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Abstract

Heterosis is defined as the superiority in performance of heterozygous genotypes

compared to their corresponding genetically different homozygous parents. This

phenomenon is already known since the beginning of the last century and it has been

widely used in plant breeding, but the underlying genetic and molecular mechanisms

are not well understood.

In this work, a systems biological approach based on molecular network structures

is proposed to contribute to the understanding of heterosis.

Hybrids are likely to contain additional regulatory possibilities compared to their

homozygous parents and, therefore, they may be able to correctly respond to a higher

number of environmental challenges, which leads to a higher adaptability and, thus,

the heterosis phenomenon.

In the network hypothesis for heterosis, presented in this work, more regulatory

interactions are expected in the molecular networks of the hybrids compared to

the homozygous parents. Partial correlations were used to assess this difference in

the global interaction structure of regulatory networks between the hybrids and the

homozygous genotypes.

This network hypothesis for heterosis was tested on metabolite profiles as well as

gene expression data of the two parental Arabidopsis thaliana accessions C24 and

Col-0 and their reciprocal crosses. These plants are known to show a heterosis effect

in their biomass phenotype. The hypothesis was confirmed for mid-parent and best-

parent heterosis for either hybrid of our experimental metabolite as well as gene

expression data. It was shown that this result is influenced by the used cutoffs

during the analyses. Too strict filtering resulted in sets of metabolites and genes

for which the network hypothesis for heterosis does not hold true for either hybrid

regarding mid-parent as well as best-parent heterosis.

In an over-representation analysis, the genes that show the largest heterosis effects

according to our network hypothesis were compared to genes of heterotic quantitative

trait loci (QTL) regions. Separately for either hybrid regarding mid-parent as well

as best-parent heterosis, a significantly larger overlap between the resulting gene

lists of the two different approaches towards biomass heterosis was detected than

expected by chance. This suggests that each heterotic QTL region contains many

genes influencing biomass heterosis in the early development of Arabidopsis thaliana.

Furthermore, this integrative analysis led to a confinement and an increased confi-

dence in the group of candidate genes for biomass heterosis in Arabidopsis thaliana

identified by both approaches.
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1 Introduction

In this work, a systems biological approach to gain a little further insight into the

molecular basis of biomass heterosis in Arabidopsis thaliana plants is presented. For

this basic research a “network hypothesis for heterosis” is proposed and tested on

experimental data from different omics levels.

Furthermore, the systems biological analysis is integrated with results from a quan-

titative genetics approach towards biomass heterosis in Arabidopsis thaliana. It is

tested if two different approaches point to similar genomic regions influencing this

trait under study.

In this introduction, first, the heterosis phenomenon is explained. Afterwards, basic

concepts, methods and the experimental data are introduced briefly. The network

hypothesis for heterosis builds the basis for this work and is presented in section 1.7.

1.1 Heterosis

Heterosis, also known as hybrid vigor, is defined as the superior performance of

heterozygous genotypes compared to their homozygous parental inbred lines (Shull,

1952). The superiority of the hybrids is expressed as increased biomass, size, yield,

speed of development, fertility, resistance to disease or to insect pest (Birchler et al.,

2003; Hochholdinger and Hoecker, 2007). This phenomenon can be detected in ani-

mals as well as in plants.

Heterosis is either measured as mid-parent heterosis (MPH), defined as the difference

between the hybrid and the mean of the parents, or as best-parent heterosis (BPH),

the deviation of the trait value of a hybrid from the better parent (Falconer and

Mackay, 1996; Lamkey and Edwards, 1999).

The molecular basis of heterosis is still unknown but three different models were

proposed to explain the phenomenon. The two classical quantitative genetic expla-

nations include the dominance and the overdominance model (Crow, 1948). The

dominance hypothesis explains heterosis as the complementation of deleterious al-

leles by favorable dominant alleles from the other parent at multiple loci in the

hybrid (Davenport, 1908; Bruce, 1910). The overdominance hypothesis states that
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interactions of different alleles occur at one or multiple heterozygous loci that lead

to hybrids that perform better than either homozygous parent (Hull, 1945; Crow,

1948).

A variation of the dominance hypothesis is the so-called pseudo-overdominance model.

This model explains the situation that recessive alleles of tightly linked genes, which

are located on opposite homologs, are complemented by the superior dominant

alleles in the hybrid. In this situation it seems like overdominance is operating, which

resulted in the name pseudo-overdominance (Crow, 1952; Birchler et al., 2010).

Finally, the epistasis hypothesis explains heterosis by interactions of favorable genes

located at two or more different loci (Powers, 1944; Williams, 1959).

The interest to understand the basis of heterosis is high because its use plays an

important role in plant and animal breeding to maximize the agronomic performance

(Melchinger et al., 2007b). In 2007, around 95% of the U.S. corn acreage and 65%

of the corn acreage worldwide were planted to hybrids (Hochholdinger and Hoecker,

2007).

Even though the heterosis phenomenon is known for more than 100 years and it is

widely used in plant breeding, the underlying genetic and molecular mechanisms are

not yet established.

Different approaches following the target to gain deeper insight into the molecu-

lar mechanisms of heterosis exist. Quantitative genetics approaches (e.g. Frascaroli

et al., 2007; Melchinger et al., 2007a; Meyer et al., 2010) as well as analyses of

functional data such as gene expression profiles of selected genes or pathways (e.g.

Meyer et al., 2007; Thiemann et al., 2010) or all genes of an organism (e.g. Swanson-

Wagner et al., 2006; Frisch et al., 2010) were performed on different species and devel-

opmental stages to evaluate various traits. Other approaches aim to predict heterosis

in the hybrids using genetic and/or functional characteristics of the parental lines

(e.g. Gärtner et al., 2009; Frisch et al., 2010; Schrag et al., 2010). Different stud-

ies led to different conclusions, suggesting dominance, overdominance (or pseudo-

overdominance) as well as epistasis and all possible combinations out of these as the

predominant mechanism underlying heterosis.

1.2 Systems biology

To understand the complex events within or between biological cells, it is not enough

to identify and study the single components that the cells are built of. It is rather

important to analyze these components together as a system. The structure as well as

the dynamics of all parts in the system have to be examined to be able to explain the
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functioning of the whole biological system (Kitano, 2002). This systematic, holistic

view of biological organisms is the focus of systems biology. Nevertheless, up to now

no concise definition of systems biology exists. It can be viewed as the integration of

genomics, proteomics and other omics data to understand the interplay of different

components and get insight into biological processes on the systems-level (Hood and

Galas, 2003; Ge et al., 2003; Westerhoff and Palsson, 2004). The large sizes of the

datasets, the nonlinear character of the interactions that have to be elucidated and

the resulting complexity of the cellular system make the use of mathematical models

from systems theory essential to describe the structure and dynamic of a biological

system (Wolkenhauer, 2001; Ideker et al., 2001; Wolkenhauer, 2007). So, systems

biology can be seen as the simulation and study of complex biological processes by

integrating genome-wide experimental data and mathematical modeling approaches.

Since there is no exact definition of systems biology, I want to point out that in

my opinion the systems biological character of the work presented here is given

by the integration of two different omics levels (metabolomics and transcriptomics;

explained in the next section). Not single genes or metabolites are studied and

compared for different genotypes but the estimated underlying global regulatory

networks. Therefore, the focus in this work is on differences on a systems level and

not in single components.

1.3 Omics techniques

In molecular or cell biology only a few features (e.g. genes, proteins or metabo-

lites) are studied at a time. However, as already pointed out in the systems biology

section, genes (and their products) do not function alone but in combination with

each other and, therefore, they have to be analyzed as a whole to get more insight

into biological processes (Hartwell et al., 1999; Ge et al., 2003). The development

of high-throughput techniques, such as DNA and protein microarrays or mass spec-

trometry, made it possible to measure the whole of the objects of one level of gene

expression simultaneously. This whole of objects are all gene products of one level of

gene expression that are present in a biological sample. It is labeled with the suffix

“-ome”, while the terms that name the field of biology that aims to study these

“omes” end on “-omics”. Omics technologies follow the goal to identify all gene

products of one level in a biological sample along with their properties and quanti-

tative dynamics (Weckwerth, 2003).

The genome is the entire set of DNA sequence information of an organism and the

belonging field of study is called genomics. Along with the “popularity” of genomics,
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a variety of omics subdisciplines has begun to emerge. One example is proteomics,

the study of all proteins of a cell with their particular modifications at a given time

point. Unlike the genome, which is the same in all cells of one organism at each

time, the proteome is different in every cell type and changes over the time and with

varying conditions (Campbell and Heyer, 2002).

Because data of the two omics levels of metabolomics and transcriptomics are

analyzed in this work, they are explained in more detail in the next sections.

1.3.1 Metabolomics

The metabolome is the quantitative complement of all metabolites expressed in a

biological sample under particular conditions (Oliver et al., 1998; Kell et al., 2005).

Metabolomics aims to identify and quantify the metabolome. The main experimental

technique used to achieve this is the coupling between gas or liquid chromatography

with mass spectrometry. These techniques allow for the analysis of dynamic systems

and make metabolomics a key technology in systems biology (Weckwerth, 2003).

However, no single metabolomics technique is able to measure all low-molecular-

weight metabolites. In reality, datasets comprise only a small probably biased frac-

tion of all metabolites.

As shown by Fiehn et al. (2000), metabolome analyses can be used to enhance the

power of existing functional genomic approaches to describe functions and interac-

tions of genes or proteins. Furthermore, metabolomic algorithms make it possible

to model and reconstruct small metabolic networks that show the relations between

metabolites. The study of metabolic networks is a major step to the understanding

of complex biochemical systems and living organisms and plays an important role in

the discovery of drug targets (Kell, 2004; Guimerà and Amaral, 2005).

1.3.2 Transcriptomics

The transcriptome is the collection and quantity of all transcripts in one cell or popu-

lation of cells at any given time point (Campbell and Heyer, 2002; Wang et al., 2009).

The transcription of genes is the first step in gene regulation. It varies in different

cell types and changes with the stage of development or environmental conditions.

So, such as the proteome, the transcriptome is extremely dynamic (Velculescu et al.,

1997). Its study, the transcriptomics, is important to understand genes and path-

ways involved in biological processes. The analysis of gene expression patterns follows

multiple aims of which only two are presented here. Transcriptomics can be used

to study the changing expression levels of each transcript under different conditions
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(Wang et al., 2009). This can be the basis for the identification of possible drug

targets or diagnostic biomarkers, for example, by comparing which genes are highly

expressed in tumorous but not in healthy tissues. Furthermore, transcriptomics can

be helpful to get a further insight into the functional annotation of genes based on

the assumption that genes belonging to the same regulatory pathway are more highly

co-expressed than genes from different pathways (Wei et al., 2006). So, genes with

similar expression patterns are likely to be functionally related and controlled by the

same molecular regulatory mechanism.

The most common techniques for the analysis of gene expression data are different

kinds of microarrays, which are hybridization-based techniques, and sequence-based

approaches like SAGE (serial analysis of gene expression) or novel high-throughput

DNA sequencing methods termed RNA-Seq (Wang et al., 2009).

1.4 Quantitative trait loci

In general, it is differentiated between discrete and quantitative traits. Discrete

traits are present in several distinct characteristics, e.g. colors of flowers. Quanti-

tative traits, such as yield, are measurable on a continuous scale. Geneticists use

quantitative traits (specific phenotypes) to infer the underlying genetics.

Quantitative trait loci (QTL) are segments of a chromosome, which have an influence

on the quantitative phenotypic trait of an organism. Polymorphic genetic markers

(markers which show at least two different alleles at a locus) are used for QTL

mapping. Frequently used markers are single nucleotide polymorphism (SNP) or

mini-/microsatellites.

The coupling between marker and locus which is important for the trait under study

builds the basis for the identification of QTL. The underlying genetic principle is

that loci that are located at physically close chromosomal regions (linked loci) show

a higher probability to be passed together from one generation to the next one

than distant loci. This is based on the fact that the probability of a recombination

increases with increasing distance between loci (Campbell and Heyer, 2002; Mount,

2004).

QTL mapping experiments are important in human genetics, e.g. for the identifi-

cation of genes that cause diseases, but also for plant and animal breeding (e.g.

Hackett, 2002).
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1.5 Reverse engineering

Reverse engineering is one approach in the field of systems biology. Depending on the

definition, it can also be placed between systems biology and bioinformatics (Hache

et al., 2009). The general goal of reverse engineering methods is to identify a model

of the inner workings of a system by analyzing the observable outputs which are

based on the interplay of the single objects in the system (Ingolia and Weissman,

2008). These approaches are not only applied in biology but in many different areas,

such as mechanical or software engineering. In molecular biology, reverse engineering

methods aim to use experimental data to reconstruct the structure of the underlying

unknown biological network. If this is possible, the inferred networks can be studied

to increase the understanding of cellular functions (Brazhnik et al., 2002).

The opposite of reverse engineering algorithms build the so-called forward modeling

approaches, which try to predict gene expression profiles on the basis of known gene

regulatory networks and their dynamics.

The biological networks which structures are elucidated in a reverse engineering

approach can be very different. In general, networks consist of nodes, representing

some kind of objects, and edges that connect the nodes and symbolize the relation

between the adjacent objects (nodes). In gene regulatory networks the nodes are

genes while the edges are transcriptional regulatory interactions. However, in other

studies an edge between two genes can also symbolize that the genes are co-regulated,

participate in a common pathway, share a common biological function or in the case

of a directed edge it may represent a step in a metabolic pathway, signal transduction

cascade or stage of development. So, the edges of reconstructed biological networks

have to be interpreted with care and with respect to the applied mathematical model

(Hartemink, 2005; Ma et al., 2007).

The reliability of the predicted networks and which approach should be used for

a particular scientific problem are still challenging questions (Gardner and Faith,

2005). Due to their availability, especially gene expression profiles are used as input

for reverse engineering approaches to reconstruct gene regulatory networks (Hache

et al., 2009).

The basic principle of reverse engineering algorithms to infer the underlying biolo-

gical networks or biochemical pathways from genome-wide experimental data is the

same for each approach. First, the experimental data is obtained. The same vari-

ables (features such as genes or metabolites) have to be observed several times (as

a time series; under different conditions or treatments etc.). This profile data can

be observational or interventional. In modern molecular biology there exist many
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different techniques of perturbations or interventions, such as knock out experiments

(Werhli et al., 2006). Afterwards, a mathematical algorithm is applied to determine

a model that describes the regulatory system underlying the observed data (Gardner

and Faith, 2005).

Several different reverse engineering approaches were proposed that vary in the math-

ematical model and the algorithm that is used for the inference of biological networks.

These mathematical models include but are not limited to linear models (D’haeseleer

et al., 1999), differential equations (de Jong, 2002), static or dynamic Bayesian net-

works (BNs) (Friedman et al., 2000; Imoto et al., 2003), relevance networks (RNs)

(Butte et al., 2000; Basso et al., 2005) and association networks (often described by

graphical Gaussian models (GGMs)) (Kishino and Waddell, 2000; Opgen-Rhein and

Strimmer, 2007b).

GGMs build one basis of the “network hypothesis for heterosis” which is presented

in section 1.7. Therefore, in the following the main focus will be on GGMs and only

a briefly comparison to RNs and BNs is presented.

RNs are currently one of the most widely used mathematical models to infer

underlying biological networks from high-throughput omics data. They are based

on pairwise association scores between all investigated features. Pearson correla-

tions or mutual information were proposed as good association scores (Butte et al.,

2000; Basso et al., 2005). The construction of biological networks out of e.g. gene

expression data is straight forward using standard Pearson correlations. If the as-

sociation score for the profiles of a pair of genes exceeds a preselected threshold, a

functional interaction, influence or dependency is assumed between these two genes

(Ma et al., 2007).

While this approach is easy and computationally not expensive, it has the disadvan-

tage that the interactions between two features are calculated without involving the

other features of the system. So, correlation networks can not distinguish between

direct and indirect interactions. An indirect interaction might emerge between two

features if these features are uncorrelated among themselves but highly correlated

to a common third feature. Consequently, nearly all features will be correlated and,

therefore, connected to each other in the resulting network. Only a missing edge

(zero correlation) provides information (indicating independence) but not the pres-

ence of an edge. However, the dependence between feature is what is important

to understand complex biological functions and not the independence that can be

identified using RNs (Schäfer and Strimmer, 2005b). Furthermore, in the case of

heavily connected networks, reverse engineering algorithms based on RNs would
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probably lead to ambiguous results. For these reasons, RNs are of limited use to

study biological networks (Brazhnik et al., 2002; Schäfer and Strimmer, 2005a; Werhli

et al., 2006).

An alternative to RNs are GGMs. GGMs are undirected probabilistic graphical

models. These models allow to differentiate between direct and indirect interactions

(Schäfer and Strimmer, 2005a; Opgen-Rhein and Strimmer, 2007b). Therefore, using

GGMs makes the reduction of the number of indirect interactions in the inferred

network possible. Hence, GGMs can be used to study dependencies between features

but offer only a weak criterion of independence.

Kishino and Waddell (2000) were the first who proposed GGMs to model association

structures between genes. In GGNs, partial correlations are used to evaluate direct

interactions between all pairs of features under study (Toh and Horimoto, 2002). A

partial correlation between two variables is the correlation that remains between the

two variables after the effect of all other variables has been subtracted. This removal

of the effects of the other variables can be done on the basis of a linear regression

of each of the two variables to all remaining variables (Opgen-Rhein and Strimmer,

2007b).

From standard graphical model theory it is known that the partial correlation

matrix is related to the inverse of the standard covariance matrix. This statement

is equally valid for the inverse of the correlation matrix (Schäfer and Strimmer,

2005a). However, the calculation of the partial correlation matrix of all features

based on the inverse of the covariance matrix is only possible if the number of

observations (samples) is larger than the number of variables (features) (Kishino

and Waddell, 2000). If this is not the case, partial correlations cannot be calculated

because of not positive definite sample covariance and correlation matrices (Fried-

man, 1989). Unfortunately, large-scale data, such as gene expression data, usually

consist of a large number of variables and a much smaller number of observations,

because e.g. on each microarray thousands of genes can be measured but the number

of microarrays used is limited due to the prize and manpower. Over the last years

several reverse engineering algorithms for many variables and few observations based

on GGMs were proposed (e.g. Magwene and Kim, 2004; Wille et al., 2004; Schäfer

and Strimmer, 2005b).

The approach by Wille et al. (2004) is to apply GGMs not to the complete set of

features but to estimate the dependence between two features conditional on only

one other gene. The resulting subnetworks are combined to the complete network.

Such an algorithm using limited order partial correlations was also proposed by
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Magwene and Kim (2004) and de la Fuente et al. (2004). These limited order partial

correlation approaches, however, lead to network models more similar to RNs than

to association networks. Hence, the problems of RNs also apply partly for these

algorithms.

Other approaches to use GGMs to infer the network structure from small sample

data are based on the introduction of regularization and moderation. The goal is

to develop estimation methods for the covariance matrix and its inverse that are

applicable for a small samples size and many features (Ma et al., 2007).

Such an approach was proposed by Schäfer and Strimmer (2005b). It is based on a

shrinkage estimation of the partial correlations. Applying this shrinkage approach,

it is possible to estimate the inverse of the covariance matrix as well as correlation

matrix for small sample sizes but many features. The basic principle is to shrink the

unrestricted sample correlation matrix towards some target. The most commonly

used shrinkage targets are the identity matrix or its scalar multiple. The shrink-

age estimate is a linear combination (weighted average) of the empirical correlation

matrix of the sample and the target. The weight in this weighted average is referred

to as the shrinkage parameter. A shrinkage parameter of 1 leads to a shrinkage esti-

mate that equals the shrinkage target. Correspondingly, if the shrinkage parameter

equals 0, no shrinkage occurs and the sample correlation matrix is recovered. This

shrinkage parameter can be set to one fixed value. However, it is better to select

the optimal value for the shrinkage parameter by minimizing a risk function such as

the mean squared error (Schäfer and Strimmer, 2005b; Opgen-Rhein and Strimmer,

2007a).

Several approaches were proposed to estimate the minimizing shrinkage parameter,

for instance cross-validation (e.g. Friedman, 1989) or empirical Bayes approaches (e.g.

Greenland, 2000). As shown by Ledoit and Wolf (2003) and Schäfer and Strimmer

(2005b), an analytical determination of this parameter to minimize the mean square

error is also possible.

The next step in inferring biological networks, after estimating the partial correla-

tions using a shrinkage approach, is the identification of statistically significant edges

in the GGM network. In the approach by Schäfer and Strimmer (2005b), this is done

by fitting a mixed linear model to the estimated partial correlations. This way, two-

sided P -values corresponding to the null hypothesis of zero partial correlation can

be computed (Schäfer and Strimmer, 2005a; Schäfer et al., 2006; Strimmer, 2008).

This shrinkage approach to GGMs is implemented in the R package GeneNet (Schäfer

et al., 2006; Opgen-Rhein and Strimmer, 2007b). Schäfer et al. (2006) chose in
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their approach to shrink the empirical correlations towards the identity matrix. The

shrinkage parameter is estimated using an analytic formula according to Schäfer and

Strimmer (2005b), leading to a distribution-free shrinkage estimation (Opgen-Rhein

and Strimmer, 2007a).

Werhli et al. (2006) compared the two reverse engineering methods described above

to BNs. BNs describe causal interactions using directed acyclic graphs. Each BN is

defined by a graphical structure (the topology) and a family of (conditional) proba-

bility distributions (Husmeier, 2003). The nodes represent random variables and the

edges conditional dependence relations (Hache et al., 2009). To identify the network

structure that is most supported by the experimental data, the mode of the poste-

rior probability has to be determined (Husmeier, 2003). However, nearly all learning

algorithms based on directed acyclic graphs show the same problem as GGMs that

they were developed for comparatively small numbers of variables and large sample

sizes (Tsamardinos et al., 2006). For experimental data with many features and only

a few measurements, no single network structure can be adequately identified that

represents the posterior probability mode (Husmeier, 2003). In recent years, several

algorithms have been proposed that overcome this problem for using BNs for learn-

ing network structures from high-dimensional experimental data (e.g. Imoto et al.,

2003; Friedman, 2004; Beal et al., 2005).

Reverse engineering algorithms based on BNs are computationally very expensive

compared to GGMs and RNs. Werhli et al. (2006) have shown that GGMs as well as

BNs outperform RNs with regard to the accuracy of reconstructing gene regulatory

networks from high-throughput data. However, no significant difference between

GGMs and BNs was found for observational data. Werhli et al. (2006) used in

their comparison the GGM approach based on Schäfer and Strimmer (2005b). It

led to similar accuracy as computationally much more demanding methods based

on (dynamical) BNs. Therefore, the R implementation of the reverse engineering

algorithms based on GGMs by Opgen-Rhein and Strimmer (2007b) is shown to be

appropriate to infer gene regulatory networks from observational omics data.

While Werhli et al. (2006) have shown that the use of GGMs is a good tool to in-

fer gene regulatory networks from observational gene expression data, Çakır et al.

(2009) concluded in a similar comparative study that partial correlations are mo-

mentarily also the best available approach for the inference of metabolic networks

from observational metabolic data at steady state.
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1.6 Enrichment analyses

Many studies aim to optimize analytical techniques to accurately identify a biolog-

ically interesting group of genes (e.g. differentially expressed genes in microarray

experiments) and to determine their statistical significance. Nowadays, the difficulty

is not to determine these genes but their biological function.

Furthermore, the comparison of results from different experiments, under different

conditions and at various layers of regulation is difficult. One approach to over-

come these problems is to apply an enrichment analysis. Enrichment analyses in

general compute whether two lists of features show a statistically significant overlap

(Ackermann and Strimmer, 2009; Lachmann and Ma’ayan, 2010).

In enrichment analyses a list of experimentally identified “interesting” genes (or any

other features) are analyzed regarding their membership in a-priori defined gene

sets. In most applications, gene sets group all genes belonging to one functional

annotation or chromosomal location together (Goeman and Bühlmann, 2007). The

annotation is based on various databases in different studies. Most common is to use

the Gene Ontology (GO) database for gene sets with specific functional categories

(Lachmann and Ma’ayan, 2010). Other databases used to annotate gene sets are

pathway databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa and Goto, 2000) or GenMAPP (Doniger et al., 2003).

Enrichment analyses make it possible to interpret the results of high-throughput

screening experiments regarding the annotation criterion that was used for the gene

sets. In case that each gene set is build out of all known genes belonging to one

biological pathway, an enrichment analysis can e.g. determine the activity of a certain

pathway under different conditions. So, enrichment approaches make use of previous

biological knowledge in the interpretation of omics experiments. Because of this

and the fact that lists of genes are analyzed instead of single determined genes alone,

enrichment analyses can be used to yield biologically more meaningful interpretations

of results of omics studies than approaches based on single genes. This, in turn,

makes a better understanding of functional mechanisms in cells possible (Goeman

and Bühlmann, 2007; Ackermann and Strimmer, 2009).

Over the last years, several different statistical procedures for enrichment analyses

have been introduced. A simple and probably most popular method is the over-

representation analysis (ORA). In ORA, first a list of interesting genes, e.g. differ-

entially expressed genes, (or any other features) is determined. This can be done in

many different ways, e.g. on the basis of fold change, t-statistics, (shrinkage) corre-

lation coefficient or log-likelihood ratio. Additionally, in most cases, these statistics
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are transformed (e.g. absolute values, squared values, ranks, P -values). A strict cut-

off is applied to these gene-wise measures to determine a list of top ranked genes

(Ackermann and Strimmer, 2009).

Afterwards, it is tested if the genes of a gene set are overrepresented in this list

considering all genes analyzed in the particular experiment. This is done by testing a

2 × 2 contingency table: the independence of the membership of genes in a functional

category (gene set) and the membership in the list of top ranked genes is tested

(Drǎghici et al., 2003; Khatri and Draghici, 2005). Several statistical tests were

proposed to test the significance of the overlap between pairs of gene lists, such as

the binomial proportions, Chi-squared or Fisher’s exact test (Rivals et al., 2007;

Lachmann and Ma’ayan, 2010). Any two lists of genes may overlap just by chance

and these contingency table statistics can be used to determine gene sets that show

an unexpected significant overlap (an overlap that deviates from what is expected

by chance) between the list of genes of interest and the genes in the gene set (Backes

et al., 2007; Lachmann and Ma’ayan, 2010). In the case that significantly more genes

are in the overlap than expected just by chance, the genes of the gene set are called

enriched (over-represented) in the list of interesting genes. If significantly less genes

are observed in the overlap than expected by chance, the genes are under-represented.

In ORA any kind of list of interesting features, no matter how it was determined,

can be assessed regarding its biological background. ORA require no ranking of

the interesting features. While this can be an advantage compared to some other

methods, it is at the same time a problem of this enrichment approach when applied

to e.g. gene expression data. Some authors criticized the requirement of a strict

cutoff and that no clear way to determine the list of interesting features that is

tested against the gene sets exists (Goeman and Bühlmann, 2007).

Alternatives have been proposed that use the whole vector of the gene-wise measures

(e.g. the P -values) instead of only a list of interesting features applying one particular

cutoff (Goeman and Bühlmann, 2007). One popular alternative, called “Gene Set

Enrichment Analysis” (GSEA), was introduced by Mootha et al. (2003) and improved

by Subramanian et al. (2005). Different from the ORA, this algorithm takes the

ranking of the interesting genes (or other features) according to their correlation to

the phenotype of interest (e.g. the t-test statistic) into account. This sorted list of

genes is processed from top to bottom determining a running sum for each gene set.

This running sum for one gene set is increased every time a gene from the sorted list

of interesting genes belongs also to the gene set. Respectively, the running sum is

decreased every time the gene is not in the gene set. The magnitude of the increment

in each running step depends on the rank and calculated gene-wise measure of the
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individual gene. The maximum deviation of the running sum from zero is the so-

called enrichment score. This enrichment score can be used to test the null hypothesis

that genes in the gene set are randomly spread in the list of all genes under study

in the particular experiment (Ackermann and Strimmer, 2009). The significance of

an observed enrichment score is computed as the probability that a random running

sum reaches a value that is as high as the observed enrichment score (Backes et al.,

2007).

1.6.1 Integrative analyses

Enrichment analyses are mainly used to analyze results of high-throughput screening

experiments regarding their enrichment in gene sets that are annotated based on

biological background knowledge stored in databases. However, these techniques

can also be used to integrate the results from different experiments.

Each omics technique addresses only one concrete level of biological organization,

e.g. transcripts, metabolites or proteins. Furthermore, every technique adds its own

technical variance and methodological bias to its results (Steinfath et al., 2007).

These two problems can be reduced by an integrative analysis of two or more distinct

omics analyses. The integrative analysis of different levels of biological organization

can increase the understanding of the functional activities in and between living cells

and help to formulate biological hypotheses (Ge et al., 2003).

If two different omics techniques applied to answer the same biological question, point

to similar candidate genes, the functional relevance of this result can be established

with increased confidence (Steinfath et al., 2007).

In the case that an enrichment analysis is used to integrate the results from dif-

ferent experiments towards the same biological question, the somehow determined

interesting features of the first experiment are used as the gene set. These features

are tested for over-representation in the identified interesting features of the second

experiment, on the background of all features analyzed in this second experiment.

1.7 Network hypothesis for heterosis

The hypothesis that is presented and tested in this work aims to propose a further

understanding of heterosis on the level of molecular network structures. The basis for

this hypothesis builds, in general, the understanding of the heterosis phenomenon

as increased adaptability. This basic idea was already proposed by Shull (1908)

and, in particular, in the work by Robertson and Reeve (1952). In experiments on
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Drosophila melanogaster, Robertson and Reeve (1952) discovered that the variance

in wing-length, which is highly correlated with body-size, is on average nearly twice

as high in inbred lines as it is in crosses between these lines. This findings suggest

that the environmental variance of such quantitative traits is smaller in heterozygotes

than in homozygous genotypes.

To further analyze the relation between heterozygosity and environmental variance

they prepared genotypes that are heterozygous in between zero and three chromo-

somes. For every degree of heterozygosity the average variance of wing-length of

several different genotypes was calculated. The average wing-length variance de-

creased with increasing heterozygosity. This indicated that the environmental vari-

ance of every phenotype is related to the degree of heterozygosity. Robertson and

Reeve (1952) detected the same tendency also for size and rate of egg production

and suggested that this phenomenon of declining susceptibility to environmental

variations for increasing heterozygosity might appear for many quantitative traits in

animals and plants. They concluded in their work that individuals with increased

heterozygosity carry a greater diversity of alleles which leads to a larger biochem-

ical versatility in development. Based on this greater biochemical versatility, the

heterozygous genotypes are able to correctly respond to more environmental

variations and make better use of the materials available in the environment than

the inbred lines, which, in turn, leads to the heterosis phenomenon.

In the here presented “network hypothesis for heterosis” this findings are extended

in the way that it is assumed that more regulatory possibilities in the heterozygous

genotypes go along with more regulatory interactions on the molecular level. So, it

is hypothesized that the hybrids, which show heterosis, contain denser regulatory

networks (more regulatory interactions) than the homozygous parents.

In order to test this assumption, a way of identifying the number of regulatory

interactions that are probably present in regulatory networks had to be found.

As explained in section 1.5, reverse engineering approaches aim to infer biological

networks from omics data. Following Werhli et al. (2006) the approach based on

GGMs by Schäfer and Strimmer (2005b), that allows to calculate partial correla-

tions of omics data measured at different time points or for a series of environmental

changes or developmental stages, is used in the here presented work to estimate

the number of regulatory interactions that are probably present in the regulatory

networks of different genotypes.

Summarizing, in the network hypothesis for heterosis, more regulatory interactions

are expected in heterozygous genotypes, which show heterosis in their phenotype,

than in the regulatory networks of the homozygous parental lines.
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In our experimental design of two homozygous parental lines and both recipro-

cal crosses, partial correlations of the observational profile omics data are used to

estimate the probability of additional regulatory interactions in the hybrids.

1.8 Thesis outline

This work takes a systems biological approach based on network structures to gain

a little further insight into the basis of heterosis. In particular, biomass heterosis

in the early development of Arabidopsis thaliana plants is studied. In all analyses

the experimental data was observed for the two homozygous lines C24 × C24 and

Col-0 × Col-0 of the model plant Arabidopsis thaliana and their reciprocal crosses

C24 × Col-0 and Col-0 × C24.

The first part of a heterozygous genotype refers to the maternal plant and the second

part the genotype of the paternal plant. So, C24 × Col-0 is the cross between

C24 × C24 as “mother” plant and Col-0 × Col-0 as the “father”. It is important

that both reciprocal crosses between two genotypes are studied because in most

plants the plastids are only inherited from one parent. In Arabidopsis thaliana, the

mitochondrial and plastid DNAs are inherited maternally (Mart́ınez et al., 1997; Ruf

et al., 2007).

In chapter 2 (published as Andorf et al., 2009), first, a simulation study based on

an artificial neuronal network is presented that demonstrates that more regulatory

possibilities go along with denser regulatory networks. Furthermore, it is shown in

the simulation study that causal interactions lead to increased partial correlations

between the two corresponding nodes of the trained artificial neuronal network.

These simulation results built a further basis, besides the literature, for the “network

hypothesis for heterosis” presented in section 1.7.

Moreover, the test of this hypothesis on metabolite profiles of the before described

four Arabidopsis thaliana genotypes is presented in chapter 2. Partial correlations

according to Schäfer and Strimmer (2005b) are calculated for all four genotypes to

estimate the connectivity of the underlying regulatory networks. Based on these

partial correlations, “partial correlation mid-parent heterosis” values for each metabo-

lite of either hybrid are calculated. Positive partial correlation heterosis values sug-

gest that the particular metabolite is involved in more regulatory interactions in the

hybrid than in the mid-parent expectation. Following the network hypothesis for

heterosis, positive partial correlation heterosis values are expected for the majority

of the metabolites.
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While reverse engineering analyses are very frequently applied in transcriptomics to

infer gene regulatory networks, the in chapter 2 presented use of metabolite data to

infer biological networks was a relatively untouched area in 2009 (Çakır et al., 2009)

when this analysis was published as Andorf et al. (2009).

The network hypothesis for heterosis is also tested on gene expression data of the four

Arabidopsis thaliana genotypes (published as Andorf et al. (2010a)). In this analysis,

presented in chapter 3, the significances of the partial correlations build the basis

of the calculation of the mid-parent and best-parent heterosis values. This chapter

also covers an over-representation analysis to determine if the genes that show the

strongest heterosis effects according to the network hypothesis for heterosis are par-

ticularly enriched in gene sets that were annotated according to The Arabidopsis

Information Resource (TAIR) (Huala et al., 2001) and Plant Ontology (PO) (The

Plant Ontology Consortium, 2002) databases.

The metabolite as well as gene expression data was measured at seven time points

during the early development of Arabidopsis thaliana. These “time series” profiles

are not time series from the mathematical or systems biological point of view. The

studied time points are several days apart from each other, which is a long part in

the life of Arabidopsis thaliana plants. In the experiments, data from steady states

are analyzed so that the dynamics within the biological system can not be studied.

In the 4th chapter, an integrative analysis of the results of the gene expression data

according to the network hypothesis for heterosis and genes that were identified in

QTL mapping experiments to influence biomass heterosis in Arabidopsis thaliana

(Meyer et al., 2010) is presented. This over-representation analysis is applied to get

a further insight into biomass heterosis in early Arabidopsis thaliana development

and to increase the confidence of identified candidate genes. Furthermore, the over-

lapping genes of the two approaches are tested for enrichment of Arabidopsis thaliana

pathways from the TAIR and PO databases.

Finally, a general conclusion is given in chapter 5. Furthermore, in the appendix,

supplementary analyses are presented. In appendix A the network hypothesis for

heterosis, based on significances of the partial correlations, that was applied to the

gene expression data in chapter 3, is tested on the metabolite data from chapter 2.

This was not only done for mid-parent heterosis as in chapter 2 but also for best-

parent heterosis. Appendix chapter B contains an analysis about the influence of

the used cutoff value in the significance filtering step.
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2.1 Abstract

We propose a network structure-based model for heterosis, and investigate it relying

on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network

model (the Steinbuch matrix) is used in our conceptual approach. It allows for

directly relating structural network properties with biological function. Interpreting

heterosis as increased adaptability, our model predicts that the biological networks

involved show increasing connectivity of regulatory interactions. A detailed analysis

of metabolite profile data reveals that the increasing-connectivity prediction is true

for graphical Gaussian models in our data from early development. This mirrors

properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model
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predicts a limit for increasing hybrid vigor with increasing heterozygosity – a known

phenomenon in the literature.

2.2 Introduction

“Biological function” is the core of biological research, but it is an ill-defined term.

Geneticists, cellular biologists, structural biologists, biophysical chemists and bioin-

formaticians all target different meanings in their respective research areas (Lambert

and Hughes, 1984; Ge et al., 2003). However, as a unifying notion, biological func-

tion always refers to semantic features and, as such, is always context dependent.

A specific state of any biological molecule alone is not accomplishing any biological

function (Bohm, 1980). Rather, biological function resides in interactions (Strogatz,

2001; Somogyi and Sniegoski, 1996; Noble, 2002). The characteristics of such bio-

logical interactions, when analyzed on a genome-wide scale, are referred to as the

structure of biological networks (including their dynamics). Relating structure of

biological networks to biological function is therefore a major objective in biology,

mirrored in recent developments such as systems biology.

A huge variety of biological networks exist, however, there are common characteris-

tics: Biological network structure always arises as interaction of genetic determina-

tion and environmental influences, as well as internal systems dynamics. As pointed

out by Somogyi and Sniegoski (1996), interactions within specific representations

of biological networks may either map directly to existing biomolecules, or may re-

flect rather indirect relations involving possibly many of hidden variables (Perrot

et al., 2007; Tresch and Markowetz, 2008). Most types of biological networks can

be interpreted also as regulatory networks, in the sense that they “respond” to en-

vironmental or developmental challenges by changing their state or dynamics. A

frequent approach to search for important network structures on a rather global

level of biological networks is statistical network modeling. It starts out by screening

for significant measures from graph theory (Barabási and Albert, 1999; Milo et al.,

2002; Saul and Filkov, 2007). Distributions of such measures can then be compared

between biological, technical or random networks, as well as between different classes

of organisms (Milo et al., 2002; Lee et al., 2002; Matthäus et al., 2008), regimes of

environmental challenges or developmental periods (Lee et al., 2002). If specific

structures are discovered, their relation to a biological function of interest may be

hypothesized and experimentally validated on further datasets.

In our case we are interested in contributing to a systems biological understanding

of the biological phenomenon of heterosis. Shull (1908) defined the term heterosis as
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(a) (b)

Figure 2.1: Definition of heterosis, (a): quantitative genetics definition of mid-parent
heterosis and best-parent heterosis (heterosis effect: arrows); (b): exam-
ple from early development in Arabidopsis thaliana – cotyledon areas are
the largest in heterozygous crosses (c, d) as compared to their homozy-
gous parents (a, b). [modified]

“increased vigor, size, fruitfulness, speed of development, resistance to disease and

to insect pests, or to climatic rigors of any kind, manifested by crossbred organ-

isms as compared with corresponding inbreds”. See Figure 2.1a for a quantitative

genetics definition of heterosis, and Figure 2.1b for an example of a trait showing

a heterotic phenotype, cotyledon area in Arabidopsis. Mid-parent heterosis denotes

an increase of performance relative to the mean of both parents, while best-parent

heterosis describes the situation where the heterozygous offspring performs better

than either parent. As early as in 1952, Robertson and Reeve (1952) suggested

that heterozygotes are likely to posses a greater biochemical versatility by carrying

a greater diversity of alleles. Heterosis would then result from a reduced sensi-

tivity to environmental variations, since in heterozygotes there will be additional

ways of overcoming such challenges. In other words, the heterosis phenomenon may

be due to higher adaptability in heterozygotes. On the genetic level, hypotheses

explaining heterosis may be grouped into two groups: On the one hand, dominant or

overdominant modes of gene action are thought to play a major role, assuming re-

cessive status for a majority of inferior alleles. On the other hand, enriched favorable

epistatic interactions are discussed as main reason for the heterosis phenomenon at

the molecular level (Birchler et al., 2003; Crow, 1952; Tsaftaris, 1995).

Gjuvsland et al. (2007) demonstrate how epistatic interactions within statistical ge-

netics models can be translated into functional structures of regulatory biological

networks. In our contribution we focus on these molecular network structures and

ask: Which structures of biological networks could systematically lead to higher

adaptability in heterozygotes, and, thus, to the heterosis phenomenon? For investi-

gating this question we choose to follow a conceptual modeling approach (Somogyi
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and Sniegoski, 1996; Wissel, 1992; Shubik, 1996). Our model choice is based on a

major result of statistical network modeling. Analyses of distributions of simple reg-

ulatory motifs both in prokaryotes and in eukaryotes point to similar results: The

so-called multi-input-motif is a significant and prominent part of regulatory biological

networks (Milo et al., 2002; Lee et al., 2002; Shen-Orr et al., 2002). The properties

of networks of this type were studied by Karl Steinbuch already in the year 1961

(Steinbuch, 1961). His studies were focusing on modeling and implementing models

of associative learning. The so-called Steinbuch matrix is a two-layer feed-forward

network. The information about which input vector is associated with which output

vector is encoded within the pattern of presence/absence of connections between

these two layers. We are going to use this Steinbuch network as a conceptual model

for biological networks and develop a hypothesis of heterosis based on biological net-

work structure. We expect specific global structures in biological networks to be

different between homozygotes and their heterozygous offspring.

To validate and further detail our network hypothesis of heterosis we analyze partial

correlation structures in experimental metabolite profile association networks from

two different homozygous Arabidopsis thaliana lines and both reciprocal crosses as

heterozygotes. These metabolite profiles were measured during early development

of Arabidopsis, as it is during this time heterosis phenomena become manifest in

this species (Meyer et al., 2004). We refer again to Somogyi and Sniegoski (1996)

following their argument that not only the transcriptome, but also the metabolome

could be viewed as a special mapping of the extended biological regulatory network.

Such a mapping would include many indirect regulatory interactions involving hidden

molecular variables which are part of other levels of gene expression.

Summarizing the objectives of our study, we motivate the proposal of a network-

structure based hypothesis of heterosis and look for heterozygote specific network

structures as predicted by a Steinbuch network conceptual modeling approach. Anal-

yses of metabolite profiles of early development in Arabidopsis thaliana and further

observations of heterosis in plants will serve as to validate and further adjust our

hypothesis.

Section 2.3 describes the experimental dataset and our pre-processing prior to sta-

tistical network analyses. In section 2.4 we describe our modeling approach as well

as a small simulation study. Its results motivated our choice of network statistics

for global assessment of network structures described in the remaining part of this

section. The first part of section 2.5 reports the simulation results. In its second part

we develop our network-structure based hypothesis of heterosis and its predictions.

In the last part of this section results of experimental data analysis as motivated by
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our model’s predictions are presented. Finally, in section 2.6 we discuss the main

findings of our study, their relevance, benefits and constraints of our approach as

well as future prospects.

2.3 Experimental Data and Preprocessing

We investigate metabolite profiles, GC-MS data, of early development of Arabidopsis

thaliana. More precisely, metabolite profiles of plants of the two homozygous lines

C24 and Columbia (Col-0) and the reciprocal crosses, Col-0 × C24 and C24 × Col-0,

are studied. Metabolite profiles of the two homozygous genotypes, C24 × C24 and

Col-0 × Col-0, and the two heterozygous genotypes, C24 × Col-0 and Col-0 × C24,

were measured at 7 time points (0, 12, 24, 36, 48, 72, 96 hours after sowing (HAS)).

For each measurement a petri-dish of seedlings was grown and fully harvested after

the specific time of growing. In our balanced cross-factorial design, four replicates

were assessed per genotype and time point, measured at three different measuring

days, such that each genotype-time point combination was measured at least once

per measuring day. The raw data preparation was performed as in Lisec et al.

(2006), afterwards, the data were log-transformed. Overall 210 metabolites have

been measured. Eight of them contained more than 20% missing values and were

therefore excluded from further analysis.

For normalization we chose a linear modeling approach, involving the factors g ∈
{C24 × C24,Col-0 × Col-0,C24 × Col-0,Col-0 × C24} denoting the four genotypes,
factor t ∈ {1, ..., 7} denoting the 7 time points of the developmental time series, their

interaction g × t, as well as factor d ∈ {1, ..., 3} denoting the measuring day. The

linear regression was fit on a per metabolite basis for the following model, for which

y, the logarithm of the raw metabolite signal, is modeled as dependent on the factors

described above:

yi,j,k,l = µ+ gi + tj + (g × t)i,j + dk + εi,j,k,l. (2.1)

Here, µ gives the overall mean, the four genotypes are denoted with index i, the

seven time points with index j, the measuring days with index k and the replicates

with index l. Normalized metabolite profiles were obtained using the effect estimates

from the fit of model 2.1 as in Eqn. 2.2. This way, data were corrected for measuring

day effects as well as correct mean values were calculated, even for combinations

with single missing values.

y∗i,j = gi + tj + (g × t)i,j. (2.2)
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The resulting time series of normalized metabolite profiles is plotted in Figure 2.2

for genotype C24 × C24.
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Figure 2.2: Profiles of normalized values for each metabolite (202 different colors)
over seven points for the genotype C24 × C24 as obtained from Eqn. 2.2.

2.4 Methods

2.4.1 Modeling and Simulation

Our conceptual modeling approach employs a model of association to simulate adapt-

ability in regulatory networks: Adaptedness can be described as the ability to give

a correct response (output) to an environmental or developmental challenge (input).

Hence, an adaptation can be viewed as the correct association of a response to the in-

put in question. Correspondingly, adaptability is the number of differentiated correct

adaptations a regulatory system is able to realize.

Figure 2.3a shows a scheme representing a diploid genome and various levels of

gene expression (transcriptome, proteome, metabolome). Black arrows represent

synthesis, colored arrows symbolize regulatory functions. Simplifying this scheme

leads to the simplest possible homomorphic model, an association matrix as in Figure

2.3b. Here, input and output are associated via the interactions between input layer

and output layer. In the output layer, signals from the input layer are summed up

and compared to a threshold cutoff as to yield an output of “1” if larger or equal,

or of “0” if smaller. The association network can be modeled mathematically as an
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(a) (b)

Figure 2.3: Schematic representation of molecular networks (a) with synthesis (black
arrows) and regulatory functions (colored arrows), as homomorphic to the
association network model (b), representing a two-layered feed-forward
Steinbuch matrix: Associated input-output pairs are depicted in corre-
sponding colors (blue and red). Black arrows depict regulatory interac-
tions between specific input and output nodes.

n x n matrix, R, where n denotes the size of the network which is given by the

number of nodes in the input and output layer, respectively (e.g. n = 5 for the

network in Figure 2.3b). In this model each molecular entity (metabolite, protein,

transcript) has two possible states, “0” or “1”. The input signal, sin, is converted

into the output sout through

sout = θ(R · sin) (2.3)

where θ is a threshold function that is applied component wise:

θ([R · sin]i) :=
{

1 if [R · sin]i ≥ ϑi

0 if [R · sin]i < ϑi

(2.4)

where for example ϑi = maxi([R · sin]i).
For the case given in Figure 2.3b, the matrix for the association network is given by

R =

















0 1 0 1 1

1 0 1 1 0

1 1 1 1 1

0 0 0 0 0

0 1 0 1 1

















. (2.5)

We conducted a small simulation study, employing an association matrix of size
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n = 150 which is capable of correctly associating 4 pairs of input-output vectors.

The model was trained to reproduce these pre-defined input-output pairs, which can

be interpreted as some kind of crucial regulatory reply (regulatory step) to cope

with a special environmental challenge. The study should reveal whether a partial

correlation analysis of state profiles for the nodes of the network is a valid possibility

to study the causal regulatory interactions in this network. 100 randomly generated

input vectors, sin, and their corresponding outputs, sout, were stored as profile data

and partial correlations calculated as detailed in what follows.

2.4.2 Network Statistics

Different types of networks can be used to assess the underlying biochemical interac-

tion network from high-throughput metabolomic data. For our analysis we have used

partial correlations. This belonging network is known as graphical Gaussian model

(GGM), concentration graph, covariance selection graph, conditional independent

graph (CIG) or Markov random field (Opgen-Rhein and Strimmer, 2007b). Partial

correlations have been shown to be a suitable method for deducing regulatory in-

teractions from observational (non-interventional) data (Werhli et al., 2006). They

are calculated by Opgen-Rhein and Strimmer (2007b) from metabolite levels as in

Eqn. 2.6.

ρ̃k,l =
−ωkl√
ωkkωll

(2.6)

The basis for these values are the normalized metabolite values for the seven time

points from Eqn. 2.2 for each genotype and each of the analyzed 202 metabolites.

Thus, for any two metabolites of one of the four genotypes, partial correlations can be

calculated based on the seven pairs of metabolite values corresponding to the seven

time points. ρ̃kl is the estimate of the partial correlation between the metabolites k

and l. ω are the elements of the inverse covariance matrix which is estimated using a

shrinkage estimator (Schäfer and Strimmer, 2005b). The algorithm is implemented

in the R package GeneNet (Opgen-Rhein et al., 2007).

We investigate changes for the partial correlation structure between heterozygous

and homozygous genotypes by first calculating a “mid-parent”-value as mean value

for each metabolite and both homozygous genotypes:

ρ̃ midparent
m,n =

1

2

∑

i∈{C24×C24,Col-0×Col-0}

ρ̃i,m,n (2.7)

for all metabolites m,n ∈ {1, ..., 202}.
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Second, the heterosis effects were calculated for both heterozygotes as increase of

absolute partial correlation in the heterozygote compared to the mid-parent value.

These values were calculated for all pairwise combinations of metabolites (Eqn. 2.8,

compare Figure 2.1a). We considered absolute correlations because an increase of

positive correlations should be equally weighted as a decrease of a negative correla-

tion:

ρ̃ heterosis
k,m,n = |ρ̃k,m,n| − |ρ̃ midparent

m,n |. (2.8)

Here, k denotes the respective heterozygous line (k ∈ {C24 × Col-0,Col-0 × C24}).

Third, to characterize changes in partial correlation with respect to the mid-parent

value on a per-metabolite basis, for each metabolite met ∈ {1, ..., 202} we calculated

the mean values across all pairs involving this metabolite1:

˜̄ρ
heterosis

k,met =
1

201

∑

l∈{1,...,202},met 6=l

ρ̃ heterosis
k,met,l (2.9)

Distributions of ˜̄ρ
heterosis

k,met were displayed and compared.

To investigate if the metabolites showing the largest values for ˜̄ρ
heterosis

k,met had a specific

distribution over metabolite pathways we visualized the first thirty metabolites in a

ranking of ˜̄ρ
heterosis

k,met for each heterozygous line using MapMan (Thimm et al., 2004).

MapMan is a tool to display large datasets onto diagrams of metabolic pathways.

Not only global distributions of changes in partial correlations could be different

between homozygous and heterozygous lines, but also structural properties of partial

correlation networks. In such networks edges are significant partial correlations,

computed according to Opgen-Rhein and Strimmer (2007b). P -values were corrected

using the FDR correction described by Benjamini and Hochberg (1995). Accordingly,

nodes in partial correlation networks are the metabolites contributing to significant

partial correlations.

The degree of such a node is defined as the number of edges it is part of. We

characterized the partial correlation networks of the two homozygous and the two

heterozygous lines by counting significant edges and the participating nodes, as well

as calculating the mean degree values over all nodes of a network.

1formula slightly modified
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2.5 Results

2.5.1 Simulation Results

When comparing association matrices capable of reproducing an increasing number

of associations (p ∈ {1 . . . 4}), the belonging networks show an increasing number of

causal interactions between input and output layer (see Figure 2.4a).

Our small simulation study, where we recorded outputs for 100 random inputs to a

150x150 association matrix reproducing 4 input-output associations, revealed that

causal interactions between input and output layer lead to increased partial correla-

tions of the respective nodes.

As demonstrated in Figure 2.4b, for our model causal interactions can be deduced

from observational profile data by calculating partial correlations. These properties

of our conceptual model led to the development of a network-structure based model

of heterosis as outlined in what follows.

2.5.2 Network Hypothesis of Heterosis

As suggested by Robertson and Reeve (1952) heterozygotes are likely to posses a

greater biochemical versatility by carrying a greater diversity of alleles. Heterosis

would then result from a reduced sensitivity to environmental variations, since there

will be ways of overcoming such challenges. In other words, the heterosis phenomenon

may be due to higher adaptability in heterozygotes.

Correspondingly, as illustrated in Figure 2.3a, the molecular network of a heterozy-

gous cross may contain a proportion of heterozygous loci, as for gene “b” for example.

The additional alleles at this locus may lead to additional regulatory interactions in

the molecular network (yellow arrows in Figure 2.3a). In our model, as shown in

the simulation (see Figure 2.4b), additional causal interactions are the basis of an

increasing number of associations in the repertoire of the Steinbuch network.

It is known from earlier studies of system properties of the Steinbuch network that

there exists a limit of associated pairs for a network of a given size (Nadal, 1991). A

Steinbuch network of a given size can be build to be able to differentiate between a

certain number of inputs by “responding” with the (associated) belonging outputs,

and not more. This is a known system property of this type of regulatory network –

but also for other types of neural networks.

Moreover, if we measure an increasing amount of partial correlations within a molec-

ular network, this might correlate with an increased amount of regulatory “challenge-

response” pairs managed by this network, and, hence, with increased adaptability.
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number of associations: 1 number of associations: 2

number of associations: 3 number of associations: 4

(a) (b)

Figure 2.4: Example for a 150x150 Steinbuch matrix. (a): Increase in number of
regulatory interactions between input and output layers, representing an
increasing number of association pairs. (b): Analysis of the matrix of (a)
with the ability to reproduce 4 pre-defined association pairs. Distribution
of partial correlations for non-interacting input-output nodes (blue, entry
“0” in R) and for interacting input-output nodes (red, entry “1” in R).
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Interpreting these properties as conceptual model for adaptation and adaptability in

molecular regulatory networks leads to two predictions for the case of heterosis:

1. There should exist a limit for increasing hybrid vigor with increasing level of

heterozygosity. Increasing the genetic distance of homozygous parental lines

beyond a certain threshold should result in less hybrid vigor if these parental

lines are genetically too different. When mating two similar homozygous geno-

types, only few additional regulatory connections within the molecular net-

works can be expected. However, when mating homozygous genotypes which

are genetically very different (with large genetic distance) the limit of the re-

sulting merged molecular network structures may be exceeded – in the sense

that regulatory interactions in the network of the resulting heterozygotes do not

match and therefore do not lead to additional possibilities of valid regulatory

answers.

2. Molecular interactions in regulatory networks of heterozygotes should be slightly

enriched. This increased number of “challenge-response”-pairs are modeled as

a higher number of association pairs in our conceptual model, interpretable as

increased adaptability leading to heterosis. As for the model, where we were

able to measure interactions as increased partial correlations, we also expect

an increase in partial correlations from homozygotes to heterozygotes for the

experimentally observed dynamics of biological regulatory networks.

For evaluating prediction 1 we had no own experimental data, as these were only

based on crosses of two homozygous lines. Instead, we analyzed the literature basis of

a possible relationship between heterosis and genetic diversity. Figure 2.5 summarizes

this literature view regarding a possible limit of gain in hybrid vigor in offspring for

heterosis

inbreeding
depression

genetic distance

Figure 2.5: Possible relationship between genetic distance of the parental lines and
hybrid vigor in the offspring. There is evidence for the existence of a
limit of increase in hybrid vigor, as indicated in Moll et al. (1965); Link
et al. (1996); Melchinger (1999) and Falconer and Mackay (1996).
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increasing genetic diversity between the parental lines. From studies in maize as well

as beans it seems likely that, with increasing genetic diversity between the parental

lines, resulting hybrid vigor for the offspring at first increases. However, for parental

lines which are genetically too different it is expected to decrease again (Moll et al.,

1965; Link et al., 1996; Melchinger, 1999; Falconer and Mackay, 1996). We want to

emphasize that, given the literature basis as investigated, further research on the

first part of our network hypothesis of heterosis seems promising – and necessary, as

at the moment we cannot draw stronger conclusions.

Regarding prediction 2 we studied our experimental dataset, the Arabidopsis me-

tabolome of a developmental time series (see section 2.5.3). From the perspective

of our model, Figure 2.3a illustrates how the molecular network of heterozygotes

contains additional regulatory possibilities. In the association network model these

correspond to additional connections (interactions) between input and output layer,

enabling the network to add additional associations to its repertoire. These addi-

tional associations (input-output-pairs) represent a grown repertoire of adaptations,

or increased adaptability, enabling increased hybrid vigor. The objective of our ex-

perimental data analyses was to investigate if such increase in molecular interactions

would be measurable as increase in partial correlations as a global network property

for the metabolite profiles recorded during Arabidopsis development.

2.5.3 Analysis of Experimental Data

Our experimental data were metabolite profiles from development of Arabidopsis

thaliana (see Figure 2.2). To test our hypothesis that heterosis comes as increasing

adaptability and should result in increasing connectivity of molecular networks, we

had first conducted a small simulation study (see section 2.5.1). Its findings provide

the basis for our investigation of partial correlation structures of the metabolomes of

heterozygous and homozygous genotypes for the experimental data, as we want to

test a hypothesis about increased regulatory possibilities in heterozygotes and the be-

longing structures of molecular profiles. Hence, we now analyzed partial correlations

according to Opgen-Rhein and Strimmer (2007b) for our experimental dataset.

The average heterosis increase of the partial correlations in the heterozygous lines

as compared to the mid-parent value (mean of the homozygous lines) was calculated

(˜̄ρ
heterosis

k,met , see Eqn. 2.9). Results are displayed in Figure 2.6. The histograms for

˜̄ρ
heterosis

C24×Col-0,met for the genotype C24 × Col-0 (Figure 2.6a) as well as ˜̄ρ
heterosis

Col-0×C24,met for

the genotype Col-0 × C24 (Figure 2.6b) show that for a majority of the metabolites

the calculated difference is positive. That means that the mean partial correlation
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(a) (b)

Figure 2.6: Display of ˜̄ρ
heterosis

k,met for k ∈ {C24 × Col-0,Col-0 × C24} (see Eqn. 2.9).
The mean differences for the most metabolites between the partial cor-
relations of genotype C24 × Col-0 (a) as well as Col-0 × C24 (b) to the
average of the homozygotes (mid-parent) are positive values.

values of either heterozygous genotype are larger than the average of the homozygotes

(mid-parent).

For each heterozygous genotype the 30 metabolites that show the largest difference

were determined. For the genotype C24 × Col-0 these selected metabolites are

displayed onto a diagram of biochemical pathways in Figure 2.7 using MapMan

(Thimm et al., 2004) to study possible pathway-related differences in the partial

correlation values between homozygous and heterozygous genotypes. Metabolites of

the top 30 are marked as red points. The picture does not contain 30 red points

because the top 30 list contains several unknown metabolites. Furthermore, not all

metabolites are available in the MapMan annotation. The displayed metabolites

are relatively evenly distributed over all illustrated pathways. For the genotype

Col-0 × C24 this distribution looks similar (data not shown). 12 metabolites were

in common for the top 30 lists of both heterozygous genotypes.

Table 2.1: Significant partial correlations (significance level αFDR = 0.1).

Genotype No. sign. edges Corresp. nodes Mean degree

C24 × C24 10 13 1.54
Col-0 × Col-0 23 23 2.00
C24 × Col-0 81 45 3.60
Col-0 × C24 64 40 3.20

In Table 2.1 the detailed results of the connectivity analysis are listed. For all

metabolites the partial correlations are based on the time series of the 7 time points

from 0 HAS to 96 HAS. In the table, the number of significant edges and the number
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Figure 2.7: Metabolites with highest mean differences between absolute partial cor-
relation values of genotype C24 × Col-0 and the mean of the homozygous
lines are displayed on plant biochemical pathways (red). White: metabo-
lites that are present in the MapMan (Thimm et al., 2004) annotation
list as well as in our metabolite list but not within the top 30 list. Dark
gray: not measured.
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Figure 2.8: Display of numbers of detected significant partial correlations as depen-
dent on corrected P -value cutoff (significant partial correlations) for the
4 genotypes. Heterozygotes (dashed lines) show a higher number of sig-
nificant edges throughout. (C24 × C24: green, Col-0 × Col-0: blue,
C24 × Col-0: orange, Col-0 × C24: red)
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of nodes (metabolites) that belong to these edges are shown. Our main focus in this

analysis was on mean degree. These mean degree values were calculated on the

basis of the number of nodes with significant edges (see definition at the end of

section 2.4.2).

Both homozygous genotypes show lower mean degrees than either heterozygote. As

shown in Figure 2.8 the relation between the number of significant edges of the

heterozygotes and those of the homozygotes is nearly independent from the cutoff

used.

We choose a cutoff αFDR = 0.1 for the FDR-corrected P -value to determine the sig-

nificant edges in each analysis. This outcome is illustrated in Figure 2.9: The partial

correlation networks of the two heterozygous genotypes show more connections than

the networks of the homozygous genotypes.

Hence, results of Figure 2.6 and Figure 2.9 point towards the same tendency, support-

ing the “increased-connectivity”-prediction of our network hypothesis of heterosis.

This tendency is strengthened as most of the 30 metabolites that show the largest

differences between the heterozygotes and the mid-parent value also have significant

edges. In more detail, for genotype C24 × Col-0, 25 of the top 30 metabolites and,

for genotype Col-0 × C24, 27 of the top 30 metabolites have significant edges. Total

numbers of nodes with significant edges are 45 and 40 respectively (see Table 2.1).

In average, for either heterozygous genotype 86.7% of the top 30 metabolites show

significant edges.

Col-0xC24

C24xCol-0C24xC24

Homozygous Heterozygous

Col-0xCol-0

1.54 3.6

2 3.2

Figure 2.9: Connection plots based on partial correlations, using a cutoff αFDR = 0.1
for the belonging FDR-corrected P -values. The heterozygous genotypes
show more significant edges and a higher connectivity than the homozy-
gous genotypes. Mean degrees are given for each genotype.
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2.6 Discussion

We have developed a network structure-based hypothesis of heterosis. It is a sys-

tems biological approach to relate biological function to molecular network structure.

Our hypothesis results in the following predictions: First, system properties of our

network modeling approach suggest the existence of an upper limit for the heterosis

effect when genetic distance of crossed homozygous parental lines becomes too large.

Second, molecular networks of heterozygotes should contain additional interactions

compared to those of their homozygous parents. These additional interactions should

lead to increased partial correlations in molecular networks of heterozygotes. For the

first prediction, we found support in the literature suggesting an upper limit for the

heterosis effect. However, as we do not have sufficient additional own experimen-

tal evidence, no final conclusion can be drawn for this case. Further investigations

seem promising and necessary. Regarding the prediction of increased connectiv-

ity of molecular networks in heterozygotes, for our own experimental metabolome

dataset of Arabidopsis such increased connectivity was observable for both heterozy-

gous crosses. It is this phase of early Arabidopsis development in which the heterosis

effect is established. The predicted pattern is visible for the majority of metabolites.

However, also for the second part of our network hypothesis of heterosis, we call for

additional experimental evidence, preferably on additional levels of molecular regu-

latory networks, such as proteomics or transcriptome data. Summarizing, we present

a conceptual frame for explaining the heterosis phenomenon from a molecular net-

work perspective together with two hypotheses and their predictions, for which we

were able to find first supporting evidences from the literature and own experimental

data.

We are convinced that research towards understanding the biological phenomenon

of heterosis can particularly gain from a systems biological approach focused on

interactions of molecular building blocks and global structures of molecular biolo-

gical networks. Towards elucidating the genetic basis of heterosis, Melchinger et al.

(2007b) have already shown that, taking a statistical modeling approach, epistatic

interactions of individual loci with the entire genetical background constitute a major

component of genetic variation important to explain heterosis. However, the map-

ping between interaction terms in models of quantitative genetics to structures in

molecular regulatory networks is non-trivial (Gjuvsland et al., 2007; Gibson, 1996).

Our approach to investigate global network structures in molecular interaction net-

works for this reason is to be taken as complementary to the quantitative genetics

view.
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Meyer et al. (2004) report for Arabidopsis thaliana development, that it is the early

phase of development (until one week of seedlings growth) during which the heterosis

phenotype for biomass is established. In later phases of the plant’s life relative

differences between heterozygotes and homozygotes are not further growing. The

first observation coincides with our results: We observe increased connectivity in

partial correlation networks in this period of development. It would be interesting to

see – and is planned as future experimental study – if during the later phase, when

according to Meyer et al. (2004) biomass heterosis is visible but no longer increasing,

there is no indication of increased connectivity in the metabolome any longer.

The majority of metabolites investigated showed an increase in interaction connec-

tivities. We tried to find common functionalities for the top thirty metabolites with

most obvious changes. However, we were not able to detect evidence towards an

accumulation of such metabolites within certain pathways or modules (MapMan

categories). We hypothesize that it may be these metabolites which during the early

phase in Arabidopsis development are mainly involved in regulatory interactions – to

enable adaptation to the climatic chamber during the first contact with this envi-

ronment.

Only part of the observed changes in partial correlations between heterozygous lines

and the mid-parent value of both homozygotes can be based upon significant par-

tial correlations (compare Figure 2.6 and Figure 2.9). However, the same tendency

is apparent for the global view as well as for the restriction to significant correla-

tions. It is the sparsely designed experimental data which does not allow a more

precise analysis. Seven time points are clearly the lower limit of correlation analyses

involving around two hundred metabolite species. We look forward to more gener-

ously designed experiments for testing our network-structure based hypotheses for

heterosis.

Our modeling approach is conceptual as advocated for by, for example, Wissel (1992)

and Shubik (1996). It builds upon the understanding of the heterosis phenomenon

as increased adaptability. This understanding has its roots already at the begin-

ning of the 20th century in maize genetics (Shull, 1908) and since then has been

expressed also within the context of hybrid vigor observed for other plant species

as well as model animals (see, e.g., Robertson and Reeve (1952); Solomon et al.

(2007); Harrison (1962)). We make use of a model for adaptability which was origi-

nally designed to model associative memory, the Steinbuch matrix (Steinbuch, 1961).

Within our model, being adapted means to respond in a correct way when confronted

with a certain environmental or developmental stimulus – while adaptability means

the potential to respond to a number of different stimuli with differentiated cor-
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rect responses. The simplicity of this conceptual modeling implies rather general

predictions. In our case these are the limit-of-heterosis-increase prediction and the

increasing-connectivity prediction. These are predicted for a huge class of interaction

networks, independent of molecular species. Motif analyses in different molecular in-

teraction networks as well as within organisms of different kingdoms (prokaryotes,

eukaryotes) have shown that certain motifs are always present. The “multi-input-

motif” is a prominent example. Here we refer to the work by Milo et al. (2002) and

Lee et al. (2002). The multi-input-motif has the same structure as our association

network model, which was first proposed already 1961 by Steinbuch (1961). Further-

more, molecular interactions are often modeled based on a sigmoidal relationship as

approximated by the boolean kind of interaction in the Steinbuch model (discussed

in Kauffman, 1993).

A central assumption underlying motif analyses as well as our modeling approach

for this work is that neglecting the diversity of different kinds of molecular species,

that interact within real molecular networks, does not harm at the rather general

level of conclusions of our conceptual investigations. It is clear that natural mole-

cular networks cannot be reduced to a very simplistic model in all their structural

and dynamical properties. However, we chose to follow Shubik’s call for the most

parsimonious modeling approach (Shubik, 1996). Also, heterosis is a very general

biological phenomenon together with its counterpart inbreeding depression. Both

phenomena are occurring over a broad variety of sexually reproducing organisms. For

this reason, approaches towards understanding the systems biological foundations of

these phenomena should be independent of all organism specific parameters, in other

words as simple as possible.

Choosing the metabolome level, as in our study, is just one possibility. With Somogyi

and Sniegoski (1996) we argue that the extended regulatory network of an organism

can be mapped to any of its levels of gene expression (“omics” levels). However, the

modeler has to be aware of all possible hidden variables constituting each of the in-

vestigated interactions. These hidden variables are representations of the molecules

from the “omics” levels which were not modeled. In our case for example, regulatory

interactions between metabolites have no direct correspondence to metabolic path-

ways. Moreover, as is true for gene expression studies for the case of transcription

factors, also in metabolomics it is not at all possible to assess all molecules, but only

a small fraction. The measurable fraction may or may not be a biased sample from

the entire metabolome – and for this reason inferring network structures from such a

sample has always to be taken with care (for an example concerning network statis-

tics in protein interaction networks see de Silva et al. (2006)). Also, we are aware
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of the problem of cell type heterogeneity in our samples which are basically whole

embryo/plant homogenates. Measured profiles in our case represent metabolite lev-

els of the major cell type. In addition, it is important to take into account the fact

that those 202 metabolites in our investigation are just around 10% (possibly less)

of the metabolites that are suposed to be present in Arabidopsis thaliana (Cui et al.,

2008). Thus, our network structure-based hypothesis of heterosis was validated only

for the core carbon metabolism. These small molecules, as for example sugars, amino

acids and carbon acids, act mostly within energy metabolism and as precursors for

building the larger biomolecules, proteins, nucleic and fatty acids. These metabo-

lites represent what is currently measurable with the GC-MS metabolite profiling

experiments.

For future investigations of molecular network structures with respect to the heterosis

phenomenon it will be an interesting challenge to extend the time series design of the

current study in several aspects. To enable a more general conclusion regarding the

two predictions from our network hypothesis of heterosis it would be worth comparing

several different homozygous lines and their reciprocal offspring. Also, genetically

very different lines should be included to approach a direct test of the limit-of-

heterosis-increase prediction. Moreover, time points should be set more dense, e.g. as

10 hours intervals, and over a longer time-scale, e.g. at least along the first four weeks

of Arabidopsis thaliana development. Such a design would enable both a higher

precision for estimating partial correlation structures, as well as assessing a possible

change of such structures during later phases of development – for which according to

Meyer et al. (2004) no additional heterosis effects are arising. Furthermore, studies

are already planned to analyze transcript data measured under the same conditions

as our metabolome dataset. This would enable to show, first, how two levels of

the extended regulatory network act together taking an integrative bioinformatics

approach (see for example Steinfath et al. (2007)). Second, it would be possible

to test the increasing-connectivity prediction of heterosis also for the level of the

transcriptome.

Regarding alternative approaches to measure differential network structures in mole-

cular networks of homozygotes and heterozygotes there exist a number of possible

choices. An alternative type of networks used for inference of biochemical interaction

networks are for example the so-called relevance networks. Butte et al. (2000) base

their method on a pairwise Pearson correlation of all features. A serious limitation

of relevance networks is, that they contain many indirect correlations, because they

cannot distinguish between direct and indirect interactions. For our kind of observa-

tional data Werhli at al. have shown that it is preferable to use association networks
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to infer regulatory interactions (Werhli et al., 2006). For this reason, we decided to

analyze partial correlations as proposed by Opgen-Rhein and Strimmer (2007b). We

also favored the regularized inference of the covariance matrix they proposed, which

is applicable for data with a small sample size and a comparatively large number of

variables, as in our metabolome dataset. Our simulation study was able to demon-

strate that, when observing a number of partial correlations from the Steinbuch

model, these could be used to identify the nodes of input and output layer which

were connected in the regulatory architecture of the network model to reproduce

four pre-defined input-output patterns. Hence, for our conceptual model, regula-

tory interactions could be deduced from partial correlations. A possibly promising

way to extend our analyses could be oriented along the lines of the work by Saul

and Filkov (2007) who proposed to use so-called exponential random graph models.

They demonstrate their utility in modeling the architecture of biological networks as

a function of a number of different measures of local network structure, not only a

single measure as in our case. The flexibility, in terms of the number of available lo-

cal feature choices, and scalability possibly make this approach a suitable alternative

for statistical modeling of biological networks.

To summarize, in our work we followed the call of Barabási and Oltvai (2004) who

conclude their review on network biology by stating that structure, topology, network

usage, robustness and function are deeply interlinked, forcing us to complement the

’local’ molecule-based research with integrated approaches that address the proper-

ties of regulatory networks on a systems biological level. In our study we have done

so, by proposing a network structure-based model of heterosis and investigating its

predictions for an experimental omics-dataset: Heterotic phenotypes of Arabidopsis

are mirrored as increased connectivity in metabolome partial correlation networks.

A limit of hybrid vigor increase for increasing genetic distance of crossed parents is

also correctly predicted. These results hold for the measured part of the metabolome,

mostly central carbon metabolism.

Our conclusions cannot be more than an illustrative example of how a hypothesis

can be built about a possible relation of biological network structure to biological

function, in our case the heterosis phenomenon. We advertise our approach as a way

of investigating heterosis complementary to the quantitative genetics approach and

look forward to future unifying approaches to these two fields.
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3.1 Abstract

Heterosis is a well-known phenomenon but the underlying molecular mechanisms are

not yet established. To contribute to the understanding of heterosis at the molecular

level, we analyzed genome-wide gene expression profile data of Arabidopsis thaliana

in a systems biological approach. We used partial correlations to estimate the global

interaction structure of regulatory networks. Our hypothesis states that heterosis
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comes with an increased number of significant partial correlations which we interpret

as increased numbers of regulatory interactions leading to enlarged adaptability of

the hybrids. This hypothesis is true for mid-parent heterosis for our dataset of gene

expression in two homozygous parental lines and their reciprocal crosses. For the

case of best-parent heterosis just one hybrid is significant regarding our hypothesis

based on a resampling analysis. Summarizing, both metabolome and gene expression

level of our illustrative dataset support our proposal of a systems biological approach

towards a molecular basis of heterosis.

3.2 Introduction

The phenomenon of heterosis has already been known since the last century (Shull,

1908). It was defined as “increased vigor, size, fruitfulness, speed of development, re-

sistance to disease and to insect pests, or to climatic rigors of any kind, manifested by

crossbred organisms compared with corresponding inbreds, as the specific results of

unlikeness in the constitutions of the uniting parental gametes” by Shull (1952). This

definition is restricted to describing the phenotypes that result when two different

inbred lines are crossed. Therefore, it is often interpreted as not implying a genetic

basis for heterosis (Lamkey and Edwards, 1999). This was accomplished by Schnell

and Cockerham (1992) defining heterosis as the difference in performance between

hybrid and the mean of the two parents. Figure 3.1 displays such a quantitative

genetics definition of heterosis. Mid-parent heterosis is the difference in phenotype

value between the heterozygous offspring and the mean of the homozygous parents,

while best-parent heterosis describes the situation where the hybrid exceeds the best

parent.

Three different genetic models to explain heterosis have been suggested: dominance

(Bruce, 1910; Xiao et al., 1995), overdominance (Shull, 1908; East, 1936; Crow, 1952)

Parents
AA BB AB (case 1) AB (case 2)

Offspring

Mid-parent

Performance

Heterosis
effect

Mid-parent
heterosis

Best-parent
heterosis

Best-parent

Figure 3.1: Quantitative genetics definition of heterosis. The black parts of the per-
formance of the heterozygous offspring denote the heterosis effect
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and epistasis (Schnell and Cockerham, 1992; Li et al., 2001; Luo et al., 2001). These

hypotheses can be divided into approaches based on dominance or overdominance

and global approaches (epistasis) (for review see Lamkey and Edwards (1999) and

Birchler et al. (2003)). Towards a molecular basis of heterosis, it has been analyzed

which genes show the above genetic non-additivity in their expression levels (Vuyl-

steke et al., 2005), and if such genes are enriched in yield-related QTL (Wei et al.,

2009). However, a molecular mechanistic model, which would be able to explain how

the observed phenomena on the molecular level are integrated to result in heterosis

on the phenotype level, is still lacking.

In our contribution, we use a systems biology approach to analyze heterosis in Ara-

bidopsis thaliana plants based on patterns in genome-wide gene expression profiles.

Already Robertson and Reeve (1952) suggested that heterozygotes are likely to posses

a greater biochemical versatility by carrying greater diversity of alleles. Additional

alleles at heterozygous loci may lead to additional regulatory interactions in the

molecular network. Equipped with an enlarged repertoire of regulatory possibilities,

hybrids may possibly be able to correctly respond to a higher number of environ-

mental challenges leading to higher adaptability (individual acclimation ability) and,

thus, the heterosis phenomenon.

Nowadays, high-throughput techniques, such as microarrays, allow measuring

genome-wide feature profiles simultaneously. In global approaches, these datasets

can be used to discover the interactions of molecules, how they are organized in

networks and how the different networks are linked to each other (Barabási and

Oltvai, 2004). Partial correlations have been recommended to estimate regulatory

interactions from observational data (Werhli et al., 2006).

Simple network models have been proposed to model the regulatory apparatus in a

parsimonious way (Shubik, 1996; Somogyi and Sniegoski, 1996; Genoud and Métraux,

1999). On this background we developed our “network hypothesis of heterosis” (An-

dorf et al., 2009). Our conceptual modeling results proposed that higher adaptability

comes with an increased number of molecular interactions. To characterize the global

interaction structure of regulatory networks, we use partial correlations (association

networks). Based on the hypothesis of Robertson and Reeve (1952) and our con-

ceptual model, we expect that the heterozygous genotypes show enriched partial

correlations compared to the homozygous parents. These larger partial correlations

represent the additional regulatory interactions in the molecular networks of the

hybrids. Also, a gene set enrichment analysis is included to check for pathway-

specific enlarged partial correlations.
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The hypothesis was already tested on a metabolite dataset of samples of A. thaliana

plants (Andorf et al., 2009). In this paper we will check if the hypothesis also holds

true for gene expression data of the same genotypes. We use a certainly limited

dataset, but aim to propose and illustrate a systems biological view which allows

for an integrated hypothesis about the molecular basis of heterosis, complementing

single gene and quantitative genetics approaches.

3.3 Materials and methods

3.3.1 Experimental data and preprocessing

Gene expression data were measured using Agilent’s Arabidopsis thaliana Microarray

Kit 4x44k, P/N G2519F (Agilent Microarray Designs ID 021169, arrays contain four

subarrays where each represents a different hybridization). To isolate the RNA

the innuPREP Plant RNA Kit (845-KS-2060250, Analytik Jena) was used. The

RNA was obtained from seedlings of A. thaliana of two homozygous lines C24 and

Columbia (Col-0) and the reciprocal crosses C24 × Col-0 and Col-0 × C24. Gene

expression profiles were measured during early development at seven time points [4,

6, 10, 15, 20, 25 and 30 days after sowing (DAS)]. For each measurement, a group

of seedlings (Petri dish, pot) was grown and fully harvested after every specific time

of growing.

Figure 3.2 shows the experimental design, a multiple nested loop design. Each ar-

row represents one subarray, where the arrowhead symbolizes that the sample was

labeled with one color and the root of the arrow symbolizes the other color. For

each genotype-time point combination 2 or 4 biological replicates were measured.

For the time points of 4, 10, 20 and 30 DAS, we had four replicates each. Part of the

subarray that contains the samples of C24 at the time points 15 and 20 DAS (dashed

4 6 10 15 20 25 30 DAS

C24

Col-0

C24xCol-0

Col-0xC24

Figure 3.2: Experimental design with multiple loops. Each arrow symbolizes one
subarray (dashed arrow : subarray was excluded from analysis)
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Table 3.1: Eight Boolean variables related to outliers (Agilent Technologies Inc.,
2008)

Green channel Red channel

gIsFeatNonUnifOL rIsFeatNonUnifOL
gIsBGNonUnifOL rIsBGNonUnifOL
gIsFeatPopnOL rIsFeatPopnOL
gIsBGPopnOL rIsBGPopnOL

arrow in Figure 3.2) was covered by an air bubble and therefore, this subarray was

excluded from the analysis.

Figure 3.3 summarizes the workflow of our analysis, beginning with the raw data

from these microarray hybridizations.

During reading the raw data with the function read.maimages of the Bioconductor

(Gentleman et al., 2004) R package limma (Smyth, 2005), low quality spots were

detected using eight quality features (see Table 3.1) described in the reference guide

of the Agilent Feature Extraction Software (Agilent Technologies Inc., 2008). After-

wards, the raw intensities of the spots that were not flagged out, were background

corrected using the method normexp (Ritchie et al., 2007) of the R package limma.

Background corrected values were lowess normalized to get as unbiased red/green-

ratios as possible. For global comparability, the data of all arrays were quantile

normalized (Smyth and Speed, 2003). For 3651 genes, more than 20% of the mea-

sured values were flagged out and therefore these genes were excluded from further

analysis.

As proposed by Yang et al. (2002), normalized gene intensities were obtained as in

Eqs. 3.1 and 3.2 from re-parameterizing the normalized log-ratios (M) and mean

log-intensities (A) from the limma analysis.

M = log ICy5 − log ICy3 A =
1

2
(log ICy5 + log ICy3) (3.1)

log ICy5 = A+
1

2
M log ICy3 = A− 1

2
M. (3.2)

Regarding the locus IDs, 6,647 genes are represented by two or more spots on each

subarray. The normalized intensity values for all measurements of these genes are

replaced by the average of the values of the multiple spots. This leaves 33,445 genes

for the further analysis.

Subsequently, profiles of non-expressed genes as well as approximately constant pro-
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Figure 3.3: Workflow of our analysis
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files were cleaned out applying two further filtering steps. In the first step, genes

with very small maximum intensity values were screened out. Based on the distri-

bution of the maximum intensity values of all genes (data not shown), we required

a minimum intensity of log I ≥ 7 for at least one measurement of the gene. In the

second step, genes were excluded from the subsequent analysis which showed low

variation in their normalized intensities. In this filtering step we applied a cutoff of

2.8.

We used a linear model (adjusted to Kerr et al. (2000); Kerr and Churchill (2001))

to analyze the experimental loop design and estimate the gene expression profiles.

It contains the factors g denoting the four genotypes, factor t ∈ {1, ..., 7} denoting

the seven time points of the developmental time series, their interaction g × t,

factor AR ∈ {1, ..., 11} denoting the array (containing the four subarrays) and factor

DcRNA ∈ {1, ..., 7} denoting the date of cRNA synthesis. The fitting of the linear

regression was done on a gene-wise basis for the following model where yi,j,k,l,m depicts

the normalized gene intensities.

yi,j,k,l,m = µ+ gi + tj + (g × t)i,j + ARk +DcRNAl + εi,j,k,l,m. (3.3)

In this model, µ gives the overall gene-wise mean, the four genotypes are denoted

with index i, the seven time points with index j, the array with index k, the date

of cRNA synthesis with index l and the replicates with index m (between 1 and 4

biological replicates; see Figure 3.2 for details). A factor dye was not included in this

model because it was not significant. Estimated gene expression values, y∗i,j , were

obtained from model 3.3 as in Eq. 3.4

y∗i,j = gi + tj + (g × t)i,j. (3.4)

Afterwards, we applied an additional filtering step on the estimated effects of the

linear model. In this significance filter we filtered out genes that do not show a

significant time and/or genotype-time interaction effect. We corrected the P-values

for these effects using the FDR correction described by Benjamini and Hochberg

(1995). We choose a liberal cutoff of 0.2 as significance level to only exclude genes

which show nearly no time dependency or g × t interaction. After this filtering step,

9,840 genes remained for all further analyses, a number inline with our expectations

from earlier expression studies in A. thaliana (Ma et al., 2005).

The analyses were performed using R (R Development Core Team, 2008) (version

2.8.1) on an openSUSE Linux 11.0 (x86 64) server with 32GB RAM. Raw gene

expression data, estimated profiles as well as scripts are available upon request.
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3.3.2 Network statistics

Werhli et al. (2006) suggested that partial correlations of features of time series

profiles can be used to study causal regulatory interactions. Simulation results for

metabolite time series data confirmed this (Andorf et al., 2009). So, we based our

investigation of additional regulatory interactions in hybrids on the estimation of

regulatory interactions through partial correlations. To calculate partial correlations

we employed the approach as proposed by Opgen-Rhein and Strimmer (2007b). Their

algorithm is implemented in the R package GeneNet (Opgen-Rhein et al., 2007). We

used this package to obtain partial correlations from the normalized gene intensities

of the seven time points. In GeneNet, partial correlations are calculated as in Eq. 3.5

ρ̃a,d =
−ωa,d√
ωa,aωd,d

(3.5)

ρ̃a,d is the partial correlation between the genes a and d. ωa,d is the element of

the inverse covariance matrix. It is estimated using a shrinkage approach (Schäfer

and Strimmer, 2005b) within the package GeneNet. For the shrinkage estima-

tor of the partial correlations we used the default option “static” in the method

ggm.estimate.pcor of the package GeneNet. Because we do not include any a priori

information about the partial correlations in the shrinkage process, the covariance

matrix is shrunk towards the identity matrix. To demonstrate the validity of this

estimation procedure for the dimension of our data we conducted a methodology

simulation study.

1. Construction of covariance matrices with constant covariance values of 0.25

and 0.4 for 1,000 nodes (the diagonal values were set to unity).

2. Cholesky decomposition approach (Parrish et al., 2009) to simulate gene ex-

pression data out of these matrices for seven time points.

3. Calculation of the partial correlations using the R package GeneNet.

4. Calculation of the difference between the mean of the partial correlations from

the 0.4 covariance matrix and the one with 0.25 values.

5. Repeat of 1. - 4. for 100 times. The difference between the mean of the partial

correlations of both simulated gene expression data had the same order of

magnitude as the differences between the mean of partial correlations of the

homozygous and heterozygous genotypes in our experimental data.
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Partial correlation difference (simulation)
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Figure 3.4: Differences between the mean of the partial correlations calculated from
the simulated 0.4 covariance matrix and the one with 0.25 values for
each of the 100 repeats. A positive difference was detected for 77% of
the repeats

The simulation study described above is capable of showing that we are able to use

the shrinkage estimator of the partial correlations as implemented in the package

GeneNet in our study in a valid way. The resulting histogram of the differences

between the mean partial correlations calculated from the 0.4 and the 0.25 covariance

matrix for each of the 100 repeats is shown in Figure 3.4. In 77 cases from the 100

repeats, the mean difference of the simulated data was positive. In these cases,

the stronger correlated data (0.4) lead to a detection of larger partial correlations

in our simulation study. The means of all partial correlation values of the 100

repeats for the 0.25 and 0.4 covariance matrices, respectively, were 6.5 × 10−4 and

8.1× 10−4, respectively. For 1,000 randomly chosen genes of our experimental data,

we calculated a mean of the means of the partial correlations for all four genotypes

of 8.5×10−5. Thus, we have shown that the shrinkage approach for the estimation of

partial correlations by Schäfer and Strimmer (2005b) can be used for the dimension

of 1,000 nodes and 7 time points as in our data. The power to identify enriched

partial correlations in our simulation was 77%.

Within GeneNet, two-sided P-values for the test of non-zero correlation (null hy-

pothesis: zero partial correlations) are calculated (Schäfer and Strimmer, 2005a;

Strimmer, 2008). The P-values were corrected using the FDR correction described

by Benjamini and Hochberg (1995). Like Werhli et al. (2006), we are interested

in roughly estimating which regulatory interactions exist. Therefore, regarding our

hypothesis that heterozygous genotypes contain more regulatory interactions, our

focus is on the number of existing regulatory interactions, estimated as significant
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partial correlations, and not on the value of each partial correlation itself. Hence, the

further analysis of mid-parent and best-parent heterosis effects is based on s-values

that are calculated like in Eq. 3.6

sb,f,u = 1− P FDR
b,f,u (3.6)

P FDR
b,f,u donates the FDR estimates according to Benjamini and Hochberg (1995) for

the partial correlation between two genes (f, u ∈ {1, ..., N}, N genes in the analysis)

of genotype b ∈ {C24 × C24,Col-0 × Col-0,C24 × Col-0,Col-0 × C24}. Using s-

values, we get a high value for regulatory interactions that are most probably present

(low corrected P-value) and low values for regulatory interactions that are probably

not present in the regulatory network (high corrected P-value).

To determine the partial correlation mid-parent heterosis effect (see Figure 3.1) of

each gene pair, we first calculated for each genotype separately for every single gene

(f ∈ {1, ..., N}) the mean value of the s-values of its pairwise partial correlations to

all other genes:

smean,b,f =
1

N − 1

∑

u∈{1,...,N},f 6=u

sb,f,u. (3.7)

Second, the mid-parent value for each gene was built out of the mean values calcu-

lated before for the homozygous genotypes:

smid−parent,f =
1

2

∑

v∈{C24×C24,Col-0×Col-0}

smean,v,f (3.8)

Finally, the partial correlation mid-parent heterosis effects were calculated as the

difference between the mean values from Eq. 3.7 of either hybrid and the mid-parent

values:

∆sh,f,MPH = smean,h,f − smid−parent,f (3.9)

w denotes the respective heterozygous line (h ∈ {C24 × Col-0,Col-0 × C24}).
Simultaneously, we calculated the partial correlation best-parent heterosis effect val-

ues (see Figure 3.1). Here, instead of the mid-parent value, we determined the

best-parent value (the maximum values of the mean values of the two homozygous

genotypes; from Eq. 3.7):

sbest−parent,f = max
v∈{C24×C24,Col-0×Col-0}

smean,v,f (3.10)
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Afterwards, the partial correlation best-parent heterosis effect values were calcu-

lated as the difference between the mean values from Eq. 3.7 of either heterozy-

gous genotype and the best-parent values. h denotes again the heterozygous line

(h ∈ {C24 × Col-0,Col-0 × C24}):

∆sh,f,BPH = smean,h,f − sbest−parent,f (3.11)

As calculating partial correlations involves large matrices and, hence, a lot of working

memory, we were not able to analyze partial correlations for all 9,840 genes that

remain after filtering. Instead, we selected representative samples of 1,000 randomly

chosen genes. This is displayed in the left chain of the workflow in Figure 3.3. To

show that randomly selecting 1,000 genes indeed results in a representative sample,

we selected 500 times randomly 1,000 genes and analyzed the variation of the features

of interest. For each of the 500 repeats we calculated the partial correlation mid-

parent and best-parent heterosis effects for either heterozygous genotype. For each

of these four cases we determined the median of the calculated heterosis effect values.

Thus, we got four median values for each of the 500 repeats; one median for each

hybrid for the mid-parent as well as the best-parent heterosis effect. For each of the

four cases, we then calculated the mean of the before determined 500 median values,

∆smedian,r (r indexing the four cases), as well as the 95% confidence interval (2.5

and 97.5% quantiles). If these confidence intervals exclude the value of zero partial

correlation heterosis effects, we would be confident both to be able to show a robust

effect and that our sampling approach yields representative samples in our sense.

To determine the significance of the observed partial correlation heterosis effects, we

resampled the data of one randomly drawn representative sample of 1,000 genes in

such a way that the genotype origins of the data are randomly re-assigned (right chain

in Figure 3.3). For each gene in the set of 1,000, the estimated time profiles of the

four genotypes were randomly re-assigned to the four genotypes (with replacement).

This resampling was done 1,000 times. We calculated median values over the chosen

1,000 genes for each of the 1,000 resampling runs. This distribution of median partial

correlation heterosis effects constitutes the null hypothesis distribution to establish

a one-sided P-value for the originally observed partial correlation heterosis effects:

P# = #(∆smedian,resampled ≥ ∆smedian,r)/1, 000. (3.12)

A gene set enrichment analysis was performed to investigate if genes that show large

partial correlation heterosis effect values (Eqs. 3.9, 3.11) are particularly enriched
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in single pathways. We used gene sets (based on locus IDs) for 79 pathways. 30 of

them were based on a MapMan annotation file (Usadel et al., 2009; Thimm et al.,

2004), which, in turn, is based on the TAIR database version 8 (Swarbreck et al.,

2008). 49 gene sets were built upon Plant Ontology (PO) terms (The Plant Ontology

Consortium, 2002). Pathways that contained less than 10 or more than 4,000 of the

genes we analyzed were excluded from this analysis, because too few genes in one

pathway would make this pathway easily significant even if it just contains one or

two genes with high partial correlation heterosis effect values. Too large pathways

are not specific enough. The partial correlation heterosis effect values for each gene

were determined using the first 100 representative samples of 1,000 randomly chosen

genes each. Each time the mid-parent as well as best-parent heterosis effect values

for either hybrid were saved and averaged. We got one partial correlation mid-

parent and best-parent heterosis effect value per heterozygous genotype for each of

our 9,840 genes. However, our gene set enrichment analysis was based on just 8,500

genes because for the other genes we did not have a locus ID and, thus, we could not

assign them to the pathways. The median values of the mid-parent and best-parent

heterosis effect values for either hybrid for all 8,500 genes are very close to the mean

values shown in Figure 3.5.

We performed our gene set enrichment analysis using the hypergeometric distribution

according to Drǎghici et al. (2003) and Backes et al. (2007). This over-representation

analysis measures enrichment by cross-classifying genes according to the membership

in a functional category (gene set) and the membership in a selected list. We chose

as selected list the 850 genes (10% of all genes in this analysis) that show the largest

partial correlation mid-parent as well as best-parent heterosis effect for either het-

erozygous genotype. The resulting P-values were corrected using the FDR correction

described by Benjamini and Hochberg (1995).

3.4 Results

As proposed by Werhli et al. (2006), an increase in molecular interactions can be

measured as increase in partial correlations (also shown in a simulation study in An-

dorf et al. (2009)). Therefore, we investigated partial correlations according to

Opgen-Rhein and Strimmer (2007b) of our experimental data, to test our hypothesis

that regulatory networks of hybrids show enriched molecular interactions compared

to their parental homozygous genotypes. The investigation was based on s-values

(Eq. 3.6) to determine how many molecular interactions are probably present in the

different genotypes.
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Figure 3.5: Distribution of the median values of the partial correlation heterosis ef-
fects of 500 repeated analysis of 1,000 randomly chosen genes. Mean
values and 95% confidence intervals as well as the P-values are given

For 500 different sets of 1,000 randomly chosen genes we calculated the partial cor-

relation mid-parent heterosis effect values (Eq. 3.9) as well as the partial correlation

best-parent heterosis effect values (Eq. 3.11). Figure 3.5 displays the distribution

of the 500 median values for the partial correlation heterosis effect values from the

500 repeated measurements of 1,000 genes (representative samples). Furthermore,

the mean value and the 95% confidence intervall are shown for each case. For the

heterozygous genotype C24 × Col-0, the 95% confidence intervals exclude the zero

for the mid-parent as well as the best-parent partial correlation heterosis effect. The

95% confidence intervals for the genotype Col-0 × C24 exclude the zero just for

the mid-parent partial correlation heterosis effect values and not for the best-parent

partial correlation heterosis effect values. These three cases for which the 95% confi-

dence intervals exclude the zero show the effect of enrichment of partial correlations

in the transcriptome of the heterozygous lines and, furthermore, we are confident

that choosing 1,000 genes randomly out of 9,840 genes leads to representative sam-

ples in this sense. For the last case we cannot decide on this basis if selecting 1,000

genes randomly is not representative or if this genotype does not show a best-parent

partial correlation heterosis effect. We also determined the significance of the partial

correlation heterosis effects of the observed data. This analysis was based on the re-
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sampling of one set of 1,000 randomly chosen genes. For the genotype C24 × Col-0

we calculated a P-value of zero for the mid-parent as well as the best-parent partial

correlation heterosis effect. Hence, both effects are significant for this heterozygous

genotype. For the other heterozygous genotype (Col-0 × C24), only the mid-parent

partial correlation heterosis effect is significant with a P-value of 0.037. For the best-

parent partial correlation heterosis effect of this genotype, we determined a P-value

of 0.139. Thus, the best-parent heterosis effect is not significant for the genotype

Col-0 × C24. The P-values are also given in Figure 3.5.

a c

b d

Gene-wise mid-parent heterosis effect (Col-0xC24)

Gene-wise mid-parent heterosis effect (C24xCol-0) Gene-wise best-parent heterosis effect (C24xCol-0)

Gene-wise best-parent heterosis effect (Col-0xC24)

Figure 3.6: Display of partial correlation mid-parent heterosis effects (see Eq. 3.9) as
well as partial correlation best-parent heterosis effects (see Eq. 3.11) for
one representative set of 1,000 genes. For both hybrids most of the genes
show a larger significance of the partial correlations than the mid-parent
values or best-parent values, respectively

Figure 3.6 shows the partial correlation mid-parent as well as best-parent heterosis

effect values for either heterozygous genotype for one set of 1,000 representative

genes in detail. The histograms show that most of the partial correlation mid-parent

heterosis effects for both heterozygous genotypes (C24 × Col-0: Figure 3.6a; Col-

0 × C24: Figure 3.6b) are positive. The shift to the right is not as big for the partial

correlation best-parent heterosis effects (C24 × Col-0: Figure 3.6c; Col-0 × C24:

Figure 3.6d) as for the mid-parent heterosis effects but still noticeable.
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Table 3.2: Results of gene set enrichment analysis for partial correlation heterosis
effects: Enriched pathways of TAIR and PO

C24 × Col-0 Col-0 × C24 C24 × Col-0 Col-0 × C24

mid-parent mid-parent best-parent best-parent

Male gametophyte Male gametophyte Male gametophyte Male gametophyte

Stress Lateral root Sperm cell Lateral root

primordium primordium

Sperm cell Transport Stress Sperm cell

Redox regulation Sperm cell

Photosynthesis Primary root apical

meristem

Lipid metabolism

Ovule

In our gene set enrichment analysis we investigated if the partial correlation heterosis

effects are enriched in some particular pathways. Table 3.2 shows the pathways that

are enriched in either case of the partial correlation mid-parent and the best-parent

heterosis effect for both hybrids.

3.5 Discussion

Our study aims at contributing to the understanding of heterosis at the molecular

level by proposing a systems biological approach to analyze molecular profile data in

hybrids. We estimated regulatory interactions between genes as partial correlations

of their transcript profiles in a genome-wide approach for the early development

of two homozygous A. thaliana lines and their reciprocal crosses. Results show

a genome-wide global increase in the significance of partial correlations between

transcript profiles in the hybrid lines as compared to the mid-parent as well as best-

parent expectations. Moreover, in some functional groups of TAIR as well as PO

terms both hybrid lines show a particularly high partial correlation heterosis effect.

These results confirm earlier findings on the metabolite level (Andorf et al., 2009)

and provide further support to a molecular network hypothesis of heterosis which we

developed as systems biological approach contributing to a better understanding of

the molecular basis of heterosis.

Within the existing diversity of explanatory hypotheses towards a molecular basis

for heterosis, our approach aims to investigate changes in regulatory interaction on a
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global level, rather than searching for single responsible loci. Existence of regulatory

interactions on a global scale is estimated through significance of partial correla-

tions. We therewith follow a line of argumentation taken as early as in the 1950s

when Robertson and Reeve (1952) or Maynard Smith (1956) suggested that genetic

heterozygosity might result in greater biochemical versatility in development and for

reacting to environmental challenges. A larger repertoire in regulatory possibilities

on the molecular level could result in the observed superior hybrid vigor. Also, re-

cent discussions about possible molecular causes of heterosis include the notion of

altered regulatory effects in hybrids and the positive effects of an enlarged repertoire

of regulatory responses (Birchler et al., 2003; Song and Messing, 2003). The empha-

sis of our study is on substantiating this hypothesis as to enable to experimentally

measure the enlarged regulatory versatility in hybrids as global structures on the

molecular level.

In an earlier contribution, we proposed a systems biological approach contributing

to an understanding of heterosis at the molecular level which we termed “network

hypothesis of heterosis” (Andorf et al., 2009). Taking a very simplistic parsimonious

view, we considered the Boolean network approach, following Genoud and Métraux

(1999), to demonstrate how the enhanced possibility to correctly respond to environ-

mental challenges is linked to an enlarged number of regulatory interactions. These

were estimated as significant partial correlations of metabolite profiles in the same

design as for the current study at some earlier time points of development. Summa-

rizing the earlier results with those of the current study, we were now able to show a

global enrichment of the number/significance of the partial correlations in the hybrid

lines on both metabolome and transcriptome level for our illustrative datasets.

Regulatory interactions can only be estimated from correlation structures of a regu-

latory network in such parts where ongoing regulatory processes lead to measurable

changes in the respective molecular profiles. As both datasets concern the early de-

velopment of A. thaliana, where Meyer et al. (2004) showed that the foundations of

biomass heterosis are laid, it might be speculated that it is the nature of this biomass

phenotype that it concerns a global adaptation process of the seedling. Later devel-

opmental stages and adaptation processes, such as flowering, fruit ripening or other

more specific phenotypes may require more local, limited molecular responses, e.g.,

restricted to special pathways or gene regulatory modules. The current study as well

as the results of Andorf et al. (2009) mostly show global changes in partial correlation

structures, i.e., increase in estimated regulatory interactions.

However, as result of our gene set enrichment analysis several gene sets appeared

to be specifically enriched. We hypothesize that these genes are among the subset
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of highly regulated genes during the specific developmental interval of our study.

With the small-powered study design in mind, we do not want to speculate about

biological interpretations of specific enriched gene sets.

In other species, such as Drosophila or mice, it became evident early in hetero-

sis research that stress conditions were prone to cause pronounced heterosis effects

(Harrison, 1962; Maynard Smith, 1956). A possible reason is that under such condi-

tions the regulatory system is challenged to its limits. Hence, it is then necessary to

make full use of the spectrum of regulatory possibilities. This may lead to inferior

performance of the homozygous parental lines based on their limited regulatory pos-

sibilities when compared to their heterozygous offspring. In the setting of the current

study, establishing a viable seedling under laboratory conditions, such as a climatic

chamber opposed to the natural environment, may represent such an environmental

challenge capable to show the enhanced potency of the hybrids’ molecular regulatory

repertoire.

When confronting hybrid genotypes with the environment, e.g., when recording per-

formance in interesting environments for breeding and exploitation, functional data

such as gene expression or metabolite profiles allow an additional, deeper charac-

terization of potentially advantageous crosses. For example, Thiemann et al. (2010)

search for gene expression signals of single genes correlated with hybrid performance

in maize and functionally study their candidates using GO terms. Frisch et al. (2010)

follow an alternative strategy. Parental gene expression values are used to build a

distance measure which is used to predict hybrid performance with a linear model.

Further approaches exist to combine functional and genetic data for hybrid perfor-

mance prediction (Steinfath et al., 2010). Hence, these studies might complement

respective results from QTL studies. As Melchinger et al. (2007b) found in their

quantitative genetics study of Arabidopsis heterosis, QTL heterosis effects are to a

large extent dependent on the whole genetic background. If a given genetic back-

ground is advantageous or not, certainly is dependent on the environment. This

dependency is only accessible via functional tests. Several groups (Vuylsteke et al.,

2005; Swanson-Wagner et al., 2006; Guo et al., 2006; Wei et al., 2009) investigated

hybrids in comparison to their homozygous parents on the functional level, measuring

genome-wide gene expression levels. In addition to their findings about proportions

of realized modes of gene action in hybrids, our own contribution can be seen as

proposing an idea for a systems biological heterosis analysis of the functional do-

main or gene expression level. We propose a hypothesis how molecular correlation

structures specific for heterozygotes could be understood as mechanistic link between

molecular and phenotypic manifestation of heterosis.
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Considering regulatory interactions and possibilities to infer their global structure

from molecular profile data, it is evident that a lot of existing regulatory interactions

either involve molecular species which are not measured or act across different layers

of the molecular regulatory apparatus profiled. Here, we adapt the view proposed

by Somogyi and Sniegoski (1996), who emphasize the fact that the interactions de-

duced from molecular profiles of a specific level, e.g., metabolome or transcriptome,

map regulatory processes of other molecular levels onto the one under consideration.

Hence, the deduction of regulatory interactions for the specifically measured features

may be wrong in detail, because the effects of molecules from other molecular levels

are masked. This is especially so in the case of our study, as the number of time

points sampled does not at all suffice to draw any strong conclusions on the level of a

single estimated regulatory interaction. We think, however, that using our findings to

build hypotheses about global structures of the molecular regulatory apparatus, such

as an increased number of regulatory interactions in heterozygotes, is still allowed.

Partial correlations, also called association networks, are just one of several possi-

bilities for estimating global regulatory interaction structures. The related so-called

relevance networks (Butte et al., 2000), where Pearson correlations are measured to

describe global correlation structures, are, however less eligible for our task. In con-

trast to partial correlations where indirect correlations are explicitly excluded, these

remain an important factor when considering Pearson correlations. To emphasize this

difference, it might be stated that when considering Pearson correlations it is save to

talk about structures of missing correlations, whereas considering partial correlations

reveals structures of existing correlations without being contaminated with indirect

correlations. Werhli et al. (2006) recommended the use of partial correlations for the

estimation of molecular interaction of regulatory networks from observational data,

also contrasting it with a Bayesian network approach. In our study we follow this

recommendation and use an algorithm proposed by Schäfer and Strimmer (2005b)

which employs a shrinkage approach to estimate the partial correlations (R package

GeneNet). Their approach is suitable for data with small sample size and large num-

bers of variables, as our genome-wide gene expression profiles. As we do not have

any a priori information about the covariance structure of our transcriptome data,

we chose the identity as canonical shrinkage target. Moreover, the time points of

our time series data are not close enough in time to make additional use of the time

series character – hence we chose the option “static” for application of the shrinkage

estimator in the GeneNet package.

Time series data with only seven time points are a poor basis for investigating cor-

relation structures of thousands of features. In our case we were concerned with
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nearly 10,000 gene expression profiles from which we chose a set of 1,000 genes as

representative sample. However, we refrained from interpreting partial correlations

for single pairs of features, as due to the shortness of our time series, we were not

able to carry out a more accurate network reconstruction analysis. Instead, we were

interested in the global structures down to the level of a set of coarse grained path-

ways. This way, we feel that this kind of investigation of overall structure is still

valid. A medium scale number of false positives or negatives may not disturb this

coarse grained analysis results.

Regarding the number of features analyzed, it is necessary to also discuss the feature

selection, or filtering process, which was performed previously to partial correlation

analysis. Our filtering procedure has been chosen such as to filter out gene expression

profiles which were likely representing features not expressed or regulated during the

time interval of early development in our experiment. We chose cutoffs for the

filtering process such that around 10,000 genes remained for further analyses. This

number matches what is expected from existing studies regarding proportions of

actively expressed genes in different tissues of Arabidopsis (Ma et al., 2005).

Our dataset is also a compromise from another point of view. The plant tissue used

for feature extraction (RNA as well as metabolite isolation procedures) was the com-

plete young seedling. Hence, we assessed only the average of tissues constituting the

seedling. Inferences about the regulatory structure are therefore possibly exclusively

valid on the global scale we address, most likely not for many specific single features

and their correlations.

Furthermore, we are aware of the fact that only a single cross is a poor basis to draw

general conclusions.

Summarizing the methodological considerations, it remains to emphasize that the

dataset of the current investigation could be analyzed with valid results only at

the coarse grained global level. However, at this level, gene expression as well as

metabolite profiles jointly pointed towards an increase in the significance of partial

correlations. This, based on Werhli et al. (2006), we interpret as increase in number

of interactions allowing for an increased adaptability to environmental challenges

during early seedling development.

Future investigations should certainly involve multiple lines, multiple species, multi-

ple time windows of development or different environmental challenges for homozy-

gous parents and their hybrids to be proven on the functional level. Also, longer

time series should be investigated. Moreover, when more detailed time series data

become available, an analysis of regulatory structures on a smaller scale could be-

come possible where more valid investigations could be taken on the levels of special
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pathways, regulatory modules or motifs (Hartwell et al., 1999; Milo et al., 2002; Lee

et al., 2002). Also, integrative bioinformatic approaches involving the combination

of gene expression with metabolite profiles and hQTL data could reveal promising

results, especially for more local heterosis phenotypes affecting only a small part of

the regulatory network (see for example Gärtner et al. (2009); Wei et al. (2009)). The

discovery of functional groups of genes with particularly enriched partial correlations

could complement and refine quantitative genetics analysis about non-additive gene

actions and help to approach an understanding of the molecular basis of heterosis.

Hence, the systems biological approach towards finding the molecular basis of het-

erosis introduced with the current investigation should be seen as a methodological

proposal illustrated with a small dataset, complementary to the quantitative genetics

approach, which is not taking into account global structures of the various OMICS

levels, and the single-gene centered approaches, which involve data of much higher

resolution for the price of neglecting the global view.
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4.1 Summary

To contribute to a further insight into heterosis we applied an integrative analysis

to a systems biological network approach and a quantitative genetics analysis to-

wards biomass heterosis in early Arabidopsis thaliana development. The study was

performed on the parental accessions C24 and Col-0 and the reciprocal crosses. In

an over-representation analysis it was tested if the overlap between the resulting

gene lists of the two approaches is significantly larger than expected by chance. Top

ranked genes in the results list of the systems biological analysis were found to be sig-

nificantly over-represented in the heterotic QTL candidate regions for either hybrid

as well as regarding mid-parent and best-parent heterosis. This suggests that several

genes that influence biomass heterosis are located within each heterotic QTL region.
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Furthermore, the overlapping resulting genes of the two integrated approaches were

detected to be particularly enriched in biomass related pathways. A chromosome-

wise over-representation analysis gave rise to the hypothesis that chromosomes num-

ber 2 and 4 probably carry a majority of the genes involved in biomass heterosis in

the early development of Arabidopsis thaliana. Our integrative approach allowed to

identify candidate groups of genes, recognized by both approaches, which are likely

to contribute to the molecular basis of biomass heterosis in early Arabidopsis thaliana

development with enhanced specificity.

4.2 Introduction

The heterosis phenomenon, also known as hybrid vigor, was discovered in the early

20th century (Shull, 1908). It describes the superiority in fitness-related traits of

F1 hybrids compared to their parental homozygous lines (Shull, 1948). Mid-parent

heterosis (MPH) is the difference between the trait value of the hybrid and the

average trait value of the two parental inbred lines, while best-parent heterosis (BPH)

is the difference between the hybrid and the better of the homozygous parents. Even

though the plant breeding interest in heterosis is high, the underlying genetic and

molecular mechanisms are still not well understood.

In this work, we try to further approach the molecular basis of heterosis by integrating

the results of our previously proposed systems biological hypothesis towards the

understanding of heterosis on the molecular level (Andorf et al., 2009, 2010a) with the

outcome of a quantitative genetics study for biomass heterosis in early development of

Arabidopsis thaliana by Meyer et al. (2010). In both analyses the same two parental

accessions, C24 and Columbia (Col-0), which are known to show biomass heterosis

in their crosses (Meyer et al., 2004), were used.

Our proposed network hypothesis for heterosis (Andorf et al., 2009, 2010a) is based

on partial correlations to characterize the global interaction structure of regulatory

networks from observational time series data (Werhli et al., 2006). We expect a

higher number of regulatory possibilities in the hybrids compared to the homozygous

parents (Robertson and Reeve, 1952). This higher number of regulatory possibilities

leads to more regulatory interactions in the heterozygous genotypes. According to

our hypothesis, this increase in the connectivity of the regulatory networks can be

detected as an increase in the significance of the partial correlations between the

genes in either hybrid compared to the homozygotes. For each of the two hybrids we

obtained a list of genes ranked according to the increase in significance of its partial

correlation to each other gene compared to the mean of the parents (MPH) or the
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better of the two parents (BPH).

The top ranked genes of each of these ranking lists are compared to the list of genes

from QTL experiments which identified genomic regions involved in biomass heterosis

(Meyer et al., 2010). Within the QTL regions, only a few genes causally related to

biomass heterosis are expected. Therefore, we expected that the overlap between

the genes identified in the QTL regions and the top ranked genes from the systems

biological approach would not be significantly larger than by chance. Conversely,

from the systems biological point of view, it is predicted that probably many genes

are involved in the complex trait of biomass heterosis. Hence, if the two approaches

towards finding genes responsible for biomass heterosis in the early development of

Arabidopsis thaliana show a significantly larger overlap than by chance, it suggests

that each of the identified heterotic QTL regions contains more than only a few genes

influencing biomass heterosis. To test this, an over-representation analysis (ORA)

based on the hypergeometric distribution was used in which the significance of the

overlap between the resulting gene lists of either approach is calculated (Drǎghici

et al., 2003; Backes et al., 2007).

To analyze the distribution of genes contributing to biomass heterosis over all five

Arabidopsis thaliana chromosomes, we ran a chromosome-wise ORA. Furthermore,

ORA were applied to identify pathways which contain significantly more of the genes

of the resulting candidate group of genes from both approaches than expected by

chance.

4.3 Results

We performed an over-representation analysis (ORA) to analyze if two different ap-

proaches towards biomass heterosis in Arabidopsis thaliana point to similar genes

which are probably responsible for this heterotic phenotype. A significant enrich-

ment of the resulting genes from one analysis in the other would suggest that this

assumption is true and, therefore, more genes influencing biomass heterosis are within

the identified heterotic QTL regions than expected. Each of the analyses was per-

formed for the two heterozygous genotypes C24 × Col-0 and Col-0 × C24 as well as

regarding MPH and BPH.

Our ORA (setup shown in Figure 4.1) was based on a reference set of all m = 33239

Arabidopsis thaliana genes in the TAIR database version 9 (Huala et al., 2001).

The test set was built out of the n = 3133 genes within the genomic regions that are

involved in biomass heterosis determined in the quantitative genetics study by Meyer

et al. (2010). Following Fury et al. (2006), we used different numbers of genes in
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Reference set: all genes in TAIR9
= 33239 genes

A. taliana

m

Gene set 8032 genesC: max.
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Test set:
= 3133 genesn

Figure 4.1: Setup of the over-representation analysis to test if a systems biological
approach towards heterosis (Andorf et al., 2010a) and a quantitative
genetics approach (Meyer et al., 2010) point to similar genomic regions
influencing biomass heterosis in the early development of Arabidopsis
thaliana.

the gene set. Each gene set was created from the genes with the x largest ∆s-values

(partial correlation heterosis effect values according to Eq. 4.2 and 4.3) separately for

either hybrid as well as MPH and BPH. A large ∆s-value indicates that the gene was

identified in our systems biological analysis as probably involved in biomass heterosis

in the early development of Arabidopsis thaliana (Andorf et al., 2010a). For each

number x of genes (ranging from 0 to 8032 genes by steps of 100) we determined

four gene sets Cx,h,a (h ∈ {C24 × Col-0,Col-0 × C24} and a ∈ {MPH, BPH}).
The ORA was used to estimate the probability that the number of genes which

overlap between the test set and the respective gene set is either due to chance or

represents a true enrichment of the genes of the gene set in the test set.

Figure 4.2a shows the results of the ORA. The x-axis depicts the number x of genes

which were used in the gene set of each particular ORA. The y-axis shows the

probability (P -value according to Eq. 4.5) of having as many or more than the

observed kx,h,a genes in the overlap between the 3133 genes in the test set and

the x genes in the respective gene set if the genes of the test set would have been

chosen randomly out of the reference set. For genotype C24 × Col-0 for all gene

sets x ≥ 2700 significantly (significance level 0.05) more genes were detected in both

approaches than expected by chance for MPH as well as for BPH (Figure 4.2a). P -

values were only calculated for the case where the observed number of genes in the

overlap between test set and gene set was larger than we expected just by chance.

The result for the other hybrid, Col-0 × C24, was similar. For x ≥ 1800 for MPH

and x ≥ 1600 for BPH all ORA showed a significant overlap (significance level 0.1)

between the results of the two different heterosis analyses. Different from genotype
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Figure 4.2: ORA results for gene lists of two different approaches towards biomass
heterosis. x: number genes in gene set. (a) For gene sets of x ≥ 2600
genes, both hybrids (C24 × Col-0: black; Col-0 × C24: gray) show a
significantly larger overlap between test set (3133 genes determined in
QTL mapping experiments for biomass heterosis (Meyer et al., 2010))
and gene set (determined in systems biological network analysis (Andorf
et al., 2010a)) than expected for a random test set for MPH as well as
BPH. (b) Fraction of how much more genes are observed in the overlap
between test set and each of the gene sets than expected if this overlap
would be a chance event relative to the expected overlap. The over-
representation is significant (a) but not very strong (b).

C24 × Col-0, not all gene sets with more than a certain number of genes resulted in

a P -value < 0.05. For MPH gene sets of 3800 < x < 4200 genes and for BPH gene

sets of 4700 < x < 5700 led to P -values between 0.05 and 0.1 (Figure 4.2a).

Figure 4.2b shows the fraction of how much more genes were observed in the overlap

between test set and gene set (k genes) than expected just by chance (k′ genes) in

relation to k′. For large x-values we determined a constant percentage of more genes

than expected by chance.
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Summarizing, we identified a significant over-representation of the gene set in the test

set (Figure 4.2a), but the enrichment was not very strong. A maximum of around

20% more genes in the overlap than expected just by chance was detected and an

average of a little less than 10% for gene sets of 4000 genes or more (Figure 4.2b).
P

Figure 4.3: ORA with original and several random gene sets to confirm a significant
over-representation between genes of two different approaches. (a) shows
for C24 × Col-0 MPH the number (k) of genes in the overlap between
3133 genes in the test set and x genes in the “original” gene sets (black)
and in 50 randomly chosen gene sets (gray), respectively. For x ≥ 2700
the calculated empirical resampling P -values on the basis of 1000 ran-
domly chosen gene sets confirm a significant over-representation of the
gene set in the test set (b).

As a second validation of the significance of the observed enrichment, we ran a

resampling analysis in which the genes in the gene set were sampled 1000 times

randomly out of all genes in the reference set. Figure 4.3a shows the relation between

the number of genes observed in the overlap between test set and each “original” gene

set and in the overlap to the resampled gene sets for MPH of genotype C24 × Col-

0. For the reason of clearness the results of only the 50 first resamplings were

plotted. For x ≥ 2600 the number of genes in the respective “original” gene set

also present in the test set exceeded the overlap between test set and nearly each
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randomly resampled gene set, confirming the findings from Figure 4.2a. This result

is hardened by significant (significance level 0.05) corresponding empirical P -values,

calculated for 1000 resamplings, for all x ≥ 2700 (Figure 4.3b).

The calculation of the empirical resampling P -values for BPH C24 × Col-0 as well

as MPH and BPH of Col-0 × C24 also confirmed the result of a significant over-

representation for sufficiently large x shown in Figure 4.2a.

To study if the determined significant over-representation for sufficiently large gene

sets is the same over the five chromosomes in Arabidopsis thaliana, we ran the ORA

separately for each chromosome. Again, the genes from within the regions that were

determined during the QTL analysis by Meyer et al. (2010) applying LOD-score

thresholds for the empirical significance level of 5% were chosen as test set. As

before, the gene sets were based on the results from the systems biological analysis

by Andorf et al. (2010a). However, in this analysis each gene set Cx,h,a was split up

into five gene sets (Cx,h,a,chr). Each gene set contained only genes belonging to one

of the five chromosomes.

The results of these chromosome-wise ORA are shown in Figure 4.4. For chromo-

somes number 1 (Figures 4.4a and 4.4b) and 5 no significant over-representation

of the gene set in the test set was detected for either hybrid as well as heterosis

measure, independent of the gene set size. For chromosome number 5 the observed

overlap between the results of the two different approaches was for each number x

of genes in the gene set smaller than expected just by chance. Therefore, no plots

for chromosome number 5 are presented in Figure 4.4.

Chromosomes 2 (Figures 4.4c and 4.4d) and 4 (Figures 4.4g and 4.4h) showed a

significantly larger overlap than expected by chance between test set and gene set

for both heterozygous genotypes and both heterosis measures for nearly each gene set

size. For chromosome 3 the result was not as clear as for the other ones. The hybrid

C24 × Col-0 showed a significant enrichment (significance level 0.1) of the gene set

in the test set for gene sets of 400 or more genes for MPH and BPH. The determined

P -values for the ORA of the genotype Col-0 × C24 fluctuated with different gene

set sizes between significant on the level of 0.05, significant on the level of 0.1 and

not significant at all. Hence, for chromosome number 3 only C24 × Col-0 showed a

significantly larger overlap between the results of the two approaches than expected

by chance. However, this over-representation is much weaker than for chromosomes

2 and 4 (Figures 4.4d and 4.4h).

The plots in Figure 4.5 are based on the 3000 genes with the highest ∆s-values

for C24 × Col-0 MPH. The x-axis shows the genetic distance (Kosambi centimorgan

(cM)) of each of the five Arabidopsis thaliana chromosomes (5a-e: chromosomes 1-5).
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Figure 4.4: ORA results for gene sets that contain genes of only one of the five Ara-
bidopsis thaliana chromosomes (x: number genes in gene set). (a)+(b):
chromosome 1; (c)+(d): chromosome 2; (e)+(f): chromosome 3; (g)+(h):
chromosome 4; for chromosome 5 no over-representation at all was ob-
served and, therefore, no plots are shown. The probabilities of having
as many or more genes in the overlap of random test sets to the gene
set than observed for the experimental data are shown on the left side.
The proportion of genes that were more in the overlap than expected by
chance are shown on the right side. Genes on chromosomes 2 and 4 show
a significant over-representation between the results of the two different
approaches towards biomass heterosis in early development.
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Figure 4.5: Relative frequencies (fraction between the number of detected 3000 top
ranked genes of C24 × Col-0 MPH of the systems biological analysis and
all known genes in Arabidopsis thaliana at a specific section on each chro-
mosome) are plotted against the genetic distance (Kosambi cM). (a-e):
chromosome 1-5. The gray boxes are the QTL candidate genomic regions
contributing to biomass heterosis (Meyer et al., 2010). The horizontal
lines are the median values of the relative frequencies per chromosome.
For chromosomes 2 and 4 the relative frequency exceeds the median rela-
tive frequency especially in the area of the detected QTL. This is in line
with the detected significant over-representation on these chromosomes
of the genes detected in the systems biology approach in the genes from
the QTL study.
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The determined heterotic QTL regions are represented as gray boxes. To show that

for some chromosomal sections more of the 3000 genes were detected than expected

by chance, we calculated relative frequencies as the number of the 3000 genes in

a certain section of Kosambi cM, divided by the number of all known Arabidopsis

thaliana genes from TAIR9 in this section. By building the relative frequencies we

accounted for the different gene densities at diverse chromosome regions. These

relative frequencies are shown on the y-axis. The horizontal lines are the median

values of the relative frequencies for each chromosome. The detected overall over-

representation was weak (Figure 4.2b) but particular significant on chromosomes 2

(Figure 4.4c) and 4 (Figure 4.4g). In the plots of these two chromosomes (Figures

4.5b and 4.5d) more points are above the respective median relative frequency values

in the areas of the QTL than in other regions on the respective chromosome.

Table 4.1: Ranked results of ORA of overlapping genes between two approaches to-
wards biomass heterosis and pathways of TAIR8 and PO

C24 × Col-0 MPH C24 × Col-0 BPH Col-0 × C24 MPH

LP.08 eight leaves visible LP.08 eight leaves visible petiole

LP.12 twelve leaves visible leaf lamina base LP.02 two leaves visible

petiole LP.12 twelve leaves visible leaf lamina base

leaf lamina base petiole LP.12 twelve leaves visible

shoot shoot F mature embryo stage

LP.02 two leaves visible LP.02 two leaves visible LP.08 eight leaves visible

cotyledon cotyledon

male gametophyte F mature embryo stage

F mature embryo stage

guard cell

Furthermore, it was analyzed to which functional group within the Arabidopsis

thaliana plants the genes in the overlap between the two approaches towards biomass

heterosis in Arabidopsis thaliana belong. This was done by using an ORA with a

different setup than before. In this analysis, the overlapping genes between the 3000

genes with the highest ∆s-values, again separately for each hybrid and heterosis

measure, and the 3133 genes identified in the quantitative genetics analysis were

used as test sets. The reference set were all 8032 genes that were analyzed in the

systems biological study according to Andorf et al. (2010a). Each of the 80 gene

sets that were used contained genes that belong to one pathway based on PO terms

(The Plant Ontology Consortium, 2002) or MapMan (Usadel et al., 2009) which in
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turn is based on the TAIR8 database. Table 4.1 shows ranked lists of pathways with

a significant over-representation (FDR corrected P -value < 0.05). For the test set

of Col-0 × C24 BPH, no pathway with a significant enrichment was detected. The

majority of pathways that showed a statistically significant over-representation are

leaf or otherwise biomass related.

The fundamental data (such as the ∆s-values) and results of the analyses are avail-

able upon request.

4.4 Discussion

In this study two different approaches to determine genes that contribute to biomass

heterosis in early development of Arabidopsis thaliana were integrated. We could

show that the quantitative genetics approach by Meyer et al. (2010) and the systems

biological analysis by Andorf et al. (2010a) point to similar genomic regions influ-

encing heterosis for biomass. An over-representation analysis (ORA) revealed that

the resulting genes of these two studies showed a significantly larger overlap than

expected by chance (Figure 4.2a). This result of a significant over-representation

achieved in the parametric ORA was confirmed in a resampling analysis in which

the genes of the gene set were randomly chosen 1000 times out of the reference set

(Figure 4.3). However, while the enrichment was significant, it was not very strong

(Figures 4.2b and 4.5). This result was achieved for either hybrid (C24 × Col-0 and

Col-0 × C24) regarding both heterosis measures (MPH and BPH) (Figure 4.2) and

markedly for two out of the five chromosomes (Figure 4.4).

In further ORA with a different setup we analyzed if the genes in the overlap between

the results of the two approaches show a significant enrichment in one or more of 80

Arabidopsis thaliana pathways. The majority of pathways that showed a significantly

larger overlap than by chance are leaf or otherwise biomass related (Table 4.1). This

result is in line with an earlier analysis by Meyer et al. (2004), in which they detected

heterosis in the trait of biomass in early development of the same Arabidopsis thaliana

accessions that were under study in this work.

Some methodological details of our approach remain to be discussed. The number of

genes determined in the quantitative genetics approach was fixed due to the prese-

lected criterion of an empirical significance level of 5% for the LOD-score thresholds.

The number of genes in the results list of the systems biological approach was not

specified for the ORA. The ORA was run several times to study the overlap between

the 3133 genes of the QTL mapping experiments (test set) and the top ranked 0 to

8032 genes of the systems biological analysis (gene set).
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We did not run the ORA for a fixed size of the gene set because Fury et al. (2006)

stated that the overlapping probability determined in ORA studies depends on the

number of genes in the gene lists (test set and gene set) which are compared. Fury

et al. (2006) have shown that the overlapping significance increases (P -values de-

crease) with increasing number of genes in the gene set (or test set). So, small gene

set sizes have a small overlapping significance. This may be one of the reasons why

the P -values for low numbers x of genes in the gene set are not significant in our

analysis (Figure 4.2a). In contrast, if no true signal (over-representation) is present,

the gene list size does not effect the P -values that are observed (Fury et al., 2006).

If ∆s-values for each gene in the reference set (all Arabidopsis thaliana genes in the

TAIR9 database) of our ORA were available, the analysis could have been extended

to x > 8032 genes in the gene set. In this case we expect that the P -values of the

over-representation would increase for larger gene set sizes x until it is not significant

at all (Fury et al., 2006).

In the microarray experiments of the systems biological analysis 44k gene models

were measured but reduced due to filtering steps and methodological reasons to only

8032 genes for this current work. The filtering involved a step in which genes that

show no significant time and/or genotype-time point-interaction effect in the applied

linear model were excluded from the subsequent analysis (Andorf et al., 2010a). This

leads to the fact that in the 8032 genes in this study, the genes that are probably

involved in biomass heterosis are already slightly enriched. This may be one reason

for the significant over-representation for large x-values shown in Figure 4.2a.

Furthermore, we want to point out that the results of the chromosome-wise analyses

have to be used with care because each of the gene sets was relatively small. This

chromosome-wise analysis can, therefore, not give a firm insight into which of the

chromosomes contain the genes that are mainly responsible for biomass heterosis.

In this work, an integrative analysis was presented. In comparison to the results

of one experimental technique, the integration of two different experimental tech-

niques accounts for the technological bias of each approach and the restriction to the

particular level of biological information that is addressed by the single technique.

The results that are found in an integrative analysis are more likely to be significant

than the results of one single experimental technique as discussed in Steinfath et al.

(2007).

However, no significant over-representation between the results of the two approaches

integrated in this work could be expected because only a few genes per heterotic

QTL region were assumed to influence biomass heterosis in Arabidopsis thaliana.

Against this expectation, we could determine a significantly larger overlap between
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the resulting candidate gene lists for biomass heterosis in the early development of

Arabidopsis thaliana of the systems biological approach and the quantitative genetics

analysis than expected by chance. Furthermore, the genes within this overlap are, in

turn, significantly enriched in biomass related Arabidopsis thaliana pathways. This

suggests that more genes (not only the expected few genes) from within each QTL

region are somehow involved in biomass heterosis. So, most probably several genes in

the respective regions led to the detection of each heterotic QTL region. Furthermore,

this significant enrichment is in line with the hypothesis that functionally related

genes are rather adjacent on the chromosomes than randomly distributed. Riley

et al. (2007) proposed that the distribution of molecular functional classes of genes

in Arabidopsis thaliana is not locationally independent. If functionally related genes

influencing biomass heterosis would be distributed randomly over the chromosomes,

no significant over-representation would have been detected in this work.

For biomass heterosis in Arabidopsis thaliana at 15 days after sowing the found

QTLs account for only up to around 30% of the phenotypic variation (Meyer et al.,

2010). This may be one reason, why the identified over-representation was weak

even though it was significant. Perhaps, more genes influencing the phenotypic

variation were identified using the systems biological approach but these genes were

not detected in the QTL mapping experiments. Another reason for this weak over-

representation may be that both analyses that are integrated in this work identified

several genes that do not affect the phenotypic variation. These genes which are not

directly involved in biomass heterosis most probably differ in both approaches and,

therefore, they do not overlap in the integrative analysis. The exclusion of these not

overlapping genes is one aim of integrative analyses and may on the other hand be

the reason for the weakness of the detected over-representation in this study.

Hence, the result of the integrative analysis not only points to more genes within the

heterotic QTL regions influencing biomass heterosis than expected but it also sug-

gests that the identified overlapping genes can be seen, with an increased confidence

compared to the results of only one experimental technique, as a candidate group of

genes which are likely to be involved in the molecular basis of biomass heterosis of

early development of Arabidopsis thaliana.
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4.5 Experimental procedures

4.5.1 Genes according to a systems biological analysis

To contribute to the understanding of heterosis, we proposed a systems biological

hypothesis on the basis of molecular network structures (Andorf et al., 2009, 2010a).

Following Robertson and Reeve (1952) and Werhli et al. (2006), we expect in our

network hypothesis for heterosis that heterozygous genotypes which show heterosis

contain more regulatory interactions and, therefore, denser regulatory networks than

the homozygous parents. These additional regulatory interactions lead to an increase

in the significance of partial correlations of features in the regulatory networks of the

hybrids compared to the homozygous genotypes (Andorf et al., 2010a).

This network hypothesis for heterosis was tested and confirmed on transcriptome pro-

files from seven time points during the early development of two different homozygous

Arabidopsis thaliana accessions (C24 and Col-0) and the two corresponding hybrids

(Andorf et al., 2010a). These heterozygous plants are known to show a heterosis

effect in their biomass phenotype (Meyer et al., 2004).

For details about the experimental data and raw data preparation, see Andorf et al.

(2010a). Slightly different from the analysis described in Andorf et al. (2010a),

another ANOVA model was applied in this study along with a cutoff of 0.3 for the

corrected P -values of the effects in the used linear model. This way only genes

that show nearly no time dependency and/or genotype-time point-interaction were

excluded.

Different from the analysis described in Andorf et al. (2010a), in which several repre-

sentative samples of 1000 genes each were analyzed, all genes remaining after filtering

were processed at once in this work. Separately for each genotype, the partial cor-

relations of the time profiles for each pair of these genes were calculated using the R

package GeneNet (Opgen-Rhein and Strimmer, 2007b; Schäfer et al., 2009). Along

with the partial correlation values itself, two-sided P -values (null hypothesis: zero

partial correlation) were calculated and FDR corrected according to Benjamini and

Hochberg (1995).

Following Werhli et al. (2006), a significant partial correlation symbolizes a probably

present regulatory interaction between the two belonging genes. In order to have

a high value for two genes, between which most probably a regulatory interaction

exists, we built s-values:

sb,f,u = 1− P FDR
b,f,u (4.1)
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b ∈ {C24 × C24,Col-0 × Col-0,C24 × Col-0,Col-0 × C24} denotes the genotype.

P FDR
b,f,u is the FDR corrected P -value of the partial correlation between the two genes

f, u ∈ {1, ..., 9263}.
Separately for each genotype for every gene the mean of its s-values to each other

gene was computed. This way, we received one smean-value for every gene for each

of the four genotypes. On the basis of these smean-values we calculated the partial

correlation MPH values ∆sh,f,MPH in respect of our network hypothesis as the dif-

ference between the smean-value of either hybrid to the mean of the smean-values of

the homozygous genotypes:

∆sh,f,MPH = smean,h,f −
smean,C24×C24,f + smean,Col-0×Col-0,f

2
(4.2)

where h ∈ {C24 × Col-0,Col-0 × C24} denotes the hybrid and f the gene.

Partial correlation BPH values (∆sh,f,BPH) were calculated as the difference between

the smean,h,f -value and the larger of the smean,g,f -values of the two homozygous geno-

types (g ∈ {C24 × C24,Col-0 × Col-0}) for each gene f :

∆sh,f,BPH = smean,h,f − max
g∈{C24×C24,Col-0×Col-0}

smean,g,f (4.3)

A high ∆sh,f,MPH-value is achieved when the gene is probably involved in more

interactions in the regulatory network of the respective hybrid than it is expected

in the mean of the two homozygous parents. Correspondingly, a high ∆sh,f,BPH

suggests that the gene is involved in more regulatory interactions in the hybrid than

in the better of the two parents. Following our network hypothesis for heterosis,

genes with high ∆s-values are likely to be involved in biomass heterosis.

With the cutoffs used in this analysis, our hypothesis about additional regulatory

interactions holds true for either hybrid regarding MPH as well as BPH. However,

we want to state that this is not a direct candidate gene approach in the way that we

expect that for example the 100 genes with the highest ∆s-values are all involved in

biomass heterosis. Instead of that, we can just establish that a list of genes with high

∆s-values contains various genes that may have an impact on biomass heterosis.

In our over-representation analysis (ORA) only genes which are identified with an

AGI code can be used. Therefore, genes with unknown AGI code were excluded from

the enrichment analysis. ∆s-values of different gene models of one gene according

to the TAIR9 database were averaged.

This left 8032 genes with a known AGI code and a ∆s-value for each hybrid and

heterosis measure for the ORA.
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4.5.2 Genes according to a QTL analysis

The genomic regions involved in early stage biomass heterosis were identified as

described in Meyer et al. (2010), using composite interval mapping (CIM) as im-

plemented in the QTL mapping software PLABQTL (Utz and Melchinger, 1996).

Data were obtained from recombinant inbred line (RIL) populations (Törjék et al.,

2006) derived from the same Arabidopsis thaliana accessions C24 and Col-0 as used

in the systems biological analysis described above. For the analysis, 838 testcrosses

between the homozygous parents and 429 RILs were used.

Genomic regions were identified as having an influence on biomass heterosis, if the

corresponding LOD-score exceeded the LOD threshold with an empirical significance

level of 5%. LOD thresholds were determined separately for each trait by 5000 per-

mutations (Churchill and Doerge, 1994). The genes within the genomic regions were

identified on the basis of the TAIR9 genome release (The Arabidopsis Information

Resource, ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR9 genome release, June

2010) (Huala et al., 2001). 3133 genes in 7 genomic regions constituted the test set

for our ORA.

4.5.3 Over-representation analysis

In an over-representation analysis (ORA), it is studied if a list of genes (gene set) is

over-represented (represented more than expected by chance) or under-represented

(represented less than expected by chance) with respect to another gene list (test

set). Furthermore, the probability is estimated how likely this over-representation

or under-representation is due to chance considering a specific reference set of genes

(Drǎghici et al., 2003; Backes et al., 2007). In this work the experimental data is

tested for over-representation only.

We used an ORA to test if two different approaches towards more insight into biomass

heterosis in Arabidopsis thaliana point to similar genes. One approach was based on

quantitative genetics (Meyer et al., 2010) and the other on systems biology (Andorf

et al., 2010a). Each of these two studies led to a list of genes probably involved in

biomass heterosis. While the QTL approach provided directly a list with 3133 genes

due to the given LOD-score thresholds, the number of genes in the top ranked list

based on the systems biological analysis was not fixed by a preselected criterion.

The setup of the ORA is shown in Figure 4.1. The reference set consisted of all

m = 33239 Arabidopsis thaliana genes listed in the TAIR database version 9. During

the QTL study n = 3133 of these genes were identified as genes which are probably

involved in biomass heterosis and we refer to these genes as the test set. A certain
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number (x) of genes detected in our systems biological approach to heterosis with

the highest ∆s-values (Eq. 4.2 and 4.3) built the gene sets Cx,h,a (separately for each

hybrid h ∈ {C24 × Col-0,Col-0 × C24} and heterosis measure a ∈ {MPH, BPH}).
This led to four different gene sets for each x. The gene sets contained a maximum

of x = 8032 genes in case all genes, even with negative ∆s-values, were used. The

number of genes in the reference set which belong to gene set Cx,h,a is denoted by

lx,h,a. The number of genes of our test set which overlap with the current Cx,h,a is

given by kx,h,a.

Given lx,h,a, m and n, the number of genes (k′
x,h,a) that would be in the overlap

between test set and gene set Cx,h,a in the case that the test set is chosen randomly

out of the reference set can be calculated:

k′
x,h,a =

lx,h,a
m

∗ n (4.4)

The genes of the gene set Cx,h,a are called to be enriched in the test set if kx,h,a

(genes observed in the overlap) is significantly larger than k′
x,h,a (genes expected in

the overlap just by chance) (Backes et al., 2007).

A hypergeometric distribution was used to estimate the probability of observing an

overlap of kx,h,a genes between test set and gene set if these sets were independent

(null hypothesis) (Drǎghici et al., 2003; Fury et al., 2006). The probability (one-sided

P -value) of having as many or more than kx,h,a genes in the overlap between test

set and gene set Cx,h,a can be calculated by summing up the probabilities of having

kx,h,a or more genes belonging to the test set also in the gene set in the case that

the genes of the test set are randomly chosen from the reference set (Drǎghici et al.,

2003):

P [X ≥ kx,h,a|m,n, lx,h,a] =
n

∑

i=kx,h,a

(

lx,h,a
i

)(

m−lx,h,a
n−i

)

(

m

n

) (4.5)

where X is a hypergeometric distributed random variable giving the size of the

overlap. A P -value smaller than a given significance level corresponds to a significant

over-representation of the gene set in the test set.

This whole analysis was performed in R (R Development Core Team, 2008). The

function phyper was used to calculate the P -values corresponding to the hypergeo-

metric distribution.

Fury et al. (2006) stated that the overlapping probability in an ORA changes with

the number of genes in the test set and gene set. In our study the number of genes

in the test set was fixed to 3133, but the number of genes in the gene set was not



76 4 Integrative A. thaliana biomass heterosis analysis

fixed. Therefore, the ORA was run with different numbers of genes in the gene set

to analyze the influence of the gene set size on the overlapping probability. For each

run the genes with the x largest ∆s-values were selected, separately for each hybrid

as well as MPH and BPH, as the gene set. The number of genes in the gene set

was ranged for the different ORA from x = 0 to x = 8032 (all genes in the systems

biological network analysis) by steps of 100.

4.5.4 Resampling analysis of enrichment

In the ORA using a hypergeometric distribution, the probability to detect as many

or more than the observed kx,h,a genes in the overlap between test set and gene set

Cx,h,a when a random test set is used is estimated. In a resampling analysis we

calculated empirical resampling P -values on the basis of a resampling of the genes

in the gene set. For each number x of genes in the gene sets we sampled new genes

out of all genes in the reference set without replacement and assigned them to the

original ∆s-values. This is done 1000 times for any x. For each of these random gene

sets the number of genes of the test set also present in the gene set were determined

(k∗
x,h,a). The number of genes in the overlap between each original gene set and

the test set is depicted by kx,h,a. We used these values to calculate for each x the

empirical resampling P -values:

Presampling,x,h,a =
#(k∗

x,h,a ≥ kx,h,a)

#resamplings
(4.6)

Empirical resampling P -values (Presampling,x,h,a) smaller than a given significance level

are achieved in the case where the original gene set leads to a significantly larger

overlap to the test set than expected by chance. This approach does not require

distributional assumptions.

4.5.5 Chromosome-wise over-representation analysis

We analyzed if genes which are involved in biomass heterosis are functionally located

at only some of the five Arabidopsis thaliana chromosomes.

In this study for any number x of genes in the “original” gene set, five ORA were

performed. Each time the gene set Cx,h,a,chr contained only the genes detected in

our systems biological approach towards heterosis which belong to one of the five

chromosomes (chr ∈ {1, ..., 5}). The assignment to the chromosomes was done

based on the TAIR9 database. The reference set and test set of these ORA were the

same as before.
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Of all 8032 genes that were analyzed in the systems biological approach, 2105 belong

to chromosome number 1, 1348 to chromosome 2, 1569 to chromosome 3, 1193 to

chromosome 4 and 1807 to chromosome 5. 10 of the 8032 genes under study are not

listed in the TAIR9 database.

4.5.6 Pathway analysis of candidate group of genes

In an attempt to get a little further insight into the molecular basis of biomass het-

erosis we determined the functional assignments of the genes in the overlap between

the resulting genes from the systems biological analysis according to Andorf et al.

(2010a) and the genes determined in the quantitative genetics approach by Meyer

et al. (2010). This functional enrichment analysis was done by applying four fur-

ther ORA. This time the reference set were all 8032 genes analyzed in our systems

biological analysis. Four different test sets were used; one for each hybrid-heterosis

measure combination. Each test set was built by first determining the 3000 genes

with the highest ∆s-values. Then the overlap of these 3000 genes to the 3133 genes

detected in the quantitative genetics approach was identified and used as test set.

As gene sets we used 80 Arabidopsis thaliana pathways which contain between 10

and 4000 of the 8032 genes in the reference set. 28 of them were based on MapMan

(Usadel et al., 2009), which in turn is based on the TAIR8 database. The remain-

ing 52 pathways were built using Plant Ontology (PO) terms (The Plant Ontology

Consortium, 2002).

The P -values achieved in this ORA were corrected for multiple testing using the

FDR approach by Benjamini and Hochberg (1995).

In this setup we could determine if the overlapping genes between the two analyses

are significantly enriched in one or more pathways (functional groups) of Arabidopsis

thaliana.
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5 General discussion

Each chapter contains already a discussion about the particular results and the

impact of the research described within it. Therefore, this general discussion will

focus on the integration of the results of each separate chapter and will give an

outlook of possible future research following the presented approach towards a better

understanding of heterosis.

In this work, a systems biological approach towards biomass heterosis in Arabidop-

sis thaliana is presented to contribute to a better understanding of the heterosis

phenomenon. The proposed network hypothesis for heterosis was tested on gene ex-

pression data as well as on metabolite profiles of two homozygous genotypes and their

crosses. The estimated underlying regulatory networks of the homozygous parents

and the hybrids were compared to reveal the differences in the network structure.

Werhli et al. (2006) have shown that partial correlations of time series observational

data can be used to estimate regulatory interactions. Hence, the determination of

the differences in the regulatory networks was based on partial correlations according

to Opgen-Rhein and Strimmer (2007b).

The network hypothesis for heterosis (section 1.7) predicted more regulatory inter-

actions in the hybrids than in the homozygous genotypes. For the metabolite data,

a high probability of more regulatory interactions in the hybrids compared to the

parental lines was observed for MPH of both heterozygous genotypes (chapter 2).

The hypothesis, tested on the metabolite profiles, was based on the partial correla-

tion values. The difference of the mean partial correlation values of each metabolite

between either hybrid and the mean of the parents was calculated.

A slightly different hypothesis was tested on the gene expression data (chapter 3).

Instead of the partial correlation values itself, the significances (FDR corrected P -

values) of the partial correlations built the basis for the calculation of the heterosis

values. The hypothesis held true for either hybrid for MPH but only for C24 × Col-0

for the case of BPH.

To make a comparison between the results of these two omics datasets possible, the

heterosis values of the metabolite data were, in an additional analysis, calculated on

the basis of the significances of the partial correlations as in the analysis of the gene
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expression profiles. Furthermore, different to the analysis in chapter 2, in which the

hypothesis was only tested for MPH, the repeated analysis of the metabolite profile

data was done for MPH as well as BPH. The results (appendix A on page 101)

have shown that also the network hypothesis for heterosis based on the significance

of partial correlations holds true for either hybrid and both heterosis measures for

the experimental metabolite data in this work. A positive difference of the average

significance of the partial correlations of the metabolites in the hybrids to the mean

of the parents (for MPH) or to the better of the parents (for BPH) was observed for

the majority of metabolites.

During the analysis based on the network hypothesis for heterosis, the cutoff, used in

the filtering step after the linear model applied to the gene expression data (Eq. 3.3),

to exclude genes from the further analysis that show nearly no time dependency

and/or genotype-time point-interaction, proved to be a crucial factor. In a further

analysis, the influence of this significance cutoff on the results of the analysis of the

gene expression data regarding the network hypothesis was studied (appendix section

B.1 on page 105). It was revealed that for each hybrid and heterosis measure, the use

of small cutoffs for the FDR corrected P -values of the applied linear model (smaller

than between 0.16 and 0.26, depending on the hybrid and heterosis measure) leave

only genes for the heterosis analysis in this work that lead to rejection of the network

hypothesis for heterosis. In case of “strict” filtering (small cutoffs) over all genotypes

and time points, not only genes that show no time dependency and/or genotype-time

point-interaction are excluded from the further analysis but also genes that led to

weak time dependencies and/or genotype-time point-interactions. Conversely, for all

cutoffs larger than these values, the hypothesis holds true for both hybrids and MPH

as well as BPH.

Based on the analysis presented in appendix section B.1, the result from chapter

3, that the network hypothesis has to be rejected for Col-0 × C24 BPH, can be

relativized. In chapter 3, a cutoff for the FDR corrected P -values was chosen that

was in the range between 0.16 and 0.26, leading to the rejection of the hypothesis

for Col-0 × C24 BPH. For every cutoff larger than 0.26, the analysis of the gene

expression data presented in that chapter would have resulted in no rejection of the

hypothesis for both hybrids and either heterosis measure.

The analysis of the influence of the significance cutoff on the rejection of the network

hypothesis for heterosis was also tested for the metabolite data (appendix section

B.2). The outcome was the same as for the gene expression profiles. For small

significance cutoffs the hypothesis does not hold true for either hybrid regarding

MPH as well as BPH. On the other side, for large cutoffs, the hypothesis is not
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rejected for either hybrid and both heterosis measures, independent of the particular

value of the cutoff.

Summarizing the results from chapters 2 and 3 and the in the appendix presented

further analyses, for moderate large cutoffs applied to the FDR corrected P -values

of the effects in the used linear models, the hypothesis of additional regulatory inter-

actions in the heterozygous genotypes compared to the mid-parent and best-parent

expectation is confirmed for metabolite as well as gene expression data for either

hybrid regarding MPH and BPH.

In chapter 4, an over-representation analysis integrating the outcome from the ap-

plication of the network hypothesis for heterosis to the gene expression profiles and

the results from a quantitative genetics approach towards biomass heterosis in early

Arabidopsis thaliana development (Meyer et al., 2010), was presented. A signifi-

cant enrichment of the resulting genes of the systems biological analysis in the genes

within the determined heterotic QTL regions was detected, leading to the suggestion

that probably several genes in each region led to the detection of each heterotic QTL

region.

In recent studies, the assumption was strengthened that the basic principle of

heterosis is a complex interplay of several molecular mechanisms and based on the

complex structure of biological networks, molecular regulation and inheritance pro-

cesses (Birchler et al., 2003; Hochholdinger and Hoecker, 2007; Birchler et al., 2010).

In heterosis analyses based on gene expression data of different inbred lines and

crosses, no consensus set of genes could be identified that was differentially expressed

between all inbred-hybrid combinations. Hochholdinger and Hoecker (2007) con-

cluded that, since no key genes for heterosis could be found in these studies, rather

global trends of gene expression are correlated with heterosis.

Therefore, we are convinced that systems biological approaches towards the mole-

cular basis of heterosis, such as the one presented in this work, are promising to

contribute to a better understanding of the heterosis phenomenon. These approaches

should not be seen as an alternative to quantitative genetics analyses but as com-

plementary.

Up to now, heterosis analyses based on high-throughput data almost always followed

the aim to identify pathways containing genes that influence the heterosis phenotype

or, in the molecular biological view, to determine and characterize single genes that

have an impact on the phenotype under study. The here presented analysis, based on

the network hypothesis for heterosis, is to our knowledge one of the first approaches

that studies all active parts of the regulatory networks of different genotypes with
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respect to heterosis. Our approach is independent of any known biological function

of the genes and metabolites. Only the changes in the regulatory network structure

are analyzed. This is in contrast to other high-throughput molecular biological ap-

proaches which are focusing on finding responsible biological pathways. This basic

research approach may deliver a valuable basis for a further understanding of the

basis of heterosis.

The network hypothesis for heterosis was tested and confirmed on data of two omics

levels of the same Arabidopsis thaliana genotypes. The time points during the devel-

opment at which the samples were taken are not exactly the same for the metabolomic

and transcriptomic data. However, in both experiments, time points during the early

development of Arabidopsis thaliana were analyzed, making a comparison of the re-

sults permissible. Hence, this study of the same biological question on different levels

of biological organization can bee seen as an integrative approach. The conclusion

that the hybrids contain denser regulatory networks than the homozygous parental

lines is strengthened, in comparison to the analysis of only one dataset, by the fact

that experimental data of two different omics levels have shown the same outcome.

Other approaches to integrate gene expression and metabolite data are presented in

the literature. For example, the integrative systems biological analysis of metabo-

lite and gene expression data by Urbanczyk-Wochniak et al. (2003) is based on a

pairwise correlation analysis between metabolite and gene expression data. For each

transcript it is determined whether it is correlated with any of the metabolites under

study. They conclude that this integrative analysis can be used for a rapid identifi-

cation of candidate genes. In the analysis by Urbanczyk-Wochniak et al. (2003), the

metabolite and gene expression data were measured from the same samples at the

same time points. However, as explained above, for the heterosis analysis presented

here, the metabolite and gene expression data were measured at different time points

during the early development of Arabidopsis thaliana. Therefore, as promising as the

approach by Urbanczyk-Wochniak et al. (2003) is, it can not be applied straight for-

ward to the experimental datasets in this work.

As yet, reverse engineering approaches are widely used for transcriptomics data, but

the application on metabolomics is rather limited (Çakır et al., 2009). In chapter 2,

a reverse engineering analysis applied to metabolite data was presented. Since both

reverse engineering approaches, applied to metabolomic and transcriptomic data,

came to the same conclusion regarding the network hypothesis for heterosis, we

could hypothize that, even though it was not often used so far, reverse engineering

approaches based on partial correlations can be used to infer information about
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regulatory structures of metabolite networks. When we performed this analysis on

the metabolite data, no comparative study has been done to study the applicability

of this approach to reconstruct metabolic networks. By now, Çakır et al. (2009)

performed such a study and could show that reverse engineering approaches based on

partial correlations can indeed infer, up to a certain accuracy, metabolomic networks

from observational steady state metabolite data.

Reverse engineering approaches are rather applicable if the measured samples contain

only one type of cells than a heterogeneous mixture of different cell types (Venet et al.,

2001; Lu et al., 2003). The basis for the metabolite as well as the gene expression

data in this work were the whole Arabidopsis thaliana seedlings. Due to the fact that

the heterozygous genotypes show biomass heterosis, the mixture of cell types most

probably differs at any given time point between the genetically distinct plants. This

different composition of cell types might have an interfering effect on the outcome of

the reverse engineering analyses in this work. However, we assume that this effect

is smaller than the actual effect caused by the different regulatory networks that we

want to study and, hence, it does not influence the reliability of the global conclusion

about more regulatory interactions.

The integrative analysis for the results of the systems biological approach and the

heterotic QTL regions identified by Meyer et al. (2010) revealed a significantly larger

overlap between the two approaches than expected by chance. Instead of an ORA,

this analysis could have been performed based on a GSEA. As described in the

introduction (section 1.6) GSEA use lists which are sorted by some criterion as test

set. The GSEA is, therefore, not applicable straight forward in the setup presented

in chapter 4 because the genes within the heterotic QTL regions, that built the test

set, were not quantitative data. The quantitative character of these genes, however,

could be achieved by using the distance of each gene to the closest peak of the LOD

score profile (personal communication, Prof. T. Altmann, IPK Gatersleben).

In addition, in chapter 4, an over-representation of genes from biomass related Ara-

bidopsis thaliana pathways in the overlapping genes between the both integrated

approaches was observed. Since both approaches analyzed biomass heterosis in the

early development of Arabidopsis thaliana, the enrichment in these pathways confirms

that both approaches pointed to similar sets of genes influencing biomass heterosis

in Arabidopsis thaliana. This conclusion goes along with the other result of this inte-

grative approach that not only a few but several genes influencing biomass heterosis

are located within each heterotic QTL region.
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A first extension of the study of the network hypothesis for heterosis in Arabidop-

sis thaliana could be based on the work by Lisec et al. (2009). They analyzed two

mapping populations of a cross between the same two Arabidopsis thaliana acces-

sions C24 and Col-0, as used in this work, regarding heterosis at the metabolic level.

Including their identified heterotic metabolic QTL, would complete the “set” of anal-

yses towards biomass heterosis in Arabidopsis thaliana in this work a little further.

This “set” would then contain the results of the systems biological approach based

on the network hypothesis for heterosis for the metabolite as well as gene expression

data and the outcome of QTL mapping approaches towards biomass heterosis for

metabolomic (Lisec et al., 2009) as well as for transcriptomic data (Meyer et al.,

2010). Based on this set, comparisons and integrations of the results of the same

approach applied to different omics levels, results of different approaches but used

for the same omics level or any other combination of these approaches and omics lev-

els would be possible. Integrative analyses of these four analyses (two approaches ×
two omics levels) towards biomass heterosis in Arabidopsis thaliana would account for

the limitations, restrictions and characteristics of either analysis method and either

omics level. This, in turn, would be a further step towards a better understanding

of the molecular basis of the heterosis phenomenon.

One important point in the evaluation of this work is that all the results can not be

used to draw general conclusions. The reason for this is the small experimental data

basis. Only two homozygous lines and the reciprocal crosses of one species (Ara-

bidopsis thaliana) were analyzed for one heterosis trait. Furthermore, even though

it was shown in chapter 3 that it is possible to infer biological networks from the

experimental data of seven time points, this data basis is still too weak to draw gen-

eral conclusions. As pointed out by Hochholdinger and Hoecker (2007), the outcome

of heterosis analyses, such as which model (dominance, overdominance or epistasis)

is the most favorable, are controversy and depend up to some extend e.g. on the an-

alyzed organism, type of tissue, developmental stage or the experimental technique

that is used for the analysis. Hence, to draw more general conclusions about the

molecular processes underlying heterosis, based on the presented network hypothe-

sis for heterosis, this hypothesis should be tested on experimental data from more

species, different developmental stages and diverse heterosis traits.

Summarizing, the systems biological approach towards the better understanding of

heterosis presented in this work, is one of the first analyses based on changes in all

active parts of the regulatory networks of homozygous to heterozygous genotypes

(chapters 2 and 3). On two different omics levels it was estimated that the heterozy-
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gous Arabidopsis thaliana genotypes contain denser regulatory networks than the

homozygous parents. The results of this systems biological approach were integrated

with QTL mapping experiments towards biomass heterosis, resulting in a significant

overlap between the results of the two different analyses (chapter 4). This led to the

suggestion that each heterotic QTL region contains many genes probably influencing

biomass heterosis in early Arabidopsis thaliana development.
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Appendix

A Significance based network hypothesis applied to

metabolite data

The experimental metabolite data described in chapter 2, were analyzed additionally

in a slightly different approach (published in the proceedings Andorf et al. (2010b)).

This time the network hypothesis for heterosis was based on the significance values of

the calculated partial correlations, as described in chapter 3 for the gene expression

profiles, instead of the partial correlation values itself.

Another difference to the study in chapter 2, is that in this analysis a linear mixed

model approach was used to estimate the metabolite values for the four geno-

types and seven time points. The fixed effects of this model include genotype g ∈
{C24 × C24,Col-0 × Col-0,C24 × Col-0,Col-0 × C24}, time point t ∈ {1, ..., 7}
and the interaction between genotype and time point (g × t). The model contains

the random effects (underlined in the model) measuring day d ∈ {1, ..., 3} and the

error random term εi,j,k,l. The measuring day was used as a random effect because it

is not repeatable. The fitting of the linear regression was done on a per metabolite

basis for the following model where y
i,j,k,l

depicts the logarithm of the raw metabolite

signal:

y
i,j,k,l

= µ+ gi + tj + (g × t)i,j + dk + εi,j,k,l (A.1)

µ gives the overall metabolite-wise mean. The four genotypes are denoted with

index i, the seven time points with index j, the measuring day with index k and

the replicates are depicted by index l. Each genotype-time point combination was

covered by four replicates. Estimated metabolite values were obtained from the

linear mixed model as in Eq. A.2:

y∗i,j = gi + tj + (g × t)i,j (A.2)

Afterwards, a modest filtering step was applied on the significance of the estimated

effects of the linear model where metabolites that do not show a significant (cut-
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off: 0.21) time and/or genotype-time point-interaction effect are excluded from the

further analysis. For this filtering step, the P -values of these effects were corrected

for multiple testing using the FDR approach described by Benjamini and Hochberg

(1995). After this significance filtering, 172 metabolites remained for the further

analysis.

The calculation of the partial correlation values (Eq. 3.5) and partial correlation

MPH (Eq. 3.9) as well as partial correlation BPH values (Eq. 3.11), based on the

significance of the calculated partial correlations, was done as described for the gene

expression data in chapter 3.

The histograms of the partial correlation MPH and BPH effect values for the 172

metabolites are shown in Figure A.1. The vertical lines highlight zero, where it is

estimated that the metabolite is probably part of the same amount of regulatory

interaction in the heterozygous genotype as, respectively, in the mean of the parents

(MPH) or the better of the homozygous lines (BPH). A positive partial correlation

MPH or BPH value represents that the particular metabolite is probably involved

in more regulatory interactions in the hybrid than in the mid- or best-parent ex-

pectation. So, according to the network hypothesis for heterosis, it is expected that

the majority of the metabolites show a positive partial correlation MPH or BPH

value. This shift to positive values is visible for MPH as well as BPH of both hybrids

(Figure A.1).
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Figure A.1: Partial correlation MPH and BPH values for all metabolites after filter-
ing with a significance cutoff of 0.21. In line with the network hypothesis
for heterosis, most metabolites show positive partial correlation heterosis
values.
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B Influence of cutoff values in the significance

filtering step

B.1 Gene expression data

In chapter 3, one particular “significance” cutoff was applied to the FDR corrected P -

values of the time and genotype-time point-interaction effects from the linear model

3.3. To study the influence of the cutoff value, that is used in this filtering step, on

the results of this analysis regarding the network hypothesis for heterosis, different

significance cutoffs were applied to the FDR corrected P -values of the linear model

3.3. As described in chapter 3, only genes with FDR corrected P -values of the time

and/or genotype-time point-interaction effects smaller than the significance cutoff

were used for the further heterosis analysis. So, for small cutoffs, only genes that

show a strong time dependency and/or genotype-time point-interaction were used to

calculate the heterosis values according to the network hypothesis for heterosis. For

large cutoff values, nearly no genes were excluded from the further analysis.

To analyze the influence of the applied significance cutoff, the following steps to

calculate the heterosis values similar to the analysis in chapter 3 were done for a set

of different significance cutoffs (from 0.001 to 1 by steps of 0.01):

1. Applying the current significance cutoff value to the FDR corrected P -values.

2. Choosing 1000 genes randomly out of the set of “significant” genes (genes

remaining after the particular significance cutoff was applied) for five times.

3. Calculating the partial correlation heterosis values for each of the five sets of

1000 genes according to Eqs. 3.9 for MPH and 3.11 for BPH.

4. Computing for any of the five sets of significant genes the median values of

all these heterosis values, separately for the two hybrids and MPH as well as

BPH.

5. Determining separately for either hybrid and both heterosis measures, the mean

of the median values. So, one mean value is calculated for each hybrid-heterosis

measure combination.

In Figure B.1, these mean values are plotted against the significance cutoff values.

For all cutoffs larger than a certain value between 0.16 and 0.26, depending on the

hybrid and heterosis measure, the average of the median of the heterosis values

according to the network hypothesis for heterosis is positive. A positive mean of the
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Figure B.1: The filtering step of applying a significance cutoff to FDR corrected P -
values of time and genotype-time point-interaction effects of the linear
model 3.3 has an influence on the decision if the network hypothesis
for heterosis has to be rejected or not. For small significant cutoffs, the
hypothesis does not hold true (negative average median heterosis values).

five median values is observed if the majority of genes of the particular set of genes

show a positive heterosis effect regarding the network hypothesis for heterosis. In

other words, in case of a positive mean, it is estimated that the majority of genes

is involved in more regulatory interactions in the hybrid than in the mid-parent or

best-parent expectation.

B.2 Metabolite data

For the metabolite profiles (chapter 2), the same study, as described in the previ-

ous section for the gene expression data, of the influence of the significance cutoff

was performed (Andorf et al., 2010b). The basis for this study built the FDR cor-

rected P -values of the effects in the linear mixed model A.1 described in appendix

A. As in the analysis of the gene expression data, different significance cutoffs (from

0.001 to 1 by steps of 0.001) were applied to exclude metabolites from the respec-

tive analysis that show larger corrected P -values of their time and genotype-time

point-interaction effect than the used significance cutoff. Different from the study

of the gene expression profiles, where five samples of 1000 genes each were selected

and analyzed, the partial correlation heterosis values could be calculated at once for

all 192 metabolites under study for each significance cutoff. So, for every significant
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cutoff in this screening analysis, the partial correlation MPH and BPH values for

either hybrid were calculated and in each case the median of the partial correlation

heterosis values was determined. These median values were plotted against the sig-

nificance cutoffs (Figure B.2). The outcome of this study is the same as for the gene

expression data. Too small cutoff values lead to no positive heterosis values that were

expected in our hypothesis. For large significance cutoffs, the network hypothesis for

heterosis holds true for either hybrid regarding both heterosis measures.
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Figure B.2: The median of the partial correlation MPH and BPH values are plotted
against different cutoffs for the significance filter for the time and/or
genotype-time point-interaction effects after the metabolite-wise linear
mixed model A.1. Only for small significance cutoff values, the network
hypothesis for heterosis has to be rejected (negative median heterosis
values).
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Allgemeinverständliche
Zusammenfassung

Als Heterosis-Effekt wird die Überlegenheit in einem oder mehreren Leistungsmerk-

malen (z.B. Blattgröße von Pflanzen) von heterozygoten (mischerbigen) Nachkom-

men über deren unterschiedlich homozygoten (reinerbigen) Eltern bezeichnet. Dieses

Phänomen ist schon seit Beginn des letzten Jahrhunderts bekannt und wird weit ver-

breitet in der Pflanzenzucht genutzt. Trotzdem sind die genetischen und molekularen

Grundlagen von Heterosis noch weitestgehend unbekannt.

Es wird angenommen, dass heterozygote Individuen mehr regulatorische Möglich-

keiten aufweisen als ihre homozygoten Eltern und sie somit auf eine größere Anzahl

an wechselnden Umweltbedingungen richtig reagieren können. Diese erhöhte Anpas-

sungsfähigkeit führt zum Heterosis-Effekt.

In dieser Arbeit wird ein systembiologischer Ansatz, basierend auf molekularen

Netzwerkstrukturen verfolgt, um zu einem besseren Verständnis von Heterosis beizu-

tragen. Dazu wird eine Netzwerkhypothese für Heterosis vorgestellt, die vorhersagt,

dass die heterozygoten Individuen, die Heterosis zeigen, mehr regulatorische Inter-

aktionen in ihren molekularen Netzwerken aufweisen als die homozygoten Eltern.

Partielle Korrelationen wurden verwendet, um diesen Unterschied in den globalen

Interaktionsstrukturen zwischen den Heterozygoten und ihren homozygoten Eltern

zu untersuchen.

Die Netzwerkhypothese wurde anhand von Metabolit- und Genexpressionsdaten der

beiden homozygoten Arabidopsis thaliana Pflanzenlinien C24 und Col-0 und deren

wechselseitigen Kreuzungen getestet. Arabidopsis thaliana Pflanzen sind bekannt

dafür, dass sie einen Heterosis-Effekt im Bezug auf ihre Biomasse zeigen. Die

heterozygoten Pflanzen weisen bei gleichem Alter eine höhere Biomasse auf als die

homozygoten Pflanzen.

Die Netzwerkhypothese für Heterosis konnte sowohl im Bezug auf mid-parent

Heterosis (Unterschied in der Leistung des Heterozygoten im Vergleich zum

Mittelwert der Eltern) als auch auf best-parent Heterosis (Unterschied in der

Leistung des Heterozygoten im Vergleich zum Besseren der Eltern) für beide Kreuzun-

gen für die Metabolit- und Genexpressionsdaten bestätigt werden.
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In einer Überrepräsentations-Analyse wurden die Gene, für die die größte Verände-

rung in der Anzahl der regulatorischen Interaktionen, an denen sie vermutlich betei-

ligt sind, festgestellt wurde, mit den Genen aus einer quantitativ genetischen (QTL)

Analyse von Biomasse-Heterosis in Arabidopsis thaliana verglichen. Die ermittel-

ten Gene aus beiden Studien zeigen eine größere Überschneidung als durch Zufall

erwartet. Das deutet darauf hin, dass jede identifizierte QTL-Region viele Gene,

die den Biomasse-Heterosis-Effekt in Arabidopsis thaliana beeinflussen, enthält. Die

Gene, die in den Ergebnislisten beider Analyseverfahren überlappen, können mit

größerer Zuversicht als Kandidatengene für Biomasse-Heterosis in Arabidopsis

thaliana betrachtet werden als die Ergebnisse von nur einer Studie.
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Additional thanks go to Tanja Gärtner and Matthias Steinfath for many helpful tips

and suggestions.





Erklärung 113

Erklärung
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