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Modeling and Scaling of Categorical Data

Henning Läuter and Ayad Ramadan

University of Potsdam, Institute of Mathematics

laeuter@uni-potsdam.de, ayad math@yahoo.com

Abstract

Estimation and testing of distributions in metric spaces are well known. R.A. Fisher,
J. Neyman, W. Cochran and M. Bartlett achieved essential results on the statistical
analysis of categorical data. In the last 40 years many other statisticians found impor-
tant results in this field.
Often data sets contain categorical data, e.g. levels of factors or names. There does
not exist any ordering or any distance between these categories. At each level there
are measured some metric or categorical values. We introduce a new method of scaling
based on statistical decisions. For this we define empirical probabilities for the original
observations and find a class of distributions in a metric space where these empirical
probabilities can be found as approximations for equivalently defined probabilities. With
this method we identify probabilities connected with the categorical data and probabilities
in metric spaces. Here we get a mapping from the levels of factors or names into points
of a metric space. This mapping yields the scale for the categorical data.
From the statistical point of view we use multivariate statistical methods, we calculate
maximum likelihood estimations and compare different approaches for scaling.

Key words: Multivariate scaling, discrimination, power of multivariate tests

1 Introduction

Estimation and testing for distributions of metric random variables are known since the
end of the nineteenth century. R.A. Fisher and many other statisticians developed very
efficient statistical methods for analyzing medical and biological data. These methods
correspond to regression, multivariate analysis and in general to data analysis. Many
procedures, e.g. the procedures of the analysis of variance belong to the basic methods
in applied statistics.
Essential contributions about statistics of categorical data were developed first by R.A.
Fisher, J. Neyman, W. Cochran and M. Bartlett. One finds very different strong
results for analyzing categorical data since the 1960s. Mostly data structures from
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social, biological, medical and technical areas are analyzed. In biomedical applications
categories as sex, race or social strata are considered, in technical problems one works
with technical patterns or places. In social problems one uses verbal assessments
or marks, in political or philosophical context one finds arrangements as ”liberal”,
”moderate” or ”conservative”.
In this paper we introduce a method of scaling based on statistical decisions, especially
classification methods are used. We will concentrate on methods and examples with
categorical data. But it will be clear that the proposed procedures can be used as
a pretreatment in other data structures for generating such transformed data which
conform with assumptions in standard software.
Multidimensional scaling is considered by several authors. In most of the cases they
use similarities or dissimilarities and then they find scales for the categories ([EvDu01]).
Instead of such geometrical approaches we use here statistical decisions.

2 Basic model

We consider the q-way classification model which is used mostly in the analysis of
variance. At least the structure is interesting for us. The basic assumptions can be
explained in the 2-way classification. We are given data in the following structure.

Factor B
Factor A level 1 level 2 level 3 · · · level b

level 1 z11j z12j z13j · · · z1bj

j = 1, ...,m11 j = 1, ...,m12 j = 1, ...,m13 · · · j = 1, ...,m1b

...
...

...
...

. . .
...

level a za1j za2j za3j · · · zabj
j = 1, ...,ma1 j = 1, ...,ma2 j = 1, ...,ma3 · · · j = 1, ...,mab

At level s of the factor A and level t of factor B there are mst observations and the total
sample size is

n =
a∑
s=1

b∑
t=1

mst.

Here the categorical variables are the levels of the factors A and B. The L := a · b
categories are described by

{(s, t) : s = 1, ..., a; t = 1, ..., b}.

For finding a scale for the categories it is convenient to group the observations {zstj}
in given classes. We assume that there are given k classes and hil is the number
of observations in the category l = (s, t) falling in the class Ki. Then we have the
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contingency table

Factor B
Factor A level 1 level 2 level 3 · · · level b

level 1 h1(1,1) ...hk(1,1) h1(1,2) ...hk(1,2) h1(1,3) ...hk(1,3) · · · h1(1,b) ...hk(1,b)
...

...
...

...
. . .

...
level a h1(a,1) ...hk(a,1) h1(a,2) ...hk(a,2) h1(a,3) ...hk(a,3) · · · h1(a,b) ...hk(a,b)

This table of frequencies is our starting data set. The interpretation of this table is the
following. At the level l = (s, t) we have observations from different classes and from
the

h+l :=
k∑
i=1

hil =
k∑
i=1

hi(s,t)

observations the parts for the classes are given by

h1l

h+l

, ...,
hkl
h+l

.

Such tables are obtained in a similar way if q > 2. The dimension of l depends on q in
general.

2.1 Modeling of categorical data

We will find a model for data structures given in the last tables. For this we remember
the discrimination of distributions or classes. There are given k distributions with
densities f1, ..., fk over a space Rp and for each point y ∈ Rp it is known that it can be
a realization of one of the classes. Furthermore let π1, ..., πk be prior probabilities for
the classes. Then it is known that a given realization y of the random variable Y with
the density f with

f(y) =
k∑
j=1

πjfϑj(y)

corresponds to the class Ki with the probability

P(Y ∈ Ki | Y = y)) =
πifϑi(y)∑k
j=1 πjfϑj(y)

=: p̃i(y). (1)

Consequently under the assumption that a point y (or a point in a very near neighbor-
hood of y) has the frequency m̃ in the data set then we expect m̃ · p̃i(y) of these points
corresponding to class Ki.
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2.1.1 Modeling of categories

We denote by Mult(m, p1, ..., pk) the multinomial distribution where pi is the probability
for the class Ki and we repeat the experiment m times. Then we expect that under
these m̃ observations approximately m̃ · pi correspond to Ki. As a consequence from
the last two subsections we formulate the definition.

Definition 2.1 The points {sl ∈ Rp, l = 1, ..., L} are called scale points for the
categories {xl, l = 1, ..., L} if

(h1l, ..., hkl)

are realizations of independent multinomial random variables Wl with

Wl ∼ Mult(h+l, p̃1(sl), ..., p̃k(sl)), l = 1, ..., L

and

h+l =
k∑
i=1

hil.

This means that in the statistical model the same expected frequencies occur as in the
table. In general the densities depend on some parameters. Then one has to estimate
the distributional parameters and the scale parameters. This can be done using the
likelihood principle. Here we use another criterion. We will find such scales that the
classes will be discriminated as well as possible. Voinov and Nikulin considered in
[VoNi93] multivariate multinomial distributions for identically distributed Wl, here we
use a more general model.

2.2 Determination of observations

Scale points are to be constructed on the basis of the observations. The observations
are those which are given by the categories and the frequencies. In our understanding
the categories are identified with points x1, ..., xL ∈ Rp and these points are to be
determined in an optimal way. The observations express the correspondence to some
classes, denoted by {y11, ..., yknk}. Explicitly we have the observations

{y11, ..., y1n1} = {h11 timesx1, h12 timesx2, ..., h1L timesxL},

hence we have n1 = h1+. Or we write

y1t = x1, t = 1, ..., h11; y1t = x2, t = h11+1, ..., h11+h12; ...; y1t = xL, t = h1+−h1L, ..., h1+.

In an analogous way we have for the other classes i = 2, ..., k

yit = x1, t = 1, ..., hi1; yit = x2, t = hi1+1, ..., hi1+hi2; ...; yit = xL, t = hi+−hiL, ..., hi+.

It holds ni = hi+. For statistical decisions one needs assumptions on the distributions.
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2.3 Choice of distributions

In general one chooses yij ∈ Rq if one has data from a q-way classification model. This
means p = q. But sometimes a lower-dimensional space is also possible especially if
some factors have not a large influence on the results. The special case p = 1 is of
interest if one likes to have an ordered scale for the categories.
Depending on the meaning of the observations we can choose the distributions. Quite
often binomial, normal or Poisson distributions are useful, but especially in reliability
or survival analysis exponential or Weibull distributions are to be chosen.
Assuming that we are given k distributions Pϑ1 , ...,Pϑk and for each distribution Pϑi
with a density fϑi we have a random sample Yi1, ..., Yini . All random variables should
be independent. For testing

H : Pϑ1 = ... = Pϑk

against K, that not all distributions are the same, we use the likelihood ratio test.
The joint density for Y = (Y11, ..., Yknk) is denoted by fϑ1,...,ϑk . As usually the LRT is
given by

ϕ(y) = 1 if Rn(y) :=
maxϑ1,...,ϑk fϑ1,...,ϑk(y)

maxϑ fϑ,...,ϑ(y)
≥ c,

where c ensures the significance level.

2.3.1 Normal distributions

We assume that

Y11 . . . Y1n1

...
. . .

...
Yk1 . . . Yknk

are independent and normally distributed p-dimensional random variables, Yij ∼
Np(µi,Σ). Then we consider the test problem

H : µ1 = ... = µk against K : notH. (2)

We denote the sample mean for the ith distribution by yi·, i = 1, ..., k, the total mean
by

y·· =
1

n

k∑
i=1

ni∑
j=1

yij =
1

n

k∑
j=1

njyj· .

The unbiased estimator for the variance is

S =
1

n− k

k∑
i=1

ni∑
j=1

(Yij − Yi·)(Yij − Yi·)t.
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Then

T 2
0 (Y ) =

n− k − p+ 1

(k − 1)(n− k)p

k∑
i=1

ni(Yi· − Y··)tS−1(Yi· − Y··)

is approximately F-distributed. H. Ahrens and J. Läuter proposed in [AhLa81] the
approximation T 2

0 (Y ) ≈ Fg1,g2 for

g1 =

{
(k−1)(n−k−p)p
n−(k−1)p−2

if n− (k − 1)p− 2 > 0

∞ otherwise,

g2 = n− k − p+ 1.

Then an admissible test is given by

ϕ(y) =

{
1 if T 2

0 (y) > Fg1,g2;α

0 otherwise,

for the α-fractile of the Fg1,g2-distribution.

2.3.2 Exponential distributions

We choose p = 1. We consider independent exponentially distributed variables

Y11 . . . Y1n1

...
. . .

...
Yk1 . . . Yknk .

With the densities

fµ(x) = µ exp(−µx) 1(0,∞)(x)

we assume that Yij has the density fµi . The likeliood ratio test statistic has the form
(up to a factor)

R(y) =
yn··

yn1
1· · ... · y

nk
k·
.

If R(y) is large enough then we reject the hypothesis.

3 Criteria for scaling

M.G. Kendall and A. Stuart [KeSt67] and lateron H. Ahrens and J. Läuter in [AhLa81]
introduced a method for scaling which bases on a test statistic. This will be generalized
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for higher dimensional q-way classification tables. This was considered by H. Läuter in
[La07] too. At first we denote the levels of the q factors in an arbitrary way by real
numbers. The factor i has νi levels. Then we put τij for the level j of the factor i, all
levels are described by

τ = (τ11, ..., τ1ν1 , ..., τqνq)
t

and altogether we have ν =
∑

i νi levels. In section 2.2 the categories were identified by
x1, ..., xL and we introduced the yij. For any xl we find a p×ν matrix Cl with xl = Clτ.
Every yts is one of the values C1τ, ..., CLτ . We use

ht· =
1

L

L∑
l=1

htl, h·l =
1

k

k∑
t=1

htl, h·· =
1

kL

k∑
t=1

L∑
l=1

htl,

ht· · L =
L∑
l=1

htl = nt, h·· · kL = n.

Then we calculate

yt· =
1

nt

nt∑
s=1

yts =
1

nt

(
ht1C1 + ...+ htLCL

)
τ, y·· =

k

n

(
h·1C1 + ...+ h·LCL

)
τ

yt· − y·· =
(

(
ht1
nt
− kh·1

n
)C1 + ...+ (

htL
nt
− kh·L

n
)CL

)
τ =: Dt τ.

These values are to be substituted in the test statistics. In the normal case we have T 2
0

as the test statistic. For calculating this statistic we use

H :=
k∑
i=1

ni

(
yi· − y··

)(
yi· − y··

)t
=

k∑
i=1

niDi τ τ
tDt

i ,

S :=
1

n− k

k∑
i=1

ni∑
s=1

(
yis − yi·

)(
yis − yi·

)t
=

1

n− k

k∑
i=1

L∑
l=1

hilFil τ τ
tF t

il

for

Fil = Cl −
1

ni

(
hi1C1 + ...+ hiLCL

)
and

T 2
0 =

n− k − p+ 1

(k − 1)(n− k)p

k∑
i=1

ni(yi· − y··)tS−1(yi· − y··) =

=
n− k − p+ 1

(k − 1)(n− k)p
tr
(
HS−1

)
,
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tr
(
HS−1

)
= τ t

[ k∑
i=1

niD
t
iS
−1Di

]
τ

with

S =
1

n− k

k∑
i=1

L∑
l=1

milFil τ τ
tF t

il.

In the case of exponential distributions we considered the LRT. There we had p = 1
and so we have L = ν and the statistic was

R(y) =
yn··

yn1
1· · ... · y

nk
k·
. (3)

Substituting here the values with τ we obtain

R =

[
k
n

(
h·1C1 + ...+ h·LCL

)
τ
]n

[
1
n1

(
h11C1 + ...+ h1LCL

)
τ
]n1

· ... ·
[

1
nk

(
hk1C1 + ...+ hkLCL

)
τ
]nk . (4)

In the case q = 1 it holds Clτ = τ1l =: τl and therefore we get

R =
knnn1

1 · ... · n
nk
k

nn

(
h·1τ1 + ...+ h·LτL

)n
(
h11τ1 + ...+ h1LτL

)n1

· ... ·
(
hk1τ1 + ...+ hkLτL

)nk . (5)

The aim is to find such a scale that the distributions or here classes can be discriminated
as well as possible. Therefore we have to determine such a vector τ ∗ that maximizes the
corresponding test statistic. In the normal case the test bases on T 2

0 , for the exponential
distributions the likelihood ratio test statistic R was proposed.

Definition 3.1 If LR denotes the test statistic where large values of LR lead to the
rejection of the hypothesis then τ ∗ with

LR(τ ∗) = max
τ

LR(τ) (6)

is called a most separating scale.

4 Calculation of most separating scales

In general one has to use some optimization software for finding a maximal τ ∗. We
will consider in some detail the special case of normal distributions. In section 2.3.1
we considered the statistic T 2

0 as the statistic to be maximized. Up to a factor this
coincides with

tr(HS−1) = τ t
[ k∑
i=1

niD
t
iS
−1Di

]
τ (7)
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with

S =
1

n− k

k∑
i=1

L∑
l=1

hilFil τ τ
tF t

il.

4.1 One-dimensional normal distributions

We consider p = 1. Then we have the 1× L matrices Cl, Di, Fil and get

H = τ tAτ, S = τ tBτ (8)

for the matrices

A =
k∑
i=1

niD
t
iDi, B =

1

n− k

k∑
i=1

L∑
l=1

hilF
t
ilFil. (9)

Therefore the τ ∗ = (τ ∗1 , ..., τ
∗
L)t maximizing tr(HS−1) is determined by the eigenvector

to the maximal eigenvalue of

Aτ = λBτ. (10)

Therefore in the case p = 1 the optimal scale vector τ ∗ can be determined exactly. The
level l corresponds to the number τ ∗l .

4.2 Higher-dimensional case

Now we consider q-way classification models and p ≤ q. Then we have the p×ν matrices
Cl, Di, Fil and with Sτ := S we have

tr(HS−1) = tr(HS−1
τ ) = τ t

[ k∑
i=1

niD
t
iS
−1
τ Di

]
τ (11)

for

Sτ =
1

n− k

k∑
i=1

L∑
l=1

hilFilττ
tF t

il. (12)

Defining

ψ(τ, a) := at
[ k∑
i=1

niD
t
iS
−1
τ Di

]
a (13)

and then τ ∗ fulfills

ψ(τ ∗, τ ∗) = max
τ

ψ(τ, τ). (14)

We see that ψ does not change if τ is substituted by µτ for any real µ.
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Definition 4.1 τ̃ is called a local extremum if

d

dλ
ψ
(

(1− λ)τ̃ + λv, (1− λ)τ̃ + λv
)
|λ=0 ≤ 0 ∀v ∈ Rp.

We are interested in characterizing such a local extremum. This gives us the next
theorem.

Theorem 1 τ̃ is a local extremum if and only if α(τ̃) = 0 with

α(τ) :=
k∑
i=1

niD
t
iS
−1
τ Diτ −

1

n− k

k∑
i=1

ni

k∑
j=1

L∑
l=1

hjlF
t
jlS
−1
τ Diττ

tF t
jlS
−1
τ Diτ.

Beweis: We put τλ = (1− λ)τ̃ + λv and obtain

d

dλ
τλ = v − τλ,

d

dλ
τλτ

t
λ|λ=0 = (v − τ̃)τ̃ t + τ̃(v − τ̃)t,

d

dλ
S−1
τλ

= −S−1
τλ

(
d

dλ
Sτλ)S−1

τλ

and consequently

d

dλ
S−1
τλ
|λ=0 = − 1

n− k
S−1
τ̃

k∑
j=1

L∑
l=1

hjlFjl(vτ̃
t + τ̃ vt − 2τ̃ τ̃ t)F t

jlS
−1
τ̃ .

Now we calculate in a direct way

d

dλ
ψ(τλ, τλ)|λ=0 = 2vtα(τ̃)

and so the theorem is proven.

2

This theorem gives us a proposal for the calculation of a local extremum.
Step 1: Choice of an initial point τ0.
Step 2: Set w := 1

|α(τ0)| α(τ0) and τ̃λ = (1 − λ)τ0 + λw for euclidian norm |α(τ0)| of

α(τ0).
Step 3: Determine such λ1 that

ψ(τ̃λ1 , τ̃λ1) = max
λ

ψ(τ̃λ, τ̃λ).

Step 4: Set τ1 := τ̃λ1 and calculate α(τ1). Now we set w := 1
|α(τ1)| α(τ1) and

τ̃λ = (1− λ)τ1 + λw and so on.
In this way we get a sequence of q-vectors τ0, τ1, τ2, ... and have

ψ(τ0, τ0) ≤ ψ(τ1, τ1) ≤ ψ(τ2, τ2) ≤ ...

In each step one can check α(τj) and decide to proceed in the sequential calculation or
to break up. Under α(τj) ≈ 0 one reaches the optimum.

Acknowledgement The authors are very grateful to Prof. H. Liero and Dr. Martin
Läuter for their helpful comments and suggestions.
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