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Abstract

Successfully completing any data science project demands careful considera-
tion across its whole process. Although the focus is often put on later phases
of the process, in practice, experts spend more time in earlier phases, prepar-
ing data, to make them consistent with the systems’ requirements or to im-
prove their models’ accuracies. Duplicate detection is typically applied during
the data cleaning phase, which is dedicated to removing data inconsistencies
and improving the overall quality and usability of data. While data clean-
ing involves a plethora of approaches to perform specific operations, such as
schema alignment and data normalization, the task of detecting and removing
duplicate records is particularly challenging. Duplicates arise when multiple
records representing the same entities exist in a database. Due to numerous
reasons, spanning from simple typographical errors to different schemas and
formats of integrated databases. Keeping a database free of duplicates is
crucial for most use-cases, as their existence causes false negatives and false
positives when matching queries against it. These two data quality issues
have negative implications for tasks, such as hotel booking, where users may
erroneously select a wrong hotel, or parcel delivery, where a parcel can get
delivered to the wrong address. Identifying the variety of possible data issues
to eliminate duplicates demands sophisticated approaches.

While research in duplicate detection is well-established and covers different
aspects of both efficiency and effectiveness, our work in this thesis focuses
on the latter. We propose novel approaches to improve data quality be-
fore duplicate detection takes place and apply the latter in datasets even
when prior labeling is not available. Our experiments show that improv-
ing data quality upfront can increase duplicate classification results by up
to 19%. To this end, we propose two novel pipelines that select and apply
generic as well as address-specific data preparation steps with the purpose
of maximizing the success of duplicate detection. Generic data preparation,
such as the removal of special characters, can be applied to any relation
with alphanumeric attributes. When applied, data preparation steps are se-
lected only for attributes where there are positive effects on pair similarities,
which indirectly affect classification, or on classification directly. Our work
on addresses is twofold; first, we consider more domain-specific approaches
to improve the quality of values, and, second, we experiment with known and
modified versions of similarity measures to select the most appropriate per
address attribute, e.g., city or country.

To facilitate duplicate detection in applications where gold standard annota-
tions are not available and obtaining them is not possible or too expensive,
we propose MDedup. MDedup is a novel, rule-based, and fully automatic



duplicate detection approach that is based on matching dependencies. These
dependencies can be used to detect duplicates and can be discovered using
state-of-the-art algorithms efficiently and without any prior labeling. MD-
edup uses two pipelines to first train on datasets with known labels, learning
to identify useful matching dependencies, and then be applied on unseen
datasets, regardless of any existing gold standard. Finally, our work is ac-
companied by open source code to enable repeatability of our research results
and application of our approaches to other datasets.



Zusammenfassung

Die erfolgreiche Durchführung eines datenwissenschaftlichen Projekts erfor-
dert eine Reihe sorgfältiger Abwägungen, die während des gesamten Pro-
zessesverlaufs zu treffen sind. Obwohl sich der Schwerpunkt oft auf spätere
Prozessphasen konzentriert, verbringen Experten in der Praxis jedoch einen
Großteil ihrer Zeit in frühen Projektphasen in denen sie Daten aufbereiten,
um sie mit den Anforderungen vorhandener Systeme in Einklang zu brin-
gen oder die Genauigkeit ihrer Modelle zu verbessern. Die Duplikaterken-
nung wird üblicherweise während der Datenbereinigungsphase durchgeführt,
sie dient der Beseitigung von Dateninkonsistenzen und somit der Verbesse-
rung von Gesamtqualität und Benutzerfreundlichkeit der Daten. Während die
Datenbereinigung eine Vielzahl von Ansätzen zur Durchführung spezifischer
Operationen wie etwa dem Schema-Abgleich und der Datennormalisierung
umfasst, stellt die Identifizierung und Entfernung doppelter Datensätze eine
besondere Herausforderung dar. Dabei entstehen Duplikate, wenn mehrere
Datensätze, welche die gleichen Entitäten repräsentieren, in einer Datenbank
vorhanden sind. Die Gründe dafür sind vielfältig und reichen von einfachen
Schreibfehlern bis hin zu unterschiedlichen Schemata und Formaten integrier-
ter Datenbanken. Eine Datenbank duplikatfrei zu halten, ist für die meisten
Anwendungsfälle von entscheidender Bedeutung, da ihre Existenz zu falschen
Negativ- und Falsch-Positiv-Abfragen führt. So können sich derartige Daten-
qualitätsprobleme negativ auf Aufgaben wie beispielsweise Hotelbuchungen
oder Paketzustellungen auswirken, was letztlich dazu führen kann, dass Be-
nutzer ein falsches Hotel buchen, oder Pakete an eine falsche Adresse geliefert
werden. Um ein breites Spektrum potenzieller Datenprobleme zu identifizie-
ren, deren Lösung die Beseitigung von Duplikaten erleichtert, sind eine Reihe
ausgefeilter Ansätze erforderlich.

Obgleich der Forschungsbereich der Duplikaterkennung mit der Untersuchung
verschiedenster Effizienz und Effektivitätsaspekte bereits gut etabliert ist,
konzentriert sich diese Arbeit auf letztgenannte Aspekte. Wir schlagen neue
Ansätze zur Verbesserung der Datenqualität vor, die vor der Duplikaterken-
nung erfolgen, und wenden letztere auf Datensätze an, selbst wenn diese über
keine im Vorfeld erstellten Annotationen verfügen. Unsere Experimente zei-
gen, dass durch eine im Vorfeld verbesserte Datenqualität die Ergebnisse der
sich anschließenden Duplikatklassifizierung um bis zu 19% verbessert wer-
den können. Zu diesem Zweck schlagen wir zwei neuartige Pipelines vor,
die sowohl generische als auch adressspezifische Datenaufbereitungsschritte
auswählen und anwenden, um den Erfolg der Duplikaterkennung zu maxi-
mieren. Die generische Datenaufbereitung, wie z.B. die Entfernung von Son-
derzeichen, kann auf jede Relation mit alphanumerischen Attributen ange-



wendet werden. Bei entsprechender Anwendung werden Datenaufbereitungs-
schritte nur für Attribute ausgewählt, bei denen sich positive Auswirkun-
gen auf Paarähnlichkeiten ergeben, welche sich direkt oder indirekt auf die
Klassifizierung auswirken. Unsere Arbeit an Adressen umfasst zwei Aspekte:
erstens betrachten wir mehr domänenspezifische Ansätze zur Verbesserung
der Adressqualität, zweitens experimentieren wir mit bekannten und modifi-
zierten Versionen verschiedener Ähnlichkeitsmaße, um infolgedessen das am
besten geeignete Ähnlichkeitsmaß für jedes Adressattribut, z.B. Stadt oder
Land, zu bestimmen.

Um die Erkennung von Duplikaten bei Anwendungen zu erleichtern, in denen
Goldstandard-Annotationen nicht zur Verfügung stehen und deren Beschaf-
fung aus Kostengründen nicht möglich ist, schlagen wir MDedup vor. MDe-
dup ist ein neuartiger, regelbasierter und vollautomatischer Ansatz zur Dubli-
katerkennung, der auf Matching Dependencies beruht. Diese Abhängigkeiten
können zur Erkennung von Duplikaten genutzt und mit Hilfe modernster
Algorithmen effizient ohne vorhergehenden Annotationsaufwand entdeckt
werden. MDedup verwendet zwei Pipelines, um zunächst auf annotierten
Datensätzen zu trainieren, wobei die Identifizierung nützlicher Matching-
Abhängigkeiten erlernt wird, welche dann unabhängig von einem bestehen-
den Goldstandard auf ungesehenen Datensätzen angewendet werden können.
Schließlich stellen wir den im Rahmen dieser Arbeit entstehenden Quellcode
zur Verfügung, wodurch sowohl die Wiederholbarkeit unserer Forschungser-
gebnisse als auch die Anwendung unserer Ansätze auf anderen Datensätzen
gewährleistet werden soll.
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1

Duplicate Detection

Computer applications have managed to improve the quality of human life tremendously
over the last decades. In various application domains, such as health care and busi-
ness analytics, making decisions in the 21st century heavily depends on acquiring and
intelligently processing the right data. While improvements in computer hardware and
software have greatly improved the performance of applications, the quality of the pro-
duced results still heavily depends on the quality of the provided input, i.e., data. To
this end, data scientists have developed several techniques to identify common issues
that occur in data and appropriate methods to repair them.

In general, these data quality issues can be loosely classified to two main categories:
syntactical and semantical. Syntactical issues are typically easy to identify, and their
resolutions are quite straightforward; for instance, improper file encoding (ASCII instead
of UTF-8) or inclusion of redundant special characters due to poor parsing. These issues
are usually resolved using data preparation techniques [Kandel et al., 2011; Yang et al.,
2015]. Semantical inconsistencies, on the other hand, are much harder to identify and
exist in multiple forms, such as alternative representations and schema mismatches.
These representations can be synonyms or variations of a first name, or the existence of
duplicate entries of the same entity. For these issues we employ data cleaning techniques,
which usually involve more complex and sophisticated processes [Elmagarmid et al., 2007;
Oliveira et al., 2005].

Although repairing syntactical issues can indirectly improve semantical problems as
well, which we discuss later, in this thesis we focus on a particular semantic problem, that
of duplicate entries. The existence of duplicate entries is a prevalent problem, especially
in applications where multiple data sources are considered or merged into a single one,
which happens, for instance, when integrating different departments of a company. The
two main characteristics that make it a very challenging task is a typically large number
of records that need to be compared and non-identical values in one or more of the
records’ fields across the duplicate entries.

Since duplicates exist in the first place due to inconsistencies in the recorded values,
two main problematic situations can take place. First, if the system is not able to match
a user’s query to the appropriate record, the missed and correct record is characterized
as a false negative. Second, if the system matches a user’s query to a wrong record, the
erroneous record is labeled as a false positive. Considering these issues in an example
domain, that of lodging, a customer can be unsatisfied if she is not able to book a hotel
she has in mind, although it exists in the system with a different representation (false
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1. DUPLICATE DETECTION

negative), or the situation could become even more complicated if the system matches
her query to a wrong hotel (false positive). Such issues exist in other domains too, such
as parcel delivery, where parcels can be sent to wrong destinations. Companies lose much
money due to such data quality issues, with the U.S. alone losing approximately $3.1
trillion per year, according to IBM’s calculations [IBM Big Data Analytics Hub, 2016].

In the past, detecting duplicates was an easier task, since most datasets were smaller
than what we face currently and were produced by fewer sources, which were more
commonly conforming to predefined standards. However, with the increased amount of
generated data, our job as data scientists becomes even more difficult. On the one hand,
we must take into account that more diverse users and systems generate these data,
which usually translates to poorer data quality. On the other hand, the amounts of data
we have to process demand for more efficient solutions. Although adequate literature
already exists for both these issues [Christen, 2012b; Chu et al., 2016; Elmagarmid et al.,
2007], the problem is far from being solved.

To contribute to this research area, in this thesis we focus on improving the quality
of record matching, i.e., less falsely identified pairs of duplicate entries as non-duplicate
and vice versa. To this end, Chapter 3, based on generic data preparation operations,
and Chapter 4, based on address normalization, focus on improving the quality of the
provided data in a systematic way, which translates to improved quality in duplicate
detection classification metrics. Finally, Chapter 5, based on matching dependencies,
provides a novel pipeline for scenarios where no prior labeling of duplicate pairs is avail-
able. Having a set of true duplicates is essential to train a machine learning model to
distinguish them from non-duplicates.

In this introductory chapter, we first provide an overview of typical data quality
issues that may cause the existence of duplicates. Afterward, we discuss the challenges
during duplicate detection and what are the commonly applied steps. We then introduce
the research problems we consider in this thesis along with our solutions. Finally, we
conclude with our concrete contributions and set the ground for the remaining of this
thesis with the structure of the following chapters.

1.1 Data quality issues

In order to eliminate duplicate entries successfully, it is essential to begin by consid-
ering some common data quality issues that are the reasons duplicates emerge in the
first place. The problem is well-known in research and taxonomies have already been
proposed to describe the plethora of data quality problems [Oliveira et al., 2005; Rahm
and Do, 2000]. However, although many of these data quality problems are met across
multiple application domains and can have universal solutions, domain-specific issues
are commonly present as well, which call for specialized techniques from domain experts.
Typical data quality problems, which are relevant for duplicate detection, include:

• Completeness: How many attribute values are missing across records? If these
attributes contain essential information, this can make matching duplicate records
a challenging process.

• Formatting: Are different data sources using the same data formats? A typical
example is often found in calendar dates, where if both the formats day-month-
year (DMY) and month-day-year (MDY) are used across different data sources,
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1.2 Challenges of duplicate detection and existing solutions

mistakes can be made by comparing days to months.
• Spelling errors: Are the values generated automatically by a system or entered

manually by users? If values are provided by users, for instance during data en-
try processes, typographical mistakes in the expected input value of additional,
modified, or removed alphanumeric characters, are very prone to take place.

• Timeliness: Are the records updated consistently across time? A common prob-
lem that causes duplicates is that information about entities changes across time,
without being updated in the database. Therefore, when records of the same entity
are inserted into the database in the future, the differences are quite significant,
making record matching a more challenging task.

• Validity: Can we trust the stored values? This problem is related to spelling
errors, but can be the result of more severe issues. Due to poor parsing or prob-
lematic user forms, values may end up in different attributes. For instance, a user
might provide the full address, including the city and country, in the field about
the street address of a place. In such cases, we need to parse and extract individual
values, placing them in their respective attributes.

• Data volume: How many data have to be processed? This greatly dictates what
kind of duplicate detection approaches can be used. For instance, if the number
of records is large and their attributes contain large alphanumeric values, using
edit-based similarity measures to compare values on characters, such as Leven-
shtein [Levenshtein, 1966], is not always the best choice semantically. Thus, token-
based similarity measures have to be used instead, such as Jaccard [Jaccard, 1901].

The former problem categories are also discussed by Christen [Christen, 2012b],
among other issues, and provide us with an idea of what we face when cleaning a data-
base. Inability to identify and resolve these issues causes a number of problems for both
customers and companies, having an actual massive cost for the latter ones, as we re-
ferred to previously. Therefore, the pressure to identify data quality issues and resolve
them is quite high. To this end, in the next section, we focus on duplicate detection and
consider the main challenges around it along with typical processes applied to resolve
them.

1.2 Challenges of duplicate detection and existing solu-
tions

Having seen some issues that cause duplicate records and a few examples, should pro-
vide us with a basic understanding of how challenging the problem is. Initially, the
problem was defined by Newcombe et al. [Newcombe et al., 1959] in 1959 and Fellegi
and Sunter [Fellegi and Sunter, 1969] formalized it in 1969. Since then, the problem has
been the target of research from multiple domains and has been recognized with dif-
ferent names, including duplicate detection [Naumann and Herschel, 2010], record link-
age [Christen, 2012b], entity resolution [Christen et al., 2009], and data matching [Chris-
ten et al., 2006], all of which are ironically duplicates of the same research area. Most
approaches are similar for all these versions of the problem. Indeed, in certain setups,
such as when we have two relations and record linkage is applied, specific properties of
individual relations could be exploited. For instance, if no duplicates exist within indi-
vidual relations, this could be taken into account if some record is matched with more
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1. DUPLICATE DETECTION

than one record of the other relation. For simplicity, we decided to focus on duplicate
detection, which is defined in the context of a single relation. Record linkage tasks can
be solved by duplicate detection approaches by first merging the different relations into
a single one, which of course causes some loss of information.

Over the years, many approaches have been developed to detect and resolve duplicate
records [Christen, 2012b; Elmagarmid et al., 2007; Naumann and Herschel, 2010]. Be-
cause the challenges around duplicate detection are numerous many of these approaches
focus on specific parts of the process. A typical pipeline of the whole process is provided
by Christen [Christen, 2012b] and is shown in Figure 1.1. Every step provides a solution
to a different challenge around duplicate detection. The challenges and solutions across
these steps are the following:

Transform

Enrich

Clean

Data preparation Indexing

Blocking Sorted

Neighborhood

Similarity calculation
a b c d e

a b d c e

Similarity

Classification

0.6 0.9 0.2 0.5 1.0Records 1, 2

0.9 0.3 0.4 0.8 0.9Records 1, 3
…

Records n, n-1

0.6 0.9 0.2 0.5 1.0

+

+ +
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+

-

Similarity 1

S
im
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ri

ty
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Duplicate

Non-duplicate

Partitioning and

canonicalization

1

2
3

4

5

6

0.9 0.3 0.4 0.8 0.9

Figure 1.1: Commonly applied duplicate detection pipeline.

Poor data quality. First, similarly to how duplicate detection is applied before other
processes start to improve data quality, certain steps could be applied to make duplicate
detection feasible and more successful. These are part of the first step in Figure 1.1 and
span from fixing capitalization issues by lower-casing characters to more fine-grained
details, such as address normalization, to provide a more robust foundation for later
parts of the process. In fact, as we show in Chapters 3 and 4, by focusing on this step
alone and using simple approaches for the following steps of the process, we can improve
the success of duplicate detection substantially, by up to 19% in F-measure.

Too many comparison candidates. Second, the duplicate detection process typically
involves a single relation. Therefore, given a relation R of n records, deciding which pairs
of records represent the same entity requires an exhaustive all-pair comparison, which
has a complexity of O(n∗(n−1)2 ) = O(n2). For large relations, even if they include only a
few thousand records, this number of comparisons could become prohibitive for executing
within a reasonable time frame. The complexity is similarly high for the record linkage
version of the problem, which involves two relations R and S of sizes n and m, with
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1.2 Challenges of duplicate detection and existing solutions

an O(n ∗m) complexity. To reduce the number of comparisons, data cleaning experts
typically apply different indexing approaches, such as blocking [Li et al., 2013] and sorted
neighborhood [Ramadan et al., 2015], which are based on hashtable and ordered tree data
structures. The result of this process, which is the second step in Figure 1.1, provides
us with a set of candidate duplicate pairs to be compared next.

Quantifying similarity between records. Third, before we can decide whether two
records are duplicates, we need some features to base our decisions on. Typically, these
features are generated based on attribute values of the two records. Based on these
attribute values, similarity (dissimilarity) measures are used that provide us with arith-
metic representations of their closeness (distance). Different measures can be used, de-
pending on the attribute type; for instance, when comparing calendar dates, a higher
distance should be returned between two values if they differ in years instead of days.
Alphanumeric values are very typical, as they can express a wide range of information,
and a plethora of different measures exist, such as Levenshtein and Jaccard [Jaccard,
1901; Levenshtein, 1966]. Various alphanumeric measures exist to quantify differences
on multiple granularity levels, such as character or token. For instance, large alphanu-
meric values, such as descriptions, should usually focus on whether the two values share
the same tokens instead of counting differences on characters that are more important
for smaller values, such as cities’ or persons’ names.

Deciding if records are duplicates. Fourth, these numerical features can be utilized
under different classification approaches to decide whether a given pair of records rep-
resents a duplicate or not. A wide range of classification approaches have been used in
duplicate detection, spanning from simple models, such as the linear classifier, also known
as the Threshold-based classifier, to more sophisticated ones, such as Support Vector Ma-
chines (SVMs) and more recently Deep Neural Network models, such as DeepER [Ebra-
heem et al., 2018] and DeepMatcher [Mudgal et al., 2018]. Although sophisticated mod-
els can usually achieve better results, simpler models are more useful as they can be
explained and even fine-tuned easier by non-technical domain experts. Typically, when
evaluating a duplicate detection process, the outcome of this phase is used directly.

Resolving duplications. Finally, after we decide which pairs represent duplicates, to
eliminate the duplicates certain actions have to be made. These actions usually include
producing clusters of records that represent duplicates and merging each of these clusters
into new records that uniquely represent each entity. Clustering is performed using
typical graph clustering techniques [Draisbach et al., 2019], where nodes are records and
edges are pairs that were classified as duplicates in the previous step. After clustering
is complete, for non-single element clusters, disagreements between records’ attribute
values have to be addressed and resolved so that a new record will be generated as the
canonical representation of the entity [Culotta et al., 2007].

This section addressed general steps and respective approaches typically applied in a
duplicate detection process. Next, we motivate the research problems that we considered
of paramount importance during this thesis and briefly introduce our approaches to
resolve them.
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1. DUPLICATE DETECTION

1.3 Research challenges and contributions

While the open research problems in the topic of duplicate detection are numerous, our
choices of focus were made in collaboration with our industry partner SAP Concur1.
SAP Concur provides business solutions to travel and expense issues. Part of their
business pipeline involves matching user queries to different types of companies contained
in their databases. Our collaboration focused on the area of lodging/hotels, where their
databases contained records located worldwide. Although they had and have a successful
deduplication process pipeline, they were looking for ways to improve it further.

During our collaboration, we experimented with various datasets, generated out of
their different business processes. However, in this thesis, we focus our research on a sin-
gle dataset, where we had enough gold standard information to evaluate our approaches.
This dataset revealed a plethora of issues we could address. Therefore, we decided to
apply general data preparation operations, as discussed in Chapter 3. After managing to
improve and remove a number of different issues in most values, we identified addresses
to be a core component of their data when comparing records. Any discussion regarding
addresses is beneficial in multiple domains as they characterize a wide range of differ-
ent use-cases. Although addresses are prepared and have their quality improved in the
work of Chapter 3, our solution discussed in Chapter 4, evaluated further approaches on
how to normalize and compare addresses, in more detail. Finally, being able to identify
a set of duplicate pairs in unknown sources or even in different domains, lead us to a
rule-based approach based on matching dependencies, discussed in Chapter 5. Matching
dependencies provide us with a set of duplicate pairs, typically of high precision, while
at the same time, their properties are more straightforward to comprehend than other
machine learning solutions.

To better explain the previous points, let us consider Table 1.1, which includes mod-
ified records from the Restaurants dataset, which is a merged dataset of two Restaurant
guides (see Chapter 3 for more details). The first two pairs of records are duplicates,
whereas the latter two ones non-duplicates, but with high similarity. Several of the pre-
sented values include inconsistencies that need to be repaired. To this end, we suggest
the following steps, which are the methodologies described in this thesis to repair these
values and effectively match the duplicate records, avoiding the non-duplicate ones.

Data preparation. Several of the presented values include inconsistencies that specific
data preparation operations, such as lower-casing and removal of special characters,
could repair. Indeed, by applying these operations, we obtain Table 1.2, with values of
higher quality. This is also reflected in similarities of both duplicate and non-duplicate
pairs. Ideally, increased similarities should only happen for duplicates. However, when
the effect takes place also in non-duplicates, it is sufficient for us that these similarity
increases are smaller than for duplicates and, thus, do not cross classification borders so
that non-duplicates are mistaken for duplicates.

Noticing the benefits of prepared values on their respective similarities, led to the re-
search approach discussed in Chapter 3. Briefly, a systematic data preparation pipeline
is suggested to identify the proper data preparation operators per attribute. Requiring
a small sample of labeled pairs and using eleven selected data preparation operations,
suitable for duplicate detection, our two-step heuristic approach identifies appropriate

1https://www.concur.com/
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1.3 Research challenges and contributions

Table 1.1: Original values, motivation for data preparation: A sample of dupli-
cate (<163,164> and <165,166>) and non-duplicate record pairs (<180,823> and
<676,811>) from the Restaurants dataset, with some value modifications for the
purposes of this example. The floating point numbers indicate value pair similari-
ties.

id name phone address city type

163 > georgia grille < / 404/352-3517 2290 peachtree rd.
peachtree square
shopping center

atlanta city american

164 Georgia grille 404-352-3517 2290 Peachtree RD. Atlanta Southwestern
0.68 0.92 0.29 0.5 0.17

165 hedgerose heights
inn

404/233-7673 490 e. paces ferry rd. atlanta international

166 Hedgerose heights
Inn the

404-233-7673 490 E. Paces Ferry
RD. ne

Atlanta Continental

0.76 0.92 0.68 0.86 0.31

180 ;ritz carlton cafe
buckhead;

404/237-2700 3434 peachtree rd. ne atlanta american new

823 Ritz carlton cafe at-
lanta

404-659-0400 181 peachtree ST. Atlanta American new

0.64 0.5 0.57 0.86 0.92

676 } johny rockets la { 213-651-3361 7507 melrose ave la american
811 } Johny rockets AT { 770-955-6068 2970 Cobb PKWY Atlanta American

0.85 0.33 0.12 0.29 0.88

data preparations in a best-effort scenario. A heuristic approach is necessary, as con-
sidering all possible preparations in combination for all attributes cannot be calculated
within a reasonable time-frame. Using our approach we managed to improve F-measure
by up to 19%, according to our evaluation.

Address normalization. Although using the previous data preparation process can
already improve the classification results remarkably, there is still room for further im-
provement, especially regarding addresses. By using the geocoding services of Nomina-
tim2, which is an online geographic information system, we obtain new and normalized
values presented in Table 1.3. Apart from the values visible to this table, geocoding,
which matches the user’s query to the appropriate address, returns us extra information,
such as the geolocation (latitude and longitude). Therefore, apart from value normaliza-
tion, we also enrich our records with further information that can be exploited during
the comparison of records or even used by a later application. For instance, duplicate
detection could take advantage of geolocations and disconsider records that are located
too far apart, depending on the use-case.

To this end, in Chapter 4 we present a pipeline that improves duplicate detection
results of records that include addresses in two ways. First, we experiment with three
different systems to improve the quality of address values. Second, for every address
attribute, we experiment with all possible similarity measures and identify the most
suitable one, resulting in the optimal duplicate detection classification. Applying our

2https://nominatim.openstreetmap.org/
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1. DUPLICATE DETECTION

Table 1.2: Prepared values, motivation for address normalization: Continuation
of Table 1.1 with data preparation applied over attribute values. Although, similar-
ities have improved a lot for duplicate pairs, there is still room for improvement, in
particular for address-related attributes.

id name phone address city type

163 georgia grille 404 352 3517 2290 peachtree rd
peachtree square
shopping center

atlanta city american

164 georgia grille 404 352 3517 2290 peachtree rd atlanta southwestern
1.0 (+0.32) 1.0 (+0.08) 0.34 (+0.05) 0.58 (+0.08) 0.17

165 hedgerose heights
inn

404 233 7673 490 e paces ferry rd atlanta international

166 hedgerose heights
inn the

404 233 7673 490 e paces ferry rd ne atlanta continental

0.84 (+0.08) 1.0 (+0.08) 0.88(+0.2) 1.0 (+0.14) 0.31

180 ritz carlton cafe
buckhead

404 237 2700 3434 peachtree rd ne atlanta american new

823 ritz carlton cafe at-
lanta

404 659 0400 181 peachtree st atlanta american new

0.73 (+0.09) 0.58 (+0.08) 0.55 (−0.02) 1.0 (+0.14) 1.0 (+0.08)
676 johny rockets la 213 651 3361 7505 melrose ave la american
811 johny rockets at 770 955 6068 2970 cobb pkwy atlanta american

0.88 (+0.03) 0.33 0.12 0.29 1.0 (+0.12)

pipeline led to an increase in F-measure up to 12%, as shown by our evaluations.

Matching dependency rules. Having prepared data with normalized and enriched
addresses improves duplicate detection results substantially. However, even under this
scenario, performing duplicate detection requires a set of labeled pairs to train a classifi-
cation model and apply it to other unknown pairs. This is a fundamental issue for most
machine learning problems.

For this purpose, in Chapter 5, we propose MDedup, a novel pipeline based on match-
ing dependencies that can be applied to unknown datasets for the purpose of duplicate
detection. In a nutshell, our approach utilizes the fact that matching dependencies can
be discovered in any relational dataset, without any relevant gold standard. What consti-
tutes our approach novel is that it learns characteristics over successful sets of matching
dependencies in labeled datasets and applies them to unlabeled datasets. These char-
acteristics can be calculated based on information that is available in both unlabeled
and labeled datasets. The obtained results are characterized by high precision, which
is particularly important in applications where false positives have to be avoided. In
particular, our experimental evaluation shows that using our approach we can achieve
up to 94% F-measure and 100% precision.

Across Chapters 3 to 5, we provide a set of experiments that in total involve nine
different datasets, covering a range of different domains. One of these datasets is a real-
world dataset provided by our industry partner SAP Concur, comprised of hotels, which
is more challenging as it includes a lot more unconventional issues. This emphasizes
the predominant flavor of this thesis, which is to provide practical improvements in the
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1.4 Structure

Table 1.3: Prepared and address normalized values, motivation for matching depen-
dencies: Continuation of Table 1.2 with data preparation and address normalization
applied over attribute values. The quality of values has improved quite a lot and
a rule-based method, such as ours based on matching dependencies, could identify
duplicate pairs with less room for errors.

id name phone address city type

163 georgia grille 404 352 3517 2290 peachtree rd atlanta american
164 georgia grille 404 352 3517 2290 peachtree rd atlanta southwestern

1.0 1.0 1.0 (+0.66) 1.0 (+0.42) 0.17

165 hedgerose heights
inn

404 233 7673 490 east paces ferry rd
ne

atlanta international

166 hedgerose heights
inn the

404 233 7673 490 east paces ferry rd
ne

atlanta continental

0.84 1.0 1.0 (+0.12) 1.0 0.31

180 ritz carlton cafe
buckhead

404 237 2700 3434 peachtree rd ne atlanta american new

823 ritz carlton cafe at-
lanta

404 659 0400 181 peachtree st ne atlanta american new

0.73 0.58 0.7 (+0.15) 1.0 1.0

676 johny rockets la 213 651 3361 7505 melrose ave los angeles american
811 johny rockets at 770 955 6068 2970 cobb pkwy se atlanta american

0.88 0.33 0.12 (−0.01) 0.18(−0.1) 1.0

context of duplicate detection. Finally, although in this thesis we have mostly emphasized
the impact in improving matching quality metrics, we ensure and validate that all our
approaches execute in reasonable execution times.

1.4 Structure

The remainder of this thesis is structured as follows: In Chapter 2, we discuss related
work in the context of duplicate detection. Then, we introduce our generic data prepa-
ration approach in Chapter 3 [Koumarelas et al., 2020a]. Data preparation was initially
a working topic from Jiang and Naumann, while Koumarelas had the idea of combining
it with duplicate detection. Both Jiang and Naumann provided suggestions through
the whole project. In Chapter 4 we present our pipeline for normalizing and matching
address-related records [Koumarelas et al., 2018]. Datasets and domain knowledge were
provided by Mosley, prototyping and data analysis support by Kroschk, and suggestions
and supervision by Naumann. Afterward, we present the domain-agnostic duplicate de-
tection approach MDedup in Chapter 5 [Koumarelas et al., 2020b]. The idea was based
on the work of Schirmer [Schirmer et al., 2020], which discovers matching dependencies
(MDs). Koumarelas extended the line of work by using the discovered MDs to detect du-
plicates, by focusing on selecting those MDs that can bring the best results. Papenbrock
and Naumann both provided essential insights and supervision to the project. Finally,
we conclude in Chapter 6 with a synopsis of this thesis and open research questions for
future work on the topic of duplicate detection.
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2

Duplicate Detection Approaches

Data quality issues have been challenging researchers and practitioners over many years,
which has resulted in contributions to improve different aspects of data, such as schema
and values [Han et al., 2011; Lee et al., 2009; Wang et al., 2001]. Out of the many
important data quality issues that exist, in this thesis, we consider the resolution of
duplicates as the primary focus of our studies. However, certain quality issues are con-
nected in a way that resolving some of them can have positive implications for the rest.
This is evident in Chapters 3 and 4, where the preparation of values improves duplicate
detection. Likewise, resolving duplicates can have positive implications for other data
quality aspects, such as low information retrieval scores. Therefore, in this chapter, we
discuss literature in the area of duplicate detection and use the commonly applied steps
discussed in Figure 1.1 to group it. We omit literature of data preparation (first step
in Figure 1.1), which is discussed in Chapter 3.

The remainder of this section is structured as follows: First, in Section 2.1, we
present indexing approaches to reduce the number of record pairs being compared. Sec-
ond, in Section 2.2, we discuss different ways of generating features to compare records,
with similarity measures being the most common ones. Third, in Section 2.3, using the
features generated from the previous step, we present various classification approaches
to decide whether two records represent duplicates or not. Finally, Section 2.4 com-
pletes the typically applied procedure by discussing the last steps used to provide single
representations for the detected duplicates.

2.1 Indexing

Deciding which pairs represent duplicates or not demands for a full-pair comparison of a
dataset’s records. However, processing this number of pairs has a complexity of O(n2),
where n is the number of records. For large datasets, this quadratic complexity makes the
execution infeasible to complete within reasonable time constraints. Therefore, indexing
solutions are used to reduce the pair comparisons only to those that are more probable
to be actual duplicates, avoiding redundant comparisons. The most commonly applied
indexing strategies [Christen, 2012b; Elmagarmid et al., 2007] are the following:

Blocking. This indexing method is based on Hashtables and is the most commonly
applied due to its simplicity [Baxter et al., 2003; Karakasidis et al., 2015; Papadakis
et al., 2013]. Analogous to hashing keys are the blocking keys, which define how to
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2. DUPLICATE DETECTION APPROACHES

generate values from records that assign them to blocks, similar to Hashtable buckets.
Records are assigned to blocks, with every block including multiple records. Within a
block all records are compared in pairs in the next step (Section 2.2). Best practices
suggest to use parts of the records that are discriminative and can set them apart from
values of different entities, but at the same time flexible enough to allow variations of
the values to be placed in the same block. For instance, a blocking key for Table 1.3
could be a concatenation of records’ name and address values. Ideally, users should
target producing high-quality buckets, with only a few mistakenly placed records (false
positives). Multiple blocking keys can be introduced to address the problem of missed
pairs (false negatives) by utilizing different attributes of the record. As an example,
considering again Table 1.3 one blocking key could use a combination of the restaurant’s
name and the street address, whereas a second one could use the phone number and
the city. Combining multiple blocking keys increases the probability that duplicates are
placed in some block, regardless of inconsistencies in some records’ values.

Another commonly applied technique, often considered as a separate category, is
canopy clustering [McCallum et al., 2000]. Canopy clustering allows for a more relaxed
form of blocks to be formed, which are usually overlapping and cheap to calculate. The
motivation is to prune the vast majority of record pairs in this step and move on to a
more robust indexing approach in the following second step. A typical approach used
for canopy clustering is locality-sensitive hashing (LSH), which uses hashing functions,
such as min-hashing that approximates the Jaccard similarity, to assign similarly enough
values to the same buckets.

Sorted Neighbourhood. While blocking approaches have their advantages, such as
being simple models with a linear runtime complexity, sorted neighbourhood method
(SNM) approaches offer additional benefits by increasing, however, the runtime com-
plexity to O(n log n), where n is the number of records. In particular, the main benefit
of SNM approaches is that values are ordered and thus alphabetically close values are
considered as duplicate candidates [Hernández and Stolfo, 1998; Ramadan et al., 2015].
Similar to blocking keys, sorting keys are created from the record’s attributes, producing
a value that represents the record and should ideally be alphabetically close to other
duplicate entries of the same entity. Values generated from sorting keys are first sorted,
and then neighbouring values are considered as duplicate candidates, based on different
strategies. These strategies are typically based on a sliding window, which can be of
fixed size or have its size be decided based on similarity criteria. Typically, this window
is slid from the left of the ordered list of values to the right. Records within a window
form candidate pairs to be compared in the next step of value comparison.

An inherent assumption of SNM is that when sorting key values contain inconsis-
tencies, these happen more at the end of a value and not at the beginning. Similar to
blocking, SNM approaches can also apply multiple sorting keys to increase the proba-
bility of duplicate records being alphanumerically close by the values of one of them.
Alternatively, different transformations on top of the generated values may help mitigate
some of these problems, which are discussed followingly:

Improving Blocking and Sorted Neighbourhood. While using blocking and sorted
neighbourhood can produce high-quality results already with normal blocking and sorting
keys, there are several techniques to improve their success rate further.

• Phonetic encodings: Many spelling mistakes are the result of miscommunicating an
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2.2 Value comparison

orally transmitted phrase. The information entered in the database sounds acousti-
cally similar but spelled incorrectly. To identify such cases, several phonetic encod-
ing methods, such as Soundex [Odell and Russell, 1918] and Metaphone [Philips,
1990], have been developed that transform the values to an alphanumeric repre-
sentation that is identical if the written values “sound” the same. For instance,
given the values Berlin and Bearlyn, using the Metaphone encoding both would
be transformed to BRLN. This means that if blocking would use Metaphone as
blocking key, both values and thus records would end to the same block.

• N-grams: In case the inconsistencies are more complicated or the values are too
large for phonetic encodings to be useful, using n-grams, producing multiple sorting
keys, can be an alternative and quite effective approach [Gravano et al., 2001]. This
approach works as follows: a window of size n is slid from the start to the end of the
alphanumeric value, producing multiple tokens each of size n, each one of which
is used as a separate sorting key. In particular, for an alphanumeric value that
contains m characters, m−n+ 1 tokens are produced, also referred to as n-grams.
For instance, generating 3-grams for the value Berlin would result in the following
tokens: [“Ber”, “erl”, “rli”, “lin”]. Additionally, if padding is enabled the list would
also include: [ “ B”, “ Be”, “in ”, “n ”], where ‘ ’ represents a white space.

Please note that, as we discuss in Chapter 3, these approaches could be part of the
data preparation step resulting in additional attributes that are already prepared and
ready to be used by the indexing or even value comparison methods discussed next. How-
ever, following Christen’s suggestion, we include them in the context of indexing [Chris-
ten, 2012b].

2.2 Value comparison

To decide which of the duplicate candidates provided by the indexing phase are actual
duplicates, we need to first generate relevant features to take our decisions upon. In this
step, for every candidate pair we apply comparison measures on records’ attribute values
to quantify their similarity (or distance). Depending on the attribute type, different
measures can be applied. For instance, a similarity measure for calendar dates should
return a higher similarity for dates that differ on just the day compared to dates that
differ on the year. However, as discussed at the beginning of this chapter, for simplicity,
we focus on alphanumeric values as a broad range of attributes are often encoded in
this format. In case more detailed semantic information is available, such as the schema
definition of an attribute that declares its specific type, such as calendar dates, specialized
measures can be used instead.

Research and industry have established a wide array of similarity measures for al-
phanumeric attributes. In many cases, string-based measures are originally defined as
distance measures, whose values are converted to a similarity by subtracting the nor-
malized distance from 1. We briefly review different categories of similarity (distance)
measures.

Edit-based. These string-based measures consider the whole two strings and count the
edit operations (e.g., insertions, deletions, replacements, or swaps of characters) that
are needed for one input to be converted to the other. Typically used measures of this
category are the following:

13



2. DUPLICATE DETECTION APPROACHES

• Exact Match returns 1.0 if the strings are exactly the same, and 0.0 otherwise.
• Hamming counts the positions at which characters are different [Hamming, 1950].
• Levenshtein counts the minimum number of edit operations to transform one string

to the other [Levenshtein, 1966].
• Damerau-Levenshtein expands the Levenshtein measure with the transposition op-

eration for two adjacent characters (a common typo) [Damerau, 1964].
• Jaro-Winkler is an extension of the Jaro distance [Jaro, 1989], which counts the

transpositions of characters needed to transform one string to the other, as long
as they happen within less than half the string’s length. Jaro-Winkler then favors
cases where the two input strings have a common prefix [Winkler and Thibaudeau,
1991].

• LongestCommonSubsequence is the longest sequence of characters that is common
in the two strings [Chvatal and Sankoff, 1975], in contrast to LongestCommonSub-
string [Gusfield, 1997], which demands the characters to be adjacent.

Token-based. These measures tokenize the strings and compare the sets of tokens:

• Jaccard, also known as Jaccard index or Jaccard similarity coefficient [Jaccard,
1901], represents how many tokens the two strings share.

• Jaccard n-gram is a variation of Jaccard where the tokens are produced using a
sliding window of size n (i.e., n-grams).

Hybrid. Hybrid measures combine the advantages of both previous categories by using
an internal edit-based similarity and applying it to combinations of tokens of the entire
input values. The final similarity is then the average similarity of matched pairs.

• Monge-Elkan goes through all tokens of the first input string and finds the token of
the second string with the maximum similarity, which can also be re-used for further
matches [Monge and Elkan, 1996]. Monge-Elkan returns the mean similarity of the
matched token pairs.

• Soft TF-IDF [Cohen et al., 2003] is based on the principles of Term Frequency (TF)
and Inverse Document Frequency (IDF), typically used in Information Retrieval.
TF-IDF values are calculated for the tokens of the compared alphanumerics, form-
ing a vector for each alphanumeric, and finally compared using the cosine similarity.

The previous categories define the most commonly used string similarity measures.
However, as we discussed in Section 2.1, phonetic encodings and n-grams can also be ap-
plied to values to facilitate the matching process. The prepared values could be compared
with edit-based measures for phonetic encodings, and token or hybrid-based similarity
measures for n-grams.

Even with the application of phonetic encodings and n-grams, predefined string simi-
larity measures may not always provide adequate similarity measurements, depending on
the dataset’s idiosyncrasies. State-of-the-art approaches, though, such as DeepER [Ebra-
heem et al., 2018] and more recently DeepMatcher [Mudgal et al., 2018], circumvent these
limitations by learning a tailored to the dataset similarity measure. These approaches are
based on artificial neural networks that convert the provided input values to distributed
value representations, also called embeddings of the values. These embeddings typically
form vectors of normalized numerical values for every record’s attribute. Lastly, these
vectors are compared between record pairs using an energy function, such as the cosine
similarity [Koch et al., 2015], resulting to a normalized similarity.
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2.3 Classification

2.3 Classification

Having calculated similarities, we are ready to use them as features and make a decision
of whether a pair of records refers to the same entity (duplicate) or not (non-duplicate).
This decision is typically addressed using machine learning (ML) models, such as Support
Vector Machines (SVM) [Christen, 2008a; Cortes and Vapnik, 1995], Random Forests
(RF) [Ho, 1995], and recently deep-learning neural network models [Ebraheem et al.,
2018; Mudgal et al., 2018]. To learn how to distinguish duplicates from non-duplicates,
these ML models require some labeled pairs of duplicates and non-duplicates in the form
of a gold standard, to train upon and properly configure their parameters. Afterward,
they can be applied to new pairs, as they arrive from the duplicate detection process,
and mark them as duplicates or not.

Some ML models may delegate the final decision to a human expert, in case a clear
decision cannot be made, in a process referred to as active learning [Ngonga Ngomo and
Lyko, 2012; Sarawagi and Bhamidipaty, 2002]. During active learning, the system decides
which instances would be benefited the most from human annotation, typically the ones
it is most uncertain of, and sends them to the expert annotators. After the annotation
is complete, the system retrains itself, including these new annotations, to decide which
are the next instances it is still most uncertain about, resulting in an iterative process.
This iteration finishes either when the system is certain about all pairs or there are no
available resources left, such as human annotators or time.

After decisions for duplicate and non-duplicate pairs are made, in a production en-
vironment, we typically move directly to the next step (Section 2.4), to return the best
result to the user. However, during the development or testing phase, we usually need
to evaluate our performance, which is normally achieved by calculating classification
metrics. True or false positives and true or false negatives are usually calculated to
consequently allow the calculation of precision, recall, and finally F-measure, which is
the harmonic mean of the latter two and is typically reported. Most ML models require
a threshold at the end of their process to make their final decision. In cases, though,
where the ML model cannot select a stable threshold to perform its final classification,
we may prefer to calculate the area under the precision-recall curve (AUC-PR). AUC-PR
considers all possible thresholds and provides a more stable measurement of the model’s
effectiveness.

2.4 Partitioning and canonicalization

Since the final product of our pipeline needs to be a duplicate-free database, at this phase
we replace the previously marked duplicates with new records to uniquely represent
entities. To this end, we incorporate two commonly applied steps: Partitioning and
producing canonical representations, in a process similar to data fusion.

Before partitioning is applied, first, all the provided edges are converted to an undi-
rected graph. Then a number of different clustering algorithms [Draisbach et al., 2019;
Hassanzadeh et al., 2009] can be applied to the directed graph to produce disconnected
clusters, where each one of them should represent a different entity. As an example, a
commonly applied partitioning strategy, due to its simplicity, is transitive closure. Tran-
sitive closure is based on the simple principle that if record a is considered duplicate to
record b that in turn is considered duplicate to record c, then a duplicate relationship
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between records a and c could be automatically induced. It is important to note that
possible false positives introduced by the classification phase could link clusters of differ-
ent entities together, even if the incorrect decision was made only between two records.
For this reason, more sophisticated clustering techniques are available, such as correla-
tion clustering [Bansal et al., 2004] and maximum clique clustering [Bron and Kerbosch,
1973].

In case a cluster contains more than one node, a canonical representation has to be
generated to replace the duplicate records. Different strategies can be applied to se-
lect attribute values for a canonical record from the duplicate records. These strategies
may involve a simple majority voting, i.e., which attribute value is the most common
among the records, or by considering other factors, such as the trustworthiness of indi-
vidual records and their sources [Culotta et al., 2007]. The process is similar to data
fusion [Bleiholder and Naumann, 2009], where the goal is to combine different sources
to produce more complete information than the individual sources provide. The result
of canonicalization is a clean dataset where no further duplicates are present.

Finally, all the approaches discussed in this chapter can be extended to be executed
incrementally, where records can be dynamically inserted, deleted, or updated [Benjel-
loun et al., 2009; Gruenheid et al., 2014], and distributed for large-scale data [Chu et al.,
2016; Das Sarma et al., 2014]. Various projects and products on duplicate detection,
such as JedAI [Papadakis et al., 2018] and Febrl [Christen, 2008b], cover most of the
steps discussed in this chapter and can be used for a broad variety of application scenar-
ios. However, as more applications recognize the need for data cleaning and detection of
duplicates, the need for projects with sophisticated solutions to handle larger volumes
of more complex data will keep increasing.
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3

Data Preparation for Duplicate
Detection

In the previous chapters, we have introduced the reasons for applying duplicate detection
as well as typically used approaches. While trying to apply these approaches to our
datasets, which are described in Section 3.4.1, we realized that in many cases values
contain inconsistencies that, if resolved before duplicate detection starts, they could
benefit the final result. Therefore, improving data quality, by eliminating a number of
different errors that may appear in data, prior to executing duplicate detection, can make
the latter more successful. Typically, most of these errors are fixed with data preparation
methods, such as whitespace removal. However, the particular error of duplicate records,
where multiple records refer to the same entity, is usually eliminated independently with
specialized techniques. Our work in this chapter is based on [Koumarelas et al., 2020a]
and is the first to bring these two areas together by applying data preparation operations
under a systematic approach, prior to performing duplicate detection. We show how data
preparation steps are usually poorly specified in the literature, although as we show in our
evaluation they are very important for later parts of an application, such as classification.

Our process workflow can be summarized as follows: It begins with the user pro-
viding as input a sample of the gold standard, the actual dataset, and optionally some
constraints to domain-specific data preparations, such as address normalization. The
preparation selection operates in two consecutive phases. First, to vastly reduce the
search space by removing ineffective data preparations, decisions are made based on
the improvement or worsening of pair similarities. Second, using the remaining data
preparations an iterative leave-one-out classification process removes preparations one
by one and determines the redundant preparations based on the achieved area under the
precision-recall curve (AUC-PR). Using this workflow, we manage to improve the results
of duplicate detection by up to 19% in AUC-PR. Our contributions can be summarized
as:

• A collection of data preparation examples in the literature.
• A systematic approach to find the most suitable preparations for a given dedupli-

cation task.
• Experiments to verify our findings from different perspectives.

The rest of the chapter is structured as follows: We proceed with Section 3.1, which
motivates the problem of data inconsistencies and briefly introduces our solution. Sec-
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tion 3.2, in which we have collected examples of data preparation throughout many
papers on duplicate detection. Section 3.3 covers relevant background for the reader, in
the areas of data quality, data preparation, and duplicate detection. Next, Section 3.4
introduces several real-world datasets, which were the inspiration for the selection of
common data preparators presented threreafter. We then describe the core process of
applying and selecting preparators in Section 3.5. Section 3.6 discusses the results of
the process and its impact on duplicate detection. Section 3.7 concludes with our vi-
sion on the role of data preparation and how it could be incorporated in a variety of
applications.

3.1 Data preparation

Difficult data cleaning tasks are typically treated with specialized algorithms. As an ex-
ample, duplicated records, which refer to the same entity with variations in their values
represent a common error in datasets and are dealt with by duplicate detection meth-
ods [Elmagarmid et al., 2007]. Depending on the application task, duplicate detection is
referred in the literature under different names [Christen, 2012b], including entity resolu-
tion, when it involves matching records within a single relation, or record linkage, when
it involves matching records across two or more relations. For this work we focus only
on duplicate detection. To improve the performance of duplicate detection, researchers
usually place their effort in improving individual parts of the method itself. In contrast,
we decided to regard a sometimes overlooked aspect of duplicate detection, namely the
preparation of the data before execution starts. We have found this latter issue to be
prominent in the literature (refer to Section 3.2 for more details), where most systems
are inconsistently preparing their input data and thus it is impossible to perform any
accurate comparison of their results.

In this chapter, we look at typical issues with datasets before deduplication and fix
them by applying relevant data preparation operators (data preparators), in a systematic
way. In particular, given a list of n data preparation operations P = {P1, P2, . . . , Pn}
and a relational schema R = 〈A1, A2, ..., Am〉 of m attributes, our objective is to sys-
tematically find the set of the most beneficial combinations < Pi, Aj > for duplicate
detection among all possible solutions. We envision, and explain further in future work
(Section 3.7), that this discussion will result in tools that, depending on the use cases,
can select and apply the appropriate data preparators in an automatic way. This could
happen either with prior knowledge or in an empirical way, as we do in this chapter,
by applying and evaluating the improvement afterwards. The process could be similar
to the one shown in Figure 3.1, and depending on the end application will need some
extra metadata, such as a labeled set of duplicates and non-duplicates for our use case
of duplicate detection. Such functionalities are currently not available in any of the ex-
isting data preparation tools (Section 3.3). In particular, the currently available data
preparation tools, first, provide only a very limited set of data preparators, which are too
generalized and typically not really helpful for specific difficult tasks, such as duplicate
detection. Second, they require labeled sets for the data preparation itself, including
pairs of unprepared and prepared values, which is an additional time consuming step.

Having tools that can provide us consistently with the same data preparation steps are
essential not just for the task of deduplication, but broadly for any kind of experiment,
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Original
data
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Figure 3.1: Data preparation vision. A pool of preparators is available for many
different operations, that test and select the best of them w.r.t. the process at hand.
The prepared data are then exported.

Table 3.1: Examples of data preparation.

Preparator Before After

Capitalize characters NEW york NEW YORK

Remove special characters < . . .> Berlin </. . .> Berlin

Normalize address V AVE, NY Fifth Avenue, New York

Acronymize United States US

to enable repeatability. A fundamental aspect of research is the ability to repeat and
compare experimental results from different approaches. In this way, when an approach
manages to perform better than the previous state-of-the-art, we consider it a scientific
achievement. However, in many cases experiments are performed on a different basis
than the ones they are comparing themselves against. In particular, basing data cleaning
and deduplication experiments on a consistent shared dataset with a ground truth has
proven to be difficult. But also in many other areas of computer science, experimenters
“massage” the data (usually in good faith) before applying their novel algorithms. We
consider this to be a vital issue and have found many cases where this phenomenon
takes place (see Section 3.2 for more details). Thus, not only are experimental results
incomparable, but some simpler to understand and implement approaches would perform
equally or even better had they been given the same input.

A number of different steps are performed in the early stages of any data-driven
application, often described as an extract, transform, load (ETL) phase, including data
preparation and duplicate detection [Christen, 2012b; Lee et al., 2009; Pyle, 1999]. Typ-
ical examples of data preparations are shown in Table 3.1, where character capitaliza-
tion, special character removal, address normalization, and acronymization, transform
the data into a more usable state. For more semantics-based issues, such as duplicate
entries for a single entity or erroneous data, more sophisticated methods of duplicate
detection and data cleansing have to be applied. Merely syntactic data preparators are
not enough. Our goal is complementary to these duplicate detection methods as we try
to improve their effectiveness by a systematic preprocessing phase.

Typically, duplicate detection can be improved by adapting special parts of its pro-
cess: (1) using better indexing frameworks to retrieve similar candidates that are not
completely identical; (2) similarity measures that can better quantify the similarity on
each attribute for the previously retrieved candidates; and (3) classifiers that, given the
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previous similarities, make better decisions. To focus on the effects of data preparation
on duplicate detection, we decided to use only basic duplicate detection methods; block-
ing [Baxter et al., 2003] for indexing (see Section 3.6.1), the hybrid similarity measure
Monge-Elkan, using Levenshtein [Naumann and Herschel, 2010] as the token similarity
measure (see Section 3.6.1), and a threshold-based classifier [Christen, 2012b] (see Sec-
tion 3.6.1). We automatically determine those data preparators that convert the data
to a more appropriate and clean state, before the actual process of deduplication takes
place. In this way, we avoid the development of complicated methods afterwards, bloated
with special cases. The overall procedure is not only more accurate but also faster than
complicated approaches, which is a prerequisite for many scenarios, such as those of real-
time applications. We believe that similarly to deduplication, application of an initial
data preparation can improve other processes as well.

Our approach. In a nutshell, we prepare the data for deduplication as follows: First,
we sample the set of duplicate and non-duplicate pairs. Second, we decide which combi-
nations of preparators and attributes are valid that we call preparations, and apply them.
Third, we keep only preparations that affect the similarities in a positive way, which indi-
rectly suggests an improvement on classification, and call them candidate preparations.
Fourth, the candidate preparations are reduced by applying leave-one-out optimization,
leaving us with the minimized set of preparations. Fifth, we perform classification on
the original and prepared data, and decide whether our process was helpful. Finally,
the prepared data are exported so that the next phase of the complete duplicate dete-
ction and resolution can begin, which is not in the scope of this chapter. The process
is explained in detailed in Section 3.5. The source code and the datasets used in the
evaluation are available on our website1.

3.2 Data preparation in the literature

The general issue of massaging data before evaluation has been identified in the past.
Here, we focus on the domain of duplicate detection, also known as record linkage, entity
resolution, etc.d [Christen, 2012b]. First, the issue of incomparable evaluation results
in publications has been identified by Köpcke et al. [Köpcke et al., 2010], who point to
publications that use different sizes of the Cora dataset, which we discuss in Section 3.4.1.
Second, Vatsalan et al. recognize the importance of data preparation steps, prior to
performing qualitative record linkage, such as enrichment, removal, and transformation
of records’ values [Vatsalan et al., 2017]. Finally, the inability to reproduce experiments
of a given work is a major issue in the data cleansing field and has various causes. One
such reason is that many authors do not reference the used datasets, or refer to them
with ambiguous names. Another reason is that sometimes private datasets are used,
which are not made publicly available with appropriate documentation. Indeed, we also
consider such a private dataset, which we cannot disclose, but believe that the findings
from it are sufficiently interesting. Finally, it is not always clear how the training and
testing datasets are used, and whether parts of the latter are used for the training phase
as well.

1https://hpi.de/en/naumann/projects/repeatability/duplicate-detection/

data-prep-for-duplicate-det.html
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3.2 Data preparation in the literature

To motivate the importance of data preparation in duplicate detection, we have
selected quotes from papers in the general area of duplicate detection, in which the au-
thors perform some form of preparation steps on the data. In particular, we also included
literature where these preparation steps are not clearly specified, which constitutes re-
producibility non-existent. While we focus on duplicate detection, massaging data is a
common practice for all of data science. The two most common preparation steps done
on the datasets are (1) selecting a subset of the dataset and (2) altering the content
of values. Our focus is on the latter type and begin with cases of well-explained data
preparation steps. The extent of this selection is also intended to show the wide variety
of data preparation steps.

[Li et al., 2011]: “. . . we thus increased the hardness by deriving a data set with only first
name and last name initial for each inventor. We call the original data set the full set
and the derived one the partial set . . . ”

[Wang et al., 2011]: “We concatenated attribute values of each citations to a string . . . ”

[Mann et al., 2016]: “A set is a publication; tokens are character q-grams of the concate-
nated title and author strings (q = 2, case insensitive) . . . ”

[Kunft et al., 2017]: “In order to obtain the full feature set, we join the comments and
authors CSV input files. To create a vector representation, we apply feature hashing to
the authors name and the comments text. We split the name by camel case, white space,
and other delimiters and hash the words to a fixed size feature space. For the comments,
we split the text into words and hash them as described before.”

[Sood and Loguinov, 2011]: “We process the collection by removing pages that have size
less than 5 KB, contain no URLs, have an exact duplicate (identified using a standard
hash function), or consist of non-English words, all of which shrinks D to a total of 70M
pages. We parse each remaining page, removing stop-words and stemming all text outside
of HTML tags. We then create feature vectors with weights ti(u) being the normalize TF-
IDF score of each word i on page u . . . ”

[Aizawa and Oyama, 2005]: “When preparing the data, the attribute values were first nor-
malized using general substitution rules (for example, uppercase to lowercase conversion),
and then segmented into tokens, either characters or words, depending on the attribute
types and the description languages (for example, names written in Japanese characters
were segmented into characters, and the titles were segmented into words) . . . ”

[Churches et al., 2002]: “This paper describes an implementation of lexicon-based tokeni-
sation with hidden Markov models for name and address standardisation . . . ”

[Churches et al., 2002]: “Training of HMMs for residential address standardisation was
performed by a process of iterative refinement . . . ”

While the mentioned publications do explain their preparation steps, they remain am-
biguous in some cases. The following are selected examples of more unclear preparation
procedures:

[Weis et al., 2008]: “Prior to actual duplicate detection, we performed data standardiza-
tion, which consisted in removing special characters from string attributes.”

[Chandel et al., 2007]: “For the company names dataset, we also inject domain specific
abbreviation errors, e.g., replacing Inc. with Incorporated and vice versa.”

[Churches et al., 2002]: “Name standardisation. To assess the accuracy of name stan-
dardisation, a subset of 10,000 records with non-empty name components was selected
. . . ”

We split the literature w.r.t. the level of explanation given. Most probably though,
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it is expected that people’s opinions differ on what is a good explanation or not. In
any case, we believe that there is some space for improvement, and in particular for a
systematic approach that makes the process of deciding data preparation steps easier to
explain and justify.

3.3 Related work

There are many and various approaches to resolve data quality issues that exist in real-
world data. These attempts include, among others, data transformation, in case of
different file formats, encodings, attribute names and types, data standardization (or
normalization), so that the values conform to the uniformly agreed rules, and data in-
tegration, in order to merge different sources of data. Data preparation is a general
term we use to refer to all these different tasks, as most of them are not always easily
distinguishable.

Data quality. Data quality has been broadly studied over the years [Han et al., 2011;
Lee et al., 2009; Wang et al., 2001]. Since it represents a core part of business intelligence
(BI) processes, there has also been work that explains typically applied steps to improve
it from that perspective [Redman, 2001]. Taxonomies of the different quality issues that
appear in data have been proposed in the past [Oliveira et al., 2005; Rahm and Do, 2000],
with multi-source data integration causing a number of additional data inconsistencies
over single-source datasets.

Data preparation. A clever selection and application of data preparators on data,
can transform the latter to a cleaner state. For this reason data preparators are an
essential part of this chapter. Authors of [Kandel et al., 2011] under the term data
wrangling consider different actions to transform data, manage these transformations,
and even scale them in the cloud. A large part of that work also considers interactive
visualization, which they consider to be a vital part of this process.

Yang et al. introduce the extract transform load (ETL) framework Lens and the
concept of lenses, which are data processing components [Yang et al., 2015]. An example
lens is domain constraint repair, where constraints are applied to prepare the data. For
instance, when the “NOT NULL” constraint repair is applied on an attribute, for records
that contain null values on that attribute a trained machine learning model is used to
infer the missing value among a distribution of possible values.

In cases where user input is possible by providing input/output examples of unpre-
pared/prepared alphanumeric values, the authors of [Gulwani, 2011; Jin et al., 2017]
have proposed methods for synthesizing functions, which learn how to perform these
transformations and apply them to the remaining data. Both approaches solve the is-
sue of searching through a large space of possible solutions by incorporating heuristics
and pruning rules, which form functions comprised of string operations. These string
operations, examples of which are substring, concatenate, and split, extract and then
transform the input to the desired output format. In the same spirit, with the user pro-
viding input/output examples, the work of [He et al., 2018] utilizes over 50K functions
that transform an input value into the desired format from GitHub and Stackoverflow
along with examples from Wikipedia tables to synthesize its programs. Using a number
of representative examples for each data type, such as dates and names, in combination
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with the extracted functions, it finds those functions that fulfill the criteria of the pro-
vided input-output examples, and finally synthesizes them into a program that performs
this transformation. For instance, consider the task of date normalization, given a set of
input-output examples, where all output examples are dates following the U.S. format,
while the input examples follow a variety of date formats, it finds a function that parses
the input date and transforms them into the U.S. format.

DataXFormer is similarly based on user-provided input/output examples, but expects
as input a relational table with the goal of transforming it into a format denoted by the
examples [Abedjan et al., 2015]. This is done by utilizing Web Tables2 to find the most
similar tables and rows, which share a number of attributes with the input table. Thus,
for every row of the input table, a number of rows from Web Tables provide attribute
values of better quality.

Finally, in case a human-in-the-loop is possible, the work of [Ao and Chirkova, 2019]
provides a framework that suggests to domain experts the next most useful records to be
manually cleaned, which can improve entity matching results the most and in an active
learning principle.

Before any repair can be performed, the errors have to first be identified. The authors
of [Abedjan et al., 2016] experiment with a number of different tools, such as OpenRe-
fine3 and Trifacta4, on the basis of recognizing specific types of errors on a number of
different datasets. Focusing on student enrollment data, Pullen et al. [Pullen et al., 2013]
examine typically occurring problems in student identifiers and attributes, such as the
existence of special characters or nicknames in first names. Their solution involves man-
ual curation and specialized similarity measures that can exploit this information during
data matching.

Duplicate detection. Research on identifying and resolving duplicates has been present
for decades, as the problem appears in many applications. This has led to some commonly
applied steps [Christen, 2012b; Elmagarmid et al., 2007; Herzog et al., 2007; Naumann
and Herschel, 2010] that are used to identify such entries: (1) prepare the data, (2) index
and retrieve candidates of possibly matching records, (3) compare these retrieved candi-
dates, (4) classify them as matches or not, and (5) evaluate the entire process. In this
chapter, we are focusing on the first part, data preparation, suggesting that the latter
steps are easier and more successful after data preparation. For the rest of the steps (2-5)
we just use standard deduplication techniques (see Section 3.6.1). Most of the current
literature focuses on the latter steps with different techniques, having accepted the fact
that input data is not in good shape.

First, during the preparation step, typically applied techniques [Christen, 2012b;
Elmagarmid et al., 2007] include data standardization and enrichment through exter-
nal data sources, removal of unwanted characters, and segmentation of compound values
into separate attributes. Regarding the second step, indexing, blocking and sorted neigh-
borhood [Christen, 2012b] represent two of the most successful methods for retrieving
candidates. Third, typically for the comparison of the retrieved records, similarity mea-
sures are used. For instance, for alphanumeric attributes Levenshtein, Jaccard, and
Monge-Elkan [Christen, 2012b] are commonly applied as they represent three different

2http://webdatacommons.org/webtables/
3https://github.com/OpenRefine/OpenRefine
4https://www.trifacta.com/start-wrangling
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categories of edit-based, token-based, and hybrid similarity measures. More recent works
focus on machine-learnable similarity measures, where by using custom features or let-
ting artificial neural networks learn the features themselves, and then further tailor the
similarity measures to the data [Christen, 2008a; Mudgal et al., 2018].

Fourth, for classification, some threshold-based classifier is commonly used, as their
usage is transparent and simple. Given a pair of records, and a list of its calculated
attribute’ similarities, it linearly combines them and if the sum is above a specified
threshold, the comparison represents a match, otherwise not. Searching the parameter
space on this classifier is equal to finding the threshold and optionally weights for each
attribute’s similarity (if not all attributes have the same impact). Other classifiers have
also been used, such as Decision Trees [Cochinwala et al., 2001] and Support Vector
Machines (SVM) [Christen, 2008a].

Finally, for evaluation, a classic calculation of true positives (TP), false positives
(FP), and false negatives (FN) is enough to calculate precision, recall, and F-measure.
In addition, area under the precision-recall curve (AUC-PR) has been proposed as an
alternative to assess detection quality. It has been noted that the F-measure does not
fairly balance the errors of the two classes, duplicates and non-duplicates [Hand and
Christen, 2018]. In contrast, the AUC-PR, considers all possible thresholds and provides
a more holistic evaluation. Using the precision-recall curve it is further possible to
calculate the best combination of precision-recall and thus F-measure.

However in reality, any problems that are not fixed during the data preparation phase
can and must be addressed in later steps. For instance, a complex similarity measure
can address inconsistent formatting of phone numbers. With careful preparation, later
steps are more easy to implement and are more effective. Therefore, this chapter focuses
on identifying the appropriate preparations that need to be applied, to increase the
effectiveness of the following phases, regardless of which methods are used.

3.4 Data quality and data preparation

The focus of this section is on how to identify and repair specific issues in datasets. First,
we introduce a number of datasets that we used to find and resolve issues. This helps our
discussion: Whenever possible we mention real examples from these datasets. Second,
we propose preparators suitable for deduplication, along with some short description and
examples.

3.4.1 Datasets

Identifying issues existing in real-world scenarios demands the usage of real-world
datasets. For this reason we introduce such datasets with a brief description, and discuss
the attributes we used for similarity calculation (see Section 3.6.1) and consequently as
features for pair classification. The attributes’ selection was based on completeness (per-
centage of records with a non-null value) and usefulness, which means we omit attributes
we consider redundant or not relevant for data preparation. Some further information
w.r.t. the gold standard that is needed for the experiments with the generation of non-
duplicate (NDPL) pairs, is discussed in Section 3.6.1. Details about all datasets, as well
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as download information for four of them are available in our website5. Lastly, statistics
about the number of records, duplicate (DPL) and non-duplicate (NDPL) pairs can be
found in Table 3.2.

• CDDB contains entries of audio CDs with descriptive attributes, such as artist,
title, tracks, genre, and year. From the eight available attributes we use artist,
category, genre, title, tracks, and year. Tracks is a compound element, in which
individual track values are concatenated using “ | ” as the separator.

• Census is based on real-world data, generated by the U.S. Census Bureau, and con-
tains a single attribute with the record’s value, called text. This dataset contains
two relations A and B, and thus could be also used for record linkage, i.e., linking
the two relations. However, for our purposes we treat it as a typical single-relation
dataset and try to find the duplicates instead of the linkage matches. The sin-
gle attribute text includes information about last name, first name, middle name,
zip code, and address.

• Cora is comprised of bibliographic records about machine learning publications and
includes relevant information in seventeen attributes, from which we use authors,
journal, pages, title, and year. Moreover, contains large clusters of DPLs, which
means many variations of entities.

• Hotels is provided by our industry partner, and contains information about hotels
across the globe. We limited our experiments from twenty-seven attributes to
hotel name, street address, zip code, city, state, and country. Being a real-world
industry dataset, it contains more difficult variations of DPLs, as hotel names and
their addresses are provided in many different formats, with a lot of ambiguity. For
instance, in hotel names sometimes only the chain is provided, whilst addresses are
not always fully specified, with records missing important information, such as the
city.

• Movies is the result of merging two different datasets, based on IMDB.org and film-
dienst.de, such that real-world duplicates are available. The information provided
is limited to the attributes of actors and movie title, which we both use.

• Restaurants is a merged dataset of two other relations, based on Fodor’s and Zagat’s
restaurant guides. From the six available attributes, we use name, addr, city, phone,
and type.

CDDB, Census and Hotels gold standards of DPLs were extended with some further
pairs, obtained by transitive closure and exact match on the entire record.

3.4.2 Preparators

A preparator is a method that transforms a set of input values into a set of output
values that are of higher quality or more useful for the use-case at hand. A preparator’s
complexity can vary from simple, such as upper-casing all strings, to complex, such as
geocoding address fields. The number of input and output attributes can vary and be of
any datatype, although in this work we focus on alphanumeric values.

Based on this definition, we present a number of preparators that we consider to be
suitable for duplicate detection and have implemented. The presented preparators are
meaningful for the sample of datasets we used and do not represent a list of all possible

5https://hpi.de/en/naumann/projects/repeatability/duplicate-detection/
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Table 3.2: Datasets statistics on number of records, duplicate (DPL), and non-
duplicate (NDPL) pairs. NDPL pairs are generated according to the blocking process
described in Section 3.6.1.

Dataset Records # DPL # NDPL

CDDB 9,763 300 8,944

Census 841 376 1,631

Cora 1,879 64,578 176,285

Hotels 364,965 94,677 368,002

Movies 39,180 14,190 14,069

Restaurants 864 112 11,460

preparators for duplicate detection. Brief descriptions of the implemented preparators
along with short examples are shown in Table 3.3. As we denote in Table 3.3, the
first six preparators are lossless, whereas the last five are lossy. Lossy preparators are
particularly useful for data matching tasks, such as duplicate detection, but lossy in the
sense that important information is removed. We execute them after the others, creating
new columns with the transformed values. In contrast, lossless preparators transform a
given value to a value that is closer to the normalized version, removing only or mostly
unnecessary information and retaining all the essential. Further information along with
the description of their slightly different application is provided in Section 3.5. We
proceed by providing an explanation of them and accompany them with examples from
the datasets presented in the previous section.

Split attribute

While for some applications a coarser schema is appropriate, other applications need
more fine-grained values. For instance, to prepare data, a name field might need to be
split into first name and last name. The correct solution is to identify such cases, extract
and move these data to their respective attributes. Census represents a good example of
this category and is used in our experiments as it contains a single attribute (text) with
a mixture of information. To allow for a more fine-grained comparison, we decomposed
the attribute text into the new attributes last name, first name, middle name, zip code,
and address. This is achieved by using metadata that specify the ranges of substrings
required to extract these values. For instance, last name is contained within the range of
characters [0, 15), first name follows in the range of [15, 28), and so forth. The retrieved
values are trimmed, to remove excess whitespace before and after the values. Note that
there can be more complicated situations, where the values are not easily separable,
the attributes’ order is not the same, or the phenomenon is only present on a subset of
records. In such cases, more specialized approaches have to be applied, such as the use of
regular expressions, to dynamically detect where each attribute’s value starts and stops.

Geocode

Geo-coordinates (latitude, longitude) are useful for the deduplication process for data
with geographic information. A pair of records whose geographic distance is greater
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Table 3.3: Data preparation operators, sorted by their intended order of application.
The first six preparators have a lossless effect on the applied values, whereas the last
five are lossy. The latter ones are useful particularly in duplicate detection and when
applied sacrifice a large portion of the initial values, in a way that is necessary to
reveal duplicate values.

Preparator Description Example

Split attribute Extract parts of an attribute,
moving them into other at-
tributes

10117 Berlin, Germany →
ZIP-code: 10117, City:
Berlin, Country-name:
Germany

Normalize address Convert address to its commonly
accepted form, fixing inconsisten-
cies

fredrich stret 43,

berlin, German →
Friedrichstrasse 43,

10117 Berlin, Germany

Geocode Convert address to its geoloca-
tion

Friedrichstrasse 43,

10117 Berlin, Germany

→ latitude: 52.5071081,
longitude: 13.3896519

Remove special char-
acters

Remove non-alphanumeric char-
acters: [,.:;”ˆ'/\!@#$%&*() +=
|¡¿?{}[]˜-]

‘/ > @ Berlin! <’ →
Berlin

Transliterate: UTF-8
to ASCII

Remove diacritics from words München → Munchen

Merge attributes Merge multiple attributes into a
single one

(opposite of split at-
tributes)

Acronymize Keep the first character of all to-
kens

Very Large Data Base →
VLDB

Capitalize characters Convert all characters to upper
case

BERlin → BERLIN

Syllabify Split word to its syllables preparation → [prep, a,
ra, tion]

Phonetic encode Convert value to its pronuncia-
tion representation

Berlin → BRLN

Stem Reduce word to its base form programming → program

than some threshold can be pruned, because they are too far away to represent the same
entity. Such a threshold can range from a few meters to some kilometers, depending
on the application. The process involves the usage of Geographic Information Systems
and the operation of geocoding, which, given some address information, returns the geo-
coordinates of the location. For our experiments we used the Nominatim system6.

In the same context, another available preparator is address normalization, which
given a noisy address retrieves the correct, standardized value. We considered geocod-

6https://nominatim.openstreetmap.org
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ing and address normalization on Hotels, which includes detailed addresses improperly
formatted. By focusing on street addresses, address normalization retrieves values’ ex-
tended versions, for instance “585 PKWY Dr NE” normalizes to “585 parkway drive
northeast” and “2361 W NW Hwy” to “2361 west northwest highway”.

Remove special characters

Wrong parsing or conversion can create issues for the following steps of a process. Web
scraping and extracting values with optical character recognition (OCR) are situations
where irrelevant and redundant characters may be erroneously identified as part of the
attribute’s value. In such cases removing them leaves us with the pure intended value.
For instance in Cora we observe several instances where redundant parentheses, full-
stops, and hyphens are left-overs from parsing. For instance, in the attribute Year we
meet values, such as “(1987).”, pages with values similar to “(pp. 24-30).”, and publisher
with cases equivalent to “American Association for Arti-ficial Intelligence,” where the
hyphen probably meant a continuation to the following line.

Transliterate (UTF-8 to ASCII)

Transliteration is the process of converting a text from one format into another. Its pur-
pose is to preserve the characters to the most similar ones in the destination language,
which in our experiments is English. For our application, we aim at removing completely
any diacritics, which convey a special meaning, but make the deduplication task harder.
Examples here include a conversion of München to Munchen and Café to Cafe. Map-
pings of characters to their non-diacritic versions are provided through a transliteration
library7.

Merge attributes

During the data entry phase, errors due to improper placement of values across the
attributes might be introduced. In those cases we merge all the participating attributes
into a single one using a whitespace character in between the merged values, effectively
treating it as a single long string, with the goal of alleviating a number of errors during
duplicate detection. Alternatively, we could instead merge only a subset of the attributes.
For instance, in Hotels we could merge the attributes that describe the address into a
new single attribute address.

The following descriptions concern lossy preparators, as explained in the beginning of
this section (Section 3.4.2).

Acronymize

An acronym is a type of abbreviation or, in other words, shorter form of a phrase, which
is typically performed by keeping the first character of all tokens. For instance, Data

Preparation gets converted to DP. By applying this preparator we aim at identifying
those cases where people were not consistent in submitting the full version of the word
or the acronymized one. In contrast, abbreviations are a superset of acronyms and can

7https://github.com/gcardone/junidecode
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include cases where the short form is selected with a different reasoning, such as first
and last characters, phonetic encoding, or something else. An example abbreviation is
Str. from Street. Abbreviations are domain-specific and thus a careful consideration
has to be taken when expanding an abbreviated value into its full form. The preparator
of abbreviations would be useful in cases where some people might know a place with
its short form or consider it too large for a field. Given the multitude domains of our
datasets’ attributes, abbreviations are currently not supported as a preparator.

Capitalize characters

Different capitalization styles8 can be used, mainly the sentence case, title case, and full
capitalization (all-caps), to denote a specific meaning. To overcome such inconsistencies
in capitalization, which can be also the result of a data entry error, we choose to follow
the full capitalization style, by upper-casing and lose information whilst increasing the
similarity. For instance, in research titles of Cora one might come across versions, such
as “Small disjuncts in action: Learning to diagnose errors in the telephone network local
loop,” and “Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop
of the Telephone Network”. By upper-casing both values the differences in capitalization
would be eliminated and thus the similarity between these two values would be increased.

Syllabify

Syllabification is a type of word segmentation, where a word is split into its syllables,
usually for visual reasons, such as in fields that depend on resizeable user interfaces.
Such interfaces introduce a continuation of words in the following lines, particularly use-
ful in larger values, such as the address, which in some countries can be truly long9. As
an example, Friedrichstrasse 43, 10117 Berlin, Germany is syllabified to Fried rich

stras se 43, 10117, Ber lin, Ger many. For our experiments we used English syllabifi-
cation patterns. Alternatively, if support of more languages is desired, a combination of
language detection with specialized patterns for each language is possible. Multilingual
approaches are beyond the scope of this work.

Phonetic encode

Phonetic encodings aim at converting words into a representation that mimics their pro-
nunciation. Different encodings have been implemented throughout the years, including
Soundex and Metaphone [Christen, 2012b], which we use in our experiments, and repre-
sent a successful step towards deduplication. For instance, in CDDB, using Metaphone
for “Metallica” we obtain “MTLK”, which is also the same for “meettaaliica”. Strictly
speaking, such lossy preparations are very specific to the problem of duplicate detection,
where they perform well, as they are able to abstract from the original values.

Stem

Stemming helps overcome inconsistencies in word endings. These inconsistencies can be
the result of issues, such as different word representations, plural instead of a singular

8https://en.wikipedia.org/wiki/Capitalization#Names_of_capitalization_styles
9https://en.wikipedia.org/wiki/List_of_long_place_names
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noun, wrong verb tense, etc. The stemming model attempts to retain only the base
of a word, without incorporating any contextual information. Examples here include
“discussing” and “discussion”, which are stemmed to “discuss”. For our experiments
we used the English Porter stemmer10. Similarly to syllabify, multilingual support is
possible, but is beyond the scope of this work.

In this section we described preparators that we considered to be the most impactful
and that is why we implemented them for our system and experiments (see Sections 3.5
and 3.6). However, there are many more possibilities for other preparators, even in
duplicate detection, which we did not implement, such as:

• Normalize person names, phone numbers, and dates: parsing and formatting values
according to a specified format. For instance phone numbers could be represented
in E.16411, which is a worldwide standard that can universally represent phone
numbers.

• Encode characters to UTF-8: Converting different character encodings to UTF-8
would allow for a more meaningful value storage and comparison.

• Generate character n-grams: having a list of n-grams from a given alphanumeric
value could assist a fuzzy indexing, where similar, but not necessarily the same,
values could be retrieved.

• Standardize NULL value representation: replace values that represent lack of a
value, such as “n/a”, “.”, “-”, and “not provided”, with the empty string “” or
some other predefined value.

• Remove stop words: such as “a”, “the”, “to”, as these increase the similarity
unnecessarily in non-duplicates.

• Convert categorical or ordinal to numerical: converting values to numerical using a
predefined mapping or ordering. For instance, genders could be mapped to {0, 1},
whereas days of week could be represented with a mapping to [0, 6].

• Normalize numerical values to [0, 1]: a normalization using the minimum and
maximum values.

• Apply transformation rules: replacing or removing specific words. For instance, in
the case of synonyms replacing values with one representative could help improve
similarities among duplicates. Alternatively, values that have been erroneously
entered can be completely removed.

Having all these preparators available, next we discuss a process to decide of these are
the most useful for deduplicating a given dataset.

3.5 Deduplication preparation

In this section we describe our process for trying a number of available preparators on a
dataset’s attributes, and recommending the pairs of preparators and attributes that lead
to improved results. We discover the most important preparations using a heuristic 2-
step pruning process based on a (small) gold standard. A heuristic approach is required,
because examining all possible preparation combinations is infeasible. Based on these
assumptions our process works as follows: First, we apply a fast process based only on

10https://tartarus.org/martin/PorterStemmer/index.html
11https://en.wikipedia.org/wiki/E.164
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Figure 3.2: Process of identifying useful preparations, for duplicate detection.

similarities, which reduces the search space of preparator combinations drastically. Then,
we follow with a careful process that bases its decisions on whether to keep preparations
using duplicate detection classification on the prepared values, which is our final goal.
An exhaustive attempt, trying all preparations could be possible, but is not feasible in
real scenarios with large datasets. Our process is shown in Figure 3.2 and includes the
following phases:

Input phase: The user provides data, optionally some constraints to specify which
preparators are not valid for certain attributes, and a set of labeled pairs (gold stan-
dard), whereas the system provides its available preparators. In case a constraint was
not provided for a preparation that is meaningless, such as address normalize on
a first name the system would produce unhelpful results. By selecting a subset of 10%
from the gold standard, we create a silver standard. These pairs can be chosen by follow-
ing different strategies, such as to select them randomly or selecting those that are the
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most difficult to classify. We select the latter strategy and explain our approach further
in Section 3.6.1. Selecting such a silver standard helps us represent a realistic scenario,
as in practice before a larger and complete set of pairs (gold standard) can be collected,
users typically start experimenting with smaller sets (silver standard) that include dif-
ficult cases. In domains where labeling is more expensive, users can further reduce this
sampling ratio, assuming they still make sure to include challenging pairs. Moreover,
since almost all of the process’ steps are performed on sampled data, the execution time
stays within reasonable limits.

Phase 1 – Baseline: In this phase we are interested in performing classification on
the original data, so that we can later judge if the application of preparations helped or
not. This classification is performed in two steps. First, we calculate the pair similarities
for the silver standard, based on the data. Second, we perform classification using the
pair similarities as features, evaluate the results, and determine the AUC-PR.

Phase 2 – Preparation application: Given the set of preparators P =
{P1, P2, . . . , Pn} and attributes Ai of a relational schema R = 〈A1, A2, ..., Am〉 this step
produces all valid combinations < Pi, Aj >, called preparations. We call a combination
valid if the data type of the attribute is compatible to the data type that the prepara-
tor is expecting. For instance, it is pointless to apply phonetic encode on a phone
number. This information is provided as metadata at the input phase. Finally, for each
preparation we calculate the pair similarities.

Phase 3 – Candidate preparations: In this step we aim to filter preparations
w.r.t. their effect on similarities. This filtering approach is intuitive since classifiers use
the similarities as their features. Given the N duplicate pairs and M non-duplicate pairs
of the silver standard, we keep only those preparations that fulfill the following condition:

∑N
i=1 δsim(DPL[i])

N
− M

N
·
∑M

i=1 δsim(NDPL[i])

M
> 0

⇐⇒
N∑
i=1

δsim(DPL[i])−
M∑
i=1

δsim(NDPL[i]) > 0

where δsim expresses the similarity delta of a pair before and after preparation
(simafter − simbefore) and becomes negative when the similarity drops. The weighting
factor of M

N in the NDPL pairs complies with the ratio of our class pairs, since more NDPL
pairs exist than DPL, for reasons explained in Section 3.6.1. The mean similarity of DPL
pairs has to increase, and in contrast, the mean similarity of NDPL pairs of records has
to decrease or at least increase less than the mean similarity of DPL pairs. The second
formula is a simplification of the first, where merely the summation of similarity deltas
between DPL and NDPL pairs is enough to decide whether a preparation is useful.

After this filtering, we are left with the candidate preparations, with which we proceed
to perform another classification.

This phase evaluates and decides which individual preparations are interesting to
be considered as candidates. The order of application is an additional dimension that
affects the results of the following two phases (Phases 4 and 5). We do not address
this problem here but leave it for future work. Instead we proceed by applying all
preparations using a predefined ordering, namely, as they appear in Table 3.3. As an
extension of the order issue, some preparators are helpful for our domain specifically, but
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lossy in the sense that important information is removed. For instance, if the preparators
normalize address, transliterate, and acronymize are selected for the attribute
city, we first prepare city using normalize address and transliterate, creating a
respective column. Acronymize, which is a lossy preparator, is applied on top of the
former column, creating an additional column with only the initials, having two columns
in total. By not considering lossy preparators in combination we risk missing some corner
cases where a combination of two such preparators would help reveal duplicates. In the
majority of cases, however, applying one lossy preparator after another changes the value
so drastically that it is likely useless for our task, introducing more matching mistakes.

Phase 4 – Leave one out optimization: Some preparations might have no effect
after the application of other preparations. For instance, by considering the examples
of Table 3.3, applying remove special characters on ‘/ > @ Berlin! <’ returns
the value Berlin. We would observe the same effect on the value if we had instead
applied normalize address. Thus applying both preparations is redundant. On the
same principle, applying some preparations in combination can also worsen the result.
Understanding the effect of a preparator on a pair of records is more complicated, as it
is a combination of the pair’s class (duplicate or non-duplicate), and its initial and final
similarities. Thus, to make our final decisions and remove such preparations, we per-
form an optimization process: we remove preparations to avoid redundant preparations
(similarity stays the same) or preparations that are in fact harmful (similarity increases
after removing them). We iteratively leave out individual preparations and perform clas-
sification using the rest. For instance, given P candidate preparations, there will be P
executions, where in each execution one preparation is removed, whilst the remaining
P − 1 preparations are applied. This process could be also characterized as “backwards
elimination with replacement”. Removals that keep the AUC-PR constant or even im-
prove it are made permanent, which leaves us with the minimized set of preparations,
as no further preparations are going to be removed with our process.

Phase 5 – Final classification and comparison: After the pruning of the previous
phase, where we decided the minimized set of preparations, we re-perform classification,
but this time on the full set of pairs (gold standard), to acquire our final metrics. Finally,
we compare these metrics to the baseline (also on gold standard).

Output phase: By comparing the AUC-PR results from our process and the base-
line, we can determine whether our process was helpful. If this is the case, then we
proceed by using the prepared data from Phase 4. Otherwise, we can ignore our whole
process and proceed with the unchanged data.

Next steps: This is the main process that we performed the data preparation for.
In our case, this should be equivalent to performing duplicate detection with a larger set
of goals. For instance, using a larger set of pairs than the one provided in our process
or resolving the duplications found by merging the duplicated records into a single one
per entity. Resolving all issues around duplicate detection is not in the scope of this
chapter.

3.6 Evaluation

We now examine the effect that different preparators have across datasets from two
different perspectives, first by focusing on the preparators and second on the datasets.
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Examples of these preparations across datasets are shown in Table 3.5 on page 38. We
first explain some preliminaries in Section 3.6.1 to set the ground for the experiments
described in Section 3.6.2. The findings are then summarized in Section 3.7.

3.6.1 Preliminaries

In the following sections we discuss critical decisions. Briefly, we begin by discussing
the need for careful non-duplicate pair generation. Subsequently discuss the choices we
made regarding the choice of non-duplicate pairs during the silver standard selection,
the similarity measures, and classifiers.

Gold standard and non-duplicates generation

The gold standards that are available for many of the datasets in Section 3.4.1 each
contain a list of record pairs that uniquely identify duplicate record pairs. In case this set
is not transitively closed, we additionally create all transitive pairs and call this extended
set DPL. To train and test a classifier, we also require a number of negative examples,
i.e., non-duplicate pairs. When creating such non-duplicate pairs we should make sure
that records are not paired up randomly, since such pairs are expected to be very different
and therefore trivial to classify. More useful for training and for testing, however, is to
expose the model to pairs that are harder to classify. In practice, to speed up duplicate
detection, blocking methods are typically used to divide datasets into disjoint subsets,
called blocks, according to a predefined partitioning key [Christen, 2012b; Elmagarmid
et al., 2007]. To avoid false negatives, usually multiple partition keys are defined. It is
important to select the partition key with great care, as it controls not only the size and
number of blocks created, but also how similar the individual data records within each
block are.

We perform a simple blocking by using a subset of the currently processed dataset
attributes as partitioning keys. Record linkage datasets are treated as deduplication
datasets, i.e., pairs of the same source relation can be positioned in the same block. In
case an attribute is multi-valued, we first divide it into its individual values and use those
for blocking. Very unique attributes, which would lead to many single record blocks, are
split into word or character n-grams of size 2 to 10 characters, depending on the length of
the attribute, and then used as partition keys. The complete blocking scheme is presented
in Table 3.4 and is discussed next. As a result, we obtain several blocks, within which we
create the cross product of all contained data records and thus form data record pairs,
which are then combined into a common dataset. After removing known duplicate pairs
in the resulting dataset, we refer to it as NDPL. The NDPL dataset is, therefore, the set
of all record pairs that can be formed within all blocks and does not include duplicate
pairs.

In Table 3.4 we present the blocking scheme used to generate the non-duplicate pairs.
Across datasets, we selected attributes that have high uniqueness, which tends to char-
acterize better the entities. This results in smaller blocks that usually contain only
the really similar candidates. The following strategies are used: (1) “Complete value”
that uses the whole value of the record’s attribute as a blocking key, (2) word n-grams
that considers n consecutive words tokenized by white space of every record’s attribute
value, and finally (3) character n-grams that, similarly to word n-grams, considers n
consecutive characters from every record’s attribute value. In cases where the lengths
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of alphanumeric values are less than or equal to n the complete value is returned. Fi-
nally, the strategy and the size of n-grams (n) are selected taking into account the mean
attribute’s length, i.e., we prefer character n-grams for attributes with shorter lengths,
whereas word n-grams for attributes with longer lengths.

Table 3.4: Blocking scheme, used to generate the non-duplicates (NDPL).

dataset attribute blocking strategy

cddb artist complete value
title word n-grams: n=6
tracks word n-grams: n=6

census text word n-grams: n=2
cora authors character n-grams: n=6

title character n-grams: n=6
hotels hotel name character n-grams: n=10

street address1 character n-grams: n=10
movies title word n-grams: n=3
restaurants name character n-grams: n=6

address character n-grams: n=6
phone character n-grams: n=8

Selecting difficult pairs for silver standard

To better understand the impact of our preparations, instead of forming the silver stan-
dard of Section 3.5 by randomly sampling 10% from the gold standard, we decided to
follow a different approach. First, having the sets of duplicate and non-duplicate pairs, we
calculate similarities for the attributes discussed in the datasets section (Section 3.4.1),
using the similarity measures discussed next. Afterward, we calculate the mean similar-
ity for every pair, sort pairs based on this similarity, and select, similarly to the silver
standard ratio, the 10% duplicates with the lowest similarity and the 10% non-duplicates
with the highest similarity. These pairs should be closer to the boundaries of classifiers,
thus harder to classify and more prone to classification mistakes. Although this approach
does not guarantee that these are the hardest pairs for classification and thus provide us
with the best possible insights, it still provides us pairs that are more challenging than
randomly chosen ones.

Similarity measures

Choosing similarity measures can be a tricky task. In the ideal scenario, if we can identify
the type of an attribute then we should select a similarity measure tailored for it. For
instance, for an attribute that contains information about calendar dates, one could select
a similarity that considers a difference in year a lot more important than a difference
in days. To keep our process simple, however, we use alphanumeric similarity measures
for all attribute types, with the exception of a geolocation distance. For the latter we
use the Haversine distance [Inman, 1849] and instead of using a threshold to prune pairs
with a larger distance we convert it into a similarity by using the formula similarity =

1
distance2+1

, where distance is in meters. Using this formula smaller distances result in
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higher similarities. Therefore, pairs with large distances have a smaller similarity and less
chances to be considered as duplicates, assuming always a successful prior application of
geocode.

In alphanumeric similarity measures, there are three main categories: edit-based,
token-based, and hybrid similarity. Examples of these categories are: Levenshtein, Jac-
card, and Monge-Elkan respectively [Naumann and Herschel, 2010]. We selected Monge-
Elkan for our experiments, as it is a hybrid similarity that can provide a meaningful
measurement in a variety of attribute formats. This measurement is calculated as fol-
lows: Monge-Elkan goes through all tokens of the first input string and finds the token
of the second string with the maximum similarity, using Levenshtein in our case, which
can also be re-used for further matches [Monge and Elkan, 1996]. Finally, it returns the
mean similarity of the matched token pairs. Other categories of string similarity mea-
sures include phonetic similarity measures, such as SOUNDEX [Christen, 2012b], and
feature-based ones, such as MinHashing and Locality Sensitive Hashing (LSH) [Leskovec
et al., 2014], which offer an approximation of the Jaccard similarity coefficient [Christen,
2012b].

Classifier

We use a linear or threshold-based classifier (THR) [Hastie et al., 2009], because it is
a simple and effective model, that is frequently used in duplicate detection [Benjelloun
et al., 2009; Christen, 2008b]. The features we provide to the classifier are the similarities
calculated for the attributes described in Section 3.4.1, using the similarity measures of
Section 3.6.1. To keep our process simple, we choose the weights of the features to be
equal. THR calculates a linear combination of the features and if the sum is above a
threshold the classified label is 1 (match), otherwise 0 (no match).

Instead of selecting a single threshold to calculate the F-measure, which as discussed
in Section 3.3 does not fairly balance the errors between duplicates and non-duplicates,
we use area under precision-recall curve (AUC-PR) [Hand and Christen, 2018]. AUC-PR
considers all possible thresholds, relevant to the evaluated pair similarities. Finally, since
we do not choose any thresholds, and our THR model does not require training to tune
any parameters anymore, we use the full set of DPL and NDPL pairs for testing.

3.6.2 Effect on similarity

In this section we examine how preparators affect the similarity of values in various
attributes as described in Phase 2 of Section 3.5. Before we analyze the collective re-
sults across datasets, we motivate the discussion by presenting a few interesting cases
of preparations for exemplary values across five of the datasets. In Table 3.5 we show
selected value pairs from different datasets and their similarity for a true duplicate and
for a true non-duplicate, each before and after preparation. In the case of hotels, ad-
dress normalize is using the address attributes of each record to decide what is the
correct normalized address. Using the normalized address, attributes such as the city,
can be corrected or filled in, resulting in an increased similarity. Most examples are
successful cases, in terms of similarity being increased in duplicate pairs (DPL), whilst
decreasing in non-duplicate pairs (NDPL). Exceptions to this are the examples of the
normalize address and acronymize preparators, where DPL pairs’ similarities de-
crease and NDPL pairs’ similarities increase. First, regarding the normalize address,
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this effect does not necessarily lead to worse overall results. The reason for this is that we
consider the preparation beneficial if it is easier to separate the pairs afterwards, even if
the NDPL pairs’ similarity increases. Thus, the relative similarity of all DPL and NDPL
pairs is more important, such as in the case of Hotels, where the DPL pair’s similarity
increases more than the NDPL pair’s. The importance of relative similarity is considered
in our candidate selection formula in Phase 3 of Section 3.5. Second, the examples of
acronymize represent cases that lead to worse results, for both DPL and NDPL pairs,
and for this reason are not selected from our process.

Next, we discuss the aggregated results over preparators, whereas afterward we do
the same from the datasets’ viewpoint. By combining these perspectives we can obtain
a better picture of the overall preparations’ effect. We confirm their success in the final
duplicate classification experiments, discussed in Section 3.6.3.

Effect of preparators

We define the positive effect (‘+’) in DPL pairs to take place when they become more
similar, whereas for NDPL pairs when they become less similar. Vice versa, a negative
effect (‘−’) exists when DPL pairs become less similar and NDPL pairs more similar.
Following these two definitions of positive and negative effects, in Figure 3.3 we show
the percentage of all pairs whose similarities are affected in a positive or negative way,
across datasets.
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Figure 3.3: Percentage (%) of record pairs
(DPL and NDPL) whose similarities im-
proved (+) or worsened (−), across prepara-
tors for all datasets.
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Overall, most preparators either do not improve the similarities across all datasets
or they do, but only marginally. More specifically, remove special characters,
acronymize, and phonetic encode are exceptions to the previous observation and
clearly improve overall more records across datasets. The first is a general preparator,
which can be applied to multiple use cases, but the last two are more tailored towards
deduplication. On the other hand, there are preparators, such as merge attributes
and capitalize, which in fact have worsened more pairs. However and as mentioned,
this by itself is not enough to judge whether a preparator is indeed harmful or not.
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3.6 Evaluation

To validate the previous hypothesis and to obtain a better insight concerning the
contribution of a preparator, i.e., whether it is indeed helpful or not, we show another
type of visualization. In Figure 3.4 we consider the remove special characters
preparator, which has more of a positive effect, for visual reasons randomly downsampled
to 5,000 pairs (DPL and NDPL) across all datasets and attributes. We can observe the
effect on similarity, before and after preparation: pairs below the main diagonal have
had their similarity increased, which we prefer for DPL pairs, and decreased above the
axis, ideally mostly for NDPL pairs. In this preparator we see that a large proportion of
NDPL pairs is above the main diagonal and, similarly, a noticeable subset of DPL pairs
is below the main diagonal, which both align with the positive results in Figure 3.3.

Examining similar figures for syllabify and capitalize (not shown), which have
more negative effects in similarities, we observe that although many NDPL pairs’ simi-
larity increases slightly, the simultaneous larger increase of DPL pairs’ similarity, makes
it easier to separate the two classes afterwards. This effect is examined in more detail in
the next section for the Cora dataset. The situation is similar for other helpful prepara-
tors, such as normalize address, with some small negative effect, but a predominant
positive effect.

In summary, examining the preparators with an overall higher positive effect reveals
an easier separation of the two classes, DPL and NDPL. However, this is more of an
indicator and the actual positive effect of a preparator is decided in practice when it is
combined with a particular dataset’s attribute, as discussed in Phase 3 of Section 3.5.

Effect on datasets

We now examine the effect that all preparations together had on each dataset w.r.t. the
percentage of affected pairs. In Figure 3.5 we see that in fact, with the exception of the
Hotels dataset, most datasets experienced an overall positive effect in similarities in the
majority of the pairs.
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Figure 3.5: Percentage (%) of record
pairs (DPL and NDPL) whose sim-
ilarities improved (+) or worsened
(−), across datasets.
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Figure 3.6: Similarity difference (be-
fore and after) of dataset Cora.

Cora is a case with a large improvement in its pair similarities and to understand the
reason behind this, we show Figure 3.6 to review the actual changes on the similarity
of pairs. One interesting remark is that most DPL pairs have a high similarity before
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3. DATA PREPARATION FOR DUPLICATE DETECTION

and after preparation, although in most cases they still managed to improve by a large
degree. At the same time, there is a clear difference between most DPL and NDPL pairs,
which hints good classification results. The unusual vertically aligned pairs are caused
mostly by the phonetic encode and capitalize preparators, whereas the bottom line
of pairs that had 0.0 similarity before and a higher similarity after preparation are caused
by preparators that populate attributes with values that were initially empty, such as
merge attributes or geocode and normalize address in Hotels.

3.6.3 Classification effect

Building on the previous section, we now examine the final classification results, as
discussed in Phase 5 of Section 3.5. In Figure 3.7 we see the AUC-PR scores of all
datasets on the full set of DPL and NDPL pairs (gold standard). The “No prepara-
tion” and “All preparations” bars describe two baselines of (i) using the original values
and (ii) applying all available valid preparations respectively. “Minimized preparations”
considers the minimized set of preparations produced by our pipeline. Comparing the
set of “minimized” preparations to “all” preparations serves as a good indicator to show
how important is to select high quality preparations among the set of possible prepara-
tions. In practice, only a small fraction of all the available preparations were selected by
our process (Table 3.6), using up to six out of the eleven available preparators in total.
Additionally, we present the best achievable F-measure over the precision-recall curve
displayed in Figure 3.8. This represents the best-case scenario that a user would select to
apply this process in practice, where the selected threshold of the precision-recall curve
maximizes the F-measure.
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Figure 3.7: Classification results ac-
cording to AUC-PR of original val-
ues (left bars), prepared with all valid
preparations (middle bars), and pre-
pared with minimized set of prepara-
tions (right bars).
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Using “All preparations” does in fact improve the quality of duplicate detection in
many of the datasets without the need to go through our process pipeline. An explana-
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3.7 Conclusion

tion for this is that a certain subset of preparators helps to improve duplicate detection
in the majority of the attributes they are applied to. As an example, acronymize and
phonetic encode are selected for many attributes by the “minimized” set of prepara-
tions, as shown in Table 3.6, with which we can derive their importance. However, to
avoid a negative effect on the results, as is the case with AUC-PR in Movies and Restau-
rants, a careful selection of preparations needs to be done. The advantage of carefully
selecting the preparations is verified by “Minimized preparations” bars: all datasets had
an improvement in their classification results in AUC-PR, which is consistent with the
similarity improvements (Figures 3.3 to 3.6). This is consistent as well with the leave-
one-out optimization; as removing certain preparations in Phase 4 did help improve
AUC-PR over the candidate preparations of Phase 3. Comparatively, with the exception
of Cora in F-measure, using the minimized set of preparations achieved the best results,
consistently outperforming both baselines.

In terms of improvement, CDDB, Census, and Restaurants had the largest improve-
ments. Among them, Census achieves the largest improvement (19%), which can be
explained by the discussion of Figure 3.8 in Section 3.6.3. In contrast, the other three
datasets did not manage to achieve such levels of improvement: value inconsistencies in
Cora and Hotels are more difficult and thus not repaired by our preparations to such a
degree that would make the separation of DPL and NDPL pairs easier. Movies, on the
other hand, does not contain enough information in the two provided attributes that
could benefit substantially from preparations. In contrast, Census consists of five differ-
ent types of information (Section 3.4.1) that are in a more normalized format, which is
more adequate to distinguish two different entities. In most of the datasets AUC-PR is
increased due to improvements in precision, except for Cora that bases its better results
on recall. We observe that increases in AUC-PR are also reflected in the best achievable
F-measures, with the exception of Movies. Although there is a positive effect in both
similarities and AUC-PR, this does not result in a better F-measure.

Lastly, for completeness in Table 3.6 we present the minimized set of preparations,
as they are produced by the leave-one-out minimization of Phase 4 in Section 3.5. At-
tributes and preparators not presented in the table are not part of the minimized set of
preparations. The preparators phonetic encode and acronymize have been selected
for many attributes. As explained in Section 3.5 they are both “lossy” preparators, in
the sense that important information is lost. On the other hand, they do help improve
duplicate detection results, which is why they are selected in many cases.

3.7 Conclusion

This chapter set out to analyze the impact of various data preparation activities on
the success of duplicate detection. While some kind of preparation is usually vaguely
reported on, it is consequential precisely which transformations were in fact executed.
Our systematic analysis reveals the effects of various, selected data preparations and
highlights the need for a more formal specification of data preparation steps and the
benefit of a data preparation framework, which would free data experts to repeatedly
build new scripts for old or new datasets. Ideally, these preparators should be offered
by a library, such as those we discuss in Section 3.3. However, in our case the offering
was not adequate and we implemented the preparators ourselves. Overall, such a library
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3. DATA PREPARATION FOR DUPLICATE DETECTION

Table 3.6: Minimized preparations of experiments in Section 3.6. Only preparations
that are produced by our process are presented, i.e., for the attributes not presented
no preparation is selected.
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cddb artist X X X
title X X
tracks X X X X

census first name X
text X

cora address X X X X X
authors X X
date X X
title X X

hotels city X
hotel name X
street address1 X

movies actors X
title X X X X

restaurants address X X X X
name X X X

should help developers prepare their data faster for their use cases, without the need for
deeper knowledge, often provided only by domain experts. Our implementation should
already provide a start in this direction for any data cleaning practitioner who wants
to get insights and recommendations on how to prepare her datasets. Similarly, our
data preparation experiments reveal the importance of address normalization, which we
explore further in the next chapter.

As possible future work directions, we propose examining the effect of a larger pool of
preparators applied to more datasets. Another possible direction is to focus on different
subsets of the dataset and not apply the preparator to all records, but only to those
that can benefit from it – conditional preparations. Finally, finding the optimal order
of preparations’ application that we discuss in Phase 3 of Section 3.5, can be difficult if
time efficiency is important, but may help improve the results even further.

42



4

Address Normalization and
Matching

Given a database, duplicate detection is the problem of finding database records that
represent the same real-world object. In the easiest scenario, database records are com-
pletely identical. However, in most cases problems do arise, for instance, as a result
of data errors, data integrated from multiple sources or received from restrictive form
fields. These problems are usually challenging, because they require a variety of actions,
including field segmentation, decoding of values and similarity comparisons, each requir-
ing some domain knowledge. In the previous chapter, we showed the benefits of applying
generic data preparation actions to improve the success of duplicate detection.

In this chapter, our task similarly is to detect duplicates, but we focus on domains
that contain address information, including attributes such as Street-address and City.
To facilitate this matching process, we propose a domain-specific procedure [Koumarelas
et al., 2018] to first enrich each record with a more complete representation of the address
information through geocoding and reverse-geocoding, and second to select the best
similarity measure per each address attribute, that will finally help the classifier to
achieve the best F-measure. We report on our experience in selecting geocoding services
and discovering similarity measures for a concrete but common industry use-case. More
specifically, our contributions can be summarized as follows:

• A novel pipeline using three approaches to improve address quality. The first two
approaches use frameworks to provide address geocoding and parsing, whilst the
third uses conditional functional dependencies.

• Two new similarity measures for small to medium-sized attributes, which are mod-
ified versions of existing similarity measures.

• Experiments to verify the effectiveness of our pipeline under different configura-
tions.

The rest of the chapter is organized as follows: In Section 4.1 we motivate the prob-
lem of address normalization and briefly introduce our approach. Relevant literature is
discussed in Section 4.2. We study the operations allowed by GIS systems, and publicly
available datasets for this reason, in Section 4.3. Then, we proceed with our process
of finding the best similarity measure, that is comprised of three parts: First, in Sec-
tion 4.4, preprocessing and enriching records’ address information by applying geocoding
and using conditional functional dependencies (CFDs) with the help of a reference ad-

43



4. ADDRESS NORMALIZATION AND MATCHING

dress database. Second, in Section 4.5 we propose two similarity measures, which serve as
extensions of Monge-Elkan [Monge and Elkan, 1996], and then we find the best similarity
measure per attribute, among a number of typically used measures. Third, training and
using a Random Forest (RF) classifier to determine whether the given similarities repre-
sent a duplicate or a non-duplicate pair of records, is explained in Section 4.6. Lastly, we
conclude in Section 4.7 with our thoughts for future work, which includes modifications
and extensions of this chapter’s work.

4.1 Introduction

The problem of record matching, which in the literature has been referred to with many
different names, including record linkage [Christen, 2012b], duplicate detection [Nau-
mann and Herschel, 2010], entity resolution [Christen et al., 2009] and data match-
ing [Christen et al., 2006], is a well-studied problem [Christen, 2012b; Elmagarmid et al.,
2007]. As explained previously, two records match if they represent the same real-world
object, such as a person, a product, or a company, despite their differences in their stored
values. A typical method of classifying two records as duplicates is by determining the
similarity or distance of their corresponding values. If the combined similarity is above
a given threshold, the record pair is considered to be a match, and thus returned as a
result.

In this chapter, we focus on matching records from a particular domain, i.e., records
that contain address information. It is a notably difficult and important operation,
which allows for geo-spatial analysis in a number of areas, including Health [Pickle et al.,
2005], Traffic Accidents [Miler et al., 2016] and Natural Disasters [Guha-Sapir et al.,
2015]. Address attributes, such as City or Street-address appear frequently in many real-
world applications, and simultaneously have special (geographic) semantics that can be
exploited to more effectively determine matching records. However, a system that is able
to exploit these semantics must address several challenges.

Deduplicating addresses is particularly complex, when different countries or even
areas within a country follow different formats and rules1 for their addresses. Examples
of such differences include building names, village and district names, house (building)
and flat numbers, street types (street, highway etc.) and more. Additionally, address
data does not always follow the proper format, as defined by the corresponding country’s
standards, most commonly by mixing up the order of attributes or simply missing some
values. On top of that, ambiguous abbreviations, slang or synonyms make the problem
even harder. For instance, “St” could abbreviate Street, Saint, State, Station, etc.2

We employ and enhance geocoding, which is an operation that transforms a given ad-
dress to Latitude and Longitude geolocation coordinates. Internally, systems that perform
such an operation apply a mixture of techniques to obtain their result, including a spe-
cial case of record matching against a clean address reference database. Such reference
databases include qualitative location records, that contain address information, such as
Street-address and City, but also geolocation coordinates, that are used to determine the
final result of geocoding. These systems are usually described as geocoding frameworks,
since geocoding is their main operation, although other operations are also provided, such

1https://en.wikipedia.org/wiki/Address_(geography)#Mailing_address_format_by_country
2See http://pe.usps.gov/text/pub28/28apc_002.htm for more examples.
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4.2 Related work

as parsing and address normalization (see Section 4.3.1). A popular example of refer-
ences databases is OpenStreetMap (OSM)3 (see Section 4.2 for more details). The best
providers of such systems usually enforce limits on the number of allowed queries, on their
free version, and such queries are not always guaranteed to have some result, especially
in cases of typographical errors in some of the query’s tokens. Access to such services
is usually provided with a REST interface and there are tools providing cross-service
access, such as the Python geocoder4.

4.2 Related work

Record matching has been extensively studied over the years, under different names, as
mentioned in the previous section. Several works include a thorough analysis of different
methods that span across all the necessary steps to (1) normalize, (2) index and retrieve
candidates of possibly matching records, (3) compare these retrieved candidates, (4)
classify them as matches or not, and (5) evaluate the entire process [Christen, 2012a;
Elmagarmid et al., 2007; Herzog et al., 2007]. In this chapter we contribute to the first
step, for which we apply geocoding and conditional functional dependencies (CFDs) to
normalize the addresses of our records, and to the third step by experimentally analyzing
the most commonly used similarity measures, and finally to the fourth step to choose a
classifier to make the final decisions. For Steps (2) and (5) we employ standard techniques
from the literature.

The author of [Paull, 2003] describes abstractly the process of creating a clean refer-
ence database, described as G-NAF (Geocoded National Address File for Australia), by
merging smaller datasets from 13 organisations, to be used for geocoding purposes, on
Australian addresses. The cost for such a project was estimated to around $12 million
and ended up at $2 million due to improved technology. This still indicates how difficult
and complex the procedure is, where even matching 70% of any given records, is in many
cases considered an acceptable result. Part of the process was also to resolve licensing
problems when merging the smaller datasets into the single database.

Christen et al. [Christen et al., 2006] propose a Hidden Markov Model (HMM) that
parses and separates an address into components. By matching these components using a
rule-based engine, they identify the best matches from their reference database. Applying
their methodology to a subset of G-NAF, they managed to match 94.94% of it on different
levels (address, street, locality).

Finally, Miler et al. present a model for matching a traffic accident dataset against
the OSM dataset, where the existence of Latitude and Longitude values is a vital part
of the process, since the authors only consider pairs of records that are geospatially
close [Miler et al., 2016]. In their application, they observed that many street names are
based on persons’ names. Thus, similarity measures that are suitable for people’s names
are suggested, and more specifically Jaro-Winkler [Winkler and Thibaudeau, 1991], for
which they found the best threshold to be 68%.

3http://wiki.openstreetmap.org/
4https://pypi.python.org/pypi/geocoder
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4. ADDRESS NORMALIZATION AND MATCHING

4.3 Geocoding

Geographic Information Systems (GISs) commonly provide operations similar to and
including geocoding. They used to have primarily the form of a desktop application,
but nowadays they are typically offered as a service. We first describe the typical set of
provided operations. Most of the operators are based on some reference location datasets,
which we describe thereafter.

4.3.1 Operations provided by GIS services

Operations that can be performed using these services include the following:

• Parsing : Split addresses into its constituent components, including House-number,
Street-name, ZIP-code, City, County-name, State-code (or State-name), Country-code
(or Country-name).

• Verification: Validate whether an address exists based on clean reference datasets,
such as the OSM.

• Geocoding : Match a given query address to a geolocation of Latitudes and Lon-
gitudes, internally using records from clean reference datasets and by applying a
mixture of operations, including record matching, interpolation and more. The
matched geolocation is returned to the user. More often than not, these clean
reference datasets contain entries with more information about a particular point.
Thus, it can be also beneficial to include any kind of textual description along with
or instead of the address. In our case Hotel-name could be used as complementary
information, which could lead to improved results.

• Reverse (or inverse) geocoding : For given geo-coordinates, return the nearest lo-
cation in the reference data, such as an element record in OSM. More specific
criteria can be specified for the search results, such as to include only locations of
a particular type, for instance, train stations or hotels.

• Normalization (or standardization): Format and clean components of addresses
to comply with the country’s postal service standards, including special character
removal, lower(or upper)-casing, zero padding number fields like ZIP-code, trans-
position of words, and encoding conversions.

Example providers of these services, to which the user sends his address as a REST
request and the system sends back the geocoded coordinates, are ArcGIS5, Google6

and OpenStreetMap (OSM)7. The latter is the only service based on open source data,
available for research. Further open source implementations based on OSM include Nom-
inatim8, Gisgraphy9, and Pelias10. Out of these, the one that had the largest community
support, based on github metrics (number of commits, stars and forks), and also seemed
to produce the most reliable results in our case was Nominatim and for this reason we
selected it for our experiments. In Section 4.4 we explain how we use which operation.

5https://www.arcgis.com/
6https://developers.google.com/maps/documentation/geocoding/start
7https://www.openstreetmap.org
8https://nominatim.openstreetmap.org/
9http://www.gisgraphy.com/

10https://github.com/pelias/pelias
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4.4 Enriching addresses

4.3.2 Publicly available datasets of location information

The area of geocoding is very fragmented, where high quality datasets exist only for
smaller areas, and in contrast when larger areas are covered, quality usually drops.
Therefore, we present the most complete, publicly available location datasets we could
find. Since a large fraction of our use case’s domain considers hotels in US, we also
include US-only datasets, apart from the global ones. The first four datasets of the
following list contain addresses up to a house level accuracy.

• OpenStreetMap (OSM) is a worldwide volunteered geographic information (VGI)
dataset, where people enter information in the form of primitives (nodes, ways,
relations), that represent an element11, and tags that contain metadata about the
element. Downloading the latest compressed data for the whole world requires
87GB of disk space.

• OpenAddressesIo12 is “a global collection of address data sources, open and free to
use”, which was started by OSM users and is based mostly on government datasets.
The latest compressed data available for download requires 10GB of disk space.

• GeoNames13 is another worldwide VGI dataset, which also allows for user modifi-
cations. This dataset is available in a compressed form that has a size of 347MB.

• TIGER US Census14 is the acronym of topologically integrated geographic encoding
and referencing system, and is provided at a national level by the US Census
Bureau.The latest version is available in compressed files with a total size of 20GB.

• Country Mappings15 was our source of combinations of country codes (2 and 3
character encoding) and the commonly used country’s name. Since the number of
countries is relatively small, acquiring the mapping in a compressed form requires
9KB of disk space.

• US-specific: We collected further data from various public data sources16. While
all files contained basic attributes, such as ZIP-code and State, they differed widely
in which other attributes they provide and in their quality and coverage. In total,
the integrated file in a compressed form requires 1.4MB of disk space.

To make use of the US-specific datasets, we performed a merge operation to construct
a single relation to include: Latitude, Longitude, ZIP-code, City, County-name, State-code
(and State-name), Country-code (and Country-name). When pairs of records matched
perfectly for all attributes except Latitude and Longitude, we merged the records and
fused Latitude and Longitude to their average values.

4.4 Enriching addresses

Postal services of many countries issue recommendations for address formats, which
are not always followed in practice, which in turn leads to different representations of
the same address. These formats change across local areas, such as cities, states etc.,

11http://wiki.openstreetmap.org/wiki/Elements
12https://openaddresses.io/
13http://www.geonames.org/
14https://www.census.gov/geo/maps-data/data/tiger-line.html
15https://github.com/mledoze/countries
16http://federalgovernmentzipcodes.us/, http://simplemaps.com/resources/us-cities-data,

http://www.sqldbpros.com/2011/11/free-zip-code-city-county-state-csv/, http://www.

unitedstateszipcodes.org/zip-code-database/, https://www.bls.gov/cew/cewedr10.htm
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Figure 4.1: Address enrichment process workflow.

and more obviously across countries, which also use different languages. In addition,
addresses may contain abbreviations, misspellings, mixed orders of attributes, or missing
attributes. To handle the plethora of different formats and errors, we need to normalize
and parse the addresses, to ultimately compare them on a per-attribute level.

In this section, we first define the different processes that we used to enrich addresses.
Second, we describe our use-case dataset about hotels, and finally we evaluate the en-
richment processes on the dataset. This process can be seen in Figure 4.1, where we
show the executions over the original data and the enriched ones. The latter are a com-
bination of the three proposed enrichment processes. Having either of the two data sets,
in real-world applications we then perform the candidate selection, using blocking, to se-
lect the most promising candidate pairs for the next step, which in our case is duplicate
classification. Keep in mind the lowest arrow presented in the figure denotes that in our
experiments we perform the candidate selection before any enrichment takes place, on
the original data, to ensure that the same set of candidates is selected with or without
enrichment.

4.4.1 Enrichment processes

We describe three different processes to enrich addresses. Each can be used in isolation
or in conjunction, as we show in Section 4.4.3.

Parsing

Since address parsing, i.e., labeling the individual parts of an address, is a difficult task in
its own right17, we decided to use the popular address parser and normalizer Libpostal18.
Libpostal claims to have an accuracy of 99.45% and support for over 60 countries.

Libpostal first expands the address, eliminating abbreviations and converting num-
bers to a uniform representation. In a second step, each part of the address is labeled
according to its meaning. As an example the address “1317 e hwy sixty seven decatur

35601 alabama” would be normalized to “1317 east highway 67 decatur 35601 alabama”
and afterwards parsed to “House-number: 1317, Road: east highway 67, City: decatur,
ZIP-code: 35601, State-name: alabama”. Thus, the parsing step can also be used to infer

17https://www.mjt.me.uk/posts/falsehoods-programmers-believe-about-addresses/
18https://mapzen.com/blog/inside-libpostal/
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4.4 Enriching addresses

attribute values, which might exist in wrong positions; for instance the Street-address
may also contain other attribute values, such as the city.

Enrichment through conditional functional dependencies

Filling missing attributes is an important task, which, apart from using Libpostal’s
parsing, may be facilitated using other approaches. If there exists sufficient attributes
with values, we can use functional dependencies (FDs), to infer some of the missing
values.

As an example consider the dependency between a ZIP-code and a city. If we know
that the FD ZIP-code→City holds, and we know the ZIP-code of a record, then we can
infer the city, by consulting a reference address database (such as those described in
Section 4.3.2). Nonetheless, even for this example of ZIP-codes, the problem might be
more complicated, since a ZIP-code can be either inside one city, span over a region of
multiple cities (that can be in multiple counties or states), commonly found in military
bases, and the same ZIP-code can exist in many countries across the globe.

General FDs are valid only if they apply across the entire dataset. Conditional
functional dependencies (CFDs), on the other hand, are FDs that need to apply only to
a subset of the records, as specified by some condition. As shown in [Ilyas et al., 2015],
partial enrichment with CFDs is easy to apply, simple, and better than other methods.
Moreover, it can enrich records by itself, resulting in improved results, or enhance the
address normalization step (Section 4.4.1). For instance, the functional dependency ZIP-
code→City might be true only for a specific country.

To make use of this concept, for each incoming record we examine the present non-
null values. For each combination of these values we check with the reference database
whether we can uniquely determine a value for one of the missing attribute values.
Consider a record with (98103, us) as ZIP-code and Country-code but a missing value for
City. We collect all records with the given values (98103, us) and count the number of
distinct values for City. There are three possible outcomes: (i) If the original count is
1, we were successful and can infer the right hand side (RHS) attribute value. There is
only one single city for the combination (98103, us), namely seattle. (ii) If the count
is 0, we cannot directly infer a missing value. Thus, we relax this left hand side (LHS)
condition by considering fewer attributes to infer the missing attribute value. In this
case, we recursively count the number of distinct cities for the ZIP-code 98103 only and
the number of distinct cities for the Country-name us only. (iii) If the count is higher
than 1, we cannot uniquely infer the city, and there is no reason in examining more
relaxed LHS conditions, as those will certainly have more results. Once a single value
has been determined, we iteratively use this new value in the LHS to create further, more
complex combinations, to check until no new values can be filled in. The correctness of
this process is bound to the validity and completeness of the provided reference database.
In particular, erroneous values and lack of records can lead to invalid CFDs being labeled
as valid and vice versa.

For lack of a high-quality reference dataset, we implemented this process for US
addresses only, and were able to infer information across the address attributes of ZIP-
code, City, County-name, State-code, State-name, Country-code (2 or 3 character format),
Country-name (common and formal names). In principle, the same procedure could be
followed at a global level, for instance by parsing the entire OSM dataset and producing
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a relation with the above information.

Enrichment through geocoding

The previous steps could be used in isolation, but should also enable us to be more
successful during the geocoding process. As previously mentioned, the goal of this step is
to match the query’s information with a record from a clean reference database (described
in Section 4.3.2) to obtain its geolocation. Afterwards, by performing reverse geocoding
we obtain a proper, formal representation of the record. In fact, most geo-coding systems
return the reference record already during the geocoding step. The actual process of
geocoding is more difficult than what has been already described in Section 4.2, including
house number interpolation, in case the requested address is not available but neighboring
house numbers are, synonyms in other languages, font encoding problems when not
everything is in UTF-16 (usually UTF-8 is used), and more. We chose to use the open
source system Nominatim, which we set up as a local server.

4.4.2 Use-case: Hotel dataset

To evaluate the different approaches for geocoding and matching, datasets a gold stan-
dard is needed. The problem with publicly available datasets, such as the North Carolina
Voter Registration dataset19, is that they do not contain significant variations among
duplicates - as their quality is typically better than what we observe in our real-world
queries. Therefore, we proceeded to use a real-world dataset that our industry partner
Concur20 provided, which includes information of hotels around the world, along with a
gold standard of duplicate pairs. This dataset includes 364,965 records with 36 attributes
and a size of 91.2MB. Along with the records, Concur reported 384,238 duplicate pairs,
i.e., pairs of records that have been verified to represent the same hotel. Keep in mind
that clusters of multiple records representing one hotel lead to many duplicate pairs. In
fact, the largest cluster contained 54 records (accounting for 1,431 pairs), and 124,653
records had no annotated duplicates. The hotel dataset includes the attributes Hotel-
name, Street-address, ZIP-code, City, County-name, State-code, Country-code, Latitude,
and Longitude, which all contain real-world, human-made, errors, misspellings, and fre-
quently, empty (null) values.

4.4.3 Experimental evaluation

Geocoding is the most important of the processes, because it enriches records with the
most reliable address information. We used the first two of the processes as pre-enhancing
steps for the last step, aiming for better geocoding results. In this section we report
how many hotel records are in fact matched and enriched by these combinations of the
processes. We focused on the eight countries (US, FR, DE, GB, IT, CA, CN, AT) that
represent the largest fraction of our records, keeping 240,944 records and 301,155 pairs
of the gold standard. All our experiments were conducted with an Intel Xeon CPU, 3.07
GHz, 8 Cores, a RAM of 24GB and a HDD of 2TB.

By examining Table 4.1, we can observe first the impact on the percentage of records
that have been enriched, second the percentage of duplicate pairs from the gold standard

19http://dl.ncsbe.gov/index.html?prefix=data/
20https://www.concur.com/
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for which both of the records have been enriched, and finally out of this the percentage of
records where the geolocation distance, based on latitude and longitude, is zero. These
statistics help us to make the decision among four choices, namely, (i) Nominatim, (ii)
Libpostal + Nominatim, (iii) CFD + Nominatim, and (iv) CFD+Libpostal+Nominatim,
each of which choice includes a combined enrichment processes, representing a set of
consecutive steps. We chose the combination CFD + Nominatim for its simplicity and
good results. A brief experimental comparison with an Ensemble approach that combines
the results of all four choices is available in Section 4.6.2.

Table 4.1: Selecting the best enrichment process, based on gold standard of 240,944
records and 301,155 pairs.

Enrichment process % records % pairs % pairs with 0 distance

Nominatim 24.29 16.62 73.83

Libpostal + Nominatim 20.68 14.15 75.70

CFD + Nominatim 37.21 29.07 78.73

CFD + Libpostal + Nominatim 33.42 26.88 80.17

Ensemble 43.65 34.89 77.31

Regarding the execution time per record, the mean values that we observed under a
multi-threaded (Java 8 parallelStream) execution, were 17ms for CFDs, 96ms for Lib-
postal and 4,057ms for Nominatim. In total, the execution time of the classification
process, not including the enrichment, was increased from 1,109s to 1,329s (+220s) due
to the added information contained in the attributes and consequently in the similarities.
For performing the GET requests on Nominatim, multiple Java libraries were tested and
the execution times were always at similar levels. The final Java library that was used is
unirest21, and we set the timeout of a request to 20s. We assume that Nominatim’s long
execution time may happen because of long system retrieval times, e.g., for frequently
occurring tokens. However, the use of a multi-threaded environment keeps the overall
execution time over the whole dataset under a more reasonable time frame, which was
approximately a day for our 240,944 records. Let us now examine a few experiences in
using those systems:

Libpostal

By using Libpostal before calling Nominatim we try to achieve two things:

(1) Fill missing values, that might have been contained in other attributes. By parsing
a concatenated string where we join all the information about the address attributes that
we know about, we expect to improve our quality of attributes. However, several issues
are faced here:

• Improper categorization of tokens. A ZIP-code could be identified as a House-
number and vice versa, a Street-name as a City, etc. As an example, the result
of the input “7210 ga hwy 21 31407 port wentwort ga us”, incorrectly (and inex-
plicably) returns 31407 as the House-number and 7210 as the ZIP-code, swapping
their respective categories.

21http://unirest.io/java.html
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• Non-identification of certain tokens leads to the concatenation of tokens. Given
the input “4900 bryant irvin rd 76132 3616 fort worth tx us” Libpostal re-
turns the House-number 49003616.

These two types of problems appeared in more than 50% of the cases in total. This
made the parsing part of this library unreliable and was thus avoided.

(2) Expand and normalize the address query that will be given to Nominatim, to
eliminate abbreviations (i.e., St is converted to Street), represent numbers in a uniform
format (i.e., IX is converted to 9) and correctly position the tokens to reflect the correct
pattern (i.e., house-number in front, then street-name etc.). This should increase the suc-
cess rate of geocoding. Unfortunately, Libpostal returns multiple, unranked expansions
as shown in Table 4.2. Therefore, having no straightforward solution to select the most
probable and correct expansion, our strategy here is to select the largest expansion. Our
intuition is that a larger value is in most cases more specific and thus has more chances
to be correct.

Table 4.2: Libpostal unreliable expansions

“507 e main st 99328 dayton wa us”

“507 e main street 99328 dayton wa us”

“507 e main street 99328 dayton western australia us”

“507 e main street 99328 dayton washington us”

“507 e main saint 99328 dayton wa us”

“507 e main saint 99328 dayton western australia us”

“507 e main saint 99328 dayton washington us”

“507 east main street 99328 dayton wa us”

“507 east main saint 99328 dayton wa us”

“507 east main saint 99328 dayton western australia us”

“507 east main saint 99328 dayton washington us”

Table 4.3: CFDs example

attribute original value enriched value

City marshal

ZIP-code 56258 56258

County-name lyon

State-code mn mn

State-name minnesota

Country-code us us

Country-name united states

Conditional Functional Dependencies (CFDs)

The goal as stated in Section 4.4.1 is to enrich the record with information that can
coexist only with our existing attributes’ values. As an example in Table 4.3, we are
able to obtain the City, State and the County-name as well. Overall, our entire process
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was able to enhance 131,391
135,583 = 96.90% of the US records with at least one additional

attribute value. Using Nominatim alone yielded only 58,529 enhanced records (43.16%);
using CFD + Nominatim led to 89,670 (66.13%) geocoded records.

Geocoding

When geocoding is successful, we apply reverse geocoding to obtain proper address de-
tails, as explained in the beginning of Section 4.4.1. The address information that is
returned contains important additions and is useful for our later matching process. As
an example consider the Table 4.4, where by providing the query of the original record
to Nominatim, the returned result contains many more address attributes, which clar-
ifies better the location of the hotel. In total, considering the ten address attributes
presented in Table 4.4, before any geocoding, out of the 2,409,440 attribute values across
the records 1,087,837 are filled (45.15%). Nominatim increases this value fulfillment to
1,380,476
2,409,440 = 57.29% and finally CFD+Nominatim increases it to 1,831,439

2,409,440 = 76.00%.

Table 4.4: Geocoding (Nominatim) example

attribute 1. original record 2. geocoded to 3. reverse geocoded to

Latitude 42.6334525 42.6334525

Longitude -88.6371988 -88.6371988

Street-address 511 e walworth ave 511 e walworth ave

ZIP-code 53115 53115

City delevan delevan

County-name walworth county

State-code wi wi

State-name wisconsin

Country-code us us

Country-name united states

Query 511 e walworth ave
53115 delavan wi us

Display-name walworth avenue, delavan,
walworth county,

wisconsin, 53115, united
states of america

4.5 Choosing similarity measures

Address information, which is the focus of this study, feature a wide variety of attributes
and attribute types. The goal of this section is to recommend specific similarity measures
for common attributes of addresses. To this end, we first introduce popular measures
and then evaluate each of them for each of the attributes, recommending a measure for
each.
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4.5.1 Similarity measures

A similarity measure is a function that takes two input values, v1 and v2, and returns
a value between 0.0 and 1.0, with 0.0 meaning they are completely different and 1.0
meaning they are exactly the same: sim(v1, v2)→ [0.0, 1.0]

The similarity measures we consider include the ones discussed in Chapter 2, for
which we use the following abbreviations: Exatch Match (EM), Hamming (HM), Lev-
enshtein (LS), Damerau-Levenshtein (DL), Jaro-Winkler (JW), LongestCommonSubse-
quence (LCS), Jaccard (JC), Jaccard n-gram (JCN), and Monge-Elkan (ME). Moreover,
we introduce the following two hybrid similarity measures, which we found useful for our
use-cases:

• Monge-Elkan Greedy Symmetric (MEG) modifies ME to avoid the re-use of
matched tokens, giving both input values the same importance. We calculate the
similarity of each token pair using the internal similarity measure and then greedily
choose best matching pairs.

• Stable-Matching (SM) ensures that no token is more similar to another token than
to the one it is matched to, while simultaneously that other token is also more
similar than to its own match. We use the Gale Shapley algorithm [Gale and
Shapley, 1962] to find the matching. As the algorithm is not symmetric, we repeat
it with swapped input values and use the average similarity as the final result.

We combined the three hybrid measures ME, MEG, and SM with three different in-
ternal similarity measures, namely Levenshtein, DamerauLevenshtein and JaroWinkler,
abbreviated as ME-LS, ME-DL, etc.

For the purpose of duplicate detection we define a threshold for each similarity mea-
sure and attribute: If the similarity is above the threshold, we call it a match, if it is
below, it is a non-match. Having defined the different similarity measures, we proceed
in the next section to identify what is the best mapping between them and the common
address attributes, and which threshold to choose for each combination.

4.5.2 Experimental evaluation

We selected the seven attributes described in Section 4.4.2, which are available in most
countries. In this section, we first describe the process to determine precision, recall, and
F-measure. Second, we evaluate all the previously defined similarity measures across our
selected record’s attributes, and select combinations with the highest potential in terms
of some metric, such as F-measure or execution time. For all experiments we perform a
10-fold cross-validation on our dataset and report the mean scores.

Selecting duplicate and non-duplicate pairs

The gold standard that is given to us by our industry partner, contains 130,428 pairs
of records that are marked as duplicates (DPL). Since we want to train a classifier for
duplicate detection, we need to calculate the F-measure, based on precision and recall
values, which in turn needs knowledge about false positives (FP) that are returned in a
detection run. Identifying FPs needs non-duplicate (NDPL) pairs, and for this reason
we created a process that produces them, in the same spirit as [Christen, 2007]. This
process follows the same principles to the one discussed in Chapter 3, but here we follow a
different blocking scheme, tailored to Hotels, which performed better for our experiments
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in this chapter. Since we already own a DPL set, we follow a different strategy, based
only on blocking. It would be easy to choose many trivial NDPL pairs, simply by
choosing many very dissimilar records. For a more realistic evaluation we describe how
we generated more difficult NDPLs:

1. We insert all DPL into a UnionFind (UF) [Galler and Fisher, 1964] data structure,
which provides us with transitive closure functionality. UF forms transitive closure
groups, which include all different representations (records) of the same entity,
that are connected in the gold standard through direct and indirect (transitive)
connections.

2. We use the blocking technique to partition the records and thus save comparisons
and reduce the number of trivial comparisons. We apply blocking individually to
the attributes Hotel-name, Street-address, City, and Zip-code, using the entire value
as the blocking key. These attributes have a high uniqueness, which means that the
same value is not common across many records. Each bucket represents all records
which have the bucket’s value for that specific attribute. Finally, we go through
all these attributes and their respective buckets, fetch all record combinations, and
add them to a collective set of pairs, that contains both DPLs and NDPLs.

3. We remove the pairs that belong in the same transitive closure group, i.e., they are
duplicates, using the UF structure.

Since pairs of NDPL have the same value in at least one attribute, this guarantees that
their similarities have to be high, in contrast to randomly selected, where no guarantees
are provided. Thus, distinguishing them from pairs of DPL is more challenging and,
therefore, realistic. The two sets of pairs, DPL and NDPL, constitute our full gold
standard (Full-GS ), which we use for evaluation in the following steps.

Best similarity measure per attribute

To determine the best similarity measure for each attribute, we evaluate individually for
each one all similarity measures and calculate the F-measure for 100 different thresholds
([0.01, 0.02, ..., 1.0]). We thus now know for each similarity measure the best F-measure,
along with the corresponding thresholds and the overall execution time. We report
the thresholds for which optimal results were achieved, but do not apply them in the
classification step. We leave the selection of feature thresholds to the Random Forest
classifier. With this information users can select the similarity measure that maximizes
the F-measure, minimizes the execution time, or something in between. In our case we
solely target on maximizing the F-measure. We discuss some exemplary results:

• Hotel-name: Figure 4.2a shows JCN to achieve the highest F-measure, while at
the same time being one of the fastest measures as well. The best F-measure was
achieved for the threshold of 0.29.

• Street-address: MEG-JW is shown in Figure 4.2b to have the best F-measure, with
the threshold of 0.95. A Street-address is usually comprised of multiple tokens,
explaining the good performance of this token-based measure.

• ZIP-code: The best choice as similarity measure is the SM-DL, achieved at the
threshold of 0.9, as shown in Figure 4.2c, since there are ZIP-codes that contain
multiple tokens.

• City: Figure 4.2d shows that the best choice as similarity measure is the SM-DL,
with 0.46 as the best performing threshold.
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• County-name: For county names the selected similarity measure is the same as
ZIP-code’s and City’s – SM-DL, with the threshold of 1.0, as shown in Figure 4.3.

• State-code and Country-code: Since these codes have a length of two or three char-
acters, we prefer to have an exact match. Therefore, we use the EM similarity
measure.

• Latitude & Longitude: We select the well-established Haversine distance22.

4.6 Classification for duplicate detection

Having enriched records and knowing the best similarity measure per attribute, from
Sections 4.4 and 4.5, this section introduces a classifier to detect which of these pairs are
duplicates or not. As features we provide the calculated similarities, for every pair of
the Full-GS (discussed in Section 4.5.2), with the label 1 representing duplication and
0 the opposite. To this end, we have chosen Random Forest (RF) as the classifier for
our experiments23, for its scalability, ease in parametrization, and out-of-the-box appli-
cability to most problems. This makes it easier to deploy in real-world applications. We
have also experimented with Support Vector Machines (SVM), which needed excessive
memory while performing only slightly better on our samples. An additional approach
we have tried was to use a threshold-based classifier, where each attribute’s similarity
is weighted, and if it passes a given threshold the pair is a match. We also employed
a Genetic Optimizer, since the problem of maximizing F-measure is non-convex [Nan
et al., 2012], to find the optimal weights and threshold, but achieved only much lower F-
measures. Another industry-relevant reason to choose RF is its ability to explain specific
outcomes.

In the next sections, we describe how to first train and second evaluate the RF
classifier on our domain’s dataset.

4.6.1 Best parameter for random forest classifier

The RF classifier has a number of different parameters that can be configured, with the
number of trees being typically the most important parameter to be examined, which
we also do in our experiments. Further parameters include the number of attributes
to be sampled upon at each node, and the criterion to make the binary splits in each
node. For both these parameters, as well as all remaining ones, we keep to the library’s
default values24, which are typically used in practice [Tibshirani et al., 2013]; for the
former this is

√
m, with m being the number of attributes, and for the latter this is

the GINI index. To decide the number of trees, we calculate all pair similarities using
values of enriched records following the CFD + Nominatim enrichment process, which
in Section 4.4.3 performed the best. Afterward, we perform experiments across countries
using the selected number of trees to get further insights into the model’s performance.

In Figure 4.4a we can see the differences in F-measure for the subset of records that
have been enriched by CFD + Nominatim and in their original state. In other words,
it helps us understand whether the enrichment helps (it does) and at the same time it

22https://en.wikipedia.org/wiki/Haversine_formula
23We used the Java library from https://haifengl.github.io/smile/.
24https://github.com/haifengl/smile/blob/master/core/src/main/java/smile/

classification/RandomForest.java
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Figure 4.3: F-measure for similarity measures on County-name.
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Figure 4.4: Effect of Random Forest (RF) on F-measure under different configura-
tions.

shows us that for 64 trees we have a good compromise between the two data states,
achieving an improvement of 12%, keeping in mind that also in future applications we
cannot expect all records to be enriched. We continue our experiments with 64 trees.

In Figure 4.4b, we can observe the effect of enrichment across the eight countries,
that were selected in Section 4.4.3. In “US” both CFDs and Nominatim contribute to
the result, whereas in the rest countries only Nominatim can enrich the records. Overall,
we observe that in all countries, the effect of the CFD + Nominatim enrichment is
positive, with the improvement in “US” being 10% and “AT” having the most significant
improvement with 38%.
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4.6.2 Evaluation with quality assertions

In search of understanding the importance of the enrichment, we performed three exper-
iments by controlling the quality of the used record pairs. We created three datasets in
which pairs from Full-GS were either “both” enriched, or “at least one” was enriched,
or “any” on enrichment. Based on these three configurations, we can aim for a good
intuition on how much enrichment contributes to the final matching quality. The pre-
vious experiments took place using the middle solution (“at least one”) as the default
configuration.

In Figure 4.5, we can see the difference among these three configurations with two
things being clear: First, the quality of address values is better in the configurations
where one or both of the records are enriched, which means that our hypothesis that
enrichment does contribute to a better duplicate record classification holds true. Second,
the cases that were enriched and performed better than the original, were higher quality
ones, as the original records in the two left configurations have a better F-measure.
Last, the improvement of using the CFD + Nominatim process is profound, although
Ensemble, while being more expensive, manages to affect more records while achieving
almost the same F-measure or even better.

4.7 Conclusion

In this chapter’s work we showed a recipe for matching records when address information
is present, in which case we can achieve better classification results. More specifically,
we showed that by using different address enrichment processes, and by finding the best
similarity measure for each address attribute, we were able to improve the F-measure
results of the consequent Random Forest classifier over the non-enriched addresses. Re-
garding the address enrichment processes, Conditional Functional Dependencies along
with a Geocoding framework, Nominatim in our case, achieved the best results. For
most of our attributes, hybrid similarity measures performed the best. In particular,
for Hotel-name Jaccard n-gram performs the best under the threshold of 0.29, whereas
for Street-address our improved version of Monge-Elkan with Jaro-Winkler as the token
similarity measure was the best using the threshold of 0.95. Finally, for the attributes
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ZIP-code, City, and County-name, Stable Matching with Damerau-Levenshtein as the
token similarity measure performed the best, with thresholds of 0.9, 0.46, and 1.0,
respectively.

Several avenues of future work emerge: As reference databases grow ever larger (the
complete OSM is already 803 GB), a better coverage can be achieved, but matching
methods need to be distributed among multiple machines. Second, new geocoding frame-
works are continuously emerging, so experimenting with them is a necessary part on all
address-related tasks. Finally, achieving all the above in lower execution times demands
for some distributed environment, such as Apache Spark25, which is another interesting
direction, where experimentation with distributed indexes, caches and more, could help.

Concluding this chapter provided us with even more evidence of the importance that
improving data quality not only helps downstream applications but also duplicate dete-
ction. Experimenting with generic and address-specific data preparation steps showed
us the potentials of emphasizing further on the start of the process, which is its data and
improve their quality before we continue with the remaining steps of duplicate detection.
While, as explained previously, we do have potential future work directions in mind,
we prefer to turn our attention to other compelling areas of duplicate detection. The
particular issue we address in the following chapter is, to some extent, even more funda-
mentally important than what we addressed here. If a gold standard exists, evaluating
whether an approach is successfully detecting duplicates is straightforward. However,
a gold standard is not always available, and thus in the next chapter, we consider an
approach to detect duplicates even if no labeled pairs are available to guide machine
learning approaches in creating a classifier.

25https://spark.apache.org/
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5

Duplicate Detection with
Matching Dependencies

Duplicate detection is an integral part of data cleaning and serves to identify multiple
representations of same real-world entities in (relational) datasets. The previous chapters
introduced approaches from the literature as well as ours to perform duplicate detection.
While all of them are effective for detecting duplicates, many of them are also hard
to parameterize or require pre-labeled training data, which is similarly true for our
own data preparation approaches. Both parameterization and pre-labeling are at least
domain-specific if not dataset-specific, which is a problem if a new dataset needs to be
cleaned.

For this reason, in this chapter we propose a novel, rule-based and fully automatic
duplicate detection approach [Koumarelas et al., 2020b] that is based on matching depen-
dencies (MDs). Our system uses automatically discovered MDs, based on an efficient and
state-of-the-art approach [Schirmer et al., 2020], various dataset features, and known gold
standards to train a model that selects MDs as duplicate detection rules. Once trained,
the model can select useful MDs for duplicate detection on any new dataset. To increase
the generally low recall of MD-based data cleaning approaches, we propose an additional
classification refinement step. Our experiments show that this approach performs well,
with the exception of some datasets that unfortunately performed poorly. We reach
up to 94% F-measure and 100% precision on our evaluation datasets, which are good
numbers considering that the system does not require domain or target data-specific
configuration. Exceptions to these satisfactory results are datasets where the discovered
MDs cannot provide useful duplicate pair classification, and thus our method performs
rather poorly. Our contributions are summarized as follows:

• MDedup system. A fully automatic end-to-end duplicate detection system that
is based on discovered matching dependencies. The system is trained on a few
datasets with a gold standard, but can then be applied to arbitrary unseen datasets.
It adapts several well-known techniques and combines them into a novel, domain-
agnostic duplicate detection solution.

• Feature definition. A set of novel features and heuristics that serve to train a
model on how to distinguish accurate from inaccurate MDs for duplicate classifi-
cation tasks.

• MD selection. An efficient algorithm to select the best subset of MDs for dupli-
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5. DUPLICATE DETECTION WITH MATCHING DEPENDENCIES

cate detection either w.r.t. some gold standard or a pre-trained quality prediction
ML model.

• Evaluation. Various experiments that demonstrate the effectiveness of MDedup
on eight real-world datasets with different domains and sizes.

The rest of the chapter is organized as follows: Section 5.1 motivates the problem of
unlabeled data and briefly introduces our solution. Afterwards, Section 5.2 provides a
summary of related work in automatic duplicate classification and matching dependen-
cies. Section 5.3 then introduces the most relevant concepts before Section 5.4 describes
our MDedup system’s training methodology. Then, Section 5.5 presents the application
methodology, used to obtain duplicates in a new dataset. Section 5.6 provides the evalu-
ation setup of our experiments. In Section 5.7, we evaluate MDedup and finally conclude
in Section 5.8 with further remarks and future work.

5.1 MD-based duplicate detection

Data cleaning is a multivariate process that identifies and repairs various issues in given
datasets. Duplicates, which specify multiple representations of same real-world entities
in a database, are among the most addressed and harmful data quality issues. Hence,
their detection plays an important role in data cleaning processes, with a plethora of
approaches existing to effectively detect and merge duplicate records [Christen, 2012b;
Elmagarmid et al., 2007]. A large portion of these approaches is based on machine
learning (ML) techniques [Bilenko and Mooney, 2003; Elmagarmid et al., 2007]; several
of them employ deep learning methods [Ebraheem et al., 2018; Mudgal et al., 2018].
Most other duplicate detection approaches are rule-based and follow systematic detection
strategies.

Irrespective of whether ML is used or not, all known solutions require either careful
manual configuration by domain experts and/or exhaustive pre-labeling of training data,
which are both difficult requirements that we want to avoid. To this end, we use auto-
matically discovered matching dependencies (MDs) as rules and devise a system called
MDedup, which automatically selects the best discovered MDs for the duplicate detection
process, without needing any special domain-specific configuration or training data for
the dataset at hand. Other, non-MD-based rule languages for duplicate detection, such
as [Singh et al., 2017; Wang et al., 2011], allow to formulate more expressive rules than
MDs, but these rules are not discoverable without domain knowledge.

Most duplicate classifiers effectively distinguish true and false pairs, but many –
especially ML-based ones – cannot provide a human understandable reasoning for their
decision. Our approach, in contrast, does this by offering the rules, i.e., MDs that marked
the pairs as true duplicates.

Intuitively, a matching dependency is a functional dependency X → A with a set
of left-hand-side (LHS) attributes X and a right-hand-side (RHS) attribute A where
attribute values do not need to be exactly equal but similar w.r.t. some attribute-
specific similarity measure and some attribute- and dependency-specific similarity thresh-
old (more details in Section 5.3.1). The similarities in these rules are expressed in the
range of [0.0, 1.0] with 0.0 describing fully dissimilar values and 1.0 equal values.

Consider, for example, Table 5.1, which shows two example duplicates (pairs with
ids 1 and 2) and two example non-duplicates (pairs with ids 3 and 4) from the real-
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5.1 MD-based duplicate detection

Table 5.1: A sample of duplicate (<163,164> and <165,166>) and non-duplicate
record pairs (<180,823> and <676,811>) from the restaurants dataset. The floating
point numbers indicate value pair similarities.

pair
id

record
id

name phone address city type

1 163 georgia grille 404 352 3517 2290 peachtree rd
peachtree square
shopping center

atlanta american

164 georgia grille 404 352 3517 2290 peachtree rd atlanta southwestern
1.0 1.0 0.36 1.0 0.17

2 165 hedgerose heights
inn

404 233 7673 490 e paces ferry rd atlanta international

166 hedgerose heights
inn the

404 233 7673 490 e paces ferry rd
ne

atlanta continental

0.84 1.0 0.91 1.0 0.3

3 180 ritz carlton cafe
buckhead

404 237 2700 3434 peachtree rd
ne

atlanta american new

823 ritz carlton cafe
atlanta

404 659 0400 181 peachtree st atlanta american new

0.74 0.58 0.6 1.0 1.0

4 676 johnny rockets la 213 651 3361 7507 melrose ave la american
811 johnny rockets at 770 955 6068 2970 cobb pkwy atlanta american

0.89 0.33 0.18 0.29 1.0

world restaurants dataset (see Section 5.6.1). Given this dataset, our MDedup sys-
tem detects (among others) the second pair of Table 5.1 as duplicate using the rule
name0.7, address0.7 → phone0.75 as an explanation for this decision. This rule is inter-
preted as follows: All record pairs in restaurants with a name similarity of at least 0.7
and an address similarity of at least 0.7 have a phone similarity of at least 0.75. This
if-this-then-that rule is true for all record pairs, but the LHS matches only a few records,
which are those that are considered to be duplicates. In our example, the LHS is true
only for record pair 2 so the MD classifies it as a duplicate; the pairs 1, 3, and 4 also
meet the MD, but they do not fulfill the LHS condition. Note that matching depen-
dencies can be used also in other ways for data cleaning, e.g., to automatically correct
RHS attribute values [Bahmani et al., 2012; Gardezi et al., 2012], but we focus on their
duplicate detection ability in this chapter.

On the entire restaurants dataset, the matching dependency name0.7, address0.7 →
phone0.75 alone is able to achieve an F-measure of 72% while maintaining a perfect
precision of 100%. To also capture record pair 1 as a duplicate, a second MD-rule, namely
name0.95, city0.82 → phone0.75, is necessary. For this reason, our duplicate detection
system needs to identify good sets of MDs rather than a single MD. Both MDs together
achieve an F-measure of 78% with still 100% precision, which is the best possible result
that can be achieved with any combination of MD-rules on restaurants – the remaining
duplicates cannot be described by automatically discoverable MDs. Because the set of
discovered MDs might also contain many MDs that match non-duplicates, it is crucial to
pick only those for duplicate detection that are appropriate duplicate classifiers. In this
chapter, we propose a machine learning approach that learns to distinguish good from
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5. DUPLICATE DETECTION WITH MATCHING DEPENDENCIES

bad MD-rules based on several novel features.

More specifically, our MDedup duplicate detection system works in two phases: train-
ing and application (see Figure 5.1). The training phase first discovers all minimal MDs in
possibly many pre-annotated datasets, i.e., ones with a gold standard of duplicates. The
discovery itself is fully automatic and does not require the gold standard (Section 5.4.1).
The gold standard is then used after the discovery to find the optimal subsets of discov-
ered MDs, which are those that achieve the highest F-measure scores. With the scored
MD combinations and certain characteristic features (Section 5.4.4), MDedup trains a
regression model to predict effectiveness scores for arbitrary sets of MDs (Section 5.4.4).

The application phase then takes this general prediction model to predict the scores
of MD combinations from a different, dirty dataset (without own gold standard). Af-
terwards, the best MD combination is used as a classifier for a first round of duplicate
detection. Because the result usually has high precision but low recall, we propose a final
classification refinement step, in which the high precision duplicates are used to train a
binary classifier, which is a typically used Support Vector Machine (SVM) model, to find
further duplicates (Section 5.5). This final classification refinement step clearly improves
the system’s recall in our experiments (Section 5.7.3).

Intuitively, this chapter addresses the transfer learning problem in duplicate detection
(train on known datasets, apply on a new dataset) with a non-transfer learning solution
(learn how to judge MDCs regardless of the domains of their datasets) by solving the
problem on a different, domain-agnostic level. We provide our MD combinations, the
trained ML models, and the source code of MDedup online1 to be reused in other cleaning
projects.

5.2 Related work

We first discuss existing approaches for automatic duplicate classification, which is the
focus of this research. Then, we concentrate on matching dependencies and their applica-
tions in data cleaning. In summary, we argue that our system is the first fully automatic,
domain-agnostic system that is able to learn duplicate classification characteristics on
datasets with a gold standard and use that knowledge on any other dataset.

Automatic duplicate classification. To date, no algorithm exists that automatically
discovers duplicates without domain-specific parameterization and pre-labeled data (on
the target dataset). In contrast, classification in duplicate detection is, in general, a well-
researched area. Swoosh [Benjelloun et al., 2009] and Metablocking [Papadakis et al.,
2013] are two example threshold-based approaches, but they are hard to parameterize
without domain expertise. Similarly, rule-based systems, such as AJAX [Galhardas et al.,
2000], require domain expert users to specify duplicate detection rules in a declarative
way. Domain expertise is also required for unsupervised approaches, such as [Lehti and
Fankhauser, 2006] and [Christen, 2008a]: In [Lehti and Fankhauser, 2006], the blocking
strategy, the duplicate probability parameters, the similarity measures, and the con-
figuration of the SVMs are all selected manually; similarly, [Christen, 2008a] needs to
configure SVMs and requires thresholds to be set for the Threshold and Nearest-based

1https://hpi.de/naumann/projects/repeatability/duplicate-detection/mdedup.

html
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approaches. Identically to our approach, however, both [Lehti and Fankhauser, 2006]
and [Christen, 2008a] also use an SVM classifier in a final classification refinement step.

A variety of works focus on ML models using either custom features or having artificial
neural networks learn their features [Christen, 2008a; Ebraheem et al., 2018; Mudgal
et al., 2018]; the resulting models are always tailored to the data they were trained
on, because they learn how to classify domain-specific record pairs rather than general
data cleaning rules. Decision Trees [Cochinwala et al., 2001], Support Vector Machines
(SVM) [Christen, 2008a], and Deep Learning [Ebraheem et al., 2018; Mudgal et al., 2018],
are examples of such ML systems. They all require pre-labeled training data from the
data that needs to be cleaned. All these approaches can be used in our duplicate detection
system for the final classification refinement step. In our implementation, though, we
have chosen an SVM approach, because it was also successfully used for classification
refinement by [Lehti and Fankhauser, 2006] and [Christen, 2008a].

Matching dependency based approaches have also been used in duplicate dete-
ction [Bahmani et al., 2012, 2015; Gardezi et al., 2012]. However, they all start with
some trusted, manually picked MDs and do not automatically select them – which is a
major part of our contribution and more challenging to accomplish. These approaches
also primarily aim at data correction rather than duplicate detection [Bahmani et al.,
2012; Gardezi et al., 2012].

The Snorkel system [Ratner et al., 2017] is similar to our approach in that it also
starts without pre-labeled data, but it requires some starting rules or functions whose
definition, again, requires domain knowledge in the target dataset. The record linkage
system of Negahban et al. [Negahban et al., 2012] is able to match records across datasets
without needing example matches between these two datasets, which is similar to our
setup. The system, however, assumes that the two datasets share the same domain
and that gold standard matches are available that linked both datasets to same other
datasets – two very restrictive assumptions that are hardly met in practice. In contrast,
our system can detect duplicates without these prerequisites, but the results are not
consistently as good.

Matching dependencies. Functional dependencies (FDs) are one of the most typically
used types of data dependencies, also due to their capabilities in data cleaning when
used in relaxed forms [Caruccio et al., 2016]. Matching dependencies (MDs) are one
such relaxed form that was first introduced by Fan [Fan, 2008]. MDs extend FDs by also
matching similar and not only strictly equal record values (see Section 5.3.1).

Song and Chen [Song and Chen, 2009, 2013] proposed the first discovery algorithm
for MDs. The most recent algorithm for automatic MD discovery is HyMD [Schirmer
et al., 2020]. To date this algorithm is the most efficient approach and we, therefore,
use it in our duplicate detection system (see Section 5.4.1). However, any MD profiling
algorithm can be used to serve the MDs.

Matching dependencies have been used in various works for data cleaning purposes.
In [Bahmani et al., 2012; Gardezi et al., 2012], MDs are used in a query answering
environment. There Minimally Resolved Instances (MRIs) define the final result set
of records for a given question and they are produced by iteratively enforcing right-
hand-sides of MDs in a repair step. Another approach by Bahmani et al. uses MDs
for candidate blocking and to merge duplicate records [Bahmani et al., 2015]. For the
actual duplicate classification, however, they use standard ML techniques, such as SVMs
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and K-Nearest Neighbors (KNN). In summary, all these approaches use MDs to identify
duplicate candidates and to repair right-hand-side values. In our work, we focus on
the detection of duplicates rather than their correction or resolution. In contrast to all
MD-based previous works, we use MDs for the classification only and solve the problem
of selecting proper MDs in unsupervised scenarios where no gold standard with labeled
duplicate pairs is available.

5.3 Background and notations

In this section, we first give a more detailed definition of MDs and explain how we use
them for duplicate detection (Section 5.3.1). We then introduce the concept of matching
dependency combinations (Section 5.3.2).

5.3.1 Matching dependencies

Let R be a relational schema and r an instance of R. We identify the attributes of R
by index, i.e., R = 〈A1, A2, ..., Ay〉. A functional dependency (FD) on R is defined as
X → Ai with X ⊆ R and Ai ∈ R. An FD denotes that all pairs of records with same X
values also have same Ai values. X and Ai are also known as LHS and RHS, respectively.

Matching dependencies, which we formally define afterward, are a relaxation of func-
tional dependencies as they introduce three extensions: First, they relax the value com-
parisons, which are strictly equal (=) in FDs, by incorporating similarity metrics; this
makes MDs useful for duplicate detection. Second, records can in theory be matched
on different attributes, although this is not particularly useful for duplicate detection
purposes. Third, they can match records across different relations, which is useful in the
scenario of record linkage where the similarity join is between two relations (R ./ S); for
the sake of simplicity and without loss of generality, we focus on single relation joins,
i.e., self-joins (R ./ R).

The fuzzy matching of MDs is accomplished using a set of similarity measures (≈),
such as Levenshtein [Levenshtein, 1966] and Jaccard [Jaccard, 1901]. These similar-
ity measures calculate similarities in the range of [0.0, 1.0]. To classify two values as
match or non-match, MDs also specify a decision boundary, which is defined in [0.0, 1.0].
Similarities greater than or equal to this boundary are considered matches and lower
similarities non-matches. The decision boundaries of m LHS attributes are denoted as
λ = {λ1, λ2, ..., λm} whereas the RHS has only one decision boundary ρ. Due to their
strong connection, we call the combination of a similarity measure (≈i) and a decision
boundary λi (or ρ) a similarity classifier ≈i,λi (or ≈i,ρ). This leads us to the following
definition [Schirmer et al., 2020]:

Definition 1 (Matching dependency). Given a relational schema R with attributes
Ai, Aj ∈ R, its instance r, and similarity classifiers ≈i,λi and ≈i,ρ, a matching de-
pendency (MD) ϕ is defined as follows:

∀rs, rt ∈ r :

(w−1∧
i=1

rs[Ai] ≈i,λi rt[Ai]
)
→ rs[Aw] ≈w,ρ rt[Aw]

In other words, a matching dependency states that if two records rs and rt match in
all their Ai values (attribute-specific similarity calculated by ≈i greater than or equal to
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λi) then their Aw values need to be at least ρ-similar w.r.t. ≈w. Note that in the broader
definition of MDs the two Ai attributes and the two Aw attributes can be different
attributes and even attributes from different relations, in which case we would have
(Ais , Ait) and (Aws , Awt).

For practical reasons and because there is usually only one reasonable similarity
measure per attribute, we usually use the following short notation to specify MDs:(w−1∧

i=1

Ai,λi

)
→ Aw,ρ

The MD address0.7, name0.7, type0.71 → phone1.0, which is a true MD in the restaurants
dataset (see example records in Table 5.1), follows this short notation. If for two records
all LHS similarities match, they match the RHS similarity.

To use an MD for duplicate detection, we simply consider its LHS as a classifier: All
record pairs that match the MD’s LHS are labeled as duplicate. Intuitively, the LHS
is the matching rule that we are looking for, and the presence of a valid RHS is an
indicator (for rule discovery and scoring) that the LHS is relevant. For the majority of
MDs, this inference leads to poor results. The MD name0.0 → phone0.0, for instance, is
true on any instance of the restaurants dataset and it matches all record pairs. Hence,
the challenge is to identify such MDs that are useful duplicate classifiers. The rule
address0.7, name0.7, type0.71 → phone1.0, for example, yields an F-measure of 72%, which
is relatively good. We discuss indicators that hint towards useful MDs for duplicate
classification in Section 5.4.4.

5.3.2 Matching dependency combinations

As we illustrated in Section 5.1, one MD might not be able to capture all duplicates.
Our approach, therefore, considers multiple MDs for the classification. We refer to these
sets of MDs as matching dependency combinations:

Definition 2 (Matching dependency combination). Given the set of all MDs Φ, a match-
ing dependency combination (MDC) χ is any selection of MDs with χ ⊆ Φ.

An MDC χ can be used as a duplicate classifier by considering a record pair as
duplicate, iff it matches the LHS of at least one MD ϕ ∈ χ. Technically, an MDC-
based duplicate classifier combines a set of MD-based duplicate classifiers via logical
or -operations. In this way, different MDs can be used to classify different kinds of
duplicates. The goal of MD-based duplicate detection in general is therefore to predict
the best MDC for the duplicate classification step.

To illustrate, consider again our running example of Table 5.1, which offers 5 MDs.
Our MDC selection strategy (see Section 5.4.2) then carefully selects 17 MDCs in total
from the 25 − 1 = 31 possible combinations. One of these MDCs consists of the two
MDs name0.7, address0.7 → phone0.75 and name0.95, city0.82 → phone0.75, which offer the
best possible F-measure of 78% (and a precision of 100%).

5.4 MDedup training

The MDedup process is comprised of two phases, namely training and application. We
explain the training phase now and the application phase in Section 5.5. As shown in
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the MDedup overview of Figure 5.1, the training phase takes several datasets and their
labeled duplicates as input and, then, runs five basic steps: At first, the pipeline dis-
covers all minimal MDs (Section 5.4.1). Using our MDC selection algorithm, it then
selects MDCs that produce possibly high quality results when used as duplicate classi-
fiers (Section 5.4.2). In the third step, this set of high quality MDCs is enriched with
further MDCs of varying quality via systematic expansion (Section 5.4.3). Afterwards,
MDedup’s training pipeline stores all scored MDCs in one training set that integrates the
results calculated on different annotated datasets. The fifth and last step of the pipeline
generates a set of features for the scored MDCs to then use both the MDCs and their
features to train a machine learning (ML) model on how to predict the F-measure of a
given MDC without a gold standard of duplicate pairs (Section 5.4.4).

5.4.1 MD discovery

The main assets of our system are the MDs that we use for duplicate classification,
because they prescribe the optimal recall and precision that we can achieve. It is therefore
essential to discover many and good MDs – in our implementation of MDedup, we
discover all minimal, non-trivial MDs. Although any set of MDs can be used as input
for our duplicate detection system, the complete set of minimal and non-trivial MDs is
promising, because these MDs are by definition very close to core data patterns; it is
also what most existing dependency profiling algorithms discover.

An MD ϕ is minimal if no other MD ϕ′ with same LHS and RHS exists, such that
only one LHS threshold is smaller (i.e., more general) or the RHS threshold is larger
(i.e., more restrictive); given a valid MD, raising LHS thresholds or decreasing the RHS
threshold will always generate a valid MD. Additionally, an MD ϕ is trivial if its RHS
attribute is contained in its LHS attributes with either the same or a higher similarity
threshold; if the LHS matches only those records with at least similarity x in attribute
Ai, then these records are trivially also at least x (or less) similar in Ai.

MD profiling algorithms, such as those published by Song and Chen [Song and Chen,
2009, 2013], can effectively serve our pipeline with MDs. The implementation of MDedup
that we developed for this chapter, however, uses our own algorithm HyMD [Schirmer
et al., 2020] — the most efficient MD algorithm to date. It discovers all minimal, non-
trivial MDs using several indexes to identify similar records, along with a number of
pruning rules that effectively tame the exponentially large search space.

5.4.2 MDC selection

The goal of MDedup’s matching dependency combination (MDC) selection component
is to find MDCs that produce possibly high F-measure scores when used as duplicate
classifiers. Identifying which combinations of MDs are the best is a challenging task,
because the complexity of checking all possible combinations of a set of m discovered MDs
is exponential. More specifically, there are

∑m
k=1

(
m
k

)
= 2m candidates to be evaluated.

The problem is particularly hard to solve, because our system often deals with thousands
of MDs. For this reason, we propose a greedy selection algorithm that systematically
searches the combination space for MDCs with high F-measures. The greediness of the
algorithm decides which combinations are worth being further investigated, pruning all
those MDCs on the way that offer sub-optimal F-measure scores. Because optimizing for
F-measure is a non-convex problem [Nan et al., 2012] and we propose a linear, bottom-up
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greedy search, our approach does not guarantee optimality. It, however, always found
the optimal combination in our experiments.

Before we discuss our lattice traversal-based search process, we first define certain
preliminaries. To keep the search within reasonable time constraints, but at the same
time consider a variety of possible solutions, we define a parameter k, which controls the
fan-out of the process. In each level of the lattice, a maximum of top k MDCs produce
further candidate MDCs to be considered in the next higher level of the lattice, with each
candidate MDC being one MD larger than its predecessor. To consider more variations
as we go up the lattice levels, we employ another trick. We combine every candidate with
every MD of the first level, instead of just combining the top k candidates of each level
with each other, which would produce a narrower fan-out. This grows the search space
linearly, but at the same time allows us to consider some variation in our candidates.
Nevertheless, the main focus is kept on the combinations that produce good scores. The
process follows the beam search strategy and could also be characterized as “hill climbing
with top-k”. Although this approach is heuristic, an exhaustive, i.e., complete candidate
testing approach produced the same results on smaller datasets in our experiments. We
label the greedily selected MDCs as “selected MDCs” and define them as follows:

Definition 3 (Selected MDC). An MDC χ is defined as “selected” if ∃ MD ϕ where
χ− {ϕ} reduces its score and @ ϕ′ where χ ∪ {ϕ′} improves its score.

Based on this definition, Algorithm 1 solves MDedup’s selection process. The pa-
rameters of this process are the HyMD algorithm that provides all minimal, non-trivial
MDs, the Oracle algorithm that calculates the F-measure score given an MDC, and the
search scope k of the greedy approach. For the training phase, the Oracle algorithm
uses the given duplicate gold standards; the calculations follow the principles that we
described in Section 5.3.2. In the application phase, the Oracle algorithm uses the
trained MDC scoring model.

The MDC selection algorithm starts by calling HyMD to discover the MDs for this
dataset (line 2). Then, it scores the initial MDCs, where every MDC contains exactly one
MD (line 3). These MDCs are shown in Figure 5.2 at level 1. Subsequently, it filters out
MDs with a score of zero to reduce the search space (line 4). Next, two sets are initialized
(lines 5 and 6): the best MDCs for the currently examined level (levelSelected) and the
overall best MDCs (overallSelected). None of the overall best MDCs may be outscored
by another MDC of the levelSelected set. The algorithm then starts to iterate all search
space levels from level one upwards as long as there are more non-outscored MDCs in
the current level (line 7). For each level, the algorithm creates the respective candidate
MDCs, based on the MDCs of the previous level (lines 8 to 11). For each generated set,
the algorithm iterates over all its candidates, calculates their score, and if that score is
higher than the scores of the MDCs that created them, they are added to the levelSelected
set (lines 12 to 17). It proceeds by keeping only the k best MDCs (line 18), while these
k MDCs (levelSelected) are added to the overallSelected set (line 19). Consequently, it
removes the creator MDCs of the selected k from the overallSelected set (lines 20 and 21).
We do not remove MDCs that create higher scored MDCs if these higher scored MDCs
are not selected in the top k of their level to maintain a higher diversity in the final set.
Finally, the overallSelected set containing all the best, non-outscored MDCs across all
levels is returned (line 22).

To better understand the selection process, consider the example in Figure 5.2 with
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Algorithm 1: MDC selection

1 function MDC selection(HyMD,Oracle, k)
/* Discover, score, and filter MDs */

2 mds← HyMD.discoverMDs()
3 mds← Oracle.score(mds)
4 mds← mds.filter(lambda md : md.score > 0)

/* Initialize MD combinations sets */

5 levelSelected← topk(mds, k)
/* Copy */

6 overallSelected← {levelSelected}
7 while |levelSelected| > 0 do

/* Combine with single MDs */

8 candidates← {∅}
9 for mdc ∈ levelSelected do

10 for md ∈ mds \ mdc do
11 candidates.add(mdc ∪md)

/* Score MDCs and keep those with improved score */

12 levelSelected← {∅}
13 for mdc ∈ candidates do
14 mdc.score = Oracle.score(mdc)
15 creatorsScore = max(mdc.creators.scores)
16 if mdc.score > creatorsScore then
17 levelSelected.add(mdc)

/* Filter and save topk, and remove their creators */

18 levelSelected← topk(levelSelected, k)
19 overallSelected.addAll(levelSelected)
20 for mdc ∈ levelSelected do
21 overallSelected.removeAll(mdc.creators)

22 return overallSelected

k = 2. It shows a lattice of MDCs with the top MDC describing the combination of all
MDs and the bottom holding all single-MD MDCs. The execution begins at the bottom
by considering the single-MD MDCs, which are given by the MD discovery algorithm (see
Section 5.4.1). As explained previously, we consider only the top k candidates with high-
est F-measure scores to reduce the search space. After selecting the top k (levelSelected),
which are {ϕ1} and {ϕ3}, from the first level, the algorithm combines them with every
other possible MD to produce the candidates for the next level. MDCs that generate
candidates for the next level are their creators; thus, MDCs {ϕ1} and {ϕ3} are creators
of level 2’s candidate MDCs. Moving to level 2, notice that the combination {ϕ2, ϕ4} is
not considered, as neither {ϕ2} nor {ϕ4} were selected in the previous levelSelected. By
calculating the MDC scores, we find that all MDCs of size 2 have a better score than
their creators, i.e., {ϕ1} and {ϕ3}, except for one, which is the MDC {ϕ3, ϕ4} with a
worse score than {ϕ3}; thus it is eliminated and not considered for the levelSelected selec-
tion. Because {ϕ1} and {ϕ3} created descendants with better scores, they are removed
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{φ1} {φ2} {φ3} {φ4}

{φ1,φ2} {φ1,φ3} {φ1,φ4} {φ2,φ3} {φ3,φ4}
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higher level
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lower level
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0.6 0.4 0.5 0.45

0.67 0.61 0.64 0.65 0.49

0.62 0.68 0.61

0.65

Figure 5.2: An example for the selection algorithm on an MDC lattice with four
input MDs and k = 2. The finally selected MDCs are {ϕ1, ϕ2, ϕ4} and {ϕ2, ϕ3}.

from the final result set (overallSelected). The same process now repeats at level 2: We
calculate the scores for each MDC and keep the top k, which are {ϕ1, ϕ2} and {ϕ2, ϕ3}.
Proceeding to level 3, we find only one MDC, which is {ϕ1, ϕ2, ϕ4}, that is not outscored
by its creators. In the end, we select {ϕ1, ϕ2, ϕ4} and {ϕ2, ϕ3} in overallSelected as final
result.

5.4.3 MDC expansion

The goal of MDedup’s training phase is to create a model that can predict F-measure
scores for MDCs. While most discovered MDCs in our experiments have a low F-measure
score, the MDC selection step finds a set of k MDCs with high scores. This set is,
therefore, biased towards top performing MDCs and it is rather small. Most ML models,
however, behave better if their training data is more diverse and they are given more
data [Banko and Brill, 2001]. So, to ensure that enough training instances with a large
variety in their properties exist, we propose an MDC expansion process that consists of
two strategies: neighbor expansion and random sampling.

Given the top k MDCs from the selection step, the neighbor expansion strategy
considers neighboring MDCs, in terms of their lattice position, around these selected
MDCs. This is achieved by an iterative process where we randomly select an input
MDC and then add, remove, or replace some MDs using a Gaussian distribution, thus
ensuring a focus on neighboring MDCs. Figure 5.3 visualizes this concept: Rectangular
nodes represent the initially selected MDCs and their shaded neighborhoods show the
Gaussian distribution on the lattice from which the additional MDCs are generated. This
Gaussian distribution spans towards the bottom (MDCs with less MDs), the top (MDCs
with more MDs), as well as left and right (same size MDCs, but with different MDs).
By taking neighboring MDCs of top performing MDCs into the training set, we enable
a machine learning algorithm to learn the precise characteristics of why certain MDCs
perform well. The result of this strategy therefore produces a larger set of MDCs that
describes the few top performing MDCs well.
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Because the neighbor expansion strategy is still biased around top scored MDCs,
the random sampling strategy injects MDCs of larger variety: It randomly creates (and
scores) MDCs by considering the entire search space up to the maximum level reached
by the MDC selection, disregarding selected and neighboring MDCs. In Figure 5.3’s
visualization, the random MDCs are scattered all over the surface. We control the
overall size of the expansion set (relative to the number of selected MDCs), equally for
both strategies, with the parameter expansion factor.

selected MDCsneighboring MDCs

random MDCs

Figure 5.3: A visualization for two expansion strategies: neighbor expansion and
random sampling.

5.4.4 Feature generation and MDC prediction

In this section, we describe the machine learning model that we train to predict F-measure
scores for MDCs. MDedup needs this model to score the MDCs in the application phase
where no gold standard is available to calculate the exact F-measure values (see Sec-
tion 5.5). To build the ML model, we need to specify a set of features and the prediction
strategy. For the features, we collected thirty-five metrics of MDC characteristics that
are possibly relevant for the duplicate classification performance of the MDC instances,
and discuss them next. Afterward, we propose a Gaussian regression process for the
prediction strategy.

Assembling features for MDCs

To predict the F-measure an MDC would achieve when used as a duplicate classifier,
we determine several features describing the MDC itself and the data for which it holds.
These features need to be available on any relational input dataset and do not need a
gold standard.

In total, we define thirty-five features, which are outlined in the taxonomy presented
in Figure 5.4. Based on this taxonomy, we have the following main categories: instance
statistics, match statistics, and MDC statistics. First, the instance statistics describe
basic statistics of the relational input dataset, such as the completeness or uniqueness of
attributes w.r.t. all attributes used in an MDC. Second, the match statistics describe how
well an MDC is supported by the data. Finally, the mdc statistics describe the structure
of an MDC and its MDs. In particular, these are metrics based on MDC characteristics,
such as their size, and the similarity measures, attributes, and thresholds that are used

73



5. DUPLICATE DETECTION WITH MATCHING DEPENDENCIES

feature

MDC statistics
cardinality

MD statistics

threshold (×7)

similarity measure (×7)

attribute (×7)

column match (×7)

match statistics

conviction

lift

confidence

support

instance statistics
uniqueness

completeness

Figure 5.4: Taxonomy of the features based on the data required for their calculation.

in the MDs’ LHSs and RHSs. Having explained the main feature categories, we now
describe the individual features.

Completeness. Completeness is the percentage of records with no null values in the
attributes of the MDC. Null values are not useful for record matching and, therefore,
this feature can help to disregard MDCs that match on sparse or empty data. With ‘⊥’
representing null values and attr(χ) the union of all attributes used by the MDC’s MDs,
the completeness feature is calculated as follows:

compl(χ) =
|{ri ∈ r | ∀Aj ∈ attr(χ) : ri[Aj ] 6= ⊥}|

|r|

Uniqueness. The uniqueness of an MDC is the fraction of unique value combinations in
the MDC’s attributes, relative to the overall number of records. A high uniqueness is a
good indication that the given set of attributes is suitable as a key, in that it can uniquely
identify a record when comparing it with others. If we represent the projection of the
relational instance r to all the attributes of the MDC χ as r[attr(χ)], the uniqueness of
χ is defined as follows:

uniq(χ) =
|{ri ∈ r[attr(χ)]}|

|r|

Support. The support of an MDC is the percentage of record pairs that match at
least one MD of the MDC on the LHS (suppLHS(χ)), the RHS (suppRHS(χ)), or both
sides (supp(χ)). In this way, the support features encode how strong the MDC is and
what duplicate detection recall we can expect. For exact MDs, which are all MDs that
we discover, suppLHS(χ) = supp(χ). For definition purposes, let p = r × r be the set
of all record pairs and match(pi, X) a function that returns true if the record pair pi
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matches the match conditions X, i.e., it matches
∧w−1
i=1 rs[Ai] ≈i,λi rt[Ai] for LHSs and

rs[Aw] ≈w,ρ rt[Aw] for RHSs. Then the support features are defined by the following
three formulas:

supp(χ) =
|{pi ∈ p | ∃ϕ ∈ χ : match(pi, ϕ.LHS ∪ ϕ.RHS)}|

|p|

suppLHS(χ) =
|{pi ∈ p | ∃ϕ ∈ χ : match(pi, ϕ.LHS)}|

|p|

suppRHS(χ) =
|{pi ∈ p | ∃ϕ ∈ χ : match(pi, ϕ.RHS)}|

|p|

The formulas are a translation of supp(X) = |{t∈T ;X⊆t|
|T | [Hastie et al., 2009]. Caching

these scores after their calculation allows us to re-use them for the calculation of the
following metrics.

Confidence. The confidence feature describes the portion of the data that satisfies
at least one MD of the MDC. If all MDs are correct, i.e., no approximation was used
during MD discovery, the confidence is always 100%; otherwise, the feature allows the
algorithm to trust correct MDCs more than partially violated MDCs. Using our exact
MD discovery algorithm, the confidence measure is basically irrelevant. However, it
might be useful in alternative setups. Hence, the feature definition is as follows:

conf(χ) =
supp(χ)

suppLHS(χ)

Lift. The lift feature is a measure for correlation and represents the ratio of record
pairs where both LHS and RHS are satisfied, divided by the product of independent
percentages for LHS and RHS. A number larger than 1 indicates that the two sides tend
to co-occur, meaning that if one appears the other will appear as well. On the other
hand, a number smaller than one means the opposite. Similarly to confidence, the use
of an exact MD discovery algorithm constrains the calculated number for lift, to values
larger than or equal to 1. The calculation uses the following formula:

lift(χ) =
supp(χ)

suppLHS(χ) · suppRHS(χ)

Conviction. Conviction is a metric that can be interpreted as the fraction of the
expected frequency that a LHS co-occurs with its RHS. Conviction values higher than
1 indicate to what extent the associations of the MDs’ LHSs and RHSs are random.
This should help the model to prefer meaningful dependencies over spurious ones. Since
the use of an exact MD discovery algorithm constrains the value of confidence to 1,
the denominator is 0 and the whole value becomes undefined. However, similarly to
confidence, it might be useful in alternative setups. The feature is defined as follows:

conv(χ) =
1− suppRHS(χ)

1− conf(χ)

MD statistics. The MD statistics are set of features that describe significant character-
istics of a given MDC by considering only its definition and not the data is was discovered
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from. The features use the following elements of the MDs: attributes, similarity measures,
and thresholds, as well as their column matches, which is the composition of the previous
three, i.e., Ai, ≈i, and λi. Each MD in an MDC offers a set of these elements. We define
a feature for each of these four element sets by calculating the following set operations:

• Intersection size: The number of elements that exist among all MDs (1).
• Union size: The number of elements that exist in at least one MD (2).
• Jaccard distance: The distance between common attributes and specific attributes,

which is calculated by dividing the intersection size with the union size; as a result,
we get a normalized value in the range of [0.0, 1.0] (3).

• Descriptive statistic: Significant and extreme elements over all sets, calculated with
the basic metrics of min (4), median (5), max (6), and stdev (7).

Cardinality. When increasing the size of an MDC by adding more MDs, its recall
increases monotonically and its precision decreases monotonically. The cardinality of
an MDC, which is simply defined as card(χ) = |χ|, is therefore an important feature
for estimating the MDC’s F-measure. Small MDCs would be preferable for human
readability, whereas large MDCs can cover more special cases.

Regression for MDC score prediction

Using the feature definitions discussed above, we can now generate an instance set of
scored MDCs with their MDC-specific features. With this instance set, we can train
a machine learning model to predict the F-measure score for arbitrary MDs and their
datasets. Although different types of models could be considered for this task, regression
models seem to be a natural fit. They learn to estimate the relationship between a feature
set that for us is MDC-specific, and a target variable, which in this case is the F-measure.
Although many different regression models exist, we propose a Gaussian Process [Hastie
et al., 2009] for two main reasons: First, it is capable of learning complex data patterns,
which is necessary considering the many factors that influence the performance of an
MD as a duplicate classifier. Second, it has a relatively small set of parameters, which
is important, because our MDedup target system should be a largely automatic system
and a small parameter space simplifies the hyperparameter tuning phase. We describe
the configuration in further detail in Section 5.6.2.

5.5 MDedup application

This section describes the application phase of the MDedup duplicate detection system.
This phase is shown as the lower pipeline in Figure 5.1 and starts with a dirty dataset for
which no gold standard records exist. Instead of using pre-labeled data for the scoring of
MDCs, the application phase takes the regression model that was constructed on other
datasets in the training phase and is able to predict F-measure scores for MDCs w.r.t.
their relational instance data (see Section 5.4). Because most of the application pipeline
uses the same components as the training pipeline, in the following descriptions we focus
on the differences.

At first, the application pipeline discovers all minimal MDs on the dirty input dataset
with the same algorithm as for the training phase (Section 5.4.1). In the next step, the
pipeline uses our MDC selection algorithm (Section 5.4.2) to greedily select the top
k MDCs with the highest F-measure scores. Instead of scoring each MDC using the
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gold standard, the selection algorithm in the application phase uses the regression model
provided by the training phase (Section 5.4.4). The results of the selection are then passed
to the MDC store were MDedup picks only the highest scored MDC as the duplicate
classifier. The next step of the application pipeline then detects all record pairs that
this MDC classifier matches as duplicates. As a final step, MDedup uses the discovered
duplicate pairs to boost the overall F-measure of the process: With the known duplicates,
the pipeline trains a state-of-the-art SVM model to classify record pairs as duplicates
or non-duplicates; this model is applied to the input data to refine and complement the
duplicates.

MDC selection. A benefit of using a regression model for the MDC scoring is that we
can easily convert our MDC selection approach for the application phase without any
gold standard. Looking back at Algorithm 1, the score of every MDC is given by the
Oracle algorithm. In the absence of a gold standard, this Oracle now needs to use
the regression model for the F-measure calculation.

To predict the F-measure for an MDC, the Oracle first generates a feature vector
with the features discussed in Section 5.4.4. This feature vector is then provided to the
regression model, which returns an estimate for the F-measure. The lattice traversal
and top-k selection strategy in the application phase is identical to the training phase.
The result of the MDC selection step is a list of MDC associated with their predicted
F-measure scores.

First-cut duplicate detection. Given the highest scored MDC of the selection step,
MDedup executes its first duplicate detection pass. This pass involves the three com-
monly applied steps of candidate indexing, candidate matching, and candidate classifi-
cation. In the following, we briefly describe our implementations for these steps.

The candidate indexing method is responsible for the selection of record pairs that
should be tested. The duplicate detection could, in theory, be applied to all pairs of
records in the input relation, but this large number of candidates is, in practice, usually
reduced by blocking methods [Christen, 2012b; Elmagarmid et al., 2007] that divide the
quadratic candidate space into smaller subsets (i.e., blocks) according to a predefined
partitioning key. To make sure that similar records fall into at least one common block
and, hence, can get matched, MDedup takes every attribute as a partitioning key once;
records with same values in that attribute are put into the same block. For large values,
i.e., ones that are comprised of more than four words, the algorithm extracts word n-
grams, with n = 4, from the value where each word n-gram defines a bucket; records
with long values are, in this way, placed into multiple buckets. The result of indexing
are several overlapping blocks of records.

For each block, the candidate matching step creates all pairs of records within the
block. Because the blocks share large overlaps, MDedup places all pairs from all blocks
into a common set that removes redundant pairs, reducing the matching effort signifi-
cantly. All remaining candidate pairs are then compared by calculating their attribute-
wise similarities, for all attributes and similarities specified in MDs. We finally store the
candidate set to use it not only for this first-cut duplicate detection process, but also for
the refined duplicate detection step later on.

For the candidate classification, MDedup applies the highest scored MDC as a dupli-
cate classifier to every record pair, as described in Section 5.3.2. The result are two sets,
a set of duplicates and a set of non-duplicates.
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Refined duplicate detection. The evaluation of the first-cut duplicate detection
results (in Section 5.7.2) shows that the discovered duplicate sets have high precision
but rather low recall. For this reason, we propose a final classification refinement step
to expand the result set.

Classification refinement is used to sequentially connect learning models in a way
that each model can enhance the prediction of the previous models and reduce the
overall bias and variance of the results. Because the first-cut duplicate detection pass
provided us with a labeled set of record pairs and their similarities, we can use those
to train a typical binary classification model. The overall rationale of this classification
refinement approach is that MDCs identify duplicates based on very specific MD rules
that cannot capture all kinds of similarity patterns. SVMs, in contrast, learn schema-
specific similarity patterns and are, therefore, able to match records more precisely.
Combining both approaches results in an overall schema-independent but still flexible
classification approach.

Although many complex classification refinement approaches have been proposed,
such as boosting, with AdaBoost [Collins et al., 2002] being a popular algorithm of
this category, that combine multiple models on an instance level, we propose a simple
Support Vector Machine (SVM) approach, because SVMs have already proven to be
effective as a duplicate detection classification refinement step [Christen, 2008a; Lehti
and Fankhauser, 2006]. Since training a binary classification model requires labels of
both classes, the application pipeline takes the entire set of duplicates and a subset of
the non-duplicates that is ten times larger than the duplicates set. With the record pairs,
their similarities and duplicate labels, we finally train our SVM model. After training,
we apply the model as a duplicate classifier to our candidate set, generated in the first-
cut duplicate detection, to retrieve the final duplicates. We provide more details on the
configuration of the classification refinement step in Section 5.6.2.

5.6 Evaluation setup

In this section, we present our evaluation setup of the experiments described in Sec-
tion 5.7. We begin in Section 5.6.1 by describing our experimental setup and the data
that we used for training and testing. Section 5.6.2 then proposes robust configuration
parameters for MDedup based on several smaller experiments.

5.6.1 Preliminaries

In this section, we first introduce our experimental setup. Then, we discuss our
datasets and how we complement their gold standards of duplicates with challenging
non-duplicates.

Experimental configuration. All experiments were conducted on a machine with 4x
Intel Xeon E7-8837 (2.67GHz, Octa-Core) and 256GB of RAM. All 16 hyperthreaded
cores were used for parallelization. The system uses Ubuntu 18.04 LTS and Oracle
Java 1.8. The source code, details and download information of the used datasets, and
evaluation results are available on our website2.

2https://hpi.de/naumann/projects/repeatability/duplicate-detection/mdedup.

html
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Datasets. To train and test our MDedup system, we use eight datasets from heteroge-
neous domains and their known gold standards, commonly used for evaluation purposes
in the topic of duplicate detection by papers such as [Bilenko and Mooney, 2003; Mudgal
et al., 2018; Vatsalan et al., 2013]: Amazon-Walmart (products), CDDB (audio), Cen-
sus (census), Cora (bibliography), DBLP-Scholar (bibliography), Hotels (lodging), NCVot-
ers (voter registrations), and Restaurants (restaurants). Table 5.2 lists the datasets’ num-
ber of records, duplicates (DPL) and non-duplicates (NDPL). For all datasets, we select
only those attributes for the MD discovery that have a completeness >10%, i.e., at least
10% of the values are non-null, because sparse columns make the discovery more difficult
and are not useful for duplicate classification. We also exclude IDs, because they often
encode the gold standard and, hence, make the task trivial. Only for NCVoters, we ap-
plied a stricter attribute filtering due to the schema size of that dataset. For more details
and information about which attributes were used exactly, we refer to our website.

Table 5.2: Dataset statistics: number of records, attributes, duplicates (DPL), non-
duplicates (NDPL), matching dependencies (MDs), and matching dependency com-
binations (MDCs).

Dataset Records Attr. DPL NDPL MDs
MDCs

Selection Prediction

Census 841 5 376 3,760 15 31 31
Restaurants 864 5 112 1,120 5 17 9
DBLP-Scholar 66,879 5 5,347 53,470 5 1 10
CDDB 9,763 6 300 3,000 11 37 11
Hotels 364,965 10 94,677 368,002 159 144 48
Cora 1,879 13 64,578 268,082 74 288 80
Amazon-Walmart 24,583 13 1,154 11,540 132,732 96 17
NCVoters 14,183 25 9,819 98,142 149,950 400 60

Table 5.3: Dataset statistics: execution times across phases.

Dataset
Execution time (hh:mm:ss)

HyMD Selection Prediction

Census 00:00:07 00:00:01 00:00:19
Restaurants 00:00:07 00:00:10 00:00:39
DBLP-Scholar 04:54:15 00:00:03 00:00:21
CDDB 04:21:44 00:00:01 00:00:15
Hotels 03:10:43 00:00:42 03:29:30
Cora 00:01:18 00:00:19 00:11:42
Amazon-Walmart 14:03:42 00:00:06 01:10:11
NCVoters 58:21:14 00:04:46 07:21:19

Gold standards. The evaluation datasets mentioned previously are accompanied by
gold standards that contain lists of record pairs that uniquely identify duplicates. In case
these lists are not transitively closed (CDDB, Census, and Hotels), we add all transitive
pairs as duplicates to the gold standard in a pre-processing step.

To properly score and evaluate the MDCs during the training and testing phases
produced by the steps of selection, expansion, and prediction, as well as the refined
classification, we also require a number of negative examples, i.e., non-duplicate pairs.
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When creating these pairs, we made sure that records are not paired up randomly,
because most random pairs have a very low similarity and are, therefore, trivial to
classify. More useful for training and more realistic for testing are non-duplicate pairs
that are similar and, hence, harder to classify. To this end, following the same principles
in as Chapters 3 and 4, we apply blocking as described in Section 5.5 on the input
relation and pick non-duplicate record pairs from within the blocks; in this way, the
non-duplicates are guaranteed to be similar in at least the blocking key. When selecting
non-duplicates, we also enforce a ratio of 1:10 (DPLs to NDPLs) to not over-represent
the class of non-duplicates. For Cora and Hotels, we took all non-duplicates form the
blocking, which resulted in about the ratio 1:4 for both datasets.

5.6.2 MDedup configuration

In this section, we summarize MDedup’s configuration per pipeline step and propose
robust default values so that the system can be deployed without parameter tuning.

MD Discovery. For MD discovery, we use the HyMD algorithm and its default param-
eterization in both the training and application phase [Schirmer et al., 2020]. Regarding
the similarity measures, we consider all attributes as alphanumeric and use the follow-
ing principles: In general, all attributes are compared with the Levenshtein similarity
measure [Levenshtein, 1966]; attributes with a mean value length of more than 100 char-
acters, however, use the Jaccard similarity measure [Jaccard, 1901] that compares tokens,
produced by splitting the value with whitespaces, instead of characters. Jaccard is bene-
ficial for attributes with long values, because comparing long values on character basis is
slow and, in general, in-effective: They often contain descriptions, comments, and other
free-text fields that are less structured and words can be on different positions across
two duplicate records.

For both measures, we set the minimum similarity threshold for discovered MDs to
0.7 – lower thresholds have not shown better results in our experiments, but the discovery
time increases significantly with decreasing thresholds.

Tables 5.2 and 5.3 contain additional information about the execution of HyMD on
our evaluation datasets. The datasets Amazon-Walmart and NCVoters produce a large
number of MDs and, hence, also require the longest execution times.

Table 5.4: Impact of k on the average F-measure across all evaluated datasets.

k 1 2 4 8 16 32 64
F-measure 34.1% 39.5% 32.5% 47.3% 55.2% 55.4% 55.4%

MDC Selection. The MDC selection steps in both the training and application phase
require the parameter k. This parameter specifies the number of MDCs with the highest
score that are selected in each level of the lattice and passed to the following; it is also
the number of MDCs that are returned in the end. To investigate the impact of k on
MDedup’s performance, we trained the system with different k values and measured
the average F-measure scores across all datasets presented in Table 5.4. From this, we
conclude that a certain set size is needed to learn how useful MDs look like, but at some
point the set captures all relevant information and larger training sets do not improve
the performance. Hence, MDedup is robust against large k value, i.e., overly large values
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impact its runtime performance but not its effectiveness. In our experiments, we set the
parameter to 16.

Because the MDC selection step has exponential complexity in the number of MDs,
its execution time can be very high. For this reason, we introduced a maximum execution
time that, when exceeded, triggers MDedup to gracefully stop the lattice traversal: the
current level is finished but the next level is not started. In our experiments, we set a
maximum execution time of ten hours. Hence, this time limit is essentially irrelevant
for the training phase, but the feature generation and predictions in the application
phase are so expensive that our two largest datasets exceed a selection time of 10 hours.
Tables 5.2 and 5.3 list the numbers of selected MDCs together with the actual selection
times.

To evaluate the effectiveness of the thirty-five MDC score prediction features, we
performed two experiments: The first experiment is a leave-one-out experiment, where
we trained the system leaving out each feature once to see how this feature impacts
the F-measure. In a second experiment, we trained the system once with every feature
exclusively, i.e., with only that one feature to measure its performance. With the results
of these two experiments, we could not identify a particularly important or harmful
feature, because every feature increases the performance on at least one dataset and/or
performs well on its own. For this reason, we use all proposed features in our system.

MDC Expansion. The parameter expansion factor ensures that enough MDCs exist to
capture the datasets’ properties, especially for datasets with an inherently small number
of MDCs. It also serves to represent some non-optimal MDCs, i.e., negative examples in
the training set. Both the neighbor expansion and the random sampling are configured
to enlarge the set of selected MDCs by a factor of 10 each. To evaluate the impact of the
expansion, we trained MDedup once with an expansion factor of 0.0, which is expansion
switched off, and once with a factor of 10. Without expansion, the F-measure for DLBP-
Scholar increased from 0% to 83% (the one effective MD was selected now), but this
effect appears to be incidental, because the F-measure decreases for all other datasets
without expansion – on average by 2%. For this reason, we propose to use the expansion
step. A default factor of 10 worked well in our experiments, because the F-measure did
not improve for larger values.

MDC Prediction. The Gaussian Process, which is our regression model for predicting
F-measures, requires a kernel and a regularization λ as parameters. For the kernel, we
select a Gaussian kernel [Hastie et al., 2009] that in turn needs σ to control the width of
Gaussian distributions. For σ, we set the value range [2−3, 2−1, ..., 27] (6 values) and for
λ the value range [2−5, 2−3, ..., 25] (6 values). For the implementation of the Gaussian
Process, we use the Smile library [Li et al.].

The experimental process for the prediction step as described in Section 5.7 follows a
leave-one-out cross-validation approach on dataset level: For every individual dataset, we
use all other datasets as the annotated training datasets (running the training pipeline
on them) and the target dataset as the test dataset (running the application pipeline on
this dataset). The best parameters, i.e., λ and σ, are chosen automatically by the models
through an 80:20 train-validation split approach on the annotated datasets. The selected
parameters are then applied to the tested dataset. Finally, results for both MDCs and
execution time are given in Tables 5.2 and 5.3. Recall that datasets with execution times
longer than ten hours are a result of expensive MDC score prediction; at ten hours, we
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terminate the selection process, returning the results obtained until that point.

Refined classification. Support Vector Machines (SVMs) are a widely accepted bi-
nary classifier and have already been used to refine and improve classification results in
duplicate detection [Christen, 2008a; Lehti and Fankhauser, 2006]. We pair SVMs with
a Gaussian kernel, which is a standard radial basis function (RBF) kernel, and configure
two parameters: Gaussian kernel width σ and soft margin penalty Cs. Following the
loose grid search recommendation [Hsu et al., 2003], we set the values [2−3, 2−1, ..., 27]
(6 values) for σ and the values [2−5, 2−3, ..., 215] (11 values) for C. The results are
reported upon an 80:20 split of train-test on the duplicates reported by the first-cut
duplicate detection step on the new dataset with a 10-fold cross-validation on the train
part to select the best parameters. The experiments on all datasets lasted from a few
minutes to less than an hour at most.

5.7 MDedup performance evaluation

In this section, through a set of experiments, we show the potential of using MDCs as
a duplicate detection classifier. Figures 5.5 to 5.7 serve as our evaluation summary and
guidelines for the three experiments discussed afterwards. The figures show for each
dataset four different effectiveness results that correspond to different steps in the MD-
edup algorithm. Each result is evaluated with the classification metrics recall, precision,
and F-measure.

MDC Selection and MDC Selection with classification refinement are two variations of
the training pipeline. Hence, they both utilize the gold standard to obtain their results.
Because MDedup’s training pipeline identifies the highest scored MDC for duplicate
detection, the idea is the following: If we consider the selected MDC as a duplicate
detection classifier, this classifier should provide us with the optimal F-measure any
matching dependency combination (from the set of discovered MDs) can achieve; it,
hence, represents an upper bound for our experiments and describes the capabilities of
discoverable MDs in the domain of duplicate detection – we cannot predict any better
results using MDs alone. To improve the recall of the best MDC, we can also apply
the refinement step to its results. The version with classification refinement follows the
principles we discussed for the application pipeline, i.e., the first-cut duplicate detection
produces a set of duplicate pairs, which are then fed into an SVM classifier for training
and a refined duplicate detection pass.

Analogous to the results of training pipeline, MDC Prediction and MDC Prediction
with classification refinement present the results of the application pipeline. They de-
scribe MDedup’s effectiveness when predicting good MDC classifiers rather than testing
them on a gold standard. Training and testing of the regression model to predict the
MDC scores is done in a leave-one-out cross-validation manner: Given one dataset, we
train on all other datasets (and their gold standards) and test the prediction effectiveness
on the given dataset (for which we omit the annotations).

As an attempt to create a baseline, we first considered possible methods that can also
exploit the knowledge gathered on annotated datasets to classify record pairs in another
target dataset that lacks an annotation. Transfer learning, however, for typical binary
classification is not trivial, as different datasets have different attribute domains. Thus,
although some literature exists on transductive transfer learning using SVMs [Deng and
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Wang, 2014], it is not clear how to perform such a schema matching across datasets in
an automatic way. Thus, we experimentally enforced a schema mapping by splitting the
same dataset into multiple parts and, then, ran both MDedup and [Negahban et al.,
2012] on these perfectly matching parts. We did this for all our datasets and measured
on average 51% F-measure for us and 68% for [Negahban et al., 2012]. So for same
domain datasets with a transitive gold standard and a schema mapping, more effective
approaches exist.

We then applied a traditional classification technique that directly uses the gold
standards to train and apply SVM models. The results of training directly on high-
quality and large sets of similarity pairs yielded, as expected, much higher precision and
recall numbers. But such training approaches are incomparable to our approach and, in
particular, inapplicable to our no-gold-standard scenario.

Subsequently, we discuss three experiments in more detail: First, in Section 5.7.1,
we test the general effectiveness of (discovered) MDCs when being used for duplicate
detection. Second, Section 5.7.2 compares the classification effectiveness of the predicted
MDCs against best selected MDCs. Third and finally, Section 5.7.3 shows the F-measure
scores that MDCs can achieve with classification refinement.

0.0 0.2 0.4 0.6 0.8 1.0

NCVoters

Cora

Amazon-Walmart

Hotels

CDDB

DBLP-Scholar

Restaurants

Census

0.89

0.56

0.02

0.07

0.31

0.00

0.76

0.63

0.95

0.58

0.12

0.09

0.55

0.72

0.92

0.79

0.89

0.35

0.01

0.00

0.14

0.00

0.60

0.12

0.96

0.58

0.01

0.01

0.19

0.00

0.64

0.14

MDC Selection
MDC Prediction
MDC Selection with classification refinement
MDC Prediction with classification refinement

Figure 5.5: Recall of MD-based duplicate classifiers using the best MDC according
to a gold standard (Selection) or a Gaussian process (Prediction); in both cases, no
classification refinement and classification refinement are considered.
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Figure 5.6: Precision of MD-based duplicate classifiers following using the best MDC
according to a gold standard (Selection) or a Gaussian process (Prediction); in both
cases, no classification refinement and classification refinement are considered.

5.7.1 MDC Selection

First, we evaluate the limits of MDs for classifying duplicates in the presence of a gold
standard, using a top-k approximation. This corresponds to the training phase of our
pipeline in Figure 5.1, which approaches the best-case scenario for a given dataset. More
specifically, we discuss the results with the label MDC Selection shown in Figures 5.5
to 5.7.

Overall, the F-measure for most datasets is low. This is primarily due to poor
recall – precision is near perfect on all datasets except Census and Hotels. The poor
recall is mainly due to some error patterns that are not described by the discovered,
minimal matching dependencies. However, the fact that the selection favors precision
over recall has interesting implications: First, it shows that properties of good MDCs
are learnable and transferable, because the majority of MDCs in general has a very
poor precision. Second, a high precision is important for automatic approaches, because
although they might not find all duplicates, their actual findings are reliable. The results
are, finally, also good for classification refinement, because training subsequent models
requires reliable test records (and not all records).
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Figure 5.7: F-measure of MD-based duplicate classifiers using the best MDC accord-
ing to a gold standard (Selection) or a Gaussian process (Prediction); in both cases,
no classification refinement and classification refinement are considered.

5.7.2 MDC Prediction

Our second experiment evaluates how well MDedup can predict the MDC classifiers for
duplicate detection, which is its ability to detect duplicates in new datasets. For this
purpose, we discuss the measurements labeled as MDC Prediction in Figures 5.5 to 5.7
and compare them to the target values of MDC Selection, which are the best F-measure
values the system can possibly achieve.

The measurements in Figures 5.5 to 5.7 show that the predicted MDCs do not achieve
the F-measure scores of the selected MDCs; in particular, MDedup never predicted the
best selected MDC. Considering the large search space and the fact that most MDCs
perform poorly as duplicate classifiers, the results are still very good. The predicted
MDCs have, in particular, high precision and are, therefore, like their selected counter-
parts well suited for automatic cleaning processes and classification refinement. Overall,
we primarily lose recall when using the MDC scoring model instead of a gold standard.

Unfortunately, MDedup failed to predict a useful MDC for the DBLP-Scholar dataset,
because the dataset offers only one useful MD. When selected and boosted, it achieves
83% F-measure. The MD does not look promising on its own and all interesting insights
are derived from the correctly identified duplicates in the classification refinement. Hence,
it is no surprise that our system cannot identify the MD reliably.
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5.7.3 Classification refinement

In the last experiment, we evaluate the classification refinement step of MDedup. The
classification refinement step aims to improve the overall F-measure with an additional
SVM model. This model is trained on the high-precision duplicates that the system
automatically generated with the selected/predicted MDCs and should be able to learn
additional, domain-specific duplicate properties. To evaluate the refinement effect, we
apply this step on top of both MDC Selection and MDC Prediction. The results, which
are presented in Figures 5.5 to 5.7 with the with classification refinement suffix, show
considerable improvements in F-measure for both selected and predicted MDCs; only
Cora’s and NCVoters’ selected results lost one percent F-measure, which is due to slightly
worse recall values. For this reason, classification refinement is a generally viable tech-
nique when using discovered MDs for duplicate detection.

Remarkably, datasets that performed poorly in the previous phases, have the largest
improvements. More specifically, Amazon-Walmart, DBLP-Scholar, and Hotels were able
to match only a few duplicate pairs beforehand. However, the combination of these
duplicates, along with a few non-duplicates (as discussed in Section 5.5) was enough for
an SVM-based approach to identify differences in the set of evaluated pairs. As expected
MDC Selection provided SVMs with a noticeably better set of duplicates, which resulted
in higher improvements and higher values of F-measure overall.

5.8 Conclusion

We proposed a system called MDedup that uses discovered matching dependencies for the
fully automatic detection of duplicates, which means that no domain knowledge about
or training data for a given target dataset is needed to detect duplicates in it. Because
the duplicates discovered with only MDs usually have high precision but comparatively
low recall, we proposed an SVM-based classification refinement ensemble step that in
many cases greatly improves recall and, hence, the overall F-measure. Our experiments
highlight the capabilities of discovered MDs when used for duplicate detection, thus
closing a gap in research. They also show that an algorithm can, to a certain extent,
domain-independently learn how to score MDs for being good duplicate classifiers.

The achieved F-measure scores are certainly not competitive with those produced by
algorithms that can learn on pre-labeled data or gold standards, but they are very useful
for scenarios where no training data is available. The domain-independent properties
of MDCs allow us to recommend their application, independent of a gold standard. No
other duplicate detection approach is able to process arbitrary datasets without a human
providing domain-specific input, such as initial classifier rules, data labels, or similarity
thresholds. The usage of MDs in our approach, finally, also allows the user to interpret
the detected duplicates.
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Conclusion and Future Work

In this thesis, we examined the problem of duplicate detection, where entities of a data-
base are represented by multiple records each. To this end, we have developed three
different approaches to systematically prepare data (Chapters 3 and 4), select the best
similarity measure per attribute (Chapter 4), and obtain duplicate detection results in a
domain-agnostic principle (Chapter 5). Preparing data and thus improving their qual-
ity should facilitate data scientists to accomplish a more successful duplicate detection,
whereas acquiring a result set of duplicates, in cases of no existing labels, allows for
answers to be given when none would be otherwise possible.

In particular, by addressing the data preparation issues, first, we confirmed that im-
proving the quality of data impacts the resulting application, which for us is duplicate
detection. Second, our two pipelines provide a good recipe to resolve data-quality re-
lated issues before resolving duplicates. Lastly, our discussion of which data preparators
were successful for which attributes, along with similarity measures and frameworks for
addresses, should provide data scientists valuable insights for their tasks.

Regarding MDedup, we believe there are a number of key points to keep as a synopsis..
First, it serves as an approach that provides human-understandable rules for duplicate
detection. Second, finding high-precision results is often a requirement for many applica-
tions, where false positives have to be avoided, and as our experimental results showed is
usually the case for MDedup. Lastly, the largest benefit of using MDedup is that it can
be applied on new and label-less datasets, of even different domains, and still manages
to return a result set of duplicates.

The ideas developed in Chapters 3 to 5 provide good evidences of the importance of
the presented concepts. However, as is typical in research, hard lines had to be decided
and drawn at the end to provide a reasonable product. Therefore, among the possible
directions that could be followed for our projects, we suggest the following future work:

Data Preparation – (Chapter 3). Apart from the research directions outlined at the
end of Chapter 3 there is still an open question we did not address in this thesis due to
its complexity: Suggesting preparations on a statistical basis and not on an empirical
one, as we do now. More specifically, this means correlating preparations with the
resolution of specific data issues and thus not having to apply them and retroactively
decide whether their application was helpful or not. However, this would require a deeper
understanding of the data, along with the effect of the preparators on different data types
and distributions.
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Address Matching – (Chapter 4). Similarly, apart from the avenues for future work
described in Chapter 4, an interesting direction is to incorporate contextual information
about location in the data. This could allow for more sophisticated methods of data
normalization and matching in the remaining attributes of the records. For instance,
knowing district-specific slang and synonyms can be used while matching attributes
such as person and company names. Such knowledge could be further extended with
timeline information, in case that is available, as the context changes not only across
different locations, but also across time.

MDedup – (Chapter 5). As the demand for duplicate detection on datasets keeps
rising, MDedup can improve on multiple aspects. First, improvements on the discovery
of matching dependencies (MDs) may include a smarter selection of similarity measures
and minimum thresholds automatically for a dataset’s attributes. Nonetheless, the focus
should always be on high precision; thus, even if more relaxed similarity measures are
selected this should be compensated by higher minimum thresholds. Second, expanding
the current feature list should allow for a better understanding of MD combinations
(MDCs) and therefore facilitate a better prediction of F-measure scores. Finally, better
regression models with more diverse labeled datasets should close even further the gap
between the predicted MDCs and the best available ones.

In a world where data keeps having more influence on our lives, knowing how to
improve data’s quality is of paramount importance. Acquiring such knowledge comes,
however, with great responsibility. Data scientists, have access to vast amounts of many
times private data of different domains, which know how to navigate, make more useful,
and extract priceless knowledge from, giving them unprecedented power. Let this power
be used wisely and data science be remembered as the science that bridged other sciences
and enabled higher levels of prosperity to be reached.
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