t) = \/ﬁe 4Dt (2.17)

which is a Gaussian distribution with a variance of 2Dt, growing linear in time, in line
with what obtained for the particle mean square displacement as long-time solution

7 The proof is immediate: it is sufficient to integrate by parts, and assume limy_, 4o, f(X,...) = 0 which
must be valid, for example, for functions existing in a Sobolev (or finite-energy) space, that is a reasonable
requirement for functions with physical meaning or, as in this case, for distributions.

8 The Fourier transform of a Dirac delta is in fact a constant spectrum (white noise): fofoo 5(x) e tkxgx =
e k0 — 1, by virtue of the Mean Value theorem.

9 This is easy to prove: one can easily integrate the square of such integral in polar coordinates, namely

2
<f°_°oo e—ax? dx> =" e_a("2+92)dxdy = fén e 3 re—ar)gr =7

a”
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of the Langevin equation (previous Section). In homogeneous conditions, diffusion
along different directions is independent, implying p(¥,t) = p(x,t)p(y, t)p(z, t); if
the process is isotropic, one ultimately gets the following n-dimensional solution for
diffusion:

1 r2
— ¢ 4Dt
(4nDt)n/2

p(¥,t) = (2.18)

with variance (r?) = (x2 +y2 +22) = (x?) + (y?) + (z%) = 2nDt.

A major advantage of dealing with Fokker-Planck equations, rather than Langevin
equations, lies in the capability of the former to describe in a deterministic fashion the
mass transport, as it provides a deterministic solution for the dynamics of a distribution
of particles. In fact, by definition of statistical probability, p(¥,t) describes as well the
local density for an ensemble of particles (as long as particle-particle interactions are
negligible'®); being the diffusion equation linear, one can then use the unit source
solution (2.18) as convolution kernel and get the solution of any Cauchy problem.

2.3 BEYOND BROWNIAN DIFFUSION

Brownian motion is commonly recognised as prototypical random motion, this for
reasons exceeding its relative simplicity. As a matter of fact, such minimal random
process is representative of a wide variety of stochastic systems and phenomena,
which may differ in their nature, yet share profound analogies in terms of behaviour
and quantitative description. Particularly, by virtue of the Central Limit Theorem [25],
many different processes are analogous to Brownian motion when observed at large
time/spatial scales'".

However, complex transport processes as the motion of out-of-equilibrium systems,
or the mass transport through complex fluids, may deviate significantly from the
typical dynamics of normal Brownian processes, e. g. exhibiting non-Markovian fea-
tures or non-ergodicity. As a consequence, a non-linear growth of the mean square
displacement may be observed, even in the long-time regime. Such a spreading process
goes under the name of anomalous diffusion, and is spotted by writing the mean square
displacement dynamics in the form of a power law (r?)  t*, where « is the scaling
exponent: a scaling exponent « # 1 identifies an anomalous diffusion process. [98, 99]

Nonetheless, the study of any random motion lies its foundations on all those same
theoretical tools, originally developed for the study of thermal agitation, particularly
Langevin equations and Fokker-Planck equations, properly extended to take into
account more sophisticated forms of randomness. In particular, active Brownian
particle models make use of Langevin equations to describe the dynamics of active
matter, as living cells, by including non-equilibrium fluctuations. [91, 134]

When particle-particle interactions are not negligible, the diffusion of a particle, called self diffusion,
differs from the diffusion of a distribution of several particles, or collective diffusion, where the motion of
each particle is influenced by the neighbouring ones, giving rise to a different spreading process.

An example is the conformation of flexible macromolecules, as many proteins and other polymeric
chains: by considering a macromolecule as a sequence of N independently oriented segments (Kuhn
segments, i. e. segments longer than the persistence length of the molecule), its conformation would be
conceptually analogous to the trajectory of a Brownian particle in discrete time. Consequently, for a long
chain of independent segments (N > 1, true for a flexible polymer by definition), one easily gets to the
diffusion equation as Fokker-Planck equation for the probability distribution of the chain’s end-to-end
distance, the latter describing a molecule’s spatial extension as function of its length.
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EXPERIMENTAL STRATEGIES AND PROTOCOLS

3.1 CELL CULTURING AND BIOLOGICAL SAMPLE PREPARATION

I made use of two different mutant strains of Dictyostelium discoideum cells for my
experiments:

LIFEACT-MRFP ax2 This cell line, originated from the axenic Dictyostelium discoideum
wild-type AX2 by genetic engineering, expresses a modified version of the F
Actin-binding protein Abp140 [132], which is linked to the fluorescent protein
mRFP.

The fluorescent molecule will then accumulate along Actin filaments within the
cell, labeling the cell’s cortex and cytosolic cytoskeletal filaments.

LIME-MRFP MYOII-GFP AX2 This cell line, again a genetic engineered version of the
axenic strain AX2, expresses a GFP-linked version of the Myosin II protein and a
mRFP-linked F Actin-binding protein, in this case LimE.

Within such cells, while mRFP still labels filamentous Actin, an additional
fluorophore (specifically GFP) colocalizes with the cytoskeletal motor protein
Myosin II.

For the realization of new cultures, cells were harvested from spores, previously
stored at —80°C in a freezer suited for long term storage of biological material
(UNICRYO deep freezer —86 °C, UN1Equrp, Planegg, Germany). A volume of 100 ul
of spore suspension was added into a tissue culture flask (TC Flask T75 Standard,
SARSTEDT AG & Co. KG, Niimbrecht, Germany) containing 10 ml of nutrient medium
(HL5 medium including glucose, FormeDIUM Ltd., Norfolk, England).

Following germination (usually complete within 1-2 days from defrosting), cells
grew adhered on the bottom surface of the flask, over an available growth area of
75cm?; to avoid confluency, cell flasks were subcultured into a new flask every 2
days via 1:20 dilution of the cell suspension from the previous flask, or 1:64 prior to
weekends.

Cell cultures have been kept at 22 °C, under penicillin and streptomycin antibiotics
(CELLPURE-®e Pen/Strep-PreMix, CARL RotH GMBH+Co. KG, Karlsruhe, Germany)
(100 ul/10 mlyys) to preserve the axenic state of the culture; moreover, 5 ul/10 mlyy 5
of the antibiotic G418 disulfate (G418 disulfate ultrapure, VWR INTERNATIONAL, LLC.)
were added as selection agent, preventing the culture from losing functionality of the
mutant gene for actin fluorescent labeling due to genetic drift."*

In the case of the strain LIimE-mRFP Myoll-GFP AX2, having an additional mutant
gene for Myosin II labeling, a second selection agent was used, the antibiotic Blasticidin
S (Blasticidin S (hydrochloride), CAYMAN cHEMICAL, Ann Arbor, Michigan, USA), in
the amount of 10 ul/10 mlyy 5.

To keep a genetically engineered cell line genetically stable, it is customary to insert the mutant gene
together with a gene conferring resistance to a specific antibiotic (the selection agent): in this way, by
keeping the culture under that antibiotic, only cells with an intact functional mutant gene will survive
and thrive. In a nutshell, it is about limiting genetic drift by imposing artificial evolutionary pressure.
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Cell cultures have been renewed every 4 weeks, to avoid accumulation of any other
undesired mutation eventually arising, generation after generation, by genetic drift.

For the purposes of the experiments, a cell suspension was harvested from a flask,
normally during the subculturing procedure, thus:

* if experiments on the cell-particle system:

1. cell suspension was diluted, so to have a cell count of roughly 50 x 103 m1~!
at the expected time of the experiment (doubling time of roughly 8-12 h
[14]);

2. 2ml of the new suspension were put into a culture dish suitable for fluores-
cence imaging (FluoroDish™ tissue culture dish with cover glass bottom -

35mm, 23mm well, WORLD PREcCISION INSTRUMENTS, INC., Sarasota, Florida,
USA).

* elseif microfluidics-based experiments:

1. at most a few hours before the experiment, the cell suspension was diluted,
so to have a cell count of roughly 25 x 10 ml~';

2. the new cell suspension is kept rocking until usage, to avoid cell sedimenta-
tion.

3.2 PARTICLES AND MICROFABRICATION PROTOCOLS

MICROPARTICLE SUSPENSIONS

As cargo model, I adopted polystyrene spherical microparticles (Polybeade Micro-
spheres, PoLyscieNces EurorE GMmBH, Hirschberg an der Bergstrasse, Germany).

The particles were distributed by the provider in an aqueous suspension with mini-
mal surfactant, as stated in the data sheet with no further detail on the liquid phase.
To assure a healthy cell behavior during experiments, purpose-made, biocompatible
batches of particle suspensions have been systematically prepared, by washing parti-
cles in a given amount of mother solution and resuspending them in a corresponding
volume of phosphate buffer:

1. a known amount of mother suspension is put into a conical-bottom centrifuge
tube, thus centrifuged at 500 g RCF (Relative Centrifugal Force) for 3 minutes;

2. the supernatant is removed from the tube by pipetting, leaving the sediment
only (solid phase i.e. particles);

3. an equal amount of Serensen buffer is added, so to restore the original total
volume in the tube (Serensen buffer: in ddH,O added 2g1~' KH,PO,, 0.36g 1"
Na,HPO,, 50 ul1~!" 1M MgClL,, 501" 1M CaCl,; pH 6.0).

Three different diameters have been systematically investigated: 10um, 45um,
75 um. The company provided all particle suspensions with a given solid fraction of
25mgml~! rather than a given particle number density, the latter more relevant for
the purposes of my experiments. I found the particle density of the 45 ym size mother
suspension (roughly 5 x 10> ml~', as estimated by me and double checked from
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product data sheet) to be well suited for my uses; as a consequence, I adjusted batch
suspensions particle density for the other two sizes by proper dilution/concentration
so to match them all. Given the spherical shape, particle volume v scales with the
cubic power of the diameter, thus:

v ~ 80" = batch suspension diluted 1:80
2 (5/3)> = Dbatch suspension concentrated 5:1
MICROFLUIDICS

The microfluidic device has been designed using the Computer Aided Design
(CAD) software DipTrace (NovarMm Ltd.), according to the design concept depicted
in section 5.1. The CAD file generated has subsequently been sent to a specialized
company (ComMPUGRAPHICS JENA GMBH, Jena, Germany) for the realization of the
photolithographic mask, a glass substrate coated with an opaque film in to which a
1:1 scale reproduction of the microfluidic circuit geometry is etched (figure 3.1).

confinement VS random walk

' polar design non-polar design

Figure 3.1: Picture of the photolithographic mask.

Based on such mask, microfluidic devices were produced by means of a soft-
lithography prototyping strategy, first introduced in [45].
The first step consists in realizing a master wafer by lithography:

1. a silicon wafer (SiLicoN MATERIALS, Kaufering, Germany) is heated up to
200 °C for 20 min, to remove surface organic impurities by thermally-induced
desorption;
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10.

11.

the wafer is coated with a 10 pm-thick layer of epoxy-based negative photoresist
(SU-8 2010, KaAYAKU ADVANCED MATERIALS INC., Westborough, USA), using a vac-
uum spin coater (WS-400B-6NPP/Lite, LAURELL TECHNOLOGIES CORPORATION,
North Wales, USA) (15s at 500 RPM, followed by 45 s at 3500 RPM);

. the newly coated wafer is kept at 65 °C for 3 min, to promote stress relaxation

of the coating layer;

if air bubbles present in the resist layer, they were opened with a needle and the
procedure steps back to the previous step;

. the coated wafer is kept in an oven at 95 °C for 17 min (pre-exposure baking);

after a cool-down time of 10 min, the photolithographic mask is put on top of
the coated surface of the wafer;

the coated surface is exposed, through the mask pattern, to UV radiation with
a Hg—Xe arc lamp (model 2130-CP, Rap1aTiON POWER SYSTEMS, INC.) (power
120 mW cm 2, exposure time 1.6 s);

after removing the mask, the coated wafer is kept in an oven at 95 °C for 10 min
to speed up the photoresist polymerization kinetics (post-exposure baking);

after a slow cool-down lasting 1h, the coated surface is washed with the devel-
oper mr-Dev 600 (MICRO RESIST TECHNOLOGY GMBH, Berlin, Germany), so to
wash away the unexposed, unpolymerized photoresist;

any developer residual possibly remaining on the wafer is washed away with
isopropanol;
the newly micropatterned wafer is now undergone a final thermal cycle, in order
to relax residual stresses in the polymerized photoresist:

a) wafer temperature is raised at a rate of 2°C min~—7, up to 95°C;

b) the wafer is kept at 95 °C for 10 min;

c) the wafer is cooled down to room temperature, with rate 2°C min~'.

Subsequently, the master wafer is used to mould a micropatterned slab of elas-
tomeric polymer:

1.

60 g of polydimethylsiloxane (PDMS) are mixed with 6 g of its curing agent
(Sylgarde 184, Dow CornNING, Midland, USA);

the master wafer is placed in a paper bowl, patterned face upwards, then the
slowly curing yet fluid PDMS is poured on top;

. the bowl is put in a desiccator and kept under vacuum conditions for 2h, so

to debubble the fluid PDMS (removal of air incorporated during mixing and
pouring);

the bowl is put in a laboratory oven (THERMOFISCHER, Germany), set to grad-
ually reach 75°C, thus kept at such temperature for 2.5h to speed up PDMS
crosslinking kinetics;
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5.

Figure 3.2: Close-up of a microstructure patterned on the master wafer.

the oven is gradually cooled down to room temperature, hence the bowl is
pulled out.

At last, the microfluidic device is being assembled:

1.

at most a few hours before the experiment, a part of the PDMS slab, containing
a whole micropatterned circuit, is cut out of the bowl;

dust and photoresist residuals possibly present on the patterned surface are
removed with tape;

. the inlets/outlets of the microfluidic circuit are punched through the PDMS

piece;

the PDMS piece is put into a plasma cleaner (PDC-002, HARRICK PLASMA, Ithaca,
USA) together with a cover glass, taking care that the PDMS lies on its non-
patterned surface;

. the plasma cleaner is turned on for 2.5 min, during which the oxygen plasma

being created interacts with the PDMS patterned surface and a cover glass
surfaces, activating them;

immediately after, the patterned PDMS surface is stick on the cover glass exposed
surface: the two activated surfaces covalently bind each other (Si—O-Si bridges),
covering the micropattern hence creating a microscopic circuit of channels on
the cover glass.

To avoid passivation of the surfaces within the device (the microchannels walls),
the microfluidic circuit is immediately filled by capillary action with an aqueous
liquid, thus kept wet until the time of experiment. Given the risk of pH/osmotic shock
cells might experience in contact with pure water at the moment of injection, I chose
phosphate buffer (the same used for particle suspension preparation) as filling liquid.
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Figure 3.3: Schematics of master wafer realization and PDMS moulding. Modified from [165].

Figure 3.4: Picture of one newly assembled microfluidic chip.
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3.3 OPTICS AND EXPERIMENTAL PROTOCOLS

The imaging setup, located on a vibration damping optical table, consisted in a Laser
Scanning Microscope (LSM 780, Zk1ss, Oberkochen, Germany): this microscope uses a
scanning confocal optical path to create an image of the sample.

Such imaging strategy retains spatial resolution also along the optical axis (optical
sectioning) thanks to an aperture, the detector pinhole, located on an optical plane
which is a conjugated focal plane of the sample one (see figure 3.5): light coming
from a specimen section different than the one in focus gets partially stopped by the
pinhole, whose aperture size (or, more precisely, the interplay between it and the
numerical aperture of the objective) determines the depth of field (resolution of such
optical sectioning) [141].

PMT detector

Pinhole aperture N

Dichroic
mirror

Laser |
point source |

Obijective lens

N/
Focal plane — \V/i

Specimen
Figure 3.5: Schematic view of the optical path in a confocal microscope. From [106].

The microscope, being equipped with multiple laser sources, allowed for simul-
taneous imaging of the fluorescence-labeled cytoskeletal components as well as the
particle via multimodal imaging:

CHANNEL I A diode-pumped solid-state laser (DPSS) generates electromagnetic
radiation with A = 561 nm, which excites the fluorophore mRFP co-localizing
with F-Actin; the fluorophore reacts by emitting lower energy non-coherent
radiation, which is band-pass filtered and then detected by a photomultiplier.

31



32

EXPERIMENTAL STRATEGIES AND PROTOCOLS

CHANNEL II (only for LImE-mRFP MyolI-GFP AX2 cell line) An Argon-ion laser gen-
erates electromagnetic radiation with A = 488 nm which excites the fluorophore
GFP co-localizing with Myosinll; again, the fluorophore reacts by emitting lower
energy non-coherent radiation, which is band-pass filtered and then detected by

the same photomultiplier.

CHANNEL I1I All the transmitted light is collected by an additional part of the optical
path, into a second photomultiplier; in this channel, an image arises from the
contrast generated by refractive index discontinuities (much stronger for particles

than cells).

The whole configuration of the imaging system, with its optical paths and light

sources, can be seen in figure 3.6.
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Figure 3.6: (a) Optical Diagram of the LSM 780. From ZE1ss operating manual. (b) Visualization
of the excitation spectral line and the (detected) spectrum of fluorescence emission
for the two fluorophores used. On horizontal axis, the wavelength A in nm.

The experimental procedure varies between cell-particle experiments and microflu-

idics experiments:




3.3 OPTICS AND EXPERIMENTAL PROTOCOLS

¢ if cell-particle experiments:

1.

in the previously prepared culture dish (see section 3.1), 50 ul of purpose-
made particle suspension (see section 3.2) are added;

the microscope is being set up (objective and zoom, digital resolution, pixel
dwell time, lasers);

. the sample is located in position along the optical path of the microscope,

then the substrate (inner bottom surface of the dish) is brought into focus
by observing the transmitted white light from an halogen lamp through
the eyepiece;

the position of the condenser along the optical path is adjusted to achieve
an even exposure of the sample to the light from the halogen lamp (K&hler
illumination?);

. by observing in transmitted white light through the eyepiece, and horizon-

tally translating the field of view with the motorized stage of the LSM, a
one cell-one particle system (far from other cells/particles) is found;

the depth of field is reduced as much as possible by narrowing the detector
pinhole, thus the focus is finely tuned to focus on the cell ventral surface;

. the focus is lifted by 0.3 um ca., then the detector pinhole is widened to

an aperture of 1 Airy Units, corresponding to roughly 0.7 pm of depth of
field3;

. a time-lapse recording is being run, with frame rate within (10s)~' and

(25)~', until the system leaves the field of view of becomes unsuitable (cell
division, other cells/particles alter the configuration of the system), for a
maximum time of 1h;

. the procedure is reiterated from point 5, to possibly observe many systems

in the sample.

¢ elseif microfluidics experiments:

1.

a precision syringe (GASTIGHTe 1750, HAMILTON, Bonaduz, Switzerland)
is filled with the cell suspension (prepared as discussed in section 3.1);

a plastic tubing is fitted on the syringe needle, then filled with cell suspen-
sion;

. the syringe-connected plastic tubing is fitted into the inlet of the microfluidic

chip, thus the cell suspension is injected slowly by hand, in the amount of
50l ca., so to bring some cells into the circuit by advection;

the protocol proceeds as from point 2 of cell-particle experimental protocol,
except for searching cells near the microchannels constrictions rather than
cell-particle systems.

2 It does so by using as an effective source not the lamp filament, but the intensity it generates on a
conjugate Fourier plane. See for example [106]

3 By doing so, a bottom section 0.7 pm thick of the cell-particle system is imaged: cell ventral surface is
visible together with a section of the particle
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Figure 3.7: View of the microfluidic chip, filled and located in the experimental setup. It is
possible to visualize some of the 561 nm electromagnetic radiation from the DPSS
laser, scattered away from the optical path by the device.
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4.1 IMAGE PROCESSING

All of the algorithmic strategies discussed in this section have been implemented in
the form of MaTLAB (MathWorkse Inc.) custom code.

SEGMENTATION

Cell segmentation relies on the 561 nm-source fluorescence channel (channel 1, see
Section 3.3), exploiting the contrast created by the fluorescence emission from the
mRFP labeling the F-actin. Particle segmentation is otherwise based on brightfield
images (channel 3, see Section 3.3), where contrast is generated by refractive index
discontinuities. Both objects are anyhow detected with akin algorithms, the only main
difference being that, in the case of particles, the algorithm runs over the complement
of the original images.

In order to separate the image pixels into two classes (pixels belonging to objects/re-
gions of interest, pixels belonging to the background), on the basis of contrast-encoded
information, a simple and fairly common strategy called thresholding relies on the
image histogram to determine an intensity threshold, which then allows binary clas-
sification of the pixels based on their intensity values: “low intensity” pixels will be
treated as logical zeros, “high intensity” pixels as logical ones® [88].

On the search of optimal threshold values, a well-known and established algorithm
has been proposed in 1979 by Nobuyuki Otsu [111]. Otsu’s approach consists in finding
the intensity value T that divides the histogram in two classes while maximizing a
certain measure of class separability, i.e. inter-class variance

2

Ofter = Wolto — W2 + wilpy —p)?

where (n; pixel count for intensity i, N = ZL] n; total pixel count)

T T
wo(T) =N~ i;ni =Prob[0[T], wo(T) = 1Z N wolT ZlPTOb [10],
I
wi (M) =N""> ny=Probl[T], w (T Z i Z iProblill],
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which means separating into two dissimilar, very distinct classes grouping together
relatively similar pixels®. Such optimization problem is solved iteratively, by cycling
over each possible threshold value and calculating the corresponding inter-class

Thresholding belongs to the family of similarity-based segmentation techniques: pixels are grouped
based on how “similar” they look with respect to some property, e.g. intensity [60].

In fact, it can be shown that maximizing class separability (inter-class variance) is equivalent to mini-
mizing the (weighted average) intra-class variance o: wo oé + wi 0%, i.e. maximizing intra-class
similarity [57, 111].

intra —
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variance, while storing in a variable the one that returned up-to-then maximum
variance.

As one can guess from such description, Otsu’s method performs best for images
with bimodal distribution of intensities, featuring histograms with a deep and sharp
valley between two peaks. As a matter of fact, it has been extensively shown how
the performance of global thresholding techniques as Otsu’s method are limited by
factors adverse to bimodality, e.g. small object size, small mean difference between
foreground and background pixels, large variances of the pixels belonging to the
object and the ones of the background, large amount of noise [88].

Such adverse factors markedly occur in live cell imaging. Being the cell essen-
tially a complex active hydrogel, its refractive index is close to the one of water
and consequently creates little and inhomogeneous contrast over the projected cell
area (more scattering from organelles/macromolecular assemblies). In case of live
fluorescence imaging, laser sources need to work at low intensities in order to avoid
fluorophore photobleaching [160] or, even worse, sample overheating; as a conse-
quence, fluorescence emission may show as a weak signal, inhomogeneous and with
poor Signal-to-Noise ratio (eventual medium self-fluorescence as contributing factor).

Figure 4.1 shows the look and features of a typical frame from my recordings.

Its histogram displays a single prominent peak quickly decaying into a short tail,
representing a dominant noisy background merging with not-so-dissimilar meaningful
intensities, and highlighting a poor use of the full scale dynamics.

In order to successfully apply Otzu’s method for segmentation, I developed an
algorithm that, by means of noise reduction and non-affine histogram transforma-
tion, increases object-background difference in intensity (intuitively, moving their
distributions further apart) and leads to a quasi-binarized bimodal image.

An initial step consists in removing eventual high-frequency noise (commonly
referred to as salt-and-pepper noise), as illustrated in figure 4.2. Here I opted for a
median filter, since it tends to elimitate impulsive noise rather than spreading it over
the surroundings, while retaining sharp object edges [39].

Subsequently, a first histogram transformation improves full scale dynamics usage
by means of a one-sided saturation (so to say, like “zooming” on the interesting part of
the histogram), followed by a second, non-linear transformation featuring two-sided
saturation.

Figure 4.3 gives a visual understanding of the process. Optimal values for saturation
thresholds of these two transformations depend on fluorescence intensity, noise
features and in general on experimental settings, thus are given as input parameters
by the user3.

The effect of such procedure on the image can be appreciated in figure 4.4. At
this point, Otzu’s thresholding is able to robustly and consistently segment live cell
images. However, because of their intrinsic nature, fluorescent labels tagging specific
cellular components may localize in certain regions within the cell, thus granting
little to no contrast to the remaining part of the cell body. In this specific case, the

That is one main reason for the first transformation: in principle, one could directly perform the second
transformation after noise reduction with same results; however, the performances of this step would be
strongly sensitive to the exact values of the two saturation thresholds. Thanks to a preceding one-sided
saturation, the overall histogram transformation results very robust, normally requiring at most an
adjustment of the one first-transformation threshold only (so to say, how much to “zoom”).
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Figure 4.1: top-left Typical appearance of a frame from time-lapse recording of cellular trucks,
using the optical setup described in Section 3.3. The imaging channel 3 (here
in grey scale) allows particle visualization, while channel 1 (in green), barely
visible, encodes for the distribution of the fluorescently labeled F-actin. top-right
Colour-scale visualization of channel 1 from the same frame. bottom Histogram of
intensities for the channel 1 frame shown above. Intensity is resolved with 16-bit
precision; vertical axis refers to pixel count. To make the distribution visible, the
sharp peak has been cut (it reaches counts in the order of 10%); the insert shows a
close-up on the peak decay.

Figure 4.2: Close-up on a cell left before and right after median filtering (mask size 7px*7px,
Tpx =0.26 um).
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Figure 4.3: Schematic view on the two-step histogram transformation. The first transformation
(top to center) “stretches” the peak while saturating higher intensities. The second
one (center to bottom) performs a two-sided saturation, non-linearly remapping
the pixel intensities in between the two thresholds to optimize contrast among
intensities of interest. The non-linearity of the remapping function for the second
step (grey line on central figure) has been overemphasized in figure. To make the
distributions visible, the sharp peaks have been cut.

fluorescence signal used for segmentation mainly comes from filamentous-Actin rich
regions, as growing cellular protrusions, Actin foci (dense regions of Actin cortex
at substrate-adhering sites) and, to some extent, the cell cortex as a whole [23, 161].
As a consequence, after segmentation the detected regions may not fully cover the
actual cell area: they typically display holes, or even show a disconnected topology
(e.g. separated regions corresponding to different actin structures within the cell).
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Figure 4.4: Glance view of the contrast enhancement occurring during the two-step histogram
transformation.

Rather than drastically increasing sensitivity of the segmentation algorithm (not
always enough, may also cause issues with noise and overall robustness), or intro-
ducing additional markers for cytosol labeling (rising experimental complexity and
data size, with no real benefit on information content), I here leant on a solution
based on morphological transformations of the segmented regions. Disconnected
areas of a given cell merge into a whole after an operation of dilation, which basically
adds a layer of white pixels (logical ones), with a given thickness in pixels, over all
the detected perimeters; a subsequent operation of erosion performs the opposite
task, removing a layer of equal thickness from the boundaries of the newly-formed
merged region* [150]. This two-step process is, so to say, hysteretic, and can merge
separate parts of a cell area into a single relatively faithful cell shape. A final topo-
logical transformation reduces to zero the genus® of the regions, filling the holes
possibly remaining within detected objects. Figure 4.5 illustrates the outcome of these
morphological operations®.

Algorithmically speaking, dilation/erosion is accomplished by substituting the value of each pixel in the
image with the local maximum/minimum value, calculated among pixels within a sub-frame of size
(s %2+ T)px* (s* 2+ 1)px (s thickness of the layer of white pixels to be added/removed) centered on
such pixel.

The genus, in topology, represents a generalization of the concept of hole [87].

Such sequence of morphological operations on detected areas makes the segmentation even more robust,
less dependent on the exact saturation thresholds used.
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Figure 4.5: Close-up on a binarized cell left before any morphological transformations, center
after dilation and right after a dilation-erosion cycle followed by genus reduction.

In addition to the segmentation strategy discussed above, which can be classified as
Region-based segmentation, I implemented an alternative algorithm for Edge-based
segmentation: here binary classification, rather than based on pixels similarity, relies
on the pixel property of discontinuity (with local surroundings) [60, 73].

Here my idea was to decode the meaningful information content (now considered
to be the local intensity discontinuity) from the original image, and encode it in
a new “fictitious” image in the form of intensity; hence, such artificial image can
undergo segmentation analogously to what previously discussed, returning the object-
enclosing boundaries for the real image. As measure of local discontinuity, I opted for
the euclidean norm of the spatial gradient of intensity:
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where the partial derivatives are evaluated using a centred finite differences scheme.
The resulting image is then smoothed via median filtering, normalized and thresh-
olded. An example is shown in figure 4.6.

This approach is preferable for images where relevant information is encoded
in the spatial distribution of intensity (discontinuities), rather than the actual pixel
intensities, e.g. frames acquired by Phase Contrast or Differential Interference Contrast
imaging. It is very versatile, performing well even with more “traditional” imagings as
brightfield /fluorescence, though for the latter case not as performant as the previously
described Region-based segmentation. As a matter of fact, it has been developed and
used mainly for cooperations with other projects.

The full image-processing program allows selection between the two segmentation
strategies via a switch in the main function.

i,j

ij)?

TRACKING

The analysis of motion, and in general of any physical quantity’s temporal dynam-
ics, of an object from a time-lapse imaging record requires its univocal identification
through the frames it occurs. Practically, this means connecting all its segmented
regions within different frames and assign to them the same “name”, or ID, without
ambiguity. Establishing such connections, that is following the moving object through
time frames, is what we call tracking.
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Figure 4.6: a Frame from a time-lapse recording of a mouse neuroblastoma cell (cell line N1E-
115-1), performed by Annie Voigt via Differential Interference Contrast imaging.
b Artificial image Ifitious created from image a. ¢ Image Ifgitioys after median
filtering and the previously described two-step contrast enhancement. d Image
Ifictitious after segmentation (objects too small, or in contact with image edges, have
been automatically removed).

Albeit potentially challenging to address [17, 72], the tracking can be reduced to the
simple observation of overlap between segmented regions of consecutive frames, as
long as the time-sampling meets the condition

object max speed  Vmax

f ing > : ; =
sampling object size Tobj

reminiscent of the Nyquist-Shannon criterion”.

To understand its meaning, let us imagine a worst-possible (tracking-wise) scenario,
namely a tightly-packed collection of randomly-moving objects (here considered rigid,
for sake of simplicity): if the maximum distance each object can run between two
frames is less than half its length along the axis, then information on its identity can

7 The Nyquist-Shannon sampling theorem states that the information content of a band-limited continuous
function (e.g. a finite-power, continuous-time signal) can be faithfully reconstructed from a series of
samples, if its bandwidth (i.e. the maximum frequency in its spectrum) is less than half the sampling
rate [142]; thus the sampling criterion fgampling > 2fmax-
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be retrieved by finding the one, in the previous frame, with whom it overlaps the
most®.

In my case, given a peak cell speed of ~ 10pmmin~' ~ 2r,min~' (see Sec-
tion 1.3), this translates in the condition fsampling > (30 s)7 T, abundantly satisfied in
my recordings (frame rate always within (10 s)~ ! and (2s)7', as stated in Section 3.3).
As a matter of fact, for a sparse distribution of objects as the cells in my experiments,
each region would allegedly overlap with its previous occurrence only; having some
inter-frame same-object overlap is then sufficient, granted by the less strict condition

fsampling > (Object max speed)(object size)” ! ~Tmin— .

On the basis of the aforementioned arguments, I performed overlap-based tracking
with the following algorithmic strategy.

A preliminary step consists in assigning, for every frame, a label to each segmented
region, which is used to refer to a specific region within a frame. For each bina-
rized frame Ij,gic, a labeled copy Ijzpel is saved where, while the background pixels
still assume value zero, pixels of different regions assume different integer values
corresponding to the respective region labels.

Consequently, a first step of tracking creates a data structure for each segmented
object in the first frame (t = 0), intended to collect the whole variety of computed
informations about the object through the frames; thus, assigns to each a unique ID
number, stored in the structure together with the region properties (e.g. boundary
points and centroid coordinates) in such frame and other metadata.

Starting from the second frame (t = At), a sequence of mathematical operations,
cycled over all the frames, identifies the inter-frame region connectivities:

An overlap matrix is obtained via the logical operation

IA(t) = Ilogic(t) A Ilogic(t_At)
This matrix is used to sample the labeled images (o Hadamard product)
12%(t) = TA(t) © Taperl(t—AL),  TY(t) = TA(t) © Tiaper(t)

At this point I can define an inter-frame connectivity tensor, representing the pixel-wise
coupling between labels, by merging the two matrices into a third-order tensor

Cljp =10 (1 . [1abely;(t—at)
¢ n = (= '
Cijo =TI (1) ’ label, ;(t)

ij

An inter-frame list of object-to-object connectivities is finally obtained by cycling over
the elements CJ{J. and listing all the label couples without repetition.

At last, each object in the current frame gets identified as the one in the previous
frame whose label is connected to, and its features are added to the same data
structure.

Exceptions while tracking are treated as follows:

The analogy with the sampling of a 1-dimensional time signal (in the context of which the
Nyquist-Shannon sampling theorem is commonly introduced) gets more clear by imagining a 1-
dimensional version of such example, that is a line of object in close contact to each other, moving with a
given speed towards the same direction along the line axis: following a an object would be no different
than “following” the peaks of harmonics making up a time signal.



4.1 IMAGE PROCESSING

Figure 4.7: Accumulating plot of a cell’s boundary,
plotted every minute. The colour scale
encodes time, from blue (t = 0) to red
(t = 7min), so to visualize cell shape and
position evolving in time. The labeling of

\ boundaries, detected through consecutive
frames, as belonging to the same cell is
/ executed by the tracking algorithm.

* Region with no connection to any in the previous frame (new object appearing):
anew ID is created and a new data structure is initialized.

* Multiple regions are connected to a same one in the previous frame (e.g. cell
division): all of them are treated as new objects (new IDs and data structures are
created for each).

¢ A region connects to many previous ones (e.g. during cell contact with no
possibility of distinguishing the single bodies): the region is treated as a new
object and receives an ID and data structure.

After tracking, many informations on object motion (trajectory, estimated instanta-
neous speed) and shape dynamics (local boundary displacement) can be calculated by
different functions and stored in the respective structure.

Regarding the centroid speed, its instantaneous value is estimated via a centred
finite differences scheme over a smoothed version of the actual trajectory. In fact,
sudden changes in cell shape (as well as rare-yet-possible segmentation noise) can
reflect in abrupt displacements of the centroid, causing overshoot spikes of estimated
velocity which can alter significantly even the average velocity. Low-pass filtering
the real centroid track, with a moving average spanning a time frame comparable
to the characteristic time for protrusion maturation (~ 1/2 min [22]), solves the issue
by returning speeds more faithful to actual cell displacement (cancels out overshoots
without significant loss on random cell motion fine structure).

The algorithm for analysis of shape dynamics, instead, is a challenging issue on its
own, and it is the focus of another PhD project within our research group.

BOUNDARY REFINEMENT

The rationale behind the segmentation protocol previously discussed focuses on
consistent detection of objects, rather than high shape accuracy: although returning
generally good boundaries, it sacrifices some sensitivity in favor of much needed
detection robustness. This may make some difference in the data analysis outcome,
particularly when morphological transformations had to be used intensively (setting a
thick layer of pixels for dilation-erosion).

In order to address this weak point and obtain faithful cell shapes, I made use of
active contouring [74] for refining the detected boundaries of cells (exclusively, no need
of it for particles).

In an active contouring method, the boundary of an object is treated as an elas-
tic 1-dimensional body, representing a closed deformable curve lying on the image
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limage (X, y) and referred to as snake. A snake G, starting from a given shape, would de-

form under the effect of a force field f(x,y) stemming from the image, converging to a
shape that minimizes its energy functional, i.e. (Lagrange’s notation for differentiation)

1
E= L (3 (16 (5)112+ B 16"(5)1%) + Eimage((s)) ) s (4.1
where: s is the snake’s curvilinear coordinate; the terms 1/2 «||&'(s)||? and 1/2 |6 (s)||?
(o and P being axial and bending rigidities) represent respectively the tensile and
bending elastic energies, as derived in the context of continuum mechanics [65, 93];
Eimage(G(s)) is the so-called image functional [74], an external energy contribution
associated to the force field, calculated from the image to be minimal near features of
interest (e.g. edges).

The mathematical problem of functional optimization is addressed by the variational
calculus, which shows, among other things, that optimizing a functional of the type
S acL(T,q(1), q'(T),..., q™ (1)) dr is equivalent to finding the solution q(t) of an
associated Euler-Lagrange equation® [53]:

= dk /AL
Z(_”kd’tk<aq(k)) =0

k=0

Applied to the snake’s energy functional (4.1), this theorem leads to the equation

def

(VF—image = _F 10)

—

x6"(s) =B " (s)+f =0 (4.2)

[74], which has the form of a force balance. Accordingly, one can write down an
equation of motion for the snake:

0(G(s,t) = xd28(s,t) — BOtG(s,t) + f (4.3)

The solution ¢ minimizing the energy can thus be found by numerically integrating
eq. (4.3), i.e. iteratively solving its discretized counterpart over time steps, until the
snake stabilizes [74].

The potential of snakes in shaping into object boundaries within an image relies on
the choice of a proper force field f, able to attract and deform the snake so to conform
it to the object shape.

In literature there can be found several force field formulations, usually conservative
fields defined as f & —VEimage, with the image functional treated as a potential for the
force field. Among more sophisticated ones, the Gradient Vector Flow (GVF) field [170]

has been previously used by my research group in similar contexts, with positive

In the context of analytical mechanics, for example, the principle of stationary action translates into
an analogous optimization problem for the time integral of the Lagrangian function, leading to an
alternative formulation of Newton’s classical mechanics (so-called Lagrangian mechanics).

This is not always the case, since non-conservative fields may as well be used [126]. For a field f with
a solenoidal component, one can still adopt a force balance as in eq. (4.2), although this will not be
identical to minimizing the energy functional (4.1) since the image functional Ejp,ge can only encode, by
definition, the irrotational part of the force field [103].
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outcomes. In this formulation, F(x,y) = [fx(x,y) fy(x,y)] is defined as the vector
field minimizing the functional™*

= | [BUVEIR + 19 12) 4 17 Eimagell 7= (- VEimage | dxcty

with the image functional defined as Eimage (X, Y) = —||VIimage(x, Y) 2.1 opted for such
force field, making use of the algorithm for GVF force developed by Chenyang Xu
and Jerry L. Prince (to whose article please refer for further details) [170].

For each detected object in a given frame, a local GVF field is calculated and a snake,
initialized with the object shape as detected from segmentation, is let to evolve in it
according to eq. (4.3). Eventually, the approximate boundaries from the segmentation
procedure finely adjust to a tight match of the cell perimeter. An example of such
procedure is shown in figure 4.8.

4.2 ANALYSIS OF CELL-CARGO DYNAMICS AND INTERACTION

All of the algorithmic strategies discussed in this section have been implemented in
the form of MATLAB (MathWorkse Inc.) custom code.

RELATIVE DYNAMICS

Evidence on distinct dynamical patterns of particle displacement over the cell body,
seemingly correlated with the dynamics of cell cytoskeletal machinery (see Section 5.1),
has been the main drive leading towards an in-depth analysis of the cell-cargo relative
motion.

In order to focus on the relative motion between the carrier (cell) and cargo (particle),
often hard to discern from the convoluted overall motion of the two bodies, plots
have been made for the visualization of cell (centroid) trajectory in a relative frame
of reference, firm with the particle centroid. Specifically, the time-evolution of the
2-dimensional variable

Falt) = —l0A®M) * —[R)—F1)]  R@) = ["Pd(”] D F() = ["CG”“)]
ypcl(t) ycell(t)

is displayed in the x,¢-Yrel space, with color-encoded time so to grasp dynamics.
The choice of showing the cell relative motion with respect to the particle ¥y (t) =
—1pA(t) rather than its opposite is, of course, purely arbitrary and irrelevant with
regards to relative motion analysis: here, the preference is rooted into an instinctive
tendency of looking at the motion of the one only active body involved. However, this
same tendency lead to the choice of its counterpart 1y A(t) € R(t) — F(t) in the context

of modeling (see Section 7.1), which is why T is here introduced with respect to it.

From the GVF functional one can spot two distinct terms: ||VEimage||2 [ — (—VEimage) > conforms the

force field to the traditional f —VEimage, in the vicinity of features of interest (where ||VEimagel| is

high, i.e. edges); u(||Vfx||? + || Vfy||?) “diffuses” the perturbation on the field stemming from features (it
smoothing parameter), increasing their range of action. In fact, the associated Euler-Lagrange equation is
a diffusion-reaction p.d.e. .
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Figure 4.8: a Close-up on a cell, with colour scale encoding the absolute value of the image
functional [Ejmage(x,y)| = HVIimage(x,y)Hz. The image Ijmage underwent a fine-
grain median filtering (impulsive noise removal) and contrast enhancement, prior
to calculation of the image functional. b Vector map of the resulting GVF force
field, with ¢ showing a close-up on a protrusion. d Visualization of the process of
mechanical deformation of a cell boundary, under the effect of the force field. From
red to blue, the approximate boundary (in red, here on purpose overly inaccurate)
gradually deforms (in green, intermediate state) to converge into a more accurate
cell shape (blue).

The time-evolution of the relative (scalar) distance ||[R(t) — 7(t)|| = ||Fwe1(t)]| is also
being plotted, so to have a straightforward read of the intermittent behavior displayed
by the system (see Section 5.1), without the additional information on orientation and
rotational noise.

For an understanding of the type of dynamical process dictating such relative
motion, and a possibly more thorough comparison among different cell-cargo systems,
Recurrence Plots (RPs) have been generated from the time evolution of the cell relative
position.
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RPs graphically represent time correlation in a dynamical system by means of a
matrix of self-similarity, calculated over a time series of a system’s phase space'”
vector X(t): self-similarity of the system in two different time instants t; and t; is
quantified by their distance in the phase space I(t;, t;) = [|X(t;) —X(t{), usually with
Euclidean metrics [47, 95]. Such approach for dynamical analysis is in fact powerful yet
simple, overcoming some limitations of other more complex methods for dynamical
parameters computation [47]; at the same time, conversely to a typical autocorrelation
function’3, it describes time correlation without requiring time averaging.

I applied this data analysis technique by defining the cell-cargo relative coordinates
as phase space of the dynamical process, thus using the cell relative position ¥y as
phase-space vector. As a consequence, the normalized difference in relative position
between two times HE (t)— A (tj)|| measures for the index of similarity I(t;, tj).

Recurrence plots have been used to analyse the relative scalar distance ||Tye(t)]| =
lo||A(t)] as well, mainly for comparing to the ones for its vectorial counterpart, so to
grasp some additional knowledge on rotational noise and the reorientation process
(see Section 5.2).

Figure 4.9 shows a summary of the relative dynamics analysis for a given cell-cargo
system.

For the experimental estimation of rates of occurrence A and time duration Trey
of the reorientation process, detection of reorientation events was performed with
two distinct strategies: thresholding the || (t)|| time signal via Otzu’s method (de-
scribed, in the context of image segmentation, in Section 4.1); binarizing (again, by
Otzu thresholding) the Recurrence Plot for || (t)||, where such events appear as a
distinct horizontal /vertical bands of sudden decorrelation. The two methods provided
consistent event counts. Their time duration was measured over the thresholded time
series, as the time spent under threshold for a given occurrence.

As sudden changes in cell shape can cause abrupt displacements of the cell centroid,
relative distance time series may appear noisy, making difficult at times to distinguish
reorientation events, as fluctuations near threshold may cause e. g. multiple crossings
of the latter during a single reorientation. In order to reduce sudden, non reorientation-
related fluctuations in relative distance, time series of ||Tyei(t)|| have been low-pass
filtered prior to thresholding/RP-based count. Specifically, I employed a moving
average, spanning a time frame comparable to the characteristic time for protrusion

In the context of dynamical systems theory, a phase space is a normed vector space built upon the
whole set of N variables describing a dynamical system: each physical variable acts as space coordinate,
leading to an N-dimensional vector space in which all possible states of the system are represented.
As a consequence, the state of a dynamical system is represented by a unique set of coordinate values,
namely a point in the phace space, whose time-evolution depicts the system’s dynamics. As an example,
in analytical mechanics, the Hamiltonian formalism describes the motion of a body in an alternative
2n-dimensional phase space (n generalized coordinates, n associated momenta), which generalizes the
Euclidean physical space by treating the associated momenta (here considered independent variables) as
additional coordinates. [110, 153]

Broadly speaking, a (time) correlation function is a mathematical tool measuring statistical (time)
correlation among variables of random/unknown processes. For a generic number N of variables

X;i(t), time correlation C(Xj,...,Xy) is quantified by their covariance <]_[{\l:1 (Xi(t)— (Xi)t)>t =
<H{\l:1 Xi(t)>J£ — HP:] (Xi)¢, usually normalized by the product of their standard deviations. Par-

ticularly, when calculated between a signal X; = X(t) and a delayed copy X, = X(t — ), it defines the
function C(8) called autocorrelation function. [114]
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Figure 4.9: Overview on the type of information, regarding cell-cargo relative motion, extracted
from simultaneous tracking of cell and particle. a Evolution of the cell relative
position ¥ (t) around the particle position. Time is colour-coded, from blue to red.
b Plot of the corresponding time series of relative distance ||T;e(t)]|. ¢ and d are the
corresponding Recurrence Plots, respectively, for Ty (t) and ||Tiel (t)]|. The measure
of similarity I(t;, t;), properly rescaled, is colour-coded from dark blue (I = 0, high
similarity) to light yellow (I = 1, low similarity).

maturation (~ 1/2min [22]): as already discussed for the measurement of cell speeds
in Section 4.1, such time filtering solves this type of issues by returning trajectories
more faithful to actual cell displacement.

By collecting counts of reorientation events from several time series, and classifying
them on the basis of particle size, I could carry out a Maximum Likelihood Estimation
of reorientation rates, assumed Poissonian, for different cargo sizes. As illustrated in
Appendix A, by maximizing the likelihood for a Poissonian model n(t) ~ Pois(A) to
yield a measured occurrence count, one eventually comes to the following estimates
for the rate parameter A and its standard deviation oy :

i:Zini A

LS, e

with ny and T; respectively event count and time duration of a given time series i.
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COUPLE INTERACTION

The physical quantity represented by Foi(t) = —LloA(t), namely the cell-cargo
relative position, has been of interest for more than just dynamical features.

In fact, by binning a time series of ||Tyei(t)|| = Trel(t), one obtains a distribution of
counts, or frequencies, for the relative distance being within the range p® of the i-th
bin, i.e. n(re € p') = n(i); this type of information is commonly visualized as an
histogram.

Given a time series spanning a sufficiently broad time frame', so to sample a
window of the stationary dynamics for the process of interest, the relative frequencies
Z?Exi()i) obtained by this procedure will represent, according to the definition of
statistical probability’>, a time-averaged estimate of probability for the observable
(here being |71 (t)||) to measure within the i-th bin [25].

Further normalization of the relative frequencies by the bin width w; ultimately
provides a numerical estimate of the steady-state probability density function p(re):

n(i)

Wi Zi n(i)

ﬁ(rrel) dTrel = Trel € pl

Such empirical probability distributions are particularly valuable in light of their
connection with the system’s thermodynamics, as being observable manifestation of
the underlying interactions.

As a matter of fact the probability distribution of any physical quantity q, for
a system weakly coupled® with its surrounding and in thermal equilibrium with
it, is dictated by the energy landscape E(q), according to the canonical (or Gibbs)
distribution:

pla) = g PE( (4.4

withZ = | q e~ P E(3) normalization constant (so-called partition function), and '
relates to the noise power (energy scale for the fluctuations, ~' = kgT for thermal

I.e. longer than the characteristic time scale of the underlying physical process.

Statistical probability is defined as the long-run limit value of the relative frequency with which a
given event occurs, namely the limiting value to which the ratio of occurrence m would
converge for an hypothetical endless measurement/dataset. This empirical definition of probability
differs conceptually (and sometimes even practically) from its logical counterpart, the so-called inductive
probability: the two concepts define different schools of thought partially in conflict, and theoretical
conundrums still to be addressed. [25]

For two macroscopic systems in thermal contact with each other (meaning they exchange energy
exclusively at a microscopic/molecular scale, i.e. as heat) the overall hamiltonian can be written as
H = JO + 56 + A4 _5, with JA_, coupling term that adds to the unperturbed hamiltonians J#
and /% the two systems would have if isolated. The presence of this term reflects how the accessible
microscopic configurations for the two systems are dependent on each other, thus energy is not additive
and the numerosity of total possible configurations Q(.7) does not factorize. However, for intermolecular
interactions decaying whithin a distance of the order of few molecules (better defined in the context
of mean field theory), the coupling will involve a very limited number of molecules at the interface,
with negligible contribution to the energy of the two systems, exclusively allowing heat exchange
between them. It follows that microstates onfiguration Q; (%) for the single systems will not be
significantly affected by the thermal contact, and Q(J7) ~ Q4 (J7) - Q2 () ~ Q1 (FA) - Q (S — 577).
This condition, rather ubiquitous in statistical physics, is defined as weak coupling. [121]
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noise); this represents a pivotal result of statistical physics and direct consequence of
the fundamental assumption of statistical mechanics'” [84, 121].

A probability-energy relation as in equation (4.4) can actually be generalized to any
observable of a stationary out-of-equilibrium system, granted the probability current
for the observable goes to zero, namely, detailed balance® is satisfied [133, 176]. In the
specific case of the cell-cargo system, it is reasonable to say the relative distance dy-
namics satisfies detailed balance: as discussed in Chapter 5, 14(t) consistently shows
a steady and recurrent dynamics with no measured drift over time (as in figure 4.9b)
which, on the contrary, would emerge from a non-zero probability current™. This
gives credit to the estimate P(r.e), and enables the calculation of an effective energy
landscape @ for the relative distance by simply inverting equation (4.4):

p(rrel) :|

q)(rrel) = BE(Trel) = _log I:p(‘r 1)ref

where @ is an adimensional measure of interaction strength, leading to a radial
effective interaction potential for the cell-cargo couple, as previously shown in literature
in similar contexts [36]. In this expression, log [p(1re1)™!] is an arbitrary reference value
for the energy; I defined P(Trel)™ = p(Trel : Trel € ).

Figure 4.10 gives a glance at the workflow of such strategy for cell-cargo interaction
analysis.

The outcome of this approach for empirical estimation of probability distributions
and effective potentials is, to some extent, intrinsically dependent on the binning
procedure, that is the positioning of bin edges along the full range of 1, (t): the fewer
in number and wider are the bins that cover the range of measured values, the higher
the count each bin will contain, thus the estimated probabilities will be more reliable,
less affected by statistical fluctuations. However, increasing the bin width gives a
coarser, less resolved, probability distribution for the values of the observable. On the
other hand, distributions estimated via excessively fine binning are characterized by

The fundamental assumption of statistical mechanics consists in a foundational principle of statistical
physics, stating that «An isolated system in equilibrium is equally likely to be in any of its accessible
states». This translates into assuming a flat probability distribution for the Q(E) accessible micro-
scopic configurations of an isolated system with energy E, which implies a probability distribution

p(q)dq = Qé?g) for any generic physical quantity q of the system, called microcanonical distribution.

A microcanonical distribution for the energy Es of a system in equilibrium with its surrounding (keep
in mind, a system with its surrounding represents an isolated system by definition), weighting for the
degeneracy of microstates Q(Es|E), leads (under hypothesis of weak coupling) to the so-called canonical
distribution as defined by equation (4.4). [84, 121]

A stochastic process satisfies detailed balance when there are no net probability currents within its state
space. This is in fact a more stringent condition than stationarity.

For example, considering for simplicity a discrete-time Markovian process with a discrete state space,
an equation for the time-evolution of probability of state i will have the form P*(i) — Pt-1(1) =
Yzt (PT(K) - P(k — 1) =P 1 (i) - P(i — k)) (so-called Master equation), with P(k — 1), P(i — k)
transition rates responsible for probability currents to and from state i. As it can be easily seen from such
equation, stationarity requires only for the sum of all net probability fluxes to be zero, while detailed
balance forces each each single net flux (P=T(k)-P(k —» 1) = P*"1(1) - P(i — k)) in the sum to be zero.
In other words, detailed balance reflects a steady state with no circuitation of probability, namely a
conservative stochastic process. For a more advanced discussion, and its connection to thermodynamics
and equilibrium, see e.g. [61].

For a bounded 1-dimensional state space as the set R™, stationarity in the probability distribution can
only be achieved with no probability flow, that is when detailed balanced is satisfied.



4.2 ANALYSIS OF CELL-CARGO DYNAMICS AND INTERACTION

t [min]

Figure 4.10: Schematics of the cell-cargo in-
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being noisy and strongly sensitive to the specific value of bin width used, leading to a
lack in robustness of the whole analysis.

A proper binning relies on a trade-off between resolution and statistical significance,
basically choosing the smallest bin width possible still granting good estimates, so
to obtain the optimal distribution shape given a limited set of data. For this purpose
I made use of an automatic binning algorithm implemented in MATLAB (syntax:
histogram(r_rel, 'BinMethod’, ’auto’)), which uses constant bin widths optimized to
return the most faithful possible shape of the underlying distribution.

By binning altogether several time series within the same cargo size category, I
obtained population-wide probability distributions and effective interaction potentials
for each tested particle diameter.

To compensate for the limited yet present cell-to-cell variability in cell size (the
latter arguably acting as spatial scale of relative motion and affecting relative distance
distribution), thus making more consistent ensemb]e statistics, values of each 1.(t)
time series have been normalized by the respective average cell radius, defined as the
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radius Peept = 1/ Acent /7 0f a circle with area equal to the average projected area Acell
of the cell during a given measurement.

As stated in Section 3.3, the time-lapse recording of different experiments has been
carried out using no universal frame rate. As a consequence, time series have been
downsampled when necessary, in order to match the lowest frame rate used ((10s)~"):
by having identical sampling density, equal time intervals from different measurements
in an ensemble are always granted equal weight in shaping the population-wide
distribution.

4.3 NUMERICAL STOCHASTIC SIMULATIONS

All of the algorithmic strategies discussed in this section have been implemented in
the form of MATLAB (MathWorkse Inc.) custom code.

SIMULATING THE coarse—grained MODEL

As thoroughly discussed in Section 6.1, my proposed coarse-grained mathematical
model describes the motion of the cellular truck center of mass X(t) as governed by
the following Langevin equation®:

&%) = vis] - PIO(0)] + /2D Eie(1) @3)

where: v/2Dint &int(t) describes a Gaussian 8-correlated noise, with zero mean and
standard deviation (i. e. noise amplitude) v/2Din; Vsl - Pl (t)] represents the active
term encoding for the peculiar intermittent dynamics of the cellular truck, and is
therefore dependent on which behavioural phase the truck is at time t.

According to the model, the three behavioural phases §, R and M (introduced
and described in detail in Section 5.1) define a Markov chain®' for the cellular truck
(depicted in Figure 6.1), where transitions among different phases of the system are
assumed to be Poisson processes thus stochastically occurring with constant rates. As a
consequence, dwelling times for the system in any phase are exponentially distributed.

Every occurrence of phase R is bound to trigger a random reorientation of the
truck’s polarity vector pld(t)]:

SRV M—-R =—=b—>>bd+0p

The truck velocity v[s] is treated as a dichotomous variable, with a switch s that
makes it non-zero during phase M only:

s 0 s = 1 (behavioural phases 8, R)
v[s] =

Vriun 8 = 2 (behavioural phase M)

See Section 2.1 for a brief introduction on Langevin equations.

A Markov chain is a stochastic model, often depicted as a directed graph, describing a memory-less
stochastoc process as sequence of mutually exclusive events or states, occurring with probabilities
depending solely from the state previously attained (namely, the Markov property) [58].



4.3 NUMERICAL STOCHASTIC SIMULATIONS

In order to simulate such Langevin dynamics, I developed an algorithm for numer-
ical integration of equation (4.5), inspired by the Gillespie algorithmic scheme [59].
Explicitly, given a fully polarized (phase M) cellular truck at time t with orientation
¢(t), and an index i(t) counting the occurrence of reorientation events:

1. generation of the time interval T;; 1 ~ Exp(A) before the occurrence of the next
repolarization/reorientation of the truck (decision on when to reorient);

2. generation of the change in orientation 6¢i1 ~ Unif(—7, 71) caused by the next
reorientation (decision on where to reorient);

3. generation of the time duration T{$"; ~ Exp (o) of the next reorientation event
(how much time it takes to reorient, i. e. the time spent dwelling in phase R);

4. numerical integration of the Langevin dynamics within the time interval [t, t +
(T + T

a) generation of the cell polarity persistence time T{} ~ Exp(&);
b) within [t, t + min{T; {1, T{{j}), numerical integration of equation (4.5) by
assuming s = 2 (phase M);

c) within [t + min{T; ¢, T{{5 1 t+ (Tiypy + I )], numerical integration of equa-

tion (4.5) by assuming s = 1 (phase § if occurring, phase R);

5. update orientation angle (¢ — ¢ + ddi 1) and index i (i — 1+ 1), thus repeat
from point 1.

My program simulates in parallel several cellular trucks, using vectorized code to
better exploit Matlab performances for matrix operations.

Particularly, the stochastic variables T;, 6¢, T{*V and T{"" are simultaneously gen-
erated for every occurrence i and all simulated systems, which lead to matrices as,

e.g.

T‘]/‘] cee -r],]\]ens

TNR,] e TNR;Nens

with Ng and Neps being the maximum number of simulated reorientations and the
population size, respectively.

As a consequence, the total time a system’s dynamics is simulated for is not a
deterministic parameter, since a maximum is fixed for the R phase occurrence counter
i rather than for time t. This also implies for simulations performed in parallel to
have generally different time lengths, distributed around an average duration of
Ng (A" + «~1): ensemble-averaged Mean Squared Displacements are calculated over
a time span corresponding to the shortest of the simulated tracks; diffusivity curves
D(A) are sampled by using values of N increasing with A.

The numerical integration of equation (4.5) is performed via a forward Euler scheme
for finite differences approximation of the time derivative [128], which leads to:

Ax(t) = R(t+ At) —X(t) = At-v[s] - Fld(t)] + \/2DineAt Cine(t)
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where the noise /ZDintAt Gine(t) results from summing over the multitude of inde-
pendent realizations of the process v/2Dint zint(t) within the time step At, hence again
a zero mean Gaussian noise*?, 6-correlated in between time steps.

To generate all stochastic variables, I used a pseudorandom number generator
algorithm [83] to numerically produce uniformly distributed random numbers in the
interval [0, 1] C R, thus I performed (when necessary) Inverse Transform Sampling
(or simply Inversion method) [42] over such numbers, so to remap them within the
domain of existence of the stochastic variable of interest according to the requested
distribution.

SIMULATING THE full-scale MODEL

As opposed to its coarse-grained counterpart, the full-scale model resolves cell
and particle dynamics, by means of a Langevin equation for the cell position ¥(t) and
another describing the relative motion:

(1) = visl-ple(t)] +V2DE,(t) (4.6a)
R=7+104, %E(t) =—u (A"(t) — A, [s]) +/2D A& A(1) (4.6b)

with R being the particle position.

Here, the variable s € {1,2} refers to the motile state of the cell only (persistent
motion when cell polarized, as in behavioural phases R and M), unlike for the coarse-
grained model where it acts as motility switch for the whole truck (persistently moving
only during behavioural phase M by definition). As a matter of fact, the value assumed
by s is determined by a different Markov chain (depicted in Figure 7.1), modelling the
alternation between non-polar and polar biophysical states of the cell, which dictates
an intermittent motion for the virtual cell in line with experimental evidence (see
Section 7.1 for further details).

An additional Langevin equation %(p(t) = V2D ¢ & (t) introduces some degree of
noise in the orientation of the cell’s polarity vector plep(t)].

The derivation and physical meaning of this mathematical model is thoroughly
discussed in Section 7.1.

Such two-body Langevin dynamics is simulated by numerical integration of equa-
tions (4.6), performed via a forward Euler scheme for finite differences approximation
of the time derivative [128], which translates in iteratively solving the following set of
coupled numerical equations:

Ar(t) = At-v[s]-Ple(t)] +V2DALS(t), A@(t) = /2DeAte(t)
AR(t) = Ar(t) + LAA(L), AA() = —a (A(t) = Aols]) - At+y/2D AA A1)

with ¢ ~ N(0, 1) for all noises, assumed independent and é-correlated in time.

As the Langevin equations are numerically integrated, the stochastic switching of
a cell’s motile state is simulated according to the Markov chain in Figure 7.1, set to
govern the active cell motion.

22 By virtue of the Central Limit Theorem [25].
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Specifically, a polarized cell (s = 2) may repolarize
{s =2, plol} = {s =2, plo']} ~ Pois(A)
or lose polarity
{s =2, plel} = {s =1} ~ Pois(o)

at random. This translates in a probability P[2 — (1 V 2)] = 1 —e~ (A 9)At that a
change in the current state of cell polarity (either repolarization or depolarization)
occurs at any time step, leading either again to state s = 2 or to state s = 1 with
conditional probabilities }\i—g and 575, respectively.

For a non-polar cell (isotropic, s = 1), repolarization

{s =1 —{s =2, plo'l} ~Pois(A)

is the only event possibly occurring, with a probability P[1 — 2] =1 —e At

time step.

The stochastic time evolution of the cell’s motile state is thus easily simulated by
exploiting uniform distributions®3: at each time step, a random number rnd uniformly
distributed in the interval [0, 1] C R is numerically generated, using a pseudorandom
number generator algorithm [83]; if rnd € [0, P], the cell switches from its current state.
If it were in state s = 2, another random number rnd is generated, then a decision on
which state to attain next is made with analogous strategy (rnd < [0, ﬁ] =>s=2-2,

rmd € (25, 1=s=2—=1).

at any

At every occurrence of repolarization (s = (1 V 2) — 2 ~ Pois(A)), the cell instanta-
neously polarizes towards the particle ¢(t) — 0(t) +n, with 1 ~ N(0,0.2) ; thus the
minimum energy relative position vector

o A(t)

Asls] = +ealdl = 1z s=1
_ﬁ[(p]/ S = 2
flicks accordingly.

The pull of the cargo over the cell, key feature of the cellular truck reorientation,
is consequently reproduced by the term —o (j(t) — Ay [s]) - At, encoding for the
cell-cargo mechanical interaction, with o dictating the time scale of such process.

It is worth of notice that the reorientation of the cellular truck (behavioural phase
R) is not “hardcoded” as a state in the Markov chain governing the active term, as it
is for the coarse-grained model, but rather emerges as a dynamical process during the
polarized activity of the cell (s = 2), driven by the encoded internal mechanics of the
cellular truck.

23 Given rnd ~ Unif(0,1) and x € [0, 1] C R, it results P[rnd € [0,x]] = fz; 1%0 d(rnd) = x.
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PHENOMENOLOGY OF AN AMOEBOID CELL-CARGO SYSTEM

5.1 A DETAILED LOOK AT THE CELLULAR TRUCK BEHAVIOUR

THE CELLULAR TRUCK

Figure 5.1 depicts a typical conformation of a cell-cargo system, referred to as
cellular truck (or simply truck) hereafter. Cellular trucks systematically exhibited
transient directed runs, during which the particle lies towards an edge of the cell
while the latter moves roughly in the opposite direction, displacing the cargo by acting
as a puller.

Figure 5.1: Dual-channel confocal imaging of a cellular truck, loaded with a 20 um spherical
polystyrene particle. In green, fluorescent cytoskeletal Actin. In grey-scale, the
signal from the transmitted light channel, mapping inhomogeneities in refractive
index along the optical path. The spherical particle creates a characteristic refraction
pattern, visible in transmitted light as a brighter central area (roughly correspond-
ing to the particle’s optical section at the focal plane) surrounded by a dark corona,
which fades gradually within the projected area of the particle (here highlighted as
a dashed azure circle). Overlaid in solid blue and red, respectively, cargo trajectory
(time duration At = 27 min) and detected cell boundary and speed vector.

The optical confocality of the imaging system (see Section 3.3) grants vertical
resolution, which in turn provided knowledge on the vertical positioning of the cargo
relative to the cell. The cargo has ever been found lying over the cell, interacting with
its dorsal surface as the ventral one adheres on the flat substrate (see illustration in
figure 5.2¢).

Given the non-specific adhesive capabilities of the amoeba Dictyostelium discoideum
(the cellular carrier), the binding of polystyrene microparticles (the cargo) to the
cellular membrane did not require any surface functionalization (in line with previous
studies [108]), whereas this may be required for specific applications depending
on the cell type. Here, the physical link between cargo and carrier is established
spontaneously as a cell gets in touch with a particle; following contact, the particle
adheres to the cell membrane, allegedly through van der Waals interactions [92], and
is thereupon subjected to forces exerted by the cell.
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Multi-channel live cell imaging recordings (see Section 3.3) involving the genetically
engineered Dictyostelium discoideum strain LimE-mRFP MyolI-GFP AX2, shed some
light on the underlying mechanisms governing the behaviour of a cellular truck.

This double mutant strain (described in Section 3.1) expresses different fluorescent
labels for Myosin II protein and F Actin-binding protein. As introduced in Section 1.3,
directed amoeboid locomotion involves a cycle of protrusive and retractive deforma-
tions, during which cell cytoskeleton symmetry is broken, particularly: Myosin II
tends to accumulate at the trailing edge of the cell, generating traction and pulling
forward the cell body; conversely, filamentous Actin-rich regions include Actin foci
(dense regions of Actin cortex at substrate-adhering sites [161]) and growing cellular
protrusions, the latters defining the leading edge of what results to be a polarized
cell [38].

Consequently, this type of experiments allowed the motions of cell and cargo to be
resolved while visualising the polarization of the cell cytoskeleton.

b

At=13min

Figure 5.2: a-b Multi-channel confocal microscopy images of cellular trucks, loaded with a
10pm and b 45 pm spherical polystyrene particles. Here, the double-mutant cell
strain LimE-mRFP Myoll-GFP AX2 has been employed as carrier, allowing visual-
ization of Myosin II (in red) and F-Actin (in green) proteins distributions. Overlaid
in solid blue and red, respectively, cargo trajectory and detected cell boundary
and speed vector. ¢ Three-dimensional sketch of a cellular truck moving over a flat
substrate; cell polarity is represented by color gradient within the cell body, as red
and green encode for Myosin-rich and F Actin-rich regions, respectively.

As shown in figure 5.2a-b, the aforementioned transient directed runs resulted to
be associated with a markedly polarized configuration of the cytoskeleton, where the
particle locates towards the rear edge of the cell, corroborating the role of the cell as
puller.

By simultaneously observing cytoskeletal dynamics and cell-cargo displacements, I
could identify three distinct behavioural phases, consistently emerging for all the tested
particle sizes, which are shown in figure 5.3a-c:
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e Stop (8) phase. The cell and the particle move around each other, keeping their
relative distance roughly constant, without significant net displacement of the
whole truck; in this phase, the cell shows short-lived if no cytoskeletal polariza-
tion. Trucks can dwell in such phase up to several tens of minutes.

* Reorientation (R) phase. The cell suddenly polarizes towards the cargo, crawling
underneath while pulling the latter towards its newly defined rear. This process
usually takes a few minutes; I define Ty, as its characteristic time duration, and
A as its rate of occurrence.

* Motile (M) phase. After such transition, a persisting cell polarization causes the
cell to keep moving pulling the cargo forward; this phase is usually associated
with significant displacement of the cellular truck. Once the cell spontaneously
loses polarity, typically in a few minutes, such persistent run ends and the truck
goes back to the phase § waiting for another reorientation event to be triggered.
The cell may also repolarize towards the cargo while being in phase M; in such
case, the truck ends its current run and directly jumps to the second behavioural
phase R.

t+2min t+5min

Figure 5.3: a-c Multi-channel confocal microscopy images of two cellular trucks, as they go
through the three behavioural phases. Particles with diameter of 10 pm and 75um
have been used as cargoes, respectively for the example on top and the one on
bottom images. For the latter, additional close-ups on cell cytoskeletal polarity are
provided. d Directed graph illustrating the connectivity among behavioural phases.
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The structure of such behavioural cycle, i. e. the connectivity among behavioural
phases, is graphically illustrated in figure 5.3d in the form of a directed graph.

This cyclic change of behaviour gives rise to a recurrent yet stochastic dynamics
for the cell-particle relative distance, as for the example in figure 5.4: the relative
distance consistently manifested steady and moderate fluctuations around a certain
preferred value, interrupted by recurrent abrupt decays, manifest of the cell transiting
under the particle as in phase R, occurring randomly with rate A. The average time
interval between consecutive downward spikes T = A~1, i. e. the waiting time between
cell repolarization/reorientation events, constitutes a time scale for the cellular truck
internal motion.

o
[=]

Figure 5.4: Time series of the rela-
tive distance r.q(t) =
[7(t) — R@)[, for a
cellular truck loaded
with a 45 pum particle.

distance |R — r| [pm]
S

time [min|

THE ROLE OF CONFINEMENT

As already stated, the interaction between cell and cargo has been found to occur
over the otherwise unconfined dorsal surface of the cell. In fact, the particle represents
an additional substrate to which the cell can adhere, and its presence on top of the
cell alters the otherwise flat geometry of the cell’s surrounding environment.

Three-dimensional reconstructions of cellular truck geometries, obtained by stacking
several consecutive optical sections of the system, clearly show the cargo as an
additional confining structure for the cell, as it can be appreciated from the example
shown in figure 5.5. No 3D reconstruction could be obtained for a truck while in
phase R or M, since the acquisition time for a z-stack of images (with z-sampling, field
of view and image resolution sufficient for my needs) required roughly 1 minute at the
least, too slow to image the system during such highly motile phases. However, during
recordings the cell always remained within the same focal plane, over the bottom of
the dish, while the particle visibly moved vertically during phase R (witnessed by
a change in time of the section of the particle being imaged), proving the cargo to
remain over the cell.

This evidence on cellular truck spatial configuration can account, at least quali-
tatively, for the characteristic motility behaviour observed during experiments: as
described in Section 1.3, amoeboid motility relies on cyclic cell shape changes to
propel the cell body, whose mechanics is governed by the adhesion pattern and me-
chanical stress of the cell [6, 9, 35]; as a consequence, the geometry of the surrounding
environment can strongly affect cell migration [20, 21, 44, 109, 119, 122].

In the specific case of cellular trucks, additional adhesion provided by a confining
particle may favour cell polarization by breaking Actin cortex symmetry(see Sec-
tion 1.3), thus promoting motility along the cell-cargo axis, as illustrated in figure 5.6.
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Figure 5.5: a Bottom view and b bottom-side view of a cellular truck three-dimensional geom-
etry, reconstructed by z-stacking optical sections. In green, the Actin cytoskeleton;
in grey scale, lower spherical cap of the particle, together with a circular halo
the particle creates at optical sections above its equatorial plane, as its shape and
refractive index mismatch cause lensing.

This may explain the spontaneous bursts of cell motility towards the cargo (phase R),
which drive cell transiting under it and give rise to the observed recurrent relative
dynamics; moreover, a typical persistence in cell polarity [62, 119, 125] would cause
the cell to keep crawling in the same direction for some time after transiting (as in
phase M), pulling the cargo forward and leading to net displacement of the truck.

Figure 5.6: a Schematic representation of the broken cytoskeletal symmetry of a cell interacting
with a particle. Here, small green circles on the cell membrane correspond to ad-
hesion sites (Actin foci [161]), while vectors represent motor-generated contractile
forces exerted on adhesion sites through the Actin network [139]. The same imagi-
nary cell-cargo system is depicted in b during the consequent reorientation event
(cell advancing towards the cargo while pulling the latter backwards); cytoskeletal
polarity is represented by color gradient, as red and green encode for MyosinlI-rich
(trailing edge) and F Actin-rich (emerging protrusions at leading edge) regions.

Driven by such interpretation, I developed prototypes of a microfluidic device aimed
to analyse the occurrence of confinement-triggered bursts in cytoskeletal polarization,
in a more simple and better defined confining geometry, to further investigate the
symmetry breaking in cell motility.
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These devices, realized by Soft Lithography as described in Section 3.2, consist in
microfluidic circuits for cells to move through, designed in 2 variants:

* An apolar design (figure 5.7a-b) consists in linear parallel channels with symmet-
ric constrictions, requiring the cell to squeeze in order to get through (square
section with side of 5 pm). This circuit has been conceived to test the emergence
of recurrent cell motion around a constriction, thus reproducing the cell-cargo
relative motion in a simpler 1-dimensional setting.

* A polar design (figure 5.7¢-d), similar to the previous but with asymmetric con-
strictions to possibly impose, solely by means of broken symmetry in substrate
geometry, directionality to the otherwise random motion of the cell, inducing
what we may call “stenotaxis”'. Furthermore, a maximum inter-constriction dis-
tance able to grant directional migration could provide additional information
on cell polarity persistence.

While I performed some preliminary experiments to test these prototypes, a proper
protocol has to be developed, particularly regarding the delicate procedure of de-
livering healthy cells in the microchannels; such prototypes may also be optimized
according to specific needs. This experimental platform, though stemming from my
findings on cellular truck behaviour, represents a separate and diverse branch of future
research, pointing to further understand the biophysics of amoeboid motion, hence its
further study has not been under focus within my PhD project.

Figure 5.7: Microfluidic circuit geometries, here shown from the corresponding master wafers
used for soft lithography, imaged in reflected light. Microchannels height and width
at constriction are both 5pm a Apolar design, with b close-up on a symmetric
constriction. ¢ Polar design, with d close-up on the asymmetric constriction it
features.

1 from ancient greek words stenos (narrow) and taxis (arrangement, used in the context of cell migration to
refer to directed/guided motion).



5.2 SHEDDING LIGHT ON CELL-CARGO RELATIVE DYNAMICS
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Figure 5.8a compares relative distance time series of cellular trucks loaded with
different particle sizes. While highlighting consistency in the qualitative features of
their dynamics, comparative analyses disclosed crucial differences from a quantitative
standpoint, with values of relative distance and time scale T both increasing with
particle size.

A more detailed look at the complex relative motion within the truck is provided by
the relative trajectories T (t) o #(t) — R(t), shown in tigure 5.8b. As it can be seen,
the cell tends to spend most of the time pulling the cargo randomly around itself,
keeping a characteristic distance; as a consequence, well defined arcs arise within
plots of relative trajectory, conferring a clearly outlined circular shape to the latter.

From time to time, the cell runs towards the particle, pulling the cargo to the
opposite side. This reflects as bursts in relative motion, with quick and relatively
straight runs roughly crossing the particle center.

The smaller the particle, the less prominent such pattern in the relative motion is,
as it can be appreciated from the noisy trajectories of the relative motion emerging
from measurements on 10 pym particle-loaded trucks.

Recurrence Plots (RPs) allowed a quantitative analysis of the whole cell-cargo
relative dynamics (see Section 4.2), granting insights on the type of dynamical process
governing such motion.

In figure 5.8¢ three examples of RPs are shown for the time evolution of the cell
relative position Ty (t), involving three different particle sizes, where the similarity
index I(ti, tj) = [|Tre1(ti) — Tre1(tj)]| is colour-coded.

Such RPs generally displayed a distinctive checkerboard pattern, with patches
of high similarity encoding for high time correlation, suggesting the presence of
metastable states (or attractors), among which the systems abruptly jumps. These
patches, often referred in literature as laminar phases [78], corresponded to dwells of
the system in M and 8§ behavioural phases, and usually showed gradual fading as the
truck goes from phase M (particle roughly fixed at the rear of the cell) to 8 (particle
pulled randomly around the cell).

Transitions between laminar phases emerged as well from RPs of the scalar relative
distance ||F(t)]|, illustrated in figure 5.8d: here, information over the angular coordi-
nate is lost and drastic decorrelation emerges exclusively during reorientation events
(behavioural phase R), as horizontal and vertical bands located at times of abrupt
decay of relative distance. The comparison, between these RPs and their counterpart
for the vectorial relative position, clearly showed the presence of rotational noise
particularly during phase §; this would make less predictable the direction a cellular
truck aligns to after the next reorientation event.

High laminarity patterns are representative of an intermittent dynamics [78, 95],
reminiscent of dynamical processes typical of non-linear oscillators and excitable
systems.

Laminar phases tended to be more defined and extended for bigger particles,
reflecting longer dwelling times at a preferred distance for cells around big cargoes,
consistently to the trend observed from 1, (t) time series. More faded and noisy RP
arose for smaller cargo sizes as 10 pm in diameter, in line with the simple observations
on relative trajectories discussed previously.
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Figure 5.8: Analysis of the relative cell-cargo motion for three cellular trucks, loaded with par-

ticles of different size. a Time series of relative distance. b Relative cell trajectories
with respect to particle position (colour-coded time, from blue to red). ¢ Recurrence
Plots of the time evolution of cell-cargo relative position ¥ (t). d Recurrence Plots
of the time evolution of cell-cargo relative distance 1. (t) = ||Tyel (t)||. Recurrence
plots colour scale: dark blue for I = 0, light yellow for maximum I.

Altogether, RP analysis suggests an intermittent relative dynamics, where dwelling
at a certain preferred distance (as in behavioural phases § and M) alternates with
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sudden relative motion bursts (behavioural phase ), eventually leading the system
back to such metastable relative distance but with generally different orientation of
the cell-cargo couple.

An experimental estimation of both reorientation rate A and time duration T, has
been performed over populations of cellular trucks, as described in Section 4.2.

02 T T T T T T T T
— I a
's 0175} } ]
<
P 0.15} .
E - . |
S 0.125} -
+~ ‘\
S % 1
5 R
'g 0.1 7 Figure 5.9: Statistics on occurrence rate and
] : time duration of reorientation
0.075 L % 4 events, for the three tested par-
P T T ticle sizes (10pum, 45pm and
4 N S e B — 75pm). Each data point repre-
. b sents an estimate of expected
g value over a population of 10
% 3+ E cellular trucks, recorded for 45
= | to 60 min. Bars refer to standard
g deviation.
B 2L Tl .
= R S
B
8
5
2 1+ 4
o
et
O 1 | 1 | 1 | 1 |

0 20 40 60 80
particle diameter d [pum|

The ensemble-averaged statistical estimates A reported a monotonic decrease with
the particle diameter, as visible in figure 5.9a, supporting the evidence from single-
system comparison.

No significant difference emerged for the typical time duration of the reorientation
process (i. e. the time a truck dwells in phase R) Ty when different particle sizes are
being used (figure 5.9b), suggesting this time scale to be independent from cargo
size, at least within the range of diameters tested. In fact, as a newly polarized
cell is pulling the cargo over its body from front to back, one would expect the
time it takes for an adhesion site to “flow” across the membrane, to be an intrinsic
feature of the cell cytoskeleton mechanics: the latter connects to such bundles of
transmembrane adhesive proteins (forming the so-called Actin foci [23, 161]), thus
imposes displacement on them according to motor-induced contraction of the Actin
network [139, 161]; as long as needed forces do not exceed motor capabilities, this
dynamics would be dictated by the Actin flow and relatively independent by opposing
forces from the cargo.
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5.3 CHARACTERIZATION OF CELL-CARGO INTERACTION

Figure 5.10 compares estimates of probability density function p(re) = p(||¥ — R]|)
and effective pair interaction potential ®(ry), inferred as described in Section 4.2, for
three cellular trucks loaded with different particle sizes.
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Figure 5.10: Estimates of probability density function for the cell-cargo relative distance, along
with the inferred effective pair interaction potentials, for three cellular trucks
loaded with particles of different size.

Distributions of probability for the relative distance consistently showed as markedly
peaked distributions, for all tested cargo sizes, with a negative skew (i. e. left-tailed
distributions) due to the reorientation events, as the cell suddenly moves away from
a preferred relative distance and crosses underneath the particle, while pulling the
latter towards its newly defined trailing edge.

Effective pair potentials revealed well-defined energy wells, locating farther and
deeper as bigger cargoes are used. Intuitively, this makes it harder for a cell to crawl
underneath the particle, implying, in turn, decreasing reorientation rates A with cargo
size, in line with the findings on cell-cargo relative dynamics discussed in the previous
section.

Population-averaged probability distributions and pair potentials, shown in fig-
ure 5.11a-b, confirm the evidence collected for single cell-cargo systems, suggesting
such probability and energy landscapes, together with their monotonic dependence
on particle diameter, to be systematic and consistent among different cellular trucks.

Interestingly, the ensemble-averaged potentials disclosed a distinct harmonic form
for the energy well close to the peak position, as highlighted in figure 5.11¢c. Here,
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s J—10pm
d =45 pm

effective potential ®

effective potential ®

cell-particle distance |R — r| (in cell radii)

Figure 5.11: a-b Population-wide estimates of probability density function for the cell-cargo
relative distance, along with the inferred effective pair interaction potentials. Each
histogram has been obtained from a collection of 10 cellular trucks, recorded
for 45 to 60 min, loaded with particles of a given size. In ¢, harmonic fit of the
effective potential well for the three distinct populations. Here, the potential shape
near the origin (left of the wells) is not being shown: it stems from the left tail of
skewed distributions, reflecting the crossing dynamics during reorientation rather
than motion around resting position (the energy well); hence, it is not considered
in the fitting as the two parts have different physical meanings.

effective interaction potential wells have been fitted with the following second-order
polynomial function:

2
(D(Trel) = k(rrel_lo) + @

representing the functional form of an harmonic potential with k, 1y and @ respec-
tively the elastic spring constant, resting position and energy minimum.
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As illustrated in figure 5.12, the fitting procedure suggests monotonic scaling with
respect to cargo size for all three fitting parameters, quantitatively validating the
evidence of farther and deeper interaction potential wells for the cell-cargo couple as

bigger particles are used.

Figure 5.12: Harmonic fit parameters as function
of cargo size, obtained from the fit-
ting in figure 5.11c.
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Overall, the outcomes from cell-cargo interaction analysis endorse a description
of the convoluted cell-cargo relative motion as a Brownian-like random motion,
confined around a resting position at distance 1o by an harmonic potential well,
during behavioural phases 8 and M; upon cell repolarization (beginning of phase R),
such metastable relative position may switch to a newly defined location on the cell
trailing edge, again at distance 1o, thus driving the truck reorientation.

The relative dynamics analysis discussed in the previous section, besides agreeing
with such idea as an intermittent behaviour is disclosed, allows to discern phases &
and M, as the system shows more rotational noise while dwelling in phase 8: once
cell polarity is lost, it is reasonable to consider the cargo resting position no more
constrained with respect to the angular coordinate, given the temporary isotropy of

the cell.



COARSE-GRAINED MODELING OF CELL-CARGO SYSTEMS

6.1 CONCEPT AND STRUCTURE OF THE MODEL

Qe
N

Figure 6.1: Markov chain for the coarse-grained physical model of a cellular truck, built upon
the experimentally observed behavioural phases (see Section 5.1).

A first, straightforward way to model the motile behaviour of cellular trucks is to
imagine it as an active Brownian particle (ABP) [91, 134], thus build a phenomeno-
logical model for self-propelled random motion upon the experimentally observed
behavioural phases (the latter introduced in Section 5.1 and illustrated in figure 5.3).
In fact, by assuming the occurrence of any behavioural phase a memory-less stochastic
process, occurring with a probability depending solely from the phase previously
attained, such phases directly translate in states of a Markov chain’, which dictates
the law of motion of the truck as a whole.

According to this idea, the two-body cell-cargo system is coarse-grained into a single
particle, where the truck internal structure is reduced to a unit vector p encoding for
the truck orientation (namely, the cargo-to-cell axis). The effect of the truck internal
dynamics on overall motility is, thus, explicitly embedded as an active term in a first
order Langevin equation® for the motion of the cellular truck center of mass X(t) (i.e.
the surrogate ABP).

1 A Markov chain is a stochastic model, often depicted as a directed graph, describing a memory-less
stochastoc process as sequence of mutually exclusive events or states, occurring with probabilities
depending solely from the state previously attained (namely, the Markov property) [58].

2 See Section 2.1 for a brief introduction on Langevin equations.
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Specifically:
%%(t) = vis) Bl ()] + v/2Dim Eime (1) (6.1)
where:

 /2Dint Ein(t) encodes for intrinsic randomness in truck motion, here simply
treated as an additive Wiener process [46] perturbing cellular truck trajectories;
explicitly, it consists of a Gaussian d-correlated noise, with zero mean and
standard deviation (i. e. noise amplitude) /2Djy;.

e v[s] - pld(t)] represents the active term encoding for the peculiar intermittent
dynamics of the cellular truck, and is therefore dependent on which behavioural
phase the truck is at time t.

The three behavioural phases 8, R and M define a Markov chain, depicted in
figure 6.1, which models the stochastic succession of distinct motility states for the
surrogate ABP. Accordingly, such Markov chain governs the time evolution of the
active term to reproduce the experimentally observed truck behaviours:

e The truck velocity v[s] is treated as a dichotomous variable, with a switch s that
makes it non-zero during phase M only:

0 s = 1 (behavioural phases 8, R)

v[s] = (6.2)

Vrun S = 2 (behavioural phase M)

* Every occurrence of phase R is bound to trigger a random reorientation of the
truck’s polarity vector pld(t)]:

SRV M—->R =bd—d+0d

Transitions among states, emulating the occurrence of the distinct motile behaviours
in a cellular truck, are assumed to be stochastically occurring with constant rates;
hence, they are modelled as Poisson processes:

8§ >RV M — R ~Pois(A)
R — M ~ Pois(x)
M — 8§ ~ Pois(5)

with A = 171 and & = 1;,], respectively, rates of occurrence and completion (reciprocal
of time duration i.e. dwelling time in state R) of reorientation events (modelled by
state R), as defined in Section 5.1. The rate & is defined as the reciprocal of a time
scale Trun (dwelling time in state M), describing intrinsic persistence in cytoskeletal
polarity [62, 125]: it accounts for the lifetime of cell polarity observed after termination
of the polarization-promoting stimulus (cargo being towards the front of a polariz-
ing/polarized cell), namely, upon cell transiting under the particle (termination of
phase R).
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6.2 MODEL PREDICTIONS

In order to investigate its Langevin dynamics and eventually make predictions on
cellular truck spreading, I performed computer simulations of this coarse-grained
truck model by numerical integration of equation (6.1), as discussed in Section 4.3.

-40+

-60t
-20

z(t) [pm]

Figure 6.2: A cellular truck trajectory I simulated according to the coarse-grained model

(time duration 120 min). In red, truck orientation vector p. Parameters set val-

ues: A = 5min)”!, « = 2min)~!, & = (6min)"!, viun = 6pmmin_1,

Dint = 1pm?2 min—', 8¢ ~ Unif(—m, 7), time integration step At = 0.1 min.

Experimentally measured values are adopted for all of the model parameters. The
velocity vrun of a persistently moving truck (state M) identifies with the average speed
of a Dictyostelium discoideum cell; thus, values between 4 ym and 10 um have been used,
according to literature [8] and in line with my measurements. As for the time scale
Trun, Necessary to define the rate 6 = ’tr_ull, I tested a range of values between 4 min
and 8 min obtained by simple observation from my recordings; such values of post-
stimulus polarity lifetime comply with literature, as directional memory/persistence
has been reported from ~ 2 min [62, 125] up to a few tens of minutes [63], depending
on stimulus nature and dynamics, substrate geometry, and the quantitative definition
of such biophysical feature adopted within the specific experimental context. The
remaining parameters are derived from my analysis of cell-cargo behaviour and
trajectories, as described through Chapter 5.

For the probability distribution of the truck reorientation angle 5¢, I adopted a
uniform distribution ¢ ~ Unif(—7t, 7t): in fact, as discussed in Section 5.2, the noise in
the relative motion plays a relevant role in randomizing the truck orientation among
distinct reorientation events; being the truck internal configuration not resolved in
this model, all information relative to this process is missing, therefore the choice of
the uniform distribution being the least assumptive3.

A uniform probability distribution over the variable domain, for a finite domain, maximizes the informa-
tion (or Shannon) entropy, therefore is the one with the least information content [37].
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The model predicts a diffusive long-time spreading dynamics as the truck’s ensemble-
averaged Mean Squared Displacement (MSD(t) = (X()?) ons), after an initial transitory,
grows linear in time. This can be appreciated in figure 6.3a, which further highlights
the dependence of the long-time truck diffusivity D from the reorientation rate A, as

the steepness of this linear regime is affected by the value adopted for such rate.
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Figure 6.3: a linear and b logarithmic plot of the Mean Squared Displacement time evolution
MSD(t) of coarse-grained modelled cellular trucks, for three different values of
reorientation rate A. All the other parameters are set as in figure 6.2. Each curve
stems from an ensemble average over 2500 simulated trucks. Simulations have been
initialized with the trucks being in state 8.

Being the two terms of eqn. (6.1) additive and uncorrelated stochastic processes, it
follows:

) =(([ visl powiac + | VI Emv at) ) =

0
=<(Ev[s] Flporar)’) + <(J: V2D Bt 1)) + 0 =

= (Xact(t)?) + (Kin(t)?)
which means their contributions to the MSD are additive as well. As a consequence, the

long-time diffusivity of the truck can be separated into two independent contributions:
(X(t)?) ~4D(A) t = 4(Dact(A) + Din)t.
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By plotting such MSD curves in logarithmic scale, the initial transitory can be better
resolved and the different dynamical regimes are identified, as the curve steepness
here reflects the scaling exponent. As shown in figure 6.3b, the system undergoes a
distinctive spreading process, characterized by an initial diffusive dynamics which,
within a time frame comparable with the time scale A~! = 7, goes through an
anomalous diffusion transient phase and eventually evolves back into a long-time
diffusive regime.

The simulations are initialized with the trucks being in state S, performing Brownian-
like diffusion by the action of the Wiener process v/2Djn¢ Eint(1); this explains the initial
linear scaling of the MSD(t) for small times. Within the characteristic lifetime of the
§ state, namely A~ a transition towards a faster scaling is in fact expected, as it
accounts for the active persistent motion gradually triggering as trucks get through
state R and reach state M. Eventually, the scaling becomes linear in the long-time limit,
once the stochastic process of truck reorientation relaxes?.

Interestingly, the intermediate anomalous diffusion regime features a scaling expo-
nent higher than one may naively expect. In fact, the active term in eqn. (6.1) drives
ballistic runs for trucks in state M, as it provides directed motion at constant velocity.
For an object performing ballistic motion, the Mean Square Displacement is expected
to grow quadratically with time (X(t)?> = vZ,,t?); here, the presence of the noise
V2Dint Eane (1) perturbs such ballistic runs with an additive contribution of pure diffu-
sive nature, which may only decrease the scaling exponent (to an extent depending
on the noise amplitude). Accordingly, one may expect the intermediate regime to
be superdiffusive (scaling exponent between 1 and 2). However, as highlighted in
figure 6.4a, simulations predict a faster scaling during this regime, with an exponent
greater than 2.

This “super-ballistic” behaviour, referred to as hyperdiffusive [144], becomes clear
once the overall population dynamics is taken into account. In fact, the trucks making
an ensemble initially in state § would not simultaneously reach state M, but rather
gradually as transitions between states are assumed to be Poissonian processes. Pre-
cisely, being p; the fraction of systems in state i, trucks starting in state § would leave
the latter with constant rate

d
_ = —)\
at Ps Ps

building up a sub-population of systems in state R

d B
PR = Aps — apr = e M apg

From here, trucks would gradually switch to state M, again with constant rate, leading
to the following dynamics of ballistic motion triggering;:

d _ —ot t (=Mt g XA —At —ot
dtpM_och—cx()\e Le dt)—r_)\<e —e )
1 _ _
— pM:m<O((1 — e )\t)—)\(]—e (Xt))

The recurrence of random reorientations over time randomizes the motion, back to a diffusive spreading.
For an explanation of random walks relaxation, see Chapter 2.
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Figure 6.4: Logarithmic plot of the Mean Squared Displacement time evolution MSD(t) of
coarse-grained modelled cellular trucks, for three distinct cases: a simulations
initialized in state §; b simulations initialized in state §, but run with no noise
(Dint = 0); ¢ simulations initialized in state M, no noise. All model parameters
(except for Diy¢ in panels b-c) are set as in figure 6.2. Each curve stems from an

ensemble average over 2500 simulated trucks.

which goes as t? + o(t?). The ensemble-averaged Mean Squared Displacement will
then grow as:

(X)) ens = Vens 2 + 4Dint t = Vi, pm - t? + 4D -

where the first term (contribution of the active term) goes as t* + o(t*), and sums to
the pure diffusive dynamics stemming from the noise v/2Djnt Eint(t) (second term). The
scaling exponent is then expected to be between 1 and 4, in line with the intermediate
scaling observed from simulations. Figure 6.4b confirms this argument, as simulations
with no noise (Diy = 0) display a short-time hyperdiffusive regime with scaling
exponent equal to 4, fading into the long-time diffusive dynamics.

It is thus revealed how, even though each single truck is either non-motile or ballistic,
the whole ensemble can manifest population-wide acceleration, depending on the
initial condition. For comparison, analogous simulations initialized in state M show
no hyperdiffusive behaviour (figure 6.4c), with an initial ballistic regime (all trucks
running ballistic) gradually evolving into the long-time diffusive dynamics.

In order to elucidate the impact of the reorientation rate A, key feature of the cell-
cargo system, on transport efficiency, I made predictions on the long-time diffusivity D
for a range of values of this parameter, hence sampling the curve D(A).



6.2 MODEL PREDICTIONS

\%

m o 4.5 [‘r‘l—‘:g |
o 6.0 42
x 7.5 40

min

diffusion coefficient D [m?/min]

s v
Tyyn= 8 min :

20

diffusion coefficient D [gm?/min]

1 10" 102

waiting time \™'=T [min]

Figure 6.5: Curves of predicted long-time diffusivity D(A) for a range of repolarization rates
A. Each curve refers to a different location in the parameter subspace Vrun-Trun,
pointing out the impact of cell biophysical properties on long-time transport. Solid
lines represent analytical solutions (eqn. (6.3)), while markers numerical estimates.
Values adopted for the remaining parameters are as in figure 6.2.

As it can be appreciated in figure 6.5, a non-monotonic dependence of D on A
emerged, featuring a single peak located at rates close to & = T, (precisely, around
(Trun + Trev) ™). Regarding the curve dependence on cell intrinsic features, the polarity
lifetime T,un resulted to affect position as well as amplitude of the peak, while cell
speed vryn regulates the amplitude only with no effect on functional shape.

Although such trend in long-time spreading may not seem intuitive at first, the
physical mechanism behind its non-monotonicity and peak location can be easily
grasped by means of a simple scaling argument.

In fact, two distinct time-scales are pivotal in determining the characteristic motile
behaviour of cellular trucks: the average time interval between truck reorientations
T = A", dictated by the rate at which the cell repolarizes towards the cargo and the
truck reorients; the lifetime of persisting cell polarity Trun = 6~ ', which determines
the average run time for the cellular truck after reorientation. To lowest order, one can

2
write the estimate D, ~ <1f;“> , where <lr2un> = (Vrun T)? is the mean square value of the

distance run between two reorientation events, and T is the average time the system is
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actually running before the next reorientation. In general T is different than T, since a
spontaneous decay of cell polarity may terminate the run before a new reorientation
event occurs. Specifically, T = min(T, Trun), and follows:

T T < Trun
Dact

TS T

which gives a diffusivity non-monotonic with respect to T and peaked around Trypn, in
agreement with simulations.

The presence of a finite time duration of the truck reorientation process Trey = 0t~
introduces a third time-scale, that changes the small 7 (i.e. high A) limit scaling and
leads to the actual peak shape and position (now located at (Trun + Trev) ):

1

2
2 T T < Trun, Trev
Do~ <Lrun>
act T+ Trey T Trev < T < Trun
-1
T T 2> Trun, Trev

This outcome complies with the analytical solution for long-time spreading of a
cellular truck, whose derivation by Dr. Robert Grossmann is presented in Appendix B:
trucks are in fact expected to follow a diffusive dynamics in the long-time regime, with
a diffusivity D which assumes, for a simplified description of the truck as presented
in this chapter, the following expression:

V. A [od 1
D =Dt ¥ AT ath 1= (cos 00

(Vrun : Trun)2 T 1 1

2 (T4 Trun)? T+ = " 1—(cos dd)
plotted as solid line in figure 6.5.

(6.3)
- Dint +

A fundamental result is drawn by recalling that, while & is an intrinsic biophysical
feature of the cell, A stems from the peculiar relative motion dynamics hence represents
information on cell-cargo interaction.

Such reorientation rate decreases monotonically with particle diameter, according
to my experimental findings (see Section 5.2); consequently, an optimal particle size for
cell-driven transport is predicted: smaller particles cause frequent reorientations thus
prematurely stopping the runs in between; on the other hand, bigger particles let
the cell-cargo system dwell into a non-polar, non-motile state which is inefficient for
transport.

Surprisingly, predictions are in line with independent experimental observations
from O. Nagel [107], which suggested a similar trend for the effective truck diffusivity
with respect to the particle diameter (see Section 1.3).Moreover, my simulations
returned realistic values of truck diffusivity, comparable with the estimates from O.
Nagel, and located its maximum near the value of A I experimentally measured for
45pm diameter particles, which consistently showed faster spreading in O. Nagel
experiments.

In conclusion, coarse-grained modeling of cellular trucks based on observed be-
havioural phases, even though simplistic, grasps the key aspects of cellular truck
motion, allowing predictions on spreading dynamics and long-time mass transport.
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7.1 ANATOMY OF THE MODEL
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Figure 7.1: Schematic illustration of the full-scale model’s key elements: the particle (cargo),
the cell (active carrier) and the Markov chain governing the motile behaviour of
the latter. The top three panels depict the configuration of the cell-cargo couple,
together with related geometric quantities (see main text), during the three distinct
behavioural phases (from left to right, phases 8§, R and M) manifested by the cellular
truck as a whole. Below, the Markov chain encoding for the alternation between
non-polar and polar biophysical states of the cell, which dictates its intermittent
motion. Brackets evidence the link between the truck’s behavioural phases and the
correspondent state attained by the cell.

The phenomenological physical model discussed in the previous chapter, referred
to as coarse-grained model, shed light on pivotal mechanisms governing the mass
transport of cellular trucks, bridging the dynamics within the cell cargo system with
the long-time spreading of the truck as a whole.

Notwithstanding, such model is by its nature unable to fully represent cellular
truck motility: being the two bodies making up a cell-cargo system coarse-grained
into a single entity, the internal structure of the truck is not resolved, as it is not the
convoluted motion dynamics at spatial scales comparable to truck size; this makes
intrinsically impossible to reproduce the relative cell-cargo dynamics and the fine
structure of cellular truck trajectories.

To address this issue, I developed a fully resolved, or full-scale, phenomenological
physical model of the cellular truck, as an evolution of the model previously discussed.
Here, cell and particle are treated as distinct bodies, and their motion is resolved
separately.
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The cell, being the active element of the truck responsible for transport, is modeled
as an active Brownian particle (ABP) [91, 134]. Specifically, its position ¥(t) is assumed
to evolve in time according to the following first order Langevin equation’:

%F(t) = v[s] - plo(t)] +V2DE(t) (7.1)

which consists of two additive stochastic processes:

e A Wiener process [46] V2D, (t) exemplifies non-persistent random displace-
ment of a cell; explicitly, it consists of a Gaussian $-correlated noise, with zero
mean and standard deviation (i. e. noise amplitude) v/2D.

e An active term v[s] - ple(t)] introduces intermittency in the cell motion; it ac-
counts for phases of persistent motility, with directionality dictated by the cell
polarity vector p.

The behaviour of this cell surrogate ABP is set to be governed by the 2-state
Markov chain in figure 7.1, built upon experimental evidence on amoeboid motion
(see Section 1.3) and in line with my observations (Section 5.1). Specifically, a cell may
attain two distinct motility states:

s=1 Isotropic state. This state describes a cell in the absence of cytoskeletal polarization,
characterized by non-persistent low motility. Accordingly, v[s = 1] = 0, and
displacements of the ABP stem exclusively from the Wiener process.

s=2 Polarized state. It models the persistent highly motile behaviour of polarized cells,
i.e. cells whose cytoskeleton is arranged in a typical asymmetric configuration
featuring a leading front edge and a trailing rear. The direction of cytoskeletal
polarization is encoded in the cell polarity vector p; v[s = 2] = vyun # 0 and the
active term in eqn. (7.1) provides transient bursts of motility with directional
persistency.

A polarized cell would eventually repolarize towards a new direction
{s=2,plol} = {s =2, plo'}

or lose polarity prior to the next repolarization
s=2,plol} > s =1} > {s =2, plo’

This translates in the Markov chain connectivity illustrated in figure 7.1. The stochastic
occurring of such events is assumed to be Poissonian:

s=(1V 2) — 2 ~DPois(A)
s =2 — 1 ~DPois(0o)

As discussed in Section 5.1, events of cell repolarization within a cell-cargo sys-
tem are intrinsically associated to the occurrence of cellular truck reorientations
(behavioural phase R). Consistently, the repolarization rate identifies with the reori-
entation rate A = 1!, as defined in Section 5.1 and analogous to the homonymous
parameter in the coarse-grained model.

1 See Section 2.1 for a brief introduction on Langevin equations.
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The rate o is here defined as reciprocal of the cell polarity lifetime, i. e. the average
time a cell, within a cellular truck, dwells in a polarized configuration. According
to the empirical findings discussed in Section 5.1, this time has to account for both
behavioural phases R (dwell time Trey) and M (dwell time Tryn), leading to a rate
0 = (Trev + Trun)_1 .

An additional Langevin equation %(p(t) = V2D &4 (t) introduces some noise
in the orientation of the cell’s polarity vector p[¢(t)], allowing to set the degree of
directional persistency during cell’s polarized runs.

The particle represents a passive element, whose displacement is direct consequence
of forces exerted by the cell. Following this argument, the cargo dynamics is described
from the cell standpoint:

R :?+10£

Here, the parameter 1y identifies with the preferred value of cell-cargo relative
distance discussed in Sections 5.1 and 5.2, and has been introduced in Section 5.3 as
resting distance between mechanically interacting cell and cargo. The data analysis
revealed its monotonic dependence with the cargo size, as bigger particles correspond
to higher values of 1.

The normalized relative position vector A encodes for the observed cell-cargo
relative motion: it should account for the relative distance fluctuations around 1o,
and for the recurrent bursts in relative motion associated to the behavioural phase R.
Consequently, the description of its dynamics A(t) required the adoption of a proper
phenomenological model for cell-cargo interaction.

As summarized at the end of Section 5.3, my experimental findings point towards
a confined random motion of the particle within an harmonic-like potential well,
at distance 1y from the cell, whose location around the latter changes as the cell
repolarizes.

Consistently, I adopted the following Langevin dynamics:

A = —a (A() — Aols]) + /2D aa(t 72)

with the term —«x (5 (t) — Ay [s]) encoding for elastic interaction within the cell-cargo

couple, and Ays] representing the resting position of the cargo with respect to the
cell.

As long as the cell is in an isotropic state (state s = 1), the cargo resting position is
not constrained with respect to the relative angular coordinate, thus randomly moving
around the cell at distance ~ 1p. At every occurrence of cell repolarization (state s = 2),
the resting position vector flicks towards a newly defined location on the cell’s trailing
edge. Accordingly:

A(t)
Agls] = PGS

Fluctuations in relative distance around 1y are generated by the Wiener process
V2D AL A(t) in eqn. (7.2), which enables particle random motion within the potential
well.
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The characteristic pull of the cargo over the cell during the truck reorientation (cell
repolarized = s = 2) is reproduced by the term —« (Z (t) — A [2]), essentially an
elastic force relocating the cargo towards the new resting position at — 1o p from the
cell. The parameter « (dimensionally [time] ") sets the time for such dynamics to
relax®, upon flicking of the resting position as the cell repolarizes. As a result, it is
dictated by the observed time scale for the truck reorientation process Trey (dwell time
of behavioural phases R), playing a role analogous to the one of the homonymous

rate ot = T, in the coarse-grained model.

The tendency of a cell to polarize towards the current position of the cargo (see
Section 5.1) is described by an instantaneous reorientation of the cell polarity vector:

Bt) = R(n)-Eal0(t)] = (“’SW +ﬂ]>
sin[0(t) + ]

where R(n) is a rotation matrix around a random angle n following a Gaussian
probability density function g(1) centred atn = 0.

In conclusion, the full-scale model here presented serves as a more detailed physical
description of the cellular truck.

Compared to the coarse grained model, no assumptions on truck behaviour are
hardcoded into the Markov chain of the ABD, as the latter simply describes general
features of amoeboid motile behaviour. The variable s here refers to the motile state
of the cell only (persistent motion when cell polarized, as in behavioural phases R
and M), unlike for the coarse-grained model where it acted as motility switch for the
whole truck (persistently moving only during behavioural phase M by definition).
Figure 7.1 graphically shows this concept.

The truck internal dynamics is dictated by a physical model for cell-cargo interaction,
derived from the analyses discussed in Sections 5.2 and 5.3.

7.2 in-silico MODEL TESTING

As for the coarse-grained model, I tested this more sophisticated physical model
by means of numerical stochastic simulations, integrating its Langevin dynamics as
described in Section 4.3.

Again, all parameters are set to realistic values, either experimentally measured by
me or taken from literature. See the related discussion in the first page of Section 6.2
for more details.

Simulations could reproduce the motion of the cell as well as of the particle it carries,
providing trajectories with a realistic fine structure.

As for the real system, “virtual” cellular trucks exhibited intermittent motion, where
phases of low cell motility and random relative motion are interrupted by recurring
transient directed runs, featuring the cell in a polarized, persistently moving state
which pulls the particle forward.

As it can be appreciated from eqn. (7.2), « represents the ratio between an elastic constant and a friction
coefficient.
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Figure 7.2: An example of cellular truck dynamics I simulated according to the full scale model,
for a time duration of 100 min. Here, the virtual cell (in light red, with polarity
vector P in red) is loaded with a virtual particle (gray, trajectory in blue) of 45 pm
diameter, hence a repolarization rate A = 0.1422 min~! and a resting distance 1y =

16 um are used, conforming to experimental observations (Section 5.2). The values

adopted for the other parameters are: vyyn = 6pum min~!, D =1 pmz min— T,

o=0.TImin"', Dy =0.1 min~!, «a =2min~', D4 = 0.04min~', n ~ N(0,0.2),
time integration step At = 0.1 min.

The same behavioural phases observed experimentally (see Section 5.1), sponta-
neously emerged here, as in the example shown in figure 7.3.

These outcomes witness faithfulness of the physics embedded into this model to
the actual behaviour of a cellular truck.

Likewise, the affinity between physical model and real system extends to a higher
level of detail, as the two-body cell-particle dynamics within the truck is quantitatively
reproduced.

In fact, once the cell-cargo relative motion from full-scale model simulations is
analysed, matching dynamical features emerge, corroborating the model performances
beyond a merely qualitative similarity.

Time series of the relative distance display the same characteristic intermittent
dynamics, with recurring pronounced downward spikes perturbing the fluctuations
around a typical distance ly. Consistently, such spikes correspond to repolarization
events during which the cell pulls the cargo from its leading to the trailing edge. The
associated relative distance histograms reveal a negatively skewed distribution with
a pronounced peak, conforming to distributions from experimental data. Relative
trajectories extracted from simulations retain the typical shape emerging from exper-
iment, approximately circular with occasional crossings due to cell repolarization.
In addition, the corresponding recurrence plots consistently display a checkerboard
structure, akin to the dynamical pattern manifested by the real system.

Figure 7.4 provides a direct simulation-versus-experiment visual comparison.
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Figure 7.3: Emergence of the three experimen-
tally observed behavioural phases
within full-scale numerical simula-
tions. From top to bottom panel:
phase 8 (time t, cell in a non-polar
low motility state, randomly displac-
ing the cargo), phase R (time t+
1min, cell polarizes and moves per-
sistently towards the current location
of the cargo, while pulling the lat-
ter towards its rear), phase M (time
t 4 5min, cell still polarized, carry-
ing the cargo by acting as a puller). T0pm
The time instants shown here be-
long to the same simulation as in
figure 7.2.

I
10 pm

I
10 pm

Concerning predictions on mass transport, the full-scale model exhibits a spreading
dynamics consistent to the one of the coarse-grained model, with an initial diffu-
sive dynamics followed by an anomalous diffusion transient, unfolding at a time
scale comparable to A~! = T and eventually leading to a long-time diffusive regime
(Figure 7.5a).

In analogy to coarse-grained simulations, I initialized full-scale simulations with
cells in isotropic, low-motile state s = 1, performing Brownian-like diffusion driven
by the noise v/2D &, (t); such diffusive cell motion is relayed by the cell-cargo elastic
interaction —o ( A(t) — € A) to the particle, hence providing a diffusive early-stage
particle transport (initial linear scaling of the MSD(t) for small times). As cells start
to polarize (s = 2, time scale T), they drag their cargo via the force —« (5 (t)+p [(P]>,
imposing a more persistent motion which translates in a different mass transport

dynamics with faster MSD(t) scaling. Eventually, the scaling becomes linear again in
the long-time limit, once the stochastic process of cell repolarization relaxes’.

Once more, estimates on long-time diffusivity predict a non-monotonic dependence
from the repolarization rate A, with curves D(A) peaked at rates corresponding to

3 The recurrence of random reorientations over time randomizes the motion, back to a diffusive spreading.
For an explanation of random walks relaxation, see Chapter 2.
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0 = (Trun + Trev) ! (Figure 7.5b). As a result, an optimal cargo size maximizing long-
time mass transport is again predicted, once the monotonic dependence of the rate
A from the particle diameter is taken into account (see Section 5.2). This finding is
quantitatively consistent with coarse-grained model predictions, and suggests the
same optimal value for A (hence, the same optimal particle diameter ~ 45 pm).

As already mentioned in the previous Chapter while discussing the coarse-grained
model predictions, an analytical solution for long-time spreading of a cellular truck
has been proposed by Dr. Robert Grossmann, and its derivation is illustrated in Ap-
pendix B. It conforms with the diffusive long-time regime predicted by the simulations,
and further provides an analytical expression for the long-time diffusivity D:

2 A o Da+A

V.
@ :D+ run .
2 A+5 a+A (Da+A)-(Dy+A+&+Agr)+ GAg

(7.3)

with & = 1), and g1 = ff . €0s (n) g(n) dn first Fourier coefficient of the probability
density function g(n) for the random contribution 1 to the repolarization angle.

A comparison between eqn. (7.3) and its counterpart for the coarse-grained model
diffusivity (eqn. (6.3)) pinpoints the equivalence between the two models in terms
of long-time mass transport predictions, as the coarse grained analytical solution is
nothing but eqn. (7.3) applied to a particular, simplified case*.

This long-time convergence between the two models stems from the empirical
fact that the cell-cargo relative motion affects transport in two ways: it dictates the
trajectory fine structure, which is not relevant for transport in the long-time limit,
and determines the direction the cell reorients to upon repolarization. It follows that,
as long as proper stochasticity is embedded into the reorientation 6¢ of the coarse-
grained ABP truck, the latter will spread as the full-scale model in the long-time
regime.

As confirmation, one may coarse-grain the full-scale model based on its manifested
behavioural phases (figure 7.3), which are the same shown by the real system, ending
with a coarse-grained model equivalent to the one described in the previous chapter.
In fact, the analytical solution for long-time spreading of cellular trucks has been
derived in Appendix B by partial coarse-graining, yet it acts as a general solution
perfectly matching with both coarse-grained and full-scale simulations.

In conclusion, the full-scale physical model presented and discussed in this chapter,
while performing as well as the coarse-grained one in providing realistic predictions
on long-time spreading dynamics, further succeeds in emulating the convoluted cell-
cargo relative motion, thus reproducing the random motion of cellular trucks down to
spatial scales comparable to the truck size.

The emergence of the same behavioural phases and dynamical patterns of relative
motion as the real system, together with the consistent predictions on long-time mass
transport, corroborates the fundamental hypotheses the model is built upon, and
provides further insights on the role of cell-cargo interaction in the spreading process.

In fact, applying eqn. (7.3) to the coarse-grained model: D = Dj,¢; D = 0; the change of description
of reorientations from @(t) — 0(t) +1 to ¢(t) — ¢(t) + 0 can be translated into Do = 0 and
n~mn—08p = g7 = —(cosd¢). This indeed returns eqn. (6.3).
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full-scale MODELING OF CELL-CARGO SYSTEMS

Simulation

Experiment

L 4 - e 4
25 a b 25 | f

T O} _

=

-

|

&

8

s

1)

Z

0 1 L 1 " 1 1 0 1 L 1 L 1 1
0 10 20 30 40 0.1 0 10 20 30 40 0 0.1
time ¢ [min] p(lr — R|) time ¢ [min| p(lr —R|)
T T T T
Cc
20
g H
= 0 =
| |
= E
-20 E -20
1 I 1 1
-20 0 20

time ¢ [min]

time ¢ [min]

time ¢ [min]

time ¢ [min]

Figure 7.4: Visual comparison between the relative cell-cargo dynamics extracted from a full-
scale numerical simulation (same simulation as in figures 7.2 and 7.3) and one
extracted from an experimental recording (particle diameter 45 um). a and e time
series of relative distance; b and f histograms of relative distance; ¢ and g relative
trajectory of the cell (¥ — R, frame of reference centred with particle), with colour-
coded time (from blue to red); d and h recurrence plots of the cell relative position
.o = F— R, where the similarity index I(t;, tj) = [|[Tre1(ti) — Frel(t;)| is colour-coded
(dark blue for I = 0, light yellow for maximum I).
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Figure 7.5: a Logarithmic plot of the MSD(t) for three different values of repolarization rates A.
All the other parameters are set as in figure 7.2. Each curve stems from an ensemble
average over 2500 simulated trucks. Simulations have been initialized with the
cell being in isotropic (non-polar) state s = 1. b Curves of predicted long-time
diffusivity D(A) for a range of repolarization rates A. Each curve refers to a different
value of the parameter vypn, to account for variability in cell velocity. Solid lines
represent analytical solutions (eqn. (7.3)), while markers estimates from numerical
simulations. Values adopted for the remaining parameters are as in figure 7.2.






FINAL CONCLUSIONS AND FUTURE PERSPECTIVES

In my doctoral project, I investigated the behaviour and transport mechanism of
a novel kind of bio-hybrid system, referred to as cellular truck, which exploits the
amoeboid motion of crawling cells to achieve active transport at the micro-scale.

I performed experiments that revealed a complex recurrent cell-cargo relative mo-
tion, together with an intermittent motion of the cellular truck as a whole. Particularly,
I observed recurrent cellular polarization towards the cargo.

Combining diverse data analysis techniques, I suggest the presence of cargoes on
amoeboid cells to act as mechanical stimulus leading cell polarization, thus promoting
cell motility and giving rise to the observed intermittent dynamics of the truck. This is
corroborated by state-of-the-art knowledge on the mechanics of amoeboid motility: in
fact, the cell shape changes occurring during amoeboid crawling depend strongly on
the adhesion pattern cells form with their surroundings; the presence of an additional
confining structure as the cargo provides additional surface for adhesion, breaks the
spatial symmetry and thereby promotes cell polarization. Such conclusion grants an
explanation for the characteristic motility behaviour displayed by cellular trucks, and
is further supported by the observed bursts in cytoskeletal polarity along the cell-cargo
axis, whose rate of occurrence resulted dependent on cargo geometrical features as
particle diameter.

In short, cell-cargo interactions play a main role in the emergent cellular truck motion
dynamics. Particularly, they can determine the transport capabilities of amoeboid
cells, as the cargo shape and size significantly impact the cytoskeletal activity and
repolarization dynamics along the cell-cargo axis, the latter responsible for truck
displacement and reorientation.

I furthermore developed a modelling framework, built upon the experimental
evidence on truck behaviour, that connects the relative dynamics and interactions
arising at the truck scale with the actual spatial dynamics and enables the prediction
of the long-time transport properties of cellular trucks.

The theoretical analysis clarified the role of cell-cargo interaction on mass transport,
unveiling in particular how the long-time transport efficiency is governed by the
interplay between the persistence time of cell polarity — a time scale determined by
intra-cellular processes — and time scales of the relative dynamics stemming from
cell-cargo interaction.

Both suggested models — a simpler one, based on a coarse grained description of the
cellular truck’s manifested motion behaviour, and a more detailed version (full-scale
model), which aims to account for the full spectrum of phenomenology — consistently
predict the existence of an optimal cargo size, enhancing the diffusivity of cellular
trucks.

Interestingly, such predictions are in line with previous independent experimental
data [107], which suggested similar truck diffusivities and optimal cargo size. Notably,
such independent data also reported loaded crawling cells to outperform unloaded
ones in terms of their long-time transport efficiency, as they scored higher effective
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diffusivities. This counterintuitive empirical evidence endorses, once more, the foun-
dational idea of cargo promoting cell motility, consequence of the symmetry-breaking
additional adhesion it provides.

In summary, my research work reveals the importance of cargo-carrier interactions
in the context of crawling cell-mediated particle transport and provides a prototypical,
multifaceted framework for the analysis and modelling of such complex yet to be
explored bio-hybrid systems and their perspective optimization.

TOWARDS IN VIVO MULTICELLULAR TRANSPORT

On its way through a living organism towards a target site, a drug-loaded mi-
croparticle would likely interact with a multitude of cells, as it crosses the crowded
micro-environments constituting most biological tissues. In addition, when the in-
flammatory/immune response is exploited as route of targeted drug delivery, the
particle is expected to be manipulated by a stream of chemotactically migrating cells
like neutrophils.

As discussed in Section 1.3, multicellular amoeboid cargo transport has been tested
and proven to be successful for guided (chemotactic) transport; yet, prior to my
work, it emerged as a seemingly inscrutable process, its high complexity hiding the
underlying fundamental mechanisms of transport.

My findings paved the way towards a mechanistic understanding of such means of
micro-transport, by shedding light on the processes governing single-celled amoeboid
transport, and providing quantitative tools for its estimation and predictions. At
this point, in order to address multicellular transport, the modelling framework I
developed must be further extended, by incorporating additional laws accounting for
cell-cell interaction and force sharing.

Regarding cell-cell interaction, I could sporadically observe it whenever, during a
recording, a second cell approached by chance the cellular truck of interest. I noticed
what seemed a short-range repulsive interaction, as cells had the tendency to reorient
away from each other upon contact.

In fact, this type of behaviour has been already documented for eukaryotic crawling
cells, and still draws the attention of the scientific community for its role in collective
migration during physiological and pathological processes [29, 40, 178]. A possible
next step could thus be to include an existing cell-cell repulsion model from literature.

More puzzling and unexplored is the inter-cellular force sharing, taking place as
multiple cells pull on the same cargo.

During my doctoral work, I performed a few recordings of amoeboid cargo transport
experiments using higher cell densities, collecting phenomenological evidence that
can be classified in two main categories: in some cases, cells tend to gradually align to
each other and successfully cooperate, pulling roughly towards the same direction
thus granting net displacement of the shared cargo; conversely, a persisting mismatch
of orientation among cells leads the latter to hinder each other, and cargo motion is
stalled in a Tug-of-War of stochastic nature, where cells compete for particle transport.

A closer look at minimal tugs-of-war (two cells competing for one cargo) suggested
a decisive role, on the fate of cargo displacement, for the maximal force a cell can
exert on the particle: if cell alignment does not occur first, at some point one of the
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Figure 8.1: On the left, three cells pull a particle in a cooperative fashion, providing cargo
transport (in blue, ~ 13 min recording of cargo trajectory). Conversely, in the
example on the right, two cells pull the particle in roughly opposite directions, thus
competing for the cargo; the latter is then stalled in a cellular tug-of-war, fluctuating
around its position with no net displacement over time (in blue, ~ 20 min recording
of cargo trajectory), as long as tug-of-war symmetry does not break.

two cells abruptly loses contact with the cargo and crawls away from it, hence letting
the winning cell handle the cargo.

Figure 8.2: In the left panel, a cell is shown performing active cargo transport, as it pulls on
a particle and provides motion (in blue, 27 min recording of cargo trajectory; in
red, cell speed direction and boundary). Upon encountering a second cell, the
carrying cell reorients away from it; however, the second cell had the chance to
adhere onto the cargo, and its pull is now hindering the first cell from moving
away with it (central panel, 10 min after left panel). It can be noticed how the first
cell stretches under the internal reaction within the emerged tug-of-war, with one
visible adhesion focus keeping hold onto the particle. Eventually, the tug-of-war
resolves, in this case with the previous cargo carrier losing hold and crawling away
(right panel, ~ 3 min after central panel).

Comprehensive physical modelling of multicellular transport requires, then, es-
timates of such maximal force, basically probing the effective interaction potential
(discussed in Section 5.3) beyond its steep harmonic barrier.

Attempts on max force estimation have been carried out by Oliver Nagel, using
optical tweezers to hinder the displacement of cargoes pulled by single cells; yet, they
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resulted to be not strong enough (for laser intensities unharmful to the cell) to keep
hold on the particle, and suggested maximal forces higher than 330 pN [107].

Here, I suggest to investigate the use of properly functionalized Atomic Force
Microscopes to address such force estimates: by fixing the particle on the extremity of
a tipless AFM cantilever, one may position the cargo on a cell and record forces by
the latter exerted. This type of experimental setup may actually allow for a variety of
different investigations, on cell-cargo interaction and cell motion under confinement,
given the control over the cargo it provides.

Figure 8.3: The illustration on the left depicts the spatial configuration of the proposed force
measurement experiment, based on the use of an Atomic Force Microscope (AFM).
The cell (in green) is put in contact with the particle, the latter fixed onto a cantilever
controlled by an AFM: such instrument can work both as actuator (brings the
cargo to the cell, and can impose forces/displacements) and as sensing device
(can keep the cargo in a fix position by feedback loop control, while recording
the reaction forces exerted). The panels on the right are pictures of an AFM
cantilever functionalized with a 45 pm diameter particle, that I realized as test
of feasibility at Max Planck Institute of Colloids and Interfaces, hosted by the
Mechano(bio)chemistry group (Dr. Kerstin Blank), upon suggestion of Prof. Dr.
Reinhard Lipowsky. The cantilever has been imaged by reflected white light through
a stereo microscope, while lying upside-down clamped to a support. Of the three
visible cantilevers, the central is the only functionalized, being 350 £ 5 pm long and
35+ 3pm wide, 2+ 0.5 pm thick. The lower panel is a higher magnified side view,
with close-up on the particle.

Finally, including chemotactic cell behaviour in the model would close the gap
towards the description of in vivo cargo transport, so to reproduce guided cellular
transport.
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MAXIMUM LIKELIHOOD-BASED ESTIMATION OF POISSONIAN
RATES

For a Poisson process n(t) ~ Pois(A), the probability P, (T) of counting n events within
a time frame T is equal to:

AT e—?\T
Pn (T) = ( ) '
n!
Thus, for a set of S independent measurements, each lasting for a time T, the likelihood

Z of observing a sequence of counts ng will be:
S

S ng ,—ATs
2 = [ Paumo) = [T 2L
s=1

ng!
s=1 s

If a Poisson process of unknown rate A yields such sequence of counts ng, the rate

parameter can be estimated by adopting a paradigm of maximum likelihood, i.e. by
finding the value for A that maximizes the likelihood -Z(A).

Since the logarithm is a monotonically increasing function of its argument, one may
as well find the maximum for log %"
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DERIVATION OF A FOKKER-PLANCK EQUATION FOR
CELLULAR TRUCKS

The analytical derivation here presented has been obtained by my colleague Dr. Robert
Grossmann, who I sincerely thank for this contribution to my research.

SIMPLIFIED TWO-STATE DESCRIPTION

A first theoretical estimation of the long-time dynamics of cellular trucks, based on
the physical model described in Section 7.1, can be obtained by assuming the following
simplifications: (i) in the isotropic state, the cell undergoes Brownian diffusion while
the cargo is located at a fixed distance from the cell, performing random motion
around it; (ii) in the polarized state, the cell performs a persistent random walk with
a fixed speed vryn and a finite persistence length parametrized by the angular noise
strength D ,, carrying the cargo on its back; (iii) events of truck reorientation — where
the cell tunnels underneath the cargo — are assumed to be fast processes compared to
other relevant timescales and are therefore assumed to occur instantaneously. This
corresponds, formally, to the limit & — oo, implying that we neglect the timescale of
the relative dynamics of cell and particle. A refined version of this derivation, taking
the finite reorientation timescale T,ey = ot~ ! into account, is discussed afterwards.

The simplified version of the Langevin model is mathematically reflected by the
following two coupled Master equations for the probability densities Py, to find a
particle in state 1 (isotropic state) and 2 (polarized state), respectively:

0Py (7, 0,t) =D{AP; + Da03P1 — AP + 0P, (F,0 — m, 1), (B.1a)

0tP2(F, @, 1) =DpAP2 + D 035 P2 — VeunPll VP2 — (A + 0) P,

m (B.1b)
+>\J d0 gl —0)|P1(F,0,t) +P2(F,0—m,1)|.
—7T

The vector T indicates the position of the cell at time t. We note, however, that the
long-time diffusion of cell and cargo is identical as they form a bound pair.

The observed dynamics of the cell-cargo truck at short timescales can be bridged
with its long-time diffusion by integrating out irrelevant, fast processes. This is
achieved by Fourier transform with respect to the angular variables via

£ (#,1) :r de eOP;(¥,0,1), (B.2a)
—7t
£ (7, 1) :Jn de e P, (F, @, 1). (B.2b)
—7t
The temporal dynamics of these Fourier modes reads
0™ =DiAf™ —n2DAf™ AR 4 (—1)vofy (B.3a)
Vo

0ty =Dy AT —n2D M = 2 vt et

2

(n) (n) (n) (B-3b)
— (A +0)f} +?\gn[f1 + (=1 }
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where we abbreviated the Wirtinger derivative V = 05 + 19y and the Fourier modes

7T

7T

gm:J mw”“MMZJ dn cos(mn) g(n) (B.4)
—TT —T7T

of the probability density function g(n) for the repolarization angle n, cf. Fig. 7.1.

In Fourier domain, the Master equations are thus transformed into an infinite hier-
archy of coupled partial differential equations. The advantage of this representation
is twofold: Fourier modes possess a direct physical interpretation, e.g. the densi-
ties ps(¥,t) = fgo) (¥, t) determine the local number of cell-cargo trucks in a certain
motility state s and the fields ms(7,t) = fg ) (¥, t) quantify the local mass transport.
Moreover, fast variables can be adiabatically eliminated, thereby allowing for a sys-
tematic reduction onto the slow modes. In this particular case, there is only one slow
mode, namely the total particle density p = p1 + p2 which is a conserved quantity.
Pathological cases may occur in singular limits, i.e. if certain model parameters become
nonzero. As long as all parameter values are nonzero, the particle density is the only
slow mode. Below, we aim at reducing the hierarchy [Eq. (B.3)] to the density only. At
first, we consider the dynamics of the densities p:

dtp1 = DiAp1 —Ap1 + 0p2, (B.5a)
0tp2 = DpApz — vrunR [Y*mz} — (A +0)p2+A(p1 +p2)

. (B.5b)
= DpAp2 — viunR [Y mz} —0p2+Apy.
The sum of these equations yields the dynamics
9¢p = DiAp1 + DpAps — Vpun® [Y*mz} (B.6)

for the total particle density p = p1 + p2; the absence of local terms in this equation
underlines that the density is indeed a slow mode.

The dynamics of the density is not closed but one has to find constitutive equations
for p1, p2 and m; as a function of the particle density. As we want to address the
density dynamics on large spatial scales in the long-time limit, it is sufficient to take
only the leading orders of spatial gradients into account. Formally, we apply the
scaling ansatz

pox 1, Ve, d¢ o €2, fgn) o gln! (B.7)

keeping all terms up to quadratic order which is the lowest nontrivial order. Notably,
this ansatz reflects diffusive scaling of length and time. Using this scaling ansatz, the
stationary solution of Egs. (B.5) yields

~ P, B.8
P13 P (B.8)
A
: . B-
P2 = 5P (B.9)

to first order. These constitutive relations for p; have a direct physical interpretation:
the fraction of particles in state one or two is proportional to the relative fraction
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of time spent in those states. Accordingly, we obtain the intermediate result for the
density dynamics

o A (+)
atp ~ le‘i‘ MDP:| Ap—vrunfﬁ[sz i|, (B.IO)
with a weighted diffusion coefficient and a second term stemming from active particle
transport in the polarized state.

Following the same strategy, we eventually find a closure relation for m; starting
from the dynamics of the Fourier modes withn =1

0tmq ~ —Dami —Amq — omy, (B.11a)
dimz ~ —Dma — 220 Vpy — (A+0) ma +Agy (M1 —m2) (B.11b)
which reads in matrix form as follows:
0
3 mi) _ Viun B Da + A o [ ‘ (B.12)
ms 2 \Vop ~Ag1 Dy +A+o+Agr/) \m

Using the scaling ansatz [Eq. (B.7)], the dynamics of the fields ms decouples from
higher order Fourier modes. Moreover, one can directly verify that both fields are fast
variables therefore justifying the adiabatic elimination 9¢ms ~ 0. Solving for ms, we
eventually obtain

my N_Vrun(vp> 1
my) 2 \*"2) (DA +A)-(Dy +A+0+Agr) + oAgy

Do +A+0+A —0 0
. ® 91 . (B.13)
Ags Da+A/) \1

and in particular the closure

Vrun DA+ A
~—5 v : B.
e 2 (sz) (DA +A)-(Dg + A+ 0+2Ag1) + 0Ags (B.14)
Inserting into Eq. (B.10) yields finally a diffusion equation to lowest order,
& q y y q
0tp ~ DAp, (B.15)

with the effective diffusion coefficient

A 2 A Da + A
D= ° D; + D, —i—vrun- : At .
Ao Ao 2 A+0 (Da+A):(Dy+A+0+Agr1)+ 0oAgy
(B.16)
The first term in brackets,
o A
Dy = D; D B.
W N Fe T Are (B.17)

is nothing but a weighted average of the diffusion coefficients in the isotropic and
polarized state. The second term is an active contribution,
Vin A Da +A

Da — run

2 A+0 (Da+A)-(Dy+A+0+Agy)+0Agr’

(B.18)
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due to the persistent motion of the cell in the polarized state. Accordingly, it is
proportional to the probability A/(A + o) to find a cell-cargo truck in the polarized
state. Notably, D, depends in a non-monotonic way on the transition rate A: it is
directly propotional to A for small values of A whereas it decays with A~! in the
limit A — oo. Therefore, there is a finite repolarization rate A which maximizes the
diffusion of the cell-cargo truck.

At optimal parameter values, the trajectory of the cell-cargo truck consists of straight
runs in the polarized state and reorientation phases while the cell is in the isotropic
state, reminiscent of a run-and-tumble motility pattern emerging spontaneously from
the cell-cargo interactions.

HEURISTIC THREE-STATE APPROACH

The calculation presented above is based on the assumption that reorientation
events, i.e. phases during which the cell polarizes and moves underneath the particle,
are faster compared to other relevant timescales and are therefore negligible. During
these transition events, the center of mass of the cell-particle truck is approximately not
displaced, only the relative positions of particle and cell are interchanged. Since these
events are not contained in such simplified derivation, the corresponding calculation
overestimates the diffusion coefficient. Below, it is presented a heuristic correction,
based on the idea that a run of the cell can be subdivided into two phases: first,
the polarized cell crawls underneath the particle to the other side (transition phase)
and, second, it moves persistently with the particle on its back (persistent run phase),
cf. Fig. 7.1. We furthermore consider the reorientation phase as an independent
behavioral state during which no active transport occurs as argued above but cell and
cargo change their relative positions. Accordingly, the rate 0 must only account for the
actual time T,yn spent in the persistent run phase of the truck: o = (Trun + Trev) ' —
& = Tryh. The Master equation describing the dynamics of this three-state model is
given by

0¢P1(¥,0,t) =D{AP; + Dad3P; — APy + GP2(F,0 — 7, ), (B.19a)
atPreV (?/ Q, e/ t) :DrevAPrev + )\9(@ - 6) [P1 (f'/ 9, t) + PZ (f'/ 0 —T t) - (XPrev
(B.19b)
0¢P2(¥, ¢, 1) =D, AP, + Dy a%pPz —VrunPle]- VP2 — (A 4+ 6) P2
(B.19¢)

7T
+0(J deprev(ﬁ 0, e/ t)/
—T7T

where the index “rev” denotes the reorientation phase with the mean lifetime o~ '.

The long-time dynamics of the particle density p(¥,t) of this refined model is still
diffusive. The reduction of the Master equations (B.19) onto the diffusion equation
follows the same logic as explained for the two-state case in the previous derivation.
For the three state model, the density dynamics reads

0tp1 = DiAp1 —Apy + 6p2, (B.20a)
OtPrev = DrevApPrev — XPrev +A(p1 + 02), (B.20b)
0tp2 = DpAp2 —viunR [Y*mz} — (A+8)p2 + xprev- (B.20c¢)
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yielding the intermediate density dynamics
0tp = DiAp1 + DrevAprev + DpApz — veunR [Y*mz} : (B.21)

To lowest order in spatial gradients, we obtain the following stationary solution of
Egs. (B.20) as constitutive equations for the density dynamics:

G o A A o

S+A atr > P =A Y PPENTE A

p1 p. (B.22)

In a second step, a closure relation for the field m; is found as outlined in the previous
derivation. Interestingly, the calculation leads to the identical result,

Vrun (sz) Da +A
2\~ (Da+A)- (Do + A+ T +Ag1) + dAgy’

my; >~ —

(B.23)

cf. Eq. (B.14), however, the expression for p, has changed. Inserting the constitutive
relations into Eq. (B.21) yields a diffusion equation with the diffusion coefficient D =
D,y + Dy with the weighted sum

G o A A o

D, — *py Ap o AN *p
I Sy R VI St LI WP b

(B.24)
of the diffusion coefficients in the individual motility states and the active contribution

m _vfun A lod Da + A
2 A+5 a+A (Da+A)(Dy+A+85+Agr)+FAgy

(B.25)

In the limit o — oo, this expression reduces to the result of the previous derivation
based on the two-state simplified model. The only difference is the correction fac-
tor «/(x 4+ A) which is equal to the probability not to be in the reorientation state,
i.e. the probability to be either in the isotropic or the polarized state.

Ultimately, if D; = Dyey = Dp = D as defined for the full-scale model of Chapter 7,
one obtains:

D:D+vr2““ A x Da+A
2 A+5a+A (Da+A)-(Dy+A+G+Agr)+ GAg

It should be mentioned that, in order to apply this solution to the coarse-grained
model discussed in Chapter 6, one must change the description of reorientations from
@(t)—0(t)+m to ¢(t) — d(t)+6¢d, which translates into Do =0 andn~n— 8¢ —
g1 = — (cos d¢). Hence, by setting D = Dj,s and D, = 0, one gets:

mn A x 1

v
D = Dy 4 Soun -
it T A1 6)2 at A T—(cos5)

101






BIBLIOGRAPHY

[1]

[10]

[11]

[12]

[13]

Loai KEA Abdelmohsen, Fei Peng, Yingfeng Tu, and Daniela A Wilson. “Micro-
and nano-motors for biomedical applications.” In: Journal of Materials Chemistry

B 2.17 (2014), pp. 2395—2408.

Michael Abercrombie. “The Croonian Lecture, 1978-The crawling movement of
metazoan cells.” In: Proceedings of the Royal Society of London. Series B. Biological
Sciences 207.1167 (1980), pp. 129-147.

Yunus Alapan, Oncay Yasa, Berk Yigit, I Ceren Yasa, Pelin Erkoc, and Metin Sitti.
“Microrobotics and microorganisms: Biohybrid autonomous cellular robots.” In:
Annual Review of Control, Robotics, and Autonomous Systems 2 (2019), pp. 205-230.

Bruce Alberts. Molecular biology of the cell. Garland Science, Taylor and Francis
Group, 2018.

Sergio Alonso, Maike Stange, and Carsten Beta. “Modeling random crawling,
membrane deformation and intracellular polarity of motile amoeboid cells.”
In: PloS one 13.8 (2018), €0201977.

Begofia Alvarez-Gonzalez, Ruedi Meili, Effie Bastounis, Richard A Firtel, Juan
C Lasheras, and Juan C del Alamo. “Three-dimensional balance of cortical
tension and axial contractility enables fast amoeboid migration.” In: Biophysical
journal 108.4 (2015), pp. 821-832.

Aniruddha C Amrite and Uday B Kompella. “Size-dependent disposition of
nanoparticles and microparticles following subconjunctival administration.” In:
Journal of pharmacy and pharmacology 57.12 (2005), pp. 1555-1563.

Gabriel Amselem, Matthias Theves, Albert Bae, Eberhard Bodenschatz, and
Carsten Beta. “A stochastic description of Dictyostelium chemotaxis.” In: PloS
one 7.5 (2012).

Revathi Ananthakrishnan and Allen Ehrlicher. “The forces behind cell move-
ment.” In: Int | Biol Sci 3.5 (2007), pp. 303-317.

Natalie Andrew and Robert H Insall. “Chemotaxis in shallow gradients is
mediated independently of PtdIns 3-kinase by biased choices between random
protrusions.” In: Nature cell biology 9.2 (2007), pp. 193—200.

Aaron C Anselmo, Jonathan B Gilbert, Sunny Kumar, Vivek Gupta, Robert E
Cohen, Michael F Rubner, and Samir Mitragotri. “Monocyte-mediated delivery
of polymeric backpacks to inflamed tissues: a generalized strategy to deliver
drugs to treat inflammation.” In: Journal of Controlled Release 199 (2015), pp. 29—
36.

Igor S Aranson. Physical Models of Cell Motility. Springer, 2016.

Yulia Artemenko, Thomas ] Lampert, and Peter N Devreotes. “Moving towards
a paradigm: common mechanisms of chemotactic signaling in Dictyostelium
and mammalian leukocytes.” In: Cellular and molecular life sciences 71.19 (2014),

pp- 3711-3747-

103



104

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

JM Ashworth and DJ Watts. “Metabolism of the cellular slime mould Dic-
tyostelium discoideum grown in axenic culture.” In: Biochemical Journal 119.2
(1970), pp. 175-182.

You Han Bae and Kinam Park. “Targeted drug delivery to tumors: myths,
reality and possibility.” In: Journal of controlled release 153.3 (2011), p. 198.

Dennis A Bazylinski and Richard B Frankel. “Magnetosome formation in
prokaryotes.” In: Nature Reviews Microbiology 2.3 (2004), pp. 217-230.

Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. “Multiple
object tracking using k-shortest paths optimization.” In: IEEE transactions on
pattern analysis and machine intelligence 33.9 (2011), pp. 1806—1819.

Alexander D Bershadsky and Michael M Kozlov. “Crawling cell locomotion
revisited.” In: Proceedings of the National Academy of Sciences 108.51 (2011),

pp- 20275-20276.

Mayank D Bhavsar and Mansoor M Amiji. “Polymeric nano-and microparticle
technologies for oral gene delivery.” In: Expert opinion on drug delivery 4.3 (2007),
Pp- 197-213.

Christoph Blum. “Curvotaxis and pattern formation in the actin cortex of
motile cells.” PhD thesis. Georg-August Universitat Gottingen, 2015.

Leo Boneschansker, Jun Yan, Elisabeth Wong, David M Briscoe, and Daniel
Irimia. “Microfluidic platform for the quantitative analysis of leukocyte migra-
tion signatures.” In: Nature communications 5.1 (2014), pp. 1-12.

Leonard Bosgraaf and Peter JM Van Haastert. “The ordered extension of
pseudopodia by amoeboid cells in the absence of external cues.” In: PloS one
4.4 (2009), €5253.

Till Bretschneider, Stefan Diez, Kurt Anderson, John Heuser, Margaret Clarke,
Annette Miiller-Taubenberger, Jana Kohler, and Giinther Gerisch. “Dynamic
actin patterns and Arp2/3 assembly at the substrate-attached surface of motile
cells.” In: Current Biology 14.1 (2004), pp. 1-10.

MARTIN L Brown and K ROBIN Yabroff. “12, Economic impact of cancer in
the United States.” In: Cancer epidemiology and prevention 202 (2006).

Michael George Bulmer. Principles of statistics. Dover Publications, 1979.

Eric ] Campbell and Prosenjit Bagchi. “A computational model of amoeboid cell
motility in the presence of obstacles.” In: Soft matter 14.28 (2018), pp. 5741-5763.

Rika Wright Carlsen, Matthew R Edwards, Jiang Zhuang, Cecile Pacoret, and
Metin Sitti. “Magnetic steering control of multi-cellular bio-hybrid microswim-
mers.” In: Lab on a Chip 14.19 (2014), pp. 3850—3859.

Rika Wright Carlsen and Metin Sitti. “Bio-hybrid cell-based actuators for
microsystems.” In: Small 10.19 (2014), pp. 3831—-3851.

Carlos Carmona-Fontaine, Helen K Matthews, Sei Kuriyama, Mauricio Moreno,
Graham A Dunn, Maddy Parsons, Claudio D Stern, and Roberto Mayor. “Con-
tact inhibition of locomotion in vivo controls neural crest directional migration.”
In: Nature 456.7224 (2008), pp. 957-961.



[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]
[40]

[41]

[42]

BIBLIOGRAPHY

Hakan Ceylan, Immihan Ceren Yasa, Oncay Yasa, Ahmet Fatih Tabak, Joshua
Giltinan, and Metin Sitti. “3D-printed biodegradable microswimmer for thera-
nostic cargo delivery and release.” In: ACS nano 13.3 (2019), pp. 3353-3362.

Chuanrui Chen, Xiaocong Chang, Pavimol Angsantikul, Jinxing Li, Berta
Esteban-Fernandez de Avila, Emil Karshalev, Wenjuan Liu, Fangzhi Mou,
Sha He, Roxanne Castillo, et al. “Chemotactic guidance of synthetic organic/i-
norganic payloads functionalized sperm micromotors.” In: Advanced Biosystems
2.1 (2018), p. 1700160.

Guanying Chen, Indrajit Roy, Chunhui Yang, and Paras N Prasad. “Nanochem-
istry and nanomedicine for nanoparticle-based diagnostics and therapy.” In:
Chemical reviews 116.5 (2016), pp. 2826—2885.

Andrey G Cherstvy, Oliver Nagel, Carsten Beta, and Ralf Metzler. “Non-
Gaussianity, population heterogeneity, and transient superdiffusion in the
spreading dynamics of amoeboid cells.” In: Physical Chemistry Chemical Physics
20.35 (2018), pp. 23034—23054.

Mi-Ran Choi, Katie ] Stanton-Maxey, Jennifer K Stanley, Carly S Levin, Rizia
Bardhan, Demir Akin, Sunil Badve, Jennifer Sturgis, ] Paul Robinson, Rashid
Bashir, et al. “A cellular Trojan Horse for delivery of therapeutic nanoparticles
into tumors.” In: Nano letters 7.12 (2007), pp. 3759—3765.

Calina A Copos, Sam Walcott, Juan C del Alamo, Effie Bastounis, Alex Mogilner,
and Robert D Guy. “Mechanosensitive adhesion explains stepping motility in
amoeboid cells.” In: Biophysical Journal 112.12 (2017), pp. 2672—2682.

Anna CH Coughlan and Michael A Bevan. “Effective colloidal interactions
in rotating magnetic fields.” In: The Journal of chemical physics 147.7 (2017),

P- 074903.
Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley
& Sons, 2012.

Jérémie Dalous, Emmanuel Burghardt, Annette Miiller-Taubenberger, Franz
Bruckert, Giinther Gerisch, and Till Bretschneider. “Reversal of cell polarity
and actin-myosin cytoskeleton reorganization under mechanical and chemical
stimulation.” In: Biophysical journal 94.3 (2008), pp. 1063-1074.

E Roy Davies. Machine vision: theory, algorithms, practicalities. Elsevier, 2004.

John R Davis, Andrei Luchici, Fuad Mosis, James Thackery, Jesus A Salazar,
Yanlan Mao, Graham A Dunn, Timo Betz, Mark Miodownik, and Brian M
Stramer. “Inter-cellular forces orchestrate contact inhibition of locomotion.” In:
Cell 161.2 (2015), pp- 361-373.

Peter N Devreotes and Sally H Zigmond. “Chemotaxis in eukaryotic cells: a
focus on leukocytes and Dictyostelium.” In: Annual review of cell biology 4.1
(1988), pp. 649-686.

Luc Devroye. “Nonuniform random variate generation.” In: Handbooks in
operations research and management science 13 (2006), pp. 83-121.

105



106

BIBLIOGRAPHY

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

Nishit Doshi, Albert ] Swiston, Jonathan B Gilbert, Maria L Alcaraz, Robert E
Cohen, Michael F Rubner, and Samir Mitragotri. “Cell-based drug delivery
devices using phagocytosis-resistant backpacks.” In: Advanced Materials 23.12
(2011), H105-H109.

Andrew D Doyle, Francis W Wang, Kazue Matsumoto, and Kenneth M Ya-

mada. “One-dimensional topography underlies three-dimensional fibrillar cell
migration.” In: Journal of cell biology 184.4 (2009), pp. 481—490.

David C Dufty, ] Cooper McDonald, Olivier JA Schueller, and George M White-
sides. “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane).”
In: Analytical chemistry 70.23 (1998), pp. 4974—4984.

Richard Durrett. Stochastic calculus: a practical introduction. Vol. 6. CRC press,
1996.

JP Eckmann, S Oliffson Kamphorst, D Ruelle, et al. “Recurrence plots of
dynamical systems.” In: World Scientific Series on Nonlinear Science Series A 16
(1995), pp- 441-446.

Pelin Erkoc, Immihan C Yasa, Hakan Ceylan, Oncay Yasa, Yunus Alapan, and

Metin Sitti. “Mobile microrobots for active therapeutic delivery.” In: Advanced
Therapeutics 2.1 (2019), p. 1800064.

Omid C Farokhzad and Robert Langer. “Impact of nanotechnology on drug
delivery.” In: ACS nano 3.1 (2009), pp. 16—20.

Ouajdi Felfoul, Mahmood Mohammadi, Samira Taherkhani, Dominic De
Lanauze, Yong Zhong Xu, Dumitru Loghin, Sherief Essa, Sylwia Jancik, Daniel
Houle, Michel Lafleur, et al. “Magneto-aerotactic bacteria deliver drug-containing
nanoliposomes to tumour hypoxic regions.” In: Nature nanotechnology 11.11

(2016), pp. 941-947.

Richard A Firtel and Chang Y Chung. “The molecular genetics of chemotaxis:
sensing and responding to chemoattractant gradients.” In: Bioessays 22.7 (2000),
pp- 603-615.

Lies AL Fliervoet and Enrico Mastrobattista. “Drug delivery with living cells.”
In: Advanced drug delivery reviews 106 (2016), pp. 63—72.

Charles Fox. An introduction to the calculus of variations. Courier Corporation,
1987.

Peter Friedl, Stefan Borgmann, and Eva-B Brocker. “Amoeboid leukocyte

crawling through extracellular matrix: lessons from the Dictyostelium paradigm
of cell movement.” In: Journal of leukocyte biology 70.4 (2001), pp. 491-509.

Peter Friedl and Eva-B Brocker. “TCR triggering on the move: diversity of
T-cell interactions with antigen-presenting cells.” In: Immunological reviews 186.1
(2002), pp. 83-89.

Peter Friedl and Bettina Weigelin. “Interstitial leukocyte migration and immune
function.” In: Nature immunology 9.9 (2008), p. 960.

Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.

Paul A Gagniuc. Markov chains: from theory to implementation and experimentation.
John Wiley & Sons, 2017.



BIBLIOGRAPHY 107

[59] Daniel T Gillespie. “A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions.” In: Journal of computational physics
22.4 (1976), pp. 403-434.

[60] Rafael C Gonzalez, Richard E Woods, and Steven L Eddins. “RUAN Qiugi.” In:
Digital Image Processing (Second edition), Beijing: Publishing House of Electronics
Industry 8 (2007).

[61] AN Gorban. “Detailed balance in micro-and macrokinetics and micro-distinguishability
of macro-processes.” In: Results in Physics 4 (2014), pp. 142-147.

[62] Roman Gorelik and Alexis Gautreau. “Quantitative and unbiased analysis of
directional persistence in cell migration.” In: Nature protocols 9.8 (2014), p. 1931.

[63] Bashar Hamza, Elisabeth Wong, Sachin Patel, Hansang Cho, Joseph Martel, and
Daniel Irimia. “Retrotaxis of human neutrophils during mechanical confine-
ment inside microfluidic channels.” In: Integrative Biology 6.2 (2014), pp. 175—
183.

[64] Jiwon Han, Jin Zhen, Gwangjun Go, Youngjin Choi, Seong Young Ko, Jong-Oh
Park, Sukho Park, et al. “Hybrid-actuating macrophage-based microrobots for
active cancer therapy.” In: Scientific reports 6 (2016), p. 28717.

[65] Peter Haupt. Continuum mechanics and theory of materials. Springer Science &
Business Media, 2013.

[66] ] Zachary Hilt and Nicholas A Peppas. “Microfabricated drug delivery devices.”
In: International Journal of Pharmaceutics 306.1-2 (2005), pp. 15—23.

[67] Allan S Hoffman. “The origins and evolution of “controlled” drug delivery
systems.” In: Journal of controlled release 132.3 (2008), pp. 153-163.

[68] Tim Hohmann and Faramarz Dehghani. “The cytoskeleton—a complex inter-
acting meshwork.” In: Cells 8.4 (2019), p. 362.

[69] Zeinab Hosseinidoust, Babak Mostaghaci, Oncay Yasa, Byung-Wook Park, Ajay
Vikram Singh, and Metin Sitti. “Bioengineered and biohybrid bacteria-based
systems for drug delivery.” In: Advanced drug delivery reviews 106 (2016), pp. 27—

44-

[70] Shaobin Hou, Randy W Larsen, Dmitri Boudko, Charles W Riley, Ece Karatan,
Mike Zimmer, George W Ordal, and Magsudul Alam. “Myoglobin-like aero-
taxis transducers in Archaea and Bacteria.” In: Nature 403.6769 (2000), pp. 540—

544.

[71] Gilgueng Hwang, Rémy Braive, Laurent Couraud, Antonella Cavanna, Ouerghi
Abdelkarim, Isabelle Robert-Philip, Alexios Beveratos, Isabelle Sagnes, Sinan
Haliyo, and Stéphane Régnier. “Electro-osmotic propulsion of helical nanobelt
swimmers.” In: The International Journal of Robotics Research 30.7 (2011), pp. 806—
819.

[72] Khuloud Jagaman, Dinah Loerke, Marcel Mettlen, Hirotaka Kuwata, Sergio
Grinstein, Sandra L Schmid, and Gaudenz Danuser. “Robust single-particle
tracking in live-cell time-lapse sequences.” In: Nature methods 5.8 (2008), p. 695.

[73] Wen-Xiong Kang, Qing-Qiang Yang, and Run-Peng Liang. “The comparative re-
search on image segmentation algorithms.” In: 2009 First International Workshop
on Education Technology and Computer Science. Vol. 2. IEEE. 2009, pp. 703—707.



108

BIBLIOGRAPHY

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. “Snakes: Active
contour models.” In: International journal of computer vision 1.4 (1988), pp. 321—

331.

Irina Kaverina, Olga Krylyshkina, and ] Victor Small. “Regulation of sub-
strate adhesion dynamics during cell motility.” In: The international journal of
biochemistry & cell biology 34.7 (2002), pp. 746—761.

Michael ] Kennedy. “Role of motility, chemotaxis, and adhesion in microbial
ecology.” In: Annals of the New York Academy of Sciences 506 (1987), p. 260.

Dmitri B Kirpotin, Daryl C Drummond, Yi Shao, M Refaat Shalaby, Keelung
Hong, Ulrik B Nielsen, James D Marks, Christopher C Benz, and John W Park.
“Antibody targeting of long-circulating lipidic nanoparticles does not increase
tumor localization but does increase internalization in animal models.” In:
Cancer research 66.13 (2006), pp. 6732-6740.

Katarzyna Klimaszewska and Jan ] Zebrowski. “Detection of the type of inter-
mittency using characteristic patterns in recurrence plots.” In: Physical review E
80.2 (2009), p. 026214.

Daniel Kohane, Daniel Anderson, Robert Langer, William Haining, and Lee
Nadler. pH-triggered microparticles. US Patent App. 10/948,981. 2005.

Volodymyr B Koman, Pingwei Liu, Daichi Kozawa, Albert Tianxiang Liu,
Anton L Cottrill, Youngwoo Son, Jose A Lebron, and Michael S Strano. “Col-
loidal nanoelectronic state machines based on 2D materials for aerosolizable
electronics.” In: Nature nanotechnology 13.9 (2018), pp. 819-827.

Katarzyna Krukiewicz and Jerzy K Zak. “Biomaterial-based regional chemother-
apy: Local anticancer drug delivery to enhance chemotherapy and minimize
its side-effects.” In: Materials Science and Engineering: C 62 (2016), pp. 927-942.

Michael P Kummer, Jake ] Abbott, Bradley E Kratochvil, Ruedi Borer, Ali
Sengul, and Bradley ] Nelson. “OctoMag: An electromagnetic system for 5-
DOF wireless micromanipulation.” In: IEEE Transactions on Robotics 26.6 (2010),
pp- 1006-1017.

Pierre L'Ecuyer. “Uniform random number generation.” In: Annals of Operations
Research 53.1 (1994), pp. 77-120.

Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Course of theoretical
physics. Elsevier, 2013.

Robert Langer. “Drug delivery and targeting.” In: Nature 392.6679 Suppl (1998),
pp- 5-10.

Robert Langer and Nicholas A Peppas. “Advances in biomaterials, drug deliv-
ery, and bionanotechnology.” In: AIChE Journal 49.12 (2003), pp. 2990—3006.
Chung-Nim Lee, Timothy Poston, and Azriel Rosenfeld. “Holes and genus of
2D and 3D digital images.” In: CVGIP: Graphical models and image processing
55-1 (1993), pp- 20-47.

Sang Uk Lee, Seok Yoon Chung, and Rae Hong Park. “A comparative perfor-
mance study of several global thresholding techniques for segmentation.” In:
Computer Vision, Graphics, and Image Processing 52.2 (1990), pp. 171-190.



[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

BIBLIOGRAPHY

Steffi Lehmann, Veronika Te Boekhorst, Julia Odenthal, Roberta Bianchi, Sjoerd
van Helvert, Kristian Ikenberg, Olga Ilina, Szymon Stoma, Jael Xandry, Liying
Jiang, et al. “Hypoxia induces a HIF-1-dependent transition from collective-
to-amoeboid dissemination in epithelial cancer cells.” In: Current Biology 27.3
(2017), pp- 392-400.

Liang Li, Edward C Cox, and Henrik Flyvbjerg. “’Dicty dynamics”: Dic-
tyostelium motility as persistent random motion.” In: Physical biology 8.4 (2011),
p- 046006.

B Lindner and EM Nicola. “Diffusion in different models of active Brownian
motion.” In: The European Physical Journal Special Topics 157.1 (2008), pp. 43-52.

William F Loomis, Danny Fuller, Edgar Gutierrez, Alex Groisman, and Wouter-
Jan Rappel. “Innate non-specific cell substratum adhesion.” In: PloS one 7.8
(2012), e42033.

Augustus Edward Hough Love. A treatise on the mathematical theory of elasticity.
Cambridge university press, 2013.

Lynette M March and Clarissa J]M Bachmeier. “10 Economics of osteoarthritis:
a global perspective.” In: Bailliere’s clinical rheumatology 11.4 (1997), pp. 817-834.

Norbert Marwan, M Carmen Romano, Marco Thiel, and Jiirgen Kurths. “Re-
currence plots for the analysis of complex systems.” In: Physics reports 438.5-6
(2007), pp- 237-329.

Edith Mathiowitz, Yong S Jong, Gerardo Carino, and Jules S Jacob. Method for
gene therapy using nucleic acid loaded polymeric microparticles. US Patent 6,248,720.
2001.

D Meirow and D Nugent. “The effects of radiotherapy and chemotherapy on
female reproduction.” In: Human reproduction update 7.6 (2001), pp. 535-543.

Ralf Metzler, Jae-Hyung Jeon, Andrey G Cherstvy, and Eli Barkai. “ Anomalous
diffusion models and their properties: non-stationarity, non-ergodicity, and
ageing at the centenary of single particle tracking.” In: Physical Chemistry
Chemical Physics 16.44 (2014), pp. 24128-24164.

Ralf Metzler and Joseph Klafter. “The random walk’s guide to anomalous
diffusion: a fractional dynamics approach.” In: Physics reports 339.1 (2000),
PpP- 1-77.

Andrew S Mikhail and Christine Allen. “Block copolymer micelles for delivery
of cancer therapy: transport at the whole body, tissue and cellular levels.” In:
Journal of Controlled Release 138.3 (2009), pp. 214—223.

Jean-Jacques Monsuez, Jean-Christophe Charniot, Noélle Vignat, and Jean-Yves
Artigou. “Cardiac side-effects of cancer chemotherapy.” In: International journal
of cardiology 144.1 (2010), pp. 3—15.

Eduardo Moreno, Sven Flemming, Francesc Font, Matthias Holschneider,
Carsten Beta, and Sergio Alonso. “Modeling cell crawling strategies with
a bistable model: From amoeboid to fan-shaped cell motion.” In: Physica D:
Nonlinear Phenomena (2020), p. 132591.

Philip M Morse and Herman Feshbach. “Methods of theoretical physics.” In:
American Journal of Physics 22.6 (1954), pp. 410—413.

109



110

BIBLIOGRAPHY

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Mark J. Mulligan et al. “Phase 1/2 Study to Describe the Safety and Immuno-
genicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to
55 Years of Age: Interim Report.” In: medRxiv (2020). po1: 10.1101/2020.06.
30.20142570.

Craig Murdoch, Athina Giannoudis, and Claire E Lewis. “Mechanisms regulat-
ing the recruitment of macrophages into hypoxic areas of tumors and other
ischemic tissues.” In: Blood 104.8 (2004), pp. 2224-2234.

Douglas B Murphy. Fundamentals of light microscopy and electronic imaging. John
Wiley & Sons, 2002.

Oliver Nagel. “Amoeboid Cells as a Transport System for Micro-Objects.”
PhD thesis. Universitdt Potsdam, 2019.

Oliver Nagel, Manuel Frey, Matthias Gerhardt, and Carsten Beta. “Harness-
ing Motile Amoeboid Cells as Trucks for Microtransport and-Assembly.” In:
Advanced Science 6.3 (2019), p. 1801242.

Oliver Nagel, Can Guven, Matthias Theves, Meghan Driscoll, Wolfgang Losert,
and Carsten Beta. “Geometry-driven polarity in motile amoeboid cells.” In:
PloS one 9.12 (2014), e113382.

David D Nolte. “The tangled tale of phase space.” In: Physics today 63.4 (2010),
pp- 33-38.

Nobuyuki Otsu. “A threshold selection method from gray-level histograms.”
In: IEEE transactions on systems, man, and cybernetics 9.1 (1979), pp. 62—66.

Anthony Otto, Henry Collins-Hooper, Anand Patel, Philip R Dash, and Ke-
tan Patel. “Adult skeletal muscle stem cell migration is mediated by a bleb-
bing/amoeboid mechanism.” In: Rejuvenation research 14.3 (2011), pp. 249—
260.

Stefano Palagi and Peer Fischer. “Bioinspired microrobots.” In: Nature Reviews
Materials 3.6 (2018), p. 113.

Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables, and
stochastic processes. Tata McGraw-Hill Education, 2002.

Norbert Pardi, Steven Tuyishime, Hiromi Muramatsu, Katalin Kariko, Barbara
L Mui, Ying K Tam, Thomas D Madden, Michael ] Hope, and Drew Weiss-
man. “Expression kinetics of nucleoside-modified mRNA delivered in lipid
nanoparticles to mice by various routes.” In: Journal of Controlled Release 217
(2015), pp. 345-351.

Byung-Wook Park, Jiang Zhuang, Oncay Yasa, and Metin Sitti. “Multifunctional
bacteria-driven microswimmers for targeted active drug delivery.” In: ACS
nano 11.9 (2017), pp. 8910-8923.

Chul Soon Park, Hyeonseok Yoon, and Oh Seok Kwon. “Graphene-based
nanoelectronic biosensors.” In: Journal of Industrial and Engineering Chemistry 38
(2016), pp. 13—22.

NA Peppas, P Bures, WS Leobandung, and H Ichikawa. “Hydrogels in pharma-
ceutical formulations.” In: European journal of pharmaceutics and biopharmaceutics
50.1 (2000), pp. 27—46.


https://doi.org/10.1101/2020.06.30.20142570
https://doi.org/10.1101/2020.06.30.20142570

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

BIBLIOGRAPHY

Ryan ] Petrie, Andrew D Doyle, and Kenneth M Yamada. “Random versus
directionally persistent cell migration.” In: Nature reviews Molecular cell biology

10.8 (2009), pp- 538-549.

Kathrin E Peyer, Li Zhang, and Bradley ] Nelson. “Bio-inspired magnetic
swimming microrobots for biomedical applications.” In: Nanoscale 5.4 (2013),
pp. 1259-1272.

Roberto Piazza. Statistical Physics: A Prelude and Fugue for Engineers. Springer,
2016.

Laurent Pieuchot, Julie Marteau, Alain Guignandon, Thomas Dos Santos,
Isabelle Brigaud, Pierre-Frangois Chauvy, Thomas Cloatre, Arnaud Ponche,
Tatiana Petithory, Pablo Rougerie, et al. “Curvotaxis directs cell migration
through cell-scale curvature landscapes.” In: Nature communications 9.1 (2018),

pp. 1-13.
Kathleen F Pirollo and Esther H Chang. “Does a targeting ligand influence
nanoparticle tumor localization or uptake?” In: Trends in biotechnology 26.10

(2008), pp. 552-558.
Thomas D Pollard and John A Cooper. “Actin, a central player in cell shape
and movement.” In: Science 326.5957 (2009), pp. 1208-1212.

Harrison V Prentice-Mott, Yasmine Meroz, Andreas Carlson, Michael A Levine,
Michael W Davidson, Daniel Irimia, Guillaume T Charras, L Mahadevan,
and Jagesh V Shah. “Directional memory arises from long-lived cytoskeletal
asymmetries in polarized chemotactic cells.” In: Proceedings of the National
Academy of Sciences 113.5 (2016), pp. 1267-1272.

Jerry L Prince and Chenyang Xu. “A new external force model for snakes.”
In: Proc. 1996 Image and Multidimensional Signal Processing Workshop. Vol. 3. 31.
1996, p. 1.

Yong Qiu and Kinam Park. “Environment-sensitive hydrogels for drug deliv-
ery.” In: Advanced drug delivery reviews 64 (2012), pp. 49—60.

Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics.
Vol. 37. Springer Science & Business Media, 2010.

Wouter-Jan Rappel and Leah Edelstein-Keshet. “Mechanisms of cell polariza-
tion.” In: Current opinion in systems biology 3 (2017), pp. 43-53.

Leonardo Ricotti, Barry Trimmer, Adam W Feinberg, Ritu Raman, Kevin K
Parker, Rashid Bashir, Metin Sitti, Sylvain Martel, Paolo Dario, and Arianna
Menciassi. “Biohybrid actuators for robotics: A review of devices actuated by
living cells.” In: Science Robotics 2.12 (2017).

Anne ] Ridley, Martin A Schwartz, Keith Burridge, Richard A Firtel, Mark
H Ginsberg, Gary Borisy, ] Thomas Parsons, and Alan Rick Horwitz. “Cell
migration: integrating signals from front to back.” In: Science 302.5651 (2003),
Pp- 1704-1709.

Julia Riedl, Alvaro H Crevenna, Kai Kessenbrock, Jerry Haochen Yu, Dorothee
Neukirchen, Michal Bista, Frank Bradke, Dieter Jenne, Tad A Holak, Zena Werb,
et al. “Lifeact: a versatile marker to visualize F-actin.” In: Nature methods 5.7
(2008), pp. 605-607.

111



112

BIBLIOGRAPHY

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]
[148]

[149]

[150]

Hannes Risken. The Fokker-Planck Equation. Springer, 1996.

P Romanczuk, M Béar, W Ebeling, B Lindner, and L Schimansky-Geier. “Active
Brownian Particles-From Individual to Collective Stochastic Dynamics p.” In:
The European Physical Journal Special Topics 202 (2012).

Howard Rosen and Thierry Abribat. “The rise and rise of drug delivery.” In:
Nature Reviews Drug Discovery 4.5 (2005), pp. 381—385.

Evanthia T Roussos, John S Condeelis, and Antonia Patsialou. “Chemotaxis in
cancer.” In: Nature Reviews Cancer 11.8 (2011), pp. 573-587.

Oliver Sangha and Gerold Stucki. “Economic impact of rheumatologic disor-
ders.” In: Current opinion in rheumatology 9.2 (1997), pp. 102—105.

Dirk Schmaljohann. “Thermo-and pH-responsive polymers in drug delivery.”
In: Advanced drug delivery reviews 58.15 (2006), pp. 1655-1670.

Ulrich S Schwarz and Samuel A Safran. “Physics of adherent cells.” In: Reviews
of Modern Physics 85.3 (2013), p. 1327.

David Selmeczi, Liwen Li, Lykke II Pedersen, SF Nrrelykke, Peter H Hagedorn,
Stephan Mosler, Niels B Larsen, Edward C Cox, and Henrik Flyvbjerg. “Cell
motility as random motion: A review.” In: The European Physical Journal Special
Topics 157.1 (2008), pp. 1-15.

Denis Semwogerere and Eric R Weeks. “Confocal microscopy.” In: Encyclopedia
of biomaterials and biomedical engineering 23 (2005), pp. 1-10.

Claude Elwood Shannon. “Communication in the presence of noise.” In: Pro-
ceedings of the IRE 37.1 (1949), pp. 10-21.

Jingxin Shao, Mingjun Xuan, Hongyue Zhang, Xiankun Lin, Zhiguang Wu, and
Qiang He. “Chemotaxis-guided hybrid neutrophil micromotors for targeted
drug transport.” In: Angewandte Chemie 129.42 (2017), pp. 13115-13119.

Peter Siegle, Igor Goychuk, and Peter Hanggi. “Origin of hyperdiffusion in
generalized Brownian motion.” In: Physical review letters 105.10 (2010), p. 100602.

Priyanka Singh, Santosh Pandit, VRSS Mokkapati, Abhroop Garg, Vaishnavi
Ravikumar, and Ivan Mijakovic. “Gold nanoparticles in diagnostics and ther-
apeutics for human cancer.” In: International journal of molecular sciences 19.7
(2018), p. 1979.

Metin Sitti. “Voyage of the microrobots.” In: Nature 458.7242 (2009), pp. 1121—
1122.

Metin Sitti. Mobile Microrobotics. MIT Press, 2017.

Metin Sitti, Hakan Ceylan, Wenqi Hu, Joshua Giltinan, Mehmet Turan, Se-
hyuk Yim, and Eric Diller. “Biomedical applications of untethered mobile
milli/microrobots.” In: Proceedings of the IEEE 103.2 (2015), pp. 205—224.

Stanislaw Slomkowski and Teresa Basinska. “Polymer Nano-and Microparticle
Based Systems for Medical Diagnostics.” In: Macromolecular symposia. Vol. 295.
1. Wiley Online Library. 2010, pp. 13-22.

Pierre Soille. Morphological image analysis: principles and applications. Springer
Science & Business Media, 2013.



[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

BIBLIOGRAPHY

Alexander A Solovev, Yongfeng Mei, Esteban Bermuidez Urefia, Gaoshan
Huang, and Oliver G Schmidt. “Catalytic microtubular jet engines self-propelled
by accumulated gas bubbles.” In: Small 5.14 (2009), pp. 1688-1692.

Morgan M Stanton, Byung-Wook Park, Diana Vilela, Klaas Bente, Damien
Faivre, Metin Sitti, and Samuel Sdnchez. “Magnetotactic bacteria powered
biohybrids target E. coli biofilms.” In: ACS nano 11.10 (2017), pp. 9968-9978.

Steven H Strogatz. Nonlinear dynamics and chaos with student solutions manual:
With applications to physics, biology, chemistry, and engineering. Westview Press,
Boulder, 2015.

Xiaogi Sun, Chao Wang, Min Gao, Aiyan Hu, and Zhuang Liu. “Remotely
Controlled Red Blood Cell Carriers for Cancer Targeting and Near-Infrared
Light-Triggered Drug Release in Combined Photothermal-Chemotherapy.” In:
Advanced Functional Materials 25.16 (2015), pp. 2386—2394.

Richard R Tamesis, Alejandro Rodriguez, William G Christen, Yonca A Akova,
Elizabeth Messmer, and C Stephen Foster. “Systemic drug toxicity trends in
immunosuppressive therapy of immune and inflammatory ocular disease.” In:
Ophthalmology 103.5 (1996), pp. 768—775.

Songsong Tang, Fangyu Zhang, Hua Gong, Fanan Wei, Jia Zhuang, Emil
Karshalev, Berta Esteban-Fernandez de Avila, Chuying Huang, Zhidong Zhou,
Zhengxing Li, et al. “Enzyme-powered Janus platelet cell robots for active and
targeted drug delivery.” In: Science Robotics 5.43 (2020).

Margaret A Titus and Holly V Goodson. “An evolutionary perspective on cell
migration: Digging for the roots of amoeboid motility.” In: The Journal of Cell
Biology 216.6 (2017), p. 1509.

Gaurav Tiwari, Ruchi Tiwari, Birendra Sriwastawa, L Bhati, S Pandey, P Pandey,
and Saurabh K Bannerjee. “Drug delivery systems: An updated review.” In:
International journal of pharmaceutical investigation 2.1 (2012), p. 2.

Stephanie Tran, Peter-Joseph DeGiovanni, Brandon Piel, and Prakash Rai.
“Cancer nanomedicine: a review of recent success in drug delivery.” In: Clinical
and translational medicine 6.1 (2017), p. 44.

Roger Y Tsien and Alan Waggoner. “Fluorophores for confocal microscopy.”
In: Handbook of biological confocal microscopy. Springer, 1995, pp. 267—-279.

Kazuhiko SK Uchida and Shigehiko Yumura. “Dynamics of novel feet of
Dictyostelium cells during migration.” In: Journal of cell science 117.8 (2004),

PP- 1443-1455.

Miguel Vicente-Manzanares and Alan Rick Horwitz. “Cell migration: an
overview.” In: Cell migration. Springer, 2011, pp. 1—24.

Hua Wang. “Magnetic sensors for diagnostic medicine: CMOS-based magnetic
particle detectors for medical diagnosis applications.” In: IEEE Microwave
Magazine 14.5 (2013), pp. 110-130.

Wei Wang, Wentao Duan, Suzanne Ahmed, Thomas E Mallouk, and Ayusman
Sen. “Small power: Autonomous nano-and micromotors propelled by self-
generated gradients.” In: Nano Today 8.5 (2013), pp. 531-554.

113



114

BIBLIOGRAPHY

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

Douglas B Weibel, Willow R DiLuzio, and George M Whitesides. “Microfabri-
cation meets microbiology.” In: Nature Reviews Microbiology 5.3 (2007), p. 209.

Douglas B Weibel, Piotr Garstecki, Declan Ryan, Willow R DiLuzio, Michael
Mayer, Jennifer E Seto, and George M Whitesides. “Microoxen: Microorganisms
to move microscale loads.” In: Proceedings of the National Academy of Sciences
102.34 (2005), pp. 11963-11967.

Cornelis ] Weijer. “Dictyostelium morphogenesis.” In: Current opinion in genetics
& development 14.4 (2004), pp- 392—398.

Katarina Wolf, Regina Miiller, Stefan Borgmann, Eva Brocker, Peter Friedl,
et al. “Amoeboid shape change and contact guidance: T-lymphocyte crawling
through fibrillar collagen is independent of matrix remodeling by MMPs and
other proteases.” In: Blood 102.9 (2003), pp. 3262—3269.

Worldometers. World Population. 2020. URL: http://www.worldometers.info/
world-population/.

Chenyang Xu, Jerry L Prince, et al. “Snakes, shapes, and gradient vector flow.”
In: IEEE Transactions on image processing 7.3 (1998), pp. 359—369.

Haifeng Xu, Mariana Medina-Sanchez, Veronika Magdanz, Lukas Schwarz,
Franziska Hebenstreit, and Oliver G Schmidt. “Sperm-hybrid micromotor for
targeted drug delivery.” In: ACS nano 12.1 (2018), pp. 327-337.

Jingwei Xue, Zekai Zhao, Lei Zhang, Lingjing Xue, Shiyang Shen, Yajing Wen,
Zhuoyuan Wei, Lu Wang, Lingyi Kong, Hongbin Sun, et al. “Neutrophil-
mediated anticancer drug delivery for suppression of postoperative malignant
glioma recurrence.” In: Nature nanotechnology 12.7 (2017), p. 692.

Immihan Ceren Yasa, Hakan Ceylan, Ugur Bozuyuk, Anna-Maria Wild, and
Metin Sitti. “Elucidating the interaction dynamics between microswimmer
body and immune system for medical microrobots.” In: Science Robotics 5.43
(2020).

Simon Young, Mark Wong, Yasuhiko Tabata, and Antonios G Mikos. “Gelatin
as a delivery vehicle for the controlled release of bioactive molecules.” In:
Journal of controlled release 109.1-3 (2005), pp. 256—274.

Walia Zahra, Sachchida Nand Rai, Hareram Birla, Saumitra Sen Singh, Hagera
Dilnashin, Aaina Singh Rathore, and Surya Pratap Singh. “The global eco-
nomic impact of neurodegenerative diseases: Opportunities and challenges.”
In: Bioeconomy for Sustainable Development. Springer, 2020, pp. 333—345.

Joseph Xu Zhou, MDS Aliyu, Erik Aurell, and Sui Huang. “Quasi-potential
landscape in complex multi-stable systems.” In: Journal of the Royal Society
Interface 9.77 (2012), pp. 3539-3553-

Jiang Zhuang and Metin Sitti. “Chemotaxis of bio-hybrid multiple bacteria-
driven microswimmers.” In: Scientific reports 6 (2016), p. 32135.

Joseph d’Alessandro, Alexandre P Solon, Yoshinori Hayakawa, Christophe
Anjard, Francois Detcheverry, Jean-Paul Rieu, and Charlotte Riviere. “Contact
enhancement of locomotion in spreading cell colonies.” In: Nature Physics 13.10

(2017), pp. 999-1005.


http://www.worldometers.info/world-population/
http://www.worldometers.info/world-population/

DECLARATION

I hereby declare that I have carried out this work and written this thesis by myself
only with the help of the indicated means.

Potsdam, Germany, October 2016 - August 2020

Valentino Lepro



	Title
	Imprint

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	 INTRODUCTION
	1 Active transport at the micro-scale
	1.1 A rising need for guided micro-scale transport
	1.2 Towards a bio-hybrid solution
	1.3 Crawling cells as carrier entity

	2 The ``language'' of stochastic motion
	2.1 Newton laws for drunken: Langevin equations
	2.2 Deterministic description of mass transport: Fokker-Planck equations
	2.3 Beyond Brownian diffusion


	 MATERIALS & METHODS
	3 Experimental strategies and protocols
	3.1 Cell culturing and biological sample preparation
	3.2 Particles and microfabrication protocols
	3.3 Optics and experimental protocols

	4 Computational strategies and protocols
	4.1 Image Processing
	4.2 Analysis of cell-cargo dynamics and interaction
	4.3 Numerical stochastic simulations


	RESULTS & DISCUSSIONS
	5 Phenomenology of an amoeboid cell-cargo system
	5.1 A detailed look at the cellular truck behaviour
	5.2 Shedding light on cell-cargo relative dynamics
	5.3 Characterization of cell-cargo interaction

	6 Coarse-Grained modeling of cell-cargo systems
	6.1 Concept and structure of the model
	6.2 Model predictions

	7 Full-Scale modeling of cell-cargo systems
	7.1 Anatomy of the model
	7.2 in-silico model testing

	8 Final conclusions and future perspectives

	 Appendix
	A Maximum likelihood-based estimation of poissonian rates
	B Derivation of a Fokker-Planck Equation for cellular trucks
	 Bibliography




