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Tests for homogeneity of survival distributions
against non-location alternatives 1

VILIJANDAS B. BAGDONAVIČIUS algirdasbag@techas.lt
RUTA LEVULIENE Ruta.Levuliene@maf.vu.lt
Department of Statistics, University of Vilnius, Lithuania

MIKHAIL S. NIKULIN nikou@sm.u-bordeaux2.fr
OLGA ZDOROVA-CHEMINADE
UFR MI2S, University of Bordeaux-2, 33076, Bordeaux, France

Abstract. The two and k-sample tests of equality of the survival distributions against
the alternatives including cross-effects of survival functions, proportional and monotone
hazard ratios, are given for the right censored data. The asymptotic power against
approaching alternatives is investigated. The tests are applied to the well known chemio
and radio therapy data of the Gastrointestinal Tumor Study Group. The P-values for
both proposed tests are much smaller then in the case of other known tests. Differently
from the test of Stablein and Koutrouvelis the new tests can be applied not only for
singly but also to randomly censored data.

Keywords: Censoring; Cross-effects; k-tests; Kolmogorov-Smirnov type tests; Logrank
test; Non-proportional hazards; Proportional hazards; Two-sample tests.

1. Introduction

There exists a number of two-sample tests for the hypothesis of the equal-
ity of the survival distributions when samples are censored. One group of tests
includes various generalisations of the classical Cramer-von-Mises, Kolmogorov-
Smirnov statistics to the censored case (Gill (1980), Fleming et al (1980), Koziol
(1978), Schumacher (1984), Fleming et al (1987), see the surveys in Andersen et al
(1993), p.p.392-395, Klein and Moeschberger (1997), p.p. 209-221).

Another group of tests are the weighted logrank tests. These tests are based on
the weighted integrals with respect to the difference of the Nelson-Aalen estimators
of the cumulative hazards (Gehan (1965), Peto and Peto (1972), Aalen (1978),
Tarone and Ware (1977), Prentice (1978), Kalbfleisch and Prentice (1980), Gill
(1980), Fleming and Harrington (1981), Harrington and Fleming (1982), see the
surveys in Fleming and Harrington (1991), p.p. 255-277, Andersen et al (1993),
p.p. 348-379, Klein and Moeschberger (1997), p.p. 191-194.

Brookmeyer and Crowley (1982) proposed a censored-data version of the median
test. A generalization of the classical t-test, based on the Kaplan-Meier estimatots,
is given in Klein and Moeschberger (1997). Tests based on the intensity ratio
estimates was given by Andersen (1983).

Generalization of the logrank type tests to the case of k-sample situation can
be found in Breslow (1970), Peto and Peto (1972), Tarone and Ware (1977), Pren-

1This work is done with the support of the Commission Permanente du Conseil Régional
d’Aquitaine: Dossier # 20030304001A
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tice (1978), Kalfleisch and Prentice (1980, Chapter 6), Andersen et al (1982),
Hjort (1984), Fleming and Harrington (1991), Andersen et al (1993), Klein and
Moeschberger (1997).

The classical weighted logrank tests have small power under the alternative
of crossing survival functions because early differences in favor of one group are
negated by late survival advantage of another group.

Cramer-von-Mises and Kolmogorov-Smirnov type statistics have greater but
reduced power versus desirable alternatives because they are omnibus tests, not
directed against these alternatives.

Stablein and Koutrouvelis (1985) proposed a two-sample test oriented to the
cross-effects alternatives which can be applied only to singly censored data.

We propose two and k-sample tests of equality of the survival distributions
against the alternatives including cross-effects of survival functions, proportional
and monotone hazard ratios. These tests can be used in the case of the right
censored data. One group of tests is a modified version of the score test to the
semiparametric situation. It appears that in the two-sample situation the modified
score functions are two specified weighted logrank statistics. As it was expected,
each of these statistics separately does badly against the cross-effect alternative but
simultaneously they do very well. In the k-sample case the modified score function
is 2(k − 1)-dimensional. In the two-sample case we also propose a test statistic
which is a combination of the modified score statistics done in such a manner that
negation of the early and late survival differences is avoided under the cross-effect
of survival functions alternative. This test also does better than the known tests.

2. Alternative

Let us consider the hypothesis of the equality of the survival distributions :

H0 : S1(t) = S0(t)

against the alternative written in terms of the hazard rates

HA : λ1(t) = eβ
{
1 + eβ+γΛ0(t)

}e−γ−1
λ0(t);

we note

Λi(t) =
∫ t

0
λi(u)du (i = 0, 1)

the cumulative hazards. Note that Λ1(0) = Λ0(0) = 0.
Under the alternative the differences λ1 − λ0 and Λ1 − Λ0 have the following

properties:
1) If γ > 0 and β > 0 then there exists t0 ∈ (0,∞) such that λ1−λ0 > 0 in the

interval (0, t0), λ1(t0)− λ0(t0) = 0, and λ1 − λ0 < 0 in the interval (t0,∞). So the
hazard rate functions intersect once in the interval (0,∞).

Moreover, there exists t1 > t0 such that Λ1 − Λ0 > 0 in the interval (0, t1),
Λ1(t1) − Λ0(t1) = 0, and Λ1 − Λ0 < 0 in the interval (t1,∞). So the cumula-
tive hazards and consequently the survival functions intersect once in the interval
(0,∞).
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2) If γ < 0 and β < 0 then there exists t0 ∈ (0,∞) such that λ1−λ0 < 0 in the
interval (0, t0), λ1(t0)− λ0(t0) = 0, and λ1 − λ0 > 0 in the interval (t0,∞). So the
hazard rate functions intersect once in the interval (0,∞).

Moreover, there exists t1 > t0 such that Λ1 − Λ0 < 0 in the interval (0, t1),
Λ1(t1) − Λ0(t1) = 0, and Λ1 − Λ0 > 0 in the interval (t1,∞). So the cumula-
tive hazards and consequently the survival functions intersect once in the interval
(0,∞).

3) If γ > 0 and β ≤ 0 then λ1 − λ0 < 0 in the interval (0,∞) and the ratio
λ1/λ0 decreases from eβ < 1 to 0. So the hazard rate function λ1 is smaller than
the hazard function λ0 in the interval (0,∞) and their ratio decreases.

Moreover, the difference Λ1 − Λ0 is negative and decreasing in the interval
(0,∞). So the cumulative hazards go away one from another.

4) If γ < 0 and β ≥ 0 then λ1 − λ0 > 0 in the interval (0,∞) and the ratio
λ1/λ0 increases from eβ > 1 to ∞. So the hazard rate function λ1 is greater than
the hazard rate function λ0 in the interval (0,∞) and their ratio increases.

Moreover, the difference Λ1−Λ0 is positive and increasing in the interval (0,∞).
So the cumulative hazards go away one from another.

5) If γ = 0 and β 6= 0 then λ1(t)− λ0(t) = eβ − 1 = const.
We seek a test which is powerful against this composite alternative. This alter-

native includes not only intersection of the survival functions as a partial case but
also the possibilities of monotone and constant hazards ratios.

3. Modified score test

Suppose that n0 objects of the group zero and n1 objects of the group one are
observed. Denote by Tij and Cij the failure and censoring times for the jth patient
of the ith group, and set

Xij = min(Tij, Cij), δi = 1{Tij≤Cij},

Nij(t) = 1{Tij≤t,δij=1}, Yij(t) = 1{Xij≥t},

where 1A denotes the indicator of the event A.
Set Ni(t) =

∑ni
j=1 Nij(t) and Yi(t) =

∑ni
j=1 Yij(t), N(t) = N0(t) + N1(t), Y (t) =

Y0(t) + Y1(t).
The score functions (cf. Bagdonavičius and Nikulin (2002)) for the parameters

β and γ estimation are

U1(β, γ) =
∫ ∞

0

{
1 + (eβ − eβ+γ)

Λ̃0(t−, β, γ)

1 + eβ+γΛ̃0(t−, β, γ)

}

{
dN1(t)− Y1(t)e

β(1 + eβ+γΛ̃0(t−, β, γ))e−γ−1dΛ̃0(t, β, γ)
}

,

U2(β, γ) =
∫ ∞

0

{
−e−γ ln(1 + eβ+γΛ̃0(t−, β, γ)) +

(eβ − eβ+γ)Λ̃0(t−, β, γ)

1 + eβ+γΛ̃0(t−, β, γ)

}

{
dN1(t)− Y1(t)e

β(1 + eβ+γΛ̃0(t−, β, γ))e−γ−1dΛ̃0(t, β, γ)
}

,
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where Λ̃0 is defined recurrently from the equation :

Λ̃0(t, β, γ) =
∫ t

0

dN(u)

S(0)(u−, Λ̃0, β, γ)
,

S(0)(v, Λ̃0, θ) = Y0(v) + Y1(v)eβ
{
1 + eβ+γΛ̃0(v, β, γ)

}e−γ−1
.

Under H0 we have

U1(0, 0) =
∫ ∞

0

{
dN1(t)− Y1(t)dΛ̃0(t, 0, 0)

}
,

U2(0, 0) = −
∫ ∞

0
ln(1 + Λ̃0(t−, 0, 0))

{
dN1(t)− Y1(t)dΛ̃0(t, 0, 0)

}
,

where

Λ̃0(t, 0, 0) =
∫ t

0

dN(u)

Y (u)
.

Set
Û1 := U1(0, 0), Û2 := U2(0, 0) Λ̃0(t) := Λ̃0(t, 0, 0).

Both statistics Û1 and Û2 are logrank-type:

Û1 =
∫ ∞

0

Y0(t)Y1(t)

Y (t)
d{Λ̂1(t)− Λ̂0(t)},

Û2 = −
∫ ∞

0

Y0(t)Y1(t)

Y (t)
ln(1 + Λ̃0(t−))d{Λ̂1(t)− Λ̂0(t)},

where

Λ̂i(t) =
∫ t

0

dNi(u)

Yi(u)

is the Nelson-Aalen estimator of the cummulative hazard from the i sample (i =
0, 1).

At first let us construct the modified score test. Denote by Mi the counting
process Ni martingale. Under the null hypothesis

Û1 =
∫ ∞

0

Y0(t)Y1(t)

Y (t)
d

{
M1(t)

Y1(t)
− M0(t)

Y0(t)

}
,

Û2 = −
∫ ∞

0

Y0(t)Y1(t)

Y (t)
ln(1 + Λ̃0(t−))d

{
M1(t)

Y1(t)
− M0(t)

Y0(t)

}
,

and the predictable variations and the predictable covariation of the score statistics
are

< Û1 > (t) =
∫ t

0

Y0(u)Y1(u)

Y 2(u)
dΛ0(u),

< Û2 > (t) =
∫ t

0

Y0(u)Y1(u)

Y 2(u)
ln2(1 + Λ̃0(u−))dΛ0(u),

< Û1, Û2 > (t) = −
∫ ∞

0

Y0(u)Y1(u)

Y 2(u)
ln(1 + Λ̃0(u−))dΛ0(u).
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It implies that under standard conditions the limit distribution (as n = n0 + n1 →
∞, ni/n → li ∈ (0, 1) ) of the statistic

X2 = (Û1, Û2)Σ̂
−1(Û1, Û2)

T

is the chi-square distribution with two degrees of freedom; here

Σ̂ =




∫∞
0

Y0(t)Y1(t)
Y 2(t)

dN(t) − ∫∞
0

Y0(t)Y1(t)
Y 2(t)

ln(1 + Λ̃0(t−))dN(t)

− ∫∞
0

Y0(t)Y1(t)
Y 2(t)

ln(1 + Λ̃0(t−))dN(t)
∫∞
0

Y0(t)Y1(t)
Y 2(t)

ln2(1 + Λ̃0(t−))dN(t)


 .

The null hypothesis is rejected with the significance level α if X2 > χ2
1−α(2), where

χ2
1−α(2) is the (1 − α)-quantile of the chi-square distribution with 2 degrees of

freedom.

4. Second test

We have seen that under the alternative when the parameters β and γ have the
same sign, the difference λ1 − λ0 has one sign in the interval (0, t0) and another
sign in the interval (t0,∞), where

t0 = Λ−1
0

{
e−β−γ

[
exp{ β

1− e−γ
} − 1

]}
.

Consider the following test statistic, which is a combination of the two score statis-
tics:

W =
∫ ∞

0
K(t) d{Λ̂1(t)− Λ̂0(t)},

where

K(t) =
Y0(t)Y1(t)√

nY (t)
{ln(1 + Λ̃0(t̂0, β̂, γ̂))− ln(1 + Λ̃0(t−, β̂, γ̂))} ,

t̂0 =





Λ̂−1
0

{
e−β̂−γ̂

[
exp{ β̂

1−e−γ̂ } − 1
]}

, if β̂ > 0, γ̂ > 0 or β̂ < 0, γ̂ < 0,

0, otherwise ,

β̂ and γ̂ are the modified partial maximum likelihood estimators of the parameters
β and γ maximising the logarithm of the modified partial likelihood function partial
likelihood function

ln L(β, γ) =
∫ ∞

0

{
β + (e−γ − 1) ln

(
1 + eβ+γΛ̃0(v−, β, γ)

)}
dN1(v)−

∫ ∞

0
ln

(
Y0(v) + Y1(v)eβ

(
1 + eβ+γΛ̃0(v−, β, γ)

)e−γ−1
)

dN(v).

For fixed θ = (β, γ) the function Λ̃0(t, θ) can be found recurrently. Indeed, let
T ∗

1 < ... < T ∗
r be observed and ordered distinct failure times for the unified sample,

r ≤ n. Note by di the number of failures at the moment Ti. Then

Λ̃0(0; θ) = 0, Λ̃0(T
∗
1 ; θ) =

d1

S(0)(0, Λ̃0, θ)
=

d1

n0 + n1 eβ
,
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Λ̃0(T
∗
j+1; θ) = Λ̃0(T

∗
j ; θ) +

dj+1

S(0)(T ∗
j , Λ̃0, θ)

(j = 1, ..., r − 1).

The statistic W is asymptotically equivalent to the random variable

W0 =
∫ ∞

0

Y0(t)Y1(t)√
nY (t)

{ln(1 + Λ0(t0, β, γ))− ln(1 + Λ0(t−, β, γ))} d{Λ̂1(t)− Λ̂0(t)},

Under H0 the random variable W is asymptotically normal with zero mean and
the variance σ2 which can be consistently estimated by the statistic

σ̂2 =
∫ ∞

0

Y0(t)Y1(t)

nY 2(t)
{ln(1 + Λ̃0(t̂0, β̂, γ̂))− ln(1 + Λ̃0(t−, β̂, γ̂))}2dN(t).

So the asymptotic distribution of the test statistic

T = W/σ̂

is standard normal and the hypothesis H0 is rejected with approximate significance
level α if | T |> z1−α/2, where z1−α/2 is the (1−α/2)-quantile of the standard normal
distribution.

5. Power of the tests

Consider first the power of the second test under the sequence of the approaching
alternatives with cross-effects of the survival functions:

Hn : λ1(t) = e
c1√

n

{
1 + e

c1+c2√
n Λ0(t)

}e
− c2√

n−1

λ0(t);

here c1 > 0 and c2 > 0 or c1 < 0 and c2 < 0.
Write the test statistic W as follows:

W =
∫ ∞

0

K(t)√
n

d
√

n{Λ̂1(t)− Λ1(t)} −
∫ ∞

0

K(t)√
n

d
√

n{Λ̂0(t)− Λ0(t)}

+
∫ ∞

0

K(t)√
n

d
√

n{Λ1(t)− Λ0(t)}.

Note that under the sequence of the alternatives Hn we have

√
n(λ1(t)− λ0(t)) → {c1 − c2 ln(1 + Λ0(t))}λ0(t).

If Yi/n
P→ yi, y = y1 + y2, then under standard conditions (see Harington and

Fleming, Ch. 7) we have the convergence

W
D→ N(µ, σ2),

where

µ =
1

c2

∫ ∞

0

y0(t)y1(t)

y(t)
{c1 − c2 ln(1 + Λ0(t))}2dΛ0(t).

So
T = W/σ̂

D→ N(a, 1), T 2 D→ χ2(1, a)
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where a = µ/σ, and χ2(1, a) denotes the chi-square distribution with one degree
of freedom and the non-centrality parameter a. Note that under the cross-effects
alternative the function under the integral does not change the sign.

The asymptotic power function of the test is

β = lim
n→∞P

{(
T

σ̂

)2

> χ2
1−α(1) | Hn

}
= P

{
χ2(1, a) > χ2

1−α(1)
}

.

The non-centrality parameter a can be estimated by

â =
γ̂

σ̂

∫ ∞

0

Y0(t)Y1(t)

Y (t)
{β̂ − γ̂ ln(1 + Λ̃0(t−))}2dΛ̃0(t).

In the case of the modified score test the limit distribution of the statistic

X2 = (Û1, Û2)Σ̂
−1(Û1, Û2)

T

under the sequence of approaching alternatives is the non-central chi-square distri-
bution with two degrees of freedom and the non-centrality parameter a estimated
by

â = (µ̂1, µ̂2)Σ̂
−1(µ̂1, µ̂2)

T ,

where

µ̂1 =
∫ ∞

0

Y0(t)Y1(t)

Y (t)
{β̂ − γ̂ ln(1 + Λ̃0(t−))}dΛ̃0(t),

µ̂2 = −
∫ ∞

0

Y0(t)Y1(t)

Y (t)
ln(1 + Λ̃0(t−)){β̂ − γ̂ ln(1 + Λ̃0(t−))}dΛ̃0(t).

6. k-sample tests

Let us generalize the problem and consider the hypothesis

H0 : S0 = S1 = . . . = Sk−1

of the equality of k survival distributions.
Suppose that ni objects of the ith group (i = 0, . . . , k−1) are observed. Denote

by Tij and Cij the failure and censoring times for the jth patient of the ith group,
and set

Xij = min(Tij, Cij), δi = 1{Tij≤Cij},

Nij(t) = 1{Tij≤t,δij=1}, Yij(t) = 1{Xij≥t},

Ni(t) =
ni∑

j=1

Nij(t), Yi(t) =
ni∑

j=1

Yij(t), N(t) =
k−1∑

i=0

Ni(t), Y (t) =
k−1∑

i=0

Yi(t).

Consider the following alternatives:

HA : λi(t) = eβi

{
1 + eβi+γiΛ0(t)

}e−γi−1
λ0(t) (i = 1, . . . , k − 1).

Denote by β = (β1, . . . , βk−1)
T , γ = (γ1, . . . , γk) the vectors of the unknown pa-

rameters, an define the (k−1)-dimensional vector x(i) = (0, . . . , 0, 1, 0, . . . , 0)T such
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that the unit stays in the i-th place. Then the alternative can be written in the
form

HA : λi(t) = eβT x(i)
{
1 + e(β+γ)T x(i)

Λ0(t)
}e−γT x(i)−1

λ0(t) (i = 1, . . . , k − 1).

This alternative contains the cases when some hazard rates or cumulative hazard
rates intersect, some go away one from another or are proportional. Under the
alternative the (k − 1)-dimensional score functions U1(β, γ) and U2(β, γ) for the
parameters β and γ estimation are

U1(β, γ) =
k−1∑

i=1

∫ ∞

0
x(i)

{
1 + (eβT x(i) − e(β+γ)T x(i)

)
Λ̃0(t−, β, γ)

1 + e(β+γ)x(i)Λ̃0(t−, β, γ)

}

{
dNi(t)− Yi(t)e

βT x(i)

(1 + e(β+γ)T x(i)

Λ̃0(t−, β, γ))e−γT x(i)−1dΛ̃0(t, β, γ)
}

,

U2(β, γ) =
k−1∑

i=1

∫ ∞

0

{
−e−γT x(i)

ln(1 + e(β+γ)T x(i)

Λ̃0(t−, β, γ)) + (eβT x(i) − e(β+γ)T x(i)

)

Λ̃0(t−, β, γ)

1 + e(β+γ)T x(i)Λ̃0(t−, β, γ)

}

{
dNi(t)− Yi(t)e

βT x(i)

(1 + e(β+γ)T x(i)

Λ̃0(t−, β, γ))e−γT x(i)−1dΛ̃0(t, β, γ)
}

,

where Λ̃0 is defined recurrently from the equation :

Λ̃0(t, β, γ) =
∫ t

0

dN(u)

S(0)(u−, Λ̃0, β, γ)
,

S(0)(v, Λ̃0, θ) =
k−1∑

i=0

Yi(v)eβT x(i)
{
1 + e(β+γ)T x(i)

Λ̃0(v, β, γ)
}e−γT x(i)−1

.

Under H0 we have

Û1 := U1(0, 0) =
k−1∑

i=1

∫ ∞

0
x(i)

{
dNi(t)− Yi(t)dΛ̃0(t)

}
,

Û2 := U2(0, 0) = −
k−1∑

i=1

∫ ∞

0
x(i) ln(1 + Λ̃0(t−))

{
dNi(t)− Yi(t)dΛ̃0(t)

}
,

where

Λ̃0(t) =
∫ t

0

dN(u)

Y (u)
.

These statistics can be written as follows

Û1 =
k−1∑

i=1

∫ ∞

0
x(i){dMi(t)− Yi

dM(t)

Y (t)
},

Û2 = −
k−1∑

i=1

∫ ∞

0
x(i) ln(1 + Λ̃0(t−)){dMi(t)− Yi

dM(t)

Y (t)
},

8



where M =
k−1∑
i=0

Mi and Mi are the martingales of the counting processes Ni.

Similarly as in the two-sample case, under standard conditions the limit distri-

bution (as n =
k−1∑
i=0

ni →∞, ni/n → li ∈ (0, 1) ) of the statistic

X2 = ((Û1)
T , (Û2)

T )Σ̂−1((Û1)
T , (Û2)

T )T

is the chi-square distribution with 2(k − 1) degrees of freedom; here

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
,

where Σ̂21 = Σ̂T
12,

Σ̂11 =
k−1∑

i=1

∫ ∞

0
{(x(i) − x̄)⊗2 Yi + x̄⊗2 Y0} dN(t)

Y (t)

Σ̂12 = −
k−1∑

i=1

∫ ∞

0
ln(1 + Λ̃0(t−)){(x(i) − x̄)⊗2 Yi + x̄⊗2 Y0} dN(t)

Y (t)

Σ̂22 = −
k−1∑

i=1

∫ ∞

0
ln2(1 + Λ̃0(t−)){(x(i) − x̄)⊗2 Yi + x̄⊗2 Y0} dN(t)

Y (t)
,

x̄ =

k−1∑
j=1

x(j)Yj(t)

Y (t)
,

and A⊗2 = AAT for any column A.

7. Finite-sample null distribution and simulated power results

As in Stablein and Koutrouvelis (1985), simulations were performed using the
unit exponential to examine the small-sample characteristics of the modified score
test statistic under the null hypothesis. We calculated the significance level from
5000 replications of complete samples of given n0 = n1. The results are given in
Table 1. It shows that with ni increasing the significance level converges to 0.05.
Note that in the case of Stablein and Koutrouvelis the rate of convergence is much
slower.

Table 1. Significance level.

ni 25 50 100 200 500
α 0.065 0.059 0.057 0.053 0.

We compared the power of the modified score statistics with simulated power
results of Stablein and Koutrouvelis (1985). As in their study, we calculated power
from 1000 replications for sample sizes of 25 and 50 uncensored observations per
group. The significance level α = 0.05. The results are given in Table 2 (simulation
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results for the Stablein and Koutrouvelis, Modified Smirnov, Koziol-Petkau and lo-
grank statistics are taken from Stablein and Koutrouvelis (1985), simulation results
for the modified score and second test are done by us). The following situations
were simulated:

1) λ0(t) = 2, λ1(t) = 1.
The hazard rates are constant and do not intersect. The survival functions do

not intersect, too. We have the case of proportional hazards. Naturally, the logrank
statistic performs best and the test of Stablein-Koutrouvelis performs worst. Other
statistics have similar powers.

2) S0(t) = e−2t, S1(t) = e−t5 .
3) S0(t) = e−2t, S1(t) = e−t5 .
In situations 2) and 3) the hazard rates and the survival functions cross. The

modified score and the second test do considerably better than all other tests.
4)

λ0(t) =

{
1 if 0 ≤ t < 0.8,

2 if t ≥ 0.8,
λ1(t) =

{
1 if 0 ≤ t < 0.8,
0.2 if t ≥ 0.8,

It is the situation of late difference, where no crossing of the hazard functions
occurs. The modified score test does considerably better than all other tests.

5)

λ0(t) =





2 if 0 ≤ t < 0.1,
3 if 0.1 ≤ t < 0.4,

0.75 if t ≥ 0.4,
λ1(t) =





2 if 0 ≤ t < 0.2,
0.75 if 0.2 ≤ t < 0.4,

3 if t ≥ 0.4,

It is not very realistic situation. The hazard rates cross with a jump at the point 0.4
and after crossing are constant. The survival functions also cross. In this situation
the Stablein-Koutrouvelis, second, and modified score statistics do best.

In summary, in natural situations with crossing of the survival functions and
some other situations the modified score statistic and the second statistic have
considerably better power than other statistics.

Table 2. Power simulation.

Nr n1 Bn,r
Modif.
Smirn

Koziol
Petkau

Log
rank

Modif.
score

Second
statist.

1 25 0.319 0.555 0.588 0.658 0.570
50 0.762 0.831 0.908 0.928 0.871

2 25 0.737 0.572 0.339 0.469 0.999 0.660
50 0.987 0.899 0.683 0.811 1.000 0.802

3 25 0.561 0.279 0.086 0.087 0.998 0.992
50 0.908 0.554 0.209 0.148 1.000 1.000

4 25 0.571 0.802 0.429 0.596 0.949
50 0.954 0.985 0.782 0.883 0.999

5 25 0.730 0.530 0.266 0.065 0.666 0.758
50 0.986 0.868 0.508 0.053 0.950 0.968

8. Real data analysis
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Stablein and Koutrouvelis (1985) studied the well known two-sample data of
the Gastrointestinal Tumor Study Group concerning effects of chemotherapy and
chemotherapy plus radiotherapy on the survival times of gastric cancer patients.
The number of patients is 90. Survival times of chemotherapy (group 0 of size 45)
and chemiotherapy plus radiotherapy (group 1 of size 45) patients are as follows:

Chemotherapy:
1 63 105 129 182 216 250 262 301 301 342 354 356 358 380 383 383 388 394 408

460 489 499 523 524 535 562 569 675 676 748 778 786 797 955 968 1000 1245 1271
1420 1551 1694 2363 2754* 2950*;

Chemotherapy plus Radiotherapy
17 42 44 48 60 72 74 95 103 108 122 144 167 170 183 185 193 195 197 208 234

235 254 307 315 401 445 464 484 528 542 567 577 580 795 855 1366 1577 2060 2412*
2486* 2796* 2802* 2934* 2988*.

* means censoring.
By plotting the two Kaplan-Meier estimators of survival functions pertaining to

the both treatment groups, a crossing-effect phenomenon is clearly manifest. The
resulting inference indicates that the radiotherapy would first be detrimental to a
patient’s survival but becomes beneficial later on.

To confirm graphic results we use test statistics for checking the hypothesis of
the equality of survival distributions versus the cross-effects alternative.

The classical logrank statistic (it appears that it is based on the first modified
score statistic Û1) does not reject the null hypothesis (P-value P = 0.64, the
value of the statistic is 0.23). The second weighted logrank test based on the
second modified score statistic Û2 also does not reject the null hypothesis (P-value
P = 0.21).

The Renyi type statistics rejects but not very strongly H0 (P-value P = 0, 053,
the value of the statistics Q is 2,20.

The test of Stablein et Koutrouvelis rejects the null hypothesis (the value of
the test statistic is 3,78 and the critical value at the significance level 0,01 is 3,41).

The modified score statistic rejects H0 very strongly (P-value P = 0, 00111, the
value of the statistic X2 is 13,61). Note that

Σ̂ =

(
19.884 −9.875
−9.875 6.988

)
, Σ̂−1 =

(
0.1687 0.2384
0.2384 0.4800

)
.

The second test rejects H0 with even smaller P-value ( P = 0, 00081, the value of
the statistic T is 3,323). The estimators of the parameters β and γ are β̂ = 1.8945,
γ̂ = 1.3844, the estimator of the intersection point of the hazard rates is t̂0 = 382.9.

So both proposed statistics reject the null hypothesis with smaller P-value than
other tests. And both can be used not only for singly but also for randomly censored
samples.

1)S0(t) = e−2t, S1(t) = e−t

1000 iterations: n=50 : puis=554 ( nombre de cas quand Chi carr ¿=5.991)
n=100 : puis=871
2000 iterations :
n=50 : puis=1140/2000=0.570.
n=100 : puis=1738/2000=0,869.
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